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Introduction

The idea of representing a complex mathematical object by a simpler
one is as old as mathematics itself. It is particularly useful in classification
problems. For instance, a single linear transformation on a finite dimen-
sional vector space is very adequately characterised by its reduction to its
rational or its Jordan canonical form. It is now generally accepted that the
representation theory of associative algebras traces its origin to Hamilton’s
description of the complex numbers by pairs of real numbers. During the
1930s, E. Noether gave to the theory its modern setting by interpreting rep-
resentations as modules. That allowed the arsenal of techniques developed
for the study of semisimple algebras as well as the language and machinery
of homological algebra and category theory to be applied to representation
theory. Using these, the theory grew rapidly over the past thirty years.

Nowadays, studying the representations of an algebra (which we always
assume to be finite dimensional over an algebraically closed field, associa-
tive, and with an identity) is understood as involving the classification of
the (finitely generated) indecomposable modules over that algebra and the
homomorphisms between them. The rapid growth of the theory and the
extent of the published original literature became major obstacles for the
beginners seeking to make their way into this area.

We are writing this textbook with these considerations in mind: It is
therefore primarily addressed to graduate students starting research in the
representation theory of algebras. It should also, we hope, be of interest to
mathematicians working in other fields.

At the origin of the present developments of the theory is the almost
simultaneous introduction and use on the one hand of quiver-theoretical
techniques by P. Gabriel and his school and, on the other hand, of the theory
of almost split sequences by M. Auslander, I. Reiten, and their students.
An essential role in the theory is also played by integral quadratic forms.
Our approach in this book consists in developing these theories on an equal
footing, using their interplay to obtain our main results. Our strong belief
is that this combination is best at yielding both concrete illustrations of the
concepts and the theorems and an easier computation of actual examples.
We have thus taken particular care in introducing in the text as many as
possible of the latter and have included a large number of workable exercises.

vii



viii INTRODUCTION

With these purposes in mind, we divide our material into two parts.

The first volume serves as a general introduction to some of the tech-
niques most commonly used in representation theory. We start by showing
in Chapters IT and IIT how one can represent an algebra by a bound quiver
and a module by a linear representation of the bound quiver. We then turn
in Chapter IV to the Auslander—Reiten theory of almost split sequences,
giving various characterisations of these, showing their existence in module
categories, and introducing one of our main working tools, the so-called
Auslander—Reiten quiver. As a first and easy application of these concepts,
we show in Chapter V how one can obtain a complete description of the
representation theory of the Nakayama (or generalised uniserial) algebras.
We return to theory in Chapter VI, giving an outline of tilting theory,
another of our main working tools. A first application of tilting theory
is the classification in Chapter VII of those hereditary algebras that are
representation—finite (that is, admit only finitely many isomorphism classes
of indecomposable modules) by means of the Dynkin diagrams, a result
now known as Gabriel’s theorem. We then study in Chapter VIII a class
of algebras whose representation theory is as “close” as possible to that of
hereditary algebras, the class of tilted algebras introduced by D. Happel
and C. M. Ringel. Besides the general properties of tilted algebras, we give
a very handy criterion, due to S. Liu and A. Skowronski, allowing verifica-
tion of whether a given algebra is tilted or not. The last chapter in this
volume deals with indecomposable modules not lying on an oriented cycle
of nonzero nonisomorphisms between indecomposable modules.

Throughout this volume, we essentially use integral quadratic form tech-
niques. We present them here in the spirit of Ringel [144].

The first volume ends with an appendix collecting, for the convenience
of the reader, the notations and terminology on categories, functors, and
homology and recalling some of the basic facts from category theory and
homological algebra needed in the book. In Chapter I, we introduce the
notation and terminology we use on algebras and modules, and we briefly
recall some of the basic facts from module theory. We introduce the notions
of the radical of an algebra and of a module; the notions of semisimple
module, projective cover, injective envelope, the socle, and the top of a
module, local algebra, primitive idempotent. We also collect basic facts
from the module theory of finite dimensional K-algebras.

The reader interested mainly in linear representations of quivers and
path algebras or familiar with elementary facts on rings and modules can
skip Chapter L.

It is our experience that the contents of the first volume of this book
can be covered during one (eight-month) course.
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The main aim of the second volume, “Representation—Infinite Tilted
Algebras? is to study some interesting classes of representation-infinite al-
gebras A and, in particular, to give a fairly complete description of the
representation theory of representation-infinite tilted algebras. If the alge-
bra A is tame hereditary, that is, if the underlying graph of its quiver is
a Fuclidean diagram, we show explicitly how to compute the regular inde-
composable modules over A, and then over any tame concealed algebra.

It was not possible to be encyclopedic in this work. Therefore many
important topics from the theory have been left out. Among the most
notable omissions are covering techniques, the use of derived categories and
partially ordered sets. Some other aspects of the theory presented here are
discussed in the books [21], [31], [76], [98], [84], [151], and especially [144].

Throughout this book, the symbols N, Z, @, R, and C mean the sets of
natural numbers, integers, rational, real, and complex numbers, and M, (K)
means the set of all square n x n matrices over K. The cardinality of a set
X is denoted by |X]|.

We take pleasure in thanking all our colleagues and students who helped
us with their comments and suggestions. We wish particularly to express our
appreciation to Sheila Brenner, Otto Kerner, and Kunio Yamagata for their
helpful discussions and suggestions. Particular thanks are due to Francois
Huard and Jessica Lévesque, and to Mrs. Jolanta Szelatyniska for her help
in preparing a print-ready copy of the manuscript.



Chapter I

Algebras and modules

We introduce here the notations and terminology we use on algebras and
modules, and we briefly recall some of the basic facts from module theory.
Examples of algebras, modules, and functors are presented. We introduce
the notions of the (Jacobson) radical of an algebra and of a module; the
notions of semisimple module, projective cover, injective envelope, the socle
and the top of a module, local algebra, and primitive idempotent. We also
collect basic facts from the module theory of finite dimensional K-algebras.
In this chapter we present complete proofs of most of the results, except
for a few classical theorems. In these cases the reader is referred to the
following textbooks on this subject [2], [6], [49], [61], [131], and [165].

Throughout, we freely use the basic notation and facts on categories and
functors introduced in the Appendix.

The reader interested mainly in linear representations of quivers and
path algebras or familiar with elementary facts on rings and modules can
skip this chapter and begin with Chapter II.

For the sake of simplicity of presentation, we always suppose that K is
an algebraically closed field and that an algebra means a finite dimensional
K-algebra, unless otherwise specified.

I.1 Algebras

By a ring, we mean a triple (A4, +, -) consisting of a set A, two binary
operations: addition + : A x A — A, (a,b) — a + b; multiplication

Ax A — A, (a,b)— ab, such that (A, +) is an abelian group, with
zero element 0 € A, and the following conditions are satisfied:

(i) (ab)c = a(be),

(ii) a(b+c¢) =ab+acand (b+ c)a =ba+ ca
for all a,b,c € A. In other words, the multiplication is associative and both
left and right distributive over the addition. A ring A is commutative if
ab = ba for all a,b € A.

We only consider rings such that there is an element 1 € A where 1 # 0
and la = al = a for all @ € A. Such an element is unique with respect to
this property; we call it the identity of the ring A. In this case the ring
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is a quadruple (A, +, -, 1). Throughout, we identify the ring (4, +, -, 1)
with its underlying set A.

A ring K is a skew field (or division ring) if every nonzero element a
in K is invertible, that is, there exists b € K such that ab =1 and ba = 1.
A skew field K is said to be a field if K is commutative.

A field K is algebraically closed if any nonconstant polynomial h(t)
in one indeterminate ¢ with coefficients in K has a root in K.

If A and B arerings, amap f : A — B is called a ring homomorphism
if fla+0) = f(a) + f(b) and f(ab) = f(a)f(b) for all a,b € A. 1If, in
addition, A and B are rings with identity elements we assume that the ring
homomorphism f preserves the identities, that is, that f(1) = 1.

Let K be a field. A K-algebra is a ring A with an identity element
(denoted by 1) such that A has a K-vector space structure compatible with
the multiplication of the ring, that is, such that

A(ab) = (a\)b = a(A\b) = (ab)A

for all A € K and all a,b € A. A K-algebra A is said to be finite dimen-
sional if the dimension dimy A of the K-vector space A is finite.

A K-vector subspace B of a K-algebra A is a K-subalgebra of A if
the identity of A belongs to B and bb’ € B for all b,b’ € B. A K-vector
subspace I of a K-algebra A is a right ideal of A (or left ideal of A) if
xza € I (or ax € I, respectively) for all z € T and a € A. A two-sided ideal
of A (or simply an ideal of A) is a K-vector subspace I of A that is both a
left ideal and a right ideal of A.

It is easy to see that if I is a two-sided ideal of a K-algebra A, then the
quotient K-vector space A/I has a unique K-algebra structure such that
the canonical surjective linear map 7 : A — A/I, a — a = a + I, becomes
a K-algebra homomorphism.

If I is a two-sided ideal of A and m > 1 is an integer, we denote by
I™ the two-sided ideal of A generated by all elements xi2s ... x,,, where
T1,%2,...,Tm € I, that is, I™ consists of all finite sums of elements of the
form z1xs ... %m, where z1,22,...,2m € I. We set I = A. The ideal I is
said to be nilpotent if ™ = 0 for some m > 1.

If A and B are K-algebras, then a ring homomorphism f : A — B
is called a K-algebra homomorphism if f is a K-linear map. Two K-
algebras A and B are called isomorphic if there is a K-algebra isomorphism
f: A — B, that is, a bijective K-algebra homomorphism. In this case we
write A & B.

Throughout this book, K denotes an algebraically closed field.

1.1. Examples. (a) The ring K[t] of all polynomials in the indetermi-
nate ¢ with coefficients in K and the ring Klti,...,t,] of all polynomials



I.1. ALGEBRAS 3

in commuting indeterminates t1,...,t, with coefficients in K are infinite
dimensional K-algebras.

(b) If A is a K-algebra and n € N, then the set M, (A) of all n x n
square matrices with coefficients in A is a K-algebra with respect to the
usual matrix addition and multiplication. The identity of M,,(A) is the
matrix F = diag(1,...,1) € M, (A) with 1 on the main diagonal and zeros
elsewhere. In particular M, (K) is a K-algebra of dimension n?. A K-basis
of M, (K) is the set of matrices e;;, 1 <14, j < n, where e;; has the coefficient
1 in the position (7, j) and the coeflicient 0 elsewhere.

(c) The subset

K 0 ... 0
K K ... 0
To(K)=|. . . :
K K ... K

of M, (K) consisting of all triangular matrices [a;;] in M, (K) with zeros
over the main diagonal is a K-subalgebra of M, (K). If n = 3 then the
subset

K 0 0
A={0 K 0
K K K

of Mi3(K) consisting of all lower triangular matrices A = [\;;] € T3(K) with
A21 = 0 is a K-subalgebra of M3 (K), and also of T3 (k).

(d) Suppose that (I; <) is a finite poset (partially ordered set), where
I ={ay,...,a,} and =< is a partial order relation on I. The subset

KI={X=[\j] € Mu(K); A\st =0if as £ a}

of M, (K') consisting of all matrices A = [\;;] such that A;; = 0 if the relation
a; = a; does not hold in I is a K-subalgebra of M, (K). We call KT the
incidence algebra of the poset (I; <) with coefficients in K. The matrices
{esj} with a; < a; form a basis of the K-vector space K.

Without loss of generality, we may suppose that I = {1,...,n} and
that ¢ =< j implies that ¢ > j in the natural order. This can easily be done
by a suitable renumbering of the elements in 1. In this case, K1 takes the
form of the lower triangular matrix algebra

K 0o ... 0

Ky K ... 0
KI: . . . . )

Kn Kpa ... K

where K;; = K if i < j and K;; = 0 otherwise. For example, if (I; <) is
the poset {1 > 2 > 3 > --- > n} then the algebra KT is isomorphic to the
algebra T, (K) in Example 1.1 (¢). If (I; <) is the poset {1 = 3 < 2} then
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the incidence algebra K[ is isomorphic to the five-dimensional algebra A
in Example 1.1 (c). If the poset (I; <) is given by I = {1,2, 3,4} and the
relations {3 >4 <2 <1 > 3} then

K 0 0 0
K K 0 0
Kl = K 0 K 0
K K K K

(e) The associative ring K (t1,t2) of all polynomials in two noncommu-
ting indeterminates ¢; and to with coefficients in K is an infinite dimensional
K-algebra. Note that, if I is the two-sided ideal in K (t1,t2) generated by
the element t1to — tatq, then the K-algebra K (t1,t2)/I is isomorphic to
K|ty ta].

(f) Let (G, ") be a finite group with identity element e and let A be a
K-algebra. The group algebra of G with coefficients in A is the K-vector
space AG consisting of all the formal sums } - g Ay, where A, € A and
g € G, with the multiplication defined by the formula

(Zg)\g)-(Zh,uh): Z FAghtn.

geq hEG f=gheG

Then AG is a K-algebra of dimension |G| - dimg A (here |G| denotes the
order of G) and the element e = el is the identity of AG. If A = K, then
the elements g € G form a basis of KG over K.

For example, if G is a cyclic group of order m, then KG = K[t|/(t"™—1).

(g) Assume that A; and As are K-algebras. The product of the
algebras A; and As is the algebra A = A; x As with the addition and the
multiplication given by the formulas (a1, a2) + (b1,b2) = (a1 + b1, a2 + ba)
and (al,ag)(bl,bg) = (albl,a2b2)7 where a1,b1 € Ay and as, by € As. The
identity of A is the element 1 = (1,1) = e; +e3 € Ay X Ay, where e; = (1,0)
and ex = (0,1).

(h) For any K-algebra A we define the opposite algebra A°P of A to
be the K-algebra whose underlying set and vector space structure are just
those of A, but the multiplication * in A°P is defined by formula a x b = ba.

1.2. Definition. The (Jacobson) radical rad A of a K-algebra A is
the intersection of all the maximal right ideals in A.

It follows from (1.3) that rad A is the intersection of all the maximal left
ideals in A. In particular, rad A is a two-sided ideal.

1.3. Lemma. Let A be a K-algebra and let a € A. The following
conditions are equivalent:
(a) aeradA;
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(a') a belongs to the intersection of all maximal left ideals of A;
(b) for any b € A, the element 1 — ab has a two-sided inverse;
(b") for any b € A, the element 1 — ab has a right inverse;

(c) for any b e A, the element 1 — ba has a two-sided inverse;
(¢") for any b € A, the element 1 — ba has a left inverse.

Proof. (a) implies (b’). Let b € A and assume to the contrary that
1 — ab has no right inverse. Then there exists a maximal right ideal I of A
such that 1 —ab € I. Because a € radA C I, ab € I and 1 € I; this is a
contradiction. This shows that 1 — ab has a right inverse.

(b’) implies (a). Assume to the contrary that a ¢ rad A and let I
be a maximal right ideal of A such that a ¢ I. Then A = I + aA and
therefore there exist z € I and b € A such that 1 = = + ab. It follows
that x = 1 — ab € I has no right inverse, contrary to our assumption. The
equivalence of (a’) and (¢) can be proved in a similar way.

The equivalence of (b) and (c) is a consequence of the following two
simple implications:

(i) If (1 — cd)x =1, then (1 — de)(1 + dxc) = 1.

(ii) If y(1 — ed) =1, then (1 + dyc)(1 —dc) = 1.

(b") implies (b). Fix an element b € A. By (b’), there exists an element
¢ € A such that (1 —ab)e = 1. Hence ¢ = 1 — a(—be) and, according to (b),
there exists d € A such that 1 = ¢d = d + abed = d + ab. It follows that
d =1 — ab, ¢ is the left inverse of 1 — ab and (b) follows. That (¢’) implies
(c) follows in a similar way. Because (b) implies (b’) and (c) implies (¢’)
obviously, the lemma is proved. O

1.4. Corollary. Let rad A be the radical of an algebra A.

(a) rad A is the intersection of all the mazimal left ideals of A.

(b) rad A is a two-sided ideal and rad( A/rad A) = 0.

(¢) If I is a two-sided nilpotent ideal of A, then I C radA. If, in
addition, the algebra A/I is isomorphic to a product K x --- X K of copies
of K, then I = rad A.

Proof. The statements (a) and (b) easily follow from (1.3).

(c¢) Assume that I™ = 0 for some m > 0. Let z € I and let a be an
element of A. Then ax € I and therefore (az)” = 0 for some r > 0. It
follows that the equality (14 az + (az)? + -+ (ax)""1)(1 — az) = 1 holds
for any element a € A, and, according to (1.3), the element z belongs to
rad A. Consequently, I C rad A. To prove the reverse inclusion, assume
that the algebra A/I is isomorphic to a product of copies of K. It follows
that rad(A/I) = 0. Next, the canonical surjective algebra homomorphism
m: A — AJI carries rad A to rad(A/I) = 0. Indeed, if a € rad A and
w(b) = b+ I, with b € A, is any element of A/I then, by (1.3), 1 — ba is
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invertible in A and therefore the element w(1—ba) = 1—7(b)m(a) is invertible
in A/I; thus 7(a) € rad A/I =0, by (1.3). This yields rad A C Kerm =T

and finishes the proof. 0

1.5. Examples. ( ) Let s1,...,8, be positive integers and let A =
Klt1,...,ty)/(t", ..., t3m). Because the ideal I = (ty,...,t,) of A generated
by the cosets t1,...,t, of the indeterminates ¢4, ...,t, modulo the ideal

(LY, .. t5r) is nilpotent, then (1.4) yields I C rad A. On the other hand,
there is a K-algebra isomorphism A/I = K. It follows that I is a maximal
ideal and therefore rad A = I.

(b) Let I be a finite poset and A = KT be its incidence K-algebra viewed,
asin (1.1)(d), as a subalgebra of the full matrix algebra M,,(K). Then rad A
is the set U of all matrices A = [\;;] € KT with \;; =0 fori=1,2,...,n
and the algebra A/rad A is isomorphic to the product K X --- x K of n
copies of K. Indeed, we note that the set U is clearly a two-sided ideal of
K1, it is easily seen that U™ = 0 and finally the algebra A/U is isomorphic
to the product of n copies of K, thus (1.4)(c) applies.

(¢) By applying the preceding arguments, one also shows that the rad-
ical rad A of the lower triangular matrix algebra A = T, (K) of (1.1)(c)
consists of all matrices in A with zeros on the main diagonal. It follows that
(rad A)™ =

In the study of modules over finite dimensional K-algebras over an alge-
braically closed field K an important role is played by the following theorem,
known as the Wedderburn-Malcev theorem.

1.6. Theorem. Let A be a finite dimensional K-algebra. If the field
K is algebraically closed, then there exists a K -subalgebra B of A such that
there is a K-vector space decomposition A = B @ rad A and the restriction
of the canonical surjective algebra homomorphism w: A — A/rad A to B is
a K-algebra isomorphism.

Proof. See [61, section VI.2] and [131, section 11.6]. O

I.2 Modules

2.1. Definition. Let A be a K-algebra. A right A-module (or a right
module over A) is a pair (M, -), where M is a K-vector space and - :
M x A — M, (m,a) — ma, is a binary operation satisfying the following
conditions:

(a) (@ +y)a = za -+ ya;

(b) z(a+b) = xa+ xb;
E )) z(ab) = (za)b;

zl = ;



1.2. MODULES 7

(e) (zA)a = z(a)) = (za)\
for all x,y € M, a,b€ Aand ) € K.

The definition of a left A-module is analogous. Throughout, we write
M or My instead of (M, -). We write A4 and 4 A whenever we view the
algebra A as a right or left A-module, respectively.

A module M is said to be finite dimensional if the dimension dim g M
of the underlying K-vector space of M is finite.

A K-subspace M’ of a right A-module M is said to be an A-submodule
of M if ma € M’ for all m € M’ and all a € A. In this case the K-vector
space M /M’ has a natural A-module structure such that the canonical
epimorphism 7 : M — M/M’ is an A-module homomorphism.

Let M be a right A-module and let I be a right ideal of A. It is easy to
see that the set M1 consisting of all sums mia; + ...+ msas, where s > 1,
mi,...,ms € M and aq,...,as € I, is a submodule of M.

