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Preface

This 3" volume of the Formulas and Problems concludes the series to
the basic courses in Engineering Mechanics.

Experience shows that the field of Dynamics is particularly difficult
for students, because besides the concept of force now additional kine-
matic quantities occur, which must be brought into relation with each
other and with the forces. Therefore, with numerous purely kinema-
tical problems, we tried to deepen the understanding of the relevant
geometric quantities and their description in different coordinate sys-
tems. Likewise, only by exercises, i.e. by an independent treatment of
problems, one can gain experience, which basic principle leads to the
solution in the simplest way. Often there are several approaches pos-
sible. Therefore we demonstrate this frequently so that the reader can
realize the advantages and disadvantages of the alternatives.

As in the 1®% and 2"¢ volume, we deliberately placed the emphasis
on the principal way how to to apply the theory and not in numerical
results. The correct formulation of the relevant basic equations and
their solution is in the beginning much more important than numerical
calculations without a deeper understanding of the background.

Experience also shows that it is an illusion to believe that simply
reading and trying to comprehend the presented solutions leads to an
understanding of the theory. Neither does it improve the problem sol-
ving skills. Therefore, we strongly recommend that the reader first tries
to solve the problems independently, possibly by using other approa-
ches. Let us emphasize that a collection of formulas and examples is
only an additional aid when studying mechanics and it cannot replace
a textbook. When the reader is not familiar with one or the other for-
mula or concept, it is necessary to brush up the theory with the help
of a textbook; a number of titles can be found in the list of references.

Darmstadt, Stuttgart, Hannover, D. Gross
Essen and Kaiserslautern, Summer 2016 W. Ehlers
P. Wriggers
J. Schroder

R. Miiller
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Notation
In the problem solutions the following symbols are used:

T: abbreviation for equation of motion (impulse law) in direction
of arrow.

s
A: abbreviation for angular momentum theorem relative to point
A with given positive rotation direction.

~»  abbreviation for it follows.



Chapter 1

Kinematics of a Point



2 Kinematics

The position of a point P in space is descri-
bed by the position vector

r(t).

As P moves, its path is given by r(t).

From the displacement dr of point P
in a neighboring position during time dt
follows its velocity

dr

v = =,

dt

The velocity is always tangent to the path (trajectory). With the arc—
length s and |dr| = ds the speed of P is given by

V= =35.

dt

The change of the velocity vector dv(¢) during time dt is called
acceleration

The acceleration generally is not directed tangent to the path (trajec-
tory)!

The vectors r, v and a can be represented in different coordinate sys-
tems as follows:

a) Cartesian Coordinates with the unit vectors ez, ey, e.:

path

r=xe;t+yey+ze,,
v=ze,+yey,+ ze,,

a=%e,+ye, +zZe, .

r=re-+ze,, .
v=rer+roe,+ze., @ path

a=F—ri?) e+ (rgp+2ip)e, + e, . A




of a point 3

c) Serret-Frenet Frame with the unit vectors e, en, e, in tangential,
principal normal and binormal direction.

C
vV=ve;,
pllp
— 7.)2
a—vet—i—pen. . path
S P &
Here are:
p = radius of curvature (distance between P and
center of curvature C),
v=3§= ds = speed
CU T adt - sbeed
. dv . :
ar =0 = dt = tangential acceleration,
2
v . . ;
Oy, = = normal acceleration (centripetal acceleration).
P

Remarks: The two acceleration components a:, a, are located in the
so-called osculating plane. The acceleration vector points always to the
‘interior’ of the path.

Rectilinear motion

Position x(t) 0 P
b x
dx
1 = = x =
Velocity v & av z(t)
Acceleration a = 6 =0=2%.
dt

Circular motion (r = const)
Position s=rp(t),
Velocity V=T =TWw,
Tangential acceleration ar=r¢ =rw,
%

. 9 v 2
Centripetal acceleration a, = =rw
r

with w = ¢ = angular velocity.



4 Kinematic Basic Problems

Planar motion in polar coordinates

From the relations for cylindrical coordinates follow for z =0, ¢ = w

UV =Urer + vyl , a = are, + ap€,
with
radial velocity Wp =1, e P
circular velocity Vp =TW , y| L
radial acceleration ar =7 — rw? , e > ®p
circular acceleration a, = rw 4+ 2rw . r

Remark: In case of a central motion the circular acceleration vanishes.

From a, = 76 + 27w = (r?w)’/r = 0 then follows the "Law of Equal
Areas’ (KEPLER'S 2nd Law) r?w = const .

Kinematic basic problems for a rectilinear motion

At initial time to the initial position zo and initial velocity vy are as-
sumed to be given.

Given Sought
a=0 v = vg = const , T = xg + vot
uniform motion
2
v = v + aot, mzmo—&—vot—i—éaot
uniform acceleration

a = ag = const

¢ ¢
a = af(t) v=wo+ [a(®)dl, z=uz0+ [v(t)dl
to to
v d’E t —
t=to+ U= . z=x0+ [FE)dE
a = a(v) 0 vfo a(v) fw), w=ao t{ ®
with the inverse function v = F(t)
v2=112+2$a£di’, t=t+$d?: a7
a = a(m) 0 ac{ ( ) 0 x{ U(.T) g( )
the inverse function of t = g(z) gives z = G(t)
Remarks:

e The relations above can also be used for a general motion by repla-
cing = through s and a through the tangential acceleration a;. The
normal acceleration then follows from a, = v> /p-

e If the velocity is given as a function of the position, the acceleration
is found from

dv d (’U2)

dz  dz 27

a ="



Rectilinear Motion 5

Problem 1.1 The minimum distance b between two vehicles shall be
as big as the distance which the rear vehicle covers within ts = 2s at
its constant velocity.

a) Determine the minimum distance z, required for passing.

b) Determine the minimum time ¢, a car (length /; = 5m, constant
speed v1 = 120 km/h) needs staying on the fast lane for passing a truck
(length lo = 15m, speed v2 = 80km/h) correctly? Disregard the time
for changing the lanes.

Solution

B
> [ H b A -

4’{ ll b1 | lQ } To f= b2‘>‘ ll
,F -

a) For uniform motion the minimum distances follow with 1km/h =
1000 m/3600 s as

120 200 b — . 80400
36 °7 3 PTRS T 36 YT 9

Thus, the required distance for passing is given by

b1:’U1t5=

Tp=br+lo+z2+b2+11.
Furthermore, the relations

To = V2lp, Tp = Vitp
hold. Elimination of ¢, yields

Cbitbat+hitly 2§0+480+5+15_ 1180

Tp _ U2 - 80 3
1= =120

=393,33m .

b) Thus, the minimum time for passing is

_x, 1180-3,6
th=""="4 1p =1L8s.

P1.1



P1.2

6 Rectilinear

Problem 1.2 To simulate absence of gravity, vacuum drop-shafts are
used. Given is a shaft with a depth of [ = 200 m.

Determine the maximum available test time t; and test distance i
during free fall, when the sample after passing the test distance is de-
celerated with ayr = —50 g to v = 07

Solution Because the sample is

released from rest (zo = vo = sample
0), during free fall with a; =
const = g, the velocity and po- I Z T T t=0
sition are €z (a; = g)
vr = gt , 971:”;]'52 T
During the deceleration phase !
with ag = —50 g, velocity and 1y
position are given by -
(an = —50g)
UHIUHO—509t7 L t =1,

) e
xmr =z, + v, t — 50 gt=/2.

It shall be noted that the integration constants zy, and vy, have no
direct physical meaning.

For t = to the following conditions must hold:
U][(tg) =0 ~ Virg = 5()gt2 )

0
gts =1—25¢t3 .

zi(te) =1 ~ gy =1— v, ta + 9

From the transition conditions

U](t1) = v[[(t1) ~ gty = 50g(t2 — t1) s

50 50
z1(t) = zu(ty) ~ gtle— ) gt + 50 gt1ts — ) gt?

the test time ¢1 and subsequently x1 can be determined:

100 1 100 - 200
! \/519 \/5149.81 6.32s,
» 91000 50

92 _ _
YT 2519 " 51

5 [ =196 m.

x1 =wr(ty) =



Motion 7

Problem 1.3 Between 2 stations an underground covers a distance of P1.3
3km. Given are the starting acceleration a, = 0.2m/s?, the braking
deceleration aq = —0.6 m/s* and the maximum speed v* = 90km/h.

Determine the acceleration distance, the deceleration distance, the di-
stance during uniform motion and the travel time.

Solution From the constant acceleration a, within the starting phase
the velocity follows as

Vo = Qqt .

With the given maximum speed we obtain the starting time

v* 90 - 1000
ta = = =125
aa  3600-0.2 °
and the acceleration distance
Sq = 9 Aoty = 9 0.2-125° = 1563 m .

During braking with constant deceleration a4 the velocity is given by

vg =v" + aqt .
Thus, the time tq until stop (vq = 0) is

v 90 - 1000
tg=—" =— — 41.67s
4T T g T 73600 (—0.6) *

and for the associated braking distance follows

90 - 1000
3600
= 1041.75 — 520.92 = 521 m .

* 1
Sqg=v td+2adt§: -41,67—2-0.6-41.672

For the phase with constant velocity v* remains a distance of
¥ =3000 — sq — sq = 916m
and an associated time

s* 916 - 3600
v* 901000

Thus, the total travel time is

t* = = 36.64s .

T =tq+t"+t4 =203.31s = 3.39 min .



P1.4

8 Rectilinear

Problem 1.4 A car driver approaches a traffic light with the speed of
vo = 50km/h. At a distance of I = 100 m the lights turn to "Red’. The
'Red’ and ’Yellow’ phase takes t* = 10s. The driver wants passing the
traffic lights just when the lights turn back to 'Green’.

a) Determine the necessary constant deceleration ag, when the driver
is braking along the entire distance?

b) Determine the velocity v1 of the car when arriving at the lights?

c¢) Draw the diagrams a(t), v(¢) and x(t).

Solution For constant accelerati-

<
on ag we have with z(t =0) =0 EI
— 1
v=vtat, =
’ | l 1
m=vd+a02~ —

a) The 2nd equation leads with the condition z(t*) =1 to

2 o 2 50 - 1000 m
ao= o, (L—wt)= <1007 5600 -10) =018, .

The negative sign indicates that the car decelerates.

b) With the now known deceleration during braking, the 1st equation
yields

1000

vy =0v(t") =50- 3600 0.78 - 10 a [m/s?) 0
t[s
_ 609 ™ Z 2198 078 © | tH
S h '

v [km/h]

c) Integration of the constant ‘
acceleration yields a linear ve- 10 ¢s]
locity plot, a second integration
a parabolic path-time diagram.




Motion 9

Problem 1.5 A vehicle moves
according to the given speed-time
diagram.

P15

Determine the occuring accelera-
tions, the covered distance and
draw the diagrams z(t), a(t), v(x)
and a(z).

Solution Tt is advantageous to devide the motion into 3 time sections:

=t 1 | ——

L I L L

T T T
0 100 300 360 t[s]

1. Section 0 < ¢; < 100s (starting with constant acceleration a;): From
v1 = a1ty follows

v1(100
1= 1500 ) = 12000 = ém/s2 , 1= ait},

s1=1(100) = } - 1(100)* = 1000m , v1(z1) = v2a121 .

2. Section 0 < ¢z < 200s (uniform motion): From vy = 20m/s = const
results

a2 = 0 5 Tro — Uztg s SS9 — .1‘2(200) = 20 . 200 = 4000111 .

3. Section 0 < t3 < 60s (braking with constant deceleration as): With
vz = 20m/s + asts we obtain

a3=*%8=f§m/52, x3:20t3+;a3t§,
s3 = x3(60) =20-60 — } - 1(60)> = 600m, vs=+/400+ 2a3zs .

In total, the vehicle covers the distance

s =51+ s2 + s3 = 1000 4 4000 + 600 = 5600 m .

la (/7] l a [m/s?]
ay 300 360 ay 5000 5600

100 as|  ts] 1000 |2| z [m]

z [m] v [m/s]

5000 -~ &

1000 +--- Lo

| L
100 300360 1 [s]



P1.6

10 Rectilinear

Problem 1.6 Taking air resistance into account, the acceleration of a
free falling body can be described approximately by a(v) = g — av?.
Here g is the gravity acceleration and « a constant.

Determine the velocity v(t) of the body that is released from rest.

Solution According to the table on page 4 we have for a given a(v)

v do
t=t0+/ o -
vo 9 — QO

If the motion starts at to = 0 we obtain with the initial condition
U(to) =v0 = 0

. /“ do 1 /“ do
[
0 9T o (JE—0G/E+0)

and after partial fraction decomposition
11 /< 1,1 )dv
e _ _
WRANTIAN
g
1 g g, - \/ tv
= —ln\/ —v)—l—ln(\/ +v] .
2\/g [ ( « e ) o 2\/ga \/g v

Solving for v yields

9 2 @
62\/gat:\/0¢+v ~ v:\/ge\/g -1

g a eVt 417

CM_U

e —e ¥ -1
With the hyperbolic function tanhp = = the result
) e¥ + e ¢ e2r +1
also can be written as

v

v—\/ tanh \/ga t . \/g 777777777777777

From this last representation the limit
value

lim v(t) = v/g/a,

t—o0

can be recognized, i.e. after sufficiently large time the body practically
falls with constant speed (a =0 ~ v = \/g/a).
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Motion 11

Problem 1.7 On account of the gas ex-

pansion, a piston (diameter d) moves T Vo
in a cylinder. Here, the acceleration d
a of the piston is proportional to the i Po

current gas pressure p, i.e. a=cp p, where
for the gas pressure Boyle-Mariotte’s ——1 Iy ==

gas law pV = const is valid. The initial

state is given by the pressure po, the piston location lp and the initial
velocity vo = 0.

Determine the velocity v of the piston as a function of its position.

Solution For a piston displacement x we obtain, according to the gas
law poVo=pV, the relation

Do WZQ I = p WZQ (o + 1), — I }—>_$
where the pressure is given by v
lo P

P =DPo lo+z° —

This leads to the acceleration

1 1

al®) = Cop=copoy L =W |y,

Here ap = co po is the initial acceleration at = 0. Using the table on
page 4 for a given a(x), the velocity is determined by

x x

g a i x
v2:v§+2/a(x)dx:2/1+;/l0dm:210aoln (1+ lo)
0

zo

~ UZ\/Qloaoln (1+ 9E) .
lo

v

> 4 6 s x/ly 2 4 6 8 x/ly

Remark: Because the acceleration decreases with increasing x, the ve-
locity increase drops continuously.

P1.7



P1.8

12 Rectilinear Motion

Problem 1.8 The acceleration of a point 7 P
P, moving along a straight line, is direc- o o
ted to the point Z and its magnitude is —

inverse proportional to the distance x.
For t = 0 the point P has the distance 2o = 2 m, the velocity vo = 4 m/s
and the acceleration ag = —3 m/sg.

a) Determine the velocity vy for the distance z1 = 3 m.
b) At what distance z2 the velocity is zero?

Solution According to the problem description, the acceleration is
a = —c/x, where ¢ can be determined from the given initial conditions:

c=—aoro = —(—3)-2=6 (m/s)”.

Knowing a(z), the velocity is obtained from (see table on page 4)

v2:v§+2/a(f)df:v§+2/(ffdj> =l —2cIn v
T Zo
zQ zQ

~  w(r) = :I:\/vg —2cInz/xg .

a) Hence, the velocity for 1 = 3 m results as
v =t \/167121n3 =3,34"
T () 2 T s

b) The velocity is zero for:

T

v=0 ~ vgf2cln =0 ~ $2:$06v8/2622e4/3=7,59m.

Zo

Remarks:

e The velocity-position dia-
gram is symmetric with re-
spect to the x-axis.

e The motion can also take
place in the domain of nega-
tive x. Because of the discon-
tinuity at x = 0, the equati-
ons then must be formulated
new, considering the directi-
on change of a.




Vertical Throw 13

Problem 1.9 A ball is thrown vertically upwards with an initial velo-
city vo1 = 20 m/s. Two seconds later, a second ball likewise is thrown
vertically upwards with vo2 = 18 m/s.

Determine the height H where the two balls meet.

Solution We start counting time ¢ when

launching the 1st ball. Considering the given @
initial values, the direction of gravity g and

the time difference At = 2 s, we have

g 21| O @
21 = vo1t — t2 s
2 2
za = wo2(t — At) — g (t— At)*. TR

From the condition z; = 22 for meeting, the meeting time t* is obtained:

vort* — gt*Q = voa(t* — At) — g(t*2 — 2" AL + At?)

B At (vog + %gAt)

~ tF=

=3.16s.
Vo2 — vo1 + gAt ®

Introducing ¢* into the equation for z1 (or z2) yields the height:
H=z(t")=20-3.16—4.9-3.16° = 14.27 m .

The solution can be illustrated by the position-time diagram:

2 [m]
Hipae=2038 -4 oo olt)
2
H=1427 -1 A
z1 (t) '
104 voit Uoat i
) ) !

P1.9



Vertical Throw

14
P1.10 Problem 1.10 From the rim of a cliff, 50 m above the sea level, a ball
is thrown vertically upwards with an initial velocity of 10 m/s.

) Determine the maximum height the ball reaches above sea level

b) When the ball impinges on sea surface?
) Determine the velocity of the ball when impinging on sea surface

®

Solution With a = —g and the initial

velovity vy we have T
v=2z2=wvy—gt, If O
z = vot — 9 t2 . W ‘
2 _/ m(ll‘

a) The rise time T follows from the con- "% h=50m

dition v(T") = 0:

vw—gIl'=0 ~ T= .
g
Therefore, the throw height H is given by
2 2 2
H=zT)="-"="
9 29 2
With vg = 10 m/s the maximum height h,qz is obtained as

% 10
hmaac:h+H:h+2 :50+2981 =55.1m.

b) The time ¢; until the ball impinges on sea surface is obtained from
the condition z(t;) = —h :
B = g 2 _ 1 + 2 —
- vot; — i~ ti_g vo I vg +2gh p =4.37s.

Note: The formally possible minus sign in front of the root is inappli-
cable. It would lead to a negative time ¢

c) With ¢ = ¢; the impact velocity follows as
v(t;) =vo — gt; = 10 — 9.81 - 4.37 = —32.87 .

The minus sign indicates that the velocity is downwards directed, i.e

opposite to the chosen coordinate z.



Vertical Throw 15

Problem 1.11 The crew of a balloon, that is moving upwards in a P1.11
cloud with constant speed vy, wants to determine the current hight hg

above ground. For this purpose a gauging member is released from the

gondola that falls down and explodes when hitting the ground. After

time t; the crew hears the detonation.

Determine the height ho for the following data: vo = 5 m/s, g =
9.81 m/s, t1 = 10's, ¢ = 330 m/s (speed of sound).

Solution Introducing = downwards from the
position where the member is launched (¢ =
0), the falling time ¢,, until hitting the ground
is obtained from AN,

1
z(tm) = 9 gt?n — Votm = ho

as

t = "1+ \/1 4 2000 1 vty
g (—) v,
0 t=0

Only the positive root is meaningful since ¢, -
must be positive. *

The sound covers the distance ho + vot1 ho
because during time ¢; the baloon is rising the
distance wvot1. Therefore the sound requires 7777777777777
the time

__sound distance _ ho + vot1
s — —_— .
sound speed c

The total time is given by the sum of falling time and the time of sound:

tl:tm+tszv0 {1+\/l+29’;0 }+h0+’U0t1 .
g v c

After rearranging and squaring we obtain

ho:c_vo{gt1+c|:1(t)\/1+2 gtl :|}
g c — Vo

325 98,1 3
17\/1+2 . ]}—338m.

= 1
9.81 {987 -+ 330
The solution with the positive root leads to a mechanically unreasonable
result.




P1.12

16 Circular Motion

Problem 1.12 The two points P4 and
Pp start their motion along a circular B
path at the same time ¢t = 0 at A and B, =
respectively. Point Pa moves with the

given constant speed vo and point Pp
starts from rest with a constant angular
acceleration wo.

a) Determine wo such that both points
arrive at C' at the same time. A

b) Calculate the angular velocity of Pp
when passing A?

¢) Determine the normal acceleration of both points at C'.

Solution For P4 follows from v4 = $4 = const = vy and by considering
the initial condition s4(0) =0,

sA = vot .
For Pg we obtain from wp = ¢p = const = wp with ¢g(0) = 0,
¢5(0) =0

1. » . . 1. 2 .
SOBZQUJOt, YB =wp = wolt ~~ sB:Qwort, v = wort.

a) Because both points shall arrive at the same time tc¢ at C, it follows
with the different distances sa(t¢) = 7r/2 and sp(tc) = 3nr/2

1 1 1208
271’1”:’[)()tc, ZWT:QdJortQC ~> tc:mn, wo = o

200 mr2

b) With the angle m between B and A and the known wy we can
calculate the time t4 when Pp arrives at A and the respective angular
velocity:

2,2
2 2w wor T

= = ~> ta =
. V6vo

. Vo
th = ta) = wolta =2V6 .
R ~ wp(ta) = dota =2V r

¢) The normal accelerations at C' are found by using the relation a, =
rw? =% /r:
2 2
v . v
Ana = :, anB:w%(tc)rzw(Q)tQCr:?)G :.
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Problem 1.13 At the fixed point A a
point P starts moving along a circular
path with radius r. Its motion is descri-
bed by the relation s = ct?.

P1.13

Determine:
a) the velocity components vg(t) and

Vy (t)7
b) the velocity at point B,

¢) the tangential acceleration a;(s) and the normal acceleration a,(s).

Solution From s = c¢t? the speed follows as

v=§=2t.

a) Because the velocity is always tangential to the path, its cartesian
components at an arbitrary point are

vy = —vsingp , Uy = VCOS Y .

Hence, with

s ct?
T r
we obtain
P 2
vy = —2ctsin R vy = 2ctcos
T

b) In point B we have

sts) =) =cth ~ tB:\/;”C",

s

v(tg) = 2ctp = 26\/22 =\2rrc .

c) From

. 02 46242
ar =0, An = , = I

with © = 2¢ and ¢t? = s, follow the results
4es
ar = 2c an =
r
Remark: While the tangential acceleration remains constant, the normal
acceleration increases linearly with s.
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18 Circular Motion

Problem 1.14 A point M moves along
a half circle. The projection of its
motion on the diameter AB is an
uniform motion with the speed c.

B

Determine
a) the speed v(p) and the magnitude a(y) of the acceleration,

b) the angle between the acceleration vector and the diameter AB.

Solution a) From the condition wvsing =c¢ follows

C

vly) = sing M

The acceleraton components a; and an,
are determined with r¢ = v as

dv  dv . c v c? cosp
ar = = $ = cosp = — . s
dt  dy sin? T 7 sin® @
v? é
an = = 5 .
r rsin® @

This finally leads to

2 2
c cos? 1
a=lal= \/aera% o \/SinGQO N sin? o

2 2

_c 5 .o o cC
= .3 cosp+sinp = . .
rsin” @ rsin” ¢

b) From the figure can be seen:

% cosyp

a T sin®
tany = tan(p — a) = at = :;n v
n
rsin? ¢

= —cotp =+tan(p —7/2) ~

i.e. the acceleration vector is perpendicular to AB.

Remark: the latter result can also be found without any calculation:
if a component of v is constant then there is no acceleration in this
direction, i.e. a is perpendicular to the direction of this component.
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Problem 1.15 A bike B starts moving at A from
rest along a circular path (radius r). It accelerates

according to the law a;(v) = ao(1 — kv) until the c vo
speed vc is reached at C. Here ao is the initial /o/ h
acceleration and k is a constant. By’ r

a) Determine the acceleration time tc and s

b) the acceleration distance sc. A

c¢) Calculate the normal acceleration a,, at t = tc/2

for k =1/(2vc).

Solution a) From the given acceleration law a.(v) = v = ao(1 — Kkv)
follows with the initial velocity vo = 0 and to = 0 (see page 4)

t(v) = 1/: do 1 In(1 — ko) .

ao 1— ko aok

The acceleration time is determined from the condition v(tc) = ve:

1
te =t(ve) = ok In(1 — Kkve) .

b) The inverse function of ¢(v) is given by
e—aor@t =1—kryv ~s U(t) — (1 _ e—aom) )

This leads by integration and by considering the initial condition s =
s(0) =0 to

t
_ 1
s(t) = v(t)dt = (a Kt +e_a0m)
0= [ oOar= (o
and thus to the acceleration distance

1
sc =s(te) = aor? (— In(l — kve) +1— m}c) .

¢) The normal acceleration within the time span 0 < ¢ < ¢, is given by

2

1 B 2

an:’U _ 2(176 agnt)
r TK

Inserting t = tc /2 and k = 1/2vc, we obtain

2 1/21 2 2 2
an:4vc(1_[1_ Uc] ) :4110(3_\/2):0.343110.
r 2v¢ r 2 r

P1.15



20 Circular Motion

P1.16 Problem 1.16 A point mass P is
released from rest at A on a circular
path in a vertical plane. Due to gravity
it experiences a tangential acceleration
g cos p.

Determine the velocity and the magni-
tude of acceleration in dependence on
the angle ¢.

Solution From the tangential acceleration
ar = gecosp =0 = a¢(p)

follows with s = R and the initial velocity vo = 0 (see page 4)
@
v = 2/gcos¢z Rdp =2gRsin g
0

~ U= \/2gRsing0 .
Hence, the acceleration components are
02
R

Therewith, the magnitude of acceleration is given by

aig = gcosy , an = = 2gsinp.

a:|a|:\/af+a%=g cos2 ¢ + 4sin? ¢

~ a:g\/1+3sin2ap .

Remarks:

e At A the acceleration components are a; = g and a,, = 0.
(Point P has solely a tangential acceleration.)

e At B we have a; = 0 and a,, = 2g.
(Pure normal acceleration upwards directed.)

o With the height difference h = Rsin ¢ the velocity can be represen-
ted by v = v/2gh.
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Problem 1.17 A satellite S is moving along a P1.17
circular path around the earth if its normal acce-

leration just equals the gravitational acceleration S

g R?/r? (gravity on earth surface g = 9.81 m/s”,

earth radius R = 6370 km). r

a) In which distance H above earth surface
a satellite is circling that has the speed of
25000 km /h?

b) Determine the required speed of a satellite whose orbit lies 1000 km
above earth surface.

c) What time requires a satellite for 1 circle (orbital period) in a height
of H =400 km?

d) Determine the height of a geostationary satellite.

Solution a) From the necessary normal acceleration
an =v*/r = gR?/r?

follows with the given speed
2
r=gt o~ H:r—R:R(gRQ—l):1884km.
v v

b) From the same equation with a given distance yields

_ 9 _ g _
v—R\/r—R\/R+H_26457km/h.

c) With the given speed v = R/g/r and the arc length L = 277 of the
orbit, the orbital period is obtained:
3/2
r=t o™ _ssars=15an.
v R\/g

d) A geostationary satellite has the same angular velocity as the earth:
wgp =27/(24h) .

Thus, we have

5 R\2 R2\1/3
w=rb=a(,) > r=(oy)
E

or numerically evaluted

~ H=r— R~ 36000 km.

1/3
242) — 422.10" km,



22 Planar Motion

P1.18 Problem 1.18 A point is moving with constant speed vg in a plane
along the given path r(¢) = be? (logarithmic spiral). For ¢ = 0 the
angle is ¢ = 0.

Determine the angular velocity ¢ in dependence on ¢ and t as well as
the radial velocity 7.

Solution In polar coordinates the speed is represented by
v = \/ 72 41292 .
Introducing v = vo and

. drde . dr .
- - — obe?
"Tadpdt " Pdp P
we obtain
vo = \/ngerQ‘P +b2e20p2 = /2b Py .

Solving for ¢ yields
S Vo
7T Vab

and thus

—¢

7= pbe? =vo/\/2:const.

To determine the dependence on time we find from

. dy vo
= = e
T A T e
by separation of variables
Vo

V20

and integration, taking into account the initial condition ¢(t = 0) = 0,

efdp = dt

Vo
Y _ 1= t ~> e? =
V20

Introduction into ¢(p) finally yields

Vo
e 1+ t.
V2b

Vo 1

T /2b 14 Vo ¢
V2b +\/2b

o
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Problem 1.19 A bar rotates about A accor- P1.19

ding to the law ¢ = kt. Along the bar
a knuckle K slides with prescibed speed /\

7 = vg — at and initial conditions r(0) = 0,
¢(0) = 0.

a) Calculate x and a such that rmee = 1 is
reached at ¢* = 27.

b) Determine the path r(¢) of K and

¢) the magnitude of velocity and acceleration
at ™" = .

Solution From the given functions and initial conditions we first de-
termine the components of position, velocity and acceleration in polar
coordinates:

r=uv9—at ~» r:votfatg/Q, P=—a,
p=rt  ~ =k, $=0.
a) Tmae is reached when 7 = 0, ie. at time t* = wg/a. Thus, the

prescribed conditions lead to

2 2 2
* Vo Vo Vo
) =1 B — =
r(t") o4 2 AT g
@(t*):gp*ZQﬂ' ~> K‘,UOIQﬂ' ~ fﬁ?:ﬂ'vlo.
a

b) By eliminating ¢ from 7(¢) and introducing a and x we find

2 2

_.e :(so_cp)
Mtp)_von @ ok2 l?T 472 )"

c¢) The magnitude of velocity and acceleration is obtained from the
respective components at ¢ = ¢™* = 7, L.e. at time t** = 7/k = l/vo:

vgl:vo 1711)312) v0:37rv
vy 2 vo 220 v2 o

up:rgb:(vo 7rl 4
v = \/v,?—i—v@ = \/1/4+97r2/16 vo = 2.41 vg ,

Vp =T = V9 —

2 2 2
o .2__’00_3l 2110__’00(1 3 2)__ Vo
ar =7 —1r9° = 9 47Tl2— ) 2—}—477 = 7.9017
2
ap=rp+2p=2" 70 =7

2 1 1’
a= \/a%JraE, = /7.902 + 72 vd/l = 85003 /1 .



24 Planar Motion

P1.20 Problem 1.20 From the planar motion of a point we know the radial
velocity v, =co = const and the radial acceleration a, = —ao = const.

Determine for the initial conditions r(t=0) = 0 and ¢(t=0) = 0:
a) the angular velocity w(t),

b) the path (trajectory) (),

c) the circular acceleration a,(t).

Solution a) From v, =7 = ¢o follows with r(¢=0) =0
=0 and r = cot .

2

Therewith, from a, = ¥ — rw* we obtain

2 ao
—ag = —cotw ~ w = .
Cot

b) By integrating w = ¢ we find with p(t=0) =0

t t
_ ao dt ao ©? co
= [ wdt= = 2V ~ t= .
g / \/Co \/[ \/Co 4 ap
0 0

Introduction into r = ¢ot yields the equation for the path trajectory

2
Co 2
4a0

T(p) =

c) The circular acceleration can be determined from

ap, =19+ 2r¢
with
R T and .1 Jao
Y= o Cot Y= 2 Cot3
as

1 / ao ao 3 [aoco
- t(f ) 2 - .
G =0 2\/cot3 + CO\/cot 2\/ t

Remark: The circular velocity is given by v, = rw = vaocot = cop/2 .
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Problem 1.21 An obeserver watches
the flight of an low flyer P, flying
with constant speed vy in a flight
altitude h.

Calcuate the angular accelerati-
on ¢(p) of his head and the radial
acceleration 7. Sketch both diagrams.

o
]

Solution The position of P is given by
s=htany -~ Lp:arctanli r:\/h2+52.

Differentiation, considering $ = v = vg = const and § = 0, leads to

L 1 5 _ voh _ Vo — Y0 2
v s\2 h  h2+4+s2  h(l+tan?¢p) h .
1+ h

. Vo . . vo\?2 . 3
p= h2cosg0(fsmap)ap:72(h) sin p cos” ¢ ,
B 28§ vo tan ¢ Vo sin
= = = 0 5
1vVh2? + 52 \/1+tan2g0
2
. . Yo 3
F=uvocospp= " cos"p.
&
T
_ 7T ®
2 2
7
v
h
\ T 1
_ P
2 2

Remark: The maximum3angular azucceleration occurs at ¢ = £30°; its
magnitude is |Gmax| = - V3 )", The maximum radial acceleration

occurs at ¢ = 0. Note: the totzﬁ acceleration of P is zero!

P1.21
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26 Planar Motion

Problem 1.22 A fox F' and a rabbit R spot
each other and start running at the same
time. The rabbit runs with constant speed
vr straight to the save warren W, and the
fox, to catch the rabbit, with constant speed
vr along the curve r = 4\/2a<p/7r.

Determine the necessary speed vr of the
rabbit such that it will not be caught by the
fox and at what time ¢ g it should arrive at W?

Hint: [ V1+a2de = ) [v/1 402 4o+ V1 +02)]

Solution We first determine the time tr the fox needs to reach W.
From the path r(¢) follow the velocity components

U_f’_drdgo_4\/2a. v _r._4\/2a
T T dpdt T 0w v == 4

Since vp is constant, we obtain

4V2a 4v2ad
vp = /U2 + 02 = {Tacp\/1+<p2= {radf\/1+<p2.

Now we separate the variables, integrate over the whole path from start
(t=0,=0) until W (¢t =tp, ¢ = w/4) and find in this way:

tp /4
UF/ df:4\/2a/ Vit @2dg -~
0 ™ 0

44/2a 71'\/ 2 T \/ 2
_ 1 ! 1 — 1.54
VRtE = g0 [4 T T n(4 Tyt 16)] pABa

tr=1.548 ¢
VF

The time tr the rabbit needs to arrive at W is calculated from its speed
and the distance: tr = a/vr. To be not caught by the fox, the rabbit
must be earlier at W than the fox, i.e. tg < tr. This condition leads to

v r = 0.646 vp ,

1
B2 5487

tr < 1.548 ¢
VF
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Problem 1.23 The point A moves in a P1.23
plane with constant speed vy along the Y
zr-axis. In constant distance a the point

A is followed by a point B, moving such

that its velocity vector always points to B
A. At time t = 0 point A is located at N

the origin of the coordinate system and a
B is on the y-axis. D
a) Determine the path of B and A v
b) the speed vp(xa)?
Hint:
do a , 2tan § 1—tan®§
. :ln(tan ), sina = e COSQ= oa -
sin « 2 1+ tan®§ 1+ tan® g
Solution a) With the known motion of point A
Tp =1 , Tp =0t
and by using the angle (t) it firstly fol-
low the position coordinates and the velo- /‘\
city components of B: B iy @

1R
:
. JoNU
Tp =1z, —acosyp  yp=asngp, —ip
® v
=wvgt—acosp, i AV

Tp =v9 +apsing, Yp =apcosy. B A

The condition that the velocity vector of B always points to A is ex-
pressed by

f.yB _ Us - —apcosp  _ asing

Tp vy tapsing  acosg
Solving for ¢ yields step by step

d@_ Vo

ag(sin® p + cos® p) = —vg sing  ~ — 7 singp.
dt a

Separation of variables and integration lead for /2 > ¢ > 0 to (see
hint)

.dcp =_" /dt ~ ln(tanw):fvo t+C.
sin ¢ a 2 a



28 Planar Motion
The integration constant C'is determined from the initial condition:
p0)=_: Inl=0+C ~ C=0.

Therewith, we obtain the dependence of the angle ¢ on time ¢ and on
position x4, respectively (remind: x4 = vot):

¥ —vgt/a

_ ¥ —x4/a
t = AT
an 9 e

or tan | =-e
2

By the latter equation, the path of B is uniquely described through x 4
and the accompanied angle .

The parameter representation of the path in cartesian coordinates is
obtained by using the formulas of the hint:

1 —tan*¥ 1—e 2®ale
Tp=1TpA—QACOSQ =0T  —Q =z4—a
5= A PTEATY  ftan2g T AT eea/al
. 2tan2“§ e~ 2wala
Y —a51nw—a1+tan2<§ - 14 e-22ala
b) For the velocity we first have with ¢ = —1510 sin ¢

vh= 3% + 9% = g + 2uy apsinp + a®$? sin? ¢ + a?p? cos?
= vd + 20y a@sin g + a?p? = vZ — 208 sin? p + 12 sin?
= v3(1 — sin? ) = v§ cos® ¢

~ U =UpCoSp.
Introducing the result of a) we finally obtain

1 — tan? 1 — e 2%ala

vs(®4) = vo 1+ tan?

©
2

= g .
© _
2 14e 2wale

Remarks:

e For the limit case z4/a — oo we obtain ¢ — 0, yg — 0 and
xp — x4 — a. The velocity of B then is given by vg — vg.

e The representation with the angle ¢ is shorter and more practical
than that by cartesian coordinates.

e The results can also be represented by using hyperbolic functions.
For example, recasting leads to vg(x4) = vo tanhz 4 /a.
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Kinetics of a Point Mass



30 Newton's Law

NEWTON’s 2nd Law (law of motion): The motion of a point
mass under the action of forces is described by

d(mw)

a P

with F = > F; and the momentum
p=muv.

Since the mass is constant, Newton’s law can also be expressed as
ma = F mass X acceleration = force .

As an example, this leads for cartesian coordinates to

maz=ZFz, may:ZFy, maZ=ZFZ.

