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Preface

There is something fascinating about science. One gets such wholesale
returns on conjecture out of such a trifling investment of fact.

—Mark Twain, Life on the Mississippi

The Seven Unanswered Questions

This didn’t start out to be a book.

It started out simply as an attempt to distill what we know about networks
after 35 years of beating on the problem. What principles, rules of thumb,
guidelines, and so on could be distilled from what we had seen independent of
politics, and religion, and even the constraints of technology. What could be
said with as little qualification as possible? Were there a few constraints that
could be introduced that would allow us to do a great deal more? What did we
really know that didn’t change? What some might call science.

Over the years, I saw ideas go by that had not been pursued, directions taken
that didn’t seem quite right; sometimes little things, sometimes not so little (but
always affected by politics, market interests, group think, and sometimes just
the imperfect state of our understanding). But the ideas were points that had the
potential to be those subtle inflections on which much bigger things hinged.
Usually they were sloughed off with a fatalistic “Awww! Simplifying here would
only increase complexity elsewhere.” But would it?

As I pursued this seemingly quixotic quest, patterns began to assemble them-
selves that I had not seen before. Patterns that lead to a major collapse in complex-
ity. The structure of networks turns out to be much simpler than we imagined.
There are far fewer protocols. And capabilities such as multihoming, mobility, and
scaling turn out to be a consequence of the resulting structure, not complexities to
be added. No cumbersome mechanisms are required. The increased orthogonality
and regularity of the structure makes the solutions to other problems easier and
straightforward. On the surface, what emerged appears not that different from
what we had been doing. And upon first reflection, some are likely to think, “Sure,
we all knew that.” But deeper, it is very different and requires a cognitive shift that
isn’t always easy to make. And this shift is made more difficult because not all the
concepts key to making the transition are common knowledge.

xiii
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In addition to just codifying principles and rules of thumb, a few key
unsolved problems that were at the crux of a better understanding, problems
that needed the kind of unfettered thought impossible in the heat of product
development or standards deliberation.

I have often said, only half jokingly, that “the biggest problem with the
ARPANET was we got too much right to begin with.” Meaning that for a proj-
ect for which there had been no prior experience, for which there was consider-
able doubt it would even work, there was some brilliant work and some
brilliant insights to the point that it was “good enough,” and there was no over-
whelming need to address the problems it did uncover (which really just says we
weren’t pushing hard enough on the edges). One of the most striking phenom-
ena in the early ARPANET was the number of times that when presented with
what appeared to be a dichotomy, an “oil and water” problem, they found an
elegant simple synthesis that wasn’t either extreme but in which the extremes
were “merely” degenerate cases (and that at the same time told us something we
hadn’t previously understood).!

As one would expect with any first attempt, some were mistakes, some things
were unforeseen, some shortcuts were taken, some areas went unexplored, and
so forth. But even so, the network worked much better than anyone had any
reason to expect. Almost immediately, the ARPANET went from a subject of
research to a necessary and useful resource.?

During its development, a constant guiding metaphor was operating systems.
We always looked to operating systems to provide insight to the solution of
problems and for what should be built. (Many involved in that early work have
attributed the success of the ARPANET in great part to the fact that it was built
by people with operating system, not communications, backgrounds and have
lamented that it is no longer the case.) By 1974, with the network essentially
operational, there was great excitement about what could be done with the
Net.? (It was really a small version of the excitement we saw in the early 1990s

1 say “they” because I was just a “junior” grad student at the time, and while I was there, I
can take no credit for these insights but could only hope that I learned from watching them
emerge.

This book isn’t yet another history of the Net (although there is a lot of that here). I have
found that one cannot give an honest explanation of why things are the way they are based
solely on technical arguments.

Contrary to recent characterizations that we saw the use of the Net as “conversational,” noth-
ing could be further from the truth. We saw it as a heterogeneous resource-sharing facility, and
that was the impetus for experiments and production distributed systems such as Englebart’s
NLS, National Software Works, CCA’s Datacomputer, the NARIS land-use management sys-
tem that utilized a distributed database spread of over the United States invisible to its users,
processing ERTS satellite images across multiple systems, heavy use of Rutherford High
Energy Lab and the UCLA 360/91 by U.S. particle physicists, and so on, all prior to 1976.
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when everyone else discovered the Net.) However, there were some outstanding
problems that we knew about; some expediencies we had taken (as one must
always do in any real project) that needed to be fixed. They were as follows:

® Replacing NCP. Probably foremost in our minds coming out of the
ARPANET was the realization that the Host-Host Protocol would not
scale to a large network, where large was a few thousand hosts. The sepa-
rate control channel shared by all hosts was a bottleneck. The protocol
was overly complex and tied a little too closely to the nature of the IMP
subnet. What sort of protocol should replace it?

¢ Cleaning up the structure. Given that operating systems loomed large in
the early thinking and Dijkstra’s THE paper (1968) was only few years old,
it was natural that layering was used to organize the functionality. How-
ever, it is difficult to say that the initial implementation of the ARPANET
was layered very cleanly. There was still a lot of beads-on-a-string in the
design.* The interactions of the Host-Host Protocol and the IMP subnet
were less than clean. But by 1974, the idea of physical, data link, network,
and transport layers—probably best reflected in the implementation of
CYCLADES with its clean separation of CIGALE and TS—was becoming
well accepted. Beyond that, there was less certainty. And later, we would
find that the lower four layers weren’t quite “right” either but were a bit
more complicated. But we couldn’t say we had a good understanding of
what layers were.> What was the right architecture for heterogeneous
resource-sharing networks?

¢ The upper layers. We had just scratched the surface of what applications
could be developed. We had three basic applications, once again using
operating systems as our guide. We simply replicated the services of an
operating system in a network. One we nailed (Telnet); one needed more
work (FTP); and one we blew (RJE). Not a bad record. There was a gen-
eral sense that there was more “structure” in the upper layers we had not
yet been able to tease out. Even though some thought that Telnet and FTP
were all you needed,® some people had all sorts of ideas for other applica-
tions. We needed a better understanding of what applications would be

4 This is not an uncommon state of affairs in science that the first step in the transition from
one paradigm to another still has a foot in both. “Beads-on-a-string” refers to the phone
company model of networking, as exemplified by X.25, ISDN, ATM, and MPLS, that existed
prior to 1970 and still exists today.

Actually we still don’t, as textbook authors like to point out (and if the ongoing architecture
discussions are any indication).

6 Mail was two commands in FTP.
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useful, how the upper layers were structured, and how they worked with
the rest of the system. And as it would turn out, this is a place where our
operating system model failed us. These first three applications are all
examples of a special case. Oddly enough, this might have been a critical
juncture in the development of the Net...or lack thereof. What did the
upper layers look like?

Application names and directory. Early in the development, the model of
operating systems told us that we should have application names and net-
work addresses. As with operating systems, application names would be
location independent, whereas addresses would be location dependent. In
fact, I remember my mild disappointment when it was announced that
well-known sockets would be used as a stopgap measure, rather than
defining application names and a directory. It was understandable. Com-
ing up with a naming scheme and building a directory would have taken
considerable time. We had only three applications and only one instance of
each of them in each host. Application names and a directory weren’t
really needed immediately. Eventually, we would have to go back and do it
right before there were too many applications. What did naming and
addressing look like in networks?

Multihoming. In 1972, Tinker Air Force Base joined the Net and took us
at our word that the Net was supposed to be robust. They wanted redun-
dant network connections. Upon hearing this news, I distinctly remember
thinking, “Ah, great idea!” and a second later, thinking, “O, *#@*, that
isn’t going to work!” By making host addresses IMP port numbers (i.e.,
naming the interface not the node), the routing algorithm couldn’t tell that
these two addresses went to the same place: our first really fundamental
mistake.” But the solution was immediately obvious! Using the operating
system model, it was clear that we needed a logical address space over the
physical address space. We needed separate address spaces for nodes and
for interfaces. The only trouble was it wasn’t clear what these address
spaces should look like. It was well understood from operating systems
that naming and addressing was a hard problem fraught with pitfalls. Get
it right and many things are easy; get it wrong and things are hard, ineffi-
cient, and maybe impossible. And we knew the difference between getting
it right and getting it wrong could be subtle. We needed to proceed care-
fully. What was the nature of this “logical” addressing?

7 Well, not really. It would be a mistake if supporting redundant connections had been

intended, but it hadn’t. It was hard enough just building a network that moved data. But this
is an indication of how quickly the Net began to be considered “production.”
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¢ Location-dependent addresses. And furthermore, it wasn’t at all clear what
location dependent meant for network addresses. It was a simple problem
in operating systems. Location dependence of memory addresses was easy
and well understood. It was also well understood for cities built on grids.
But data networks were seldom regular grids. What location dependent
meant in a general mesh network without being route dependent was far
from clear. It couldn’t be tied to the graph of the network because that
changed too often. It needed to be some sort of abstraction of the graph
that indicated where without indicating how to get there. But how to
abstract an arbitrary graph was less than obvious. What does location
dependent mean in a network?

¢ Adopting connectionless. The ARPANET was primarily a connection-
oriented network. The ARPANET IMP subnet had more in common with
X.25 than with IP. This was a reasonable conservative choice for a first
attempt, when we had no idea how it would actually work or how a net-
work was supposed to be built and a somewhat built-in assumption that
the network had to be as reliable as possible. Experience with reassembly,
flow control, and such showed that a tightly controlled deterministic net-
work had major problems. The insight that less control (less reliable)
would be more effective came as an intriguing surprise, but an insight that
made a lot of sense. The experience of CYCLADES with the use of connec-
tionless datagrams in a network that essentially created reliable communi-
cations with unreliable mechanisms was elegant, simple, and convincing.’
However, a better understanding was needed of how the connectionless
model behaved. Because it had been used only at low bandwidth in rela-
tively small networks, a better understanding was needed of how it would
work as it was scaled up. After all, it is seldom the case that the pure form
of anything works well in the real world. The simplicity and elegance of
the new paradigm of connectionless looked promising. It also provided
concepts for a replacement for the Host-Host Protocol. We also needed a
deeper understanding of the difference between the connection model and
the connectionless model. Even with our excitement for connectionless, we
had to admit that there did appear to be times when connections made
sense. However, I must admit it took some of us a long time to admit that
(me included). What were the properties of the connectionless model and
its relation to connections and how would it scale in a production system?
Was there a single model that would encompass both as degenerate cases?

8 The connection-oriented packet-switching model is a straightforward, even obvious, approach
to the problem, whereas the connectionless model is an inspired shift in thinking.
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These were the major issues facing networking as we transitioned from the
ARPANET to the Internet. What happened next? Let’s consider how the Inter-
net rose to the challenge of these problems.

Converging on TCP
There were basically four contenders for replacing NCP:

(1) XNS - Sequence Packet, which was similar to the (2) CYCLADES TS
protocol. A packet-sequenced, dynamic window transport protocol with
multiple PDU types, establishment, release, ack, and flow control. Both
XNS SeqPkt and CYCLADES separated the transport and network func-
tions, analogous to TCP and IP.

(3) Delta-t, developed at Lawrence Livermore Lab, was a radically new
idea in protocols with a more robust timer-based synchronization mecha-
nism that essentially eliminated connection establishment and used sepa-
rate PDU types for ack and flow control. Delta-t also separated the
transport and network functions. And, of course...

(4) TCP, a byte-sequenced, dynamic window transport protocol with a
single PDU format and control bits to distinguish various state changes. It
also allowed the two simplex channels to be released separately. In its ini-
tial version, TCP did not separate the transport and network functions.

A few unique features of TCP stirred some discussion:

e The single PDU format was supposed to streamline processing rather than
the additional code to parse several different PDU types. It was expected
that this would save both per-packet processing and code space. Given the
low speeds of processors, this was a very real concern. At the time, this
looked like a move toward simplicity, but with more understanding of pro-
tocols it turns out it isn’t.” In addition, treating the control bits as control
bits in the implementation creates more code complexity. The recommen-
dation for current implementations is to treat them as if they were an
opcode. In fact, looking at traffic statistics in the Net today, it is clear that
syns, fins, and acks are treated as different PDU types (i.e., the number of
40-byte packets).

¢ The single PDU format also had the advantage of piggybacking acks. Cal-
culations at the time showed that piggybacking reduced overhead by 35%

9 Ttis hard to believe, but in 1974, there had been very few data protocols designed, and they all
looked very different. More so than they do today.



PREFACE

to 40%. This savings occurred because at the time the vast majority of
traffic on the Net was character-at-a-time echoing of Telnet traffic by BBN
Tenexes (the then-dominant system on the Net). However, because there
aren’t many Tenexes on the Net today, the savings today is negligible, well
under 10%.10

¢ For a 1974 environment where one size fit all, TCP had marginal advan-
tages in some areas, for others it posed significant burden; for example,
bandwidth constraints were still common, making the header size prob-
lematic for some environments. Today its advantages have disappeared. Its
inability to adapt easily to a wider range of operations are an obstruction
to meeting the requirements of a modern network. Delta-t or TS would
probably have been a better choice. They were not only well-suited for the
environment at the time (delta-t was used for years within the DoE), but
both could also have been easily adapted to modern demands without sig-
nificantly changing their structure.

As shown in Chapter 3, “Patterns in Protocol,” the general structure of this
class of protocols naturally cleaves into a pipelined data transfer part, loosely
coupled with a more general-purpose computational half that requires synchro-
nization for the bookkeeping-associated error and flow control. The single PDU
format complicates taking advantage of this structure and complicates making
the protocol adaptable to the requirements of different applications, leading to
an unnecessary proliferation of protocols. The single PDU format makes less
sense. TCP was very much optimized for the characteristics of the mid-1970s.

Why was TCP chosen? There are many reasons. At the time, with the excep-
tion of the delta-t synchronization mechanism, the differences among the four
protocols were not that great. And overwhelming arguments could not be made
for any of these protocols; that is, none was the overwhelming choice. None of
the arguments mentioned above was understood then. And, it was expected
whatever the choice, it would be used for a few years in this research network
and replaced. After all, NCP was a first attempt in building a network. TCP was
our first attempt in this new direction. No one expected that we would get it
right the first time. At least, one more attempt would probably be needed to
“get it right.” However, probably the foremost factor in the choice was that the
Internet was a DoD project and TCP was paid for by the DoD. This reflects
nothing more than the usual realities of interagency rivalries in large bureaucra-
cies and that the majority of reviewers were DARPA contractors.

10 Do the math. Twenty-character input and 40 characters on output were accepted averages for
terminal traffic at the time.

XixX
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Splitting out IP (nothing new for addressing). Splitting IP from TCP seemed
a necessity. The transport protocol and IP do very different functions (as will
become clear in Chapter 6, “Diving Layers”). The only unfortunate aspect in
the creation of IP was that nothing was done about the multihoming problem.
IP continued to name the interface. But this was understandable. IP was split
out in 19785, soon after the problem was recognized. Although we understood
what the multihoming problem was and theoretically what its solution was,
there was still much about addressing that was unclear. More theoretical and
practical work was necessary. However, it did put us in the uncomfortable posi-
tion of an Internet address naming a subnetwork point of attachment.

NCP is phased out. Finally, after eight years of development, TCP was
deployed in 1982. The Internet did its first (and nearly last) Flag Day switch
from NCP to TCP. In the same time frame (late 1970s, early 1980s), the
(in)famous BBN 1822 Host-IMP hardware interface was being phased out in
favor of a standard interface. For hosts connecting to a packet switch, the
choice was, in most cases, IP over X.25; for others, it was the new-fangled Eth-
ernet. NCP had served well for more than a decade, much longer than anyone
expected.

Saltzer on addressing. In 1982, Jerry Saltzer at MIT published one of the
most cited papers on naming and addressing in computer networks. Saltzer
(1982) outlined how a network must have application names, which map to
node addresses, which map to point of attachment addresses, which map to
routes. These are all of the necessary elements of a complete addressing archi-
tecture.!! The only missing piece then is figuring out what location-dependent
means in a graph. While everyone cites this paper and agrees that it is the right
answer, there have been no proposals to implement it. But in all fairness, Saltzer
doesn’t provide much help with how his abstractions might be applied to the
existing Internet or what location dependent means in a graph.

Host table gets unwieldy—DNS but no application names or directory. From
the beginning of the ARPANET, the Network Information Center (NIC) had
maintained a text file of the current list of hosts and their corresponding IMP
addresses. Every few weeks, the latest version of the file was downloaded. Then
weeks became every week, became every other day, and by 1980 or so it was
becoming hard to manage manually as a simple text file. This was bound to
happen with the Internet continuing to grow. So now was a good time to take
the first step to resolving some of the addressing problems, by putting a scheme
of application names and a directory in place. But there were still only three
applications in the Net, and each host had only one of each. There was still no

1 There is only one refinement we will need (and will turn out to be crucial, see Chapter 5) that
did not exist or was very rare when Saltzer wrote, so it is not surprising that he did not con-
sider it.
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real need for all the trouble of a directory. And everyone was quite comfortable
with the way it had been done for the past 15 years.!? So, DNS was created
essentially as a hierarchy of distributed databases to resolve synonyms for IP
addresses, replacing the old host table. This approach was partly due to the
strong attachment to the idea of naming hosts that was begun with the
ARPANET (even though a careful analysis of naming in networks shows that
naming hosts is not relevant to the addressing necessary for communications).
As long as there were well-known sockets and only one occurrence of an appli-
cation in each host, DNS was all the “directory” that was needed: a means to
maintain a user-friendly form of the IP address. Even though there had been dis-
cussions of a directory since the early 1970s, an opportunity to show some
vision was lost. Already the attitude of introducing no more change than neces-
sary to address the current problem had set in. Was this prudent engineering,
shortsightedness, protecting the status quo, or a bit of all three?

Congestion collapse. In 1986, the Internet encountered its most severe crisis.
The network was suffering from congestion collapse. The classic congestion
curve of increasing throughput followed by a nosedive became a daily occur-
rence. Long delays caused by congestion led to timeouts, which caused retrans-
missions that made the problem worse. Although the connectionless model had
become the cause célebre early in the 1970s, the ARPANET was fundamentally
a connection-oriented network (unless Type 3 messages were explicitly used).
Even after the move to IP, many host attachments to packet switches and
routers were made with BBN 1822 or X.25, both of which flow controlled the
host. As more and more hosts were attached by connectionless LANs with no
flow control, and as 1822 and X.25 were phased out, there was less and less
flow control in the network. The only flow control that existed was in TCP. But
TCP flow control was intended to prevent the sending application from over-
running the destination application, not with preventing congestion somewhere
in the network. Congestion collapse was inevitable. No one had ever experi-
mented with the properties of connectionless networks as they scaled up.!3
Now it had to done on-the-fly.

This was a major crisis. Something had to be done and done quickly. The
Internet was basically unusable. But the crisis was much deeper than simply
keeping an operational network up and running. Control theory going back to
Weiner said that feedback should be located with the resource being controlled.

12 No wonder there were people who thought it was supposed to be done this way. Fifteen years
ago in computing is nearly ten generations—ancient history!

13" There had been calls for experimental networks, and some small ones had been built, but not

large enough to investigate these problems. They were too expensive. No one was willing to
fund simulations of large networks. Not to mention that there were detractors who questioned
whether such simulations would be meaningful.
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But congestion could happen at any switch in the network. To include congestion
control would essentially mean going to a connection model, not a connection-
less model. First, it was known that connection-oriented designs did not work
that well and had bad survivability properties. Second, for the past 15 years, the
networking community had been fighting off the phone company giants in
debates over connectionless and connections (see Chapter 3). We couldn’t admit
defeat, and we didn’t think we were wrong.14 Many believed there was a middle
ground, a synthesis, but so far no one had been able to find it. All proposals
seemed to fall into one extreme or the other. In any case, there certainly wasn’t
time for new theoretical insights. Something had to be done quickly.

Van Jacobson proposed a congestion-avoidance scheme to be inserted into
TCP. It consisted of the now well-known slow-start, doubling the congestion
window with every round-trip until congestion is detected (and then exponen-
tial backoff). Essentially, congestion avoidance creates congestion and then
backs off. This solution maintained the connectionless model and provided a
quick fix to the congestion problem, while researchers tried to understand how
to do congestion control and maintain the seminal properties of a connection-
less network. Furthermore at this point, it was much easier to change the TCP
implementations than to redesign all the switches. Perhaps as important, this
juncture also signals a qualitative shift in networking from flow control being
discrete counting of buffers to continuous control theory mechanisms. How-
ever, after the crisis was past, there was such relief that no one went back to try
to understand what a full solution might look like. And with an all-too-human
trait, rationales appeared to justify why this was the “right” solution. There
were without doubt several reasons: the “it works don’t change it” attitude;!’
the strong adherence to the end-to-end principle; pressure from the outside to
adopt connection-oriented solutions; and so on. But congestion collapse had
been put behind us so that today there is a consensus that congestion control
belongs in TCP. But wasn’t it a stopgap? Could the conditions that led to con-
gestion collapse occur again? What would it take? Perhaps, a killer app that
generated large amounts of traffic, but didn’t use TCP? What if the bulk of traf-
fic on the Net were not using TCP? Like with, say, video?

SNMP. The ARPANET had always had good network management,'® but it
was a function internal to BBN that was running the Net. In the early 1980s, as

14 And they weren’t.

15 At the time, few of the networking people involved had a strong background in control theory,
very few were comfortable with the issues, and so there was greater reticence to start changing
something so large that was working.

16 The stories are legend: BBN calling Pacific Bell to tell them their T1 line from Santa Barbara

to Menlo Park was having trouble and Pacific Bell not believing that they weren’t calling from
either Santa Barbara or Menlo Park, but from Boston.
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more corporate networks were created, network management had become a
topic of concern. By the mid-1980s, experience with the IEEE 802.1 manage-
ment protocol had shown that the elemental “Turing machine” approach,!”
although simple and straightforward, was inadequate. It was also clear by this
time that the key to network management was less the protocol and more the
object models of the systems to be managed. The Internet community pursued
two approaches: a simple Turing machine-like, polling!® protocol, SNMP with-
out object-oriented characteristics; and a more sophisticated extensible object-
oriented, event-driven protocol, HEMS. It is probably significant that unlike the
ARPANET, which came up with innovative solutions to problems, the Internet
of the late 1980s took a step away from innovation by adopting SNMP. There
was strong emphasis at the time on the apparent simplicity, supposedly leading
to smaller code size and shunning concepts that were seen as too esoteric.!® As
it turned out, SNMP implementations are larger than either HEMS or CMIP.20
Its rudimentary structure and lack of object-oriented support, along with a
red herring that we will look at in Chapter 4, “Stalking the Upper-Layer Archi-
tecture,” has proven to be a major obstacle to the development management in
the Internet.

The Web. In the early 1990s, the Web began to take off. The Web had been
around for a while, but was basically just another version of Gopher. Until
NCSA at the University of Illinois extended it with a browser. One of the major
efforts of the supercomputer center was investigating how to present data more
effectively. As part of that, one of their programmers hit upon the idea of putting
a GUI on the Web that made any object on the page “clickable.” The Web took
off and put new requirements on the Net.

The Web becomes the first major new application on the network in 20
years, and as one would expect it created a number of new problems. First of
all, this is the first application that did not come from the operating system
metaphor. For the Web, the protocol and the application are not one and the
same. There may be more than one application using the Web protocol and
more than one instance of the same application at the same time on the same
host. With no application naming structure in place, the Web had to develop its

17 Everything is done with Set and Get on attributes.

18 The use of polling in SNMP has always been perplexing. In the ARPANET, polling was seen
as a brute-force approach that didn’t scale and represented mainframe think. It was an anath-
ema. It would never have been considered, and anyone proposing polling in those days would
have been laughed out of the room.

19 push-down automata, object-oriented, and so on. There was a strong anti-intellectual attitude

then (and still is to some extent) that real programmers “don’t need no book learning.” They
innately know how to design and write code.

20 The OSI management protocol, which was event-driven and was object-oriented.
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own naming scheme, the now ubiquitous URL. However, once again, this did
not lead to consideration of the deeper structure of what this was saying about
the requirements for naming. Instead, there was considerable interest in extend-
ing the existing scheme with the work on Universal Resource Names.

With network management, we again see the focus on the short term and
how to fix a specific problem, but little focus on what this is telling us about the
general problem.

IPng. In the early 1990s, the Internet was growing by leaps and bounds. At
the rate things were going, there was going to be a shortage of IP addresses,
although of greater concern was the growing router table size. The TAB
embarked on a program to determine a course of action. After a thorough
process considering the pros and cons of a new protocol effort or adopting an
existing protocol, they recommended a two-pronged approach of conservation
and replacing IP with the OSI version called CLNP. Conservation consisted of
TANA tightening the number of addresses handed out, the use of private
addresses, instituting CIDR to facilitate aggregation of routes, and forcing most
requests for addresses through the major providers to reinforce the move to
CIDR.

The years of isolation between the Internet and OSI had done their job. The
proposal to adopt an OSI protocol precipitated a huge uproar, which led to the
IAB reversing itself, and the IPng process was begun to select a new protocol.
The requirements for an acceptable IPng were drafted, which among other
things required that the address continue to name the interface, not the node
(even though it had been known since 1972 that a network address, let alone an
internetwork address, should not name a subnet point of attachment). Basically,
the only problem the resulting IPv6 solves is lengthening the address. In partic-
ular, it did nothing to arrest the growth of router tables and nothing to solve
20-year-old deficiencies in the addressing architecture.?! And what it does do, it
makes it worse. Furthermore, the transition plan to IPv6 called for network
address translation (NAT). As it turned out, owners of networks liked NATs for
other reasons. Once one had a NAT and private address space, there was little
reason to adopt IPv6. Had the IPv6 group chosen to fix the addressing problem
and come to grips with the fact that IPv4 was not an Internet protocol, they
could have fixed the problem and avoided the use of NATs.

Why did the IETF not fix a problem that had been known for 20 years? Sev-
eral reasons:

21 g pains me to watch the IETF resorting to spin for IPv6 to cover up its inadequacies. It used to
know how to call a lemon, a lemon.
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1. CLNP did fix it, and there was a strong attitude that if OSI did it, the Inter-
net wouldn’t.22

2. Very few people in the IETF (maybe a dozen or so out of about 1,000)
understood the problem.?> What should be named in a network architec-
ture was not taught in universities. In fact, even today one will be hard
pressed to find a networking textbook that covers this topic.

3. There was a belief that any multihoming would be to different providers,24
which would either have no peering point or they would be so distant that
it would unnecessarily complicate the routing, if not be impossible. There
were also excuses about addresses being provider-based, but this is an arti-
fact of naming the interface and misses the point of Saltzer’s paper that
point of attachment addresses are “physical addresses” but node addresses
are “logical addresses.”

Internet traffic is self-similar. In 1994, a paper was published by a group at
Bellcore showing that measurements of Internet traffic on various Ethernets
exhibited self-similarity. Some found this a revelation—that this was the first
inkling that traffic was not Poisson—when, in fact, this fact had been known
since the mid-1970s.25 This observation created huge interest, and a lot of
researchers jumped on the bandwagon. There was more than a little infatuation
with the idea that the Internet was described by the hot new idea of fractals,
chaos, the butterfly effect, etc. Although not reported in that paper, there were
immediately deep suspicions that it wasn’t Internet traffic per se or Ethernet
traffic that was self-similar, but that the self-similarity was an artifact of TCP
congestion control. This was later verified. TCP traffic is more strongly self-sim-
ilar than UDP traffic, and Web traffic is somewhat less self-similar than TCP
traffic. The lower self-similarity of Web traffic is most likely a consequence of
the “elephants and mice” phenomenon. But interestingly enough, the result that
TCP congestion control was causing chaotic behavior did not precipitate a
review of how congestion control was done. The general view of the community
seemed to be that this was simply a fact of life. This is in part due to the ideas
being currently in vogue and the argument being made by some that large sys-
tems all exhibit self-similar behavior, so there is nothing to do.

22 of course, there were very logical rationales for not changing it that sounded good if one did-

n’t look too closely, but it doesn’t change the underlying reaction.

23 This argument plays out on an IETF list every few months. Some still arguing that they should

be able to take their address wherever they go. Nothing has been learned in the past 15 years.

24 Which is only sometimes the case in the real world.

25 The problem was that bursty traffic required a new approach to modeling. No one had come

up with one (and still haven’t).
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That brings us to roughly the early 1990s, to the time frame when I started
this exercise, just as the IPng was heating up.2® The seven unanswered questions
we started with were still unanswered and in the back of my mind (as they
always had been). It was not my intention to try to solve them. It is a daunting
list. But with each pattern that emerged was measured against whether they
contributed to solving them. I was looking for a clear understanding of where
we were. However, three issues had to be looked at. Two of the issues experi-
ence had shown could wreck an architecture if not confronted and solved. We
have already touched on them: finding a meaningful synthesis of connection
and connectionless, and working out naming and addressing (and in particular
what location dependent means). The religious war over connections and con-
nectionless had been at the root of too many disasters. A true synthesis was des-
perately needed. And, of course, just looking at the seven unanswered
questions, you can see that a number of issues all revolve around a clear under-
standing of naming and addressing. The third arose from my experience with
hundreds of protocol designs more than 20 years, seeing the same things over
and over. I wanted to separate mechanism and policy as we had in operating
systems—just to see what would happen.2”

Keep in mind that this wasn’t my job, my thesis, or my research grant. This
was just something I did in my spare time. The initial foray was very productive.
Separating mechanism and policy revealed patterns I hadn’t seen before and
renewed interest in patterns I had seen 15 years earlier (but at the time did not
seem to go anywhere). By 1994, the outlines of the model presented here were
clear. There weren’t seven layers or five layers, but a single layer of two proto-
cols along with optional information that recursed. The limitations of technol-
ogy and our focus on differences had hidden the patterns from us. This collapse
in complexity immediately solves a long list of problems.

Although there were some key problems to solve, it was never a case of find-
ing just anything that solved them. They were threads to pull on in untangling
the knot confronting us. Merely finding something that would work was not
enough. The solution had to fit into a larger “theory.” If it didn’t, either the
solution or the theory needed to change. I quickly learned (and was often

26 1 remember being at IETF meetings where IPng was under heavy discussion and having just
had the fundamental insight, but having not as yet completely worked it through.

27 Along the way, I picked up a fourth coming out of my frustration with the fact that although

we revel in the idea that network traffic is bursty, we then do everything we can to get rid of
the burstiness and what I saw as a missing piece: We have a body of literature on ack and
flow-control strategies but not on multiplexing (except as a physical layer phenomenon).
Although I have made significant progress on this topic, it isn’t covered in this book because it
just isn’t an “architecture” problem.
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reminded) that it was more important to go where the problem told me, rather
than to do what I thought was best. (Some readers will think I have completely
lost it; others who have had the experience will know precisely what I mean.)

In the mid-1990s, however, no one believed there was any reason to look at
“new architectures.” And in any case, I wasn’t done yet, so I just kept mulling
over the patterns. Sometimes I put the work down for a year or more. Then
some new insight would reveal itself and I would dive into it for a while. Some-
times I would see the pattern the problem was showing me, but it was so at odds
with conventional directions that I wouldn’t fully embrace it. But there would
be continuing hints that doing what the problem was saying would be better.
Finally, my resistance would collapse and further simplifications and insights
resulted.?8

What emerged was a much simpler model of networking. A complexity col-
lapse. We knew the outlines of what addressing had to be fairly early. Jerry
Saltzer gave us the basics in 1982. But a slight extension to Saltzer to accommo-
date a case that didn’t yet exist yielded a result that dovetailed neatly with the
emerging structure of protocols (i.e., it repeated). The results were reinforcing
each other. This was getting interesting. This would happen more and more.
Someone would remark about something that was hard to do, and it turned out
to be straightforward in this model. When capabilities that were not specifically
designed in turn out to be supported, it is usually an indication you are on the
right track.

The problem of location dependence was much harder. It had always been
clear that addresses had to be location dependent, but route independent. It
took years of reading and thinking. But slowly I came to the conclusion that for
addresses to be location dependent in a meaningful way, they had to be defined
in terms of an abstraction of the graph of the network. Looking for mathemati-
cal tools for abstracting graphs led to topology and the conclusion that an
address space has a topological structure. Throughout the 1990s, I talked to
people about this, and by the late 1990s, I had a way to go and an example.

Later, an off-handed teaching question about a detail of protocol design led
to revisiting fundamentals that we all knew, and this turned out to shed new
light on the structure and further simplification.

So, does this book solve all of our problems? Hardly. But it does lay out the
fundamental structure on which a general theory of networking can be built. It
does give us a place to stand outside the current box we find ourselves in and see
what we have been missing. It turns out that it wasn’t so much that what was
missing was huge, but it was key to a simple solution. I have tried to strike a bal-
ance between readability and formality. But one of my goals here has been to try

28 This was the case with the structure of error- and flow-control protocols.
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to find the minimal set of concepts necessary to represent the problem. This
model is very close to being that. This is a fundamental model. Much of what
we have done over the past 30 years is still quite applicable. But this model gives
us a much better basis for reasoning about networks independent of any partic-
ular network or technology. My hope is that this will spark insights and ideas by
others, and I look forward to them.

As noted earlier, several concepts that are key to understanding this model
are not generally known. We will rely heavily on what Seymour Papert2’
the only concepts that make computer science worth learning: problem decom-
position, abstraction, and recursion. Abstraction has fallen into to disuse for the
past couple of decades, but we will put it to good use here. Furthermore, the
architecture we are led to requires a considerable cognitive shift. Therefore, this
book is organized to take the reader from what we know to a new way of look-
ing at things. To bridge the gap, so to speak. Even so, this will not be easy for
the reader; there is some hard thinking ahead.

We first start with a return to fundamentals, to remind us of the minimum
assumptions required for communication and for the tools for working with
abstractions. In Chapters 2 and 3, we look at the familiar world of protocols
and separating mechanism and policy. Here, new patterns emerge that indicate
there are probably only three kinds of protocols, and then later we find that one
of them is more a “common header” than a protocol. We are also able to make
considerable progress in resolving the conflict between connections and connec-
tionless.3?

In Chapter 4, we review our experience with “upper layers” and learn some
things that we did right and some things to avoid. As strange as it might sound,
we find some key concepts here that will be useful in constructing our funda-
mental model, while at the same time concluding that there is no “upper-layer
architecture.” Then in Chapter 5, “Naming and Addressing,” we take a hard
look at that ever-difficult and subtle topic, naming and addressing. We give
special emphasis to Saltzer’s 1982 paper expanding on it slightly, noting how
the current infatuation with the “loc/id split” problem is a dead end. By the time
we reach Chapter 6, we have a pretty reasonable picture of the problem and the
elements will we need and can consider the problem of assembling them into a
system. Here we embark on a simple exercise that any of us could have done at
any time over the past 30 years only to find it yields the structure we have been
looking for. (A revolting department!) This chapter is key to everything.

calls

29 T wish I could cite a reference for this. Seymour assures me he said it, but he can’t remember
where, and I can’t find it!

30 We don’t address the problem of connectionless scaling because this isn’t strictly an architec-
tural problem, although the structure presented here facilitates a solution.
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In Chapter 7, “The Network IPC Model,” we do the unpleasant task of
assembling all the pieces we have uncovered in the previous six chapters into the
elements of the new model and consider its operation. This entails emulating
Johnson’s harmless drudge as we define all the concepts required. Messy work,
but it has to be done. We consider how new nodes join a network and how com-
munication is initiated. Chapter 8, “Making Address Topological,” returns us
to naming and addressing to consider the problem of what location dependent
means and how to make useful sense of the concept. In Chapter 9, Multihom-
ing, Multicast, and Mobility,” we look at how multihoming, mobility, and mul-
ticast/anycast are represented in this model and some new results that are a
consequence of this model. In Chapter 10, “Backing Out of a Blind Alley,” we
take stock, consider the process that led to seven fundamental issues going
unsolved for more than a quarter century, and look to the future.
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Chapter 1

Foundations for Network
Architecture

Architecture is doing the algebra, before doing the arithmetic.

A good (network) architect suffers from the topologist’s vision defect. He
can’t tell a coffee cup from a doughnut.

Architecture is maximizing the invariances and minimizing the
discontinuities.

Introduction

A field cannot consider itself a science until it can progress beyond natural his-
tory; moving from describing what is, to positing principles or theories that
make predictions and impose constraints.! And it shouldn’t be just any theory;
we need a theory that has the fewest assumptions and the greatest breadth: a
theory with the fewest concepts, the fewest special cases, that includes the
extremes as degenerate cases of a more encompassing model. Computer science,
in general, and networking, in particular, has been slow to make this transition.
Several times during the past 30 years, I toyed with such ideas, but never with a
very satisfactory result. A few years ago, however, I started making a few notes:
once again, attempting to cull principles from our experience in networking to
get a clearer picture of what we know and what we don’t. I was doing this for
its own purposes before tackling another problem. Quite unexpectedly, patterns
that had not previously been apparent (at least not to me) began to assemble

L The distinction between natural history and science was drawn by the ecologist Robert
MacArthur in his seminal work Geographical Ecology (1972).
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themselves. Charles Kettering Z believed that within every problem lies its solu-
tion; we only have to learn to listen to the problem—in a sense, learn to “follow
the grain” of the problem. This time, as these patterns emerged, it seemed logi-
cal to see where they would lead (but not without a few of those embarrassing
moments when I went astray, reverting back to our old ideas, only to have the
“problem” set me straight).

This book does not claim to be proposing a “new paradigm” or “a whole
new way of looking at networking” (as is common), nor does this theory
accommodate everything that has been done before. (It would be incredibly for-
tuitous if every protocol ever designed obeyed principles as yet unrecognized.
However, these principles do shed light on why things were done as they were.)
Nor do I claim that this theory answers all of our questions, but it does answer
many of them. It does make things simpler, and with that simplicity, one now
has a powerful framework from which to tackle many open questions. In some
cases, the solutions were staring us in the face: We had the tools, but we just
weren’t looking at them the right way.

Why had we (including myself!) not seen them before? There are many rea-
sons, but probably the most significant were the following:

«

¢ Early imprinting. The domain of the problem space of networking in the
early 1970s was microscopic in comparison with the domain of the prob-
lem space today. Some patterns were simply not yet visible or were masked
by the constraints of those early systems. Quite naturally, those early
assumptions continued to condition our thinking.

e Early success. Our initial efforts were really pretty good. Some very bright
people made some significant insights early that were either correct or very
close, which meant there wasn’t that much to fix. (Our biggest problem
was that we got too much right to start with!)

® Moore’s law. The two-edged sword of Moore’s law not only dropped the
cost and increased the capability of equipment at an unprecedented rate,
but it also allowed us to avoid fundamental problems by simply “throwing
hardware” at them.

¢ Socioeconomic forces. These forces (probably the most significant factor in
this list) constrained solutions because before the fledgling research had
done more than scratch the surface, it was thrown into a fierce competitive

2 The prolific inventor and engineer (1876-1958) who along with Alfred P. Sloan made General
Motors the largest corporation in the world.
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battle over who would dominate the merging computer and telecommuni-
cations market, where technical solutions were used to determine who
made money. Starting very early, this battle distorted our understanding,
creating a “bunker mentality” of warring camps that inhibited the pursuit
of deeper understanding and real progress. We still live with this legacy
today.

What this book does claim is that a small number of principles can, when
applied to our current ideas of network architecture, lead to a much simpler,
more unified theory of networking. This theory can be exploited to great advan-
tage in the design, development, manufacturing, deployment, and management
of networks. It should also contribute to a new rigor in our research. And thus,
results can be more easily compared and evaluated, making it easier to under-
stand their implications (that is, which results are more general and which are
more specific). What is remarkable is that we were not that far off. With a few
adjustments here and there, recognizing that some things were more similar
than different, things fell into place, and a much simpler structure emerged.
There was, in some sense, a complexity implosion.

Were we close enough to use existing protocols? Unfortunately, not in all
cases. Some of our existing designs have just too many warts and lack the hooks
necessary for things to work sufficiently smoothly to achieve the benefit of these
results. However, most of the techniques we have perfected can be used to tran-
sition in a straightforward manner to an architecture based on these principles.
Many in our field have often waxed eloquently about how special and how dif-
ferent from other scientific fields computer science is. It is different but not in a
way that should leave us complacent. The most important difference between
computer science and other scientific fields is that:

We build what we measure.

Hence, we are never quite sure whether the behavior we observe, the bounds
we encounter, the principles we teach, are truly principles from which we can
build a body of theory, or merely artifacts of our creations. Far from being
something that should allow us to relish our “special” position, this is a differ-
ence that should, to use the vernacular, “scare the bloody hell out of us!”

Recognizing that the optimal decisions for a good implementation will change
with technology, but believing that there are general principles for networking, I
have worked with the assumption that principles will be independent of imple-
mentation; but I have tempered that with the recognition that rampant generality
is seldom beneficial and the “right” answer also leads to a good implementation.

In what follows, I try to present the architecture in brief. The primary intent
is to describe the elements of the theory and identify the train of reasoning that
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leads to the conclusions (without boring the reader with the fits and starts that
actually occurred, and thus avoiding further embarrassment). Very few concepts
here are truly new, but some of these concepts may be used in different or novel
forms from those for which they were originally proposed. In some cases, I con-
trast the implications of this architecture with traditional views, but for the
most part this is left as an exercise for the reader. Thinking about this architec-
ture is a bit like working with a non-Euclidean geometry. The objects being
manipulated are familiar, but the axiom set we are working from is somewhat
different. So, the reader must always be aware (and we will stress) that the con-
cepts and results must be interpreted not in the conventional axiom set but in
this alternative. The result is a much simpler network architecture that will have
higher performance, lower manpower needs, and most important of all, it
scales.

Before delving into the pragmatics of networking, however, we need to
remind ourselves of where we came from.

Beginning at the Beginning

In 1921, a young philosopher returning to Cambridge from service in the Ger-
man army during WWI published a short 75-page book with an Introduction by
Bertrand Russell that had an immediate and revolutionary effect on philosophy
and mathematics. It basically made obsolete much of the past 2,000 years of
philosophy, pointing out that many of the problems considered by philosophy
were pseudo-problems and as such were either nonsensical or could have no
solution. The book made it clear that words meant only what we want them to
mean (opening the door for modern propaganda), that the entire world could be
described by a finite list of precise logical statements. The book gave rise to the
Vienna Circle, logical positivism, and symbolic logic and would have a major
impact on the field of computer science when it arose roughly 25 years later.
The philosopher was Ludwig Wittgenstein, the book was Tractatus Logico-
Philosophicus, and it began like this:

1.  The world is all that is the case.
1.1 The world is the totality of facts, not things.
1.11 The world is determined by being the facts, and their being all the facts.

In such a rigid logical structure through six fundamental statements with a
varying number of substatements, the book develops a link between logical
propositions and reality:
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2. What is the case—a fact—is the existence of states of affairs.
3. A logical picture of facts is a thought.

4. A thought is a proposition with a sense.

5. A proposition is a truth-function of elementary propositions.

6. The general form of a truth function is (p, & N(&)). This is the general
form of a proposition.

And so on, concluding with perhaps the most revolutionary and devastating
statement ever made in philosophy, mathematics, or science:

7. That of which we cannot speak we must pass over in silence.

In one straightforward sentence, the Tractatus destroyed any hopes of put-
ting what was then called moral philosophy (ethics, morals, and religion) on
any kind of formal base. Because the terms could not be precisely defined and
the value judgments were always cultural or relative, nothing could be said.
Proper civilized behavior could not be argued from first principles, as many
from Plato to Kant had tried to do. The Tractatus was immediately embraced by
mathematics and science as holding out a Holy Grail that all of science and
mathematics could be described by a precise logical system as complete as
Euclid’s Geometry, Newton’s Principia, or Maxwell’s Treatise. Attempts were
made to create logical models of various branches of science, and when comput-
ers came along, the Tractatus was used as not only the basis for logic and pro-
gramming languages, but also as the basis for artificial intelligence and database
systems. The database field coined the phrase conceptual schema to describe the
collection of logical statements that would define a domain, an enterprise. Later,
artificial intelligence called the same concept a knowledge base and developed
expert systems. Both of these are implementations of what Wittgenstein meant
when he wrote 1.1. In both, “the world is all that is the case,” and the world is
represented by a collection of logical propositions.

The same approach was applied to distributed systems. For two parties to
communicate, they must have a shared conceptual schema; they must have a
common language or protocol and some common understanding about what
strings in the language stand for. Without this, communication is impossible,
whether between machines or between people. The important things to a proto-
col are the things it understands. This approach provided a very nice model for
communications, even in the more mundane error-control protocols. The
shared conceptual schema of protocol state machines was the information
exchanged about flow control, acknowledgments, addresses, and so on. The
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user’s data was outside their shared conceptual schema and was ignored (or
passed to another protocol machine). Data is this incomprehensible stuff that
shows up every so often and is ignored and passed on.

But beyond this, the usefulness of this approach finds its limits, although we
will have use for it when we come to applications. Like any good engineer (and
He had studied earlier as an aeronautical engineer), Wittgenstein, had taken the
easy way out and provided an existence proof but did not tell us how to con-
struct these logical worlds (or to know when we had all the necessary facts).
Although there is much to be gained by understanding the Tractatus, we are pri-
marily interested in what it teaches us about reducing problems to their bare
bones to see what is really going on (but also to take a lesson from the penulti-
mate statement of the Tractatus):

6.54 My propositions serve as elucidations in the following way: anyone
who understands me eventually recognizes them as nonsensical, when
he has used them—as steps—to climb up beyond them. (He must, so to
speak, throw away the ladder after he has climbed up it.)

At several points in what follows, we will find it necessary to throw away the
ladder. Concepts and constructs that have helped us to get where we are will be
discarded so that we may get beyond them. It is not so much that these concepts
are wrong (after all, we might never have reached our new insights without
them) but more that they have done their job and now it is time to move beyond
them. At these points, the reader may have to work a little harder to reinterpret
familiar concepts from a new perspective. I try to warn the reader when this is
necessary.

Let us start by first considering two meta-level topics that will be important
to us as we proceed:

1. The abstract method by which we will proceed (the “nature of the
algebra,” if you will)

2. The role of formal methods in network architectures
But we will always want to keep in mind some sage advice:

In the practical arts, the theoretical leaves and blossoms must not be
allowed to grow too high, but must be kept close to experience, their
proper soil.

—Clausewitz
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If we have a correct theory but merely prate about it, pigeonhole it and do
not put it into practice, then that theory, however good, is of no
significance. Knowledge begins with practice, and theoretical knowledge is
acquired through practice and must return to practice.

—Mao Zbe Dong

I have referred to these quotes as a philosophical triangulation. When two
important voices of the right and the left say the same thing, it is probably right.
In the course of this journey, we will have reason to delve into what might seem
like some fairly esoteric topics for the practical task of engineering networks.
The insights here have been gained from practice. These forays into theory will
allow us to do the algebra, simplify the arithmetic, and thereby simplify the
practice. The first of these uses of theory is applying levels of abstraction to the
problem.

Levels of Abstraction

Levels of abstraction represent an important tool for managing the complexity
of a system or architecture. There is a common misconception that top-down
design starts at the user interface and goes down to the hardware. This is not the
case. This confuses the levels of abstraction in the design process with the layers
of the system being designed.

Top-down design starts at a high level of abstraction, which is refined
through successive levels, each level less abstract than the one above, to the
implementation. Even though the implementation may itself create objects,
which hide complexity and therefore are considered more abstract (and possibly
layered), from the design perspective the entire implementation is all at the same
level of abstraction.

This is important because it allows the designer to ensure that the use of
“first-order effectors” across all layers of the system being designed is consis-
tent, before moving the design to a lower level of abstraction and lesser-order
effects. Two orthogonal forms of abstraction have been found useful in architec-
tures: levels of design and specification, and the layering of the architecture.
Because there will be much more to say about layering in Chapter 6, “Divining
Layers,”our discussion here is brief.

The concept of layering evolved in the late 1960s and early 1970s in the
design of operating systems and software in general. Layering is an expansion of



CHAPTER 1 FOUNDATIONS FOR NETWORK ARCHITECTURE

the “black box” concept developed by Norbert Weiner. A user of a black box
can only observe what the box does (that is, the service it provides), not how it
does it; the mechanisms that implement its external behavior are hidden. In fact,
there may be many mechanisms to generate the same external behavior. In soft-
ware, layering was used to build up layers of abstraction so that the specifics of
the hardware (processor and peripherals) could be masked from the applica-
tions and to allow more efficient resource management by the operating system
and provide a portable, more user-friendly environment for programming.>

For operating systems, layering tends to represent a collection of black boxes
that take a class of different mechanisms (for example, device drivers) at one
level of abstraction and present an interface with a higher level of abstraction
(for example, device independent) to the layer above. Each layer added a level of
functionality that created a greater abstraction with the hardware as the bottom
layer and the user as the top layer. Similarly in networks, layering provided
abstraction from the specifics of a network hardware technology.* For example,
the network layer creates an abstract service that is independent of the underly-
ing media. This was seen as very similar to what operating systems did to make
all terminals and storage devices look the same to programs.

Although the use of layers has evolved in operating systems from Dijkstra’s
THE, and even as innovative developments in operating systems continue, the
layering of microkernel, kernel, user is fairly well accepted. Why are layers in
networks still controversial? To a large extent, it is due to the effects of the war
alluded to earlier. By the time the industry settled on designs based on
Multics/UNIX or DEC’s VMS and a few others for specialized environments,
there had probably been 20 to 30 major operating systems (probably more) of
radically different architectures developed and thoroughly tested over a period
of about 10 years. In contrast, for networks, we settled on the current approach
after considering just three or four networks over three or four years. We simply
did not explore the problem space as much. It is a much greater effort to create
a new kind of network than a new kind of operating system. Further, the effect
of the “war” tended to push thinking into one camp or another.

Recently in networking, there has been a flight from layers by some, although
it is unclear to what (a response to the perception that the traditional layered
approach was interfering with solving the problems). But we must be careful. As

3 The concepts for creating portable operating systems and other software applications derive
from the same source: The system is layered with a canonical interface at one of the middle
layers and the hardware specific layers below that.

4 The seven-layer OSI model was the creation of Charles Bachman based on his experience at
Honeywell with database systems and with Multics.



LEVELS OF ABSTRACTION

noted earlier, communications requires a set of objects with a shared conceptual
schema. Given that we may want to hide some of the complexity of that shared
schema, so that we can build other objects with different shared schemas that
use it, would seem to indicate that these collections of objects with the common
shared schemas have a structure something like a “layer.” The concept of layer
seems inherent in the problem. The question is what constitutes the “right”
schema for these “layers.”

For design and specification of network architecture, four levels of abstrac-
tion have proved useful: the model, the service, the protocol and interface, and
the implementation. We start with a model or architecture, and each lower level
of specification refines the abstraction of the level above to add more detail.
This step-wise refinement is a method of exposition and specification, not nec-
essarily one of design. While the design process makes use of these levels of
abstraction, the process must move up and down successively approximating
the final solution. However, this approach does allow components of lower lev-
els of abstraction to be modified with no effect on higher-level components and
little or no effect on components at the same level of abstraction. A good archi-
tecture will both specify constraints and allow sufficient flexibility for a wide
range of implementations.

The aphorisms at the beginning of this chapter attempt to characterize what
constitutes a good architecture.> The more formal definition I have used is close
to the common dictionary definition of architecture:

A set of rules and constraints that characterize a particular style of
construction

Like the weather, it is not possible to have no architecture (although some
have tried hard not to); at worst, one has the Karnack or accidental architec-
ture—that is, given the system, what is the architecture?® One must distinguish,
for example, between Victorian architecture and a Victorian building built to
that architecture: type versus instance. Most activity in the field of architecture
consists of creating buildings to an existing architecture (that is, creating
instances of a class). In this case, we are developing a new architecture. Not a
radically new architecture, but one definitely based on our experience and using
many components of previous architectures. However, it is our belief that this

5 This word is much abused in our field. T have seen papers where “architecture” was used as
synonymous with hardware.

6 For those too young to remember, this is an allusion to a recurring skit on U.S. television by
Johnny Carson on The Tonight Show, where The Great Karnak divines the answer to ques-
tions before they are posed to him.
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new architecture avoids many of the ornate and cumbersome constructions
required in the past and will generate much simpler, more powerful constructs
and few special cases. Many capabilities that have required explicit functionality
will be found to be degenerate cases in this model. Many capabilities that were
difficult to accommodate are included easily. And most important, it is a model
that inherently scales. At the same time, however, we are also trying to identify
architectural principles that are invariant with respect to media and implementa-
tion. (And where we do make choices, I make them as explicit as possible.)

Model

The definition of the model of a layer, service, protocol, or distributed applica-
tion is one of the more important aspects in the process of design and specifica-
tion. The model, in essence, defines the shared conceptual schema of the
communication. It defines the objects in the universe of discourse, their attrib-
utes, the operations that can be performed on them, how they relate to each
other, the communication of information among them, and so on.

Models exist for all protocols, but they are most important for distributed
application protocols. Because the models for the lower-layer protocols are con-
cerned with ensuring the integrity and resource management of the communica-
tion, they are essentially similar, self-contained, and require little or no
interaction with the entities outside the protocol itself. Here the model is prima-
rily of use as an explanatory tool to facilitate the description of the protocol’s
behavior. Application protocols differ qualitatively from the lower-layer proto-
cols. Application protocols are concerned with modifying state on objects exter-
nal to the protocol itself, while data transfer protocols modify state internal to
the protocol. For example, a file transfer protocol modifies the state of the oper-
ating system’s file system (external), where TCP modifies its state vector internal
to the protocol. Unfortunately, there are a wide variety of file systems with
widely varying properties. Although the corresponding systems may have differ-
ent models, the application layer protocol must establish a common model for
the communicating systems. In effect, the model describes the semantics of the
distributed application. In recent years, this degree of rigor has been replaced by
the implementation.

There will be much more to say about this when we discuss upper-layer
architecture. Keep in mind that specifications are required for four levels of
abstraction: the model, which we are primarily concerned here; the service and
the protocol, as described in the following sections; and the implementation,
which at least in source code is still an abstraction. Most of what is discussed in
this book is at the model or architecture level. Our focus will be on the models
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for protocols and layers and how they all fit together to create a working
system. We try to identify the properties that allow them to fit together well
and, in some cases, directions that lead to a less-than-good fit. We also consider
specific protocols and architectures to illustrate various points.

Service

Using techniques to hide mechanism has always been important to the design and
implementation of complex systems. Hiding mechanisms has been used through-
out computer science: the concept of procedure in most programming languages,
layers of an operating system, the object-oriented model, and so on. All of these
techniques use the concept of hiding mechanisms behind an abstract view to man-
age complexity. This has the effect that the interactions with the object are simpli-
fied and allow the mechanisms by which the object provides its function to be
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modified without affecting the user. This greatly enhances its utility.

In communications, we embodied this idea of hiding mech-
anisms in the construct of layering. The concept of layer was
essentially the concept of a process or object recast in what
was thought to be a less-rich environment with only a few
types of “objects” and very limited forms of interactions
among them. The layer boundaries hid the mechanisms of a
layer from the layer above and below. The crucial difference
from operating systems was that a layer was a “distributed
black box” whose internal mechanisms were coordinated by
the exchange of information, forming a loosely coupled
shared state.

The concept of service is one of the more important con-
cepts in the development of communication architectures.
The definition of service as used here is an abstraction of the
interface between layers that is system independent.

Service is a level of abstraction higher than protocol and
interface and a level of abstraction lower than the architecture
or model. It is from this abstraction that the importance of
the concept is derived. On one hand, the concept of service
allows one to hide the mechanisms of a protocol from its user,
thereby simplifying the user’s interactions with the protocol.
At the same time, it allows the behavior of one protocol to be
decoupled from another, thereby allowing the protocol some
flexibility in responding to its users by not tying its behavior

Words Mean What We Want
Them To

The International Telecommuni-
cation Union (ITU) and others
with a telephony background
use the concept of service and
interface as a boundary
between systems or boxes.
Therefore, when most ITU docu-
ments use the terms service or
interface, they are really talking
about properties of a protocol;
for instance, X.25 is an interface
specification between a Data
Terminal Equipment (DTE) and
a Data Communication Equip-
ment (DCE). This is how some
were deluded into believing that
they could automatically gener-
ate a protocol from an abstract
service definition, such as
X.407. ltis, in fact, easy to gen-
erate a protocol from a protocol
specification. However, it is only
possible to generate a protocol
from a service specification for a
very small tightly constrained
class of protocols and impossi-
ble for the vast majority.
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too tightly to its interactions with its users. Providing this decoupling at critical
junctures is crucial to the successful design of complex systems such as these.

Although closely related, a service is #ot an interface. Interfaces are local to a
particular system. An interface must be concerned with several elements—such
as maximum buffer size, procedure entry/exit or system call conventions, buffer
management, and interface flow control—that must be integrated with the local
operating environment. It is important to leave as much flexibility as possible in
these local matters to ensure that efficient and cost-effective implementations
can be built for a variety of operating environments. For purposes of architec-
ture, therefore, the concept of service is used to describe the aspects of an inter-
face that all interfaces must have regardless of how the local issues are solved.
Every protocol will be associated with a service definition, but some interfaces
may not exist in an actual implementation. In other words, a given implementa-
tion may choose to not explicitly implement certain interfaces, in cases where
those interfaces would not be used. The choice of a representational method
will carry with it certain implications. These, of course, must be explicitly
understood so that interfaces using radically different models can be created.
Issues such as whether calls block must be addressed.

In general, a service is defined to be independent of the protocol. Any num-
ber of protocols can satisfy a particular service; and so, with a well-designed
service, it should be possible to change protocols without changing the service.
This is especially true with the lower layers. A service defines a set of require-
ments and constraints on the operation of both the service user and the service
provider (that is, the protocol state machine). This is less often the case with
applications, where interfaces are necessarily required to reflect the specific
nature of the application (although, a greater degree of decoupling of interac-
tions between the layer boundary and elements inside the layer makes many of
these considerations moot).

A service definition consists of two parts:

1. A set of service primitives, which specify the operations to be performed
on the service and a set of parameters that are used as arguments to the
operations

2. A set of rules that determine the legal sequences in which the service prim-
itives can be invoked
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With a nod to Frege (1892) two service definitions will be considered equiv-
alent when the two service definitions have the same service primitives, param-
eters, and partial state machines. And two service definitions will be considered
as similar if the two service definitions have the same primitives and partial state
machines. Most often when we speak informally of two services being the same,
it is this latter relation that we have in mind. This form of similarity implies that
although different parameters may be passed, the behavior is the same.”

A service definition is defined for a layer; it is specified as a partial state
machine for the interaction of the user of the layer and the protocol machine
(PM) in the layer of a single system. A protocol may have to adapt its behavior
to the constraints of the service definition. This can happen when the service is
defined as independent of the protocol (and to some degree it should be) or
when a new protocol is being developed to an existing service definition. A serv-
ice definition never states explicitly that a service primitive submitted to one PM
causes another service primitive to appear at the peer PM. Any such association
is made by the protocol. A service definition specifies requirements on the serv-
ice user and the service provider (that is, the protocol). There are two primary
reasons for this discipline:

¢ It allows the protocol designer some flexibility in choosing the correspon-
dences of actions on one side to actions on the other.

e It also enforces the view that the behavior of the service is defined com-
pletely in terms of the events it has seen, not in terms of behavior presumed
to have happened elsewhere.

With any interface design, there is always the question of how much to hide
and how much to expose. As usual, some think that everything should be
exposed, whereas others believe nothing should. Experience has shown that
although it may be interesting to expose as much as possible, this leads to sys-
tems with high maintenance costs and poor scaling properties. It is important to
present the user with an abstraction that captures the important elements.
Remember, we want to find the right abstraction that allows the user to specify
what is required without actually giving access to the mechanisms. Creating a
good service model requires a good understanding of the system. If there is not
a good service model, the system is not well understood. It does require some

7 The genesis of the concept of “service” came during the OSI effort and was motivated not by
a desire for formalism, but by the desire of manufacturers to protect their turf and avoid stan-
dards defining internal interfaces or APIs. As often happens in the dynamics of the standards
process (not unlike the hostage syndrome) as the work progressed, the resistance to defining
such APIs waned, but the abstraction was found useful and remained.

13
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hard work to achieve that understanding, but that is supposed to be what we
do. Exposing everything is taking the easy way out.

One could argue that the expose-everything approach is only applicable in
data communications, where the network has a single physical medium and
hence a single interface. In a network, layers have limited scope with different
media and, with the expose-everything model, different interfaces. A user appli-
cation will not have access to every interface of every segment that its data trav-
erses, nor will the user application even know what kind of interface traversed.
To modify the parameters for these intervening segments, the information must
be communicated to where it is used. Because it is impossible to know all the
interfaces that might be encountered, one will need some abstract model of the
parameters that can be used as a common representation of the parameters.
And, so, we are back to the don’t-expose-everything model. The fact that the
expose-everything model has gotten any consideration in networking at all is
difficult to fathom. It is really only applicable to data communications.

Protocol and Interface

The protocol and interface level of specification is probably the most important.
This is the last point before jumping off into specific implementation design deci-
sions. A protocol specification defines the rules and behavior required by any
entity participating in the transfer of data. The protocol specification defines the
sequences of message exchanges among the participants. There will be much
more to say about protocols later, but here I merely want to establish them as a
level abstraction between the service and model on the one hand and the imple-
mentation on the other. A protocol specifies the minimal state machine that any
implementation must conform to. Traditionally, the protocol specification does
not specify implementation considerations such as buffering strategies, interac-
tions with the local operating environment, and so forth. Protocol specifications
should be taken as requirements documents, not design specifications.

The protocol specification should not diverge too far from the “normal”
implementation strategy. Experience shows that this can lead implementers too
far astray. Even though implementations may take on any form to meet the
requirements of the environment in which they may exist, the specification
should not make it difficult to discover the “normal” implementation strategy.
Conformance testing should be restricted to only those behaviors that are exter-
nally visible, and thus give the implementers as much freedom as possible to
construct efficient implementations. This is a good place to reiterate the oft-
quoted rule that an implementation should be conservative in what it generates
and liberal in what it accepts. In particular, the point of testing is not to ensure
that any implementation can detect any infraction by another implementation
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but to ensure that the probability is as low as possible of a misbehaving imple-
mentation being fielded that will cause catastrophic failures in other systems.

Standard (or common) application programming interfaces (APIs) may be
defined for specific languages and operating systems at important junctures in
an architecture to facilitate the development of portable software. For the same
reasons that some implementations will not implement explicit interfaces, APIs
are not necessary at all layers. For example, in the lower layers, the transport
service has been one such important juncture. In general, this service should be
similar to the interprocess communication (IPC) service of the operating system.
(The only difference being in the syntax of the names used to access a peer.) In
some cases, it may be necessary for the local system to emulate the model of
local interface functions to conform to the API. If the API’s model of these func-
tions differs significantly from those of the local system, there may be significant
performance or resource penalties on the system.

Implementation

This is the lowest level of abstraction, where the rubber meets the road. As indi-
cated previously, an implementer is free to construct an implementation in any
form as long as the external behavior is consistent with the specification. The
implementation must address all the issues not covered by the protocol specifi-
cation, such as local buffering strategies, interactions with the operating system,
and so on. And an implementation must be carefully written to ensure that any
data received does not cause aberrant behavior.

Specifying Protocols

Specifying the protocol and specifying the interface are critical steps. Experience
has shown that simple prose is very insufficient and relying on just the imple-
mentation can over specify and lead to monoculture problems. Good specifica-
tion is needed to communicate the protocol to others, provide a basis for
analysis, and so forth.

Informal Specifications

It is equally important that there are informal and formal specifications for pro-
tocols. Good specifications for protocols are crucial not only to communicating
the protocols to other designers and implementers, but also as part of the design
process. It is equally important to keep in mind the nature of specification. An
informal specification of a protocol is not a journal article about the protocol.

15
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An article and a specification serve two very different but related purposes. An
article is primarily intended to give the reader an understanding of the overall
behavior of the protocol, so the reader has an idea of “where things are going”
and a general idea of what happens when things go wrong. An article is
intended to be read from beginning to end.

Although a specification may be read from beginning to end (it is seldom an
enjoyable affair, nor should it be), the primary purpose of a specification is as a
reference document—most often used to look up what happens in a particular
situation. Therefore, it should be organized such that it is easy to find the
answer to such questions. It is this property that makes a specification difficult
to read from beginning to end but easy to use for the engineer building an
implementation or attempting to answer specific questions. The article (or an
abridged version) may be included in the specification as a narrative overview,
as introductory material. Although there are many variations on this outline,
with some items being omitted and others included, the benefit of the outline is
to remind the writer of what must be written, often an invaluable service.

Formal Description Techniques

Beginning in the mid-1970s, the first attempts were made to apply Formal
Description Techniques (FDTs) to programs. These attempts were interesting,
but the generality of most real-life programs led to formal descriptions that
were often much more complex than the programs they described. At about the
same time, experience with the early prose protocol specifications showed that
even the ones thought to be very good were woefully ambiguous when used by
people outside the initial developers. So whereas FDTs for general-purpose pro-
gramming were mainly concerned with proving correctness, the use of FDTs in
networking was also concerned with being able to unambiguously communicate
the specification to other implementers. In the late 1970s, several researchers
realized that applying FDTs to protocols could be much more successful because
of the constraints on their behavior. Considerable activity in this area meant
that by 1978 it was possible to publish an annotated bibliography of 60 papers
on the topic (Day and Sunshine, 1978)8. A thorough evaluation of nearly 25 dif-
ferent FDTs by applying them to the Abracadabra Protocol (alternating bit pro-
tocol) to understand their properties, lead to the development of three standard
languages for the formal description of protocols: one for each of the two major
paradigms of formal description, Extended Finite Stale Machine Language

8 This may be the first network-produced paper. I had been living and working for two years as
the University of Illinois at Houston (TX) telecommuting over the Net; the database for the
bibliography was on a PDP-11/45 in Urbana, Illinois; and the paper was edited on Multics at
MIT and then shipped to Carl Sunshine in California, who did the final editing and printing
and then surface mailed it to the conference in Liége, Belgium.
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(Estelle), using an extended state machine model, and Language
Temporal Ordering Specification (LOTOS), using a temporal logic model; and
one for the ITU, Specification and Definition Language (SDL), also using an
extended state model. Others have been defined since but are variants of either
of these two models or one of the others. By the early 1980s, there were compil-
ers and automatic verification tools for all three languages.

If certain guidelines are followed, FDTs are beneficial in the design and devel-
opment of a protocol. They have proven useful in uncovering numerous bugs,
races, hazards, and deadlocks during the design process. Unfortunately, the use
of FDTs is greater in the design of hardware than in software. They have been
applied to software applications where correct or fail-safe operation is crucial.
The use of a good FDT should greatly shorten the design and development
cycle. However, certain rules of thumb should be applied:

¢ The FDT should be no more complex than the programming language
used for implementation. Otherwise, there is a greater probability of an
error in the formal description than in the implementation (a sort of “com-
plexity artifact” effect).

¢ The FDT should be useful as a design tool. If the model of the FDT does
not fit the mode of design, it will get in the way of the design process. This
means its use will be avoided, and the probability increases that the trans-
lation of the design to a formal description will contain errors.

¢ An FDT is just another form of programming. To be understandable, it
must be documented just as code must be. In other words, a formal
description does not preclude the need for an informal specification or
inline comments.

¢ There should be analytical tools that can analyze the formal description to
ensure against protocol deadlock, data loss, races, hazards, and other
pathological behaviors.

¢ The formal description should not require more specificity than necessary.
A formal description is not an implementation and should not impose con-
straints on implementations.

e It should be easy to move from the informal to the formal specifications
when referencing the specification.

There are basically three forms of such techniques or languages:

® Mathematical or language-based. The mathematical techniques have been
intended for specifying general algorithms, rather than tailored to defining
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the much smaller subset of algorithms represented by protocols. They are
generally based on a predicate calculus approach. This generally makes
them much more complex and difficult to use.

¢ Finite state machine. The finite state machine methods usually consist of a
small number of extensions to an existing programming language that
facilitate the representation of the state machine and the rules associated
with it.

¢ Temporal logic. Temporal logic approaches describe the protocol in terms
of statements on the relative ordering of events and their actions.

The mathematical approaches have generally been more complex than the
programs they described and, thus, fail our first criteria. In general, there has
been more success with FDTs that were designed with distributed system prob-
lems in mind. First, because protocols are more constrained than a general algo-
rithm, much more can be done. I had great hopes for the temporal logic
approach because it was not only precise, but also more nearly minimal. It said
the least about the implementation. They implied the least about the nature of
the implementation, thus prejudicing the implementer as little as possible to an
implementation design. However, it is difficult to find anyone who can design in
a temporal logic language. In most cases, the design is done in a finite state
machine model and then translated to temporal logic statements.

Over the years, researchers and graduate students return to these topics,
applying them to new areas of networking with some new interesting results
being proved. However, no major new approaches to the formal description
method have come to light. Formal descriptions in Estelle and LOTOS were writ-
ten as part of the development of all or most of the OSI protocols. Timing of the
development of the FDTs necessitated that some of the formal specifications were
written after the protocols were defined, but there were cases where the formal
specification was done in parallel with development. In both cases, the formal
descriptions discovered bugs and ambiguities that were then corrected.

Formal descriptions of the Internet Protocols (IPs) have not been part of the
Internet Engineering Task Force (IETF) process. Although in the early 1980s, an
Estelle description of Transport Control Protocol (TCP) was done, and various
academics have done formal specifications of IETF standards, the IETF has not
embraced the use of FDTs and continues to specify protocols much as they were
in 1975. This is consistent with IETF skepticism of advanced methods. The
approach to producing specifications remains pretty much unchanged since the
early 1970s, relying primarily on the implementation as the specification.
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This tendency to use the implementation as the specification has the draw-
back of not cleanly separating what is part of the protocol and must be con-
formed to and what is system and implementation dependent. In particular,
some implementations may take particular shortcuts that are deemed reason-
able for their environment but which then constrain the behavior of the proto-
col. In a world with few system types, this problem is less severe, but it can
easily lead to considerable differences in the conception of the protocol that will
not be answered by an informal specification.

This also has the disadvantage of playing on a prime engineering virtue: lazi-
ness. There is a natural tendency to just port the code rather than write new
code from scratch thereby making the implicit assumption that the existing
implementation is as good as it can get; seldom a good assumption. There have
been more than a few recent examples of this.

There is always the question of what should take precedence if a discrepancy
exists between the implementation, the formal description, and the prose
description. One’s first impression is that the formal description should, of
course, take precedence because it was presumed to be the most rigorous. But
upon reflection, one comes to a much different answer: By their nature, all writ-
ten specifications are merely approximations of the intent of the designers. The
real specification can only be presumed to reside in the designers’ heads. When
a discrepancy is found, we cannot presume any of the specifications take prece-
dence; instead, we must return to the intent of the designers and infer what the
specifications should say. This should serve as our approach in evaluating FDTs.

Where to from Here

Now that we have the preliminaries out of the way, we are ready to start the
hard work of this book. First, in Chapter 2, “Protocol Elements,” we analyze
the common data transfer protocols in the abstract, using the experience of the
past 30 years as data to work through the implications of separating mechanism
and policy. Then, in Chapter 3, “Patterns in Protocols,” we consider the
patterns revealed by applying what we did in Chapter 2 and then take steps
toward resolving the conflict between connection and connectionless network-
ing. But before moving to consider architectures of protocols, we must first col-
lect more data based on our experience. Therefore in Chapter 4, “Stalking the
Upper-Layer Architecture,” we look at application protocols and the pursuit of
the “upper-layer architecture.” Our purpose here is not so much to be encyclo-
pedic but to consider protocols with unique structures that deepen our under-
standing. Somewhat surprisingly, we discover that there is no upper-layer
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architecture, but there is a model for constructing distributed applications. In
Chapter 5, “Naming and Addressing,” we review our experience with that most
subtle and difficult aspect of networking: naming and addressing.

All of this then gives us the tools we need to consider how to assemble a net-
work architecture in Chapter 6, “Divining Layers.” But here we find that we
have no definition of a layer. We have conventions and habits, but nothing we
can stand on. This leads to an exercise that will appear too elementary to many
readers but yields results that are exceptionally elegant and form the foundation
of a powerful network architecture. Although this architecture requires only a
small number of changes to the existing architecture, these changes could never
have been achieved by starting with the current architecture and modifying it
piecemeal. The result is a definition that is both the same and different. In one
sense, the structure we arrive at changes nothing. The old model is largely still
there. In another way, however, it radically alters everything. We come to the
conclusion that there aren’t seven layers or five or even four, but one layer that
recurses (a layer that encompasses all three phases [not just two] of communica-
tion, enrollment, allocation, and data transfer simply and elegantly). We move
from the realm of the fixed to the relative: that a layer is a distributed applica-
tion that provides interprocess communication for a given range of bandwidth
and quality of service. The greater the range of bandwidth in a network between
the applications and the backbone, the more layers; the less range, the fewer the
layers. However, no one system implements any more layers than a host or
router today, and in some cases, fewer. Furthermore, the fundamental nature of
the resulting model is such that it scales indefinitely over any range of band-
width, distance, or user population.

In Chapter 7, “The Network IPC Model,” we consolidate our gains by laying
out the basic architecture or reference model based on the patterns uncovered in
the previous chapters. This lays the foundation for exploring the properties
of the architecture—not the least of which are the major implications it has
for security and bringing in aspects previously believed to require ad hoc
procedures.

Chapter 8, “Making Addresses Topological,” introduces topological
addresses and examines an approach to making addresses location dependent
without being route dependent (and still reflecting the structure of the network).
A general approach to topological addresses is developed and then applied it to
the ubiquitous hierarchy of subnets with shortcuts we see in the wild. For now,
this is considered only in the context of traditional routing algorithms, although
we are well aware that this opens the door for new investigations. This chapter
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also considers how networks of layers might be created, and we see how net-
work address translations (NATs) either do not exist or are an integral part of
the model depending on your point of view.

Chapter 9, “Multihoming, Multicast, and Mobility,” considers how the
capabilities are inherent to the structure of the recursive architecture and topo-
logical addresses, requiring no additional protocols or mechanisms, and Chap-
ter 10, “Backing Out of a Blind Alley,” looks back at where we’ve been and
how we got there, wraps up a few loose ends, and reviews the implications of
the book.

The development of this model does not assume any particular set of proto-
cols or any particular media. It is based on a very few fundamental assumptions.
Consequently, it would appear that this represents the fundamental structure of
networking. Does this mean that we have answered all the questions? Hardly.
All we have done is created an opportunity for new advances in network science
and engineering. And perhaps, we have also pointed the way to teaching net-
working as a university-level subject based on principles and theory, rather than
as simply a vocational course describing what is deployed today.
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Chapter 2

Protocol Elements

A good engineer is a lazy degenerate. He prefers degenerate cases to special
cases and will sit around (thinking) until be finds a simple solution, rather
than immediately launch into a brute force approach.

In other words, the role of an architect is to use the tools he has to make
things simple. (Anyone can make things more complicated!)

Introduction

We are now ready to begin our exploration of network architecture. The philos-
ophy is mostly behind us, and we can now get down to the part everyone wants
to talk about. But remember, we are doing the “algebra” first. We’re trying to
keep as close to first principles and independent of implementation dependen-
cies as we can—not because implementations are bad, but because they repre-
sent trade-offs for specific situations and are data for first principles. First and
foremost, we are interested in those properties that are independent of the
trade-offs, and next we are interested in understanding the nature of the trade-
offs and when certain choices should and should not be made. We want to post-
pone this binding as long as we can to see what patterns appear. The longer we
can do that, the more likely the patterns we see are fundamental and not specific
to a given problem domain.

Protocol Architecture

This chapter covers the theory and architecture of protocols. We consider the
general structure of protocols and lay the foundations for the use of the separa-
tion of mechanism and policy to reveal invariant patterns in protocols.
We briefly consider the range of functions that are generally included in a
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protocol, although we do not consider which functions go with which kinds of
protocols. We make our first stab at that in Chapter 3, “Patterns in Protocols.”

Elements of a Protocol
All data communications is a side effect.

The theory of finite state machines (FSMs) has traditionally been used to
describe and analyze protocols. This “black box” model is not the only descrip-
tive method, and certainly not the only implementation approach, but it does
provide a reasonable theoretical framework that can be made as formal as we
need. It enforces the concept that the FSM (or protocol machine, PM) itself is
not an amorphous object but is created from smaller modular elements (this will
become more important when we consider application layer protocols and
upper-layer architecture) and that a small number of concepts can be used over
and over again to construct a network architecture. We will use this model to
combine modular elements of protocols and PMs into larger structures.

The traditional definition of an generally goes as follows:

An is defined by

An input alphabet asetA={A,,..., A}

A set of states S={S,...,S,}

An output alphabet aset O={Oy,... ,Op}

Two functions: Fi(A, S) -> (S) and
F,(A,S) > O

The function F, maps an element of the input alpha-
bet and the current state to the next state; the function
F, maps the same inputs to an element of the output
alphabet.

Often, a state machine is represented by a graph
(Figure 2-1), where the nodes represent the states and
the arcs represent the function F,, the mapping or tran-
Dsrq/Ds Arp+/A  sition from one state to the next; and the arcs are
labeled with input/output of the function F,, or by a
state table with the rows (columns) representing the
current state and the column (rows) are the next state.
The cells are then filled by the inputs/outputs. There
Figure 2-1 A typical FSM diagram. are many interesting properties of FSMs, and you can

Ds/Dsrp
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find more information about those in textbooks. For purposes of
this book, it is assumed you are reasonably familiar with these
concepts.

As noted earlier, the FSM model has been used as a formal spec-
ification method. For practical uses, it is modified slightly; and
where we need it, it will be this modified form that we will use. The
FSM is not practical in its pure form for describing more than fairly
simple mechanisms. For more complex algorithms that involve
even simple counting, ordering, and so on, an FSM would require a
state space roughly the magnitude of the product of the magnitudes
of each of the parameters! For example, a pure state machine model
might have three major states, “start,” “doing it,” and “done.” If it
also involves a single 8-bit counter, then there are 3 * 28 or 768
states. If there are two 8-bit counters, then there are on the order of
3 #2828 = 3 * 216 states or roughly 190,000 states! This makes a
state analysis difficult, if not impossible, and makes it clear why this
is referred to as “the state explosion problem.”

P /Protocol Machines\. .................

Rev’ing
State
Machine

State Vector

Ending
State
Machine

Sending
State
Machine

State Vector

Rev’ing
State
Machine

PDU,

v

7 N

Figure 2-2 A typical protocol machine.

Word from the Author

| can hear it now: “l know
all of this! This is CS 101!”
And you probably do. But
remember, “We build what
we measure.” We need to
pull back to the fundamen-
tals. Strip away all of our
implicit assumptions so
that we can see in stark
relief what is going on. So
we know explicitly when we
make assumptions and
why. We are trying to
include sufficient formality
to ensure important prop-
erties have been exposed
without making the expla-
nation too painful. So,
please bear with me, and
remember it could have
been a lot more formal
(that is, painful).

To make the model more tractable, the FSM technique is combined with pro-
gramming or formal language techniques. An FSM is modified to consist of an
input and an output alphabet, a set of procedures, and a state vector that
includes the “major” states and any variables associated with the state, such as
sequence numbers, counters, and so forth. The procedures are minimized to the
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greatest degree possible and modify elements of the state vector. The state vector
consists of any information whose value must be maintained between inputs
(This approach was first formalized by Danthine [1977], although it is a natural
approach to take and may have been independently arrived at by others).

This modified state machine takes as input an element from the input alpha-
bet and the current major state, and it invokes a procedure. The procedure exe-
cutes an algorithm that uses an element of the input alphabet, the major state,
and the state vector as inputs, modifies only the state vector, and emits one or
more elements of the output alphabet. The state vector represents that informa-
tion that must be maintained between executions of the procedures. The major
states represent the point in the overall algorithm that the FSM has reached (for
example, “beginning,” “waiting for something,” “middle,” “end”).

The inherent structure of protocols allows this hybrid approach to be quite
successful where the FSM or program-proving techniques alone can be prob-
lematic. By combining, both state machines and the algorithms are sufficiently
constrained for purposes of verification and proving both approaches remain
tractable. This construct can be considered to fairly closely mimic most protocol
implementation strategies, which is part of its power and usefulness. With this
structure, we now set out to model protocols and communication.

Protocol

For two systems to communicate, they must have a shared conceptual schema.
In other words, they must already have some common understanding about
their world and the things in it that they want to talk about. If one correspon-
dent says, “Do X,” the correspondents must first know what “Do” and “X”
mean, as well as what it means to “do X.”

For those who want to jump ahead and propose “self-describing protocols,”
there is no such thing. This merely moves the shared common schema up a level,
and then the definition of the description language must be part of the shared
conceptual schema. No matter how minimal, there must be some shared schema.
These are often concepts relating to ordering messages, determining the accept-
ability of a message, detecting errors, performing some operation, and so on.
These concepts held in common are embodied in FSMs. The set of rules and pro-
cedures that each system participating in the communication is required to fol-
low to maintain the coordination of their shared schema is called a protocol. The
FSMs that implement the protocol will be referred to as protocol state machines
or just protocol machines (PMs). (We will use PM only for those FSMs that
describe protocols and reserve FSM for those that may or may not be PMs.)

Often, the operations that are performed require that each FSM maintain
information on the state of the other. Clearly, this information is seldom accu-
rate. And as discussed later, the amount of this shared state and the degree of
consistency of the information are crucial considerations. The protocol defines
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the procedures and interactions necessary to initialize and maintain the shared
state among the sending and receiving systems. Protocols in computer commu-
nications are used for two broad classes of problems: coordination over a dis-
tance and action at a distance.

In practical terms, the protocol specification becomes the specification of the
communicating FSMs (Figure 2-2). Theoretically, this is not a requirement.
Specifications techniques do exist—namely, the temporal logic techniques noted
previously—that can specifying a protocol without reference to constructs simi-
lar to an implementation, such as a PM. But as noted, very few can actually
design with these techniques. Therefore, the FSM approach is followed through-
out this book to model protocols. This is not intended to in any way constrain
implementation strategies but only to serve as a model. However, keep in mind
that nonstate machine implementation strategies exist.

A PM models a single instance of communication, a single flow. It is often the
case that the supporting service and the user of a PM are also PMs. Therefore,
we must refer to the ranking of PMs (and other objects) so the (N)-PM is the
focus of our attention; the (N+1)-PM above which uses the (N)-PM; and the (N-
1)-PM below which is used by the (N)-PM. All PMs of a particular protocol in
a given system may be referred to as a protocol machine type (PMT). In general,
a system will have more than one PMT for each protocol of a particular rank.
(We will figure out what a layer is in Chapter 6, “Divining Layers.”)

A protocol may be either symmetric, also called peer where the communicat-
ing PMs have the same behavior that is, the same state machine; or, asymmetric
where the communicating PMs will have distinctly different behaviors that is,
different state machines.

In the latter case, it may be useful to distinguish subtypes of PMs, which are
usually given names such as user/server, client/server, master/slave, and so on.
Many application protocols are asymmetric, whereas data transfer protocols
tend to be symmetric (or should be, as anyone who has tried to build an inter-
process communication [IPC] facility on top of a synchronous Remote Procure
Call [RPC] system can testify). Recognizing that some applications are inher-
ently asymmetric and that protocols often find use in ways not foreseen by their
authors, it may be worthwhile to expend the extra effort to consider whether a
protocol normally seen to be asymmetric might not have a symmetrical model,
because a symmetrical protocol will, in general, be more flexible and easier to
use. We will see an example of this with Telnet in Chapter 4, “Stalking the
Upper-Layer Architecture.”

A circuit is just one long packet.
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Associations, Connections, Flows, and Bindings

Because communicating systems do not share state (that is, memory), one PM
must be able to notify the other of important changes in state. This is accom-
plished by exchanging finite quanta of information. These quanta carry infor-
mation that is used to update a PM’s view of its correspondent’s state. This
continual exchange of information quanta between the PMs creates a weak
“field” or binding between the PMs. These bindings are characterized by the
amount of shared state and by the “strength” of the binding. The strength of the

State Machines Versus
Threads

There is some question as to
whether an FSM or thread
approach to implementation is
better. They are, in some sense,
duals. An FSM implementation
consists of a “harness” that exe-
cutes the proper action by
indexing into the state table,
given the input and current
state. A thread represents a
specific path through a state
machine for some sequence of
events. In essence, there must
be a thread for each path. Each
state transition is a point where
the thread blocks, waiting for the
next action. From a coding per-
spective, this means that for an
FSM, one will write one “har-
ness” for all paths, whereas for
the thread approach one will
write a “harness” for each path.
The difference in code size,
although probably slightly larger
for the threaded approach,
should not be significant in most
cases.

The major difference, if there is
one, is that if one writes the
threads without doing a state
table, the programmer must
ensure that all cases are cov-
ered, whereas the state table
serves as a reminder to specify
the action for every entry in the
table. It might not seem like
much, but it is a task that we
humans seem to be particular
bad at! So, even though from a
coding perspective the two
approaches are pretty close to
equivalent, the FSM discipline
may avoid a few bugs.

binding is a measure of how tightly coupled the PMs are (that
is, the degree to which one PM’s perception of the state of its
correspondent can be allowed to deviate from reality). It has
been useful to recognize a form of binding within systems,
and three degrees of bindings between systems: a minimal
binding requiring no exchange of updates; a weak binding
with some dependence but not affected if some updates are
lost; and a strong binding, which requires updates to be
received to avoid pathological behavior.

In some specifications, this binding is referred to with
terms that connote a “connection” or “flow.” Although the
terms can be very useful, the use of these terms can vary
widely. Therefore, this book adopts the following terminol-
ogy for the forms of this relation:

J An association represents the minimal shared state and
minimal coupling, often associated with connectionless com-
munication.

o A flow has more shared state but not tightly coupled
(no feedback), as found in some network protocols.

J A connection has a more tightly coupled shared state
(with feedback), as with so-called end-to-end transport proto-
cols.

. A binding has the most tightly coupled shared state,
generally characterized by shared memory.

A connection and a flow are specializations of an associa-
tion. Whereas a connection or flow has all the properties of
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an association, the reverse is not true. Later, as we develop further properties of
protocols, we discuss more about the differences among these three concepts.

Interfaces

A protocol does not exist on its own. Something else must drive it—provide it
with its raison d’étre. In general, this is another FSM and often another PM in
the same system that requires the services that this protocol provides. (Tradi-
tionally, this driving FSM has been drawn as “above” the PM, and in this dis-
cussion it’s often referred to that way.) The PM and the FSM above must also

29

exchange information to coordinate their behavior. However,
it is prudent and important for the driving FSM to view the
PM as a “black box,” thus hiding the complexity of the PM’s
operation from the FSM above and hopefully simplifying the
FSM. This “black box” boundary is traditionally called an
interface. (Interface is used in two very distinct ways: In com-
puter science, as described here and in telecommunications as
a protocol between types of systems, generally where one sys-
tem is owned by the network.) Because exchanges of informa-
tion across an interface are in the same system, the
mechanism for the exchange achieves a much tighter coupling
than even a connection. In implementation terms, this is often

Learning to Count

Although the use of these terms
in the field vary widely, they
seem to more or less corre-
spond to the use here. However,
these definitions differ from their
use in the OSI reference model.
In O8I, the definitions of con-
nection and association are
essentially reversed. The (N)-
connection is really an (N+1)-
connection. According to the
OSI reference model, the
shared state between two (N)-
entities (PMs) is an (N-1)-con-

referred to as a system call or as implemented by other mech-  ount.
anisms to effect isolation. This exchange between FSMs in the same system is
often referred to as an application programming interface (API).

Therefore, for the PMs in different systems to coordinate their behavior, the
input alphabet of a PM, in fact, must consist of two subsets:

1. The exchange of information to coordinate the FSM above and the PM,
2. The exchange of information to coordinate among the PMs

Architecturally, these two exchanges are very similar, even though the mech-
anisms are quite different. For this discussion, the first is referred to as an inter-
face, the second as a protocol. Because protocol exchanges are between PMs in
different systems, a much looser coupling results. Interfaces may be imple-
mented as local system or procedure calls, whereas protocol exchanges require
self-contained quanta of information to be transferred between the PMs. A
practical protocol specification will specify the interaction with an upper inter-
face—that is, the user of the protocol, the interaction between the PMs, and the
interaction with the lower interface (or the supporting communication service).

nection! Someone couldn’t
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An implementation of the protocol must exist in all the communicating systems
that participate in the data transfer. This implementation is modeled as a PM.
The PM (Figure 2-3) has four kinds of interactions:

¢ The (N)-interface with the user, which may be another protocol machine,
an (N+1)-PM, or an application

¢ The exchange of messages or protocol data units (PDUs) with the peer (N)-
PM(s) to maintain the shared state

e The (N-1)-interface with some (N-1)-PM that provides a certain level of
quality of service

e The local interface, for various operating system services, such as timers

(For simplicity, rather than referring to the user, the (N+1)-PM, or the
application in every case, (N+1)-PM will be used to stand for all three.)