A right A-module M is said to be generated by the elements mq, ..., mg
of M if any element m € M has the form m = mya; + - - - + msa, for some
ai,...,as € A. In this case, we write M = m1A + ...+ msA. A module
M is said to be finitely generated if it is generated by a finite subset of
elements of M.

Let My,..., My be submodules of a right A-module M. We define
Mi+ ... + M, to be the submodule of M consisting of all sums mq+---+
mg, where my € My, ---,mg € My, and we call it the submodule generated
by M, ..., Ms, or the sum of My, ..., M.

Note that a right module M over a finite dimensional K-algebra A is

finitely generated if and only if M is finite dimensional. Indeed, if 1, ..., Zm
is a K-basis of M, then it is obviously a set of A-generators of M. Con-
versely, if the A-module M is generated by the elements my, ..., m, over A

and &1, ... & is a K-basis of A then the set {m;&;j=1,...,n,i=1,...,s}
generates the K-vector space M.

Throughout, we frequently use the following lemma, known as Nakaya-
ma’s lemma.

2.2. Lemma. Let A be a K-algebra, M be a finitely generated right
A-module, and I C rad A be a two-sided ideal of A. If MI = M, then
M =0.

Proof. Suppose that M = MI and M =m; A+ ---+msA, that is, M
is generated by the elements mq,..., ms. We proceed by induction on s.
If s = 1, then the equality m1 A = m1[ implies that m; = mjx; for some
x1 € I. Hence mi(1 — x1) = 0 and therefore m; = 0, because 1 — x; is
invertible. Consequently M = 0, as required.

Assume that s > 2. The equality M = M1 implies that there are
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elements z1,...,zs € I such that my = mix; + moxo + - - - + msxs. Hence
mi(l — 1) = maxe + -+ + mexs and therefore my € moA + -+ + msA
because 1 — x1 is invertible. This shows that M = msA + --- + msA and
the inductive hypothesis yields M = 0. g

2.3. Corollary. If A is a finite dimensional K-algebra, then rad A is
nilpotent.

Proof. Because dimg A < 0o, the chain
ADradAD (radA)? D --- D (rad A)™ D (rad A)™ ! D ...

becomes stationary. It follows that (rad A)"™ = (rad A)™rad A for some m,
and Nakayama’s lemma (2.2) yields (rad A)™ = 0. O

Let M and N be right A-modules. A K-linear map h : M — N is said
to be an A-module homomorphism (or simply an A-homomorphism) if
h(ma) = h(m)a for all m € M and a € A. An A-module homomorphism
h: M — N is said to be a monomorphism (or an epimorphism) if it is
injective (or surjective, respectively). A bijective A-module homomorphism
is called an isomorphism. The right A-modules M and N are said to be
isomorphic if there exists an A-module isomorphism h : M — N. In this
case, we write M =2 N. An A-module homomorphism h : M — M is said
to be an endomorphism of M.

The set Homy (M, N) of all A-module homomorphisms from M to N
is a K-vector space with respect to the scalar multiplication (f,\) — fA
given by (fA)(m) = f(mA) for f € Homa(M,N), A € K and m € M.
If the modules M and N are finite dimensional, then the K-vector space
Hom (M, N) is finite dimensional. The K-vector space

End M = Homa (M, M)

of all A-module endomorphisms of any right A-module M is an associative
K-algebra with respect to the composition of maps. The identity map 1,
on M is the identity of End M.

It is easy to check that for any triple L, M, N of right A-modules the
composition mapping - : Hom4 (M, N)xHom (L, M) —— Homu (L, N),
(h,g) — hg, is K-bilinear.

It is clear that the kernel Kerh = {m € M |h(m) = 0}, the image
Imh = {h(m)|m € M}, and the cokernel Cokerh = N/Imh of an A-
module homomorphism h : M — N have natural A-module structures.

The direct sum of the right A-modules M, ..., M is defined to be the
K-vector space direct sum M; & - - -® M, equipped with an A-module struc-
ture defined by (mq,...,ms)a = (maa,...,msa) form; € My,...,ms € M,
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and a € A. We set
M=M@---®M, (s copies).

A right A-module M is said to be indecomposable if M is nonzero and M
has no direct sum decomposition M = N & L, where L and N are nonzero
A-modules.

We denote by Mod A the abelian category of all right A-modules, that
is, the category whose objects are right A-modules, the morphisms are A-
module homomorphisms, and the composition of morphisms is the usual
composition of maps. The reader is referred to Sections 1 and 2 of the
Appendix for basic facts on categories and functors. Throughout, we freely
use the notation introduced there.

We note that any left A-module can be viewed as a right A°P-module
and conversely. Therefore, throughout the text, the category Mod A°P is
identified with the category of all left A-modules.

We denote by mod A the full subcategory of Mod A whose objects are
the finitely generated modules. It follows that if A is a finite dimensional
K-algebra, then all modules in mod A are finite dimensional.

An important idea in the study of A-modules is to view them as sets
of K-vector spaces connected by K-linear maps. This is illustrated by the
following three examples.

2.4. Example. Let A be the lower triangular matrix K-subalgebra

K 0
=% &
of the matrix algebra My (K). We note that the matrices e; = (§ J), e2 =
(09), e2a1 = (99) form a K-basis of A over K, 1z = e1 + ez, and ejey =
€2€61 = 0.

It follows that every module X in mod A, viewed as a K-vector space,
has a direct sum decomposition X = X; & X5, where X;, X, are the
vector spaces Xej, Xey over K. Note that given a = (Z;} ag2) € A and
x = (x1,22) € X with z1 € X; and z2 € X5 we have

za = (z1a11 + 2021, T2a22) = (1011 + fx (22)az1, T2a22),
where fx : Xo — X7 is the K-linear map given by the formula fx (z2) =
Toeo1 = Xoesgrerr. It follows that X, viewed as a right A-module, can be
identified with the triple ( X X X3). Moreover, any A-module homomor-
phism h: X — Y can be identified with the pair (hi,hs) of K-linear
maps hy : X1 — Y7, ho : Xo — Y, that are the restrictions of A to,

respectively, X7 and X5. These satisfy the equation hifx = fyho.
The converse correspondence to X + (X; <~ X3) is defined by as-
sociating to any triple (X7 «— X3) with K-vector spaces X;, Xy and
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f € Homg(Xs,X1), the K-vector space X = X; @& Xy endowed with
the right action - : X x A — X of A on X defined by the formula

(331,33‘2)(2; a(;Q) = (33‘1&11 + f(l‘g)agl,l‘gagg), where xr1 € Xl, To € XQ,
and (11 4y,) € A.
2.5. Example. Let A be the Kronecker algebra
K 0
A= &

whose elements are 2 x 2 matrices of the form (( A 0) with \,u € K,

uy,u2) @

(u1,uz) € K2, and the multiplication in A is defined by the formula

d 0 f 0\ df 0
(ur,u2) ¢ (vi,02) e B (u1r fHvic,us ftvae) ce ’

Finite dimensional right A-modules are called Kronecker modules. Every
such A-module X can be identified with a quadruple
(Xl é Xz),
P2
where X, X, are the K-vector spaces Xeq, Xes, respectively, e; = (§ 9),
ea =(39), ¢1, p2 are the K-linear maps defined by the formulas

ng({E):x (21 8) =T (21 8) " €1, ('02(x):$- (22 8) = (22 8) €1,
for z € Xy, where & = (1,0) and & = (0,1) are the standard basis vectors
of K2. Any A-module homomorphism c¢: X’ — X can be identified with
a pair (c1,c2) of K-linear maps c¢; : X] — X; and ¢g : X} — X, such
that c1¢] = p1ce and c¢1h = paco.

P1
The converse correspondence to X +— (X3 &= X,) is defined by
¥p2

$p1
associating to any quadruple (X; &= X,) with finite dimensional K-

P2
vector spaces X1, Xo and 1,92 € Homg(Xa, X7), the K-vector space
X = X1 & X5 endowed with the right action - : X x A — X of A on X
defined by the formula

(xlva)((ulAﬂQ) 2) = (1A + @1 (z2)ur + p1(22)u2, T211),

u1,u2) f
It follows that the category of Kronecker modules is equivalent to the
category of pairs [®q,P2] of matrices @1, o over K of the same size,
where the map from [P}, ®,] to [Py, P2] isapair (Cp,C2) of matrices
with coefficients in K such that C1®] = 10y and C1P, = $oC5.

where 1 € X1, 22 € X5 and (( A 0) € A.

2.6. Example. Let K[t] be the K-algebra of all polynomials in the in-
determinate ¢ with coefficients in K. Note that every module V' in Mod Kt]
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may be viewed as a pair (V,h), where V is the underlying K-vector space
and h: V — V is the K-linear endomorphism v — vt. Every K[t]-module
homomorphism f : V' — V’ may be viewed as a K-linear map such that
fh="h7f.

The converse correspondence to V' +— (V) h) is given by attaching to any
pair (V, h), with a K-vector space V' and h € EndgV, the K-vector space
V endowed with the right action - : V' x K[t]| — V of K|[t] on V given by
the formula

ve(Xo+tA + -+ ) = o +F h(0)AL + -+ RT(0) A,
where v € V and A, ..., A, € K. The reader is referred to [49] for details.

2.7. Example. Assume that A = A; x As is the product of two K-
algebras A; and As. The identity of A is the element 1 = (1,1) = e +e2 €
A1 x Ag, where e; = (1,0) and e2 = (0,1). Note that ejeq = eqeq = 0. If
X 4 is a right A-module, then Xe; is a right A;-module, Xes is a right As-
module and there is an A-module direct sum decomposition X = Xe;®Xes,
where Xe; is viewed as a right A-module via the algebra projection A — A;
for j = 1,2. Then the same type of arguments as in the previous examples
shows that the correspondence X 4 +— (Xeq, Xes) defines an equivalence of
categories Mod(A; X Ag) = Mod A; x Mod A,, which we use throughout as
an identification.

2.8. A matrix notation. In presenting homomorphisms between di-
rect sums of A-modules, we use the following matrix notation. Given a
set of A-module homomorphisms f; : X7 — Y,..., f, : X, — Y and
g1:Y — Zi,....9m Y — Z, in Mod A we define two A-module homo-
morphisms

g1

f=lf1... fa: X1® 06X, — Y, g= [ ] Y —— 2B D,

Im
by the following formulas f(z1,...,2,) = fi(z1) + ...+ fu(zy) and g(y) =
(91(y), ... gm(y)) for ; € X; and y € Y. It is easy to see that f and
g are the unique A-module homomorphisms in Mod A such that fu; = f;
for j =1,...,n and p;g = ¢; for i = 1,...,m, where u; : X; — X1 @
-+ & X, is the jth summand embedding z; — (0,...,0,2;,0,...,0) and
pi:Z1 ® @ Zy — Z;is the ith summand projection (z1,...,2y,) —
zi. t X =X1&---8X,and Z =2, % - @ Z,, then any A-module
homomorphism h : X — Z in Mod A can be written in the form of an
m X n matrix hir his ... hi

ha1 haz ... han
hZ[hij]Z[: Do ;|7
hnrl hrn2 hm

where h;; = p;hu; € Homa (X, Z;).
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2.9. Standard dualities. Let A be a finite dimensional K-algebra.
We define the functor

D :mod A —— mod AP
by assigning to each right module M in mod A the dual K-vector space
M* =Hompg (M, K)

endowed with the left A-module structure given by the formula (ap)(m) =
w(ma) for ¢ € Homg (M, K), a € Aand m € M, and to each A-module ho-
momorphism h : M — N the dual K-homomorphism D(h) = Homg (h, K) :
D(N) — D(M), ¢ — ph, of left A-modules. One shows that D is a dual-
ity of categories, called the standard K-duality. The quasi-inverse to the
duality D is also denoted by

D :mod A°® ——— mod A

and is defined by attaching to each left A-module Y the dual K-vector space
D(Y) = Y* = Homg (Y, K) endowed with the right A-module structure
given by the formula (pa)(y) = ¢(ay) for ¢ € Homg (Y, K), a € A and
y € Y. A straightforward calculation shows that the evaluation K-linear
map ev : M — M** given by the formula ev(m)(f) = f(m), where m € M
and f € D(M), defines natural equivalences of functors 1 L2 =DoD
and 1 = DoD.

mod
mod Aep

Any right A-module M is a left module over the algebra End M with
respect to the left multiplication (End M)xM — M, (¢, m) — om = @(m).
It is easy to check that M is an (End M)—A-bimodule in the following sense.

2.10. Definition. Let A and B be two K-algebras. An A-B-bimodule
is a triple aMp = (M, *,-), where 4M = (M, ) is a left A-module, Mp =
(M,-) is a right B-module, and (a*m)-b=ax(m-b) forallm € M, a € A,
b € B. Throughout, we write simply am and mb instead of a *m and m - b,
respectively.

For any A-B-bimodule 4 Mp and for any right B-module Xp, the K-
vector space Homp (4 Mp, Xp) of all B-module homomorphisms from Mp
to Xp is a right A-module with respect to the A-scalar multiplication
(f,a) — fa given by (fa)(m) = f(am) for f € Homp(Mp, Xg), a € A
and m € M. If M and X are finite dimensional over K, then so is
HOIIIB(AMB,XB).

Important examples of functors are the Hom-functors Homp (4 Mp, —)
and Homp(—, aMp). We define the covariant Hom-functor

HOInB(AMB, —) :Mod B —— MOdA
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by associating to Xp in Mod B the K-vector space Hompg(aMp, Xp) en-
dowed with the right A-module structure defined earlier. If ¢ : X — Yp
is a homomorphism of B-modules, we define the induced homomorphism
Homp(aMp, ) : Homp(aMp, Xp) — Homp(aMp, Y) of right A-modules
by the formula f — ¢f. The contravariant Hom-functor

}IOIDB(—7 AMB) :Mod B —— MOdAOp

is defined by Xp +— Homp(Xp,aMp) and by assigning to any homo-
morphism ¥ : Xp — Yp of right B-modules the induced homomorphism
HOmB(¢,AMB) : HOmB(YB,AMB) — HOmB(XB,AMB), f— fiu, of left
A-modules.

We recall also that, given an A-B-bimodule 4 Mp, the covariant tensor
product functors

(—)®aMp: Mod A —— Mod B, sM®p(—): Mod B®® —— Mod A°P

are defined by associating to any right A-module X4 and to any left B-
module gY the tensor products X ® 4 Mp and 4 M ®p Y endowed with the
natural right B-module and left A-module structure, respectively. It is well
known that there exists an adjunction isomorphism

HomB(X XA MB,ZB)gHOInA(XA,HOmB(AMB,ZB)) (2.11)

given by attaching to a B-module homomorphism ¢ : X ® 4 Mp — Zp
the A-module homomorphism

@ XA E— HomB(AMB,ZB)
adjoint to ¢ defined by the formula p(x)(m) = p(z @ m), where © € X
and m € M. A straightforward calculation shows that the inverse to ¢ — ¢
is defined by ¢ — (x ® m +— ¥(x)(m)), where x € X and m € M.

Formula (2.11) shows that the functor (—) ® 4 Mp is left adjoint to
the functor Hompg(—, 4Mp), and that Homp(—, 4Mp) is right adjoint to
(=) ®a Mp (see (A.2.3) of the Appendix).

I.3 Semisimple modules and the radical
of a module

Throughout, we assume that K is an algebraically closed field and that
A is a finite dimensional K-algebra. A right A-module S is simple if S
is nonzero and any submodule of S is either zero or S. A module M is
semisimple if M is a direct sum of simple modules.

3.1. Schur’s lemma. Let S and S’ be right A-modules, and f : S — S’
be a nonzero A-homomorphism.
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(a) If S is simple, then [ is a monomorphism.
(b) If S’ is simple, then f is an epimorphism.
(¢) If S and S’ are simple, then f is an isomorphism.

Proof. Because f : S — S’ is an A-module homomorphism, Ker h
and Imh are A-submodules of S and S’, respectively. Then f # 0 yields
Kerh =0 if S is simple, and Imh = S’ if S” is simple. The lemma follows.

O

3.2. Corollary. If S is a simple A-module, then there is a K-algebra
isomorphism End S = K.

Proof. It follows from Schur’s lemma that any nonzero element in
End S is invertible and therefore End S is a skew field. Because S is sim-
ple, S is a cyclic A-module and therefore dimg S is finite. It follows that
dimg End S is finite and, for any nonzero element ¢ € End S, the elements
ls,p, %, ..., @™, ... are linearly dependent over K. Consequently, there
exists an irreducible nonzero polynomial f(¢) € K[t] such that f(p) = 0.
Because the field K is algebraically closed, f is of degree 1 and therefore
¢ acts on S as the multiplication by a scalar A\, € K. The correspondence
¢ — A, establishes a K-algebra isomorphism End S = K. d

3.3. Lemma. (a) A finite dimensional right A-module M is semi-
simple if and only if for any A-submodule N of M there exists a submodule
L of M such that L® N = M.

(b) A submodule of a semisimple module is semisimple.

Proof. (a) Assume that M = S1®---®S,,, where S, ....Sy, are simple
modules. Let N be a nonzero A-submodule of M and let {S},,...,S;,} bea
maximal family of modules in the set {51, ..., S, } such that the intersection
of N with the module L = S;, &- - -®5}, is zero. It follows that NN(L+S;) #
0, for all t ¢ {j1,...,Jm}. This implies that (L + N) NS, # 0 and hence
we conclude that S; C L+ N, for all t ¢ {j1,...,4m}, because S; is simple.
Consequently, we get M = L + N and therefore M = L & N. The converse
implication follows easily by induction on dimg M.

Because (b) is an immediate consequence of (a), the lemma is proved.O

For any right A-module M, the submodule soc M of M generated by all
simple submodules of M is a semisimple module (see [2], [131]); it is called
the socle of M. The main properties of the socle are listed in Exercise 1.17.

Throughout, we frequently use the following well-known result.

3.4. Wedderburn—Artin theorem. For any finite dimensional al-
gebra A over an algebraically closed field K the following conditions are
equivalent:
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a) The right A-module A4 is semisimple.
b) Every right A-module is semisimple.
a') The left A-module 4 A is semisimple.
b’) Every left A-module is semisimple.

¢

(
(
(
(
(
(

) radA=0.
d) There exist positive integers myq,...,ms and a K-algebra isomor-
phism

A=M,,, (K) x - x M, (K).
Proof. See [2], [49], [61], [131], and [164]. O

A finite dimensional K-algebra A is called semisimple if one of the
equivalent conditions in the Wedderburn—Artin theorem (3.4) is satisfied.

By (3.4), the commutative algebra A = K[X1,...,X,]/(X", ..., X")
of Example 1.5(a), where s1,...,s, are positive integers and n > 1, is
semisimple if and only if s = ... =5, = 1.

In view of Example 1.5(b), the incidence K-algebra KI of a poset I is
semisimple if and only if a; A a; for every pair of elements a; # a; of I.

The semisimple group algebras KG are characterised as follows.

3.5. Maschke’s theorem. Let G be a finite group and let K be a field.
Then the group algebra KG is semisimple if and only if the characteristic
of K does not divide the order of G.

Proof. See [61], [131], [164] and Section 5 of Chapter V. O
We now define the radical of a module.

3.6. Definition. Let M be a right A-module. The (Jacobson) radical
rad M of M is the intersection of all the maximal submodules of M.

It follows from (1.2) that the radical rad A4 of the right A-module A4
is the radical rad A of the algebra A.

The main properties of the radical are collected in the following propo-
sition.

3.7. Proposition. Suppose that L, M, and N are modules in mod A.
(a) An element m € M belongs to rad M if and only if f(m) = 0 for
any f € Homa(M,S) and any simple right A-module S.
b) rad(M & N) =rad M ®rad N.
¢) If f € Homa(M,N), then f(rad M) Crad N.
d) Mrad A =rad M.
e) Assume that L and M are A-submodules of N. If L C rad N and
L+ M =N, then M =N.

(
(
(
(

Proof. The statement (a) follows immediately from the definition, be-
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cause L C M is a maximal submodule if and only if M/L is simple. The
statements (b) and (c) follow immediately from (a). We leave them as an
exercise.