Remarks:

e Newton’s law is valid in this form only in an inertial reference fra-
me (= reference system that is absolutely at rest or in uniform,
rectilinear motion, see also chapter 8),

e Bodies with finite dimensions can be regarded as point masses if
their dimensions have no influence on the motion.

Impulse Law: Time integration of the law of motion leads to
t _ o~
m'v—m'vo:/th bzw. p—po=F

where F = f Fdi is the linear impulse. When no forces are acting
(F = 0), the linear momentum is conserved:

P =mv = const .

Angular Momentum Theorem: The vector product of Newton’s
law with the position vector r yields

dL©

— M®
dt ’

where
L = r x p = angular momentum with respect to the fixed point 0,
M© = x F = moment with respect to the fixed point 0.
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If the moment vanishes (M<0) = 0), the angular momentum is conser-
ved:

L =y x mv = const . path \

In this case, with dr

dA

m

dA 1
=_rxv 7

1
dA:2r><dr ~ gt = o 0

the law of areas (Kepler’s 2nd law) is obtained (see page 4):

A= const .

Work—Energy Theorem: Path integration of the law of motion yields

% % (i

R F.dr or T — T =7,

2 2 Jp,

S 1 2

Kinetic Energy : n= g MY, /

Work of Force F : Uz/dUz/F-dr, dr A&

F

dU = F - dr = |F| |dr| cos a. m

Remarks: e Forces orthogonal to the path
(a = m/2), do not execute work.
e For a rotation holds dU = M - de.

Conservation-of-Energy Law: If the forces according to

ov n ov ov ez)

F:—gradV:—(axex 8yey+

can be derived from a potential V' (= conservative forces), the work is
path independent, i.e. given by the potential difference:

L
U:/ F-dr=V,—-Vi.
70
From the Work-Energy Theorem then follows
Ty + Vi =T+ Vo = const .

In words: When the applied forces possess a potential, then the sum of
potential energy V and kinetic energy T remains constant during the
motion.



32 Potential, Projectile Motion
Several Potentials
Gravitational Potential V=mgz m q? .
(near earth’s surface) :
Mm

Gravitational Potential ~ V = —G @M n
ravitationa. otentia . r 4@

(general)
Gravitational constant G = 6,673 - 10" m® /kgs?

| x
Potential of a spring V = . kz? %MN\AIQ/\N\NH F

Power

P = (ii[tj =F v = Power of a force,

P:M-C(l;f = M - w = Power of a moment.

Projectile Motion

Parabolic trajectory of motion:

2
z:zo—g <x_$0) + (z — mo) tan v,
2 \ v Ccos «

Maximum height:

1
h=_ (vosinw)?,

2g
2
1+\/1+ 2922 ],
vg sin® a

2
1+\/1+ ;9 ]
v2 sin® «

. 1 5.
ta= " wosina, d=wvgsin22a .
g

Flight time:

Vo SIn «
=

Flight distance:

5 sin acos «

d:'UO

Special case zo =0 :
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Problem 2.1 A box of weight W is pushed o P2.1
downwards a rough inclined plane (kinetic
friction coefficient 1) with an initial velocity vg.

a) Determine the velocity in dependence on the D,
distance. 1

b) At what distance zg the box comes to rest?
Under what circumstances is this possible?

Solution a) The law of motion yields in z- and in y-direction

N : mi=Gsina—R, <y

S 0=N—-Gcosa . R ‘
In conjunction with the friction law R = uN, \
the acceleration follows as N

Z=g(sinaw— pcosa) =ag . W=mg

Twice integration, taking into account the initial conditions z(0) = 0,
v(0) = vo, leads to:

1
v(t) =& = vo + aot , x(t) = vot + ) aot?

Therewith, by eleminating the time, we obtain

v — Vg v — Vg ao v272vv0+v8 vavg
t = ~ T = Vo —+ 2 =
ao ao 2 ag 2a0

~s ’U(;Ij) = \/'Ug + 2a0x .

b) From the condition v(zg) = 0 (rest), the covered distance zg is
determined:
v

2
0 =9y + 2a0xE ~ TE = — .
2(10

From the condition xg > 0 follows ap < 0, i.e. u > tana.

The same results can be found easier by applying the work-energy theo-
rem T — Ty = U. It leads with

U = (mgsina)x — Rz, Ty = ;mvg, T = ;mDQ, R = pmg cos «
and by solving for v directly to

v(z) = \/q;g +2g(sina — prcos @)z .
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34 Rectilinear

Problem 2.2 Two cars, one with and one without ABS, are stopping
from the speed vo = 100 km/h by full breaking. The first without ABS
by blocking the wheels, i.e. sliding (’kinetic friction’), the second with
ABS with still rolling wheels (ideal "limiting static friction’ assumed).

Determine for both cars the time tp and the distance sg for stopping
if the coefficients of static and kinetic friction between pavement and
tire are po = 0.7 and p = 0.45, respectively.

Solution From the equation of motion of the first car (sliding)

—: mi=m§=—-R, T: 0=N-—-mg

and the friction law

o et
=uN,

R .
it follows T N
V= —Uug .
Integration yields with v(t=0) = vy and s(¢t=0) =0
1
v(t) =wvo — ugt , s(t) = vot — 5 ugt? .
The stopping time and distance are calculated from the condition v = 0:
2 2 2
V0 Vo Vo Vo
tp = s sp = s(tp) = — = .
Ky ) ng  2ung  2pg
With the given coefficient of kinetic friction, we obtain
100 100
P 36045981 T T 362.2.045-981

For the second car the wheels are still rolling under the limit condition
of static friction (ABS), i.e. the friction force is now given by

HZH():,U,()N.

This means that in the calculation above only R must replaced by Hy
and p by po, respectively. Thus, for the car with ABS, we obtain
0.45 0.45
tB:6'3.O.7 =4.05s, sB:87-O.7:56m.
Remark: Note that stopping time and distance are inverse proportio-
nal to the friction coefficient. Note also that, because of the neglected
reaction time, the numbers for tp and sp in reality might be higher!
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Problem 2.3 A parachutist (weight W including parachute) has the
initial velocity vo imediately after the parachute opens.

a) Determine the velocity v in dependence on ¢ if the air drag is assu-
med to obey the law Fj; = kv?.

b) What limit speed v; reaches the parachutist?

Solution The law of motion yields
L: ma=mié=mg— kv’

or

. d . k

T = dqt} =g—kv® with ki = "’
a) Separation of variables and integration
leads to

— t
/U dv — / d{’ ‘ W=mg
V0 g— qu—}Q 0

where the time t is counted from the opening of the parachute. With
the basic integral

dz 1
/A— B2~ AR artanh(y/B/A z)

we obtain
v vy

artanhy/k1 /g 17] =t

o Vo

{\/;kl

or by solving for v(t)

v(t) = \/lf tanh <\/gk1 t + artanh \/kgl v0> .
1
b) For t — oo, it follows (tanh z — 1 for z — c0)
_J9_ W
’Ul—\/kl _\/k .

The same result can be found from the consideration that in the limit
case, the acceleration is zero:

a=g—kivi=0 ~ w:\/li:\/vlg .

P23



36 Rectilinear

P2.4 Problem 2.4 A computer (weight W=100N)
in a packing case is protected against im-
pact by foam plastics (spring stiffness R
k =100 N/cm). A

From what height h the case may impinge ;
a hard surface, if the acceleration of the k
computer shall not be bigger than four times 7/ /77 /7 702
the gravity?

Solution During free fall, the case experiences the acceleration g.
After impinging the surface, the foam pla-
stics (= linear spring) will be compressed and
the computer will be accelerated upwards.
Then the motion is described by

T: ma=-mg+kd.

(=2
]
\
|
|
T
'3
S
S

From the condition amax = 4g follows the
maximum spring compression

Omax = 57;:9 =5cm.

Knowing this limit compression, the allowable height of fall can be
determined from the conservation of energy law

T +Vi=Ta+ Vs

as follows:

state 1 state 2

g
R *

0 mazx

N

1
Ty=0, Vi=mg(l+h), To=0, Va=mg(l— bmax) + Qkéﬁ]ax.
Introducing these quantities yields
15 mg

1 k o
h = 0 — Omax = =175 .
2mg % 2 k o
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Problem 2.5 On a rough inclined plane (in-
clination angle «, kinetic friction constant
i), a block (mass mi) is moving which is
connected by a rope with a body of mass ma.
Pulley and rope are regarded as massless.

a) Determine the accelerations when my
slides upwards and downwards, respectively.

b) What force acts in the rope?

Solution a) We cut the rope and formulate for the 3 parts the basic
equations, where we first assume upward sliding:

Wi=mug A T Sy

1 o Sl/j
g ? T

AN

2
Simiag =S — R—Wisina, A: S1 =852, }: maoaz =Wy — S5y,

Wo=mag

N N =Wicosa, R=uN.
With the kinematic condition (unextensible rope) v1 = v2 and conse-
quently a1 = a2 = a , we obtain
ma — ma(sin o + pcos )
mi + me '

For upward sliding, the acceleration must be positive, a > 0, and there-
fore ma > mi(sina + pcosa)!

For downward sliding, only the direction of R must be changed. Then
it follows

0@ g g ma(sin o — pcos a) — mo .
m1 + ma

This case occurs for a < 0, i.e. for m1 (sina — jLcos a) > meo.
b) Independent on the sliding direction, the force in the rope is
S =8 =51 =Wz —maoaz =ma(g—a).

Introducing the respective accelerations yields

mimzg(l + sina + p cos a)
mi + ma

S — S —

)

mi + ma

mimag(l + sin a — p cos a)

P25
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Problem 2.6 A chain (mass m, length [) lying
on an inclined frictionless support starts sliding ‘g
from the sketched position.

W
a) Determine the position and velocity as func- <P

tions of time.

b) Determine the velocity as function of the position by applying the
conservation-of-energy law.

Solution a) Each chain link experiences the same velocity and accelera-
tion. We therefore consider the chain as a single body of mass m which
is driven by a force which depends on the length = of the overhanging
part. Thus, the equation of motion reads

. r . .. 2 A m gsina
mi=m " gsina ~ I—rkax=0. x 7

l \‘W
where k% = gsin a/l. This differential equation @{1

has the solution

x(t) = Acosh kt + Bsinh kt
& = Ak sinh xt + Bk cosh kt .

The integration constants follow from the initial conditions
z(0)=0 ~ B=0, z(0)=a ~ A=a
what finally leads to
x(t) = acosh kt, %(t) = aksinh Kt , K* = gsina/l.

Note that this solution is only valid for a < x < [. When the complete
chain is on the inclined plane, the driving force remains constant!

b) If we use as reference position for zero potential energy the upper
horizontal plane, the energy terms in the initial and in the displaced
position are given by

Vo:f;sinam(;g, To =0, x/
1 :
Vlzfgsinamglrg, T1:29'c2m. == > lasina/2

Introducing into Vi + Ty = Vi 4+ T4 and solving for & leads to
i(z) = /(22 — a?)gsina .

Again, this solution is only valid for a < z <.
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Problem 2.7 Determine the geometric lo-
cus of all points P; that is given by
the position of all point masses at time
t = t1, that are thrown at time t = 0
with the same initial velocity vg from a
point P under different angles o with
respect to the horizontal. Assume that
all trajectories are located in the same
vertical plane and that there is no air
drag.

Solution For convenience, the origin of the coordinates is chosen at P.
Then it follows from

T: mZ=—-mg, —: mi=0
with the initial conditions

z(0) = 2(0) =0,

z(0) = vocos v,
2(0) = vo sina

by integration
1 2 .
T = volcosa , 2:f2gt “+ votsina .

Since the solution is sought at time ¢; for arbitrary angles, the angle «
must be eliminated. Squaring and adding yields

2 = (vot1)2 cos’a,

2
(21 + gt%) = (vot1)2 sin? a

2
~ .T? + (Z1 —+ gt?) = (U0t1)2 .

Accordingly, all points P; are lo-

cated on a circle with the radius g /7‘1
r = vot1 and the center C at el T
z = _9 t% .

2

P27
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P2.8 Problem 2.8 From the top of a tower,
two point masses are thrown with the
same initial velocity vy under two different 4 .
angles a1 and ag. It is recognized that ’3/‘:':::\\
both masses impinge the surface at the s
same location.

Determine the height of the tower. Y
VT T

Solution The parabolic trajectory of motion is given by (see page 20)

2
2720:7g(x7m0) + (x —zo) tana .

2 \ vg cos « PR
We chose the origin of the coordinates T‘
at the top of the tower. Then we have T z . |
zo = 2o = 0, and the point where the S
masses impinge the surface has the un-
known coordinates z = [, z = —h. For ¢ "
both throws holds: .

l2

g

—h=—

2 v2cos?a
9

+ ltanag ,
1

2

—h = + ltan as .

2 v2cos? an
Equating both expressions leads for the horizontal distance ! to
23 1

l= .
g tanoy + tan oo

Herewith, from the 1st equation, the height is determined as

h— 4+ g (21}3)2 1 ( 1 )2721)3 tan aq
- 2118 g cos? a1 \tan aq + tan as g tanog + tanas
203 1

g (tanaq + tanas) tan(ar + az)

Remark: For the solution, the following formulas are used:

— = tan” as — tan” az
cos?as  cos? oy
= (tan s — tan oy ) (tan g + tan o)

tan a1 + tan as

= tan(«a @2) .
1 — tan o tan as ( Lt 2)
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Problem 2.9 To rescue shipwrecked persons, a rescue package of mass P2.9
m is dropped from an airplane, flying with speed vg = 200km/h in
a height of A = 150 m.

a) Determine the distance sp from launching
the package until it impacts on sea surface. A
b) Calculate the impact velocity vg

Assuming a high horizontal velocity com-
ponent wvp, the air drag shall be taken K !
into account by a horizontal drag force B ‘ l
D = kmwv} with £ = 0.003m™". P

Solution a) We introduce an appropriate coordinate system and sketch
the free body diagram with the acting drag force D and the weight mg.
With v, = &, the equations of motion in z- and in z direction read

.. .2 .
—: mi=-mkKi", T: mZi=—-mg.

Integration yields with the initial conditions
z(0) =0, 2(0) = h, (0) = vy, 2(0) =0

& t
dif;:*li/ dt ~ 1= 1 ! ,
Vo 0 Uo—i—mf
x t 1 B 1
/ dz :/ 1 ~dt ~  z= " In(1+ Kvot)
0 0 v0+mf Co
z=—-gt zz—th—i—h.

The impact time tg follows from zp = 0 as

ts =\/2h/g,

and thus, we obtain for the distance

sp =z(tp) = iln (1 +m;0\/2h/g) =218m.

b) From the velocity components at impact,
. Vo
tg) = = 104 km/h
:L'( B) 1+ kuotp 0 m/ ’
2(tp) = —gtp = —54.2m/s = —195km/h

results the velocity as

vp = \/22(tg) + 22(tp) = 221 km/h.
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Problem 2.10 A rocket without an own propulsion is catapulted ver-
tically upwards from earth’s surface with an initial velocity vo.

a) Determine the maximum flight hight H by considering the change
of gravitation and neglecting drag forces.

b) What magnitude of vg is required when the rocket shall escape from
the gravitation field of earth? (Earth’s radius R = 6370 km)

Solution a) Since only conservative forces are acting, the conservation-
of-energy law

T +Vi=To+ Vo

is appropriate as solution method. The gravitational potential V =
—GMm/r according to (force on earth’s surface = weight mg)

\% Mm

mg=- =G ~ GM = gR®

r=R
can be written as
V =—mg
r

Thus, the different energies on earth’s surface (r = R) and final flight
height (r = R+ H) are
1

To = vag, Vo=—mgR,
R?
T = = — .
1=0, Vi=-mgp. g
Introduction into the energy conservation law yields
R2 1 2 'Ug
— = — H=R .
Mgy T Mo TR 2R — 2

b) The ‘escape velocity’ v is found from

* k
H—o0o ~ vj=1/2gR=11180 " ~ 40000 }Iln .
S
Remarks:
e Note that a rocket in real cases is not launched from earth’s surface
without an own propulsion!
e The required kinetic energy to reach the ‘escape velocity’ is Ty =
mgR.
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Problem 2.11  Which minimum initial velocity vy in position @ is P2.11
necessary, such that the
body with mass m reaches
position @ if

a) it slides along a friction-
less circular path (radius 1),
b) it is fixed at a rigid
massless rod (length 1) 7

Solution In both cases the initial velocity vg is connected with vs at
position @ by the energy-conservation law T + Vo = T} + Vi. Choosing
zero potential energy at position @, we obtain with V3 =0

m

9 vg ~ vgzv§+3gl.

ZL v3 + mg(l + L cos 60°) =
a) The necessary velocity vs is obtained from the condition that the
normal force N between the path and the body is non-negative (other-
wise the body looses contact with the path). From the law of motion

St man, = N —mgcos g 4
Gn 4" P
with a, = v?/l we obtain at position @ )
(¢=m) for the limit case N = 0: ]\/
mvg mg

2
=mg -~ vy =gl.

l
Hence, it follows
v =gl+3gl ~ :2\/gl.
b) The initial velocity for the mass fixed at the rod will take a minimum

if it comes to rest in position @. For vy = 0, the energy-conservation
law directly yields

v0:\/3\/gl.

Remark: In case b) the force S in the rod may get negative. For example,
in @ (v2=0) the force is S = —mg.
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Problem 2.12 Determine the velocity
v(p) of mass m of a simple pendulum in
dependence on the maximum amplidude
$o-

Discuss the result for characteristic angles ¢.

Solution Since the velocity shall be deter-
mined in dependence on the position, the
energy-conservation law is the first choice as
solution method. As reference position for
the potential energy, we choose the horizon-
tal position ¢ = /2 and find from

T(p)+ V() =To+ Vo
with v(po) = 0, i.e. To = 0:

T;L v?—mglcos o = 0—mglcos po  ~ v = t+/2gl(cos p — cos o) .

The same result can be found by integrating the law of motion in tan-
gential direction. From

S mar = mly = —mgsin % IS

with ¢dy = ¢d¢ and the initial condition
#(¢o) = 0, we obtain

ag

W =mg

0 ©wo -2
/ gédgé:fg/ singdp ~ _¥ :g(cosgaofcosgo)
[ ! » 2 !

or with v =l again
v® = 2gl(cos ¢ — cos o) .
The maximum speed occurs for cos =1, i.e. at ¢ = 0:

Umax = \/29l(1 — cospp) = \/2gl2 sin? §020 = 2\/gl sin §020 .

For a small maximum amplitude ¢o also the angle ¢ remains small,
and we obtain by truncated series approximation

cospr1— /2, sin(¢o/2) & ¢o/2
~ P =gled —¢7) ) Vmax =gl o .



Problem 2.13 In a clamped frictionless pipe
elbow (radius R) glides a sphere (weight
W = mg) with zero initial velocity down-
wards from the top.

Determine the support reactions at the
clamping in dependence on the position ¢ of
the sphere.

At which ¢ the reactions take extreme values?
Solution NEwWTON’S law yields in com-
ponents:

/1 mas =mgcosp,

N man, =N —mgsing .

With a; = R@, an = R¢? and ¢dy = $dg, it
follows from the 1st equation by integration

Circular Motion 45

P2.13

@ ® 9
/gfzdcfoz/lg%coscﬁdgb ~ ('02 :Ig%sincp.
0 0

Therewith, we obtain the normal force from the 2nd equation as

N(p) = mgsing + mRy® = 3W sin g .

The equilibrium conditions for the elbow lead to the support reactions:

1 Ay = Nsing = 3Wsin? ¢,

<: Ag = Ncosp =3Wsinypcos p

—gWsin&p,

8%

A: MA:fNRcoswzszRsin&p. A

H

The clamping moment M4 and the horizontal force A take their maxi-
mum, when the sphere is at ¢ = 7/4. The vertical force Ay is maximal

for ¢ = m/2:

MAmax:_§WR, AHmax:2W7

AV max — 3W.
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Problem 2.14 A hockey puck (mass
m) in an ideally smooth ice field (no
friction) is shot with speed wvo into the
half-circular part of the boards and
slides along the boards. At the end of
the curved part, the speed is measured
to be 0.6 vo.

Determine the friction coefficient p of
the boards.

Solution With aid of the free body diagram, we obtain the equations
of motion

v ma;=—R, N : ma, =N.

R
Introducing the kinematic relations a; = o, 1\\\ /
a, = v?/r and the friction law R = uN yields /O\a”
’,(1[
mv = —um v?
= ‘LL . .

Separation of variables and integration leads to the velocity v(t):

v d’f) /t m B 0
, == dt ~ ()= .
/1)0 U2 0 r 1 + ur}a)o t

From repeated integration, the path s(t) is determined:
s t r
dt
/d§=vo/ v r s(t)zrln(l—i—‘uvot).
0 o L+ppt H r
The time ¢1, until the speed is reduced to 0.6 vo, is calculated as

Vo 2 r

0.6 vo = t1 = .
Py 3

Thus, we obtain for the corresponding path length at the end of the
curved boards

s1=s(t1) = " In(1+
L
Equalizing it with the length of the half-circle yields

_mG/3) _ 46

S1 =Tr7m > 12 =



Motion on a Curved Path a7

Problem 2.15 A car (weight W = mg) passes a bend (static friction P2.15
coefficient 110), whose curvature 1/p increases proportional to the co-

vered distance s, i.e. s = A%/p (clothoid). At time to = 0, the car is at

so = 0 and has an initial speed vo.

At which speed v, where and when the car ‘skids off the bend’ if
a) it moves with constant speed,

b) it brakes with constant deceleration ag?

Given.: A =35m, puo = 0.6, ao = g/4, vo = 72km/h.

Solution a) For a; = 0, Newton’s law yields with a, = v§/p the fric-
tion force

vg \\\ m Hn
v+ H=H,=ma,=m . “ <>
P AR
The car leaves its path when the / '
limit friction force is attained: r
v v
H=pomg ~ m =~ =pomg ~» p1= .
p1 Hog
This leads with s = A%/p = vt to (v1 = o)
A2
s1= M9 _q8m, ="' =09s.
p1 Yo

b) When the motion is decelerated, an additional force acts in tangen-

tial direction. With a; = —ao follows "

\om
¢ mar = —mag = —Hy , ; »
2 -

Ve man:mvp =H,. / Q\Ht
P \\1}

Static limit friction is attained for
2 mu?\?
H=\/H2+ H} = pjomg  ~ ( D2 ) + (mao)? = pomyg
2
~ = Ve —af

Thus, with v = \/vg — 2aps = vo — aopt (constant deceleration) and
s = A?/p, we obtain

2 2\ 2 2
v v A
= 46?0 o \/(46?0) ~ 2a0 Vige? — a3 =22.7m,

vy = \/v3 — 2a0s2 = 61.2 km/h , tg= "0, "2 =1.225.
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Problem 2.16  The potential of a free
movable point mass m in a horizontal plane ¥
is given by V(z,y) = k(2 +y?)/2.

m
a) Determine the acting forces and formu- |- Lo Q

late the equations of motion. :

b) Determine the path of the point mass in by |
parameter and implicit representation for N
the initial conditions x(0) = a, ©(0) = 0, X

y(0) =0, y(0) = vo.

Solution a) The forces follow from the derivatives of the potential as

1% 1%
Fx = — = — s F = — = — s
O kx Y ay ky

which leads to the equations of motion

or

i+wlz=0, i+ w’y=0, where w® =k/m .

b) Both differential equations describe free undamped vibrations, who-
se solutions are given by (cf. chapter 7)

x = Acoswt + Bsinwt y = Ccoswt + Dsinwt ,

where A, B, C, D are constants. They are determined by using the
initial conditions:

t0)=a ~ A=a, y(0)=0 ~ C=0,
#0)=0 ~ B=0, j(0)=v ~ D=""".

Thus, in parameter representation, the path is described by

x(t) = acoswt , y(t) = Y sinwt .
w

The implicit representation is found by eliminating ¢ through squaring
and adding, resulting in

(0 () =

Accordingly, the point mass moves counterclockwise along an ellipse
with half-axes a and vo /w.
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Problem 2.17 A space vessel shall be lif- P2.17
ted from a circular path with radius 71
around the earth E (earth’s radius R) to
a more distant circular orbit of radius r».
The transition is carried out by changing
in A and in B suddenly the magnitude of
the velocity of the vessel.

Determine the necessary velocity change
in A.

Solution According to Kepler’s 1st law, the vessel moves between A
and B along an ellipse, whose one focus
coincides with the earth. Since in A and B
only the magnitude of velocity and not its
direction shall be changed, the transition
ellipse in A and in B must be tangential to
the circles. From this condition the ellipse
parameters follow as

r1 472 T2 — 11 2 2 2
a= , e=a—1r1= , b =a"—e" =rirg,

2 2

and the curvature radius at A (vertex of the ellipse) yields

b2 27"1 T2
p = = .
a r1+ 12

In A, the gravitational force has the magnitue F = mg(R/r1)?. At this
location, the law of motion normal to the circular path (before velocity
change) leads to

2 2
R
mvl:mg( ) ~ m:R\/g
r1 1 1

and normal to the elliptic orbit (after velocity change) to

2 2
2
va:mg(R> -~ UA:R\/Q\/ T2
P 1 1 T+ re

Thus, the necessary velocity change is given by

2
AUA:vAfm:R\/g {\/ "2 1}.
1 ry+ 12
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50 Work

Problem 2.18 A barge K is towed in

a channel by a haul engine L. In the
towing rope acts a force S = 9 kN, which

is inclined by an angle a = 28° with
respect to the rail track.

Determine

a) the work for a covered distance
s = 3 km,

b) the power for a towing speed
v =9km/h.

Solution a) For the work

U:/F-dr:/|F|cosa|dr|,

we obtain with |F'| = const = S, cos & = const = cos 28° and |dr| = ds:
U= Scosas=9-0.883-3000 = 23800kNm = 23800kJ = 23.8 MJ .
b) The power is given by

P=F -v=Scosav=9-0.883- 0 =19.9kJ/s =19.9kW .

3.6

Problem 2.19 Determine the necessary work for lifting a body of weight
W = 1N from erth’s surface (earth’s radius R) into the distance ¢ of
the moon (ro = 60 R).

Solution According to the gravitational law, the gravitational force
varies inverse to the squared distance from the earth’s surface. Thus,
the ‘weight’ in distance r is

2
Few (R) .
r
Therewith, the work follows as

TR 59
U=w dr=_"~WR.
/ < r ) " 60
R
With R = 6370 km and W = 1 N, we obtain

U= 23 - 6370 Nkm = 6264 kJ = 6.3 MJ .



Problem 2.20 A motor winch M tows a body
of weight W = mg with constant speed vg
upwards a rough inclined plane (coefficient of
kinetic friction pu).

Determine the necessary electric power P4 of
the winch if its efficiency 7 is known.

Solution For uniform motion (0 = 0), the
force in the rope S follows from the equilibri-
um conditions

S S=Wsina+R, N N=Wcosa

and the friction law R = uN as
S =W(sina + pcosa) .
Thus, the power generated by the winch is

P =Svy=W(sina+ pcosa)v .

and Power

51

The power absorbed by the winch having an effienciency 7 is given by

Pa = P = W(sinaJr,ucosa)vo .
n n

Problem 2.21 A big container vessel with a drive power of 80000 kW

covers in 7 days 4000 nautical miles.

Determine the average drag force Fy

Solution Using the conversion 1 nautical mile = 1.852 km and 1 kW

= 1kNm/s, we obtain from

4000 - 1852

P =F;v with U_7-24-3600

the drag force

P 80000 kNm/s

Fa= v 1225 m/s

—1225 ™
S

= 6531 kN = 6.53 MN .

P2.20

P2.21



52 Work and Power

P2.22 Problem 2.22 1In a centrifuge of radius r,
rotating with constant angular velocity wo,
a body (point mass m) is accelerated by
dynamic friction (friction coefficient p) from
its initial angular velocity w(0) = wo/2 to
the final angular velocity wo.

Determine the required acceleration time ¢,
the drive torque M (t), the power P(t¢) and
the work U done by the centrifuge.

Solution  During acceleration, the point
mass rotates with angular velocity w(t). With

the accelerations a: = rw, an = er, the i R wo
equations of motion are given by a, ? N ‘ )
Gn_ - -
. m N
T: mrw=R, —: mro®=N. R

Introducing the friction law R = u/N, elimi-
nating N and using w(0) = wo/2 leads to

2 1
w:pr ~ dw:,u/dt ~ -  =ut.

w? wo W
The acceleration time ¢, is obtained from the condition w(t,) = wo:

2 1 1
— =pt, ~  tp= .
wo wo Mo

Since the centrifuge is not accelerated, the driving torque is given by
the moment of the friction force R:

2 2
_ _ 2. 2 2 HMr-wy
Mt)=rR=mr‘w=pmr-w = (2 — puwot)?

Because M and wy are coaxial, the required power is given by

2
pmrwd

P(t) = M - wo = Mwy = ,
(*) wo o (2 — pwot)?

The total work U done by the centrifuge (strictly speaking, the friction

force) is calculated easiest from the difference of kinetic energies:

m(rwo)® — L m(rwo/2)? = 3 mriwg .

I U YN SO
U—va (tr) mv”(0) = 9 3

2 2
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Problem 2.23 A soccer player kicks the ball from a distance e with a
kick-off angle o = 45° against

a vertical wall. The impact at

the wall is assumed to be ideal-

elastic.

What initial velocity vy of the

the foot of the player,

ball is necessary if T o
a) it shall bounce back exactly to H
ACE
| e

b) it shall bounce back to the
head (height H) of the player? ‘ ‘

Solution Since no energy gets lost when the im-
pact against the wall is ideal-elastic, the magnitu-
des of impact velocity v1 and rebound velocity ve
must be equal. Then, from the impulse law follows
(reflection law)

T mugcosBa—muicos B =0 ~ B =pa.

Hence, we can replace the problem of reflection at the wall by a mirro-
ring problem, where we imagine the trajectory being continued through
the wall.

a) The ‘flight distance’ d = 2e follows with o = 45° and zp = 0 as (see
page 32)

in 2 2
dZQe:Ugsma ~ 1)0:\/,96 z\/Qge.
g

b) We introduce the coordinates of the kick-off point zo = zo = 0 and
end point z = 2e, z = H into the parabolic trajectory of motion (page
32) and obtain

2
g 2e o g
H=— 2e tan 45 =2 .
(vo cos45°> +zetan ~ o e\/QefH

P2.23
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54 Impulse Law

Problem 2.24 A body (mass m) is driven along a rough horizontal
path (kinetic friction coefficient ) by a periodically acting force, such
that v(to) = wo and vi =
v(t1) = wo/2. During the

driving phase At, the force F }ét.‘.L,\
: . ‘9 F
profile F'(t) is triangular. 0
F m
a) Determine the period T —[]
and the required peak force WN e
Fp for a given At. to th t

b) Calculate the work U done by F' during a period 7'

Solution a) We consider one period and start counting time at the end
of the driving phase. First we apply

the impulse law over the full period F
T. With R = uN = pumg = const ‘mg Fo
and the given F'(t) profile, the line- L
ar impulses of the friction force and -
the driving force are given by R ? B
N 0 t oty ot
R = umgT, F= F(t)dt = FoAt/2, T |

At

Thus, with v(0) = v(to) = vo, the impulse law leads to
—: muvg—muvy =0=—pumgT + ;FoAt.

In the same way, we obtain with v(to) = vo and v(¢t1) = vo/2 from the
impulse law applied over the driving phase At

1
—: mug —mug/2 = —pumgAt + 2F0At.
From these two equations for the two unknowns 7" and Fp, it follow

Vo Vo
T = At . Fy=2 [1 ] .
+ 219 0 pmg | L+ 2umgAt

b) The work U done by F(t) during time T is determined by using the
work-energy theorem, i.e. from the difference of kinetic energies at to
and t¢1:
1 1
U=T(to) —T(th) = 5 mug — 9 m(vo/2)* = gmvg.

Remark: The work of F' and of R during T" are equal but have opposite
signs. This easily allows calculating the covered distance: I = 3v¢/(8ug).
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Problem 2.25 A point mass, fixed at a massless P2.25
thread, rotates along a horizontal circular path.
At time t = 0, the radius is 7o and the angular
velocity is wo.

a) Determine r(¢) and w(t), when the thread is
pulled with constant speed uo downwards through
the sketched vertical pipe.

b) At what time ¢; the angular velocity has &710
doubled and how big is the associated radius r1?7

¢) Determine for this case the change of kinetic energy AT of the point
mass.

Solution a) Because there acts no external moment on the point mass
with respect to the center of its path, the angular momentum remains
conserved:

L =7r xmwv = const .

With r X v = rv, e, and v, = rw, it follows

L:mrgw:mrgwo ~ W =uwg :(E .
The dependence of r(t) on time is given by the constant thread speed
7= —up:
r(t) =10 — uot .
Inserting into w leads to

2
woTo

w(t) - (7"0 — uot)2 ’

b) From the condition w(t1) = 2wo, it follows

1 2
tlzro 1-— \/2 and T1=7’0—U0t1:\/ TO .
uo 2 2

c) The energy change is calculated as

AT= m(vil +u(2)) _m

5 o (V5o +15)

m V2 2 m 2 1 5.9
= ( 9 7“020.10) — (rowo)” = o Moy -

2

The kinetic energy has doubled.
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56 Angular Momentum

Problem 2.26  In an upright standing

frictionless hollow cylinder (radius R), a
little sphere (point mass m) is inserted at
point A with a horizontal initial speed vg.

a) What angle a to the horizontal plane
has the velocity vp at point B lying in
height distance h below A?

b) What speed vg is necessary such that
the sphere impinges on ground at C' with
an angle of 45° and what magnitude has
ve 1n this case?

Solution a) The speed of the sphere in point B follows from the energy
conservation law T4 + Va =T + Va:

1
mvy  ~ v =/v2+2gh.

mug + mgh = 5

2

Since there acts no external moment with respect to the cylinder axis,
the angular momentum (moment of momentum) with respect to this
axis is conserved:

L = const ~ La=Lp.

With La = R(mwo) and L = R(muvp cos ), the angle « follows as

Vo _ Vo
vB  \/vd+2gh

Cos x =

b) With o = 45° and h = H, we obtain at C'

o 1 Vo
cosd5® = _ V2=
2 Vg +29H
or after squaring and solving for v

Vg = \/QgH.

Thus, after falling the height distance H, the velocity is

ve = \JvE 4+ 2gH = \/2gH + 2gH = 2\/gH .

Remark: Because on the sphere acts only the weight (vertical) and the
normal force from the cylinder wall (normal to the wall) the horizontal
velocity component remains unchanged vy.
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Problem 2.27 A cosine-shaped arch of a roller coaster is in A and in B
pin-supported. The arch is passed without friction by a car (mass m)
that has in point A the initial
velocity vy = /ga/10.

Determine the support reacti-
ons and the bending moment
at C' when the car just passes
point C. The weight of the C
arch shall be disregarded. )2 —=t=—1/2 —

Solution The velocity of the car at point C' follows from the energy

conservation law Ta + Va = Tc + Ve

41
2 10

The derivatives y' = —(27a/l) sin 27z /] and v = —(4n2a/1?) cos 2mz /1

yield y/(1/2) = 0 and y”(1/2) = 47*a /1. Hence, the curvature radius p

of the path at C is given by

I y"(1/2) _4r’a
Po - [1+y’2(l/2)]3/2 o Pc *mg

1
mv(Q) + mga = 9 mvé — mga ~ vé = vg + 4ga = ga.

With the normal acceleration a, = 1)2/p7 R D
the law of motion allows to determine the f
force F' at C, which acts from the arch onto F
the car:
2 2 2 2
T UC:Ffmg ~ F:mg+mvc:mg<1+164ﬁa )
Po Po 10172

Knowing F', the support reactions and the bending moment in C' can
be calculated:

Aw s /f\p‘f

[ mgl (1 164 7r2a2)

mg 164 72a>
A=B= (1 ), Mc=A_=
¢ 2 4 10172

2 10172
Remark: When the results are evaluated for the data m = 500kg,

2a = 10m, [ = 50m, we obtain vo = 7,97km/h, vo = 51,05km/h,
po =12,66m, F = 12,84kN, A = B = 6,42kN, Mc = 160, 55 kNm .

P2.27
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60 Dynamics of a

System of Point Masses:
The mass m; is subject to
the ezternal force F'; and the
internal forces Fi; = —F ;.

If the distances r;; between
the masses remain constant,
the system of point masses is
rigid.

Law of Motion for the Center of Mass: The center of mass C'
moves such as a point mass with the same total mass subject to the
resultant of all external forces acting on the system:

mic=pe=» F,

m = Zmi = total mass,
Pc = mre = Z mir; = sz = total linear momentum.

Impulse Law: Time integration of the law of motion yields

muve — mveo = F,

with the linear impulse

t
F :/ZFidT.
to

Conservation of Linear Momentum: In case that the resultant
external force is zero, the linear momentum is conserved:

muve = E m;v; = const .

Angular Momentum Theorem: The time rate of change of the to-
tal angular momentum with respect to a fixed point 0 is equal to the
resultant moment of all external forces about the same point:

dL©®
_ M(O)
dt
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L© = Zri X MiV; = ZLE‘O) = total angular momentum,
MO = Zri x F; = total external moment.