(N+1)-PM (N+1)-PM

Tl Upper Interface Tl

Protocol-Data-Units (PDU)

Local > Protocol

Machine -

T l Lower Interface Tl
(N-1)-PM

(N-1)-PM

Protocol > Local
—

Machine

A\ 4

Figure 2-3 The relation of an (N)-PM to other PMs.

An interface represents a separate state machine shared between an (N)-PM
and (N+1)-PM or an (N)-PM and (N-1)-PM always in the same system. Of
course, when an interface is defined, the specification cannot be entirely com-
plete. The specification can characterize what an (N+1)-PM must do but clearly
cannot specify everything it does. For a protocol specification, the interface
specification represents a partial state machine that must be meshed with the
state machine of the (N-1)-PM or the (N+1)-PM, depending on whether it is the
lower or upper interface. It is important to note that for any application to
interact with a protocol (that is, for the application to communicate with
another application), it must incorporate the state machine necessary to interact
with the protocol’s interface. When the partial state machine for the interface is
joined with its upper or lower partner, it creates a strong binding between the
two PMs.
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This is an idealized logical model. These interfaces, and even the PM, may
not be identifiable in a given implementation in a system. However, the model
provides a formal framework for describing the architecture for creating the
appropriate protocol specifications and is fairly easy to map into any implemen-
tation approach.

Data Units

As noted earlier, to communicate from one place to another, finite quanta of
information must be exchanged. Over the years, these “finite quanta” have
been given a variety of names, such as frame, cell, packet, segment, message,
and so on, depending on the inclination of the author and the kind of protocol.
All of these are different terms for the same concept. To avoid confusion, we
will adopt the neutral term protocol data unit (PDU).

The structure of a PDU (Figure 2-4) has evolved to consist of three major ele-
ments: a header, and less frequently a trailer, to carry the information necessary
to coordinate the PMs, and the user data. This is an important distinction:
“Information” is what is understood by the PM, and “data” is what is not
understood (and usually passed to the PM or application above). To remind us
of this, we refer to the part that is understood by the (N)-PM (the header and
trailer) as protocol control information (PCI), and the user’s data as user-data
because the (N)-PM does not understand it. This distinction is clearly relative.
What is information (PCI) to the (N+1)-PM is merely part of the data to the
(N)-PM. Similarly, the (N)-PCI is merely more user-data to the (N-1)-PM and
so on. This distinction is crucial to much of what follows. It is important that
one always be clear about what is information and what is data at any given
point.

Protocol Control Information [PCI]

Header User-Data Trailer

Figure 2-4 A PDU is sometimes called a message, a segment, a frame, a packet, or
many other terms. They are all the same, just in different places.
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PDUs are sometimes likened to processor instructions: Based on the parame-
ters of the instruction (PCI) and the state of the processor (PM), the execution of
PDUs performs operations on the state of the processor (PM). Unlike instruc-
tions, which carry an address to reference the data on which they operate, PDUs
must carry the data themselves

Various types of PDUs are used to transfer PCI among peer PMs. These PDUs
may or may not contain user-data. There is no architectural limit to the size of
these PDUs. There might, however, be engineering considerations that impose
size limitations on the PDUs in specific environments. For example, for a proto-
col operating in an error-prone environment, a smaller PDU size may increase
the probability that a PDU is received error free, or that the overhead for
retransmission is minimized. Or in a network of real-time sensors, the systems
may have very limited buffer space, so smaller PDUs may be necessary.

Headers

Most PCl is contained in the header. Most fields in data transfer protocols are
fixed length to simplify processing. Fixed-length fields generally precede any
variable-length fields. A length field that gives the total length of the PDU is
strongly recommended. The header of any protocol should have a protocol
identifier to identify the type of protocol and a protocol version to identify the
version of the protocol, as well as a field that indicates the function of the PDU.
The PCI will also include a field that encodes the action associated with the
PDU (for example, set, get, connect). Like instructions, this field may be either
horizontally or vertically encoded; that is, it may consist of either a string of
control bits, each indicating functions of the processor to be invoked, or an
opcode, which stands for the specific combination of functions. In general, hor-
izontal encoding requires more space than vertical encoding because there are
generally many combinations of bits that are not legal. Horizontal encoding is
generally faster in hardware, whereas vertical is faster in software. TCP uses
horizontal encoding. This was an experiment that has not stood the test of time.
If the implementation treats the control bits as control bits, it leads to less-
efficient implementation. Papers (Clark et al., 1989) have recommended treat-
ing them as an opcode, and this seems to be what most implementations do.
Consequently, opcodes are generally recommended over control bits.

Trailers

The PDUs of some protocols have a trailer. The most common use is to carry the
cyclic redundancy code (CRC). The advantage of the CRC in the trailer is that
the CRC can be computed as each byte arrives without waiting for the whole
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PDU to be received. Generally, the use of a trailer is found in protocols operat-
ing near the physical media. When a PDU is in memory, the advantages of a
trailer are less useful. Consequently, the use of trailers in protocols higher up is
infrequent.

The general guidelines for the use of a trailer might be characterized as fol-
lows; but it is important to stress that it isn’t so much the absolute characteriza-
tion of the conditions as their relation to each other:

e The information in a trailer is such that it cannot be known
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at the time the header is created; that is, it is a function of the
header and the user-data.

e The processing time for the PDU is much less than the time
required for the PDU to be sent or received, and the delay
thus incurred would be a significant fraction of the delay
quota for the traffic.

The Nature of the Service Boundary

Earlier service was used as the abstraction of the interface, hence,
the term service data unit (SDU) is used to refer to the unit of data
provided to the PM by the (N+1)-PM across the service boundary
as a service data unit (SDU) (reserving the term interface for the
implementation-specific case, such as a UNIX interface or a Win-
dows interface). To a PM, an SDU consists entirely of user-data
but will have a size that is convenient to the (N+1)-PM. The serv-

It’s a Side Effect

Thus, we see that informa-
tion is what the PM under-
stands and data is what it
doesn’t. When a PM
receives a PDU, it happily
goes along processing
each of the elements of
PCI, updating its state and
generating new PDUs until
it reaches this stuff it does-
n’'t understand; then, it
shrugs and throws this
incomprehensible junk
(user-data) over the wall
(to the (N+1)-PM) and
happily goes back to pro-
cessing the stuff it under-
stands. The transfer of
data is a side effect!

ice primitive invoked to pass the SDU to the PM will also pass other parameters
to the PM for handling the SDU. Generally, one of these is a local “port-id” that
identifies this end of the flow or connection this SDU is to be sent on. The port-
id is local to the system (that is, only known within the system and only unam-
biguous within it) and shared by the (N+1)- and (N)-PMs to refer to related
communications. The PM may have to segment the SDU into several PDUs or
may aggregate several SDUs into a single PDU so that the PDU is a size conven-
ient to the requirements of the (N)-protocol. (This nomenclature follows the
OSI Reference Model, not because I favor the OSI model, which I don’t, but
because it is an existing nomenclature that tries to define common terms. I can
find no good reason to invent new terms other than for the sake of generating
new terms. For those who still have a visceral reaction to anything OSI, all T can
say is, OSI is long dead, get over it.)
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Stream Versus Record

One of the enduring debates in protocol design is, given that the (N+1)-PM
delivered an (N)-SDU of a particular size to the (N)-PM and that under some
conditions it may have been fragmented or concatenated en route, what does
the (N)-PM deliver to the remote (N+1)-PM? What was sent or what was
received?

Although it may often be the case that an SDU would be a single (N+1)-PDU,
it might be more than one. Seldom would it only be part of a PDU. In any case,
the (N)-SDU was a unit that the (N+1)-PM found to be significant for its pro-
cessing. The early debate was between record and stream modes, derived from
early operating system practices. The older mainframe systems tended to oper-
ate on fixed-length records, whereas more modern systems such as Sigma 7,
Tenex, Multics, and its derivative UNIX communicated in terms of undifferen-
tiated byte streams. Record mode was always considered as something that sim-
ply had to be lived with. There was general agreement that record mode was too
inflexible and cumbersome.

Stream mode was considered a much more flexible, elegant approach that
provided greater layer independence. A stream might deliver any combination
from whole SDUs to pieces of an SDU to multiple SDUs or even part of two
SDUs. Stream mode requires that the (N+1)-layer be able to recognize the begin-
ning and end of its SDU/PDUs and be able to assemble them for processing. The
(N+1)-protocol must have a delimiting mechanism and cannot rely on the layer
below to tell it where the beginning and end of the PDU are.

Over time, a third approach evolved, which was a generalization of record
mode. In this mode, SDUs were not fixed length. The rule in this approach was
that the identity of SDUs was maintained between the sending and receiving
users. No name was ever given this mode, so let’s call it the idempotent mode,
referring to its property of maintaining the identity of the SDU invariant.
Because SDUs may be of any length, this differs significantly from traditional
fixed-length record mode. This mode requires that the (N)-layer deliver SDUs in
the form it received them. If the (N)-protocol needs to fragment an SDU, it is
(N)-protocol’s responsibility to put things back the way it found them before
delivering the SDU to the (N+1)-PM. (There is something compelling about a
“do anything you want but clean up your mess when you’re done” approach!)
This form is more consistent with good programming practice. Similarly, if the
(N)-protocol combines several SDUs into a single PDU for its own reasons, it
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must deliver them as separate SDUs to the remote user. Consequently, the (N +
1)-PM does not have to understand (or be modified for) every potential (N)-PM
fragmenting or concatenation condition, nor make assumptions about what the
(N)-PM will do. Maintaining the identity of SDUs maintains symmetry in an
architecture. And symmetry is always good.! But, it does require the assumption
that the layer below is well behaved. The essential difference between the two is
that the idempotent mode is a user’s point of view, whereas stream mode is more
the implementer’s point of view.

It makes no difference in the receiving system, the amount of work is the
same: Either the receiving PM or the receiving user, the (N+1)-PM, must do the
reassembly. In other words, the work is either done at the bottom of the (N+1)-
layer (stream) or the top of the (N)-layer (idempotent). There are no strong log-
ical or architectural arguments for one or the other. Although if it is done by the
(N+1)-PM, it may have to be implemented several times (if there are many
(N+1)-PMTs i.e, applications). Then, good software engineering practice sup-
ports the (N)-PM performing the function.

That said, it will be easier for protocols with sequence space granularity of
octets to do stream mode (for instance, TCP), and more work to keep track of
where the SDU boundaries are.? For protocols that do sequencing to the granu-
larity of PDUs, the amount of work is the same if there is no concatenation. If
the protocol concatenates, however, it must be able to find the boundaries
between SDUs. In which case, stream mode will be less work for the (N)-proto-
col. Overall, the work as seen by the system is the same.>

But it does not have to be an either/or choice. It is possible to provide both.
For the solution, we take a lesson from how Telnet modeled half and full duplex
as degenerate cases of a single mechanism, and from the glib comment that “all
data communications is a side effect” (mentioned previously). We just note that
a stream is simply a very long SDU! If the protocol has the ability to indicate the
boundaries of SDUs and negotiates whether it may deliver partial SDUs (in
order) to the (N+1)-layer, the (N+1)-layer can have either interface discipline.
Stream mode negotiates partial delivery and at a minimum indicates the end of
an SDU only on the last PDU sent. Idempotent mode negotiates no partial deliv-

1 Yes, similar arguments can be made for stream. However, the argument that “I should get
things back in the same form I gave them to you” is reasonable. Stream may impose addi-
tional overhead on the (N+1)-protocol that from its point of view is unnecessary (It knows
what it is doing; why should it be penalized because the supporting protocol doesn’t.)

There are rumors of applications using the TCP Urgent pointer as a means to delimit SDUs.

Having been a strong proponent of stream-mode from the beginning of the Net, I have spent
considerable thought coming to this conclusion. Fixed record was clearly not a good idea; and
although stream mode is elegant, it does ignore our responsibility to the “user” to clean up
our mess.
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ery and indicates the end of SDUs at the appropriate times. Flags in the protocol
might be defined as shown here:

Supporting Both Stream and Idempotent

Delivery of More Description

Incomplete Data

SDU Allowed

0 0 Self-contained PDU, equivalent to
Don’t Fragment

0 1 Idempotent

1 0 Stream (with huge buffers!)

1 1 Stream

Constructing Protocol

A PM must interpret four inputs:

1. Interactions with the upper interface

2. PDUs from its corresponding PM(s)

3. Interactions with the local system

4, Interactions with the lower interface

Good Solutions Are Never
Obsolete

This illustrates why it is impor-
tant to study good designs. Here
we have used the Telnet half-
duplex solution (see Chapter 4)
to solve what appears to be an
either/or choice. Many students
would complain about being
taught the Telnet solution: “Why
are we wasting time on this.
Half-duplex terminals are a
thing of the past. | will never
need this!” Perhaps not, but as
you have just seen, the form of
problem recurs, and so the
same solution in a somewhat
different guise can be applied.

All of these can be considered to be equivalent to proce-
dure or system calls of the following form:*

<procedure name>(<param 1>,<param i>*)

The PDUs can be seen as procedure calls in that the PDU
type is the name of the procedure and the elements of the
PDU (that is, PCI and user-data) are the parameters:

<PDU type>(<PCI element><PCI element>*, user-data)
Associated with each of these are actions to be taken depend-
ing on the state of the PM (that is, the body of the procedure).
The action taken by each procedure is to interpret the param-
eters and update the state vector associated with the PM and
possibly cause other PDUs to be sent or interactions with the
local system or the upper- and lower-interfaces to occur.
Coordinating all of this is a control function or state machine
that enforces the proper sequencing of these actions accord-
ing to the state of the PM.

41t pains me to have to do this, but the use of the * in the procedure or system calls is referred
to as a Kleene star and means “zero or more” ocurrences. There was a time in computer sci-

ence when such explanations were unnecessary.
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Op [params
Plp ] Action

State
Machine

Action

State Vector

Op [params]

Action

Figure 2-5 A more detailed model of a PM.

The local interactions access local resources, such as memory (buffer) or timer
requests. Processing the PDUs invokes the mechanisms of the protocol. In some
protocols, a distinct set of PDUs is associated with a particular mechanism, form-
ing a module. Such a module is formed from a subset of PDUs and their proce-
dures with its own state machine. Strictly speaking, any such module as this is a
protocol. These service primitives and PDUs invoke the mechanisms of the pro-
tocol. For data transfer protocols, the types of interface procedures are all the
same: synchronize/finish and send/receive with appropriate parameter values.

The primary task of a PM is to maintain shared state. There are three loci of
shared state in any PM: the upper- and lower-interface loci, or bindings,
between an (N)-PM and an (N+1)-PM and between an (N)-PM and an
(N-1)-PM; and the protocol locus, often called a connection or flow, between
apposite (N)-PMs. The shared state is maintained by the exchange of PCI. The
shared state between PMs in adjacent layers is maintained by the parameters
exchanged in procedure or system calls between layered PMs in the same sys-
tem,> whereas the shared state between apposite PMs in different systems is
maintained by the exchange of protocol PCI. The primary difference between
the two kinds of shared state is that for a connection or flow, PCI may be lost.
For an interface binding, it can be assumed that the exchange of PCI is reliable,
and often, shared access to memory can be assumed.

5 We are still building a logical model here. Actual implementations may or may not explicitly
implement an interface. As long as the rules of the protocol are obeyed, no interface is
necessary.
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State changes in a PM are caused by inputs from the upper interface (for
example, an application or (N+1)-PM, or from PDUs from the apposite PMs, or
from the local layer apparatus [for instance, timeouts]). Whether inputs from
the layer below cause changes in state is a matter of policy. In other words, if an
(N-1)-flow should be de-allocated or fail unexpectedly, it is a matter of policy
whether this causes a subsequent state change in the (N)-flows multiplexed on
the (N-1)-flow. It might not.

The Size of PDUs

Determining the optimal size for PDUs is a traditional engineering trade-off. In
general, PDU processing overhead is proportional to PCI length, but independ-
ent of PDU length. Regardless, processing efficiency is maximized by making
the PDU as long as possible. Similarly, bandwidth efficiency is maximized, the
greater the amount of user-data relative to the length of PCI. However, other
factors mitigate toward smaller PDUs, such as the amount of data significant to
the application may be small, buffering constraints in systems, fairness (that is,
interleaving PDUs), the error characteristics of the media, and so on. Fragmen-
tation (or segmenting) and concatenation may be used to match PDU sizes or
improve efficiency between layers or between different subnets based on differ-
ent media.

There is an optimal range for PDU size in each protocol, including applica-
tions, that will depend on where the protocol occurs in the architecture. For
upper-layer protocols, this will be most strongly affected by the requirements of
the application. Boundaries will tend to be created at points that have logical
significance for the application. These sizes will give way to the requirements of
the lower layers, while being moderated in the middle layers by system con-
straints (for example, the operating system and constraints on multiplexing).
For lower-layer protocols, the size will be more determined by the characteris-
tics of the subnetwork or the media. As noted previously, the PDU sizes for
error-prone environments such as wireless will be smaller, thereby decreasing
the opportunity for errors.

One would expect larger PDU sizes in less-error-prone media. For backbone
networks where traffic density is the highest, one would expect media with very
high bandwidths, very low error rates, and larger PDU sizes to take advantage
of concatenation to increase efficiency. As bandwidth and traffic density
increases, one wants to process fewer bigger PDUs less often rather than more
smaller PDUs more often. Smaller PDUs will occur at lower bandwidths to min-
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imize the time window for errors and increase the opportunity for interleaving
other PDUs (that is, fairness). Smaller PDU sizes are more likely at the periph-
ery, and size increases as one moves down in the layers and in toward the back-
bone. (Or as traffic density increases, for example toward the backbone, one
wants to switch more stuff less often, not less stuff more often!) The ratio of
PDU size to bandwidth and the ratio of PCI to PDU size should be relatively
constant or decrease as one moves down in the architecture.

One of the factors in determining PDU size is to keep the ratio of the PCI size
to the PDU size small. This ratio is an engineering choice, but as a rule of
thumb, generally, 5% to 10% is considered acceptable. Address fields are the
greatest contributor to PCI size. Upper-layer protocols with wider scope will
have longer addresses, and lower-layer protocols with less scope will have
shorter addresses. Thus, we can expect some inefficiency in the upper layers as
applications generate potentially shorter PDUs (but of a size useful to the appli-
cation) with longer addresses; but increased efficiency at the lower layers as
PDUs get longer, concatenation occurs, and addresses get shorter. Concatena-
tion is not supported by the current Internet protocols early on because of the
slower processor speeds and later because of the delay incurred waiting for
PDUs to concatenate. Given that these networks start to congest at 35% to
40% utilization, and consequently, ISPs try to operate well below that thresh-
old, this isn’t surprising. At higher utilizations, one should be able to concate-
nate with only marginal impact on delay.

Mechanism and Policy

In operating systems, the concept of separating mechanism and policy has a
long tradition. Only recently has this been used in network protocols, although
there are exceptions (for example, Hadzic et al., 1999; Snoeren and Raghavan,
2004; Arpaci-Dusseau, 2003; RFC 4340, 2006; and others). However, this
work has concentrated on the engineering aspects and tended to ignore what
this tells us about the structure of networks and protocols. Here we develop a
model for the separation of mechanism and policy, and then in the next chapter
look at its implications. A protocol is composed of a set of functions that
achieve the basic requirements of that protocol, whether that is error control,
reading a file, flow control, two-phase commit, or so on. The choice of func-
tions is made based on the operating region in which the protocol is intended to
exist and the desired level of service that is to result from its operation. Each
function is divided into a mechanism and a policy (see Figure 2-6).
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Function

Mechanism

Figure 2-6 A mechanism may have one or more policies.

Mechanisms are static and are not changed after a protocol is specified. The
order of interpreting the fields of the (N)-PCI is determined by the PM (that is,
defined by the protocol specification). In general, policy types occur in pairs: a
sending policy and a receiving policy. For example, for the function detecting
data corruption, a specific CRC polynomial is the policy. The sending policy
computes the polynomial, and the mechanism inserts it into the PDU. The
receiving policy computes the polynomial on an incoming PDU, and the mecha-
nism compares the result with the field in the PCL® There are exceptions. For
example, a policy to choose an initial sequence number would only occur in the
sending PM. Hence, initialization policies or policies associated with timeouts
may not occur in complementary pairs. The number of distinct types of policy
associated with each mechanism depends on the mechanism but is generally
only one. The number of policies of a specific type is theoretically unlimited,
although in practice only a few are used. In general, there is typically a sending
policy and a complementary receiving policy for the respective sending and
receiving PMs. The coordination of the mechanisms in the sending and receiv-
ing PMs is accomplished by the exchange of specific fields of information in the
(N)-PCI (see Figure 2-7). A single PDU may carry fields for multiple mecha-
nisms in the (N)-PCI. A major consideration in the design of protocols is deter-
mining which fields are assigned to which PDU types.

6 One might be tempted to call these inverses but they really aren’t. More complements of each
other.
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Receiving Sending
Policy Policy

%

PCI User-Data

Figure 2-7 Fields in PCI coordinate the complementary mechanisms in the sending and
receiving PMs.

For any one mechanism, a variety of policies may be applied to it. For example,
consider the basic sliding-window flow-control mechanism used in many proto-
cols. The sliding window is part of the protocol specification. When specified,
this mechanism is not modified. However, there are a variety of policies for flow
control: from simply extending new credit on receipt of a PDU, to periodically
sending new credit, to high/low watermarks, and so on. Different policies might
be used for different connections at the same time. Similarly, acknowledgment is
a mechanism, but when an ack is sent is policy.

In the upper layers, OSI found that it was necessary to negotiate a “context.”
The presentation context selected the abstract and concrete syntax of the appli-
cation, whereas the application context was to “identify the shared conceptual
schema between the applications.” The concept of the presentation context was
fairly well understood, but the application context never was. (see Chapter 4,
for a more complete discussion of this.) Not recognizing that both cases were
simply mechanisms for negotiating policy also meant that OSI failed to recog-
nize that this was a general property of all protocols, not just of the upper two
layers. Protocols should include a mechanism for specifying or negotiating pol-
icy for all mechanisms during synchronization or establishment.”

Policies chosen at the time communication is initiated can be modified during
data transfer, if care is taken. Some policy changes may require that they be syn-
chronized with the data stream to prevent pathological behavior. For example,
changing the CRC polynomial for detecting corrupt data would require such
synchronization so that receiver knew when to stop using the previous policy
and use the new one. It can be shown that this sort of strong synchronization is

7 Many early protocols contained elaborate mechanisms for negotiating policy during connec-
tion establishment. However, it was soon learned that this was more effort than simply refus-
ing the connection attempt with some indication of why and letting the initiator attempt to try
again with a different request.
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essentially equivalent to establishing a new flow. Hence, including this capabil-
ity in the protocol would generally be deemed as simply adding unnecessary
complexity. However, some changes, such as changing the frequency of extend-
ing flow-control credit or of sending acknowledgments, would not require such
synchronization and would not incur the same overhead. Although quite useful,
it is less obvious that policy negotiation should be allowed during the data
transfer phase. In general, changing policy during the data transfer phase
requires synchronization that is essentially equivalent to establishing a new flow
or connection.

Any ability to change policy on an existing connection or flow will have to be
carefully handled to avoid aberrant behavior. The process, which determines
which policies should be used or when they are changed, is outside the protocol.
This may be requested by the layer above (or by the user), which knows its use of
the protocol is changing. More likely, it will be effected by “layer management”
to ensure that the parameters agreed with the layer above are maintained or in
response to changes observed in the characteristics of the layer below and to
ensure that the resource-allocation strategy of the layer is maintained.

By separating policy and mechanism,® the operating range of a protocol can
be increased, and its ability to optimally serve a particular subset of an operat-
ing region can be greatly enhanced. The choice of policy depends on the traffic
characteristics of the (N-1)-association and the quality of service (QoS)
required by the user. The task of the (N)-PM is to translate these QoS character-
istics as requested by the (N+1)-PM into a particular choice of mechanisms and
policies based on the service from the (N-1)-PM. As a rule of thumb, one would
expect protocols nearer the media to have policies dominated by the character-
istics of the media and consequently fewer policies would apply. For protocols
further from the media, there would be a wider variety of policies that might
apply. (However, other considerations may limit the number of policies that
might occur.)

There has been much talk of policy in the network literature, but generally
limited to application protocols, such as routing, and recently there has been
limited experimentation with applying this elsewhere. If one inspects the myriad
proposals for “new protocols” that have appeared over the years, one will find
that no new mechanisms have been proposed for nearly 25 years.” These “new”
protocols are primarily rearrangements of headers and old mechanisms with

8 This use of mechanism and policy can be traced to a paper on the operating system for
C.mmp (Levin et al., 1975).

9 A reasonable but not definitive indication that there aren’t any more (or at least not very many
more) to discover. (Either that or it indicates that research over the past 25 years has not been
very innovative!)



DATA UNITS

different policies. Given a well-designed protocol that separated mechanism and
policy, one would need many fewer protocols. It would be much easier to under-
stand the properties of various policies and their interactions. There have been
proposals for protocols with optional mechanisms and policies that are speci-
fied at execution time. In general, these protocols have considerable overhead
either in bandwidth, processing, or both. This concept, along with a pragmatic
approach to selecting policy, should achieve a useful middle ground. The mech-
anisms of a protocol are fixed at the time of specification, whereas selecting
policies is postponed until synchronization or establishment. Mechanisms are
fixed, although an appropriate policy could, in effect, make it null.

As an example of the power of this concept both to simply and easily achieve
what might be considered a major change to a protocol and to give us deeper
insights into the nature of protocols, consider the following: It had always been
thought that another transport protocol would be required for voice. With
voice, the PDUs must be ordered, but short gaps in the data stream can be toler-
ated. So, it was thought that a new protocol would be required that allowed for
small gaps (instead of the protocol just retransmitting everything). However, a
new protocol is not required; all that is necessary is to modify the acknowledg-
ment policy...and lie. There is no requirement to tell the truth! If the gap is
short, send an ack anyway, even though not all the data has been received.
There is no requirement in any existing transport protocols to tell the truth!

This also tells us something very important about the semantics of ack: Ack
does not mean, as commonly thought, “I got it”; instead, it means, “I am not
going to ask for a retransmission” or perhaps more to the point, “I’m fine with
what I have received.” This might seem like playing with words, but it makes a
major difference in how we conceive the use of acknowledgments. Conse-
quently, in this book what might be referred to in other protocols as the
acknowledgment mechanism is often referred to as retransmission control.

QoS Versus NoS

Quality of service (QoS) is a term that has been applied to the set of character-
istics, such as bandwidth, delay, error rate, jitter, and so forth, that the user
desires the communication to have. Proposals for QoS parameters (and some-
times rather extensive proposals) have been made many times over the past two
or three decades, but few protocols have paid more than lip service to doing
anything about it (to some extent with good reason). If you look carefully at
these parameters and ask, “When a QoS parameter is changed, which policies
of the protocol change and how?” you often finds that the answer is “none.”
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There are two reasons for this. Any change in policy that could affect that
parameter is a resource management issue, often a change in the buffering strat-
egy: a topic generally not addressed by protocol specifications and normally
considered the exclusive domain of the implementation. There is nothing that a
protocol can do to affect the parameter.

Consider delay. Clearly, a protocol can minimize making delay worse, but it
can do nothing to improve it. Parameters of this latter type are called nature of
service (NoS). The distinction between QoS and NoS is essentially recognition
of the old adage that “you can’t make a silk purse from a sow’s ear,” but per-
haps we can make the sow’s ear a bit more acceptable. These are parameters
largely determined by “nature.” We may be able to avoid making them worse,
but there is little or nothing that can be done to make them better.

QoS represents a set of characteristics that the (N+1)-PM desires from the
(N)-PM for a particular instance of communication (the silk purse). NoS repre-
sents the set of characteristics that an (N-1)-PM is actually providing and is
likely to be able to provide in the future (the sow’s ear). The (N)-PM uses the
difference between the QoS and NoS to select the protocol, mechanisms, or
policies to match the desire with the reality. However, limits apply to what a
particular protocol can do to improve a particular NoS to match the particular
QoS that is requested. The nearer the (N)-PM operates to the physical media,
the more constraining the NoS may be; that is, the technology dependencies
limit the amount of improvement that can practically be accomplished by a sin-
gle protocol. In some cases, some forms of error control may be more efficient
or more effective if they are postponed to protocols operating further from the
physical media. This and the fact that multiplexing at different layers allows for
better strategies for aggregating PDUs are some of the reasons that there is more
than one layer on top of the physical media. On the other hand, additional lay-
ers limit the achievable bandwidth and delay characteristics, thus mitigating
against too many layers. This is one of many trade-offs that are continually
being balanced in the design of network architectures. We return to this topic
later when we discuss particular QoS strategies.

A Short Catalog of Data Transfer Mechanisms

Over the years, a number of mechanisms have been found to occur in many pro-
tocols. This section briefly reviews a few of the more common protocol mecha-
nisms so that we have something concrete to refer to in our subsequent
discussions.
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Delimiting

A delimiter is a mechanism used to indicate the beginning and end of a PDU.
There are two basic methods for delimiting PDUs: external and internal delimit-
ing. In external delimiting, a special bit pattern, usually called a flag sequence, is
defined to denote the start and end of the PDU. The problem with this approach
is that either data transparency is forfeited, because the flag sequence cannot
occur as a bit pattern in the PDU, or some “escape” mechanism is used to insert
extra bits into the PDU to avoid the flag sequence, which are then removed by
the receiver before any other PDU processing is done. Another common form of
external delimiting is to use the lower layer to delimit the PDU. This may take
the form of a length field in the (N-1)-PCI or in the physical layer in the bit
encoding used (for instance, the use of Manchester encoding to delimit MAC
frames in Ethernet). In internal delimiting, the PDU contains a length field as an
element of PCI from which the number of bits or octets to the end of the PDU
can be calculated. A degenerate form of internal delimiting is that the support-
ing service provides only complete PDUs with a length field passed as a param-
eter as part of the interface. External delimiting is generally found in data link
protocols, such as HDLC or the IEEE local-area network protocols. Network
and transport protocols have generally used internal delimiting.

Initial State Synchronization

Before data transfer can begin, the shared state of the PMs must be initialized.
The initial state synchronization mechanism achieves this initialization. Four
basic forms are generally found:

1. The creation of local bindings with the (N+1)-PM and (N-1)-PM; no
PDUs are exchanged (used by protocols that require minimal shared state).

2. The former plus the exchange of request and response PDUs, the so-called
two-way handshake used for protocols that do not have feedback mecha-
nisms.

3. A more robust form consisting of the former, a request, a response, and an
ack by the initiator when the response arrives, the so-called three-way
handshake used by protocols with feedback.

4. A simple timer-based mechanism based on bounding maximum PDU life-
time, maximum time sender will try to resend a PDU, and maximum time
receiver will wait before ack’ing (Watson, 1981).
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The first is used for connectionless communication, in protocols such as User
Datagram Protocol (UDP). The second is used for protocols with tightly cou-
pled mechanisms; that is, all state updates are feed-forward, or the probability
of an error during synchronization is unlikely, or where it is impossible to cause
aberrant protocol behavior, and/or where the probability of an error in the sup-
porting communication service is unlikely. The third is used for protocols with
loosely coupled mechanisms or where the probability of an error during syn-
chronization is likely to cause aberrant protocol behavior, and/or where the
probability of an error in the supporting communication service is likely.

Belnes (1974) showed that to reliably deliver a single packet, a five-way
exchange was required. Note that this is equivalent to synchronization with a
three-way handshake, followed by the release request/response. With the advent
of client/server, a subsequent paper refined this result to prove what semantics
were possible with five or fewer messages (Spector, 1982). We look at this fur-
ther in Chapter 3.

Protocols such as HDLC, X.25, TP Class 2, and most application protocols
use the two-way handshake. Protocols such as TCP, TP4, and XNS Sequenced
Packet use the three-way handshake. (Note that the choices made in these pro-
tocol designs reflect the views of their designers, which may or may not be con-
sistent with the conditions of the actual operating environment.) The
timer-based approach can be used in place of either the two-way or three-way
handshake by simply bounding maximum packet lifetime, maximum round trip
time, and maximum number of retries. In addition, state synchronization can be
combined in application protocols with cryptographic authentication mecha-
nisms that utilize a four-way handshake (Aura and Nikander, 1997).

Policy Selection

As previously noted, the functions of a protocol are composed of a mechanism
and a policy. The mechanism is that part of the function that is a fixed part of
the protocol. The policy-selection mechanism allows selection of policy during
allocation and under certain conditions to change policies during the data trans-
fer. Several protocols have this kind of mechanism, such as HDLC and
IEEE 802.3. Many protocols have a list of parameters associated with the estab-
lishment procedures. Often these are not strongly tied to the mechanisms in as
direct a manner as intended here. And often, these have more to do with the
operating environment of the protocol or its management. HDLC has an exten-
sive mechanism for selecting various options, but again only some of these are
related to mechanism/policy (for instance, choosing different CRCs, width of
flow-control windows).



A SHORT CATALOG OF DATA TRANSFER MECHANISMS

Addressing

Protocols operating in multiaccess environments must contain some means to
identify the source and destination of the PDUs. This is done by including
addressing fields in the PCI. The addresses must be large enough to name all ele-
ments that can be communicated without relaying at the layer above.

Flow or Connection Identifier

Protocols that support multiple instances of communication (that is, associa-
tions, flows, or connections between the same two stations) also require a con-
nection- or flow-id. Traditionally, this has been accomplished using the local
“port-ids” or file handles as a pair to disambiguate one flow from another. Pro-
tocols use flow or connection identifiers to distinguish multiple flows between
source/destination address pairs. Such an identifier must be unambiguous
within the scope of the (N)-protocol. Generally this is done concatenating local
port-ids of the source and destination, as noted earlier. If these port-ids are
unambiguous within the system (not just within the protocol), then flows of
multiple protocols of the same rank can be multiplexed without a problem.
However, if they are not, additional identifiers will be necessary to distinguish
the (N)-PM to which the (N)-PDUs belong. Note that the protocol-id field can
only be used for this purpose if there is only one occurrence of each protocol in
a system.

Relaying

Most networks are not fully connected meshes. Consequently, some protocols
may improve the connectivity provided by the supporting service by relaying a
PDU from one PM to the next. This mechanism is accomplished by including a
PCI element that contains the address of the destination. In most cases, the PCI
will also contain the address of the source. When a PDU arrives, the relaying
mechanism inspects the address and determines whether it is addressed to one
of its (N+1)-PMs. If it is, it is delivered to the appropriate (N+1)-PM. If it is not,
the PM consults information it maintains and determines the (N-1)-PM that
can get the PDU closer to its destination, a mechanism called forwarding. Gen-
erating this forwarding information is a task of flow management utilizing rout-
ing algorithms. The astute reader will have noticed that there is no discussion of
addressing in this chapter of basic concepts. Oddly enough (I was surprised,
too.) while important, addressing is not basic. The interpretation of an address
and consequently the theory of addressing is a policy of the relaying mechanism.
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Multiplexing

Multiplexing is the mapping of the flows of (N)-PMs onto flows of (N-1)-PM:s.
Networks are not fully connected meshes, and so when PDUs are relayed, PDUs
from different flows and from different sources will be sent on the same outgo-
ing flow. A system may have a number of (N)-PMs passing PDUs associated
with flows to fewer (N-1)-PMs. These flows are passed to an (N)-PM, which
must combine them into a single flow at a lower rank.

Ordering

Most but not all protocols assume simple ordering—that is, PDUs will arrive in
the same order they were sent. However, some supporting communication serv-
ices do not guarantee this property. This mechanism is provided by including a
sequence number as an element of PCI that is incremented in units of octets
(length of the user data in the PDU) or in units of PDUs so that the PDUs may
be ordered at the receiver. A large number of protocols include this mechanism
(TCP, X.25, TP4, HDLC, and so on). Application protocols generally assume
order is provided by the supporting service and do not explicitly include this
mechanism. As previously noted, some applications require ordering but do not
require all PDUs to be received if not too many are lost. Other forms of order
are required by other applications.

Fragmentation/Reassembly

The practical constraints of networking often require that SDUs and user-data
be fragmented into smaller PDUs for transmission and then reassembled at the
other end. This is generally accomplished through a variety of means by includ-
ing PCI elements: a single bit that indicates whether this is the last fragment, the
use of the sequence number, or by a distinct enumeration of the fragments.
Techniques may also involve the length field of the PDU used for delimiting and
detecting data corruption.

Combining/Separation

Conversely, the protocol may achieve some efficiency by combining SDUs into a
single PDU. Once again, a variety of techniques have been used, ranging from
fixed-length SDUs to a chain of length fields (and so on).

The efficiency of fragmentation and combining is directly affected by the
scope within which the resulting PDUs must be recognizable. For a fragmented
PDU to be concatenated with any other PDU, it must be identified within the
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scope of the layer. However, for a PDU to be concatenated only with PDUs from
the same system requires identifiers of less scope (and hence shorter PCI).

Data Corruption

During transmission, the contents of a PDU can be corrupted. There are two
fundamental mechanisms for dealing with this problem:

e The use of a checksum or CRC! to detect the corruption. The code is
computed on the received PDU. If it fails, the PDU is discarded and other
mechanisms ensure its retransmission.

® The use of forward error correcting code. Forward error correcting code
can detect and correct some number of errors, in which case the PDU may
not have to be discarded.

The codes used must be chosen based on the nature of the error environment.
For example, the traditional view has been that protocols closer to an electrical
media (for instance, data link protocols such as HDLC or the various LAN pro-
tocols) are more subject to burst errors and thus require codes that can detect
bursts of errors (for example, CRCs). However, optical media have different
error characteristics and thus require a different kind of error code. And proto-
cols more removed from the media (for instance, IP, TCP, X.25, or TP4) are
more likely to encounter single-bit errors (memory faults) and therefore use
error codes that detect single-bit errors. In addition, the error characteristics
may interact adversely with other aspects of the protocol design, such as the
delimiters.!! In general, a careful error analysis of both the protocol and the
proposed operating environment must be done to determine the appropriate
data-corruption detection strategy. In particular, you must consider the effect of
PDU size on the strength of the polynomial. A particular polynomial will only
achieve the advertised undetected bit error rate up to some maximum PDU
length. Beyond that maximum, the undetected bit error rate goes up.

10" The oddest things turn up during review! In this case what CRC stands for. It turns out that
by the early 1970s there was some ambiguity as to whether CRC stood for cyclic redundancy
check or cyclic redundancy code. Both are used in the literature almost interchangeably.
Clearly, the polynomial was referred to as a code. Perhaps, check was the action of computing
the code. Or was it a confusion with checksum? Usage seems to have made CRC stand for any
and all uses, regardless of what kind of polynomial they are. We won’t worry about the details
here, but it would be interesting if someone could figure out how and what (if any) difference
was intended and where and when it arose.

11 A rather famous case: HDLC uses external delimiters and thus to achieve data transparency

must stuff bits in the data stream to avoid the delimiter from occurring in the PDU. Because
the inserted bits cannot be part of the CRC calculation, the undetected bit error rate goes up
(significantly) as the number of 1s in the PDU increases (Fiorine, et al, 1995).
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Lost and Duplicate Detection

Because relaying occurs in various supporting services and the normal response
to congestion or corrupt PDUs is to discard the PDUs, entire PDUs may be lost.
Because these PDUs must be retransmitted, this may lead to duplicate PDUs
being generated. The sequence number PCI element used for ordering is also
used for lost and duplicate detection. The receiving PM keeps track of the
sequence numbers, as PDUs arrive. If a PDU arrives out of order, the PM knows
there is a gap and may after some time assume the missing PDUs are lost and
request a retransmission, either explicitly or implicitly; see the Retransmission
Control section below. If a PDU arrives for a sequence number that has already
been received, it is a duplicate and is discarded.

Flow Control

A flow-control mechanism is used to avoid the sender sending data faster than
the destination can receive it. Two basic forms of flow control are used:

¢ A credit scheme, where the destination tells the receiver how many mes-
sages it can send before receiving more credit. This scheme is sometimes
linked to the acknowledgment mechanism such that the flow-control pol-
icy extends more credit whenever an ack is received.

* A pacing scheme, where the destination indicates to the sender the rate at
which data can be sent.

Both schemes may use units of either octets or PDUs.

Retransmission Control or Acknowledgment

As noted earlier, simplistically the acknowledgment mechanism is used by the
destination to tell the receiver that the PDUs have been successfully received.
The most prevalent scheme includes the sequence number as an element of PCI
that indicates that all PDUs with sequence numbers less than this have been
received. If the sender does not receive an ack for a sequence number after a
given period of time, it automatically retransmits all PDUs up to the last PDU
sent. When an ack is received, the sender may delete PDUs from its list of poten-
tial retransmissions with a lower sequence number. For environments with a
large bandwidth-delay product, a more complex mechanism of selective ack or
negative acknowledgment (nack) is used to notify the sender of specific errors
and thus limit the number of PDUs retransmitted and to shorten the time taken
to recover from the error (that is, not wait for the retransmission timeout).
However, retransmission may incur unacceptable delay.
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As we have seen, a number of mechanisms make use of the sequence number-
ing of the PDUs. The lost and duplicate, flow-control, and retransmission-con-
trol mechanisms have been linked by a concept called the sliding-window
mechanism. The sender and receiver keep a sliding window based on the
sequence numbers of the PDUs they send and receive. The left edge of the win-
dow represents the last PDU ack’ed or ack-received. The width of the window is
the amount of credit that the flow-control mechanism has extended. Thus, the
width of the sender’s window represents the number of PDUs or octets that can
be sent. The width of the receiver’s window is the number of PDUs or octets the
receiver expects to receive before credit expires. Any PDU outside the window is
discarded. Any PDU with a sequence number less than the left edge is a dupli-
cate, and the PDU is discarded. The right edge is the largest sequence number
the sender can send (before more credit is extended) or the receiver is expected
to receive.

The retransmission mechanism modifies only the left window edge; the flow-
control mechanism modifies only the right window edge. Any linkage between
the two is done through policy. The lost and duplicate detection mechanism
refers to the left and right edges of the receive window and to any sequence
numbers of PDUs that have arrived in the window to detect duplicates or gaps.
Duplicates are discarded, and gaps may be filled by withholding acks and forc-
ing the sender to retransmit (generating a selective ack/nack) or perhaps be
ignored (as in our case of lying).

Compression

The compression mechanism is used to improve the transmission efficiency by
applying data compression to the user-data. The policy for this mechanism
selects the compression algorithm to be used. “Header compression” or apply-
ing compression to the (N)-PCI is found in certain environments. Header com-
pression requires some assumptions about the (N-1)-protocol and the
(N)-protocol to ensure that the (N)-layer recognizes what it should do. It should
be noted that (N-1)-user-data includes the (N)-PCI.

Authentication

The authentication mechanism is used to allow the destination to authenticate
the identity of the source. The policy associated with this mechanism determines
the particular authentication algorithm used. Cryptographic techniques are gen-
erally employed to provider greater confidence in the exchange. There are sev-
eral different authentication mechanisms of varying capabilities, and various
policies may be used with them to further adjust their properties.
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Access Control

This access-control mechanism is used to prevent unauthorized use of a
resource. For communication, this generally involves whether the requestor is
allowed access to the resource being requested. Again, cryptographic methods
are generally employed to securely communicate the permission (access) associ-
ated with the requestor. In general, access-control is performed only after
authentication. Access-control mechanisms use different policies to guarantee a
given level of security and control.

Integrity

The integrity mechanism provides communication with protection against the
insertion or deletion of PDUs in an unauthorized manner. This mechanism pro-
vides greater integrity than the generally weaker measures described previously,
such as data-corruption detection or lost and duplicate detection. Crypto-
graphic methods are generally used to ensure this greater degree of integrity.
Generally, the policies for integrity will be the cryptographic algorithms and the
associated key size used.

Confidentiality

The confidentiality mechanism attempts to ensure that the contents of user-data
carried in PDUs or whole PDUs of a communication are not divulged to unau-
thorized processes or persons. Cryptographic mechanisms are generally used to
implement this mechanism. Generally, the policies for confidentiality will be the
cryptographic algorithms and the associated key size used.

Nonrepudiation

The nonrepudiation mechanism attempts to ensure that no process that has par-
ticipated in an interaction can deny having participated in the interaction. Cryp-
tographic methods are generally used to implement this mechanism.

Activity

An activity mechanism is used on connections that have long periods of no traf-
fic. This mechanism, often referred to as a keepalive, enables the correspondents
to determine that their apposite is still there and in a consistent state. The policy
associated with this mechanism determines the frequency or conditions for
invoking the mechanism. There are significant arguments that mechanisms such
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as these are not required (or perhaps more precisely, are only required by
application protocols). Of course, timer-based protocols do not require these
mechanisms.

Phases of Operation

The concept of phases of operation in protocols has been around for decades. I
have taken the term enrollment from discussions of application management in
the early 1980s. Establishment and data transfer are in common usage. All
forms of communication progress through three phases:

1. Enrollment
2. Establishment or synchronization
3. Data transfer

Procedures associated with all three phases must be performed by the senders
and the receivers for communication to occur, regardless of whether any PDUs
are exchanged.

Each phase consists of one or more operations and their inverses—that is, the
operation of the phases is nested. Thus, for communication to occur, first enroll-
ment must occur, then allocation, and finally data transfer. It is not necessary for
every protocol to perform all phases. Network management, ad hoc procedures,
or some other protocol may perform enrollment or allocation on behalf of a
given protocol.

The Enrollment Phase

The enrollment phase creates, maintains, distributes, and deletes the informa-
tion within a layer that is necessary to create instances of communication. This
phase makes an object and its capabilities known to the network, any address-
ing information is entered into the appropriate directories (and routing tables),
certain parameters are set that characterize the communication this protocol
can participate in, access-control rules are established, ranges of policy are
fixed, and so on. The enrollment phase is used to create the necessary informa-
tion for classes or types of communication. However, in some cases (for
instance, multicast and some security services), enrollment specifies information
for a particular instance (that is, flow). The enrollment phase has always been
there but often ignored because it was part of the messy initial configuration
and setup (which was often manual). Frankly, it just wasn’t fun and had more in
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common with having to clean up your room than good engineering! In general,
enrollment is performed by ad hoc means (often manual) or application proto-
cols. A given enrollment protocol or procedure will generally be used for more
than one data transfer or application protocol. The enrollment phase creates an
information base of parameters and policies that will be used to instantiate par-
ticular PMs. When the PMs are created in the establishment phase, they will
inherit the set of attributes associated with their protocol that were recorded
during the enrollment phase. These attributes may be modified by the allocation
phase parameters and subsequent operation of the PM during the data transfer
phase. In practice, this phase is often characterized by two subphases: registra-
tion and activation.

The registration operation makes the information necessary to create an
instance available within the network (that is, distributed to directories in the
network). The information is available only to systems within the scope of this
protocol and its layer. Deregistration deletes the registration of the protocol
from the network. In general, deregistration should be withheld until all exist-
ing instances have exited the allocation phase. There are no active instances of
the protocol; that is, there are no active flows.

In general, it is useful to separately control the registration and the actual
availability of the protocol to participate in communication. Activation/deacti-
vation is the traditional operation of taking a facility “offline” without deleting
the system’s knowledge that the facility exists. If a protocol has been registered
but not activated, instances (PMs) cannot be created that can enter the alloca-
tion phase. Deactivation, in general, does not affect currently existing instances
in the allocation or data transfer phases but does prevent new ones from being
created.

De-enrollment is synonymous with deregistration. Completion of deregistra-
tion completes de-enrollment. De-enrollment may not have any affect on PMs in
the allocation or data transfer phases unless the PMs must refer back to the
original enrollment information, in which case they will abort.

To date, most architectures have relied on ad hoc procedures for enrollment.
The registration and activation operations and their inverses may be performed
by network management, as in setting up permanent virtual circuits or with a
connectionless protocol. In some cases, the enrollment phase is performed when
someone calls up someone else and says, “Initiate such and such so that we can
communicate” or a standard that defines “well-known” sockets on which a lis-
ten is to be posted for communication with a particular application to take
place. Dynamic Host Configuration Protocol (DHCP, RFC 1541), the assign-
ment of MAC addresses, well-known sockets, key management, and such are all
examples of aspects of enrollment. HDLC has included mechanisms for enroll-
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ment in the Exchange Identification (XID) frames used to select options to be
made available, although this combines aspects of enrollment and allocation.
With the advent and use of directory protocols and address-assignment proto-
cols, the enrollment phase is becoming much less ad hoc and much more a reg-
ular automated phase.

The Establishment or Synchronization Phase

The synchronization phase creates, maintains, and deletes the shared state nec-
essary to support the functions of the data transfer phase.

The primary purpose of this phase is to create the initial shared state in the
communicating PMs to support the functions of the protocol. The synchroniza-
tion phase ensures that the PMs initially have consistent state information.
(Although comnsistent does not necessarily imply the same state information.)
The behavior associated with this phase can range from simply creating bind-
ings between the (N+1)-PM and the (N)-PM (connectionless) to an explicit
exchange of initial state information to synchronize state between two PMs (so-
called connections) depending on the amount of shared state required to sup-
port the functions of the data transfer phase. It is during this phase that the
specific QoS requirements for data transfer acceptable to the user are made (or
modified) if they were not fixed during the enrollment phase. At the completion
of the synchronization operation, the communication transitions to a state such
that it may transfer data. The desynchronization operation is invoked when the
(N+1)-PM has completed the data transfer phase and wants to terminate the
shared state created during the synchronization phase.

There are two broad classes of protocols, termed in-band and out-of-band.
In-band protocols are defined such that the synchronization and data transfer
phases are specified as a single protocol, whereas in an out-of-band protocol the
synchronization and data transfer phases are distinct protocols.

The mechanisms used for the synchronization phase depend on the mecha-
nisms in the protocol. The stronger the coupling of the shared state, the more
reliable the synchronization phase mechanisms must be. In general, protocols
with feedback mechanisms require more robust synchronization procedures
than those without.

The Data Transfer Phase

The data transfer phase is entered when the actual transfer of data is effected
according to the requested QoS among the addresses specified during either of
the previous two phases. For application protocols, the data transfer phase may
be further subdivided into specialized subphases.
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Conclusions

We have gotten off to an easy start: developing the traditional model of finite
state machines, applying them to protocols, and considering the structure of
protocols. We used this to construct an abstract model of our understanding
and take a quick survey of the mechanisms that make up protocols. We have
introduced the concept of separating mechanism and policy and showed that it
can further clarify our understanding. We wrapped up, noting that communica-
tion goes through three distinct phases: Our first recognition that these proto-
cols fit into a larger environment.

Clearly, we could, if we so desired, construct a much more complete and for-
mal definition of the interfaces, protocols, and their mechanisms to create a use-
ful construction kit for investigating how to assemble architectures. But
truthfully, it is too soon to embark on that exercise. All in all, this chapter rep-
resents our current understanding of the basics of protocols, interfaces, and so
on. As we continue to look at what we know and consider the implications it
has for architecture, we may find it necessary to revise our understanding, to
throw away one or more ladders. Not because our ideas were wrong necessar-
ily, only incomplete. To give a hint of where we may find ourselves, that our cur-
rent view is more an in vitro picture, rather than an in vivo view of these
elements in a complete network architecture.

The going gets progressively tougher from here. In the next chapter, we con-
sider our first hard problem: resolving the dichotomy of connection and connec-
tionless. When you give up trying to think about it and listens to the problem, the
result is a bit surprising. We will also use the separation of mechanism and policy
to extract invariants in the structure of protocols and discover some patterns.



Chapter 3

Patterns in Protocols

The trick with reductio ad absurdum is knowing when to stop.

Introduction

In this chapter, we begin to get to the crux of the matter: finding patterns in the
architecture of networks. And not just any patterns, but patterns that go beyond
natural history and make predictions and provide new insights. The task is
made more difficult by the nature of computer science; that is, we build what we
measure. Unlike physics, chemistry, or other sciences, the patterns that form the
basis of our field are seldom fixed by nature, or they are so general as to provide
little guidance. For us, it is more difficult to determine which patterns are funda-
mental and not an artifact of what we build.

Even in what we think of as the traditional sciences, finding the problem at
the core of a set of problems is not always obvious. (Although it always seems
so in retrospect.) For example, one of the major problems in the late 16 cen-
tury was predicting where cannonballs would fall. Rather than proposing an
elaborate and expensive project to exhaustively explore their behavior with a
highly instrumented collection of cannons of various makes, caliber, and
amounts of powder and from this try to determine the equations that would
predict the path of the cannonballs, Galileo had the insight that the answer lay
not with firing cannons but with some hard thinking about a simple abstraction
that was at the core of the problem. The key for Galileo was to break with
Aristotle and imagine something no one had ever seen or had any reason to
believe could exist: frictionless motion. Then formulate what we know as the
first law of motion, “A body at rest or in motion will tend to stay at rest or in
motion....” (Fermi and Bernardini, 1961; a little gem of a book). Imagine how
absurd and idealistic such a construct must have appeared to his colleagues.
Everyone knew that an object put in motion slowed to a stop unless a force was
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acting on it. One saw it every day. What was this dream world that Galileo
inhabited? Push an object and it goes on forever? Absurd! !

Galileo could then confirm his insight by rolling inexpensive balls down an
inclined plane or simply dropping them from high places. Had Galileo gone
directly for the problem at hand, he would never have found the answer. It was
far too complex. To start from nothing to find equations of motion that accom-
modate factors of air resistance, wind drift, shape of the projectile (not perfect
spheres), and so on would have been all but impossible. Galileo had the insight
to find the model at the core of problem. (One wonders if Galileo had the same
problems getting funding for experiments that were not of immediate practical
application that one would have today. Luckily, an inclined plane and a few
balls don’t cost much now or didn’t then.) We must also look for the model at
the core of our problem to find the concepts that will pull it all together. And
like Galileo, we may find that some hard thinking is more productive and less
expensive.

It would seem that because we have much more leeway in our choices and
very little help from nature to determine which ones are right, that it will be dif-
ficult to justify choosing one over another. To some extent this is true, but we
are not totally adrift. The experience of the 16™- and 17®-century scientists
allowed, by the early 18t century, for science to arrive at some guidance we can
fall back on: the Regulae Philosphandi from Newton’s Principia of 1726 (as
paraphrased by Gerald Holton, 1988):

1. Nature is essentially simple; therefore, we should not introduce more
hypotheses than are sufficient and necessary for the explanation of
observed facts. This is a hypothesis, or rule, of simplicity and verae causae.

2. Hence, as far as possible, similar effects must be assigned to the same
cause. This is a principle of uniformity of nature.

3. Properties common to all those bodies within reach of our experiments are
assumed (even if only tentatively) as pertaining to all bodies in general.
This is a reformulation of the first two hypotheses and is needed for form-
ing universals.

4. Propositions in science obtained by wide induction are to be regarded as
exactly or approximately true until phenomena or experiments show that
they may be corrected or are liable to exceptions. This principle states that
propositions induced on the basis of experiment should not be confuted
merely by proposing contrary hypotheses.

1 While Galileo also uncovered other principles, this is probably the most counterintuitive.
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Not only are these good for nature, but also for finding fundamental struc-
tures. As the reader is well aware, the path to finding such solutions is seldom a
nice, straightforward progression. Along the way, there are always twists and

turns, blind alleys, backtracking, and some intuitive leaps
that we will only see later, the straightforward path that led to
them followed by throwing away of one or more ladders. I
will do what I can to protect you from the worst of these,
while at the same time giving you a sense of how I came to
these conclusions. All the while, we will try to listen to what
the problem is telling us. We will assume that what others
have done was for good reason and offers clues to patterns
that may have remained obscured. But be aware that there is
some hard thinking ahead. You will be asked to set aside pre-
conceived notions to see where a new path leads, and some
things you thought were fact were artifacts of our old ways. It
is not so much that the old ways of thinking were wrong.
They were necessary to a large extent for us to make progress.
We had to see how the problem behaved to have a better
understanding of the principles underlying it. In fact, it is
unlikely that we could have gotten to a better understanding
without them. Any scientific theory is always a working
hypothesis: an indication of our current understanding; some-
thing to be improved on.

Before we can begin that process, however, we must
address the great religious war of networking. A war that has
raged for the past 30 years or more and at this point has been
and remains probably the greatest barrier to progress in the
field. The war revolves around two topics that are not only
technical but also historical, political, and worst of all eco-
nomical. (Worst, because ideas that change business models
and that can make money are the most threatening, outside
actual religion.) The conflict is between the two major archi-
tecture paradigms, beads-on-a-string and layers, and the con-
flict between connection and connectionless. The war
continues unabated to this day. And although it may appear
that because the Internet has been such a success that the con-
nectionless layered approach has won the day, this is far from
apparent. Virtually every proposal for new directions or new
technology falls into one camp or the other. And it seems that
beads-on-a-string proposals are once again on the rise. Propo-
nents lobby hard for their favorites and demean proposals of

A Word of Warning

This topic has been the most
hotly contested in the short 30+
year history of networking. No
one has come to blows over it
(as far as | know), but it has
been awfully close at times.
Strong emotions and shouting
matches have not been uncom-
mon. Conspiracy theories
abound, and some of them are
even true. So the reader should
be aware of the intensity these
issues tend to generate and the
powers that are brought to bear.
| will try to be even-handed and
will conclude | have succeeded
if | am criticized for being unfair
by both sides. But not everyone
can be right.

And full disclosure: As long as
we are on a topic of such sensi-
tivity, | should make you aware
of my own history with these
topics. | was involved in the
early ARPANET an avid propo-
nent of the connectionless
approach found in CYCLADES
and the Internet. | was one of
those responsible for ensuring
that the Europeans held up their
bargain to include connection-
less in the OSI reference
model. It is not uncommon for
supporters of the post, tele-
phone, and telegraph (PTT)
position (that is, bellheads) to
change the subject of discus-
sion when | walked in a room.
On the other hand, some mem-
bers of the Internet Engineering
Task Force (IETF) probably
assume | am a connection-
oriented bigot (probably
because | have been a long-
time critic of the disappearance
of the vision and intellectual risk
taking that made the early Net a
success).



60

CHAPTER 3 PATTERNS IN PROTOCOLS

the other camp. Some loudly champion views that they see as inherently good
for the Net because they reflect some Utopian myth without showing how they
solve real problems or yield real benefits. None of the proposals generate that
sense of a “right” solution and, hence, none get any traction. Unless we can find
a resolution to this crisis, especially one that provides a synthesis of connection
and connectionless, networking will continue its imitation of the Faber March-
ing Band (in the movie Animal House).

One of the things that most impressed me about the early work of the
ARPANET Network Working Group (NWG) was its ability when confronted
with two extreme positions to find a solution that was a true synthesis. Not the
typical standards committee approach of simply jamming both views together
and calling them options, but a solution that went to depth and found a com-
mon model that encompassed the extremes as degenerate cases. Time after time,
the NWG found these solutions. Not only were they an elegant synthesis, but
also simple and easy to implement. OSI was too politicized to do it, and the
IETF seems to have lost the spirit to do it.

It appears that there are times when both connections and connectionless
make sense. After all, the architectures that support connectionless have connec-
tions, too. We need to understand when one or the other is preferred. I have
believed there had to be something we weren’t seeing: a model in which connec-
tions and connectionless were both degenerate cases. I have spent many hours
over many years struggling with the problem looking for a model that main-
tained the best of both worlds. Perhaps we can find one here.

Application Application
Transport Transport
Network Network Network Network
Data Link Data Link Data Link Data Link
Physical Physical Physical Physical

Figure 3-1 Typical network architecture of the early 1970s.

The Two Major Architecture Paradigms

The Layered Model

By one of those quirks of history, the first major computer networks (ARPANET,
CYCLADES, and NPLnet) were built primarily, not by communications experts,
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but by computer experts, in particular operating systems experts. In 1970, soft-
ware engineering was barely two decades old, and design principles were only
beginning to coalesce. Operating systems were the most complex programs of
the day; and if computers were to use networks, it would have to be through the
operating system. Therefore, it is not surprising that Dijkstra’s paper (1968) on
the elegant and simple layered design of the THE operating system and Multics
(Organick, 1972), the basis of UNIX, would influence early attempts to find a
structure for the new networks. This combined with the justification of the
ARPANET as a resource-sharing network served to impart a strong influence of
operating systems. The first applications were modeled on providing the major
functions of an operating system in a network.

This exercise of finding abstractions to cover the variety of heterogeneous sys-
tems also led to a deeper understanding of operating systems. (In my own case,
trying to replicate semaphores in a network lead to a solution to reliably updat-
ing multiple copies of a database [Alsberg, Day; 1976].) The primary purpose of
Dijkstra’s layers was the same as any “black box” approach: to provide an
abstraction of the functions below and isolate the users of functions from the
specifics of how the function worked and from specifics of the hardware. Higher
layers provided higher abstractions. This also allowed the functions within a
layer to be modified without affecting the layers on either side. In addition, the
tight constraints on resources led Dijkstra to believe that there was no reason for
functions to be repeated. A function done in one layer did not have to be
repeated in a higher layer. The Dijkstra model had gained currency not only in
operating systems but in many other application areas, too. It seemed especially
well suited for the distributed resource-sharing network, where not only were
computers sending information to each other, but the switches to move traffic
between source and destination hosts were also computers, albeit minicomput-
ers, but still general-purpose computers nonetheless. Hence, an architecture of at
least five layers was fairly commonly accepted by 1974 (see Figure 3-1):

1. A physical layer consisting of the wires connecting the computers

2. A link layer that provided error and flow control on the lines connecting
the computers

3. A relaying layer that forwarded the traffic to the correct destination
4. A transport layer responsible for end-to-end error and flow control
5. An applications layer to do the actual work

At least five layers; because as we will see in the next chapter, the ARPANET
had adopted a quite reasonable approach of building one application on the
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services of another; no one at this point believed they understood what this
structure was, but it was assumed there was more structure. It was unclear how
many layers there should be above transport.

DCE DTE DTE DCE

Figure 3-2 A typical beads-on-a-string architecture of the early 1970s (same as
Figure 2-1).

The Beads-on-a-String Model

The early research computer networks were not the first networks. The tele-
phone companies had been building networks for nearly a century, and these
were large international networks. Clearly, they had developed their own net-
work architecture suited to their needs. However, the properties of the architec-
ture reflected not only the circuit-switched technology of the telephone
networks but also their economic and political environment. From their found-
ing in the 19™ century until after the middle of the 20t century, the telephony
networks were electrical (physical circuits). Even in the last half of the 20th cen-
tury as switches used digital communication for control, this control was along-
side the telephony network. Interfaces were always between devices. Although
this architecture has never been given an official name, I have always called it
the “beads-on-a-string” model after the figures common in their specifications:
different kinds of boxes strung together by wires.

The beads-on-a-string model reflects the unique environment occupied by the
telephone companies (see Figure 3-2). It has been primarily promulgated by the
CCITT/ITU and the telephone companies and manufacturers closely associated
with them. First, until recently, all telephone switching was circuit switched, and
hence there was only one layer, the physical layer. Strictly speaking, these net-
works consisted of two physically distinct networks: one that carried the traffic
and a separate one for controlling the switching. More recently, these are
referred to as the data plane and control plane. (Another indication of the Inter-
net’s slide into telephony’s beads-on-a-string model.) The communication gen-
erated by these two planes is sometimes multiplexed onto a common lower
layer rather than physically distinct networks. This split between the voice and
switch control was well established. There was no reason for a layered model.
This also leads to a very connection-oriented view of the world. Second, until
recently telephone companies were monopolies that either manufactured their
own equipment or bought equipment built to their specifications from a very
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small number of manufacturers. Hence, where standards were required, they
were to define interfaces between boxes, between a provider and someone else
(that is, another telephone company or, if absolutely necessary, a customer). In
the preferred solution, all equipment used by the customer is owned by the tele-
phone company. This was the situation prior to deregulation. Therefore, a
major purpose of the model is to define who owns what (that is, define mar-
kets). In this environment, it is not surprising that a beads-on-a-string model
evolved. And herein lies one of the first differences between the layered and
beads-on-a-string model: the definition of interface. In the layered model, an
interface is between two layers internal to a system, within a box. In the beads-
on-a-string model, an interface is between two boxes.

One can imagine the combination of confusion and indignation with which
the telephone companies faced the idea of computer networks at the beginning
of the 1970s. On the one hand, this was their turf. What were these computer
companies doing infringing on their turf, their market? On the other hand, these
research networks were being built in a way that could not possibly work, but
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did, and worked better than their own attempts at computer
networks. In Europe, the telephone companies, known as
PTTs, were part of the government. They made the rules and
implemented them. In the early 1970s, it was a definite possi-
bility that they would attempt to require that only PTT com-
puters could be attached to PTT networks. Everyone saw that
communication between computers was going to be a big
business, although it is unlikely that the PTTs had any idea
how big. (As late as the late 1980s, phone company types
were still saying that data traffic would never exceed voice
traffic.) The PTTs saw an opportunity for value-added net-
works, but they did not like the idea of competition or of
companies creating their own networks.

The situation in the United States was very different.
AT&T was a monopoly, but it was a private corporation. It
thought it understood competition and saw this as a chance
to enter the computer business. But the European PTTs knew
they did not like the layered model because as we will soon
see, it relegated them to a commodity market. The layered
model had two problems for PTTs. Because most of the new
(they called them value-added) services were embodied in
applications and applications are always in hosts, which are
not part of the network, there is no distinction between hosts
owned by one organization and hosts owned by another. Any

Why Do We Care?

“This is all interesting history
that may have been important in
your day, but it is hardly relevant
to networking today!”

Oh if that it were the case. First,
it is always good to know how
we got where we are and why
we are there. There is a ten-
dency in our field to believe that
everything we currently use is a
paragon of engineering, rather
than a snapshot of our under-
standing at the time. We build
great myths of spin about how
what we have done is the only
way to do it to the point that our
universities now teach the flaws
to students (and professors and
textbook authors) who don’t
know better. To a large extent,
even with deregulation, little has
changed.

To be sure, the technology is
different, the nomenclature has
changed, the arguments are
more subtle; but under it all, it is
still the same tension. Who gets
to sell what? Who controls the
account? How does this affect

continues
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continued

my bottom line? The same
economic and political fac-
tors are still driving the
technology. And the
providers are still trying to
find a way to turn the lay-
ered model to their advan-
tage, whether they call it
value-added service, AIN,
IPSphere, or IMS. It is still
the same game. Any time
one hears of wonderful
services for applications “in
the network,” it is one more
ruse to draw a line between
what they can sell and no
one else can. Today, one
hears router vendors mak-
ing statements that sound
uncannily like the PTTs of
1980s. Product offerings
are never about elegant
paragons of engineering
but offensive and defensive
moves in the game of com-
petition. If you don’t see
how a particular product
does that for a vendor, you
aren’t thinking hard enough.

PATTERNS IN PROTOCOLS

new services were open to competition. The second problem was
connectionless, which we cover in the next section.

The PTTs much preferred an approach that allowed them to
use their monopoly. They dug in and would not concede an inch
to the computer industry without a fight. This “bunker mental-
ity” became and remains a characteristic of both sides. Each side
was deathly afraid that the slightest concession to the other side
would lead to a collapse of their position. For the layered advo-
cates, it was the immense political power of the PTTs; and for the
PTTs, it was the immense market and technological pressure of
the computer industry that drove their fear. But also, the lack of
any technical middle ground contributed to the tension. For both
sides, there did not seem to be any ground to give that did not
lead to the collapse of one’s position.

To illustrate this mindset and how architecture was used for
competitive ends, consider the simple example in Figure 3-3 from
the period. In both the ARPANET and the PTT packet networks,
many users gained access by dialing a terminal into a computer
that had a minimal user interface that enabled the user to then
connect to other computers on the network. In the ARPANET,
there were two kinds of these: one that was a stand-alone host
(usually if not always a PDP-11) connected to an Interface Mes-
sage Processor (IMP), or a version of the IMP with a very small
program to handle the user interface called a Terminal Interface

Processor (TIP). (But the TIP software looked like a host to the IMP software.)
As Figure 3-3 shows, the configuration of boxes was the same in both networks.

Start-stop

DTE

———

Terminal

The Network as seen by the PTTs
A

Packet
-mode

PAD DCE DCE DTE

Host Router Router Host

— _/

YT

The Network as seen by the Computer Industry

Figure 3-3 Two views of the same thing.



THE TwO MAJOR ARCHITECTURE PARADIGMS

The PTTs called the equivalent of a TIP a Packet Assembler Disassembler
(PAD). The PAD was not a small host or a switch but an interface between start-
stop mode DTEs? (that is, simple terminals) and packet-mode DTEs (hosts).
Why go to all this trouble? Why not just call it a small host? Because that would
mean that someone other than a PTT could sell it. PTTs own the interfaces. The
PTTs did not want competition in the network access business. Was it really that
big a business? At a conference in the late 1970s at the unveiling of their net-
work, the head of one such network when asked what he would think of PAD
products being offered by other companies, replied in a moment of frankness,
“Not very much!”

However, by defining an asymmetrical architecture, the PTTs essentially cre-
ated a point product that had nowhere to go, an evolutionary dead end. This
distinction between trying to cast what are clearly application functions as “in
the network” and having some special status persists to this day. Its manifesta-
tion has become more and more interesting as phone companies have become
populated with young engineers brought up on the Internet and as the Internet
has become more and more dominated by carriers and router vendors trying to
escape a business model becoming more and more a commodity. The PTTs were
more than willing to consider layers within their interfaces. For example, X.235,
the interface between packet-mode DTEs and DCEs defines three layers. The
PTTs have consistently attempted to use the beads-on-a-string model to legislate
what was “in the network.” This approach is found in ISDN, ATM, MPLS,
AIN, WAP, and so on.? It doesn’t take long for even manufacturers of Internet
equipment to find that selling on performance and cost is hard work and to
begin to advocate more functionality “in the network.” (Not long ago, a repre-
sentative of a major router manufacturer very active in the IETF waxed elo-
quent about how future networks would have all of this wonderful
functionality in them, sounding just like a telephone company advocate of 15
years earlier. Of course, the poor guy had no idea he was parroting views that
were an anathema to the whole premise of the Internet.)

The fundamental nature of the beads-on-a-string model provides no tools for
controlling complexity or for scaling. The desire to distinguish provider and
consumer imparts an inherent asymmetry to the architectures that adds com-
plexity and limits extensibility. We have already discussed some of the general
advantages of layering, but there is an additional property that can be quite use-
ful: scoping, which has been defined as the set of nodes addressable without

Data Terminating Equipment, not owned by the provider. DCE, Data Communicating Equip-
ment, owned by the provider.

It is striking how similar the first WAP standards of today are to the videotex standards of the
early 1980s; e.g., France’s Minitel, a similarity that as far as [ know went uncommented on.
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relaying at a higher layer. In general, the scope of layers increases with high lay-
ers. For example, addresses for a data link layer must only be unambiguous
within the scope of the layer, not for all data link layers. This provides another
tool for controlling complexity and localizing effects, as anyone who has had to
contend with a large bridged LAN can attest. Although the layer model avoids
these problems, it also has problems. Layering can control complexity up to a
point, but it does not address scaling. There has been a tendency to require lay-
ers where they are not necessary (causing inefficiencies). Attempts to improve
the efficiency of layers by having fewer of them has the effect of reducing the
layered model to the beads-on-a-string model or at the very least creating an
architecture of “beads with stripes” as we see in today’s Internet. But more on
this later, now we must turn our attention to the other half of the problem.

The Connectionless/Connection Debate

Background

The preceding section introduced the two major paradigms of networking and
began to contrast them. However, that is only half the story. Completely inter-
twined with the tension between the beads-on-a-string model and the layered
model is the connection versus connectionless debate. Given its circuit-switched
roots, beads-on-a-string is quite naturally associated with the connection
approach, whereas with the popularity of the Internet, layered networks are
generally associated with connectionless technologies. However, just to muddy
the waters, there are connectionless architectures that try to avoid layers, and
layered connection-oriented network architectures, too. In this section, we look
at this aspect of the problem in more detail and see how it might be resolved.
Paul Baran, in a RAND Report, proposed a radical new approach to
telecommunications (Baran, 1964). Baran’s concept addressed the shortcomings
of traditional voice networks in terms of survivability and economy. Baran’s
idea was twofold: Data would be broken up into fairly short “packets,” each of
which would be routed through the network; if a node failed, the packets were
automatically rerouted around the failure, and errors were corrected hop-by-
hop. Baran’s ideas were the basis for the first packet-switched network, the
ARPANET, a precursor to the connection-oriented X.25 networks of the 1970s.
However, Louis Pouzin developing the CYCLADES network at IRIA (now
INRIA) in France, took the idea one step further. Pouzin reasoned that because
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the hosts would never trust the network anyway and would check for errors
regardless, the network did not have to be perfectly reliable and, therefore,
could be less expensive and more economical. Pouzin called this a datagram or
connectionless network. Soon afterward, the ARPANET added a connectionless
mode. The datagram network quickly became a cause célébre of the research
world, and connectionless became the religion of the Internet. CYCLADES was
a research project that despite being an unqualified success and placing France
at the leading edge in networking was turned off in the 1970s, primarily because
it treaded on the turf of the French PTT. Had it been left to develop, France
might have been a leader in the Internet, rather than a straggler. Clearly, some of
the most insightful intellectual work was coming out of France. Consequently,
the datagram concept had not been very thoroughly explored when
CYCLADES ended. It is not clear that when it was adopted for the Internet
there was an awareness that deeper investigation was still waiting to be done. In
any case, the ensuing connection/connectionless debate created the bunker men-

tality that ensured it would not get done. Was Packet Switching
This proved to be a very contentious innovation. The computer ~ Revolutionary?
science community embraced the elegance and simplicity of the  Interestingly, it depended
di bili ith 4 while th | on your background. If you
concept (and its compatibility with computers),” while the tele- had a telecom back-

phone companies found it an anathema. The ensuing connection-  ground, where everything
less/connection war has been a Thirty Years War almost as bad as ~ Was in terms of continuous
. . . signals or bits, it definitely
the first one. The war has been complete with fanatics on both a5 If your background
sides and not many moderates. The PTTs have been the most  was computers, where
ardent supporters of tbe catholic connection world to the point 9f Eﬁgr:'ﬂgw'zs'nogc;isl
being unable to conceive (at least, as many of them contended in  \What could be more sim-
many meetings) the existence of communication without a connec-  Ple, you want to send mes-
tion. The protestants of the Internet community, representing the :1?1?1938&? (;CII: up & buffer,
other extreme, concluded that everything should be connection- '
less, while conveniently ignoring the role of connections in their
own success. As with any religious issue, the only reasonable
approach is to be an agnostic.

The first battle in the war was over X.25. The connectionless troops were
late in discovering this push by the telephone companies into data networking
and were largely unprepared for the tactics of the Comité Consultatif Interna-

tional Téléphonique et Télégraphique (CCITT) standards process.’ Strictly

4 The success of the early ARPANET had as much to do with the level of funding as the success
of the technology.

5 With decades of experience, the ITU participants had developed political maneuvering to a
level of sophistication that the largely academic connectionless troops were unprepared for.
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Not One, But Two
800-Pound Gorillas

Although not directly
related to the problem we
must address here, it
should be noted that the
new network paradigm not
only threw a wrench in the
PTTs view of the world,
but in IBM’s as well. Not
because it was layered,
but because it was a peer
architecture. IBM’s System
Network Architecture
(SNA) was a hierarchical
architecture. A peer archi-
tecture can always be sub-
set to be hierarchical, but a
hierarchical architecture
can not be extended to be
peer. This new idea in
communications had (inad-
vertently) invalidated the
business models of two of
the largest economic
forces on the planet. This
is no way to make friends!
The two 800-pound goril-
las were really...mad!

It is no wonder there was
so much contention in the
standards debates. 1BM
needed to delay as much
as possible without
appearing to. But for the
PTTs, this was a direct
threat; they needed to
squelch this. But Moore’s
law was working against
both of them. The falling
equipment prices favored
the new model. Although it
was a real possibility that
had IBM designed SNA as
a peer architecture and
subset it for the 1970s
market, given its market
position, none of this might
ever have happened.

speaking, X.25 defined the interface to the network and not the
internal working of the network. The initial PTT response to a
datagram service in X.25, called Fast Select, was a single packet
that opened, transferred data, and closed a connection in a single
packet (a connectionless connection and a characteristic of this
genre of proposals down to ATM and MPLS). Although a data-
gram facility was finally included in X.25, it was seldom, if ever,
used.

The primary focus of the X.25 debate became whether hop-by-
hop error control (X.25) could be as reliable as end-to-end error
control or whether a transport protocol such as TCP was always
required. The PTTs contended that their networks were perfectly
reliable and never lost data, and end-to-end transport was there-
fore unnecessary. This was an absurd claim that the PTTs never
came close to achieving. But the real point was this: Would any IT
director who wanted to keep his job simply assume the network
would never lose anything? Of course not. So, if the hosts were
doing end-to-end error checking anyway, the network could do
less error checking.

This brings us to the second problem PTTs had with the lay-
ered model. The transport layer effectively confines network
providers to a commodity business by essentially establishing a
minimal required service from the network (Figure 3-4). Com-
modity businesses do not have high margins. Much of the pur-
pose of the PTT approach was to keep the computer
manufacturers out of the network and the PTTs in a highly prof-
itable business. End-to-end transport protocols and the layered
model had the effect of either confining PTTs to a commodity
business or creating high-margin, value-added opportunities open
to competition—neither of which was appealing to the PTTs. As
you will see as we work through this timeline, the debate over
whether there should be a transport protocol further reinforces
the bunker mentality in the two camps, entrenching a boundary
that leaves the last vestige of beads-on-a-string in place and effec-
tively arresting the development of network architecture for the
next 30 years.
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Transport

[ [ 1 [ 1 [ 1 |
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The Network

Figure 3-4 The transport layer effectively seals off the network from high-margin
applications.

The second and much more contentious battleground for most of this debate
was the OSI work. The connectionless proponents began with the upper hand,
but the Furopean delegations quickly capitulated to PTT influence,® leaving
mostly the United States to champion connectionless. The insinuation of the
PTT’s strong presence was aided by a parochial stance by European computer
companies to not adopt anything done in the United States and, thereby, not
give the United States an advantage in the market. (Even though at this point,
no major commercial vendor was considering product that supported Internet
protocols.) The Europeans had a good transport protocol (developed for
CYCLADES). This protocol among others, including TCP, had been the subject
of an open process conducted by International Federation for Information Pro-
cessing (IFIP) WG6.1 and was selected as a proposed international end-to-end
transport protocol (Cerf et al., 1978) in January 1978.

6 Actually, it was a combination of the PTTs and IBM. IBM chaired and was a heavy influence
in all the European ISO delegations. There was an IBM chair in the United States, too, but the
U.S. delegation had AT&T and DEC, among others, to balance IBM. The U.S. IBM members
for the most part constrained themselves to the administrative issues and stayed away from
the technical issues. European computer companies needed détente with the PTTs because they
had to coexist with them and as balance against U.S. and Japanese companies. The desire of
the European computer companies and PTTs to not simply adopt or improve on what the
United States already had, along with others in the United States pushing competing agendas,
played right into IBM’s strategy. The ultimate example of this came in the battle over a trans-
action-processing protocol. Let’s just say that the Europeans might have done better had they
read Uncle Remus.
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OSI began a few months later, and the IFIP recommendation was carried into
ISO by the IFIP representative and adopted as the basis for Class 4 of the OSI
Transport Protocol. But the Europeans insisted on X.25 as the connection-
oriented network protocol.” After a bitter battle, the United States was able to
insert connectionless in the architecture but had to accept constraints that made
any interworking of connection mode and connectionless mode impossible.
Connectionless could operate over connection mode or vice versa, but there was

The Battle over
Connectionless

As with any consensus
organization (standards or
legislative), a topic is never
really resolved. Issues can
always be raised again.
Connectionless is a case in
point. The United States
voted No on the first ballot
to move the OSI reference
model (RM) to a standard in
1980 in Berlin. The vote
was conditional on includ-
ing connectionless. There
was much angst among
clueless American com-
mentators who didn’t under-
stand that a Yes vote with
comment under I1SO rules
meant that none of your
comments had to be
accepted; you had voted
Yes, after all. Voting No con-
ditionally was the only way
to get your comments
addressed. (National bodies
with active participation in a
standard always voted No
on condition; that major
comments were accepted
for just this reason.)

That No vote was resolved
with an agreement to
develop a connectionless
addendum to the OSI RM.
There then ensued three
years of meeting two or
three times a year for a
week at a time to hammer
out a document that added
connectionless to

the RM. Every word was
contested and argued

continues

no means to interwork them as peers. As it turned out, this was
less a problem. However, it was enough for the United States to
move ahead to develop connectionless routing and data transfer
protocols. As the 1980s wore on, X.25 was being relegated to a
role as a subnetwork access protocol similar to its use in the Inter-
net in the early 1980s, with connectionless operating over it as a
subnetwork independent protocol. The European bunker mental-
ity to not leverage the existing U.S. advances caused them to for-
feit any opportunity they might have had to assume a leadership
role. The European faith in the ability of centralist initiatives to
override consumer demand lost them the war (sound familiar?).
The connection/connectionless debate between the United States
and Europe and the factions within the United States to dominate
the direction of OSI (DEC, IBM, COS, NIST, MAP, and so on)
created so much internal strife within OSI that it essentially self-
destructed. It lost any cohesive market focus.® This left the Inter-
net, a research network, as a production network without having
ever been made into a product.

The Internet community (the U.S. and the international aca-
demic community) maintained a fairly pure parochial connection-
less stance, while the ITU, European computer companies, and
PTTs similarly maintained a fairly pure parochial connection

7 Tt is hard to believe in retrospect that as late as 1990, Europeans were still
expecting X.25 to be the future of networking. How X.25 could have
supported the bandwidths and applications is hard to imagine.

8 By 1978, France, Germany, and the United Kingdom had all produced high-
level government reports focusing on networking as a major future technology,
and considerable funding followed soon after. However, all attempts to build a
“European ARPANET,” although technically successful, were never able to
survive PTT pressures. In the end, the difference was not technological but
that the United States was willing to provide far greater subsidies (through the
DoD) for the Internet (and AT&T and IBM never saw it as compitition), while
Europe more or less allowed the market to decide. The greater subsidies by the
DoD and NSF allowed the Internet to achieve critical mass, while the competi-
tive marketplace was still developing. However, these political and economic
susidies were not accompanied by a commensurate transition from research
demo to product. Leaving the result lacking critical structure.



THE CONNECTIONLESS/CONNECTION DEBATE 71

stance. The European standards stance had a majority connec-
tion-oriented bias rooted in the influence of the PTTs and a
pragmatic stance by some in the computer industry that the
PTTs were part of the reality. The U.S. standards group was pri-
marily connectionless with a connection-oriented tendency by
the IBM participants. (It must also be recognized that in the
1970s and 1980s the split between connection and connection-
less was to a large extent, but not entirely, generational. This is
no longer the case.) Thus, the protectionist attitudes toward the
status quo in Europe ultimately undermined Europe’s strategy
for economic parity (sound familiar?). The connectionless
forces were woefully outnumbered. The “solution” was less
than satisfactory and, in fact, never really resolved. The Euro-
peans attempted to legislate connectionless either out of exis-
tence or constrain it to such a degree to make it useless. (There
are arbitrary statements in the OSI RM limiting the use of con-
nectionless.) The solution in OSI can only be likened to a cease-
fire along a demilitarized zone rather than a real solution. By
the same token, this was the forum where the concepts were
given the greatest scrutiny. But, the scrutiny led to only heated
debate and an uneasy truce, not to any deeper understanding.
Connectionless was seen (by both sides) as having no shared
state and requiring no establishment phase and was, therefore,
fundamentally simpler, cheaper, more flexible, and elegant.
Connections were seen by the connectionless crowd as too
much unnecessary overhead and too much state to store for
simple store-and-forward networks and by the connection-ori-

continued

over by the Europeans. Every
word and phrase was
inspected to ensure that it did
not give an advantage to one
side or the other. Finally in
1983, in Ottawa, the docu-
ment was ready to be pro-
gressed to a standards vote.
The chair of the Architecture
Working Group found me
eating lunch in the food court
of the Rideau Center and
said he wasn'’t sure the votes
were there for it to pass. As
Head of Delegation for the
WG, this was my problem.
We had an agreement, but
that was three years ago.
(Because the Chair was a
connectionless advocate, he
was sympathetic to our
cause, but there was only so
much he could do.) We had
negotiated everything there
was to negotiate. Finally, it
came down to no connection-
less addendum, no further
U.S. participation.

It was passed and became
an approved standard two
years later. However, the
issue was never really
resolved and continued to be
contested in every meeting.

ented crowd as the only way to provide any reasonable service.” The connection
proponents forced the connectionless proponents to recognize that there was
some shared state in connectionless that had to be created before communica-
tion could begin. But that (thought the connectionless types) was really minor
stuff that could be ignored; connectionless was really different from having a
connection! Although the connectionless advocates convinced the connection
advocates (also known as bellheads) that connectionless did have advantages in
routing and recovery from failures, everyone knew that any real network had to

9 On the other hand, the PTTs insisted that no end-to-end reliability was required because their
networks were perfectly reliable, even though everyone knew better. Here they insisted on the
use of TPO (at the transport layer because there won’t be any errors), whereas in the applica-
tion layer where no one will notice. There was Reliable Transfer Session Element (RTSE)
(X.228), a transport protocol, pretending to be an application protocol. This was even found

in Wireless Access Protocol (WAP) 1.0!
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have connections. How else could you charge for usage? In particular, both
groups saw the interface provided at the layer boundary as being very different
for the two. Below the transport layer, existing network architectures kept the
two very distinct, if they even considered both.

Fairly early in this debate, the moderates thought they saw a resolution by
viewing connectionless and connections as simply two extremes on a continuum
of a single property: the amount of shared state necessary among the protocol
machines. Connectionless is not, as some have contended, no shared state;
instead, it is a minimal shared state. However, the two models seemed so radi-
cally different that it seemed impossible to find a unified model that was a true
synthesis that didn’t just push the two techniques together. There seemed to be
no way to make them interwork seamlessly. It seemed that there wasn’t much of
a continuum but more of a dichotomy: There was either very little state (as in
IP) or a lot (as in X.25, TCP, and so forth) and few, if any, examples in between.
What weren’t we seeing?

Finding for a Synthesis: The Easy Part

In all architectures, these were represented as very different services; that is, they
presented very different interfaces to the user, by very different mechanisms.
Clearly any resolution would have to solve two problems:

1. A unified approach of the service. (The external “black box” view must be
the same.)

2. A unified approach to the function, a single mechanism that encompasses
both extremes.

The primary characteristic that any unified model would have to have would
be that the behavior seen by the user would be the same whether using connec-
tionless or connections (a common interface). As always, a good interface can
cover up a multitude of sins, regardless of how successful we are at the second
part of the problem. For connectionless communications to be possible, the
sender must have some reason to believe that there will be an instance of the
protocol associated with the destination address that will understand the mes-
sage when it is received and some binding to a user of the protocol at the desti-
nation so that data can be delivered to someone. Hence, there are procedures
that must be performed for this to be the case. This does not entail the exchange
of protocol. Both connectionless and connections require some sort of setup.
Both require that first, the addresses on which they are willing to communicate
be made known. This is done in the enrollment phase. Then, when the user is
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ready to send or receive data, resources need to be allocated to support the com-
munication, and bindings must be made between an application and a lower-
layer protocol machine. The only way to get a common interface would be for

both to present the same behavior to the user.

Depending on the traffic characteristics, the operation of the layer can be
made more effective and efficient if the layer maintains more shared state infor-
mation to better control the rate of transmission and to recover from errors.
The more of this shared state information maintained, the more connection ori-
ented the communication. To some extent, it becomes a trade-off between put-
ting information in the header of each message (and consuming more
bandwidth, but less memory) and associating more state information with the
protocol (and consuming more memory but less bandwidth). In any case, man-
aging this shared state occurs entirely among the cooperating protocol state
machines and is not visible to the user. Connectionless and connections are
functions within the layer. The user of the service has no need to know which
mechanisms are used by the protocol machines, only the resulting characteris-
tics seen by the user. The internal behavior of the layer should not be visible out-

side the black box.