(d) Take m € M and define a homomorphism f,, : A — M of right
A-modules by the formula f,,(a) = ma for a € A. Tt follows from (c¢) that
for a € rad A we get ma = fn(a) € fm(radA) C rad M and therefore
Mrad A C rad M. To prove the inclusion rad M C Mrad A we note that
(M/Mrad A)rad A = 0 and therefore the A-module M/Mrad A is a module
over the algebra A/rad A with respect to the action (m + Mrad A) - (a +
rad A) = ma + Mrad A. By the Wedderburn—Artin theorem (3.4), the
algebra A/rad A is semisimple and the finite dimensional A/rad A-module
M/Mrad A is a direct sum of simple modules. Because the radical of any
simple module is zero, (b) yields rad(M/Mrad A) = 0. By (c), the canonical
A-module epimorphism 7 : M — M/Mrad A carries rad M to zero, that is,
rad M C Kerm = Mrad A and we are done.

(e) Assume that L C rad N and L + M = N, and suppose to the
contrary that M # N. Because N is finite dimensional, M is a submodule
of a maximal submodule X # N of N. It follows that L. Crad N C X and
weget N=L+ M C X + M = X, contrary to our assumption. O

3.8. Corollary. Suppose that M is a module in mod A.

(a) The A-module M /rad M is semisimple and it is a module over the
K-algebra A/rad A.

(b) If L is a submodule of M such that M/L is semisimple, then
radM C L.

Proof. (a) We recall from (3.7)(d) that rad M = Mrad A. It follows
that (M/rad M)rad A = 0 and therefore the A-module M /rad M is a mod-
ule over A/rad A with respect to the action (m + Mrad A) - (a + rad A) =
ma + Mrad A. Now, by (3.4), the algebra A/rad A is semisimple, and the
module M /rad M is semisimple.

(b) Assume that L is a submodule of M such that M/L is semisimple.
Consider the canonical epimorphism e : M — M/L. Because (3.7)(c) yields
e(rad M) Crad(M/L) =0, rad M C Kere = L, and (b) follows. O

It follows from (3.7)(d) that (M/rad M)rad A = 0 and therefore the
module

top M = M/rad M,

called the top of M, is a right A/rad A-module with respect to the action
of A/rad A defined by the formula (m +rad M) - (a +rad A) = ma +rad M.

We remark that if f : M — N is an A-homomorphism, then f(rad M) C
rad N and therefore f induces a homomorphism top f : top M — top N
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of A/rad A-modules defined by the formula (top f)(m 4+ rad M) = f(m) +
rad V.

3.9. Corollary. (a) A homomorphism f: M — N in mod A is surjec-
tive if and only if the homomorphism top f : top M — top N is surjective.

(b) If S is a simple A-module, then Srad A = 0 and S is a simple
A/rad A-module.

(¢) An A-module M is semisimple if and only if rad M = 0.

Proof. (a) Assume that top f is surjective. Then Im f +rad N = N
and therefore f is surjective, because (3.7)(e) yields Im f = N. Because the
converse implication is easy, (a) follows.

(b) Because S # 0 and S is simple, S is cyclic and, by Nakayama’s
lemma (2.2), S # Srad A. Hence Stad A = 0 and (b) follows.

(¢) If M is semisimple, then (b) yields rad M = 0. The converse impli-
cation is a consequence of (3.7)(d) and (3.8)(a). O

Suppose that A is a finite dimensional K-algebra. If M is a module in
mod A, then there exists a chain 0 = My C My C My C ... C M,, = M
of submodules of M such that the module M; ,/M; is simple for j =
0,1,...,m—1 (see [2], [61], and [131]). This chain is called a composition
series of M and the simple modules My /My, ..., My, /M,,_1 are called the
composition factors of M.

3.10. Jordan—Holder theorem. If A is a finite dimensional K-
algebra and
O=MyCcMCMyC...CM,,=M,
0=NpC Ny CN,C...C N, =M
are two composition series of a module M in mod A, then m = n, and there
exists a permutation o of {1,...,m} such that, for any j € {0,1,...,m—1},
there is an A-isomorphism M1 /Mj; = Ngj11)/No()-

Proof. See [2], [61], [131], and [164]. O

It follows from (3.10) that the number m of modules in a composition
series 0 = My C My C My C --- C M, = M of M depends only on M; it
is called the length of M and is denoted by £(M).

As an immediate consequence of (3.10) we get the following.

3.11. Corollary. (a) If N is an A-submodule of M in mod A, then
L(M)=4L(N)+£L(M/N).

(b) If L and N are A-submodules of M in mod A, then {(L + N) +
(LN N)=4(L)+{(N). a
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I.4 Direct sum decompositions

In the study of indecomposable modules over a K-algebra A, an im-
portant role is played by idempotent elements of A. An element e € A is
called an idempotent if e = e. The idempotent e is said to be central if
ae = ea for all @ € A. The idempotents e, ez € A are called orthogonal
if eyea = ese; = 0. The idempotent e is said to be primitive if e cannot
be written as a sum e = e; + e, where e; and ey are nonzero orthogonal
idempotents of A.

Every algebra A has two trivial idempotents 0 and 1. If the idempotent
e of A is nontrivial, then 1 — e is also a nontrivial idempotent, the idempo-
tents e and 1 — e are orthogonal, and there is a nontrivial right A-module
decomposition A4 = eA ® (1 — e)A. Conversely, if Ay = M; & M is a
nontrivial A-module decomposition and 1 = ey + €3, ¢; € M;, then ey, es is
a pair of orthogonal idempotents of A, and M; = e; A is indecomposable if
and only if e; is primitive.

If e is a central idempotent, then so is 1 —e, and hence eA and (1—e) A are
two-sided ideals and they are easily shown to be K-algebras with identity
elements e € eA and 1 — e € (1 — e)A, respectively. In this case the
decomposition A4 = eA® (1 —e)A is a direct product decomposition of the
algebra A.

Because the algebra A is finite dimensional, the module A4 admits
a direct sum decomposition Ay = P, & --- & P,, where Pi,..., P, are
indecomposable right ideals of A. It follows from the preceding discus-
sion that P, = e1A,..., P, = e, A, where e1,...,e, are primitive pair-
wise orthogonal idempotents of A such that 1 = e; + --- + ¢,. Con-
versely, every set of idempotents with the preceding properties induces
a decomposition A4 = P; & --- & P, with indecomposable right ideals
P1 = 61A,...,Pn = enA.

Such a decomposition is called an indecomposable decomposition
of A and such a set {e1,---,e,} is called a complete set of primitive
orthogonal idempotents of A.

We say that an algebra A is connected (or indecomposable) if A is not
a direct product of two algebras, or equivalently, if 0 and 1 are the only
central idempotents of A.

K 0 0
4.1. Example. The K-subalgebra A = [ 0 K 0 } of M3(K) defined
K K K

in (1.1)(c) is connected, dimg A = 5, and A4 has an indecomposable de-

1.0 0 00 0
composition Ay = et AP es AP esA, where e; = {0 0 0], eg = {0 1 0},
0 0 0 00 0

000
es = {0 0 0] are primitive orthogonal idempotents of A such that 14 =
00 1
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e1 + ez + es. The right ideal e; A consists of all matrices A = [Ay] in A
with A\g; = 0 for s # j, that is, As; = 0 outside the jth row. The right
A-modules e; A and ez A are one-dimensional; hence they are simple. We
also note that the right A-module M = e3A is of length 3. Indeed, the sub-
space My of M consisting of the matrices A\ € M such that Az3 = A30 =0 s
a one-dimensional submodule of M (isomorphic to the simple ideal e;1 A),
the subspace My consisting of the matrices A € M such that A3 = 0 is
a two-dimensional submodule of M containing M7, dimg Ms/M; = 1 and
dimg M/M5 = 1; hence 0 C My C My C M is a composition series of M
and therefore £(M) = 3. O

Assume that e € A is an idempotent and that M is a right A-module.
It is easy to check that the K-vector subspace eAe of A is a K-algebra and
that e is the identity element of eAe. Note that eAe is a subalgebra of A if
and only if e = 1. The K-vector subspace Me of M is a right eAe-module
if we set (me) - (eae) = meae for all m € M and a € A. In particular,
Ae is a right eAe-module and eA is a left eAe-module. It follows that the
K-vector space Homy(eA, M) is a right eAe-module with respect to the
action (¢ - eae)(z) = ¢(eaex) for © € eA, a € A, ¢ € Homy(eA, M).

The following useful fact is frequently used.

4.2. Lemma. Let A be a K-algebra, e € A be an idempotent, and M
be a right A-module.
(a) The K-linear map

Op - Homa(eA, M) — Me, (4.3)

defined by the formula ¢ — @(e) = @(e)e for ¢ € Homa(eA, M), is an
isomorphism of right e Ae-modules, and it is functorial in M.

(b) The isomorphism 6.4 : End eA —>eAe of right eAe-modules in-
duces an isomorphism of K -algebras.

Proof. It is easy to see that the map 6, is a homomorphism of right
eAe-modules and it is functorial at the variable M. We define a K-linear
map ¢, : Me — Homa(eA, M) by the formula 6),(me)(ea) = mea for
a € Aand m € M. A straightforward calculation shows that, given m € M,
the map 0),(me) : eA — M is well-defined (does not depend of the choice
of a in the presentation ea), it is a homomorphism of A-modules, moreover
0 is a homomorphism of eAe-modules and ), is an inverse of §5;. This
proves (a). The statement (b) easily follows from (a). O

We also need the following technical but useful result.

4.4. Lemma (lifting idempotents). For any K-algebra A the idem-
potents of the algebra B = A/rad A can be lifted modulo rad A, that is, for
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any idempotent n = g +rad A € B, g € A, there exists an idempotent e of
A such that g — e € rad A.

Proof. It follows from (2.3) that (rad A)™ = 0 for some m > 1. Be-
cause N2 =17, g— g*> € rad A and therefore (g — g?>)™ = 0. Hence, by
Newton’s binomial formula, we get 0 = (g — ¢g>)™ = g™ — g™, where

m
t=>(-1)"1 <Zn) g~ 1. Tt follows that
j=1
(i) g™ = g™
(i) gt = tg.
We claim that the element e = (gt)™ is the idempotent lifting 5. First, we
note that e = g™t™ = gmtlmtl — ... = g2m2m — ((gt)™)? = €2 and

therefore e is an idempotent. Next, we note that
(iii) g — g™ e rad A,
because the relation g—g? € rad A yields the equalities g—g™ = g(1—g
=919l +g+-+g"?) =(g-9¢)A+g+ - +g"? cradA
Moreover, we have
(iv) g — gt € rad A,
because equalities (i)—(iii) yield
g+radA = g"+rad A = gmtlt+rad A = (¢t +rad A)(t+rad A) =
= (¢9™+rad A)(g+rad A)(t+rad A) = (g+rad A)(g+rad A)(t+rad A) =
= (¢*> +rad A)(t + rad A) = (g + rad A)(¢ + rad A) = gt + rad A.
Consequently, we get e+rad A = (gt)"+rad A= (gt+rad A)™ = (g+ rad A)™
=g™ +rad A= g+ rad A and our claim follows. O

mfl)

4.5. Proposition. Let B = A/rad A. The following statements hold.

(a) Every right ideal I of B is a direct sum of simple right ideals of the
form eB, where e is a primitive idempotent of B. In particular, the right
B-module Bg is semisimple.

(b) Any module N in mod B is isomorphic to a direct sum of simple
right ideals of the form eB, where e is a primitive idempotent of B.

(¢) Ife € A is a primitive idempotent of A, then the B-module top eA is
simple and radeA = erad A C eA is the unique mazimal proper submodule

of eA.

Proof. (a) Let S be a nonzero right ideal of B contained in I that is
of minimal dimension. Then S is a simple B-module and S? # 0, because
otherwise, in view of (1.4)(c), 0 # S C rad B = 0 and we get a contradiction.
Hence S? = S and there exists # € S such that S # 0, S = xS and
x = xe for some nonzero e € S. Then, according to Schur’s lemma, the
B-homomorphism ¢ : § — S given by the formula ¢(y) = xy is bijective.
Because ¢(e? —e) = x(e? —¢e) = xee —xe = ve —xe = 0, 2 — ¢ = 0,
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the element e € S is a nonzero idempotent, and S = eB. It follows that
B=eB®(l—e)Band I = S® (1 —e)l. Because dimg (1 —e)] < dimg I,
we can assume by induction that (a) is satisfied for (1 — e)l and therefore
(a) follows.

(b) Let N be a B-module generated by the elements ni,...,n, and
consider the B-module epimorphism h : B° — N defined by the formula
h(&) = ng, where &, ..., & is the standard basis of the B-module B*. If N
is simple, then s = 1 and (a) together with (3.3)(a) yields N = eB, where e
is a primitive idempotent of B. Now suppose that N is arbitrary. Then, by
(a), B® is a direct sum of simple right ideals of the form eB, where ¢ is a
primitive idempotent of B, and it follows from (3.3)(a) that B® = Kerh® L
for some B-submodule L of B®. Then h induces an isomorphism L = N
and (b) follows from (3.3)(b).

(c) The element e = e +rad A is an idempotent of B and topeA = eB.
Assume to the contrary that eB is not simple. It follows from (a) that
eB = e1 B @ exB, where e1, ey are nonzero idempotents of B such that
e = e; + ey and ejey = eze; = 0. Because e; = €7 = (e — ex)e; =
ee1, e1 = g1 +rad A for some g1 € eA. By (4.4), there exist t € A and
m € N such that the element e; = (g1t)™ is an idempotent of A and
e1 = e; +rad A. It follows that topeA = eB = ey B® e B. Because g1 € €A,
e1 € eA and e;A C eA. Then the decomposition A4 = e;A® (1 —e1)A
induces the decomposition eA = e; A @ {(1 — e;)ANeA}. It follows that
eA = e1 A, because the primitivity of e implies that eA is indecomposable.
Hence eB = topeA = tope; A = e1 B and therefore e B = 0, contrary to
our assumption. Consequently, the module topeA is simple and therefore
radeA = (eA)rad A is a maximal proper A-submodule of eA. Now, if L is a
proper A-submodule of eA that is not in radeA, then L +radeA = eA and
(3.7)(e) yields L = eA, a contradiction. This shows that rad eA contains all
proper A-submodules of eA and finishes the proof. d

An algebra A is said to be local if A has a unique maximal right ideal,
or equivalently, if A has a unique maximal left ideal, see (4.6).
An example of a local algebra is the commutative algebra

A=K[X1,... Xu)/(X3,. . X0,

where s1,...,s, are nonzero natural numbers and n > 1. Indeed, it was
shown in Example 1.5(a) that the radical rad A of A is a maximal ideal. It
follows that rad A is the unique maximal ideal of A, that is, the algebra A
is local.

Note that, in view of Example 1.5(b), the incidence K-algebra KI of a
finite poset I is not local if |I| > 2.

Now we give a characterisation of algebras having only trivial idempo-
tents.
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4.6. Lemma. Let A be a finite dimensional K -algebra. The following
conditions are equivalent:

(a) A is a local algebra.

(') A has a unique mazimal left ideal.

(b) The set of all noninvertible elements of A is a two-sided ideal.
(¢) For any a € A, one of the elements a or 1 — a is invertible.
(d) A has only two idempotents, 0 and 1.
(e) The K-algebra A/rad A is isomorphic to K.

Proof. (a) implies (b). Because A is local, rad A is a unique proper
maximal right ideal of A. It follows that x € rad A if and only if # has no
right inverse. Hence we conclude that any right invertible element x € A
is invertible. Indeed, if zy = 1 then (1 — yz)y = 0. It follows that y has a
right inverse and 1 — yxz = 0, because otherwise y € rad A4, in view of (1.3),
the element 1 — yx is invertible and we get y = 0, which is a contradiction.

This shows that z € rad A if and only if x has no right inverse, or
equivalently, if and only if z is not invertible. Then (b) follows.

That (a’) implies (b) follows in a similar way, and it is easy to see that
(b) implies (c).

(c) implies (d). If e € A is an idempotent, then so is 1 — e and we have
e(1 —e) =0. It follows from (c) that e =0 or e = 1.

(d) implies (e). Because, by (4.4), the idempotents of A/rad A can
be lifted modulo rad A, the semisimple algebra B = A/rad A has only two
idempotents 0 and 1. By (4.5)(a), the right B-module Bp is simple and,
in view of (3.2), there is a K-algebra isomorphism End Bg = K. Hence we
get K-algebra isomorphisms B = Hompg(Bg, Bg) = K and (e) follows.

In view of (1.4), the statement (e) implies that rad A is the unique
proper maximal right ideal and the unique proper maximal left ideal of A.
Hence it follows that (e) implies (a) and that (e) implies (a’). The proof is
complete. O

We note that infinite dimensional algebras with only two idempotents
0 and 1 are not necessarily local. An example of such an algebra is the
polynomial algebra K[t], which is not local and has only two idempotents
0 and 1.

4.7. Corollary. An idempotent e € A is primitive if and only if the
algebra eAe = End eA has only two idempotents 0 and e, that is, the algebra
eAe is local. |

4.8. Corollary. Let A be an arbitrary K-algebra and M a right A-
module.
(a) If the algebra End M is local, then M is indecomposable.
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(b) If M is finite dimensional and indecomposable, then the algebra
End M is local and any A-module endomorphism of M is nilpotent or is
an isomorphism.

Proof. (a) If M decomposes as M = X; & X2 with both X; and X»
nonzero, then there exist projections p; : M — X, and injections u; : X; —
M (for i = 1,2) such that uip; + ugpes = 1p;. Because uip; and ugps are
nonzero idempotents in End M, the algebra End M is not local, because
otherwise 1,; belongs to the unique proper maximal ideal of End M, a
contradiction.

(b) Assume that M is finite dimensional and indecomposable. If End M
is not local then, according to (4.6), the algebra End M has a pair of nonzero
idempotents e, ea = 1 — e; and therefore M = Ime; & Im es is a nontrivial
direct sum decomposition. Consequently, the algebra End M is local. By
(4.6), every noninvertible A-module endomorphism f : M — M belongs
to the radical of End M and therefore f is nilpotent, because End M is
finite dimensional, and it follows from (2.3) that the radical of End M is
nilpotent. O

We note that infinite dimensional indecomposable modules over finite
dimensional algebras do not necessarily have local endomorphism rings. An
example of such a module over the Kronecker algebra (2.5) is presented in
Exercise 4.15 of Chapter III.

K 0 0
4.9. Example. Let A = T5(K) = {g g IOJ be the K-subalgebra

of M3(K) defined in (1.1)(c), and let B be the subalgebra of A consisting
py 0 0

of all matrices A = [A; Aoz 0 ] in A such that A\j; = Ao = A33. The
A31 Az2  Aszs

algebra B is noncommutative and local; because rad B consists of all matri-
0o 0 o0
ces |:)\21 0 0| in B, there is an algebra isomorphism B/rad B = K and
As1 Az2 O
(4.6) applies (compare with (1.5)(c)).

The following result is fundamental for the representation theory of finite
dimensional algebras.

4.10. Unique decomposition theorem. Let A be a finite dimen-
sional K-algebra.

(a) Ewvery module M in mod A has a decomposition M = My ®- - - D M,,,
where My, ..., My, are indecomposable modules and the endomorphism K-
algebra End M is local for each j =1,...,m.

(b) If M= @ M; = D N;, where M; and N; are indecomposable,
i=1 j=1
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then m = n and there exists a permutation o of {1,...,n} such that M; =
Ny for eachi=1,...,n.