Special Case: For the rotation of a rigid system of point masses about
a fixed axis a-a follows

@a¢:Ma>

2 N . . . .
@ = g r; m; = mass moment of inertia relative to axis a-a,
ri = orthogonal distance between mass m; and axis a-a.

Work-Energy Theorem: The change of klnetlc energy is equal to the
sum of the work U® of all external and U of all internal forces:

T-To=U0°+U®
T = Z m;/2 = Xkinetic energy,
U = Z F,;-dr; = work of external forces,
U@ = ZF” -dr;; = work of internal forces.

For rigid constraints (dr;; = 0) holds W® =

Conservation of Energy Law: If the external forces can be derived
from a potential V() and the internal forces from a potential V| the
work-energy theorem results in the conservation of energy law

T+V® 4+ VO =T+ V) + V® = const .

Bodies with variable mass: The motion of a body with variable
mass (e.g. a rocket) is described by

m(t)a=F+T
where F' = external force,
m(t) = time dependent mass,

T = —pw = thrust, where
1 = —m = rate of mass change (mass flow),
w = mass flow velocity relative to the body.
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Problem 3.1 On a frictionless horizontal plane, two wedges of masses
m1 and mq are placed on top of each other.
The wedges can slide frictionless against

each other.
Determine the accelerations of both wedges. my :

Check the result by considering the limit o
cases m1 — oo and o — /2.

Solution We separate the two bodies
and formulate the equations of motion
in z- and in y-direction: )
@ <« m1i1: N1 sina,
b migi=mig— N2+ Nicosa ,
@ < maods= —Nisina,

b mago=mog — Nicosa .

Since wedge @ moves horizontally and at its top side wedge @ slides
downwards, the kinematic relations read

h =0, Z(y lyz

y2 = (z1 —z2)tana  ~ o = (&1 — Z2)tana. Ty

Thus, we have six equations for the six unknowns (&1, 91, &2, 92, N1,
N3). By eliminating N1 and N it follows

m2
gtan o
= m . =0,
1+ (1+ m?)tanQQ

m 2
gtan (1+m?)gtan @

1+ (1+ mQ)tanga

, Y2 =

1

L4 (14 72 ) tan®a

For the two limit cases we obtain:

a)mi; —oo: & —0 and |{j2/Z2] — tan o (inclined plane),

b)a%ﬁ

9 Z1=%2—0 und j2 — g (free fall).

Remark: Adding the equations of motion in z-direction and time-inte-
gration confirms conservation of linear momentum: mi&; + mo&s = 0
~ mit1 + mate = C, i.e. the total linear momentum is constant!
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Problem 3.2 The two massless pulleys P3.2
are connected by a massless inextensible
rope. The system is subject to the weights
Wi =mig and Wa = mag.

Determine the force in the rope, the acce-
leration of the mass m; and its velocity in
dependence of the covered distance.

Solution We first separate the system,
draw the free body diagrams including
all acting forces and introduce the coor-
dinates 21 and 2 (counted from an ar-
bitrary initial position). From the equi-
librium of moments about the centers of
the pulleys follows

S1=8=5=25.

The equations of motion yield myg
@T: m1jﬁ1:287m1g, @J, mg.fg:mggfs.

When the body @ moves downwards by x2 the
body @ is lifted by x1 = x2/2. Therefore, with
#1 = Z2/2 we otain by solving for the unknows

2ms — mq o 3m1ng

w1=gm1+4m2, T oma +4ma

The relationship between velocity and covered distance is most easily
determined from the energy conservation law T+ V = Ty + Vp. With
To =0, Vo = 0 follows

o1 .2
o M1l + o M2t2 + migxr1 —magre =0

or

1 . 1 .
9 miit + 9 me(241)° = 2mage: — miga

2m2 — mi

> U1(m1) = .f1 = \/2g:131

my +4mso

Remark: In the special case 2ms = m1, we obtain #1 = 0 and S = Wha.
In this case, the system is in equilibrium!
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Problem 3.3 A hinged pendulum is modeled
as a massless rigid rod with two attached
point masses of weights Wi = mg and
W2 = Mag.

Formulate the equation of motion.

Solution We will solve the problem by two different approaches.
1st approach: Because the distance of the masses is constant, the pen-
dulum represents a rigid system of point masses. Therefore, the angular
momentum theorem with respect to the fixed hinge A

Oap =My
can be applied. With

Ou4 =a’mi + (2a)2m2 = a2(m1 + 4dmeg)

the equation of motion follows as (notice the
positive sense of rotation!)

A
A d’(my+4ma)g = —migasin g — mag 2asin @ lmzq

- ¢+g mi1 + 2mo

sing =0. I

a mi + dms 2a sin

2nd approach: We start from the conservation of energy law T+ V =
const, where the zero level for the potential energy is chosen at ¢ = 7/2
(hinge A):

1 2 1 2
o ML + o 203 = M1gacos  — mag 2a cos ¢ = const, .
With v1 = a¢ and v2 = 2a¢p follows

5 (m1 + 4ms2)a’$® — agcos p(my + 2ms) = const
and differentiation with respect to time leads to

(m1 + 4ma)a’ ¢ + agsin p(my + 2ma)p = 0.
Since ¢ is nonzero for all times ¢, it remains

. g mi+2me

<p+a i+ dims sing =0.
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Problem 3.4 The constant acceleration ag of a truck (mass M) is such
high that the box (weight W = mg) starts to slide on the loading area
(coefficients of static and kinetic friction

fo, f1)-

a) Determine the minimum acceleration 1 W Hos i

ay for the onset of sliding and the cor- I:l /
responding horizontal force F* excerted ag,
by the truck to the pavement.

b) Calculate the time T, the box re- =
quires to bounce against the rear wall.

Solution a) As long as the box is not sliding, the equations of motion
for truck and box are given by +
my

® —: May=F—-H, Qo

® —: mao=H, T*\
where the static friction force H is limi- N* i
ted by Hyo = poN = pomg. Introducing .D ap
H = Hy leads to the limit values of ac- . (©) .
celeration and force: * _F> *

ag = pog,  F"=(M+m)uog

b) During sliding, the friction force is R = uN = pmg, which for
the box leads to the equation of motion +
mg

® —: maz=R ~ ax=upug. S2 flol—&
—»I—IV
Integration of the two constant accele- R *\
rations a1 = ao and as of truck and

box, considering the initial conditions
81(0) = 82(0) = S0, ’1)1(0) = 112(0) = o,
yields

v1 = aot + vo , v2 = ugt + vo ,
t? t?
51=a02+vot+50, 82=u92+vot+80.

The box bounces at time 7" against the rear wall, when

21
ao —pg

As=51 —83 =1 ~» (aofug)TQ:QZ ~> T:\/

P3.4
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Problem 3.5 A big block (mass M), initially resting on a friction-
less ground, starts to move due to a little block of mass m, which
is shot with speed vg to its rough upper

surface. The kinetic friction coefficient v

between the two bodies is p. —(L S

a) Determine the time 7', that is
required, until both bodies move with ig M
the common speed v*.

b) Determine the covered distance of
M, until the common speed is reached.

Solution We separate the two bodies, +mg
sketch the free body diagrams and in- Ty

troduce position coordinates. Then, the
equations of motion read

=
—— —

N
® —: Mii=R : R
@ —: mflfg =—R. — :
. c . L1 @
Introducing the friction law * M
R = puN = pmg leads to g
ip= " -
L= A 2= —pg. A
By integration, considering the initial conditions #1(0) = 0, z1(0) = 0,

#2(0) = vo, x2(0) = 0, we obtain

b= gt a= g
1_M“g7 1—2MN9 )

. 1

T2 = vo — ugt, T2 = vot — uth.

2
a) The condition #1(T") = @2(T) = v* leads to

Vo

m
T=vo—pgl ~ T=

and
m 1
= (T) = T = .
vi=aD) = et =0y,
b) The covered distance of M is given by

_1m s 1 v m/M

T) = - .
w(T) =y pp 19 2 pg(1+ m/M)?
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Problem 3.6 In an experiment, a before impact after impact P3.6
particle of mass m is shot with re mp pe
speed v against a second resting

particle of mass 2m After impact, 2m Vo \ Mo “/’
three particles are observed, where O Q v )

. . my
the sketched directions and the 60°/ | /450
following masses and velocities are ; : L .
detected during measurements: 0 457y
mi1 = m, v1 = 2vg, V2 = Vo /2. Om3

m ’/3

Determine ms, ms and vs.

Solution The momentum of the particle system is unchanged after
impact. Thus, with cos45° = sin45° = v/2/2, cos60° = 1/2, sin 60° =
V/3/2 we obtain in components
T mvo:m1v1\/2/2+m2v2\/3/27m3v3\/2/2,
— O=m1v1\/2/2—mgvgl/Q—mgvg\/Q/Q.

In conjunction with
mi1 + ma +ms = 3m,

we now have three equations for the three unknows ms, ms, vs. To
solve them, it is advantageous to introduce the given quantities:

muo = muoV2 + mzvo\/3/4 — m3v3\/2/2 ,
0 = muoV2 — movol/4 — m3v3\/2/2 ,

mo +msz = 2m .

Subtracting the 2™ from the 15 equation provides directly

ms =m =1.464m.
: 143

mvo = M2V

1++3 4
4 A

Thus, from the 3'¢ equation follows

4 )_2\/372

= m = 0.536m.
1++3 1++3

m3=2m—m2:m(2—

2nd

Finally, introducing ms, ms into the equation yields

1
ngvom(Qf mQ):2.765v0.
22 m

%

Remark: Note, that the center of mass stays on the y-axis!
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Problem 3.7 On a frictionless plane, a body with mass m4 hits with
velocity v a second body at rest (mass m2) and connects to it. Sub-
sequently, the composite body hits via a spring (spring constant k) a
third body at rest (mass ms).

my Mo ko m3 ¢ g

Cl-v ] ]

a) Determine the speed v of the mass m1 such that ms remains at rest,
if the plane solely at the location of ms is rough (coefficient of static
friction po).

b) Determine the speed of mg after collision if the plane at the location
of m3s is also frictionless.

Solution a) When m1 and ms are connecting, the momentum remains
conserved. Thus, the velocity v12 of the composite is given by

mi

— miv = (m1 —+ m2)1_112 ~ Vi2 = v
m1 + ma
If mg is at rest, the maximum compression x of the spring is reached,
when during collision, the velocity of the composite body has come to
zero. Then, energy conservation yields

mi+mz o

1km2 ~ x? = 0

2 k 12 »

and the horizontal maximum force acting on ms follows as Fj, = kx. In
order that ms remains at rest, the equilibrium condition H = F, and
the condition fo static friction H < Ho = pomsg must be fulfilled. This
leads to

kx < pomsg  ~ U<uom39\/m1+m2
miy k

9 (m1+ m2)17%2 =

b) The velocity ©3 of ms after collision with the composite body can
be determined from conservation of linear momentum and energy con-
servation:

— 2 (m1 + m2)01i2 = (M1 + m2)12 + mabs,

2 =2 1 5
m1 + m2)U12 = mi1 + m2)U12 + 27’7’131}3 .

2 o

Hence, introducing the already know velocity 012 of the composite body,

we obtain

2m1
v
mi + ma +ms

V3 =
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Problem 3.8 Two swimmers (mass mi = 75kg, ma = 60kg) jump
into the water from an initially resting rowboat (mass mp = 150kg),
which can ideally glide without any drag. The first swimmer jumps ho-
rizontally from the stern with speed v1 = 2m/s relative to the boat.
Subsequently, the second swimmer jumps in the same direction with
speed vz = 3m/s relative to the boat.

a) Determine the velocity of the boat after the jumps.

b) What speed has the boat, after both swimmers jumped simulta-
neously with the speed vs = 2.5m/s?

Solution a) We introduce as positive direction the jump direction. Sin-
ce the momentum of the system initially is zero, the sum of
momenta after the first jump must

stay zero. Thus, with the absolute ve- B ﬂ:r U1
locities vg, and vg, 4+ v1 of the boat z, Rmy  —6-m,
and the first jumper, we obtain
mp
— (mBerg)vBl +m1(v31 +’U1):0
~ g = - m vy = —0.52m/s.

mp +mi+ ms

The sign indicates that boat and jumper move in opposite directions.

Before the second jump, the boat in- ’ Up, + V2

cluding second jumper has the mo- VB, e

mentum (mp—+msz)vps,, which is con- N e =

served after the jump: mp x
—:  (mp+ m2)ve, = mpup, + ma(vp, + v2)

_ (mB +ma)vp, —mavs

=—1.38m/s.
mp + mz

b) If both swimmers jump simultaneously, the situation is analogeous
to the first jump, but with changed masses and velocities:

—: mpuB; + (m1+m2)(ve, +v3) =0

mi1 + ma2
L= — = —1.18 .
~ VB mp +mi+ ms v rn/s

P3.8
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Problem 3.9 A rope without any initial state
bending stiffness (mass m, length 1), K m ®
moves freely on a frictionless plane, C o

@

such that its bend K changes its
— /2 —

position continuously (similar as it
does at a horsewhip). In the initial

state, K is in the middle of the rope; —

the lower part @ has the velocity .
vig = vo and the upper part @ the f( @ U2
velocity vog = 0. ) vy

a) Determine the velocities v2 and v1 in dependence on the distance u
of the ends of the rope.

b) What are the velocities of the parts @ and @ at the instant when
the bend K passes the end of the rope? Sketch the functions vy (u) and
va(u).

a) Because no external forces are acting, the linear momentum and the
total energy at initial state must be conserved. Thus, with the lengths
(I +w)/2 and (I — u)/2 of the parts @ and @ of the rope, it follows

. m ml+u ml—u
momentum conservation: 9 vy = 9 ! v1 + 9 ! V2,
. . 1m o 1ml+4+u 2+1mlfu2
energy conservation: vy = v V5
2 2 22 | 22 1
respectively with y = u/I
vo = (1+y)vr + (1 = y)va, (a)

vg = (1+y)vi + (1 —y)oi.
Solving for vz leads to the quadratic equation
2y(1 - y)v3 —2(1 — y)vova —y vy =0

with the solution
2
vy = [1i\/1+ 2 ]
2y L—-y
Introducing this result into (a), yields

n=_70 ) [3y1:!:(1y)\/1+ 12y2y].

S 2y(l+y
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To find the correct sign in front of the root, we consider the initial state
v1 = vo, v2 = 0. By determining the limit values for y — 0 it can be
seen that the 'lower’ sign leads to the correct initial state. Thus, the
solution reads

Vo 2?/2
- 3y — 14 (1—y)y/1 ,
v 2y(1+y)[y + y)\/ +17y}

Vo 2y2}
= 1— 1 .
V2 Qy[ \/+1_y

b) The bend K reaches the end of the rope for u — [ or for y — 1,
respectively. Determining the limit values leads to the velocities

. Vo .
limw(y)=,, lmu(y)=-oo.

¢) In order to sketch v1 (y) and v2(y), it is advisable first to approximate
the functions near y = 0 and y = 1. By series expansion and neglecting
higher order terms, we find

y<1: vi(y) =vo(l-y/2), v2(y) & —v0y/2,

] (v B R IO

In conjunction with the

results from a), b), we p i/ Vo
obtain the displayed 14
courses of the functions:
1/2
1 1 1 1
1/2 L y=u/l
—1/2+ g !
-1+ :1

Remark: The infinite final velocity of the rope end @ (supersonic speed)
may explain the so-called ’crack of the whipe’.
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Problem 3.10 A rocket of initial mass mo (including propellant mass
mr) is vertically launched at time ¢ = 0. Assume that the mass flow u
and ejection speed w are constant and that at thrust cut-off the pro-
pellant is fully consumed.

a) Determine the velocity v(t) of the rocket, assuming that there is no
air drag and the gravity g is constant.

b) What is the velocity at thrust cut-off for m¢y = 0.8 mg, thrust dura-
tion ¢t7 = 2min and w = 2000 m/s?

¢) What are the accelerations at lift-off and just before thrust cut-off?

Solution a) The rocket motion is described by

tr om0 = —m)g+ T ‘t
dt
With
T=pw, m(t) = mo — put ‘ ‘
follows the acceleration T
T = pw
o dv _ pwo
dt  mo— ut g- P4y w

Integration and considering the initial condition v(0) = 0 leads to the
velocity

v(t) =wln p —9t.

b) The mass at thrust cut-off is m(tr) = mo — mr, resulting in

_ mo — m(tT) _ mT

tr tr '

Thus, the velocity at thrust cut-off is given by

km

— gt = 20001n b

—9.81-120 = 2042121 — 7350

1
=wl
v(tr) =w n1 1—08

mr
mo

c) The accelerations at lift-off (¢=0) and just before thrust-off (¢ = tr)
follow as

pw mr w 0,8 -2000 m
— = —g= —9.81 =3.52
aO)=] " —9= T 120 981 =352
pw mrp w m
tr)= —g= —g=>56.84 _ .
a(tr) mo — mr g 0.2 mo tr g 52
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Problem 3.11 At point A of a drum, a 4
rope (length lo > h, total mass mg) is 5
attached, the lower part of which initially §

rests on ground C. At time ¢ = 0 the drum Bi—
starts to rotate such that the rope is lifted
with constant acceleration ag and reeled.
For t = 0 point A is at s = 0.

h
Determine the force H in the rope at the lg
drum inlet B. Assume that the rope hangs
vertical at all times.

O Y DD

Solution We first determine the reeled rope length s from the known
acceleration and the initial conditions s(0) = 0, $(0) = 0:

. . 2
s =aop, s =v =aot, s= _aot”.

2

In what follows, two cases must be distinguished.

Case a: One part of the rope still rests at the ground (s + h < lo).
In this case, the hanging part of the rope is regar-

ded as a body with variable mass, in which at the s
ground C' mass flows in and at B mass flows out.

Then, the mass m of the hanging part is

mo _mo m—mh H,
lo_h o Olo *

and the mass flow follows as
| m

dm _ (ds/lo)mo _ mo

u = = = .
dt dt lo h * g
At the lower end C of the hanging part, the ’ejec-
tion velocity” w (there is no mass outflow but a
mass inflow!) has the magnitude w = v, at the up-

per end at B it is zero (velocity of the outflowing c
mass = velocity of the hanging part). Accordingly, o +
T

there exists only at C a thrust of magnitude

T:uw:mOUQ:mOa3t2,
lo lo

which is downwards directed. Hence, the equation of motion reads

T: mago=H,—mg-—T.

P3.11
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It leads, after inserting 7' and with v? = 2ags, to the force

Ha:mol}:)(ao+g+2ao;).

From this result, for s = 0 and for the limit case s = lop — h (just before
the end of the rope lifts-off from ground), we obtain

h
(@ +g),  Ha(lo—h)=mo

h
HG(O) =mo l
0

lo (’“”g”“(’lo)'

h

Case b: The rope no longer touches the ground (s + h > lo).
In this case, the mass of the hanging part is

mo m lo—s
= m = 1mo S
lo lo — S lO
Since there is no mass flow at the lower end and P

the ’ejection velocity’ at B is zero, there is no
thrust anywhere. The equation of motion now

reads H, *
T mao=Hy,—mg. B
- m
Thus, the force in the rope follows as T

ln— s mg
lo—s 0 *
Hy, = mo Olo (a0+g). {
For the limit case s = lop — h (just after lifting the

rope from ground) we obtain

h
Hb(lo — h) = mol (ao +g).
0
Remark: When comparing the limit cases of a and b for s = lyp — h,
it can be recognized that the force in the rope at lift-off experiences a
jump of magnitude

AH:Ha(lo—h)—Hb(lo—h):Qloih

moao -
lo
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Problem 3.12 A whipcord (mass m, length 1) is pulled at one end with
the constant speed vo. Given are the initial conditions z1(0) = 1/2,
22(0) = 1/2 and #:1(0) = wo,

. X ) U
T2 0) =0. b

) ) ] — -
Determine the required force F in = 7 —

. =] m. 1,
dependence on the distance u of = Yo
the cord ends. 1
Solution Considering #1 = vo = const and Z1 = 0, the kinematic
relationships between u and x1, x2 are given by
U= — T2, lei'l—i'zzvo—.i‘g, ii:—ii'z

and the initial conditions are u(0) = 0 and %(0) = wvo.
In what follows we consider part @ and part @ of the whipcord as
bodies with variable mass. Hence, the equations of motion read

4 Ty |
@: 0=F-T, (a) 2‘ Ty l—u
T m
1 @ Z 20 F
®@: m Vi =T. (b) - I =
2l T ® m+u Vo

2l
During the time increment dt¢ the distance between the cord ends in-

creases by du where part @ shortens by du/2 and part @ elongates by
du/2. Accordingly, for part @ the mass flow and the relative ejection
velocity are pu = um/2l and w = &1 — @2 = 4, respectively. Thus, the
‘thrust’ is given by

m .9

T=—pw=— .
w o U (c)

Introducing 7" into (b) and considering #; = —i yields

(1 —w)ii = o

and with & = @du/du, separation of variables and integration

du  du — I U _lnlfu(O) — G—w l
o l—u w(0) l—u T

This leads with (c) and (a) to

F:T:mQ;)g (l—lu)Q'

P3.12
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The Motion of a Rigid Body can be composed of a Translation and
a Rotation.

Spatial Motion
The relations between the positions, the
velocities and the accelerations of points
A and P of a rigid body are given by

TP =TA+TAP,

Vp = VA +WXTap ,

ap=as+wXrap+wx(wXrap)

where w = angular velocity vector.

Remarks:
e w has the direction of the current rotation axis.

e From the equations above follow vp and ap for any arbitrary point
P of the body if va, aa, w and w are known.

Planar Motion

With w = we, = e, rap = re, follows

vp = VA + VAP,

t n
ap =aa+aspt+asp,

where

VAP = W X TAP = Wrey, (L torap)
alp =W X rap =dre, (L torap)
alp =wx (Wxrap) = —w?re, (|| torap)

"The velocity (acceleration) of point P is equal to the velocity (accelera-
tion) of point A plus the velocity (acceleration) caused by the rotation
of P about A’.
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Velocity and Acceleration Diagram

The graphical representation of the velocities and accelerations of pla-
ne kinematic problems and their graphical solution is done by using a
velocity and a acceleration diagram. The directions of the velocity and
acceleration components are taken from the layout diagram.:

layout diagram velocity diagram acceleration diagram

VpAa = TW

ab, =rw

Instantaneous Center of Rotation

The plane motion of a rigid body having
an instantaneous angular velocity w can be
considered at each instant as a pure ro-
tation about the instantaneous center II
(instantaneous center of rotation, instan-
taneous center of zero velocity):

VA= pAW ,

VB = PBW .

The trajectory passed by the instanta-
neous center of rotation is called centrode.

Rolling Wheel

The locus of the center of rotation is given
by:

Vo= TW ,

VA= 2rw .
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P4.1 Problem 4.1 The end point A of a rigid
bar moves in a horizontal channel with
speed v and acceleration a4.

Determine the velocity and acceleration
of B as well as the angular velocity w = ¢
and the angular acceleration w of the bar.

Solution The velocity and acceleration of B are vertically directed.
With that information, the wvelocity diagram can be plotted and from
the graph we find by inspection:

w= "4
cos ¢
VA

N w:.: 5
v lcos p

v =vatanyp .

From the acceleration diagram follow in the same way

aA

2
It
cos twitany

lw=
2 .
aa v% sin @
w= 2 cos3
lcosp  [%2cos?p
ap
2

ap = aatang +
CoS
vi

=aatany + .
lcos?

The problem can also be solved purely Y
analytically. We introduce an appropriate B
coordinate system and from the coordina-
tes Y,

A =lIsingp,

yp = lcosp
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one obtains with £4 = va and Z4 = 04 = aa

Ta =lpcos ~ w=p= A

AT lpeose B lcosy ’

__valcosp +valpsing  aa v sin @

B 12 cos? " lcosp  [Zcosdy’
Uy = v = —lpsing = —vatanyp ,

¢ v
yp =ap = —vatanp —va ', = —astanp — AS .
cos? lcos3

Note that since y is positive upwards directed, the quantities yp and
B have a negative sign.

The velocity v and the angular velocity w can also be determined
by using the center of instantaneous rotation IT. This point IT is given
by the intersection of the perpendiculars to va and vp, the directions
of which are known. In this way we obtain

B [sin
va =wlcosp
g
— W= VA 7 lcos p
lcos p 1

v =wlsinp =vatany .

Remark: From the derived relations it can be seen that w and ap are
nonzero even when point A moves at constant speed (aa = 0).
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P4.2 Problem 4.2 At a crank me-
chanism, the wheel rotates with
constant angular velocity w and
point P moves along a vertical
straight guide rail.

Determine analytically the veloci-
ty and acceleration of P.

Solution We introduce a coordinate sytem and
the two auxiliary angles ¢ and 1, where ¢ = wt
and ¢ = w = const. Then the position, velocity
and acceleration of P are given by

yp =1cosp+lcos,

yp = frwsinnpfli/}sinw,

ijp = —rw? cos o — ld} sin — li/)g cos .

The still unknown quantities sin ), cos, w and w follow from the
condition that P moves along a vertical line:

rp=a= —rsing +Isinvy,
Tp=0= —rwcos<p+l¢cos¢,
Ip :0:rw2s1n¢+l125cos1/17h/}2sin1/}.

Solving for the unknowns yields
. a ro. a . 2
smw:lJrlsmgo, cosd;z\/lf(lJrlsmgo) ,

o T singp -9 sin Y

b= OSP
I costp costp

Y cos’

b= —w

Introduction into ¢yp and §jp finally leads to

. { . sinq/)}
Yyp = —Tw 4 SIn @ + Cos ¢ s
Cos

siny 1 cos®p }

o 2 .
ip = —Tw {coscp —singp cost T 1 cos?ep



Problem 4.3 The boom with a
pulley and a carrying rope is
reeled in with speed v by a
second horizontal cable. There
is no sliding between pulley and
carrying rope.

Determine the angular velocities
of the boom and the pulley for
o =45°7

Solution Because the motion
of the boom is a pure rotation
about A, the velocity vp is per-
pendicular to [, and thus we have

ld:’l)p
and
vp=vV2v.

Hence, the angular velocity of
the boom is

d:\/21l).

Rigid Body

83

To determine the angular velocity w of the pulley we use its instanta-
neous center of rotation II. Its location is given by the intersection of

the perpendiculars to vp and vp.
Notice: Due to the constraint
by the rope, point B can only
move in vertical direction.

From

\/2rw:vp

we obtain Va2r

vp v

:\/27’:7"

w

P4.3
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Problem 4.4 A bar of length [ moves in plane. In the displayed position,
the velocity va of point A and the angular velocity w are known.

a) Determine the magnitude
and direction of the velocity Y
of point B.

b) Where on the bar is point C
located, whose instantaneous
velocity has the z-direction?

- A

—
|

f‘\% N

¢) Identify the location of
the instantaneous center of
rotation II.

Given: v4 =3m/s, « = 60°, w=06/s,l =1/2m, a =b=1/4m.

Solution a) From the relation vg = v, + w X r,45 and

VA = —vacosoe; —vasinae,, w=we,, Tap=1Ie€,,
. Vg, = —1.5m/s
vp = —vacosaey + (wl—vasina)e, ~ {B" /s,
vp, = +0.402m/s

we obtain

vp = \/UJQ_% +v%,=155m/s, cosff= 1;3; ~  B=165.4°.

b) The condition ve, = 0 leads with

Vo =VA+ W X TAC
= —VACOSQ ey

+(we—vasina) ey

to

c= UASY 433
w

—a—-= [ x

c) From the condition for the instantaneous center of rotation II
Vv =vVAFwXryy =0 ~ wXvs=-wX (wxrAH):wQTAH

follows with 71 = 74 + 7 417 the location of II:
1
rn=ra+ ,wxwva=(a+t va sino) ex + (b — va cosa) ey,
w w w

~ a:n:a—&—UA sina = 0.683m, yn:b—UA cosa=0.
w w
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Problem 4.5 In a gear, the wheel ® P4.5
rolls along the fixed circular bearing
@. It is driven by a constant angular
velocity €.

Determine analytically the magnitu-
des of velocity and acceleration for a
point P of the wheel.

Solution We introduce a coordinate system and consider an initial
and a displaced position of the wheel. With the angles o and (3, where
a+ B = ¢, it follows for the covered
arc length of P

(R+m)a=rB+a)
~  Ra=rp

Differentiation leads with & = €2 and
8 =w to

RQ=rw ~ w=QR/r.

The velocity and acceleration components are derived from the position
of P:

xp = Rcosa+rcosf, yp = Rsina —rsinf3,
ip=—RQsina —rwsin g, yp = RQcosa —rwcos 3,
. 2 2 . 2 . 2 .
ip=—ROQ cosa—rwcosfB, jp=—RQ sina+rw sinf.

Thus, with R = rw and o + 8 = ¢ we obtain
vh= 0% + yp = R*Q? + r?w? 4+ 2RQrw(sin asin B — cos a cos B)
= 2R%Q%— 2R2Q” cos(a + B) = 2R*Q?(1— cos p) = 4R?Q? sinQ‘g
~  vp = 2RQsin g ,
ab=i% + ij» = R®°Q* 4+ r?w? + 2RO*rw?(cos a cos B — sin asin B)
2092

202\ 2
:(RQ2)2+<RTQ) 72RQ2RTQ cos(a + )

~ ap = RD*\/1+ (R/r)2+2(R/r)cos ¢ .
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Problem 4.6 An idealized fair ride
consists of a base plate and attached
gondola crosses, both rotating with
constant angular velocities w; and
w2 = 2w1, respectively.

Determine the magnitudes of velocity
and acceleration of a gondola G.

Solution We first solve the problem

by sketching the velocity and acce- el
leration diagrams. This can be done y A ! v
with the aid of the displayed layout 9

diagram. Using the cosine rule, it can o1

be seen 0 T

& = (21w1)2 + (lo.)g)2 — 2 2w lws cos(m — p2 + 1)

= 82w + cos(p2 — 1))

vga = lwy

2 P2 =¥ V2 — 1

= 161%w? cos 9 ,

VA = 2](4}1

~> vg = 4[0_}1 COS w2 ; w1 5

aZ = (2w?)? + (Iwd)? — 2 - 2lwilw? cos(m — @2 — ©1)

= 412wT[5 4 4 cos(p2 — 1)),

~  ag = 2w} \/5 +4cos(p2 — 1) - Py —py , GA= 21w}

n 7,42
agy = lws

Remark: Because the cosine varies between +1 and —1, the maximum
and minimum acceleration are given by agmax = 6l w% and agmin =

21 w?, respectively.
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The problem can also be solved analytically by considering the com-
ponents of the position vector and by subsequent differentiation with
respect to time. With ¢1 = w1 and @2 = w2 = 2w we obtain

xa = 2lcos 1 + lcos s ,
Ta = —2lp1sinpr —lpasinps = —2lwisinp; — 2w sin s,

#a = —2lwi cos p1 — 14w} cos pa ,

ya = 2lsin p1 + Isin s,
ya = 2l wi cos i + 12w cos g2
Ta = fQwa sin 1 — l4wf sin @2 .
Using the addition theorem it follows
v = a6 + 96 = 2lwi)® + (12w1)*+
+81%w? (sin 1 sin 2 + cos 1 €OS P2)
= 812WI[1 4 cos(p2 — p1)]

~> vg = 4lw1 COS w2 ; w1 5

ag = ¥& + & = (2wi)” + (4wi)+
+16l2wil(cos 1 COS @2 + sin ¢1 sin p2)
= 412W3[5 4 4 cos (w2 — 1))
~  ag = 2wi/5+4cos(p2 — 1) -

Remark: The instantaneous center
of rotation IT of the gondola cross
is located on the perpendicular to
va. Because A rotates about 0 its
velocity is va = 2lwi. Due to the
rotation of the gondola cross AG
with the angular velocity ws = 2w
about II at the same time the re-
lation va = paws is valid. Thus, it
follows pa = [ and therefore

o
vg = w2pa = w22l cos P2 =@ . 0
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P4.7 Problem 4.7 The crank DC'
of a crank-rocker mecha-
nism rotates with constant
angular velocity w.

Determine  the  vertical
velocity of point B and the

angular velocity w of the
bar AB.

Solution From the sketch
we obtain the geometric re-
lation

rsing = (I + rcos p) tan ¢

rsin @
t = .
~ tany [+ rcose

This leads to

tan v sin ¢

=asiny =a =ar
e V1 + tan? ¢ V12472 + 2rlcos

and for the vertical velocity, using ¢ = w, to

sin ¢ (—2rlw sin ¢)
2¢/12 + 72 + 2rlcos @
(12 + 7% + 2rl cos )

wcos /12 + 12 + 2rlcos p —

YyB = ar

(r+1lcosg)(l+ rcosp)

= arw
(12 4 r% 4 2rl cos @) */?

The angular velocity ¢ is obtained by differentiating tan ¢ with respect

to time:
1 . rcose (I +rcosp) —rsing (—rsinp)
= w
cos2 1) (I +rcosp)?

¢_r(r+lcoscp) 1 — r(r+1lcosyp)
T (I4+rcosp)? 1+tan2 12412 + 2rlcos @
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Problem 4.8 In a part of a freight lift,
three wheels are connected by unrolling
vertical cables.

Determine the velocities and angular
velocities of the wheels @ and @ when
wheel @ rotates with a given angular ve-
locity wq.

Solution Wheel @ rotates about the fixed point
I1;. Therefore, the velocities of points A and B
are given by

va = Rwi , UB = Twq .

Since the cables unroll, v4 and vp will be trans-
ferred unchanged to the wheel ®. Thus, from

vA =v2 +rowe and wvp = v — raws

follows with 7o = (R —1)/2
1 1
vy = 2(1},44—1)3) = 2(R+r)w1 ,

vA — U2
wo = = W1 .
T2

In the same way we obtain for wheel ® from

V2 = U3 + r3ws, Vc = U3 — Isws

with 73 =2r 4+ ry = (R4 3r)/4 and

vo = —rwi the results
vz = 1(1} +v )—1(R77")w
3=, (02 c)=y 1,
V2 — U3
w3 = = w1 .
T3

Remark: The instantaneous centers of rotation II;, I1z and IIz are lo-
cated on one and the same straight line.

P4.8
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Problem 4.9 Point A of a bar of
length [ is guided horizonally

with the constant velocity vy and P

slides at B across a post. B l

Determine the magnitudes of “ Ay,
velocity and acceleration of point == =

P of the bar.

Solution The angular velocity ¢ of the bar is determined from

T
cotp =
a
by time differentiation with & = —vg as
@ T . Vo . 2
- = ~> = “sin“p.
sinp  a v a ¢

Second differentiation leads to the angular acceleration

Vo . . V0\2 . 3
p = 251n<pcos<p<p:2(a) sin” ¢ cos g .
a
Then, by using the cosine rule, we obtain from the velocity diagram

vp = vg 4 (I¢)* — 2uolep cos (g — go)

2
~ Up:vo\/1+<l) sin4gp—2<l)sin3<p.
a a

The acceleration diagram yields

ap = \/12¢4 + 12¢2 ap

2
=1 (UO) V/sin® @ + 4sin® @ cos? ¢
a

2
= :l(vo) singw\/sinzap—&—élcongp.
a

Remark: For ¢ = 7/2 (point A arrives at the post) follows

vep =wvo(l/a—1) = (I —a)p|r/z -



Problem 4.10 The wheel of
a crank drive rotates with
constant angular velocity w.

Determine graphically the
velocity and acceleration
of the horizontally mo-
ving point B for the angle
a=30°.

Solution  From the layout
diagram the directions of
the different velocity and
acceleration terms are taken:
va L tor, vpa L tol, vp
horizontal, a4 in direction
of r, a4 in direction of I,
a4 L to I, ap horizon-
tal. With this knowledge,
the velocity and acceleration
diagrams can be constructed.

velocity diagram

va = 0.92rw =1¢

. 0927
T

vp = 0.81lrw.

acceleration diagram

w=031w,

Velocity and Acceleration Diagram

scale:

aba = 19> = 3r(0.31 w)? = 0.29 rw?,

ap = 0.99 rw? .

91

P4.10
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Problem 4.11 Point A of the mechanism
has in the displayed position the velocity
VA.

Determine

a) for the 4 bars the instantaneous centers
of rotation,

b) the velocities of points B and C as
well as the angular velocities of all 4 bars.

Given: @ = 30 cm, b =40 cm, va = 1 m/s.

Solution a) The centers II3 (bar 3) and II; (bar 4) are the hinged
supports D and FE, respectively. The centers II; (bar 1) and Il (bar
2) are given by the inter-

sections of the perpendi- 106

culars to va and vp (vp L
EB) and to vp and vc¢
(ve L DC), respectively
(see figure).

b) For bar 1 follows:

va =11 Aw =bw
VA Im

b~ 04ms
vp =T B w = Va? + b2 w =1.25m/s.

—1 Wy —
~ Wi = = 25s SC

H2 :H4

For bar 4 and for bar 2 we obtain

UB:1'123(;.142\/(12—|—172w47 w4 = W2

—1
~ w2 =wy =w; =258 ",

ve =1IIC ws = (a4 b)we = 1.75m/s.
Finally, the rotation of bar 3 about IT3 leads to

vc —1
vo =113C w3 =aws ~ wz= =5.83s ,
a
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Problem 4.12 A toggle lever is driven P4.12
with the angular velocity w. A

D

Determine graphically the velocities of
the points B, C' and D for a certain
angle § by using the centers of insta-
neous rotation.