Given that some setup is required, even if PDUs are not
generated, implies that a common interface behavior would
resemble behavior of the connection interface (that is, create,
send/receive, and delete). However, it does not have the sense
of creating a “connection,” so the common terms connect
and establish seems wrong. A more neutral concept that truly
leaves the decision of the mechanism internal to the layer is
needed. Let’s go back to the roots of networking to look for
analogs in operating systems to find an appropriate abstrac-
tion of the operation we are performing. The user is request-
ing the service below to “allocate” communication resources,
just as one requests an operating system to allocate resources
(and bandwidth is just the first derivative of memory).

Allocate, however, does not imply whether there is a connection.

What’s in a Word?

Words make a difference. They
affect how we think about some-
thing. The terms chosen to
describe a concept are a crucial
part of any model. The right
concepts with terms that give
the wrong connotation can
make a problem much more dif-
ficult. The right terms can make
it much easier. Adopting the
mindset of the terms may allow
you to see things you might not
otherwise see.

Thinking in terms of allocate makes clear what probably should have been
clear all the time: The layer should decide whether it uses a connection, not the
user of the layer. The user should not be choosing how resources should be pro-
vided, but what characteristics the resources should have.l? The user should be
requesting communication resources with certain characteristics: bandwidth,

10 This is at odds with the current fad that the user should be able to control the mechanisms in
the network. This is not unlike old arguments for assembly language because more control

was needed than the compiler allowed. It is even less true here.
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delay, error rate, and so on. It is the layer’s task to determine how it should sat-
isfy the request, given the characteristics from its supporting service and all
other requests. How it is done is of no concern to the user. Working from the
concept of allocate, it becomes apparent that the choice is a trade-off between
static and dynamic allocation of resources; we are throwing away a ladder:

The more deterministic (less variance), the more connection-like

and static the resource allocation;

The less deterministic (greater variance), the more connectionless and
dynamic the resource allocation.

This fits our experience. As traffic becomes denser (that is, nearly constant),
connections are more effective. When traffic is more stochastic, connectionless
makes more sense. As one moves down in the layers and/or in from the periph-
ery toward the backbone, one would expect traffic to shift from being less dense
to more dense and, therefore, from being more connectionless in nature to more
connection-like. To insist that either connectionless or connections is best in all
circumstances is foolish.

Generally, connections are associated with greater reliability, but reliability is
a separate consideration. The reliability of a communication is only one aspect
of the characteristics associated with connections. Simply requiring more than
best effort is not necessarily a reason to choose a connection. The choice to be
made within the (N)-layer depends on the difference between what is requested
by the (N+1)-layer and what is provided by the (N-1)-layer. It is quite possible
to have a very reliable (N-1)-layer, and so the (N)-layer might use a connection-
less mechanism when high reliability is requested by the (N+1)-layer. Or the
(N+1)-layer might have requested ordering, and the (N-1)-layer was highly reli-
able but did not provide ordering. So, the (N)-layer would need a weak form of
connection to satisfy the allocation requested. Reliability is not always the
deciding factor, but traffic density is.

Connectionless and connection oriented are a characterization of functions
chosen depending on the traffic characteristics and the QoS desired. They are
not themselves traffic characteristics or QoS or anything that the user needs to
be aware of. They are mechanisms that may be used to provide specific traffic
characteristics. Every communication must be enrolled and must request an
allocation of resources and only then may it send and receive data.

Now we need to address the second part of the problem: finding a model that
unifies the function of connectionless and connection. This is a much harder
problem. Solving the first one was relatively easy. We essentially created a rug to
sweep the mess under. Now we have to deal with the mess! However, we’ll need
to put this off until after we have worked out more of the structure of protocols.



THE TYPES OF MECHANISMS

The Types of Mechanisms

A protocol mechanism is a function of specific elements of PCI (fields) and the
state variables of the PM that yields changes to the state variables and one or
more PDUs. These elements of PCI are conveyed to the peer PM(s) by one or
more PDUs to maintain the consistency of the shared state for that mechanism.
As we have seen, some mechanisms may use the same elements. (For example,
sequence numbers are used both for ordering and lost and duplicate detection.)
But is there more to say about the types of mechanisms in protocols?

To investigate the structure of protocols and the effect of separating mecha-
nism and policy, I did a gedanken experiment in the early 1990s. In the 1970s,
we had developed a standard outline based on the finite state machine (FSM)
model for informal prose specifications of protocols. For each PDU type, the
conditions for generating it and the action upon receipt are described. Carefully
following the outline proved to be quite effective. For the experiment, the out-
line was extended to accommodate adding a new mechanism to a protocol (see
Appendix A, “Outline for Gedanken Experiment on Separating Mechanism and
Policy”). Then, in strict accordance with the outline, the mechanisms of a typi-
cal transport protocol were specified. Some of the results of this experiment
were discussed in Chapter 2, “Protocol Elements.” Looking at the result, one
finds that the fields of the PCI associated with the mechanisms naturally cleave
into two groups:

e Tightly bound fields, those that must be associated with the user-data
(for instance, the Transfer PDU)

* Loosely bound fields, those for which it is not necessary that the fields
be associated with the user-data

For example, tightly bound fields are those associated with sequence numbers
for ordering, or the CRC for detecting data corruption that must be part of the
PCI of the Transfer PDU. Loosely bound fields are associated with synchroniza-
tion, flow control, or acknowledgments may be, but do not have to be, associ-
ated with the Transfer PDU. A protocol may have one PDU type, with all PCI
carried in every PDU (as with TCP), or more than one (as with XNS, TP4,
SCTP, or X.25).

Therefore, we can define the following:

e A tightly coupled mechanism is one that is a function of only tightly
bound fields.

* A loosely bound mechanism is a function of at least one loosely bound

field.
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How Many PDUs in a Protocol?

One of the major (and much argued about) decisions to be made in the design of
a protocol is the number and format of the PDUs. We know that there must be
at least one PDU to carry the user’s data, which we will call the Transfer PDU,!!
but how many others should there be? Beyond the considerations discussed in
the preceding section, there would seem to be no architectural requirements that
would require multiple types of PDUs. There are engineering constraints that
would argue in specific environments for or against one or more PDU types to
minimize the bandwidth overhead or processing.

An oft-quoted design principle recommends that control and data be sepa-
rated. The natural bifurcation noted previously would seem to reinforce this
design principle. Because a PDU is equivalent to a procedure call or an operator
on an object, associating more and more functionality with a single PDU (and
the Transfer PDU is generally the target because it is the only one that has to be
there) is “overloading the operator.” TCP is a good example of this approach.
Minimizing the functionality of the Transfer PDU also minimizes overhead
when some functionality is not used.!? However, there is nothing in the struc-
ture of protocols that would seem to require this to be the case.

For data transfer protocols, the minimum number of PDU types is one, and
the maximum number would seem to be on the O(m+1) PDU types—that is,
one Transfer PDU plus m PDU types, one for each loosely bound mechanism—
although undoubtedly, some standards committee could define a protocol that
exceeds all of these bounds). For most asymmetric protocols, the maximum may
be on the O(2m), because most functions will consist of a Request and a
Response PDU. In symmetric protocols, the “request” often either does not
have an explicit response or is its own response. Hence, there are O(m) PDU
types.

Good design principles favor not overloading operators. It would follow then
that there should be a PDU type per loosely coupled mechanism. Separate PDU
types simplify and facilitate asynchronous and parallel processing of the proto-
col. (This was not a consideration with TCP, which in 1974 assumed that serial
processing was the only possibility.) Multiple PDU types also provide greater
flexibility in the use of the protocol. Loosely coupled mechanisms can be added
to a protocol so that they are backward compatible. (For a protocol with one

11 The names of PDUs are generally verbs indicating the action associated with them, such as
Connect, Ack, Set, Get, etc. Keeping with this convention, we will use Transfer PDU, com-
pletely aware that in many protocols it is called the Data PDU.

12 Overloading the Transfer PDU but making the elements optional may minimize the impact on
bandwidth but increases both the amount of PCI and the processing overhead when they are.
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A Closer Consideration of the Number of PDUs in a Protocol

There were two major arguments for a single PDU format in TCP: 1) ease of processing and 2) pig-
gybacking acks. Piggybacking acks reduce the bandwidth overhead over the life of the connection.
This is a classic engineering trade-off, whether to incur a little more overhead in some packets for
less overhead overall (global efficiency of the connection) or have more smaller packets (local effi-
ciency, but) with perhaps more overhead over all. In any protocol, each packet type will have several
common PCI elements, X, that must be present (addresses/socket-ids, opcode, and so on). With
multiple packet types, for our purposes, let's assume a Transfer PDU, T, and an Ack PDU, A, and
then a protocol with different types of PDUs will have to generate XT and XA PDUs, in contrast with
a protocol with one packet type, which will generate XAT, potentially a savings of X bytes.

In the 1970s, measurement of network traffic found that piggybacking acks would reduce overhead
by 30% to 40%. To under- stand why, consider that the vast majority of Net traffic in the 1970s was
Telnet connections between terminals to remote hosts with the minority traffic being FTP for file and
mail transfers. The most prevalent system on the Net was the BBN Tenex. Tenex insisted on charac-
ter-at-a-time echoing over the Net. This generated many very small packets: The Telnet user would
send a one-character packet with a one-character echo from the server, both which had to be ack-
’ed. The length of an input string averaged about 20 characters (each one ack’ed) with an average of
a 40-character output string, which would be in one message with one ack.

A quick back-of-the-envelope calculation will show that if T is 1 byte (character at a time), and X is
bigger, at least 8 bytes (2 socket-ids, an opcode, and probably a couple of other things), and A is 4.
This alone accounts for a 35% savings in the character echoing and the “efficient” response in one
message. File transfers and such and Telnet connections that used local echo would not see this
gain as much because there was more data in the packets and fewer acks were required. This traffic
would bring the overall improvement down to the 20% to 30% range that was observed. There was
considerable overhead per character sent and piggybacking acks provided a significant savings.
Because each PDU required two address fields, simply concatenating a Transfer and Ack PDU (that
is, XTXA) still incurred considerable overhead.

However, today’s network traffic is not dominated by Tenex Telnet sessions. Even if we assume
Request/Response pairs averaging 20 and 40 bytes, this reduces the advantage to roughly 10%. If
Request/Response pairs are 100 bytes, the advantage is reduced to roughly 1%. So the advantage
of piggybacking acks quickly becomes negligible. Given that Internet traffic data shows significant
modes at 40 bytes (syns and acks with no data), 576 bytes (default maximum unfragmented size)
and 1500 (Ethernet frames) would seem to imply that piggybacking is not as advantageous today as
it was in 1974.

There is also little advantage to a single header format. The opcode of the multiple PDUs is replaced
by control bits. Each control bit must be inspected in every PDU even if the state of the PM would
indicate that some bits should not be set. This creates more processing overhead rather than less.
The solution as proposed in several papers on code optimization of TCP is to treat the control bits as
an opcode! If one looks at the implementation optimizations proposed for TCP in these papers
(Clark et al., 1989), one finds that they fall into two categories:

1. They are equally applicable to any protocol, or

2. They make the single-format PDU protocol (for instance, TCP) more closely emulate a protocol
with multiple PDU format (for example, TP4).

But even this leaves considerable discretion to the protocol designer. For example, are acknowledg-
ment and negative acknowledgment separate mechanisms or the same mechanism that differ only
in a single bit? Are data-based flow control and rate-based flow control different mechanisms or the
same mechanism only differing in the units used for credit? Probably not worth worrying about. What
PDU types will be generated most often by the traffic seen in the network?
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PDU type, adding a mechanism will generally require changing the one PDU
format.) Similarly, a mechanism can be made optional by simply using a policy
that never causes the PDUs to be generated. (For a protocol with a single PDU
type, the PCI elements must be sent whether they are used, or a more complex
encoding is required to indicate whether the elements are present.) With multi-
ple PDU types no overhead is necessary to indicate a PDU absence. From this
it would seem that more rather than fewer PDU types would generally be
preferred.

Does this and the discussion in the sidebar mean that protocols should
always have more than one PDU type? Not necessarily. This is not a case of
right or wrong, true or false. The choices made are based on the requirements of
the operating environment. As we have seen, TCP was designed for an environ-
ment with a very large proportion of very small PDUs. Clearly, the choice was
correct; it saved 30% to 40% in bandwidth. In an environment that does not
have a lot of small PDUs, and especially one with a large range of traffic charac-
teristics, optimization for small PDU size loses its weight while the need for
greater flexibility gains weight, indicating that under different conditions a dif-
ferent solution might be more appropriate.

Contrary to the often knee-jerk response to these decisions, the choice of a
mechanism is not right or wrong but a case of appropriate boundary conditions.
It is important to remember the conditions under which these sorts of choices
are appropriate. Although it might seem unlikely that network requirements
will ever return to the conditions of remote character echoing, history does have
a way or repeating itself, although usually in a somewhat different form.13

The Types of Protocols

If we consider the list of mechanisms in Chapter 2, several patterns begin to
emerge. First, there are mechanisms that might appear in any protocol, such as
delimiting, allocation, policy negotiation, data-corruption detection, and so on.
The other pattern that seems to emerge is the similarity in transport protocols
and data link protocols. They both are primarily concerned with end-to-end
error and flow control. It is just that the “ends” are in different places; they
have different scopes. Similarly, network and MAC protocols are similar in that
they primarily deal with relaying and multiplexing. But also, in the relaying and

13 Which is what makes the topologist’s vision defect so useful. These vision-impaired architects
are able to recognize when this new doughnut looks like that old coffee cup!
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multiplexing protocols, policy is always imposed by the sender; and in the error-
and flow-control protocols policy is always imposed by the receiver: They are
feedback mechanisms.

The distinction of loosely coupled and tightly coupled shared state is more
definitive, not tied to qualitative ideas of more versus less or loose versus tight
or hard versus soft shared state or the effects of lost state, but to an observable
property: the presence of feedback. The tightly coupled protocols have feedback
mechanisms; the protocols with more loosely coupled shared state have no feed-
back mechanisms. The operation of protocols with no feedback is less effected
by inconsistent state than protocols with feedback. Thus, the distinction
between flow and connection that has been found useful in finding a middle
ground in the connection/connectionless controversy characterizes the presence
or absence of feedback in a protocol. Connections include feedback mecha-
nisms; associations and flows do not. Similarly, the more robust three-way
handshake allocation mechanism is required for protocols with feedback (a
two-way handshake for protocols with no feedback).

The astute reader will also have noticed one other pattern: These two types
of protocols tend to alternate in architectures. The MAC layer does relaying and
multiplexing, the data link layer does “end-to-end” error control; the network
layer relays, the transport layer does end-to-end error control; mail protocols
relay, hmm no end-to-end error control and sometimes mail is lost. We will con-
sider this in greater detail in Chapter 6, “Divining Layers,” but for now we can
make two observations:

1. Relaying always creates the opportunity for PDUs to be lost. Therefore, to
guarantee reliability, there must always be an error-control protocol on top
of a relaying protocol.

2. This would seem to indicate that there are really only three fundamental
types of protocols:

® Two data transfer protocols: Relaying and multiplexing protocols and
error- and flow-control protocols with different policies

* Application protocols

To avoid repeating cumbersome phrases, error- and flow-control protocols
will be often referred to as error-control protocols, and relaying and multiplex-
ing protocols as relaying protocols. Keep in mind, however, that the other
aspect is always there.
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Policies will be chosen to optimize the performance based on their position in
the architecture. Protocols nearer the application will have policies suited to the
requirements of the application. Because there are many applications over these
protocols, we can expect them to use a wider variety of policies. Protocols
nearer to the media will be dominated by the characteristics of the media. Since
these protocols have less scope and are specific to a specific media, we can
expect them to use a smaller range of policies. Protocols in between will be pri-
marily concerned with resource-allocation issues. Combining this with our
observations about connection and connectionless, we can expect more connec-
tion-oriented protocols as we move toward the core and more connectionless
protocols toward the edge.

The functions of multiplexing, routing, and relaying provide numerous
opportunities for errors to occur. Analysis and experience has shown that relay-
ing (that is, hop-by-hop protocols) can never be absolutely error free and that
an error-control protocol operating with the same scope as the relaying layer is
required to ensure error-free operation between a source and a destination. This
was the great X.25 versus transport protocol debate of the mid-1970s and early
1980s.

This alternating of protocols is seen in traditional best-effort networks: The
data link protocol provides “end-to-end” error control for relaying by physical
or MAC protocols. The transport protocol provides “end-to-end” error control
for relaying by the network protocols; one often resorts to “end-to-end” meth-
ods to ensure that relaying mail has been successful and so forth. This separa-
tion is seldom completely clean in existing protocols. In fact, we even see
protocols designed with multiple roles in the same protocol.

Although there is nothing inherently wrong with two adjoining error-control
protocols or two adjoining relaying protocols, there are strong arguments
against such configurations. Two adjoining error-control protocols is fairly
pointless because the scope of the two layers must be the same. (There has been
no relaying that would increase the scope.) Unless the first protocol is relatively
weak, there should be no errors missed by the first one that will not be detected
or corrected by the second. This is essentially doing the same work twice. If
there are such errors, the second protocol should be used in place of the first. In
a legacy network, however, it might not be possible to do anything about the
existence or absence of the first protocol, in which case the second protocol may
be necessary to achieve the desired QoS. This is probably the only instance in
which one should find two adjoining error-control protocols. Therefore, we
should conclude that the two kinds of protocols should alternate in the architec-
ture, and if they don’t, it is probably an accident of history.
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The fundamental nature of relaying protocols is to be always treading on the
edge of congestion, and PDUs are lost when congestion cannot be avoided. Two
adjoining relaying protocols would tend to compound the errors, thereby

decreasing the NoS of the second relaying protocol and thus
impacting the QoS, and the performance, that an eventual error-
control protocol could achieve. In addition, two adjoining relay-
ing protocols will usually (but not always) imply that the
(N+1)-protocol has wider scope than the (N)-protocol.

It is generally prudent (more efficient, less costly, and so on) to
recover from any errors in a layer with less scope, rather than
propagating the errors to an (N+1)-protocol with a wider scope
and then attempting to recover the errors. If the probability of the
relaying protocol introducing errors is low, an intervening error-
control protocol may be omitted. For example, Ethernet LANs
and related technologies are generally deemed sufficiently reliable
that no “end-to-end” error control is necessary. For a wireless
environment, however, the opposite could be the case. By the
same token, the error-control protocol does not have to be perfect
but only provide enough reliability to make end-to-end error con-
trol cost-effective. For example, the data link layer might tolerate
an error rate somewhat less than the loss rate due to congestion at
the layer above. However, these sorts of decisions should be based
on measurements of the live network rather than on the hype of
marketing or the conviction of the designers.

An application protocol can operate over any data transfer
protocol. An application protocol can have direct communication
only with systems within the scope of the next-lower layer. How-
ever, an application protocol operating over a relaying protocol
will be less reliable than one operating over an error-control pro-
tocol with the same scope (for example, mail).

Relaying and error-control protocols have been embedded into
applications. The examples are legions of people arguing that the
overhead of a transport protocol is just too great for their applica-
tion. But then, they are inexorably drawn through successive revi-
sions, fixing problems found with the actual operation of their
application until they have replicated all the functionality of a
transport protocol but none of its efficiency because their applica-
tion was not designed for it from the beginning. We have already
alluded to the relaying protocol that is part of a mail protocol
such as Simple Mail Transfer Protocol (SMTP). This application
could easily be partitioned into a relaying protocol that did not

Why We Can’t Design the
Perfect Transport Protocol

There has been much dis-
cussion and many propos-
als for new and “better”
transport protocols over
the years to replace TCP—
none with very much suc-
cess. There was always
some major category of
traffic that the proposal did
not handle well. On the
other hand, we have been
fairly successful with new
data link protocols.

The separation of mecha-
nism and policy makes the
reason for this clear. Trans-
port protocols are intended
to support the require-
ments of their applications.
There are roughly six or
eight mechanisms in a
transport protocol. By not
separating mechanism and
policy, we have (uninten-
tionally) been saying that
we expect to find a single
point in an eight-dimen-
sional space that satisfies
all the requirements. When
put this way, this is clearly
absurd! There are no
panaceas, but there is a lot
of commonality! If we sep-
arate mechanism from pol-
icy, the problem can be
solved.

Why was there more suc-
cess with data link proto-
cols? Data link protocols
are tailored to address the
requirements of a particu-
lar physical medium.
Hence, their performance
range is narrower. Thus, a
single set of policies will
satisfy the problem.
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differ much from those found below it and the actual mail application. The tra-
ditional checkpoint-recovery mechanism found in many file transfer protocols is
an error-control protocol. Less obvious is the traditional Online Transaction
Processing (OLTP) protocols, which involve a two-phase commit. OLTP can
also be implemented as a form of data transfer protocol with different policies.

The effect of separating mechanism and policy is to separate the invariances
(the mechanisms) in the structure of the protocols from the variances (the poli-
cies). From this we see that there seems to be fundamentally two kinds of data
transfer protocols: a relaying protocol and an error-control protocol. The major
differences in the examples of the two sets are the differences in syntax and the
requirement for fields of different lengths. At low bandwidth, large sequence
numbers add too much overhead to the PCI and are unnecessary. At very high
bandwidth, even longer sequence numbers might be required.

This seems to be a rather minor difference. Can we make it an invariant, too? A

self-describing syntax (that is, tag-length-value) would incur too much overhead
for protocols operating in performance-sensitive environments. In any case, such
flexibility is not required at execution time in data transfer protocols. One could
have the “same protocol” (that is, procedures) but a small number (three or four)
of different PCI formats. These PCI formats would be very similar, only the lengths
of the PCI elements would be somewhat different; and for data transfer protocols,
the only fields that might vary are those related to addresses, sequencing, and flow
control. It should be possible to define the protocols such that they are invariant
with respect to syntax. (Addresses are just used for table lookups, and sequence
numbers only differ in the modulus of the arithmetic.) Greater commonality in pro-
tocol behavior could have a beneficial effect on network engineering.
So, there actually are only two data transfer protocols described in terms of a
single abstract syntax with a few concrete syntaxes. The only question is the
degree to which various media-specific characteristics and other “bells and
whistles” are necessary or whether they are part of some other functions?

The Architecture of Data Transfer PMs

A PM consists of actions associated with inputs, either from PDUs, from local
timeouts and system calls for buffer management, or from the upper or lower
interfaces whose sequencing is controlled by a state machine. The distinction in
the types of mechanisms and protocols allows us to say more about the architec-
tural structure of the protocol machines for data transfer protocols. Actions are
divided between mechanism and policy. Further, the patterns, which we have
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seen in the mechanisms, are not just a nice taxonomy but have implications for
implementation. Clearly, some mechanisms must be done before others. For
example, the CRC must be done before anything else in the PDU is looked at,
lost and duplicate detection must be done before retransmission control, and so
on. For now, let’s ignore the normal engineering constraints and the constraints
of serial processors and consider the amount of asynchrony inherent in a data
transfer protocol. Let’s follow the pattern we have seen of loosely coupled and
tightly coupled mechanisms.

If we separate loosely bound mechanisms to the right and tightly bound
mechanisms to the left (see Figure 3-5), a much more interesting thing happens.
The left side consists of the processing of the Transfer PDU and consists only of
fragmentation/reassembly, ordering, and queuing. The right side handles alloca-
tion, flow control, and acknowledgments. CRC checking and delimiting is done
in common to all PDUs. The left side has little or no policy associated with it,
other than whether simple ordering is on or off. The connection-id (or port-ids)
select the state vector. All operations are simple operations based on the
sequence number and SDU delimiters and the queuing of the PDUs. The right
side is all policy. The right side maintains the state vector and executes the poli-
cies for retransmission control (that is, acking and flow control). The right side
requires general-purpose calculations; the left side requires much less general
computation, just straightforward queuing and ordering algorithms. Others
have noted a similar dichotomy but ascribed it to merely an artifact of certain
implementation-specific considerations. Here we see that it underlies a much
more fundamental structural property of protocols.

But what is striking is that the two sides are not at all tightly coupled! In fact,
they are virtually independent. The only effect the right side has on the left is to
start and stop queues and infrequently discard one or more PDUs from a queue,
and it probably isn’t too particular which ones. Furthermore, we have made no
assumptions about the protocol other than to assume the mechanisms it should
contain. The design implied by this diagram supports either an in-band or out-
of-band design simply by mapping the left and right side to the same or differ-
ent output queues. It also allows retransmission (acks) and flow control to be
completely asynchronous from the data transfer. Protocol processing has gener-
ally been seen as serial in nature (for instance, TCP); an implementation along
these lines exhibits a high degree of parallelism. This approach could be
pipelined and would seem to indicate significant improvements in protocol per-
formance. This is not the place to consider this in detail, but it should be men-
tioned that security mechanisms fit nicely into this architecture, too.
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Figure 3-5 Error- and flow-control protocols naturally cleave into a data transfer part
with only tightly bound mechanisms and a control part with only loosely
bound mechanisms.

Clearly, the optimal protocol design to take advantage of this would have
separate PDUs for the loosely coupled mechanisms, which would be processed
by the right side and a Transfer PDU that was processed by the left side. This
would maximize the parallelism in the processing and the parallelism in the
interactions with the remote PM. (This is not a hard requirement. This
approach could be used with a protocol that did not have separate PDUs, but
more complex hardware would be required to duplicate headers and route
them. One would be making the mistake that OSI made of allowing desire to go
against the grain of the problem, its nature. Nature generally gets its
retribution.)

As we have seen in the past, there has been a school of thought that tried to
minimize the number of PDU types. This was based on assumptions unique to
software and hardware constraints and traffic characteristics of the mid-1970s.
A single PDU type simplified processing and allowed acks to be piggybacked
with the return traffic. These conditions are no longer relevant. This additional
overhead just to carry a 16- or 32-bit sequence number was rightfully consid-
ered excessive. From the principles we have developed here, we can see that
there is no multiplexing in an error-control protocol, so such overhead is virtu-
ally nonexistent, and the other conditions that held then no longer exist. If the
loosely coupled mechanisms are implemented with separate PDUs, they become
degenerate cases. If the policies for them are null, these PDUs are simply never
sent. There needs be no explicit action to not accommodate them.
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This also begs the question as to whether this is one protocol or two. Proto-
cols with only tightly bound mechanisms need only a two-way handshake. Such
a protocol would have the left side of Figure 3-5 and only state initialization on
the right. Protocols with loosely bound mechanisms would use a three-way
handshake and have more functionality on the right side of Figure 3-5 for the
bookkeeping to maintain shared state. Even more intriguing is the fact that if one
looks at the format of the Transfer PDU with just tightly bound mechanisms, one
finds that it bears a strong resemblance to UDP-like protocols. The only differ-
ence being whether the “message-id” field is interpreted as a sequence number.
This raises the possibility of a single protocol structure accommodating the entire
range from pure connectionless to full connection by merely changing policy.

Finding a Synthesis: The Hard Part

Earlier in this chapter, we considered the problem of finding a synthesis of the
connection/connectionless (co/cl) schism that has plagued networking from its
beginnings. We identified that there were two parts of the problem: a common
interface model and a common functional model.

We need both to accommodate co/cl as degenerate cases. For the
service/interface model, we abstracted the problem into a resource-allocation
model and required the user to specify the parameters of the communication
being requested so that the choice is inside the black box. The first part was rel-
atively easy to solve. (Sweeping a problem under the rug always is.) Now we
must look at the more difficult problem: finding a common model for the func-
tion of connection and connectionless.

Generally, the difference between co/cl has been characterized by the amount
of shared state and degree of consistency (that is, how tightly coupled the state
is required to be for correct operation). In this view, co/cl are extremes along a
continuum from less state loosely coupled to more state tightly coupled. If this
is the case, there should be other operating points along the continuum.

Analysis of this problem begins quite early with Belnes’s analysis (1976) of
the requirements to deliver a single message reliably. He concludes that a five-
way exchange will reliably deliver a single message even if either host resets. The
four-way exchange will suffice as long as neither host fails. This gives some idea
of the amount of shared state required for reliable delivery. Watson (1981)
developed a timer-based approach to a transport protocol based on the rather
ingenious perspective that all connections exist and have existed for all time. We
maintain state information about them in a cache only when they are active.
The exchange of PDUs merely serves to refresh the cache, and when activity
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ceases for some time, we no longer keep the cached information on the
exchange. This yields a very robust and simple approach to a transport proto-
col. But all of these techniques are concerned with creating the reliable delivery
of data over an unreliable network. Watson is able to prove that the timers in
delta-t are both necessary and sufficient. Watson’s delta-t protocol warrants far
more attention than it has received.

Lamport et al. (1982) analysis of the Byzantine Generals problem somewhat
confuses the issue with an unfortunate analogy that proves an interesting puzzle.
For networking, the result of this analysis is that within a single protocol operat-
ing over an unreliable media, it is impossible to determine whether the last mes-
sage arrived at its destination. This is not the same thing as saying that the
generals can’t know whether an ack was received, or perhaps more precisely it
does if the generals fail to construct a proper communication architecture.

This is a beads-on-a-string view of the problem predicated on overloading
the semantics of the acknowledgment so that it acts both to acknowledge the
conversation of the generals and to acknowledge the delivery of messages. In a
properly layered architecture with explicit establishment and release at both the
application and transport layers, the generals can know the state their conversa-
tion terminated, although it is not possible to know whether their reliable com-
munication channel terminated correctly. Here, the general’s last message is not
the last message sent. In other words, we can’t know whether the transport con-
nection terminated correctly, but we can know whether the application layer
protocol terminated correctly. After that is done, we don’t care whether the
transport connection terminates correctly. Note that with a protocol like Wat-
son’s delta-t with no explicit establishment and release this won’t be the case.
However, if the connection/release discipline is followed by the application lay-
ers, the generals can know whether they reached agreement and whether the
application connection terminated correctly. They still won’t know whether the
last message (a disconnect ack of some sort) arrived.

Spector (1982) considers the same problem as Belnes from a somewhat dif-
ferent perspective. Rather than consider whether an exchange is reliable and
under what conditions it is not, Spector considers the problem from the other
end, so to speak: Given a particular exchange, what can we say about whether
an operation took place? Spector considers the perspective of request/response
PDUs for client/server applications (just becoming popular then) and considers
the semantics of the reliability of a remote operation performed in the presence
of lost messages (but not duplicates):

e “Maybe,” a single PDU with no response

* “Atleast once,” a simple request response (that is, two-way handshake)
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® “Only once,” a three-way handshake, which has two subtypes depend-

ing on failure cases

Clark (1988) characterizes the shared state problem in more qual-
itative terms of soft versus hard state and whether failures are
subject to “fate-sharing.” Clark contrasts replicating state with
fate-sharing. The abstraction he is contrasting is the hop-by-hop
nature of X.25 with the end-to-end error control of TCP, TP4, or
delta-t. Today, we would compare the TCP/IP approach with
ATM or MPLS. The X.25 protocols are definitely more complex,
but the reason is somewhat counterintuitive. Although Clark’s
point is fundamentally correct, this comparison is significantly
different from the case Spector was considering or the case below
that applies Clark’s soft state concept to signaling protocols. But
to see it, let’s first consider later attempts to formalize the soft
state concept.

While intuitively appealing, the soft state idea has resisted for-
malism until recent attempts: (Raman and McCanne, 1999; Ping
et al., 2003; and others). But here again, the gradations of shared
state are found in application protocols (for example, signaling
and peer-to-peer (sic) protocols, not so much in data transfer pro-
tocols). Ping et al. describe five cases of decreasing “softness”
between pure soft state and hard state. A careful look at them in
comparison with what we have already looked at is helpful but
that the results here assume that the only operation being per-
formed is “replacement,” not any operation that depends on the
previous state (that is, increment or decrement):

1. The first case is pure soft-state (ss), which is described as a
sender sending a trigger PDU to a receiver. The sender sets a
timer and refreshes the state whenever the timer expires by
sending the current value of the state information in a new
trigger PDU. The receiver records the content of the trigger
PDU when it arrives and sets its own timer, which is reset
whenever a new message arrives. If the receiver’s timer
expires, it deletes the state.

This characterization is a weak form of Spector’s maybe case
with Watson’s view of connections. (We are assuming that
“trigger” and “request” are roughly equivalent, although
recognizing not entirely equivalent.) The receiver may not
receive any of the sender’s PDUs. Also, Ping distinguishes a

Getting the Proper
Perspective

We have made the point
that it is always important
to view things from the
point of the view of the
“organism,” not the
observer (a lesson |
learned from Heinz von
Forester, a pioneer in
cybernetics). He often
illustrated the point with a
story to show the fallacy in
B. F. Skinner’s theory of
conditioned response.

Heinz would begin his
story with that twinkle in
his eye in his Viennese
accent: “We are going to
teach an urn!” At this point,
the student is thinking, an
urn? A vase? What does
he think he is doing? “We
put an equal number of red
and white balls in the urn;
Heinz would continue. “We
are going to teach the urn
to only give us red balls. To
teach the urn, we reach in
and pull out a ball. If itis a
white ball, we punish the
urn and throw it away. If it
is a red ball, we reward the
urn and put it back. Even-
tually, the urn learns to
only give us red balls!”

Clearly, the reward/punish-
ment is in the eye of the
observer, not the organ-
ism, the urn. These false
distinctions turn up often. It
is important to keep a
clear perspective about to
whom distinctions are
important. This is often the
source of significant simpli-
fications.
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“false removal” of state when the receiver’s timer expires before a new
trigger PDU arrives. This constitutes looking at the system from the point
of view of an omniscient observer (see the sidebar), rather than strictly
from the point of view of the participants. How does the observer know
the intent of the sender? Perhaps, the trigger is late because recent events at
the sender caused the sender to change state from “stop sending” to “more
to send.” Essentially the sender had intended to let the state expire and
then did otherwise. (Anthropomorphizing state machines is dangerous.)
How does the sender even know that the state is being discarded? Does it
care? Whether state is kept or discarded by the receiver has no effect on the
sender. From the sender’s or receiver’s point of view, there is no such thing
as “false removal.” This is dangerous reasoning. The action of protocol
machines cannot be based on what is surmised to have happened else-
where, but only on the inputs it sees. No assumptions can or should be
made about what generated those inputs.

. The second case is soft state with explicit removal (ss+er), which is
described as the first case with an explicit ER PDU sent by the receiver
when its timer expires, and the state is deleted telling the sender that the
state has been removed. This gives us a weak form of “at least once.” If the
ER is received, the sender will know that at least one of its trigger PDU was
received, but it does not know which one, and there is no indication in the
problem state that it matters to the sender. Note that the ER PDU is only
useful from the point of view of the observer, not the sender. The sender
need not take any action whatsoever. If the sender did not intend the state
to be deleted, the next trigger timeout will rectify the situation with no
explicit action by the sender in response to the ER. If it did intend the state
to be deleted, and it was, there is nothing the sender needs to do.!* This is
a case of not recognizing a degenerate case and, worse, turning it into a
special case. The semantics of the ER is as an “indeterminate ack” or that
“at least one trigger PDU arrived.” There is no indication in the problem
specification that this affects the state of the sender. From Watson’s point
of view, the ER as explicit removal is redundant because a connection/flow
is never terminated; the receiver just ceases maintaining cache space for it.
Once again, we see distinctions that are in the eye of the observer, not the
organism.

14 s easy to see that any timeout value for the ER is going to arrive at a time less than the nor-

mal update period. Because the ER is not an ack, it must be sent after more than one trigger is
missed, and therefore we can conclude that missing more than one trigger is not critical to the
system. If it is, the sender should have had a higher update rate to begin with.
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3. The third case is soft state with reliable trigger (and explicit removal)

(ss+rt), which is defined by the receiver sending an ack to each trigger. The
sender starts a retransmission timer when the trigger PDU is sent. (We
assume this is the only reliability mechanism, that there are no lower layer
functions providing reliability.) If it expires with no ack being received, it
retransmits the same trigger PDU. State removal is explicit, as in the sec-
ond case. This corresponds to either a strong form of the “at least once”
case or a weak form of Spector’s “only once,” depending on whether one
takes a glass half-full or half-empty view. If an ER PDU is received and
there is an ack outstanding, the sender will not know whether its last trig-
ger PDU was received. Ping et al. are unclear, but it does appear that if an
ack is not received by the time the trigger timer expires, a new trigger PDU
is sent regardless. (This follows from our assumption that replacement is
the only operation.) This would imply that the old ack is no longer rele-
vant and the sender is now waiting for the ack from the new trigger PDU.
This could persist so that the sender never receives an ack or an ER. Simi-
larly, if the ER is lost, the sender will not know that the state has been
deleted, but then it doesn’t affect the sender at all.

. The fourth case is soft state with reliable trigger/removal (ss+rtr), which is
defined as using “reliable messages to handle not only state setup/update
but also state removal” (italics in original). Ignoring the fact that Ping et al.
do not make clear how the explicit removal is made reliable without run-
ning afoul of the Byzantine generals problem, this is the same as the previ-
ous case—because, as we have seen, the only information the ER adds to
the semantics is the knowledge that at least one trigger was received, and
there is no indication that the sender needs this information.

. The fifth case is hard state (hs), which is defined as using reliable PDUs to
set up, update, and remove state, but it is not stated how they are made
reliable. Ping et al. state that “neither refresh messages nor soft-state time-
out removal mechanisms are employed,” and go on to say that a signifi-
cant problem with hard state is the removal of orphaned state and reliance
on an external signal to remove it.

The authors do not make it clear, but generally hard state has been
applied to protocols such as TCP or delta-t. It is unclear here whether we
are considering this class of protocols as some impractical straw man with
no timers. The problem of orphaned state arises directly from the require-
ment that both the sender and receiver know that they have terminated
normally. It is the Byzantine generals problem that ensures that this cannot
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be the case. In the case constructed by Ping et al., that both sender and
receiver know that a common point in the conversation was reached was
not a requirement.

So to some extent, we are comparing apples and oranges. This class of hard
state protocols does (where it matters) use timers and uses them to eliminate
orphaned state. In the case of delta-t, however, orphaned state cannot occur by
definition. The primary characteristic of hard state protocols is that the opera-
tions of some mechanisms are such that if the state of the sender and receiver are
inconsistent, the protocol will deadlock. Hard state protocols have the mecha-
nisms to avoid these conditions, increasing their complexity. It is the degree of
consistency and amount of shared state necessary to avoid these conditions that
makes them hard state protocols.

As we can see over the years, the emphasis of this issue has shifted from the
shared state of data transfer protocols!® to the shared state for client/server
applications to signaling protocols and more generally to what are essentially
distributed databases, largely following the popular topics of the time. To some
extent, this also parallels our increasing understanding of where the crux of the
problem lies. As we have seen, the results from Ping et al. reduce to variations
on Spector’s cases as seen through Watson. These results are consistent with our
findings here. For a data transfer protocol, there are basically three cases: a pure
connectionless protocol (maybe), a protocol with only tightly coupled mecha-
nisms providing feed forward requires only a two-way handshake for synchro-
nization, and a protocol with loosely coupled mechanisms providing feedback
(at least once) and requiring a three-way handshake for synchronization (only
once). Three points don’t make much of a continuum.

In addition to the lack of points on a continuum, the shared state approach
also doesn’t address the hop-by-hop versus end-to-end aspect of the issue. In the
traditional connection solutions, resource management is done on a hop-by-hop
basis. Connectionless has always been associated with a “best-effort” service
with a greater degree of “quality” provided end to end by a higher-layer proto-
col. However, as connectionless networks have grown and their use broadened,
this has presented problems. As the range of applications has grown (mainly
over past decade or so), the perceived need for levels of services other than “best
effort” have also grown. While overprovisioning has generally been seen as a
solution for this collection of issues, it is realized that this is not a long-term
solution, nor is it always available. The conundrum for those of us who prefer
the flexibility and resiliency of the connectionless model has been that any

151 say data transfer protocols here because with X.25 we are comparing error control at the
data link layer and resource allocation and flow control at X.25 Layer 3, with resource alloca-
tion of IP at Layer 3, and TCP error and flow control at Layer 4.
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attempt to address these issues has led directly to a connection-like solution.
One or the other, no synthesis. However, this has not led to the conclusion that
the connection model was right after all. The connection-oriented solutions
have suffered from the classic problems of static resource allocation, tended to
not perform much better if not worse than the connectionless ones, and have
encountered complexity and scaling problems. And yes, in all honesty, we must
admit there has been a bit of ego involved in not wanting to admit connection-
less might not be the answer.

But even among the calmer minds, there has been a sense that there is some-
thing we have missed. The intensity of the networking Thirty Years War has
tended to push us to one extreme or the other. If one were in the debates at any
time over the past 30 years, one could see that the fear of not knowing where a
compromise would lead kept compromises from being explored and reinforced
the combatants into their trenches. From looking at the proposals, that certainly
seems to be what has transpired. All of this and only the three points on our
continuum is perhaps an indication that the “degree of shared state” is a red
herring, or at least not an approach that will yield the synthesis we were looking
for. But perhaps the preceding observation will give us an opening.

What is most interesting is to return to Clark’ characterization that the
problem with hard state is that “because of the distributed nature of the replica-
tion, algorithms to ensure robust replication are themselves difficult to build,
and few networks with distributed state information provide any sort of protec-
tion against failure.” X.25 provides error control on links with a variation of
HDLC, LAPB. HDLC, as we saw, does “end-to-end” error control; the ends are
just closer together. The replication is primarily associated with resource alloca-
tion and flow control. Given what we have just seen with Ping et al. analysis of
signaling protocols, one begins to realize that it is not possible to compare just
the data transfer protocols. The different approaches to data transfer protocols
tend to include functions that the other assumes are elsewhere or vice versa.
This is an apples and oranges comparison.'® One must include the signaling
or “control plane” aspects in the analysis, too. We need to look at the whole
problem.

When we do this, something quite remarkable begins to emerge: The connec-
tion-oriented approach is actually trying to minimize the amount of shared
state. Its fragility derives (as Clark alludes to) from its inability to respond to
failure. If a link or node along a virtual circuit breaks, the nodes participating in
the virtual circuit don’t have sufficient information to take action. They don’t
have enough state information. It is brittle because when it breaks, no one
knows what to do. The connectionless approach avoids this in a somewhat

16 I have to admit I dislike this terminology because it is so heavily associated with the beads-on-
a-string model.
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counterintuitive manner: It distributes everything to everyone. Everyone knows
everything about the routing of any PDU. And each PDU contains all the infor-
mation necessary for any system to handle it.

In a very real sense, connectionless is maximal shared state, not minimal.
(Hey, I was as surprised as you are!) The interesting difference is that by widely
disseminating the information, the complexity (hardness) of the protocols
required is reduced. The connection-oriented approach is forced to hard state
protocols because it tries to minimize the information in each PDU and in each
node in the virtual circuit, centralizing routing and resource-allocation func-
tions elsewhere as much as possible. This forces the use of much more complex
mechanisms to maintain consistency. Whereas connectionless puts as much
information in the routers and the PDUs as possible, thereby being less affected
by failures. From a historical perspective, this is also consistent. The connec-
tion-oriented PTT advocates were from an older, more Malthusian tradition
that believed that everything must be used sparingly and tried to minimize
resources in favor of increased (deterministic) complexity, whereas the connec-
tionless advocates derived from a younger tradition of plenty where memory
was cheap and getting cheaper, and they were more comfortable with stochastic
processes that might consume more resources but were simpler and had better
overall characteristics.

The concept of shared state has always included both the amount of state
and the degree of the coupling. An idea of how inconsistent the shared state
could be for some period of time, always hard to quantify. Initially, our focus
had been on just the data transfer protocols, but the properties we saw there
were more affected by the routing and resource-allocation functions of the layer
than we cared to admit. We weren’t looking at the whole problem. Once we do,
it is apparent that connection-oriented protocols are trading off complexity to
minimize resources (state) but making the system more brittle in the process,
while connectionless protocols disseminate information (state) widely in favor
of simpler more resilient characteristics.!” Because everyone has been given suf-
ficient information for routing to know what to do with any PDU, and because
every PDU contains the necessary information for anyone who sees it to act on
it, the loss of state by any one system has minimal impact. Consistency is still a
concern. But we extend considerable effort on routing protocols to ensure that
Routing Information Bases become consistent quickly. (Perhaps the dumb net-
work “ain’t so dumb” after all!) In a sense, we have orthogonal axis; connec-

17 If there were a means to quantify “degree of coupling/complexity” with amount of shared
state, I suspect we would find that, looked at from this perspective, there is not much differ-
ence in the total “shared state,” although there is a difference in the characteristics of the
result.
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tionless represents maximal state in terms of space, while connections are max-
imal state in time.

The connectionless approach focuses entirely on routing and ignores the
resource-allocation problem, whereas the connection-oriented approach central-
izes routing (that is, forces it to the edge) and concentrates on resource allocation
along the path.

So, how does this insight contribute to our desire to find a unifying theory that
integrates connection and connectionless? We would like to be able to support
flows with different characteristics (QoS) while retaining the flexibility and
resiliency of connectionless. We have also noted that the proper place for connec-
tions is when traffic density is higher (more deterministic) and for connectionless
when it is lower (more stochastic). We distribute connectivity information to
everyone, but we have always insisted on only distributing resource-allocation
information along the path. No wonder our attempts at providing QoS always
turn out looking like connections; we are doing what they do! We were able to
break with the past and not think that routing had to be associated with a path,
but we didn’t do it when it came to allocating resources! We need to treat
resource allocation just as we treat routing: as distributed.!8

Going back to the “other” characterization of the difference between co/cl:
In connectionless, the processing of each PDU is independent of the processing
of other PDUs in the same flow. With connections, the processing of each PDU
in a flow is determined by the processing of the previous PDUs. Or to turn it
inside out, with connection-oriented resource allocation, information (including
routing) is only stored with nodes on the path of the connection; whereas with
connectionless resource allocation, information is stored with every node. Let’s
consider this to be our continuum? The probability that this PDU is processed
precisely like the last PDU in this flow varies between 0 and 1.

For routing, each router computes where it should forward a PDU based on
information from other routers it receives. Let’s take a similar approach with
flows. Based on information from other routers, each router computes the prob-
ability it will be on the path for this flow and if so what resources should it
“allocate.” An aspect of the exchange might include an indication of the
sender’s intent to spread the resources over several paths.

This leads to a model where flows are spread across different paths and
resources are allocated on the basis of the probability of their use. If we assume
that there are m paths between A and B, a connection is represented by one path
having the probability 1 of being used. For example, there might be 5 paths
between two points with probabilities: 0, .2, .6, .2, and 0. Pure connectionless is

18 our attempts at QoS reflect this dichotomy. We have tried the connection approach ATM,
MPLS, InfServ (RFC 1633, 1994), and so on, and the pure connectionless approach, DiffServ
(RFC 2430,1998). RSVP (RFC 2205,1997) is essentially connection establishment for IP.

93



94

CHAPTER 3 PATTERNS IN PROTOCOLS

represented by each path being equally likely or 1/n. Distributions may be any-
thing in between. The question is what resources should be allocated for these
probabilities given the desired QoS. This reorients the problem to one of distrib-
uted resource allocation, not flow reservation. We have considered the problem
as one of allocating flows, not allocating distributed resources.

Each node has resources to allocate. Each initiator of a flow requests distrib-
uted resources based on the QoS parameters of the request. Each member of the
layer can then compute the probability that it is on the path and allocate
resources accordingly. This gives us a model for doing quite a bit more than just
integrating connection and connectionless under a single model. In a sense, this
model extends Watson’s “particle physics” model of connections. That is, all
connections always exist; we just don’t cache state for them, unless resources
are allocated for them. Here we view flows as a probability distribution, or we
might characterize a flow as smeared across several paths. Routers allocate
resources based on the probability that they will receive PDUs for a flow. This
allows routers to reserve resources to better respond to failures during the tran-
sients while resource-allocation information is updated in response to a failure.

This is not a “major breakthrough,” nor is it intended to be. We were look-
ing for a unifying model of connection and connectionless. This one seems to
hold promise, and it is the only one we have found that does. This will give us a
tool to aid our thinking. How does thinking in terms of this model change how
we look at the problem? However, as interesting as it might be, this is not the
place to pursue it. We need to continue our journey before we have all the
machinery necessary to apply this approach to solving this problem. Although
we can’t say as yet whether this approach is tractable, we can certainly note that
it does integrate connectionless and connection. In fact, one of the appealing
aspects of this model is that it seemingly makes the distinction between connec-
tions and connectionless meaningless (although far from proof, this is definitely
one of the trademarks of a “right” answer), similar to when a solution turns out
to solve problems other than the one it was intended for.

Conclusions

In this chapter, we have found that separating mechanism and policy uncovered
some interesting patterns in the structure of protocols and revealed that the
plethora of data transfer protocols we have today actually have more similarity
than differences. The data transfer protocols seem to divide into two kinds:
relaying and multiplexing protocols and error- and flow-control protocols. We
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have found that the range of error- and flow-control protocols, from the weak
UDP-like to the strong TCP- or delta-t-like protocols, can be simply accommo-
dated by a single structure. We have also looked at the Thirty Years War over
connections versus connectionless. We have been able to characterize the proper
role of each and have made some surprising insights into the difference between
connectionless and connections and made great strides in finding a synthesis
that avoids the damaging schism they have caused in the past. But, we have
gone about as far as we can looking at individual protocols. We need to con-
sider the structures that result from assembling protocols with different scope.
But before we can do that, we need to collect some more data to have a good
understanding of the landscape. The next two chapters review the state of our
knowledge of the “upper layers” and of addressing.
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Chapter 4

Stalking the Upper-Layer
Architecture

You have Telnet and FTP. What else do you need?
—Alex McKenzie, 1975

If the Virtual Terminal is in the presentation layer, where is the power
supply?
—AIl Reska, 1979

Introduction

Although there has been a strong interest in “the upper layers” over the years,
as these quotes indicate, there have been differing misconceptions about them.
Since the earliest days of the Net, the upper layers have been a bit mysterious
and unclear. The early network software removed concerns of reliability and
routing from the applications. And with only a couple of dozen hosts connected
by what seemed high-speed lines, one had the illusion of having an environment
for distributed computing. All of this sparked the imaginations of those
involved to the possibilities as it continues to do today. It seemed that rather
than merely an amorphous collection of applications, there ought to be some
general structure for organizing upper-layer functions, as there was for the
lower layers.

The lower layers had succumbed to organization much more quickly, at least
on the surface. By 1975, it was fairly common to hear people talk about trans-
port, network, data link, and physical layers. It wasn’t until later that things got
sufficiently complex that the rough edges of that model began to show. Even
then, however, those four layers seemed to capture the idea that the lower two
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layers were media dependent, and the upper (or middle) two were media inde-
pendent and end to end.

The upper layers (above transport) were a different story. No obvious struc-
turing or decomposition seemed to apply. Part of this was due both to the lack
of applications and, in some sense, too many. For some time, the network did
seem to be able to get by with just Telnet and FTP (mail was originally part of
FTP). To find applications on a host, “well-known sockets” were used as a stop-
gap measure. (There were only three or four applications, so it wasn’t really a
big deal). It was recognized early that there was a need for a directory, and there
were some proposals for one (Birrell et al., 1982). But beyond that, application
protocols were very much “point products.” Protocols were unique to the appli-
cation. There did not seem to be much commonality from which one could
create a general structure that was as effective as the one for the lower layers, or
that easily accommodated the variety of applications and at the same time pro-
vided sufficient advantage to make it worthwhile. Unfortunately, early in the life
of the Net, upper-layer development was squelched before the promise could be
explored. As we will see, it is this event that most likely contributed most to the
arrested development of the Internet and left it the stunted, unfinished demo we
have today.

The OSI work made a stab at the problem and for a while looked like it was
making progress. But although they were able to uncover elements of a general
structure, that architecture suffered from early architectural missteps that made
application designs cumbersome and from overgenerality that required complex
implementations for even simple applications, but mainly it was the internal
divisions that killed OSI.

Over the past few years, there has been an opportunity to consider what was
learned from these experiences and what they tell us about the nature of the
upper layers. Consequently, a much better understanding has surfaced based on
a broad experience not only with a variety of applications, but also recognition
of similarities between the upper and lower layers. It is now much clearer how
the lower layers differ from the upper layers, what the uppers layers do and do
not do, how many layers there are, and what goes where. This chapter attempts
to bring together these disparate results and put them in a consistent frame-
work. Are all the problems solved? Far from it, but having such a framework
will provide a much clearer picture of how we can go forward and will allow
new results to be put into a context that makes them more useful. Upper-layer
naming and addressing will be considered in the next chapter; here we are
concerned with working out the structure. What we are interested in is under-
standing the relation of “networking” to “applications” or to distributed appli-
cations. Networking is not “everything” and cannot be considered to include all
of distributed computing. We need to understand how and where one leaves off
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and the other starts and the relation of the two. We are not so much interested
in being encyclopedic as considering what we have uncovered about “the upper
layers” that is both right and wrong.

A Bit of History

The Upper Layer(s) of the ARPANET

It would be difficult to claim that the members of the early Network Working
Group started with an idea of upper-layer architecture. Their focus was on
building a network. Applications were primarily there to show that it worked!
The group had its hands full with much more basic problems: How do you do
anything useful with a widely different set of computer architectures? How do
you connect systems to something that they were never intended to be con-
nected to? (You made it look like a tape drive.) How do you get fairly complex
network software into already resource tight systems? Just implementing the
protocols was a major effort for any group. The early ARPANET had much
more diversity in the systems connected to it than we see today. Just in the hard-
ware, there were systems with all sorts of word lengths (16, 18, 24, 32, 48, 64,
etc.) and at least two varieties of 36-bit words. There were at least a dozen dif-
ferent operating systems with widely disparate models for I/O, processes, file
systems, protection, and so forth.! Or at least, they seemed to be very different.
If there was an architectural direction, it was to provide over the Net access to
each of these systems as if you were a local user. (Or as close as 56Kb lines
would allow; and 50Kb seemed vast when most remote access was 110 or
300bps!). Furthermore, some of these systems were very tightly constrained on
resources. The big number cruncher on the Net was an IBM 360/91, with an
outrageous amount of memory: 4MB! (And the operating system was huge! It
occupied half!) The general attitude was that an operating system ought to fit in
a system with 16KB and still have plenty of room to do useful work. The pri-
mary purpose of these early applications was to make the hosts on the Net avail-
able for remote use. Thus, the first applications were fairly obvious: terminal

1 Today, all these systems would be classed as “mainframes.” But as one would expect, there
were different distinctions then: A few machines were mainframes; number crunchers, systems
to submit big batch computation jobs to. Some were timesharing systems whose users special-
ized in an area of research, in essence precursors to networked workstations. Some were
access systems, dedicated to supporting users but provided no computation services them-
selves; they were early minicomputers. All of them would now fit in a corner of a cell phone.
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access, transfer files, and submit jobs for execution. But once it worked (and it
worked well), our imaginations ran the gamut of what could be done with a
resource-sharing network. But from all of these problems and these initial appli-
cations came some very important architectural results in the design of applica-
tion protocols that still serve us well today, and as one would expect there were
also a few missteps along the way.

Early Elegance: Telnet, FTP, and RJE

The early NWG concentrated on three basic upper-layer protocols: a terminal
protocol, a file transfer protocol, and a remote job entry protocol. Let’s consider
each one in turn.

Telnet was the first virtual terminal protocol. The first Telnet was sufficient
to demonstrate that the network was usable; but because it reflected so many of
the terminal characteristics to the user, it was less than a satisfactory solution.
The NWG met in late 1972 and drafted the “new” Telnet.? The experience with
getting Telnet wrong the first time paid off. With the experience gained from the
first attempt, the NWG had a better understanding of what a terminal protocol
needed to do and the problems Telnet needed to solve and how to do it effec-
tively. Most important, Telnet was not a remote login application, but a termi-
nal-driver protocol. Remote login is an application built using Telnet (again
taking the operating system perspective). The new Telnet protocol had several
attributes that are unfortunately still rare in the design of protocols.

The designers of Telnet realized that it was not simply a protocol for connect-
ing hosts to terminals, but it could also be used as a character-oriented IPC
mechanism between distributed processes: in essence, middleware. In particular,
it could be used (and was) to connect two applications that had been written to
interact with humans. Telnet defined a canonical representation of a basic ter-
minal, the network virtual terminal (NVT). The NVT (Figure 4-1) defined a
rudimentary scroll-mode terminal with very few attributes.> The model for a
Telnet connection consists of two NVTs connected back to back: The “key-
board” of one is connected to the “screen” of the other and vice versa. The Tel-
net protocol operates between the two NVTs. The terminal system and the host
system convert their local representation into the NVT representation and con-
vert the output of the NVT to their local representation.

2 At this point, calling it “new Telnet™ is a bit like calling the Pont Neuf the New Bridge.

3 There was an incredibly wide variety of terminals (probably more than 50) on the market at
the time running the gamut from electric typewriters printing on paper, to displays that mim-
icked the paper printers, to fairly complex storage terminals that handled forms and could dis-
play text with bold or reverse video. The NVT did only the simplest of these, although options
were created for more complex ones.



A BIT OF HISTORY

NVT NVT
Keyboard Keyboard

Figure 4-1 The Telnet NVT model.
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Telnet defined an innovative symmetrical negotiation mechanism that
allowed a request by one to be the response to the other. The mechanism is used
by the two users to select and enhance the characteristics of the NVT, such as
character echoing, turn off half duplex, message size, line width, tab stops,
logout, and so on. The negotiation is structured so that when the connection is
established each side announces what it intends to do or not do (by sending the

commands WILL/WONT followed by the appropriate Telnet
options) and what it intends the other side to do or not do
(DO/DONT). The options were encoded such that an imple-
mentation that did not understand an option could refuse it
without having to “understand” it; that is, just send a WON’T
x. Each side’s announcement becomes a response to the other
side. If there is no conflict, one side will announce DO x, and
the other will announce WILL x (the WILL becoming a
response to the DO and vice versa). If a conflict occurs, each
option defines a scheme for resolution. Telnet is one of the very
few symmetrical application protocols. Notice that although
the protocol is symmetrical, what is being negotiated is asym-
metrical. Different systems did or required different functions.
The Telnet negotiation gave them an elegant means to attempt
to offload some functions if possible and still get done what
was needed.

While of little interest today, the handling of half-duplex ter-
minals shows the subtlety and elegance of Telnet. At the time,
terminals that could not send and receive at the same time (that
is, half duplex) were still common, in particular IBM terminals
such as the 2741, a computer-driven Selectrix typewriter. Con-
sequently, they had to be accommodated, even though most
understood that full-duplex operation was displacing them and
were much simpler to handle. Most protocol designers took
the idea of “turning the line around” literally and assumed that

Why Telnet Is Important?

Most textbooks no longer
cover Telnet (undoubtedly
because they deem remote
terminal support a thing of the
past). This is precisely what is
wrong with today’s networking
textbooks. The reason for cov-
ering Telnet is not because it
provides remote terminal sup-
port, but because it teaches
lessons in understanding net-
working problems.

Telnet takes a problem that
everyone else saw as asym-
metrical (terminal-host) and
found an elegant symmetrical
solution. That solution made
Telnet much more useful than
mere terminal support. Telnet
also finds an elegant solution
to a classic “oil and water”
problem (the handling of
half/full duplex) that makes
both degenerate cases of a
more general solution.

We consider Telnet because
these concepts are important
in the education of network
designers (the goal of a univer-
sity education), even though
they might not be for the train-
ing of network technicians.
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the protocol had to be half duplex. However, the designers of Telnet showed
more insight. They realized that the protocol had to manage only the interface
between the protocol and the remote user as half duplex; the protocol could
operate full duplex. Hence, Telnet sends indications (Go Aheads) so that the
receiver knows when to “turn the line around” (that is, tell the half-duplex ter-
minal it could send). This allowed an application to simply send the indication
regardless of whether the other side was full or half duplex, and the receiver
either used it or ignored it. Half duplex was subsumed as a degenerate case and
did not greatly distort the structure of the protocol (as it did with many others).
Take, for example, the OSI Session Protocol, which made the protocol half
duplex and made full duplex an extended service. Consequently, the minimal
Session Protocol requires more functionality than one that uses the full-duplex
option. Half-duplex terminals could use full-duplex hosts and vice versa. Nei-
ther really had to be aware of the other, and the application did not have to be
aware of which was being used. As the use of half-duplex terminals declined,
the use of the Go Ahead has quietly disappeared.

If Telnet got anything wrong, it was holding fast to a stream rather than
record model.* The generally accepted wisdom in operating systems at the time
was that the flow of data between processes should be streams. “Records”
implied fixed-length records. However, the desire to hold to the accepted wis-
dom for Telnet meant that every character had to be inspected for the Telnet
command characters. Telnet commands are a relatively rare occurrence in the
data stream. A little record orientation (that is, putting Telnet commands and
terminal data in separate “records”) so that every byte did not have to be
touched to find the relatively rare Telnet commands would have greatly
decreased processing overhead.

But all in all, Telnet is a fabulous success both architecturally and opera-
tionally, as indicated by its continued use today. Telnet embodies elegant exam-
ples of efficient solutions to problems by making them degenerate cases of a
more general model (rather than the more typical approach of simply shoving
distinct mechanisms together to solve each case, which eventually leads to
unwieldy implementations and to designs that are difficult to adapt to new
uses).

File Transfer Protocol (FTP) was built on Telnet, partly for architectural rea-
sons and partly for pragmatic reasons (Figure 4-2). FTP uses a Telnet connec-
tion to send its four-character commands followed usually by a single parameter

4 Well, maybe one other. There was a Big Bad Neighbor who insisted that the best way for
remote terminals to operate was character-at-a-time transmission and remote echoing by the
host across the Net. This proved to be very slow to the users (primarily because of operating
system overhead). Although attempts were made to develop a Telnet option to improve effi-
ciency, it never proved workable. But this really isn’t an inherent part of the protocol, so it is a
footnote.
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terminated by CRLF (carriage return, line feed). The actual file transfer is done
on a separate connection between data transfer processes. The architectural rea-
son (and a good one) to separate the command and data streams is so that com-
mands, especially aborts, do not get stuck behind large file transfers. This
connection was generally a fixed offset from the Telnet connection, with one
exception, the TIP.

The constraints of the TIPs had a major influence on the nature of FTP. TIPs
were a variant of the ARPANET switch (IMP) that had rudimentary host soft-
ware to connect users’ terminals to hosts elsewhere on the Net. Users would open
a Telnet connection and would act as the FTP client, typing in the commands
directly. Then, using the SOCK (now PORT) command, the user would instruct
the remote FTP server to connect to a socket on the TIP to send the file. Because
the TIP had no file system, you might be wondering what was the point. Printers
and other devices attached to the TIP were hardwired to certain socket numbers.
Although this was done on occasion, it was not very popular. Because the TIP
software ran as the low-priority task on the IMPs (after message forwarding), it
often experienced significant delays.

Telnet
FTP Client | p»| FTP Server
Data Transfer o | Data Transfer
Process w Process

Figure 4-2 The ARPANET FTP model.

FTP defined a rudimentary network virtual file systemn (NVES) and the basic
commands to carry out file transfers and to interrogate a foreign file system.
There was such a wide variety in file systems that the NVFS (like the NVT) was
restricted to the bare minimum. The main emphasis was on the attributes of the
file and saying as little about the nature of the contents as possible. There are
basic conventions for the file format (characters, binary, and so on) and for the
structure of the file (record or stream). The protocol allowed for checkpoint
recovery and third-party transfers.
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One Step Forward, Two Back

It is curious that although the
original version of FTP (RFC
542) allowed checkpoint recov-
ery and third-party transfers,
when FTP was revised for oper-
ation with TCP, this capability
was removed by what | am told
were reactionary factions. An
incredulous development to
remove useful functionality! We
can only hope that these kinds
of reactionaries do not continue
to put their imprint on an Inter-
net that needs visionaries, not
“stick-in-the-muds.”

Initially, mail was two commands in FTP. It wasn’t until
later that it was separated into a distinct protocol (that bears
the mark of its origins). Rather than attempt to impose com-
mon file system semantics (which would have greatly
increased the amount of effort required and the degree of dif-
ficulty in implementing it in the existing operating systems),
FTP transparently passes the specifics of the host file system
to the FTP user. An intelligent method for encoding responses
to FIP commands was developed that would allow a pro-
gram to do an FTP but at the same time provide the ability to
give the human user more specific information that might be
beneficial to determine what was wrong.

It is hard to say there is anything wrong with FTP per se.
One can always suggest things it doesn’t do and could, but for what it does, it
does it about as well as one could expect, and none of these really break any
new architectural ground. More would have been done at the time if it had not
been for the constraints on the TIP (there were complaints at the time that the
tail was wagging the dog) and schedule pressures to have something to use.
(There were small things wrong that illustrate how a temporary kludge can
come back to haunt. For example, as noted previously, FTP was kludged to
allow TIPs to transfer directly to a specific socket given by the SOCK command.
Later, this became a Best Common Practice (!) and a major problem with NATs.
The SOCK command was bad architecture; passing IP addresses in an applica-
tion is equivalent to passing physical memory addresses in a Java program! It
was known at the time and should have been removed when the last TIP was
removed from the Net.)

Remote Job Entry (Figure 4-3) is an early application protocol that is today
obsolete, but in the 1970s submitting a program to run on a remote machine
and retrieving the output (usually a printer file) was a major application. This
was also the downfall of the early upper-layer architecture. The designers
started paying too much attention to architectural elegance and not enough to
the users’ pragmatic requirements and constraints. It was not hard to see that
the job input (yes, the card reader input) and the printer output were files. It
was very neat to build FTP on top of Telnet. NETRJE required the ability to
send RJE commands and move files. What could be simpler than a Telnet con-
nection for RJE commands and then use FTP to move things around? Simple to
describe and easy to implement (if you don’t need it). NETRJE put the greatest
resource usage where it could least expected to be: the RJE client.
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Telnet
RJE Client [« »| RJE Server
A
v
Telnet )
FTP Server |« > FTP Client
Data Transfer . | Data Transfer
Process v Process

Figure 4-3 The ARPANET RJE model.

Consider a TIP, which did not have the resources to implement an FTP client,
but only Telnet. To be a client RJE, a TIP would have to make a Telnet connec-
tion to an RJE server, which invoked its FTP client to create a FTP Telnet con-
nection to the FTP server on the RJE client system. The TIP and most potential
users of RJE did not have the resources to support an FTP server, which is why
they were using RJE in the first place! Therefore, NETR]JE never got much if
any use. (A competing protocol, which did take into account the realities, did
get considerable use. This protocol, CCN RJE [Braden, 1977], first proposed in
1971, puts the load where it belongs. It set up a Telnet connection and then
opened data transfer connections for card reader and line printer transfers to
sockets, a fixed offset from the Telnet sockets.)

What Was Learned

First and foremost, the upper-layer development of the ARPANET (Figure 4-4),
as rudimentary as it was, proved that applications could be built and could be
useful. Very useful. Technically, we gained valuable experience with distributed
systems. We learned the difficulty of dealing with the subtle differences in the
semantics that different systems had for what appeared very similar concepts.
We even found some elegant solutions to some sticky problems that could serve
as examples going forward. We learned the necessity of striking a balance
between overspecifying and keeping it useful. And we learned not to get carried
away with elegance: Our triangulation of Clauswitz and Mao struck home. But
we also realized that we had chosen to solve specific problems. Although we
had a good start, we did not yet understand the fundamental nature of the
upper layers. What structure did a resource-sharing network require?
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With these accomplishments came much enthusiasm among the people devel-
oping and using the early Net. In addition, to these specific protocols that every-
one was using, there were numerous projects going on that went far beyond
these three applications. To conclude that this was the extent of the use of the
early Net would be grossly inaccurate. Distributed collaboration, hypertext sys-
tems, and production distributed database systems were all built during this
period.

As implementations of Telnet and FTP came into use, people became excited
at the possibilities. And it was clear that much more would be needed to make
the Net a viable network utility. A group of interested parties formed a Users
Interest Group (USING) to develop the necessary protocols. The group began to
look at a common command language, a network editor, common charging
protocols (not for the network but for using the hosts), an enhanced FTP, a
graphics protocol, and so on. This group had an initial meeting in late 1973 to
get organized, and a first major meeting in early 1974. However, ARPA became

Rerunning History

Of course, you can’t do it.
But, it is interesting to con-
jecture what might have
happened had ARPA pur-
sued development of the
upper layers? Clearly, the
direction USING had laid
out to explore new applica-
tions should have been
pursued. This was a major
area, which had hardly
been considered; there
seemed many application
protocols that could be
useful. Given the capabili-
ties of the systems, that
direction most likely would
have led toward something
like a Novell NetOS envi-
ronment. But the advent of
the Web raises questions
whether that path would
have created or inhibited
an environment conducive
to the explosive growth of
the Web and the immense
benefits it has brought.
(Although, a less explosive
spread might have been
had some benefits, too, a
little less exuberance might
have been wise.) It is easy

continues

alarmed that this group would essentially wrest control of the
network from them and terminated all funding for the work.
(Hafner et al., 1996). ARPA would have benefited much more by
harnessing that energy. Actually, ARPA had already, in a sense,
lost control of the direction of the Net (short of shutting it down).
The wide use of the Net might have come much sooner had
ARPA encouraged, not squelched, the initiative the users showed.

| RJE |

| FTP |

| Telnet ” Data Xfr |

| TCP |

Figure 4-4 The ARPANET upper-layer architecture.

Upper-layer developments in the ARPANET halted for two
decades. All subsequent developments have addressed specific
protocols and have not considered how they relate to each other,
what common elements there might be, or how it could be a dis-
tributed resource-sharing utility as early papers described it.

The early ARPANET upper-layer protocols made a greater contri-
bution to our understanding of the design of protocols than to the
architecture of the upper layers. But that was to be expected,
given that it was a first attempt. There was only so much that
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could be done. Developing distributed applications was not the primary ration-
ale of the project anyway. Unfortunately, the innovations in these early proto-
cols were often promptly forgotten by future work: the importance of
separating control and data, or the fact that terminal protocols could be sym-
metrical and more useful, was never utilized by any other protocol, and T sus-
pect never realized by their designers. For example, the early OSI VIP was
symmetrical, because of Telnet, but the U.S. delegates from DEC pushed it into
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a much more cumbersome asymmetrical design in line with their product.

The use of the canonical form (for example, the NVT) was a major innovation
both theoretically and practically. It is the tip of the iceberg to understanding of
key elements of the theory of application protocols. This was the so-called “n?
problem.” Potentially, hosts would have to support O(n?) translations from each
kind of system to every other kind of system. On the other hand, to define a

model that was the least common denominator would have been
so limiting as to be essentially useless. A middle ground was taken
of defining a canonical (abstract) model of the elements that were
to be transferred or remotely manipulated (in this case, terminal or
file system elements). For Telnet, this was NVT and for FTP, an
NVEFS. The definition of Telnet is strongly tied to the behavior of
the NVT. Although the definition of FTP refers to its canonical
model less frequently, it is no less strongly tied to the model of a
logical file system. The concept was that each system would trans-
late operations from its local terminal or file system in its local rep-
resentation into the canonical model for transfer over the network
while the receiving system would translate the protocol operations
from the canonical model into operations on the local representa-
tion in its system. This reduced an O(n2) problem to a O(n) prob-
lem. Of course, it also has the advantage that each system only has
to implement one transformation from its internal form to the
canonical form. It also has the benefit that new systems with a dif-
ferent architecture don’t impact existing systems.

There are two unique characteristics to this approach that dif-
fered from other attempts. First, the model was taken to be a
composite of the capabilities, not the least common denominator.
Although there was no attempt to replicate every capability of the
terminal or file systems represented in the network, useful capa-
bilities that either were native capabilities or capabilities that
could be reasonably simulated were included. Even with this
approach, the wide variation in operating systems made it diffi-
cult to define every nuance of each operation to ensure proper
translation.

continued

to see how a NetOS envi-
ronment could lead to self-
contained islands. On the
other hand, by not pursu-
ing upper-layer develop-
ment, ARPA removed the
driver that would have
required richer lower-layer
facilities, greater security,
finishing naming and
addressing, a much earlier
impetus to provide QoS,
and so on. This might have
avoided many of the cur-
rent problems of spam,
virus attacks, mobility,
scaling, etc. that plague
today’s Net). Without new
applications as a driver,
the only impetus the Inter-
net had was to do what
was necessary to stay
ahead of growth, which
through the remaining
1970s and early 1980s
was relatively moderate.
And most of that pressure
was relieved by Moore’s
law. As discussed later,
this turns out to be the crit-
ical juncture in the devel-
opment of the Internet that
allowed it to remain an
unfinished demo for 25
years and is now the crux
of our current crisis.
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Translation is the operative word here. Contrary to many approaches, the
implementation strategy was not to implement, for example, the NVFS on the
host as a distinct subsystem and move files between the local file system and the
NVFS (such approaches were tried and found cumbersome and inefficient) but
to translate the protocol commands into operations on the local file system and
the files from the canonical file format to the local file format. The least com-
mon denominator approach was avoided by the simple recognition that there
did not have to be a 1:1 mapping between operations on the logical object and
the local representation but that the operation in the world of the model might
translate into multiple operations in the local environment. In addition and per-
haps most significantly, it was also found that the process of creating the
abstract model for the canonical form uncovered new understanding of the con-
cepts involved.

The ARPANET application protocols required the use of a single canonical
form. One of the widespread complaints about this approach was requiring like
systems to do two translations they didn’t need, along with the assumption that

A Rose IsaRosels a
Rose

This was further compli-
cated by the fact that at
that point everyone knew
their system very well, but
knew little of the others,
and the systems often used
the same terms for very dif-
ferent concepts. This led to
considerable confusion and
many debates for which the
ARPANET and the IETF
are now famous. This also
made writing clear and
unambiguous specifica-
tions for application proto-
cols difficult. Even when we
thought we had (for exam-
ple, Telnet, 1973), we were
often brought up short
when a new group would
join the Net and come up
with an entirely different
view of what the specifica-
tion said. OSlI tried to solve
this with FDTs, which are
daunting to many develop-
ers; the Internet, by requir-
ing two implementations,
tends to inhibit innovation.

it is more likely that like systems would be doing more exchanges
with each other than unlike systems. Accommodating this
requirement, along with a desire to regularize the use of the
canonical form, led directly to the syntax concepts incorporated
into the OSI presentation layer. However, by the time OSI began
to attack the problem, the problem had changed.

In the beginning, computers never “talked” to each other; and
when they began to, they talked only to their own kind. So, when
the ARPANET began making different kinds talk to each other, a
lot of kinds had to be accommodated. As one would expect, over
time the amount of variability has decreased; not only are there
fewer kinds, but also systems tended to incorporate the canonical
model as a subset of their system. Also, new network applications
were created that had not existed on systems, so its form becomes
the local form. Consequently, the emphasis shifted from canoni-
cal models to specifying syntax.
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Does this mean that the canonical model is no longer needed? We can expect
other situations to arise where applications are developed either to be vendor
specific or to be industry specific (groups of users in the same industry) in rela-
tive isolation that will later find a need to exchange information. The canonical
form can be used to solve the problem. Today for example, the canonical model
is used to create the Management Information Bases (MIBs) or object models
for these applications or for interworking instant messaging models.

The ARPANET experience showed that there is some advantage to getting it
wrong the first time. The first Telnet protocol was not at all satisfactory, and
everyone believed it had to be replaced. But the experience led to a much better
design where the conflicting mechanisms were accommodated not by simply
putting in both (as standards committees are wont to do) but by creating a syn-
thesis that allowed both to meet their needs without interfering with the capa-
bility of the other.

But it has to be very wrong. When FTP was completed in 1973, there was a
general feeling that the problem was much better understood and now it would
be possible to “get it right.” However, it wasn’t wrong enough, and it never
went through the major revision, although some minor revisions added com-
mands to manipulate directories, and so on.’

(While this is an example of the tried-and-true rule of thumb, that you
“always have to throw the first one away,” this may also be a consequence of
“we build what we measure.” Unlike other disciplines where the engineering
starts with a scientific basis, we have to “build one” in order to have something
to measure so that we can do the science to determine how we should have built
it. No wonder we throw the first one away so often!)

With the early termination of research on applications in 1974, the early
developments were limited to the bare-minimum applications. With the impetus
removed to develop new applications that would push the bounds of the net-
work, new insights were few and far between. Perhaps one of the strongest neg-
ative lessons from this early upper-layers work was that elegance can be carried
too far. RJE using FTP and FTP and RJE using in Telnet led to an impractical
solution. We will defer our consideration of applications in the Internet now
(more or less keeping to the chronology), and shift our attention to OSI to see
what it learned about the upper layers and then return to the Internet to pick up
later developments there and see what all of this tells us about the fundamental
structure of networks.

5 1tis painful to see kludges we put into FTP to accommodate constraints at the time now
touted as “best practice.”
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The OSI Attempt or “Green Side Up”¢

Session, Presentation, and Application

Beginning in 1978, OSI was the first of the standards groups intent on getting
something out quickly and the first to learn that with a widely diverse set of
interests that it could be difficult, if not impossible, to achieve agreement. At the
first meeting in March 1978, the group adopted an architecture developed by
Charles Bachman, then of Honeywell, that had seven layers. At that time, the
characteristics of the protocols for the lower four layers were well-established.
Although there was uncertainty about what went in session, presentation, and
application (see Figure 4-5), the seven layers in the Honeywell model seemed to
make a reasonable working model. It was clear there would be many applica-
tion protocols. But for the time being, the terminal, file, mail, and RJE protocols
formed the basis of the work. What parts of these protocols, if any, went into
the session and presentation layers? Or did they all belong in the application

Speeding Up Standards

OSl intent on getting things
done quickly! | know. Many
will find this hard to believe,
but it is the case. There has
been a lot of talk about
speeding up the standards
process. From years of par-
ticipating and watching the
standards process, it is
clear that the vast majority
of the time is consumed by
people becoming familiar
and comfortable with unfa-
miliar ideas. There is little, if
anything, that can speed
up such a process. Building
consensus simply takes
time; and the greater the
diversity of interests and
the more people involved,
the longer it takes. Rushing
a consensus or trying to
force a particular answer
usually destroys the result
(for example, SNMPv2).
There are no shortcuts.
When |IEEE 802 started,
they were going to produce
Ethernet standards in six
montbhs; it took three years.
The ATM Forum has a sim-
ilar history. The IETF is a
classic example. When it

continues

layer? And, did other functions belong in session and presenta-
tion? For the next three years or so, considerable debate contin-
ued, attempting to work out the upper-layer architecture. The
upper layers were pretty much a clean slate.

As with everything else in OSI, there was no consensus on the
upper layers, and the disagreement was along the same lines as in
the lower layers: the PTTs versus the computer industry. The
European PTTs had two point products they wanted operating
under the OSI name. And it didn’t matter to them whether
accommodating them left a path open for future applications.
They were a monopoly. Customers had to buy whatever they
offered. The computer industry, on the other hand, realized that
the upper layers had to lay a foundation for everything to come.
So as the computer industry faction began to try to make sense of
the upper layers, the European PTTs inserted themselves into
defining the session layer. They had been developing protocols for
two new services to run over X.235: teletex and videotex. Teletex
was billed as e-mail. It was actually telex with some memory and
rudimentary editing capability, a far cry from the e-mail protocols

6 The punch line of a politically incorrect ethnic joke from at least the 1970s,
possibly before. (I know of a tree nursery company that used the name). The
joke is about some guys (insert politically incorrect ethnicity of your choice)
laying sod and the foreman having to constantly remind them, “Green side
up.” The reader can fill in the rest.
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that had been ubiquitous in the ARPANET and other research
networks for almost a decade.” Videotex was more sophisticated:
a terminal-based information system with rudimentary graphics
capability. Although hypertext had been around for over ten years
at that time, it was not widely available. Videotex was targeted at
what could be done with the technology of the early 1980s.

Application

Presentation

Session

Transport

Figure 4-5 The OSI upper-layer architecture.

The PTTs, jumping on the OSI bandwagon of the early 1980s,
wanted the teletex and videotex protocols (which were already
designed and being built) to be OSI. OSI was just beginning to
determine what the upper layers should be. The PTTs basically
laid out their protocols and drew lines at various places: This
small sliver is the transport layer; here is session layer, there is
really no presentation, and the rest is the application layer. These
were intended to run over X.25. Throughout the late 1970s and
early 1980s, the PTTs argued in every forum they could find that
transport protocols were unnecessary. However, OSI was coming
down hard on the side of the debate that said X.25 was not end-
to-end reliable and a transport protocol was necessary. The PTTs
insisted X.25 was reliable. So, Class 0 Transport was proposed by
the PTTs so that they would have a transport layer that didn’t do
anything. And then, when they got to the application layer and

7 The PTTs have consistently proposed initiatives [videotex, teletex, ISDN,
ATM, WAP, and so on] whose market window, if it exists at all, passes
before they can create the standard, build the equipment, and deploy it. The
sale of these is a credit to their marketing departments or the desperation of
their customers.

continued

was reasonably small and
its population fairly homo-
geneous and academic, it
developed a reputation for
doing things quickly. Now
that it has a more diverse
participation, it is taking
longer than any other stan-
dards group has ever
taken. (For example, IPv6
has taken 12 years for a
small change.) The IETF’s
participation is still less
diverse than OSI’s was. It
appears that other factors
are contributing to the
lengthy development time.

If We Build It, They Must
Come.

The fundamental market
strategy of a PTT. But in
this case they didn’t. Peo-
ple will not pay to get
advertising. The primary,
and perhaps only, suc-
cessful example is the
French Minitel. France
Telecom justified giving
away the terminals with
phone service with the
argument that between the
costs saved in printing and
distributing phone directo-
ries annually and the rev-
enue from advertisers and
information services, such
as booking airlines or
trains, more than covered
the cost. As with the Web,
pornography was the first
to make money from
videotex. However, giving
away the terminals makes
it hard to justify upgrading
the hardware. The French
PTT failed to see that tech-
nology would change
much faster than phone
companies were accus-
tom. Although, the design
was resurrected in the
1990s and called WAP.
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thought no one was looking, they stuck in RTSE to provide end-to-end reliabil-
ity and said they were doing checkpointing for mail. It was really quite amusing
how many pundits and experts bought the argument.

The functions proposed for the session layer that fell out of this exercise were
various dialog control and synchronization primitives. There was a strong
debate against this. Most people had assumed that the session layer would
establish sessions and have something to do with login, security, and associated
functions. This came soon after the competing efforts were made a joint
ISO/CCITT project. There was considerable pressure to demonstrate coopera-
tion with the PTTs, even if it was wrong. So, the Europeans block voted for the
PTT proposal.? (So, the OSI session layer was stolen by the PTTs and had noth-
ing to do with creating sessions—something that took many textbook authors a
long time to figure out.)

Meanwhile, the Upper-Layer Architecture group had continued to try to sort
out what the upper layers were all about. It was fairly Stoic about what had
happened with the session layer. Most believed that even if the functions were
not in the best place, it was close enough for engineering purposes (an argument
we hear often in the IETF these days). The session functions were needed, and
when presentation and application were better understood, a way could be
found to make the outcome of the session layer less egregious. (As it would turn
out, the problems it causes are too fundamental, but this does serve a valuable
lesson about compromising technical veracity to commercial interests.)

Early on (and almost jokingly), it had been noted that in the applications (or
in the application layer) PDUs would have no user data. They would have all
PCI, all header. In other words, this was where the buck stops. There was
nowhere else to forward user-data. Or more formally, the PDUs contained only
information (that which is understood by the protocol interpreting the PDU)
and had no user data (that which is not understood by the process interpreting
the PDU) for a higher layer. We will also find that this distinction still matters
even in the application.

Because the upper-layer problem was less constrained than in the lower lay-
ers and clearly part of the more esoteric world of distributed computing, a more
formal theoretical framework was necessary to understand the relations among
the elements of the application layer. For this, they borrowed the idea of concep-
tual schema from the database world.

8 Interestingly, AT&T did not side with the other PTTs and argued that the functions being pro-
posed for the session layer did not belong there but belonged higher up.
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From this, it was clear that for two applications to exchange  Database Schemas
information, the applications needed “a shared conceptual  Inthe database world, the
schema in their universe of discourse.”® If the other guy doesn’t fﬁgzzﬂ:ilti?g:fﬁﬁig:zf
have a concept of a “chair,” it is impossible to talk to him about  the information, which
“chairs” regardless of what language you use. As it turned out, ~ Might be represented by

. N . different structures or syn-
this was a generalization of the concept of the canonical form o -7, storage (called
developed for the ARPANET protocols, but now with greater  the internal schema) and
formalism. The concept comes directly from Wittgenstein’s  for presentation to a user
. . . . or program (called the
Tragtatus. The conceptual schema defines the invariant semantics  gxternal schema).
that must be maintained when translating between systems with
different local schemas.

Clearly, if the applications had shared conceptual schemas (that is, seman-
tics), the application layer must provide the functions to support the manage-
ment and manipulation of these semantics. And wherever there are semantics,
there must be syntax. So if the application layer handles the semantics, then
clearly the presentation layer must handle the syntax! Wow! Now they seemed
to be getting somewhere; maybe there was something to these upper three lay-
ers! On the other hand, one cannot manipulate semantics without its syntax.
Consequently, one finds that the presentation layer can only negotiate the syn-
tax used by the application. Any actual syntax conversions must be done by the
application.

So, the common part of the application layer provides addressing and negoti-
ates the semantics to be used, identified by the application context, and the pres-
entation layer negotiates the syntax identified by the presentation context.

Thus, the presentation layer became the functions to negotiate the syntax to
be used by the application. It was envisaged that a syntax language would be
used to describe the PDUs used by an application. The syntax language was
defined as an abstract syntax and a concrete or transfer syntax. The abstract
syntax of a protocol refers to the data structure definitions specifying the syntax
of the PDUs in a particular syntax language, whereas the concrete syntax refers
to a particular bit representations to be generated by that abstract language
(Table 4-1). By analogy, the data structure constructs of a language such as C or
Pascal correspond to an abstract syntax language. The data structure declara-
tions in a program written in such a language correspond to the abstract syntax
of a protocol, while the actual bit representations generated by the complier
represents the concrete syntax.

9 There was a heavy contingent of logical positivists in the group. What can I say? At least they
weren’t French deconstructionists.
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Table 4-1 The Distinction between Abstract and Concrete Syntax Is Similar to the
Distinction Between a Programming Language and Its Code Generators

Programming Language ASN.1

<integer> ::=INTEGER<identifier>; Language GeneralizedTime ::=
Definition [Universal 24] Implicit VisibleString

INTEGER X; Statement EventTime ::=Set {
Definition [0] IMPLICIT
GeneralizedTime Optional

[1] IMPLICIT LocalTime Optional)
(32-bit word) Encoding 11 L | GeneralizedTime

012A,, Value 0203000142,

The presentation protocol provided the means to negotiate the abstract and
concrete syntaxes used by an application. Note that presentation only negoti-
ates the syntax. It does not do the translation between local and transfer syntax
(what the ARPANET called the local and canonical form). OSI realized that
such a clean separation between syntax and semantics is not possible. The trans-
lation must ensure that the semantics of the canonical model are preserved in
the translation. This was referred to as the presentation context. Because an
application defined its PDU formats in the abstract syntax, an application could
use any new concrete syntax just by negotiating it at connection establishment.
OSI defined Abstract Syntax Notation 1 (ASN.1) as the first (and it would
appear to be the last) example of such a language. Then it defined the Basic
Encoding Rules (BER) (ISO 8825-1, 1990) as a concrete encoding. BER was a
fully specified encoding of the (type, length, value) form and allowed the flexi-
bility for very general encodings. BER proved to be inefficient in its use of band-
width and a little too flexible for some applications. With impetus from ICAQ,
the International Civil Aviation Organization, OSI embarked on two other sets
of encoding rules: one to be bandwidth efficient, Packed Encoding Rules (PER),
and one to be more processing efficient, Light-Weight Encoding Rules (LWER).
PER was done first and archieved both goals. It was 40% to 60% more band-
width efficient, but surprisingly was roughly 70% more efficient in processing.
No need was seen in pursuing IWER, so it was abandoned. Experimentation
indicates that PER is about as good in encoding efficiency as is likely, indicated
by the fact that data compression has little or no effect on it.

Initially, OSI embarked on developing a number of application protocols,
some of which have been alluded to here: OSI variations on Telnet, FTP, and
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RJE (JTM, Job Transfer and Manipulation). File Transfer Access Method
(FTAM) and JTM were based on British protocols, and Virtual Transfer Proto-
col (VIP) was based on a combination of proposals by DEC and European
researchers. Each had more functionality (to be expected since they came ten
years later), but none show any new architectural innovations, including those
incorporated in the early ARPANET/Internet protocols, nor were they designed
so that initial implementations were inexpensive. The minimal implementation
was always fairly large.