Proof. (a) Because dimg M is finite, M has an indecomposable de-
composition, that is, a decomposition into a direct sum of indecomposable
modules. In view of (4.8), the endomorphism algebra of every indecom-
posable direct summand of M is local. Then M has a decomposition as
required.

m
(b) Without loss of generality, we may suppose that M = @ M; =

=1
n

@ N;. We proceed by induction on m. If m = 1, then M is inde-

j=1

composable and there is nothing to show. Assume that m > 1 and put

M] = @ M,;. Denote the injections and projections associated to the

i>1

direct sum decomposition M = M; & M| by u, v/, p, p’ and those as-
n

sociated to the direct sum decomposition M = @ N; by u;, p; (with
j=1

1 <j<n). Wehave 13, = pu = p(Z?Zl ujpj)u = iy pujpju. Be-

cause End M, is local, by (4.6)(c), there exists j with 1 < j < n such

that v = pu;p;u is invertible. Rearranging the indices if necessary, we may

suppose that j = 1. Then w = v~ !pu; : Ny — M satisfies wpiu = 1,

so that pjuw € End N; is an idempotent. Because End N; is local, it

must equal 1y, or 0, because of (4.6)(d). If pjuw = 0, then pju = 0

(because w is an epimorphism), a contradiction, because v = puipiu is

invertible. Thus pjuw = 1y, and f11 = piu € Homa (M7, N7) is an

isomorphism. Setting Ni = € N;, we can put the identity homomor-

§>1

phism 1,7 : My & Mj =N @ N7 in the matrix form f = [21 22] The

wanted result would then follow from the induction hypothesis if we could
show that M] = N;. Because the composite A-module homomorphism

1 0 _ . .
9= [_f21ffll 1} / :Ifél ﬁi]v where f3, = —f21f111f12 + f22, is an iso-
morphism M; & M| — N1 & N/, f}, : M| — N1 is also an isomorphism
and the proof is complete. O

It follows that if Ay = P ®---& P, is an indecomposable decomposition,
then it is unique in the sense of the unique decomposition theorem:.

We end this section by defining representation-finite algebras, a class we
study in detail in the following chapters.

4.11. Definition. A finite dimensional K-algebra A is defined to be
representation—finite (or an algebra of finite representation type)
if the number of the isomorphism classes of indecomposable finite dimen-
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sional right A-modules is finite. A K-algebra A is called representation—
infinite (or an algebra of infinite representation type) if A is not
representation—finite.

It follows from the standard duality D : mod A — mod A°P that this
definition is right-left symmetric. One can prove that if A is representation—
finite then the number of the isomorphism classes of all indecomposable left
A-modules is finite, or equivalently, that every indecomposable right (and
left) A-module is finite dimensional (see [12], [13], [69], [147], and [151]).

1.5. Projective and injective modules

We start with some definitions. Let h: M — N and u: L — M be
homomorphisms of right A-modules. We call an A-homomorphism s: N —
M a section of h if hs = 1, and we call an A-homomorphism r: M — L
a retraction of u if ru = 1. If s is a section of h, then h is surjective, s is
injective, there are direct sum decompositions M = Im s®Ker h =2 N@Ker h,
and h is a retraction of s. Similarly, if r is a retraction of w, then r is
surjective, u is injective, w is a section of r, and there exist direct sum
decompositions M = Imu ® Kerr = L & Kerr.

An A-homomorphism h : M — N is called a section (or a retraction)
if h admits a retraction (or a section, respectively).

hn_1 h hp 41 . .
A sequence -+ — X, 1 —X,,— X, 41— X;,42 — - -+ (infinite or

finite) of right A-modules connected by A-homomorphisms is called exact
if Ker h,, = Im h,,_; for any n. In particular

0 — L-“M-N —0

is called a short exact sequence if u is a monomorphism, r is an epi-
morphism and Kerr = Imwu. Note that the homomorphism v admits a
retraction p : M — L if and only if  admits a section v : N — M. In this
case there are direct sum decompositions M =Imu ® Kerp = Imv & Kerr
of M, and we say that the short exact sequence splits.

The following lemma is frequently used.

5.1. Snake lemma. Assume that the following diagram
o — L % M % N — 0

I N
0o — o o N o

i mod A has exact rows and is commutative. Then there exists a connecting
A-homomorphism ¢ : Ker h — Coker f such that the induced sequence
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0 — Kerf % Kerg - Kerh

2, Cokerf “5 Cokerg %5 Cokerh — 0

18 ezact.
Proof. See [49] , [112], [131], and [149]. O

5.2. Definition. (a) A right A-module F' is free if F' is isomorphic to
a direct sum of copies of the module A4.

(b) A right A-module P is projective if, for any epimorphism h : M —
N, the induced map Homy4 (P, h) : Homa (P, M) — Hom4 (P, N) is surjec-
tive, that is, for any epimorphism h : M — N and any f € Homu (P, N),
there is an f’ € Hom 4 (P, M) such that the following diagram is commuta-

tive p
s
M- N_— 0

(¢) A right A-module E is injective if, for any monomorphism u :
L — M, the induced map Homy(u, F) : Homa (M, E) — Homa(L, F)
is surjective, that is, for any monomorphism v : L. — M and any g €
Homa (L, E), there is a ¢’ € Hom4 (M, E) such that the following diagram
is commutative

0—>L—2 > M
gl /g/
E

5.3. Lemma. (a) A right A-module P is projective if and only if there
exist a free A-module F' and a right A-module P’ such that P ® P' = F.

(b) Suppose that Ay = e1A® - ® e, A is a decomposition of Aa into
indecomposable submodules. If a right A-module P is projective, then P =
P @@ Py, where every summand P; is indecomposable and isomorphic
to some egA.

(¢) Let M be an arbitrary right A-module. Then there exists an exact
sequence

RN LN TP RN UL Ny (5.4)

in Mod A, where P; is a projective right A-module for any j > 0. If, in
addition, M is in mod A, then there exists an exact sequence (5.4), where
Pj is a projective module in mod A for any j > 0.

Proof. (a) It is easy to check that any free module is projective and
that a direct summand of a free module is a projective module. Conversely,
suppose that P is a projective module generated by elements {m;; j € J}.
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If F=@ z;Ais afree module with the set {z;, j € J} of free generators
jeJ

and f : F — P is the epimorphism defined by f(z;) = m;, then, by the

projectivity of P, there exists a section s : P — F of f and therefore

F~P@Kerf.

(b) Let P be a projective module. By (a), there exist a free A-module
F and a right A-module P’ such that P @ P’ = F. By our assumption,
F' is a direct sum of copies of the indecomposable modules e A, ..., e, A.
Because by (4.8) the algebra Ende;A is local for each j =1,...,n, (b) is a
consequence of the unique decomposition theorem (4.10).

(¢) It was shown in (a) that, for any module M (or M in mod A), there
is an epimorphism f : F' — M, where F' is a free module in Mod A (or in
mod A, respectively). We set Py = F and hg = f. Let f1 : F1 — Kerhg be
an epimorphism with a free module F; in Mod A. We set P, = F} and we
take for h; the composition of f; with the embedding Kerhy C Fy. If M
is in mod A, then the free module F; can be chosen in mod A, because A
is finite dimensional, hence dimyg M and dimg Fy are finite, and therefore
Ker hg is in mod A. Continuing this procedure, we construct by induction
the required exact sequence (5.4). O

We define a projective resolution of a right A-module M to be a

complex N N
P, : "'_>Pm—m’Pm—1_>"'_>P1—1>POHO

of projective A-modules together with an epimorphism hg : Py D00 of right
A-modules such that the sequence (5.4) is exact. For the sake of simplicity,
we call the sequence (5.4) a projective resolution of the A-module M. By
(5.3), any module M in mod A has a projective resolution in mod A.

We define an injective resolution of M to be a complex

1 m—+1
' 010t el

of injective A-modules together with a monomorphism d° : M — I° of right

A-modules such that the sequence
dm +1

O—>Md—O>IOd—1>I1 SRR (U (s S O
is exact. For the sake of simplicity, we call this sequence an injective res-
olution of the A-module M. We show later that any module M in mod A
has an injective resolution in mod A.

First, we show that if A is a finite dimensional K-algebra, then any
module M in mod A admits an exact sequence (5.4) in mod A, where the
epimorphisms h; : P; — Imh; are minimal for all j > 0 in the following
sense.

5.5. Definition. (a) An A-submodule L of M is superfluous if for
every submodule X of M the equality L + X = M implies X = M.
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(b) An A-epimorphism h : M — N in mod A is minimal if Kerh is
superfluous in M. An epimorphism h : P — M in mod A is called a
projective cover of M if P is a projective module and h is a minimal
epimorphism.

It follows from (3.7)(e) that the submodule rad M of M is superfluous
if M is a finitely generated module over a finite dimensional algebra.

Now we give a useful characterisation of projective covers.

5.6. Lemma. An epimorphism h: P — M 1is a projective cover of an
A-module M if and only if P is projective and for any A-homomorphism
g : N — P the surjectivity of hg implies the surjectivity of g.

Proof. Assume that h : P — M is a projective cover of M and let
g : N — P be a homomorphism such that hg is surjective. It follows that
Im g+ Kerh = P and therefore g is surjective, because by assumption Ker h
is superfluous in P. This shows the sufficiency.

Conversely, assume that h : P — M has the stated property. Let N
be a submodule of P such that N + Kerh = P. If g : N — P is the
natural inclusion, then hg : N — M is surjective. Hence, by hypothesis, g
is surjective. This shows that Ker h is superfluous and finishes the proof. [

5.7. Definition. (a) An exact sequence
P25 Py 25M — 0

in mod A is called a minimal projective presentation of an A-module M
if the A-module homomorphisms Py 20 M and P, 25 Ker po are projective
covers.

(b) An exact sequence (5.4) in mod A is called a minimal projective
resolution of M if h; : P; — Imh; is a projective cover for all j > 1 and
POAM is a projective cover.

It follows from the next result that any module M in mod A admits
a minimal projective presentation and a minimal projective resolution in
mod A.

5.8. Theorem. Let A be a finite dimensional K -algebra and let Ay =
e1A®---@en A, where {e1,...,en} is a complete set of primitive orthogonal
idempotents of A.

(a) For any A-module M in mod A there exists a projective cover

PM) 5 M — 0

where P(M) = (e1A)" @ --- @ (e, A)°" and s1 > 0,...,s, > 0. The
homomorphism h induces an isomorphism P(M)/rad P(M) = M/rad M.



1.5. PROJECTIVE AND INJECTIVE MODULES 29

(b) The projective cover P(M) of a module M in mod A is unique in
the sense that if h' : P — M is another projective cover of M, then there

ezists a commutative diagram
0

|
P(M) —"—M——0

N

P/
where g is an isomorphism.

Proof. We set B = A/radA, ej =ej +radA € Bandletp: A — B
be the residual class K-algebra epimorphism. Because {ei,...,en} is a
complete set of primitive orthogonal idempotents of A, {e1,...,e,} is a
complete set of primitive orthogonal idempotents of B and Bg = e1B &
---@®ep B is an indecomposable decomposition. It follows from (4.5)(c) that
rade;A C ejA is the unique maximal A-submodule of e;A, then tope; A =
e;B is a simple B-module and the epimorphism p; : ;A — top e; A induced
by p is a projective cover of tope;A.

Let M be a module in mod A. Then top M = M /rad M is a module in
mod B and, according to (3.8) and (4.5), there exist B-module isomorphisms

topM = (e1B)** & --- & (e,B)°" = (tope1 A)°* @ --- & (tope, A)°",

for some s1 > 0,...,8, > 0. Weset P(M) = (e1A)*1&---® (e, A)*~. By the
projectivity of the module P(M), there exists an A-module homomorphism
h: P(M) — M making the diagram

h

P(M) —" o M

| e
top h
top P(M) top M

commutative, where ¢ and t’ are the canonical epimorphisms. It follows that
top h is an isomorphism and, from (3.9)(a), we infer that h is an epimor-
phism. Moreover, the commutativity of the diagram yields

Kerh CKert = (rade1 A)°* @ --- @ (rad e, A)°" = rad P(M).

Because, according to (3.7)(e), the module rad P(M) is superfluous in P(M),
Ker h is also superfluous in P(M). Therefore the epimorphism h is a pro-
jective cover of M.

(b) The existence of a homomorphism g : P’ — P(M) making the dia-
gram shown in (b) commutative follows from the projectivity of P’. Because
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hg = h' is surjective, Im g+ Ker h = P(M) and therefore g is surjective, be-
cause Ker h is superfluous in P(M). It follows that ¢(P") > ¢(P(M)). The
preceding argument with P(M) and P’ interchanged shows that ¢(P(M)) >
£(P"). Hence g is an isomorphism and the proof is complete. O

Remark. The proof of (5.8) gives us a recipe for constructing the
projective cover P(M) — M of any module in mod A. We also refer simply
to the module P(M) as being a projective cover of M.

5.9. Corollary. If P is a projective module in mod A, then the canoni-
cal epimorphism t : P — top P is a projective cover of top P and there exists
an A-isomorphism P = (e A)*1@®- - - & (e, A)*~ for some sy >0,..., s, > 0.

O

5.10. Corollary. Let A be a K-algebra. Any module M in mod A ad-
mits a minimal projective presentation and a minimal projective resolution
in mod A.

Proof. Let M be a module in mod A. By (5.8), there is a projective
cover pg : Py — M in mod A. Then Kerpg is finite dimensional and,
according to (5.8), there is a projective cover p; : Py — Kerpg. This yields
a minimal projective presentation P; 2L Py 2SM — 0 of M. Continuing
this procedure, we get by induction a minimal projective resolution of M in

mod A. O

Now we shift our attention from projective to injective modules. For
this purpose we recall from (2.9) that the functor D(—) = Homg(—, K)
defines two dualities

mod 4 25 mod 4% 25 mod A4

such that there are natural equivalences of functors D o D = 1,44 and
Do D = 104 acr. This allows us to study the injective modules in mod A
by means of the projective modules in mod A°P.

We start by recalling the following important result.

5.11. Baer’s criterion. A right A-module E is injective if for any
right ideal I of A and any A-homomorphism f : I — E there exists an
A-homomorphism f': Ax — E such that f = f'u, where u is the inclusion
u:l— A.

Proof. See [2], [48], and [149]. O

The notions dual to minimal epimorphism and to projective cover are
defined as follows.

5.12. Definition. An A-module monomorphism v : L — M in mod A
is minimal if every nonzero submodule X of M has a nonzero intersection
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with Imu. A monomorphism « : . — E in mod A is called an injective en-
velope of L if F is an injective module and u is a minimal monomorphism.

Now we are able to state the main transfer theorem via the standard
duality.

5.13. Theorem. Let A be a finite dimensional K-algebra and
let D :mod A — mod A°P be the standard duality D(—) = Homg (—, K)
(2.9). Then the following hold.

(a) A sequence 0 — L“N-"M — 0 in mod A is ezact if and only
if the induced sequence 0 — D(M) D) D(N) P p
mod A°P.

(b) A module E in mod A is injective if and only if the module D(E)
is projective in mod A°P. A module P in mod A is projective if and only if
the module D(P) is injective in mod A°P.

(¢) A module S in mod A is simple if and only if the module D(S) is
simple in mod A°P.

(L) — 0 is exact in

(d) A monomorphism u: M — E in mod A is an injective envelope if
and only if the epimorphism D(u) : D(E) — D(M) is a projective cover in
mod A°P. An epimorphism h : P — M in mod A is a projective cover if
and only if the D(h) : D(M) — D(P) is an injective envelope in mod A°P.

Proof. This is straightforward and left to the reader (see [61]). O

5.14. Corollary. Every module M in mod A has an injective envelope
u: M — E(M) and the module E(M) is uniquely determined by M, up to
isomorphism.

Proof. Let M be a module in mod A. By (5.8), the left A-module
D(M) has a projective cover h : PD—(> D(M). It follows from (5.13)(d) that
the monomorphism M = DD(M) — D(P) is an injective envelope of M
in mod A. We set E(M) = D(P). By (5.8), the left A-module P is uniquely
determined by D(M), up to isomorphism. It follows that the right module

E(M) = D(P) is uniquely determined by M, up to isomorphism. O

We refer simply to the module E(M) as being an injective envelope
of M.

5.15. Definition. (a) An exact sequence 0 — N o Pisa

minimal injective presentation of an A-module N if the monomorphisms
u?: N — 1% and Imu! — I' are mJectlve envelopeb -

(b) An injective resolution 0 — M e e

- of a module M in mod A is said to be minimal if Imd™ — I™ is an
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injective envelope for all m > 1 and d° : M — I° is an injective envelope.

5.16. Corollary. Every module M in mod A has a minimal injective
presentation and a minimal injective resolution in mod A.

Proof. Let M be a module in mod A. By (5.8), the left A-module
D(M) has a minimal projective presentation and a minimal projective
resolution in mod A°P. It follows from (5.13) that the standard duality
D : mod A°® — mod A carries a minimal projective presentation and a
minimal projective resolution of D(M) to a minimal injective presentation
and a minimal injective resolution of the module M = DD(M), respectively.

O

5.17. Corollary. Suppose that Ay = e1A®---Dey A is a decomposition
of A into indecomposable submodules.

(a) Every simple right A-module is isomorphic to one of the modules

S(1) =tope14,...,S(n) =tope,A.

(b) Ewvery indecomposable projective right A-module is isomorphic to
one of the modules
P(1)=e1A, P(2) =e24,...,P(n) =e,A.
Moreover, e;A = ejA if and only if S(i) = S(j).
(¢) PBvery indecomposable injective right A-module is isomorphic to one
of the modules

I(1) = D(Aey) 2 E(S(1)),...,I(n) = D(Ae,) = E(S(n)),
where E(S(7)) is an injective envelope of the simple module S(j).
Proof. Apply (4.5), (4.7), (4.10), (5.9), and (5.13). O

5.18. Example. Let A = My(K) and let e1 = (} §), e2 = (3 9). Then
e1, e are primitive orthogonal idempotents of A such that 14 = e; + eq
and Ay = e1 A @ e2A. The algebra A is semisimple, S(1) = P(1) = I(1) =
S(2) = P(2) = 1(2) and dimg S(1) = dimg S(2) = 2. O

I.6 Basic algebras and embeddings of
module categories

Throughout, we need essentially the following class of algebras (see [73],
[125], and [131] for historical notes).

6.1. Definition. Assume that A is a K-algebra with a complete set
{e1,...,en} of primitive orthogonal idempotents. The algebra A is called
basic if e;A 2 e; A, for all 1 # j.
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It is clear that every local finite dimensional algebra is basic. It follows
from the following proposition that the algebras of Examples (1.1)(c) and
(1.1)(d) are basic.

6.2. Proposition. (a) A finite dimensional K -algebra A is basic if and
only if the algebra B = A/rad A is isomorphic to a product K x K x -+ x K
of copies of K.

(b) Every simple module over a basic K -algebra is one-dimensional.

Proof. (a) Let Ay = e1A® -+ @ e, A be an indecomposable decom-
position of A. Then {ej,...,e,} is a complete set of primitive orthogo-
nal idempotents of A, the element e; = e; + rad A is an idempotent of
B = A/rad A, and in view of (4.5)(c) e; B = tope;A is a simple B-module.
Hence Bg = e1B® --- & e, B is an indecomposable decomposition of Bg.
By (5.9), e;A = P(e;B) and therefore e;A = e; A if and only if e;B = ¢;B.

It follows that if A is basic, then B is basic. Moreover, Schur’s lemma
(3.1) yields Homp(e; B, e;B) = 0 for i # j, and (3.2) yields End e; B = K for
j=1,...,n. Hence, given an element b € B and j < n, the multiplication
map b; : e;B — Bp defined by the formula b;(y) = e;by, for y € ¢;B,
induces a homomorphism b; : ejB — e;B of right B-modules and the K-
algebra homomorphism ¢; : B — Ende; B = K defined by the formula
oj(b) = b’. Hence we get the K-algebra homomorphism

0:B — End(e1B) x --- x End(e,B) 2 K x -+ x K

defined by o(b) = (01(b),...,0n(b)), for b € B. Because o is obviously
injective, by comparing the dimensions, we see that it is bijective. The
sufficiency part of (a) follows.

Assume now that B is a product K X --- x K. Then B is commutative
and ey, ...,e, are central primitive pairwise orthogonal idempotents of B.
It follows that e;B 2 e;B for i # j and (5.8) yields e;A = P(e;B) #
P(e;B) = ejA. Consequently A is basic and (a) follows.

The statement (b) follows from (a) because, by (3.9)(b), any simple A-
module S is a module over the quotient algebra B = A/rad A and, by (a),
B is isomorphic to a product K x --- x K if A is basic. Hence dimg S =1
and the proof is complete. O

6.3. Definition. Assume that A is a K-algebra with a complete set
{e1,...,en} of primitive orthogonal idempotents. A basic algebra associ-
ated to A is the algebra

Ab = eAAeA,

where eq4 = €5, + -+ +¢j,, and ¢;,,...,e;, are chosen such that e;; A 2
ej, A for i # t and each module e,A is isomorphic to one of the modules
€j1A,...76j A.

a
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Example 6.4. Let A =M, (K) and {ey,...,e,} be the standard set of
matrix orthogonal idempotents of A. Then e;A = e;A for all 4, j, ea = e;
and A® ~ K.