Given.: [ =30cm, a =40cm, r = 15cm, B¢

b=50cm, B="70°, w=4s"" L—bﬂ

Solution The centers of rotation II; (bar C'D) and Il (bar BC) are
given by the intersections of the perpendiculars to vp = rw (vp L ED)
and ve (ve L AC) and to ve and vp, respectively. This leads in the
layout diagram to the depicted representation.

scales: Up r

1L
With the chosen scale, we read from the figure
ve=0.9vp , vg=1.0vp
and obtain with
vp = 71w = 0.6m/s
the velocities

ve=0.5m/s, vp =0.6m/s.
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Problem 4.13 A mechanism con- l
sists of three pin connected bars
which are moved by a rope that is
hauled in with constant speed vs.

Determine graphically the velo-
cities of the points B and C for
» =60°.

Solution We first solve the problem in the layout diagram by using
the instantaneous center of rotation II of bar C'B. II is given by the in-
tersection of the perpendiculars to vg (vp L AB) and ve (ve L CD,
magnitude of ve determinable from vs).

From the figure we obtain by inspection:

ve=1.4vs, v =5.4vs .

The same result can be obtained by
using the velocity diagram. Here,
the directions of the velocities (e.g.
vpce L CB) are taken from the lay- UBC
out diagram:

ve=1.4vs,

UB;5.4 vs .
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Problem 4.14 At the rolling P4.14
wheel, a bar is connected by
a hinge. The bar slides at B
along an inclined plane.

Determine  graphically  the
velocities and  accelerations
of B and C for the displayed
position and the given constant
speed vo of the wheel.

Solution From the layout
diagram, using the centers of in-
stantaneous rotation IT; (wheel)
and IlI; (bar), the directions
of the velocities and accelera-
tions can be obtained. With
that information the velocity
diagram is drawn (va L II; A,
vpa L BA, vp L II2B) and it
follows by inspection

v = 3.6 v , ve =21,

2

v? v

BA 0

vBa =3.5v0 ~ aps = 5 = 2.45 ,
r r

2 2
UCA:12U0

voa =1.Tvy ~ aga =
2.57 T

The acceleration diagram
leads with a4 = v3/r and
aga =apa/2 to
2
ap = 8.4 o 5
r

2
Vo

ac = 4.7 .
r
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Problem 4.15 From the tire of a car (radius

r = 30cm, speed vy =

108 km/h) separates a stone at point P (o = 30°). Determine

a) the velocity components of the stone at the
instant of separation,

b) the maximum flight height and the flying
distance of the stone,

¢) the minimum distance of a following car
with same speed so that it will not be hit by
the stone.

The height of the separation point above
street level, the air drag and the length of the
following car can be disregarded.

Solution a) The velocity components are de-
termined by using the center of instantaneous
rotation II. We obtain with w = vg/r, a =
2rsin §, f=m/2 — a/2 =75 and the conver-
sion 1m/s = 3.6km/h

v =wa = 2vpsin § = 15.53m/s,

vy =vcos S =4.02m/s,

vy = wvsinf = vy sina = 15m/s

b) The flight height h, flight distance d and fl

y
@

/‘(L\\/H x

ight time ¢4 follow from

the equations for projectile motion (see page 32)

h = v?sin’® B/(2g) = vg sin® a/(2g) = 11.47m

d =1%sin28/g = 4vg sin’ ; sina/g = 12.29

tq = 2vsin /g = 2vp sina/g = 3.06s.

m,

¢) The minimum distance ¢ follows from the distances covered during
the flight time ¢4. The following car and the stone arrive at the same

time at the same position if:

Votw =Cc+w, ~ c=1vgty —w =79.45

m.

i

< (4‘}
Qo1 = ()

w
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Problem 4.16 In a gear, the shaft @ P4.16
(radius 3a) and the ring @ (radius
6a) rotate with constant angular ve-
locities w1 and w2 about the point 0.
They drive at contact points B and
C without slip a stepped shaft ® (ra-
dii a and 2a).

a) Determine the magnitude of velo-
city va and the acceleration ws of the
shaft ®.

b) Determine the velocity vp(t) and
the acceleration ap(t) of point P.

Solution a) The velocities of shaft @ and ring @ at the contact points
follow from the angular velocities:

ve =3awr, vp =6aws.

The shaft @ carries out a plane motion. Ac-
cordingly, its velocities at the contact points
can be described by

Vo = VA —aQws, VB = VA + 2aws.

Equating the particular velocities leads to

va = 2a(wr + w2), w3 = 2wy — w1 .

b) Point A undergoes a circular motion with
the angular velocity

wa =va/da = (w1 +w2)/2.

If we choose a fixed coordinate system with
the origin 0, the position vector of P is given
by

rp = [—4dasinwat + 2a coswst]ez + [4dacoswat + 2asinwstley .

From that, the velocity and acceleration are determined by differentia-
tion:

vp = [—dawa coswat — 2aws sinwst|e, + [—4dawa sinwat + 2aws cos wst]ey,

ap = [4aw§, sinwat — 2aw? cos wstles + [—4awi coswat — 2aw? sin wstley.
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100 Principles of Linear and Angular Momentum

Spatial Motion: The motion of a rigid body is described by the Prin-
ciple of Linear Momentum and the Principle of Angular Momentum.

Principle of Linear Momentum:

d
dzt) =F or mac = F
where F = sum of external forces,

m = total mass of the body,
a. = acceleration of the center of mass,

p

mv. = linear momentum.

Principle of Angular Momentum:

dL® ©
=M
dt
where M = sum of external moments with respect to 0,
L@ — f’rop X v dm = moment of momentum

with respect to 0.

If the reference point 0 is space fixed or the center of mass, the angular
momentum can be expressed by

L(O) _ @(0) > @9
where w = angular velocity,
ex @xy @acz
e’ = = inertia tensor

Oyz Oy Oy
O.0 O,y ©

zx Yzy Yz

Euler’s Equations (Principle of angular momentum with respect to
a body-fixed principal-axes system):

©1w1 — (02 — O3)wawz = My,

O2wz — (O3 — O1)wswi = Mo,
O3 ws — (01 — O2) w1 wp = M3

where 1,2,3 = principal axes,
©; = principal moments of inertia,
w; = components of angular velocity.
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Moments of Inertia (see also volume 1, chapter 9)

Axial Moments of Inertia:

f(y +2%)dm
=[(z*+z )dm ,
0. = [(z*+v%) ‘
@a:fr2dm:mr§, % 5
where r, = radius of gyration.
Parallel-Azis Theorem: O, =06, + mrf .

Products of Inertia: Oy = Oyp = — fxydm ,
©op =By = —fyzdm,

© = Cpz = —fzxdm.
Table of some moments of inertia:
A C 12 12
slender rod @ T 1 O, = m , O = m
1 ! | 12 3
cylinder ©e = =4 (€] m(37" + 1)
e °= g9 12
@ 2 2
thin disc {1,/ O = m27‘ , Gp= m4r
)
2
sphere Ce = 5 mr?
. m
cuboid oo 4‘7007 7}13” c O, = 12((12 + bz)




102 Equations of Motion, Conservation of Energy Law

Rotation about a Fixed Axis a — a:

Angular momentum Ly = ©Cuw |

Principle of Angular Momentum O.w = Z M, .

Time integration yields .
Ouw — Oqwo = [ 3 Mudr = M, .
to

Plane Motion: Principles of linear and angular momentum (equations
of motion)

' F,

mic.=>, Fy,

myC:ZFU7

Y Oaw=> My
P :

where A = fixed point or center of mass C. Time integration yields
(principles of linear and angular impulse and momentum)

mte —mieo = Fry, myc —myeco = Fy, Oaw— Oawo = My ,
. t . t _ t
where F, = [> Fodr, F,=[Y F,dr, Ma= [ Madr.
to to to
Work-Energy Theorem (see also chapter 2):
T-To=U
Conservation of Energy Law (valid for conservative forces):
T+V =Ty + Vo = const
Kinetic Energy (plane motion):

T = ;mvf+ ;@ng.

Special case pure Translation: m=

Special case Rotation about a fixed axis a —a: T =
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Problem 5.1 A block (mass m) slides down- P5.1

wards an inclined rough plane.

Determine the acceleration. Under what
circumstances tilt over is excluded?

Solution As long as the block does not tilt,
its motion is pure translation. With w = 0,
jje = 0, the equations of motion are given by

1 mIec=mgsina — uN |,
A 0=N—mgcosa,
N

C : 0=dN —auN .

Thus, it follows

Ze =g (sinaw — pcosa), d=ap.

Tilt over is excluded for
d<b ~r uw<b/a.

Problem 5.2 A homogeneous bar is hinged sup- P5.2
ported at point A of a vehicle and loosely rests gi /
at B.

Determine the reaction forces at A and B when
the vehicle moves with an acceleration a.

Solution For pure translation with Zc = a,
e = 0 and w = 0, the equations of motion read

— ma:AIf;\/QB,
T 0:Ay+§\/237mg,

€ 0=1v214,— 1214, — (vV2c—1)B.

This leads to B:mg(l—a) !
g/ 2c’
aemmo[® v (1= L] g —va (1= %) L]

Remarks: o For a =g follows B =0, A;= A, =mg.
e For a > g the bar lifts off at B.
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Problem 5.3 A homogeneous disk
(weight W = myg) of quadratic
parabola shape is fixed in the
position a by three pin-supported
bars.

Determine the acceleration of the
disk and the forces in the bars
immediately after the mounting by
bar 3 is released.

Solution When the mounting by bar 3 is released, the disk starts to
move purely translationally. Therefore, the acceleration is the same for
all points of the disk and it can be described by the acceleration of
point B which rotates about the support A:

2
a=ap=ve; + v en .
pA
Immediately after the constraint is released,
the velocity is still zero, i.e.,

v=0 ~ a=ve,

mg

and the equations of motion read
N mv=mgsina,

P 0=S51+S2—mgcosa,

% 3 3 . 2 3 .
C: 0=5a5’1cosa+865’151na—BaSQCosa+8bSQSlna.

From these three equations, we obtain

v =gsina,
Slzmg(Scosa—Sbsina) ngmg(8COSOé+5bSinOé)
16 a ’ 16 a ’

Remark: For tana = 8a/5b the force in bar 1 is S1 = 0. In this case,
the action line of Sy passes through C.
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Problem 5.4 A car with mass m bra- I l
kes on a rough road without sliding. |t

Determine the possible braking _
decelerations a, when the brakes are ih
effective only to the front wheels or @, @,

only to the rear wheels. The mass of
the wheels shall be disregarded.

Solution When the brakes affect only the front wheels, we obtain with

Te = —ap, Jec =0, w = 0 from

-y

—: —map, = —H;p , Y
. 0= Ni+No—mg, s , h
~ mg I,
C: Olel _lNQ _hH1 A“TQ l l ]\;1
the forces
1 h 1 h
Hi =mayp , N1:2m(g+lab), NQ:Qm(gflab).

The conditions that the front wheels do not slide and the rear wheels
do not lift off lead to
1

l
S ol =9 ot o) 1)

K1,
l
Nz >0 ~ angh=I€2.

For poh/l < 1, we have k1 < ko, i.e. it results a, < k1, while for
woh/l > 1 follows ap < Ko.
When the brake is effective to the rear
wheels, the force H; in the equations of
motion must be replaced by Hz. The resulting
forces N1 and ]_\72 then remain unchanged and p
we obtain Hs = map. Thus, from Hy < poN2 H,
and N2 > 0 follows N, N,

l 1 l
< = < = .
O oy 2] T =S T

Because of k3 < k2 in this case always ap < k3 holds.

Remarks:

e The maximum deceleration is for front brakes always greater (ki, ko >
I<L3).

e The case poh/l > 1 does not occur for an ordinary car under real
conditions. Therefore, k2 is non-relevant.

P5.4
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P5.5 Problem 5.5 The mass densi- y
ty of a graded shaft is given by :
p=po(l+ kr?). I
x
Determine the moments of inertia 2 mtm 2

O, and O,.

Solution We first consider a thin circular disk element of thickness dz.
With the mass z

dm = p2zxrdrde = 27po(r + kr®)dr dz \
of a chosen ring, we obtain for its mass ‘
and its moment of inertia " Y

R
dm* = [dm = gpoRQdm@ + KkR?),
0

R R
de; = [r?*dm = 2mpodz [(r® + kr®)dr
0 0

4 6
= 27rpodx(R + kK R ) = Fpode4(3 + QHRQ) .
4 6 6
Because of the radial symmetry of the disk, its axial moments of inertia
with respect to z, y and z (axes through the center of mass of the disk)
are simply related by d©; = dO;, + dO; = 2d0Oy, ie.,

4e; = gpodm RY(3+2kR?) .

To calculate ©, and ©,, we now integrate over the length [, where we
use the parallel-axis theorem to obtain ©, :

1/2 /2
O, = [ dO%i="poR'(3+2kR?) [ dz= " polR'(3+2kR?),
—1/2 6 —1/2 6
1/2
Oy, = [ (dO; +z*dm*)
—1/2
. 1/2 - 1/2
= _poR'B+2kR*) [ dz+ _poR*(2+kR?) [ 2dx
12 —1/2 2 —1/2
=, Polf’ [232(3 +26R?) + 122+ HRQ)] .

Remark: For k = 0 follow with m = pomwR?l the results of the homoge-
neous shaft: ©, = mR?/2, O, =m(3R*+1?)/12.
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Problem 5.6 Determine the moments of inertia ©, of rings (density p) P5.6
with different circular and half-circular cross sections of radius ¢ = R/2.

a— R = ar— R > a— R -
I

QO ® (& B T

|
a' a' a

Solution The moment of inertia is defined as [ r2dm. We first choose
an appropriate ring-shaped mass element of radius r and thickness dr.
From the sketch follows

dm = p27nr2c cospdr ,
r=R+4csingp,

dr =ccospdy,

~  dm = 4mpc® (R + csin ) cos’p de .

Depending on the cross section, we
must integrate over different domains:

0, = 4dnpc? f«jf (R + csing)? cos? pdep
= dpc? f(jf [R3 cos?p + 3R%csin p cos?p
+3Rc? sin® cos®p + ¢ sin®p cos?p]dy

= 4dmpc? [R3 1 (2¢ +sin2p) — R?c cos®yp

2

+3R* (L — 4, sindg) 4+ ¢* (=1 cos’p + | cos®y)
@1

In case A, we obtain with 1 = —7/2, @2 = +7/2, ma = 27r2pc2R

@f = 47rpc2(72T R+ 3&? Rc2) = mA(R2 + ic2) = 1.19mAR2 .

Case B with ¢1 = 0, @2 = +7/2, mp = 7°pc*(R + 4c/(37)) (note:
mp # ma/2!) leads to

3

B _ 2(T 53 2
O, =4mpc (4R +Rc+16

RJ + 2 c3) = 1.52mBR2 .
15
Finally, in case C' follows for symmetry reasons (mc = ma/2))

0f = 6%/2 = mc (R2 T i&) = 1.19mcR>.
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Problem 5.7 Determine the moments
of inertia ©, and ©, for a homoge-
neous cone of mass m.

~—

Solution Tt is practical to use as mass element the sketched circular
disk. With its radius Y

a=ux
H
and mass

2

dm = pra’dz = pr 72 z?dz

its moment of inertia d©, is given by
1 r (R\*
d@x=2a2dm:p2(H) 2z .

Thus, for the cone follows by integration

T (R “ 7 s
4 4
(C] /d@ Py (H) /xdm plOR
0

The moment of inertia of the circular disk element with respect to the
y'-axis is given by

4
de, = leanm = pZ (f}) zde .

Therefore, we obtain for the cone by using the parallel-axis theorem

2 g 2
@y:f[d@y/+m2dm]:p7r(R) J i(fl) ot 4zt | da

H) 5%

T 52 1 5 2
= R°H R H .
5 (4 * )

Finally, introducing the mass m = prR?H/3, the moments of inertia
can be written as

0, = mRQ7 ®y=§m<iR2+H2).
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Problem 5.8 Determine the mo- y
ments of inertia ©, and ©,, for ) m
a homogeneous rectangular thin C

plate (mass m, thickness t < a,b). \/ x
a

Solution For the thin plate exists a direct relation between the mass
moments of inertia and the area moments of inertia (see vol. 1, chapter
9). With dm = ptdA and z < x,y, it is given by

O, = [(y° +2°)dm =pt [y*dA = ptI,

Ocy = — [aydm = —pt [ 2ydA = ptlsy .

Consequently, also the transforma-

tion relations (see vol. 1, chapter 9) My
can be applied. In this way, we find \ A\~
for the axes = and y which are in- VO -1
clined by —¢ to the pricipal axes 1 R x
and 2: -7 \

0, = O 4 O2 n 0O — 02 cos 2 |

2 2
Ouy = O1— 02 sin2¢p .
2
With
ab®  mb? ma
Or=rt iy =1 ©2= 1y
cos p = “ sinp = b
® Va2 + b2 ’ ® Va2 + b2 ’
2 _ 32
— 2

cos2¢p = 2cos2g0 —-1= ZQ +22 ,  sin2¢p = 2sin@cosp = a2 ibe ,
we finally obtain

o — m(a® + b?) n m(b®> —a®) (a® —b%)  ma®b’

T 24 24 (a2 +02) ~ 6(a?+0b2)’
0. — m(b* —a®) 2ab _m(a2 —bv*)ab
e 24 a2 +b2  12(a? +b2?)

Remark: For a = b follows ©, = ma2/12 and O,, = 0.

P5.8
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Problem 5.9 An angled homogeneous
bar of weight W = mg is pin-supported
at A.

Formulate the equation of motion.

Solution The motion of the system is a pure rotation about the fixed
point A due to the moment of the weight. The weight acts at the center
of mass C. Its coordinates follow from (see volume 1, chapter 2)

2ma
3 _2 N
Trc = m —30'7 l
ma 2m Ce&--|ye
327 3% 5 |
Yc = = .0
m 6
2m/3 T,
2
~s l:\/m§+y§=\/69a.

To describe the motion, it is advanta-
geous to introduce the angle ¢, which
characterizes the displaced position re-
lative to the equilibrium position (where
C' is located below A). The principle of
angular momentum then reads

A: Oap=Ma, Ising
where ) ,
m a 2a 2 5
@A:3 3+ (12) +(a2+a2)3m :3ma2
Ma = —mglsinp = 7\/629 mgasin @ .

This leads to the equation of motion

V29 : L V299
6 mgasing ~ Q-+ 10 asmgo—().

> ma’p = —

g "=
Remarks: From $(¢) the angular velocity ¢(¢) can be determined by
integration (see page 4). For small displacements (¢ < 1, sinyp ~ ¢),
the equation of motion describes a harmonic vibration (see chapter 7).



Problem 5.10 A circular disk (weight
W = mg), which rotates with the
angular velocity wo about the vertical
axis, is put on a rough horizontal plane
(coefficient of kinetic friction u).

After what time 7" and after how many
turns u the disk comes to rest? Assume
that the contact pressure is constant.

about a Fixed Axis

111

Solution The rotation about the fixed axis is described by

Qw=M.

Here, the moment M is determined from
the friction forces distributed over the
circular area. From

dA = rdadr, m = p7rr(2)h

dN = pghdA , dR = pudN
follows (the friction moment is directed
opposite to the angular velocity)

ro 27

M:f/rdR:f,upgh//ﬁdadr:

0 0

Thus, with © = mr$/2 and & = @, the equation of motion leads to

4 g
3?‘0.

Twice integration and considering the initial conditions ¢(0)

#(0) = wo yields

4 pg

Y =wo — t, © = wot —
37’0

37"0

2
/ith.

*2 Tom
4 Hromg .

From the condition ¢(T") = 0, we finally obtain

_3wO7"0
4 pg
2
T
pry=390r0 = @D

8 ug

0,

P5.10
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Problem 5.11 A flywheel which initially rotates with speed n (rpm)
about a fixed axis is brought to standstill in time ¢, by a constant
braking moment M.

Determine the mass moment of inertia © and the number of revolutions
u of the flywheel during braking.

Solution During braking, the motion is described by
My
o

(Note that the braking moment acts opposite to the positive direction
of rotation.) Twice integration and considering the initial conditions

Op = —M, ~ G=—

$(0) = wo =270, »(0) =0
leads to
M
p=— @B t+2mn ,
p= 71;/[(5 t? + 27t .
From the condition ¢(t;) = 0 (standstill) we obtain
M, Mty
= — 2 =
0 o ty + 2mn ~ O on
= ot ):—]\/[btg +omnty =Tty ~ u= 0 = L nt
o= e 20 ’ ’ or 2

The problem can be solved easier by using the principle of angular
impulse and momentum and the work-energy theorem. With w(t,) =0
and wo = 27n, they lead to

Mty

133

/Mdr =0w(ty) —Owo : —Myt, =—BOwy ~ O =
2mn

0

1 1
T—-To=W : — @w(Q):—Mbgpb ~ uztpb: nty.
2 2T 2



Problem 5.12 On a homogeneous cylindri-
cal roll of mass mi, an inextensible rope
is wound up, which is connected with a
body @ of weight Wy = mag.

Determine the acceleration of body @ and
the force S in the rope when the roll can
rotate about A without friction. The mass
of the rope can be disregarded.

Solution We separate the roll and body @
by cutting the rope, choose positive direc-
tions of motion and formulate the equation
of motion for the roll

~
A: Op=rS

and the body @
L: me@=mag—S.

The 2 equations of motion containing 3 un-
knowns (Z, ¢ and S) must be suplemented
by a 3rd equation describing the kinematic
constraint. The velocity r¢ of point B of
the roll and the velocity & of body @ and
the rope, respectively, must be equal:

T =1 ~ T=rp.
This leads with © = m17?/2 to

_ 2m2 S—m mi1
_gm1+2m2 ’ = m2g

about a Fixed Axis

113

my + 2mao

Remark: In the static case (roll is blocked) the force in the rope is

Sst = mag, while in dynamics S < Ss; holds.

P5.12
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Problem 5.13 Two homogeneous drums (weights
mi1g, mag), initially rotating with angular velo-
city wo in the same direction, are placed on top
of each other, such that they slide against each
other (coefficient of dynamic friction u).

After which time tgr, the drums roll from one
another and what are then their angular veloci-
ties?

Solution During sliding the equations of motion
read

f\ .

® B: 61p1=—-nrR,
f\ .

() A @2(,02 = —TQR,
T 0= N —mag

With the friction law R = uN and ©1 = m1ri/2, ¢|/
©2 = mar3 /2 and considering the initial conditi-
ons, it follows

.. 2 m . 2 m
tp1=*ug ° 501=*/Lg “t+wo,
1T Mmi LT Mmi

.. 2 . 2
L)02:7/19 ~ S02:7/157t+w().
T2 T2

The drums stop sliding and start rolling from each other when their
velocities at the contact point are the same at time t = tg:

ripr = —Ta2p2 .

Note that positive angular velocities of the drums @ and @ lead to
opposite directed velocities at the contact point! Thus, we obtain

wo(r1 + r2)
tr =

ws(1+77)

and for the angular velocities

mi T2 rmi
Gr(tr) =wo "2 I Ga(tr) = —wo M2,
1+ 1+
mo ma

Remark: For m1/ms = r2/r1 both drums come to standstill.
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Problem 5.14 At an elevator, the cable P5.14
drum @ is driven by the wheel ® without
slip.

Determine the acceleration a of the
elevator ® (weight W = mg) and the
cable force S, when the wheel is driven
by a constant moment My. The weight
of the cable can be neglected.

Solution We separate the system and
obtain for the different parts / ®
w2
s

@ @10'.)1 =M07?”1H,

m
A
A D S
@ B @2(;.12 == ’f’zH — 7‘25 s H

® 71 ma=mi=35—mg.

Since the velocity of point C' of the drum H @

@ and the velocity of the elevator (inex- .\ M
tensible cable) as well as the velocities of w lt %7 )0 S

D and E (no slip) must be equal, the ki-

nematic relations are given by T,l,

rowz = U ~ Traws =0vV=a,
mg

Tows = TiWi1 ~  TaWa = TiWi .

Thus, we have 5 equations for the 5 unknowns (w1, we, a, H, S). Sol-
ving for a and S leads to

M, €] e
Mo g (5+%)
a= T1 S—=m T1 1 Ty
m+ O 4 ©2 m+ O 4 ©2
L] T3 1 T3

Remark: For Mo = rimg we obtain a = 0 (statics) and S = H = mg.
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P5.15 Problem 5.15 A homogeneous drum
(weight W = myg) rolls downwards a rough
inclined plane (coefficient of static friction

f10)-

Determine its acceleration a. Under which
circumstances pure rolling is possible?

Solution With §¢ = 0 and Z¢ = a, we ob-
tain from the principle of linear momentum

N : ma=mgsina— H ,

P 0=N —mgcosa

and from the principle of angular momen-
tum (with respect to the center of mass C)

[%
CZ @cd]:’r‘H.

After introducing ©c = mr?/2 and the kinematic constraint (rolling
without slip)

rw = Ic ~> rw==ITIc=a -~ w = ,
r

solving for the acceleration yields
2
a= sina .
39

The condition for non-slipping at the contact point of drum and plane
(pure rolling) is given by

HSH():,U,()N.
With
. 1 .
H:mgsmafma:?)mgsmoz7 N =mgcosa,
it leads to

1
Mo = 3 tan a .
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Problem 5.16 A homogeneous bowling ball P5.16
(r = 0.11m) is placed with an initial ve-

locity vo = 7m/s and an angular velocity Wo A=

wo = 1057 " in a rough bowling alley (kinetic

friction coefficient p = 0.15). Vo

Determine the covered distance xz, until the
ball rolls without slipping and its final speed ==
V.

Solution We draw the free-body diagram and introduce positive direc-
tions for distance and angular velocity. After contact, the ball initially
is slipping. Thus, the principles of linear and
angular momentum yield

mi=—R,

0=N-mg ~ N=mg,

Q- |

Ocw=rR.

We now introduce O¢ = 2ms?/5 and the friction law R = uN = pmg
and subsequently integrate the 1st and the 2nd equation. Taking into
account the initial conditions v(t = 0) = wvo, z(t = 0) = 0, w(t = 0) =
—wp leads to

1 5
v =2a=1v9— ugt, .Z':'Uot*Q/,Lth, w = ;ﬂgtfwo.
When the ball is rolling, v and w are related by
v=rw,
from which the time ¢, follows for onset of rolling:
5 2(vo + wor)
vo — pgtyr = _ gty —wo ~ t, = = 1.57s.
2 Tpg

Finally, this leads to
1 2
r = 2(tr) = votr — 9 ugty =9.17m,

v = v(ty) = vo — pgt, = 4.69 m/s .
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P5.17 Problem 5.17 A cable drum on a rough
surface is set into rolling motion (no
slipping) by pulling with a force F.

m, O¢

Determine the pulling angles «, for which

the acceleration ac takes extreme values. P

What are the associated maximum forces,
such that no slipping occurs?

Given: W = mg, O¢ = 3r%m, r1 = 2r2, [o. —

Solution The principles of linear and an-
gular momentum yield

—: mac=—Fcosa+ H
T 0=N—-—mg+ Fsina,
~ ) r ]
C: Ocw=—-r1H+rF. m
In connection with the kinematic condition
for rolling, —
ve = rw ~ Ve = ac = rw, TN
we obtain the acceleration and forces
F - F
ac = — cosa —1a/11 = — (2cosa—1),
m Os 8m
1+ 5
rim
Occosa T2
rim 1 F .
H=F = _ (6cosa+1), N =mg— Fsina.
Oc¢ 8
1+
rym

The extreme values of a. follow from da./da =0, i.e. sina =0, as
a1=0 ~ aa=-F/8m,, ax =7 ~  ac2=3F/8m.

The associated maximum forces F; are calculated via the maximum
force of static friction:

8 8
|H|(i) = Ho = poN(ei) ~ Fi=_pomg,  F=_pomg.

Remark: For ac; = 0, the drum moves to the left and for as = 7 to the
right.
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Problem 5.18 A homogeneous plate of } 2 \
weight W = myg is symmetrically suppor-
ted. ‘

a) Determine the support reactions at A w
at motion initiation when the support B 2h
suddenly is removed.

b) What distance d must be chosen, such
that the vertical force at A does not change A7;§7 % B
in comparison to the static case? e 2d ——

Solution a) Immediately after removing
support B the principles of linear and an-
gular momentum (with respect to the fixed

point A) yield mg \'
cy
—: mic= Ay, re \\ Z
yT ac
T mije=Av —mg, « i
T —
~ ] Ay lr J
A: Oaw=dmg, Ay |- o
where
_ 2 m 2 2 2 2y M 2 2 2
O4 =Oc+mre = 19 (40" +4h7")+m(d"+h") = 3 (b"+4h"+3d7) .

Since the center of mass C' is purely rotating about A, its acceleration
components at initiation of motion (ve = 0) are given by
2
v .
an = c:(), ac = at = rew ,
rc

and we obtain with sina = h/re, cosa = d/re
Ie=acsina=hw, e = —accosa = —dw .
Solving for the support reaction leads to

3dh b* + 4h?
Ag =W Ay = .
" b2 + 4h? + 3d2 v b2 + 4h? + 3d?
b) Before removing support B (statics), the vertical force at A is Ay =
W/2. Thus, from the condition that there is not change, it follows

w b 4 4h? g L

- b2 4 4h2 .
2 b2 4h? 4342 V3 Vbt

Remark: Because of d < b, the force Ay remains unchanged only for
b>V2h.

P5.18
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Problem 5.19 An initially upright bar
(weight W = mg) starts to move, where
it slides without friction along the wall
and the base.

Determine the angular velocity ¢(p).

What forces are acting on the wall and
the base?

Solution As long as the bar slides along
the wall and the base, the principles of
linear and angular momentum (with re-
spect to C) yield

—: mic=hB,

mijc = A —mg,

)

T
) . L. l

C: G)CQO:AQsmgofBQcosap
where @c = mi?/12.

The kinematic quantities z¢, yc and ¢ are related by

l

mc:2sin<p, Yc = ,cosp.
After differentiation one obtains
ob—l'cos J —fl'sin
6_290 2 Yc = 290 ©,
. L. L2 . . L, .. .2
fe=, (Peosp— ¢ sing),  fe=—, (Psing +¢ cosy).

Thus, we have 5 equations for the 5 unknowns (Z¢, jc, ¢, A, B). Solving
for ¢ leads to

39

= o siny .

P
The forces are determined by

l
B=mic=m 9 (pcosp — P sing) ,

. L. . ,
A=mg+myc=mg—m2 (@sing + @* cos @) .
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Here ¢ is required. We can calculate it from

. dp de de . L. ..

- - do = & d
? de dt dep ? - ver=vdy
by integration:

;g';?:/gbdcp—i—C: ?;‘Ll]/singodgo—l—C:—?;‘?cosga—i-C.

121

The integration constant C' follows from the initial condition

$(p=0) =0 as C = 3g/2l, which leads to

@° = 319(1 —cos¢) .

Thus, the froces are given by

B = i W (3cosp —2)sing

1
A= 4 W(9cos” ¢ —6cosp+1) .

Remarks:

e The force B is zero for g =0 and 3cosp1 —2 =0~ ¢1 = 48.2°.
e For ¢ > ¢1, the bar would loose contact with the wall at B. There-
fore, the results remain valid only if the support in B is such that

it can transmit a tension force.
e The force A is zero for cosp = 4 ~ 70.5°.
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Problem 5.20 A homogeneous bar
(weight W = myg), initially at rest
in the sketched position, is released
and slides down along a frictionless
semi-circular path.

a) What are the velocity and ac-
celeration of the center of mass in
dependence on the position of the
bar?

b) Determine the forces at the contact points.

Solution a) The center of mass C' moves along a circular path with
radius

R?> /3
= 2 _ =
==

about 0. Thus, its velocity
and acceleration are uni-
quely described by ¢ and .

Note that ¢ and ¢ are identical to the angular velocity and angular
acceleration of the bar!

The principle of angular momentum (pure rotation about 0)

\f\ .
0: ©Oopp=mglcosyp

yields with

_mR2 2_5 2
O = 19 +ml —6mR

the angular acceleration

. 3/3yg

5 oS-

From this result, using ¢d¢ = ¢de and the initial condition ¢(¢ =
30°) = 0, the angular velocity is determined by integration:
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b) To determine the forces, we apply the principle of linear momentum
in direction of e, and the principle of angular momentum with respect
to C:

St man= Acos30° + Bcos30° —mgsing ,
A
C: Ocp= ];Acos?)()o — };BCOSSOO .

With a, = l¢* = ) g(2sing — 1) , ©c = mR?/12 and the already
known ¢ we obtain
mg [\/3 mg [\/3

(2831ng0—9)+c0s<p], B = 1013

(28sin ¢ — 9) — cos ga].

A

} } } } }
30°  45° 60° 75° 90°  115°

The quantities ¢ and ¢ can alternatively be determined from the ener-
gy conservation law 7'+ V = Ty + Vi . Choosing the zero level of po-
tential energy at the lowermost point of the circular path and using
ve = 1y = v/3R¢p/2, the different energy terms are given by

Vo = mg(R — 1sin30°) = ng(l - \13) ,

1 1 . 5 .
T = 2mv§ + 2@04,02 = 1277132%02 )

V =mg(R—lsing) = ng(l — \23 sincp) ,

and we obtain

.2:3¢3 g

5 R(QSII’IQO* 1).

Differentiation with respect to time finally leads to

. _3V3g, . . 3V3
200 = 5 ]g%&pcosgo ~ = 5 ]g%cosgo.
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P5.21 Problem 5.21 The displayed sys-
tem consists of two homogeneous
wheels of mass m that are connec-
ted by an inextensible cable with a
body of weight Wi = 5mg.

Determine the acceleration of the
body and the cable forces, when
the system freely moves and sliding
occurs nowhere. The mass of the
cable can be disregarded.

Solution We separate the system
and write down the equations of
motion for the different parts:

@ | : 5mi =>dmg—S1,

~
@ A: Owr=1rSi—1rSs,
® N mus= Ss— H—mgsin30°,
~ omg
B Osws =rH
where
mr
Oy =03 = 9

With the kinematic relations (constraint by the cable)
V1 = Tw2 = V3 = Tw3
o CZJQ = s 1.)3 =71, (;.13 =
r r

we have 7 equations for the 7 unknowns (v1, U3, w2, ws, Si, Sz, H).
Solving yields for the acceleration

s _ 9
Ve

and for the forces in the cable

50 41
S1—28mg, 52—28mg.
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Problem 5.22  Two bodies (weights m1g > mag) are connected by a
cable which is passed over a wheel

(moment of inertia ©g). The coeffi- O,
cient of kinetic friction between the

body and the inclined plane is pu.

Determine the velocity of the bodies

in dependence of their position. /t
Assume that they are initially at rest l g
and that there is no slip between

cable and wheel.

e

Solution The velocity can be determined easiest by using the work-
energy theorem

T-Ty=U.

With the kinematic relations (cons-
traint by the cable, no slipping)

Tl =T2 =T =2,

)
~ T =A2=r9 =0T =0

the kinetic energies follow as
FEro=0 (initial position = rest) ,
1 . 1 . 1 . 1 m ©
Ep=_miii + _ maeis+ _ 000> = _mv® [ 1+ 2 4 02 .
2 2 2 2 mi o mar

Using the friction law R = uN = umag cos «, the work of the external
forces is given by

. ma2 m2 .
U =migz1—Rxs— (magsina)zs = mige(l—p ~ cosa— sina) .
mi mi

Thus, the work-energy theorem leads to

1 (C] .
mlv2 1+m2+ 0 =migx 1—um2 cosoz—m2 Sin o
2 m1  mar? my my

P5.22
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Problem 5.23  The cabin of an
elevator (weight W = mg) hangs
at a cable drum, which is braked
by a band brake (kinetic friction
coefficient p).

a) Determine the braking force Fu,
such that the cabin moves with
constant velocity wvo.

b) After which distance d, the cabin
stops for a braking force F' > Fy?

Solution a) The braking moment Mg,

acting on the drum, is determined from w / &

the equilibrium condition at the lever

2 Fl
A: 0= -2r5+lF ~ S = S3

27"2

F Ts S
. . 1 5

and the belt friction law S; = Sqe™ 7 |

il A4

MB = 7“252 — 7"281 = (1 — ei'wr) 9 . SST

The velocity of the cabin is constant, if 1i

the accelerations of the drum and the
cabin are zero, i.e., if mg
) 2rimg

: Ss =M Ss = Fy = .
0 193 B 3=mg -~ 0 (1— e )l
b) Now, we apply the work-energy theorem 77 — To = U between in-
itial state (0) and end state (stop) (1). With the kinematic relations
vo = riwo and d = r1pq follows

1 2 1 2 ’Ug @0
By =0, Ek0:2mvo+290wo= 2(m+T%),
©d F
W:mgh—/ Mpdy =mgd — (1 —e™"7) ld.
0 27’1

Thus, from
2

Vo @O —pum
~ (m+ r%)zmgdf(lfe KTy

Fld
27’1 ’

we obtain by solving for d
v (m + o /1)

d= (1—e»m)Fl/2r1 —mg
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Problem 5.24 A bowling ball
(radius r) has to overcome a
hight difference on the return
path which consists of two

one-eighth circle arcs (radius
R =5r).