Later, OSI developed a number of important areas that the Net had ignored,
such as commitment, concurrency, and recovery (CCR), a two-phase commit
protocol intended as a reusable component; TP (¢ransaction processing, which
made apparent the limitations of the upper-layer architecture [ULA] structure);
Remote Database Access (RDA); Remote Procedure Call (RPC), how to stan-
dardize 1 bit; and a directory facility, X.500; and management protocol, Com-
mon Management Information Protocol (CMIP), which is discussed later.
CCITT (ITU-T) also took the lead in developing an e-mail protocol, X.400. The
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original ARPANET e-mail had been part of FTP and was later
extracted into SMTP without major change. Mail was directly
exchanged between computers (most were timesharing systems).
By the time of the discussions leading up to X.400, most systems
were workstations or PCs. Hence, this led to distinguishing
servers that received mail on behalf of users: the concepts of mes-
sage transfer agents and message servers. Initially, X.400 used
only the session layer, but as the presentation layer was incorpo-
rated, unforeseen problems arose.

For the application layer, OSI recognized that a common con-
nection-establishment mechanism would be required for all appli-
cations. One could not expect applications to be “hardwired” to
network addresses. Without such a common mechanism, a host
would have to be able to interpret all the initial PDUs of all the
applications it supported to determine what application to deliver
it to.

The common connection-establishment mechanism, associa-
tion control service element (ACSE), provides mechanisms for
application layer addressing, application context negotiation, and
authentication. Thus, the applications defined by OSI (CCR, TP,
file transfer, and so on) in essence only define the behavior of the
data transfer phase. ACSE provides the establishment phase.

Well-Known Sockets

The ARPANET had also
recognized the require-
ment for a directory early
on, but the need to demon-
strate that the network
could do useful work out-
weighed all else, and so
well-known sockets were
created as a kludge to
demonstrate the first few
applications. “Doing it
right” would have to wait.
No one expected that
there would be no new
applications for 20 years
and that we would still be
waiting to “do it right” By
the early 1980s, well-
known sockets were an
institution for a new gener-
ation, and amazingly
enough, one still hears
arguments that well-known
sockets were an inspired
piece of design. A sad
commentary on the state
of the field.
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The other major contribution to the upper layers that OSI did seem to get
right was the nature of the application process. At first glance, this looks like a
standards committee compromise. Being part of ISO, as OSI began to consider
applications, it ran into the problem of what was within OSI and what was the
purview of other committees, such as database, programming languages, bank-
ing, and so on. While on one hand this was the usual turf battle, on the other it
raised a very real question of where networking stopped and other aspects of
computing started. This quickly devolved into a very esoteric debate over the
nature of distributed applications and whether application processes were inside
or outside OSI (that is, the communications environment). After much debate,
the solution that was arrived at was that the application process was on the line
(see Figure 4-6), yet another standards committee nondecision. But with consid-
eration, one finds that it is not only the right answer, but that it is also a fairly

powerful one.10
Application
Outside the Process
OSIE
Inside the
OSIE

Application-Entities

Figure 4-6 An application process consists of one or more application entities, of which
there may be multiple instances of each.

What one finds is that it makes much more sense to treat the application pro-
tocol(s) as part of the application; or in OSI terms, application entities are part
of the application process. If the application protocols are considered distinct
entities used by an application, one gets into an infinite regress with respect to
the shared state. The parts of the application process, not part of the application
entity, are those aspects of the application not involved in communications. The
application process (AP) consists of one or more application entities (AEs),
which are instantiations of the application protocols. The application-entities
are part of the communications environment (they called it the OSI environ-
ment, or OSIE) while the rest of the application is not. In other words, the top
of the application layer includes the AEs but not the rest of the AP.

10 Who would have thunk!
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Consider an example: A hotel reservation application might use HTTP (an
application entity) to talk to its user and one or more remote database protocols
(different application entities) to actually make the reservations. The applica-
tion process outside the OSIE moderates the use of these protocols, doing what-
ever processing is necessary to convert user input to database requests. Clearly,
an application process can have not only different kinds of AEs, but also multi-
ple instances of them, and there could be multiple instances of the AP in the
same system. Not all applications would have the full complement of instances,
but some would. The application naming must allow relating an application
and its AEs (and their instances) to ensure that communication is associated
with the correct application. This turns out to be a powerful and general model
and easily describes and supports the requirements of distributed applications.

This also illustrates where the ARPANET approach of using operating sys-
tems as a guide turns out not to be sufficiently rich. From this perspective, we
can see that all of our early applications (Telnet, FTP, mail) were special cases:
The AE and the AP are essentially synonymous; there is little or no AP function-
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ality distinct from the application protocol, and there is generally
one per system. So, naming the application protocol was all that
was necessary. It is not until the advent of the Web that there are
applications in the Internet where the application and the proto-
col are not synonymous; that is, there is significant functionality
clearly not associated with the application protocol. And there are
many applications in the same host using the same protocol. One
wants to access cnn.com (the AP), not HTTP (the AE). Relying on
the operating system model had been a good first cut, but it was
not sufficiently general. Again, we see evidence of the harm done
by not pursuing new applications into areas that would have
taken us beyond the operating system model. Given the nature of
the discussions going on in the ARPANET in 1974, T have every
confidence that had new applications been pursued, something
equivalent to this model would have evolved. It is interesting to
note that this distinction arises primarily when considering “user
applications” and less so when considering system applications.
We definitely had a systems programmers’ perspective. Distin-
guishing application protocols from the application while at the
same time recognizing that naming the application protocol first
requires naming the application turns out to be a very powerful
insight and has implications far beyond its immediate use in the
application layer.

That Which Must Not be
Named

Why is there no name for
this “other part”? The part
of the AP not in any AE.
Good question. On the one
hand, some member bod-
ies insisted that we not
describe or name anything
outside the OSIE. This was
the turf of other commit-
tees, and we shouldn’t say
anything about it. On the
other hand, to not do so is
just asking for trouble. To
draw the distinction too
closely would have some
pedants insisting on some
formal boundary, whereas
good implementation
would probably dictate a
less-distinct boundary
between the AE aspects
and the AP aspects or
even interactions of AEs.
Later we will see that this
was well founded.
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The other aspect of the OSI application layer isn’t so much new as just good
software engineering. The OSI approach to application protocols allowed them
to be constructed from reusable modules called application service elements
(ASEs) see Figure 4-7. It was clear that some aspects of application protocols
could be reused (for example a checkpoint-recovery mechanism or a two-phase
commit scheme). Clearly, some part of the application protocol would be spe-
cific to the task at hand. As we have seen, a common ASE was required by all
applications to create the application connection, ACSE. There was also a con-
nectionless form of ACSE called A-unit-data that complemented the unit-data
standards in the other layers. In OSI, an application protocol consisted of ACSE
and one or more ASEs bound together by a control function (CF), which mod-
erated the interactions among the ASEs. Because ASEs had inputs and outputs
like any other protocol state machine, the CF was just a state machine that con-
trolled the sequencing of their interactions. There is nothing unique about this
approach. It is just good software engineering. But it is unfortunate that this
approach was not pursued; it might have facilitated uncovering some interesting
structures in application protocols.

Application Protocol

Control Function “FTP FTP Transfor
Server ASE
| ACSE | ASE”
Checkpoint
ASE

Figure 4-7 OSI application protocols were assembled from modules called application
service elements bound together by a control function to moderate interac-
tions among them. All applications protocols used ACSE to set up applica-
tion connections and for authentication. (There was also a connectionless
form of ACSE.)

But as this picture of the upper layers came together in the early 1980s,
cracks began to appear in the structure, and as the decade wore on and the
applications became more ambitious, the cracks became more severe. By 1983,
it had become clear that each session and presentation connection supported a
single application connection. There was no multiplexing above transport and
no need for addressing in session and presentation. Consequently, there was no
need for the session and presentation layers to set up connections serially, and it
would incur considerable overhead if it were done that way. To some extent,
OSI was even further down the path of too many layers causing too much over-
head that had undermined the early ARPANET’s attempt. But there was a
way out.
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Also, it was becoming more and more clear that the functionality of the
upper layers decomposed not so much “horizontally” as the lower layers did,
but more “vertically” into modules. (In the mid-70s, I had made this observa-
tion while investigating how to decompose protocols to improve their process-
ing (others remarked on it as well), but there wasn’t enough data to discern a
pattern.) This idea was opposed by many who were intent on adhering to the
seven-layer structure regardless.!! It was clear that the implementation of the
establishment phase of session, presentation, and application should be consid-
ered to be one state machine and the session functional units (that is, the dialog
control and synchronization primitives) should be viewed as libraries to be
included if required. In 1983, steps were taken by making slight changes to the
protocol specifications to allow the connection establishment of all three upper
layers to be implemented as a single state machine. This meant that the pre-
ferred implementation was to merge ACSE, presentation, and session into a
single state machine. This created a much smaller, more efficient implementa-
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tion, if the implementer was smart enough to see it.!2

This clearly says that the layer structure might need modifi-
cation. But in 1983, it was too early to really be sure what it all
looked like. Just because the connection establishment of the
upper three layers could be merged was not proof that the data
transfer phases should be. And remember, the CCITT wanted
the data transfer phase of the session layer just as it was for
teletex and videotex. So, it was not going to support any radi-
cal reworking of the upper layers. It also opposed the use of the
presentation layer (teletex and videotex were defined directly
on top of session) and would not have agreed to a solution that
made presentation a fait accompli. So in the end, it was felt that
this was the best that could be achieved at the time. It was a
small modification that made a move in the right direction and
allowed much more efficient implementations to be done. It
was hoped that it would be possible to work around what was
in place, after there was a better understanding. Meanwhile,
the upper-layer group continued to work out the details.

1 1t was amazing how quickly for some that the seven-layer model went from a

working hypothesis to a religion.

12 Most weren’t. This became known as the “clueless test” for implementers.

Standards Aren’t Design
Specs

This discussion leads to the
oft-cited observation that an
architecture does not need to
bear a resemblance to the
implementation. This is in
some sense true. There are
many “correct” implementa-
tion strategies for any given
architecture or protocol stan-
dard. One should never treat
a standard or any protocol
specification as an implemen-
tation design. However, speci-
fications should not stray too
far from the more common
implementation strategy. In
fact, what one often discovers
is that the optimal implemen-
tation strategy and the “cor-
rect” architecture are often
quite close. If not, something
is wrong. Of course, recently
the tendency has been to do
the implementation and then
define the architecture. This is
equally wrong. Doing the
arithmetic before the algebra
leads to inefficiency and dead
ends, the contra-positive of
our philosophical triangulation
(Clauswitz and Mao). It is not
only important to keep theory
close to practice, but also to
keep practice close to theory!
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Don’t Feed the Animals

As we noted in the preced-
ing chapter, OSI had two
800-pound gorillas in the
room: IBM and the PTTs.
Many were very concerned
about giving either one the
upper hand to push their
“proprietary” approach. On
the one hand, the PTTs
had too much clout to
reverse their position on
session and presentation.
Teletex and videotex were
just entering the market.
On the other hand, going to
a five-layer model ran the
risk of admitting that IBM’s
SNA had been right and
having IBM force SNA on
the committee—it chaired
nearly every national dele-
gation. And there was one
attempt, known as the Brler
Rabbit episode, to replace
the upper layers with SNA’s
LUB.2. Hence, the illusion
of seven layers was main-
tained.

A Note on Committee
Realities

Some readers will think
the OSI people were pretty
stupid for not seeing these
problems coming. They
did. Or at least some did.
However, if you have ever
participated in a standards
committee, you know that
taking the “right” technical
approach seldom counts
for much. What does
count are implications for
products and market posi-
tion. At the time the struc-
ture was being set in the
early 1980s, these objec-
tions were theoretical, of
the form “this could hap-
pen.” They could not point
to specific protocols where
it happened. This, of
course, allowed so-called

continues
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This would not have been too bad if it were the only problem,
but other problems arose that indicated that there were more fun-
damental problems with the upper-layer structure

According to the theory, if an application needed to change the
presentation context during the lifetime of the connection, it
informed the presentation layer, which made the change by rene-
gotiating it. Different parts of an application might require a dif-
ferent syntax to be used at different times on a connection.
However, it quickly became apparent that because the application
protocol could invoke session synchronization primitives to roll
back the data stream, the presentation protocol would have to
track what the application protocol requested of session so that it
could ensure that the correct syntax was in use for the data
stream at the point in the data when it was rolled back by the ses-
sion protocol. This added unnecessary complexity to the imple-
mentation and was a strong indication that the session
synchronization functions belonged above presentation, not
under it.

Furthermore, as more complicated applications began to be
developed, conflicts in the use of the session layer developed. For
example, CCR was defined to provide a generic two-phase com-
mit facility that used session functions to build the commit mech-
anism. Later, the transaction processing protocol, TP, used CCR
for two-phase commits but also made its own use of session prim-
itives necessarily on the same session connection. Session had no
means to distinguish these two uses, and there was no guarantee
that they would be noninterfering. TP would have to make sure it
stayed out of the way of CCR, but that violates the concept of
CCR (and all protocols) as a black box. In essence, session func-
tional units were not re-entrant and really in the wrong place.

Also, there were the problems caused by relaying in X.400 e-
mail. Connections between applications were the ultimate source
and destination of data. However, the RM explicitly allowed
relaying in the application layer. X.400 (or any mail protocol)
may require such relaying. This implies that while the syntax of
the “envelope” has to be understood by all the intermediate appli-
cation layer relays, the syntax of the “letter” needs only to be
understood by the original sender and ultimate receiver of the let-
ter, not all the intermediate relays. Because there are far more syn-
taxes that might be used in a letter, this is not only reasonable, but
also highly desirable. However, presentation connections can only
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have the scope of a point-to-point connection under the applica-
tion layer relay. It was not possible for the presentation layer to
negotiate syntax in the wider scope of source and destination of
the letter, independent of the series of point-to-point connections
of the relays. The “letter” could be relayed beyond the scope of
the presentation layer on another presentation connection to its
final destination. The architecture required the relay to support
all the syntaxes required for the envelope and the letter even
though only the sender and the receiver of the letter needed to be
able to interpret its syntax. SMTP avoids this by an accident of
history. When mail was first done, there was only one syntax for
the letter, ASCIL. By the time there were more, Multipurpose
Internet Mail Extensions (MIME) could simply be added for the
“letter,” with ASCII required for the envelope.

All of these indicated severe problems with the upper-layer
architecture, but the problems were also an indication of what the
answer was. And, although it might not be compatible with the
seven-layer model in its purest form, it wasn’t that far off from its
original intent.

What Was Learned

OSI made major progress in furthering our understanding of the

upper layers but ran into problems caused by conflicting interests:

both from economic interests and in adhering to a flawed model.
Authentication, addressing the desired application, and speci-

continued

pragmatists, those with a
vested interest, and the
just plain dull to counter
these arguments as just
speculative prattling. Or
arguments of why go to
the trouble of doing it right
if we don’t know it will
really be needed. (Sound
familiar?) It was not until
the late 1980s that work
had progressed sufficiently
that there was hard evi-
dence. This is often the
case in all efforts, in stan-
dards and elsewhere. One
does not have the hard
data to back up real con-
cerns. The demand to
accommodate immediate
needs regardless of how
bad a position it leaves for
the future is often over-
whelming and much more
damaging. Basically, don’t
violate rules of good
design. It might not be
clear what will need it, but
one can be assured that
something will.

fying some initial parameters were generally the concepts associated with ses-
sion functions. These were embodied in ACSE in the application layer. So
without stretching things too far, the theft of the session layer for the PTT tele-
tex and videotex protocols turned the OSI upper-layer architecture upside
down. (Right, green side down!) Avoiding the problem, by saying that the use of
session was a “pass-through” function, merely added unnecessary complexity
to the layers that were passed through. It is hard to argue that there is never a
situation where a pass-through function may be the correct solution. However,
pass-through functions must be limited to those that do not cause a state change
in an intervening layer. This severely limits the possibilities. Furthermore, in
general one would want functions located as close to their use as possible. There
would have to be a strongly overriding reason for locating another function
between an application and a function it uses. Fundamentally, it appears that

pass-through functions should never be necessary.
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The fact that there is no multiplexing in the session and presentation layers is
a strong indication that although there may be session and presentation func-
tions, they are not distinct layers. The presentation negotiation of syntax is best
associated as a function of the application connection establishment mecha-
nism, which practically speaking it is. The session functions are actually com-
mon modules for building mechanisms used by applications that should be
considered, in essence, libraries for the application layer. This also satisfies the
previous result and is consistent with the common implementation strategy.
Assuming that there are other common building blocks for applications than
those found in the session protocol, this would seem to imply that one needs an
application layer architecture that supports the combining of modules into pro-
tocols.

So, if the architecture is rearranged to fit the implementation strategy, all the
earlier problems are solved...except one: the syntax relay. The flow for relaying
is independent of the flow of the data for what is relayed. To take the e-mail
example, and applying what was developed in the earlier chapter, the letter from
an e-mail is a connectionless higher-level flow that specifies the syntax of the
data it carries and is encapsulated and passed transparently by the relaying pro-
tocol of its layer (with its syntax) via a series of relays. Essentially, we need two
layers of application connections to separate the “end-to-end” syntax of the let-
ter and the “hop-by-hop” syntax of the envelope. An interesting result but not
all that surprising. We should expect that applications might be used as the basis
for building more complex applications.

One might want to build application protocols from modules but also want
to build application protocols from other application protocols. To do this
about 1990, I proposed to revise ACSE, to make it recursive.!3 To do this
required ACSE to also negotiate syntax of these protocols within protocols. As it
turned out, the design of the OSI transaction processing protocol using session,
presentation, and application layers in the traditional manner was cumbersome
and complicated. However, with this extended application layer structure, the
design was straightforward and closely reflected the implementation. This model
could also solve the mail relay problem by simply making the letter an encapsu-
lated connectionless PDU with its own syntax being sent among application
relays with their own application connections and syntax for the envelope.

13 Writing service and protocol specifications for a recursive protocol is a very interesting exer-
cise. One learns how dependent one has become on thinking that the layer below is different.
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OSI improved our understanding of the nature of the upper layers. The recog-
nition of the roles of syntax and semantics in application protocols was crucial.
The distinction between abstract and concrete syntax is equally important and
allows protocols to be designed such that they are invariant with respect to their
encoding. This means the encoding can be changed without rewriting the entire
protocol in much the same way that a compiler can change code generators with-
out changing the language. (Remember in Chapter 3, “Patterns in Protcols,” this
property was needed to further simplify data transfer protocols.) The recognition
that application and presentation context were specific cases of a general prop-
erty of protocols (that is, negotiating policy) was also important. The realization
that the field in lower-layer protocols to identify the protocol above was really a
degenerate form of presentation context (that is, identified the syntax of the data
transfer phase), not an element of addressing, contributed to our general under-
standing of protocols. In the same way that the presentation layer proves to be a
false layer, this too proves to be a false and unnecessary distinction. However,
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OSI became locked into a particular structure of layers too early
(as did the Internet). If ACSE had been the session layer, which is
what most had intended, it would be before it was stolen the result
would still not be quite right, but it would have been much closer
and possibly close enough to get the rest of the solution. However,
it was a sufficiently large change that the majority of participants
could not accept a shift from seven layers to five, primarily for
political/economic reasons and because OSI would be turning its
back on protocols that were dead ends anyway (for example, keep-
ing checkpoint recovery out of FTP to protect ancient legacy
equipment).

Network Management

As the number of private networks grew in the early 1980s, inter-
est grew in how to manage them. The early ARPANET had an
excellent network management capability, but it was internal to
BBN (MacKenzie, 1975). The stories are legend: BBN calling Pac-
Bell to tell them one of its T1 line from Los Angeles to Menlo
Park was having trouble and PacBell not believing that the caller
wasn’t in either Los Angeles or Menlo Park but calling from
Boston. The entire network could be observed and largely
debugged from its management center in Cambridge, Massachu-
setts, as long as a switch (IMP) didn’t suffer a hard power failure.

The Main Lesson of 0SI

The main lesson of OSl is
to never include the legacy
in a new effort. We can see
how OSI’s attempt to
accommodate ITU caused
many bad compromises to
be made in the upper lay-
ers and bifurcated the
lower layers. ITU hijacked
the session layer for serv-
ices that were a dead end.
This so contorted the
structure of the upper lay-
ers that there was no
means to correct the prob-
lems without considerable
modification of the archi-
tecture and the protocols.
The ITU insistence on
X.25 in the lower layers
split them in two. (How
X.25 was supposed to
accommodate applications
of the 1990s is still a mys-
tery.) OSI was two incom-
patible architectures. All
these conflicts undermined
the effort and confused its
adopters. Every word and
punctuation mark in every
document was a point of
contention. Every minor
point was a compromise

continues
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Then someone had to be physically there to run the paper tape loader to reboot
it. IMP software downloads were distributed over the Net under BBN control.
Existing network management was primarily oriented toward controlling termi-
nal networks, and the management systems were very vendor specific (not at all
suitable for managing multivendor networks). There was little experience with
managing networks of computers.

The major difference in packet networks was one of moving from control to
management. Early terminal (and voice networks) viewed these systems as net-
work control, and they did. Most decisions about the network, including rout-
ing, were made from the network control center. However, a major
characteristic of packet-switched networks was and is that events in the net-
work are happening too fast for human intervention. A human in the loop will

continued

with the old model, consistently
weakening any potential of suc-
cess. There was never a consen-
sus on what OSI was, making it
two architectures for the price of
three, when it should have been
one for half the price.

On the surface, including the
legacy seems reasonable and
cooperative. After all, one must
transition from the old to the
new. And it is reasonable, but it
is wrong. Contrary to what they
say, the legacy doesn'’t really
believe it is the legacy. They will
point to successes in the mar-
ketplace. If people buy it, how
can it be wrong? There will be
considerable emotional attach-
ment to the old ways, not to
mention the vested interest in
the many products and services
to be obsoleted by the new
effort. The legacy will continu-
ally be a distraction. Their reti-
cence to change will cause the
new effort to fall short of its
potential and jeopardize its suc-
cess. Death by a thousand cuts.

No matter how great the tempta-
tion to be reasonable and
accommodating, this is one point
that cannot be compromised.

make the situation worse, working at cross-purposes to the
routing algorithms and flow-control mechanisms. Hence,
there is a real shift from “control” to management.

Starting in late 1984 under the impetus of the GM Manu-
facturing Automation Protocol/Technical and Office Proto-
cols (MAP/TOP) effort, a major push was made to develop
network management for factory and office automation.
Coincidentally, earlier in 1984, I had worked out the basics of
network management architecture for my employer. GM
liked what we had done, and this turned formed the basis for
the MAP/TOP network management effort. This early
attempt was based on the IEEE 802.1 LAN management pro-
tocol (IEEE, 1992). The protocol was in use as early as 1985.
The protocol had a simple request/response structure with
set, get, and action operations and an asynchronous event.
The operations were performed on attributes of objects in the
device, the precursor of the MIB. While the protocol devel-
oped by IEEE 802 was intended to operate over a LAN, there
was nothing about the protocol that was specific to LANs.
Recognizing that the responses would likely span more than
one packet, the request/responses used a transport protocol,
while the asynchronous event was sent as connectionless.

IBM was between a rock and a hard place. SNA was a
hierarchical network architecture intended to support the
centralized mainframe business. SNA was perfectly posi-
tioned to complement and avoid the phone company market.
But now the packet networks destroyed this division and put
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IBM and the phone companies in direct competition. The computer industry
was endorsing these packet networks with a peer architecture. IBM had 85% of
the computer market, so the others were not an immediate threat, although
minicomputers and workstations were coming on fast. However, the phone
companies were big enough and powerful enough to be a threat. In 1982, IBM
endorsed OSI and suddenly SNA had seven layers instead of five. But, the mar-
keting hype said, while OSI was good for data transfer, it didn’t do network
management. It was well understood that it was impossible to convert a hierar-
chical architecture to be peer, but IBM wasn’t ready to give up that quickly. It
needed time to map a path through this two-front minefield. Not only did IBM
build good hardware and have good marketing, they also were masters of elec-
tro-political engineering. It then embarked on a strategy of stonewalling the
development of network management within OSI (which, given the complexity
of the issues, was not hard).

It would be hard for anyone to get a management protocol effort started in
OSI with the IBM delegates there to bring up all sorts of spurious details to
debate. The IBM standards people were focused on OSI and mainframe net-
working. Their focus in IEEE 802 was 802.5 Token Ring. From their point of
view, those software architect types in 802.1 didn’t require a lot of attention.
The physical layer was where all the action was. (At this time, a data-comm
textbook would devote 300 pages to the physical layer and 50 pages to every-
thing else.) It is not surprising that the IBM Token Ring guys weren’t watching
too close, if they even knew they were there. So what if there were these “kids”
from a LAN company working on it. There were a lot of young engineers jump-
ing on the Ethernet LAN bandwagon. Let them play around developing a LAN
management protocol. (The IBM Token Ring guys attending 802 didn’t make
the connection that these “kids’” manager was the rapporteur of the OSI refer-
ence model and chief architect for a network management product in develop-
ment and that most of what they were taking into 802.1 was intended for
elsewhere. The IBM Token Ring delegates never mentioned the activity to the
IBM OSI delegates. And of course, I was highly critical of the ongoing OSI net-
work management work, seeming to support IBM’ “concerns,” which wasn’t
hard with IBM mixing it up, when in fact, it was intended to throw them off the
scent. I knew that if I took the lead in the IEEE project and the OSI Reference
Model, it would get IBM’s attention. Hence, IBM was caught flat-footed when
the IEEE management protocol was brought into OSI as a fully complete pro-
posal. No development required. Ready to go to ballot. IBM tried all sorts of
procedural maneuvers to stop the introduction, but to no avail. There was too
much support for it. This broke the logjam on network management, after
which the work proceeded at a good pace.
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However, experience with the IEEE protocol in mid-1980s showed that
although the obvious set/get approach was simple and necessary, it was not
going to be sufficient. It was in some sense too simple. It could take a lot of
request/responses to get anything done. So, there was already an effort to
extend management protocols to do sequences of operations at once. When the
IEEE protocol was introduced to OSI in 1985, object-oriented programming
was just coming into wide use. The IEEE protocol was generalized to what
became the Common Management Information Protocol (CMIP). The new fea-
tures of CMIP were centered on making the MIBs object oriented and including
the concepts of scope and filter. MIBs almost always have a tree structure, some-
times referred to as a “parts explosion” or “bill of materials” structure. Scope
and filter allowed a request for attributes to specify how much of the tree to
search (scope) and filter by a simple relational expression. With CMIP under-
way, work developing MIBs for all the OSI layers and protocols, as well as def-
initions for various management applications (such as configuration,
accounting, performance, and so on), proceeded apace.

Initially, the intent was to apply scope and filter to both sets and gets. How-
ever, it was pointed out that the nature of applying scope and filter to sets was
not invertible. (In general, there is no inverse for expressions of the form “for all
x, such that <relation exp>, replace x with y.”) Hence, scope and filter were
restricted to gets only. This is much more powerful than SNMP’s GetNext or
GetBulk capability and takes less code to implement than lexigraphical order in
SNMP.

Somewhat later but overlapping in time, the IETF began work on network
management. There were two efforts in the [IETF: SNMP, which was essentially
equivalent to the IEEE 802 management protocol; and High-Level Entity Man-
agement System (HEMS), an innovative approach to management protocols
that was object oriented and based on a pushdown automata model similar to
Postscript (RFCs 1021,1022, 1023,1024; 1987). For some inexplicable reason,
the IETF chose to go with the backward-looking SNMP, which turns out to be
simple in name only. Both CMIP and HEMS implementations are smaller. In
addition, SNMP adhered to the “everything should be connectionless” dogma.
This decision limited how much information could be retrieved and made get-
ting a snapshot of even a small table impossible. SNMP also limited the nature
of the unsolicited event so that devices had to be polled. This decision is hard to
explain. In the ARPANET, a proposal to do polling for anything would have
been literally laughed out of the room as “old mainframe think.” Why it was
acceptable at this juncture given that it clearly doesn’t scale and networks were
growing by leaps and bounds is mystifying. Furthermore, it made little sense.
One polls when there is a reasonable expectation of data on each poll. Termi-
nals were polled because most of the time they had characters to send. If new
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data is infrequent, event driven makes more sense. Polling for network manage-
ment would seem to imply that it was assumed most devices would be failing a
significant fraction of the time or at least experiencing exceptions. A strange
assumption! Dogma was allowed to ride roughshod over the requirements of
the problem.

That was not the worst of it. Just as IBM had realized that network manage-
ment was the key to account control, so did the router vendors. A standard net-
work management protocol that could manage any device from any
manufacturer would make routers interchangeable. Hence, some router vendors
immediately said that SNMP was good for monitoring but not for configuration
(because it was not secure). This was a curious argument. From an academic
point of view, it was, of course, true. SNMPv1 security was weak. But practi-
callyy, SNMP was encoded in ASN.1 (an encoding scheme its detractors
delighted in pointing out was overly complex and in moments of exaggeration
likened to encryption), whereas the router vendors did configuration over an
ASCII Telnet connection protected by passwords sent in the clear! Almost no
one had an ASN.1 interpreter, but every PC on the planet had a Telnet program.
Practically, SNMP was far more secure than the router vendors’ practice at the
time. Oddly enough, the IETF and the customers were taken in by this ruse.!#

This turn of events led to the hurried and botched development of SNMPv2.
A small group tried to write the entire new version and then ram it through the
IETF with little or no change. This is a well-known recipe for disaster in consen-
sus organizations, and this was no exception. When it was all over, none of the
original authors were speaking to each other. New factions had developed
around different variations of version 2 (eventually, after a cooling off period,
leading to SNMPv3). But by that time, the ruse had achieved the desired affect,
and SNMP was viewed as being for monitoring, and the router vendors laughed
all the way to the bank.

The other problem in network management was and is the proliferation of
MIBs. One would think that each layer could have a MIB that is largely com-
mon across all protocols used in that layer. (Actually, it can be done.) OSI actu-
ally made a halfway attempt at commonality but did not go as far as it could
have, and as it went down in the layers, the commonality disappeared quickly.
In the IETE, it was a complete free for all, with a proliferation of MIBs for each
technology, for each protocol, and in some cases for different kinds of devices,
before they realized there was a problem. And although they did try to intro-
duce some commonality, later the horse was out of the barn by the time the con-
cepts were in place. It is clear that the key to simplifying networking must be in
creating greater commonality and consistency across MIBs. What is also clear is

14 This appraisal of SNMP is not based on 20/20 hindsight but of observations at the time of the
events and, in some cases, the events were predicted.
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that it is not in the vendors’ interest to create that commonality and consistency,
at least, as they perceive the market today. If it is going to happen, it is going to
have to be built in to the fabric of the architecture.

All in all, the decision to pick SNMP over HEMS has probably set back
progress easily by a decade, cost network providers countless millions of dollars
in lost productivity and overhead, and slowed or prevented the deployment of
new services and applications. By retaining account control and routers not
being interchangeable has also increased costs of operations and of capital
equipment (all in all, reducing competition). The shortsightedness of this deci-
sion ranks along side the decision to do IPv6 as clear steps backward rather than
forward. The failure to explore the HEMS approach, especially considering pos-
sible cross-fertilization of ideas from CMIP, represents a major lost opportunity.

But what does network management tell us about upper-layer architecture?
Actually, quite a bit. Prior to tackling network management, applications had
been seen as requiring unique protocols for each application: Telnet, FTP, RJE,
mail, and so on. Experience with network management showed us that the vari-
ety is in the object models. The range of operations (protocol) was actually
fairly limited. Not only are the protocols for management applicable to other
“network-like” systems (for example, electric grids, gas, water distribution, air-
lines), but also a host of other applications can use the same basic object-
oriented protocol for performing actions at a distance. It was clear that most
application protocols could be viewed as a limited number of operations!® (pro-
tocol) on a wide range of object models (operands or attributes). (It appears that
the application protocols come in two forms: request/response and notify/con-
firm.) Hence, the number of application protocols is really quite small. So in the
end, it begins to look like Alex may have been pretty close on the number of
application protocols after all; they just weren’t Telnet and FTP!

But the problem of the protocol operations being too elemental is still with
us. Scope and filter were found to be useful in practice. It is unfortunate that we
were not able explore what might have come from using HEMS, which might
well have represented that “middle ground” between the elemental “Turing
machine-like” structure of protocols, such as SNMP and CMIP, and a language
with a full control structure, such as Java, Perl, or XML. It may appear that not

15 The operators seem to be set/get, create/delete, start/stop, and event, and the protocols seems
to be of either a request/response form or a notify/confirm form, where the later could be
symmetrical.
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many situations fall into the middle ground of needing more complex manage-
ment command sequences but being too resource limited to support a full lan-
guage. But then, that might be what the problem is trying to tell us. On the other
hand, having not really looked for useful models in that middle ground would
tend to lead us to that conclusion. This is an area that deserves exploration.

HTTP and the Web

The development of SNMP took place in the late 1980s, but the application
protocol that had the most impact on the Internet did not come from the IETF
or from computer science research. HTTP and the development of the World
Wide Web came from a completely different community. The history of the Web
has been chronicled many times. Developed by Tim Berners-Lee at the particle
physics center, CERN in Geneva, it languished for awhile as “just another
Gopher” until Marc Andreesen at National Center for Supercomputer Applica-
tions (NCSA) at the University of Illinois had the idea to put a
better user interface on it. A major effort at NCSA was developing
tools to facilitate the visualizing of huge amounts of data gener-

The First “Web”

This was not the first use
of hypertext for the Net. In

129

ated by the center. The rest, as they say, is history. the early 1970s, Doug
The Web has been so successful that to much of the world, the Englebart had used the

Web is the Internet. Our interest here is in the new structures and

ideas in the oNLine System
(NLS) for which he also

requirements the Web brought to the Internet. There were basi-  developed the mouse. NLS
cally three: was also used for the
Network Information Cen-

1. The necessity to distinguish the application from the applica-

ter (NIC) and was in many
ways more sophisticated

tion protocol than the Web, but it did

. lack graphics and required
2. The effects of many short transport connections on network  a entire Tenex to support

traffic it. In RFC 100, minutes of
a 1970 NWG meeting, it

3. (and related to the first) New requirements for addressing ~ mentions that NLS was

deriving from the need to deal with the load generated by

ported to an IMLAC, an
early graphics terminal. In

many users accessing the same pages other words, a personal
computer with a mouse
To a large extent, the Web caught the Internet flat-footed. Here  running the Web! Again, if

was a fairly simple application (at least on the surface), but it was

ARPA had continued to
pursue applications with

suddenly creating huge demand requiring more sophisticated dis-  Moore’s law, we might

tributed computing support, which the Internet did not have. The  have had the Web a
decade sooner.
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Web was put in the position a bit like an application finding that it has to do its
own memory allocation. Let’s quickly review how the Web works, what hap-
pens when there are lots of users and lots of pages, and then consider what this
implies for the Net.

When a user wants to access a Web page, she types a Universal Resource
Locator (URL) to her HTTP client (or browser), and it is sent using the HTTP
protocol over TCP to the HTTP server. DNS is used to resolve the URL to an IP
address. The response returns a page of formatted text and graphics and con-
taining many URLSs to other objects on the page. All of these URLs may point to
information on different systems. The browser then accesses each URL with a
separate request over a new TCP connection. The responses provide more
objects to populate the Web page, as well as URLs, which can be selected to
access new pages. The Web is a stateless (connectionless) application for access-
ing and displaying Web pages. Everything is driven by the client. While links
may be to any server in the Internet, it is often the case that there is considerable
locality in accessing a page. Clearly, as the number of users increases and the
popularity of certain Web sites increases, the load caused by large numbers of
TCP connections begins to take its toll on both the servers and the network.

The first thing we notice is that the Web user is accessing the Web applica-
tion. There may be thousands of Web sites on the same host all using HTTP.
This is not like Telnet, FTP, or mail, where there is only one application using
one application protocol per host. HTTP is just the vehicle for the two parts of
the application to communicate. Here we have the first example in the Internet
of the distinction between AP and AE that OSI found was necessary.

The first problem confronting the Web was that there was no application
name space for the Internet. It essentially had to create URLs. This was not dif-
ficult at first, because part of the URL corresponded to the domain name of the
host. The browser would just extract the domain name from the URL and do a
DNS lookup, get the IP address, and open an HTTP connection and send the
whole URL to the HTTP server. But very quickly, things got more complicated.
Suppose the owner of the application wants the Web server to be on a server
somewhere else?

For example, suppose gaslesscar.com company wants to reserve its own
server to support corporate activity and outsource its Web site for customers,
www.gaslesscar.com, to a service provider. What does it do? Suppliers still need
to connect to gaslesscar.com, whereas customers should be directed to the host
of the service provider. The company needs to retain the name recognition. It
can be kludged to work by letting the customers first connect to the corporate
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site and redirecting them. It works, but it is unnecessary load on the corporate
server, it will cause delays seen by the customer, and it raises security issues and
a host of other problems. Clearly, URLs had to be directly supported by DNS,
and they were. But by the same token, DNS was not designed for this kind of
usage.

Clearly, the Web is going to generate a lot of TCP connections and large vol-
umes of data. TCP had been designed on the assumption that connections might
be short, a few minutes or even seconds, to very long, a few hours, and that
hosts might be setting up new connections on an average of every few seconds
(at most, several hundred connections per hour). Connections lasting millisec-
onds and thousands per minute were not foreseen. This by itself was not a big
problem, but the problem of balancing this with applications with much differ-
ent usage patterns was.

HTTP opens many very short connections and sends only a few bytes of
data, even though the total amount of data sent for a page is equivalent of a rea-
sonably sized file transfer. Each HTTP connection never sends enough data to
be subject to TCP congestion control, whereas other traffic with longer-lived
connections is. This allowed HTTP traffic to unfairly grab an unfair share of the
bandwidth, the “elephants and mice” problem. This was the first real encounter
with applications that generated heterogeneous and incompatible traffic. The
short connections also put a resource strain on TCP control blocks, which can-
not be reused for a very long time relative to the time they are used. HTTP1.1
solves both of these problems with persistent connections. By using a TCP con-
nection for more than one request/response interaction, it reduces the turnover
in #raffic control blocks (TCBs) and transfers enough data over the connection
to ensure that TCP congestion control comes into effect and HTTP traffic only
gets its fair share.

Because the Web page will follow Zipf’s law, the same pages will be retrieved
for many users. This leads to a requirement for Web caching, either within the
client, within the client’s subnet, within their ISP, or by a Web hosting service.
The client HTTP is modified to send all requests to a cache site regardless of
what is indicated in the URL. If it is not there, it may be forwarded to another
cache or to the site indicated by the URL. The server can offload subsequent
accesses to the page by returning a response with links relocated to another
server.

In the case of the Web, a way was found to jury-rig existing structures with
minimal additions to meet the Web’s needs. Will it be possible to find a band-aid
for the next application? How many applications aren’t being developed
because the structures are not there to support them? When do the band-aids
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begin to interfere with each other? This is all arithmetic. What is the algebra?
What is the right way to accommodate load leveling and migrating applications
in a network? All of these are problems we will encounter with other applica-
tions. We have solved the problem for the Web, but we have not solved them for
the Internet. Or as the press believes, is the Web the Internet?

Directory- or Name-Resolution Protocols

Another interesting class of distributed applications is the directory- or name-
resolution protocols. The need for these was recognized quite early. If one were
building a “resource-sharing network,” a phrase that appeared in many early
networking papers, one would need a means to find the resources. Because
operating systems were the guiding metaphor from the early 1970s, the obvious
solution was some sort of “directory,” a service that could tell the user where
things were. The earliest attempt was the XNS Grapevine system (Birrell, A. et
al., 1982) developed by Xerox PARC in the late 1970s and extended in
Clearinghouse (Oppen and Dalal, 1983). Other commonly known, similar serv-
ices include DNS, X.500, Napster, Gnutella, distributed hash tables, and so on.
All of these have the same basic elements and the same structure with a few vari-
ations depending on size, degree of replication, and timeliness of updates. Basi-
cally, this is a distributed database problem (see Figure 4-8).

Sub-Directories_

S

é Attribute Space

B Search
é Name Space Updates
Directory/NR Local Cache
Address Space

Acting as word proxy

Figure 4-8 Elements of a directory- or name-resolution system.

Name-Resolution Systems

A name-resolution system (NRS) consists of a database, usually distributed, that
is queried by the user. The database maintains the mapping between two name
spaces: one that names what is to be located, and one that names where the
object is. (To facilitate the description, I refer to the “what” names as “names”
and to the “where” names as “addresses.” We will consider names and
addresses in more detail in the next chapter.) In some cases, a third name space
of attributes and a mapping to the application names is used. This allows the
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user to query not just on the name of the object, but also on attributes of the
object. In general, this is a separate NRS. This is what search engines do. Name-
to-address mapping is what directories do. Some services replace the application
name space with the attribute name space—in effect, treating a string of attrib-
utes as the name of the object. This is not always a wise decision. A string of
attributes may identify one, none, or many elements, and furthermore, the
object(s) ultimately referred to by the string may change with time. This yields a
potentially large number of names for the same object. If the service needs to
maintain accountability and track access to the objects (as may be required for
security purposes), the attribute searches should resolve to a unique name so
that accountability is maintained. (Because objects may move, it is necessary to
resolve to a name rather an address.)

NRS Structures
The database for an NRS may be centralized, cached, hierarchical (that is, a
tree), or a combination of the cached and hierarchical (usually depending on
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size and the degree of timeliness required). None of these needs to
be mutually exclusive. It is straightforward and common for these
systems to evolve from one form to another. For small or non-
critical databases, there is often just a central database. Cached
databases are introduced usually as a local cache to improve per-
formance and reduce overhead at the cost of partial replication.
The caches usually have a flat organization but can easily evolve
into a hierarchy. With larger databases, the hierarchical structure
of the name space is generally exploited to create subdatabases
responsible for subsets of the database. The degree of replication
(that is, caching) among the resulting tree of databases will
depend on the application. For NRSs with significant load/
availability requirements, the databases may be fully replicated. It
is easy to see how some sites become known for keeping larger
portions of the database. Over time, the structure may be regular-
ized with known sites for subsets of the database. There is no
requirement with a hierarchical structure that every node in the
name space has a distinct subdatabase. These are usually based on
size or organization boundaries. Flexibility is more important
than following rules. Queries can be sent to the appropriate site
with knowledge of the correspondence between the name struc-
ture and the appropriate subdatabase.

When Is a Name a Query?

This brings up an interest-
ing convergence that
makes distinguishing a
query and a name difficult.
And you thought they were
clearly different! Let me
explain.

The OSI Directory Service,
also known as X.500, was
probably the first to run
into this conundrum. X.500
was initially intended to
provide the mapping
between application
names and their network
addresses. But as the work
developed, it was made a
more general-information
repository for finding
resources of almost any
kind. They originally pro-
posed the use of “descrip-
tive names,” which was an
arbitrary sequence of
attribute/values. This
looked very similar to a
query. A sequence of
attribute/value pairs is
nothing more than a query
in disjunctive normal form.
When it was pointed out
that accountability was

continues
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Two protocols are required for this service:
1. A request/response protocol for querying the database
2. A protocol for distributing updates to the database, if it is distributed

The user sends a query to a member of the NRS. If the member can satisfy the
query, it returns a response to the user. If not, an NRS may be designed to
respond to the user either by referring it to another database in the system or by
forwarding the query to another NRS database. Depending on the level of relia-
bility the NRS tries to maintain, if the query is forwarded, the forwarding data-
base may act as a proxy for the user, keeping track of outstanding requests, or
the database forwarded to may respond directly to the user. This latter
approach may complicate security.

With a replicated distributed database comes the problem of updating the
copies when there are changes. This may either be initiated by the copy (the

required for application request form) or by the member when a change occurs (the notify
names, they retreated to form). The frequency of updates varies widely depending on the
an ordered sequence of . .

attribute/values. called a frequency of change and the degree of timeliness necessary.
“distinguished name,” Cached systems will tend to age and discard their caches, or per-

which satisfied the require- 1 55 distinguish often used entries and update them. Updates may
ment of accountability. Dis-

tinguished names still have ~ be done periodically, or initiated by significant events (a new
a strong similarity to member or a member disappearing), or both. Hierarchical systems

queries and indicate that T . ... . . )
the traditional hisrarchical tend to periodically update in addition to responding more imme

pathname is merely a dis- diately to change.

tinguished name where

the attributes are “under-

stood.” None of the mathe- Table 4-2 Characteristics of NRSs
matical or philosophical
work on naming addresses
the difference between a
name and a query and
whether it matters. Cache

Database Organization | Centralized

Hierarchical

This is one of the things

. he/Hi h
that science and mathe- Cache/Hierarchy

matics is supposed to do. Query Referral
When a close similarity is

uncovered between two Forward
concepts that were thought

to be quite distinct, it war- Proxy

rants a more careful con-
sideration. It might turn out
to be nothing. Or it may
lead one to discover that
we have been looking at a Combination
collection of problems in
entirely the wrong way and
lead to reformulation and
simplification.

Update Periodic

Event-driven
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When new sites come up, they register their information with a
local or near-local service, and it is propagated from there as nec-
essary. When sites go down or a resource moves, the contents of
the database change, and these changes must be propagated. This
is generally accomplished by either the child services requesting
an update periodically or by an affected database notifying its
neighbors of the changes.

DNS, X.500, or Grapevine are structured like this, choosing
specific policies for querying, database organization, and updat-
ing. They started from a centralized or cached service and grew to
be more hierarchical. Napster (centralized) and Gnutella (cached)
basically do the same thing for finding files rather than applica-
tions or hosts. Another P2P approach that curiously has gotten a
lot of attention is based on distributed hash tables (DHTs). This
approach differs from the earlier approach only in how a hierar-
chical application name space is generated. With DHTs, the name
of the resource, usually the URL, is hashed. The hash creates a
number of buckets where resources may be stored. The sites
where resources are stored are arranged according to the subset of
the hash space they are responsible for. The resource or informa-
tion about the resource is stored at the site indicated by the hash
of the name. The sites organize themselves in hash order. Using a
hash means that the resources will be evenly distributed across the
databases. The user accesses a resource by searching in hash
order. This may be beneficial in terms of load leveling, but it
destroys any locality that may have been embedded in the original
name and would have allowed the sites to do some intelligent
caching. To add insult to injury, attempts to address this short-
coming have been proposed by adding additional mechanisms to
treat the hash value as a hierarchical name (!). A user uses a hier-
archy imposed on the hash to find the site with the resource.
Essentially the same way, a DNS lookup uses the structure of the
domain name to find the correct DNS server. This somewhat begs
the question, why not use the original name, which in most cases
was already hierarchical and very likely reflected locality to a
large degree. It would seem that if one wants to optimize the use
of Web pages or files using such name-resolution protocols, one
would have much more success using operating system paging as
an analog.

What About Peer-to-Peer?

Indeed. What about peer-to-
peer? There has been quite a
fad surrounding P2P. Claims
that it represents new ideas
in distributed computing.
Much of the hype has cen-
tered on its application to
music “sharing,” also known
as intellectual property theft.
P2P appears to be the poster
child for just how far network-
ing has fallen as a science.

First and least, peer-to-peer
is bad English, equivalent to
irregardless as words to
show your illiteracy. Peer
communication has always
said it all. Communication is
always with another entity.
Peer denotes the nature of
the relation. Peer-to-peer is
simply redundant. Computer
science has never been
known for its writing, but
there is no point making our
illiteracy a neon sign.

“Okay, so you're pedantic,”
you say. “Whatever you call
P2P, it introduces new con-
cepts to networking: systems
that are both client and
server. Transfers don't have
to go through a third party.”
This has been the case since
the day the ARPANET was
turned on. For more than a
decade, until workstations
and PCs became prevalent,
most hosts on the Net were
both clients and servers.
Communication has never
been required to go through
a third party. One queries
DNS and communicates
directly, not through DNS. By
1973, even FTP supported
third-party transfers! A could
transfer a file from B to C
without going through A.
There is nothing in the proto-
cols or the architecture that
imposes such constraints.
Any such limitations are only

continues
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continued

in the minds of those using
the Net. This has more in
common with science in
17th-century China, where
knowledge of previous dis-
coveries was lost and
rediscovered. It is easier to
forgive them taking cen-
turies to lose knowledge,
whereas it takes only net-
working a few years.

“But there are these new
algorithms for finding
where things are.” Go back
to reading the text. They
are just variations on the
name-resolution and direc-
tory systems we have
been proposing and build-
ing for a quarter century.
To add insult to injury,
none of the so-called P2P
protocols are not peer
(symmetric) protocols.
They are client/server
(asymmetric) protocols.

Why has no one pointed
out that not only is there
nothing new about P2P,
but also what there is, isn’'t
that good? As computer
scientists, we should be
quite concerned when the
primary claim of a fad in
our field is for illegal pur-
suits and is at the same
time an embarrassment to
our intelligence.

STALKING THE UPPER-LAYER ARCHITECTURE

What Distinguishes the Upper Layers

On the surface, distinguishing the upper layers from the lower lay-
ers has always been easy. But when the details were examined, it
was most often a case of “I can’t tell you what it is, but I know it
when I see it.” It was difficult to find a set of characteristics that
was better than “that which is above transport” (a definition used
even recently). But as our understanding improved, it appeared
that were two characteristics that distinguish the upper layers
from the lower layers, regardless of what those layers are:

1. In the upper layers, processing is in units that have semantic
significance to the application (that is, incur the least pro-
cessing overhead/effort for the application); whereas in the
middle layers, processing is in units best suited to the
resource-allocation requirements; and in the lower layers,
the characteristics of the communications media or network
technology are dominant.

2. In the upper layers, addressing is location independent. In
the lower layers, addressing is location dependent. Or per-
haps more precisely, whereas lower-layer addressing is
based on the topology of the network, upper-layer address-
ing is usually based on a sort of “semantic” topology (for
example, all network access applications, all software
development applications, and so on).

In a sense, the characteristics of the media percolate up, while
the characteristics of the application seep down, and both are “fil-
tered” along the way with the differences reconciled when they
meet in the middle.

The overriding shift when we move from the lower layers to the upper layers
is that semantics becomes important, whereas it was consistently ignored in the
lower layers. This is not to say that upper-layer protocols deal only with the
semantics and that user-data. (That is, data that is passed transparently without
interpretation does not appear in the upper layers; it does.) It is just that the
boundaries of the PDUs are not chosen arbitrarily with respect to the applica-
tion but are chosen to be significant to the application. A couple of simple
examples will help to illustrate the point.
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Semantic Significance

In the lower layers, message or PDU boundaries are chosen to accommodate the
constraints of the media or networking technology. The requirements of the
application are rarely noticed (and even less the deeper in the layers one goes).
This changes in the upper layers, where “record” and “transaction” boundaries
of the application become important. Not only is everything done in terms of
these boundaries, but also in most cases, nothing can be done if one does not
have a complete “record” or “transaction.” Thus, we find checkpoint-recovery
protocols that work on records or two-phase commit protocols that work on
record or transaction boundaries, determined by the application.

This lesson was learned early in the development of FTP. Checkpoints in FTP
are inserted anywhere at the discretion of the host sending the file (the stream
model asserting itself). One of the major dichotomies between host operating
systems was (and still is) whether their file systems are stream or record ori-
ented. It was noticed that when a stream-oriented host was transferring a file, it
inserted checkpoints every so many bytes. If it were transferring to a record-
oriented host, the record-oriented host could only recover a failed transfer on
record boundaries. If the number of bytes between checkpoints were relatively
prime with respect to the record length, the record-oriented host could only
recover by transferring the whole file. Some early file transfer protocols made
this problem worse by having checkpoint windows (similar to the window flow-
control schemes in transport protocols). The sender could only send a window’s
worth of checkpoints without a checkpoint acknowledgment (not a bad idea in
and of itself). The transfer then stopped until one or more checkpoint acks were
received. In this case, it was possible for the file transfer to deadlock. The
receiver couldn’t ack because the checkpoints were not on a record boundary,
and the checkpoint window prevented the sender from sending more data until
a checkpoint was ack’ed. The fundamental difference was that for a stream-
oriented host, the only semantically significant points in the file were the begin-
ning and the end of the file. By inserting checkpoints arbitrarily, it was imposing
a policy that was more lower layer in nature than upper layer. The NVFS failed
to impose a necessary property on the checkpoint-recovery mechanism.

Similarly, problems could arise in performing mappings between different
syntaxes if they were not isomorphic. To take a trivial example, consider the
mapping of an 8-bit EBCDIC character set to 7-bit ASCII, a common problem
for early Telnet. Early in the ARPANET, new translation tables were deployed
in the TIPs, and it was found that it was not possible to generate the line-delete
or character-delete characters for systems that used EBCDIC. Nonisomorphic
translations must ensure that the semantics important to applications are pre-
served. While sometimes surprising, translations for character sets are relatively
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easy to accommodate and a simple example of the problem. However, when
mapping operations on file systems or other such complex operations between
different systems, ensuring the invariance is far more subtle. (The point is not so
much that a file system is complex, but more that it doesn’t take much complex-
ity to create problems.) It can be much less obvious what effects of the operation
on a particular system a program is relying on for its successful operation.

The canonical form provides the basis for addressing problems of this sort.
The model of the application defines not only its structure, but also the opera-
tions that can be performed on that structure. The canonical form, in effect,
defines the invariant properties of the operations that must be preserved when
mapping from one local system to the canonical form. The canonical form
defines the transfer semantics in much the same way that the concrete syntax
defines the transfer syntax.

Today with the network being such an integral part of applications, it is less
likely that these sorts of problems will occur as often. However, they will turn
up as applications that were never intended to be networked (developed in dif-
ferent environments) find that they have to communicate. In these cases, it
won’t the simple applications, such as terminals and file systems, but complex
business applications where teasing out the semantic invariances will be much
more difficult.

Location Independence

The difference in addressing had been recognized since some of the earliest
research on networking. Very early (circa 1972), it was recognized that it would
be highly desirable to allow applications to migrate from host to host and to
accommodate such migration would require applications to be named such that
their names were independent of their location (that is, what host they were on)
(Farber and Larson, 1972). There was a tendency to refer to this as upper-layer
“naming” as distinguished from lower-layer “addressing” as recognition of this
difference. However, this is not really the case.

Although an address is a name, a name is not necessarily an address.
Addresses are assigned to an object so that the object is easier to find. The algo-
rithm for assigning addresses to objects defines a topology (in most cases, a met-
ric topology). Therefore, addresses always represent points in a topology,
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whereas names are merely labels. Rather than say a name space is a flat address
space, In most cases, a flat name space is simply an address space out of context.

If one considers carefully the nature of “naming” as developed in meta-
mathematics and mathematical philosophy as distinguished from addressing,
one is led to the conclusion that in computer science and especially networking,
virtually all names are used for finding the object. All of our naming schemes
are schemes constructed to make locating an object easier (for some value of
easy) in some context, whether spatial or semantic. (A file system pathname is
structured to make finding the file in our collection of files easy. We use directo-
ries to group related files under meaningful names. It isn’t addressing in a spa-
tial sense, but it is addressing, rather than just naming.)

In the lower layers, geographical or network topology characteristics are
used as the organizing principle for locating objects. In the upper layers, other
characteristics are used for locating applications that are seldom related to loca-
tion. Unfortunately, unlike the lower layers, a crisp set of characteristics com-
monly used to organize the address space has not yet emerged for
application addressing schemes. The most one can say is that
characteristics of the applications are used. (One might say that .

. . In many cases, it will seem
application addresses are organized more by “what” or “who”  inat| am merely splitting
rather than “where.”) In some cases, schemes have reverted back hairs, and that is always a
to location-dependent characteristics. However, such schemes  danger.Butin many

. . . . . aspects of network archi-
preclude any migration of applications being transparent to a  tecture, especially

user. addressing, these subtle

. . . . distinctions have a pro-
As mentioned earlier, directory schemes, such as X.500, in pur- found effect on the out-

suit of “user-friendly names” initially proposed a “descriptive  come, a sort of “butterfly
naming” scheme consisting of the intersection of an arbitrary list ~ effect”in logic. These dis-
f b d thei | This ch ization begi tinctions can make the dif-
of attributes and their values. This characterization begins to con-  ference between a system
fuse the difference between a query and a name. These attributes,  in which it is easy and effi-
in effect, define a topology within which the application is  cientto do things and one
« . L . . . that is cumbersome and
located.” Applications in the same part of the directory are in  jnefficient and even a dead
the sense of this topology “near” each other, at least from the  end.
point of view of the application naming space, while almost cer-

tainly not from the topology of network addresses.

Too Fine a Point?
...Maybe
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Conclusions

Although T cannot claim that there has been a thorough investigation of upper
layers over the past 35 years, there has been a lot of work. Mostly, we have to
draw our conclusions based on generalizing from specific applications, rather
than attempts to construct a theory of the upper layers. We were able to show
that the division of labor represented by the OSI upper layers works only for the
simplest applications. On the face of it, this would seem to indicate that there is
no upper-layer architecture, or if there are upper layers, they have nothing to do
with what OSI thought session and presentation were. We can say that there is
an application architecture, but there is no common upper-layer architecture.

While we can characterize the “upper layers,” it does appear that the only
structure common to all distributed applications is the distinction made by OSI
between the application process and the application protocol. The requirement
for a common establishment mechanism was an important step in replacing the
stopgap left over from the ARPANET demo. Specific application domains will
have more detailed structures, and there are probably common application pro-
tocol modules that can be used across application domains, but that is probably
about it. We have uncovered some useful techniques for structuring application
protocols, and as with anything, we have learned some things not to do. In addi-
tion, application protocols essentially reduce to defining the means to perform
operations at distance on object models, and we can identify that the fundamen-
tal operations are read/write/append, create/delete, and probably start/stop. We
only lack a model for the control structure that strings them together. Does this
indicate that the essential distinction between upper and lower layers is the dis-
tinction between transparent (semantic-free) communication and distributed
system structures and programming languages?

After looking at naming and addressing in the next chapter, we take a step
back to see whether we can make coherent sense of all of this.



Chapter 5

Naming and Addressing

Did 1 ever tell you that Mrs. McCave

Had twenty-three sons and she named them all Dave?
Well, she did. And that wasn’t a smart thing to do.
You see, when she wants one and calls out, “Yoo-hoo!
Come into the house, Dave!” she doesn’t get one.

All twenty-three Daves of hers come on the run!

This makes things quite difficult at the McCaves’
As you can imagine, with so many Daves.

And often she wishes that, when they were born,
She had named....

[There follows a wonderful list of Dr. Seuss names she wishes she’d named
them, and then concludes with this excellent advice.]

But she didn’t do it and now it is too late.

—Dr. Seuss, Too Many Daves

Introduction

Many years ago when I started to work on the addressing problem, I remem-
bered the opening lines to a Dr. Seuss story that I had read to my children far
too many times. I thought it would make a good introductory quote for naming
and addressing. So I dug into my kids’ books to find it. Of course, I couldn’t do
that without reading the whole story through to the end for the great list of
names she wished she had called them. But I had forgotten how it ended. I hit
that last line and wondered whether Dr. Seuss had been sitting in all those
addressing discussions and I just never noticed him! There was never more
appropriate advice on naming and addressing than that last line.
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The problem of addressing has confounded networking from the beginning.
No other problem is so crucial to the success of a network; is so important to
get right early and at the same time is so subtle, so philosophical, and so eso-
teric. No matter how you approach it. Once defined, it is difficult to change,
and you may find yourself in the same situation as Mrs. McCave. If it is wrong
and must be changed, the longer it takes to realize it, the more painful (and
costly) it will be to change. If it is really wrong, the use of the network becomes
cumbersome and arcane and eventually useless. Trying to fix it piecemeal as
problems arise, only prolongs the agony, increases the cost, and increases the
pain when the inevitable finally comes. But if it is right, many things become
easier, and you scarcely realize it is there.

Why Do We Need Naming and Addressing?

The short answer is: to know where to send data. However, the more considered
answer is a little longer (but amounts to the same thing). One of the major effi-
ciencies of networks is that every source does not have to be directly connected
to every destination. If they were, only the simplest networks would be feasible,
and addresses would always be a local matter. But by allowing nodes in the net-
work to act as intermediates to relay messages from sources to destinations, we
must at least distinguish them with names, and as the network grows we can
greatly decrease the cost of the network at the “mere” expense of adding
addresses to the protocols and routing to the network.! We need to distinguish
messages from each other. For simple networks, the mechanisms are deceptively
simple, and simply enumerating the nodes is sufficient. But as the size and com-
plexity of the network grows, naming and addressing begins to show itself as a
subtle maze with all sorts of traps, quagmires, and dead ends. The protocol
designer begins to wonder whether he has unwittingly signed a pact with the
devil. But it is too late to turn back. And one is left wondering how engineering
suddenly became so philosophical.

There are basically two separate problems that we must consider: 1) What
objects need to be named to effect communications, and 2) the nature of the
names and addresses used to label these objects. But before diving into the the-
ory of addressing, let’s consider how we got here so that we have a better under-
standing of why the theory is being asked to answer certain questions.

1 The “multidrop” technologies accomplish a similar reduction in cost for “star” topologies and
also require addressing mechanisms.
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How the Problem Arose

Naming and addressing had never been a major concern in data communica-
tions. The networks were sufficiently simple and of sufficiently limited scope
that it wasn’t a problem. Most early networks were point-to-point or multidrop
lines, for which addressing can be done by simple enumeration. Even for large
SNA networks, it was not really an issue. Because SNA is hierarchical with only
a single path from the leaves (terminals) to the root (mainframe), enumerating
the leaves of the hierarchy (tree) again suffices. In fact, addressing in a decen-
tralized network with multiple paths, like the early ARPANET or even the early
Internet, can be accommodated by enumeration and was. But everyone knew
the addressing problem was lurking out there and eventually it would have to be
dealt with.

The ARPANET was a research project that wasn’t expected by many to suc-
ceed. No one expected the ARPANET to ever be large enough for addressing to
be a major problem, so why worry about an esoteric problem for which at the
time we had no answers. As it was, there were an overwhelming number of
major technical problems to solve which were a lot more crucial. Just being able
to route packets, let alone do useful work with it, would be a major achievement.
After all, it was research. It was more important to be focused on the few specific
problems that were central to making the project work. Addressing was dis-
tinctly a lesser issue. Of course, to everyone’s surprise the ARPANET was almost
immediately useful.

Because the initial design called for no more than a few tens of switches con-
necting a few hosts each, addressing could be kept simple. Consequently, there
were only 8 bits of address on the Interface Message Processors (IMP). Host
addresses were the IMP number (6 bits) and the IMP port numbers (2 bits).
Each IMP could have a maximum of 4 hosts attached (and four 56K trunks).
IMP numbers were assigned sequentially as they were deployed.

Although a maximum of 64 IMPs might seem a severe limitation, it seemed
like more than enough for a research network. There was not much reason for
concern about addressing. Once the success of the ARPANET was accepted, the
address size of NCP was expanded in the late 1970s to 16 bits to accommodate
the growth of the network. (Network Control Program implemented the Host-
to-Host Protocol, the early ARPANET equivalent of TCP/IP.)

2 $NA could even enumerate the routes, because the hierarchy kept the number from growing
too fast. But if you don’t understand why, it can lead to problems. There was a network com-
pany that many years ago tried to use the SNA approach for nonhierarchical networks (after
all if it was used by IBM, it must be right!) and couldn’t figure out why the number of routes
exploded on them.

143



144

CHAPTER 5 NAMING AND ADDRESSING

It was clear that the one aspect of naming and addressing that would be
needed was some sort of directory. ARPA was under a lot of pressure to demon-
strate that the network could do useful work; there certainly was not time to fig-
ure out what a directory was and design, and implement such a thing. And for
the time being, a directory really wasn’t necessary. There were only three appli-
cations (Telnet, FTP, and RJE), and only one each per host. Just kludge some-
thing for the short term. A simple expedient was taken of simply declaring that
everyone use the same socket for each application: Telnet on socket 1, FTP on 3,
and RJE on 5.3 Every host would have the same application on the same
address. This would do until there was an opportunity to design and build a
cleaner, more general solution. Hence, well-known sockets were born.
(Strangely enough, while many of us saw this as a kludge, discussions among
the people involved revealed that others never saw it that way. An unscientific
survey indicates that it may depend on those who had early imprinting with
operating systems and those that didn’t.)

If there was any interest in naming and addressing during that period, it was
more concerned with locating resources in a distributed network. How does a
user find an application in the network? By the mid-1970s, several efforts were
underway to build sophisticated resource sharing systems on top of the
ARPANET (the original justification) or on smaller networks attached to the
ARPANET. David Farber was experimenting with a system at UC Irvine that
allowed applications to migrate from host to host (Farber and Larson, 1972);
and another ARPA project, the National Software Works, was trying to build an
elaborate distributed collaboration system on top of the ARPANET (Millstein,
1977). These projects raised questions about what should be named at the
application layer and how it related to network addresses, but outstripped the
capability of systems of the day.

The problem of naming and addressing had been a factor in the development
of operating systems. The complexity of process structure in some operating
systems provided a good basis for considering the problem (Saltzer, 1977).
Operating system theory at the time drew a distinction between location-
independent names and the logical and physical levels of addresses. This distinc-
tion was carried into networking and generalized as two levels of names: 1)

3 When “new Telnet” was defined, socket 23 was assigned for debugging and experimenting
with the new design until the old Telnet could be taken out of service and new Telnet moved
to socket 1. Telnet is still on socket 23.
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location-independent names for applications and 2) location-dependent
addresses for hosts.

The general concept was that the network should seem like an extension of
the user’s interface. The user should not have to know where a facility was to
use it. Also, because some applications might migrate from host to host, their
names should not change just because they moved. Thus, applications must
have names that are location independent or as commonly called today,
portable. The binding of application names to processes would change infre-
quently. These applications would map to location-dependent addresses, a map-
ping that might change from time to time. Network addresses would map to
routes that could change fairly frequently with changing conditions of the net-
work. That was the general understanding.

Using switch port numbers for addresses was not uncommon. After all, this is
basically what the telephone system did (as did nearly all communication equip-
ment at that time). However, although this might have been acceptable for a tele-
phone system, it causes problems in a computer network. It didn’t take long to
realize that perhaps more investigation might be necessary. Very quickly, the
ARPANET became a utility to be relied on as much or more than an object of
research. This not only impairs the kind of research that can be done, it also pre-
vents changes from being made. (On the other hand, there is a distinct advan-
tage to having a network with real users as an object of study.) But it also led to
requirements that hadn’t really been considered so early in the development.
When Tinker Air Force Base in Oklahoma joined the Net, they very reasonably
wanted two connections to different IMPs for reliability. (A major claim
[although not why it was built] for the ARPANET in those days of the Cold War
was reliability and survivability.) But it doesn’t work quite so easily. For the
ARPANET, two lines running to the same host from two different IMPs, have
two different addresses and appear as two different hosts. (See Figure 5-1.) The
routing algorithm in the network has no way of knowing they go to the same
place. Clearly, the addressing model needed to be reconsidered. (Because not
many hosts had this requirement, it was never fixed, and various workarounds
were found for specific situations.) Mostly, the old guard argued that it didn’t
really happen often enough to be worth solving. But we were operating system
guys; we had seen this problem before. We needed a logical address space over
the physical address space! The answer was obvious; although it would be
another ten years before anyone wrote it down and published it. But military
bases were rare on the Net, so it was not seen as a high-priority problem. Also,
we all knew that this was a hard subtle problem, and we needed to understand it
better before we tried to solve it. Getting it wrong could be very bad.
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Host
14,1 20,3
IMP IMP
14 20

Figure 5-1 Because ARPANET host addresses were the port numbers of the IMPs
(routers), a host with redundant network connections appears to the network as two
separate hosts. Routing can’t tell the two lines go to the same place.

Background on Naming and Addressing

The problems of naming and addressing remained an interesting side issue for
the Net, not a problem crucial to survival for many years. There weren’t too
many places to learn about naming and addressing. In the early days of com-
puter science, there was considerable emphasis on mathematical logic, the pred-
icate calculus and related subjects. Some aspects of naming are taken up there in
some detail. As previously mentioned, there had been some work done in the
context of operating systems. The postal system and the telephone system
solved this problem on a global scale; and although both are large systems, they
are also simpler in significant ways. Most of the network is hierarchical, and the
part that isn’t was strongly geographical with a single provider. They didn’t
have to consider multicast, migrating applications, multihoming, or until
recently, mobility.

Foundations of Mathematics and Naming

As we have said, the problems of naming and addressing have a tendency to get
philosophical. What to name, the relation among various names and the objects
they refer to, and the structure that such names should have and what
constructs they can support are all issues to be considered. It doesn’t take long
before it can begin to sound like counting angels on the head of a pin. However,
experience has shown that subtle distinctions can often make the difference
between a simple but rich and efficient naming scheme and a scheme that
becomes complex and cumbersome and may not even work. So, perhaps we
should consider those aspects before we go too much further. Because we are
concerned with naming and addressing in computers and networks of com-
puters, we will not discuss the full scope of naming issues that have been taken
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up by philosophy. We will only provide a taste of these issues and limit ourselves
to those aspects of the mathematics that apply most directly to our problem.

Modern considerations of naming derive from the work on the foundations
of mathematics and symbolic logic. This work got significant attention in the
late 19th century with the interest in the foundations of mathematics and the
work of Gottlieb Frege, with major contributions coming from the work of
Bertrand Russell and Alfred North Whitehead, Ludwig Wittgenstein, Rudolf
Carnap, and others who became known as the Vienna Circle. Primarily, they
were concerned with two problems: 1) creating a strictly axiomatic basis for all
of mathematics and 2) the means to create purely logical language to describe
the world. Both projects failed. The first because Kurt Godel proved the
“incompleteness theorem,” or in essence “no matter where you start, there is
some place you can’t get to from here.” And the second by Wittgenstein, who in
his Tractatus Logico-Philosophicus made it clear that most of what philosophy
had been talking about for the past 2,000 years could not be stated with suffi-
cient precision to prove any conclusions. And all those things that could were
tautologies, which say nothing. However, in the process of getting to these con-
clusions, considerable insights were made into the nature of language, the foun-
dations of mathematics, symbolic logic, and so on.

Much of this work related to constructing a precise logical language. Conse-
quently, one of the major considerations was precisely determining the relation
of names to their meanings and how these meanings came about. Frege, in his
essay “On Sense and Meaning” (1892) defined a name as follows:

A proper name (word, sign, sign combination, expression) expresses its sense, means
or designates its meaning. By employing a sign we express its sense and designate its
meaning.

Here and in the Basic Laws of Arithmetic (1884), Frege goes on to develop the
concept of a name to correspond closely to what one intuitively thinks of as a
noun clause. As alluded in the definition, a name can be an expression. Frege also
introduced variables into these expressions and the concept of bound and
unbound variables, although the use of these terms did not come until later. Frege
distinguishes simple and complex complete names. Simple names are what we
would term constants; complex names are expressions. A complete name has all
of its variables bound to constants. For Frege, an incomplete name (i.e., one with
unbound terms) is a function. Frege uses these concepts and a unique notation in
an attempt to derive the fundamental rules of arithmetic. However, he only came
close. As his book went to press, Frege received what is now a famous letter from
Russell advising him of a problem Russell had encountered in his own attempt
with Whitehead to put mathematics on a completely logical footing (the set of all
sets that do not contain themselves, leading to the Russell paradox). Frege had
missed the paradox that stumped Russell for quite awhile and whose solution is
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still debated by mathematicians. Although the damage was not irreparable, Frege
never revised his book to fix the problem.

Twenty some years later, the young Ludwig Wittgenstein took issue with
Frege and to some extent Russell in his work that revolutionized mathematics
and philosophy, the Tractatus Logico-Philosophicus (1922). We have already
touched on the Tractatus in Chapter 1, “Foundations for Network Architec-
ture,” but here let’s look more closely at what it says about names. Right off the
bat, Wittgenstein takes issue with Frege:

3.142 Only facts can express a sense, a set of names cannot.

3.143 Although a propositional sign is a fact, this is obscured by the
usual form of expression in writing or print. For in a printed propo-
sition, for example, no essential difference is apparent between a
propositional sign and a word. (This is what made it possible for
Frege to call a proposition a composite name.)

3.144 Situations can be described but not given names.

An early 20th-century flame, W goes on to give a much restricted definition
of a name, which corresponds to what we will call here a primitive name:

3.202 The simple signs employed in propositions are called names.

3.203 A name means an object. The object is its meaning. (‘A is the
same sign as A.)

3.22 In a proposition a name is the representative of an object.

3.26 A name cannot be dissected any further by means of a defini-
tion: it is a primitive sign.

3.261 Every sign that has a definition signifies via the signs that serve
to define it; and the definitions point the way.

Two signs cannot signify in the same manner if one is primitive and
the other is defined by means of primitive signs. Names cannot be
anatomized by means of definitions. (This cannot be done to any sign
that has a meaning independently and on its own.)

W is nailing things down pretty tight, defining a name as essentially a label
for an object. This is a denotative approach to naming. He goes on to point out
that names by themselves say very little:

3.3 Only propositions have sense; only in the nexus of a proposition
does a name have meaning.
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3.314 An expression has meaning only in a proposition. All vari-
ables can be construed as propositional variables. (Even variable
names.)

3.3411 So one could say that the real name of an object was what all
symbols that signified it had in common. Thus, one by one, all kinds
of composition would prove to be unessential to a name.

4.0311 One name stands for one thing, another for another thing,
and they are combined with one another. In this way the whole
group—Ilike a tableau vivant—presents a state of affairs.

4.23 It is only in the nexus of an elementary proposition that a name
occurs in a proposition.

So, W comes full circle or would seem to. The meaning of a name can only be
determined when it occurs in a proposition (i.e., in context). Further, all expres-
sions must reduce to a primitive name, and these expressions do not affect the
name. Where is W headed with all of this? Right here:

5.526 We can describe the world completely by means of fully gen-
eralized propositions, i.e., without first correlating any name with a
particular object.

6.124 The propositions of logic describe the scaffolding of the
world, or rather they represent it. They have no ‘subject-matter’.
They presupposed that names have meaning and elementary propo-
sitions sense; and that is their connection with the world. It is clear
that something about the world must be indicated by the fact that
certain combinations of symbols-whose essence involves the posses-
sion of a determinate character-are tautologies. This contains the
decisive point. We have said that some things are arbitrary in the
symbols that we use and that some things are not. In logic it is only
the latter that express: but that means that logic is not a field in
which we express what we wish with the help of signs, but rather
one in which the nature of the natural and inevitable signs speaks
for itself. If we know the logical syntax of any sign-language, then
we have already been given all the propositions of logic.

The hope had always been that logic could resolve important questions in
philosophy. What W has done here and will wrap up between here and the
famous statement 7 says that names are arbitrary labels and all statements in
logic are tautologies. They say nothing about the real world.
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What Happened Next? A More Organic View

For those who are curious, W did not rest with the Tractatus. He was still troubled by its implica-
tions. Twenty years later he published his thoughts again, and this time changed his view consid-
erably, taking a more connotative model of language that is closer to how organisms seem to
actually acquire language. Oddly enough, his point of departure was St. Augustine:

1. “When they (my elders) named some object, and accordingly moved towards something, | saw
this and | grasped that the thing was called by the sound they uttered when they meant to point it
out. Their intention was shown by their bodily movements, as it were the natural language of all
peoples: the expression of the face, the play of the eyes, the movement of other parts of the body,
and the tone of voice which expresses our state of mind in seeking, having, rejecting, or avoiding
something. Thus, as | heard words repeatedly used in their proper places in various sentences, |
gradually learnt to understand what objects they signified; and after | trained my mouth to form
these signs, | used them to express my own desires.” (Augustine, Confessions, |. 8)

These words, it seems to me, give us a particular picture of the essence of human language. It is
this: The individual words in language name objects-sentences are combinations of such names.
In this picture of language, we find the roots of the following idea: Every word has a meaning.
This meaning is correlated with the word. It is the object for which the word stands.

38. Naming appears as a queer connection of a word with an object. And you really get such a
queer connection when the philosopher tries to bring out the relation between name and thing by
starting at an object in front of him and repeating a name or even the word “this” innumerable
times. For philosophical problems arise when language goes on holiday. And here we may
indeed fancy naming to be some remarkable act of mind, as it were a baptism of an object. And
we can also say the word “this” to the object, as it were address the object as “this”-a queer use
of this word, which doubtless only occurs in doing philosophy.

43. For a large class of cases-though not for all-in which we employ the word “meaning” it can
be defined thus: the meaning of a word is its use in the language. And the meaning of a name is
sometimes explained by pointing to its bearer.

275. Look at the blue of the sky and say to yourself “How blue the sky is!"—When you do it
spontaneously-without philosophical intentions—the idea never crosses your mind that this
impression of color belongs only to you. And you have no hesitation in exclaiming that to some-
one else. And if you point at anything as you say the words you point at the sky. | am saying: you
have not the feeling of pointing-into-yourself, which often accompanies “naming the sensation”
when one is thinking about “private-language.” Nor do you think that really you ought not to point
to the color with your hand, but with your attention.

293. If | say of myself that it is only from my own case that | know what the word “pain” means—
must | not say the same of other people too? And how can | generalize the one case so irre-
sponsibly? ...

Not only has his thinking changed to such an extent that he now considered that names are con-
ventions among people, not arbitrary labels that can be applied willy-nilly, but he is also consid-
ering that the senses that one applies a name to may be different for different individuals
(something borne out by cognitive psychology and neurophysiology). The world is far less deter-
ministic that even the Tractatus allowed.
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Although there had been suspicions to the contrary before this point, mathe-
matics had always been considered a science. There was a belief that it was a uni-
versal language with which the world could be completely and precisely
described, which would in turn lead to answering many long-standing questions,
including some outside the traditional realm of science and mathematics. After
all, much of its use was in the service of science, and science made many state-
ments and solved many problems about the real world with mathematics. W has
now slammed the door on this view. Logic and, by the constructions of Frege and
Russell, mathematics say nothing about the real world and can’t. Mathematics is
not a science. Mathematicians were operating in the world of Platonic ideals,
believing that these truths that they derived were independent of human thought.
Although refined by other logicians and mathematicians in the intervening 80
years, the structure and limitations erected by W have remained, circumscribing
how far mathematics can go in answering questions that affect people.

But although this was a failure on one level, it was precisely what was
required 30 years later when it became possible to build logic machines and get
the fledging field of computer science off the ground. The concepts of primitive
name, simple and complex, complete and incomplete names were precisely the
foundations necessary for constructing the logical languages required for com-
puters, where now these languages could be used in propositions that said
something real about a virtual world. It also provides the basis for a
theory of naming for networks and distributed system, but provides little help
with any fundamentals for addressing. We need a mathematical characteriza-
tion of “locating” objects.

Naming and Addressing in Telephony

Addressing in the telephone system developed from the bottom up. Initially,
telephone systems were isolated islands. Telephone numbers corresponded to
numbers on the switchboard, which corresponded to the wires that ran to the
phones.* Enumeration worked again. The scope of the address space was lim-
ited to the island or central office called an exchange; that is, telephones in dif-
ferent exchanges might have the same number. When a phone system outgrew
what could be handled by a single central office, trunks were used to link central
offices. Each exchange was given a unique identifier, and this number was
tacked on the beginning of the number for the telephone: the beginning of hier-
archical addressing. Connections between islands required an operator.’ With
the advent of automatic dialing and long distance, it was necessary to add

4 My first phone number was 61.

5 Remember those old movies, Operator, get me New York, Pennsylvania 6-5000.
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another level to the hierarchy, and area codes were created. But the fundamen-
tal semantics of the phone number never changed: It was the number of the wire
that ran to the phone. There was really no attempt at structuring the assignment
of numbers within an exchange, there might be some similarity in the exchanges
used for a single city, but overall the structure of the address space was roughly
geographical. This had more to do with conserving the amount of relay equip-
ment than attempting to logically structure the phone numbers.

Over time, as telephone engineers found ways to hack the system to provide
specialized services, the semantics of the telephone number got confused. There
are strong indications that the phone companies didn’t quite understand what
they were getting in to. Although normal phone numbers were physical layer
addresses, the label of a wire, the definition began to get confused: 800 num-
bers are application addresses being location independent, whereas 411 and 911
are simply well-known names for specific applications. (Most in phone com-
pany circles did not realized this, of course; they were still just phone numbers.)
Initially, cellular phone numbers were network addresses, a good unique identi-
fier as the phone was handed off from cell tower to cell tower. But as soon as
roaming was provided, they became application addresses (because they were
now location independent). Customers had become familiar that when they
moved within a city their phone number did not need to change. Although
exchanges had begun as exclusively geographical, this began to break down
over time with improvements in switches and customer demand. Roaming just
served to convince customers that they could move anywhere in the country and
not change phone numbers. Because 800 numbers and initially cell phones were
such a small population, the mapping from the application address to a network
or physical layer address could be a special case. As Signaling System 7 was
deployed in the 1980s, it enabled these changes during the 1990s, and the tele-
phone system moved to rationalize its addressing architecture.

Naming in Operating Systems

Much more theoretical work has been done on naming than on addressing. As
luck would have it, we are much more interested in addressing than naming.
Almost everything in computer science is addressing of one form or another, not
naming. There has been very little theoretical work done exploring the proper-
ties of addresses, no systematic exploration of addressing. Much of this was
because computing systems were so resource constrained. Most of the work has
been very pragmatic in the context of solving a specific problem. So, we have
some idea of what works or under what conditions it works or what doesn’t,
but we have very little idea if this is the best we can do.
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One of the few theoretical treatments of this subject tempered by implemen-
tation of a production system (i.e., it satisfies our philosophical triangulation) is
the work of J. H. Saltzer on Name Binding in Computer Systems (1977).6 This
is what university-level computer science should be and isn’t much of the time.
This work develops the theory of naming and addressing in operating systems
and programming languages in a general and implementation-independent
manner. It is does the “algebra” first. Although space does not allow a detailed
review of the paper, we do see that roughly three levels of naming are required
in operating systems. Saltzer provides a framework for the sharing of data and
programs in a computing environment. Although Saltzer does not consider the
problems of naming and addressing in computer networks, many of the con-
cepts that will be needed are discussed. These might be characterized as follows:

1. A name space that allows sharing among independently running programs

2. A name space that allows programs to logically refer to their variables
regardless of where they are in memory

3. A name space that represents the program in memory
4. A path from the processor to the memory

The first has a “universal” scope of the whole computer system and encom-
passes all files (program or data) that are executing or may be executed on that
system. This name space allows one to unambiguously refer to any programs and
data files on the computer and in some systems, such as Multics, objects within
these. The second provides a name space that allows the programmer to logically
construct programs independent of memory size and location. This space creates
a virtual environment that may assume resources that exceed those of the under-
lying real computer. This logical environment is then mapped to a real computer
where the operating system provides the facilities that create the illusion of the
virtual environment. (For example, virtual memory provides location independ-
ence and the illusion of greater memory than actually exists, and processor
scheduling gives the illusion of a multiprocessor system.) The hardware then pro-
vides a path from the processor to the appropriate memory location.

For the naming of files and programs, a hierarchical approach was adopted
rather quickly, consisting of a root directory, subdirectories, and finally primi-
tive names. This was called a pathname because it defined a path through the
directory structure. If a file was moved in this structure, its primitive name
remained the same, but its pathname changed.

6 This might seem like ancient history here, but I highly recommend that you dig out this
reference.)
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X.25 and the ITU

In the mid-1970s, the PTTs rushed to get in the packet-switching business.
Mostly to defend their turf because organizations that weren’t telephone com-
panies were building networks than because they thought it was a good business
opportunity. After all, data traffic would never come close to the kind of vol-
umes as voice traffic! The PTTs proposed a network design along the lines of the
ARPANET or NPLnet using a new protocol, X.25, as their answer to the
research networks. X.25 addresses have the same semantics as a telephone (no
surprise). The structure of an X.25 address is similar to that for telephones, con-
sisting of a country code, followed by a network number and DTE (host) num-
ber. But the allowances for growth were very small, allowing only ten networks
per country. A distinct “group-id” field in the X.25 header identifies particular
connections from this DCE. The address is the name of the interface over which
all connections with that DTE pass.

The “East Coast elite” screwed up the ARPANET addressing because they
were from Boston. In Boston, there is only one way to get anywbhere, and
so it is easy to confuse that a route and an address are the same thing. If
they had been from the Midwest where everything is on a grid and there
are many paths between two points, they would have known that a route
and an address are two entirely different things.

It isn’t true, but it makes a good story!

The Evolution of Addressing in the Internet: Early IP

As previously discussed, the origin of the Internet’s convention

In New England, the way that addresses name interfaces derives from the implementation
to get some place is to of the original IMPs. Although this was common practice for the
take out the map, find the . Lo .

destination, and trace a small data networks of the time, it is basically the same as the

route back to where you telephone company. Using the telephone example was a reason-

are. Follow the path. Not
unlike Internet routing.

In the Midwest, the
address gives you a good

able first approximation, and it wasn’t at all obvious how the
street address example contributed anything to the solution
(although there was a nagging sense that it should). Unlike tele-

idea where the destination phone addresses, ARPANET addresses were only route depend-

is relative to where you
are. You start in that direc-

ent for the last hop. (In the phone system, there were multiple

tion, using addresses routes above the exchanges, although automatic rerouting is rela-
along the way to indicate tively recent.) It was clear that computers would have different
whether you are closer or requirements than telephones. We have already seen the problem
farther from the destina- q . . P " y .p 3

tion. Interesting. Forward- of dual homing. But it was realized the problems of naming appli-
ing without routing. cations that were seen in operating systems would be more com-

plex in networks.
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The development of TCP and IP began in the mid-1970s to fix problems with
the original Host-to-Host Protocol. As far as addressing was concerned, the
only immediate problem that had to be dealt with was that there weren’t
enough of them. So, the IP specification expanded the address to 32 bits and
slightly generalized the semantics of the address so that it named the “interface”
rather than an IMP port.

The problem continued to be discussed. John Shoch published an important
paper (Shoch, 1978). (Shoch’s paper had been circulating within the ARPANET
community for over a year before it appeared in print.) Shoch recognized (as so
often scoffed at) that

Taxonomies and terminologies will not by themselves, solve some of the difficult
problems associated with the interconnection of computer networks; but carefully
choosing our words can help us to avoid misunderstanding and refine our perceptions
of the task.

Shoch posited that three distinct concepts were involved: names (of applica-
tions that were location independent), which were “what we seek”; addresses
(that were location dependent), which indicated “where it was”; and routes
(which were clearly route dependent), which were “how to get there.” Shoch
made clear what many had been thinking but didn’t know quite how to say. At
the time, Schoch was working at Xerox PARC with Robert Metcalfe on the
development of Ethernet and related projects. Shoch points out in his paper
how the naming in networks parallels what is found in computing systems:
Namely, that applications had names that were independent of memory loca-
tion and made sense to human users, whereas programs used virtual memory
addresses that allowed their code to be placed anywhere in memory and were
mapped to the actual physical memory location (routing) by the hardware. It
seemed to make a lot of sense.

A few years later (1982), the other most often cited paper on network address-
ing appeared, Jerry Saltzer’s (RFC 1493) “On the Naming and Binding of Net-
work Destinations.” This is a most curious paper. Saltzer sets out to apply to
networks the same principles he applied to operating systems and makes a major
contribution to the problem. Saltzer notes that there are four things, not three, in
networks that need to be named (just as there were in operating systems): serv-
ices and users, nodes, network attachment, and paths. Saltzer carefully lays out
the theoretical framework, defining what he means by each of these. After noting
some of the issues pertinent to the syntax of names, Saltzer observes:

The second observation about the four types of network objects listed earlier is that
most of the naming requirements in a network can simply and concisely be described in
terms of bindings and changes of bindings among the four types of objects. To wit:
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1. A given service may run at one or more nodes, and may need
to move from one node to another without losing its identity as a
service.

2. A given node may be connected to one or more network attach-
ment points, and may need to move from one attachment point to
another without losing its identity as a node.

3. A given pair of attachment points may be connected by one or
more paths, and those paths may need to change with time without
affecting the identity of the attachment points.”

It would appear that Saltzer is suggesting that we name the objects and track
the mappings (i.e., the bindings) between them. Notice the parallel between this
list and Saltzer’s list for operating systems earlier in this chapter.

Each of these three requirements includes the idea of preserving identity, whether of
service, node or attachment point. To preserve an identity, one must arrange that the
name used for identification not change during moves of the kind required. If the
associations among services, nodes, attachment points and routes are maintained as lists
of bindings this goal can easily be met.