6.5. Lemma. Let A’ = eqAey be a basic algebra associated to A.

(a) The idempotent eq € AP is the identity element of A® and there is
a K -algebra isomorphism A® =2 End(e;, A& - - @ e;, A).

(b) The algebra A® does not depend on the choice of the sets e1, ..., en
and €;,,...,¢j5,, up to a K-algebra isomorphism.

Proof. (a) By (4.2) applied to the A-module M = es A, there is a K-
algebra isomorphism End eg A &2 ey Aey. Because there exists an A-module
isomorphism eq A = e;, A® - -- D ej, A, we derive K-algebra isomorphisms

AP = e Aes 2 Homy(ead,esA) 2 End(e, AD - @ej, A).

(b) It follows from the unique decomposition theorem (4.10) that the A-
module e4 A depends only on A and not on the choice of the sets {e1,...,e,}
and {ej,,...,ej, }, up to isomorphism of A-modules. Then the statement
(b) is a consequence of the K-algebra isomorphisms A® = EndeyA =
End(e;, A®--- P ej, A). O

We will show in (6.10) that the algebra A’ is basic and that there is an
equivalence of categories mod A =2 mod A°.

In the study of mod A we frequently use two embeddings of module
categories induced by an algebra idempotent defined as follows.

Suppose that e € A is an idempotent in a finite dimensional K-algebra
A and consider the algebra B = eAe = EndeA with the identity element

e € B. We define three additive K-linear covariant functors
mod B %\ mod A (6.6)

by the formulas
rese(—) = (—)e, Te(—)=—-®ped, Lc(—)=Hompg(A4e, —).

If f: X — X' is a homomorphism of A-modules, we define a homomorphism
of B-modules res(f) : rese(X) — res.(X’) by the formula ze — f(x)e, that
is, res.(f) is the restriction of f to the subspace Xe of X. We call res, the
restriction functor. The K-linear functors T, L. are called idempotent
embedding functors.

Example 6.7. Suppose that A = K1 C M, (K) is the incidence algebra
of a poset (I, <), where I = {1,...,n} (see (1.1)(d)). Let J be a subposet

of I and take for e the idempotent ey = 3 e; € KI, whereey,...,e, € KI
=
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are the standard matrix idempotents. A simple calculation shows that if
N = [\l € KI and A = e;jNey, then A has an n x n matrix form \ =
[Apg] € KI, where A\pg = 0 whenever p € I\ J or ¢ € I\ J. This shows
that e;(KI)ey is the K-vector subspace of K consisting of all matrices
A = [Apq] € KI with \pq = 0 whenever p € I\ J or ¢ € I\ J. Therefore
there is a K-algebra isomorphism ej(KI)e; = K.J.

The following result is very useful in applications.

Theorem 6.8. Suppose that A is a finite dimensional K-algebra and
that e € A is an idempotent, and let B = eAe. The functors T, L. (6.6)
associated to e € A satisfy the following conditions.

(a) Te and Le are full and faithful K -linear functors such that reseTe =
lmod B = reseLe, the functor L. is Tight adjoint to res. and T is left adjoint
to res., that is, there are functorial isomorphisms

Il

Homa (X4, Le(Y5)) Homp(rese(X4),YB)
HOmA(Te(YB),XA) =~ HomB(YB,rese(XA))

for every A-module X 4 and every B-module Yp.

(b) The restriction functor rese is exact, T. is right exact, and L. is left
exact.

(¢) The functors T. and L. preserve indecomposability, T, carries pro-
jectives to projectives, and L. carries injectives to injectives.

(d) A module X 4 is in the category Im T, if and only if there is an exact
sequence P — Py — X4 — 0, where Py and Py are direct sums of
summands of eA.

Proof. (a) By (4.2), the map 0x, f — f(e) = f(e)e, is a functorial B-
module isomorphism Hom4(eA, X 4) — Xe. Hence, in view of the adjoint
formula (2.11), we get

HOInA(Te(YB),XA) HOInA(Y XpB eA,XA)
Homp(Y,Homa(eA, X 4))

>~ Homp(Y, Xe) = Homp (Y, res.(Xa)),

1

and similarly we get the first isomorphism required in (a). Moreover, there
are isomorphisms res,T.(Yp) = (Y @ped)e XY @p (ede) =Y @ B2 Yp
and res.L.(Yp) = Y. As a consequence, we get functorial isomorphisms

HOmB(YB,Yé) = HomB(YB,reseTe(Yé))
Homy (T.(Yg), T.(Y}))

1
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and Homp(Yp,Y}) = Homa(Le(YB), Le(Y)) such that f — To(f) and
f — Le(f), respectively. This proves that T, and L. are full and faithful
and (a) follows.

(b) The exactness of the functor res, is obvious. The functor T, is right
exact, because the tensor product functor is right exact. Because the functor
Homy (M, —) is left exact, the functor L. is left exact and (b) follows.

(c) It follows from (a) that L. and T, induce the algebra isomorphisms
End X 2 End L. X and End X = End T, X. Hence they preserve indecom-
posability, because of (4.8).

Now assume that P is a projective module in mod B and let h : M — N
be an epimorphism in mod A. In view of the natural isomorphism in (6.8)(a)
for the functor T, there is a commutative diagram

Hom (T, (P), M) 2oma@P0M) g om s (T.(P), N)

gl gl

Homp (P, res.(M)) Homa (Press (h)), Homp (P, res.(N)).

Because P is projective, the homomorphism Homp (P, res.(h)) is surjective.
It follows that Hom 4 (7T, (P), h) is also surjective and therefore the A-module
T.(P) is projective. If E is injective, then we show that L.(FE) is injective.

(d) Assume that e =e;, +...+e¢;, and ej,,...,e;, are primitive orthog-
onal idempotents. It follows that B = e; B® ... ® ¢;, B and the modules
e;, B, ..., e;, B are indecomposable.

First, we show that the multiplication map
mg, ej,iB RpeA — ej,iA, (69)

€j,T ® ea — ej,wea, is an A-module isomorphism for i = 1,...,s. It is clear
that my, is well-defined and an A-module epimorphism. Because mj, is the
restriction of the A-module isomorphism m : BRgeA — eA, x®ea — zea,
to the direct summand ej, B ®p eA of B ®p eA = eA, m;, is injective and
we are done.

To prove (d), assume that P; — Py — Yp — 0 is an exact sequence in
mod B, where Py, Py are projective. Then the induced sequence

Pi®geAd — Py®geA — Y @geAd — 0

in mod A is exact and the modules P, = P1 ®p eA, Py = Py ®p eA satisty
the conditions required in (d) because, according to (5.3), the modules P
and Py are direct sums of indecomposable modules isomorphic to some of
the modules e;, B, ..., e; B, and the preceding observation applies.
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Conversely, assume there is an exact sequence P; LN Py — X4 —0,in
mod A with Py, P; direct sums of summands of eA. Then Pye and Pie are
obviously finite dimensional projective B-modules and by the observation,
there are A-module isomorphisms T.(Pye) = Poe ®p eA = Py, T.(Pie) =
PiepeA = P;. If Yi denotes the cokernel of the restriction he : Pie — Pye
of h to res.(P;) = Pie, then we derive a commutative diagram

P1 — PO — XA — 0

fllE foJrE

Te(Pie) — T(Pe) — T(Yg) — 0

with exact rows and bijective vertical maps f1, fo. Hence we get an isomor-
phism X4 =2 T.(Yp) induced by fo and the proof is complete. O

6.10. Corollary. Let A’ = eqAey be a basic K -algebra associated with
A (see (6.3)). The algebra A is basic and the functors

Te
mod Ab ——4 s modA
rese ,

are K-linear equivalences of categories quasi-inverse to each other.

Proof. Assume that {e1,...,e,} is a complete set of primitive orthog-
onal idempotents of A, e4 =e;, +---+e¢;, and e;,,...,¢e;, are chosen as in
(6.3). Then ej,,...,e;, are orthogonal idempotents of A°,

At =epA =e; AP D, AP,

and ej, A%, = ej,eaAeae;, = ej, Ae;, for all t. It follows from (4.7) that
the algebra End ej, A = ¢, Abe;, is local, because ej, A is indecomposable in
mod A. Hence ej, is a primitive idempotent of A”. To show that the algebra
A is basic, assume that e;, A® = e; A’. Because we have shown in (6.9) that
the multiplication map mj, : ej, A’ ® 40 eaA — €, A, ej, @ esa — ej,zeaa,
is an A-module isomorphism fori =1, ..., a, we get A-module isomorphisms

e A= e, A @ esd e A" @ eadxe; A

and therefore ¢ = r by the choice of ej,,...,e;, in (6.3).
By (6.8), the functor T¢, is full and faithful. Because

ead=e; A®---Dej A,

each e;, A is isomorphic to a summand of e4A. This, together with (6.3)
and (6.8), shows that every module X in mod A admits an exact sequence



38 CHAPTER I. ALGEBRAS AND MODULES

P — P — X — 0, where P and P’ are direct sums of summands of e4A.
It then follows from (6.8)(d) that any module X4 belongs to the image of
the functor T, ,. Consequently, T., is dense, and according to (A.2.5) of
the Appendix, the full and faithful K-linear functor 7., is an equivalence
of categories. Therefore res., is a quasi-inverse of Tt ,. O

6.11. Corollary. Let A be a K-algebra. For each n > 1, there exists a
K-linear equivalence of categories mod A = mod M, (A).

Proof. Let B = M,,(A) and let &,...,&, € B be the standard set of
matrix idempotents in B, that is, {; is the matrix with 1 on the position (3, j)
and zeros elsewhere. Because B=§B®---®&,B,&B=26&EB=2 - =2¢,B
and & B¢ = A, applying (6.8) to e = & € B, we conclude as in the proof

T,
of (6.10) that the composite functor mod A = mod &, B¢ —% mod M, (A)
is an equivalence of categories. g

1.7 Exercises

1. Let f: A — B be a homomorphism of K-algebras. Prove that
f(rad A) C rad B.

2. Let A be the polynomial K-algebra K|t1,t2]. Prove that
(a) the algebra A is not local,

(b) the elements 0 and 1 are the only idempotents of A, and
(c) the radical of A is zero.

3. Prove that a homomorphism v : L — M of right A-modules admits a
retraction p : M — L if and only if u is injective and M = Imu & N, where
N is a submodule of M.

4. Prove that a homomorphism r : M — N of right A-modules admits
a section v : N — M if and only if r is surjective and M = L @ Kerr, where
L is a submodule of M.

5. Suppose that the sequence 0 — L——M-—N — 0 of right A-
modules is exact. Prove that the homomorphism u admits a retraction
p: M — L if and only if r admits a section v: N — M.

6. Let N be a submodule of a right A-module M. Prove that
(a) rad(M/N) 2 (N +rad M)/N, and
(b) if N Crad M, then rad(M/N) = (rad M)/N.

7. Let A = K|[t]. Prove that the cyclic A-module M = K[t]/(t*) has no
projective cover in Mod A.
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8. Let A be a K-algebra and let Z(A) be the centre of A, that is, the
subalgebra of A consisting of all elements a € A such that ay = ya for all
y € A. Show that the following three conditions are equivalent:

a) The algebra A is connected.
b) The algebra Z(A) is connected.
(¢) The elements 0 and 1 are the only central idempotents of A.

—~

9. Assume that A is a K-algebra, e € A is an idempotent of A, and M
is a right A-module. Prove the following statements:

(a) The K-subspace eAe of A is a K-algebra with respect to the multi-
plication of A, and e is the identity element of eAe.

(b) The K-vector space Me is a right eAe-module, and the K-vector
space Hom 4 (eA, M) is a right e Ae-module with respect to the multiplication
(f,a) — fatfor f € Homa(eA, M) and a € A, where we set (fa)(z) = f(za)
for all x € eA.

(¢) The K-linear map 6y : Homa(eA, M) — Me, f — f(e), is an
isomorphism of right e Ae-modules, and it is functorial in M.

(d) The map 0.4 : Homa(eA,eA) — eAeis a K-algebra isomorphism.

(e) The map M ®4 Ae — Me, m ® x — maz, is an isomorphism of
right e Ae-modules, and it is functorial in M.

10. Assume that A is a finite dimensional K-algebra. Prove that A is
local if and only if every element of A is invertible or nilpotent.

11. Let KT be the incidence K-algebra of a poset (I, =) (see (1.5)(d))
and let B be the K-subalgebra of K1 consisting of the matrices A = [\;;] €
K1 such that A\; = \j; for all 4,5 € I. Prove the following statements:

(a) The algebra K1 is basic, and K is semisimple if and only if a; A a;
for every pair of elements a; # a; of I.

(b) The algebra K1 is local if and only if |I| = 1.

(¢) The subalgebra B of KT is local.

(d) The algebra B is noncommutative if and only if there is a triple
ai, aj,as of pairwise different elements of I such that a; < a; < as.

12. Let M be a module in mod A. Prove that there is a functorial
isomorphism soc DM — D(M /rad M), where D is the standard duality.

13. Let A = M, (K), where n > 1, and let M be an indecomposable
A-module. Show that ¢(M) =1 and dimg M = n.

14. Let A be a basic finite dimensional algebra over an algebraically
closed field K, and let M be a finite dimensional right A-module. Show
that é(M) = dimK M.

15. Let A be a finite dimensional K-algebra over an algebraically closed
field K. Prove that the following three conditions are equivalent:
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(a) The algebra A is basic.
(b) Every simple right A-module is one-dimensional.
(¢) dimg M = £(M), for any module M in mod A.

K 0 0 0 K 0 0 0
K K 0 0 c K K 0 0
K 0 K 0 K K K 0
K K K K K K K K

of the full matrix algebra My (K) defined in Examples 1.1(c) and 1.1(d).
Let e1 = e11,e9 = eg2,e3 = e33,e4 = eyqq be the standard complete set of
primitive orthogonal idempotents in A. Show that

(a) the algebra A is basic,

(b) there is an isomorphism Ae; & D(e4A) of left A-modules, where D

is the standard duality,
K

K
K
K

(c) therightideal S(1)=e; A of Aissimple and soc Ag=

o O oo
o O oo
o O o o

and

(d) the indecomposable projective right ideal P(4) = e4A is an injective
envelope of S(1), and the indecomposable projective right ideals P(1) =
e14, P(2) = eaA and P(3) = e3A are not injective.

17. Assume that A is a finite dimensional K-algebra, f: M — N is a
homomorphism in mod A, and M # 0. Prove the following statements:

(a) The socle soc M of M is a nonzero semisimple submodule of M and
f(soc M) C socN.

(b) If f(soc M) # 0, then f # 0.

(¢) The inclusion homomorphism soc M C M induces an A-module
isomorphism E(soc M) —E(M) of the injective envelopes E(soc M) and
E(M) of soc M and M, respectively.

(d) The module M is indecomposable if and only if the injective enve-
lope E(M) of M is indecomposable.



Chapter II

Quivers and algebras

In this chapter, we show that to each finite dimensional algebra over
an algebraically closed field K corresponds a graphical structure, called
a quiver, and that, conversely, to each quiver corresponds an associative
K-algebra, which has an identity and is finite dimensional under some con-
ditions. Similarly, as will be seen in the next chapter, using the quiver asso-
ciated to an algebra A, it will be possible to visualise a (finitely generated)
A-module as a family of (finite dimensional) K-vector spaces connected
by linear maps (see Examples (1.2.4)—(1.2.6)). The idea of such a graph-
ical representation seems to go back to the late forties (see Gabriel [70],
Grothendieck [82], and Thrall [167]) but it became widespread in the early
seventies, mainly due to Gabriel [72], [73]. In an explicit form, the notions
of quiver and linear representation of quiver were introduced by Gabriel
in [72]. Tt was the starting point of the modern representation theory of
associative algebras.

II.1. Quivers and path algebras

This first section is devoted to defining the graphical structures we are
interested in and introducing the related terminology. We shall then be able
to show how one can associate an algebra to each such graphical structure
and study its properties.

1.1. Definition. A quiver @ = (Qo, @1, s,t) is a quadruple consisting
of two sets: Qo (whose elements are called points, or vertices) and @
(whose elements are called arrows), and two maps s,t : Q1 — Qo which
associate to each arrow a € @ its source s(a) € Qo and its target ¢(«) €
Qo, respectively.

An arrow a € @ of source a = s(«) and target b = ¢(«) is usually
denoted by a: a — b. A quiver @ = (Qo, @1, s, t) is usually denoted briefly
by @ = (Qo, Q1) or even simply by Q.

Thus, a quiver is nothing but an oriented graph without any restriction
as to the number of arrows between two points, to the existence of loops

41
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or oriented cycles. There are two main reasons for using the term quiver
rather than graph: the first one is that the former has become generally
accepted by specialists; the second is that the latter is used in so many
different contexts and even senses (a graph can be oriented or not, with or
without multiple arrows or loops) that it may lead, for our purposes at least,
to certain ambiguities. When drawing a quiver, we agree to represent each
point by an open dot, and each arrow will be pointing towards its target.
With these conventions, the following are examples of quivers:

(¢]

-
o ° o e M —

/
—0 00O

o

A subquiver of a quiver Q = (Qo, @1, s, t) is a quiver Q' = (Qg, Q). s',t')
such that Qy C Qo, @7 € Q1 and the restrictions s |g;,t g, of s,t to Q]
are respectively equal to s',¢' (that is, if & : @ — b is an arrow in Q; such
that o € Q) and a,b € Q, then s'(a) = a and (o) = b). Such a subquiver
is called full if @) equals the set of all those arrows in ()1 whose source and
target both belong to Qf, that is,

Q={acQi|s(a) €Q; and ()€ Qp}.

In particular, a full subquiver is uniquely determined by its set of points.
A quiver @ is said to be finite if )y and () are finite sets. The un-
derlying graph @ of a quiver () is obtained from ) by forgetting the
orientation of the arrows. The quiver @ is said to be connected if () is a
connected graph.
Let Q@ = (Qo,Q1,s,t) be a quiver and a,b € Qp. A path of length
¢ > 1 with source a and target b (or, more briefly, from a to b) is a sequence

(a]a1,q0,...,a0|0),

where oy, € Q1 for all 1 < k < ¢, and we have s(a1) = a, t(og) = s(og+1)
for each 1 < k < ¢, and finally t(c) = b. Such a path is denoted briefly by
ajas ... ap and may be visualised as follows

31 %) Oy
a=ag ai as ap = b.

We denote by @, the set of all paths in @ of length ¢. We also agree to
associate with each point a € @y a path of length ¢ = 0, called the trivial
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or stationary path at a, and denoted by
ga = (a | a).

Thus the paths of lengths 0 and 1 are in bijective correspondence with the
elements of Qg and @1, respectively. A path of length £ > 1 is called a
cycle whenever its source and target coincide. A cycle of length 1 is called
a loop. A quiver is called acyclic if it contains no cycles.

We also need a notion of unoriented path, or a walk. To each arrow
a:a — bin a quiver Q, we associate a formal reverse ! : b — a, with the
source s(a~1) = b and the target t(a=!) = a. A walk of length £ > 1 from a
to b in @ is, by definition, a sequence w = aj'a3? ... a;* with e; € {—1,1},
s(ai') = a, t(ag") = b and t(ajj) = s(a?fﬁf), for all 7 such that 1 < j < /.

If there exists in @ a path from a to b, then a is said to be a predecessor
of b, and b is said to be a successor of a. In particular, if there exists an
arrow a — b, then a is said to be a direct (or immediate) predecessor of
b, and b is said to be a direct (or immediate) successor of a. For a € Qo,
we denote by a~ (or by a™) the set of all direct predecessors (or successors,
respectively) of a. The elements of a™Ua™ are called the neighbours of a.

Clearly, the composition of paths is a partially defined operation on the
set of all paths in a quiver. We use it to define an algebra.