What speed vop may the ball
have, so that lift-off from the path in the upper sector A is prevented?

Solution We first determine the velocity in sector A from the
the energy conservation law

T+V =T+ V.
With ©¢ = 27717’2/57 v = rw
and h = 2R(1 — cos45°) = =

57(2 — /' 2) follow (zero level
of potential at depth of D)

1 1 7
To = 2mv§+2®cw§: 10

Vo =mg(R—h+71)=(5v2 —4)mgr, V =mg6brsing.

2 2
mug , T= mv”

Solving for v leads to
5 5 60sing+40 — 502
v =y — gr
7
In sector A the centripetal acceleration of the center of mass C' is
a, = v?/6r. Thus, from the equation of motion

v
N ma,=-—N+mgsinp,
mg YR N

we obtain
\an
2
mug
- +

mg . B
o T 4o (102sin¢ 50v/2 + 40) . (3

The minimum force N* in sector A appears at ¢ = 45°. Therefore, so
that lift-off at this point is prevented, the following condition must be
fulfilled:

N(p) =

N*=N45°)>0 ~  w<

2+ 4
gr\/ ;r 0:2.43\/gr.

P5.24
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Problem 5.25 A homogeneous bar (weight
W = myg) is hinge-connected with a body of
mass m that can frictionless slide horizontally.

a) Determine the angular velocity ¢(¢) of
the bar, if it is released from rest from a
horizontal position?

b) Determine the equation of motion.

Solution a) The position of the center of
mass C™ of the total system is calculated
as

b é Im +Im 3 ;
o 2m T4
Since the system is not subjected to
external forces in horizontal direction,
there is no horizontal displacement of C*.

Thus, we have

mlz—ilsirup, i’lz—}llgbcosgo,
mc:}llsincp, i:c:ilgbcosgo,
yczélcosw, yc:—;lcpsincp.

We now determine the angular acceleration ¢ by using the energy con-
servation law T+ V = Ty + Vp. With O¢ = ml2/12 follow

Vo=0, V:—mgélcosgo,
To=0, T=jmii+ [, m(@5+93)+ ) Os¢’]
= é mil?y? (}1 cos? ¢ + i cos® ¢ +sin? ¢ + é)
= ml®¢* (8 — 3cos® p)
and we obtain after substitution
214 1*(8 —3cos’p) —geosp =0 ~ = \/l(82f93(f§sfgp) .

b) Differentiating the energy conservation law (line above) with respect
to time leads to the equation of motion:
l
12

~> — 3 cos” ) + 3¢ cos psin ¢ + sinp =0.
$(8 — 3 cos? 357 i 12?' 0

PP(8 — 3 cos> ») + igbg cos psin p + gpsing =0
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Problem 5.26 A symmetric disk with a half- P5.26
circular boundary rolls without slipping on
the flat ground.

Determine the angular velocity in depen-
dence of ¢, if the body is released from rest
at ¢ = 0. Calculate its maximum.

Given: R, ¢ = kR, m, O¢c = amR?

Solution To solve the problem, it is advanta-
geous to apply the energy conservation law.
To formulate the energies, we introduce a
coordinate system and find

xe = Rp+ccosp = R(p+ Kkcos ) ,
Yc = csinyp = kKRsinp

e =Ry —cpsing =Rp(l — ksiny)
Ye = cpcos p = kR cosp.

Thus, the energies Ty, Vo in the initial position and in an arbitrary
displaced position are given by

To =0, Vo=0,
1 1 1
T= 9 m(&e + o) + 2@c¢12 = 2mR2¢2(1 — 2ksing + K sin® o

1 1
+1% cos® v) + 9 osz2¢J2 = ngch(l + k% =2k siny + «)
V = —mgyc = —mgRksinp ,

and the energy conservation law 7'+ V = Ty 4+ V4 leads to

1
9 mR2¢2(1 + K= 2k sinp + ) — mgRksinp =0

. 2gkK sin
~ so(so)=\/ grsm e

R(1+4 k%2 —2ksinp+a)

The angular velocity takes its maximum at ¢ = 90° (lowest level of C):

. . 29k
o \/ R(1—r)? +a]
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Problem 5.27 A homogeneous circular g¢
disk (mass m, radius R) contains an
excentric circular hole (radius r = R/3).

The disk is released from rest from the
displayed position. W

Determine the angular velocity for the in-
stant, when B reaches its highest position

a) if the base is ideally frictionless,
b) if the disk rolls on the rough base.

Solution The solution is found by using the energy conservation law.
For that purpose, we need the position of the center of mass and and the
mass moment of inertia. It is useful to determine them by calculating
the difference of two circular disks:

R*r 9 1
: Al = 2 = — — 2
) 1 =7R”, ma R27rfr27rm 8m, ©1 2m1R ,
r 1 1
@: Ay=7r?, mg= R27r—7rr27rm: 8m7 O, = 2m2r2.

This leads to
_0-7rR27r-7r1"2 R

re= TR? — 7r? Y %=0,
Oc = [01 + m122] — [O2 + ma(zc + 1)?]
= 196 mR* + 8(294)2 mR?> — 161.9mR2
2
(o ty)
)

a) In the initial state, the disk is at rest and,
if the zero level of potential energy is chosen
at level of A, we have

V0=O7 T():O.

Because the base is frictionless, there act
no forces in horizontal direction. Therefore,
the center of mass C experiences no velocity
change in this direction, i.e. ¢ = 0. When B reaches its highest positi-
on, C' just reaches its lowest position. In vertical direction, the veloci-
ties of these points change at that instant their sign, and consequently,
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z2¢ = 0 holds. Thus, the energies at that instant are
1 2
Vi = —mglac|, T = 9 Ocw

and from the energy conservation law
Vi+Ti=Vo+To,

it follows

1 2 2mg|zc| \/ 48¢g
p Oew” =mglas| ~ w \/ Oc 311 R

b) At the initial state, we have as before
Vo=0, To=0.

When the disk is rolling, the instantaneous center of rotation II is lo-
cated at the contact point between disk and base. When the center of
mass reaches its lowest position (and B its highest position), its velo-
city has the horizontal direction and the magnitude s = w(R — |zs]).
Therewith, the energies at this moment are given by

1

1
Vi = —mglac|, T = 9 mig + 9 Ocw?,

and the energy conservation law leads to

1

o @' lm (R = |zc])” + Oc] = mglac]

and finally to
2mg|zc| \/ 2g
==+ =+ .
¥ \/m(R|xc|)2+@c 35R

Remark: The angular velocity in case a) is higher than in case b). The
reason for that lies in the fact that the kinetic energy in case b) is split
into translational and the rotational parts, while in case a), there exists
only a rotational part.
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Problem 5.28 At a pivoted massless
arm, a motor is attached (point mass
ma1). Its motor shaft is rigidly connected
with the center of mass C of a disk (mass
ma, moment of inertia ©2).

a) What are the angular velocities of the
arm and the disk, if the motor delivers
during the time interval At a constant % %
torque Mo and the system initially was
at rest?

b) Determine the work done by the
motor.

Solution a) We separate the system to make

the internal moment My visible. The princip- ) wa
les of linear and angular impulse and momen- \
tum then lead to

o) A N may, Oy
® A: Oawi=-—-My—IF,
@ 1T : move= 13,5 , *Fi
2 — w1
C: Osws = M, i: ;/ () C) F,
where A my Mo
At At
Mo = /Modfz MoAt,  F = /Ft(t_)dt_, O =mil®.
0 0

With the kinematic relation ve = lw; follows by eliminating ﬁt

MoAt +M0At .

W1:_(m1+m2)l2 s wWo = @2

b) The work U done by the motor is determined from the kinetic energy
of the system after time At:
1 1 ]

_ 1 2, o 1 2 1 2
U = 2[(m1 +m2)l ]wl -+ 2@2w2 = 2(]\4-0At) (m1 +m2)l2 + 0,

Remark: Since no external moment is present, the angular momentum
of the total system remains zero:

Oawr + m2l2w1 + Oows =0.
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Problem 5.29 On a disk @ (moment of iner- P5.29
tia ©1), which rotates with an angular velo-
city w1, a second disk @ (mass m2, moment
of inertia ©2) rotates with ws about the shaft
B (= center of mass of @). When @ slides
down along B and touches @, both disks
rub on each other such that @ comes to rest
relatively to disk @ after time to.

Determine the common angular velocity wo
after time ¢g.

Solution We separate the systen and formu-
late the principles of angular impulse and mo-
mentum for @ (with respect to fixed axis A)
and @ (with respect to its center of mass B):

~ ) —
A (©1+mea)|wo —wi] =—M,

~ e
B: Oz]wo — (—w2)] = +M,
where ®
o M(t)
/\ _ O,
M = /M(ﬂdt.
0

Notice that the mass mao of disk @ is considered in the moment of
inertia of @.

Eliminating M leads to

(01 +maa®)w1 — Oawo

wo = 01 + O2 + maa?

The problem can be solved easier by applying the principle of angular
momentum to the total system. Because there acts no external moment,
conservation of angular momentum about the fixed axis A yields

~
A (O1 4 maa®)wi — Osws = [O1 + (O3 + maa?)wo ,
i.e. we find the same result as above.

Remark: For Oaws = (01 4+ maa®)wi, the system comes to rest.
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Problem 5.30 A homogeneous circular disk
(weight W1 = myg) rotates with angular
velocity wo about pin B of an initially resting
bar (weight W2 = 2mg, | = 2r), which is
pin-supportet at A.

a) Determine the amplitude @2 of the bar, if
the disk is suddenly blocked at the bar.

b) Determine the energy loss due to the
blockade.

Solution The angular velocity w1 of the system

immediately after blocking is determined from the
conservation of angular momentum. With the mo-
ments of inertia of the disk and the blocked system

Op = émr2,
Oa = (smr? +ml®) + MI?/3 = Pmr?,
it follows

Opwo = Oawr ~ w1:@B 3

O4 43

wo = wo .

The amplidute @2 of the blocked system is calculated from the energy
conservation after blocking: 75+ Vo =T1+V;. Choosing zero potential

at the level of A, we obtain

> =0, Isin /2
Vo = —mglsin ps — Mg(1/2) sin ¢2, R %
9 o [ sin ¢
T — 1@ W2 = MTwo 3 R
PTUAMIT g g3

Vi =—lmg—1Mg/2 =—4rmg , ,

what leads to '

2
3 rwy

. -1
SH2 688 g

!
\ 1113
. bosition 1//
N

N -

b) The energy loss is determined from the difference AT of kinetic

energies immediately before and after blocking:

AT

2 2 4 4

B Opw? _ Oaw? B mriwd  mr?wd 3 10

2 2
mrowg .

43 43
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Problem 5.31 A yo-yo (weight mg, moment S(t)
of inertia ©4) moves at time ¢ = 0 with

speed vo and angular velocity wo.

Determine the velocities v1 and wi at time %

t1 when pulling the string with a force

S(t) =50 t/t1.

m, 04
Solution The equations of motion read
~ S(t)

3 muvy —mug = Fy

A —

A: ©Oawr —Oawo = Ma , 0
where lu

~ t1 _ 1

F, = / [mg — S(t)]dt = mgt1 — 230t1 ,

0
— t1 _ 1
My = / TS(ﬂdt = 27“Sot1 .
0
Solving for v1 and w; yields
Sot1 rSot1
= t — = .

v1 = vo + gt1 om w1 w0+2@A
Problem 5.32 A homogeneous bar of mass m a)) B
moves on a horizontal plane purely translatio- AL,
nally with the velocity vo. 1/2
Determine its angular velocity wi, when its o C
end suddenly latches into the fixed bearing A. } /2

Solution Initially, the angular momentum of the bar with respect to
Ais Lo = é(mvo). After latching, the angular momentum is L1 =
Oaw = é(mlgwl). Since there acts no external moment with respect
to A, the angular momentum is conserved:

1 1 300

mlwi1 = _Ilmug ~ w1 = .

3 2 21
Remark: Latching leads to an energy loss AT

1 1 1 1
AT =Ty —-T = 2mv(2)— QOAwf = 8mv(2) = 4To.

P5.31

P5.32



P5.33

136 Rotation of a

Problem 5.33 Two homogeneous bars c>Mo
of masses m and 2m are attached at ==
a massless shaft which is driven by a 9 GI m
torque M. —

2a T 2m
Determine the equation of motion and b /
the support reactions at the bearings.

2a 2a I

ij‘ =

Solution We first determine the axial

moment of inertia and products of iner- ﬂ My
tia for the body-fized system &, 1, C A
5 AL
O¢ = 3 (2a)2 + 3 a’? =3ma®, CQQ’)
& \:: U
Occ = —m2a " =ma’ ¢
13 9 : ! @
o Pl
@nC =0. m /1V )

With the external moments
Mg = QCLBn - 4aAn 5 Mﬁ = 4aA5 - QGBE 5 M( = Mo 5

it follows from the priciple of angular momentum with respect to the
body-fixed system

m .

£ 2a(B,—24,)=—-wmd® ~ B,—2A,= _m;” 7

N 2

n: 2&(2A§ — Bg) = w?’ma® ~ 2A¢ — Be = m(;w ,

Y%

¢ My =3ma*s  ~ o= Mo
3ma?

The last equation is the equation of motion of the shaft. To determine
the support reactions, the principle of linear momentum must be ap-
plied. Since the motion of the mass centers Ci and Cs is circular, the
acceleration components of e.g. C1 are given by £w in n-direction and
—¢1w? in é-direction. Thus, we obtain in ¢- and in 7-direction

—2maw’®+m(a/2)w’® = Ac+ Be , 2maw—m(a/2)w = A, + B,
and finally
2 My 5 5 Moy
Anggman, A,,:9 0 BngGman, B, = 18 a°
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Problem 5.34 A homogeneous plate
(mass m) rotates with the constant an-
gular velocity w about a fixed axis.

a) Calculate the support reactions at
A and B.

b) Determine the additional masses
m1 that must be attached at D and
FE, such that the support reactions are
Zero.

Solution a) Because the center of mass is located on the axis of
rotation (acceleration of C' is zero),
the equation of motion reduces to

A¢+ Be=0.
With w =0 and

m (a* — b*)ab
12 a2 + b2
(see Problem 5.8), it follows from the principle of moment of momentum
M, = @O, + w?O¢ (notice the positive sense of rotation about the
n-axis!)

O¢c = —

N 2
N : —lA¢ +1Be =w O .
Therewith we obtain

A — _B. — _w2@5< _ mw? (a® — b*)ab
¢ ¢ 21 241 a2+ b2
b) Such that A¢ and Bg are zero, the total product of inertia ©F.
(including m1) must vanish. Thus, with

b a

sina = , cosa =
Va2 + b2 Va2 + b2

the following condition must be fulfilled:

Ofc = — 1”; (a22—+b2ab + 2m1 (; sin a) (g cos a) =0
m /a?
o= 6(b271)'

Remark: The masses m1 must be attached at both sides, such that the
center of mass remains still located on the axis of rotation.

P5.34
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Problem 5.35 A homogeneous circu-
lar disk (radius 7, mass m) is moun-

a”
ted obliquely (angle a) and with an
eccentricity e to a rigid thin shaft. 3y m =
The system rotates with constant T ] NS
angular velocity wo. el &” wo
Determine the forces in the bearings.

Solution To fully describe the motion of the rigid body, the principles
of linear and angular momentum must
be applied. The latter is advantageous-
ly formulated with the aid of Euler’s
equations:

O1w1 — (02 — O3)waws = My,

Oows — (O3 — O1)wswi1 = Ma,
@30:)3 — (@1 — @2)W1W2 = M3 .

With

w1 =wocosa, w1 =0, wr=—-wpsina, wr=0, ws=w3=0
and

mr mr
0, = 9 O =03 = 40
it follows
mr? mr
2 . 2 .
M, =0, My=0, M;s= 4 wp sinacos @ = 8 wp sin 2« .

Here M3 is the moment of the external forces about the principal axis
3. Its relation with the forces in the bearings is given by

-~ 2
C: Msz=aB—adA ~ aB—aA:mg wésin?a.

Now, we use the principle of linear momentum. Since C' moves circular-
ly with constant angular velocity, its acceleration |a| = ew? is directed
to the ratation axis. Thus,

T mew’=A+B.

Solving these two equations leads to

2 2 2 2
_ mwg ot _ W re .
A= 16 (86 g, Sin 2a) , B 16 (86+ u s1n2a) .
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Problem 5.36 A homogeneous bar P5.36
(mass m) on a frictionless horizontal
base is accelerated by a force F' acting
at point A in length direction of the
bar.

Determine the distribution of the
normal force N along the bar.

Solution The acceleration of the bar
(in length direction) is a = F /m. To
calculate the normal force, we first in-
troduce the body-fixed coordinate =z n /V(,)
and then cut the bar at an arbitrary lo-

cation z above and/or below the point %

A. For the lower cut (z < ¢), the prin- z

ciple of linear momentum yields with
m=muz/l

N(z) =ma= F.

m x
m

F
l

For the upper cut (z > ¢), we obtain

F

~ N(@)=-F(1- j”).

N(z)+ F=ma=

m
m

The normal force is linearly distributed and has a jump of magnitude
F at « = c. This leads to the below displayed graph of N(x).
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Problem 5.37 A pin-supported homoge-
neous beam (mass m, length [) is initi-
ally at rest. Starting at time ¢ = 0 it is
subjected to a constant force F', acting
perpendicularly to its longitudinal axis.

Determine the stress resultants (M, V, N)
in the beam domain a < z < [ at time
t > to. Neglect the weight of the beam.

Solution Since the motion of the beam is a pure rotation, its accelera-
tion and velocity are uniquely described by ¢ and ¢. The principle of
angular momentum with respect to A yields

aF
Oa
Integration in conjunction with the initial condition ¢(0) = 0 leads to

the angular velocity

. al’
o(t) = o. t.

)
A: ©Oagp=aF ~ =

Now, we introduce body-fixed coordinates, cut the system at a position
x > a and introduce the stress resultants. Here, we first restrict oursel-
ves to the shear force V' and the bending moment M. For the free part
of the beam the principle of angular momentum with respect to the
center of mass C' and the principle of linear momentum in z-direction
yields

From the kinematics (circular motion) / ’

follows the acceleration Zs: %\
. . I+ z
Ze = —Tep = — 9 @ .

2

Therewith and with m = (1 — g;)m and ©4 = m3l , we obtain the

shear force:

_l4+z . _l+zaF 3aF x\2
Vi)=m ) é=m » o, 2 | [1*(1)]'
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Introducing this result into the 1st equation of motion leads with O: =

19 m (I — x)* to the bending moment

M(z) = -Q Qm—@ﬂﬁ

=er () 00 0D

= ar (17’ (Hyg).

The normal force N is obtained by using the principle of linear mo-
mentum in z-direction:

Here, &z = —7; ng is the centripetal ac-

celeration. After introducing the alrea-
dy known quantities, this leads to

o . x+1 [ My 2
_m(lil) 2 (@At)

=M -0

Contrary to the bending moment and the shear force, the normal force
increases with the square of time ¢.

The graphs of normal force, shear force and bending moment are sket-
ched below for the special case a = 1/3.

4Pt
9ml

P
S
4\ S

F‘th‘\\\ ~

* 2ml
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P5.38 Problem 5.38 A homogeneous beam

(mass m, length [) is lifted from a - /@ l[]
horizontal base by a force F' = 4mg. V' 2 |
Determine the stress resultants imme-

diately after lift-off. [ o6 |

Solution Immediately after lift-off, the 1/12
beam still has a horizontal position. The .
principles of linear and angular momen- JT © ?F
tum then yield with ©c=mi?/12 ~
um then yield wi c=ml*/ | o |
—
T: mije =F—-mg ~ e =3g, v *mﬂ
) . l . Fi g
: =F = =47 .
C: Ocp=F, > P e, 7Y

We now cut the beam at position z, introduce the stress resultants and
consider first a cut left to the point where F' applies (z < 172l). In this
case the principles of linear and angular momentum yield for part ©

1T mlgcl =-mig—V1, my, Oc, el M (x)
-~ ) - @ * oC 1
Ci: Og,¢p=M -V 5 - mig /1()
T
With ‘(17:1;)/2
x 1 1 23
m(z) = lm, 601—12m1m 12 lm

and the kinematic relation
. .. 1 . 1 g T
—jo— (l—2)g=3g— (I—z)47 = (1 P ) ,
jor =jo — ,(l-2)$p=3g— (I-2)4) =g(1+2]
we obtain the resultants

. xr xr
Vi(@) = —mi (g +jio,) = —2mg T (1+7),

3

Mi(z) = §V1+@cl¢:7mgl(3;)2 (1+5lﬂ)+ 112xl m4?

=" (1) ()
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For a cut right to the point where F applies (z > /), we obtain in
the same way now for part @

Vs
T mays, = -—ma2g+Va, 777M?2 > Cy 1, Oc,
S c °(? ®
P . l—x
Ca: O, =—Mz—Va . mag
2 — -~
l—x
With Lx/?»‘
_l-z _ 1 1 (-2
my=- o m, O¢, = 12m2(l—m) = 19 ; ,

ycz=yc+2s0=g(3+2l),

it follows

Va(@) = ma (g +iic,) = 2mg (1= 7) (24 7)),

Ms(z) = — l;xV2_®C2¢: _’n’;gl (1— ?)2 (7-}—2?) .

The graphs of V(z) and M (x) are plotted below:

155
V ijg M
7/
T > T 1'2
e e
REC
72"
—0,474mgl

Remarks: ¢ At the point of application of F', the shear for has
a jump: AV = F = 4mg.
. . . dM
e Also in the dynamic case, the relation V' = .
holds. This follows from the principle of angular
momentum for a beam element of length dz by
considering that the moment of inertia is small of
higher order.
e The acceleration ¢ is positive for all points: §(z) =
jo + (x —1/2)¢p = g(1+4x/l) > 0, ie., the beam
actually completely lifts off from the base.
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P5.39 Problem 5.39 A chimney stack of mass m and
length [ is blown up at the base and falls over.

Assuming a hinged support at the base and a
constant mass distribution, determine the stress
resultants during the motion. At which point
xp and at which angle ¢pp the maximum trans-
missible moment Mp = mgh/100 is exceeded?
Calculate the normal force at this point.

Solution We first determine the angu-
lar acceleration ¢ and angular velocity ¢
of the chimney. With ©4 = mh?/3, the
principle of angular momentum leads to

~ . h . .3
A: @Acpzmg2smcp ~ P =

To calculate ¢ it is practical to use the
energy conservation law:

1
—mg (1fcos<p)+2@Agb2:0 ~ ¢2=SZ(1fcosap).

2

Now we cut the system, introduce the stress resultants and formulate
the equations of motion for the cut part:

N mies=V —mgsing,

mis =—N —mgcosy,

Q90 X

@@@ZMJr;(hfx)V.

The unknown accelerations &, %z therein
can be calculated from the known quantities

@ and ¢*:
ié:_$é¢2:—h;$3z(l—coscp):
B e o _tzd3g. 3 (
Yo = cP= 2 94 Y= 49
Thus, with
_ h—=z x m(h —x)®  mh? x\3
T (1Y, oo N
m="0 = (1=} )m. e 12 12 h
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we obtain the stress resultants
3
V(z) = m (i + gsing) = mg (1 - i) {74 (1+ z) SingoJrsingo]
_mg . oz LT
T4 Sm“"(l h) (1 3h)’
N(z) = —m (i + gcose)
T 3 T
= —mg (1— h) [—2 (1+ h) (1—cos<p)+cosga} ,

h
2

= Wi}: (1— i)gz ‘Zsing@— ;lmg (1— i)Q |:—2 (1+ i) +1] sin ¢

“" (i)'

M(@)=0c¢— o (1= 1) [mic +mgsing]

The bending moment has its maximum, where the shear force is zero.
From V = 0 follows

(=D G-5)=0 ~ =y

(The 2nd solution & = h is not of interest because the bending moment
is zero at this point). This leads to the maximum bending moment

Mmaz - M(CEB) = 217

From the condition M. = Mp the angle ¢p follows:

mghsin g .

mgh mgh 27

o7 MMPET 00 7 SHPE T 00

Finally, the normal force at zp and at the angle ¢p is obtained as

2 4
N (g,SOB) =— 7;9 [—2 3 (1 —cosepp) +cospp

~ B = 15.66° .

2
=—3mg(—2+ 3cospp) = —0.59mg .
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Problem 5.40 A homogeneous arc
of mass m rotates with the angular
velocity w and angular acceleration w
about the vertical axis.

Calculate the bending moments and 2r
shear forces at location A.

Solution We introduce body fixed
coordinates £, i, ¢ and cut the sys-
tem at A. Since the center of mass
C rotates along a circular path, its [
acceleration components are <T

rsing

. 2
ag = —Nsw , an = —nNsw .

Using the density p and the cross
section as auxiliary quantities its
distance n¢ from the (-axis follows / Ve

1
as — T 1

/wg My

2r

w

r(rrpA) @ . //§

e = 2rpA+ wrpA 2+7rr

Therewith, the principle of linear momentum yields the shear forces

2

Ve = = —mra .
¢ = mag mrw 94m

Vi, = ma, = —mrw
2—"—71” n n

The bending moments are given by the principle of angular momentum:
Me = wOg¢¢ — UJQ@WC s My = wOy¢ +w2@54 .

With dm = pArdp = mdy/(2 + 7), we obtain O¢c = 0 and

2 ™
mr .
@ngz_/UCdm:—QJrW/O (14 cos¢)(2+ sinp)dp
2(1+7T) 2
=— mre .
2+ 7
Thus, it follows

2(1+ﬂ') 2 2 2(1+ﬂ') 2

M = M, = —
¢ 94 mriw’, n 24 r
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Impact: A sudden collision of two bodies leading to a sudden change
of their motion is called Impact.

Notation:

contact tangent plane

v1, v2 = velocities at contact points
P before impact,

Vg, V2z = velocity components
at points P in direction of the
contact normal before impact,

Viz, V2z = velocity components
at points P in direction of the
contact normal after impact,

o
ﬁ,c = /F,c(f) dt = linear impulse.
0

Assumptions: e The impact duration ¢* is neglegible small.

e Position changes of the bodies during impact are
neglegible small.

e Other forces (e.g. weight) are small compared with
the impulsive forces at the contact point and can be
neglected during impact.

Impact Hypothesis:

Vie — V22 relative separation velocity
e=— =— . .
Vig — V2z relative approach velocity

where e = coefficient of restitution: 0<e<1
e=1: elastic impact (no energy loss),
e=0: plastic impact (V2 = vV1z, nO separation of bodies).

Solution of plane impact problems: Application of the principles
of linear and angular impulse and momentum to each body (see p.102):

m(UCx _UCJC) = Zﬁac , m(vcy — Ucy) = ZF\” s
Os(w—w) = ZM\A
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A = fixed point or center of mass C. The equations are complemented
by the impact hypothesis and the kinematic relations between the ve-
locities at the contact points and the velocities of the centers of mass
and the angular velocities.

Remarks: e If the bodies are smooth, the direction of linear
impulse (due to contact) coincides with that of the
contact normal.

e If the bodies are sufficiently rough (no slip during
contact), the velocity components in tangential di-
rection at the contact points after impact are equal.

Impact Remarks

v1, v2 in direction of contact normal,

direct impulse always in direction of
contact normal (F, = 0).

oblique v1, v2 not in direction of
contact normal.

central centers of mass located on
contact normal.

eccentric centers of mass not located on

contact normal.

Direct central impact:

; miv1 + mov2 — ema(vi — v2)
i = )

my + m2
; mivy + mava + emy (v1 — v2)
B = )
my + m2
2
1—e mimsa 2
AT = (v1 —wv2)” = energy loss.

2 mi+me
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P6.1 Problem 6.1 A point mass mi, sus-
pended from a wire, is released from
rest at height h; and collides at A with
a mass point mo = 2my which initially

I
I
I
is at rest. After impact mass m1 swings m X
back to a height of hi/2. !
. . s ) A
Determine the coefficient of restitution 171 Mo
e and the velocity of mo immediately b =

after impact.

Solution The velocities of m; and my immediately before impact are

U1=\/29h1, 1)2:0.

Thus, denoting the velocities after impact by vi, ve, the principle of
linear impulse yield

. @ ®
@ —=: mi(vi—n)=—-F, U1, U4 Vs
~ O== —A>6
@ —: movs = +F my F F mo
Eliminating F and using the impact hypothe-
sis
V1 — VU2
e=—
U1
leads to
mi1 —emsa mi
vL=n mi+mo vz =vi(l+e) m1 + ma

The velocity v1 can be determined from the
energy conservation law for m, after impact:

h

1
2m1vf =mag 21 ~ v = \/gh1 ="

V2
Thus, from the two equations above we obtain

mi M1+ me
ma2 V2ma

vg:mml(lf 1) hl}@\
ma V2 '
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Problem 6.2 A ball is dropped from — Q P6.2
height ho onto a flat surface and
bounces back five times (coefficient of
restitution e = 0.85).

a) Determine the height hs the ball

1

1

|

h[] *

1

reaches after the last impact. .
I

I

|

b) Determine the energy loss for each
impact. T

Solution a) If the positive direction of ve-
locity is chosen upwards, the ball has im-
mediately before the 1st hit the velocity

v = 7\/2gh0 .

Denoting the velocity immediately after
impact by v1, the impact hypothesis leads
to

e=— ~ v =—ev = ey/2gho .
v

From the energy conservation law follows the new height, reached after
the first hit:
2

mv% = mghi ~ hi1 = = €2h0

2 29

In the same way we find for all further hits
hi = €*hi_1,
and therefore
hs = e’hs = e*hs = ... = e'’ho = 0.197 ho .

b) The energy loss during an impact can be determined from the
difference in potential energy calculated from the heights before and
after impact. Choosing zero potential at the surface we obtain with
Vi—1 = mgh;—1 and V; = mgh; (the kinetic energy is zero when rea-
ching the heights)

A‘/Z = ‘/2;1 — V:L = mg(hi,1 — hz) = (1 — eQ)mghiq .

Remark: The energy loss can alternatively be determined from the dif-
ference in kinetic energies. Note that the energy loss decreases with the
number of hits.
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Problem 6.3 At a quality test,
balls @ fall from height H on Qo —
a rigid smooth plate @ which is
inclined by o = 20° against the

|

|
horizontal. |

y H
Which distance d must have a |
collecting container ®, so that !
only the balls with a coefficient "’/—"”-’“*~\\\©
of restitution e > 0.8 reach the )g% §§3§§§§§:::§
container? L d | N

Solution That balls with e > 0.8 reach the container, the distance d
must exactly be equal to the flight distance of balls with the coefficient
of restitution e = 0.8. The balls @ hit plate @ with the velocity

v1 = /2gH .

Using the displayed coordinate system
(2= contact normal), its components are

V1y = —V1 COS X ,

—visina .

Viy

Since the impulse in y-direction is zero (smooth plate), vi, = v1y holds.
The impact hypothesis leads then with va, = v2, = 0 (rigid plate) to

Vig
e=— ~r Vipg = —€V1gz = €V] COS .
Vix

Thus, for the limit case e = 0, 8 follows for the angle 3

[v1y] _ [v1y _ 1

t = =
anf [viz]  eviz e

tan o ~ B = 24.46°
and for the launching angle v to the horizontal
v =090° —a— 3 =45.54° .

With the equations for the projectile motion (see page 32) we obtain
the flight distance d of balls with e = 0.8:

1 1
d= " visin2y = (v%z + v?y) sin 2y
g g

= 2H (e® cos” o + sin® @) sin 2y = 1.364 H .
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Problem 6.4 Two old cars (no ABS) move along P6.4
the highway with same speed vg in a short distance

b when a traffic jam gets in sight in distance c. E]U

Both cars make a full brake and get sliding, car ®

a shock moment At later than car @.

their velocities after the clash (coefficient of
restitution e).

c
a) When and where both cars clash? Determine l
b) Does car @ come to stand ahead of the jam? b

¢
Given: vg = 30m/s (=108 km/h), m; = 1.5m, f o
ma = m, At = 1s, pn = p2 = 1/2, e = 0,8, @[ﬂml
b = 25m, ¢ = 150m. Neglect the lengths of the
cars.

Solution a) We introduce the coordinate s and start counting time
when car @ slames on brakes. During sliding the acceleration of both
cars is the same: a1 = a2 = —pg. Considering the initial conditions and
the shock delay, the velocities and covered distances are given by

Ug:Uo—lu,gt, ngvot—é,ugtg, E]U
v = vo — pug(t — At), s1=wot — spug(t — At)> —b T
c U2
The collision time ¢* and the associated position and s é]
velocities are found from the condition s1(t*) = s2(t™): *
. b At)?)/2
g VAT o
ngAt b
s" = sp(t") = wot” — Lpgt™® =91.17m, l E]

*

vy = va(t™) = vo — pgt™ =2.56m/s,
vl =vi(t") =vo — pg(t" — At) =7.46m/s.

The velocities after collision are calculated by using the formulas on
page 149 for central impact:

* * * *
mavi + movs + emq(vi — v3)

Vo = =254m/s,

? m1 + ma2 /

o = mivy + mavs — ema(vy — v3) —141ms .
mi1 + ma2

b) With va, v1 and s* the positions for standstill would be

* % * 'U% * % * /U%
Sy =S + =65.8m, s1 =8 + =20.3m.

219 2pg

Because s5™ > ¢, car @ would crash into the jam.
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Problem 6.5 A bullet (mass m) with the velocity v hits centrally
an initially resting frictionless

supported board of mass M. It M

penetrates the board and has ’

thereafter the velocity v. mo . ' 3
B—------ ol|--1>—

a) Determine the velocity @ of the
board after the penetrating shot.

b) How much energy is needed for —
producing the penetration hole?

Given: M =10m, v = v/2.

Solution a) The velocity w of the board is determined by using the
conservation of linear momentum law with the known bullet speeds v
and v:

—: muv=mv+ Mw.
Solving for w leads to

m(viﬁ)_ 1 v
M T 102 2°

w =

b) The energy needed for producing the penetration hole is calculated
from the energy loss of the system. Since the potential energy does not
change, only the kinetic energy before and after penetration must be
considered:

1 2 1 _2 1 _2
2mv, 2mv +2 w

The difference yields the energy loss
_ 1 2 2 I

AT_T—T_Qm(v —v)—QMw

_ 1 2 2 2
—Qm(v —77) (v—10)
1 2, (U2 m 71)2_1 2[71711]
=y =) (=) T =om[i- 4 4
—29(1mv2)
T 40\2
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Problem 6.6 Two cars (point masses mi, msz) collide at an inter-
section. From a radar measurement the

velocity v1 before collision and from the my Mo
sliding track the velocity v and angle ~ L]

. v L >
after collision are known. o '/ﬁfﬂ‘z N

N i R
Determine the velocities vz, v2 and the ' a\x B
angle § of the 2nd car by assuming that S Ao
no energy is absorbed during impact. o O

Given: mi = mo = m, vi, v1 = v1/3,

a=45° v =60°.

Solution Before and after collision the cars have the velocities v1, va,
v1 and va. They are related by the conservation of linear momentum law

— © M1v1 + Mav2 COS = M1v1 COS Y + Mmavz cos [ ,
1 mav2 Sin @ = Mm1v1 siny + mave sin 3,
which, after inserting the given quantities, leads to
v1 4+ v2v/2/2=w1/2 4+ vacos B,
vg\/2/2 = v1\/3/2 +vesinf.

Conservation of energy during impact requires

1
2

2 1 2 2 2 2 2
mivi + _ mavs; ~ V] vy =v] +v5.

1
mlvf + 9 mgvg = 9 9

Herewith we have three equations for the three unknowns vz, v2 and
B. To solve them, we first eliminate S:

v3 = v3(cos? B + sin? )
= (vf +v§/2 +v%/4+v1v2\/2 — vV — v2v1\/2/2)

+ (v3/2 + v13/4 — v2v1V/6/2)
=] + 03 + v} + v1v2V2 — v1v1 — v201(1 + V3)V/2/2

Introduction into energy conservation then leads to

vy = vi(vr = 201) —0.144 v; .

v1v2 —v1(1 +V3)v2/2
vg zvf—i—v%—v% ~ vo = 0.953 v .
and subsequently to

vasin B = v2v2/2 —v1V3/2 ~ sinff=—-0.196 ~ f=-11.3°

P6.6
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Problem 6.7 A point mass (mass mi) is shot upwards a rough in-
clined plane (coefficient of kinetic friction ) with an initial veloci-
ty vo. In point B it hits a resting point mass ms, which after this
1st impact bounces against a
spring (stiffness k) at the end
of the smooth path BC.

a) Determine the velocity v;
of the point mass mi imme-
diately before the impact.

b) Calculate the coefficient of
restitution e if the maximum
compression of the spring is f.

Given: m1 = ma2 = m = 0.1kg, g = 9.81m/s, a = 30°, vo = 6m/s,
=05 k=400N/m, a = 1m.