Again Saltzer is pointing out a very important property (i.e., that the names
given to objects must be invariant with respect to some property across the appro-
priate scope). In particular, service or application names do not change with loca-
tion, node names do not change for attachment points within the scope of their
location, and attachment points do not change as the ends of their routes.

This expands a bit on Saltzer’s words, but it seems reasonable to assume that
Saltzer recognized that names would not be assigned once and for all. And if
they could change, there must be rules for when and how they could change. In
fact, he states quite rightly that even if a name is made permanent, this “should
not be allowed to confuse the question of what names and bindings are in prin-
ciple present.” He then reviews that “to send a data packet to a service one must
discover three bindings” [given the name of a service]:

1. Find a node on which the required service operates
2. Find a network attachment point to which that node is connected
3. Find a path from this attachment point to that attachment point

From Saltzer’s description, there is a name for each of these four and tables
that maintain the bindings between the names:
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1. Service name resolution, to identify the nodes that run the service

2. Node name location, to identify attachment points that reach the nodes
found in 1

3. Route service, to identify the paths that lead from the requestor’s attach-
ment point to the ones found in 2

Saltzer then illustrates his points with a couple of examples that for Saltzer
present problems in applying his model. He then concludes that regardless of
what one may think of his analysis, “it seems clear that there are more than
three concepts involved, so more than three labels are needed....” And finally, in
his summary, he points out there is a strong analog between what he has
described and the concepts found in operating systems.

This seems to answer our first question of what has to be named: Applications
require location-independent names. This is Schoch’s what. This allows the
application to be moved without changing its name. That name maps to a node
address that indicates where the node is and the application can be found, with
each router maintaining a forwarding table that maps an address to a “next hop”
(i.e., next node address). But then Saltzer lumps the next step in with routing. He
clearly knows that a point of attachment address is needed, but he doesn’t clearly
distinguish how it differs from a node address. As noted previously, it was obvi-
ous that the solution to the multihoming problem was that a logical address
space was needed over the physical address space. But then Saltzer follows the
operating system model too closely and notes that there is a mapping of applica-
tions to nodes, a mapping of nodes to points of attachment, and then a mapping
to routes as a sequence of points of attachments and nodes.

Saltzer misses a case that is unique to networks and key to understanding: In
networks, there can be multiple paths (links) between adjacent nodes. Saltzer
can’t be faulted for missing this. Multiple paths to the next hop were rare or
nonexistent when he was writing. Let’s supply the answer.

After selecting the next hop, the router must know all the node address to
point of attachment address mappings of its nearest neighbors so that it can
select the appropriate path to send PDUs to the next hop.

Routes are sequences of node addresses from which the next hop is selected.
Then the router must know the mapping of node address to point of attachment
address for all of its nearest neighbors (the line in Figure 5-2) so that it can select
the path to the next hop.
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Application >
Name Directory

Node — — Route
Address

Point of Attachment >
Address

— Path

Figure 5-2 Addressing for a network requires at least an application name, a node
address, and a point of attachment address. Directory maps application names to node
addresses, routes are sequences of node addresses, and multiple paths between adjacent
nodes require mappings between node addresses and point of attachment addresses.

“Routing” is a two-step process. A route is a sequence of node addresses.
The next hop is chosen to the next node address. Then the mapping of local
point of attachment addresses to the point of attachments of nearest neighbors
for the next hop is needed to select which path to the next hop is selected. Look-
ing at the figure, we see these bindings:

1. Directory, mapping of application names to node addresses to find where
the application is. This is an example of the name-resolution or directory
protocols discussed in Chapter 4, “Stalking the Upper-Layer Architecture.”

2. Routes, as a sequence of node addresses calculated by the routing algo-
rithms to generate the next hop

3. Patbs, selected from the mapping node address to point of attachment
address of the nearest neighbors (i.e., next hops)

Interesting! 1 and 3 are the same mapping! The path is also an example of a
name-resolution service, just like the directory. The path database is smaller
than the directory database, and the syntax of the names are a bit different, but
the same mapping nonetheless. They both track name mappings that are “one
hop” from each other (relative to their layer).

It was clear that a network address (i.e., node address) needed to be location
dependent and application names should be able to be location independent.
What about point-of-attachment (PoA) addresses? Traditionally, the PoA corre-
sponds to the data link layer address. From the point of the view of the nodes, it
doesn’t matter. All the nodes (routers) require is that PoA addresses of nearest
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neighbors are unambiguous. All PoA addresses don’t have to come from the
same address space and probably won’t. Different protocols in different layers
of less scope are possible and allowable. Any two connected nearest neighbors
will have addresses from the same address space. (They have to because both
ends of the communication use the same protocol, by definition.) But not all
PoAs on the same router or host must be from the same address space. Whether
a PoA address space will be flat or location dependent will depend on the proto-
cols and scope of the PoA layers. Location dependence is a property that facili-
tates scaling within a layer by reducing the complexity and combinatorial
properties of routing.

But what is curious about this paper is that Saltzer lays out the answer very
clearly. When addressing is discussed in networking meetings, this paper is cited
by almost everyone. The paper is almost revered. But the Internet architecture
has no application names and no node addresses (a well-known socket is at best
a suffix for a network address, and URLs show signs of backing into being a
form of application name within http). The Internet has only PoA names, and
routes. Saltzer says clearly that PoAs and routes are not enough. It is clear that
the fundamental problem with Internet addressing is that it is missing half the
necessary addressing architecture. Why then has the Internet not taken Saltzer’s
advice, especially given how Saltzer lays out the principles so clearly?

The XNS architecture developed at Xerox PARC for networks of LANs, and
later used by IPX for Novell’s NetWare product, had a network address that
named the system, not the interface. This was the first commercial architecture
to fix the addressing problem created by the IMPs. But, Xerox’s decision to keep
the specifications proprietary limited its early influence. At the same time, the
decreasing cost and increasing power of hardware reduced the need to fix the
problem in IP.” Later this same solution would be picked up and used by OSI.

The deployment of IP overcame the address space problems of NCP. Thirty-
two bits of address space was more than enough. However, IP retained the
semantics of the IMP port address and named the interface (see Figure 5-3). The
primary reason for this is unclear. IP was first proposed in about 1975 and
changed very little after that first draft. The only known problem at that time
was with the semantics of the address, as exemplified by the dual-homing prob-
lem described earlier. The Saltzer analysis shows that multihoming isn’t sup-
ported for routers, let alone hosts. But because the Net was small enough

7 Once again, Moore’s law perhaps causes more trouble than it helps by allowing us to ignore
the scaling problems of the address space for so long that the network grew so large that solu-
tions became more daunting. It is curious, given the DoD sponsorship of the early Internet,
that there was not more pressure to fix such a fundamental capability. Worse, users had come
to believe that addresses could be used as names. “Experts” demanded that IP addresses not
change no matter where they were attached to the network: a fine property of names, but not
of addresses.
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without multiple paths between adjacent nodes, it wasn’t a problem that
Moore’s law couldn’t solve. (And when multiple paths did arise, it caused prob-
lems but band-aids were found for them.) The problems of multicast and mobil-
ity were many years off. It was understood that a change would be necessary, as
was our repeated caution about the importance of getting addressing right. No
one felt they really understood addressing well enough. It seemed prudent that a
more complete understanding was necessary before making the change. We still
didn’t understand what location dependence meant in a network. It seemed pru-
dent not to do anything until there was a better understanding of what to do.
Even in the early 1980s, when NCP was removed and IP became the only net-
work layer protocol, the Internet was still for the most part a network of univer-
sities and R&D organizations, so such a major change was still something that
could be contemplated.

: - Application
Application
Socket Name
(local)
- Node
P Address
Address Point of
MAC __] [~ Attachment
Address Address

Figure 5-3 Mapping Saltzer’s concepts to the Internet shows that half the required iden-
tifiers are missing (application names and node addresses) and one is named twice
(point of attachment).

When IP was defined, some structure was imposed on IP addresses by divid-
ing the address space into blocks of Class A, B, and C (Figure 5-4). (As other
authors do, we will ignore the existence of Class D and E addresses for now.)
The classes of IP addresses are intended to be assigned to networks with differ-
ent numbers of hosts: Class A for the really big ones, Class B for the middle-size
ones, and Class C for the really small ones. And of course, within a Class A net-
work, Classes B and C can be used to provide a rudimentary form of location
dependence.
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0 718 15116 23124 31|
Class A
0 Network Host number
Class B
10 Network Host number
Class C
1o Network Host number

Figure 5-4 IP address format.

But these were allocations of size, and although they might be used to impose
location dependence within a given network, no consideration was given to
doing it across networks. Blocks of IP addresses were for the most part handed
out in the order requested. 128.89 might be on the East Coast of the United
States, and 128.90 might be in Hong Kong. So in fact, IP addresses were more
like names than addresses. There was no structure or plan to assigning the net-
work part of an IP address. It was assumed that addresses would be assigned in
a location-dependent manner within the networks (an assumption made unnec-
essary by Moore’s law) and that the number of networks would remain rela-
tively small. There was no planning for tens of thousands of networks organized
into tiers of providers.

As the problems of configuring networks for large organizations grew, sub-
netting was introduced. Subnetting takes part of the host-id portion of the
address and uses it to represent subnets within the Class A or B address (or
Class C, but they are pretty small for subnetting). This provides topological-
dependent addresses within an organization; outside the organization, however,
it is of no help.

OSI and NSAPs

Using the experience from the ARPANET and early Internet, OSI made some
major strides in working out the theory of naming and addressing. It also made
some major mistakes. (Although there are several interesting aspects to the OSI
addressing concepts.) The amount written on it is fairly voluminous and impen-
etrable. We will consider the basics as briefly as we can and only elaborate on
concepts or lessons that we need to carry forward. First, let’s dispense with what
OSI got wrong: The Europeans were intent on making X.25 the OSI answer to
the network layer and not using any experience from the United States, even if it
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was improving on the lessons learned in the Internet. Consequently, they forced
into the OSI architecture fundamental constructs to reflect X.25. As an exam-
ple, in OSI an (N)-connection is defined to be shared state among (N+1)-enti-
ties, not the shared state among (N)-entities. But in spite of such fundamental
problems, it was possible to resurrect the beginnings of a fairly reasonable
addressing architecture, even if the errors did cause the definitions to get a bit
convoluted at times.

OSI spent considerable time developing a theoretical framework for the
architecture. This was not the “seven-layer model.” But an earlier section of the
reference model defined the common elements that all layers would have. The
understanding was that there were common elements but different functions in
each layer, in line with the Dijkstra concept of a layer. This effort was beneficial
because it was an attempt at an “algebra” that clarified the nature of the prob-

Terms, Terms, Terms

Entity might seem like a
pretty innocuous term. It
was supposed to be. There
was great fear that the
model not specify imple-
mentation. Therefore, any
term such as process, pro-
gram, task, procedure, and
so on that might be con-
strued as specifying how it
must be implemented was
unacceptable. | have
noticed recently that oth-
ers have been driven to
the same term.

lem provided insight into the solutions. It is unfortunate that pol-
itics could not be kept out of it. However, it seldom helped those
who tried to use the standards because the standards seldom
reflected the insights that had been gained. (The U.K. delegation
insisted that any “tutorial material” should not be included. It
seemed that they were intent on making the documents as diffi-
cult to use as possible.) There are two aspects of this theory: the
general architecture as it relates to addressing and the specifics of
addressing in the network layer.

The general OSI architecture consists of (N)-layers. (Of course,
in the specific architecture constructed from this theory, the max-
imum value of N was 7.) Each system in the network contains ele-
ments of these (N)-layers, from 1 to 7. The intersection of an

(N)-layer with a system is called an (N)-subsystem. Within each (N)-subsystem,
there is one or more (N)-entities (Figure 5-5). An (N)-entity is the protocol
machine for that layer. A (N)-subsystem could contain more than one (N)-entity
(e.g., different groups of users) or (N)-entities of more than one kind (i.e., differ-
ent protocols). In other words, an (N)-subsystem is all the modules in a system
relating to a particular layer, protocol machines, management, buffer manage-
ment, and so on. Having a term for everything in a system associated with a
given layer proves to be quite useful.
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[N]-connection-
end point-identifier

[N]-entity-title \

[N]-service-

i [N]-address
access-point

Figure 5-5 Entities, service access points, and identifiers.

As mentioned, an (N)-connection was defined to be “an association
requested by an (N+1)-entity for the transfer of data between two or more
(N+1)-entities.” In other words, an (N)-connection went from one (N+1)-entity
(in an (N+1)-layer) down to an (N)-entity across to an (N)-entity in another sys-
tem and up to the (N+1)-entity in the remote system. (Pushing this definition
were the Europeans attempting to legislate the X.25 view.) This tightly binds the
shared state in the (N)-entities to the shared state in the (N-1)-entities. But it is
important that it be possible to decouple the two, so that the shared state at
(N-1) can be lost without affecting the shared state at layer N. This definition
makes that difficult.

Later realizing that they needed a name for the relation between the
(N)-entities (what the definition of a connection should have been), they defined
an (N)-association as “a cooperative relationship among (N)-entity-invoca-
tions.”8 Yes! In OSI, associations were connections, and connections were what
association should be. But then I have never known a standards organization
yet whose arrogance didn’t get it into this sort of doublespeak.

The (N)-connection crossed the boundary between an (N+1)-layer and an
(N)-layer at an (N)-service access point or (N)-SAP. (N)-SAP-address identifies
an (N)-SAP. (This is why one encounters the term SAP in other standards.

8 Quite correctly, OSI tried to distinguish between type and instance. A protocol in a subsystem
was the type, whereas a specific flow or connection using that protocol would be an instance
or instantiation of the protocol. One connects to TCP (type), but each state machine along
with its TCB represents an instance of TCP. So when the dust settled, the (N)-entity was the
type, and the (N)-entity-invocations were the instances.
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Notice how a SAP tries to be a port or interface.) An (N)-SAP was bound to one
and only one (N)-entity at a time. If an (N)-entity needed to have an identifier, it
was called an (N)-entity-title. (The pedants said it couldn’t be called a “name”
because addresses were also names.) An address was a location-dependent
name. So, the term title was used for location-independent names. Associated
with an (N)-SAP-address were one or more (N)-connection-endpoint-identifiers
whose scope was the (N)-subsystem. An (N)-CEP corresponded to a single con-
nection to an (N)-entity. The (N)-SAP-address was supposed to be an X.25 DTE
address. The (N)-CEP-identifier corresponds to what many protocols or IPC
facilities call port-ids, whereas for the PTTs it was the X.25 group-id. (Group-
ids are similar to ATM virtual path-ids or MPLS tags. All three of these derive
from the same telephony lineage). So, an (N)-SAP was really a port, an
interface.

This constraint along with the definition of connection caused a number of
problems. It implied that all the bindings between (N)-entities in a system had to
be preallocated before a connection request was made. This, of course, makes
dynamic assignment and resource allocation essentially impossible. By 1983, it
was already believed that the reference model was too far along to be changed.
So rather than simply fix the definition of connection and make the structure
simpler, a level of indirection was created”: An (N)-address was defined as a set
of (N)-SAP-addresses. But worse, the OSI “address” also identifies the interface.
The one thing that most were trying to avoid. (In a committee, consensus never
means that issues are resolved, only that progress can continue until someone
finds a reason to raise the issue again.)

Another problem was discovered in how we thought we would build
addresses. Initially, it was assumed that an (N)-address would be formed from
an (N-1)-address and (N)-suffix, allowing addresses from a higher layer to infer
addresses at lower layers. This was a fairly common approach found in operat-
ing systems. It can be found in early versions of the OSI reference model see, for
example, ISO TC97/SC16/N117 (1978) or N227 (1979) and in the Internet
today. It is a bad idea in networks. And why it is a bad idea is clear from its use
in operating systems. Constructing names in this manner in operating systems
has a name. They are called pathnames, and therein lies the problem. It defines
a path. It defines a single static path within the system and then to the applica-
tion when, in fact, there may be multiple paths that it should be possible to
choose dynamically. It can be done, but essentially one must ignore that it has
been done. Recognizing that it is a lot of redundancy for very little gain and may
compromise security. It works in an operating system because there is only one

9 Yes, there is nothing in computer science that can’t be fixed with a level of indirection. (sigh)
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path within the operating system from one application to another. This is
exactly what we wanted to avoid from our analysis of Saltzer. Hence, any
addressing scheme that, for instance, creates a network address by embedding a
MAC address in it has thwarted the purpose of the addressing architecture.
There can be a relation, but the relation cannot be tied to the path. This is still
considered a quite normal approach to take to forming addresses.

However, all was not lost. Or more to the point, the problems in the network
layer were much more complicated. The U.S. delegation was insistent that there
would be a connectionless network protocol that built on the experience of IP,
and the Europeans were intent that the future of networking would be a connec-
tion-mode protocol (i.e., X.25) and that connectionless would as limited as pos-
sible. They attempted to work out an architecture of the network layer that
could accommodate both. The resulting standard, called the Internal Organiza-
tion of the Network Layer (IONL), shed considerable light on what the two
warring factions were wanting and provided technical insights (ISO 8648,
1987). Although the language of the document can be quite impenetrable to the
uninitiated, every configuration described in it has since turned up in one form
or another. The IONL was a very useful exercise in working out how real-world
situations would be handled within an architecture. The Europeans had to
admit that X.25 was only an interface to the network (after all, it was the title
of the Recommendation) and as such only provided access to a subnetwork. It
was finally worked out that the primary function of the network layer was to
make the transition between the subnetwork-dependent protocols and provide a
service that was independent of the subnetwork technology. To do this could
require up to three sublayers depending on the configuration and the underlying
media:

® A Subnetwork Access Protocol (SNACP) is a protocol that operates under
constraints of a specific subnetwork. The service it provides may not coin-
cide with the network layer service.

* A Subnetwork Dependent Convergence Protocol (SNDCP) operates over a
SubNetwork Access protocol and provides the capabilities assumed by the
SNICP or the network layer service.

* A Subnetwork Independent Protocol (SNICP) operates to construct the
OSI network layer service and need not be based on the characteristics of
any particular subnetwork service.

Although a lot of this structure may seem (and was) politically motivated,
there were several major technical insights. For our purposes, the most impor-
tant of which was that there was a “subnetwork PoA” (an SNPA or “the wire”)
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that had an address with a scope that had to span only the particular subnet. A
system might have several of SNPAs that mapped to an NSAP address. The
NSAP address as constructed by the IONL was, in fact, the (N)-entity-title. The
(N)-directory, or in the this case the N-directory (N for network) (i.e., the rout-
ing information) maintained a mapping between the SNPA-addresses and the
NSAP-address. This mapping provides a level of indirection between the physi-
cal addressing of the wire and the logical addressing of the network. This level
of indirection provides the flexibility required for addressing to accommodate
all the configurations and services necessary. This is repeated later, but it is
worth observing now:

A network address architecture must have at least one level of indirection.

Like operating systems, there needs to be a transition between logical and
physical addressing. As we have seen earlier from our interpretation of Saltzer
in a network, two transitions are required: one in the network layer between
SNPAs and NSAPs, between route dependence and route independence but both
location dependent; and again between NSAPs and application entity titles,
between location dependent and location independent.

The NSAP addressing structure attempted to solve two problems: accommo-
date a wide variety of existing address formats and set out a location-dependent
address space. The address format of an NSAP is shown in Figure 5-6.

Rowing
Domain

1 2 1 3 2 2 2 6 1
Figure 5-6 OSI NSAP format for the United States

AFl | IDI DFl | Org | Reserved Area System Sel

The address space is organized by countries. The country codes are assigned
by an ISO standard. Each country is then allowed to organize its own space. In
the United States, a rather elegant solution was found that avoids a requirement
for an active centralized authority. There is an existing ANSI standard of organ-
ization identifiers. These are used after the country code. To get an assignment
of NSAP addresses, one merely has to get an organization-id (which many com-
panies would already have for other purposes), the organization-id goes after
the country code the rest of address space can be used by the organization. This
creates a provider independent address.

The AFI specifies the format of the IDI and the addressing authority respon-
sible for the IDI. The AFI could select X.121, ISO DCC, E.69 (telex), E.163
(PSTN), E.164 (ISDN), ISO 6523-ICD, or Local. The DFI contains the country
code; Org is the ANSI organization identifier. Routing Domain and Area are the
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topological routing information. The Reserved field was to allow for another
level of the routing hierarchy if it was required. The System field is six octets so
that an Ethernet address can be used. If this is interpreted too literally it will
force the NSAP to name the interface, not the network entity as intended.
(Groan. In a committee, it is sometimes difficult to keep people from wanting to
do it wrong.) Although this format incorporates location-dependent elements, it
does not indicate where in the topological structure of the network the address
is. It doesn’t help determine “which way” to send a PDU or if two destinations
are “near” each other. This address is location dependent more in the sense of
Boston than Chicago!

This address space reflects the growing understanding of addressing. The IP
address space was mostly concerned about identifying networks and hosts with-
out much concern for their relative position in a topology. At this point,
although it was understood that something analogous to a “Chicago address”
would be useful, no one had any idea how to do such a solution. It really wasn’t
understood that addresses needed to be topological (in the mathematical sense).
With the NSAP address space, there is more concern that a topology is reflected
in the address space by including the DFI or country identifier and organization
identifier. However, this topology is not completely satisfactory either. This
scheme assumes that the routing domains are below the level of organizations.
This would be the case for large companies but hardly for smaller ones. Simi-
larly, there are cases where being able to group several small countries under a
single regional domain would be useful and conversely, breaking up larger
countries into multiple domains would also be useful. Or was the address for-
mat the result of a compromise between the “X.25 faction” and the “IP
faction”? This raises the question of what is the relation between provider-
based addresses and provider-independent addresses. Clearly, provider-based
addresses reflect the topology of the provider’s network. What does a provider-
independent address space reflect? The usual reaction is to immediately leap to
a geographic approach. But is this the only one? Are there others that are not
totally geographic in nature?

There were other minor problems: The format assumes that organizations
are a proper subset of countries. (Although one could assume that a company’s
presence in another country has a different value for these fields.) The only
other problem with the address format is the selector field, which supposedly
identifies the protocol in the layer above. The OSI Architecture group had taken
the position that it was counter to the architecture for an (N)-protocol to iden-
tify an (N+1)-protocol. A horrid layer violation. At the time, this was seen as
relating to addressing. So rather than a field in the PCI, the Network Layer
group made it a field in the address. Neither solution actually can be used to

167



168

CHAPTER 5 NAMING AND ADDRESSING

identify the upper-layer protocol, regardless of whether it is a layer violation.
Such a field can only identify one occurrence of a protocol in the layer above
bound to that address. (Admittedly, this does not happen often, but as with
many other “rare” events, when it does it can make things cumbersome if the
addressing has not been done right.) There are configurations where more than
one instance of the same type of protocol bound to the same network address is
necessary. As we saw in Chapter 3, “Patterns in Protocols,” one could argue
that we weren’t seeing the problem correctly, that the field identifies the syntax
of the protocol. However, we will find later that both interpretations are incor-
rect and such a field is unnecessary.

But all in all; OSI progressed the state of the art and tried to take Saltzer’s
advice, even if the ill informed stuck a MAC address in the NSAP. It recognizes
PoA addresses, node addresses, and as we shall see later, application names
extending Saltzer’s scheme in an important way.

Communism is the longest most torturous path from capitalism to
capitalism.
—/Joke that circulated in Eastern Europe at the end of the 1980s

Addressing in IPv6

So let’s consider the addressing architecture for this new IP in some detail. The
IPv6 addressing specification is very emphatic: “IPv6 addresses of all types are
assigned to interfaces, not nodes.” However, it then observes that since any
interface belongs to a single node, a “unicast address may be used as an identi-
fier for the node”—a painful example of having heard the words but not under-
standing their implication. We will assume that a node is synonymous with a
system and assume an interface is generalized from the IMP port from which it
originated; that is, an interface is the path from the bottom of the IP layer
through any lower-layer protocols to the physical media connecting to another
system.

One exception to this model is granted to allow multiple physical interfaces
to be assigned the same address as long as the implementation treats these as a
single interface when presenting it to the IP layer. In other words, parallel inter-
faces or spares can be treated as a single interface. This would seem to indicate
that this is a degenerate form of anycast address—and another kludge to make
up for not having node and PoA addresses.
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The Various Address Types

Although IPv6 supports a number of address formats, the format we are most
interested in will be the Aggregatable Global Unicast Address. This is what most
people will think of as an IPv6 address. But before we do that, let’s dispense
with anycast and multicast addresses and a couple of other address types that

are unique to IPv6, the link-local and site-local addresses.
There are three types of IPv6 addresses (RFC 2373, 1998):

¢ Unicast. An identifier for a single interface. A packet sent to a unicast
address is delivered to the identified by that address.

¢ Anycast. An identifier for a set of interfaces (typically belonging to differ-
ent nodes). A packet sent to an anycast address is delivered to one of the
interfaces identified by that address.

® Multicast. An identifier for a set of interfaces (typically belonging to differ-
ent nodes). A packet sent to a multicast address is delivered to all interfaces
by that address.

Anycast addresses. Anycast addresses are syntactically indistinguishable from
unicast addresses. According to RFC 2373, a unicast address is turned into an
anycast address by having multiple interfaces assigned to it. This is not quite the
case. The nodes to which the interfaces belong must be explicitly configured to
be aware of this. So, in fact, it is not multiple assignment that makes it an any-
cast address, but configuring the nodes to know that it is multiply assigned (an
enrollment phase function). The RFC imposes two constraints on the use of
anycast addresses: They cannot appear as the source address in any IP packet
(reasonable); and they cannot be assigned to hosts, only to routers (less so). This
latter constraint is perhaps the most odd because considerable use could be
made of anycast addresses in applications. The subnet prefix of an anycast
address is the longest prefix that identifies the smallest topological region of the
network to which all interfaces in the set belong.

How this is supposed to work is not quite clear. For different nodes to be
configured to be aware that multiple interfaces have the same address requires
protocol to be exchanged. No such protocol has yet been defined. Clearly, any
use of this facility must be stateless because successive uses may not yield PDUs
being delivered to the same destination. This is another kludge to get around
not having node and PoA addresses.

Multicast addresses. Multicast addresses include two subfields: A flags sub-
field that has 3 unused bits and a single bit that indicates whether this group
address is permanently assigned; and a scope field that currently defines
whether the scope of this group address is the local node, the local link, the local
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site, the local organization, or global. Permanently assigned multicast addresses
have global scope; that is, the scope field is ignored. IPv6 defines a multicast
address as “an identifier for a set of interfaces.” There will be more to say on
the nature of anycast and multicast “addresses” in Chapter 9, “Multihoming,
Multicast, and Mobility.”

Link- and site-local addresses. A link-local address essentially consists of the
10-bit format identifier in the high-order bits and a 64-bit interface identifier in
the lower-order bits, and 59 bits of nothing in the middle. This address form is
for “local” use only. The RFC suggests that link local addresses “are designed to
be used for addressing on a single link for purposes such as auto-address config-
uration, neighbor discovery, or when no routers are present.” The use of the
term link implies that they are intended to be used on, for example, a single
LAN segment (i.e., within a single subnet).

A site-local address, although similar to the link-local form, was to corre-
spond to what private address space was in IPv4 (e.g., net 10). The subnet iden-
tifier distinguishes the multiple subnets within the same “site.”

In 2003, there was a movement within the IPv6 working group, over consid-
erable objections, to delete site-local addresses from the specification. There
were strong feelings against the use of private address space within the IETE
Some believed that this “balkanized” the Internet, which it does, and contra-
dicted some mythic ideal of the “spirit of the Internet.” Engineering on belief
rather than empiricism is always dangerous. As we have seen, NAT and private
address space only break protocols in an incomplete architecture and primarily
indicate bad design choices. Or to paraphrase Buckminster “Bucky” Fuller,
NATS only break broken architectures.!? As it turns out, private address space
is a natural part of any complete architecture and poses no dangers and, in fact,
has many benefits.

However, the removal of private address space from IPv6 would seem to rep-
resent a very large deterrent for corporate adoption. Although NATs do not
provide complete security, they are an important element in securing and exer-
cising control over a subnet. It is hard to imagine corporate IT directors giving
up this simple measure to be replaced by elaborate and as yet unproven IPv6
security mechanisms. Once again, the IETF seems to have cut off its nose to
spite its face.

In addition, address formats are defined for carrying NSAP and IPX
addresses. (Although there is little expectation that these will ever be used.)

IPv6 also allocates two special addresses: 0 and 1 (or to be precise in the IPv6
notation, 0:0:0:0:0:0:0:0 and 0:0:0:0:0:0:0:1). The unspecified address is 0 and

10 Bucky said, “Automation only displaces automaton.”
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“indicates the absence of an address.” The unspecified address can never be
used as a destination but may appear as the source address for a sender who
does not have an address yet. (It is not clear what you do with such a PDU (you
can’t respond to it), but that is not important. The loopback address is 1 and is
used by a system to send a PDU to itself. It may only be used as a destination
address and then must be sent back to the sender. It should never be relayed to
an address other than the sender, and the loopback address must not appear as
a source address in a PDU.

IPv6 Unicast Addresses
It is the aggregatable unicast address over which there has been the greatest
amount of debate. This debate has evolved around the decision that the IP
address will continue to label an interface. This was complicated by the politics
surrounding IP and OSI. By the time IPv6 was proposed, some had realized that
addresses had to be topological. But they thought topology meant the graph of
the network. Mainly, they were concerned that the addresses had to be aggre-
gatable. As discussed in this chapter, the problem with the IPv4 address space is
not so much the lack of address space but the growth of the routing tables. To
reduce the number of routes that must be stored requires the ability to aggregate
them. For example, the post office aggregates routes based on the hierarchy of
the address (i.e., country, state/province, city, street, street number, and so on).
When a letter is mailed, the first post office has to look at only the first couple
of levels of the hierarchy to know where to send it. It does not need to figure out
precisely where the destination is; it merely has to send the letter in the right
direction. Similarly, some sort of hierarchy was required for IPv6 addresses. As
we saw, CLNP adopted such a hierarchy based on countries and organizations
within them.
The Internet had the same problem that had faced OSI: a  Names and Addresses
flawed architecture and a reactionary group of traditionalists who  Giving them the benefit of
d h h h dd label . the doubt, it might be
opposed any change to the concept that an address labels an inter- yjocor 16 the truth that peo-
face. However, the Internet architecture was also weak in another  ple had become so used
area. The Internet architecture really only covered the network 0 addresses being names
d ! . fth 1 del. th that they used them as
and transport layers (or in terms of the seven-layer model, the top  13mes and expected that
third of the network, SNIC, and transport and only had an  IP addresses could act like
address for the bottom third). Above and below network and  Poth names and
addresses. After all, they
transport, there was not really any structure, so there was no con-  had never been taught
vention for names or routes, as proposed by Saltzer. This led to a  anything different. There
tendency to try to solve everything in the network and transport ~ 2¢"° textbooks in net-

working that cover what
layer. should be named.
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The IPv6 effort determined the PDU header format and the size of the
address field years before they determined what an address was to look like
(“arithmetic before the algebra”). Also, most of the people involved in IPv6
were initially working under the misconception that the number of addresses
was the major problem to be solved. There were some initial proposals that
were similar to the NSAP address. But because the IPv6 address had to name an
interface, to be aggregatable the addresses had to be provider-based. This had
the unacceptable consequence that if one changed providers all hosts on your
network would have to be re-addressed. (It is significant that the term com-
monly used in Internet circles is renumbering rather than re-addressing, which
indicates that they think of it as enumeration or naming rather than addressing
or changing location.)

As noted previously, a network architecture must make a transition from log-
ical to physical at least once. The Internet architecture has no such transition.
OSI had been “fortunate” enough that its traditionalist faction was X.25. That
forced (or created the opportunity) to separate the physical address or subnet-
work PoA from the network address. The Internet architecture did not really
address the layers below network, and there was no X.25 faction. (Its tradition-
alists hung on to the IP of the “good old days.”) Furthermore, the political
climate was such that if OSI had done something, the Internet would either not
do it or do the opposite and convince themselves there was a good technical rea-
son to codify the old ways.!!

This meant the possible solutions were severely limited. Therefore, any solu-
tion had to have an appearance of not doing what was most reasonable (i.e., a
separation of logical and physical in different layers). Even though the idea and
the solution had originated during the early development of the Internet and
had been used by the, at least politically correct, XNS, it had last been used by
OSI and was therefore unacceptable. (And yes, there are many rationalizations
why this was not the reason.)

The developers working on the Internet had for many years realized that
something needed to be done. But in the Internet, the “host” had always been
the focus of attention. There had been several proposals (Curran, 1992; Chi-
appa, 19935) to name “endpoints.” Chiappa defined an endpoint to be “one par-
ticipant of an end-to-end communication, i.e., the fundamental agent of

1T This reaction has always been perplexing: Why react with “do anything but what the ‘opposi-
tion” has done” and fall prey to “cutting off your nose to spite your face;” rather than “let us
show you how to get it right”? Is this a characteristic of crowd behavior? Or is it something
else? This is not the only example.
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end-to-end communication. It is the entity which is performing a reliable com-
munication on an end-to-end basis.” Chiappa et al. saw this as mapping fairly
directly to the concept of “host.” However, the use of one and an in the defini-
tion would seem to imply more a single protocol machine than a collection of
them. This was definitely on the right track. Replacing the traditional semantics
of an IP address with the semantics of an endpoint in the protocol would have
gone a long way to solving the problems confronting IP. However, this did not
meet with much acceptance, probably because the implications of continuing to
name an interface with an aggregatable address had not yet dawned on many of
the members of the Internet community. To replace the semantics of an IP
address with the semantics of an endpoint smacked too much of OSI. This situ-
ation existed for several years, and then Mike O’Dell (O’Dell, 1997) made a
valiant effort to separate the IPv6 address into “routing goop,” which would
change when the host moved and an invariant globally unique “end system des-
ignator” that identified “a system invariant of its interfaces as in the XNS archi-
tecture” (emphasis added). This led to an addressing format (Figure 5-7) where
the interface-id was the end-system identifier and the rest was the “routing-
goop,” as follows:

Where:
FP The format prefix
TLA ID Top-level aggregation identifier (13 bits)
Res Reserved (8 bits)
NLA ID Next-level aggregation identifier (24 bits)
SLAID Site-level aggregation identifier (16 bits)

Interface ID  Interface identifier (64 bits), probably an EUI-64 identifier

3 13 8 24 16 64
FP | TLA | Res NLA SLA
001] 1D D D Interface ID

Figure 5-7 Format of an aggregatable IPv6 address.

The TLA, NLA, and SLA form the routing hierarchy of the address to the
level of subnet, and the interface-id represents a completely independent glob-
ally unambiguous identifier. But, it does precisely what we found earlier that we
didn’t want to do: make it into a pathname.
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This proposal came four years after the initial decision to develop IPv6 was
made. By this time, memories had faded, there had been considerable turnover
in the people involved, and the ramifications of the decision had finally become
clearer to many. So with a little artful prose that did not open old wounds,
O’Dell’s proposal was able to thread the needle between the technical require-
ments and the political climate for a solution with only a moderate level of addi-
tional complexity. However, this was also unacceptable. The routing part of the
IPv6 address is a path through a hierarchy of subnets, while the end-system des-
ignator has the same semantics as an IPv4 address. It names the interface (or to
put it in other terms, the data link protocol machine). Here again, the IPv6
group found a way to take on the trappings of the solution without taking its
substance to solve the problem. So although the form of O’Dell’s proposal may
be discernable in the IPv6 address format, the substance of it is not, and the
problems remain.

At arm’s length, an IPv6 address is similar to an NSAP in form. (...the
longest, most torturous path....) It was common with NSAPs to use an IEEE
802 MAC address as the system-id, analogous to the use of an EUI-64 address
as the interface-id. This was a case where the OSI architecture figured out some-
thing but the OSI Network Layer group, in a different committee, stayed with
their intuitions. And as so often is the case in science, our intuitions were wrong.
The NSAP format had four levels of hierarchy, whereas the IPv6 has three lev-
els. OSI did not require “endpoints” or anything like them because it had appli-
cation names. Because the IETF had no common application naming, it had, or
thought it had, to solve everything in either the network or transport layer.

With IPv6, the routing part is not sufficient alone to distinguish a node. It can
only distinguish the subnet but requires the interface-id to distinguish the node,
whereas the interface-id alone can distinguish the interface. There are roughly
32 bits of redundancy in an IPv6 address (or enough for a couple of more levels
in the routing hierarchy).

This approach will not support multihoming and mobility for the same rea-
sons that IPv4 does not, and it greatly exacerbates the scaling problems in IP.
The impact of these problems have been known about for a decade and a half,
and now at this writing, with IPv6 barely deployed, they are already showing
signs that are causing problems that are somewhere between severe and cata-
strophic. (“But she didn’t do it and....”)

Looking Back over IPv6

IPv6 has not instilled a lot of confidence among the cognoscenti. In fact, fear
and trepidation is closer to the case. But deployment is beginning in fits and
starts. There are still strong debates going on relating to the architecture of its
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addressing. For example, until very recently, some still argued that multihoming
is being overly stressed. They contend that only a few hosts will need it and that
a solution to multihoming is not really required; or because so few hosts need it,
its cost should not be incurred by those who don’t. This essentially ensures that
any solution will be asymmetric and consequently will appear and be cumber-
some and hence unacceptable.!?

Superficially, it might appear that only a small percentage of all hosts require
multihoming; that is, there are many more individuals connected to the Net
than servers. However, even a small percentage of a large number can be a large
number. But the real reason is that the ones that do need multihoming are very
important to all the others. This is changing. As more companies come to rely
on the Internet, the more they see multihoming as a necessity, and it is becoming
more of a problem. Why is there an assumption that a solution must cost more,
when in fact it actually costs less? It makes one wonder why people would argue
that it is not very important. Why should there be so much debate over not
doing multihoming? Redundant connections to the network would seem to be
an “apple pie” issue. Of course, redundancy is a good thing, but not for the
traditionalists. A simple solution to multihoming requires changing the seman-
tics of the address. If multihoming is not important, there is no need for a
change. So, the argument that multihoming is not important is actually more
political than technical.

The concern over the addressing situation was sufficiently great that in 1999
that the IAB created an Internet Research Task Force (IRTF), the research side
of the IETF) working group independent of the IPv6 work to consider name-
space issues. This group met several times. There was a lot of discussion of end-
points as opposed to naming, but without a strong architectural model it was
impossible to establish precisely what was required. Consequently, there was no
consensus on the conclusions. But this effort seemed to focus the discussion on
what has become known as the locator/identifier split. Many see the problem
with the IP address is that its semantics have been overloaded with both locator
meaning and identifier meaning, and if we simply separate them all the prob-
lems will be solved. Notice that they do not see that the IP address naming the
interface is naming the same thing the MAC address does, but they also rely on
the fact that the MAC address has greater scope than the IP address to make
certain mobility-related capabilities work.

However, referring back to the Saltzer paper, this approach will give us an
application name and a PoA address. Once again, it addresses the symptom but

12 This is a nice piece of electro-political engineering: Come up with very reasonable criteria that
can only be met by an unacceptable proposal. This one is even better than the “lightweight
transport protocol” red herring.
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How Bad Could It Be?

The designers of IPv6 have
blithely increased the size of the
address without really considering
the scaling implications of a full-
blown IPvé6 flat network. For sev-
eral years, they ignored the router
table expansion problem. They
have continued to kludge the mul-
tihoming problem until the fall of
2006 when recognition of a loom-
ing crisis predicted dire conse-
quences. After about ten days of
considering that a more in-depth
investigation was warranted, they
fell back into the artisan response
of looking for another band-aid.

In addition, some experts are
concerned that router table cal-
culations for the much larger v6
address will take much longer,
greatly shortening the period
between calculations. There is
some question as to whether the
effects of new forwarding tables
once calculated would have time
to take effect before it was time
to recalculate. If the effects of the
new forwarding table have not
had time to “settle” before a new
calculation begins, the input for
the new calculation will be based
on transient conditions, increas-
ing the likelihood of unstable
behavior.

Or more starkly, when a failure in
the Net causes a router table
computation, the Net will con-
tinue using the old tables while
the calculation is made. The
longer the calculation takes, the
longer traffic is not responding
to the failure, compounding the
situation so that by the time the
new forwarding tables are avail-
able, they have been computed
for a situation that no longer
exists and may make the
response to the failure worse,
not better.

The rationale for automatic rout-
ing has always been that events
are happening too fast for a
human to be in the decision
loop. It may be that events are
happening too fast to have v6

in the loop.

not the problem. The Internet’s focus on the transport and
network layer has led to attempts to solve these problems in
one of those two places. But, there is no such thing as a trans-
port address. This is creating a “beads-on-a-string in dis-
guise” model, not an operating system or distributed systems
model. Consequently, efforts such as Host Identifier Protocol
(HIP) (RFC 4423) and SHIM6 (Nordmark and Bagnulo,
2006) are simply more stopgaps that fail to address the
whole problem and apply yet another band-aid to one aspect
of the problem. As many in the Internet rightly realize, all of
these myopic band-aids are creating a system that is more
and more unwieldy.

Many prominent members of the Internet technical com-
munity have not expected wide deployment of IPv6. The
biggest problem is that IPv6 offers very little to those who
have to pay for its adoption. The removal of link-local (pri-
vate) addresses provides one more reason not to adopt IPv6
in the enterprise, but to only use it externally. All new facili-
ties, such as security, multicast, QoS-related developments,
and so on, are designed to work equally well with IPv4 or
IPv6. Thus, all statements in the recent trade press that IPv6
is necessary and has better QoS, security, and such are simply
spin. The only new capability provided by IPv6 is a longer
address, and that in and of itself may create more problems
than it solves. In early 2003, figures were published that
around 50% of the IPv4 address space had been assigned and
less than 29% was actually being used (Huston, 2003). A
cursory inspection shows that between 25-30 Class A
address blocks could and should be re-claimed. This would
seem to indicate (and is supported by recent government
reports) that there is no rush to move to IPvé6.

The only advantages to IPv6 are the bigger address space,
the loss of isolation with no equivalent to private addresses,
and the knowledge that you are a good network citizen—
hardly the basis for a large capital expense to make the tran-
sition. This is not going to impress corporate budget
committees. However, the possibility of IPvé6 failing to be
adopted has so alarmed certain factions that an immense PR
campaign has been initiated to drum up interest in IPv6. (The
possibility that IPv6 may fail for technical reasons does not
seem to bother them.) An IPv6 forum was created and many
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trade journal articles written advocating advantages to IPv6 for security, QoS,
and so on, which, in fact, are unrelated to IPv6. Trade journals go out of their
way to put a positive spin on even the bad news. The European Union and the
U.S. government have endorsed IPv6 in much the same way they endorsed OSI
two decades earlier. IPv6 advocates point to this as proof of IPv6’s pending suc-
cess, just as they ridiculed the same statements by OSI advocates. Others see this
as the kiss of death as it was for OSI. India, Japan, and China have embraced
IPv6 mostly because they cannot get large IPv4 address blocks from IANA to
support their huge populations. However, as we have seen, more than enough
v4 address space exists. [Pv6 may happen as much because the IETF has not
been able to come up with anything that solves real problems, rather than on its
own merits. This does not bode well.

But what contribution can we say that IPv6 has brought to our problem of
trying to gain a deeper understanding of the nature of addressing? Unfortu-
nately, not much. There is really nothing new here that has not been done
before. As we have seen, IPv6 is simply a more cumbersome form of IPv4.

However, it does provide further confirmation of the social behavior of stan-
dards committees. (OSI provides earlier confirmation.) Another example of
how a vocal conservative (dare I say ill-informed) faction can slow progress,
and the lengths that a minority with greater technical understanding must go to
find a way to bend the position of conservatives to get some sort of solution that
solves real problems,!3 not to mention that this direction benefits the vendors:
Not only does the iterative increase in complexity keep a steady stream of new
products to buy, but it also serves as a barrier to entry to new competitors and
keeps customers tied to the vendor because their personnel can’t understand the
interactions of all the incremental improvements. CLNP had been only a slight
improvement over IPv4. But it had been a bigger step than IPv6 represents and
had been at least a move in the right direction. All of this contributes to the feel-
ing that the concepts had run out of steam. After about 19735, there was very lit-
tle new or innovative thinking going on. The only significant development one
can point to is the development of link-state routing algorithms, which prima-
rily was done in OSI, which stimulated similar efforts in the IETF.

If there is anything to learn from the IPv6 experience, it probably has more to
do with the dynamics (or lack thereof) of consensus. It was James Madison
(1787) who was the first to realize the inherently conservative nature of such
groups. And human nature hasn’t changed in 200 years. In his case, it led to the
creation of mechanisms to stabilize an otherwise unstable system. In this envi-
ronment, the lack of understanding of this dynamic has merely undermined
innovation in a fast-moving technology. OSI started out as a “revolutionary”

13 The similarity to controversies in other areas of science are striking.
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group intending to promulgate the packet network connectionless model. But
the European tendency toward centralism and fear of the PTTs expanded the
participation in the effort to include the opposition that saw X.25 as the answer
to all network layer issues. This irresolvable conflict so severely split the OSI
attempt that it ultimately failed. We have already discussed how the minority
had to contort that architecture to achieve a semblance of a reasonable address-
ing architecture for the network layer, only to have it botched by the imple-
menters. The fundamental lesson here is that the old paradigm can never be
invited to collaborate with the new paradigm.

In the IETE, the conservatives have been a similar drag on innovation and
good engineering. But here the stakes are much higher. OSI basically never had
wide deployment. Businesses the world over now depend on the Internet. The
IETF is now more concerned that the Internet architecture should not deviate
from the old ways—that the architecture of 1972 has been given to it on stone
tablets handed down from on high. When in reality, it was done by a group of
engineers who were struggling to understand a new field and just to get some-
thing that worked. The conservatives now read deep meaning into what were
expedient hacks, the authors of which knew they were hacks and knew they
would need to be replaced “when there was time.” The keepers of the flame are
protecting an unfinished demo, rather than finishing it in the spirit in which it
was started.

So if we have learned anything from IPvé, it is that all committees behave
pretty much the same and will try to avoid deviating from the status quo. The
problem within the IETF is compounded by the “demokratic” organization,
rather than a “representative” or republican organization. It has been well
understood for 250 years that democracies don’t work and are susceptible to
just this kind of long-term behavior. But, mechanisms can be created in a repub-
lican form of organization that will work; this was Madison’s innovative discov-
ery in system design. Representative forms have the potential to adopt new
results not yet fully understood by the larger group. However, it remains that
the only time a committee will do something innovative is when the majority
perceives it as unimportant. Not exactly a result that is terribly helpful or
encouraging.

“Upper-Layer” or Application Addressing in OSI

From our previous discussion, we would expect addressing for upper layers to
involve some unique problems. According to Shoch and Saltzer, applications are
supposed to have names, whereas lower-layer protocols have addresses. We
must consider the problem of naming applications and relating that to address-
ing. Let’s consider how the Internet and OSI dealt with upper-layer addressing.
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As noted earlier, the early ARPANET had its hands full demonstrating a
resource-sharing network and created “well-known sockets” as a stopgap so
that it could demonstrate the usefulness of the network. The need for a direc-
tory was well understood at the time, but there were other priorities. Because
there were no new applications in the Internet for another 20 years, there was
no reason to change. (And by this time, there was a new generation of engineers
who now argued that well-known sockets were a gift from the gods, divine
insight, not a kludge that should be fixed.)

The first impetus for change was not required by applications and all the
resource sharing that had been expected, but by the proliferation of hosts. Since
the beginning, each host had maintained its own table of hostnames and their
corresponding network address (NCP or IP). Only a few hosts might be added
per month, and not all hosts found it necessary to keep a complete table. How-
ever, as the rate of new hosts increased in the late 1970s, this fairly informal
approach was no longer practical. The result was the development of DNS or
the Domain Name Server (RFC 881, 882). DNS defined a database structure
not only for mapping hostnames to addresses, but also for distributing the data-
base to servers around the network. Later, DNS was used to also distribute
URLs for HTTP.

URLs are not the same as well-known sockets. A well-known socket identi-
fies a special transport layer port identifier that has a particular application pro-
tocol bound to it. There is an implicit assumption that there is only one instance
of this protocol per host. A connection to a well-known socket will create a dis-
tinct connection or flow to the requestor. A URL identifies an application (i.e., a
particular Web page that uses that protocol [HTTP]), and an arbitrary instance
of that application is created. We must be careful when talking about URLs.
What they were defined for and how they are used in combination with other
conventions make them several things at once. This is fine and perhaps even
advantageous for human use, but for architecture we need to understand the
different objects being named and their relation.

As discussed in Chapter 4, OSI created problems for itself by getting the
upper layers upside down. Applications sat on top of two layers (session and
presentation) that had addressing (a general property of a layer). These layers
were constrained to not allow mapping between connection and connectionless
and to have no multiplexing. Consequently, mappings between two layers were
required to be one-to-one. There was no need for addressing in these two layers.
Another indication that these were not layers.

We saw that for the lower layers it was not a good idea to create addresses for
a layer by concatenating it with the address of the layer below because it formed
a pathname. For the upper layers of OSI, there was no multiplexing and, hence,
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no multiple paths. However, this would create very long addresses with consider-
able redundant information as one moved up from the network layer. For exam-
ple, because a transport address would be NetAddr.suffixT, the session address
to be carried in protocol would be TrptAddr.suffixS or NetAddr.suffixT.suffixS,
and the presentation address would beNetAddr.suffixT.suffixS.suffixP. This cre-
ates a lot of unnecessary overhead in the PDUs. To avoid this, an (N)-address for
the transport, session, and presentation was defined as a tuple consisting of a net-
work address and the appropriate number of (N)-selectors. Thus, a presentation
address was defined as follows:

(Network address, T-sel, S-sel, P-sel)

The PCI in each layer above the network layer only carried the selector. If an
implementer was smart, the P-selector and S-selector were null. Consequently,
the only addressing above the network layer was that transport protocol had to
carry a T-sel of 16 bits.14

Because there was no addressing in the session and presentation layers, the
interesting aspect of OSI addressing for the upper layers was the addressing
architecture of the application layer. In Chapter 4, we saw how the distinction
between the application process and application entity came about. Now we
have to consider how the naming of them works.

Table 5-1 Summary of OSI Application Naming

Item (Identified by AE) APT APII AEQ AEIl

Appl Process +

Appl Process Invocation + +

Appl Entity + +

Appl Entity Invocation + + + +
Scope

APT = Application-Process-Title Application layer

APII = Application-Process-Invocation-Identifier Application process

AEQ = Application Entity Qualifier Application process

AEII = Application Entity Invocation Identifier (API, AE)

14 Somebody in a NIST workshop thought the maximum size of T-sel should be 40 octets. Now I
believe in large addresses as much as anyone, but even I thought 2320 application connections
in a single host at the same time was a little excessive! Another indication that separating
designers and implementers is not a good idea.
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To recap from Chapter 4, OSI distinguished the “application entity” (AE),
which was within the OSI architecture and consisted of the application proto-
cols. Databases, file systems, the rest of the application, and so on were outside
of OSI. (This was somewhat political because it meant that the OSI committee
was not going to tread on the turf of other committees.) Thus, the protocols an
application used were part of the network architecture but everything else was
outside. This is exactly the distinction we noted in the Web page example ear-
lier. The application that constitutes the Web page and everything it needs is
outside the communication architecture, but the HTTP protocol (and any other
application protocols it uses, such as FTP or a remote query protocol) is within
the architecture.

Thus, the Web application is an AP, and HTTP is the AE; and in this case, the
AP may have several AE instances, for the simultaneous HTTP connections.
Each must be distinctly identifiable. An application could have multiple proto-
cols associated with it. For example, a hotel reservation application might use
HTTP to talk to the customer and a remote database protocol to make the
reservation. Similarly, an application could have multiple instances of each pro-
tocol and different dialogs with different customers. So, there could be applica-
tion entity instances. Of course, the designer might choose to instantiate a
different process for each customer so that there are multiple instances of the
application process but single instances of the AEs. Clearly, there could be appli-
cations where there were instances of both processes and entities. The AEs were
the only part of the application process inside the OSI architecture.

We can see in hindsight that the early Internet applications were special cases
and hence not good examples to generalize from. Not only were the protocol
and the application essentially synonymous, but there was only one per system.
This is where our operating system experience was not sufficiently rich and we
needed insight from the users’ world. Our first real-life example of this applica-
tion structure was the Web.

Once this structure was recognized, the application naming architecture was
straightforward. OSI defined naming that allowed AEs and their instances as
well as APs and their instances to be addressed. Addressing in the lower layers
had never bothered to address to the level of instances. There is no reason to
connect to a specific transport or TCP connection. They are all the same. How-
ever, for applications this is not the case. Recovery and other mechanisms would
need to be able to establish or reestablish communication to an existing invoca-
tion of a protocol (AE) or to the invocation of an application (AP) using it. This
leads to the addressing structure shown in Table 5-1.

Before one balks too much at the apparent complexity of this naming struc-
ture, a couple of things need to be observed. First of all, most applications don’t
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need most of this. But the ones that do, really need it. Second, the complex
forms, when they are needed, are generally needed by processes, not humans.
Third, it is not at all clear that any “naming” at this level should be intended for
human use. In the days of command language-driven operating systems, appli-
cation names and filenames were intended for human use. However, today this
is much less clear. What we used to think of as “user-friendly” (e.g., www.cnn.
com) is not considered so today.

In the early days of networking, it was believed that applications had names
and hosts had addresses. But this was an artifact of the implementation (and
sloppy thinking); it turns out that when one carefully analyzes the problem, the
host never appears (another surprise). Processes on a host appear but not the
host. As we saw, this concept was brought over from operating systems. As
understanding improved, it became clear that the important property of
addresses is that they are used to “locate” objects; that is, that they be topolog-
ically significant. But application “names” are not just labels. They are used to
locate applications and are just as topological as addresses, although admittedly
in a very different topology. The structure of application names is used just as
much to locate the application in the space of applications as the structure of
network addresses locates in the space of network nodes. (This might be close to
what some call the “semantic Web.”)

In most incarnations, this leads to proposals for a hierarchical name struc-
ture. However, more recently this has been challenged by a more brute-force
approach relying on searching. The role in the 1980s and early 1990s that many
saw a system like the X.500 Directory or URNSs playing now seems to be sup-
planted by Google, Yahoo!, and so on. Even within our systems, we have relied
on search rather than richer structures. It remains to be seen whether searching
can scale or whether other mnemonic or more structured methods may be nec-
essary. But the question remains, that some form of common name that humans
can exchange among themselves for use with computers is needed. How do we
make this user friendly when a Macintosh might be a red apple, a computer, a
stereo amplifier, or a raincoat. Or do the humans have to learn how to be
friendly with the names computers use? For our purposes, we are less concerned
with how these interface to people and are more concerned with what needs to
be named, the properties of the names, and their relation.

URI, URL, URN, and So On: Upper-Layer Addressing
in the Internet

As noted in Chapter 4, there has been very little work in the Internet space on
upper-layer architecture and consequently also on naming and addressing issues
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in the upper layers. Everything derives from the host-naming convention. Orig-
inally, the convention was simply <hostname>, as the number grew it became
necessary to move to a multilevel structure:

<local domain-id>.T<host/site name>.<TL-domain>

This structure was generally used to name hosts within a site or subnet. In
fact, if one looks closely at the URL syntax, one gets the impression that it is
more a character-oriented syntax for specifying network layer constructs or a
one-line macro facility not unlike the UNIX or Multics command line.

The work on the Universal Resource Name moves to a more sophisticated
level of directory functions but does not really give us any insight in to the archi-
tecture of application naming requirements. The URN work in essence defines a
syntax for names of resources and its interaction with a database defining vari-
ous mechanisms to search the database and return a record. What the record
contains is left to the designer of the specific URN. The URN syntax defines the
top level of a hierarchy and conventions of notation and then allows specific
communities to define the specific syntax to fit their application.

This would lead us to look at the applications to perhaps find some insights
into application architecture naming issues. Unfortunately, most applications
have not reached a level of complexity that requires more structure than a sim-
ple pathname hierarchy.

Conclusions

As we have seen, addressing is a subtle problem, fraught with traps. Early in the
development of networks, simple solutions that ignored the major issues were
more than sufficient. But as networks grew, the addressing problems should
have been investigated. With the exception of two seminal pieces of work, how-
ever, they were largely ignored. However, the very long incubation period as an
R&D effort (more than 20 years) removed from the pressures of business and
used primarily by experts allowed people’s ideas to calcify. The effect of Moore’s
law, increasing power, and decreasing cost of equipment made it possible to
ignore the problems until long past the point when they should have been
resolved (making it very painful to fix them). Early on (in CYCLADES), it was
understood that it was necessary to make a transition from physical to logical
address at least once (and even better if more than once). This was supported by
Shoch’s and then Saltzer’s view that applications, nodes, points of attachment,
and routes were the fundamental elements of addressing that had to be distin-
guished. From this and early distributed computing experiments, we recognized
that application names were location independent, whereas nodes were location
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dependent but not route dependent. Although nodes seemed to be synonymous
to hosts most of the time, there were counter-examples that showed that this
was another false intuition. Oddly enough, it turns out that the only require-
ment to name a host or a system occurs in network management. Naming hosts
is irrelevant to communications.!®

This was later refined as topologically dependent. It was still unclear how
these properties should manifest themselves. Given how network topologies can
change, it was often unclear how this could be accomplished without being too
tightly coupled to the physical topology of the network. It even took some time
to realize (and is still unlearned by many protocol designers) that the limited
scope of some layers meant that not all addresses had to be globally unambigu-
ous. It is a sorry state of affairs that there has been almost no progress in under-
standing addressing in the past 25 years.

It should also be pointed out that although one can point to these facts in the
literature, they were generally not understood by 99% of the engineers involved
in networking. Very few, if any, textbooks in the field teach general principles of
networking; they generally only teach current practice.!® By the 1990s, current
practice was the only general theory most engineers knew. There had always
been a tendency to concentrate on research directly applicable to the Internet,
instead of understanding the field of networking as a whole. Such general
research had always been a fraction of the total, as one would expect, but by the
mid-1980s it had pretty much died out entirely. Has the field begun to more
resemble an artisan guild than an engineering discipline? This was compounded
by no new applications to drive new requirements. The three applications that
existed were all special cases that did not expose the full structure. This was not
helped by the fact that addressing is a hard problem. Saltzer gave us the basics
of what needed to be named, but finding a meaningful interpretation to location
dependence was a major stumbling block. Both IP and CLNP made attempts,
but both were rooted in the past. Now with all of this background, we are ready
to consider how to assemble larger architectural structures.

15 Yes, it is often the case that #ode and host are synonymous, and it may be convenient in infor-
mal conversation. But as Shoch’s quote we referenced earlier indicates, professionally we must
be precise in our use of terms, or we will get ourselves in trouble.

16 Every so often, on one of the IETF discussions lists, some young engineer or professor gets a

glimmer of these general principles that often contradict what we currently do. Instead of
being told that “yes, those are the principles but we did not know that at the time,” he is
quickly led back to the party line using varying degrees of coercion.



Chapter 6

Divining Layers

In anything at all, perfection is finally attained not when there is no longer
anything to add, but when there is no longer anything to take away....

—Antoine de Saint Exupery, Wind, Sand and Stars!

Networking is interprocess communication.

—Robert Metcalfe, 1972

Introduction

In the previous chapters, we have reviewed our experience with networking sys-
tems and uncovered some of the architectural structures of protocols. Along the
way, we identified invariant properties and common components. Now, we are
ready to consider what these patterns tell us about assembling them into larger
structures. Traditionally, we have assembled them into layers, but layers have
proved problematic. Are layers even the right organizing principle for net-
works? Let’s consider the problem of defining what a layer really is. We will
again look to our experience for guidance. Not to presage the outcome too
much, but finding little help there, we will consider what the problem tells us.

1 Kudos to Noel Chiappa for finding the first quote. Noel uses them for the same reason as I do.
When someone says it well, there is no point trying to improve on it; just use it and give
copious credit.
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Putting Protocols Together

What We Have Seen

First let’s consider where layers came from. The use of layers is relatively new
to the field of communications. For more than 100 years, the beads-on-a-string
model had worked adequately and had been sufficient for early data communi-
cations, too. During this period, networks were almost exclusively a matter of
electronics. Creating black boxes and levels of abstraction is not something one
finds much need for in wiring. Even for early message-switch networks, it was
fine. Early message switches were considered “hosts” in the sense that once a
message was received and written to disk, the communication was complete.
Message switching was seen as a sequence of complete communications.

With the advent of packet switching, however, all of this changed. This new
kind of network had more software than anything that had gone before, so it
was natural that those building them had considerable software experience. In
the late 1960s and early 1970s, that meant operating systems experts. At the
time, the need for managing complex operating system software by hiding the
complexity behind abstractions, such as layers, had gained considerable popu-
larity. In these networks, the communication of a message was not complete
until the packets had wound their way through the network, being relayed at
various points to be reassembled at the destination. Hence, layering was intro-
duced from operating systems.

If one reads the early papers, one can see a phenomenon not uncommon in
the history of science: As researchers struggled to solve the problems of making
networks that worked, while trying to understand what the underlying theory
was, some had both feet planted firmly in the old model, some were on the
fence, and some had made the leap to a new model. The model in use strongly
impacted how one attempted to solve the problem. Many never gave up the
beads-on-a-string model and only paid lip service to layers, just as some pro-
grammers pay lip service to modularity, objects, and the discipline of software
engineering. That confusion continues to affect our perception of problems to
this day.

Quite simply, most architectures considered a protocol and a layer to be syn-
onymous. Each protocol constituted a black box, and the interface to that black
box was the layer boundary. It was just assumed that this was the case. The
emphasis was on the data transfer part of the problem. Less attention was given
to how the necessary “support” fit into the model (e.g., routing and manage-
ment).
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The OSI reference model was the first to attempt to more rigorously define
the elements of an architecture, but the definitions were somewhat circular:

“A layer is the collection of subsystems of the same rank.”

“Subsystems are the intersection of a system and a layer.”

—(ISO 7498-1, 1984, 1994)

The implication being that a layer was the set of all protocol machines at the
same level across a set of systems: one protocol, one layer. But there was noth-
ing that put any bounds on the set of systems in a layer. In some places, the lan-
guage seemed to indicate that layers went on forever; in others, definite bounds
existed. It was clear that at least some layers had limits. The limit of a layer was
termed its scope. From the usage, we infer that the scope of a layer was deter-
mined by the PMs in the same layer that a protocol could communicate with
directly without requiring a relay at the layer above. There is little if anything in
the OSI reference model that indicates what is and isn’t in a layer.2 The use of
the term subsystem intimates that there might be more than just the protocol;
otherwise, the term entity would have been used.

If consideration of the definitions doesn’t shed any light on the problem, per-
haps looking at what has been proposed will. At first (the early to mid-1970s),
a fairly simple structure seemed to worked fairly well (see Figure 6-1):

e There was the physical layer, with all the electrical signaling conventions.

e Then a data link layer, usually considered to be something like HDLC, that
did error control and flow control over relatively slow and lossy point-to-
point links connecting the packet switches. The characteristics of the data
link layer were tailored to the media.

e Then there was a network layer, primarily responsible for resource alloca-
tion (i.e., relaying and routing).

¢ Then there was the end-to-end transport layer that ensured that data was
not lost between the hosts and provided flow control between the commu-
nicating applications.

¢ And on top of the transport layer, the application layer.

There is a list of supposed criteria for the layers. However, this list was added long after the
layers had been set. (In fact, their inclusion was a last-minute condition for progressing the
document to approval in 1980.) They were not used to arrive at the layers; and as homework
problems in more than one textbook show, these can be used to justify any number of layered
architectures. So, they can’t really be seriously applied to our problem.
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Nice and neat. It was presumed that there were more layers associated with
the applications, but no one was quite sure what they might be.

Application |« P| Application
Transport |« P Transport
Network |« Network Network P| Network

Data Link |«¢——p| Data Link |«¢q———p»| Data Link |«¢——p»| Data Link

Physical Physical Physical Physical
[ [ | [ |

Figure 6-1 Early network architecture.

It was recognized that routing protocols were somewhat special protocols in
the network layer that operated in the background to maintain the routing
tables and information on network loading. The routing protocols were clearly
out-of-band and not part of the data flow associated with user applications
(but, instead, competed with it). By the 1980s, it was recognized that something
called layer management in each layer allowed a network management system
to observe protocol behavior and modify configurations and so on.3 Routing
was viewed as network layer management. However, given that the data link
and transport protocols did not require anything remotely as complex as the
routing protocols, it seemed a bit odd that the network layer should be so much
more complex than the others. Simply labeling everything else, layer manage-
ment had the sense of sweeping things under the rug. But, there were no other
suggestions. In the OSI effort, no serious attempt was made to characterize the
modules within a layer. This was to some degree on purpose. There was great
concern that standards documents describe only what has to be standardized.
Describing other aspects, it was believed, would constrain implementations.
(And there was much greater variation in implementations than today.) So for
example, how protocols interact with the operating system could not be dis-
cussed, nor could a protocol machine be described as a process. (What some
systems called a process was not what others called it.) In addition, some
believed that the inclusion of more detail would result in some sort of advantage

3" Reminds one of the sphere visiting Flatland (Abbott, 1899).
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for its advocates; therefore, those who didn’t advocate it or didn’t
understand the value of including it opposed it.*

Then the world started to get a bit more complicated. LANs
came along, and suddenly there were two protocols in the data
link layer: a Media Access Control (MAC) protocol and a Logical
Link Control (LLC) protocol.” LANs were not a simple point-to-
point medium, but multiple access and introduced repeaters and
bridges. And if that wasn’t enough, the PTTs were pushing the
beads-on-a-string model with X.25 and X.75. X.25 and X.75
were not peer network protocols, but “interfaces”—in the case of
X.25, an interface between a host and a network or between a
packet-mode Data Terminating Equipment (DTE) and Data
Communications Equipment (DCE) in their language (i.e.,
between a host and the first router). The PTTs argued that X.25
was all that was needed (i.e., no transport protocol). They
claimed their networks were reliable.

The PTTs realized that the transport layer sealed them off from
the lucrative high-margin services and relegated them to a com-
modity business. (It wasn’t so much that the PTTs couldn’t
develop services above transport as they couldn’t do it without
competition. They were very comfortable with being a monop-
oly.) The networking crowd argued that no network was perfectly
reliable and that it would be negligent for hosts to assume they
were. Consequently, to ensure sufficient reliability, a transport
protocol was always necessary, so a transport protocol over X.25
was needed, too. This led to calls for supposedly simpler, light-
weight transport protocols to operate over more reliable X.25

4 This does not mean that the opponents thought these proposals were wrong.
They just did not want to give the advocates any advantage. Because, clearly,
one does not propose things just because they are correct, but only to gain a
market advantage. Once again, the tension between acting on principle and
on self-interest raises its head. The United States tends to split 50/50, but
Europe always acts on raison d’etat. One must recognize that a standard is
never a purely technical document, but more a set of political and economic
agreements.

This created multiple problems. First, most LANs are sufficiently error-free
that an LLC is unnecessary. LLC was a purely a political expediency forced
on LANSs by those who could not imagine a link layer protocol that did not
look like HDLC. However, with the advent wireless LANs (talk about com-
ing full circle), more lower-layer error control is sometimes necessary (see
Chapter 2), so there is actually a reason for more error control and an
LLC-like function.

Politics

There has been a lot of
discussion in this book
about the political issues
that have affected the state
of network architecture.
Many readers will find this
distasteful and irrelevant. It
is the unfortunate reality
that politics can never be
eliminated from these
processes. One might
think that the basis in sci-
ence would allow some
rationality to prevail, and
once in a while it does.
However, one seldom has
the irrefutable data
required at the time of the
debate to silence the
opposition. Contributing to
this is the problem that
with today’s rate of devel-
opment, standards must to
some extent shoot for a
point in the future. If they
merely codify current prac-
tice, by the time the agree-
ment is reached, there is a
very good chance that the
standard will be irrelevant.
On the other hand, there is
also a significant chance
that aiming at a point in
the future, the group will
guess wrong.

Many groups have tried to
speed up the process. This
is essentially impossible.
The time a standard takes
is in direct relation to the
breadth of the group doing
the work. Consensus is
based on the members
coming to an understand-
ing. The broader the group,
the longer the time; and
there is very little that one
can do to speed it up that
does not endanger build-
ing a consensus.
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networks, rather than the more complex, higher-overhead protocols required
for connectionless networks. For them, X.25 might be used as the access proto-
col between the host and the network, but the network should be connectionless
with an end-to-end transport protocol over the network. It was recognized that
some (sub)networks might have poor quality and thus require an error-control
protocol of some sort over them to bring the level of service up to the level of
the networks on one or both ends. It seemed there were more protocols than

layers!

Case in Point

A good example of the
point just made. As one
would guess, the “com-
plex” transport protocol is
as efficient as “lightweight”
ones under the same con-
ditions, and the difference
in code size is not great.
While there were imple-
mentations of the “com-
plex” ones—CYCLADES
TS, TCP, SegPkt, and
delta-t—there were no
implementations or hard
evidence to refute the
arguments. And of course,
all programmers know that
they can write much
tighter, smaller designs
than anyone else and in
most cases, they don’t.
Remember the PTTs
wanted no transport proto-
col. Given there was going
to be a transport layer, this
was the contingency to fur-
ther confuse the issue. By
the time there was data to
refute the argument, there
were commitments to use
them no matter what.

If the definition of a layer is one protocol per layer, then with
LANSs there were six layers: physical, MAC, LLC, network, trans-
port, and application. If you believed the PTTs, there were four
layers: physical, LAPB, X.25, and application. But if you were
more skeptical, then for X.25 networks, there were five layers:
physical, LAPB, X.25, transport, and application. And for others,
there were six or seven layers: physical, LAPB, X.25, IP, TCP, and
application. Architectures like this were seldom proposed out-
right; instead, proposals kept the basic four lower layers and pro-
posed sublayers.

The ARPANET/Internet community responded by throwing up
their hands and saying TCP and IP were on top of whatever was
below IP and the applications were whatever was above TCP. As
we saw, this had other consequences. OSI, dominated by the
European PTT interests, didn’t want to admit LANs existed (or
any form of network that could be purchased from someone
other than a PTT), so never said anything about the data link
layer that wasn’t HDLC-like, but they were forced to recognize
the distinction between LLC and MAC. (Note that the debate
between the PTT faction and the networking crowd was essen-
tially a difference between deterministic and nondeterministic sys-
tems design.) However, with the network layer being the focus of
the connection/connectionless debate, they grudgingly had to
agree that connectionless network protocols were being used over
X.25, and X.25 was by their own admission only a network layer

access protocol. So, the network layer was sublayered®: subnet access protocols,
subnet-dependent convergence protocols, and subnet-independent convergence
protocols. As discussed in Chapter 4, “Stalking the Upper-Layer Architecture,”
the upper three layers were actually one (see Figure 6-2).

6 The three sublayers did not occur in all configurations. All of this was described in a docu-
ment called the “Internal Organization of the Network Layer.” Notice that it is called organi-
zation, not architecture.
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Supposedly, seven layers.

But. ..
Or do whatever Application
you want
Application -
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Figure 6-2 The Internet and OSI models.

As time went on, things got messier and messier. First, LANs did relaying
with bridges, then bridges started generating spanning trees (sounds like rout-
ing), and more recently all pretense of not doing routing in the data link layer
has disappeared. New technologies such as ISDN, ATM, and MPLS have intro-
duced additional gyrations. There was even a DSL-related proposal that had
seven layers below the transport layer. It starts to get a bit bewildering. What is
going on? Just how many crystalline spheres and epicycles...oops! Wrong cen-
tury...errr...layers are there?

And it wasn’t just the arrangement of the protocols that was making layering
a problem. The implementations had performance problems, too. The theory of
layering supposedly requires each protocol in each layer to be a distinct state
machine (i.e., a distinct process). A protocol state machine in layer N sends or
receives PDUs by passing them across the layer boundary to the protocol
machine in the layer below.

Crossing a layer boundary generally involved an API, which in the worst case
was a system call and in the best case just a procedure call. If the implementa-
tion follows this theory closely, it will produce a considerable number of data
copies and context switches and be very slow. By the early 1970s, everyone had
learned this lesson. But even with minimal data copies, there is still a lot of over-
head in context switches. To reduce context switches essentially requires merg-
ing the state machines of protocols in adjacent layers within a system. Although
in theory this is possible, in practice there are factors that make it unwise.
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Because most protocols are relatively complex and different, merging their
state machines was prohibitive. (One reason for layering is, after all, to manage
the complexity.) The differences in protocols (or more precisely, the lack of con-
sistency between them) and the tendency to include options further complicate
the task. And, maintaining the order of the processing required by the protocols
works against merging. Protocol state machines share state with an apposite in
a remote system. But all protocols state machines in the same system are not
sharing state with apposites in the same remote system.

This further complicates merging the state machines, because adjacent layers
in different systems will have different protocols. Following from this, one of
the reasons for layering is that a protocol in a layer can be changed without
affecting the protocols in adjacent layers. However, it is not often that a proto-
col design actually follows these principles closely enough that this can actually
be done.” To make matters worse yet, there seemed to be more and more rea-
sons for protocol processing at layer N to look into headers at higher layers.
Perhaps this layering idea wasn’t such a good one after all. Its use in operating
systems had undergone considerable change since Dijkstra’s original paper.
Maybe this is one of those concepts that if the world were well behaved it would
be a good idea, but the world is messy. One thing is clear, however: The tradi-
tional layers we settled on in the early 1970s aren’t showing us the way. There is
something we aren’t seeing. What does the problem say?

Listening to the Problem

Introduction

Are layers a good idea? Is this an early idea that belongs on the dust heap of
history? Many think so.

Going back to fundamentals, what can we say about this problem? We have
a collection of communicating finite state machines. As we saw at the begin-
ning, all communication requires a shared schema, some shared state. The com-
municating parties must have some common ground, however minimal.

For our finite state machines to communicate, they must not only have a
common language (i.e., the format of the PDUs) but also some shared expecta-
tion of what will be done with them. The collection of communicating machines

7 1f it were, there wouldn’t need to be all those standards titled “Mapping the X Protocol into
the Y Protocol,” or they would be a lot shorter: “The X PDUs Are Mapped to the Y PDU
Data Field.” Also, much of the IPv6 work modifying more than 100 existing RFCs is a conse-
quence of this lack of discipline.
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must have some common shared state. For the communication to take place, we
have seen that certain mechanisms are also required to maintain that shared
state. We have also seen that we need to hide the complexity of these functions
as a black box to make it possible to build more complex functions on top. This
gives us shared state, maintained by multiple protocol state machines, spread
across different systems, treated as a black box. No matter how one describes it,
something like a “layer” seems to be even more inherent in the problem of net-
working than it was in operating systems.

If that is the case, there must be something wrong with how we have been
thinking about layers. But what? It is not like we have loaded the concept down
with a lot of machinery. Perhaps if we just look at the communications problem
very carefully, we will find something. But we have done this exercise thousands
of times. We have been over it and over it; what can come out of this? We have
analyzed analogies with sending a letter, making a phone call, ad nauseum. Yes,
we have. But let’s do it again.

Here we will adopt an approach in the spirit of Imre Lakatos’s Proofs and
Refutations (1976). However, instead of proposing a theorem, and then finding
exceptions to it and successively refining the theorem, we will take a different
but analogous path. We will start with the fundamental elements of computer
communication: two application processes attempting to communicate, and a
mechanism for achieving the communication within a single processing system.
Then, we will successively expand the problem domain to communication
between two systems, more than two pairs of applications, more than two sys-
tems, and so on.

Before the reader throws up his hands, thinking he knows all of this® (and he
probably does), bear with me. I thought the same thing and was quite surprised
not only in what I learned, but also in the order that things appear. Some things
appear later than one expects, some earlier. The thoughtful reader will hopefully
find some new insights and new understanding. I will try to maintain a balance
between readability and sufficient formality that it isn’t too painful for the
reader and at the same time convincing that it could be made formal if neces-
sary. We will find it useful to apply some of the results we have come across in
previous chapters. We show that communicating application processes and a
distributed IPC facility consisting of a protocol that provides an IPC mechanism
and a protocol for managing distributed IPC are all that is required. From these
few elements, everything else can be constructed.

8 This sentence isn’t sexist. Women have much more patience and wouldn’t react this way.
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Figure 6-3 Communication within a single processing system.

Communications Within a Single System

The Operation of Communication in a Single System
In a single processing system, two application processes communicate by invok-
ing the operating system’s IPC facility (see Figure 6-3). As discussed in Chap-
ter 4, it is useful to make a distinction between the application process (AP) and
the part of the application actually involved in communications, the application
protocol machine (APM). Although there are cases when the AP and the APM
are synonymous, it is not always the case, and it is better to introduce it now.
So, we will assume that all the interactions with IPC are performed by the APM
on behalf of the application.

Furthermore, let’s assume a very simple and generic set of system calls (API)
that are available for the APM to use when making requests of IPC:

<result> < Allocate(<destination-application-name>, <port_id>, <proper-
ties>)

<result> < Send(<port-id>, <buffer ptr>)
<result> < Receive(<port-id>, <buffer ptr>)
<result> « De-allocate(<port-id>)’

The APM initiates communication with an Allocate primitive specifying the
destination application process name. (The operating system knows who is mak-
ing the request and its access permissions, so the source application name does
not need to be passed explicitly.) The Allocate blocks and will eventually return
with a port-id and a result (success or reason for failure). The port-id is unique
only within the operating system. The properties field indicates parameters that

9 T have never forgiven ANSI for taking “left arrow” out of the ANSI character set. < and = are
not the same operation, and := and all of its variants are ugly!
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might affect how the IPC mechanism handles its resources relative to others (i.e.,
QoS). Once created, the application protocol messages are sent and received by
invoking the Send and Receive primitives. After the initial Allocate, all interac-
tions with the IPC facility use port-ids to refer to the flow. Successive invocations
of Allocate with the same (source, destination) pair will yield distinct port-ids
being assigned. We consider this case in more detail later:

1.

The calling APM, A, invokes an Allocate request specifying the destination applica-
tion name of the application process, B, along with other parameters about the

characteristics of the communication.
result « Allocate (B, my-port, properties);

. The IPC facility assigns a port-id to this instance of communication with A. This is
the identifier that A, and the IPC facility will use to refer to this instance of commu-
nication. !0 If the request is well formed and the IPC has the resources to honor the

request, it will allocate resources for this IPC connection.

. If so, IPC uses the operating system’s “search rules” to find B. IPC will use the
operating system access control to determine whether A has access to B.

. If B is not executing, IPC may cause B to be instantiated. B is notified of the IPC

request from A and given a port-id, b.
result «— Allocate (A, b, properties);

. If B responds positively, and IPC notifies A with a different port-id, a.
result «— Allocate (B, my-port, properties);

Note that A and B have different port-ids for the same connection. The port-id

identifies a connection endpoint.

. Through n). Then, using system calls, A may send PDUs to B by calling Send(a,
buf), which B receives by invoking Receive(b, rcv_buffer), and B can send to A in
an analogous manner. The IPC facility manages the passing of data between the

two processes. The processes would use a Receive primitive to have PDUs deliv-

ered. The exchange of messages between A and B will create shared state between

A and B.

Then, when they are done, one or both invoke De-allocate with the appropriate

parameters (at what would be Step n+1).

10

A variety of terms have been used for port-id. Any could be used. Its only significant property
is its scope. Similarly, instance of communication could have been called flow, association,
channel, connection, pipe, or any number of other terms for similar metaphors (although I
have never seen culvert used). We will use connection here as a shorthand for all of its forms.
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This shared state between the application processes is often called a connec-
tion. We will use this term but assume it includes all forms of association, flow,
and connection.!!

Properties of Major Elements

Naming for IPC. The application names are unambiguous within the system as
a whole. Application names are used between applications and by IPC to iden-
tify destinations.'? Port-ids have much less scope and are only unambiguous
between an AP and IPC facility. It is important to be aware that this is the min-
imal requirement. Most systems will, for practical reasons, define the scope as
unambiguous within the processing system because it is simpler to implement.

In general, an application name will refer to a program to be run, not to a
specific instantiation of the program. However, sometimes it is necessary to
refer to a specific instance of an application. Therefore, the name space should
be able to accommodate this requirement. Later we will consider expanding this
to accommodate multiple APMs and multiple instances of the same APM (as
well as multiple instances of the same AP).

The application process and application protocol machine. In general, the
purpose of an AP is not just to communicate with another process (although we
have encountered some for which that is the case). The primary purpose of an
AP is to accomplish some task for which communication is necessary. As argued
earlier, the communicating APs or a third party that caused them to communi-
cate must have the knowledge, however implicit, that if A passes messages to B,
B will know what to do with them and vice versa. For two processes to commu-
nicate, there must be some common agreement on the “language” used and its
semantics (or, to put it another way, the format of the messages exchanged, the
conditions for when to send them, and the action to be taken when they are
received). This common agreement is called an application protocol. The proto-
col for two processes to communicate for a particular task is recorded in a spec-
ification that details the syntax of the information exchanged and the
procedures to be executed. The handling of the “common language” and the
interface to the IPC facility represent a distinct substructure within the AP.

The IPC facility. This establishment sequence is assumed to be asymmetrical, in
that if B initiates at the same time, it will communicate with a different instance of
A. The initiation of most communications is by one party or the other. Later, we

11 Most of the words used to denote this shared state have become highly charged over the years
thanks to the connectionless/connection debate. When necessary, I will use flow to designate
weaker form, but will use connection as a generic term, seeing flow as a degenerate case. Part
of our goal here is to make the distinction moot.

12 Later we will develop the requirements for application naming in greater detail. For now, we

will keep it simple because this issue is tangential to our primary purpose. How this might be
done was discussed in Chapter 4.
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will consider the circumstances under which this case occurs and learn that an
asymmetrical interface does not imply an asymmetric mechanism, and in a well-
formed IPC, symmetric synchronization is a moot point. The IPC facility reliably
moves messages from the memory space of one AP to the memory space of
another. Operating systems accomplish this function by a variety of means. Most
use message-passing semantics that rely on shared memory constructs of one form
or another.!3 The actual mechanisms are not of interest to us here. However, the
properties of the mechanism are. Successive invocations of Allocate with the same
(source, destination) pair will yield distinct port-ids being assigned.

The IPC facility maintains an association between the port-ids of the two
ends of the flow. Messages are delivered in the order they are sent. (It, of course,
takes extra work not to.)

In most cases, flow control is implicit in an IPC facility. The sender may
block until the receiver reads the message or alternatively, block only after some
number of messages have not been read by the receiver. More elaborate flow-
control schemes have been implemented, but this will do for this exercise.

Similarly, error control is not a major concern. Lost messages are unlikely
and equivalent to memory leaks, which are bugs to be fixed quickly.!* The only
sources of data corruption are the same as memory corruption; and the same
safeguards used to detect memory corruption protect messages “in transit,”
because they never leave memory.

Definitions of the Initial Elements

® Processing system, System. The totality of elements within the scope of a
“test and set” instruction!’ consisting of the hardware; operating system,
consisting of processor scheduling, memory management, and IPC; and
application processes.

¢ Application process. The instantiation of a program running on an operat-
ing system in a processing system.

¢ Operating system, OS. A specialized application process consisting of three
functions for managing processing, storage, and communication resources,
and some number of “user” tasks, one of which is a task for managing the
application.

13 Mechanisms that do not use shared memory are possible but will involve considerable data
copying and perform poorly. But, even these will use shared memory for synchronization; so
all in all, shared memory is required.

14 1 am old fashioned and believe that memory leaks result from sloppy programming. These are

bugs to be fixed.

15 Over the past 30 years, this seems to be the best definition of a processing system that is the

least dependent on technology.
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Application process name, application name. A name taken from an oper-
ating system name space and bound to an application process.

Application name space. The set of all possible strings that can be bound
to APs and other objects associated with this operating system. The scope
of this name space is the set of all possible application processes that can
be named and can communicate via IPC.

Application protocol. The set of conventions comprising the syntax of the
input and output messages or PDUs and the associated procedures for
transmitting output and action to take on input that must be in common
between communicating APs.

Application protocol machine. A component structure of an AP that
implements the application protocol and manages interaction with the IPC
facility for the instantiation of that application protocol within the AP.

IPC facility (interprocess communication). An operating system facility
available by a set of local library calls that is used by APs to communicate
with each other.

IPC mechanism. The internal mechanisms used within the IPC facility to
effect interprocess communication.

Port-id. An identifier that is unambiguous within the scope of the IPC facil-
ity and used by an AP and the IPC to distinguish separate instances of com-
munication.

Systems

Application
Processes

|| IPC Facility ||

Figure 6-4 Communication between two systems.
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Communications Between Two Systems

Now let’s suppose that our two applications are in two different systems. As a
first step, we will assume two systems connected by some form of wire. (Two
systems with a wireless connection bring up extraneous issues that are best con-
sidered later.)

The Operation of Communication Between Two Systems

Figure 6-4 shows the new configuration. Let’s just start through our sequence of
steps and see where we run into trouble. Communication between two APs in
two different systems operates in much the same way as communication
between two APs in the same system, at least on the surface. We will find that it
is within the IPC facility that there is a major change. The IPC facility can no
longer be represented by a single process managing the IPC but must be mod-
eled as two communicating, loosely coupled processes. These IPC processes are
simply “lower-level” APs within the systems. Let’s see how it works:

1. The calling APM, A, invokes an Allocate request specifying the application name,
the destination name of the application process, B, along with other parameters
about the characteristics of the communication.

result «— Allocate (B, my-port, properties);

Clearly, the application name space would have to be modified to ensure
unambiguous names of all applications in both systems. Because we want
the resulting system to appear to the greatest degree possible as a single
system to its users, the definition of an application name is now changed as
follows:

Application name. A name taken from an application name space whose
scope includes both systems and is bound to an AP.

Application name space. The set of strings constructed to be location inde-
pendent that can be bound to APs and other objects associated with the
systems within the scope of this name space. The scope of this name space
is the set of all possible APs and other objects that can be named and refer-
enced across applications. Objects only referenced within an application
are not in the scope of this name space.
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Figure 6-5 New elements required for communication between two systems.

2. The IPC facility assigns a port-id to this instance of communication with A. If the
request is well formed and the IPC has the resources to honor the request, it will
allocate resources for this IPC connection.

3. If so, IPC uses the operating system’s “search rules” to find B. IPC will use the
operating system access control to determine whether A has access to B. The IPC
facility looks up the application name. If it is on this system, the communication
proceeds as in the single-system case discussed earlier. If it is not on this system, the
IPC facility must look on the other system.

We also need to determine whether the application is on this system or on the
other one. In general, application names alone do not indicate on which system
they are. This allows APs to be moved from one system to another without
changing their names. Because we only have two systems, if the operating sys-
tem search rules do not find the requested application in this system, it must be
in the other one or not exist. Now we have a problem: We need to determine
whether the application is on the other system and whether the requestor has
permission to open a connection with it.16

16 1t was not necessary to consider this issue in the previous section because it was part of the
local operating system. Now we need to communicate the process we need to establish com-
munication with as well as determine whether the requestor has permission to communicate
with this process.
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We need a mechanism to ask the remote IPC process whether an application
exists on its system and give it sufficient information about the source application
to determine whether to allow the communication. This requires a protocol for
carrying the names of the applications and other information. For the purposes of
this discussion, we will refer to this as an IPC access protocol (IAP). We will also
require a management task within the IPC facility to handle this IAP request and
interface into the access control and search rules of the local operating system.

IAP would be a fairly simple request/response protocol that would have to
carry the source and destination application names and access control informa-
tion (probably using capabilities). Should IAP include authentication? No.
Authentication must be part of the application. Only the source application can
confirm that the destination application is who it claims to be. Hence, authenti-
cation must be done directly between the source and destination applications.
Access control in an operating system (and by extension IPC) can determine
only whether the source application has access to a destination application that
“to the best of its knowledge” it believes to be the one being requested. Only an
exchange between the applications themselves can confirm that that is the case.
But this does bring up another requirement of the IAP. Before the request can be
sent, the local IPC management tasks must establish an application connection
with each other and authenticate that they are who they say they are. Once this
is done, they can exchange IAP requests. Note that this application connection
is part of what we called the enrollment phase earlier.

It is interesting that the first new mechanism we encounter is for manage-
ment. We have an idea what IAP might look like. But this raises a question:
How do we deliver IAP reliably?