1.2. Definition. Let @ be a quiver. The path algebra K@ of @ is
the K-algebra whose underlying K-vector space has as its basis the set of
all paths (a | aq,..., ¢ | b) of length £ > 0 in @ and such that the product
of two basis vectors (a | ai,...,ap | b) and (¢ | B1,...,0k | d) of KQ is
defined by

(CL|O¢1,...,OZ[|b)(0|51,...,ﬂk|d)=5bc(a|041,...,Ozz,61,...,ﬂk|d),

where Jp. denotes the Kronecker delta. In other words, the product of two
paths a1 ...ap and f; ... Bk is equal to zero if t(ay) # s(f1) and is equal to
the composed path a ...apf01 ... 0k if t(ar) = s(B1). The product of basis
elements is then extended to arbitrary elements of K@Q by distributivity.

In other words, there is a direct sum decomposition
KQ = KQid KQidKQ2® .. KQ¢® ...

of the K-vector space K@, where, for each £ > 0, KQ, is the subspace
of K@ generated by the set @y of all paths of length ¢. It is easy to see
that (KQp) - (KQm) € KQpym for all n,m > 0, because the product in
K@ of a path of length n by a path of length m is either zero or a path of
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length n+m. This is expressed sometimes by saying that the decomposition
defines a grading on K@ or that K@ is a graded K-algebra.

1.3. Examples. (a) Let @ be the quiver

consisting of a single point and a single loop. The defining basis of the path
algebra KQ is {e1,,a2,...,a’, ...} and the multiplication of basis vectors
is given by

g1af = ale; = of forall ¢>0, and

alak = aftk for all ¢,k >0,

where o' = ;. Thus K@ is isomorphic to the polynomial algebra K[| in
one indeterminate ¢, the isomorphism being induced by the K-linear map
such that

e1—1 and o +—t.

(b) Let @ be the quiver
“ QOQB
1

consisting of a single point and two loops o and 3. The defining basis of
KQ is the set of all words on {«, 3}, with the empty word equal to e;:
this is the identity of the path algebra K. Also, the multiplication of
basis vectors reduces to the multiplication in the free monoid over {«, 8}.
Thus K@ is isomorphic to the free associative algebra in two noncommuting
indeterminates K (t1,t2), the isomorphism being the K-linear map such that

er—1, a—t;, and [+ to.

More generally, let Q@ = (Qo, Q1) be a quiver such that Qp has only
one element, then each 3 € @1 is a loop and we have similarly that K@ is
isomorphic to the free associative algebra in the indeterminates (X3)geo;, -

(c) Let @ be the quiver

@
O¢——O,
1 2

The path algebra K@ has as its defining basis the set {e1,e2,a} with the
multiplication table
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€1 1S «
€1 €1 0 0
<0 0 (35} «
a o 0 0

Clearly, K@ is isomorphic to the 2 x 2 lower triangular matrix algebra

) = [ % p ] =l lebee k)

where the isomorphism is induced by the K-linear map such that

ei—fool 2= ar[ol)

(d) Let @ be the quiver

/ 02
lo <—Qo3
’)\ o4
One can easily show, as above, that there is a K-algebra isomorphism
K 0 0 0
| K K 0 0
KQ=1% o K o
K 0 0 K

1.4. Lemma. Let Q be a quiver and KQ be its path algebra. Then
(a) KQ is an associative algebra,

(b) KQ has an identity element if and only if Qo is finite, and

(¢) KQ is finite dimensional if and only if Q s finite and acyclic.

Proof. (a) This follows directly from the definition of multiplication
because the product of basis vectors is the composition of paths, which is
associative.

(b) Clearly, each stationary path ¢, = (a || @) is an idempotent of KQ.

Thus, if Qo is finite, > &, is an identity for KQ). Conversely, suppose that
€
a€Qo .
Qo is infinite, and suppose to the contrary that 1 = Y A\w; is an identity
i=1
element of K@ (where the \; are nonzero scalars and the w; are paths in
Q). The set Qf of the sources of the w; has at most m elements and in
particular is finite. Let thus a € Qp\@y, then &, -1 = 0, a contradiction.
(c¢) If @ is infinite, then so is the basis of K@, which is therefore infinite
dimensional. If w = ajas...qp is a cycle in @ then, for each ¢t > 0, we have
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a basis vector w! = (ajaz . ..ap)t, so that K@ is again infinite dimensional.
Conversely, if @ is finite and acyclic, it contains only finitely many paths
and so K@ is finite dimensional. O

1.5. Corollary. Let Q be a finite quiver. The element 1 = Y gq is
a€Qo
the identity of KQ and the set {e, | a € Qo} of all the stationary paths

ea = (a || a) is a complete set of primitive orthogonal idempotents for KQ.

Proof. It follows from the definition of multiplication that the ¢, are
orthogonal idempotents for K@Q. Because the set () is finite, the element

1= > e, is the identity of K Q. There remains to show that the ¢, are
a€Qo
primitive or, what amounts to the same, that the only idempotents of the

algebra €,(KQ)e, are 0 and e4; see (1.4.7). Indeed, any idempotent ¢ of
£a(KQ)e, can be written in the form € = Ae, + w, where A € K and w is
a linear combination of cycles through a of length > 1. The equality

0=c?—c=(\—=Nea+ 2\ — Dw + w?

gives w = 0 and A\? = ), thus A = 0 or A = 1. In the former case, ¢ = 0 and
in the latter e = ¢,. O

Clearly, the set {&, | @ € Qo} is usually not the unique complete set of
primitive orthogonal idempotents for K. For instance, in Example 1.3 (c),
besides the set {e1,e2}, the set {e1 + @,e2 — a} is also a complete set of
primitive orthogonal idempotents for K@Q.

The following lemma reduces the connectedness of an algebra to a parti-
tion of a complete set of primitive orthogonal idempotents for this algebra.
It will allow us to characterise connected path algebras, then, in Section 2,
connected quotients of path algebras.

1.6. Lemma. Let A be an associative algebra with an identity and
assume that {ey,...,en} is a (finite) complete set of primitive orthogonal
idempotents. Then A is a connected algebra if and only if there does not
exist a nontrivial partition 1UJ of the set {1,2,...,n} such that i € I and
Jj € J imply e;Ae; =0 = e; Ae;.

Proof. Assume that there exists such a partition and let ¢ = ) e;.
jeJ

Because the partition is nontrivial, ¢ # 0, 1. Because the e; are orthogonal

idempotents, ¢ is an idempotent. Moreover, ce; = e;c = 0 for each i € I,

and ce; = ejc = e; for each j € J. Let now a € A be arbitrary. By
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hypothesis, e;ae; = 0 = ejae; whenever ¢ € I and j € J. Consequently

ca = (Lea = (X ea)-1=(1 ea)Xeit > er)

J€J j€J j€J i€l keJ
= > ejaer = (Y. e+ > e)ald ex) =ac
k€T j€J i€l keJ

Thus ¢ is a central idempotent, and A = cA x (1—c¢)A is a nontrivial product
decomposition of A. Conversely, if A is not connected, it contains a central
idempotent ¢ # 0,1. We have

NgE

c=1-c-1=(

n n n
ei)c(d.ej) = > eice; = ece;,
i=1 =1 ij=1 i=1

because c is central. Let ¢; = e;jce; € e;Ae;. Then ¢ = (ejce;)(eice;) =
eic’e; = ¢;, so that ¢; is an idempotent of e;Ae;. Because e; is primitive,
ci=0o0rc¢ =e€. Let I ={i|¢;=0}and J ={j|c¢; =e;}. Because
¢ # 0,1, this is indeed a nontrivial partition of {1,2,...,n}. Moreover,
if i € I, we have e;c = ce; = 0 and, if j € J, we have ejc = ce; = e;.
Therefore, if ¢ € I and j € J, we have e;Ae; = e;Ace; = e;cAe; = 0 and
similarly e;Ae; = 0. ]

1.7. Lemma. Let Q be a finite quiver. The path algebra KQ is con-
nected if and only if Q is a connected quiver.

Proof. Assume that () is not connected and let Q' be a connected
component of Q). Denote by Q" the full subquiver of @ having as set of
points QF = Qo\Qp,. By hypothesis, neither @’ nor Q" is empty. Let
a € Q) and b € Q. Because @ is not connected, an arbitrary path w in @
is entirely contained in either Q' or (a connected component of) @”. In the
former case, we have we, = 0 and hence e,wep = 0. In the latter case, we
have e,w = 0 and hence again e,we, = 0. This shows that £,(KQ)e, = 0.
Similarly, e,(KQ)e, = 0. By (1.6), K@ is not connected.

Suppose now that @ is connected but K@ is not. By (1.6), there exists a
disjoint union partition Qo = QEUQj such that, if z € Q) and y € Q{, then
£2(KQ)ey = 0 = €y(KQ)e,. Because @ is connected, there exist a € Q)
and b € Qf that are neighbours. Without loss of generality, we may suppose
that there exists an arrow a: @ — b. But then we have

a =¢gqaep € £,(KQ)ep =0,

a contradiction that completes the proof of the lemma. O

To summarise, we have shown that if @) is a finite connected quiver, the
path algebra K@ of @ is a connected associative K-algebra with an identity,
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which admits {e, = (a || @) | @ € Qo} as a complete set of primitive or-
thogonal idempotents. We shall now characterise it by a universal property.

1.8. Theorem. Let Q be a finite connected quiver and A be an asso-
ciative K -algebra with an identity. For any pair of maps ¢g : Qo — A and
w1 : Q1 — A satisfying the folowing conditions:

(i) 1= 3 wola), pola)? = ¢o(a), and @o(a)-wo(b) =0, for all a # b,

a€Qo

(il) if a:a — b then p1(a) = pola)e1(a)po(d),
there exists a unique K-algebra homomorphism ¢ : KQ — A such that
w(eq) = @ola) for any a € Qo and p(a) = p1(a) for any a € Q1.

Proof. Indeed, assume there exists a homomorphism ¢ : KQ — A
of K-algebras extending g and ¢1, and let ajas ...y be a path in Q.
Because ¢ is a K-algebra homomorphism, we have

plaras...ap) = p(ar)p(az)...p(ar)
p1(a1)pr(az) ... p1(a).

This shows uniqueness. On the other hand, this formula clearly defines a
K-linear mapping from K@ to A that is compatible with the composition
of paths (thus preserves the product) and is such that
p(1) =w( X ea) = 2 ¢lea) = X @ola) =1,
a€Qo a€Qo a€Qo

that is, it preserves the identity. It is therefore a K-algebra homomorphism.
O

We now calculate the radical of the path algebra of a finite, connected,
and acyclic quiver. We need the following definition.

1.9. Definition. Let @ be a finite and connected quiver. The two-sided
ideal of the path algebra K@ generated (as an ideal) by the arrows of @ is
called the arrow ideal of K() and is denoted by Rg. Whenever this can
be done without ambiguity we shall use the notation R instead of Rq.

Note that there is a direct sum decomposition
Rog = K1 @KQ2®.. DKQ,d ...

of the K-vector space Rqg, where K@, is the subspace of K@ generated by
the set @y of all paths of length ¢. In particular, the underlying K-vector
space of Rq is generated by all paths in @ of length ¢ > 1. This implies
that, for each £ > 1,

Re = @ KQm

m>/l
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and therefore Ré is the ideal of K@ generated, as a K-vector space, by the

set of all paths of length > £. Consequently, the K-vector space Ré / Rgrl is
generated by the residual classes of all paths in @ of length (exactly) equal
to £ and there is an isomorphism of K-vector spaces Ré / Rgrl ~ KQy.

1.10. Proposition. Let Q be a finite connected quiver, R be the arrow
ideal of KQ and e, = (a || a) for a € Qo. The set {e, =4 + R | a € Qo}
is a complete set of primitive orthogonal idempotents for KQ/R, and the
latter is isomorphic to a product of copies of K. If, in addition, Q is acyclic,
then rad KQ = R and KQ is a finite dimensional basic algebra.

Proof. Clearly, there is a direct sum decomposition

KQ/R= @ e (KQ/R)ey

a,beQo

as a K-vector space. Because R contains all paths of length > 1, this
becomes

KQ/R= P e.(KQ/R)e,.
a€Qo
Then KQ/R is generated, as a K-vector space, by the residual classes of the
paths of length zero, that is, by the set {e, = e, + R | a € Qp}. Clearly, this
set is a complete set of primitive orthogonal idempotents of the quotient
algebra K@Q/R. Moreover, for each a € @, the algebra e,(KQ/R)e, is
generated, as a K-vector space, by €, and consequently is isomorphic, as a
K-algebra, to K. This shows that the quotient algebra K@ /R is isomorphic
to a product of |Qq| copies of K.

Assume now that @ is acyclic (so that, by (1.4), K@ is a finite dimen-
sional algebra). There exists a largest £ > 1 such that @ contains a path
of length /. But this implies that any product of £ + 1 arrows is zero, that
is, R“t! = 0. Consequently, the ideal R is nilpotent and hence, by (I.1.4),
R C rad KQ. Because KQ/R is isomorphic to a product of copies of K,
it follows from (I.1.4) and (I.6.2) that rad KQ = R and the algebra K@ is
basic. g

We remark that if @ is not acyclic, it is generally not true that rad KQ =
Rg. For instance, let () be the quiver

As we have seen before, KQ = K[t]. Thus rad K@ = 0, because the field K
is algebraically closed (and hence infinite); then the set {¢t — A | A € K} is
an infinite set of irreducible polynomials, which generates an infinite set of
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maximal ideals with zero intersection. On the other hand, Rg = @ Ko’
>0
as a K-vector space and thus is certainly nonzero.

We summarise our findings in the following corollary.

1.11. Corollary. Let Q be a finite, connected, and acyclic quiver. The
path algebra KQ is a basic and connected associative finite dimensional
K-algebra with an identity, having the arrow ideal as radical, and the set
{ea = (a]l a)|a€Qo} as a complete set of primitive orthogonal idempo-
tents.

Proof. The statement collects results from (1.4), (1.5), (1.7), and (1.10).
|

We now give a construction showing that an algebra as in (1.11) can
always be realised as an algebra of lower triangular matrices. We start
by recalling a classical construction for generalised matrix algebras. Let
(Ai)1<i<n be a family of K-algebras and (M;;)1<; j<n be a family of A;-A;-
bimodules such that M;; = A;, for each i. Moreover, assume that we have
for each triple (7, j, k) an A;-Ag-bimodule homomorphism

@l Mij @ M), — My
satisfying, for each quadruple (i, j, k, £), the “associativity” condition
@?Z (@gk ® 1) = W{e(l ® @?Z)a
that is, the following square is commutative:

109k
Mi; @ M @ My ——  M;; @ My,

l%’{k®1 lﬁ"gl
Sai‘cz

M @ My _— M;

Then it is easily verified that the K-vector space of n x n matrices

My My ... My,
My May ... My, o

A= . . . Z{[xinCCUEMij for all 1§Z7]§n}
Mnl Mn2 s Mnn

becomes a K-algebra if we define its multiplication by the formula

[zi5] - [yis] = [Z oF (Tik @ Yij)

k=1




II.1. QUIVERS AND PATH ALGEBRAS 51

Assume that @ is a finite and acyclic quiver. Let n = |Qo| be the number
of points in Q. It is easy to see that we may number the points of @) from
1 to n such that, if there exists a path from ¢ to j, then j <.

1.12. Lemma. Let Q be a connected, finite, and acyclic quiver with
Qo ={1,2,...,n} such that, for each i,j € Qo, j < i whenever there exists
a path from i to j in Q. Then the path algebra K@Q is isomorphic to the
triangular matriz algebra

El(KQ)é‘l 0 . 0
EQ(KQ)El EQ(KQ)EQ cee 0

A = . . . ’
en(KQ)e1 en(KQ)ea ... en(KQ)en

where e, = (a || a) for any a € Qo, the addition is the obvious one, and the
multiplication is induced from the multiplication of KQ.

Proof. Because {¢, = (a || a) | a € Qo} is a complete set of primi-
tive orthogonal idempotents for K@ (by (1.11)), we have a K-vector space
decomposition of K@

KQ= & c.(KQ)ep.
a,beQo
It follows from the hypothesis that if £;(KQ)e; # 0, then j < i. For
each point i € Qp, the absence of cycles through 4 implies that the algebra
g;(KQ)e; is isomorphic to K. The definition of the multiplication in KQ
implies that, for each pair (j,4) such that j < i, ,(KQ)e; is an €;(KQ)e;-
£;(KQ)ej-bimodule and, for each triple (k, j,%) such that k < j < ¢, there
exists a K-linear map
vl tei(KQ)e; @ gj(KQ)er — ei( KQ)ey,

where the tensor product is taken over ¢;(KQ)e;. It is easily seen that the
(pgk are actually €;(KQ)e;—ex(KQ)eg-bimodule homomorphisms satisfying
the “associativity” conditions ¢¥, (¢}, ®1) = cpgz(l ® cpﬁ) whenever 7 < j <
k < ¢. We may thus construct a generalised matrix algebra as done earlier.
Now, by associating to each path from ¢ to j in KQ the corresponding
element of A (that is, basis element of the bimodule ¢;(KQ)e;), we get a K-
algebra isomorphism K@ = A. Indeed, the algebras A and K@ are clearly
isomorphic as K-vector spaces and the bijection between the basis vectors is
compatible with the algebra multiplications (by definition of the 7, ), thus
this vector space isomorphism is a K-algebra isomorphism. O

In particular, if @ has no multiple arrows and its underlying graph is
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a tree, then there is at most one path between two given points of @ so
that, for all j < ¢, we have dimg (;(KQ)e;) < 1. Consequently, KQ is
isomorphic to a subalgebra of the full lower triangular matrix algebra

K 0 ... 0
K K ... 0
T, (K) =
1.13. Examples. (a) Let @ be the quiver
o O o) L] o o
1 2 3 n—1 n

This construction gives the algebra isomorphism K@ = T, (K).
(b) Let @ be the Kronecker quiver

«—

1 0 o 2

Then there is an algebra isomorphism
~| K 0
KQ = |: K2 K :| ’

where K2 is considered as a K-K-bimodule in the obvious way

a"(xvy) = (ax7ay)7 ({E7y)b = (xb,yb)

for all a,b,xz,y € K. The path algebra of the Kronecker quiver is called
the Kronecker algebra. Its module category is studied in detail later (see
also (I1.2.5)).

We remark that the expression of K@ as an algebra of lower triangu-
lar matrices (1.12) is not unique. For instance, the Kronecker algebra is
isomorphic to the subalgebra

a 0 O
A= b d 0 | a,b,c,d e K
c 0 d

of T3(K). An algebra isomorphism between A and the Kronecker algebra

is given by

a 0 O a 0

EERICIR ]

(c) Let @ be the quiver o P E— o. Then
1 2 4 3

K 0 0 0
o] K K 0 0

Q=149 o & o |
K3 K3 K K
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where the multiplication is defined in a manner analogous to the one used
in example (b).

II.2. Admissible ideals and quotients of the
path algebra

Let @ be a finite quiver. By (1.4), the path algebra KQ of @ is an
associative algebra with an identity and is finite dimensional if and only if
Q@ is acyclic. Our objective in this section is to study the finite dimensional
quotients of a not necessarily finite dimensional path algebra. We see in
particular that they correspond to certain ideals we call admissible.

2.1. Definition. Let ) be a finite quiver and R¢ be the arrow ideal of
the path algebra K@Q. A two-sided ideal Z of K@ is said to be admissible
if there exists m > 2 such that

m 2
R% CTICRY,.

If 7 is an admissible ideal of K@, the pair (Q,Z) is said to be a bound
quiver. The quotient algebra KQ /7 is said to be the algebra of the bound
quiver (@,Z) or, simply, a bound quiver algebra.

It follows directly from the definition that an ideal Z of K (), contained
in Ré, is admissible if and only if it contains all paths whose length is large
enough. It can be shown that this is the case if and only if, for each cycle
o in @, there exists s > 1 such that o® € 7.

If, in particular, @ is acyclic, any ideal contained in RZ, is admissible.

2.2. Examples. (a) For any finite quiver ) and any m > 2, the ideal
Ry is admissible.

(b) The zero ideal is admissible in K@ if and only if @ is acyclic. Indeed,
the zero ideal is admissible if and only if there exists m > 2 such that
R¢y = 0, that is, any product of m arrows in K@ is zero. This is the case
if and only if @ is acyclic.