Solution a) Application of the work-energy theorem V4 + T4 = Vp +
Tp + Uap to the mass m; between the points A and B yields with
R =pN = pmigcosa and

Va=0, Ta= ; mivs, Uap =—Ra= —pumigacoso

VB =migasina, Tp = ; miv?

the velocity g * /1(
mi ¢y
v = \/vg —2ga(sina+ pcosa) =4.21m/s. R/N

«
b) The velocity of mo immediately after impact follows with vy = 0
and mi = ms as

mivi + mave +emi(vi —uv2)  l4e

s+ e 9 V1. (a)

Vg =

Now we apply the energy conservation law Vg + T = Vo + Tc to ma
between the points B and C. With

Ve =0, Tp = ymov3, Vo =maga(l—cosa)+ ef?, Te=0
follows

vg = \/ c f?+2ga(l —cosa) =3.55m/s.
m2

Introduction into (a) finally leads to

V2 1939 1069

=92 — =
c=‘n 4.21



Problem 6.8 A bowling ball @ hits
with speed v the pin @. Assume that
all surfaces are smooth and that the
impact is partially elastic (coefficient
of restitution e).

Determine the velocities of pin and
ball immediately after impact.

Given: v1 = 7m/s, m1 = 4.5kg,
ms = 15kg, ©. = 0.013mam?,
a=10° ¢=0.02m, e = 0.9.

Central
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Solution The impact is eccentric. Since the surfaces are smooth, the
linear impulse F' acts in the line of impact and thus, the impulse laws

lead to
@ —: m1(v17v1):fﬁcosa,
@ S mgvzzﬁ,
) ~
C: Ocwo =cF.

Note that the weights can
be neglected during impact
and that the ball cannot
move vertically. Using the
impact hypothesis

P P
_ Vig — V2
- P P
Vig — U2y
and
P P P
Viy =vicCOSa, Uy, =0, v, =wvicosa,

we obtain by solving for F
= M2V COS

F=(1
( +e)1+m2/m1+c2m2/@c

Thus, the velocities follow as

F
v = v — cosa =3.8m/s,
mi

P
Voy = V2 + CW2

= 14.41 kgm/s” .

r_ 9.6m/s.
2

Note that the pin after impact has an angular velocity:

wo=cF/O.=1321/s.

P6.8
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P6.9 Problem 6.9 A point mass m; impinges
with the velocity wvi eccentrically a ho-
mogeneous bar (mass ms), which initially My
rests on a smooth plane.

Determine the velocities of the point mass !
and the bar after an ideal elastic impact. T CH
b
A

Given.: mo = 2m1, b=1/4.

Solution The principle of impulse an mo-
mentum applied to the point mass @ and

the bar @ yield (with vae = 0, w2 = 0) @l
® —: mi(vi—v)=—F,
@ —: mgmc:ﬁ, CEJTN
U1, V1 -
A R L
C . @cwg =bF . O<_’\ -~ B
o F F

These equations are complemented by the
impact hypothesis

V1 — U2B

e= =1

U1

and the kinematic relation
v2B = V2¢c + bwa .

Thus, we have five equations for the five unknowns (v1, vac, V2B, W2,
F). With O¢ = m2l2/12 we obtain

2
m1(1+12b)71

o1 = M2 12 __n
P g, 12 15
(1+ 7)) +1
ma 12
v —ml(v fv)—8v w—bmv _ 8w
o= (=)= v, 27 g Mave = gy

Remark: If the impact is purely elastic the impact hypothesis can be
replaced by the energy conservation law. In our case it reads

1 1 1
9 mw% + 5 mgvgc + 9 @cwg .

2
mivy =

2



Plastic Impact 159

Problem 6.10 A homogeneous angle- P6.10
shaped body (mass m, dimensions a,
t < a) slides along a smooth plane
and impinges with its edge plastically
against an obstacle H.

Calculate the minimum impact speed
v, so that the body tilts over.

Solution Since the impact at H is plastic, the

edge of the angle does not separate from H.

Therefore, tilting can be regarded as a pure ro-

tation about the fixed point H. With the di- v C;
stance a/4 of the center of mass, the moment of a/4
angular momentum Ly before impact (= mo-

ment of linear momentum with respect to H)

and Ly after impact are given by

Ly = Z (mw) Ly =Opw
where
m a? ma?
@H_2(2 3)_ 3

Since there acts no angular impulse with respect to H (weight can be
disregarded during impact), the moment of momentum is conserved:

a ma® 3
Ly =Ly ~> 4mv— 3 w ~> w—4a.
The body can only tilt over, if the center of mass reaches the highest
possible position. The mi-
nimum velocity required for
that follows from energy
conservation, applied to the
motion after impact:

1 2 a a
2@Hw1nin =mg (\/24 - 4)

This finally leads to

Umin = \/2(\/2 —1)ga =1.05/ga .
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P6.11 Problem 6.11 At a hammer

mill, the thumb C of the O"C

rotating flywheel (moment —~ Op

of inertia ©4, angular ve- 7&7‘01 | 1
locity w1) hits the resting f A,
hammer (moment of inertia B

©p) which is pivoted at B. 7o 4 ——

a) Determine the angular velocities wy of the flywheel and w2 of the
hammer shortly after impact (coefficient of restitution e)

b) Calculate the energy loss for the case ©5/0.4 = a” /7.

Solution a) The principles of
angular impulse and momen-

tum for @ and @ yield Wi, Wy
~
“ o ©
A: Oa(wr —wi)=—1F, A N
A ~ A F
B : Opws = aF' .
7= Wo
With the impact hypothesis VF © ™
v1Cc — V20 C 7@7 1
e=— B
vic — v2c¢
f«— a —
and the kinematic relations
Vi =T w1, vic = Twi, vac =0, V20 = QW2
we obtain
2
r“O
l—e , L (I+e) "
_ a @A _ a
w1 = w1 2 B w2 = Wi 9 .
14" On 14" On
a?0 4 a?0 4

b) The energy loss is calculated from the difference of kinetic energies
before and after impact. With 7*©p = 0?0 4 follows

1 1 1
AT = 2@Awf — [2@Aw§ + 2913&03
- é@Awf[zx —(1-e?—(1+e)? = i(1 —e?)Oaut .

Remark: In case of an ideal elastic impact (e = 1) we would
obtain for the given datai w1 = 0 and w2 = w1 r/a.
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Problem 6.12 A springy pivo-

ted hammer (torsional spring
constant cr) can rotate in a l— 20 —=f= a ~=a ~

horizontal plane. It consists . AW ® g
~—

of a homogeneous bar of mass My “r

my and the hammer head f‘
(point mass mg). The ham- m O
mer is hit by a ball of mass m.

ms

Determine the required speed v of the ball so that the hammer for a
given coefficient of restitution e just reaches a maximum angle g.

Given: mi1 = me = ms =m, a, ¢y, € = ;

Solution Since the hammer initially is at rest, the angular momentum
of the system with respect to the fixed point A before impact is given
by the moment of linear momentum L4 = amiv. Immediately after
impact the hammer (moment of inertia ©4) has the angular velocity
w and the ball (mass m1) the velocity v. Thus, conservation of angular
momentum leads to

)
A amv =0 sw+amiv.

With the impact hypothesis

_wa—v
T
follows
mi(l+e)a ma(4a)? 2 16 5
= Oa + mia? v where ©p = 19 + (2a)"mg = 3 ma” .

Immediately after impact (no spring deformation) the energy of the
hammer-spring system is solely given by its kinetic energy é@ aw?. At
maximum angle (o the potential energy is just ;cho% while the kinetic
energy is zero. Thus, from the energy conservation law after introducing
w and the given data we obtain the required velocity:

1@ w2 1C 2 w ¢
= ~> =
2 A 2 T#0 @4 o

o -

— oy |CT O4 +mia® 19 [3er
“Vea m1(1+e)a¢0_18 m

P6.12
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P6.13 Problem 6.13 A soccer ball (mass m,
moment of inertia O¢) hits with speed post
vo horizontally the rough post of the goal line
goal. The impact (coefficient of restitu- ~ - -~ - - -~ -
tion e) is central under the angle « to «
the goal line.

Determine the required spin (angular s A v
velocity wo) such that the ball crosses
after impact the goal line if during
impact there is no slip (static friction!).

m, O
Solution The principles of impulse
and momentum, applied to the ball,
yield
S m(vx—vo)z—ﬁ, ——————— -
N a N
N muy = H | fa H

~ .
C: Oclw—wy)=—-rH.

With the impact hypothesis (rigid
post)

Vg
e = —
Vo

and the condition for static friction (velocity of contact point A in y-
direction is zero after impact)

Vay =vy —1Tw =0

we obtain for v, and vy

TWo
Vy = —€p , Vy = 5 -
14 rm
Oc¢
The ball only crosses the goal line if §
' ¢ N T

Vg = Vg sina + vy cosa > 0.

This leads for the require spin to

evp r’m
wo > 1+ tan o .
r Oc
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Problem 6.14 The motion of a homo- P6.14
geneous door (mass m, width b, thick-
ness t < b) is limited by a stopper B.

In which distance ¢ from the door
hinge A the stopper must be fixed,
that the impulse A at the hinge is zero
during impact?

\\\\\\\\\\é\\\\\\\\\\\\\\\\\\\\\\\\\\'

Solution We assume that before im-

pact the door has the angular velocity A A
w. Then the principles of impulse and -~ !
A, —
momentum read w b
4
~ i !
—: m(vex —Vea) = Az — B, 2)
¢
> i3
T mvey —vey) = Ay, & l
|
B

A ~
A Os(w—w)=—cB,

where
b

ch:Qw, UCI:Qw, Vey = Vey = 0.

Using the impact hypothesis

and solving the equations for the hinge impulses leads to

A\yzo, A\I:(1+€)w|:®A7W2Lb:|
C

From the condition A, = 0 with ©4 = mb? /3 finally follows
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Problem 6.15 The double pendulum, consisting A5

of two homogeneous bars, is struck horizontally 1 1 ?

in point D by a linear impulse F'. my ¢

a) Determine the impulsive forces in A and D 44
F

B, and the state of motion of the lower bar ig B
immediately after impact.

> el 2

b) Under which circumstances the magnitudes
of angular velocities after impact are related as
|0J2| = 2|w1|?

.

Solution a) We separate the two bars, draw N A
the free-body diagram and formulate the priciples A o
of linear and angular momentum (note that the — g/2[ "™ T
weights can be neglected during impact): o @ 50, j a
~ —~—
© . mw-F-i-B, N |
~ ~ ~ B
A @Awl—cAF aB, b/QI I
@) — mgvng, Uy <—:02 b
N ~ i Wao ¢
C2: Oc,w2 = (b/2)B .
)
where
Oa = émlaQ, Oc, = 112m2b2.

Since the velocities of both bars at point B must be equal after impact,
and v; and w; are simply related, the kinematic relations read

awi =v2 + (b/2) w2, v1 = (a/2) w1 .

Solving these six equations yields
I- (1 _c 1 )F\, B¢ F 7
a 14+ mi/me a 14+ mi/me

&)

U1:4 ) w1=4 ) ’U2=B, w2=b/2§.
ma ams ma2 Oc,

b) Inserting the quantities into the condition |ws| = 2|w1| leads to
b/2 = B 4
B =8 ~  bamz =160¢c, ~ a= _b.
Oc, ams 3

Remark: Note that A = 0 if ¢ is chosen such that the bracket is zero.
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Problem 6.16 A bar (mass m1) My P6.16
hits under the angle a = 45° with
speed v a resting homogeneous —T G
quadratic plate of mass ma.

Determine the velocities of the /\ N — a —f
bar and the plate after impact I

(coefficient of restitution e). Ass- /
my

ume that all surfaces are smooth.

Solution If we denote the ve-
locities of bar @ with v and of
the plate @ with w, the prin-
ciples of impulse and momen-
tum lead to

@ —: m1(ch — 'UCI) =-F s
T: m1(vcy 7’Ucy) =0 5 C1 : @1&)1 = \{12 lﬁ,
~ N
@ —: maower =F, T maowey =0, Cy: BOwy =0,

where O, = m1l2/12 and vey = vey = v/\/Q. Hence, using the impact
hypothesis

VAz — WAz

e=—
VAzx
where
VAg = v VAz = VOz — lw WAz = W
Az — \/2 5 Az = UC=z 4 1, Az — Cz
we obtain
mi
; 3+2m2_26 v v " v 6(1+e)
Cex — ; Cy — ) 1= )
V2 5q™ V2 I 5q2™
ma m2
, 20+
wWer ma2 wcy = O, wo = O.

V2 542™
mo
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P6.17 Problem 6.17 A homogeneous
circular disk slides frictionless
along a smooth plane and hits w
under angle o = 45° with speed _— A
v and angular velocity w a rough @ 7
rigid boundary (coefficient of . .
restitution e = 1/2). ap A st impact

N

2nd impact B

N

v ’

.

. . =
Determine  the  magnitude

and direction of the velocity after the second impact at the opposite
boundary. Assume that the disc does not slide during impact at the
contact point.

Solution The first impact is described by the principles of impulse and

momentum
— m(vcgc—vcgc):—ﬁl ,
) ~
C: Oc(w—w)=—rHy,

the impact hypothesis

and the condition of no sliding at point A
VAz =Vcx +7w=0.

From the first two equations follows

mr
w=w-— (Vew — vew) -
Oc¢
Hence, with ©¢ = mr2/2 and
v . v
Ver = VCOS Q¢ = Vey = —vsina = —

V2

the velocity components are obtained as

V2

2 1 2
ch:frw:fr;}Jrgch: 3(\/21)77"0.)), Vey = —eUcy = \i v .
Remarks: e For w > \/21}/1" follows ve, < 0, i.e. after impact

the disc moves to the left.

e The impulse Fy can be determined from the prin-
ciple of impulse and momentum in y-direction.
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We denote the velocities after the
second impact with two dashes.
Then the principles of impulse and
momentum read ‘ﬁQ

— m(vCI — ’UCI) = 7]/-‘}2 s
f\ 77 @
C - Oc(w—w) =rHy . yT /‘
> s W

H,

With the impact hypothesis

VBy Vey
VBy Vey

and the condition of no sliding at B (consider signs!)
VBz = Vez —Tw =0

follow

2 1
vc;C:rw:r;}—i—gvc;c:g(\/Qv—rw),

V2

Vsy = —€Usy = — v.

8

Hence, mangnitude and direction of the velocity are given by

167

s Bosaao
2 2
v = \/sz + vey

N T PP S
o 81 64 9 81

lvey| _ 9V2

tan 8 = e 8(\/2—7”1‘)’*’)'

Remarks: e For w = 0 we obtain v = 024 v
tan 8 =9/8 ~ [ =48.4°.

and

e For w = /2 v/r the disk rebounds orthogonal at

A and therefore also at B.
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The following formulas and problems are restricted to vibrations of
linear systems with one degree of freedom.

1. Free undamped vibration

The equation of motion (vibration equation)
i+w’z=0

has the general solution

z(t) = Acoswt + Bsinwt = C cos(wt — «)

where
a
~ . (v
w = circular frequency, =(t)
(0}
= v = frequency,
217r ) \ il !
™
= =" = period of vibration, "
f w *a}*
C =+A2?2+ B2 = amplitude, ! |
i WwT=27 —=
B % )
a = arctan A = phase angle.
Remarks:

e The constants A, B, C' and « follow from the initial conditions
z(0) = xo, 2(0) = vy as

2
Vo Vo v
A=xzy, B= ", C:\/m(2)+( ) , «a=arctan
w w Tow

e A system which is described by the differentiial equation above is
also called a harmonic oscillator.

e If the position coordinate is mot counted from the equilibrium po-
sition, the equation of motion takes the form

. 2 2
T+ wT=w Tst
and its solution reads

z(t) = D cos (wt — ) + st .
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All coordinates are counted from the respective static equilibrium po-

sition.
system

spring-mass- k
system m
A

simple
pendulum (small
displacements)

massless
bar with
end mass

massless ET

beam with l:@ T

end mass

massless

l I
shaft with Gl
end disk ©

Spring constants

Springs in Z
parallel: i ka3 ks

> 4

m

AA
VWV

AAAAA
WW

k1 ko ks m

Springs in www ]
7777777777777

series:

diff. equ.
mz+ kxr =0
lo+gp=0
mi + kxr =0
mz+ kxr =0
O + krp =0

k:*

[AY

m

11>

k* 3
% 7777

eigenfrequency w

vE
Vi
vE

with k = EA/l

Vo

with k = 3E1 /13

/s
S}

with kr = GIT/Z

k:Zk

1 1
k*zzki

Spring Compliance: The inverse spring stiffness is called spring com-
pliance (flexibility): ¢ = 1/k. The compliance of an elastic system can
be determined by loading it by a virtual force ,,1* at the position of the
vibrating mass and calculating the dicplacement § in direction of the

force. Then ¢ =§ and k = 1/6.
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2. Free damped Vibration
a) Dry (Coulomb) Friction: The solution of the equation of motion

i+wlr=Fuw’r for £20

is given by z(t) = C'cos(wt —p) £r fiur & 2> 0.
Amplitude decrease: z(wt) — x(wt + 27) = 4r.

b) Viscous Damping: The solution of the equation of motion

&+ 260 +w’z =0

reads for
¢ =¢&/w < 1 (underdamped system): z(t) = C e % cos(wat — a)
¢ = damping coefficient,
(=¢/w = damping ratio,
wq = w\/ 1—¢*> = circular frequency of damped vibration,

1>

Ta=1/fq4 =27/wa period.

l’<— wely=2m —=]

The amplitude decay is characterized by the logarithmic decrement

- x(t) 2w 27C
6_1nm(t+Td) T wag \/1_42'

For weak damping ¢ < 1 follows 6 ~ 27(.
¢ =¢&/w =1 (critical damping): z(t) = (A1 + Aat) e 5.
¢ =¢&/w > 1 (overdamped system): z(t) = e S (Are + Age )

where p=wy/¢2— 1.
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3. Forced vibrations
The equation of motion for harmonically excited vibrations can be writ-
ten as
1 . 2¢ .
5 &3 < T+ x = Exgcos it
w w
where ~ . o
Q) = circular frequency of excitation,
0 = 9
n=, = Irequency ratio,
¢ = g = damping ratio,
FExo = excitation amplitude,
1 excitation through a force or via a spring,
E=1<{2Dn excitation via a damper,
n? excitation through unbalanced rotation.

It has the steady state solution (particular solution)

x = x0V cos(QU — @) .

Here are
E ~ . .
V= = magnification, frequency response ,
V(L —n?)2 +4¢2?
2 =
tanp = 1 CWQ = phase angle .
-n
Remarks:

The general solution of the equation of motion is composed of the
solution of the homogeneous differential equation (decaying motion,
see page 172) and the particular solution.

For undamped vibrations (( = 0) the amplitude tends for n — 1
(2 = w) to infinity (resonance).

For weakly damped systems (¢ < 1) at resonance (n ~ 1) the ma-
ximum magnification is: Vimax ~ FE/2(.

An excitation with n < 1 is called subcritical and with 1 > 1 super-
critical.

The phase angle ¢ represents the delay of the response x relative to
the excitation.
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Problem 7.1 Two drums support a homogeneous beam of weight W =
mg. They rotate with different coefficients of kinetic friction pa, pp in
opposite directions.

Show that the horizontal motion of

[ ]
the beam is a harmonic vibration and \HA 7B )
determine the natural frequency w. Q\ #B R )SZ

— | ——
Solution We first determine the equili-
brium distance a of point C of the beam C
and the support forces. From the equi- )
librium conditions and the friction law An * By
A v mg B 1%
—: AY =By, 1t AU+ BY =myg, ~—a

n IS S —
A : Byl =mga,
AY = paAv, By =usBv

follow a/l =1/(1 4+ pa/pp) and

l—a

ag ="

g @
mg, BVq:lmg. . Ang* BH
v
~—a =

l—»\

Now we consider an arbitrary displace-
ment z from the equilibrium position.
The support reactions then are

szl_(iﬂ)mg, By = a7$m9=B€q+fmg,
l—(a+ . e
Ag = pa (al m):AI}"’f A?mg, BH:BH"Jr,uBglrmg.

Thus, with A} = B} the equation of motion is given by
.. x
—: mi=Ay— Bn :*(/LA‘F/JB)Z

which leads to the differential equation for harmonic vibrations

mg,

f+(ﬂA+HB)?fU:O~

The natural frequency is given by

w:\/(uAJruB)“;].

Remark: In case of pa = pp = p, the result simplyfies to w = \/2ug/l.



Vibrations 175

Problem 7.2 A small homogeneous disk (mass m, radius r) is attached P7.2
to a big disk (mass M, radius R). In the positions a) and b), both

systems are in the
equilibrium position.
Determine the natu-
ral frequencies w for
both systems. Assu-
me small rotational
amplitudes.

Solution To formu-
late the equation of
motion it is advanta-
geous in both cases to
apply the principle of
angular momentum.

case a) We obtain a)

mg

)
A: ©Oap=—kro—mgasing .

For the assumed small amplitudes (¢ < 1) this equation reduces with
sinp =~ ¢ to the differential equation for harmonic vibrations, which
provides the natural frequency:

¢+w2g0:0 with wi:kTJ’mg“ ~ wd:\/kT—i—mga.
Oa Oa

case b) Since the torsion spring is in the equilibrium position already
stretched by ¢*Y = mga/kr, its moment due to a displacement ¢ is
given by k(¢ — ¢°?). Thus, we obtain in this case

N

A Oap=—kr(p—¢°?) —mgacosp = —kro+mga(l—cosy),

which for small amplitudes, i.e. cos ¢ &~ 1, reduces to

¢+wip=0 with w,?:kT ~ wb:\/kT.

O4 ©a
Introducing the moment of inertia
M 2 2
0a= "y 4]y +me]

the natural frequencies can be written as

2(kr + mga) o 2kt
MR? + m(r? + 2a?)’ b MR? + m(r? + 2a2)



P7.3

176 Free undamped

Problem 7.3 The system shown consists of
a homogeneous disk (mass m, radius r), a
block (mass M) and a spring (stiffness k).
The mass of the string and of the pulley B
can be neglected.

Determine the equation of motion and the
period of the vibration. Specify the solution
for the case that point A is horizontally
displaced by a from equilibrium and then
released with zero initial velocity.

Solution We separate the system and introdu-
ce coordinates with their origin at the equili-
brium position of the system. With this choice,
the weights of the disk and the block must not
be considered in the free-body diagram. Thus,
the equations of motion are given by

@ |: Mi=-85,

@ —: miasa=5+S52—kxa,

N2
A @A@ZTSj[*?"SQ.

If we use the kinematic relations (II= instan-
taneous center of rotation)

9 Y= T

A=
2r

T ..
9 2rp=x ~ Ta=

and introduce the moment of inertia © 4 = mr?/2 we obtain, by solving
for z, the equation of motion

. k k
T+ ;3 =0 where w= 3
AM + 5 m AM + 5 m

is the natural frequency. It is related with the period of the vibration by

T=2" o T=o L
w 4M+2m

From the general solution z = Acoswt + Bsinwt with z4 = 2/2 and
the initial conditions x4 = a, ©4 = 0 follows

x(t) = 2a coswt .
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Problem 7.4 The system shown consists
of two clamped beams (negligible masses, s

i g
bending stiffnesses E;), a spring (spring Y
constant k3) and a block of mass m. I 3™ 1
Determine the eigenfrequency w. EIL r_l—l EL, I
m
Solution 1. approach: We separate the P
system and formulate the equation of ?
motion for the block: P F
J(Z m:lj':—Fl—FQ—Fg.
F
The forces F; and the displacements w; of F=F+F+F
the beams and the spring, respectively, are 27
related by (see volume 2, table of elastic -
lines)
o — 127N o — Bl? e = 1
' T 3EL” T 3EL’ Tk

Therefore, from the condition w1 = wa = ws = x follows
3EI 3EI>

3 + 3 +k3)$=0
Hence, we obtain for the eigenfrequency

, 1 /3EL 3EI
w (13 T +k3)'

mjé+<

m

2. approach: Since all spring ends undergo the same displacement z,
the springs are in parallel:

= o

1 3 k3 ks
k1 2" ky A tg Mz e A k*
" = m =
ST
m m
With the spring constants
b — Fy _ 3EL b — F, 3EIL
t= X1 - lS ’ 2= i) - l3
we obtain according to page 171
* 3ET 3ET
K=k +kaths="""+ 7 "% 4 ks

3 3
and therefore
. 1 (?,EI1 3EI )

13 + 5 + ks

m m l

P7.4
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P7.5 Problem 7.5 The system consists of
a hinge supported beam, reinforced by e @ —
three bars, and of a block of mass m. El Dm

Determine the eigenfrequency for vertical 7 E 77702
vibrations. Assume that the mass of the EA EA ¥

beam and the bars is negligible.

Solution The elastic system of beam and bars can regarded as a system
consisting of two springs in parallel, one representing the beam, one re-
presenting the bars. To determine the spring constant kp of the beam
we subject it by the unit force Fg =1 at
the location of the block. It produces the Fp=1
deflection (see volume 2, chapter 4) *

o — L (20)° 797¢\%
S0 wg
Hence, the spring constant is given by ‘ngl

1 48 ET 6 FEI . R
ppo L _WEI_GEI 5 1
" us T (200 T @ W
To find the spring constant kg of the
bar system, we apply a force Fs=1 at the

bar 1. It causes the displacement (see volume 2, chapter 6)

G2

fs=hs = %j{ (S; = forces in bars, l; = lengths of bars) .
With

_ _ _ V5 a V5

51—*1, 82—83—2, l1—2, l2—l3—2a
we obtain

1 2 a VB5\2V5 1 5V5\ a
fs= gV 542 (%) Y o = (14757 ) pa
4FA
~> k‘s = .
(2+5v5)a

From the spring constants of the two springs in parallel follows the
constant k£* of the equivalent single spring:

6 El + EA
B 1+l
Thus, the eigenfrequency is given by

k* 1 1 EAl?
= = EI .
“ m l \/ml (6 + 1+ \/2)

k" =kp +ks =



Problem 7.6 For the two systems
® and @ the equivalent spring
constants for vertical vibrations
of the body of mass m shall be
determined. The mass of the
beams can be neglected.

ey
>

S k

S

<

AAAA

Bl
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2E1

W]

EI

=20 w30 —

2E1

@

=

.

Solution In system @ all three springs are directly connected with
the vibrating body of mass m and experience the same displacements.
Thus, the springs are in parallel:

k:Zk

The spring constants kr, and kg of the left and the right beam follow
from the end displacement of a cantilever beam (stiffness EI, length 1)
subjected to a unit force ,,1¢

3
wnglI:k and c:1
as
M hy— L _3CED
cr (2a)3 "’ Cr (3a)3

Hence, the stiffness of the equivalent spring is

43 EI
72 a3

_ 43EI + 72ka®

k" =k k k=

L+ kr+ 7903

In system @ both beams are in parallel. Their equivalent spring with

constant k is in series with the spring with constant k. Thus, the total
equivalent constant k* is calculated as follows:

- 43 EI
Fekp k= BB i ol
72 a3 b3 b - X
kg 2kp k k
L_1, 17 1 i 3 2 2
kO k 43EI 'k |__§|k k
i A3ETk A3ET " "
~ K= 3BT+ ke T EI
TT2RkaT a3 443

k

Remark: The second system has a smaller stiffness and therefore vibra-
tes with a lower frequency.

P7.6
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P7.7 Problem 7.7 A wheel (mass m,
moment of inertia O¢, radius r)
rolls without slipping on a flat
surface. On its top, the wheel
carries a horizontally guided beam I
(mass M) and moves it without
slipping.

M k

;
SRRRREY

ky ’7973

LRI

m, @0
Determine the eigenfrequency of =

the system. Neglect the mass of

the guiding roll B.

Solution We separate the sys-
tem and introduce the coordina- ‘M g
tes x1, x2 and ¢, measured from

the equilibrium position. Then the *—>
equations of motion are * B

-

®—: mi1=—kixz1—Ha+Hp, \
C: Ocp=—-rHs—1rHp, [©)

Hp *D

©

@ —=: MIs= —koxo+Hag.

With the kinematic relations
T1=TP, To=2r1~ T1=rY, IT2=2T1

we now have five equations for the five unknowns x1, =2, ¢, Ha and
Hp. Solving for x1(t) yields the equation of motion

.. ©
T1 (m+4M+ T§)+(kl +4k‘2) 1 =0

or in standard form
1+ w2x1 =0
with the eigenfrequency
k1 + 4k2

Q¢

m+4M + 5
r
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Problem 7.8  For a connecting a) b) _ P7.8
rod of weight mg, the periods @ T

T, and T, are measured for the

hangings a) and b). a

Determine the moment of inertia
©c¢ and the distance a of the
center of mass C'.

Solution The equation of motion for
small amplidudes for the hanging a)
is given by
Oap+mgap =0

and the respective period follows as
27)?2 _ 4720 4

w2 mga
Analogous for hanging b) results
47205

mgb

72 =

a

Ty =
With the parallel axis theorem
@A:@c+ma2, O5 = O¢ + mb*

and with a + b = | we obtain

T2?mga 2
Oc = A2 —ma

and
TZg — 4r%l
(T2 +T7)g — 82l

Remarks:

e A swinging rigid body (here a connecting rod) which cannot be
regarded as point mass at a massless cord, is called a compound
pendulum or physical pendulum.

e Analogeous to a simple pendulum, the equation of motion of a com-
pound pendulum is often written as
O4

lg 0=0  with lea= *,
red ma

»+

where a = distance between pivot A and center C' of mass.
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Problem 7.9 A body (mass m) is pulled by a spring (stiffness k)

to a smooth horizontal path. In vertical position m

the spring is stretched by the distance a and its a
length in the unstretched state is [.
a) Which condition must be fulfilled by the hori- k !
zontal displacement, that the vibration about the
equilibrium position is harmonic?
b) Determine the period for this case.
Solution a) The equation of motion is given by
mg
—: mi=—Fgsingp x ‘
with Frawrd
x
Fr =kAr, singp= N
V(I +a)? + a2  F
<
and the spring elongation g v
Ak:a+[\/(l+a)2+x27(l+a)]. z
The vibration is harmonic if the equati- l+a 91 o
on of motion is of the type # = —w’x. \/(H-a) T
Consequently, Fjsinp must be linear ¥

in ! This is only possible if the term 22
in the square roots can be neglected in comparison with (I + a)?, i.e. if
the condition

< (+a)? ~ |z|<i+a

is fulfilled. Therefore, the displacement x must always be sufficiently
small. In this case, in a first approximation, Ay = a = const and
sin = x/(l + a) hold and the equation of motion is given by

maI + ka z=0
l+a”

b) We write the equation of motion in its standard form

k a

. 2 . 2
=0 th =
T+ w'x w1 w mita

and obtain with w = 27 /T for the period

T:2ﬂ_\/m(l+a) .
ka
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Problem 7.10 A simple pendulum is connected
with a spring (stiffness k) and a dashpot (dam-
ping coefficient d).

el
s —

a) Determine the damping coefficient d such k
that vibrations are possible. Assume small 3
amplitudes.

I

that the amplitude is reduced to 1/100 of its
initial value after 20 full cycles. Calculate the
corresponding period Tj.

b) What damping ratio ¢ must be chosen such g d

Solution a) Assuming small amplitudes, i.e.
cos p ~ 1, sin ¢ ~ ¢, the equation of motion fol-
lows from the principle of angular momentum:

A
A: Oap=—Fya— Fq2a —mg2ap .

Introducing

O4 =m(2a)°, Frp=kay, Fy=d2ag

mg

we obtain

¢+ sb+( by g)<p=0 ~ G+ 2Ap+wie=0

idm = 2a ’

where

o d 2 k g

T om’ v _4m+2a.

To ensure vibrations, the system must be underdamped, i.e. £ < w:

2
d<\/k+g ~ d<\/km+297:.

2m Im = 2a

b) The necessary damping ¢ ratio follows with ©p420 = /100 from
the logarithmic decrement (see page 172):

2 . 1
™ T 100~ (=

20
1—¢2 Tnt20 407 \2
v (m 100) +1

=0.037 .

This leads to the period

T 27 N27r_2ﬂ_ dam
d_w\/17§2ww_ ak +2gm

P7.10
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Problem 7.11 Determine the z
eigenfrequency for the dis-

played system with viscous : h, EI b, EA
damping. The mass of the 3
cantilever beam and the bar i

can be neglected.

z
e

Solution We replace the stiffnesses of the beam, the bar and the spring

by an equivalent stiffness k*. When the body (mass

m) is displaced by = from its equilibrium position, it is

loaded by a spring force F), = k*z and a dampmg force

Fy = di. Thus, the equation of motion is given by T
€T

l,: mi:—Fk—Fd.

The stiffness of the equivalent spring follows from the spring stiffnesses
in parallel of the beam and the bar

ki2 = k1 + k2

$h k1
where
L _ 3EI ! élk k
1 l? ) 2 l2 m m

and the spring stiffnesses in series of the spring ki2 and the spring k as

=
AAAAAA
VWWWV

>

1 . 1 i 1
k* k12 k
3EI FEA
k ( 3 ° ) 2 k*
k‘* _ ll l2 -
- 3EI FEA
k 4_ 4— m

3 la
Hence, we obtain
mi+di+k'z=0  ~ i4 260 +wr =0
where
d 5, k"

§:2m7 w =

Therefore, the eigenfrequency is given by

« 2
= varmm [ (4
m 2m
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Problem 7.12 A bar (weight mg, length [)
which is connected with a spring (spring
constant k) vibrates in a viscous fluid
about point A. The viscous drag force
F,; is proportional to the local velocity
(proportionality factor «).

a) Derive the equation of motion under the
assumption of small amplitudes.

b) Calculate the critical value «*, separa-
ting vibrations from a creep motion.

Solution a) An element of length dz of the
bar is subjected to the drag force

dFy = av(z)dzr = azpdr.
Thus, considering small amplitudes ¢ < 1

(sinp ~ @, cosp =~ 1), the principle of an-
gular momentum yields

A . l 2 ! 2 .
A Oup= —-mg,, p—kl"p— | az"pdx.
0

Evaluating the integral and introducing

©.4 = mi?/3 leads to the equation of motion

. I . 3k . .
e LT 0 L sty
m m 2kl
where
al 5 3k mg
= = 1 .
$= o v m(+2kl)

b) Damped vibrations are separated from an aperiodic motion by the
critical damping

E=w or ¢=1.

From this condition follows

o'l |3k mg *_\/12km mg
2m_\/m<1+2kl) D T \/1+2kz'

P7.12
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P7.13 Problem 7.13 Determine for the displayed
underdamped system

a) the equation of motion for vibrations
around the equilibrium position,

b) the circular frequency for the case
T2 = ]’22/47 ]4:2 = 2k1, mo = 4m1 and

¢) the solution x1(t) for the initial condi-
tions x1(0) = 0, ©1(0) = vo.

The rope and rolls can be considered as
massless.

Solution a) We introduce all coordinates
with their origin at the equilibrium posi-
tion. Then the weights of the bodies must
not be considered. From the kinematic re-
lations at the rolls @ and @

T3 R2
r3 = 2:E1 B =
X9 T2
it first follows
T2 .. T2 ..
$2=2R2$1, $2=2R2$1.

Now we separate the system and formula-
te the equations of motion for the bodies
(mass m1, m2) and the rolls. Since the rolls
are massless, the latter are reduced to the Fi * £
equilibrium conditions:

mi \L: m1dv'1 :*S4ka1*de
ma T maois = S1 — Fra,
a
® TI:: R1S4=2R1S52,
a
@ A: 1S1 = R2S5>.
In conjunction with the spring and damper laws

Fry =kixr, Fig=da1, Fro=kox2
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we now have 9 equations for the 9 unknowns x1, x2, S1, S2, S3, S,
Fi1, Fy and Fys. Solving for x; leads to the differential equation

2 2
[m1 +m2(2;22) }5&1+d$1+ [61 +C2(2;22) }581 =0

or in standard form &, + 2§ &1 + w? z1 = 0 where

ky +k2(2 "2 )2

28 = ! ro N2’ W= }:5"22 2
m1+m2(2R2) m1+m2(2R2)

b) The circular frequency of the underdamped vibration is calculated
from wq = \/oﬂ — £2. For the parameters ro = Ra/4, ko = 2ki, ma =
4m1 we obtain

28 = d

o 2m1

& L2 3k
T 16m3’ T 4my

52

and it follows
_ |3k d?
YA 4my T 16m2

c) The general solution for the vibration of an underdamped system
reads

z1(t) = e " (Acoswat + Bsinwat)
from which it follows by differentiation

i1(t) =e ' [(—A€ + Bwa) coswat — (Awg 4+ BE) sinwat] .
The initial conditions lead to

21(0)=0 ~ A=0,

i’l(O):UO ~ —Ad+ Bwg =19 ~ B::)O7
d

and we finally obtain
Vo

z1(t) = " e “sinwat.
Wd
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Problem 7.14 A car (mass m), sim- W
plified modelled by a spring-
mass-system, drives with constant
horizontal velocity vg through sine-
shaped periodic bumps (amplitude
Uo, wave length L).