Moving to two separate systems has invalidated many assumptions we had
been able to make. We no longer have a shared memory to mask a multitude of
problems. Perhaps first and foremost, our means of communication is now
error prone and requires explicit synchronization and flow control. Therefore,
we must have an error- and flow-control protocol operating between the two
systems to guarantee reliability and to ensure the sender does not overrun the
receiver (see Figure 6-5). This problem is well understood and was discussed in
Chapters 2 “Protocol Elements,” and 3, “Patterns in Protocols.” The IPC facil-
ity creates shared state with a correspondent on the other side and uses mecha-
nisms such as CRCs, FECs, sequence numbers, and a sliding window to provide
reliability and flow control. Note that the IPC facility is now using a mechanism
with less tightly shared state than in the previous case. The EFCP operates
between the IPC processes in the source and destination systems. This solves the
problem of getting messages reliably from one system to the other. The EFCP
produces protocol messages that are given to the driver to send on the physical
media.
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“Shouldn’t IAP be part of EFCP? Why have two protocols? It is simple. Com-
bine them.” On the face of it, it is tempting. However, note that the two proto-
cols are doing very different functions for very different interests. One is
managing IPC between two APs, including whether they are allowed to commu-
nicate at all. The second is purely concerned with providing a communications
channel with certain properties. There are advantages to separating the purely
data transfer function from the management and access control functions. It is
true that IAP must use the EFCP. But note that the purpose of the management
task that uses IAP is to manage the IPC resources. This management task will
use IAP and then bind an EFCP channel to a port-id for use by the application.
However, we can have our cake and eat it, too. As a degenerate case, we can
send the IAP request as part of the EFCP establishment, should we so desire.
However, we will see later that there are certain advantages, certain flexibilities
that arise from keeping them separate.

With the IAP and the IPC protocol (EFCP) in place, we can proceed. Now the
sequence works just as before, with the IPC facility assigning a Port-id to the
instance of communication with the AP A. Now to revisit Step 3 (from earlier in
this section):

3. If so, IPC uses the operating system’s “search rules” to determine whether B is
local. If B is not found, IPC sends an IAP request to the corresponding IPC process
in the other system. An EFCP connection is created with the properties required for
an IPC process-to-IPC process internal management connection. The IAP manage-
ment PDUs are encapsulated in the EFCP connection assigned to it. The IAP con-
nection is created, and the participants authenticated, and the request is sent.
Interpreting the request, the remote IPC process uses its local operating system
search rules to find B. If it fails, it returns that result. IPC will use the operating sys-
tem access control to determine whether A has access to B. If it is on this system,

the communication proceeds.

4. IPC may cause B to be instantiated. B is notified of the IPC request from A and
given a port-id, b.

result < Allocate (A, b, properties);
5. If B responds positively, and IPC notifies A with a different port-id, a.
result «— Allocate (B, my-port < a properties);

Note that as before, A and B have different port-ids for their respective endpoints
of the connection. The distributed IPC facility allocates and creates an EFCP flow.
(It is entirely possible for the distributed IPC facility to leave an “unused” EFCP
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flow in place on the assumption that it will be used soon.) It then sends an IAP mes-
sage to carry the source and destination application names and the capability and
other information. The receiving IPC process looks at the fields of the IAP PDU
and determines what application is required and whether A is allowed to initiate
communication with B. Once the IAP management exchange is successful, the
EFCP connection is bound to the port-ids, and the applications may proceed with
their dialog.

6. Through n). Then, using system calls, A may send PDUs to B by calling Send(a,
buf), which B receives by invoking Receive(b, rcv_buffer). The IPC facility manages
the passing of data between the two processes. The processes would use a Receive
primitive to have PDUs delivered. The exchange of messages between A and B will
create a shared state between A and B that is more loosely coupled than the shared
state in the IPC facility.

Then, when they are done, one or both invoke De-allocate with the appropriate

parameters (at what would be Step n+1).

Note that although the mechanism is a bit more complicated, it is really no
different from what was required in the single-site case. The difference here is
that coordination between two IPC processes is necessary. Note also that we
have significantly decoupled operations at the API from the behavior of the tra-
ditional communication protocol.

Invalidated Assumptions

To recap, with the communicating APs in different systems, several assumptions
we had previously made were invalidated. It is worthwhile to review what they
were and how we compensated for their loss:

1. The management of the name spaces is no longer under the control of a
single system.

2. The same program may exist on both systems, so the names must be
unambiguous.

We created a global application name space so that all applications in both
systems have unambiguous names.

3. The operating system does not know all the applications that may exist on
the other system, nor the permissions associated with it, so a mechanism is
required to provide this information.
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. The local operating system access control mechanisms can no longer be

relied on to provide adequate authorization and authentication.

We created an internal IPC management protocol to accommodate these
requirements.

. Explicit synchronization is required because there is no longer a test and

set instruction or shared memory available.

. The IPC mechanism can no longer use a common memory. Consequently,

the data may be corrupted or lost entirely.

. For the same reasons, flow control must now be explicit, not implicit. This

is both to avoid the sending application overrunning the receiving applica-
tion process and to avoid overrunning the capabilities of the supporting
IPC facility.

We created an error- and flow-control protocol to accommodate these
requirements.

New Elements Required

e IPC access protocol (IAP). The protocol used to communicate the names of

the source and destination applications and other information (see Figure
6-6) necessary for determining whether the communication can be estab-

lished.

Op Dest Appl Name Src Appl Name QoS Capability

Figure 6-6 Idealized PDU format of IAP request.

¢ IPC process. A process in a system that implements and manages IPC. This

may entail coordinating with other IPC processes in another system, both
to effect the communication and to manage the distributed IPC facility.
(An IPC process is just a process like any other.)

¢ Distributed IPC facility. An IPC facility spanning two or more systems with

at least one IPC process in each participating system.

¢ Error- and flow-control protocol (EFCP). A protocol (see Figure 6-7) nec-

essary to replace the shared memory mechanisms of the single system to
ensure reliability and to provide flow control of the IPC facility to the envi-
ronment of communication between two systems. An EFCP PM is a task of
the IPC process.
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Op Seq # CRC Data

EFCP Data transfer PDU

Op Seq # CRC Policies

Op Seq # CRC Ack Op Seq # CRC Credit

EFCP Control PDUs: Synch, Ack, Flow Control

Figure 6-7 Idealized PDU formats for the error- and flow-control protocol.

¢ IPC management task. A task of an IPC process that manages IPC and
interfaces into the search rules and access control of the local operating
system. It also manages IPC resources.

¢ Driver. An application or library of procedures in the operating system
that interfaces to physical media. Although both communicating systems
have drivers interfacing their physical media, the drivers are not protocol
machines because they share no state.

Simultaneous Communications Between Two Systems

In the preceding section, we considered the complications introduced in provid-
ing IPC between two applications in two different systems. Now we must
expand our concept of IPC between two systems by allowing multiple simulta-
neous communications between the two systems. For this case, we need to
determine at each step whether we can support multiple simultaneous IPCs
where we need to.

Operation of Simultaneous Communications
We will start at the top with the applications and work our way down to
develop the new concepts required for simultaneous operation:

1. The calling APM, A, invokes an Allocate request specifying the application name,
the destination name of the AP, B, along with other parameters about the charac-

teristics of the communication.
result < Allocate (B, my-port, properties)

2. The IPC facility assigns a port-id to this instance of communication with A. If the
request is well formed and the IPC has the resources to honor the request, it will
allocate resources for this IPC connection.
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Multiple Pairs of Applications Communicating

We need to be able to allow more than one pair of APs to communicate at the
same time. Having different application names for different applications is
straightforward. And, we have already indicated that each Allocate request is
assigned a different port-id within its system. Nothing new is required there.
That leaves creating support in IPC:

3. If so, IPC uses the operating system’s search rules to determine whether B is local.
If B is not found, IPC sends an IAP request to the corresponding IPC process in the
other system. An EFCP connection is created with the properties required for a IPC
process-to-IPC process internal management connection. The TAP management
PDUs are encapsulated in the EFCP connection assigned to it. The IAP connection
is created, and the participants authenticated, and the request is sent. Interpreting
the request, the remote IPC process uses its local operating system search rules to
find B. If it fails, it returns that result. IPC will use the operating system access con-
trol to determine whether A has access to B. If it is on this system, the communica-
tion proceeds.

Multiple Instances of the EFCP

If the corresponding applications were in the same system, we would merely
create multiple instances of the IPC mechanism, one for each dialog. For two
systems, we do the same. The IPC facility must be able to support multiple
instances of the EFCP at the same time. The EFCP is maintaining separate state
information about each communication that is updated as PDUs are sent and
received. (The amount of shared state and the frequency of update will depend
on the nature of the policies in effect on the connection.) To support multiple
pairs of communicating applications will require separate instances of this state
and hence multiple instances of EFCP. Because we are going to be sending mes-
sages from different instances over a single physical media, we need to be able to
distinguish which PDUs belong to which instance of IPC or which connection.
The PDUS need a connection identifier.

The biggest hurdle is that because either side can initiate communications, we
have to ensure that they don’t both assign the same connection identifier. There
are a variety of ways of doing this: A unique range of port-ids could be assigned
to each system. Each side could start allocating from either the high or low end
of the field, but then a rule is required to determine who starts at which end. All
of these are a bit cumbersome. Traditionally, the solution to this has been just to
make the connection-id the concatenation of the local port-ids. Because each
port-id is unique within its system, the concatenation is guaranteed to be unam-
biguous between the source and destination. Is this all we need? This is all the
identifiers we need because there is only one system to send it to. We will have
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to make a slight modification to our EFCP so that all PDUs carry this connec-
tion-id. Consider, for example, the Data Transfer PDU (see Figure 6-8):

Connection-id

Dest-port Src-port Op | Seq# | CRC Data

Figure 6-8 A connection-id must be added to support multiple simultaneous instances
of communication.

There is an added level of capability we can consider at this point. Each Allocate
API request will cause an IAP request to be generated. Note that the IAP request
could also carry the port-ids to be used for this connection and carry the desti-
nation port-ids in the response. This would allow several possible actions by the
IPC process:

¢ Initiate the creation of a new EFCP instance with the appropriate policies
binding to the port-ids, the equivalent of setting up a TCP or HDLC con-
nection.

e Allocate resources and create bindings to the port-ids, the equivalent
of UDP.

Or
¢ The two systems maintain a pool of EFCP connections already created and
simply bind the allocated ports. (Of course, if we use a “delta-t like” pro-
tocol, this is always the case.)

Managing the Single Resource

However, we are not done. We now have several EFCP instances attempting to
share a single physical medium between the two systems. We need a new appli-
cation to moderate the sharing of the single resource (i.e., the wire). The classic
definition of an operating system. This application will need to maintain a table
of the currently active port-ids, accept PDUs from the EFCP instances, and
determine what order to send them on the physical medium. Its primary func-
tion is to manage the sharing or to multiplex the physical medium.

This multiplexing task may also optimize the use of the physical medium by
concatenating PDUs and so on. If the use of the physical medium is heavy, the
multiplexing task may additionally be required to provide priority to certain
classes of users or special processing among the flows. The application requests
these QoS parameters when it requests allocation of communication resources.

Let’s assume that there are a list of QoS-related parameters that are available,
such as bandwidth, delay, jitter, bit-error rate, and so on—the usual cast of char-
acter(s)-istics. Basically, we have two “knobs” we can use to achieve these
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characteristics and balance this with demands by other allocation requests: the
mechanisms of EFCP or the resource allocations of the multiplexing task. The
EFCP mechanisms are well understood, and policies are chosen for bit-error rate,
flow control, and so on. The multiplexing task basically has two resources it can
use to affect the characteristics of the traffic it is sending on the physical medium:

1. The order and rate of queue servicing (sometimes known as processor
scheduling)

2. The management of queue lengths (sometimes known as memory manage-
ment)

The EFCP instances and other applications are its tasks. This handles the
real-time performance-sensitive task of moving traffic within the desired QoS.
But....

Distributed IPC-Process

AP

RO

Figure 6-9 To manage multiple EFCP instances using a single resource, the media

Coordination with Peer

Physical Media

requires a multiplexing task and a manager to set policy with its peer.

The IPC management task (see Figure 6-9) will manage the interactions between
this multiplexing task and the EFCP instances that feed it. It will need to translate
application Allocate requests into policies and balance these with the operational
policies of the system. Effective operation will require the IPC management task
to coordinate in the other system. Because the systems are peers and we must
assume that one will be requesting applications on the other system and vice
versa with roughly equal frequency, the systems will have to exchange resource
management information to coordinate their use of the common resources. In
this case, that might be as simple as refusing an IAP request. The IPC manage-
ment task manages the use of the single resource in coordination with the
flow-control policies of the EFCP instances to provide the requested services and
to keep them from overrunning the application.
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4. IPC may cause B to be instantiated. B is notified of the IPC request from A and
given a port-id, b.

result < Allocate (A, b, properties);
5. If B responds positively, and IPC notifies A with a different port-id, a.
result «— Allocate (B, my-port < a properties);

6. Through n). Then using system calls, A may send PDUs to B by calling Send(a,
buf), which B receives by invoking Receive(b, rcv_buffer). The IPC facility manages
the passing of data between the two processes. The processes would use a Receive
primitive to have PDUs delivered. The exchange of messages between A and B will
create shared state between A and B that is more loosely coupled than the shared
state in the IPC facility.

Then, when they are done, one or both invoke De-allocate with the appropriate

parameters (at what would be Step n+1).

New Elements Required

* Connection identifier. An identifier used to distinguish one IPC instance
(connection) from another.

¢ Multiplexing task. An application to manage the utilization of interfaces
by multiple IPC protocol instances and other applications.

Let’s stop here and take stock of where we are. We first developed the con-
cepts we needed for two applications to communicate within a single system.
This requires the means to name the applications and an IPC facility usually
based on shared memory. Then we expanded our scope to consider communica-
tion by two applications on two distinct systems. The primary change to sup-
port this configuration required replacing the IPC facility with an error- and
flow-control protocol to overcome the problems of no longer having shared
memory as a medium for communication.

We also had to provide a management function so that the IPC process on
one system could request on behalf of the requesting application access to an
application on the other system. Next, we allowed multiple applications to have
simultaneous communication between the two systems. Now we need an
instance of EFCP for each communication flow an application has and the abil-
ity to distinguish these flows. But more significant, we now have multiple EFCP
instances contending for the use of a single common resource (i.e., the physical
media). Hence, we require an application to manage the use of this single
resource. Now we are ready to consider what additional facilities are required
for communication with multiple applications on multiple systems.
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Systems/

Figure 6-10 Communication with N systems/

Communications with N Systems

Operation of Communications with N Systems

Having now constructed how two systems communicate, we now need to gen-
eralize this to N systems. Figure 6-10 shows the connectivity of N systems using
a somewhat brute-force approach. (Remember we are taking this slowly, step by
step with patience we will get there.)

The major change for this case is that it is more of the same, much more. In
the two-system case, we could assume that if the requested application wasn’t
local, it was in the other system. Now we have lots of other places to look. For
small Ns, we could simply send N-1 requests and see who answers positively;
but this is wasteful and isn’t going to scale. For some value of N (and might even
have been N = 2), it is more efficient if we keep a database of what applications
are where, usually called a directory.

The directory is the extension of the operating system search rules to cover
the other systems. The directory function may be accomplished by a variety of
means: Each system can send to the others a complete list of all potential appli-
cations it contains and then update any changes (although this becomes a bit
burdensome); one system searches for the application name locally and if not
found, queries the other system; or something in between (i.e., cach and query).
For large values of N, some organization may be imposed on the naming and/or
the directories themselves to facilitate searching or the order of searching or the
implementation of a caching strategy. (In general, the names should remain
location independent unless the application is, in fact, location dependent.)

The directory function will have to use the IPC facility to accomplish its task.
We will need a protocol for updating and querying the directory database.
Without doubt, there will be other resource-related information that we will
want to keep and other systems might want to query.
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Basically, we need to maintain a database of IPC-related information that can
be queried by other IPC processes in other systems and a management task that
may for some of it notify other systems of important changes. As a placeholder
let’s call this protocol the Resource Information Exchange Protocol (RIEP.
Maintaining this information will be based on a managed-object model. As
shown in Chapter 4, it appears that application protocols in general consist of a
small number of operations (read, write, create, delete, and so forth) on man-
aged objects. The only aspect to be determined is how to manage parallel or
sequences of operations.

Distributed IPC-Process

Coordination with Peer

Physical Media @
N

Physical
Medium

Figure 6-11 Each interface is managed by a multiplexing task and IPC management
task.

A destination can be chosen by simply choosing the appropriate local physi-
cal interface. (Because everything is directly connected, every application is sim-
ply at the other end of one of the wires) Each system will have one interface for
each destination. Each system will need to associate a local identifier with each

interface.l”

17" There is no requirement for these identifiers to be the same across all N systems. They are only
used locally. For example, it is not uncommon for the road joining two towns to be named by
its destination. So, the road between Kinmundy and Patoka is the called the Patoka Road in
Kinmundy and the Kinmundy Road in Patoka.
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For example, it might be the application name of the multiplexing applica-
tion for that interface. There is no need for this identifier to be known outside
this system. Because this has the role of what we normally view as a kernel
application, it generally would not be known in a wider context. When direc-
tory information is received from a particular system, the information is just
associated with the identifier for that interface. When the destination applica-
tion name is looked up in the directory, the local identifier for the appropriate
interface/destination is returned. There is a separate multiplexing task (see Fig-
ure 6-11) for each interface. In essence, these local identifiers identify which
multiplexing task a given EFCP instance would be bound to. Or to state it
slightly differently, the indexes are the port-ids. Each of them would be man-
aged by an IPC manager. When an EFCP instance generates a message to send,
it calls the multiplexing task, which has the index of the appropriate physical
interface.

This proliferation of IPC processes to handle different wires does seem to
warrant some rearranging to more effectively manage them. Because each inter-
face may support a different type of media, this would imply protocol instances
with different policies. (We saw in Chapters 2 and 3 that the policies of proto-
cols near the media are heavily influenced by the nature of the media.) It would
appear that what we have is a separate IPC process for each interface, with its
associated EFCP instances if any and management. Let’s collect each of these
into a separate module or black box and call them a distributed IPC facility
(DIF) (see Figure 6-12). This is a distributed application for providing IPC.

To more effectively insulate applications from the differences in these inter-
faces and to manage their use, let’s put a new IPC management task “above”
these DIF modules to processes the API calls from applications, look up applica-
tion names in the directory, and select the appropriate DIF for that interface.
This forms a simple higher-level IPC management process.

It would be straightforward to adapt this structure to multiple lines between
the same two systems. This would require multiple distributed IPC facilities
between them, and this new IPC management process would manage allocating
the load among them. This new “higher-level” IPC process we have just created
might communicate with their peers about resource allocation in the case of
multiple paths to the same remote system. However, resource allocation on a
specific path is properly the responsibility of the DIF managing that path and
probably specific to the characteristics of that physical media.
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Higher Level Distributed IPC Process

Distributed IPC Processes

\
29
2

Figure 6-12 Different physical media may require very different management, so dis-
tinct DIFs are tailored to their operating parameters. Then a higher-level IPC process is
created to manage the assignment of IPC requests to the appropriate interface and cre-
ate a virtual media-independent view to the applications.

However, this does not scale well and would quickly become prohibitively
expensive and impractical for even fairly small values of N. This leads to mak-
ing the network more complicated, but cheaper.

New Elements

¢ Directory. A database that resides in each system that maintains a mapping
of application names to the interfaces over which they are available (i.e.,
which remote system they are on).

¢ Resource Information Exchange Protocol (RIEP). A protocol used for
updating the directory and other information maintained by the IPC facil-
ity on the status of its connections, resource allocations, and so on. It may
be queried by other systems or subscribed to for updates.

e Distributed IPC facility (DIF). The collection of IPC processes cooperating
to provide a distributed IPC service to applications. In most cases, the IPC
processes comprising the DIF are in different systems.
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Dedicated IPC

Systems \

Host Systems

Figure 6-13 Communicating with N systems cheaply.

Communication with N Systems on the Cheap

In the preceding section, we expanded our use of IPC from communications
between two systems to communication between N. However, we found that
the brute-force approach does not scale, is inefficient, and introduces huge
costs. To enable IPC cheaply, we take advantage of the fact that systems will not
access all destination equally, and therefore some lines will be underutilized. So,
we allow systems to relay PDUs to other systems and in some cases have systems
dedicated to doing only this relaying (see Figure 6-13). This dedicated IPC sys-
tem will optimize the use of the physical media by multiplexing traffic over far
fewer lines.

For this case, it will be clearer if we keep the dedicated relays (routers) dis-
tinct from the systems acting as the source or destination of the PDUs (i.e.,
hosts). Clearly, a system could act as both, but for clarity of the discussion, let’s
keep them distinct.

Operation of Communication with N Systems on the Cheap
Each of these dedicated systems has two or more interfaces to physical media
(see Figure 6-13). As shown earlier, we had to introduce a new application to do
multiplexing and to manage multiple flows over the single resource, a physical
media. We also saw how having multiple physical interfaces led us to organize
communication for each interface with its peer with a higher-level management
function to assign requests to interfaces.

For this configuration, we not only need to manage locally, but also to pass
PDUs through a series of dedicated IPC systems (see Figure 6-14) to their desti-
nations. Because the originating systems would be multiplexing, the dedicated
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systems would need to multiplex/demultiplex as well as relay. Because messages
would come in one interface and leave on another, there is another opportunity
to optimize the use of the outgoing media. These relays do not support anything
above them. The relay is a variation on the multiplexing task, ultimately deliv-
ering messages to a multiplexing task in a remote system. To use the model we
have been developing, we are going to have to expand the higher-level IPC man-
agement process from the last section. The relaying application has N instances
of an application protocol, one for each interface (lower-level DIF) on which it
sends or receives data. The relaying application receives PDUs from instances of
the application protocol, makes the forwarding decision (choosing the applica-
tion protocol instance to send the PDU on), and delivers the PDU to that
instance.

Previously, identifying the local end of the “wire” was equivalent to identify-
ing the destination. This is no longer the case. The relays have created a virtual
space that creates a multipoint view of communication over a physical network,
which is point to point. All applications sitting on top of this structure appear
directly connected, as if it were some form multiaccess media.

Now we can no longer use the local names of interfaces to indicate where
applications are. We need to assign identifiers to all of these IPC processes that
are unambiguous among the members of the DIE. Clearly, we need to name the
destination IPC processes (in the hosts) because that is where we are sending it.
But why do the relay applications need to be named? Given the conclusions we
worked out in Chapter 5, “Naming and Addressing,” expanding on Saltzer’s
paper, there are two reasons: First because there can be more than one path to
the next node, we need to distinguish interfaces and nodes. Second, the relays
must know whom their neighbors are to know where to send a PDU next. Each
PDU will need to carry the identifier of the destination IPC process. We need
some additional PCI to carry these names to be added to all PDUs generated by
the multiplexing task at the source and interpreted by all the relays and the des-
tination. In Chapter 3, we referred to this class of protocols as RaMP (Relaying
and Multiplexing Protocol, an example of which is IP). RaMP is the PCI for the
data transfer phase of a multiplexing application. But we find that it isn’t so
much a protocol in the usual sense, but simply a piece of common Data Trans-
fer PCI (i.e., a common header used by multiplexing and relaying applications).

215



216

CHAPTER 6 DIVINING LAYERS

Relaying
Appl \
RAMP PM
Instances
P ErFcP M EFcPPM [
Muxing
Appl

Figure 6-14 Diagram of a dedicated IPC system.

If it is the data transfer phase, what was the establishment phase? Are we
building an inherently connection-oriented model? No. Take a step back and
consider what it means for an IPC process to open a “connection” to another
IPC process that is already a member of a DIF. We already saw this earlier: It is
joining the DIF. This application establishment, with some related authentica-
tion and other initialization, is what we had previously called the enrollment
phase.

Previously, enrollment had always been a collection of ad hoc procedures we
frankly preferred to ignore. In this model, it is an integral and natural part of its
operation. The application establishment would provide the other IPC process
with the name of the requesting process along with access control information
to be used to determine whether the requestor is allowed to join.

There will then be an exchange of the information required to allow this new
member to operate in the DIE. In particular, the new IPC process is assigned an
identifier by the DIE. This identifier is only unambiguous within the DIF and is
used for moving EFCP PDUs among themselves. This is often called an address.
Addresses are identifiers internal to a DIF. There is no reason for them to have
any external visibility (more on this later). This is synonymous with the scope of
the layer.18

18 An alternate view is to see the collection of multiplexing and relaying applications as a single
distributed application. In this case, the names described here are entirely internal to this
application. In fact, this is the case with another distributed relaying application we are all
familiar with: mail. This view has the advantage of easily supporting multiple distributed
relaying applications of the same rank (e.g., VPNs or similar constructs).
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We also know that in this configuration with multiple paths between the
same points that PDUs may arrive out of order and that relays may experience
congestion and discard some PDUs. Consequently, the source and destination
systems would be wise to use an EFCP protocol to ensure the QoS and provide
flow control between the source and destination. The policies used by the EFCP
will depend on the QoS required by the requesting application. Note that the set
of policies used for EFCP operation over this virtual link can affect the policies
required for EFCP used on the physical network.

At the source, EFCP messages will be encapsulated in the Common Data
Transfer PCI and passed among the relays to the destination multiplexing task.
At the destination, they will be de-encapsulated and then, using the port-ids,
delivered to the appropriate EFCP instance.

This will require that each PDU traverse more than one and perhaps many
physical media. Because the media will tend to be the source of most errors, we
need to take those into account early. Years of experimentation has shown that
it is best to correct some errors early, but because the user application support
will want to check to make sure everything is right, the dedicated systems need
only perform enough error recovery to ensure that “user-level” error recovery is
cost-effective. For some configurations, this will mean that for some types of
these media-specific DIFs, the EFCP instances will not do much. For others, it
will need to do a lot. This leads to our dedicated IPC systems having a configu-
ration as in Figure 6-14.

It should be fairly clear by this time that our higher-level IPC management
function has taken on all the trappings of being a full-fledged DIF, where the
lower-level DIFs are its “wires.” With the relaying functionality and its associ-
ated support functions, we seem to have most the elements of a DIF.

Do we need to identify the IPC process of the physical network that the relay
will send it to? Not as long as the physical media is point to point. That ques-
tion is equivalent to the configuration in the previous section; that is, identifying
one end of the “wire” is sufficient. However, if it is a form of multiaccess tech-
nology, such as a LAN or wireless media, the multiplexing tasks in these DIFs
will need to have addresses, too. And a Common Data Transfer PCI associated
with that multiplexing task will be needed to carry them. (Some would call
these MAC addresses.) However, these names will have less scope because they
only need to unambiguous within the span of the physical media (or lower
layer). It is sometimes argued that a large flat address space for these media-spe-
cific DIFs makes address assignment simpler, which it does. However, the cost
of determining whether this device is allowed to join the network dwarfs any
savings.
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Figure 6-15 Three layers of IPC consisting of hosts with user applications and IPC sub-
systems.

These dedicated systems communicate with systems running the user applica-
tions and so must have at least a degenerate form of the IPC support. The host
systems use the port-ids to keep track of PDUs between the EFCPs and the
applications, whether the user applications or the relay and multiplexing tasks.
The DIF may use port-ids to distinguish classes of traffic.

It is at this stage that the number of applications that can communicate can
become quite large. Greater efficiency will result if caches maintained for the
directory begin to reflect the locality of the systems they are responsible for. If
the application names have a hierarchical organization, the caches may start to
reflect that. With only a slight extension of the IAP function, it can be used to
both find the address of an application and determine whether the requestor has
access and the system hosting the application is willing to support the connec-
tion/flow. We will consider in a bit greater detail what this might look like in the
next chapter. For now, let’s just say that IAP will be found to extend the func-
tionality of a DNS lookup.

The only problem we have not addressed is how the dedicated IPC systems
know how to get PDUs to their destination. This requires that we introduce a
new function into the IPC management task that generates routing information.
This is a distributed function, which resides in each system where it has a multi-
plexing or relaying application. We have already indicated that the IPC manage-
ment tasks exchange information on resource allocation, and in this
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configuration this function has greater importance. We can augment the infor-
mation exchanged to include connectivity and resource loading of the relays.

Part of the information exchanged by the IPC processes in the DIF is about to
whom they are directly connected. This allows the dedicated IPC systems to
derive, using well-known algorithms, the necessary information about where
each message is to be forwarded. Routing uses the names of the peer multiplex-
ing and forwarding applications to derive routes (from which a decision can be
made to choose the next hop). It also maintains information on all the forward-
ing applications of its nearest neighbors and which interfaces can be used to
reach that next hop. This yields Figure 6-15. Note that routing is grayed out in
the bottom layer because for most physical media it is not needed, although it
might be present for some types of media.

The observant reader will have recognized that we have drawn the tradi-
tional picture of a layered network architecture. But the lines are in somewhat
different places. We created a three-layer system of repeating elements, where
the repeating unit is a distributed IPC facility. At this point, we should general-
ize the definitions given so far, drop the subterfuge of calling these “dedicated
IPC systems” and instead call them “routers,” and explore in more detail the
properties of such a network architecture. We do this in the next chapter. We
will now just be applying these basic concepts over and over in different places.

New Elements
¢ (N)-layer. A distributed IPC facility at a given rank

¢ (N)-subsystem. The instantiation of a layer in a system, an IPC process

* Scope of an (N)-layer. The set of all application processes able to commu-
nicate directly without relaying by a DIF of a higher rank.

Initial Conclusions

This exercise was begun purely to see whether stripping the problem down to its
barest bones could shed light on the characterization of a layer. It has yielded
much more than we had reason to expect. We can now see that the fundamental
structure derives from applications and their supporting IPC (and now it looks
so obvious). We now see how IPC between systems requires supporting applica-
tions and, in some cases (the ones we are most interested in), supporting systems
dedicated to IPC.

Networking is distributed IPC and only IPC.
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Remembering Advice to
Freshman Engineers

We tell freshman engi-
neers not to skip steps:
Write each step down in
full. When steps are
skipped is when mistakes
are made, when signs are
dropped, when wrong
answers are made.

In the days after | first did
this exercise, as its impli-
cations began to sink in, |
began to realize that it is
much more than just a nice
teaching tool. | became
very annoyed with myself.
This is an exercise that
any of us could have done
anytime in the past 30
years. We have all written
analogies for how network-
ing is similar to sending a
letter through the mail or
making a phone call, but
we had never done it for
computers! Or if we did,
we had skipped steps and
missed some important
things.

We had all been guilty of
not doing what we had
warned freshman engi-
neers of. | always enjoy
these moments when the
problem hoists us on our
own petard. To quote the
old radio show, The Life of
Riley, “What a revolting
development this is!”

DIVINING LAYERS

I can hear the reader now, “Yeah, we knew that.” And we did
...sort of. Metcalfe had it right 35 years ago. Not to put words in
Bob’s mouth, though, he would probably say he was just echoing
what “everyone” believed in 1972! But we didn’t act like it. We
have treated these elements as very different and have been sloppy
about including functions that don’t belong and not including
functions that did belong. Adhering more closely to “It is just
IPC,” maintaining a clear distinction between IPC and managing
IPC, will yield considerable advantage. If it isn’t directly part of
IPC, it belongs elsewhere.

These IPC processes also follow the same structure of being
applications using a supporting IPC and so on until the IPC is a
physical wire. Although it might seem there are essentially two
kinds of layers (i.e., those that contain only applications and those
that support IPC), closer inspection reveals that the former is sim-
ply a degenerate case of the latter. A layer is the distributed IPC
facility. The IPC facility is composed of IPC processes in usually
different systems. But IPC processes are just applications using the
layer below. An IPC process consists of a set of tasks along with
the other applications below using the lower IPC facility and so
on. So-called user applications exist on top of any IPC facility,
which has sufficient scope to reach the desired corresponding
application and alongside applications that are IPC processes for
higher-ranking DIFs.

This makes clear that many things that have been considered
quite different are, in fact, the same. As shown in Chapter 5, the
“directory” is essentially a local query of the routing and naming
functions for information on nearest neighbors. Relaying and
routing for mail, for transaction processing, and for peer-to-peer
(sic) applications are simply different forms of the routing we find
in the network layer and so on. Differing demand patterns merely
lead to different distribution patterns of the information and dif-

ferent policies. The need for both point-of-attachment (PoA) addresses and
node addresses is far clearer. We see that the relation is relative. The node
addresses of a DIF are the PoA addresses of the DIF above. All of the required
naming and addressing from Saltzer turns out to be a natural consequence of
the fundamental structure, as it should. While in one sense, the distinctions lose
some of their importance, in another sense, it greatly strengthens them. And
another ladder gets thrown away.

This exercise has revealed relations that were not foreseen at the outset. The
relation to operating systems, while apparent from the start, has turned out to
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be much stronger than previously recognized. Although we “knew” it, this
emphasizes much more strongly that “networking” is very much a distributed
resource allocation, a distributed operating system. In other words, we must
treat the collection of subsystems of the same layer, as a single system, some-
times much more loosely coupled than we think of a traditional operating sys-
tem, but a system nonetheless. Each IPC process is, in essence, an operating
system with distinct subtasks (or threads) for the EFCP and support functions
such as routing and management.

Although strictly speaking, a layer is a distributed IPC facility, we must con-
sider it in the context of the set of applications that can access it. The distributed
IPC facility is a collection of applications that are multitasked, consisting of
multiple instances of an error and flow-control protocol, a resource manage-
ment function (i.e., relaying and multiplexing), and supporting tasks.!® This sec-
tion has made an argument for at least two layers: a layer dedicated to the
media, a layer managing physical resources and a layer managing logical
resources, with applications operating above them. This is not very different
from the configuration described at the beginning of this chapter. But as we saw,
things seemed to get more complicated. The repeating structure of DIFs accom-
modates and organizes that complexity by simply creating more DIFs.

There has always been some question as to whether we split TCP and IP in the
right place. This analysis says we got it right. It confirms the separation of TCP
and IP, CYCLADES TS and CIGALE, of OSI TP4 and CLNP, or of XNS SeqPkt
and IDP was correct. The first is the protocol that provides basic IPC connec-
tion/channel/flow on a per-instance basis; the other is the common PCI for relay-
ing and multiplexing of what is really a distributed application. However, this
same analysis indicates that it was a mistake to separate the network and trans-
port layers, because they are integral parts of the same distributed IPC facility.2°
The network layer has always been a stumbling block. On the one hand, the
name implies that it is just the network and not the hosts (and we have a ten-
dency to try to treat it that way). But it is in the host, too; it has to be. The con-
cept of the network layer is a last vestige of the bead-on-a-string mindset (a view
we were pushed into by the battle over the transport layer that was described ear-
lier). The network layer must go. It is making us think like bellheads.

When IPC processes move to their “data transfer phase,” they use common
PCI, of which IP/CLNP/IDP/MAC are examples. But more interesting is how

19" Don’t take this too literally as an indication of an implementation strategy.

20 I remember in a network layer meeting Dave Oran exclaiming in frustration that there were
all these hints that transport and network should be closer together for things to work well.
At the time, we could not see the argument that would allow us to do it. We now have the
argument.

221



222

CHAPTER 6 DIVINING LAYERS

they get to the data transfer phase. Enrollment, something we wanted to ignore
because it was messy (like writing boot loaders) is nothing more than normal
application connection establishment with optional authentication and some
initialization, including address assignments.

We find that names required for routing (i.e., addresses) are not just names of
specialized applications called protocol machines, but are names internal to a
distributed IPC facility for the internal coordination of IPC. This is a subtle but
significant difference from our past understanding of addresses. These internal
names are coordinating resource management as well as routing and relaying in
a distributed IPC facility. They are used only by IPC processes for their own
purposes. Any other properties we might consider ascribing to them are over-
loading the semantics of the identifier. No other applications have any need to
ever know their existence. Every IPC process has an external application name
and an internal address. How do you get to something before it has an address?
By its external application name using the underlying IPC.

Why had we not seen this? When the original layered model was proposed,
networks were very small and slow: Bandwidth was on the order of 5 * 10% or
less; processor speed, ~5 * 10°; number of users was on the order of 103. Today,
the numbers are very different: on the order of 1012; 1019; and 107, respectively.
We had imposed a structure on a problem after seeing only a microscopic piece
of the landscape if we graphed this with 10-meter axes, we would have a box
100nm by 100 microns by 10 microns!, and after trying only three or four rela-
tively similar possibilities. Compared to operating systems where we had tried
20 or 30 different operating systems before we began to settle on a common
model. These constraints tended to focus us on the differences and made the
similarities hard to see. As the bandwidth of the media increased, the range of
resources to manage did not remain constant (everything did not just move up),
but the range increased,?! making it more and more difficult to effectively man-
age and optimize resources over what is now a range of 6 or 7 decimal orders of
magnitude and growing. There are still major applications that generate data at
low rates and operating constraints that require lower-speed processors. It is
well understood that resource-allocation algorithms and error-prevention/
correction methods work best within a particular range, a range that is much
smaller than the 6 or 7 orders of magnitude we are confronted with.

21 With bandwidths now at 1012, applications do not operate nearly within an order of magni-
tude of that number as they did at the beginning, where all applications operated between 1K
and S6K. Now applications operate any where from 103 to 10!2. This is a much different
resource-allocation problem. Managing ever-higher bandwidth is a hard problem, but manag-
ing growing bandwidth in reasonably constant range (i.e. the minimum bandwidth rises, too)
is an easier problem than managing increasing bandwidth and increasing range.
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But we failed to act like scientists and continually question our fundamental
structures. Economic and political forces outside our influence are as much to
blame for this as our own failures. The bunker mentality created by the intense
debates over connections and connectionless. We concentrated on the immedi-
ate and failed to delve more deeply to see what was really going on and look to
the long term. And worse, we allowed Moore’s law to corrupt us and make us
sloppy.22 And even worse, our academics failed us by only reporting what was
being deployed instead of analyzing, critiquing, and distilling principles. The
vast majority of our textbooks are vocational, not university-level textbooks.

Engineering must always make compromises. But engineering is predicated
on science providing the principles of what is “right,” so that engineering can
make intelligent compromises. We have fallen into engineering without science.

Taking Stock

Let’s step back for a moment and take stock of where we are. What are layers
for? As always, there are two distinct purposes for black boxes or layers: the
benefit it provides to the user by hiding complexity, and the structuring it pro-
vides for organizing the functions to accomplish that service (i.e., both external
and internal benefits).

For the user or application, the layer provides an abstract hardware/media-
independent interface to IPC, pure and simple. Communicating with a process
on the same system or a different system should be as nearly the same as possi-
ble. The goal has always been to make the network as invisible as possible to the
applications.

Furthermore, the use of layering in creating that illusion has provided a
means for decomposing the problem, managing complexity, and achieving the
abstraction (sometimes in stages) to isolate the application from the specifics of
the hardware: the classic functions of an operating system, but focused on IPC.
There have been basically two reasons for using layers for decomposition: func-
tionally to control complexity and isolate like functions, and logically or organi-
zationally to circumscribe the problem. For example, the data link layer isolates
the media-specific functions from the more general resource management func-
tions of the middle layers. Although multiple data link segments may be limited
to specific areas (buildings, floors of a building, and so on) to constrain the
management task to a given area and allow different media without affecting
the resource management functions. Layers may be created for either rationale,

22 s interesting that Moore’s law can be a driver for innovation in hardware but have precisely
the opposite effect on software.
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either horizontally or vertically. In this example, layers were created vertically to
isolate different functions and horizontally for logical separation. But there are
reasons for which we would create layers horizontally to isolate different func-
tions and vertically for logical separation.

In the previous chapters, we did get a glimpse of a few patterns or invariances
in the organization of protocols:

1. The scope of “layers” tends to increase as one moves up.

2. The same protocol functions keep recurring with different policies all the
way from the media into what is considered the “applications” and not
arbitrarily, but in repeating patterns.

3. There is a requirement for common PCI, at least for addressing, both in the
lower layers and in the applications.

4. Connection and connectionless can be achieved with a common model.

Experience had indicated that there were often advantages in managing
resources if the error-control protocol and the relaying and multiplexing task
could share information about the conditions they were observing. However,
having these protocols in different layers (using the “one protocol per layer”
rule) forced complete isolation between the relaying and error-control functions
so that the sharing of this information was not possible. This model solves that
and eliminates some duplication. But our “derivation” of networking as IPC
shows conclusively that they are part of the same IPC facility and therefore
should be part of the same layer.

A layer is a distributed IPC facility.

Not recognizing the need for the “IAP-like” protocol and seeing its role in
resource allocation was another factor in not seeing the structure. Furthermore,
as one moves in toward the backbone as more and more traffic is multiplexed,
bandwidth tends to increase. The bandwidth range of applications in a single
host is seldom as great as seen over the whole network.

All of these are indications of what should constitute a layer, of what the
organization of layers should be, and to some extent how many layers an archi-
tecture should have. But we also realize that layers are not so much isolating dif-
ferent functions as different ranges of the resource-allocation problem. If we
consider all of this, and keep in mind that we are looking for patterns, doing so
will lead to an architecture that scales and that does not require new constructs
for every new technology or capability that is invented.
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This gives us a good idea of the structure we have been looking for: applica-
tions operating over an IPC facility, which then repeats, subdividing the prob-
lem. Each layer has the same functionality, but that functionality is optimized to
deal with a subset of the range of the whole resource-allocation problem.

The Network IPC Architecture (NIPCA)

All of this leads us to one of those odd shifts in thinking, where a significant
change in the why at first seems to have little affect on the what.

We have always viewed different layers as performing different functions.
And we have had lots of arguments in design sessions and standards committees
about which functions go in which layers or protocols (hoping that most func-
tions would not be repeated in multiple layers). This was in no small part driven
by the severely limited resources of the early hardware and Dijkstra’s defini-
tions, which may have been influenced by the same limitations: It would have
been more efficient if functions could be done once and not repeated. But there
were always conditions that seemed to warrant the inclusion of the same func-
tions in different layers for various circumstances, primarily because of layers
with different scope. For example, the view that segmenting should occur in
transport but not in the data link layer, but there are cases where it is needed.
Routing was in the network layer; LANs shouldn’t do routing, but they do.
Data corruption detection (CRC) is necessary in the data link layer, so why is it
needed in transport? But it is. And so on. There were also circumstances when
applications required fewer lower layers (e.g., LAN-based applications). And as
the availability of resources has swamped those old systems, the emphasis has
gone entirely the other way: Now we need to subdivide the resource-allocation
problem to be effective, thus leading to repeating functions for different ranges
of the problem.

The shift in thinking we have uncovered is this (throw away another ladder):

All layers have the same functionality. They differ in the scope and in the
range of bandwidth and QoS they support. So, although the protocols in
these different layers are the same, they have different policies and possibly
syntax suited to that scope and range of bandwidth and QoS.

In one sense, nothing has changed. In the traditional range of operation, the
layers are still pretty much what they were. In another sense, a lot has changed.
We no longer have an architecture of individually crafted protocols, but an
architecture of common repeating units. This takes network architecture from
craft to rational discipline.
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Fundamentally, networking is concerned with application processes commu-
nicating via a distributed IPC facility. (We will use IPC facility interchangeably
with distributed IPC facility, just to keep things from getting to cumbersome.)
That IPC facility is itself composed of APs in different systems, whose coordi-
nated behavior creates a distributed application for allocating IPC resources.
Each component application consists of error- and flow-control protocols, mul-
tiplexing and relaying functions, which implement the resource allocation, and
are supported by various routing, resource monitoring, and management tasks.
These applications in turn use an IPC facility and so on until the IPC facility is
the physical media.

A layer has a rank (its position relative to other layers) and a scope (previ-
ously we would have said, reachable without relaying at a higher layer, which is
still true; now the collection of IPC processes that coordinate to provide a dis-
tributed IPC facility). As rank increases, scope tends to increase, too. The num-
ber of elements in the layer increases, but the degree of coordination tends to
decrease. A layer (a distributed IPC allocation application) consists of those
protocols and internal applications necessary to allocate, maintain, and manage
those resources. However, the layer is not necessarily the unique provider of IPC
facilities as we have traditionally conceived it. For example, relaying of mail
constitutes a specialized “layer.” This would seem to indicate the following:

A layer is a collection of cooperating IPC processes. IPC processes are
simply applications with application name taken from a name space
sufficient to unambiguously identify all the applications reachable via the
supporting distributed facility. An address space internal to the distributed
IPC facility is used among the IPC processes to coordinate and manage
IPC (i.e., data transfer).
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Figure 6-16 The elements of a layer have three parts: data transfer, IPC control, and
IPC management, where “control” is short-cycle time management.
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An IPC process, and by implication a DIF, consists of three distinct loci of
processing (see Figure 6-16) loosely coupled through an information base/state
vector:

1. An IPC data transfer protocol. A PDU “scheduling” function, which
appends the Common Data Transfer PCI and provides multiplexing and
relaying with any necessary policies to manage the buffers and queues; and
a per-flow data transfer task that only handles Transfer PDUs (i.e., tightly
coupled mechanisms) and associated with it an instance of ....

2. An IPC data transfer control protocol. To provide any loosely coupled
mechanisms necessary with the appropriate policies instantiated on the
basis of the requirements of each allocation request by the requesting
application. The EFCP is present to the degree that the difference in QoS
requested by a user above and the QoS provided by the layer below is suf-
ficiently different to require additional measures.

3. The IPC management. A Resource Information Exchange Protocol (RIEP)
that provides Management Information Base (MIB) query and update
services to a set of resource management tasks for routing, security
resource management, address assignment, and so on needed to manage
and maintain the distributed IPC.

It is this unit that repeats in an architecture.

Although there are many interesting properties of this architecture, some of
which we will get into in more depth in the remaining chapters, one aspect
deserves further comment now. For any communication, the only information
that a user application ever has or needs is its local port-id the destination appli-
cation name and. It never needs nor has access to know addresses, well-known
ports, and so on. With recursion, the network infrastructure is impervious to
attack by hosts, because hosts simply can’t address them. The trust required by
a distributed IPC facility of a supporting IPC is very little: Only that the sup-
porting communication will attempt to deliver PDUs to something.

It need not rely on it for anything more. It can, but it need not. It is entirely
the DIF’s responsibility during enrollment to determine that other IPC processes
are valid members and its responsibility to protect its communication from tam-
pering or eavesdropping. To join a DIF, the new IPC process must be authenti-
cated and assigned an address. Of course, the strength of this authentication
and the stringency of the policies will depend on the DIE. One can imagine that
more public DIFs may be very loose, while more private ones will be fairly
strong. However, the difference here as opposed to the current architecture is
that there is a choice.
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Organizing Layers

As with any architecture, there are two ways that it can be used: as a guide to
existing protocol structures to gain a better understanding of what was done
and why and how to do things better in the future; and to define a new set of
protocols and architectures to solve problems. We are going to consider this
architecture in both senses. The reason for doing this is to gain a better under-
standing of what we have done in the past and to construct a clearer picture of
where we might go in the future,?3 recognizing that many engineering steps and
compromises may be needed between the two and that absolute purity may
never be achieved,...no, never will be achieved.24 It has been claimed that we
have all the pieces. This chapter has shown that we don’t. However, the missing
pieces, while not in some sense huge, they are key to transforming an unfinished
demo into an elegant and powerful complete architecture.

The only issue that we have not dealt with is the organization of multiple lay-
ers. We have already seen hints of the solution to this. But, it does take another
shift in thinking.

The trade press always likes to ask, “How many layers are there?” Clearly,
there has to be at least one layer of IPC. This corresponds to applications run-
ning over what has traditionally been called the data link layer or a LAN. Nice,
but not much scope. And we know that as LANs get larger they become more
difficult to manage. In our derivation, we stacked two of these layers, the first
representing the traditional physica/MAC and LLC; the second, network and
transport. As previously noted, the problems of handling congestion and
resource allocation have been difficult. Not surprising. We have been trying to
manage a range of bandwidth that spans six orders of magnitude with the same
protocols and policies! The only solution has seemed to be to throw hardware
at it. Everything else not only increased complexity, but also it just patched a
particular problem and didn’t contribute to a solution that scaled. We can’t
expect this to work forever, and there are signs that it isn’t.

23 The idea of progression by small incremental changes is good only if you know where you are
going. If you don’t, it is worse than being lost.

24 This architecture has a chance of maintaining more “purity” than most, because most of the
usual threats to its “purity” are either aimed at policies that don’t affect the purity or will
impair the ability to maintain repeatable units, which is the source of much of its advantage.
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Host Host

Office Lan Office Lan

Backbone

Figure 6-17 A highly stylized example of the hill and valley metaphor,
showing only half of the valley. (Strict hierarchy is not required.)

Although very large LAN networks can be built using bridges,
as just noted it has been found that such networks are “difficult”
to manage. If routers are used to break up the LAN segments,
many management advantages result. The problem is not bridg-
ing per se, and the advantage has little to do with routers per se.
The advantages accrued from the decomposition caused by relay-
ing at a higher layer allows management functions and the effects
of failures to be contained to domains of manageable sizes where
similar management policies can be applied. The same phenom-
ena will be true of any large network. Another example is seen in
routing. The original reason for distributed routing was that
events happen in a network too fast for a human to be in the loop.
Now there are indications that our routing calculations for large
flat internets may be long enough that the same will soon be true
of them. Our networks are becoming too large to “manage,”
whether the global public network, large corporate networks, or
networks supporting applications with a wide range of band-
width requirements. Our current approaches provide nothing to
contain the management of these large systems. They require fur-
ther decomposition to be manageable. It is easy to foresee that
more layers would improve the ability to manage resources. We
are merely resorting to the old architectural strategy of divide and
conquer. Resource management can be much more effective, and
less suboptimal, if it can be applied to a relatively narrow range.

Arrrgh! More Layers!

| can hear it now! After the
recent counterattacks by
the beads-on-a-string fac-
tion, the fad has been that
fewer layers must be bet-
ter; they have even gone
so far as to argue that all
layers are bad. Although
the architecture of the
whole network has more
layers, no single router in
the network will implement
any more layers than a
current router does.
Clearly, more layers could
incur more overhead. But
by the same token,
attempting to manage an
ever-larger range of band-
width and a growing num-
ber of elements in one
layer is ineffective and
even more inefficient, and
we are seeing that it has
its limits.

Does more layers mean
more relaying? How does
this affect the global effi-
ciency and the efficiency
of packet handling in a sin-
gle router? There are basi-
cally two issues: First, the
number of hops between
two points should be no
different. More layers does
not increase the number of
relaying points, it only
increases the units of
switching; that is, lower
layers should switch more
data less frequently. If any-
thing, a regular architec-
ture may impose more
hierarchy than a flat net-
work, which will reduce the
diameter of the network.

Calculations show that
concatenation and
decreasing address length
in lower layers causes the
fraction of the PDU con-
sumed by the headers to

continues
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continued

remain constant or
decrease. Similarly, the
number of PDUs switched
drops dramatically. The
only additional overhead to
be considered is longer
headers from encapsula-
tion. But lower layers have
less scope and hence
shorter addresses, which
account for most of the
header.

Given that header size of
lower layers is smaller and
that lower layers will be
aggregating (N+1)-PDUs
into larger (N)-PDUs
means the relative over-
head is either constant or
lower, sometimes much
lower. In fact, even with
four layers of relaying and
at least two (N+1)-PDUs
per (N)-PDU, the header
overhead would be less
per packet than a typical
TCP/IP packet and five
times less than ATM. It is
important to stress that
one only has as many lay-
ers as needed.

This also allows a better fit
for the size of address and
makes the fixed-length ver-
sus variable-length address
argument moot. (Yet
another case of designers
understanding implementa-
tion better than imple-
menters.) High-
performance switching lay-
ers will be lower and thus
have less scope and there-
fore shorter (likely) fixed-
length addresses, while
higher layers with greater
scope will have longer
addresses. However, these
might be variable length;
because they are only used
in this much greater con-
text, the requirement for
variable length is less.

continues

Tunneling treats the symptoms but not the substance of the
problem. The scaling issues we have with network architecture
are not with data transfer but with management. Therefore, if
instead of just recursing the relaying protocol, we recurse the
layer, we would have the machinery in place to manage the
resources of the recursion itself. A layer manages a given range of
bandwidth and QoS parameters: a manageable range, not
6 orders of magnitude.

As a useful metaphor, consider a terrain of valleys (see Fig-
ure 6-18). The deeper the valley, the greater the bandwidth. Lay-
ers are built up to bridge between points on the sides of the
valleys. Applications occur along the slopes or at the top of the
valleys. (There may be small hills within a valley.)

Think of the top layer as having sufficient scope to connect to
all destinations that a set of applications need to reach as a bridge
across a valley from the top of a bluff on one side to the top of a
bluff on the other. The depth of the valley is bandwidth; and the
topography between the bluffs undulates (intervening subnets of
differing physical bandwidths). The bottom layer (of which there
are many, because they have limited scope and are tailored to var-
ious media) provides the basis for communication. The greater the
range of bandwidth between the applications and the backbone,
the more layers; the less range, the fewer layers. These intermedi-
ate layers are created in increments of bandwidth (a range that to
be determined experimentally). Data from applications with low
bandwidth would go through more layers than data from applica-
tions that required higher bandwidth. A layer would take a set of
flows from above in a particular bandwidth range and multiplex
them together to be a flow in the bandwidth range of its layer and
so on, concatenating PDUs as they move toward the core of the
network and thus reducing the switching overhead.?’ Notice that
some of these intermediate layers might be provider based and
represent a scope managed by a single provider, while a broader
public or virtual private network floated on top of the provider
subnets. To summarize:

25 Thereisa commonly held belief that there is too much time between PDUs
to do concatenation without incurring significant delay. Given that current
Internets are operated well below 30% to 40% loading where congestion
appears, this would appear to be an artifact.
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How many layers are there? As many as you need

How many kinds of layers? One, a distributed IPC
facility

What does it do? Transfer data for a set

of users within a dis-
tributed IPC facility
with a given QoS

A network architecture consists of applications and is supported
by an IPC facility configured appropriately on top of as many dis-
tributed IPC facilities, as needed.

Simple App

Transaction
/ Processing
Application

(over a VPN)

Mail Appl

Local App

Traditional Network
Transport Layers

Note that the VPN could occur one
layer lower as well or even lower,
but then it would just be a PN.

Link Layers

Figure 6-18 An example of six RIPCA layers (DIFs) stacked four high
to achieve different host-related functions.

continued

Unlike most architectures,
this approach does not
require the use of layers
that are not needed and
local traffic will encounter
fewer layers. Interestingly
enough, the implementa-
tion of this structure avoids
the problems found in tra-
ditional layered implemen-
tation of hand-crafted
protocols by improving
opportunities for pipelining
and eliminating the need
for data copies and task
switching. Although unnec-
essary proliferation is
always possible, it is by the
same token self-limiting.
As with any architecture, it
does not prevent you from
shooting yourself in the
foot.

So, is the application the top layer? It is for that application. There may be
applications that require greater scope that are above this one, and applications
that require less scope operate on layers below this (see Figure 6-18). How
much scope must the application have? Enough to communicate with everyone

it needs to.

Where are network management applications? On top of any layer that has
sufficient scope to access the systems (not necessarily layers) being managed.
One might be tempted to make management domains and the scopes of the
layers on which the applications run coincide. We could imagine that more
“public” layers would have looser controls, including security, while more pri-

vate ones would have tighter controls.
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Conclusions

In this chapter, we have uncovered larger structures or patterns that were made
apparent by finer structures we had found in the previous chapters. It would
seem that we have achieved the goals of Newton’s properties of a good theory.
This is a model that requires a few simple concepts to generate the characteris-
tics of networking as we know them and at the same time shows how many
aspects of networking are accommodated as a consequence of the structure that
today requires whole specialized mechanisms.

The concept of a single, repeating layer has been staring us in the face for quite
some time. Now that we see the pattern, we can look back and see that many of
the approaches to problems and some recent papers (Touch, et al. 2006) had
been nosing around the answer, but none had actually seen the larger pattern or
its implications. The advantage of this model is not that it solves any one prob-
lem. The plethora of existing hacks may each address its problem within the tol-
erance of engineering costs. But they seldom address more than one, and they
generally make others more difficult. The advantage of this model is that it solves
these problems without myriad mechanisms, protocols, shims, band-aids, and
kludges, and without increasing the “parts count” (and, in fact, reducing it from
the current Rube Goldberg assemblage). Further, the structure of this model cre-
ates a much more predictable behavior and has on several occasions proven to
solve problems that had not been considered when assembling it.

As should already be apparent, and as shown in more detail in subsequent
chapters, many current problems in networking are now easily addressed in
some cases with no additional effort and in others with just a judicious choice of
policy. As we will see, problems such as multihoming and mobility simply fall
out for free. We will find that the IPC model and the compartmentalization it
creates has security benefits, too. And a common structure that enforces much
more consistency of behavior will allow much more efficient implementation
strategies, and greatly improve the manageability of networks and reduce the
skill level required. First, we need to consolidate our gains by defining the basic
elements of the architecture and how fundamental processes work. Then,
we will consider one unsolved question, that of the meaning of location-
dependence in an arbitrary graph. Next, we will explore the implications of this
architecture for a variety of topics such as multihoming, mobility, multicast, and
so on, as well as conjecture about the nature of a synthesis of connection and
connectionless that achieves the best of both. We will also consider the architec-
ture of private and public Internets organized using these principles.

It does seem that one conclusion we can reach is that there is no general
“upper-layer architecture,” only the distinction between the application and
application protocol machine. As shown in Chapter 4, the OSI upper three
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layers collapse into either aspects of application connection establishment (i.e.,
the presentation layer) or common building blocks for application protocols
(i.e., the session layer). This seems to be the limit of the general “upper-layer
architecture.” It does appear that if we build distributed applications on top of
distributed applications, that anything we build on will be a variation of a DIF,
whether we call it a layer, mail relay, transaction processing, P2P, VPNs, or so
on. It is a DIF with most of its elements. However, this is not to say that there
are not more elaborate common structures for specific application domains.

Similarly, we see that the “protocol field” found in IP or the CLNP selector is
unnecessary. Earlier T argued that this couldn’t be addressing because it didn’t
distinguish all the necessary cases. We conjectured that it identified the syntax
and was a special case of the function provided by presentation layer, as strange
as that might sound. Perhaps a general property of protocols. But, we also
found that everywhere it occurred was a false layer boundary. What we found is
that the nature of boundary between layers is through a construct equivalent to
the port-id. OSI had this concept but got it wrong by forcing its “port-id” to be
the (N)-SAP-address (although the OSI Network Layer group got it right by see-
ing the network address carried by CLNP as the network entity title).2¢ The
conclusion is that there is never any need for an (N-1)-protocol to identify the
(N)-protocol. The equivalent of a port-id is all that adjacent layers should have
in common. Because the application requested communication with the peer
using the same protocol among themselves, it must know what the syntax is. It
is certainly no business of the DIF or layer to have any knowledge of what it
should be. An application requests the allocation of IPC with a destination-
application name. If that is ambiguous because the application uses multiple
protocols, the request must include the application protocol machine name.
This is the split between application process and application entity that we saw
in Chapter 4.

Now that we have roughed out what the structure is, we need to do some
serious work. In the next chapter, we try to put down in fairly precise definitions
the elements of this architecture. This is a hard trek to make. There aren’t many
ways to make it easier without sacrificing precision, but I try to intersperse it
with interpretations to relate it to real-world problems and interesting proper-
ties as we go along. Then we move on to an even harder topic of trying to
increase our understanding of what is meant when we say that an address is
“location dependent” and how this may benefit an architecture. Then, we
return to applying this model to the problems of multihoming, mobility, multi-
cast, and private networks.

26 Strictly speaking, while very close this is still not quite right in that the Network Entity Title
was the external name of the IPC process, whereas as we have seen the address is a name
internal to the DIE.
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Chapter 7

The Network IPC Model

I am far from thinking that nomenclature is a remedy for every defect in art
or science: still 1 cannot but feel that confusion of terms generally springs
from, and always leads to, confusion of ideas.

—John Louis Petit, Architectural Studies in France, 18541

A problem well stated is a problem half solved.

—Charles Kettering

Introduction

Now that we have concluded that networking is best modeled as a single repeat-
ing layer and reviewed some of the results we have arrived at over the past
30 years, we can construct the elements of a general model of networking, a Pla-
tonic ideal, that we can use both to analyze our previous work and to use as a
guide going forward. Over the past decade or so, we have seen a growing atti-
tude that the only criteria for measuring a solution was whether it could be
made to work. The trouble is that with software anything can be made to work.
This may be acceptable in some engineering domains, but this doesn’t really tell
us much about the nature of the problem. It isn’t science. In science, the solution
to any problem must always be evaluated in terms of “the theory.” It is either
consistent with the theory or it is not. And if not, we must determine what is
wrong with the solution or what is wrong with the theory.2 The task of science

1 Noel Chiappa found this one, too!

2 of course, there is no ex post facto. Solutions developed before the theory can’t be blamed for
not following a theory not yet recognized. But these solutions often shed light on what we
were struggling with and contribute to the theory.

235



236

CHAPTER 7 THE NETWORK IPC MODEL

is constructing and testing theories. The task of building things from those the-
ories is engineering. The question then is how do we evaluate theories. In most
sciences, theories attempt to describe and predict observations of important
aspects of Nature and come as close as possible to achieving Newton’s Regulae
Philosophandi. In computing systems, there is not much Nature we can draw
on, so we must rely more heavily on Newton.

Over the past six chapters, we have uncovered several elements of the model
we came to in last chapter. Now we need to assemble the elements of the model
and describe its operation in one place. As we saw in the preceding chapter, a
layer is a distributed IPC application, embodied as a collection of processes
cooperating to manage a particular range of bandwidth and QoS. Not all layers
will require the full complement of functionality and, in some cases, will require
only minimal functionality. The components outlined here should not be taken
as an implementation strategy, but a logical model. Although the model will be
described in terms of a single layer, the reader should be aware that this is prob-
ably not the preferred implementation strategy (at least not how I would do it),
and as always there will be advantages to different implementation strategies for
specific environments. For now, you should concentrate on shifting your mind-
set from the traditional networking model of custom static layers to thinking in
terms of distributed applications that provide IPC recursively. This isn’t as easy
as it sounds.

We need to introduce terminology for various common elements. This will
facilitate describing the behavior of a single layer and the operation of multiple
layers. We start by introducing this terminology, then progressing to a descrip-
tion of the components, and then how layers are assembled. We will consolidate
our gains from the first six chapters taking the opportunity to throw away a few
more ladders. Many of these functions have been described elsewhere, and
forms of them exist in conventional systems, although not necessarily arranged
in this manner. This can be a rather mind-numbing exercise. On the one hand,
we want to be reasonably precise and abstract to capture the invariances in their
full generality. On the other hand, it needs to be readable and understandable.
This is a hard balance to achieve.

One small contribution to readability is to drop the (N)- notation except
when it is required to relate to a layer above or below. We will leave the (N)-
notation in the definitions to indicate which elements are part of the repeating
structure. Some might find the introduction of definitions at the beginning of
each section disconcerting. Please bear with me. This avoids having to say
everything twice: once to describe it and once to define it. Think of this as defin-
ing a family of implementations.
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® Processing system. The hardware and software capable of
supporting tasks that can coordinate with a “test and set”
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Defining Computer

These definitions attempt
to capture the essence of
a single “computer” Rec-
ognizing that peripherals
are no longer electronics
“bolted to the side of the
machine” but specialized
computing systems in their
own right, “a computer” is
today inherently a distrib-

instruction (i.e., the tasks can all atomically reference the
same memory).

uted system.

Computing system. The collection of all processing systems (some special-
ized) under the same management domain (with no restrictions of their
connectivity, but recognizing that for a significant portion of this popula-
tion the elements of the management domain are directly connected (i.e.,
one physical hop).

(N)-layer. The collection of application processes cooperating as a distributed
application to provide interprocess communication (IPC) (see Figure 7-1).

(N)-distributed-IPC-facility (DIF). A distributed application consisting of
at least one IPC application in each participating processing system. The
(N)-DIF provides IPC services to applications via a set of (N)-API primi-
tives that are used to exchange information with the application’s peer. The
corresponding application processes may be in other processing systems.
This definition makes IPC in a single processing system a degenerate close.

@ m m m Applications
Process

(N-DIF)

Figure 7-1 A distributed IPC facility is a layer.
Layer Versus DIF

A layer is a DIF. To facili-
tate the break with old

¢ Application process, AP. The instantiation of a program exe-

cuting in a processing system intended to accomplish some  \ays of thinking, we will try
purpose. An application contains one or more application  to avoid the use of the

term layer and use DIF

protocol machines.>

throughout.

3" All of the terms associated with this concept are heavily loaded. We have chosen to use
application process in the sense of processes used in most operating system textbooks. The
(N)- notation is not applied to applications since they are in the system and not part of

the IPC.
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Distributed application. A collection of cooperating APs that exchange
information using IPC and maintain shared state.

(N)-IPC-process. An AP that is a member of (N)-DIF and implements
locally the functionality to support IPC using multiple subtasks.

(N)-protocol. The syntax of PDUs, and associated set of procedures, which
specifies the behavior between two (N)-PMs for the purpose of maintain-
ing coordinated shared state.

(N)-protocol-machine, (N)-PM. A finite state machine that implements an
(N)-protocol, which exchanges PDUs with a peer to maintain shared state
with a corresponding (N)-PM, usually in another processing system.

(N)-API-primitive. A library or system call used by an application or an
application-protocol to invoke system functions, in particular IPC func-
tions, such as requesting the allocation of IPC resources.

(N)-service-data-unit, (N)-SDU. A contiguous unit of data passed by an
APM in an IPC API primitive whose integrity is to be maintained when
delivered to a corresponding application protocol machine.

(N)-protocol-data-unit, (N)-PDU. The unit of data exchange by (N)-PMs
consisting of (N)-PCI and (N)-user-data.

(N)-protocol-control-information, (N)-PCI. That portion of an (N)-PDU
that is interpreted by the (N)-PM to maintain shared state of the protocol.

(N)-user-data. That portion of an (N)-PDU that is not interpreted and is
not interpretable by the (N)-PM and is delivered transparently to its client,
as an (N)-SDU. (N)-user-data may consist of part of, precisely one, or more
than one (N)-SDU. If more than one (N)-SDU, then SDUs in the (N)-user-
data are delimited by the (N)-PCI.

To PDU or Not to PDU

PDU is used for the myriad
terms for packet, frame,
cell, message, and so on
because | abhor having
multiple names for the
same concept, and PDU
has been fairly widely
adopted. PCl and user-
data are used for header
and user-data to empha-
size the distinction
between information as
what the protocol under-
stands and the data as
what it doesn’t.

¢ Application protocol. A protocol that is a component of an AP,
characterized by modifying state external to the protocol.

® Application PM, APM. The instantiation of an application
protocol within an application. Even though the communicat-
ing applications may be different, communicating application
PMs must support the same application protocol.

¢ (N)-data-transfer-protocol. An (N)-protocol used by an (N)-
DIF to transparently deliver (N)-user-data with specific charac-
teristics; except for the transparent sending or receiving of
(N)-SDUs, all operations of the protocol are internal to the
state of the protocol.
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Description of the Basic System

Fundamentally, we are concerned with applications communicating via an IPC
facility. The case we will be most interested in is when the applications execute
on separate processing systems. The case of applications communicating in the
same system is a degenerate case of this description. The external behavior of
the system is precisely the same, and the functions required are for the most part
the same,* only the internal mechanisms to accomplish the functions differ.

Processing Systems and Their Operating Systems in Brief
Although not the primary a subject of this book, it is necessary to say something
about the abstract environment that this architecture lives in. Networking is dis-
tributed IPC. A distributed IPC facility consists of a collection of two or more
(N)-IPC processes.

In this model, we distinguish a processing system and a computing system.
This distinction recognizes the inherent distributed-ness that systems are mov-
ing toward (and to a large extent are already there).> A processing system is rep-
resented by all computing resources within the scope of a “test and set”
instruction.® All peripherals are viewed as specialized processing systems (e.g.,
disks, screens, keyboard, printers). All communication is accomplished by IPC.”

In this model, an operating system consists of three fundamental compo-
nents: processor scheduling, memory management, and IPC. “Device drivers”
are applications, kernel applications, but applications nonetheless.® Drivers
exist only to manage the various hardware media interfaces (e.g., modem, bus,
FireWire, USB, wireless). Interface drivers map the hardware to a logical
communication model for the applications running on the hardware. Commu-
nication media should be distinguished only by their QoS and bandwidth

There are some error conditions that must be accommodated in the distributed case that do
not occur in the single system case.

However, most operating systems and processor architectures are still firmly entrenched in the
traditional model.

I have used this definition for nearly 30 years, and it seems to get at the crux of the matter
without having to reference specific configurations of processors and memory. If two processes
can’t coordinate with a test and set, they are in different systems. (An atomic swap is equiva-
lent. Some authors seem to define a swap as a test and set.)

Obviously, IPC is a form of I/O; however, the term I/O has been associated with the hardware
arrangement where devices were essentially “bolted” to the side of the computer by highly
specialized electronics. This is quickly becoming a thing of the past in modern computers.
Bringing all communication under the umbrella of IPC has advantages and simplifies the
system.

Again, the term driver originates with this very asymmetrical view of peripherals where all
the managing of the peripheral was done by the processing system. This configuration is
changing.
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characteristics, not by assumptions about the applications for which they will
be used. The role of device drivers is assumed by applications, in most cases
what have been called kernel processes or threads, that use IPC to communicate
with a peer.

A computing system is defined to correspond to our traditional view of “my
computer” (i.e., the collection of processing systems taken together for a partic-
ular purpose). In many cases, these are one physical hop away, but there is no
requirement that this be the case. Basically, a computing system is the collection
of processing systems under a common management regime.

Basic Structures and Their Principles

A layer is a distributed IPC facility, DIE. A distributed IPC facility is a distrib-
uted application consisting of at least one IPC process in each processing system
participating in the DIF. (Although rare, more than one IPC process in the same
processing system may be a member of the same DIFE It is more likely that mul-
tiple IPC processes on the same processing system will be members of different
DIFs. This would occur with VPNs or DIFs [lower layers] handling specific
media.)

Traditionally, the scope of an (N)-layer has been defined as the set of proto-
col machines that communicate without relaying at the (N+1)-layer. This is still
the case. But a more correct characterization would be that the scope of an (N)-
layer is the set of cooperating IPC processes that comprise an (N)-DIF. Gener-
ally, the scope of layers increases with greater N. However, there exist
configurations where an (N+1)-DIF may have less scope, such as VPNs or other
distributed applications, mail, transaction processing, and so on. Throughout
we will speak of DIFs rather than layers.

An (N+1)-DIF with less scope should involve a proper subset of the (N)-DIF
processing systems. If an (N+1)-DIF with less scope involves processing systems
of more than one (N)-DIF, there is a potential for security compromises poten-
tially allowing corrupting data (viruses and so on) from a less-secure DIF to be
introduced to a more-secure DIF.

There can be more than one DIF of the same rank. More frequently, the sets
of processing systems participating in different DIFs are mutually exclusive.
When this is the case, systems in different (N)-DIF cannot communicate without
relaying at the (N+1)-DIF. Communication between peer DIFs within the same
processing system must use either an AP with only local knowledge (e.g., a pro-
tocol converter or NAT) or with knowledge of a wider scope (for instance,
relaying by an (N+1)-DIF).

Applications in the same processing systems may use different DIFs. Note
that the (N)- notation does not apply to APs. APs operate over any (N)-DIF that
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they have access to and has sufficient scope to communicate with any destina-
tion AP required. Hence, an application may communicate with more than one
DIF at the same time. However, this does create the potential for security com-
promises. Where security is a concern, the only APs capable of communicating
with two or more DIFs should be an (N+1)-IPC process (i.e., a member of an
(N+1)-DIF). The operating system would have to enforce this constraint.

The Structure of Applications and Protocols

For two processes to communicate, they must have some shared “understand-
ing.” There must be a set of objects they have in common and an agreement on
a “language” for talking about these objects and for performing operations on
them. This common understanding is the protocol specification, and the lan-
guage is the set of formats of the messages they exchange and the rules govern-
ing their generation and action taken when they are received.

A protocol, as indicated by the earlier definition, creates a shared domain of
discourse (a fancy term for the set of things they know how to talk about) about
a set of objects. A protocol establishes the rules and formats for exchanging
PDUs to create and maintain this shared state and is implemented by a finite
state machine. (This is a constraint. All protocols are no more computationally
complex than an FSM.) A PDU consists of PCI and optionally user-data. PCI is
information on the state of those shared objects, and the user-data consists of
uninterpretable data. In other words, PCI is what the protocol understands, and
user-data is what it doesn’t.

There are two kinds of protocols: application protocols and data transfer
protocols. Application protocols to perform operations “on shared state exter-
nal to.” For example, FTP performs operations on a computing system’s file sys-
tem, a management protocol performs operations on a Management
Information Base (MIB), and so on. Data transfer protocols, on the other hand,
perform operations on shared state internal to the protocol. The only “external
affect” of a data transfer protocol is delivering SDUs transparently. As discussed
in Chapter 6, “Divining Layers,” the relaying and multiplexing protocols
described in Chapter 3, “Patterns in Protocols,” degenerate into a common PCI
fragment. Strictly speaking of course, this is a protocol. Any written procedure
is a protocol.

This description of protocols is taking a necessarily purist stance so that we
can clearly see the forms. I fully recognize that real protocols may not (and
today do not) follow these definitions. However, there are good arguments that
following these definitions would greatly streamline protocol processing and
open the door to simpler much more effective implementations

Protocols progress through two phases: a synchronization phase in which the
shared state necessary to support this communication is created, and the data
transfer phase in which the communication takes place. For application protocols,
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the synchronization phase is primarily concerned with establishing that corre-
spondents are who they say they are. A discussion of these methods can be found
in Aura and Nikander (1997). The synchronization phase of data transfer proto-
cols is concerned only with creating the initial shared state necessary to support
the mechanisms of the protocol. This was discussed in some detail in Chapter 2,
“Protocol Elements,” and Chapter 3, “Patterns in Protocols.” We have tended to
consider establishment as a single concept. But we see here that there are two very
different forms: IPC synchronization and application initialization.

The data transfer phase of an application protocol is concerned with per-
forming operations on external structures and ensuring the proper sequencing
of those operations. The data transfer phase of a data transfer protocol is con-
cerned with ensuring that the properties requested for the communication (e.g.,
bit-error rate, loss rate, jitter, and so on) are provided. This shared state allows
the application to act on information at a distance. However, it should always
be kept in mind that the representation of state maintained by any PM about its
peer is only an approximation. There is always a time delay in the exchange of
state information such that events may occur such that the information no
longer represents the state of the peer.

Conjecture: Any state associated with the correspondent in an application
protocol is part of the application and not associated with the application pro-
tocol. Any shared state that must be maintained during a communication is
associated with IPC. For example, checkpointing is an IPC function correspon-
ding to acknowledgments in traditional data transfer protocols. Similarly,
“recovering a connection” reduces to recovering the state of the application, not
the connection. An application may record information about a correspondent
and about actions taken for the correspondent, but this is independent of what
the correspondent does. This is not shared state in the sense we have used it.
This would imply that all application protocols are stateless, whereas data
transfer protocols may or may not be stateless.

It appears that all application protocols can be modeled as a small set of
remote operations (e.g., read, write, create, delete, start, and stop) on objects.
Differences in the “protocols” primarily involve the structures to control the
sequencing and parallelism of these operations, or common sequences of opera-
tions. This is more the domain of programming languages than communicating
remote operations.” The other “difference” is whether operations are requested
(client/server) or notified (publish/subscribe). But Telnet showed us that this

9 If we include these “control structures” and sequences of operations in the protocol, we are

basically sending small programs, which is simply a write one level down. One must draw the
line somewhere, and doing so at this elemental level seems to create the fewest problems. Also
it seems reasonable that IPC gives way to “programming.”
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kind of request/response or publish/subscribe of an information base can be
seen as symmetrical and does not warrant a distinct protocol. Therefore, we can
conclude that architecturally there is only one application protocol and it is
stateless.

Instances of
Applications

Instances of

Applicati
pplication Application-PMs

Process \

Application Application
Protocol Protocol
Machine Machine

Figure 7-2 An AP contains one or more application protocol machines. A system may
have multiple instances of the same application. And an application may have multiple
instances of application PMs.

Application Protocol Machines

An AP is the instantiation of a program in a processing system to accomplish
some purpose (see Figure 7-2). The component of the AP that implements an
application protocol is called an APM. This construction of the APM is done for
two reasons: First, it must be a component or else there is an infinite regress.
Second, the APM is a module that may appear in more than one AP. This is the
structure discussed in Chapter 4, “Stalking the Upper-Layer Architecture,” and
applied in Chapter 6, “Divining Layers.”

An AP may contain any number of different APMs and may also have multi-
ple instances of the same APM. An AP must have at least one APM. Otherwise,
it would have no input or output and hence serve no purpose. APs (and conse-
quently their PMs) are constructed by combining application protocol modules
(AP-Mods), some of which may implement common functions (see Figure 7-3).
A coordinating FSM governs the interaction of these modules. (It is not a PM
because it does not generate PDUs.) Some modules may have fairly complex
state machines themselves. (Although this construct is not strictly required, it is
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intended to indicate that commonality and reuse of components is possible.)
The concept of an application protocol (and protocol machine) is inherently
recursive.

But we just indicated that there is only one application protocol. If that’s the
case, aren’t all APMs just instances of this one protocol? The reader has caught
my “oversimplification.” Strictly speaking, yes. But in practice, one will want to
combine these elemental operations on external objects operations on the IPC
channel, such as synchronization, two-phase commit, and so on. Also, it will be
useful to further distinguish APMs by the collection of external objects they
manipulate for purposes of access control and so on. So, there really are “differ-
ent protocols”; they just look very similar.10

Conjecture: All protocols involve two and only two correspondents. Shared
state involving multiple correspondents (i.e., more than two) is a property of the
AP, not an APM. In other words, all “multiparty” protocols are distributed
applications.!!

To communicate, the APM must exchange information with its peer. To do
this, it generates PDUs and invokes the services of a DIF via an API to pass the
PDU to its peer. We will consider the nature of this interaction in more detail
later.

The relation between an AP and its APMs varies widely. For some APs, the
APM has very little functionality; in others it is essentially synonymous with the
AP itself. The APM APIs are internal to the AP and may be ad hoc or published
(i.e., the subject of standardization). They may be general or quite specific to the
AP and may run the gamut of rich APIs that correspond almost 1:1 with the
objects of the application protocol;!2 to APIs that resemble the IPC APL or to
an API that simply populates an Information Base that is then accessed by the
AP or other APMs and so on.

10" O8I called this the application entity not the application protocol, for several good reasons:
consistency with the use of entity in the other layers and to emphasize that the AE was part of
the communications environment, whereas the AP was not wholly contained in it; because
they realized that it wasn’t just the protocol, and it created abbreviation problems (two APs). I
used APM here to give the reader a familiar concept.

1 his might appear to be a pedantic nit. However, this appears to follow from our previous

conjecture and is the case for traditional routing protocols, multicast, P2P, and transaction-
processing protocols. As we apply this model both here and beyond this book, this distinction
will prove useful.

12 These may be rich APIs but they are poor black boxes.
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Coordinating FSM

AP-Mod AP-Mod AP-Mod AP-Mod

Figure 7-3 An application protocol consists of one or more ASMs. Some perhaps are
common building blocks.

The components for application protocols would be defined as common mod-
ules that could be reused in different protocols. Given the complexities of pro-
viding security, one can expect that common modules would be made available
for authentication and similar security functions and so on.

Naming Concepts for (N)-DIFs and Applications

Definitions

¢ Application process name space. The set of strings that may be assigned to
the APs and used to reference them by other applications in the same nam-
ing domain.

¢ Application process name, AP name. A string assigned to an AP from an
AP name space and assigned to no other AP while bound to the one it is
assigned.

¢ Application process instance. The instantiation of an AP on an operating
system.

These definitions provide for multiple instances of the same application
and allows them to be separately accessed.

¢ Application process instance-id. This is an identifier bound to AP instance
that when combined with the AP name is unambiguous AP name space.

¢ Application PM name space. The set of strings that may be assigned to
application PMs and used to reference them by other applications in the
same naming domain.

e Application PM-id. This is an identifier that is unambiguous within the
scope of the AP. An application PM-id when concatenated with an AP
name is also unambiguous AP name space.
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These definitions allow an AP to have multiple application protocols.

¢ Application PM instance. The instantiation of an application PM within
an AP.

¢ Application PM instance-id. This is an identifier that is unambiguous in
the AP name space when qualified by the AP name, AP instance-id, and the
application PM-id.

These definitions allow naming multiple instances of application protocols
within an instance of an AP.

¢ IPC process name. An AP name that is assigned to an IPC process. This is
the external name of an IPC process.

There is nothing special about IPC processes or their names. A different

term is used purely to make it clear when we are talking about the elements
of IPC.

¢ Distributed application name, DAN. A name generally taken from the
same name space as APs to identify a distributed application. An impor-
tant type of distributed application is a DIF (i.e., the set of cooperating IPC
processes). A DAN acts as an anycast or multicast name for the set of APs
comprising this distributed application depending on the operation.

® (N)-port-id. An identifier unambiguous within the scope of the processing
system used to distinguish a particular (N)-IPC allocation.

Application Naming
The scope of an AP name space is arbitrary and subject to the discretion of net-
work design. At a minimum, the scope of an AP name space must be at least as
great as the scope of an (N)-DIE. However, there is no logical constraint on its
maximum size, given that there can be multiple DIFs of the same rank in the
same system.

The scope of AP names can be as great as the union of the scope of all DIFs
with processing systems in common. This requires essentially following a chain
of commonality as follows:
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Pick a DIF, A. Consider the processing systems of all IPC processes comprising A.
The AP name space must cover all the applications reachable by this DIF. In
addition, if any of these processing systems have distinct DIFs other than A, the
scope of the application name space must also include all applications reachable by
these DIFs (i.e., by their IPC processes and so on). (This is true because
applications in processing systems with more than one DIF may relay between
them.) The set thus formed represents the scope of the AP name space.

Scope defined in this way allows any two APs with names within the scope of
the name space to communicate, although an AP acting as either a protocol con-
verter or an (N+1)-DIF may be required. (A relay would be required when two
APs wanted to communicate that did not have a DIF in common. If the relay
uses local knowledge to relay PDUs to a destination, it is called a protocol con-
verter. If the relay is the member of a DIF, it is an IPC process.)

The structure of these name spaces will depend on their scope. In domains of
small scope, they may be simple and flat. For domains with large scope, they
may be hierarchical (or some other organization). These name spaces may
exhibit structure that can be exploited in their use. As noted earlier, how the
name structure is reflected to humans is a matter of user-interface design. Here
we are only concerned with the kinds of names required, their properties, and
the relations among them.

The name space for the APM is a component of the AP and generally would
be coordinated with it. A name space is required for the APs and APMs for all
the APs that need to communicate. This name space should be location inde-
pendent or more precisely have the capability of being location independent.
For most applications, it does not matter where they are, but there are a few for
which it does matter. For example, the name of a printer application that indi-
cates where the printer is, as in PrintStation3rdFloorSWCorner, could be useful.
There is no need to artificially disguise this fact; but on the other hand, there is
no reason to impose it on all applications.

The DIF is composed of a number of IPC processes. For external purposes,
each IPC process is assigned an AP name.!3 The DIF is a distributed application
that is identified externally by a distributed application name. The distributed
application name is used to distinguish it from other distributed applications in
the same name space, whether a DIF or not. Note that a distributed application
name is a multicast-application-name, see Chapter 9, “Multihoming, Multicast,
and Mobility.”

13 We stress that these names have external visibility, because we will also want to discuss impor-
tant classes of identifiers that are internal to (N)-DIFs.
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In most cases, requests for IPC will not require communication with specific
instances of APs, but only with the AP and perhaps the APM!* resulting in the
instantiation of a new instance of the AP or APM. There are situations, such as
recovery or certain long-lived processes, where the initial request will require
communication with a particular instance on an AP/APM. Similarly, there are
situations where it is known at the outset that there will be no communications
initiated to an instance (e.g., dedicated IPC).

The use of APs, APMs, and their instances is not rigid or unique. For exam-
ple, a teleconferencing service might be implemented such that the application
name designates the service and each teleconference is a distinct application pro-
tocol instance. It might just as well be implemented such that each teleconfer-
ence is an AP instance. Either is possible, and there are good arguments for
both. The model should not force the designer to one or the other, nor should
the designer not have the choice.

When an APM requests service from the IPC facility, it is given an (N)-port-
id. The port-id is used by the APM instance and the DIF to refer to all interac-
tions regarding this flow. In general, the scope of the port-id should be the
processing system. We explore why this is the case in more detail latter.

As mentioned earlier, these represent the complete set of names required for
applications. Some combinations will see much less use than others. It is highly
doubtful that all of them would be presented to the human user, although they
would probably be available to the developer. The kind of naming syntax and
the conventions necessary for human use will and should be quite different. This
is just the bare bones of the structure required.

The (N)-Distributed IPC Facility

Definitions

¢ (N)-error-and-flow-control-protocol (EFCP). The data transfer protocol
required to maintain an instance of IPC within a DIF between correspon-
ding port-ids. The functions of this protocol ensure reliability, order, and
flow control as required.

14 An application that uses only a single protocol would not necessarily have to specify the appli-
cation PM.
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This is equivalent to UDP, TP2, TP4, HDLC, delta-t, and TCP.

¢ (N)-relaying/multiplexing-task (RMT). The task within IPC process that
performs multiplexing/relaying of (N)-PDUs and prepends the Relaying
PCI to all PDUs primarily for purposes of addressing.

e (N)-connection-identifier.!® An identifier internal to the DIF and unam-
biguous within the scope of two communicating EFCPMs of that DIF that
identifies this connection. The connection-id is commonly formed by the
concatenation of the port-ids associated with this flow by the source and
destination EFCPMs.

¢ (N)-address. A location-dependent identifier internal to the DIF and unam-
biguous within DIF. This identifier is used in the coordination and mainte-
nance of the DIF’s state.

¢ (N)-EFCPM. A task within the IPC process that is an instance of the EFCP
that creates a single instance of shared state representing a full-duplex
channel, connection, association, flow, and so on.

¢ (N)-delimiting. The first operation performed by the DIF, usually by the
API primitives, to delimit an SDU so that the DIF can ensure being able to
deliver the SDU to its recipient.

® (N)-Relaying-PCI. The designation of the Relaying PCI used by the RMT
of a IPC process. This is the PCI of the data transfer phase of the distrib-
uted IPC application.

This corresponds to IP, CLNP, or MAC protocols.

¢ (N)-SDU-protection. The (optional) last operation performed by RMT to
ensure the SDU is not corrupted while in transit.

® Resource Information Exchange Protocol (RIEP). An application protocol
internal to a DIF used to exchange resource information among the IPC
processes of a DIE. Logically, RIEP is updating the distributed Resource
Information Base (RIB).

15 1 have debated about the name of this term. Early drafts used flow. Connection is a heavily
laden word, and many will want to associate much more with it than is intended. But just as I
dislike having a half-dozen terms for PDU, I don’t want to do it here. The reader is reminded
that here the term identifies the entire range of possibilities from minimal shared state of a
flow (e.g., UDP-like) to considerably more shared state (e.g., TCP-like).
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This is a generalization of routing update protocols.

¢ IPC access protocol (IAP). An application of RIEP that finds the address of
an application process and determines whether the requesting application
has access to it, and communicates the policies to be used.

The (N)-IPC-Process

What we need to do now is to describe in the abstract the elements that make up
an IPC process. We will not be concerned with specific protocols or algorithms,
but with the class of functionality represented by each element. It is in the next
level of abstraction down where specific sets of protocols and algorithms would
be specified.

The IPC process is an AP, a component of a distributed IPC facility, consist-
ing of two major components: the IPC task and the IPC management task. The
IPC task consists of a RMT and one EFCPM for each connection/flow that orig-
inates in this IPC process. There is one IPC management task in an IPC process.
(All instances within an IPC process have the same concrete syntax and policy
range.)

The IPC task itself naturally divides into four functions:

1. Delimiting and PDU protection, which consists of fairly straightforward
functions amenable to pipelining

2. Relaying and multiplexing, which is concerned with managing the utiliza-
tion of the layer below

3. Data transfer, which distinguishes flows and sequencing if necessary

4. Data transfer control functions responsible for feedback mechanisms and
their synchronization, which control data transfer queues and retransmis-
sion, requiring high performance but having a longer cycle time than data
transfer and more complex policies

This is not the first recognition of this pattern, although I have yet to see a
textbook that points it out to students. Complicating the matter is that proto-
cols with a single PDU syntax make it difficult to take advantage of it. As noted
in Chapter 3, this structure allows a single protocol to address the entire range
of protocols from connectionless to fully reliable connections.