(¢) Let @ be the quiver

2
ﬁ o
1o moél
N
3

The ideal Z; = (af — vd) of the K-algebra K@ is admissible, but Zo =
(aB — \) is not; indeed, af — X ¢ Rp,.
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(d) Let @ be the quiver

N
G

The ideal Z = (aff — 75, BA, A3) is admissible. Indeed, it is clear that
I C Ré. ‘We show that Ré? C Z. Every path of length > 4 and source 1,
2, or 3 contains the product A* and hence lies in Z. The paths of length
> 4 and source 4 contain a path of the form aBA? or v6A? and hence lie
in Z, in the first case, because S\ € T, and in the second, because vd\? =
(76 —aB)A2+apA? € Z. This completes the proof that Z = (a—~4, B\, A3)
is admissible. Another example of an admissible ideal is (A\%). On the other
hand, (8A, a8 — ) is not admissible.

(e) Let @ be the quiver ?ﬁfzgég. Each of the ide-

als Z; = {(af) and o = (a8 — av) is clearly admissible. The bound
quiver algebras K@Q/Z; and KQ/Z, are isomorphic under the isomorphism
KQ/I; — KQ/ZI induced by the correspondence ¢; — ¢; for i = 1,2,3;
a—a, B— 0—-,and v — 7.

The preceding examples show that it is convenient to define an admis-
sible ideal in terms of its generators. These are called relations.

2.3. Definition. Let @) be a quiver. A relation in @) with coefficients
in K is a K-linear combination of paths of length at least two having the
same source and target. Thus, a relation p is an element of K@ such that

m
p= Z Aiwi,
=1

where the \; are scalars (not all zero) and the w; are paths in @ of length
at least 2 such that, if ¢ # j, then the source (or the target, respectively) of
w; coincides with that of w;.

If m = 1, the preceding relation is called a zero relation or a monomial
relation. If it is of the form w; — wo (where wq,wy are two paths), it is
called a commutativity relation.

If (pj)jes is a set of relations for a quiver ) such that the ideal they
generate (p; | j € J) is admissible, we say that the quiver @ is bound by
the relations (p;);cs or by the relations p; = 0 for all j € J.

For instance, in Example 2.2 (d), the ideal 7 is generated by one commu-
tativity relation p; = o3 — 8 and two zero relations p; = SA and p3 = \3;



I1.2. ADMISSIBLE IDEALS 55

we thus say that @ is bound by the relations a3 = ¥4, S\ = 0, and A3 = 0.

2.4. Lemma. Let @ be a finite quiver and Z be an admissible ideal
of KQ. The set {eq = e +I | a € Qo} is a complete set of primitive
orthogonal idempotents of the bound quiver algebra KQ/T.

Proof. Because e, is the image of €, under the canonical homomor-
phism KQ — KQ/Z, it follows from (1.5) that the given set is indeed a
complete set of orthogonal idempotents. There remains to check that each
eq is primitive, that is, the only idempotents of e,(KQ/Z)e, are 0 and
€q- Indeed, any idempotent e of e,(KQ/T)e, can be written in the form
e = Xeg +w + Z, where A € K and w is a linear combination of cycles
through a of length > 1. The equality e = e gives

(A2 = Nea + 2N\ = Dw+w? €.

Let Rg be the arrow ideal of K(). BecauseZ C Ré, we must have A2—\ = 0,
so that A = 0 or A = 1. Assume that A = 0, then e = w + Z, where w is
idempotent modulo Z. On the other hand, because R¢y C 7 for some m > 2,
we must have w™ € Z, that is, w is also nilpotent modulo Z. Consequently,
w € Z and e is zero. On the other hand, if A\ =1, thene, —e=—w+ 7 is
also an idempotent in e, (KQ/Z)e, so that w is again idempotent modulo
Z. Because, as before, it is also nilpotent modulo Z, it must belong to Z.
Consequently, e, = e. O

2.5. Lemma. Let QQ be a finite quiver and Z be an admissible ideal
of KQ. The bound quiver algebra KQ/T is connected if and only if Q is a
connected quiver.

Proof. If ) is not a connected quiver, K@ is not a connected algebra
(by (1.7)). Hence K@ contains a central idempotent v not equal to 0 or 1
that may, by the proof of (1.6), be chosen to be a sum of paths of length
zero, that is, of points. But then ¢ = 7 4+ Z is not equal to Z. On the
other hand, ¢ = 1 + 7 implies 1 — v € Z, which is also impossible (because
IcC Ré) Because it is clear that ¢ is a central idempotent of KQ/Z, we
infer that the latter is not a connected algebra.

The reverse implication is shown exactly as in (1.7). Assume that @ is
a connected quiver but that KQ/Z is not a connected algebra. By (1.6)
(and (2.4)), there exists a nontrivial partition Qo = Q{UQ{ such that = €
Qp and y € Qp imply e, (KQ/T)e, = 0 = e, (KQ/Z)e,. Because Q is
connected, there exist a € Q) and b € Q) that are neighbours. Without loss
of generality, we may suppose that there exists an arrow « : @ — b. But then
o = gqacey implies that o = o + 7 satisfies a = eqaep € €, (KQ/T)ep = 0.
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As a # T (because T C Ry,), we have reached a contradiction. O

2.6. Proposition. Let Q be a finite quiver and Z be an admissible ideal
of KQ. The bound quiver algebra KQ/ZT is finite dimensional.

Proof. Because 7 is admissible, there exists m > 2 such that R™ C I,
where R is the arrow ideal Rg of K(). But then there exists a surjective
algebra homomorphism KQ/R™ — KQ/Z. Thus it suffices to prove that
KQ/R™ is finite dimensional. Now the residual classes of the paths of
length less than m form a basis of K@Q/R™ as a K-vector space. Because
there are only finitely many such paths, our statement follows. 0

If 7 is not admissible, the algebra K@Q/Z is generally not finite di-
mensional or even not right noetherian, that is, it may contain a right
ideal that is not finitely generated. The following classical example, due
to J. Dieudonné (see [48], p. 16) shows a finitely generated (even cyclic)
module that has a submodule that is not finitely generated.

2.7. Example. Let QQ be the quiver

O

and Z = {Ba, 3?). It is clear that Z is not admissible, because a™ ¢ T for
any m > 1. Let A = KQ/Z and J be the subspace of A (considered as a
K-vector space) generated by the elements of the form a™g, for all n > 1
(where, as usual, « = a+Z,0 = f+Z). Then J is a right ideal of A.
Indeed, it suffices to show that Ja C J and J3 C J, and this follows from
the equalities a”fFa = 0 and a"ﬂQ = 0 for all n > 1. In particular, J4 is
a submodule of the cyclic module A4 but is not finitely generated (indeed,
let m be the largest exponent of o among the elements of a finite set J
of generators of J, then ™% € J cannot be a K-linear combination of
elements from 7).

2.8. Lemma. Let QQ be a finite quiver. Fvery admissible ideal T of KQ
1s finitely generated.

Proof. Let R be the arrow ideal of K@ and m > 2 be an integer such
that R™ C Z. We have a short exact sequence 0 - R™ —Z — Z/R™ — 0
of K(@Q-modules.

It thus suffices to show that R™ and Z/R™ are finitely generated as
K@-modules. Obviously, R™ is the K @-module generated by the paths of
length m. Because there are only finitely many such paths, R™ is finitely
generated. On the other hand, Z/R™ is an ideal of the finite dimensional al-
gebra KQ/R™ (see(2.6)). Therefore Z/R™ is a finite dimensional K-vector
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space, hence a finitely generated K @Q-module. O

2.9. Corollary. Let Q be a finite quiver and I be an admissible ideal
of KQ. There exists a finite set of relations {p1,...,pm} such that T =

<p17-- '7pm>-

Proof. By (2.8), an admissible ideal Z of K () always has a finite generat-
ing set {01, ...,0¢}. The elements o; of such a set are generally not relations,
because the paths composing ¢; do not necessarily have the same sources
and targets. On the other hand, for any ¢ such that 1 <4 <t and a,b € Qo,

the term e,0;¢y is either zero or a relation. Because 0; = > £,0;6p, for
a,beEQo

i < t, the nonzero elements among the set {e,05ep | 1 < i@ < #;5a,b € Qo}

form a finite set of relations generating Z. O

2.10. Lemma. Let Q be a finite quiver, R be the arrow ideal of KQ,
and I be an admissible ideal of KQ. Then rad(KQ/I) = Rg/Z. Moreover,
the bound quiver algebra KQ/T is basic.

Proof. Because 7 is an admissible ideal of K@, there exists m > 2 such
that R™ C 7, where R = Rg. Consequently, (R/Z)™ = 0 and R/T is a
nilpotent ideal of K@Q/Z. On the other hand, the algebra (KQ/Z)/(R/ZT) =
KQ/R is isomorphic to a direct product of copies of K, by (1.10). This
implies both assertions, by (I.1.4). O

2.11. Corollary. For each £ > 1, we have rad"(KQ/I) = (Rq/I)¢. O

It follows from Lemma 2.10 and Corollary 2.11 that the K-vector space
rad(KQ/T)/rad*(KQ/T) = (Rq/T)/(Rq/T)* = Rq/ R,

admits as basis the set a +rad*(KQ/Z), where o« = a + KQ/Z and o € Q.
This remark is crucial for the understanding of Section 3.
We summarise our findings in the following corollary.

2.12. Corollary. Let Q) be a finite connected quiver, Rg be the arrow
ideal of KQ, and T be an admissible ideal of K@Q. The bound quiver algebra
KQ/T is a basic and connected finite dimensional algebra with an identity,
having Rg/Z as radical and {e, | a € Qo} as complete set of primitive
orthogonal idempotents.

Proof. The statement collects results from (2.4), (2.5), (2.6), and (2.10).
O

2.13. Examples. (a) Let @ be the quiver ° ° °.
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We have seen in (1.13)(a) that

K 0 0
K K 0
K K K

KQ=T;3(K) =

The ideal Z = (af3) is admissible and actually equal to R2,, that is,
0 0 0
T=rad®T3(K)=] 0 0 0
K 0 0

Thus KQ/Z is isomorphic to the quotient of T5(K) by the square of its
radical.
(b) Let @ be the quiver

loB‘/ONIO
N

The ideal Z of K@ generated by the commutativity relation a—~9 is admis-
sible. Thus KQ/Z is a finite dimensional K-algebra, and {e, e, e3, e4, @, 3,
v, §,af} is its K-vector space basis. Using the construction in (1.12), we
see that

4

K 0 0 0
Koz~ | K K 0 0
T | K 0 K 0
K K K K
under the isomorphism defined by
1 0 0 0 0 0 0 0 00 0 O
0 0 0 O 01 0 0 0 0 0 O
G110 0 0o o270 0o 0o o> 0o 0o 1 0|
0 0 0 O 0 0 0 0 0 0 0 O
00 0 0 00 0 O 0 0 0 0
..o 0 00 ..o 0 0 0 Bis |1 0 0 0
€4 o0 0 0| 00 0 0 | o0 0 o0 |
0 0 0 1 01 0 0 0 0 0 O
00 0 0 0 0 0 0 0 0 0 0
.o 0 00 Sis | 0 0 0 0 3 0 0 0 O
Y 00 0 0 [ 1 0 0 o0 |»@& o0 o0 o0 |
00 1 0 0 0 0 0 1 0 0 0

(¢) Let @ be the quiver
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We have seen in (1.3)(a) that KQ = K|[t] (which is infinite dimensional).

For each m > 2, the ideal (o) is admissible (and actually any admissible

ideal of K@ is of this form). Thus KQ/Z = K]Jt]/{t™) is m-dimensional.
(d) Let @ be the quiver

(s

We have seen in (1.3)(b) that KQ = K(t1,t2). The ideal Z generated by
aff — fa, 3%,0” is admissible. Indeed, it is clear that Z C R. On the
other hand, any path of length 3 belongs to Z (and consequently R% CI).
Indeed, such a path either contains a term of the form a? or 82 or is of
one of the forms afBa or Baf; because afa = (af — fa)a + Ba? € T and
Baf = (Ba—aB)p+af? € I, we are done. The bound quiver algebra KQ/Z
is four-dimensional, with basis given by {e1,a, 8,af}. In fact, KQ/T =
Klt1,t2]/(t3,t3), under the isomorphism defined by the formulas

er— 14+ {t3,83), ars t1 + (t2,43), B ta+ (13,13), aff > tita + (t3,13).

II.3. The quiver of a finite dimensional
algebra

Let A be a finite dimensional (associative) algebra (with an identity) over
an algebraically closed field K. As seen in (1.6.10), it may be assumed, from
the point of view of studying the representation theory of A, that A is basic
and connected. We now show that, under these hypotheses, A is isomorphic
to a bound quiver algebra K Q/Z, where @ is a finite connected quiver and Z
is an admissible ideal of K. We start by associating, in a natural manner,
a finite quiver to each basic and connected finite dimensional algebra A.

3.1. Definition. Let A be a basic and connected finite dimensional
K-algebra and {ej,es,...,e,} be a complete set of primitive orthogonal
idempotents of A. The (ordinary) quiver of A, denoted by @ 4, is defined
as follows:

(a) The points of @ 4 are the numbers 1,2, ..., n, which are in bijective
correspondence with the idempotents ey, es, ..., e,.

(b) Given two points a,b € (Qa)o, the arrows a : a — b are in bi-
jective correspondence with the vectors in a basis of the K-vector space
ea(rad A/rad?A)ey.

Because A is finite dimensional, so is every vector space of the form
ea(rad A/rad®A)ey, (with a,b € (Qa)o). Consequently, Q4 is finite. The
term “ordinary quiver; sometimes used for ()4, comes from the fact that
other quivers are also used to study A, as will be seen later. Now, Q4
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is constructed starting from a given complete set of primitive orthogonal
idempotents. We must thus show that it does not depend on the particular
set we have chosen.

3.2. Lemma. Let A be a finite dimensional, basic, and connected
algebra.

(a) The quiver Qa4 of A does not depend on the choice of a complete set
of primitive orthogonal idempotents in A.

(b) For any pair eq, ey, of primitive orthogonal idempotents of A the K-
linear map 1 : eq(rad A)ey/eq(rad’A)ey, — eq(rad A/rad?A)ey, defined by
the formula e zep + ea(rad2A)eb — eq(T + radgA)eb, is an isomorphism.

Proof. (a) The number of points in @ 4 is uniquely determined, because
it equals the number of indecomposable direct summands of A4, and the
latter is unique by the unique decomposition theorem (1.4.10). On the
other hand, the same theorem says that the factors of this decomposition
are uniquely determined up to isomorphism, that is, if

n n
A= PeA=PeA
a=1 b=1

then we can renumber the factors so that e, A = e/ A, for each a with
1 < a < n. We must show that this implies dimg e,(rad A/rad*A)e, =
dimg ¢, (rad A/rad?A)ej, for every pair (a,b). A routine calculation shows
that the A-module homomorphism ¢ : eq(rad A) — eq(rad A/rad®A) given

by eqt — eq(x 4 rad?A) admits e,(rad®A) as a kernel. Consequently
ea(rad A/rad?A) = e,(rad A)/eq,(rad’A) = rad (e A)/rad? (e, A).
We thus have a sequence of K-vector space isomorphisms

ea(rad A/rad®A)e,

1

[rad(e,A)/rad? (e,
Hom 4 (ep A, rad(
(
(

1

1%

Hom 4 (e} A, rad(e
[rad(e}, A) /rad?(e
el (rad A/radQA)eb.

1%

1

(b) It is obvious that the K-linear map e, (rad A)e, — eq(rad A/rad®A)e,
defined by the formula eqzey — eq(x + rad®A)e, admits e, (rad®A)e; as a
kernel. Hence we conclude that the map 1 defined in the statement is an
isomorphism. This finishes the proof. U

We now show that the connectedness of the algebra A implies that of
its quiver 4. By definition, there exists a basis {za} of rad Ajrad’A
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where « ranges over the set (Q )1 of arrows of Q4. For each « € (Qa)1,
let z,, € rad A be such that 2, = 2, +rad®’A. We show that we can express
all the elements of rad A in terms of the x, and the paths in @ 4.

3.3. Lemma. For each arrow o : ¢ — j in (Qa)1, let o € e;j(rad A)e;
be such that the set {x +rad®A | o i — j} is a basis of e;(rad A/rad?A)e;
(see (3.2)(a)). Then

(a) for any two points a,b € (Qa)o, every element x € eq(rad A)ey can
be written in the form: £ =3 T, Tay - - - TapAaras...ops WhETE Aoy g0 € K
and the sum is taken over all paths ayas...ap in Q4 from a to b; and

(b) for each arrow « : i — j, the element x, uniquely determines a
nonzero nonisomorphism T, € Homa(e;A,e;A) such that To(e;) = za,
ImZz, C e;(radA) and ImZ, & ei(rad2A).

Proof. (a) Because, as a K-vector space, rad A = (rad A/rad*A4) @
radA, we have e,(rad A)e, = e,(rad A/rad’A)e, @ eq(rad®A)e,. Thus z
can be written in the form

T = Z Talq modulo ea(radQA)eb

aza—b
(where A, € K for every arrow « from a to b) or, more formally,

=x— Z Tada € eq(rad®A)ey,.

aa—b

The decomposition rad A = € e;(rad A)e; implies that
4,9

ea(radgA)eb = Z [eq(rad A)ec][ec(rad A)ep]

c€(Qa)o
sothat 2’ = Y 2Ly, where 2/, € e,(rad A)e, and y., € e.(rad A)e,. By
the precedingc id(iigliossiom we have expressions of the form z, = > zgAg
‘a—c
andy. = Y, ba:,,/\v modulo rad®A, where Ag, \, € K. Hence ’
yic—
T = Z Tala + Z Z 23xyAgAy  modulo ea(rad?’A)eb.
a:a—b Bia—cyic—b

We complete the proof by an obvious induction using the fact that rad A is
nilpotent.
(b) By our assumption, the element z, € e;(radA)e; is nonzero and

~

maps to a nonzero element Z, by the K-linear isomorphism e;(radA)e; =
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Homa(e; A, e;(radA)) (1.4.3). It follows that Z, (ej) = 2o, ImZ, C e;(radA),
and ImZ,, Z e;(rad®A). This finishes the proof. O

3.4. Corollary. If A is a basic and connected finite dimensional algebra,
then the quiver Qa of A is connected.

Proof. If this is not the case, then the set (Q4)o of points of Q4 can
be written as the disjoint union of two nonempty sets @ and @ such that
the points of Qf are not connected to those of Q. We show that, if i € Q)
and j € Qf, we have e;Ae; = 0 and ejAe; = 0. Then (1.6) will imply that
A is not connected, a contradiction. Because i # j, (1.4.2) yields

e;Ae; = Homau(e;A,e;A) = Homy(ejA,rade;A)
& (rade;A)e; = e;(rad A)e;.
The conclusion follows at once from (3.3). O

3.5. Examples. (a) If A= K]Jt]/({t"™), where m > 1, then @ 4 has only
one point, because the only nonzero idempotent of A is its identity. We have
rad A = (t), where ¢t = ¢ + (t™); indeed, (t)™ =0 and A/(t) & K. Conse-
quently, rad*A = (tQ) and dim (rad A/rad?A) = 1. A basis of rad A/rad*A
is given by the class of ¢ in the quotient (t)/ <t2>. Thus Q4 is the quiver

IOQa
K 0 0
K K 0 be the algebra of the lower triangular
K 0 K
matrices [A;;] € M3(K), with A3 = 0 and A,q = 0, for p > ¢. An obvious

complete set of primitive orthogonal idempotents of A is given by the three
matrix idempotents:

1 0 0 0 0 0 0 0 0
er=1]0 0 0|, eg=]|0 1 0],e3=|0 0 0].
0 0 0 0 0 0 0 0 1

0 00
Asin Example 3.5 (a), we show thatrad A= | K 0 0 | and rad’A = 0.
K 00

(b) Let A =

A straightforward calculation shows that es(rad A)e; and es(rad A)ey
are one-dimensional and all remaining spaces of the form e;(rad A)e; are
zero (because dimg (rad A) = 2). Therefore @ 4 is the quiver

$
N
20 03
(¢) An obvious generalisation of (b) is as follows. Let A be the algebra
of n x n lower triangular matrices
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K 0 0 0
K K 0 0
A-| K 0 K 0 |,
K 0 0 .. K

that is, an element of A might have a nonzero coefficient only in the first
column or the main diagonal and has zero everywhere else. Then @ 4 is the
quiver

(d) Let A be the algebra of 3 x 3 lower triangular matrices

a 0 O
A:{[ c Z 0] |a,b,c,d,eEK}
0 0 0
Z:{{o 0} |eeK}.
e 0

A complete set of primitive orthogonal idempotents for the algebra
B = A/T consists of two elements

o o

1 0 0 0 0 0
61=|:0 0 0}4—1 and 622[0 1 0]—1—1.
0 0 1 0 0 0

0
Also, rad B = g ] +7Z|e¢,de K} and rad’B = 0. Thus the

[Nl

0
0
d
K-vector spaces es(rad B)e; and eq(rad B)es are both one-dimensional and
[e]3

Q@ p is the quiver 10 —/——— o2.