Uo

1 L 1
a) Derive the equation of motion of the car in vertical direction and
determine the exciting frequency §2.

b) Determine the vertical amplitude zo of the car in dependence of the
velocity vo.

c) Calculate the critical velocity v (resonancel!).

Solution a) We denote the vertical B m
displacement of the car by z and %l
describe the shape of the bumps by x k
u. Then from Newton’s law follows Ly

T: mi=—k(z—u).

u
With the position of the car s = vot I L !
in horizontal direction, the function 07
u is represented as \\//\ .
2 2mvot
u = Uy cos 28 = Uy cos 7er0 = Up cos U,

and we obtain the equation of motion and the exciting frequency

mI+kx = kUycosQt where 9:27;;0

b) The steady state solution of the equation of motion is of the type of
its right-hand side. Thus, the ansatz x = x¢ cos Qt leads with w? = k/m
to the amplitude of the steady state vibrations

- U Uy
0 1 _ QQ 1 _ 47T2U(2) m '
w? L? k

¢) The amplitude z( tends to infinty when Q approaches w (resonance):

47202 m L k
02 = ? k -1 — \/ )
“ ~ L? k ~ Uk 27 V' m
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Problem 7.15 A pressure T P7.15
gauge consists of a piston - D m, | my @

@ (mass m1, cross section p __ E

A), a bar @ (mass m2), a E|: ¥ k !

thin needle @ (mass ms) e a i

and a spring (stiffness k). ms ®79:;)7 1

a) Determine the eigenfrequency of the system.

b) Calculate the amplitude Qo (small displacements!) of the needle tip
in the steady state case if the pressure is given by p = po cos Q.

Solution a) We separate the

system and make all acting forces O .
visible. Then, we have for the parts P o -
@+ @ and ® F &)

—: (mi+m2)i=—-F—kx+pt)A,

~
B : Opp =alF .

Hence, with O = m3l2/3 and the kinematics
T =ayp ~ T =ap

follows the equation of motion

2

Ml ) T+ kx = poA cos Qt .

3a?

For the eigenfrequency, we directly obtain from this equation

(ml + ma +

k

m3l2 ’
m1 + ma + 302

b) The steady state solution is described by an ansatz (of the right
hand side type) x = xgcos Qt . Substituting into the differential equa-
tion yields

To = pOA 2 .
Q
K (1 B oﬂ)
With the leverage we obtain for the amplitude of the needle tip
o l _ 1 poA l
Qo—woa—l 0 k a’

w?2
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BN

Problem 7.16 A homogeneous wheel o
of mass m is attached to a spring (spring

constant k). The wheel rolls without ;
slipping on a rough surface which moves l—|
horizontally according to u = wug cos Q2.

¢ Xm
%
a) Derive the differential equations for ® m
the vibrations in case ® and @. / k C
i “'“ < % )

b) Determine the amplitudes of the
steady state vibrations. u

Solution a) The equations

T xT
K . — () e
of motion read in case @ | @

mg

k(x —u

©

— mi=—kx+ H,

m
C: Ocp=—-rH.

With the kinematic relation
r=u+rp ~ E=1i+rg=—uoQ’cos QU +rp
and Og = émr2 we obtain the differential equation for forced vibrations

. 2k 1 9
= — Q Q.
x+3mx 3uo cos {2t

In case @ the equations of motion are given by

—: mi=—k(z—ux+H, g: Ocp=-rH
and the kinematic relation again reads
r=u+rp ~ E=1—4rg = —uoQ?cos QU+ rg
which leads to the differential equation
i+ 2Pl (2 y
3m 3

b) The steady state solution is of the type of the right-hand side. Thus,
the ansatz x = xo cos Qt leads to the amplitudes

— 92) ug cos Ot .
m

QQ |2k/m_ﬂ2|
® = @ = '
case |xo] = wo 12k /m. — 302| case |zo| = o |2k /m — 302

Note that resonance in both cases occurs for Q% = 2k/3m, but that the
amplitudes for Q% < 2k/3m and for Q? > 2k/3m are very different.
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Problem 7.17 In a soil compactor (housing weight mg), the drive
(mass M) is resiliently mounted. In the
drive two unbalances (each mass ma/2)
counter-rotate with constant number n of
revolutions per minute.

How must the spring and damper be desi-
gned so that the device runs in resonance
and the base plate does not lift-off from
the ground (small damping ratio!)?

Solution ~ We replace the drive by the //\
displayed model. With the displacement x of e 2
the drive from the equilibrium position we / LS

obtain for the unbalanced mass _ | E’ 2 Zs
To=x4+ecosQU ~s  do =i —eNcos L. % M—=my ixf

The equations of motion in vertical direction

for both masses are given by: =
(M—m2)t = —di—kax+S cos Qt maZs = —Scos Q.
Introduction of #2 and elimination of S yields
.. ofs
52 + 53 +x= xongcosﬂt ,

where w? = k/M, & =d/2M, xo = ema/M, n = Q/w. The particular
solution (steady state) reads

Ua 3
V=) A w

Resonance occurs for small damping ratio ¢ at n ~ 1:

R R YR

Furthermore, in resonance the magnification is V ~ 1/2(¢.
No lift-off occurs, if the following condition at maximum spring dis-
placement Tmax (then the damping force is zero!) is fulfilled:

x = x0V cos(QU — @) , V=

N = (M +m)g — k¥max = (M +m)g — k;‘) >0. | (M+m)g
< 3 v kx
Hence, it follows 2 \\T ° T/' 2
kxo kxo T
> > . i
(M + m)g > 2<_ ~> C > 2(M N m)g N

P7.17
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Problem 7.18 A single story frame is modelled by a rigid beam of
mass m which is supportet by clam-
ped massless beams (stiffness ET)
and damped by a dashpot. Due to an m
earthquake, the ground moves with a
horizontal acceleration g = bg cos Qt B
which is known from measurements. d l

Determine the maximum amplitude EI
of the steady state vibrations by 45°
assuming small amplitudes and a — =
weakly damped system. iig

Solution We separate the T —up
system and replace the vertical F m
beams by equivalent springs with -
the spring constant k = 3E1/1°. z E, / F,
When the beams are deflected — I~
by x — ug, the elongation of F, &
the diagonal, assuming small / >

amplitudes, is up <\//
A = (m—UE)/\/2~

45°
T e

Hence, the spring forces and the
damping force can be written as

Fk:k(m—uE), FdIdAZd(.T—uE)/\/Q

Then, the equation of motion of the horizontal beam is given by

—>:mi:—\g2Fd—2Fk ~ mi—i—g(i’—uE)—&—Qk(m—uE):O.

Thus, the relative displacement y = x — ug is described by

mg’j+dy'+2ky:mbocoth ~ 1y+2cy'+y:yocoth,
2 w? w
where
L2 2k C:d\/ 1 yozmbo
m’ 2V 8m’ 2k

The maximum amplitude A occurs for resonance, i.e. for n = w/Q ~ 1.
In case of weak damping (¢ < 1) it is given by

Yo bo m3
A= max N =2v2 .
yoVs 2 V2
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Problem 7.19 A wheel is connected with a rigid frame via a spring P7.19
and a damper. When the frame experiences a displacement u = wvot,
the initially (¢ = 0) resting wheel starts rolling without slip.

a) How must the damper be designed —, — ¢ !]1
so that for free vibrations critical \

damping occurs? Which form has the
equation of motion in this case?

b) Determine the solution for the
given initial conditions.

Solution a) We count z and ¢ from the equilibrium position of the
wheel at ¢ = 0. Then the equations of motion

S miE=—dE—d)—ke-w-H, C: O=rH

lead with @ = vo and = r ¢ by eli-

minating H and ¢ to the differential "
equation {
(m+g)fx‘+dﬁc+km=du+ku. N

It can be written in the standard form
P4 283 +wizr=28v0 + wivo t,

where

2¢ = d w? = K
T m+0/r2’ T om+ /2’

The condition for critical damping of free vibrations is given by £ /w = 1,
or £2 = w?. This leads for the damping coefficient to

d? k

4(m+©/r2)? - m+ ©/r? ~ d=2vk(m+0/r?).

In this case, the equation of motion takes the following form:

i§+2w:t+w2x:2wvo+w2vot.

b) The solution of the differential equation is composed of the solution
of the homogeneous differential equation (= free vibration at critical
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damping)
T = (A1 + Agt) eﬂm

and the particular solution x,. To find the latter one, we choose an
ansatz of the type of the right hand side:

Tp =a-+bt.

Introducing it into the differential equation and comparing the coef-
ficients yields @ = 0 and b = vg. Thus, the general solution is given

by
x(t) = xp +2p = (A1 + Ast) e + wot.

The constants A; and As are determined from the initial conditions:
z(0)=0 ~ A; =0, #(0)=0 ~ As=—vp.

Hence, we obtain the specific solution
z(t) = —vot e 4+ vt = vot (1 — ™).

It can be seen that the motion of the wheel exponentially approaches

the motion of the frame. For wt > 1 the motion of the frame and the
wheel are the same.
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Fixed and moving Reference Frame

It is often advantageous to describe the motion of a point P not in refe-
rence to a fixed coordinate system (z,y, z) but in reference to a moving

system (&, 7, ¢).

Kinematics of a point for a translating and rotating reference
system

v=vf+Ur,
a=ar+ac+ar,

where
absolute velocity v,

absolute acceleration a ,
fictitious velocity Vf =70+ wXTrop,

relative velocity v, =Tgp ,

fictitious acceleration af =79+ w X Pop + w X (w X rop) ,
relative acceleration a, =rgp ,

Coriolis acceleration a. = 2w X v, .

and
()" = time derivative with respect to the fixed system (z,vy, z),

()* = time derivative with respect to the moving system (&, 7, ().

Remarks:

e The equations simplify for a pure translation of the reference sys-
tem (w = 0).

e The Coriolis acceleration a. is orthogonal to w and v,.

Equation of motion in a moving reference system

In addition to the real forces F' acting on the point mass, the fictitious
force F ¢ and the Coriolis force F'. appear in the equation of motion:

ma, =F +F;+ F.

where

F;=—may=—mliro + w X rop +w X (w X Top)] ,

F.=—ma. = —2mw X v, .
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Problem 8.1 Point A of a simple pendu- P8.1
lum (mass m, length 1) moves with a con-
stant acceleration ag obliquely upwards.

Derive the equation of motion and deter-
mine the force in the wire.

Solution We introduce the &, n coordinate

system that moves translatoric with point 4 ¢
A. Then the equations of motion in the mo- T
ving system read %)
«

me” = Fe+ Fre,  mn™ =Fy+Fry Y, N\
where, with aye = ao, and ay, = 0, the , PP
(real) forces and fictitious forces are given mdo
by

mg
Fe = —Ssinp —mgsina, F,, = —Scos¢+mgcosa,
ngzfmafngmao, an:fmafn:O.

The relative accelerations ar¢, ar, follow from the coordinates of the
point mass in the moving system through differentiation (note that the
time derivatives of ¢ in the moving and the fixed system are the same:

" =)
E=lIsinyp, n=Ilcosy,
vee = & = lpeos o, Vey = 1" = —lpsin g,
Qre = =@ cosp — lp?sing, amy =1 = —I@sing — lp* cosp .
Introducing them into the equations of motion yields
lpcosp — lng sinp = —S'sin p — mgsina — mag ,
—lpsinp — lng cosp = —Scosp+mgcosa.
These are two equations for the unknowns ¢ and S. Solving for ¢ and

subsequently for S leads to the equation of motion and the force in the
wire:

g+ gsin(a+¢) +agcosp =0,
S = ml[lg”® + gcos(a + @) — agsin @] .

Remark: For ¢ = 0 the equation of motion reduces to tan ¢o = ao/g cos «
—tana characterizing the equilibrium position of the pendulum.
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Problem 8.2 A point P moves on a Lo
plate with constant relative velocity o

v, and initial condition ¢(0) = 0 P
along a circular path. The plate moves R [ (1)
rectilinear with the velocity v = aot. . —

Determine the magnitude of absolute
velocity and acceleration of P as func-
tions of angle .

Solution We introduce the fixed z, y-

coordinates and the translatoric mo-

ving reference frame &, 7. In the mo-

ving system, introducing ¢* = ¢ = y

vy /r, the components of the relative ' fed
xXed

velocity and acceleration are
T

* .
Ve =& = —vpsing,

*
Ury =1 = UpCOSQ,
2
* %k * vr
Gre =& = —Urp coscp:—r cos ¢,
2
kR * . _ .
arnp =177 = —vr@"sing = — "sing.

The reference frame undergoes a translation in z-direction with velocity
v = aot and acceleration a, where time ¢ on account of ¢ = ¢t =
vrt/r can be replaced by ¢. Accordingly, the absolute velocity and
acceleration are given by

aop”r

Vz = aot + Vre = aot — vrsinp = p —vrsin g,

s
Vy = Upy = Ur COSQ ,
7

Ay = a0 + Qrg = ao — , cos @ ,

2

Uy .
Ay = Qry = — sin @ .

r

Thus, the magnitudes of velocity and acceleration follow as

a3r?
U(‘P):\/U%JFUZ = 02 ©?2 —2aor @ + V2,

T

Cr o7
a(ga):\/a%Jra%/ = angrQ — 2ag . Cos®P.
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Problem 8.3 A point P moves on a disk P8.3
with constant relative velocity v, along
a circular path. The disk rotates with
constant angular velocity w about A.

Determine the absolute velocity and the
absolute acceleration of P.

Solution We introduce the moving coordi-
nate system ¢, n, ¢ with its origin in the cen-
ter 0 of the disk. Relative to this system,
point P undergoes a circular motion. With
the relative velocity v, and the magnitude
a, = vf /r of the relative acceleration and
its direction (from P to 0) we can write

v, = vp(—egsing + e, cos p),
2

vy, .

ar=— " (egcosp + e,singp) .

T

With

w =wec, w=0, Top = €¢T Cos Y + e,rsing

. . 2

rTo =¢€é€y, To = —eweg To=apg = —€eW €y
we obtain

vy =70+ w X rop = —(e + rwsin p)eg + rw cos pe, ,

ay=ao+w X (wXrop)
= —ew’es +rwiec x (e X es cosp) + ec X (ec X e, sin )]
= —(e+ rcos p)w’es — rw’sin e, ,

a. = 2w X vy = 2wurlec X (—egsing) + ec X ey cos ¢

= —2wvr(eg cos g + ey sin p) .
Thus, the absolute velocity and acceleration are found as

v=v5+v, = —[e+ (v, +1w)sinplec + (v, + Tw) cos e, ,

ay+ar+ac
2 2, Ur 2, vy
= —[ew” + (rw” + TT + 2wvy) cos pleg — [rw” + rr + 2wo,] sin p ey,

2

—[ew® +r(w + 1:) cos pleg — r(w + 1:)2 sinp e, .
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Problem 8.4 On the rotating earth
(radius R = 6370 km) a point P moves
with speed v, = 150 km/h northwards.

Determine the magnitudes and directions
of the fictitious acceleration and Coriolis
acceleration at latitude ¢ = 30°.

Solution The earth-fixed system &, 7,
rotates with the angular velocity w =
27/(24-3600) =~ 73-10"° s~* around the (-
axis. If we neglect the motion of the earth
around the sun (7o = 0), we obtain with

w=we¢,
rop = Rcosp e, + Rsinp e¢ ,

w=0,

v, = —UrSin g e, + v, cos @ ec¢
for ay and a.
a;=wx (wxrop) =w’R[e: x (e x cosp e,) +ec x (ec X sinyper)]
= —w’Rcospe,,
a. = 2w X vy = 2wurlec X (—sing ey) + ec X (cosp ec)]
= 2wv,sinp eg .
Thus, the magnitudes of the accelerations for ¢ = 30° are

af =w’Rcosp = (73)* - 107'% . 6370 - 10° cos 30° = 0,029 m/s” ,

e = 2wursing =2-73-107% - 150 - -sin 30° = 0,003 m/s” .

1
3,6
The fictitious acceleration is perpendicular to the axis of rotation of the
earth and the Coriolis acceleration points tangential to the latitude to
the west.

Remarks:
e With reference to the moving system, the motion of point P is a
pure circular motion.

e The Coriolis acceleration has its maximum at the north pole.
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Problem 8.5 Along the upper part of an P8.5
angled rod which rotates with angular
velocity w, a knuckle (weight W = mg)
may fritionless slide.

After which time t; the knuckle touches
the rod end B if it is released at A with
zero relative velocity?

Solution We introduce the rod-fixed rotating reference system &, 7, ¢
and the coordinate s. Then we obtain with

s
w =wec , // Uy
Top = SCOSa eg + ssina e¢ ¢ w Top
P
U, = U COSQ €¢ + Upsina e¢ 0 3
a
and w = 0, o = 0 for the fictitious force and Coriolis force:

2
F;=—mw X (w X rop) = mw scosa e ,
F. = -2mw X v, = —2mwuv, cosa e, .
Thus, the equation of motion in s—direction reads N r
c
. . . 2 2 C —
S mS = —mgsina + mwscos” a s 26 oS O
~  §—kK’s=—gsina with k=wcosa 3
) [e% mg

From the general solution of this differential equation

s(t) = Acosh kt + Bsinh st + g Su;l @
K
in conjunction with the initial conditions

s(t=0)=s0 ~ Azso—gSHQla,
K

v (t=0)=58t=0=0 ~ B=0,

S(t1) = S1 ~> S1 = ACOSh K‘,tl + gSFlLI;Oé

follows
sin «
1 =97
t1 = arcosh p Snoe
K
S0 — 2
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Problem 8.6 The cantilever of
a whirlgig moves about the z-
axis with the time-dependent an-
gle ¥(t). At its end a circular disk
is fixed which rotates with con-
stant angular velocity wo about
an axis perpendicular to the can-
tilever.

Determine for point P of the disk
the absolute velocity and absolu-
te acceleration by using x

a) the cantilever-fixed systems &, 7, ¢ and
b) the disk-fixed systems £*, n*, (*.

Solution The absolute velocity and acceleration are determined from
the general relations

V=170 +wXTop+Vr,
a=7T0+wXxrop+wxX(wXxrep)+2w X v, +a,.

a) For the coordinate system &, n, ¢ with the unit vectors e¢, ey, e¢
we first have

ro=1le,, w="7ve¢, Top =T Cospes +rsinpe, .

From these relations, by introducing (é; = w X e;)

ec=0, e =de, é=-de;, p=uwo,
we obtain
i‘ozlléeg, fozlﬁeg—ZTQQ(Bn, w=1§65.

With reference to this system, the movement of P is a circular motion
with constant angular velocity wo, i.e. we have

v, = rwo(—sinpes+cospey), a, = —ruwj (cospect+sinpe,) .
Introducing these relations with
wxrop:rﬁsinapeg, d)xrop:r{ésingoeg,

wx (wxrep) = —rdsinpe, , w X vy =T wo ¥ cospec
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finally leads to the results

v = —rwosinpes +rwocospe,+ (I+rsinp)der,
a=—rwjcospes — [(l+r sin ) 9? +rw§singp] e,
+ [(l—l—r singo)ﬁ—i—?rwoﬁcosgo} ec .

b) For the coordinate system &%, n*, * from the representations
Y n p

ro =1l(sinpe; +cospe,), rop =T€f ,

w=1(cospei —sinpey)+woer,

with
é;:wOe,’;qLﬁsingoez, é;:*WO‘?gﬂLﬁCOSS"eZ’
éZ:—ﬂ(singoeg—i—coscpef]), $ = wo

follow the relations
7o =l10ef, 7o = —19*(sinpef +cospep) +1del,
@ = (U cosp —Jwosinp)ef — (I sinp + Jwo cos p)e .

Since P with reference to the system £*, n*, ¢* is at rest, we now have
v, = a, = 0. With

w X Top =Trwoe, +risinpel
W X rop = r(19 singoJrléwo cosp)el
w X (w X rop) = —7(wi + 9 sin® p)ef —rd? sinpcospe;

+rwo ¥ cos pel
we then obtain

v=rwoe, +9J(l+rsingp) e,

a= [rwg — (I +7 singp) singp} e — V(1 +7singp) cosper

+ [ﬁ(lJrr sinap)+2rw019cosap} e;.

Remark: The representations in a) and b) can be transformed into each
other using es = e; cosp — ey sinyp, e, =ef sing + e; cosgp .
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P8.7 Problem 8.7 At the lever @, rotating
with constant angular velocity w about
the fixed axis AA, a cylinder @ is
mounted. The cylinder rotates about
the axis BB parallel to AA with con-
stant angular velocity w™ with respect
to the lever. Fixed at the cylinder is a
tube where a point P moves with speed
v(t) with respect to the cylinder.

Determine the absolute velocity and
absolute acceleration of P by using

a) the space fixed system z,v, z,
b) the lever-fixed system &, 7, ¢,
¢) the cylinder-fixed system £*,n*,¢".

Solution a) With the angular velocity we = w + w* of the cylinder
with respect to the space-fixed system and with
0= wt, ¥ =w"t, 0+ = wat,
the position vector of P in the space-fixed system x,y, z is given by
rp = (acosp + rcos(p+ ¥))es + (asing + rsin(p +9))ey + (b+ s)es
= (acoswt + 7 coswat)e, + (asinwt + rsinwat)e, + (b+ s)e .
From its derivatives, by considering $ = v, follow

vp = —(awsin wt 4 rws sin wat)e, + (aw cos wt + rws cos wat)e, + ve.,

ap = —(aw? cos wt + rw3 coswat)e, — (aw? sinwt + rwj sin wat)e, + ve..

b) The general relations for vp and ap are given by

vp =79+ w X rop + U,

ap =70+ w X 1rop+wX(wXrop)+2w X v, +ar.
For the &, 7, ( system we have
w=we:, w=0, ro=ro=7 =0, I=w"t

rop = (a4 rcosw't)es + rsinwte, + (b+s)ec,
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w X rop =w(a+rcoswt)e, —rwsinw'teg,

* . * * *
Vr = —Tw sinw tes+rw cosw te, +vec,

2 2 .

w X (wxrop) = —w (a+rcoswt)es —wrsinw'te,,
2w X v, = —2rww” sinw 't e, — 2row” cosw’teg,

*2 * *2 . * .
ar = —Tw “cosw tes —rw “sinw te, +vec,

and by considering w + w* = wy we obtain

vp = —rTwasinw’tes + (aw + rwa cosw*t)e, + vec,

ap = —(aw? + rw cosw t)es — rwisinw*te, + vec.

c) For the £",n*, (" system we have
w=we;, w=0,

ro =acosw'te; —asinw'te, +bel,

<.
o
Il

—aw”sinw te; — aw” cosw t e, ,
0= —aw*? cos wt e; + awsinw™t ey,
rop =Te€; +se;,
Vr =Vec,
W X Top = Twae,
w X (w X rop) = —rwgez ,
2w xv,=0.
Thus, it follows
vp = —aw” sinw*tef — (aw” cosw™t + rwa)e;, + ver,

2 2

ap = —(aw*? cosw*t +1w3) ef + aw*? sinw*t e + vel.
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Problem 8.8 In the frictionless channel
of a disk, rotating with the angular
velocity w, a slider of mass m is fixed
at springs.

Formulate the equation of motion with
respect to the moving system &, 7.

Determine the force exerted from the
channel on the slider.

Solution The coordinate system car-
ries out a circular motion about A. With nb\

(¢ Lto&,n)

P
W =weg, w=0, Top = 1€y, TV
i‘o:ao:—theg, 'vT:n'e,7 Ao*, 0

the fictitious acceleration and Coriolis
acceleration are given by

af=ao+wxrop+wx (wxrop) = —hw’es +nw’lec x (es x e,)]
= —hw’eg +nw’lec x (—eg)] = —hw’es —nw’ey

ac = 2w x v, = 2wn'(ec X e,;) = —2wn'e¢ .

In the equations of motion must be con- n

sidered in addition to the external forces \ m2wiy’

(spring force 2cm, channel force N), the 2cn

fictitious force F'y = —may and Coriolis N T hw?

force F. = —ma.. Thus, with £’ = 0 we o

obtain for the equation of motion and the i

channel force K /E

1 2 1 2¢ 2

N mn’ = —=2cn+ mnw ~ N +(m7w)n:0,
S 0 =N + mhw? + m2wy ~ N =—mw(hw+27).

Remark: The equation of motion has the solution (see page 170) n(t) =
Acos Qt + Bsin Qt with the angular frequency Q = /2¢/m — w?. For
w? = 2¢/m the slider rotates with the disk without vibrating.
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Problem 8.9 A little sphere (point mass
m) oscillates frictionless in a circular
channel of a horizontal disk which rotates
about an axis through A with constant
angular velocity €.

Determine the circular frequency w of the
sphere if small amplitudes ¢ are assumed.

Solution We introduce the rotating &, 7, {-coordinate system with its
origin 0 at the center of the disk. Then
we can write

Q:Qec, a():’i;o:*eQQe;’:,
Q=0, Top = acospes +asinpe,.
e

The relative velocity can be expres- Z J
sed by the relative angular velocity
©* where (-)* denotes the time de-
rivative relative to the moving system):

v = ap” ~ v, = —ap sinp ec +ap” cosp e, .

Thus, the fictitious forces F'y and F'. are

F;=—mao—mQ x (Q xrop) = m(e® + af® cos )es
+mQ%asinpe, ,

F. = —2mQ x v, = 2mQay” (es cos p + e, sinp) .

With the tangential relative acceleration a,; = ay™", the equation of
motion in tangential direction is obtained as ,
mQ2asin @

R mag™ = m(aQ® + 2ap Q) sin @ cos p 0 '
2map*§)sin p

2 2
—m[e2” + (aQ m(eQ?+a? cos p)

N . m A
U N
+2a7(2) cos g sin ‘\4 Y 2map*Qcos @
S

2 .
= —mef) sinyp .

Assuming small amplitudes (sin ¢ & ¢), this leads to the equation for
harmonic vibrations
2

Y
=0.
R

Hence, the circular frequency of the oscillations is

w=1+/e/a Q.

P8.9
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Problem 8.10 The displayed system rotates
about the vertical axis with constant angular
velocity w. The two bodies are connected by
an inextensible cable and they can frictionless
slide along the parts of the elbow.

Determine the reaction force acting on m;
and the path r(¢) of mq, if at time ¢ = 0 the
initial conditions are given by r(0) = ro and
r*(0) = 0.

Solution We introduce the rotating elbow-fixed coordinate system
¢, m, ¢ and draw the free-body diagrams for

both bodies with the external forces, reac- ¢ F, ‘
tion forces and fictitious force and Coriolis 7
force. There is no relative motion of mi in § S
¢- and in &-direction. Thus, the reaction r
forces follow directly from the respective
‘equilibrium conditions’ as

Wi=myg

]\/71:‘/[/17 NQIFCZQ’ITLUJT’*.

Wo=mag
The equations of motion

mels" =S5 —Wa mir™ = F; — 8 =mirw® — S
lead with (3™ = r™* (inextensible cable!) to

(m1 + ma)r™ — miw?r = —Wo .
This inhomogeneous differential equation has the solution

mi1

where A =w .
mi + ma

r(t) =rn+71p = AeM + Be M + ngQ
miw

The initial conditions
1"*(0):0/\,) A—-B=0, r(()):ro ~ ro=A+B+ m292
miw

lead to A = B = }[ro—mag/(miw?)] and herewith, considering wt = ¢,
we finally obtain the path equation

_ _ m29) ‘h( mi ) mag
r(¢) (TO miw? costi{ ¥ mi + ms +m1w2.

Remark: For romiw? = S = mag we have ’equilibrium’ (r** = 0) in
this position, which, however, is unstable: for any small diplacement
(disturbance) the system starts to move!
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Problem 8.11 In the radial channel of
a wobbling disk, which rotates with
constant angular velocity w, slides
frictionless a knuckle of mass m.

P8.11

a) Determine the force K (r) that must
exerted to the knuckle in channel di-
rection, that it moves according to the
law r(t) = rosinwt (the weight shall be
neglected).

b) Determine the lateral contact force
N, (r) between the knuckle and the
channel.

Solution a) We use the rotating refe-
rence system &,7,¢ and draw the free-
body diagram by considering the ficti-
tious force and Coriolis force

F;=-mwx (wxrop) =mrw?cosa e ,

F.=-2mw X v, = —2mwuv,cosa e, ,

where v, = r* = row cos wt.

With a, = —row?sinwt = —w?r the equation of motion in channel
direction reads

mar = K + mrw? cos® a.
It leads to the force K:

K(r) = may —mrw? cos® a = —mur (1 +cos*a) .

b) The lateral contact force N, is calculated from the ’equilibrium
condition’ (no relative acceleration in n-direction)

2
N, = 2mwuv, cos @ = 2mw”rg cos a cos wt

or with coswt = /1 — sin? wt = V1= (r/ro)? as

N, (r) = 2mw® cosa\/rg —r2.
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Problem 8.12 The arm of an automatic assembly machine starts
moving from rest with constant accele-
ration ao along a straight track. At the
same time, the arm begins to rotate with
constant angular velocity wo and the slider
P begins to move towards point A with
constant relative acceleration a,. The
initial positions of the arm and the slider
are given by o = 0 and so.

Determine the absolute velocity and
acceleration of the slider P in dependence
of time ¢.

Solution We use the fixed coordinate system xz,y,z, where the
z-axis coincides with the track. In addi-

tion, we introduce the moving coordina- Pé/( 13

te system &, 7, ¢, where the £-axis rotates Y r

with the arm. Then, the general equations ! wo AR

for the absolute velocity and acceleration T \\'”

are ¢ AC .

V=Vps+wWX7Typ+v,,
a=as+wXrapF+wX (WXPrap)+2w XV +ar.
We start counting time ¢ from the beginning of the motion. then, by

using the given accelerations, angular velocity and initial conditions,
we obtain

as =aper; ~» Vo=aote,,

W = Woé€c¢, (.L’IO,

ar = —ares ~ Vp = —artes -~ rApz(féart2+so)eg,
and

WX Tap =w(—lart’ + so0)ey, 2w X vy = 2w art ey,
wX (WXryp)= fwg(féartQ + so)ec .

Taking into account the relations e, = e¢ cosy — e, sin g, where ¢ =
wo t, we finally obtain

v = [aot coswot — art]leg + [—aot sinwot + wo(—éart2 + s0)]en ,

a = [ap coswot — wg(f éart2 + 80) — ar|eg — [ao sinwot + 2wq art]ey .
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It is often advantageous to determine the equations of motion not by
using NEWTON’S axioms (principles of linear and angular momentum)
but by using equivalent laws which are called Principles of Mechanics.

Formal Reduction of Kinetics to Statics
Rewriting NEWTON’S law of the motion for a point mass (or the center
of mass of a rigid body) in the form

ma=>Y F ~r >F—ma=0

and introducing D‘ALEMBERT’S inertial force (pseudo force, fictitious
force)

F;r=—-ma

leads to the ‘dynamic equilibrium condition of forces’

ZF+F,:0

Accordingly, a point mass or the center of mass of a rigid body moves
such that the sum of external forces F' and the inertial force F'r is equal
to zero. In case of a plane motion of a rigid body, the pseudo moment
Mra = —O 4w must be taken into account in the ’dynamic equilibrium
condition of the moments’. Instead of the equations of motion according
to page 102 we then obtain the ’equilibrium conditions’

Y Fo-mas=0, » Fy—may=0, > Ms—0a0=0

where A= fixed point or center of mass.

Remarks: e The inertial force (pseudo force) and the pseudo
moment are directed opposite to the positive
acceleration and angular acceleration, respectively.

e When solving problems, the pseudo forces and
pseudo moments must be drawn into the free-body
diagram with the respective sign.

d‘ALEMBERT’s Principle

A system moves such that for a virtual displacement the sum of the
works 0U of the external forces (moments) and 6U; of the pseudo forces
(pseudo moments) vanishes at all times:

oU +0Ur =0
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Remarks: e Virtual displacements are infinitesimally small,
fictitious and kinematically admissible.

e The work done by constraint forces is zero for rigid
constraints.

e D‘ALEMBERT’s principle may preferably be applied
for systems with several constraints, if the cons-
traint forces shall not be determined.

e In case of statics, the principle reduces to U = 0
(see volume 1, chapter 7).

LAGRANGE Equations of the 2nd kind

The motion of a system with n degrees of freedom is described by

d (0T oT .

where T = Kkinetic energy,
q; = generalized coordinates,
@ = generalized velocities,
Q; = generalized forces.

For conservative forces (having a potential) the equations of motion
simplify to

d(8L>_8L:0 G=1,...,n)

dt \9q¢; ) 0qj
where L=T-V = Lagrangian,
V = potential energy.
Remarks: e The numbers of generalized coordinates (i.e.

equations) and of degrees of freedom are equal.

e Generalized coordinates are linearly independent
and may be lengths or angles.

e Generalized forces act in the direction of generali-
zed coordinates and may be e.g. forces or moments.
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Problem 9.1 Two blocks of weights
Wi = mig and Wy = mag are sus-
pended by a rope drum (moment of
inertia ©4). The block of mass m;
slides frictionless on an inclined plane.

Determine the angular acceleration of
the drum and the force in rope 2 by
using dynamic equilibrium conditions.

Solution We separate the system, in-
troduce coordinates x1,r2, ¢, describing
the motion of the system, and draw the
free-body diagram. Since we solve the
problem by applying dynamic equilibri-
um conditions, the inertia forces m;;
and the pseudo moment must be consi-
dered; they point in negative coordinate
directions. Then, the equilibrium condi-
tions yield

®© 4 St —miZi —migsina=0,

@ l,: mgg—TTZQfI}Q—SQIO,
m .
® A: —T151+T252—@Atp=0.
Using the kinematic relations

T1=T1p  ~ 1'1:7"1@,

To = T2 ~> To :7"2@,
we obtain the angular acceleration
Toma — r1mi sin
= g
r?my +r3ms + O
and the force in the rope

. ri(ri +resina)mi + 04
So = ma(g+ 1r2p) = mag
( ) rimi 4+ rima + O,

Remark: For rome > rimisina the drum rotates clockwise, for
roms < rimisina it rotates counterclockwise. In the special case
roms = rimg sin «, the system is in static equilibrium: ¢ = 0.
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Problem 9.2 The displayed pendu- m P9.2
lum consists of a homogeneous —
cylinder of mass mi; = 2m and a \\
point mass of weight G =maog=mg
which is rigidly fixed by a massless — —
rod. The cylinder rolls without slip
on the rough plane.

Formulate the equation of motion.

ma
Solution We choose the reference
system x,y in the undisplaced posi-
tion. The center of mass C lies in the
distance I
l
2 cos
o Ima — 2 e 3y
mi + me 3 § (m1+ma).

from the point mass ms. In the dis-
placed position we draw all external
forces, inertial forces and the pseu-
do moment into the free-body dia-
gram. The ’equilibrium conditions’
then read

— 7H7(m1+777,2)ic=0,

b (mi4+me)g— N — (my+ m2)je =0,

a L. l L. 2l . .
C: m1g3sm<p+H 3cosap—r —N3smg0—m2g3sm<p—®c<p:0

where

2
1\2 20\ 2 2
Oc = [m; +m1(3) } +m2(3) :m(r2+ 312) '
For an angle change ¢, the center of the cylinder is displaced by r¢ to
the left. Thus, we find for the center of mass

L. .. Lo Lo
xc:frap+3smnp ~ $c=*T<P+3<PCOSSD*3S" sme,

Ye = lcosnp ~ j}c:fégbsinapfégfcosgo.

3
Solving the equations yields

gki(l2 + 4r% — 2lr cos )+ Ir¢? singp + glsinp =0 .
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Problem 9.3 A wheel (weight m1g,
moment of inertia ©4) and a block
(weight ma2g), both on inclined
planes, are connected by a rope. The
wheel rolls without slip while the
block slips frictionless.

Determine the acceleration of the
block applying d’Alembert’s princi-
ple. Neglect the masses of the rope
and the pulley.

Solution Since the constraint forces (force in the rope, contact forces)
need not to bee determined, it is advantageous to apply d’Alembert’s
principle. To describe the motion we choose the coordinates z;, .
In addition to the real forces,
the inertial forces m;z; and the
pseudo moment Oa¢ (acting
opposite to the chosen coordina-
tes) are drawn into the sketch of
the system. Then, d’Alembert’s
principle requires that the vir-
tual work of all forces vanishes:

oU+6Ur =0
This leads to
—miZ10x1 — migsinadr; — O aPpdp + magsin adxs — modadxe =0 .
With the kinematic relations
dr1 = dwe = rdp = dx
T1 =T =TP=2=2T ~>
fli'1 = i’g = T(ﬁ =
we obtain

. . Oa . . ..
—MmiT —migsino — T+ magsSino — mal ox=0.
r

Since dx # 0, the expression in the bracket must vanish. Thus,

(m2 —m1)sina

O
mi+ma+
r

.%Zi:QZQ
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Problem 9.4 Two drums are
connected by a rope and carry
blocks of weights mig and
mag. Drum @ is driven by the
moment Mpy.

Determine the acceleration of
block @© wusing d’Alembert’s
principle. Neglect the mass of
the ropes.