The IPC management task uses RIEP. RIEP is used to exchange information
among the IPC processes necessary for the management of the DIF. Events,
including timeouts, can cause RIEP to issue updates (in a publish/subscribe
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mode), or an IPC process or network management system may
request information from an IPC process (client/server mode).
The IPC management task corresponds to what some investiga-
tors have referred to as the control plane. However, this term is
strongly associated with the beads-on-a-string model. As dis-
cussed in Chapter 6, IAP performs the function of search rules
and access control for distributed IPC. One major use of RIEP can
be seen as a generalization of routing update protocols.

Notice that this yields a fundamental structure for the IPC
process consisting of three relatively independent loci of process-
ing with decreasing “duty cycles” loosely coupled by some form
of Information Base.

The (N)-IPC-APM

The IPC APM consists of six distinct subtasks:
1. IPC API
2. SDU delimiting

The EFCP, which provides the error and flow control on

What Is Wrong with “Con-
trol Plane”?

“Are your prejudices
showing?” Perhaps. The
concept of control plane
implies that this manage-
ment functionality is a dis-
tinct process from the data
transfer process, that IPC
consists of two processes.
This implies further compli-
cation and overhead in
management doing its task
of monitoring and manipu-
lating data transfer. Model-
ing them as tasks
(threads) of an IPC
process is in more align-
ment with what the relation
needs to be. This does not
mean it can’t be imple-
mented as two processes,
but “buyer beware.” So is it
just my anti-beads-on-a-
string prejudice? | don’t
think so, he rationalizes!

a per-connection basis. This protocol decomposes into two parts:

3. EFCP data transfer PM, which handles tightly coupled mechanisms and

carries user data

4. EFCP control PM, which provides the support for loosely coupled

mechanisms

5. The relaying and multiplexing task, which appends the Common Data
Transfer PCI, also known as the relaying and multiplexing protocol

6. PDU protection, consisting of CRC and encryption functions

The IPC API

The IPC service primitives!
primitives are as follows:

6

are used by an AP to request IPC facilities. The

16 As noted in Chapter 1, service primitives are a language- and system-independent abstraction
of an APL It is assumed that a real API would look different and include parameters of local
necessity. Other service disciplines are possible. This one is provided just so there is one we

can talk to.
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¢ Reason <- Allocate_Request (Destination, Source, QoS Parameters, Port-
id) An asymmetrical request/response issued by an application to the IPC
facility to create an instance of a connection with an application,!” or by
an IPC process to an AP to notify it of a request for communication.

¢ Reason <- Allocate_Response (Destination, QoS Parameters, Port-id) An
asymmetrical request/response issued by an application to the IPC facility
to respond to a request to create an instance of a connection with an appli-
cation, or by an IPC process to notify the requesting AP of the result of its
request.

¢ Reason <- Send (Port-id, buffer) Issued by either AP to send an SDU to
the destination application on this port.

¢ Reason <- Receive (Port-id, buffer) Issued by either AP to receive an SDU
from the destination application on this port.

¢ Reason <- De-allocate (Port-id) Issued by either AP or DIF to request or
notify of the de-allocation of the resources held for this allocation and
destroys all shared state associated with it and notifies the communicating
applications.

The IPC API communicates requests from the APM to the DIE. Contrary to
current designs that see the API as a direct input to the EFCPM, the
Allocate_Request goes to the IPC management task (described later), which
determines what action is to be taken. The APM communicates the characteris-
tics of the IPC it wants, but it is the IPC management task that determines what
policies will be utilized to provide those characteristics. It is important that how
these characteristics are communicated by the application is decoupled from the
selection of policies. This gives the DIF important flexibility in using different
policies but also allows new policies to be incorporated. But first it must find the
destination application and determine whether the requestor has access to it.

Previously, we said that all communication goes through three phases: enroll-
ment, allocation, and data transfer. Earlier in this chapter, we noted that the
EFCP has a synchronization phase. This is not a contradiction. Allocation is the
function that occurs at the API (layer) boundary with the DIF. Applications
request the allocation of communication resources. The DIF then determines
how to provide those resources, which will require assigning port-ids, allocating
resources, and instantiating an instance of the EFCP, which depending on the
mechanisms required to support the request may require synchronization.

17" Note that whereas the interface must be asymmetrical to ensure the requested AP can respond
to a specific request, the underlying protocol can and should be symmetrical.
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Chapter 6 showed how the IAP decouples the EFCP from requests by the
APM. This decoupling is important and has been missing in our previous think-
ing. Allocation is an asymmetric operation. Synchronization is (generally) a
symmetric operation. The decoupling of allocation and EFCP instantiation is
key. It allows the IPC process greater flexibility in managing the allocation and
binding of EFCP connections to the APMs.

The EFCP Protocol

This protocol provides the IPC connection/flow associated with each allocation
request. It provides for the transfer of data between APs. The discussion in
Chapter 3 made it clear that the protocol cleaves naturally into tightly bound
mechanisms and loosely bound mechanisms. Chapter 6 showed how the distinc-
tion between the IPC function and a common header for relaying and multi-
plexing arises.

The binding of an APM connection to an IPC connection is made after a suc-
cessful response by the IAP, not by the EFCP as is common today. The decou-
pling of allocation requests and EFCP synchronization would also allow a pool
of EFCP connections to be maintained between frequently used destinations and
simply bound to an APM request once it was determined the requested AP
existed and access was permitted. Of course, an IPC with weak access control
requirements could further optimize this procedure.

The IPC function requires a protocol to maintain synchronization and pro-
vide error and flow control. The EFCP is divided into two cooperating proto-
cols. These are described as two separate protocols and are implemented by two
distinct protocol machines, sharing a state vector. The EFCP supports both
stream and idempotent operations. Different PDU types facilitate flexibility sim-
plifying execution when mechanisms are not used.!$

In the late 1970s and early 1980s, one of the differences in transport proto-
col proposals was whether two establishment requests to the same ports created
two, one, or no (an error) connections. The Americans said one, preferring the
elegance of the symmetric establishment. The European proposals preferred
either two or none, being inclined to explicit control and special cases. Here we
can work out the answer. The protocol should be symmetrical, but the service is
necessarily asymmetric because one side or the other initiates the allocation. Of
course, if the protocol is timer based, the point is moot.

Delimiting
An application protocol will deliver an amount of data to a DIF, called a SDU or
service data unit. An SDU is a contiguous piece of data that has meaning to the

18 It differs from TCP by having different PDU types for loosely coupled mechanisms. However,
traffic analysis of TCP indicates that it is used as if it had different PDU types, so in fact it isn’t
that different.
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application’s correspondent. Unless otherwise directed, the DIF will deliver the
same SDU to the other side. To do this, the layer may find it necessary to either
fragment the SDU or concatenate it with other SDUs. Hence, the first operation
on an SDU will be to delimit it.

The IPC Data Transfer PM

This is the Data Transfer PDU used for the IPC tightly coupled mechanisms. It
is a very simple header requiring minimal processing. The PDU contains only
source and destination port-ids as a connection- or flow-id, a length field, a
PDU-id (message-id), and an optional checksum. For some IPC
connections/flows, this is the only PDU required (i.e., traditionally referred to as
unit data). There is a distinct instantiation (flow) of this protocol for each Allo-
cation request. Interactions between flows are performed by the RMT and IPC
management task. The only change to this protocol to support more robust con-
nections is that the PDU-id is interpreted as a sequence number. Actually, it is
always a sequence number; it is just that sometimes it isn’t used for ordering.

The IPC Control Protocol

The IPC control protocol provides the loosely coupled mechanisms as re-
quired. There is a distinct instantiation (flow) of this protocol for each Alloca-
tion request that requires initial state synchronization. Coordination of the data
transfer PM and the control PM is done through a shared state vector. Interac-
tions between flows are performed by the RMT and IPC management task. The
IPC control protocol has three modes of operation that are present, depending
on the mechanisms and policies, depending on the QoS the application has
requested and the QoS provided by the underlying (N-1)-DIF:

¢ No synchronization. Null, corresponding to the functionality of UDP. The
binding of an instance of the IPC data transfer is made by the IPC Manage-
ment Task upon receipt of a successful IAP request. In this mode, there is
no instantiation of the control protocol in this case.

¢ Weak synchronization. The synchronization mechanism establishes shared
state between the endpoints. This weak synchronization may use a two-
way handshake. The PDU-id field of the PCI is interpreted as a sequence
number. Only tightly bound mechanisms are available (i.e., PDUs may be
ordered) but no feedback mechanisms.

¢ Strong synchronization. Synchronization may require a three-way hand-
shake. Loosely bound mechanisms are available, such as retransmission
control (i.e., acknowledgment and flow control mechanisms). The IPC
control protocol operates independently (in parallel) of the data transfer
protocol but shares the same state vector.
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Although this description might seem a radical departure from the traditional
EFCP designs, it is actually quite close to protocols such as UDP, OSI Transport
Unit-Data, delta-t, CYCLADES TS, and TP2/4. However, using a timer-based
approach found in delta-t (Watson, 1981) would avoid the need for distinct
two-way and three-way handshakes. The necessary levels of synchronization
could be achieved by just modifying the policies associated with the timers. This
would clearly be the simplest solution.

Relaying and Multiplexing Task (RMT)

As discussed in Chapter 6, the primary purpose of this task is to moderate the
multiplexing and relaying of all PDUs passing through this IPC process. The
RMT is responsible for the real-time delivery of PDUs to the lower layer. RMTs
come in three forms depending on where they occur in the architecture!®:

1. A multiplexing application primarily found in hosts and the lower layers of
routers

2. A relaying application primarily found in the “top” layer of interior
routers

3. An aggregation relaying application primarily found in the “top” layer of

border routers
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Figure 7-4 A typical host supporting applications (left) and a host supporting a mail
relay and mail application (right).

All PDUs for all EFCP connections have Relaying PCI prepended to the
PDUs. This Relaying PCI is associated with the relaying and multiplexing func-
tion. When a DIF has more than two IPC processes (i.e., most of the time), this
task must also add addressing information to the PCI. The PCI contains the
source and destination addresses. This corresponds to IP or CLNP in traditional

19 As you will see, the three forms differ little in functionality.
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models. Note that with a recursive architecture, the requirements for other
capabilities, such flow-ids, and various options are avoided. Flow-ids are pro-
vided by the EFCP of the layer and different policies can be the policies associ-
ated with different flow-ids. In other words, the only PDUs that would invoke a
“slow path” would be IPC Control Protocol PDUs, which weren’t going any
further any way.

Relaying ___| O”D @
RaMPM T @

100 ; ggg 2%7 RaMPH

Figure 7-5 A typical interior router with relaying and multiplexing RMTs. IPC protocol

in the top DIF may also be present for network management. Depending on the media,
the RMT and IPC protocol may or may not be present in the two lower DIFs.

A Host RMT is primarily responsible for managing the use of local resources
and multiplexing traffic onto local interfaces (see Figure 7-4). Typically, it does
not have much to work with (unless it is a system with a large number of APs
[for example, a server]).

The Interior Router RMT (see Figure 7-5) handles transit flows. It must have
high performance and minimal processing overhead. This process most closely
resembles traditional packet forwarding. It receives PDUs from an input queue,
inspects the destination RMT-id, refers to a forwarding table, and sends PDUs
as quickly as possible to an output queue. (Lower layers of an interior router
will have RMTs similar to a host.) Aggregation is degenerate in interior routers.
PDUs have already been concatenated and assigned to flows.

Aggregating O |] O @

Relaying —_]

N B S o [

DS

010

Figure 7-6 A typical border router where interior flows are created and PDUs are
aggregated over a subnet.
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The Border Router RMT (see Figure 7-6) does relaying but also manages
high-traffic intermediate flows. Traffic with similar QoS requirements and com-
mon intermediate paths are aggregated onto these flows, and the (N+1)-PDUs
may be aggregated to increase efficiency and lower switching overhead.

Actual systems may well be various combinations of these.

PDU Protection

The last function performed on PDUs before they are delivered to the layer
below is taking necessary precautions to safeguard their integrity. Any data-
corruption protection over the data and PCI, including lifetime guards (hop
count) and/or encryption, are performed here. Not only is the last function per-
formed on outgoing PDUs, but it also must be the first function performed on
incoming PDUs, and as such is a component of the DIF, not the protocol.

Note that delimiting and PDU protection are components of the DIF, not the
protocols used by the DIE. This is contrary to the common view. It is not possi-
ble to have more than one delimiting or PDU protection function operating in a
DIF because the DIF would have no way to determine which one to apply
(because it cannot inspect the PDU until it has performed the function).

The IPC Management Task
(N)-IPC-Access-Protocol (IAP)

As shown in Chapter 6, a protocol is required to carry the source and destina-
tion application names to the remote IPC process along with the necessary
access control and authentication information, but first it must find the IPC
process of this DIF that resides on the processing system that has access to the
requested application. Note that the destination application is not necessarily
resident on this processing system. It may be acting as a relay.

This protocol accomplishes three functions:

1) Finding the address of the destination IPC process with access to the
requested AP

2) Determining whether the requested AP is actually at that destination and
the requesting AP has permission to access the requested AP

3) Carrying information to the destination IPC process on the policies to be
used for the requested communication and returning the destination’s
response to the source

The IAP response will return a PDU indicating success or failure. If success-
ful, destination address and connection-id information will also be returned
along with suggested policy choices. This gives the IPC processes sufficient
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information to then bind the port-ids to an EFCPM instance (i.e., a connec-
tion)2? so that data transfer may proceed (as described below).

This protocol may use the (N-1)-DIF. As shown in Chapter 6, the require-
ment for this protocol corresponds to the search rules and access control func-
tions of an operating system. There are a variety of ways in which it may work,
none of which require changes to the protocol. It is easy to see how this could
start out as a local cache of recent activity, which broadcasts queries when there
are cache misses, and evolve into any number of dedicated caches, a hierarchical
directory, and so on, with search rules on where to go next. A failure at a cache
could be noted with updates to these caches when the request is satisfied. As
with an operating system, the search rules should be configurable.

If the necessary address information is not in a local cache, it must be found in
distributed caches. Then, any cache where the information is found is “on the
way” to the destination. The likelihood is fairly strong that it will be found closer
to the destination than to the source. Regardless, it would be inefficient to pass a
request most of the way (or even part way) from the source to the destination,
just to go back to the source, and then immediately back to the destination to
determine access control and to complete the request. It is simpler, more efficient,
and more useful to continue to the destination and complete the operation.

The cache where the information was found may be incorrect. We will only
know for sure that the application is accessible at the address in the cache when
we get to the IPC process indicated by the address and determine whether the
requested AP can be accessed. At that point, it may be useful to send the
response directly back to the source IPC process and a separate update back
along the cache trail to update the caches. If the application is no longer at the
address found, but has been and left a forwarding address (or more likely, the
new information is propagating out from this host and had not reached the
database where the out-of-date information was found), the request merely con-
tinues looking for the destination.

As we see, the DNS or X.500 approach inherently assumes that any informa-
tion found is correct, and if not, puts the onus of finding the correct information
on the application, which has no means to redirect its search, except blindly try-
ing again. This approach believes that such assumptions cannot be made.
Instead, this approach withholds a response until the location of the application
has actually been confirmed and the requestor has access. By taking this
approach, we also provide for important aspects of mobility as a natural conse-
quence. Furthermore, it is the IAP that can cause the databases to be updated
and thus fix the out-of-date information problem.

20 1y some cases, this will be redundant.
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Similarly, APs can be made available to the DIF in a variety of ways. Applica-
tion processes might be registered with the DIF, or all APs made available. A
more interesting possibility is because IAP carries access control information,
systems using the DIF could create access control domains associated with dis-
tributed services, making only those applications that are members of the
domain visible.

Resource Information Exchange Protocol (RIEP)

A DIF is a distributed application and as such it must exchange information on
its state to effectively allocate resources. Traditionally, this has been referred to
as the routing update protocol and was associated only with routing. Given our
more general context, we generalize the concept and decouple it from routing.
We will view it as a general tool for sharing information among the members of
the DIE. Routing-related information is only one kind of information exchanged
within the DIF, whether related to connectivity, queue length, processing load,
resource allocation, and so on. RIEP can be used in both a request/response
mode and a notify/confirm mode using the same managed objects. This allows
IPC processes to notify the other members of the DIF when there is a significant
change or to request information. It also allows the RIEP to act as the manage-
ment protocol. In general, the (N)-RIEP of an (N)-DIF uses the IPC facility of
the (N-1)-DIF, but there is no prohibition on using the (N)-IPC task, too.

The RIEP is responsible for disseminating from other subsystems in this DIF
the information necessary to coordinate the distributed IPC. This includes infor-
mation on the mappings of AP names to the IPC process names (and addresses)
of nearest neighbors, the connectivity provided by the DIF, and resource usage
and allocation information. There is no requirement that the same update strat-
egy be used for all information in the DIE It will be advantageous to use differ-
ent strategies for different kinds of information. The RIEP collects information
from other RIEPs in the DIF. Several events can cause a RIEP to query or update
peers: events (e.g., failures) in the network, new subsystems, periodically, or as a
matter of policy imposed by its users. Some of these events may involve some or
all members.

This protocol could be confused with a Network Management Protocol
(NMP) and should be. The difference being that the NMP uses the request/
response mode. The NMP is used by a network management system to monitor
and manage the systems comprising the network. The object models used by the
two are the same. The NMS will generally retrieve aggregated data from the sys-
tems under its management, but it will also access the same kind of detailed
information when diagnosing and repairing a problem.
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At the higher layers, this information may be characterized by a large number
of destinations and a small number of relays. However, this does not change the
basics. In these cases, a RIB is a cache of the mappings required by this IPC
process. If a mapping is requested that is not in the cache, this RIEP-PM com-
municates with its peers to obtain the necessary information. At lower layers,
the RIB tends to have complete information on all members of the DIFs; at
higher layers, this is less often the case.

Resource Information Base

The Resource Information Base is the logical store of local information on the
state of the DIF. Each IPC process maintains a RIB. The RIB is a replicated
Information Base. The assumption is made that if all data transfer activity
ceased, the collection of RIBs in the DIF would reach a consistent state. How-
ever, tasks using this information can never assume that is the case. This is very
similar to what is traditionally called the MIB or Management Information
Base. A different term was used here to indicate that this may include informa-
tion for other than network management (recognizing, however, that any infor-
mation that is kept may prove useful for management).

The IPC Management Task

The information distributed and collected by REIP is then used by various IPC
management functions. We briefly survey these to give some flavor of what they
are

¢ Enrollment. Enrollment was defined as those procedures required to create
sufficient shared state that allocation could occur. Traditionally, enroll-
ment has been ignored, swept under the rug, or done by ad hoc or even
manual procedures. DHCP has been our only slight foray into enrollment.
In multicast, there has been a tendency to confuse enrollment and alloca-
tion operations (Chapter 9).

In this model, enrollment falls out as an integral part of the model. Enroll-
ment occurs when an IPC process establishes an application connection
(using an (N-1)-DIF) with another IPC process, which is already a member
of an existing DIF, to join the DIE. Once this occurs, the IPC process may
authenticate the newcomer, using RIEP initialize various managed objects
and their attributes, including assigning an address. These parameters
characterize the operation of this DIF and might include parameters such
as max PDU size, various timeout ranges, ranges of policies, and so on, as
well as a full update of routing and resource allocation information. Simi-
larly, the new IPC process will have new information to share with the DIF.
The robustness of the authentication is a policy of the DIE. It may range
from null or a simple password to a more robust cryptographic-based
authentication procedure.
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¢ Routing. This task performs the analysis of the RIB to provide connectivity
input to the creation of a forwarding table. To support flows with different
QoS will in current terminology require using different metrics to optimize
the routing. However, this must be done while balancing the conflicting
requirements for resources. Current approaches can be used, but new
approaches to routing will be required to take full advantage of this envi-
ronment. The choice of routing algorithms in a particular DIF is a matter
of policy.

¢ Directory. As shown in Chapter 5, “Naming and Addressing,” each DIF
must maintain the mapping (N)- to (N-1)-names and addresses of nearest
neighbors for both its upper and lower boundary; that is, name to address
at the upper boundary (usually referred to as a directory function) and
address to point of attachment at the lower boundary (to select the path to
the next hop). The primary user of this information is IAP and routing.
Because scope tends to increase with higher layers, we should expect the
number of elements for which this mapping must be maintained to
increase dramatically with higher DIFs. Hence the caching strategies and
search rules will vary radically across DIFs. Updates to these caches are
made using RIEP and are triggered by local events. IAP requests forward-
ing requests to other caches.

* Resource allocation. If a DIF is to support different qualities of service, dif-
ferent flows will have to be allocated, and traffic for them treated differ-
ently. To meet the QoS requirements, different resources will have to be
allocated to different flows, and information about the allocations distrib-
uted to the members of the DIF. There are three classes of such flows:

1. Flows requested by an AP, usually in a host

2. Flows created by IPC management for distinct classes of QoS to
aggregate traffic and enhance efficiency, generally in border routers
and among them

3. Flows that transit a system (i.e., traditional routing)

When an IAP request returns successfully, IPC management must deter-
mine whether and how to allocate the flow/connection to a new or existing
flow (a matter of policy). This process uses input from routing, current
allocations, and current conditions within the DIE. This may include creat-
ing flows of similar or aggregated QoS, creating high-density flows
between intermediate points in the network, and so on, depending on the
context in which the DIF operates. It should be remembered that flows in
this context does not necessarily imply that traffic is following a single
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fixed route through the DIF, and it is unlikely there would be much, if any,
error control, and flow control would probably be done by pacing. One
would expect that the management of such flows would be more useful
nearer the backbone. Flows between intermediate points in DIFs nearer the
backbone will tend to have very long lifetimes of hours, days, or even
months.

Some IPC processes may only be transit subsystems and thus have rela-
tively simple resource-allocation functionality, whereas those on the bor-
ders of subnets may be more complex. The degree to which this is
automatic or under direct control of a central network management sys-
tem is a matter of policy. There is considerable opportunity for policy dif-
ferentiation. DiffServ and IntServ could be considered opposite extremes
of this task. With this model, it is straightforward to support much more
diverse approaches to resource-allocation strategies.

Security management. A DIF requires three security functions:

1. Authentication to ensure that an IPC process wanting to join the DIF
is who it says it is and is an allowable member of the DIE. This is sim-
ilar to the application authentication requirements that any AP
should have when establishing communication with another AP.

2. Protection against the tampering or eavesdropping by an (N-1)-DIF.

3. Access control to determine whether APs requesting an IPC flow
with a remote application has the necessary permissions to establish
communication. The particular security procedures used for these
security functions are a matter of policy.

A DIF need place very little trust in (N=1)-DIFs: only that an (N-1)-DIF
will attempt to deliver PDUs to something.

The most that a DIF can guarantee is that the IPC process with the destina-
tion address believes that it has created an IPC channel with the requested
application. There can be no guarantee that it is. Therefore, it is the
responsibility of every AP, including the IPC processes of a DIF, to ensure
that the application it is exchanging PDUs with is the intended application
(authentication) and to protect its PDUs from eavesdropping and tamper-
ing (confidentiality and integrity). The only information that an applica-
tion has about the communication is the local port-id for this IPC and the
application name of the destination.
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An authentication mechanism is used to ensure that an IPC process is a
valid member of the DIF. This part of enrollment is able to use existing
techniques. If a DIF distrusts (N-1)-DIFs, authentication is used to ensure
that PDUs are being delivered to the appropriate IPC process, and PDU
protection is used to protect against tampering and eavesdropping.

IAP provides access control generally implemented as capabilities, which
are used to determine whether the requesting application has access to the
requested application.

Network Management Protocol and Management Architecture

While the IPC processes that comprise the DIF are exchanging information on
their operation and the conditions they observe, it is generally necessary to also
have an outside window into the operation of DIFs comprising the network.
Normally, this will require monitoring of the multiple DIFs that constitute a net-
work (i.e., a management domain). The purpose of network management is
monitor and repair, not control. Each processing system in the network (which
may include hosts) contains a management agent responsible for collecting
information from IPC processes in all DIFs in the system and communicating it
to a network management system (NMS).

The NMS exerts a strong influence on enrollment. The enrollment tasks acts
for the NMS. The NMS may determine when a layer is to be created and initi-
ate the action, but it is the enrollment tasks that carry it out. This includes cre-
ating the ability for the enrollment agents to sense the correct conditions and to
make the decision automatically. The NMS management strategy may run the
gamut from hands-on to quite light.

This is one of the few places in this architecture where it is necessary to rec-
ognize the systems that are hosting the IPC process. We assume that there is a
management agent (MA) that is an AP (see Figure 7-7). An MA has access to all
DIFs in a system. It communicates with an NMS, just as any other application,
using a DIE. Although Figure 7-7 shows the MA as above all other DIFs, this
should not be taken too literally. The MA only has to use an (N)-DIF with suf-
ficient scope to be able to communicate with the NMS. An MA can communi-
cate over a lower DIF and still collect information from higher DIFs.2!

21 1 realize that this sounds contradictory. Management always has a role, a bit like the sphere
visiting Flatland (Abbott, 1884). An MA is an application in a processing system and, hence,
can access anything it is given permission to access by the operating system.
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Figure 7-7 Schematic of a management agent (MA) that collects information on each
DIF for a network management system (NMS).

It is easy to imagine situations where it would be convenient to allow multi-
ple MAs responsible for different DIFs in the same processing system. For
example, one might create DIFs as VPNs and allow them to be managed by
their “owners”; or one could imagine different DIFs belonging to different
providers at the border between two providers and so on. Although there are
good reasons to do this, and one can fully expect it to be done, the network
designer must be careful. There is only one processing system to meet the
requirements of these MAs. One MA (and management system) must be
empowered to resolve conflicts or to bound the capabilities of other MAs.

In general, a processing system in a network can be managed by one and only
one manager at any particular time. Other managers may be given permission
to read (i.e., observe) the system but not write to it (i.e., change configuration).
Management systems will have mechanisms for defining management domains
and changing their composition.

The Nature of Layers

It is time to step back and take a look at what we can now say about the nature
of layers. In Chapter 6, we noted that there has been considerable dissatisfac-
tion with layers as an organizing principle, but on the other hand, the inherent
nature of distributed shared state of different scopes implied that there was
something like a layer inherent in the problem. A repeating structure of com-
mon elements makes it much easier to characterize the nature of a “layer.” You
might have already gotten an inkling of the model we are moving to with the
description in this chapter. To some degree, we have been too stringent in our
characterization of layers and have also not fully taken into account the
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environment in which it exists. We were looking for easy answers and not listen-
ing to what the problem was telling us.

A distributed IPC facility or DIF is a layer. The ranking (stacking) of DIFs is
purely a relation among DIFs and hence apply only to DIFs. Applications
belong to no layer, unless they are IPC processes and a member of a DIE. This is
why in the definitions in this chapter, the (N)- notation does not appear in front
of any application related concepts. Applications execute on a processing sys-
tem. Layering based on concepts of kernel or user applications is a property of
the operating system and not of the communications. If any rank is applied to
an application it is only that implied by its use of a DIF of a given rank. Poten-
tially any application can use any DIF of any rank as long as the DIF has suffi-
cient scope to access the necessary remote applications and appropriate access
controls. An application may have IPC connections with other applications
using DIFs of different ranks at the same time as long as the access control poli-
cies permit it. The same is true of applications, which are IPC processes. In this
case, there are constraints that must be recognized to ensure that shared state
for data transfer is maintained and PCI is properly removed.

Working out the repeating structure of a DIF has also cleaned up the interac-
tions at the layer boundary. In other architectures, layers caused problems
where conflicts were constantly appearing about what goes in what layer. This
is now rendered moot by the realization that all layers/DIFs do one thing and
only one thing: IPC. The primary purpose of layers is organizing the scope of
shared state, on the one hand, and organizing information (PCI) for processing
in layer order on the other. This is very much the case for the primary purpose
of IPC: the data transfer aspect.

This shifts the data transfer model from moving PDUs between layers to
process, moving along the PDU processing PCI as required. The feared data
copy is only an artifact of the hardware, not of the architecture. And context
switches across DIFs are only necessary if desired; they’re not implied by the
architecture. This, along with the natural partitioning of information flow into
three largely independent functions of differing duty cycles, opens the door for
much more effective processing models for routers and hosts.

As we have seen, management is “extra-dimensional.” As shown in the pre-
ceding section, not only is network management the sphere that can see inside
all the data transfer inhabitants of Flatland but, IPC management has this prop-
erty, too. IPC management must maintain mappings of (N+1)- to (N)- (nomi-
nally application names to node addresses) and (N)- to (N-1)- (nominally node
addresses to point of attachment addresses). Data transfer is Flatland, and man-
agement is the sphere visiting it. IPC management must have the ability to share
information among adjacent layers.
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Notice I said adjacent layers, not all layers. A consequence of the recursion
that we touched on earlier in this chapter is that most processing systems have a
rank of DIFs no more than three deep. Hosts might have more, but not many
more, and these would be specialized DIFs for other IPC-related distributed
applications (e.g., mail or transaction processing). For the hosts and routers,
this creates something of a hook-and-eye structure across layers. Only the NMS
potentially has the ability to see information about DIF operation across all
DIFs in a network. If the access control is appropriate between adjacent layers,
so that addresses are available, effective mappings between (N)-addresses and
(N-1)-addresses can make routing much more effective.

This gives us a structure that is layered as the loci of shared state requires, but
is at one and the same time more structured and more flexible than our previous
attempts and also translates into a simple implementation.

Operation of the DIF

In this section, we briefly consider the operation of a DIE. In particular, we look
at three fundamental operations: how an IPC process joins a DIF, how a new
DIF is created, and how an application requests IPC services. The operation of
a DIF is driven by the action of the APs (i.e., its users and by its internal coordi-
nation). The IPC processes must coordinate their actions with the other mem-
bers of the DIE.

Traditionally, the enrollment phase has been ignored as a collection of ad hoc
procedures that must be done at startup that are very implementation specific.
In this model, the enrollment phase is an integral part of the model and essential
to its operation. There are two aspects of enrollment: new systems joining an
existing DIF, and creating a new DIE.

Adding a New Member to an (N)-DIF

Let’s consider how a processing system joins a DIF. One variation of this process
is a new system attaching to a network. Suppose that DIF A consists of a num-
ber of IPC processes on a set of systems, a,. Suppose that the DIF B wants to join
the DIF A. The DIF B represents a single IPC process. The IPC process, b, in B
has the AP name of an IPC process, a, in A (or it might have the name of the DIF
A), not its address. B has no way to know the addresses of any elements of A. A
and B are connected by the (N-1)-DIE, which ultimately will be the physical
media (see Figure 7-8).
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DIF-A \ / IPC-Process-b

(N-1)DIF

Figure 7-8 A new system B wants to join the DIF A. B is connected to A by an (N-1)-
DIE

Using the (N-1)-DIE b requests that the (N-1)-DIF establish an IPC channel
with a in the same manner it would with any other application using the AP name
of a. The (N-1)-DIF determines whether a exists and whether b has access to a.

»
a < » b

DIF-A \ / IPC-Process-B

(N-1)DIF

Figure 7-9 b sets up an application connection with a using the DIF. The DIF returns
separate port-ids to a and b (no different from any other IPC request).

After the application connection has been established (see Figure 7-9), a
authenticates b and determines whether it can be a member of A. If the result is
positive, a assigns an (N)-address to b.22 b uses the (N)-address to identify itself
to other members of the DIF A. This (N)-address is used in the Data Transfer
PCI of the enrollment application protocol, also called the Relaying PCI. Other
initialization parameters associated with DIF A are exchanged with b (see Fig-
ure 7-10).

]
a ¢ » b
DIF-A \ / IPC-Process-B
(N-1)DIF

Figure 7-10 b is authenticated and an address is assigned to it along with other initial-
ization parameters.

22 Or based on where the IPC process, b, is in the topology of the DIF A and the address space
(see Chapter 8). For (N)-addresses in the model, we will retain the (N)- notation to minimize
confusion with other uses of the term address.
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The IPC process, b, is now a member of the DIF A (see Figure 7-11). Soon
after this, b also establishes similar communication with all members of A that
are nearest neighbors. (Because the (N-1)-DIF may have less scope than A, there
may be members of A that b cannot communicate with directly.) These flows
are used to exchange RIEP information to maintain the shared state of the (N)-
DIE. The b is now ready to participate in the (N)-DIF and can now accept
requests from its applications for IPC.

o0 - © ©

Figure 7-11 A new system has just joined the network, been authenticated, and

assigned an (N)-address and is now ready to participate as a member of the DIF.

Some readers will jump to the conclusion from what I have just described
that this is a connection-oriented architecture. Nothing could be further from
the case. Enrollment is simply creating the necessary shared state among the IPC
management tasks, so that there is sufficient shared state for IPC. Whether IPC
within the DIF is connectionless or connection-like is an entirely separate mat-
ter. That will depend on how the routing and forwarding are done. In a sense
what we have done is to establish the logical “wires” over which this DIF will
operate. Of course, these “wires” are a little “cloudier” than normal wires. To
the DIF, they range in quality and type: Some are point to point and fairly reli-
able (real wires); some are multipoint and unreliable (wireless); some are multi-
point with a few stations on them and fairly reliable (LANs); some are
multipoint with large numbers of stations on them and somewhat reliable (sub-
nets with multiple routes); and so on.

Although this is described in terms of a single DIF, the protocols could be
designed to allow several DIFs (layers) to be joined at the same time within the
constraints of the security policies for the DIFs.

Creating a New DIF

Creating a new DIF is a simple matter. An NMS or similar application with the
appropriate permissions causes an IPC process to be created and initialized,
including pointing it at one or more (N-1)-DIFs. As part of its initialization, the
IPC process is given the means to recognize allowable members of the DIF (e.g.,
a list of application process names, a digital signature, and so on). Or it might
be directed to initiate enrollment with them or to simply wait for them to find
this initial IPC process. When this has been achieved, the creation of the DIF
proceeds as described earlier.
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Data Transfer

When enrollment initialization is complete, the DIF is available to provide IPC
to APs residing on its processing system or to act as a relay. APs will request the
allocation of IPC resources via library calls.

Let’s assume (see Figure 7-12) that the AP, A, wants to establish an IPC con-
nection with the AP B. A resides on a processing system using a DIF that is rep-
resented by the IPC process, a.
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Figure 7-12 Application A wants to establish communication with application B, using

its supporting DIE

A generates an Allocate request that will cause the IPC management of a to
evaluate the request according to its allocation policies. The IAP request will con-
tain the application process name of A; a’s address, a-addr; the local port-id,
a;-port; B’s application process name; access control and capability information
for A; and the proposed policies for the connection. If the request is acceptable
and the (N)-address of the IPC process B is not in the local RIB, a’s local IPC
management task will use IAP to find B. a uses its search rules to forward the IAP
request to another IPC process in the DIF (see Figure 7-13). For this information,
the search rules may organize the elements of the DIF into a logical hierarchy.

IAP Request o
=
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= O = O = O = O

Allocate(B, params, port-id)

Figure 7-13 An Allocate request from A for IPC with B generates an IAP request with
A’s and B’s names, resource and access control parameters, and the local port-id to be
assigned A’s request. The TAP request follows search rules to find the address of the IPC
process with access to B.

The TAP request may be forwarded within this hierarchy until the location of
B is found. When the address of the destination IPC process is found, the infor-
mation may be forwarded back through the intermediate IPC processes to
update their caches. The IAP request is forwarded to the destination IPC process,
b (see Figure 7-14). When the presence of B can be confirmed, b determines
whether it can honor the request and A has access to B. (The degree of access
control is policy. It could be quite elaborate or like the current Internet, none.)
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Figure 7-14 When a cache entry is found, the IAP request is forward to b to confirm it
has access to B and to determine whether A has access to it.

If it does, B may be instantiated if it was not active and notified of the request
from A using the IPC API primitives. b will allocate a local port-id, b.-port, and
make a suggestion for policies on the IPC connection to be created and send an
IAP response back to a. Now is a much better time to forward the result of the
IAP request back through the intermediate IPC processes because we know the
information is correct (see Figure 7-15).
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Figure 7-15 The IAP response returns indicating success and the port-id assigned to the
communication with b. The IPC processes a and b have the necessary information to
create an appropriate EFCP flow between a and b for this communication.

When the IAP response arrives at a and with a positive result, the
Allocate_Request is returned?3 to A with the destination, source, a port-id to be
used with all subsequent interactions on this allocation, and a positive reason
code.2* At the same time, a allocates an EFCPM instance (i.e., a connection);
binds the port-id assigned to A to it, with the appropriate policies; and initiates
any synchronization exchanges, if they are required (see Figure 7-16). A may
now start sending Application PDUs to its peer by invoking the transfer API
primitive. The transfer primitive is used to pass APM PDUs to the IPC facility as
an SDU. The SDU is delimited and transformed into user-data for a PDU.

23 Whether the Allocate request is returned immediately or only after the requested APM accepts
is a matter that can be left for later. With this approach, the requested APM may refuse the
request, in which case a De-allocate will have to be delivered to the requesting APM to notify it.

24 This might seem like a radical departure from the current behavior of the Internet, which

never refuses any new traffic. It isn’t. If one desires all new allocations to be accepted, that is a
matter of policy. This approach allows both without additional overhead or the inflexible con-
straints of circuits.
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Figure 7-16 The EFCP flow/connection is created and bound to the port-ids returned to
A and B. The applications are now free to exchange SDUs.

The SDU is delivered to the EFCPM specified by the port-id and is processed.
The resulting PDU(s) are delivered to the RMT for transmission. The RMT may
have created a number of (N-1)-flows of various QoS characteristics to various
destinations. Based on the allocations determined by the IPC manager, the PDU
is queued on an outgoing (N-1)-flow to be sent by the (N)-RMT, which may
also combine it with other PDUs into a single (N-1)-SDU.
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Figure 7-17 When the applications are finished, the bindings are terminated. Whether
the EFCP flow is terminated is a matter of policy. With a timer-based EFCP protocol,
the question is irrelevant.

When A has finished its communication and terminated its communication
with B, A, B, or both invoke the close API primitive to inform the DIF that it
may release the resources (see Figure 7-17). a and b will de-allocate their respec-
tive local port-ids. Whether the EFCP instance is de-allocated is a matter of pol-
icy. Of course, if a timer-based protocol is used this consideration is moot.

Identifiers in an (N)-DIF

We have found that six kinds of identifiers are needed (three externally visible,
one internal to the processing system, and two internal to the DIF). The three
external identifiers are as follows:

1. The distributed application names that designate a set of APs cooperating
to perform a particular task

2. AP names to identify APs

3. The APM names that identify application PMs, which are unambiguous
within the AP
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The one identifier internal to the processing system is the port-id.
The two identifiers internal to DIF are as follows:

1. The (N)-addresses assigned to the IPC processes

2. The connection-id used in the EFCP to distinguish connections

The (N)-Port-ID

The DIF requires identifiers to distinguish multiple IPC flows. APs need them
for the same purpose. When the connection is established, the APM and the DIF
use the port-id when referring to the communication. The port-ids are unam-
biguous within the processing system. When the IPC protocol creates shared
state with its correspondent, the connection is distinguished by a connection-id.
The connection-id is generally formed by concatenating the port-ids of the
source and destination, thus unambiguously identifying it within the scope of
the communicating IPC processes.

Figure 7-18 By exchanging information on connectivity and resource usage and alloca-
tion, the IPC processes that constitute the layer create a distributed application, essen-
tially a distributed operating system. The (N)-addresses need only be known among the
IPC processes (i.e., internal to the distributed operating system). Application names are
externally visible in the layer; (N)-addresses are not.

The port-ids play a crucial role in linking the (N)-addresses to the (N-1)-
addresses in adjacent layers while at the same time insulating (N)-addresses
from both AP names and (N+1)-addresses, if they exist. The only identifier an
AP has associated with a flow is the port-id and the destination application
name. It has no knowledge of the destination port-id or the (N)-addresses.

All IPC requests are assigned a local port-id to distinguish multiple instances
of IPC within a processing system. Port-ids are defined to be unambiguous
within a processing system. This choice is not made arbitrarily. This choice
implies that PDUs need only carry addresses and connection-ids (created from
port-ids). If the scope of port-ids is defined to be unambiguous only within the
DIF and the system was allowed to be a member of more than one DIF at the
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same rank, the PDUs must include the DIF name, too. By defining the port-id as
we have, the DIF name is only needed when an IPC process is joining a DIF.

Application Process Names

Application process names are used by a new system to establish initial commu-
nications when it joins a DIF. Traditionally, it has been assumed that a process-
ing system participated in one and only one DIF per rank, except at the bottom,
where there was one per interface. In some cases, there are good reasons for this
to be the case. But this does not have to be the case. However, this does have
some implications for naming that must be understood. It is possible (and actu-
ally useful) to have more than one DIF in the same systems or set of systems.
This implies that when there is more than one DIF in a system and a new system
wants to join a layer, it must know which DIF it is joining (i.e., it must have its
distributed application name or DAN). The DAN is used to establish communi-
cation with the DIF using the (N-1)-DIFE.

(N)-Addresses

The names used for routing PDUs are not just the names of the IPC process but
are identifiers internal to the DIF formed by the collection of IPC processes. In
other words, they are not visible outside the DIE. Addresses are used by the IPC
processes of the DIF for their internal coordination. This may not have been
apparent looking at traditional network layer routing but is more obvious if one
considers relaying applications, such as mail. E-mail addresses are used for rout-
ing mail and strictly speaking are internal to the mail application.
E-mail addresses and IP-addresses are two examples of the same concept.
The routing function of IPC requires two kinds of information:

1. Information on the graph of RMTs (node addresses in Saltzer’s terms)
formed by being directly connected by the (N-1)-DIFs

2. The mapping of (N)-addresses to (N-1)-IPC process names®S (Saltzer’s

point of attachments) for all nearest neighbors (i.e., capable of direct con-
nection) at the (N-1)-DIF

A traditional routing application uses the connectivity information to calcu-
late routes from a source to a destination. This is, in turn, used to construct a
forwarding table to the “next hop” or next RMT to which PDUs are sent for
relaying or delivery. The mapping of the neighboring (N)- to (N-1)-addresses is
used to choose the specific path to the next hop.

25 o (N-1)-addresses, depending on the level of trust between the (N)-DIF and (N-1)-DIE.
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(N)-DIFs, in general, have greater scope than (N-1)-DIFs. However, this is
not the case with configurations such as virtual private networks or specialized
applications, where a closed subnet is created on top of DIFs. The RIEP proto-
col collects information to create a local database of the mapping of (N)-
addresses to (N-1)-addresses and the logical connectivity of the IPC processes
constituting this DIF (i.e., routes). As the scope of layers increases, the number
of “nearest neighbors” will tend to increase combinatorially. This will require
more complex distribution and caching strategies (e.g., imposing a hierarchical
structure on the RIBs). These applications exchange information on the con-
tents of their caches and to respond to queries that cannot be answered with the
information in their local cache.

The primary function of (N)-addresses in a DIF is to establish and maintain
the mappings among (N)-addresses, the (N+1)-addressing above, and the
(N-1)-addresses below, and as a consequence facilitate routing. Enrollment is
used to assign addresses and to manage changes of addresses. These mappings
of the current connectivity are maintained by the tasks associated with resource
allocation and routing protocols. These protocols maintain databases of routes
to different parts of the network topology and “forwarding tables” indicating
the (N-1)-addresses PDUs are to be sent on. These databases are also interro-
gated to get information necessary to initiate communication. This is generally
referred to as a directory function.

Saltzer and everyone else agree that an address is a location-dependent name.
From the beginning of networking, the analogy to operating systems was uti-
lized to recognize that names specified the what; addresses, the where; and
routes, the how to get there. For most networks to date, addresses were not
location dependent. They were flat identifiers. None of the routing protocols in
use today utilize the location-dependent property. The names used by these
algorithms are used purely as labels, not as indications of where. For small net-
works, this is adequate. But in large networks or networks where less-complex
operations are desired, true addresses can be used to great advantage.2® The key
aspect of this problem, which has always been recognized, was how to make
addresses location dependent and route independent. In other words, how to
achieve the properties that addressing serves on a Midwest grid on a much less-
regular network graph. In the next chapter, we consider how to develop the con-
cept of addresses, which are location dependent without being route dependent.

26 Recently, location dependence has been used to aggregate addresses for purposes of route cal-
culation, but this preprocessing simply moderates the scaling issues associated with the fact
that the route calculation itself uses addresses as labels.
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The scope of the address space is the DIF within which it is used. This is the
set of (N)-IPC processes that can communicate either directly or by relaying and
without relaying at a higher layer. Although this is still true, it is less important.
An (N)-address is an internal location-dependent identifier assigned to each (N)-
IPC process.

The scope of the (N)-address is the DIF to which it belongs. Route depend-
ence is at least relative to the layer in which the relaying occurs. A (N)-address
is route independent, but the (N-1)-address (or point of attachment) is necessar-
ily route dependent relative to relaying in layer (N). From the point of view of
an IPC process, choosing an (N-1)-address is the act of choosing a path. Thus,
all (N-1)-addresses available at the lower boundary of an IPC process are route
dependent with respect to that IPC process. Each one represents the first hop on
all routes going in that direction. The same (N-1)-addresses may be (and should
be) route independent relative to relaying in (N-1)-DIF and so on to the physi-
cal layer where addresses must be, by their nature, route dependent. Route
dependence is an inherent property of addresses only at the physical layer.

Postponing the introduction of explicit route-dependent addresses into a net-
work architecture (i.e., not adopting a naming convention that is inherently
route dependent) will greatly improve the flexibility of the configurations that
the network can have. However, it is always possible to create an address space
that is inherently route dependent. For example, traditionally, the most com-
mon means to make an address route dependent is to include an (N-1)-address
as part of the (N)-address (e.g., a MAC address or EUI-64 address) as part of
the network address. It is these architectures that are unnecessarily plagued with
problems.

As a consequence of layer independence, a good architecture makes this tran-
sition at each layer. A viable addressing scheme must make a transition from
physical (route dependent) to logical (route independent) at least once. In a very
real sense for the recursive structure we have developed here, the (N)-layer pro-
vides the “logical” addressing for the “physical” addressing of the (N-1)-layer.
In this approach, we have simply made this relation relative. In other words,
Saltzer’s concepts of node address and point of attachment address are relative.
An (N)-address is a node address; and an (N-1)-address is a point of attachment
address. In a complete architecture, addresses at the layer below are points of
attachments for the layer above.

However, one can make address spaces in adjacent layers too independent
and make routing inefficient. A judicious choice of a relation can be very advan-
tageous. In particular, a topological relation between adjacent spaces can be
quite useful. This is discussed in the next chapter.
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Figure 7-19 Routes are sequences of (N)-addresses. A next hop is an (N)-address. But

each IPC process must also know mappings of (N)-addresses to (N-1)-address of the
(N)-layer nearest neighbors to determine the path to the next hop.

Taking Stock

This is a good point to contrast this with Internet. In the current Internet archi-
tecture, the closest thing to an application process name is the URL. The syntax
of the URL allows specifying an application protocol and the host on which it
resides. The host part has essentially become the application name. It is not at
all clear how one would build an application with multiple application proto-
cols and whether it would work in all cases. Would ftp:/ftp.myappl.com and
http://www.myappl.com actually create connections to the same AP? Doubtful.
If T want my corporate websites on a hosting service and my internal company
websites, I must have multiple domain names or other such subterfuge. Rather
than simply having a branch for my corporate application names that I can
assign and locate the applications wherever I please. If there were a special pro-
tocol for my project, say mynewprot, it would have to be registered with IANA.
There is no support for connecting to specific multiple instances of either APs or
application protocols associated with specific APs. This makes constructing
anything but the most rudimentary distributed applications difficult if not
prohibitive.

There is only a partial equivalent of the IPC access protocol. DNS allows the
application to determine the address of the destination application. This puts
more burden on the application and also represents a security problem. There is
no access control and the application has knowledge of the address.

The Internet is based on a “one size fits all” model or maybe two sizes: UDP,
and TCP. However, this now seems to be breaking down with the addition of
RTP, SCTP, DCCP, and others. This contributes considerable complexity to the
architecture. The inability to couple these EFCPs with resource allocation asso-
ciated with IP further adds to the problems.

In the current Internet architecture, there are only point-of-attachment
addresses. Hence, routes are calculated as a sequence of (N-1)-addresses.


http://www.myappl.com
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Consequently, it is difficult to accommodate multiple paths?” between adjacent
nodes. It is done, but it is a kludge. Each path is a separate segment of a route.
Consequently, the existence of multiple paths increases the number of routes
combinatorially. In a very real sense, today multihoming is not even supported
in the routers let alone the hosts. In these architectures, multihoming and mobil-
ity cannot be supported without expensive and cumbersome mechanisms. As we
saw in Chapter 5, although the CLNP approach had both node addresses and
points of attachment, it didn’t solve all the problems. Scope is either very local
or the whole world. Nothing in between. Changes in points of attachment can
be handled effectively, changes in node address take too long to update because
the scope of the network layer is too great. In this model, with topological
addresses and repeating layers, both capabilities work easily and scale. (We look
at this more closely in Chapter 9.)

The problem here is not that there are not workarounds to solve all of these
problems. There are. Lots of them. Therein lies the problem. They all increase
the “parts” count and hence the complexity, which reduces the reliability and
increases the effort required to field new capabilities and manage the ones
already there. Just finding something that works isn’t good enough. It has to
simplify as well.

All applications using a DIF are “one hop” away. The traditional concept of
a directory or DNS is an inherent part of the information associated with the
mapping of (N)- to (N-1)-address information collected for routing, in essence
a degenerate case of the layer structure. But some applications, such as mail, do
relay. Mail relaying?8 is simply this same structure (i.e., another layer) that uses
a particular set of addresses. E-mail addresses are another form of address.
Strictly speaking, a mail protocol should only be concerned with the composi-
tion and sending of the “letter.” The delivery of the letter is merely the routing
of an often, large PDU.

IPC Facilities

IPC Structures

A DIF always interfaces to an (N-1)-DIF or the physical media. In general, each
DIF interfaces to m (N-1)-DIFs, because the scope of IPC tends to increase with
higher rank.

27 The reason being that the routing now interferes with load balancing.

28 Asis peer to peer, OLTP, or another distributed application that involves relaying.
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To the DIF, a request may contain either an AP name or (N+1)-address. The
DIF maintains a mapping between its addresses and these AP names and (N+1)-
addresses. In other words, it is responsible for knowing what applications are
available to whom on its system.2? The mapping of AP names to (N)-addresses
is arbitrary (by definition). However, the mapping of (N+1)-addresses to (N)-
addresses may be a topological mapping.

However, a DIF must be able to confirm that an AP is an (N+1)-IPC process
and can be guaranteed to obey certain rules (i.e., that addresses are valid and
have not been tampered with). (Because the (N)-DIF carries the (N+1)-IPC facil-
ity PDUs transparently, the possibilities for compromise are limited to the
parameters passed as part of the API and relate mostly to addressing.)

At enrollment, a DIF may be authenticated with the (N-1)-DIE. This is how
the (N-1)-DIF knows that the AP requesting services is itself part of an IPC
facility. If this is done, the (N-1)-DIF knows it can trust the (N)-address infor-
mation it is given from the DIE. The (N)- and (N-1)-DIFs exchange information
on their capabilities and policies. Each determines the degree it can trust the
other. The (N-1)-DIF is in a better position to protect itself because it can
always refuse requests by the DIE. The two biggest threats are that regardless,
the (N)- and (N-1)-DIFs share the same processing systems and the possibility
of a rogue IPC process successfully negotiating the enrolment authentication
policy. If no authentication agreement can be reached, all communication is
done with application names. It still works, but is less efficient.

Multiple (N)-DIFs of the Same Rank

We have already seen that a single IPC process is necessary to manage multiple
users of a single physical interface. We have also seen that having a single IPC
process to manage multiple users of multiple interfaces is also advisable. But
this raises the question of whether this is always the case.

Multiple IPC processes can occur at any rank. Let’s consider briefly the con-
ditions where this makes sense. Layers are created for essentially two purposes:
for organizational reasons and for managing specific ranges of bandwidth and
QoS.

Starting at the bottom, it would seem at first blush this is the one place where
there would be one IPC process per physical interface. However, this is not the
case. Consider, for example, a TDM physical medium, which creates some num-
ber of independent channels. Theoretically, each one could have a separate IPC
process to manage its use. The number of IPC processes that are possible in this
case is between one and the number of channels.

29 As part of access control policy, a processing system may not make all (N)-application names
available to a particular (N)-DIE.
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There are two forms that a lowest DIF may take:
1. A point-to-point media, which will have an EFCP, but no RMT

2. A multiaccess media, which will require both an RMT and EFCP policies
determined by the error

Our early, constrained view of layers prohibited (at least discouraged) rout-
ing in the data link or media layer. Bridges began the slippery slope, which was
promoted by the use of spanning trees by LANs and so on. With this model, we
step back and do what should have been done sooner, recognize routing is a nat-
ural capability in all layers. In this case, LAN spanning trees become a minimal
form of routing. Similarly, many of us (me included) looked at LLC in LANSs as
acquiescence to the beads-on-a-string proponents and not appropriate for LANs
at all. LANSs are sufficiently reliable that an EFCP with robust policies is not
required. But with the popularity of wireless media, we see cases where a more
robust EFCP might be required. (In other words, not all layers need all the capa-
bilities but be careful about claiming that they are never needed.)

Error control in the data link layer should be sufficient to make error control
at the transport layer cost-effective. In other words, if the purpose transport
layer error control is to handle losses due to routing, data link error control
should ensure that losses are at a lower rate than the rate of loss due to routing.
Recognize that propagating errors to the wider scope of a higher layer will incur
greater cost to recover, while keeping in mind the impact on delay incurred by
retransmissions. We will want to generalize this relation with this model.

Above this level, the same principle applies. Depending on the desired config-
urations, one or more DIFs may exist. Above the first layer, creating DIFs will
essentially create distinct and separate networks.

In the some common configurations, there would be one (N-1)-DIF per
interface and one (N)-DIF for the system. Above this, (N+1)-DIFs might be cre-
ated as closed networks (e.g., VPNs, transaction processing, peer-to-peer appli-
cation, and so on). In these upper layers, we are likely to have multiple DIFs
within a system that are not dedicated to a specific media. Note that (N-1) here
is with respect to the architecture but may not be the (1)-layer within a particu-
lar subnet (i.e., immediately above the physical medium). In Chapter 8,
“Making Addresses Topological,” we explore the relation between public, pri-
vate, organizational, and provider networks.

Implications for Security

We will not attempt a thorough security analysis at this point, but a few
remarks are worthwhile. We assume that all the current security mechanisms
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can and would be applied to the protocols and procedures developed to fit an
architecture based on this model.

As a first step, let’s assume that only applications are threats, not other IPC
processes; then we will relax this assumption to consider that case. First, we
note that the only IPC-related information that an application has access to is
the destination application name and its local port-id. The application has no
access to addresses or destination port-ids. The access control mechanisms of
the TAP have limitations. The most that can be guaranteed is that the DIF is pro-
viding access to an application that to the best ability of the DIF is the applica-
tion being requested. It is then the responsibility of the requesting application to
determine that this is the application it requested.

Because IPC processes are applications, this also applies to IPC processes. As
we saw with the sequence for joining a DIF, the DIF determines whether the
requesting IPC process can join according to the authentication policies of the
DIFE. This is part of the initial enrollment phase. This leads to the conclusion that
the degree of trust that an (N)-DIF can put in an (N-1)-DIF can be characterized
as follows:

A (N)-DIF can only assume that the (N-1)-DIF will try to deliver PDUs to
something and may copy or modify them in the process. If the (N)-DIF does not
trust the (N-1)-DIF, it should invoke the appropriate PDU protection and
authentication mechanisms. If the applications using the (N)-DIF trust the
(N-1)-DIF less than the (N)-DIF does, that is their responsibility.

Let’s consider a compromised IPC process joining a DIE. We will assume that
compromise is such that the new member can pass the authentication and
become a member of the DIF. What damage can it do? The answer is some.
However, unless the policies of the DIF are incredibly loose, it will always be
possible to find the offender and terminate its membership. If a timer-based
EFCP is used, SYN attacks are not possible. The offender could try to flood IAP
requests, but these will be fairly diffuse and mostly negative responses. There
are no well-known sockets to attack. Depending on how access control and
application naming is handled, many application names may not actually be
recorded in any RIB. In general, the potential threats are at best fewer than with
current architectures and at worse no more than current architectures.

As we can see, the nature of the recursion of DIFs is such that any system will
only have access to management information in the (N+1)-, (N)-, and (N-1)-
DIFs that it implements. Further, the (N-1)-DIF will have less scope, and thus
information available to the system will have much less utility. The only (N+1)-
information available will be about the application names available to the
(N)-DIF. This too has limited ability. The greatest threat that a compromised
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system can have is to distribute bad resource allocation and routing information
with its peers.

One aspect that this model has no affect on is virus attacks perpetrated on
communicating applications. Compromises based on weaknesses in the applica-
tion software or the local operating system cannot be addressed by this model.
Although stronger authentication by IPC can help, it cannot prevent such com-
promises.

Conclusions

This chapter has defined the elements of an abstract model for a IPC model of
networking. By taking our cues from key elements of our past experience, and
carefully listening to the problem, we have been able to assemble a simple model
that is much less complex than previous architectures and far more capable. But
at the same time, it has greater capability and solves problems with little or no
additional mechanism that cannot be solved in previous architectures. The
recursive structure implies that the architecture will scale indefinitely. There will
still be bounds, but they won’t be because the architecture has “run out of gas.”
In the process, we have found that the internal structure naturally cleaves into
three functional areas of increasing complexity and longer “duty cycle” times.
This points the way to significant simplifications in implementations.

It is curious that from the earliest days of the ARPANET we saw operating
systems as our guide, but now we find that we just didn’t follow it closely
enough. Looking back from this vantage point, our current architecture looks
more like DOS than UNIX—more like a collection of partial solutions strapped
together with Moore’s law, baling wire and binder twine—but mainly Moore’s
law.

Some will say that this is a general theory of networking. It isn’t. It may be a
model on which we can construct such a theory, but this is not the general the-
ory. Some will be disappointed that I have not addressed important issues such
as performance, congestion control, quality of service, routing, and so on. This
was quite deliberate. This book has been purposely restricted to only the archi-
tectural problems. The first task must be to get the fundamental structure right.
Now that the structure is in place, we can consider these other issues.

This model now forms a foundation for tackling these problems. It provides
the needed orthogonality and regularity at different scales that help to shed light
on the solution of these problems. Of course, these issues had to be a considera-
tion while working this model out. But truthfully, the structure of the problem
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was a greater factor in determining the direction than these issues. In a very real
sense, the problem provided the answer, once it was well stated.

Now we have one more problem to look at—not so much how to solve, but
how to think about it: how to think about location dependence in a network
that is not route dependent.

Then we look at the implications that this structure has for multihoming,
mobility, and multicast.



Chapter 8

Making Addresses
Topological

A 64-byte address is too long, it won’t fit on my business card.
—Any of several CCITT delegates (didn’t get or want their names)
Q: So, how long should an address be?

A: Processing the address should halt.

Introduction

>

Previously in Chapter 5, “Naming and Addressing,” we reviewed the current
state of naming and addressing. We saw how the early development of network-
ing often looked to operating systems for guidance and have seen that perspec-
tive pay off with addressing, too (even though many OS designs, including
UNIX, failed to understand the importance of IPC). From operating systems,
Shoch noted that networks needed the same separation between logical names
and physical addresses that is useful in operating systems. And Saltzer extended
that analogy to include the distinction between virtual and physical addresses,
yielding location-independent applications names, location-dependent node
addresses, point-of-attachment (PoA) addresses, and routes, arguing that these
were the necessary components of a network architecture. We also saw that
Saltzer missed (understandably) that, in general, routing was a two-step process
of choosing the next hop (from sequences of node addresses) and then choosing
the specific path to that next hop.! We also found that the information neces-
sary to determine the path (i.e., the mapping of node address to PoA address of
nearest neighbors) was the same mapping as the application name to node
address or directory at the layer above. This presaged our “discovery” in Chap-
ter 6, “Divining Layers,” that network architecture consists of a single recursive

1 Remember, this is the architectural view and does not change the nature of the forwarding
table in real implementations.
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layer, further implying that the addresses of an (N-1)-layer were the points of
attachment of the (N)-layer and some applications using the (N)-layer might be
members of an (N+1)-layer for which the (N)-layer are points of attachment.
The relation between node and point of attachment is relative: a not uncommon
recurring theme in science that things that at first appear static often turn out to
be relative and, in fact, practice has been doing this for some time, although as
special cases rather than as a general method.

In Chapter 5, we talked often about addresses being location dependent
without being route dependent. We found that it was easy to say but far less
easy to translate into action. At the time when Saltzer wrote, it seemed best to
wait until there was a better understanding of addressing. It is now 20 years
later. The Net is no longer a research project, and addressing problems are
legion. Moore’s law has saved the Internet from needing to act on Saltzer’s
results. However, there are indications that Moore’s law is no longer going to
save us, and we must save ourselves. We have incorporated Saltzer’s observa-
tions and generalized them to a recursive structure that not only solves a num-
ber of addressing issues, but also solves issues of resource management, security,
and scaling.

However, there is still one problem (at least) that remains a major stumbling
block: What does location dependent mean in a network? How in a graph does
one indicate where something is without indicating how to get there? Especially
in a graph that is changing! Location dependence is a straightforward concept
in operating systems, where the relation between application names and logical
and physical address spaces is well understood: Memory address space has a

Terminology Inflation

Our field is notorious for
abusing terminology, and
topology is another exam-
ple of that abuse. (We
seem to like words that
sound more important than
what we need.) In the
overwhelming majority of
cases in networking, the
word topology is used to
mean “graph.” Unfortu-
nately, most practitioners
could not define a topol-
ogy. Some try the cultural
relativism argument of,
“Networking has a different
definition” Hogwash. The
origins of our use came
from mathematics, and we
should have the intelli-
gence and honesty to use
it correctly.

highly regular structure. But that is a much easier problem.
Clearly, to follow the analogy, node addresses and PoA addresses
are supposed to correspond to logical and physical address
spaces. But how do we make addresses location dependent? Loca-
tion dependence is well understood in the other favorite analogy:
street addressing, especially in cities that were founded after
Descartes. The street-addressing analog is closer to what we are
looking for: Given an address, it is easy to derive many routes to
a destination. But networks seldom have the regular structure
exhibited by a city street grid. Intuitively, we know what it should
mean. Putting that into something we can implement has proven
to be a wholly different matter. The often knee-jerk response
when location dependence is mentioned is to suggest latitude/lon-
gitude or some similar scheme (once again jumping to the arith-
metic, before doing the algebra). But it fundamentally misses the
point: We are trying to find something in a network, not on the
surface of a sphere.
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It is clear that the graph of the network is not suitable. Links in
a network come and go with some frequency. It would not be
effective to tie addressing to anything quite so volatile. In addi-
tion, the graph is too tightly bound to the how, not the where. We
need an abstraction of the graph, an abstraction that would
remain relatively invariant to changes in the graph.

The area of mathematics that concerns abstractions of spatial rela-
tions and graphs and properties of invariance is topology. If we con-
sider addresses to have topological properties, we may be able to
create addresses that are location dependent but not route dependent.

A word of warning that I will repeat often: Topological
addresses are not magic, not a panacea. They are a technique for
leveraging an abstraction of the network graph. They can only be
effective to the degree that the abstraction effectively reflects the
network graph. If the network graph bears little resemblance to
the abstraction, topological addresses will not be effective.2 There
is a little mutual coercion here. The structure of the topological
address space is determined by an abstraction of the network
graph. And as the network grows, “things” are easier if it grows in
such away that it reflects the abstraction of the topology. The
structure of the address space influences how the network changes,
and the nature of the network affects the topology of the address
space, not unlike the fact that country roads in the U.S. Midwest
follow section lines,3 not because it is legislated they should (and
they don’t always), but just because “things” are easier if they do.

In what follows, we build on the definitions for naming and
addressing in Chapter 7, “The Network IPC Model.” We consider
how a topological structure may be used to this end. Given that the
definition of topology will be unfamiliar to most readers, we spend
some time on the basics, laying some groundwork for further
investigation of various topologies for addressing. We then discuss
how this could apply to addressing and develop one example of a
topological address space, using at once the simplest and perhaps
the most useful example in real networks: the hierarchy.

2 Tn such a case, it makes one wonder why a particular topology was chosen
as the abstraction, if it isn’t one. Or as a great computer scientist once said,
“If you don’t do it right, it won’t work.”

3" The Northwest Ordinance of 1787 caused all the U.S. Midwest (Ohio and
east of the Mississippi was the Northwest United States then) to be surveyed
into 1-mile squares called sections. An area of 6 by 6 sections is a township.
As luck would have it, the land was fairly flat, it was a reasonable scheme to
carry out.

Is It Worth It?

Does it really matter if we
have topological
addresses? Remember the
“Or is it?” sidebar in Chap-
ter 5 where noted how find-
ing a route in the U.S.
Midwest differed from much
of the rest of the world?
Using topologically depend-
ent addresses makes the
shift to a Midwest view. We
don’t do routing because
we want to know the route.
We do routing because we
need a forwarding table to
generate the “next hop.” In
the Midwest view, the for-
warding decision is derived
from the address in the
PDU and the address of
the router we are passing
through. For a network
which reasonably coincides
with the topology of its
address space, the for-
warding decision is made
directly from the address in
the PDU. Routing informa-
tion would need to be
exchanged when there
were distortions in the
topology. The equivalent of
“the road doesn’t go
through,” or of a “short-cut”
But this information only
needs to be known in the
vicinity of the distortion, not
everywhere. If a PDU is not
going near the deviation, it
does not need to know
about it. Routing exchang-
es are only needed in

the neighborhood of a
distortion. Some routers
would store no routes at all,
and those that did would
store 10s, not 100s of thou-
sands! This inherently
scales. The benefits are
huge. We still need to
accommodate the effect of
load on forwarding, but that
is a resource allocation
problem and better handled
as resource allocation.
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General Properties of Addressing

Names and Addresses

In logic, there are basically two approaches to names: denotation and connota-
tion. In natural language (much to the chagrin of the various academies), the
assignment of names is connotative. Words or names get their meaning from
their usage. However, computer and communication systems are not that smart,
so for the most part the assignment is denotative. Names are essentially labels
on objects. Following directly from Wittgenstein’s Tractatus, this implies that
any arbitrary label can be applied to any object. If one wants the string of
glyphs B followed by E followed by D to stand for a four-legged mammal that
barks and is often referred to as “man’s best friend,” that is their prerogative. In
some sense, this is what the Académie Francaise does, but not what the “harm-
less drudges”* who compile the Oxford English Dictionary do. To get started:

Definition 1. A name space, NS, is a set {N} of names from which all names
for a given collection of objects are taken. A name may be bound to one
and only one object at a time.

Definition 2. A name is a unique string, N, in some alphabet, A, that
unambiguously denotes some object or denotes a statement in some lan-
guage, L. The statements in L are constructed using the alphabet, A.

Any name, n €N, may be either bound to an object or unbound (and thus
available for binding). An unbound name is called a free name. Names from a
given name space may be bound to so-called atomic objects, to other names
from this name space, or to sets of objects or names within this scope. One or
more names may be bound to the same object. Such names are called aliases or
synonyms. Names are objects, too. Some systems will define aliases or syn-
onyms to apply to other names, rather than to the entity named. This can be an
important distinction.

There are fundamentally two operations (and their inverses) associated with
managing names: assignment/de-assignment and binding/unbinding.

Assignment allocates a name in a name space, essentially marks it in use. De-
assignment removes it from use. Assignment makes names available to be
bound. This allows a name space to defined and certain portions of it to be
“reserved” and not available for binding.

4 Samuel Johnson’s definition of lexicographer in the first English dictionary, 17535.
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Binding binds a name to an object. Once bound, any reference to the name
accesses the object. Unbinding breaks the binding name bound to an object.
Once unbound, any reference will not access any object. Because names can be
reassigned to different objects, it is often advisable that once a binding is broken
that the name not be de-assigned (and thus available for reassignment) for some
period of time to avoid errors.’ The length of time will depend on the use of the
name space, and in some cases, it may be advantageous for some names that the
length of time be zero or nearly so. In general, more than one name may be
bound to an object. This is often referred to as an alias. There are two forms of
aliases: direct, where the alias refers to the object itself; and indirect, where the
alias refers to a unique name for the object.

The words unique and unambiguous are significant here. Unique is used to
note that there is one and only one. Unambiguous is used to indicate that refer-
encing a given name will yield the same result without implying that it is the
only name that when referenced will yield this result; that is, there may be more
than one name for an object. Direct aliases are allowed. Thus, a name is a
unique if there is one and only one string unambiguously denotes an object.
Only indirect aliases may occur.

The scope of a name or name space is the set of all objects to which it may be
applied. This will most often be used in reference to the scope within which a
name is unambiguous. Let A DB, if the name, a is unambiguous in the scope of
A, then the there is no other bound or unbound occurrence of the name a in A.
Any reference to a in the context of A will yield the same object. However, there
may be an occurrence of a in B where B N =A = &, such that a reference to a
will not yield the same object as a reference to a in the context of A. For exam-
ple, we may say that an (N)-address is unambiguous within the scope of the (N)-
layer. This means within the (N)-layer, no specific (N)-address will be bound to
two objects at the same time. However, the same address may occur in two lay-
ers of the same rank. The same address can be assigned to different objects as
long as they are in different scopes and different address spaces. When we speak
of the scope of one address space being larger or smaller than another, we are
comparing the number of bound and unbound elements in each set.

As noted previously, it was well understood that addresses should be location
dependent. Here we solve this problem by defining a topological relation
between an address space and the elements it names (and later, topological rela-
tions between address spaces in adjacent layers).

3 In networks, there are practicalities that must be considered. Because there is always some
time delay in propagating any changes in state, we will want to delay de-assignment so that
references made during the change can be referred to a possible new assignment, followed by a
period after de-assignment and before reassignment when a reference results in an error to
minimize the chances of a wrong reference after reassignment.
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Definition 3. An address space, AS, is a name space defined over a set {A}
of strings, a, in the language, L, which is a topological space. Associated
with {A} is a function, F:O -> A, that maps objects, 0 € O, to be assigned
addresses to addresses, a € A. Taking our cue from Frege, F is a function of
one or more properties of the object that exhibits the appropriate attribute
of “nearness.” The set {A} has a topologically structure to some level of
granularity, g.

Definition 4. An address is a topologically significant name, which unam-
biguously identifies an object or a set of objects.

If we are going to define an address as a topologically dependent name, we
should also have a term for the nontopological names, just to keep the pedants
off our backs. Laziness suggests that we create the definition:

Definition 5. A title space is a topologically independent name space.

Definition 6. A t#itle is a topologically independent name that unambigu-
ously identifies an object or a set of objects.

A title is a specialization of a name. A title is a label for an object and can be
chosen entirely arbitrarily. The only constraint is that the chosen string in the
name space is not bound to another object. Therefore, there is no structure
imposed on the elements of the name space. Such a name space is often referred
to as flat. In other words, we use title to refer to names that aren’t addresses.

An address space is a name space with a topology imposed on it. An address
is a specialization of a name. Although an address is a label for an object just as
a name is, the label cannot be chosen entirely arbitrarily. An address space has a
structure. There is the additional constraint that the name must be chosen to be
topologically significant (within some degree of granularity). Therefore, there is
a structure imposed on the elements of the address space to reflect this topology
and assigned according to an algorithm that maps elements of the address space
to the objects being named. Now let’s consider the definitions of a topology.®

6 The definitions found here can be found in any basic text on topology. Here we have relied on
(Newman, 1964), (Mendleson, 1971), and most especially, as always, on (Bourbaki, 1990).
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Introducing Topology to Addressing

Definitions

Definition 7. A topological structure (or more briefly, a topology) on a set X is
a structure given by a set A of subsets of X, having the following properties
(called axioms of topological structures):

(O1) Every union of sets of A is a set of A.
(O2) Every finite intersection of sets of A is a set of A.

The sets of A are called open sets of the topological structure defined by A on X.

Another way of considering a topology that is more helpful for these prob-
lems is that it is the study of those properties of an object that are invariant
under deformation. To be more precise, consider Definition 8.

Definition 8. A topology is defined as follows: Let X be a nonempty set and
T a collection of subsets of X such that

Al.XeT
A2.0eT
A3.1f Oy, O,, ..., 0, € T, then
0,0, n...nNO eT
A4.If foreachae ,O0, € T, thenu,_,;0,€e T.

The pair of objects (X, T) is called a topological space. The set X is called the
underlying set, the collection T is called the zopology on the set, X, and the
members of T are called open sets.

Definition 9. A topological space is a set endowed with a topological struc-
ture.

Definition 10. Topology is the study of properties that remain invariant
under a homeomorphism.

Definition 11. A homeomorphism is a continuous function, F: X =Y, which
is one-to-one and onto, and maps each point x € X to a point y € Y, and F!
exists and is continuous. This mapping ensures that points “near” x are mapped
to points “near” y.
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Figure 8-1 A homeomorphism is a continuous function F:D->R that is one-to-one and
onto and has a continuous inverse and hence preserves “nearness.”

Definition 12. A homeomorphism of a topological space X onto a topologi-
cal space X’ is an isomorphism of the topological structure of X onto that of X’;
that is, in accordance with the general definitions of a bijection of X onto X’
which transforms the set of open sets of X into the set of open subsets of X’.

The definition says that two points may be near each other in one set and far
apart in another, but the distortions (mapping) maintain the relation of the
points to each other (Figure 8-1). It also means that all surfaces with one hole
are equivalent (doughnuts and coffee cups) or with two holes are equivalent,
and so on. All of this derives from the definition of homeomorphism. The defi-
nition states that there is an onto mapping from one surface to another without
any rips or holes; that is, it is continuous and there is an inverse. It is this con-
cept of nearness that we are most interested in. And in particular for network
addresses, we are interested in metrizable topologies.

When one says a network has a certain topology, one means that there is a
function, which is a homeomorphism between the graphs of two or more net-
works. So in fact, when one says that a network has a certain topology, one is
saying that there is a set of graphs that maintain certain structural properties in
common. One may talk about star topologies, hierarchical topologies, mesh
topologies, and so on. These all refer to sets of graphs with certain invariant
interconnection properties. One may say that two networks have the same
topology even if the lengths of the arcs are different but the number of nodes is
maintained, and so on. However, one must be careful. Often in the networking
literature, topology is used when graph would be more correct; that is, the use
refers to a single network in isolation, not to a class of networks or graphs.

Addresses are used as an indication of where without indicating how to get
there. An address space is a name space with a topological structure (Fig-
ure 8-2). A one-to-one and onto function F:A —=> A on a set creates a topology.
In other words, one wants addresses to be location dependent without being
route dependent. This is desirable because there may be more than one route to
a given location and most of the time the choice of how to get there may change
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much more frequently than where the destination is. So it is desirable to post-
pone choosing a route as long as possible. It is advantageous to be able to
change the path while en route to the destination.

The mapping of addresses to the network reflects where things are for some
notion of where. To make it easy for the routing algorithms, it is necessary to
encode this sense of where in the address without constraining how, so that
objects near each other have similar addresses. One would like an address to be
useful in the sense that if I know where I am and where I want to go, the address
provides some indication of which possible paths or directions will get me closer
to the goal. This implies that the mapping of identifiers in the address space to
the network elements is not arbitrary. In fact, the mapping defines a topology.
Think of the address space as having a topological structure such that when the
graph of a network is laid over this space the nodes in the network are assigned
addresses according to which points are near the nodes. Purely as an analogy,
consider a city laid out on a grid. Part of the plan for the city is the “address
space.” Before a street is constructed and buildings are built on it, one knows
what addresses they will have. The addressing is imposed on the streets and
buildings by the plan. Essentially, we want to construct an abstract version of
this for network graphs.

Address Space, A

F:A->G

Graph or Network, G

Figure 8-2 The address space, A, has a topological structure defined by the function
F:A -> G. Points near each other in G will be near each other in A.

From a practical point of view, it is useful to distinguish nearness only to a
certain resolution. Note that resolution for purposes of addressing is not the
same as resolution for purposes of finding a physical object. Hence, we will
define granularity to capture this concept.

Definition 13. The granularity, g, of the address space, AS, is defined as fol-
lows:

Consider two addresses, a and b in A

if d(a,b) < g, then d(a,b) =€

aslime— 0
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In other words, while a and b are distinguishable (i.e., a # b), referencing a
will yield a different object than referencing b. But as far as the topology of the
address space is concerned, they are in “the same place,” even though physically
they may be a great distance apart (different topology with a different granular-
ity). This property is common in address spaces. For example, in the telephone
system, numbers within the same exchange exhibit this property. Two numbers
in the same exchange are “in the same place” even though they may be tens of
kilometers apart. The topological distance between any two telephone numbers
in the same exchange is less than g for that topology.

The “granularity” of the address space is essentially a subset of the address
space in which the “distance” between two addresses is considered to be zero;
that is, they are topologically in the “same place.” This implies that for any
topology, addresses within the same domain of granularity g, (i.e., d(a, b) < g),
all routes to these addresses must be the same; that is, any path into this granu-
larity domain, g;, has the ability to reach any address in the granularity domain
(within given some number of concurrent failures within the domain). In other
words, the connectivity within the domain of granularity is such that any
address within g; can be reached by paths leading into g; assuming some number
of links within g; are not down at the same time. This is consistent with our
intuitive notion of granularity and at the same time puts bounds on its size that
are not entirely arbitrary.

Two other mathematical properties will prove useful in applying topological
addresses to networks: distance and orientation. When these properties are
used, they represent special types of topologies.

Definition 14. A metrizable topological space is a topology for which there is
distance function.

Definition 15. A distance function is defined as a function, d:x —>y

Where x,y € X such that
1. d(x,y) 20

2. d(x,y)=0ifx=y

3. d(xy) = d(yx)

4. d(x,z) £ d(x,y) + d(y,z)

We will define an address space, A, to have an orientation if and only if there
exists a relation R on A that is a partial ordering, which is defined to be reflexive,
antisymmetric, and transitive. This construction is adapted from and uses the
definitions found in (Bourbaki, 1968).

Definition 16. There exists a relation R on a set A such that for all x, y, and z
in A
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1. xR x,
2. ifxRyandyRx,thenx=y
3. if xRyandyRzthen, xR z.

Further, we know that an ordering on a set A is a correspondence
I'=(G, A, A)
where A is the domain and range of G and 3 V(x,y) € G is an order relation on A.

Definition 17. If R is an order relation on A, it has a graph that is an order-
ing on A. Where the graph, G, is defined as follows (Bourbaki, 1968):

G is said to be a graph if every element of G is an ordered pair (i.e., if the rela-
tion

(Vz) (z € G => (z is an ordered pair) is true.

An address space is a set with a topological structure and in some cases a dis-
tance function and/or an orientation. One must be aware that while the defini-
tions here appear to be the familiar ones from analytical geometry, there is no
requirement that the distance function be, in fact, Cartesian. Other distance
functions may be more useful with address spaces. A topology with orientation
relation imposed on it gives us an abstract notion of “direction.” Both of these
can be used to advantage in translating a designation of where to a definition of
how to get there. The topology of an oriented address space maps the elements
of the address space to the elements of the network, which form the graph of
this layer. In essence, we create a homeomorphism between the address space
and the elements of the graph of the layer (i.e., the connectivity of elements with
respect to their layer). The effectiveness of the routing and resource manage-
ment for the layer can be greatly enhanced if the topology is metrizable and has
an orientation.

Topologies for Addressing

As anyone who has tried to use a Chinese dictionary can verify, naming does not
scale.” One of the advantages of the relatively short Western European alphabet
is that it allows an effective topology to be imposed on the name space with the

7 1In the official Chinese/English dictionary, the PRC made the dictionary easier to use with a
step that while infinitely pragmatic was nonetheless completely unparalleled for a lack of
nationalistic chauvinism quite uncharacteristic of any country. The dictionary is organized by
the Pinyin spelling of the characters, rather than the traditional count of strokes and radicals.
The traditional collation could yield as many as 85 different characters under the same entry.
Using Western collating sequence will still yield many characters under the same entry, but the
granularity of the resulting topology is much smaller.
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benefit of a more manageable dictionary. The collating sequence of the language
is the property used to determine where the word goes in the topology of the
address space (i.e., the dictionary). The nature of current routing algorithms has
caused us to combine route determination and cost optimization. Because we
want to consider multiple metrics, we will try to separate determining connec-
tivity and cost optimization/route selection.

Actually, a better analogy for our purposes might be a thesaurus. A thesaurus
maintains a mapping between two name spaces each with a different topology.
There is one table that is arranged in the collating sequence of the language (i.e.,
alphabetical) and another table arranged in some semantic topology that
attempts to place words with similar meaning “near” each other for some con-
cept of “near.” The first table has pointers into the second.

The primary difference between application naming and IPC addressing is
the nature of the topology. IPC addressing topologies are used to locate IPC
processes relative to each other within the DIF and are, therefore, location
dependent. This is why they often seem to be based on spatial topologies and
why the naive approach assumes location dependent means geography. Applica-
tion naming topologies are used to locate applications within a semantic space
(or a set of semantic attributes). For example, we structure file directories in a
way that is meaningful to us and helps locate files within the organization of
files, not physical devices, and may, therefore, be location independent.® It is
possible to create location-dependent application naming, just as it is possible to
create route-dependent network addresses.” As indicated earlier, in some situa-
tions this is even desirable.

Thus, applications will have addresses drawn from topological spaces,
although in some cases, not metrizable spaces, although the semantic Web may
be trying to rectify this. However, address spaces for IPC will most likely be
metrizable and, if not, at least have an orientation. Because the nature of the
address spaces is so radically different (and is supposed to be), mappings from
an application address space to a distributed IPC address space are unlikely to
be homeomorphic. A router wants to determine two things: given PDUs with
different addresses, which addresses are “near” each other so that it can send
the PDUs in the same direction; and given the address, which “direction” to

8 Well at least not for any post-1960 operating system technology have we had to know what
physical drive files were on. Although such operating systems continued to be written after
1960, generally as class projects, this does not change their vintage.

Traditionally, application names have been assumed to be human readable. However, a cur-
rent trend might seem to indicate that search engines, such as Google and Yahoo!, are displac-
ing this view. This tends to confuse names and attributes and relies on the same attribute list
and yielding the same results over time, an iffy proposition at best.
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send it. Thus, the relation between address spaces of layered (N)-DIFs should
have similar concepts of nearness to facilitate routing within their layers or sub-
nets. We can expect that mappings between layers will in most cases be homeo-
morphic.

Network address architectures without this topological dependence do not
define addresses, only names. MAC and pre-CIDR IP “addresses,” for example,
are names, not addresses. This is not a problem for MAC addresses'? because of
the limited scope of LANs and the broadcast nature of the media, although
more and more we are seeing demand for routing in LANs. However, it is often
called something else, partly for marketing reasons and partly to avoid turf con-
flicts. Ethernet has been backing into routing since spanning trees were pro-
posed. With Ethernet coming full circle to wireless, there is no doubt that
routing occurs in the media layer. And in fact, the theory developed in this book
endorses that move.

Their scope is essentially less than the granularity of the address space to
which routing is applied. The scope of these subnetworks is sufficiently small
that scaling is seldom an issue. Unfortunately, this is not generally the case for
IP; and where it is the case, it seldom matters.Consequently, IP addressing fails
to scale on two counts: It is (pre-CIDR) a name space, not an address space and
is route dependent.

So, is an addressing scheme based on country codes, such as the NSAP
scheme, better? Sort of. The existence of the syntax identification of the address,
the AFI, is clearly not topological. It might be interpreted as either the name for
the syntax of the address space but probably would be interpreted as, “Route
this to that kind of network in as few hops as possible.” The country codes
make the space topological, but do network boundaries coincide nicely with
political boundaries? Sometimes, but by no means always. This will work well
for large countries or densely populated ones, but even here it might be better to
have more than one domain per country at the same level of the hierarchy for
some countries (and in regions with a number of small countries or not so small,
but less densely populated countries where there would be advantages to a
higher-level domain serving several countries). So the domains implied by the
country codes may not correspond well to the logical topology best suited for
routing purposes. But this could be accommodated by a judicious choice of
country codes, as is done now with two-digit numbers for large European coun-
tries and three-digit numbers for smaller ones (e.g., France, 33; Germany, 49;
but Lichtenstein 352; Gibraltar, 350; and so on).

10" MAC addresses are a case of overloading the semantics of the address as both an address and
a serial number.
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Telephone networks grew generally under government sponsorship, and so
nonoverlapping national boundaries tended to occur naturally. Multinational
corporations, on the other hand, have built data networks, in a period of dereg-
ulation. Consequently, national boundaries may not coincide with the structure
of the network as naturally. It may well be the case that the convenient routing
domains would not correspond well with any national boundaries. Some of
these cases would have been helped perhaps if the NSAP scheme had allowed
for a “regional domain” above the countries. It will seldom be the case that the
domain boundaries of the addressing topology and political boundaries will
coincide.!! However, many individuals and thus institutions place considerable
weight in “having their block of addresses,”2or perhaps more to the point
where countries are concerned, that their domain is at the same level as other
countries. Clearly, such chauvinism can play havoc with an effective addressing
architecture. And all the more reason that we should remove considerations of
addressing from the visibility of the end users. This is somewhat understandable
in traditional networks such as the telephone network or an IP network, where
the address was all there was to hang on to. Removing the prominence of the
address by recognizing it as an identifier internal to a distributed IPC facility
and focusing on application naming should go a long way to defusing some of
these issues.

The primary question is what topologies for address spaces make sense, are
easily maintained, scale, have nice properties for routing, and so on. The prob-
lem then is to find useful and effective algorithms for creating and configuring
topologies of address spaces based on the abstractions and aggregation and the
topologies of subnets without tying it to the physical topology of the network
but at the same time providing a convergence to that physical graph. The phys-
ical graph should be guided as much by the topology of the address space as by
other considerations. Or with an allusion to Einstein, it is the theory that deter-
mines the data, or it’s the topology that determines the network! If the graph of
the network differs significantly from the topology chosen for the address space,
the wrong topology has been chosen. Consequently, there is no single answer.

11 There was a country that once had an RFP for a network that required that each of its 20 or
so provinces have its own network management system, but the national network only
required 6 or 8 switches! A phrase about “Too many cooks ...” comes to mind.

12 Not unlike our friend who wanted his network address on his business card. A prominent cor-

poration believed they should have a block of Class A IP addresses because they were presti-
gious. Because they were prestigious and only dealt with the most important customers, they
had many fewer offices than companies that dealt with the multitudes and had offices every-
where. The fact that numbers of systems was what counted and they didn’t have the numbers
simply didn’t register. Clearly, a Class A network was “better” than having Class B subnet-
works, and they were definitely Class A.
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The topology of the address space and the graph of the network need to be
worked out together. The best we can do is to explore common network graphs
for useful topologies.

The Role of Hierarchy in Addressing

To date, all address architectures for large domains (networks as well as others,
such as the postal system, the telephone system, and so on) have utilized hierar-
chical topologies for everything except the terminal sets of the address space.
There has been considerable use of other topologies in these local environments,
spatial, Cartesian, flat (enumeration), time, random (another form of enumera-
tion), and so on. The small scale allows almost any assignment procedure to be
used.

Of course, hierarchical routing schemes have been proposed, notably Klein-
rock (1977) and, more important, O’Dell (1997). In these cases, these routing
schemes are used in a single layer reflecting a graph that is primarily hierarchi-
cal. Here we will do something a bit different that has greater effectiveness and
flexibility.

As yet, there are no logical arguments (i.e., proofs) that a hierarchy is the
only topology that can be used for large domains. On the other hand, we have
no examples or proposals of any other topology actually being feasible on a
large scale. This makes it difficult to make many general statements about
addressing without assuming a hierarchical topology. Therefore, we will
develop the concepts for a hierarchical topology while issuing a challenge to
others to develop nonhierarchical topologies.

There are three distinct hierarchies in network architectures that are all use-
ful but are often confused and sometimes combined:

¢ The hierarchy of layers
¢ The hierarchical address space
¢ The hierarchical arrangement of subnetworks

All three are important to an addressing architecture. There is a tendency to
confuse them or to assume one implies the other. We saw in Chapter 5 the incli-
nation to confuse the hierarchy of layer and the hierarchy of addressing by put-
ting the MAC address in the IP address and thereby defeating the purpose of
their being distinct. However, there are three distinct independent hierarchies.
The distinctions among them must be kept clear. If assumptions are made that
meld them, they must be clearly made and understood. I will attempt to keep
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them as distinct as possible to clarify the role each has in developing an effective
addressing architecture.

The Hierarchy of Layers

Network architectures are organized into a hierarchical stack of layers. In tradi-
tional network architectures, these have been layers dedicated to different func-
tions. Consequently, pictures of such stacks of layers seldom illustrate the
salient properties we are concerned with. The common “tower” figure implies
that there is a set of layers stacked one on top of another, all with the same
scope in all systems in the network, often leading some to conclude that the
same protocol is under all higher layers at all places, which is seldom the case.
The “hourglass” figure of layers is used to represent the diversity of protocols at
the top (applications), narrower in the middle with many fewer protocols usu-
ally only one or two, and widening again at the bottom reflecting the diversity
of media. This diagram illustrates the taxonomy associated with the layers but
does not illustrate the layers in an operating network. These diagrams were
tightly bound to our ideas that layers had different functions. Now that we con-
sider layers to all have the same functions, our interest is in the scope of layers,
in their ability to partition and organize the problem. In this case, we arrive at
the “hill and valley” model of the last chapter.

The same network as seen by Layer 2.

A Network as seen by Layer 1,
i.e. the physical graph.

Figure 8-3 The use of layering to abstract the graph of a network.

Layers have two major properties that are of interest to us: abstraction and
scaling (i.e., divide and conquer). Layers hide the operation of the internal
mechanisms from the users of the mechanisms and segregate and aggregate traf-
fic. But most important, they provide an abstraction of the layers below. To cre-
ate a topological address space, we need an abstraction of the physical graph of
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the network. Layering will prove to be an effective tool for creating that
abstraction.

Lower layers in this hierarchy have smaller scope. In general, scope increases
as one moves up through the layers. This forms the equivalent of a tree with
many more leaves (bottom layers) than branches. This provides the mechanism
by which we can “divide and conquer” the problems tackled by the layer. At
lower layers, we deal with issues at a finer granularity over few objects; whereas
at higher layers we deal with less granularity but over more elements, such that
the amount of work to accomplish these functions remains relatively constant
from layer to layer.

These layers allow efficiencies in routing and resource allocation to be
achieved. When there are multiple flows between the same intermediate points,
these flows can be combined into a single lower-layer flow, encapsulated at a
lower layer, where “same place” may be a host or some intermediate router (i.e.,
part of a path). The latter is more likely. This will be effected by a lower layer
with a smaller scope and address space than the layer above. The smaller scope
of lower layers means that PCI overhead will decrease with the lower layers,
which will also reduce the complexity of the routing tasks (i.e., fewer routing
decisions on fewer flows requiring less routing computation and routing traffic).
We can use how the scope of layers is chosen to impose a particular topology on
the network. Figure 8-3 illustrates how layering might be used to abstract the
graph of a network. At the upper layers, we get a more mixed bag, layers of
both greater and lesser scope.

Layering is our primary tool for abstraction and scaling.

The Hierarchical Topology of Address Spaces

Layers with a relatively large scope will have a large number of elements to be
assigned names from its address space (Figure 8-4). The management of the
address space is much easier if a hierarchy is imposed. The address will consist
of a sequence that corresponds to the branches of the hierarchy. This sequence
does not specify a route but only a location within the granularity of the address
space. A nonterminal domain identifier identifies a set of domains (i.e., a set of
sets of addresses). The nonterminal domain-ids can be used to encode finer and
finer granularity location information and may also indicate distance and direc-
tion. The terminal domains reflect the granularity of the topology. Within the
terminal domains, addresses are assigned in some arbitrary fashion. This does
not imply random or simple enumeration for assignment, although it may be
either. Put simply, this implies that the assignment of values in the terminal
domain is not necessarily topological. We have previously defined this point at
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which the structure of the topology disappears as the granularity of the topol-
ogy: The points are distinguishable, but their “distance” is indistinguishable
within the topology.

Figure 8-4 Hierarchical addressing of a single layer is used to manage the size of the
address space.

This is similar to the addressing scheme found in Japanese cities, where a
series of proper subsets (prefect, neighborhood, block) finally gives way to sim-
ply numbering houses in the order they were built. The use of hierarchical
address space is very common and very old and seems quite natural. However,
this can hardly be considered an endorsement. Where addressing is concerned,
intuition and “naturalness” have too often proved not just fallible but a trap.
The postal system is probably the most ubiquitous form of hierarchical address-
ing. As networks began to get larger, hierarchy is imposed on the addressing.
And as with the postal system, it has often been along geographical lines at least
down to countries and distribution points within those countries then shifting
to a different topology for delivery. We have already pointed out some of the
problems with these approaches, but hierarchy remains the only useful and scal-
able approach, we have found.

We have already defined earlier the basic properties of an address space. We
now need to consider how those properties are manifested in a hierarchical
topology. In this topology, the points are represented by a string of domain iden-
tifiers:
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The primary property that we must develop is the concept of distance.
Above, we defined the granularity of the topology to be the minimum distance
between two points that can be distinguished by the distance function. In this
topology, we define that granularity, g, as follows:

d(a,b)<g

Va=(a,,...,a;,a))and b= (b, ..., by, by)
3a,=b; Vi3 1<i=<n

In other words, the distance between two addresses in the same leaf domain
is indistinguishable in the topology. Let’s define the distance between two
addresses, a and b, to be:

d(a,b)=2*X (a,=b,) 1<i<n

The summation measures the depth of the subtree to be traversed from a to
b, and then to get there it is necessary to go up to the first domain in common
and then back down, hence *2. This of course is for the easy case where the tree
has equal depth on all branches. A somewhat more complicated equation will
be necessary for trees with unequal depth.

Hierarchical addressing is our primary tool for organizing and locating
addresses within a single layer. A hierarchical address space applies to one layer
and only to one layer. Figure 8.4 illustrates how a hierarchical address space
might be used to organize and locate elements of a layer.

The Hierarchy of Networks

In the early days of data comm, hierarchical networks were common. This gen-
erally consisted of terminals at the leaves with various forms of concentrators
and stat muxes as intermediate nodes and a mainframe at the root. These tree
networks had limited routing capabilities. These have not entirely disappeared
but are not what we are concerned with. Hierarchies of networks are repre-
sented by subnets, which are arranged hierarchically with more connectivity
within the subnets than between subnets, but seldom a single connection. Real
networks are generally organized into a rough bierarchy; of subnets with
smaller corporate or organization subnets connected to metro subnets, con-
nected to regional subnets connected a backbone subnet. “Rough” in this sense
implies that the hierarchy is not strictly followed. There might be shortcuts
between nodes of the tree (which are subnets) that create loops.

The levels of subnets attempt to minimize the number of hops required to
deliver a PDU between any source and destination. Also, by working with sub-
nets, redundant connections between subnets can be provided while maintain-
ing the hierarchy. The desire to keep network diameter small also moderates the
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depth of the hierarchy. This sort of tree will on average lessen the number of
hops between any two points. Figure 8.5 illustrates a hierarchy of subnets.

The potential inefficiency of strictly following a hierarchical topology for
routing is well known, especially for “local traffic” or traffic between “popu-
lar” sites within a network. Hence, networks in the wild are seldom strict hier-
archies. Additional arcs will often be added to “short-circuit” the path between
branches of the tree with a considerable traffic. Exchange points are used to
short-circuit the hierarchy and to further optimize the route between points
with lots of traffic. We would see that these are easily recognized, and it is easy
to take full advantage of them.

Metro Subnets

Y S

Regional Subnets

L

@ National Backbone

Figure 8-5 Typical hierarchy of subnets. Backbone connects only to regionals. Region-

als connect only to backbone and metro subnets. Hosts connect only to metro subnets.

The number of levels in a hierarchy (Figure 8-5) will vary depending on the
number of elements in the network as well as organizational considerations. For
example, one feeder subnet might be a small corporation with several subnets,
or a local ISP with residential or corporate customers with their own subnets,
and so on. Some networks such as the public Internet are not rooted in a single
subnet, nor are the connections between subnets strictly hierarchical, nor should
they be. The hierarchy is imposed as the minimal (or default) connectivity of the
subnets, although not necessarily the primary or optimal connectivity. The tree
is the minimal connectivity that a router needs to know. The links that make the
connectivity a lattice can be considered elements of alternative subnet hierar-
chies (i.e., “shortcuts™). Also, user systems will not be attached only to “leaf”
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subnets but to whatever subnet is closest to the user’s system physically. How-
ever, this latter practice is fast disappearing as networks become very large and
the realities of “impedance matching” the relative low load of host access with
a much higher load backbone become more pronounced.

Early in the history of networking, there was considerable work to optimize
network design. The early work was based on optimizing flows in graphs using
the mathematics developed for optimizing pipelines and other such systems. The
primary concern was ensuring that there was a minimal number of sufficiently
large “pipes” to support the expected traffic to achieve a reasonable level of
redundancy. As networks grew, the number of nodes in a typical path through
the graph also became an issue. The more nodes, the greater the switching delay.
This naturally leads to a hierarchy to reduce the diameter of the network.

By the same token, the network design should be guided by the topology
imposed by the address space. The more the graph follows the topology, the eas-
ier routing will be. On the other hand, a network design must accommodate
less-ideal constraints, such as high-volume traffic between particular nodes or
completely irrational considerations such as tariffs.

Entire books have been written on the design of such networks to optimize
throughput and delay. However, here we are interested only in the relation of
this hierarchy of subnets to addressing. Although the address architecture is
ultimately concerned with finding a route from the source to the destination, the
address itself must limit its role to “locating” the addressable element. This will
be made much easier if we are able to recognize and use the hierarchy of subnets
in the assignment of addresses. Clearly, a near optimal path would be to route
toward the backbone (unless a shortcut is encountered) and then back down the
tree. The obvious approach would be for the hierarchy of the address space to
correspond in some way to the hierarchy of subnets. However, we can’t make
the correspondence too close because physical network topology tends to
change. The address space is supposed to be dependent on location but inde-
pendent of route. Thus, while an address space should recognize the hierarchy
of subnets, it should not be too tightly bound to its connectivity. As discussed
later, the Internet is actually many hierarchies superimposed.

The first two hierarchies described here are tools to facilitate creating an
effective topological address space. The hierarchy of subnets is a structure that
many real networks follow to a greater or lesser degree. Some readers will no
doubt be thinking this: The Internet topology is not hierarchical. Many papers
have said so. There are two responses to this: 1) The public Internet is not the
only network or even the only Internet in the world. As scientists and engineers,
it is good to have an understanding of more than one corner of the problem
space. 2) No, the Internet is not a hierarchy. It is a collection of hierarchies with
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shortcuts, which are, in turn, hierarchies with shortcuts. It would seem that
some observers have difficulty seeing the trees for the forest. In what follows,
we consider how keeping theory close to practice can leverage each other. We
first look at the implications for a single layer and then look at how this applies
to multiple layers. Finally, we consider how this can be applied to networks con-
sisting of several overlapping and nonoverlapping hierarchies of layers.

Melding Address Spaces and the Hierarchy of Layers

Before beginning our example, let’s consider how we can use our tools to create
an effective naming scheme for a hierarchy of subnets.

Address spaces are finite point set topologies. Networks are finite graphs.
The graph of an (N)-layer as seen from above the (N)-layer boundary (i.e., by its
user) is a fully connected graph; that is, everything is directly connected. Each
node (i.e., application) is one arc from every other node. The applications
appear one hop from each other at this layer.

The graph of the (N)-layer as seen just below the (N)-layer boundary is an
(N)-network consisting of the collection of (N-1)-layers, which form a covering
of the (N)-layer and the (N)-relays providing the connectivity among the (N-1)-
layers (or subnets). Thus, the (N)-network consists of all nodes in the (N)-layer
(i.e., (N)-IPC-processes) either multiplexing at the edge or relaying in the inte-
rior, and arcs connecting those nodes (i.e., (N-1)-layers). A topology is imposed
by a mapping between the elements of an address space and the graph of the
(N)-layer.

The composition of subnets chosen to constitute the (N-1)-layers creates the
topological structure of the (N)-network (i.e., the abstraction of the graph). The
end nodes of the network are directly connected to one or more (N)-relays (i.e.,
they are one hop across an (N-1)-subnet from one or more (N)-relays). k(N-1)-
layers are required to cover the (N)-network (i.e., support the scope of the (N)-
layer). To be less abstract for a moment, an (N)-network looks like a WAN
connecting a set of LANs. As one goes up through the layers, the “WAN” gets
larger and the “LANSs” get smaller.

There is a “covering” of layer (N) if and only if every (N)-layer relay has a
binding with an element of some (N-1)-layer (i.e., a binding between an
(N)-IPC-process and an (N-1)-IPC-process in the same system). A covering does
not require every (N)-IPC-process to have an (N-1)-IPC-process. In particular,
an (N)-IPC-process that is not an (N)-relay may not have such a binding.

Each of (N-1)-layers as seen by the (N)-layer is fully connected. The resulting
graph formed by the (N)-relays spans the (N)-layer. This is an abstraction of the
underlying physical network.
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This abstraction is refined (made less and less abstract) down through the
layers until the topology of the (N)-network is isomorphic to the physical graph
of the network.

Moving from top to bottom, the layering decomposes the connectivity and
resource-allocation problems into manageable pieces by creating a covering of
(N-1)-layers of fewer elements and greater bandwidth. The layers between the
“top” and “bottom” are created as a combination of abstracting the physical
network graph and aggregating the flows of the layer(s) above. The higher the
layer, the more aggregation dominates; the lower, the more the physical network
dominates. At some layer, the connectivity of the layer (i.e., its graph) becomes
isomorphic with the graph of the network, ultimately at the physical layer. The
graph created at layer (N) represents the connectivity at this level of abstraction.
(Other characteristics are changing, too, but here we are only concerned with
those that relate to addressing.)

The binding between the elements of the point set topology formed by the
(N)-layer address space and the graph of the (N)-network is the basis for rout-
ing. Maintaining this mapping is the directory/routing function.

In general, the address space at layer (N) is larger than the address space at
(N-1)-layer owing to the smaller scope of the underlying layers. Each succes-
sively lower layer contains fewer elements than the layer above. (Lesser scope
implies fewer elements reachable within a layer and therefore shorter
addresses.)

Mappings from (N)-application-names to (N)-addresses will not be homeo-
morphic because they are very different kinds of names. Application naming is
intended for an external location-independent purpose rather than the internal
location-dependent purpose. But the mapping between DIFs of internal
(N)-addresses to the (N+1)- or (N-1)-layers may be homeomorphic. There are
basically three exceptions:

1. For (N)-layers with a scope that is sufficiently small (i.e., smaller than the
granularity of typical address spaces that the address space need not be
topologically dependent; in other words, flat). The bottom layer will sel-
dom have a topological structure because it has such small scope and is so
close to the physical graph for “topology” to be effective (although there
are exceptions).

2. There may be a discontinuity in the mapping between layers belonging to
different domains, such as a layer between a private and a public address-
ing domain or from one provider to another. This mapping may or may
not be a homeomorphism. (If there is no homeomorphism, clearly there
has been a major discontinuity in the abstractions in adjacent layers.)
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3. The (N+1)-layer does not meet the interfacing security requirements of the
(N)-layer. The (N)-layer does not trust the (N+1)-layer and only creates
flows/connections between applications (i.e., it does not recognize the
applications as (N+1)-IPC-processes).

For media with physical layer addresses that may be assigned at installation,
it might be possible to make even this last mapping homeomorphic. Our chal-
lenge is to find a topology that leverages the mappings between layers and to
leverage the network graph.

As we have seen, a hierarchical address space is commonly used as much to
facilitate the management of address assignment as it is to be a useful address-
ing topology. Each layer has a distinct and independent address space.!3 If the
scope of the layer is large enough, it will have a hierarchical address space
imposed on it. The hierarchy breaks up the address space into manageable
pieces with various levels having their own subauthorities for allocating sub-
trees. Each nonterminal level of the tree defines a set or domain that may be
administered independently and can also correspond to regions of the subnet.

The choice of domains is not entirely arbitrary, although there is considerable
flexibility in choosing them (and choosing well is highly desirable). In general,
these domains will correspond to geographical regions, spatial loci of organiza-
tional facilities, subnetworks, and so on, taking into account likely exchange
point arrangements and granularity. However, they should not be along organi-
zational lines that do not correspond with some form of spatial locality; that is,
members of a department spread through multiple buildings would probably
not be a good domain choice. (Remember that here we are concerned with cre-
ating topologies to facilitate routing. Defining VPN to create subnets that cut
across the routing topology is a very different problem and best accommodated
with a layer on top of the “routing layers.”) Although the choice does not
directly reflect the connectivity of the network, it is important to recognize that
things near each other may be connected by a single subnet. As discussed later,
it is possible to define an addressing architecture for an organization of layers
that is simple to maintain. As we will see, choosing domains can be used effec-
tively when mapping one layer to another.

«€__ 3

The sign should be read as “is easily confused with.”

—attributed to G. Frege

13 This does not imply that there can’t be relations or conventions in how address spaces for lay-
ers are designed but only that there is no requirement for such relations to exist. However,
such conventions may be highly desirable.
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Hierarchical Addressing Architecture

The challenge then is to effectively use the hierarchical tools on the naturally
occurring hierarchical network to create an addressing architecture. The
address space is our primary concern. We want the assignment of addresses to
facilitate finding the location of the IPC-processes to the greatest degree possi-
ble.* The address is our primary “key” or “index.” We have already observed
that the only topology that has been found to scale for a wide range of size,
granularity, and other properties is a hierarchy. It would seem fortuitous then
that the seemingly preferred organization of physical networks is roughly a hier-
archy with “shortcuts” between subtrees; and that all we would want to do is
design the address space to loosely coincide with the hierarchy of subnets. The
“shortcuts” are optimizations for “routing” and not concerned with “locating”
(and “loosely” here is the key). Locating must remain independent of routing.
However, we know that the physical connectivity represented by the subnet
structure is subject to change. And although we recognize that this change will
affect addressing, experience has shown that it is not wise to tie the addressing
structure too tightly to the physical structure. We need to decouple the two; we
need a separation of logical and physical, but not complete independence. This
is a role that layering has traditionally performed, although less so in traditional
network architectures. Layers close to the physical media closely reflect the
characteristics of the media. Although successively higher layers provide greater
and greater abstraction (i.e., are more logical than physical).

Thus, it would seem that our goal in constructing an addressing architecture
should be a hierarchical address space that reflects the “ideal” subnet hierarchy.
Addresses then would be assigned to reflect that ideal structure even if the phys-
ical reality diverges somewhat. This may lead to occasional reassignment of
addresses, but even then it would be rare if such a change would alter an
addressable element’s position in the hierarchy by more than a single level. Fur-
thermore, the choice of subnets (i.e., the set of elements in different (N+1)-lay-
ers) defines the topology.

So far, we have discussed the basic concepts of topology and have seen how
they might be used. We have reviewed three distinct kinds of hierarchy in net-
works and that two of these occur naturally, in the physical organization and
logically to manage complexity. We can leverage both topology and hierarchy to
develop a more effective approach to the problem of assigning addresses so that

14 1ps probably worthwhile to remind the reader of two things: 1) The observation by some that
“the Internet graph is not a hierarchy, but heavy tailed” is an artifact of the Internet graph
being a large number of networks with a generally hierarchical structure being superimposed;
and 2) that the Internet is seldom the only internet of concern to most providers.
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they fulfill our requirement of indicating “where” such that it aids forwarding.
Working with a single recursive or repeating layer rather than individually
crafted specialized layers further leverages our ability to find useful solutions.
Our goal is not to provide the answer, because there is no single answer, nor is
one required. Nor are we concerned with the problems of competing groups.
Our goal is to show how it might work, indicate the possibilities, and expect
ourselves and others to continue to explore its possibilities.

In this section, we explore several idealized cases on the assumption that if
we work out these cases, the real-world problems will most likely be combina-
tions of them or variations on them. We first consider a single layer and the use
of hierarchy, then a hierarchy of layers, and finally overlapping and nonoverlap-
ping of multiple hierarchies of layers. The section finishes with some specula-
tion about how this might be used in a multiprovider, multiuser network, such
as those found in the wild.

Single-Layer Address Topology

As shown in Figure 8-2, the address space has a topological structure that is
mapped to the graph of the network. When nodes are added to the graph,
addresses are assigned according to “where” they are relative to other nodes
and hence to the topology of the address space.

The problem now is to determine what sort of topology would be a useful
“aid” to routing. The answer, of course, depends on the network. To create a
not-so-extreme example and to illustrate that our analog to Midwestern grids
might not be too far-fetched, one might want to have a network that was highly
reliable and resilient to physical failures in a chemical plant or refinery. The net-
work for such a plant might actually be a two- or three-dimensional grid with
routers at all intersections such that even in the case of a catastrophic failure
(i.e., an explosion) it would still have a high likelihood of maintaining contact
with operational parts of the plant.!> This could be a useful topology for a
“campus” network, but only on a local scale. It should not be hard to find other
environments where other topologies are useful.

Single-Layer Hierarchical Address Topology

As we have seen, most networks are organized as hierarchies. Let’s see what we
can do with them. If a network is large enough to be organized as a hierarchy, it

15 Yes, wireless might be used, but it is unlikely. Given the nature of the equipment in such
plants, there would be sufficient EMI and shielding created by the equipment to make wireless
problematic.
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is large enough to organize its addresses hierarchically, too. Such a network, as
pictured in Figure 8-6, would have three or four levels of hierarchy (let’s say
campus, metro, regional, and backbone for the sake of argument). Each level
constitutes a subnetwork of its own with multiple paths among its members and
multiple paths to its parent and child subnets. In addition, we will assume that
because the owner of the network is responsive to its users’ needs, there are var-
ious paths (shortcuts) installed that cut across the hierarchy either within the
same level or across levels.

We can construct our address topology to reflect this structure. The hierarchy
of addresses would reflect the hierarchy of the subnets. Note that because we
are considering a single layer, we must allocate terminal levels of the hierarchy
to routers in nonterminal subnets. From inspecting at an address, one can tell in
what campus, metro, and region the host or router is located.

Metro Metro
Campus

Figure 8-6 A single-layer hierarchical address space, with k regions, m metro areas, and
m campuses with a maximum p elements in each requires log2 (1 + k(1 + m(1 + n)))p
bits in the address.

As we know from the O’Dell GSE proposal, such a hierarchical address
topology has many advantages.!® First of all, because the addresses indicate
where the node is, the address represents an abstract route, a sort of “anycast”
route. We say “anycast” because the address does not indicate a specific path
but any of several paths through the subnet hierarchy. The routers know that at
least as a default they can route along paths that move up or down the tree of
subnets.

The network may have added shortcuts not only because of heavy traffic
between parts of the network but also to improve the resiliency of the network

16 The O’Dell proposal considers hierarchical addressing more in the context of a hierarchy of
subnets, whereas the Kleinrock paper considers it more a hierarchy of switches.
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Note on Nomenclature

People seem to put a lot of
weight in these words
router and switch. It is
sometimes hard to tell a dif-
ference. Whether the opera-
tion is done in hardware or
software is not a significant
difference. We will use the
following definitions:

* A router uses information
in the PDU to make the
relaying decision.

¢ A switch uses information
outside the PDU to make
the relaying decision.

¢ A hub uses no informa-
tion about the PDU to
make the relaying
decision.

to failure. It might even be the case that all adjacent regions are
connected as well as being connected to the backbone. Taking
advantage of these shortcuts is equally easy. As routers learn the
addresses of their neighbors, they can easily recognize by the
address which neighbors represent paths to a parent or child sub-
net. It is equally easy to recognize which routers are “across” the
tree because their address indicates they are neither a parent nor a
child. Furthermore, the address indicates which part of the tree
they provide access to (i.e., what they are a wormhole to). In
addition, such a topology reduces the number of routes to be cal-
culated or stored. Basically, routes only need to be calculated for
paths within a level. The addressing structure allows considerable
route aggregation to be done, thereby reducing the computation

load.

Address Topology for a Hierarchy of Layers

Let’s now consider the addressing topology with a hierarchy of layers. First, we
must consider how this hierarchy works. At first glance, one might think that an
architecture of recursive layers would have much more system overhead. How-
ever, it doesn’t take one long to realize that the traditional picture of layers is
not quite the same. Routing can only occur once in a system. There is no point
in the graph of a network where routing will occur at multiple layers in the
same system. (And as we shall see, the commonality of structure also improves
processing efficiency.) Hence, no single system implements any more layers than
it does in a conventional system. In this configuration, border routers mark the
boundary of routing layers. It is at the boundaries that layers are used to both
contain and bound the routing problem (and, limiting the routing computation
within a layer).

The bottom layer is always a media access layer. Its policies will be deter-
mined primarily by the constraints of the physical media. In many cases, it will
be a degenerate layer for either a point-to-point (which require no addresses) or
multiaccess media (which require addresses). It is not uncommon for multiac-
cess to be routed. In general, the physics of the physical media limits the scope
of a single media access layer to well within the bounds of flat addressing.
(Again, the introduction of switching and routing in the media access layers
may also remove these physical limitations. Then, the major limitations are
those of management and scaling.) Because this condition is so common, we
will make that assumption. However, removing the assumption does not affect
our conclusions.
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(N-1)-Layer (N-1)-Layer

(N-1)-Layer
Media Access Core Media Access

Figure 8-7 The (N)-layer has addresses only for elements of the (N)-subnets. Border
routers are one hop across the (N-1)-layer of the core network. The (N)-layer address
space requires log2 mp bits, where m is the number of subnets of p elements.

As noted in Chapter 7, it is at border routers where recursion occurs. The
configuration of border routers differs from traditional routers in that their
“interior” side goes down a layer. Returning to our analogy of the valley, where
we noted the deeper the valley, the greater the effective bandwidth; and the
greater the determinism of the traffic, the greater the aggregation and where we
will implement internal congestion control. At a border router, we move down a
terrace in the valley (Figure 8-7), multiplexing edge hosts or subnets toward the
core of the network. This construction yields an (N)-layer with greater scope
than the (N-1)-layers as we would expect. There are two kinds of (N-1)-layers:
Some (N-1)-layers are the media access layers of the edge subnets, and there is
(in the ideal case) one large (N-1)-layer in the middle (see Figure 8-6). But
remember, this is not a spatial diagram but a logical one. There is no “hole”
where there is an area uncovered. All border routers appear to be directly con-
nected at the (N)-layer: They are one hop from each other at the (N)-layer. We
will be most interested in the relation of the addressing of the “core”
(N-1)-layer to the (N)-layer.

For large networks (Figure 8-8), we can assume that a hierarchical address
will be used for most of the nonmedia access layers, if for no other reason than to
manage the large numbers of addresses. We want to choose the composition of
the subnets to reflect the topology (and granularity constraints) or to choose the
topology to reflect the structure of the subnets. If we assume that the (N)-layer
address space is hierarchical, it will be advantageous (not necessary) if the upper
domains of the address reflect the subnet structure of the core, while the lower
domains of the address reflect the topology of the edge subnets. Because each
subdomain of the address can be assigned independently of the others, not all
edge subnets need to have the same topological structure but can be allowed to
match the local topology. (N)-addresses are only used by the (N)-layer elements.
The (N)-address space will only name elements of the (N)-subnets (whereas in
the previous case, the address space had to name all elements of all subnets). The
top layer of a border router has an (N)-layer address, but the middle layer and
the top layer of all routers of the core subnet have (N-1)-addresses only. There is
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no special domain of (N)-addresses for core network routers. There is no require-
ment that there is a one-to-one correspondence of domain-ids to subnets. A sub-
net might have a “locally” hierarchical address space of its own.

Campus —p /, \

1 A \
Regional » ! X 3

N . ,

Figure 8-8 A typical hierarchy of layers for a network.

We gain several advantages here: The (N)-address space can be smaller
because it is not used for the core of the network. As we will see, we can con-
struct a network such that users (whether hosts or subnets) are assigned
addresses from a distinct address space from providers. Also, the (N-1)-address
space can be much smaller. Because these core layers are essentially stable tran-
sit subnets, their elements will not vary over nearly as a great a range as subnets
nearer the edge. This means that shorter addresses are possible. We aren’t forced
into the tyranny of requiring a single address space. Although each edge subnet
is part of the same layer, its routing policies can be independent of all other edge
subnets in this layer. (There are constraints that all routing policies must obey to
keep them from working at cross-purposes, but within those constraints routing
policy within different subnets can be independent.) The routing it must per-
form is only within its subnet to the border routers. The border router then
picks the destination subnet, which is, by definition, one hop away. The PDU is
then handed down to the (N-1)-layer for routing across the core subnet.
Because every border router at this level is directly connected to every other one,
the number of potential next hops could be quite large. This is where a topolog-
ical mapping between the address spaces of the (N)- and (N-1)-layers can be
very advantageous. This corresponds to “choosing the path to the next hop”
step. Essentially, we use the topological structure between the (N)- and (N-1)-
address spaces to simplify the mapping.
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The routing policies of the core (as well as its topology) may be completely
different from the edge subnets and done by an entirely separate layer with its
own address space. The only routes a router must store are those local to its
subnet and any wormholes that terminate in its subnet. (If its underlying con-
nectivity closely reflects the topology, this could be very small.) One needs to
calculate routes and determine the next path when traversing a subnet and to
know which exit from the level the packet should take; otherwise, the address is
sufficient. This, of course, means that failures of links in the default tree (i.e.,
connecting parents and children) will result in more routes being stored. In any
case, the amount of routing information to be exchanged has been drastically
reduced. It may even be bounded.

Addressing Topologies for Multiple Hierarchies of Layers

The preceding section described what is basically a single-provider network.
Although some networks today might fall into that category, not many do.
Some might draw the conclusion that the structure just described could only be
applied to such simple networks. This is not the case. Let’s see how more com-
plex networks could be accommodated.

Figure 8-9 Corporate subnets are supported by overlapping and nonoverlapping
providers.

Let’s take a simple example to illustrate how it might work. Consider a cor-
poration with a number of installations spread around the world. In some cases,
there are multiple installations in the same area. The company finds that in
some places it must use one provider (and perhaps multiple providers to support
certain critical facilities). The key to the solution is that layers are independent.
As noted in the preceding section, although there are advantages to aligning the
topology of one layer with the address topology of the underlying layers, it is
not a requirement. The company’s chief network architect has designed a “top”
layer to span all the installations with a subnet for each installation or region of
installations. As we see in Figure 8-8, within an installation the company is the
provider, and if the installation is large enough has its own set of layers. Border
routers at the edge of these subnets might connect to other subnets or to one or
more supporting providers. Corporate data is encapsulated by the border
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routers and sent over one of the providers. Only corporate border routers recog-
nize the corporate addressing structure. The providers’ addresses appear as
points of attachment to the corporate border routers. In areas with several
installations, a provider network might provide the subnet underlying the cor-
porate local subnet. (Yes, this does closely resemble a VPN. However, it is much
simpler to create and manage.) The corporate network is “floated” over the
providers’ networks. It is essentially a VPN. Hosts have no access to the address
space of the providers. Providers (and corporate users) are the sole owners and
are in complete control of their address space.

Modeling the Public Internet

But what about the Internet? How does the public Internet fit into this struc-
ture? And most important of all, that all-important question intended to stymie
change: What is the transition? Basically, the Internet is just another “organiza-
tional” network, a very large one, but nothing special. It is a layer that would lie
alongside (at the same rank) as the corporate networks just described. Applica-
tions in the corporate network would request application names that were not
on the corporate network but on a more “public” network. (The local IPC API
would determine which DIF to invoke, the corporate DIF or a public DIF
implicitly also determining what DIFs the requestor has access to.) Provider net-
works would support this public layer from underneath. Although it would not
be necessary, it could be the case that only hosts that want to join a public net-
work would need public addresses. Regardless, hosts have complete control
over what applications are accessible by whom and over which DIFs. The
provider would immediately map this to an address private to the provider
encapsulating the traffic from the hosts. This eliminates the tyranny of the sin-
gle address space, which requires hosts to be visible to the world whether they
want to be or not. In fact, there is no reason why a host or subnet needs to have
any “public” addresses at all. Furthermore, depending on one’s point of view,
NATs are either a seamless degenerate case and occur at nearly every subnet
boundary or don’t exist at all.

Public Internet

Providers ;

Figure 8-10 The public Internet is just another “top” layer that applications may

Corporate Internet

access. It is supported by multiple providers, as is a corporate network.
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Because not all hosts would be serviced by all providers, this brings up how
exchange between providers would work. Would packets have to be routed
back to the top layer to move between providers? Only in rare cases, where
exchange relations did not exist between providers. Otherwise, an exchange
address space at a lower layer subscribed to only by providers would provide a
common topologically dependent address space for providers. Two points of
practicality: 1) It is very likely that a “topologically dependent” multiprovider
address space is better described as a geographical topology where the tree
would reflect the finest granularity of exchange. And 2), neither the public layer
or exchange layers would have to be distinct layers. They could be simply a dis-
tinct address space with enrollment, where these addresses were treated as
aliases within an existing layer. (Although there might be security advantages to
having a distinct layer.) Although common exchange address spaces for differ-
ent levels of exchange seems to have some advantages, one could easily imagine
pairs or groups of providers creating their own exchange address spaces or lay-
ers to facilitate their interworking, reflecting corporate alliances.

The other topic that must be considered is transition. There does not need to
be a transition at all, only adoption. It is more prudent to simply allow the cur-
rent Internet to remain in place supported by NIPCA. New applications and
services could be developed either for use in the traditional public e-mall like
today’s Internet or on a modern secure public e-mall, or other networks using
NIPCA as appropriate. These new capabilities would take advantage of the
greater support for distributed applications, security, and QoS. The public Inter-
net offers the equivalent of POINS (Plain Old InterNet Service) and becomes
the equivalent of a vast e-mall that one may choose to visit. Other e-malls with
other services could develop, as well. For a NIPCA subnet to support a legacy IP
network (or any network for that matter) is straightforward. The public Inter-
net is simply a layer above that floats on one or more layers below. The first
router of a NIPCA provider subnet would interpret the IP address as a foreign
IPC-process name and determine the appropriate exit point from the subnet.
Then, it would encapsulate the IP traffic and forward it to an adjoining IP
provider. Only the TCP and IP protocols within the legacy architecture would
operate. Much of the overhead of the current TCP/IP machinery would only be
needed when traversing legacy subnets. The NIPCA subnet would only partici-
pate in IP routing at its boundaries with other IP subnets.

The recursive architecture also has the advantage of returning control of net-
works to the owners who are now able to do more than order more bandwidth
and are able to offer new services. Also, as pointed out earlier, network
providers and equipment vendors are no longer in the data communications or
telecom business, but the distributed IPC business. This opens up new opportu-
nities that the traditional static layering had precluded. At the same time, this
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model also opens up competition for traditional providers by facilitating the
confederations of wireless viral networks being proposed—creating a much
more interesting level playing field than the current Internet with its traditional
boundaries between providers and users.

Conclusions

We should pause here and step back; we don’t want to trip up at this point. We
need to be aware that although our recursive architecture didn’t seem to change
much superficially, it has in fact changed things significantly. Among the things
that have changed is that what had been a static absolute structure has shifted to
being relative. In the past, our focus has been on “#he network” or “the Internet.”

As we explore the implications of the recursive model, we see (as we just
have) this emphasis on the changes to an emphasis on “a.” The preoccupation
found in the telephone network and the public Internet with a central address-
ing scheme and standard resource management strategies is much less impor-
tant. This common structure will still exist but merely as one among many,
rather than in the central role it has played historically. What we saw start here
and what we will continue as we explore the properties of this architecture
either in this book or elsewhere is that resource management is still key, but we
do not have to inflict the “one size fits all” tyranny of the past on the future. In
the past, the management of the media (i.e., the “lower layers”), although
owned by private entities, was a public affair. Everyone had to do it the same
way. As we are seeing emerge here, managing the media is a private affair, and
one user may be public. Is this complete independence, total freedom? No, as in
the political sphere, with freedom comes responsibility. There will be a need for
boundary conditions on how DIFs should behave. Of course, as in the political
sphere, we should strive for the minimal set of constraints that yields responsi-
ble behavior. And what about those that choose not to play by the rules? Don’t
join their DIFs. Providers have the option to not carry their traffic. The rules
should be self-correcting.



Chapter 9

Multihoming, Multicast, and
Mobility

It mouves.

—Galileo Galilei

Introduction

In Chapter 5, “Naming and Addressing,” we looked at our understanding of
naming and addressing. The main insights we took from that were Saltzer’s
results and our insights about Saltzer as well as naming for applications and
application protocols that followed from our understanding of the upper layers
in Chapter 4, “Stalking the Upper-Layer Architecture.” In Chapter 6, “Divining
Layers,” we realized that addresses were not quite what we thought they were:
not just the names of protocol machines, but identifiers internal to a distributed
IPC facility. In Chapter 7, “The Network IPC Model,” we assembled an archi-
tecture model based on what we had learned in the previous chapters, assem-
bling the elements for a complete naming and addressing architecture. Then in
Chapter 8, “Making Addresses Topological,” we considered what location
dependent means in a network and showed how concepts of topology apply to
addressing and, when used with a recursive architecture, can create a scalable
and effective routing scheme.

Now we must consider a few other addressing-related topics: multihoming,
multicast, and mobility. In the process, we will also consider so-called anycast
addresses as the contrapositive of multicast. This will also provides the opportu-
nity to apply this model to see what it predicts.
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Multihoming

As related in the Preface and Chapter 5, the problem of multihoming raised its
head very early in the history of networking and the ARPANET. As we saw by
naming the point of attachment, the network could not tell that redundant con-
nections went to the same place. To the network, two connections looked like
two different hosts (see Figure 9-1). The host could make a choice of which
interface to use when it opened a connection, thus providing some degree of
load leveling. However, if one link to the router failed, so did all connections
over it. Any traffic in transit to that host would be lost. This was a problem that
the telephone system had not faced. The solution was clear: A logical address
space was required over the physical address space.

Host

10123-‘% w.zms.s

Routers

Figure 9-1 The multihoming is when a host has more than one attachment to the net-
work. By having different addresses for the interfaces, the routers can’t tell that both
interfaces go to the same place.

For some reason, solving this problem never seemed a pressing matter to the
Internet or its sponsors, which seems peculiar given that survivability was
always given as a major rationale behind the design of the Net and seemingly
what the DoD thought it was getting.! To recap our earlier brief discussion,
many argued against implementing a solution if it imposed a cost on the entire
network and because so few systems required multihoming that it was unfair to
impose the cost on everyone. Of course, that small number of multihomed hosts
were the ones that vast number of PCs needed to access! This lead to a deft piece
of political engineering ensuring conditions in which no solution would be
acceptable. As we have seen from Saltzer, there is no additional cost to support-
ing multihoming. Why wasn’t Saltzer’s paper applied? Who knows? It was cer-
tainly cited often enough. One gets the impression that there was more concern
with protecting the status quo than making progress.

L 1o reiterate, the original justification to build the ARPANET was resource-sharing to reduce
the cost of research. However, Baran’s original report and many subsequent arguments to con-
tinue the Net appealed to reliability and survivability.
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Others have argued that any multihoming would have to be with different
providers on the assumption that one could not get multiple physical paths from
the same provider. This, of course, is not true. Companies quite commonly buy
redundant paths from the same provider. However, it is wise to physically check
and recheck that the distinct paths being paid for actually are distinct, even if
they are from different providers. The argument continues that it would be near
impossible for the routing algorithms to recover and reroute a PDU destined for
an interface on one provider’s network to another provider’s network. Although
it is true that it is likely that either the hop count or the TCP retransmission
timer would make delivery moot for PDUs nearing the failed interface, rerout-
ing is not impossible. This argument assumes either that any interruption will be
short-lived i.e., similar to the time to reroute or that the rather coarse-grained
exchange? among providers that has existed in the past will continue to be the
case. As local traffic increases,? so will the desire of providers to get traffic to
other providers off their network at the earliest opportunity.

There was an opportunity during the IPng process to fix this problem. And
frankly, many expected it to be fixed then. The developers of CLNP (ISO, 1993)
and the OSI reference model had understood the necessity of naming the node
rather than the interface. Because the problem had first surfaced in the
ARPANET, it was always assumed it would be fixed in IP. So, it was quite sur-
prising when in the IPng discussions it became apparent that so few IETF
“experts” understood the fundamentals of network addressing that it would not
be fixed. Naming the node was seen as something OSI did, so the Internet
should not do it. And the opportunity was lost.

The multihoming problem has been ameliorated by the continuing progress
of Moore’s law. Faster, cheaper processors and memory have kept the price of
routers low enough that the increasing routing load was not painful. The argu-
ment was often made against developing a new solution, when the hardware
was still quite capable of accommodating the problem. Of course, the problem
with this argument is that the longer one waits to fix it, the more painful the day
of reckoning. As computers tended more toward workstations and servers, the

2 For example, until recently peering for traffic between two Boston area users on different
providers took place 500 miles away in Virginia.

There seems to be a penchant among humans to believe that things as they are will remain as
they are forever. Even though there is overwhelming evidence that this seldom the case, we still
insist on it. Therefore, many argue that the granularity of exchange will remain as it is and not
become any finer. An increase in local traffic does not necessarily imply new behavior in the
network but can result simply from growth. The decision for more exchanges is driven by
absolute cost, not relative numbers. Unless the the growth of the network begins to slow
which seems unlikely, if anything there will be orders of magnitude more growth.
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problem became less critical as the problem evolved from a host being multiply
connected to a subnet being multiply connected. The existing methods were bet-
ter at masking that problem. However, as we have seen, not having a solution
for multihoming also applies to routers and increases the number of route calcu-
lations combinatorially. Later in this chapter, we will see how solving multihom-
ing simplifies mobility, too.

As one would expect, the Internet has attempted to develop a number of
workarounds (a politically correct word for kludge) for the lack of a multihom-
ing solution. They run the gamut from being mostly spin to a genuine attempt to
address the issue. All have their drawbacks. We consider a couple here before
looking at how multihoming is supported by NIPCA. The least satisfying claim
of multihoming support has been made by SCTP (RFC 3286, 2002; RFC 2960,
2000). The designers of SCTP use the well-known approach to solving a prob-
lem by simply changing the definition to something they can solve. It should be
clear from the description of the earlier problem that there is nothing that a
transport protocol can do about multihoming. The support SCTP provides is
the ability to change the IP address (that is, the point of attachment [PoA]) with-
out disrupting the transport connection. This is not possible in TCP because of
the pseudo-header. TCP includes the source and destination IP addresses (as
well as other fields from the IP header) in the TCP checksum.* Hence, should
the IP address change, the checksum will fail, and the PDU will be discarded.

If the IP address named the node rather than the PoA, this would not be a
problem. Changing the PoA would not affect the pseudo-header. The SCTP
solution has no effect on responding to the failure of a PoA. If a PoA should fail,
any traffic in transit will be discarded as undeliverable. The sending transport
protocol machine would have to be cognizant of the routing change. In the cur-
rent architectural approach, this would be difficult to do. Unfortunately, we
must classify SCTP’s claims of supporting multihoming to be more in the nature
of marketing than solving the problem.

The situation is quite different with Border Gateway Protocol (BGP) (RFC 1654,
1994; Perlman, 1992). BGP is an interdomain routing protocol. Because the multi-
homing problem is both an addressing issue and a routing problem, BGP at least
stands a chance of being able to do something about it. For this discussion, I assume
the reader has a basic knowledge of how interdomain routing works. To assume
otherwise would require another chapter on that alone. Suffice it to say that BGP
adopts a hierarchical approach to routing and groups collections of border routers
into what are called autonomous systems (ASs). Routing information is exchanged
about ASs. The solution to multihoming then is essentially to treat the AS as a node

4 This is called the pseudo-header. The necessity of this has been questioned for many years. The
rationale given was as protection against misdelivered PDUs.
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address. The host or site that wants to be multihomed acquires an AS number from
its ISP and advertises routes to it via BGP. There are some drawbacks to this. The
scope of BGP is the entire Internet. The intent of ASs was to serve as a means for
aggregating routes among the thousands of ISPs that make up the public Internet. To
also assign an AS to every host or site that wants to be multihomed significantly
increases the routing burden on the entire Internet infrastructure. Consequently,
some ISPs ignore the smaller ASs (that is, those that correspond to small sites or mul-
tihomed hosts), making it the same as if the AS were not multihomed. Clearly,
although this approach solves the problem, it has scaling problems and is a band-aid
to another problem. ASs are band-aids on top of the path-vector algorithm to allow
it to scale to a large flat network like the current public Internet.’ But the BGP solu-
tion does solve the problem by trying to emulate the right answer within the politi-
cal constraints of current Internet.

Several other band-aids are used to provide solutions for multihoming. All
are somewhere between these two. All increase the “parts-count” (that is, the
complexity) to solve the problem or a part of it and complicate the solutions of
other problems none of them scale, and none are really suitable for production
networks, although they are used in them every day. Further, they only solve one
particular part of the problem. They don’t make anything else easier. There is
really no solution other than the one Saltzer proposed a quarter century ago.

Then in late 2006, a new crisis arose (Fuller, 2006; Huston, 2006). Router
table size was on the rise again. The cause of the rise was laid at increased mul-
tihoming. Now that businesses rely heavily on the Internet, many more find it
necessary to be multihomed. Based on estimates of the number of businesses
large enough to potentially want multihoming, the conclusion was that we
could not expect Moore’s law to solve the problem this time. This has led to
much discussion and a spate of meetings to find another patch that will keep the
problem at bay. The discussion has revolved around the so-called location/
identifier split issue mentioned in Chapter 5. This only addresses part of the
problem and does not solve it. As this book goes to press, a consensus has not
been reached on the solution but probably will be by the time the book appears.
Although for about ten days there was talk of solving the problem, but then
more “pragmatic” heads prevailed. It appears that the consensus will be yet
another band-aid. (Not to be cynical, but stopgap measures do sell more equip-
ment than solving the problem.)

This is a problem that has been known for more than 35 years and ignored.
It would have been much easier to fix 30 years ago or even 15 years ago. Not
only fix but solve. What was it that Mrs. McCave said? Ensuring the stability of

5 Some contend that because ASs were originally designed into BGP, it is not a band-aid. ASs are
a band-aid on the architecture. Routing is based on addresses carried by PDUs, not by out-of-
band control traffic. This has more in common with circuit switching.
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the global network infrastructure requires more vision and more proactive
deployment than we are seeing. (It is curious that the major trade journals were
silent on this topic for a year even though it was the hot topic at every IETF
meeting that they covered.) This episode, along with a string of others, calls into
question whether the IETF can be considered a responsible caretaker of the
infrastructure that the world economy has come to rely on.

The model we have constructed here adopts Saltzer’s approach and general-
izes it in the context of the recursive model. In keeping with our shift from a
static architecture to a relative one, an (N)-address is a node address at the
(N)-layer and a PoA address for the (N+1)-layer. In this architecture, the rela-
tion is relative (see Figure 9-2). Clearly, multihoming is supported as a conse-
quence of the structure. If we had the right structure to begin with, we would
probably never noticed there was a problem.® Routing is in terms of node
addresses, with path selection (that is, the choice of the path to the next hop)
done as a separate step.” Unlike the current Internet, NIPCA supports multi-
homing for both hosts and routers. This in itself significantly reduces the num-
ber of routes that must be calculated.® Furthermore, the recursive structure
ensures that the mechanisms will scale.

/ (N)-node-address
OI]O @ (27 (N)-point-of-attachment
/
OI]O @ /(N-1)-n0de—address

OHO @ OHO @ /(N'1)-point—of-attachment
oD

Figure 9-2 A rare layer configuration to illustrate that the relation between node and

PoA is relative.

6 This is reminiscent of Needham’s short discussion of irrational numbers in Volume III of Sci-
ence and Civilization in China. After recounting the problems irrational numbers caused in
Western mathematics, Needham turns to China and says, that because China adopted the dec-
imal system so early, it is not clear they ever noticed there was a problem! They simply carried
calculations out far enough for what they were doing and lopped off the rest! Ah! Ever practi-
cal!

These separate steps are in terms of route calculation to generate the forwarding table, not in
forwarding itself. However, this does imply that path calculation (that is, changing the path to
the next hop) could be done to update the forwarding table without incurring a route calcula-
tion.

Strictly speaking, current algorithms must calculate all the possible routes and then aggregate
the common ones. Various workarounds have been introduced to avoid this at the cost of
additional complexity. By calculating on node addresses rather than points of attachments, the
bulk of the duplication is never generated in the first place.



MULTICAST ARCHITECTURE

The problems described earlier need not exist. The problem of coarse
exchange between providers that we referred to earlier is driven primarily by
“cost” (where cost is not just capital cost, but also the cost associated with
meeting customer expectations of performance). As long as the amount of traf-
fic for other providers is sufficiently low within an area that the cost of not
exchanging within the area is cost-effective, providers won’t bother. If the
amount of traffic increases, especially intraregion traffic for the other providers,
the advantage of finer-grained exchange would gain advantage. Finer-grained
exchanges might not be driven by the volume of traffic but by the need to ensure
less jitter for voice and video traffic. Even so, a move to finer granularity of
exchange is not helped by the fact that in general an inspection of the IP address
will only indicate to a router what provider the address belongs to, not where it
is. The application of topological addresses, as described at the end of Chapter
8, would further facilitate a move to finer granularity of exchange and would
also facilitate rerouting to multihomed sites. Accommodating more fine-grained
exchange in the address topology costs very little, and it doesn’t have to be used,
but it does plan for the future in a manner unlike any from the past.

Multicast Architecture

Introduction to the Multicast Problem

Multicast transmission has captured the imagination of networking researchers
almost from the start of networking. Multicast is the ability to send a single
PDU to a selected set of destinations, a generalization of broadcast (where
broadcast is the ability for a sender to send a PDU that is received by all destina-
tions on the network). Clearly, this derives from the wireless or multiaccess
broadcast model. For the multiaccess media, the PDU generally has a special
address value that indicates that the PDU is for all destinations. Because the
media is multiaccess, all stations on the media see the broadcast or multicast
address and determine whether to receive the PDU. This ancestry has led some
researchers to assume multicast to be defined as purely one-to-many communi-
cation, and to coin the term multipeer to represent the more general many-to-
many group communication one might require for various sorts of collaborative
systems. We will use multicast for both unless there is a need to emphasize the
difference.
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Clearly, for inherently broadcast media, multicast is straightforward. But,
multicast becomes a much more interesting problem in traditional wired net-
work. Here it is generally implemented by computing a minimal spanning tree
over the graph of the network generally rooted at the sender (see Figure 9-3). A
PDU sent by the sender traverses the spanning tree being replicated only at the
branching nodes of the tree. This saves considerable bandwidth. To send the
same PDU to M destinations would normally require M PDUs to be sent. With
multicast, M PDUs are delivered to M destinations, but the entire network does
not have to carry the load of all M PDUs. Distributed spanning-tree algorithms
were developed quite early. However, multipeer changes the problem: Rather
than a different spanning tree rooted at each sender, one must find a single span-
ning tree that is optimal for the group of senders.

Figure 9-3 A multicast spanning tree rooted at A to the set of all members of the multi-
cast group.

Although many proponents wax eloquent about multicast as a new and dif-
ferent distributed computing model, in the end it is ultimately a means for con-
serving bandwidth. Its primary importance is to the network provider in
allowing it to carry more traffic using fewer resources and manage it better. The
advantage to the user is minimal.

This is where the simplicity of the problem ends. There are a myriad of com-
plications, whose intellectual challenge has generated extensive literature on the
subject. However, multicast has not found much adoption outside the research
community. The complexity and overhead of setting up multicast groups com-
bined with the precipitous drop in bandwidth costs have continued to make the
brute-force approach of sending M copies over M connections acceptable. As
applications that could use multicast continue to grow, however, especially in
the area of multimedia, we can expect that even with the advances in fiber, the
need to make more effective use of bandwidth will reassert itself, and the com-
plexity and cost of managing M pairwise connections will exceed the cost of
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managing multicast groups; so, multicast may find greater use. Of course, any-
thing that can be done to simplify multicast deployment can only help.

Most of the research has concentrated on particular applications and pro-
vided solutions for each particular problem, with little or no consideration of
how that solution would work along with other multicast applications with dif-
ferent requirements. However, because multicast is primarily a benefit to the
provider rather than the user, a provider is going to want a solution that covers
many multicast applications. If every class of application that could use multi-
cast requires a different solution, this would be a nonstarter. We will not even
try to survey the literature’ but will refer to key developments as we proceed.
We want to use this experience in traditional networks as data and hold it up to
the structures we have developed here to see how it either improves or simplifies
or complicates the problem.

The first problem with multicast (one ignored by most researchers) is that
there are so many forms of it. It is fairly easy to construct a list of characteris-
tics, such as the following:

Centralized versus decentralized (Multicast or multipeer?)
Static versus dynamic population (Can the membership change with time?)

Known versus unknown population (Members may be unknown with
wireless?)

Isotropic versus anisotropic (Do all members behave the same?)
Quorum (Is a minimum membership required?)

Reliable versus unreliable

Simplex versus duplex

And so on

Within these characteristics are multiple policies that might be used, making
the range of potential protocols quite large. One would not expect a single solu-
tion to effectively accommodate the entire range. But to create specific solutions
for specific applications would lead to proliferation and complexity within the
network. Providers are not enthusiastic about introducing another parallel rout-
ing system, let alone many. But perhaps not all combinations would find appli-
cations. Perhaps a small number would cover the major applications.

The latter assumption turns out to be wrong. One of the myriad standards
organizations to look at multicast actually took the time to explore the matrix

B Unfortunately, most of the literature must be classed as more thesis material than truly con-
cerned with advancing understanding of multicast.
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of multicast characteristics. It expected to find clusters of applications for some
parameters and others that clearly would not occur. It fully expected to find that
a small set of characteristics covered the great majority of cases (a common
result in engineering, allowing the designer to concentrate on the important
combinations rather than a fully general solution). Although there were a very
few combinations for which it was unlikely to find an application, quite likely
scenarios could be found for the vast majority of combinations. Not a welcome
result.

The Multicast Model

Just with the connection/connectionless problem, we need to consider the serv-
ice of of multicast and the function of multicast separately. Multicast is viewed
as communication with a group (a set of users). Some models assume that all
participants are members of the group (that is, multipeer). Others assume that
the group is an entity that others outside the group communicate with (that is,
multicast)—in a sense, unicast'? communication with a group. This difference
will be most pronounced in the consideration of multicast naming (see the fol-
lowing section). In the literature on multicast, one will generally find a service
model that differs from the model for unicast communication. The sequence of
API calls required is different. The application must be aware of whether it is
doing multicast.

In the traditional unicast model, communication is provided by primitives to
connect, send, receive, and disconnect, executed in that order. (Here we have
replaced connect with allocate to include initiation of connectionless communi-
cation.) In multicast, the service primitives are generally connect, join, leave,
send, receive, and disconnect.

The connect primitive creates the group and makes the initiator a member.
Join and leave are used by members of the group to dynamically join and leave
the group. Disconnect is used to terminate participation in the group. There is
some variation in how the initiator may leave the group without terminating it.
This, of course, creates a different sequence of interactions than unicast. The
application must be cognizant of whether the communication is unicast or mul-
ticast, just as we saw earlier that the user had to be cognizant of whether the
communication was connection or connectionless. In this model, a multicast
group of two members is different from a unicast communication. We would
clearly prefer a model in which one collapses cleanly into the other. Or more
strongly, why should the application have to be aware of multicast at all?

10 Unicast being the term coined to denote traditional pairwise communications to contrast it
with multicast.
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But notice that the primary purpose of the “connect” primitive is creating the
group, essentially creating sufficient shared state within the network to allow an
instance of communication to be created. This is what we have called the enroll-
ment phase. In fact, if the service model is recast so that creating the group is an
enrollment function, join and leave become synonymous with connect and dis-
connect. The initiator would issue a primitive (enroll) to create the multicast
group and in a separate operation initiate communication with the group with a
join/connect/allocate/attach. Hence, the interaction sequence (that is, the partial
state machine associated with the service interaction) is the same for multicast
as for the unicast and connectionless cases. In fact, the only difference would be
that the destination naming parameter would name a set of names rather than a
single name (or is that a set of one element?). Furthermore, it is consistent with
our model and eliminates another special case. We have found an effective sin-
gle model for all three “modes” of communication: connectionless, connection,
multicast.

Multicast “Addressing”

As always, the problems surrounding naming and addressing are subtle and
often less than obvious. There have been two models for multicast addressing.
What has become the generally accepted definition is that a multicast “address”
is the name of a set of addresses, such that referencing the set is equivalent to
referencing all members of the set.

Initially, the Internet adopted a different definition. The early Internet multi-
cast protocols viewed a multicast address as essentially an ambiguous or
nonunique address. Simply viewed, several entities in the network had the same
address so that a PDU with a multicast address was delivered to all interfaces
with that address. This is an attempt to mimic the semantics of broadcast or
multicast addresses on a LAN: Multiple interfaces on a LAN have the same
(multicast) address assigned to them. As a PDU propagates on the LAN with an
address (of whatever kind), the interfaces detect the PDU and read its address. If
the address belongs to this interface, the PDU is read. In effect, if more than one
station on the Ethernet has the same address, it is multicast.

This is straightforward with LANs, but for other technologies it means we
have to ensure that every node sees every PDU. This means that flooding is
about the only strategy that can be used. Flooding is generally considered
pathological behavior. Instead of reducing the load on the network, it increases
it. This is not good. Essentially, multicast in this model is broadcast, which is
then pruned. This defeats the advantage of multicast of saving bandwidth in the
network. It does retain the advantage that the sender only sends the PDU once
rather than M times. Not much of a savings. Why can’t we use a spanning tree
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as with other schemes? A spanning tree would require a correspondence
between a normal address and the multicast group name. For all intents and
purposes, this would bring us back to the set model of the address stated earlier.
Flooding as a distribution mechanism does not scale and is not greeted by
providers with enthusiasm.

The other peculiarity of this early Internet model was that it was built around
what we referred to earlier as “unicast communication to a group.” The sender
is generally not part of the group but is sending PDUs to a group. This would
seem to presume a simplex communication model—best suited for a “limited
broadcast” model rather than the kind of more general distributed computing
models required by multipeer applications. Also, the inability to resolve the
multicast address to a unicast address has negative security implications. Given
its problems, it is odd that this definition ever arose considering the earliest
work (Dalal, 1977) on multicast used the set definition of a multicast address.

We must consider one other somewhat pedantic issue related to multicast
addresses: They aren’t addresses. As we have defined them, addresses are loca-
tion dependent. Multicast “addresses” are names of a set. The elements of the
set are addresses, but the name of the set cannot be.

The concept of location dependent that we wanted was to know whether two
addresses were “near” each other—so that we knew which direction to send
them and whether we could aggregate routes. Although one could attribute the
smallest scope of the elements of the set with the concept of a “location,” this
seems to be not only stretching the spirit of the concept, but also not really help-
ful either. At first blush, one thinks of nicely behaved sets and how the concept
of location would apply to them. But it doesn’t take long to come up with quite
reasonable “monsters” for which it is much less clear how the concept would
apply. It is far from clear what utility this would have. The most location
dependence a multicast address could have would have to be common to the
entire set. But this property will arise naturally from the analysis of the members
of the set and in the computation of the spanning tree. It might be of some util-
ity to nonmembers attempting to communicate with the group, but here again
this would have only limited utility to route PDUs to some idea of the general
area of the group (if there is one). Multicast distribution relies on one of two
techniques, either some form of spanning tree or the underlying physical layer is
inherently multiaccess, a degenerate spanning tree. In either case, what a sender
external to the group needs to know is where the root of the tree is, or where it
can gain access to the group (not some vague idea of the area the group is
spread over). There is not much point in having a multicast address (that is,
location dependent). They are simply names of sets of addresses.
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The conclusion we are drawn to is that multicast addresses, although they
may be represented by elements from an address space, are semantically names.
We will use the term multicast name throughout to remind ourselves that these
are not location-dependent names (that is, not addresses). To be very precise
and in keeping with the model we have developed here, the application would
have a multicast application name defined as a set of application names. We
have already defined this: a distributed-application-name. Interesting, isn’t it?
This would be passed in an open request to the DIF, which would allocate a
multicast name from the DIFs address space. This multicast name would name
the set of addresses to which the applications were bound. (Rules for adding or
deleting addresses from the set would be associated with the set.)

Multicast Distribution

The primary focus of multicast research has been on solving the multicast distri-
bution problem at the network layer for networks without multiaccess physical
media. Many approaches have been tried, including brute-force flooding. But
most of the emphasis has been on distributed algorithms for generating span-
ning trees. Not only is this much more efficient, it is also an intellectually chal-
lenging problem. The first attempt to solve this was Yogen Dalal’s Ph.D. thesis
(1977). Since then there are have been many theses and papers. Although there
has been some emphasis on pure multicast (that is, a single sender to a group),
much of the interest has been on “multipeer,” where each member of the group
would be communicating with the group. This has led to several problems:

1. Scaling the techniques to support large groups

2. Maintaining an optimal or near-optimal spanning tree when the members
of the group change

3. Reducing the complexity of multipeer by not requiring the computation of
a separate spanning tree for every member of the group

This has led to a number of standard multicast protocols being proposed:
DVMRP (RFC 1075, 1988), PIM (RFC 2362, 1998; Estrin et al., 1996) and
CBT (RFC 2189, 1998). The focus of these algorithms is to find optimal span-
ning trees given multiple senders in the group. Hence, the root of the spanning
tree is not at one of the senders, but at some “center of gravity” for the group.
The problem then becomes finding that center of gravity. We will not review
these techniques here. They are more than adequately covered in numerous text-
books. The major problem confronted by most of these is the complexity of the
computation in current networks with large groups.
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Sentential Naming Operations and Their Resolution

This would be a good place to consider how these names work. The heading of
this section uses the term Sentential because we will be concerned with the two
forms of sentential naming that we find: universal and existential.!! We have
just covered the “universal” naming operator (that is, multicast). We will also
consider the “existential” naming operator, known colloquially in the field as
an “anycast” name.!2 We can define an anycast name as the name of a set such
that when the name is referenced one element of the set is returned according to
some rule associated with the set.

In both cases, the use of the sentential name resolves sooner or later to an
address. This then raises the question of when does this name resolution take
place. With the anycast name, it may be immediate or at various points along
the path, whereas with a multicast name it will be done at several points along
the way. We would like an answer that minimizes special cases. This leads to the
following;:

The rule associated with the set is applied when the forwarding table is
created to vyield a list of addresses that satisfy the rule. When a PDU with a
sentential destination address is evaluated at each relay, it is then sent to
the elements of the list. (Of course, a list can have one element.)

The sentential names are placeholders for the set and its associated rule. At
each relay (hop), the set is evaluated according to the rule. For anycast, this
means selecting an address from the set and forwarding toward that address.
For multicast, it means selecting the addresses downstream on this spanning
tree and forwarding a copy of the PDU toward all of them. Given topological
addresses, the addresses in the multicast set can be ordered into a virtual span-
ning tree based on the topology of the address space. (The structure of the
addresses would imply a spanning tree or, more precisely, which addresses were
near or beyond others.) This then simplifies the task of each node, which given
its own address knows where it fits in the spanning tree of that multicast set and
which branches it must forward copies of the PDU on. In fact, with a reasonable
topological address space, the addresses of the nodes of the spanning tree can be
approximated. This implies that specialized multicast protocols are unnecessary.
We still need the distributed spanning-tree algorithms. The definition of the sets
will have to be distributed to each member of the DIF along with the policies

11 The term used in symbolic logic to refer to these two operators. See, for example, Carnap

(1958).

12 They are called anycast “addresses” in the literature, but they are names of sets; and the same
arguments we just used to argue that multicast “addresses” are not addresses apply to anycast,
too.
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associated with it and the spanning-tree algorithm applied. This information is
then used to generate entries in the forwarding table. The only difference being
that a forwarding table’s lookup results comprise a list, admittedly a list with
one element most of the time, but a list just the same.

Sentential addresses are used in building the forwarding table. The rule is
only evaluated when the forwarding table is generated. Any changes in network
conditions that would change the outcome of the rule are equivalent to the same
conditions that would cause a recalculation of the forwarding table. In the mul-
ticast case, this means determining to which branches of the spanning tree the
PDU is to be forwarded. For an anycast address, this means the PDU is for-
warded toward the address returned by the rule associated with the set. (This of
course implies that the rule could yield different results at different nodes along
the route. This envisions a concept of anycast that is both simpler and more
powerful than allowed by IPv6.)

Unicast is a subset of multicast, but multicast devolves to unicast.

Multicast Distribution in a Recursive Architecture

A multicast group at layer N, (N)-G, is defined as a set of addresses, {(N)-A },
such that a reference to (N)-G by a member of the group yields all elements of
{(N)-A;}. It is sometimes useful to consider traditional “unicast” data transfer as
a multicast group of two. (N)-G is identified by an (N)-group-address, (N)-GA.
(N)-group-name V (N)-A, 3 (N)-A; € G = {(N)-A;}

The order of an (N)-G (that is, the number of elements in the set) is [{(N)-A}|
or [(N)-Gl.

Although there is no logical reason that the set cannot contain a group name,
there are practical reasons to be cautious about doing so (for example, dupli-
cates).

The primary purpose of multicast is to reduce load on the network for those
applications that require the same data be delivered to a number of addresses.
Several mechanisms are used to accomplish this ranging from brute-force flood-
ing to the more subtle forms of spanning trees. These spanning trees may be
rooted at the sender(s) or at some intermediate point, sometimes referred to as
the “center of gravity” or “core” of the group.

A minimal spanning tree is an acyclic graph T(n,a) consisting of # nodes and
a arcs imposed on a more general graph of the network. This tree represents the
minimal number of arcs required to connect (or span) all members of (N)-G.
The leaf or terminal nodes of the tree are the elements of the set {(N)-A;}. The
nonterminal nodes are intermediate relays in the (N)-layer. Let’s designate such
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a spanning tree for the group, G as Ti;(n,a). Then the bounds on the number of

nodes in the spanning tree are given by the following:
min [T (n,a)l = [{(N)-A}|

max [T (n,a)l = [{((N)-A}l + (d-1) [{(N)-A,}I
where d = diameter of the network

Let (N)-B be a group name and (N)-A, be the addresses in the group, then
J a spanning tree, (N)-Ty(A,, ¢;) which covers (N)-B.

V (N)-A € (N)-B,3 (N-1)-A, 5F:(N)-A,= (N-1) A, and (N - 1)-A, €
(N-1)-G,

1

Or some elements of (N)-B such that (N)-A, is bound to (N — 1)-A.. This
binding creates a group at layer (N — 1) in each of these subnets. In current net-
works, F is 1:1, V A,. This may or may not be the case in general.

V (N -1)-A; 3 m subnets, S, 5 (N - 1)-A, D §;

IfI(N-1)-Gl=k,thenImS,;3V(N-1)-A,e (N-1)-G,m =k

As we saw previously, to the user of layer N there is one “subnet,” a user of
layer (N), that appears directly connected to all other users of that layer. From
within the (N)-layer, there are m subnets connected by the (N)-relays. A subset
of these (N)-relays form the nonterminal nodes of the spanning tree,
(N)-T(A,,c;). Thus, there are k addresses that belong to 7 subnets with m < k.
This decomposes the (N)-Ty(A,,¢c;) into m(N-1)-Ty(A,,c;).

Let {(N-l)—Ai}]- be the (N—l)—Gi of addresses in subnet Si

At the m(N-1)-layers, EI(N—1)—Gi 3{(N - 1)'Ai}i

(N)-GA is supported by the services of the (N-1)-layers (subnets) that form a
covering of the (N)-layer. A subset of this covering provides services in two dis-
tinct ways (see Figure 9-4):

1. The p end subnets, Gej, {(N—l)-Ai}]-

2. The m — p transit subnets, G, that connect the p end subnets

The spanning tree of the end subnets would be rooted at a border relay
at which it enters the subnet. The (N)-GA is supported by p (N-1)-Ge and
(m—p)G.
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N

a) a transit subnet b) an edge subnet

c) a practical edge network

Figure 9-4 In a recursive architecture, multicast groups decompose into two cases:
a) transit subnets that are unicast, and b) edge subnets, which use spanning
trees. Practically, however, the latter case is simpler if ¢) unicast flows from
the border router are used with no internal branching (making multicast dis-
tribution a subset of unicast routing.)

Note there may be more than one such entry point and thus more than one
independent spanning tree for the same group in the same subnet.

As one moves down through the layers, the number of end subnets decreases,
the degree of branching decreases, and the number of transit subnets increases.

Multiplexing Multicast Groups

Multicast has always been considered such a hard problem that multiplexing
multicast groups for greater efficiency was just too much to consider. But given
an approach that allows us to decompose the problem, multiplexing becomes
fairly straightforward. There are two cases that must be considered: transit
groups and end groups.

Assume layer N has m subnets. Any group from layer (N+1) will be decom-
posed into 7 segments n < m consisting of p end groups and g transit groups,
n = p + q. Suppose there are k such groups at the (N+1)-layer, each with its own
value of i, p, and q.

The number of subnets is much smaller than the number of hosts participat-
ing in the group, as is the number of (N)-relays. Therefore, it is likely that there
will be a number of transit groups that have flows between the same (N)-relays.
These are candidates for multiplexing.
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A transit group is distinguished by connecting only (N)-relays. A transit sub-
net group consists of g pairwise connections, where 1 £ q £ m. The decision to
multiplex them will be no different than for any other unicast flow.

An end group is rooted at (N)-relay, and leaf nodes are either end systems or
other (N)-relays. Multiplexing the spanning trees of the end groups is more dif-
ficult. One could require that the trees be the same, but this would not lead to
many opportunities to multiplex. It would be better to allow similar trees to be
multiplexed, the only question is what does “similar” mean.

Here we have a number of spanning trees rooted at the same (N)-relay. To
multiplex; we will want (N)-G¢ with similar if not the same tree. Let’s define
A-similarity, as A is the number of leaf nodes of the G, ... G, have in common.
Suppose G; ... G are the end groups of an (N)-subnet of distinct (N+1)-groups,
then

V G, € Gy ... G <A then G; may be multiplexed.

Then construct a spanning tree for >> G ... G,. This will cause some PDUs
to be delivered to addresses that are not members of the group and so be dis-
carded. (Other QoS parameters may cause G, to be multiplexed with a different
(N)-G..)

1

Reliable Multicast

One of the first problems researchers took up along with multicast distribution
was multicast transport. If the multicast distribution algorithms were the net-
work layer, then what did the mechanisms look like for a multicast transport
protocol to provide end-to-end reliability? It was a natural topic to pursue. Can
we adapt protocols like TCP to provide reliable multipeer? This has been a
favorite topic with tens of proposals, a great thesis generator. However, this
proves to be a less-than-straightforward problem.

Just defining what service multicast transport provides is problematic before
one even gets to considering the mechanisms for providing it. Consider the fol-
lowing issues:

e What is done if one member falls behind and can’t accept data fast
enough? Is everyone slowed down to the same rate? Is data to the slow
ones dropped? Is the slow member dropped? Is data for the slow one
buffered? For how long?

¢ Is retransmission to all members of the group or just the ones that either
nack’ed or timed out? If the latter, doesn’t this defeat the advantage of mul-
ticast? By making it into (m-1) unicast connections?

e What happens if one member doesn’t receive something after several
retries? Drop the member? Terminate the whole group?
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¢ Can multiple senders send at the same time? If so, what order is main-
tained if there are multiple senders in the group? Relative? Partial order-
ing? Total ordering? No order?

e If the group has dynamic membership and a new member joins, at what
point does it start receiving data? If it leaves and rejoins, is the answer dif-
ferent?

The list can go on and on. It doesn’t take long to realize that most, if not all,
of these may be desirable by some application. The design of a single protocol or
even a small number of related protocols satisfying the range indicated by these
questions is a daunting problem. Of course, the strategy of separating mecha-
nism and policy developed here can be used to address this at least partially.

The problems don’t stop there. A prime characteristic of error- and flow-
control protocols is that they have feedback mechanisms. Feedback is inherently
pairwise. This brings us to the other problem with multicast transport: ack
implosion. What is the point of multipeer distribution if the error- and flow-
control protocol is going to impose a service of (m—1) pairwise connections?
The senders must keep separate state information for each receiver in the group
so that it knows who has received what and how fast it can send. But weren’t we
trying to avoid the burden of keeping track of each member of the group? If
each sender must maintain state for each receiver, multicast will reduce load on
the network but not for the sending systems.

Acknowledgment and flow control are feedback mechanisms and thus return
information to the sender. For a multicast group, this means that for a group of
m members (m — 1) acks or credits will need to be sent back for the sending pro-
tocol machine to process. Do these pairwise acks destroy the group nature of
the communication? One can easily imagine that for large values of m the
sender could become overwhelmed by feedback PDUs. (Ack implosion has
become the shorthand term for this problem, even though it involves both ack
and flow-control information.) Does this mean there needs to be flow control
on the flow-control PDUs? Many proposals have considered techniques that
aggregate the control messages as they return up the spanning tree (thus reduc-
ing the number of control PDUs the sender must see). In traditional architec-
tures, this was problematic. The aggregation function of the transport protocol
required knowledge of the spanning tree in the layer below. Furthermore, the
transport protocol is relaying and processing PDUs at intermediate points.
Doesn’t aggregating break the “end-to-end”-ness of the transport protocol?
What happens if an aggregating mode fails? Also, does the process of aggregat-
ing impose a policy with respect to systems that fall behind, and so on? It also
raises the question of whether it really saves anything. Is this a step back to
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X.25-like hop-by-hop error and flow control? It reduces the number of PDUs
received, but the amount of information must be close to the same. Consider the
following:

What the sender needs to know is what sequence number is being ack’ed and by
whom. The aggregated ack might contain the sequence number and the list of
addresses and port-ids corresponding to all of the receivers who have ack’ed this.
The list can’t be assured to be a contiguous range, so the aggregated Ack PDU
must be able to carry the list of port-ids, perhaps representing ranges as well as
individual ports. This reduces the number of control messages being delivered
(probably fixed format), but it is doubtful it reduces the processing burden or
reduces the memory requirements. Nor have we considered the delay and
processing overhead incurred by aggregating. Are acks held at interim spanning
tree nodes to await PDUs that it can be aggregated with? Does this mean that these
nodes must keep track of which acks have been forwarded? Or one could assume
that each node collects all downstream acks, and so only a single ack for all the
members is finally delivered to the sender. Now we are up against the slow
responder. This implies a fixed timeout interval for all members so that any
member that didn’t respond within the time interval was assumed to have not
gotten the PDU and is a candidate for retransmission or being dropped from the
group. As one moved in the reverse direction up the spanning tree, the timeout for
each node would have to be progressively longer to allow for the delay by nodes
lower in the tree. This could lead to much longer retransmission timeouts than seen
for pairwise connections, but that might be acceptable. Do retransmissions go to
everyone or just the ones that didn’t report? This strategy is possible for
acknowledgment, but flow control is a bit different. What does one do about
members who are slow? A member may be delayed a considerable amount of time.
Is traffic stopped by one member of the group? Etc. etc.

As you can see, the questions surrounding a reliable multicast protocol are
legion. Those proposed in the literature have generally been designed for a spe-
cific environment where specific choices can be made. Separating mechanism
and policy can cover some of this variability. It remains to be seen whether
it can or should cover it all. In the structure developed here, the error- and
flow-control protocol and the relaying and multiplexing process are in the same
DIF and can share information. Because the EFCP is structurally two protocols,
the Control PDUs could be routed separately from the Transfer PDUs. One
spanning tree could be used to support data transfer, while a separate parallel
spanning tree supports the control flow with protocol machines at each node
aggregating them as they percolate back up the tree.
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In the NIPCA structure, this is not a layer violation because the EFCP and
relaying process are in the same DIF/layer. In fact, it actually fits rather nicely.
However, a major design consideration of EFCPs to ensure end-to-end integrity
is that its PDUs are interpreted only at the “ends,” not by intermediate points.
Aggregating acks (and credits) is not a “layer violation,” but simply combining
PDUs, a well-accepted mechanism of the relaying and multiplexing function of
a layer. However, to do more (that is, combining the semantics of the acks and
credits to reduce the number of actual PDUs) does raise questions about the
end-to-end integrity of the protocol. Most multicast applications can tolerate
some loss (that is, streaming video or voice). One might consider a stock ticker,
but given the timeliness of the data it could not tolerate the retransmission
delays either. Assuming that there are applications that will arise for reliable, it
seems that we need to review and possibly refine the theory of EFCPs with
respect to the degrees of integrity and the role of intermediate processing.

Interpreting multicast and anycast in terms of a distributed IPC architecture
makes many things more clear. We have been able to integrate multicast into the
operation of the layer such that the application sees the same interface at the layer
boundary. The only difference is that when the application requests communica-
tion, it passes the name of a set rather than the name of an application. Of course,
we could interpret it as always being a set—just that often the set has one element.
We have also found that it is fairly easy to architecturally integrate multicast and
anycast operation into routing. Given that the set of potential routes from any
given router is a spanning tree, future research will undoubtedly increase the
degree of integration. We also found that in a recursive architecture, multicast can
be limited to border routers and hosts, further simplifying the problem and open-
ing the door to multiplexing multicast trees, which not only allows greater trans-
mission efficiency but also reduces the complexity of its support.

NIPCA also sheds light on the nature of reliable multicast. We won’t be so
bold as to say that NIPCA solves all the problems. It is fairly clear that as long
as tightly coupled feedback mechanisms are used to create reliable protocols,
the problems of reliable multicast are inherent. The separation of mechanism
and policy does make it possible to accommodate much if not all of the range of
reliable multicast. The structure of the DIF (three loci of processing with differ-
ent duty cycles) would appear to neatly accommodate ack aggregation at the
border routers. (Similarly, I will use ack aggregation as a shorthand for aggre-
gating ack or flow-control feedback information being returned to the sender.)
As we saw, we could map multicast data transfer and multicast “control” to
separate spanning trees. In this case, normal operation would allow for aggre-
gating acks and credits at they flow back up the tree to the sender.
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What is questionable is doing any more “compaction” (that is, having a sin-
gle ack reflect the ack of several ends). This would seem to drag the model to a
hop-by-hop paradigm, rather than our preferred end-to-end paradigm for error
control. Why is this bad? Partly because this is error control in adjacent layers
with nominally the same scope. Why do the same thing twice? What did the
layer below miss that the layer above is detecting? This is imposing a policy
about the nature of ack and credit across multiple endpoints. This may be the
desired policy. And we can create a very reasonable rationale, such as “any pol-
icy that can be performed by the source that can be distributed transparently
among the IPC processes in the DIE.” In other words, any operation can be per-
formed on EFCP Control PDUs that does not modify the state vector. Unicast is
then a degenerate case where the function is null.

This would seem to avoid the concerns that ack aggregation impairs the
“end-to-end” nature of an EFCP. Any “impairment” of end-to-end-ness (deter-
mining what to do with delayed acks, and so on) is a matter of policy, and pol-
icy is a parameter selected based on what the application has requested, and any
action that changes the state vector is only being done at the “ends.” In terms of
assembling a theory, we would like a better rationale. Was our traditional view
of the end-to-end-ness of an EFCP—that acks are simply relayed to the source
and not interpreted along the way—focused on a special case? Is multicast the
general case that we must consider. Being able to relate such rationale to a con-
sequence of the fundamental structure would be more assuring that there was
truly some basis for such rationale and it wasn’t just an expedient. Is this it?

But at the same time, the wide range of special cases generated by reliable
multicast seems to indicate that they are all kludges and multicast is purely a
routing and distribution phenomena. Recognizing that this is computer science,
so that most anything can be made to work, one still is unsure whether feedback
mechanisms should not be part of multicast.

Mobility

Mobility has become a hot topic in networking. Although mobility does present
some new issues, they turn out to be either more of the same or requirements to
be more explicit and formal about things we were already doing or should have
been. There are basically three common forms of mobility:

1. Hosts or edge subnets mobile relative to a fixed network for example, tra-
ditional cellular networks

2. Hosts or subnets mobile with respect to each other for example, ad hoc
networks
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3. Applications that move from host to host regardless of whether the hosts
are fixed or mobile

Traffic to Mobile
Host in an IP
Tunnel

Traffic to
Mobile Host

Traffic from

Mobile Host Fixed

Host

Figure 9-5 Mobile IP requires an IP tunnel to be configured.

Mobile network systems appear more difficult than they are because we
didn’t finish building the basic architecture before moving on to consider mobil-
ity. Mobile applications by their nature are confined to the periphery of a net-
work or to relatively small standalone networks or subnets. But as always,
many view mobility as an opportunity for new special cases, rather than as an
application of a general model. This is not helped by the way that mobility must
be supported in the Internet owing to its incomplete addressing architecture.

Mobility in IP and Cellular Networks

To support mobility in IP (see Figure 9-5; Perkins, 1998), a router in the “home
subnet” of a mobile host is assigned the role of a “home router.” The mobile
host’s IP address, S, in that subnet continues to identify the mobile host; but
when it moves into the new subnet, it is assigned a local IP address, M, in that
subnet. An IP tunnel is created between the home router and a router in the new
subnet with a direct connection to the mobile host. When PDUs are sent to the
mobile host with the IP address S, they are routed to the “home router”; the
home router knows the mobile host is not where it is supposed to be; so the
PDU is encapsulated and sent down the IP tunnel to the foreign subnet. There
the PDUs are forwarded on the interface that connects the mobile host to the
foreign router. The foreign router knows that traffic from the tunnel is to be for-
warded to the IP address of the mobile host that is on a known local interface of
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the foreign router. Traffic from the mobile host to the sender can take a more
direct route or can be funneled back through the tunnel. The mobile host’s IP
address is only used by the home router and by the mobile router. These two
know the mobile host was or is directly connected to them. They must know
that this address requires special handling.

Mobile routers and home routers are special cases and would have to be
identified in advance. Furthermore, there are two single points of failure: the
home router and the foreign router. If either fails, communication is lost. This
approach is more suitable for “static” mobility, where a mobile host is removed
from the network at one point and reattached at another temporarily. It is less
suitable for roaming, where the mobile host is moving and the IP tunnel from
the home router has to follow it. (It is done, but relies on the fact that MAC
addresses have greater scope than IP addresses and don’t change.)

Why is IP mobility so complicated? As we have seen, in the Internet architec-
ture the IP address is the only means for identifying anything. Well-known sock-
ets are extensions of IP addresses and not independent of them (although there
is a global location-independent host name that is mapped to the IP address by
DNS). For purposes of mobility, domain names are synonyms for the IP address;
they do not name a distinct object. The update time for DNS, averaging 8 to 12
hours globally, is far too long for updating IP as a point-of-attachment address.

The telephone system initially had a similar problem when they began to con-
sider mobile phone service. As noted earlier, in the telephone system the phone
number was the name of the wire coming from the central office to the phone.
This would clearly not work for a mobile system. The handset would need to
establish communication with a cell tower. As the handset moved, the cellular
system would have to follow the handset and hand it off from tower to tower.
The phone number would have to name the handset because that was what one
would call. (Already we are in better shape.) The cell phone system would need
a distinct address space for the cell tower antennas. The telephone number iden-
tified the handset (a node address) that was communicating at a lower layer
with a cell tower (PoA). As the cell phone moved around its area, it communi-
cates with one cell tower after another, often to more than one at a time (multi-
homing). It is doubtful the cell phone developers realized that in networking
terms they were being forced to make a distinction between node address and
PoA address, but they were.!3

Cell phone use was initially restricted to a local area, just as the phone system
was in its early days. If a cell phone user left his “home” area, special arrange-
ments had to be made for “roaming” (for an additional charge). Entries were

13 0dd that the staid, conservative, old-model telephone carriers could part with tradition, but
the innovative, visionary Internet has not been able to.
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made in a special roaming database called the Visitor Locator Register (VLR).
As cell phone use increased, so did the number of people needing to roam. Trav-
elers making special arrangements every time they were about to jump on a
plane quickly became unworkable. Cellular systems needed to allow any phone
to roam outside its home area without human intervention.

Clearly people’s phone numbers couldn’t change, but cell phone providers
needed a more effective way of finding the handset when it wasn’t where it was
suppose to be. This meant that the phone number in the handset would not indi-
cate where the phone was. The phone numbers would become location inde-
pendent. (We have seen this before.) Without disrupting their customers, the cell
phone operators jacked up their architecture (again), making node addresses of
phone numbers, application names, and other newly assigned numbers. Con-
trary to how this might have looked at the time, this wasn’t that big of a change.
The phone system had already been purposely confusing phone numbers as both
node addresses and location-independent names (that is, application names) with
800 numbers and 411 and 911 numbers. In one’s home area, it was likely that
one’s application name and node address were the same string of bits; as the
phone moved beyond its home area, however, the node address was changed to
one local to the new area, but the phone number seen by the user (and those call-
ing her) remained the same. The cell phone system merely changed the mapping
in its directory databases so that connect requests to the application name are
routed to the subnet indicated by the node address, which in turn is mapped to a
point-of-attachment address so that the call is routed to the correct cell tower.

In effect, the cell phone system first “jacked up” the PoA address space of the
traditional phone system to make them node addresses and then did it again to
make them application names (with the result that cell phone numbers were
“portable”). Although the cell phone system started out with a concept of
“home” much like that found in mobile IP, it evolved to the point that its primary
utility is for management and billing. Because the form of the numbers never
changed, most users never knew that there was a difference or that one was nec-
essary.* One should not conclude that the current cell phone system is as clean
as described here. Cell phone providers backed into the solution, and so there are
a number of warts on the implementation that give away its history. But the basic
idea was correct. Armed with a full addressing architecture, one finds that

Mobility is simply dynamic multihoming.

14" And because no networking text teaches the principles of network naming and addressing, we
are constantly inundated with demands to make IP addresses portable. After all, if the tele-
phone company can, why can’t the Internet. Of course, the answer is that the phone company
doesn’t make point-of-attachment addresses or node addresses portable and neither can the
Internet. But every few months, some Internet “expert” calls for it.
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CHAPTER 9 MULTIHOMING, MULTICAST, AND MOBILITY

Mobility in NIPCA

So, networking should just replicate the cellular approach? Not quite. As shown
earlier, mobile communications is just a matter of the mobile host moving along
acquiring new points of attachments as they come into range and discarding old
ones as it moves out of range, being multihomed at times. A mobile system is a
bit like a monkey brachiating from vine to vine through the jungle; the mobile
system swings from tower to tower. The primary difference between networking
systems and cellular systems is that in a cellular system it is the vine that decides
when to let go! Clearly, we would much prefer to let the monkey decide when to
let go, especially if we are the monkey!

But joking aside, letting the mobile system determine which points of attach-
ments it has good communication with and which ones it wants to drop or
which new ones it wants to acquire makes sense. At the very least, it knows
whether it has the necessary signal strength with a new signal, and it knows
where it is going. The cell phone approach came about when cellular was ana-
log and the phones had little or no computing capacity. Cell phones today are
orders of magnitude more powerful than the largest ARPANET hosts. This
approach also fits nicely into our model of layer or DIF operation developed in
Chapter 7.

Basically, a mobile system is acquiring new physical PoAs as it moves. Strictly
speaking, each of these new physical PoAs is joining a new DIF or layer.!
Although an address indicates where a system is in that DIE the lowest layer
(traditionally called the data link layer) has such small scope that the address
space is generally flat. As we saw, addresses have a certain granularity or resolu-
tion in the degree to which the address indicates where. PoAs to the physical
media are generally within this granularity. So even though the physical PoA
will change most frequently, it isn’t necessary that the lowest-level address
change as frequently. (Remember that PoA and node addresses are relative in
our recursive model.) As the system joins each new lowest layer, it will only be
necessary to ensure that the address is unambiguous within the layer. As the sys-
tem moves, the signal strength of some physical layer POAs will drop below a
usable threshold and membership in the layer will be terminated.

15 In the same way that an Ethernet segment constitutes a data link layer, each cell phone tower
or wireless base station should be modeled as a single layer. Note how this is reflected in an
802.11 header by having four addresses, two for each layer (one for the base station, and one
for the “Ethernet segment” operating over it).
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Figure 9-6 As a mobile host or application moves, it joins new DIFs and drops its

participation in old ones, at times being multihomed to more than one. The rate of
change is commensurate with the scope of the layer. The smaller scope, the faster it may
traverse it, and the fewer elements of the layer that need to be notified.

It is a design tr