Solution We introduce the in-
ertial forces m;Z; and the pseu-
do moments O 4p1, © gpa. They
act in opposite directions to
the chosen positive coordinate
directions. Then, d’Alembert’s
principle requires

oU +6Ur =0,
+mlg 7”/2!1+ T9
which leads to +m1i‘1 oy *
—mi1(g + &1)0z1 + ma(g — Z2)0z2
+Mobpa — Oap10p1 — Oppadps = 0.
With the kinematic relations
T1 =T1p1 Lo T s _ T2 W T2
(251 - s P2 7"% X1, T2 - X1,
T2 = T1p2 ~ S5
5(p1 = .1‘1’ (5@2 = 7"5 5.%‘1, 5.%‘2 = "2 5.%‘1
201 = T1p2 1 1 1
we obtain
. ro.\72 12Mo ©Oa. T20p.
{—m1(9+$1)+m2<9— 2561) >+ 220— ;xl— 24B:Jc1}6x1:0.
1 1 LT 1 Ty

Since dx2 # 0, the expression in the curly bracket must vanish. Thus,
the acceleration of block @ is
mar2 ro Mo

1 —
mi1Ty ri2mig

fIf'l =g 2 .
14 M2 (T2 2 O4 r50R
+ + 9 4
mi1 \711 miry miry

P9.4
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P9.5 Problem 9.5 The displayed system
shows a lever (weight m;g, moment of ®
inertia ©p), pivoted at D. Attached l My, Oy
at the lever ends are a turnable wheel g ) T

@, rolling along the rigid half-circular @
cylinder @, and a counterweight ey ) = /}
Ws = msg, C{ ‘ my, Op

lg [
Determine the eigenfrequency for s /
small displacements ¢.

Solution We will derive the equation
of motion by applying two different ap-
proaches. First we use d°ALEMBERT’S
principle. For this purpose, in additi-
on to the external forces, all inertial
forces and pseudo moments are drawn
into the free-body diagram in the dis-
placed position. The virtual work of all
forces and moments must vanish (no-
tice, sinp ~ ¢):

—Op@dp — O2p20p2 — ma(r1 + 7'2)2¢36<p — m3l§¢36g0
l
—msglspdp + mlg(2 - lg)gp&p + mag(ri +1r2)pdp =0 .
Because the wheel rolls, the kinematic relation reads

G =(1+r1/r2) ¢,

0p2 = (14+r1/r2) dp .

rowa = (r1 +1r2)p ~

Introducing these quantities and considering d¢ # 0, we obtain the
equation of motion

71\2 2 2] .
[@D+@2(1+r) + ma(ri +r2) +m3l3}g0

2
+[m3l3 - rm(é — lg) — ma(r: +7"2)]g<,0 =0,

from which the eigenfrequency is directly found as

l
msls — ma —1l3) — m2(7"1 + 7"2)
L (2-5)

g -

r1)2 2 2
@D+@2(1+ , ) + ma(rr +r2)” + mal;
2
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In the second approach we apply the LAGRANGE equations of the 2nd

kind. The system is conservative and, by choosing the zero potential at
the level of D, we obtain

[
V= mlg(2 713) cos @ + mag(r1 + r2) cos — msglscosp ,
1 . 1 . 1 . 1 .
T = @DQOQ-F[ ma(r: +T2)2§02+ @2@%} + .5 m39027
2 2 2 2
L=T-V.

With the kinematic relations

rows = (r1 +1r2)p ~ rope = (r1+12)$

follow
i = (oo e matri e v u(14 ) e
o?t(gZ) - [@D +ma(r1 +12)° +92(1 + 2)2 +mgl§]¢,
gi = [m1(; - ls) +ma(ry +r2) *mglg]gsinnp,
Thus, from
MESRIEL

with sing ~ ¢ (small displacements) we obtain the already known
result for the equation of motion

(00 +€2(14 1)+ ma(r + ra)? + mald]

l

+[m3l3 — m1(2

— lg) — ma(ry +r2)]g<p =0,

and accordingly for the eigenfrequency. It can be seen that vibrations
are only possible if the nominator in the square root is positive, i.e. if

l
mals > m1(2 — lg) +m2(1"1 +7'2) .

Remark: The system has only one degree of freedom; its position can
uniquely be described by the generalized coordinate .
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Problem 9.6 A pivoted homogeneous bar (mass m) is held by springs
and carries an attached point mass m/4.

Determine the equation of motion for
small displacements from the equilibri-

um position by using: I m m/4
a) the energy conservation law,
b) d’ALEMBERT’s principle, k A

c¢) the angular momentum theorem. 9 - | —

Solution The motion of the system is a rotation about point A, which
appropriately is described by the rotation angle . Thereby,
assuming small displacements, each

spring experiences a length change 2lp. Ag
a) The total ener i —
) g Y
E=V+T =2 k) + 04" 3 e
of the conservative system must be constant at all times. This leads to
dE . .. . 2
a = 0 ~ 2kQ2p)2p+0app=0 ~» Oap+8kl"p=0.
b) When applying d’ALEMBERT’S 2k (2ly) 0.5
principle U + 6U; = 0, the work of / /i(
the pseudo moment © 4 (opposite to 20 T L= 4 —
the positive direction of motion) must ~% ~ = A A

be taken into account:
—Oapdp —2A2k(2lp)dp =0 ~ Oap+8kl*p=0.

c) Application of the angular momentum theorem with respect to the
fixed point A directly yields 2% (2lp)

—e

A - k( ) 2 i | i1 /

~ Oap+8kIPp=0.

The results are (as expected) in all cases the same. With

Oa = 1(§m)(2l)2 + 1(;m)l2 + 1ml2 _° ml®

3 3 4 4
the equation of motion can also be written as
. 32k
»+ p=0.

5m
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Problem 9.7 A symmetric disk with a half- P9.7
circular boundary rolls without slip on the

flat surface.

Derive the equation of motion using the
Lagrange formalism.

Given: R, ¢ = kR, m, ©¢ = amR>

Solution The system is conservative and
has one degree of freedom. To describe the
motion we choose as generalized coordina-
te the angle . Then, with the kinematic
relations

e =—Rp+csing = —R(p — ksinp)

e =—Rp+cpcosp =—Rp(l — Kkcosy) ,
Yyec = ccosp = kR cos g,

Yo = —cpsing = —kRsinp .
we can formulate the energies, the Lagrangean and the required deri-
vatives:
V = —mgy. = —mgrRcos p ,

1 . . 1 . 1 .
T = Qm(a,%—i—yg)—i— 2(904,02 = Qngch [(1—&0054,0)2

1
+(k sin @)2 + a] = mR2gb2 (1 — 2K cos p + K+ a) ,

2
1 .2 2
L=T-V = 2mR[ch (1—2/<ccos<p+n +a) +29ncos<p],
oL 1 . 2
9y QmR[QRgo(l—QHcoscp—&—n +a)] ,
d /0L 1 . 2 .2 .
- 2R3 (1 -2 4 ] ,
dt(@gb) 2mR[ R(p( Kcosp + K +a) + 4k Rp” sin ¢
oL =mR [HR(;'JQ sin ¢ — kg sin gp} .
dp
Substituting these expressions into
d (8L> oL _ 0
dt \0p dp

yields the equation of motion

¢3(1—2}@005@—}—&2+o¢)+l¢¢:25in¢z+/<ciisingp:0.
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Problem 9.8 A homogeneous bar =

(mass m, length 1) is attached to A i
a thread of length /2, which is 12 V9
pinned at point A. The mass of

the thread is negligible. l

Derive the equations of motion m
using the Lagrange formalism.

Solution The system is conservative and has
two degrees of freedom. As generalized coordi-
nates we choose ¢1 and @2 and assume the zero
level of the potential at the height of A. With

e = (1/2)(sin g1 + sin ¢2) ,
e = (1/2)(cos o1 + 05 92)
te = (1/2)(P1cosp1 + P2 c08p2), Yo = (1/2)(¢p18inp1 — P2 sin o)

and O¢c = ml? /12 follow the required energies
l
V:fmg2 (cos p1 + cos p2),

1 . . 1 .
T=,m(E +9¢) + ,©ch

1 . . .. 1 .
=8ml2[90f + 95 + 2¢12 cos(ip1 + p2)] + 24m12<p§

for the Lagrangean L =T — V. Introducing the derivatives

oL mi> . .. 1 i
gy — 4 12 sin(p1 + ¢2) —  mglsin s,
oL mi> . .. 1 .
Oy = 4 P12 sin(p1 + ¢2) —  mglsingz,
d /0L mi® .. . S
dat (8¢1) =, [P+ Pacos(or +p2) = Pa(fr + p2) sin(er +2)]
2
ccllt (5;2) = n;é [4p2 + 3p1 cos(p1 + p2) — 3p1(P1 + P2) sin(p1 + 2)]

into the Lagrange equations
d(@L)_@L_O d(@L)_@L_O
dt \ 91 opr dt \ 02 O
yields the coupled equations of motion

$1 + B2 cos(p1 + p2) — 3 sin(p1 + p2) +2(g/1) singr =0,

A5 + 3¢1 cos(ip1 + pa) — 31 sin(p1 + p2) + 6(g/1) sin 2 = 0.
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Problem 9.9 A simple pendulum is P9.9
attached to point 0 of a disk which
rotates with constant angular velo-
city 2 about the vertical axis.

Derive the equation of motion using
the Lagrange formalism. Disregard
the weight of the point mass.

Solution The system is conservative.
Since the weight is neglected (V = 0),
only the kinetic 7" energy is needed in
the Lagrangean. To describe the moti-
on, we introduce the angle ) = Qt, pre-
scribed by the rotating disk, and the an-
gle ¢ relative to the disk. With

x =rcostp+ lcos(v + @),

y=rsiny + Isin(yp + ¢),

&= —rQsiny — 1(Q+ ¢)sin(y + @),

§ = 1Qcos + Q2+ @) cos(t) + ¢)

B2+ =+ P+ ) 4 2rQUQ + @) cos @
follows

L=T= ;m(ab2+g'/2) = ;m[r2Q2+l2(Q+¢)2+2rlQ(Q+¢) cosgo].

Introducing the derivatives

aL o m 2 2 .

99 = 2 (2[ Q4+ 21 <p+2rchosg0),

d /oL _ my( .. - OL  m N

gt (8(,0) =4 (2[ @ — 2rliQpsin cp), 9o = 2 2riQ(Q + @) sinp
into the Lagrange equation

d /0L oL

dt (ng) Cdp 0

leads to the equation of motion
@+ ZQQSincpZO.

Remark: For small angles (sin ¢ & ¢) this equation describes harmonic
vibrations with w = Q,/7/ (see also Problem 8.9).
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P9.10 Problem 9.10 A homogeneous bar (length e
2a, weight W = mg) is suspended to the A k E
support A, which can move horizontally
and is held by a spring (spring constant k). l )
g a

Find the equations of motion using the
Langrange formalism.

Solution The system is conservative and has
two degrees of freedom. As generalized coordi-
nates we choose the displacement w and angle
¢, both measured from the equilibrium positi-
on. With

Toc=w+asing, Yo =acosyp,

To=w+apcosy, Yo = —apsing

and O¢ = ma2/3 follow the energies

V = —mgacos ¢ + kw? /2,
T = (m/2) (2t + y&) + (Oc/2)@”
= (m/2) (11;2 + @@ + 2a1¢ cos ©) + (ma®/6)¢” .

Herewith, the derivatives of the Lagrangean L =T — V are

£(0) o). S
d /0L 4 . ) o
dt(agp) :m(3a €0+awCOS<P—aw<psmga)7
oL o ‘
and the Lagrange equations
(;it(gfb)_gi:o’ (;it(gfb)_gi:O

yield the coupled equations of motion
.. . .2 . k
W+ apcosy —ap” sing + msz,

4 .. .
3ag0+wcos<p+g sing =0.
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Problem 9.11 The double pendulum con- P9.11
sists of 4 bars of equal length | and mass i

m. The spring is unstrained in the vertical l g

position of the hanging bars.

a) Determine the equations of motion by

using the LAGRANGE equations.

b) Linearize the equations for small ampli- m, |
tudes.

Solution a) The position of the conser-
vative system is uniquely described by the
angles a and (. Accordingly, it has two
degrees of freedom.

To formulate the potential and kinetic
energies, we introduce the x, y-coordinate
system and determine first the coordina-
tes and velocities of points @, @ as well as
the length change A of the spring:

YVisina lsing
1 =lsina, .TQZZ(SiIlOé—f—;—f—;SiHB),
21 = laccos o, .%"QZZ(O.CCOSOC-F;BCOSﬁ),
1 =lcosa, ygzl(cosaJrécosB),
= —lasina, g2 = —l(asina+ ;Bsinﬁ),
vt
vi =% 4+ 9f = lg(dgcosga+dﬁcosacosﬁ+ iﬁ.gcosgﬁ
+ &% sin? a4 @fBsinasin 8+ 162 sin? B)

= l2[o'42 +o'z§’cos(oz —-B)+ }162],

A =/(Isina+1)2 +12cos?a — V2 = 1V2 (\/1 +sina — 1) ,

A? = 22 (2+sina—2\/1+sina).

i3+ 97 = 1262 (cos® a + sin? a) = 1262,

Herewith, the potential energy is obtained as

1
y; —mgy1 —mgys + , kA®

:7mgl(3COSOf+ ; cosﬁ) +k12(2+sina72\/1+sina).

V=—2mg

When determining the kinetic energy, we consider that the motion of
the upper bars is a pure rotation (angular velocity ¢) about the pins, the
motion of the horizontal bar is a pure translation (velocity v1) and the
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motion of the lower bar is a combination of translation (velocity v2) plus
rotation (angular velocity £). With the moment of inertia ©1 = mli*/3
of an upper bar with respect to the pin and the moment of inertia
©2 = mi®/12 of the lower bar with respect to its center of mass @, it
follows

1 . 1 1 1 .
T = 22@1a2 + 2mvf + (2mv§ + 2@252)

= ml’ gdg + (1;52 + ;dﬁcos(a—ﬂ)].
With L =T — V and the derivatives
‘32 - —mj &fsin(a — B) — 3mglsina — ki2 cosoc(l -1 +1Sina),
e " ssin(a - ) — ymolsin g,
C(OF) =m [+ LBeosa— )~ Ao~ Hsin(a— )],
jt(gg) = mi*[ (4 Levcos(a — ) — a(a— B)sina— )],

we obtain from the LAGRANGE equations

d /0L oL d /0L oL

dt(aa)*aa_o’ dt(ag)*aﬁ_
the equations of motion:
8., 1s Loo o 9 kosali— 1 -
3a+26cos(a ﬁ)+26 sin(a ﬁ)+3lblno¢+mcosa<1 \/1+sina)_07

1. 1,. 1.2 . lg . o
6ﬁ+2acos(a B) & sin(a ﬁ)+2lsm[370.

b) For small amplitudes o < 1, § < 1 and & < 1, B < 1 the following
linearizations apply:

sina~a, cosaml, sin(fa—p)=((a—p3), cos(a—p)~1,

1 1 52 . $2 .
~ ~1l-a, sin(a — B) =0, A& sin(aa—p)~0.
V1id+sina 1+« g ( A) ( f)

Herewith, the equations of motion simplify to

.3 . /99 3ky\ R I
a+16ﬂ+(8l+8m)a—0, B+3a+3dp=o0.
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The velocity field v(x(t),t) describes the motion of a fluid. The vec-
tor @ assignes to each location in the fluid a velocity v at time ¢.

The velocity field is stationary for v/t = 0, otherwise instationary.

Pathline: trajectory that a material point
of the fluid (fluid element) follows over a ti-
me period. The pathline z(¢) yields from the
solution of the differential equation

Streamlines: family of curves whose tan-
gents coincide in each point @ with the direc-
tion of the local velocity vector. The streamli-
ne field follows from the differential equation

d
23 =v(@(s),1)

where s is the arclength of the streamline.

Notice: pathlines and streamlines are identical for a stationary velocity
field.

Stream Filament Theory: In what follows we restrict ourselves to
the stationary motion of an incompressible fluid in a streamtube, where
the flow behavior is characterized by the behavior at a median stream-
line. This one-dimensional theory is described by the following basic
equations:

a) Continuity equation

Ay
Ajv; = Asva or Q= Av = const A1 -
- b1 tﬂow
where () = Awv is the volume flow. }
inflow
b) BERNOULLI’s theorem
For an inviscid fluid holds
1 v? P
ov- +0gz-+p=const or +z+ = H = const.
2 29 29
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where
0v°/2 = dynamic pressure (specific kinetic energy),
09z = geodetic pressure (specific potential energy),
p = static pressure (pressure energy),
H = hydraulic (total) head,

v®/2g = velocity head,
z = elevation head,

p/og = pressure head.

Example: outflow from a reservoir:

1 1
29”?+9921 + po = 29U§+9922+po.

In the special case v1 = 0 (h =const) follows TORRICELLI’s law
(outflow from big fluid tanks).

vo = \/Qgh.

For viscous fluids (flow with energy losses) the generalized BER-
NOULLT’s theorem

1 2 1 2
gVt tegztpi=0v2+eoge +p2 + Apy

is valid, where

1 .
Apy, = 9 ovi = pressure loss, ( = pressure loss coefficient.

c) Balance of Momentum
F, = m(vgz — U1I) 3

F=0Q2—wv1) or F,=1n(vzy —viy),

Fz:m('UQz_'Ulz)7

where
F = resulting force exerted on the closed fluid volume within
the streamtube (control volume),
0@ = m = mass flow,
0Q v = inflowing momentum,

0Qv2 = outflowing momentum.
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Problem 10.1 A flow is described by the plane velocity field
v(z,t) = 2av e, — 2ay ey
Determine the equation for the streamlines and sketch the profile for the

specific streamline through the point A with coordinates z = 0.5m; y =
4m.

Solution The differential equation for the streamlines reads in com-
ponents

dz dy
dszvxZQam, dszvy:—Qay.

Dividing the 1°* by the 2" equation yields

dz Uz T
dy vy Y
and by separation of variables it follows
d d
z  dy
T )

=0.
Integration leads to
Inz+Iny=lnzy=C=:lnc ~ Inzy=Inc.

Accordingly, the streamlines are given by the hyperbola

c y [m]
y= .
x 5 1
For a streamline through point 4 18
A, the integration constant c is
calculated with the given data 3+
as :
2 4
c=05m-4m=2m?.
1 £
Having ¢, the profile of the ‘
streamline can be sketched. — 1 1 1
2 3 4 zm)
Remarks:
e For z — o0, the y-component of the velocity vector vanishes:
v — 2aT €.

e Because the flow is stationary (9v /9t = 0), the streamlines and the
pathlines coincide.
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Problem 10.2 A planar flow is described by the velocity field
v(z,t) =are, +be le,,
where a and b are given constants.

a) Determine the pathline of the particle, which at time ¢t = 0 is at
point P = (1,1).

b) Determine the streamline, which at time ¢ = 0 passes the point
P=(1,1).

Solution Because the flow is instationary, the pathlines and streamlines
do not coincide!

a) The components of the pathline are determined from

(31;6: ~ /dm /adt ~ anl:at ~ oz =Ce",
izt/:be y=—be " +Co.

With the initial conditions = (t=0) = 1, y (t=0) = 1, we obtain

z(t) = e, yt)=b(1—e ") +1.

b) For t = 0, the differential equations of the streamlines are given by

dx:(m, dy:b - dx:ax.
ds

ds dy b

Separation of variables and integration lead to

b/dx:/dy ~> y:blnerCg.
a x a

The boundary condition yields
ylr=1)=1 ~ Cs=1,
and thus, it follows

b
=" Inz+1.
y()=  Inz+

Remark: From the parameter representation of the pathline in a), by

eliminating ¢ (t = é Inz), we can obtain the representation y(z) =
b(1—az~ .

P10.2
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Problem 10.3 The velocity field of a planar, instationary flow is des-
cribed by

v(z,y,t) =axye, +btey
where a, b are given constants. As initial conditions, z = zo, y = yo at
t = 0 are prescribed.

a) Determine the pathlines and streamlines.

b) Where has a fluid particle been at time ¢ = 0, which was detected
at time ¢t1 = 1s at point (z1,y1) = (1,0) m?

Solution a) The pathlines are determined from

dr dy
qe = 0%y dt—bt.

With y(t=0) = yo the second equation yields
1, 0
y(t) = yo + 9 bt” .

Introducing the result into the first equation, after separation of varia-
bles, integration and using z(t=0) = zo we obtain

da =a (yo + ; bt2) dt ~ x(t) = zoe” (yot+bt7/6) .
x

The streamlines are calculated from

dz dy

= =bt.
s 4% ds

The second equation in conjunction with y(s=0) = yo yields
y(s) =bts+yo -

Again, introducing the result into the first equation, applying separa-
tion of variables and using z(s=0) = x¢ leads to

dxx =a(bts+yo) ds ~ z(s) = xg €” (vos+bt7/2)

b) Introducing the conditions z = zy = 1m, y =y = 0 for t = 1s
into the pathline yields

Yo = —b/2, xo = /3 |
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Problem 10.4 From a big reservoir , P10.4
water is taken via a pipe. To increase @ Mo

the mass flow @, a diffuser is atta-
ched at the end of the pipe. Because
cavitation danger is to be avoided, the
pressure must not drop below py,in at
any location of the pipe.

a) Determine the maximum allowable
diffuser cross-section Ap,, .-

b) Calculate the temporal mass flow @ for this case.

c¢) Determine the height h*, the highest point of the pipe can be lifted,
if the diffuser is not present.

Solution a) Considering vg = 0 (big reservoir) and applying BER-
NOULLI’s theorem for the points @ and @ as well as for @ and @ of a
streamline, the corresponding velocities can be determined:

2
50U0 +po+ogh = jovi +p1+ogh ~ v = \/Q(poﬂh),

5008 +po+ogh = }30v3 + po ~  va=+/2gh .

Herewith follows from the continuity equation the cross section of the
diffuser:

Apve = Avi ~ Ap=A" :A\/po_’“ .
Vo ogh

It is a maximum, when we insert for p; the minimum allowable pressure

Pmin:

ADmaw = A \/po = Pman .
ogh

b) The temporal mass flow @Q in this case is gicen by
Q=v2Ap = \/2gh Ap,,,., -

c) In the same way as in a) we obtain for a streamline between @ and
@ as well as between ® and @ after lifting point @ to the height h*

po + 0gh = 500% + pmin + 0gh” v2 = \/2gh .

With Ap = A, the continuity equation yields v1 = va. By introducing
this and solving for h* we obtain

= PO — Pmin )
eg
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Problem 10.5 The lower trape-
zoidal tank (constant depth f) is
filled via a pipe (cross section A;)
from a big reservoir located above.

a) Determine the maximum height
a4 = amax, the pipe may protrude
the fluid level of the reservoir, such
that the pressure in the pipe does
not drop below pp.

b) When is the height h(t) = H/2
reached in the lower tank?

c) When h(t) = H/2 is reached, the
valve of the lower tank is opened.
Determine the cross section Ay of
the valve, such that the fluid level
keeps constant.

e

Solution a) According to TORRICELLI’s law (big reservoir), the velocity
at point ® is given by

vs = \/29H .
Thus, from the continuity equation follows at point @
Apva = Apus ~r vgzvgz\/QgH.

Using BERNOULLI’s theorem for a streamline between the points @
and @

1
po+0+0=pp+ggamax+29v§,

and introducing vz, the maximum height @,,.. can be determined:

1 1 -
Omax = po—pp— o@gH)| =" " .
09 2 09

b) The relation between the filling height A and time ¢ follows from the
continuity equation between point @ and point @

AR V3 = A(h) V4
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in conjunction with the rise velocity of the fluid

dh
dt

and the cross section of the tank

Vg4 =

A(h) = (e +2htana)f

as
dh Ap
at ~ A(h)
Separation of variables and integration leads to
t h
/ Apy/2gH dt = / (e + 2htana)fdh .
to=0 ho=0

This yields
Ap\/2gHt = (eh + h* tana)f .

From this result the required time t,, to reach the filling height H/2,
is found by introducing h = H/2:

ty = eH+H2 tan o f
T2 4 Ary/29H

c) From BERNOULLI’s theorem, applied between the points @ and ®,
H 1 2 1 2
poteg ., +,0vi=po+0+, 005,

the velocity at the valve can be calculated. It leads with the requirement
of a constant fluid level, i.e. v4 = 0, to

V5 = \/ gH .

Finally, using the continuity equation
Avvs = Apvs,

the cross section of the valve is obtained as

Ay =V2A4, .
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Problem 10.6 From a big reser-
voir, an ideal fluid (density p)
flows out through a pipe (cross
section Aj) with a local smooth
contraction (cross section Aj).

a) Determine the pressure p; in the
cross section Aj.

b) The pipe will now be spot drilled
at A;. Calculate ha, such that no
fluid leaks from the drilled hole.

c¢) Now a vertical standpipe is
connected to the drilled hole,
which dips into a lower fluid
tank. Find the necessary cross
section ratio Az/A;, such that
fluid is sucked from the tank.

Solution a) First, from TORRICELLI’s law follows the outflow velocity
at the point @

V2 = \/2gh2

and from that, using the continuity

J;_&
equation, the velocity in the cross 0

-

‘1

section Ai: ' Ay
Arvi=Azv2 |—¢_’*
@
v Az 3 Az \/2 h ®/ \A2
~> = - .
LS4 2T gha

Introducing v into BERNOULLI’s theorem for a streamline between the
points @ and @ yields the pressure p:

1 Az 2
2Qvf+0+p1 =0+0g9hi+p0 ~ p1 =po+gg[h1 — (AQ) hz].
1
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b) No fluid leaks from the drilled hole, if the pressure p; is below the
ambient pressure po:

Ao 2
p1 <po ~ p0+gg[h1*(A2) h2}<p0
1
Aoz 2
~ h1*<A1) ha <0.

This leads to the condition

o (4.

c) With the pressures ps = p1 and p3 = po at the locations @ and ®, we
obtain from BERNOULLI's theorem for a streamline between the points
@ and @

1
29v5+99h3+p1=0+0+po.

Introducing p; and using the condi-
tion vi > 0 leads to

po —p1 — oghs >0

o~ - (i?)thﬁ-hs <0

and finally to
Ao h1 + hs
Ay ” \/ ha

Remark: At the location @ of the standpipe prevails the pressure pi
but not the velocity v;!
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Problem 10.7 A tank is filled by a
pump through an opening. At the Po ©

same time, fluid flows out through Ao

a leak at the bottom. T

a) Which stationary fluid level H e

will be reached? L @Pump
b) Determine for this case the loss L :'g
of volume flow through the leak. @ A, pry

¢) Now the pump is shut down and
the inflow is closed. How long does
it take until the tank is empty?

Solution a) With the BERNOULLI theorem applied between the points
©® and @ as well as @ and @,

1 1
ov3 +po+ogH = 291)% +p1,

2
11)2 1,

+ = vy +
291 p1 292 Do,

and the continuity equation

A1 v = AQ V2

in conjunction with the stationarity condition vg = 0, we have three
equations for the three unknowns v1,v2 and H. Solving the equations
yields the velocities

o = v, A2 — 21— po) A3
Ay 0(A7 - A3)
and the stationary fluid height

g Pr—Po A7 .
0g Al - A3

It can be seen that a stationary state is only possible for A < Aj.

b) The loss of volume flow Qv is determined by using the continuity
equation

QV:A2U2=A1U1.
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Introducing v1 and v, respectively, yields

2(p1 —
o :A1A2\/ AR

Alternatively, the loss of volume flow can be calculated by using v =
v/2gH (TORRICELLI) and As.

c) Due to the leak in the tank, the fluid level changes continuously. For
the velocity of level decrease we have

dz

dt’

where z is the actual fluid level in the tank. Thus, BERNOULLI’s theorem
for a streamline between a point on the fluid surface and point @ reads

v(z) = —

1
0v3 +po -

1
0v(2)* +po+ogz =,

2

Using the continuity equation
Ao 'U(Z) = A2 V2

we obtain for the decrease velocity of the fluid surface

_dz | 29243
vE) =g _\/Ag—Ag '

The time T', required to empty the tank, can be determined by separa-
tion of variables and integration:

0 T
dz 29 A2 / B A2 — AZ
- \/Z_\/A?)_A% dt ~ T=2 942 VH .
H 0

Here, for H, the result from a) can finally be introduced:

V2 [p1—po AT (A3 - A3)
g p A3 (A? - A))
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Problem 10.8 From a big reservoir,
fluid flows out through a pipe with
a smoothly changing cross section.

Determine the fluid levels z; and
z2 in the standpipes

Solution The outflow velocity at point ® follows from TORRICELLI’S
law as

V3 = \/QgH.

The pressures at the locations ® and @ with the fluid levels z1 and z»
in the standpipes are given by

p1 = po + 0971 , P2 = po + 0gz2 .

Thus, applying BERNOULLI’s theorem for a stremline between the points
@® and @,

20vi+04p1=10v3+0+po,

and using the continuity equation

As
A1 v = AQ VU3 ~ V1 =

we first obtain

= o= (4)].

Introducing vs = v/2gH yields the fluid level in the standpipe:

e ()]

In the same way, the pressure ps is calculated by applying BERNOULLI’S
theorem for a streamline between @ and ®,

3005 +0+p2 = Jov3+0+po,

and using the continuity equation ve = ws. Thus, it follows for the
pressure p2 = po and for the fluid level

22:0.
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Problem 10.9 From the drainpipe
of a big reservoir, a water-jet hits
a pivoted plate of weight .

Determine
a) the pressure in the pipe @® as
a function of the coordinate z,

b) the angle ¢, the plate is rotated,
if the jet flows off in plate direction.

Solution a) The cross section of the drainpipe @® is given by
A(Z) = 2(A2 — Ag) Z/h + As .

The continuity equation for an arbitrary point in the range @® and the
point ® reads A(z)v(z) = Aswvs. The velocity at point ® is vs = v4 =
v/3gh. Thus, the velocity in the range @® follows as

B hA;
U(Z) o 2(142 — Ag)Z + hAg \/39h ’

BERNOULLI’s theorem
50VA +po+ s0gh = j0v(2)® +p(2) + 09z

between point @ and a point in the range @® leads with va = 0 (big
reservoir) to the pressure in the drainpipe:
2

3
P(Z)—po-i-QQgh[l— ( 0g% .

22+h)2] B

b) Using the sketched control volume, the
momentum balance in the direction of the
normal force N exerted to the plate yields

0Q(0 —vgcosp) =—N .

With the volume flow Q = A4 v4 follows

N = QA4'U3 cos ¢ . __>,
. . . oQup
Finally, from the equilibrium condition
. : \ear
B: N @ W _sinp =0 v
cos ¢ 2

60 gAsah

the angle ¢ is determined: siny = Wh

P10.9
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Problem 10.10 A trapezoidal
tank of rectangular cross section
(b1 x b/2) is filled by a pump
via a pipe. The pump produces a
constant volume flow @ and the
pipe has the cross section b2/10.

a) Determine the rise velocity of
the fluid in the tank.

b) Calculate for z = h/2 the
resulting force exerted on the pipe.

Solution a) With the varying width

b
h(z) =y (h—2)

of the trapezoidal tank the fluid surface is given by
bob (
2 2h
Thus, due to the constant volume flow @, the velocity in @ follows as
_ Q _ 2Qhn
T A(z)  b2(h—2)

Ai(z) =bi(2) h—2z).

v1(2)

b) The force exerted by the fluid on the pipe can be determined from
the momentum balance. For this purpose, we first calculate for z = h/2
the pressures and velocities at the points @ and ® by using BERNOULLI’s
theorem and the continuity equation.

For point @ follows from BERNOULLI’s theorem between @ and @

1
Qvg+p2 +O7

ovV1 + Po 992—2

2

and from the volume flow

2

b
Q=v242 =12 10

follows the velocity

10Q

Vo = b2
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Thus, we obtain for the pressure

h 42Q?
p2=p0+992 0

From the continuity equation
Q = VU3 Ag = V2 AQ

between points @ and @ follows

10Q

Us =02 =,
Thus, BERNOULLI’s theorem

2 2
B a=20 00

29 o9 29 og
between points @ and ® yields the pressure at point @ as

h 42 Q?
Ps =po+og 9 T4 T

243

As control volume for the balance of momentum, we now choose the
fluid within the pipe. It is loaded by its weight, by the pressure forces
at @ and @ and by the forces R, R, exerted from the pipe-wall. The
opposite forces are exerted from the fluid to the pipe-wall. Thus, the

balance of momentum reads in components
0Qus

—: 0Q(v2—-0) = —p2A2 + R, *
*P.aAs
T: 0Q(0— (~v3)) = —p3As + Ry —ogV. L T n
R‘L

Introducing the pressures and velocities .
e g

yields with the fluid volume V = mab*/20 N " 0Qu,
in the pipe the force components exerted on qu¢ Doy

the pipe-wall

2

b
R, = (po+gg

h 29 0 Q>
f )+

2 5 v

_b2 n h " +29 QQ2+ mwab?
= 1 \Poteg, —eg s o2 T99 o
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244 Momentum

Problem 10.11 In a horizontal

plane, a fluid jet hits with the ©

velocity vo a wall under the angle a.

The jet depth in vertical direction S

is constant: h = const. \\0

a) Determine the velocities v1 and i Lo ®

vz of the two off-flowing jets. @ T

b) Calculate the width by and bg of ;¥ 77
the off-flowing jets.

¢) Determine the normal force
exerted on the wall.

Solution a) The velocities v1 and v2 can be determined from BER-
NOULLI's theorem applied to streamlines between the points @ and @
and between the points @ and @:

1 9 2 _
0vy + Po QUi +po ~ V1L =170,

2 2

2 1 5 _
ovg +po= ,0v2+po ~ V2 =10.

2 2

b) From the continuity equation follows with v; and vz the relation
between the jet-widths:

voboh = vibih + vabsh ~ bg = b1 + bs .

The balance of momentum in wall direction

0 Qov

= 0Q2v2 —0Q1v1 — 9Qovocosa =0 \\
yields with Qo = bohvo, Q1 = bihvi, Q2 = bahvs \\\ '

bocosa = by — by . i ]

0 Qv N 0 Q202
This provides the jet-widths i\
1 1
b1=2b0(1—cosa), b2:2b0(1+cosa).

c) The normal force exerted on the wall is directly obtained from the
balance of momentum perpendicular to the wall:

T pQovosina =N ~> N = pvg bohsina .



Balance 245

Problem 10.12 A horizontally pla- P10.12
ced bend of a pressure pipe is
held by a concrete block B.

Determine the horizontal and
vertical force component exerted
from the bend to the concrete
block.

Given: v1, p1, A1, A2, «

Solution Using the continuity equation, the outflow velocity vz can be
determined:

Ay

Q=A1U1=A2’U2 > 'U2=A2

V1 .

The pressure at location @ follows from BERNOULLI’s theorem applied
to a streamline between points @ and @:

1 2 1 2 0 2 Ay ?
29v1+p1=29v2+p2 ~ pz=p1+2v1 1-

The fluid within the bend
(control volume) is loaded by
the forces R., R, (exerted
by the bend-wall) and the
pressure forces at @ and @.
Thus, the balace of momentum
F = pQ(v2 — v1) reads in
components

—: oQ(vacosa—v1) =p1A1 —p2Ascosa + R,

4 QQ(UQSinOé—O) = —p2Assina + Ry .

This leads to the forces
. 0 2| A A B B As
RI—A1{2’U1|: 2+(A2+A1>cosa} p1 (1 Alcosa)},

_ 0 2 (A1 | Az Az .
Ry—Al{QvA <A2+A1)+p1A1}sma.

Because of the equilibrium conditions these forces must be carried by
the concrete block.
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246 Flow with energy loss

Problem 10.13 A pipeline in a Dy
plane splits into two line sections :
which then again merge. In the line

@, a globe valve G (pressure-loss @
coefficient (1) is built in, while in — —
line @, a clack valve C (pressure-
loss coefficient (2) is present. The
total volume flow throug the pipe
system is given by Q.

©) D,
a) Calculate the volume flows in the pipes @ and @.

b) Determine the pressure loss (related to pg) between inflow and off-
flow.

Given: Dy = 1.4m, D> =0.8m, Q = 5.0m*/s, (1 = 1.3, (2 = 0.3.

Solution a) The generalized BERNOULLI’s theorem between points @
and @ (via pipe @ and via pipe @) yields

500 +Po = 50v7 +p1 = ;003 + ps + Apy, Apu, = Apu,
vl v30
105 + p3 + Apu, G g =62

30U0 +Ppo = 5003 +p2

With the volume flow Q = vA = vD?r /4 follows
Gy _ (02 2 Q2?2 (D1)4

(Cg)_ 1}1) _(Ql) DQ ’
Using the continuity equation @ = Q1 + Q2 leads to the volume flow
in pipe @©:

Q1 = CQ Dos = 153 0 , =298m°/s.

14 S (D L \/ . ( .
G2 (D1) * 0.3 1.4)

Thus, the volume flow in pipe @ is given by

Qo=Q—-Q1=5-298=202m"/s.

b) From the volume flows the flow velocities are determined as
_AQu_ 4208 om0 4Qr _4:202_om
s s

T D2 T 142g T Dir 082n

Herewith, the (related) pressure loss can be calculated:

Apm _ Cl U% —0.25m pr _ CQ U%

=0.25m.
09 29 09 29
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