3.6. Lemma. Let QQ be a finite connected quiver, T be an admissible
ideal of KQ, and A= KQ/JZ. Then Q4 = Q.

Proof. By (2.4), the set {e, = e, +Z | a € Qo} is a complete set
of primitive orthogonal idempotents of A = K@Q/Z. Thus the points of
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@4 are in bijective correspondence with those of (). On the other hand,
by (2.11) and the remark following it, the arrows from a to b in @ are in
bijective correspondence with the vectors in a basis of the K-vector space
ea(rad A/rad®A)ey, thus with the arrows from a to b in Q 4. O

3.7. Theorem. Let A be a basic and connected finite dimensional K -
algebra. There exists an admissible ideal T of KQa such that A= KQa/T.

Proof. We first construct an algebra homomorphism ¢ : KQ4 — A,
then we show that ¢ is surjective and its kernel 7 = Ker ¢ is an admissible
ideal of K@ 4.

For each arrow o : ¢ — jin (Qa)1, let x4 € rad A be chosen so that {zq+
rad®A | o :i — j} forms a basis of e;(rad A/rad’A)e;. Let o : (Qa)o — A
be the map defined by ¢g(a) = e, for a € (Qa)o, and 1 : (Qa)1 — A be the
map defined by ¢i(a) = x4 for & € (Q4)1. Thus the elements ¢pg(a) form
a complete set of primitive orthogonal idempotents in A, and if « : a — b,
we have ¢g(a)p1(a@)po(b) = eqzaeyr = To = @1(a).

By the universal property of path algebras (1.8), there exists a unique
K-algebra homomorphism ¢ : KQ4 — A that extends ¢o and ¢1.

We claim that ¢ is surjective. Because its image is clearly generated
by the elements e, (for a € (Qa)o) and x, (for o € (Q4)1), it suffices
to show that these same elements generate A. Because K is algebraically
closed, it follows from the Wedderburn-Malcev theorem (I.1.6) that the
canonical homomorphism A — A/rad A splits, that is, A is a split extension
of the semisimple algebra A/rad A by rad A. Because the former is clearly
generated by the e, it suffices to show that each element of rad A can be
written as a polynomial in the z, and this follows from (3.3).

There remains to show that 7 = Ker ¢ is admissible. Let R denote the
arrow ideal of the algebra K@ 4. By definition of ¢, we have ¢(R) C rad A
and hence @(RZ) C rad’A for each ¢ > 1. Because rad A is nipotent, there
exists m > 1 such that rad™ A = 0 and consequently R™ C Ker ¢ = Z. We
now prove that Z C R2. If € 7, then we can write

T = Z €ala + Z ale + Y,

a€(Qa)o a€(Qa)
where g, f1o € K and y € R2. Now p(x) = 0 gives

0= Z €ala + Z Tafba + @(y)

a€(Qa)o ac(Qa)
Hence > eda = — Y, ZTapa — ¢(y) € rad A. Because rad A is
a€(Qa)o ac(Qan

nilpotent, and the e, are orthogonal idempotents, we infer that A\, = 0,



11.4. EXERCISES 65

for any a € (Qa)o. Similarly > Zapa = —p(y) € rad®A. Hence the

a€(Qa)1
equality 3. (2 4 rad®A)u, = 0 holds in rad A/rad>A. But the set
a€(Qa)1
{2o +1ad’A | a € (Qa)1} is, by construction, a basis of rad A/rad®A.
Therefore 1, = 0 for each o € (Q4)1 and so z =y € R2. O

3.8. Definition. Let A be a basic and connected finite dimensional
K-algebra. An isomorphism A = KQ4/Z, where Z is an admissible ideal of
K Q4 (such as the one constructed in Theorem 3.7) is called a presentation
of the algebra A (as a bound quiver algebra).

3.9. Examples. (a) In Example 3.5 (a), the K-algebra homomorphism
v : KQa — A is defined by ¢p(e1) = 1,¢(a) = t. Clearly, ¢ is surjective,
and Ker ¢ = (a™).

(b) In Example 3.5 (b), the K-algebra homomorphism ¢ : KQa4 — A
is defined by

1 0 O o 0 O 0O 0 O
sa(eﬂ:{g 0 g}w(eﬁ:{g ! g}w(s@:{g 0 g}
0O 0 O 0o 0 O
o =18 0] e =[88 0]

Here, ¢ is an isomorphism so that A & K@ 4. Later we characterise the al-
gebras (such as A) that are isomorphic to the path algebras of their ordinary
quivers.

(¢) In Example 3.5 (d), the K-algebra homomorphism ¢ : KQp — B
is defined by

1 0 0 0 0 0
(p(@l):|:0 0 0}4—2, @(52):[0 1 0}4-2,

0 0 1 0 0 0

0 0 0 0 0 0
(p(a):{l 0 0}4—1, @(6):{0 0 0}—}—2.

0 0 0 0 1 0

We see that Ker ¢ = (af}, fa) = R and hence B = KQp/Rp), where
Q=B

3.10. Remark. Usually, an algebra has more than one presentation as
a bound quiver algebra; see, for instance, Example 2.2 (e).

I1.4. Exercises

1. Let Q = (Qo,Q1,s,t) be a quiver. The opposite quiver Q°P is the
quiver Q°P = (Qo, @1, s’,t') where, for o € Q1, §'(a) = t(a) and t'(a) =
s(a). Show that (KQ)°P = KQ°P.

2. Let @ be a finite quiver. Show that:
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(a) KQ is semisimple if and only if |Q1] = 0,
(b) K@ is simple if and only if |Qo| = 1 and |Q1| = 0.
If, moreover, @) is connected, show that:
(¢) KQ is local only if |Qo| = 1 and |Q+1| =0,
(d) KQ is commutative if and only if |Qo| =1 and |Q;| < 1.

3. For each of the following quivers, give a basis of the path algebra,
then write the multiplication table of this basis, and finally write the path
algebra as a triangular matrix algebra:

(a) o o o
(b) o o o
(c) ofFF——— o0+«— 0
(d) o o o o
(e) o——o0
() O———0———0
@ el
o/ \o
(b) |

4. Let E = {1,2,...,n} be partially ordered as follows: 1 =< i for all
1 <4 < n, and for each pair (i,j) with 2 <, j < n, we have i < j if and
only if ¢ = j. Show that the incidence K-algebra of (E, <) is isomorphic to
the path algebra K@ of a quiver @ (to be determined).

5. Let Q = (Qo,®@1) be a finite and acyclic quiver. Show that K@ is
connected if and only if KQ/R? is connected, where R is the arrow ideal of

KQ.
1OQa

6. Let QQ be the quiver
Show that the arrow ideal R of the path K-algebra K () is infinite dimen-
sional, and rad K@ = 0.
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7. Let Q = (Qo, Q1) be the quiver

Y

Show that each of the following ideals of K@ is admissible:

(a) T = (0 = 37,78 — yaf, o),

(b) IQ = <a2 - 6777ﬁ7a4>'

8. Let @ be a quiver and Z an admissible ideal in K. Construct an
admissible ideal Z°P of KQ°P such that KQ°P/Z°P = (KQ/I)°P.

9. Let Q' = (Qp, Q1) be a full subquiver of @ = (Qo, Q1) such that if
a:a—bis an arrow in @ with a € Qf, then b € Qf and o € Q. Let Z be
an admissible ideal of K@) and € = Zang Ea-

(a) Show that KQ' = e(KQ)e and that 7' = el¢ is an admissible ideal
of KQ'.

(b) Show that A’ = KQ'/I’ is isomorphic to the quotient of A = KQ/ZT
by J = (ea +Z|a ¢ Qp)-

10. Let A be an algebra such that rad?A = 0. Show that if {e, ..., e,}
is a complete set of primitive orthogonal idempotents, then e;Ae; # 0 for
i # j if and only if there exists an arrow ¢ — j in Q4.

11. Describe, up to isomorphism, all basic three-dimensional algebras.
K[t]/(t*) 0

K[]/(t?) K
matrix multiplication. Show that A = KQ/Z, where @ is the quiver

ﬁgo;o

and 7 is the ideal of K Q) generated by one zero relation (2.

12. Let A= [ ] and view A as a K-algebra with the usual

K 0 0
13. Let A = {0 K 0] be the K-subalgebra of M3(K) defined in
K K K
(I.1.1)(c) and let B be the subalgebra of A consisting of all matrices
A 0o 0
A= [ 0 Az 0 } in A such that A\;; = Ago = Asz. Show that the
A31 As2  Ass
algebra B is commutative and local and that rad B consists of all matri-
0 0 0
ces A = [}\0 )\0 0} in B. Prove that there are K-algebra isomorphisms
31 As2 O

B = K|t1,ta2]/(t1,t2)?> =2 KQ/Z, where Q is the quiver

s
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and Z = (o2, 3%, a3, Bav).

K 0 0
14. Let A = T3(K) = [K K 0} be as in (I.1.1) and let C' be the
K K K

A 0 0

subalgebra of A consisting of all matrices A = [A; Az 0 } in A such that
A3t As2 Ass

A11 = A22 = A33. Show that the algebra C' is noncommutative and local and

that there are K-algebra isomorphisms C = K (t1,t5)/ (3,13, t2t1) = KQ/Z,

where @ is the quiver
“ C\oQﬂ
1

15. Write a bound quiver presentation of each of the following algebras:

and Z = (a?, 32, Ba).

K 0 0 0 0 K 0 0 0 O K 0 0 0 0
K K 0 0 O0 K K 0 0 0 0O K 0 0 o0
K 0 K 0 0{, K 0 K 0 0{, K K K 0 0
K 0 K K 0 K 0 0 K 0 K 0 0 K o0
K K K K K K K K K K K K K K K

16. The hypothesis that the base field is algebraically closed is necessary
for Theorem 3.7 to be valid. Hint: Show that the R-algebra C is two-
dimensional, basic, and connected but that there is no quiver @ such that
C 2 RQ/Z with Z an admissible ideal of RQ.

17. The following three examples show that generators of an admissible
ideal are not uniquely determined in general:
(a) Let Q = (Qo, Q1) be the quiver

N
N

and 71 = (afB+79), Io = (af—~d) two-sided ideal of K@Q. Show that Z; and
Z, are admissible and distinct and that there is a K-algebra isomorphism
KQ/I; 2 KQ/I,, if char K # 2.
(b) Same exercise with @ = (Qo, Q1), Z1, Z2 as in Exercise 7, char K # 2.
(¢) Same exercise with @ = (Qo, Q1) of the form o#o;‘: o,

I, = {(ay — B7), T2 = {ary), but the characteristic of K is arbitrary.

18. Let A be a finite dimensional commutative algebra. Show that A is
a finite product of commutative local algebras.

19. Let A be a finite dimensional basic and connected algebra. Show
that Q40p = (Q4)°P and that there exists an admissible ideal Z°P of K@ gop
such that AP = (KQ gop)/Z°P.



Chapter III

Representations and modules

As we saw in Chapter II, quivers provide a convenient way to visualise
finite dimensional algebras. In this chapter we explain how quivers may
be used to visualise modules. This idea has been illustrated by Examples
(1.2.4)—(1.2.6).

Using a bound quiver (Q,Z) associated to an algebra A, we visualise
any (finite dimensional) A-module M as a K-linear representation of (Q,Z),
that is, a family of (finite dimensional) K-vector spaces M,, with a € Qo,
connected by K-linear maps ¢, : M, — M) corresponding to arrows « :
a — b in @, and satisfying some relations induced by Z. This description
of A-modules is a powerful tool in the study of A-modules and is playing a
fundamental réle in the modern representation theory of finite dimensional
algebras.

III.1. Representations of bound quivers

1.1. Definition. Let @ be a finite quiver. A K-linear representation
or, more briefly, a representation M of @) is defined by the following data:

(a) To each point a in Qg is associated a K-vector space M,.

(b) To each arrow o : @ — b in @) is associated a K-linear map ¢, :
M, — M.

Such a representation is denoted as M = (Mq, ¥a)acQo,acq,, OF Simply
M = (Mg, pq). It is called finite dimensional if each vector space M, is
finite dimensional.

Let M = (Mg, o) and M’ = (M], ¢,) be two representations of ). A
morphism (of representations) f : M — M’ is a family f = (fq)acq, of K-
linear maps (fq : Mo — M)acq, that are compatible with the structure
maps g, that is, for each arrow a : a — b, we have ¢, f, = fppa or,
equivalently, the following square is commutative:

M, _ P M,
lfa lfb
M! l

e, M

69
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Let f: M — M and g : M’ — M" be two morphisms of representations
of @, where f = (fa)acq, and g = (ga)acq,- Their composition is defined
to be the family gf = (gafa)acq,- Then gf is easily seen to be a morphism
from M to M".

We have thus defined a category Rep(Q) of K-linear representations of
Q. We denote by rep(Q) the full subcategory of Rep(Q) consisting of the
finite dimensional representations.

1.2. Example. Let @ be the Kronecker quiver 1o ;‘: 0 2.

A representation M of @ is given by
I
K 20: K
b
Another representation M’ is given by
03]
) R e———
[20]
Both are finite dimensional. We have a morphism M — M’ defined by
"
K §0: K
. .
|59 1o |3
K? i K?
2]

Indeed, it is readily verified that

10 1] _[1 o 1 10 o] _[o o 1
Lo YLl =lo vLe] me [o VIV )= 6110
We now prove that the categories Repy(Q) and repg(Q) are abelian.
As we will show later, this is not surprising because they are equivalent to

module categories. The straightforward verification will, however, allow us
to describe the main features of these categories.

1.3. Lemma. Let Q be a finite quiver. Then Repy(Q) and repg(Q)
are abelian K -categories.

Proof. (a) Let f : M — M’ and g : M — M’ be two morphisms
in Repg(Q), with f = (fa)acg, and ¢ = (ga)acq,- The formula f + ¢ =
(fat+9a)acq, clearly defines a morphism from M to M’. With this definition,
the set of all morphisms from M to M’ becomes an abelian group. Further,
this addition is compatible with the composition of morphisms, that is,
K(f+g)=Hhf+hg for each morphism k' of source M’, and (f + g)h =
fh+ gh for each morphism h of target M.
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(b) Given two representations M = (Mg, pq) and M’ = (M, ¢!) of Q,
the representation
MeaeM = <Ma@M;, [ Pa 0 D
0 ¢
is easily verified to be the direct sum of M and M’ in Repy (Q).

(c) Let f: M — M’ be a morphism in Repg(Q), where M = (M, o)
and M’ = (M.,¢.). For each a € Qo, let L, denote the kernel of f, :
M, — M/ and, for each arrow « : a — b, let 1, : Ly — Lj denote the
restriction of ¢, to L,. Then the representation L = (L, %) is the kernel
of f in Repg(Q) and similarly for the cokernel of f.

(d) The construction in (c) implies that a morphism f : M — M’ is
a monomorphism (or an epimorphism) if and only if each f, : M, — M/
is injective (or surjective, respectively). Thus every morphism in Repy (Q)
admits a canonical factorisation. We have shown that Repy (Q) is an abelian
K-category.

If M and M’ belong to rep g (Q) (that is, dimgx M, < oo and dimg M} <
00, for each a € Qg), the representation M @& M’ also belongs to repy (Q).
Moreover, if f: M — M’ is a morphism between objects in repy (@), the
construction in (c¢) shows that the kernel and the cokernel of f also belong
to repg (Q). Therefore rep, (Q) is also an abelian K-category. O

1.4. Definition. Let @ be a finite quiver and M = (M, p,) be a
representation of (). For any nontrivial path w = ajas ... ay from a to b in
@, we define the evaluation of M on the path w to be the K-linear map
from M, to M, defined by

Pw = PagPap_q1 -+ PazPa -

The definition of evaluation extends to K-linear combinations of paths
with a common source and a common target; thus let

m
P = Z /\111)1
i=1

be such a combination, where A\; € K and w; is a path in @, for each i, then

0o =D Niu-
=1

We are now able to define a notion of representation of a bound quiver.
Let thus @ be a finite quiver and Z be an admissible ideal of KQ. A repre-
sentation M = (M,, ¢,) of @ is said to be bound by Z, or to satisfy the
relations in Z, if we have

@, =0, for all relations p € 7.
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If 7 is generated by the finite set of relations {p1, ..., pm}, the represen-
tation M is bound by 7 if and only if ¢,, = 0, for all j such that 1 < j < m.

We denote by Repg(Q,Z) (or by repy(Q,Z) the full subcategory of
Repy (Q) (or of repg (Q), respectively) consisting of the representations of
Q@ bound by Z.

1.5. Example. Let () be the quiver

3
B N}(
A 2/
lo¢—o o5

NP2

4
bound by the commutativity relation a3 = 6. We consider the represen-
tations M and N of ) given by

Kﬁ}ﬁ/ AN 1 1/K\1K

0 and K+—K
o\ g

respectively. It is clear that M and N are bound by a8 = 4. On the other
hand, the following representation of () is not bound by a8 = vd
0
LN
K+—K K

N

We are now in a position to justify the introduction of the preceding
concepts. Our objective is to study the category mod A, where A is a finite
dimensional K-algebra, which we can assume, without loss of generality, to
be basic and connected. We have seen that there exists a finite connected
quiver Q4 and an admissible ideal Z of K@ 4 such that A = KQ4/Z. We
now show that the category mod A of finitely generated right A-modules
is equivalent to the category repy(Qa,Z) of finite dimensional K-linear
representations of Q) 4 bound by Z.

1.6. Theorem. Let A = KQ/Z, where Q is a finite connected quiver
and I is an admissible ideal of KQ. There exists a K -linear equivalence of
categories

F:Mod A = Repg(Q,T)

that restricts to an equivalence of categories F : mod A —>rep(Q,T).

Proof. (a) Construction of a functor F' : Mod A — Repg(Q,T). Let
M4 be an A-module. We define the K-linear representation F(M) =
(Mg, Ya)acqo,ac, of (Q,T) as follows: if a belongs to Qo, let e, = e, +7 be
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the corresponding primitive idempotent in A = KQ/Z, then set M, = Me,;
if @ : a — b belongs to @1 and a = «a + 7 is its class modulo Z, de-
fine o : My — My by po(z) = za(= xeqsaep) for x € M,. Because M
is an A-module, ¢, is a K-linear map. Then F(M) is bound by Z: let
p =Y Aw; be a relation from a to b in Z, where w; = aj 1052 .. v 0,5 We

=1
have

3

Pp ({E) )\ispwi (x)

s
Il
-

I
™3

@
I
A

/\i‘Poz,i,ei < Pa (3:)

I
NE

) /\i(a:ozi,l .. -Oéi,éi)

i=1

= - 2211 )\i(ai,l . ai,fi)

= z-p=20=0.
This defines our functor on the objects.

Let f: Ma — M/, be an A-module homomorphism. We want to define

a morphism F(f) : F(M) — F(M’) of Repg(Q,Z). For a € Qo and
T =ze, € Me, = M,, we have f(ze,) = f(ze2) = f(zea)eq € M'e, = M.
Thus the restriction f, of f to M, is a K-linear map f, : M, — M. We
then put F(f) = (fa)acg,- We now verify that for any arrow o : a — b,
we have ¢!, fo = fopa; this will show that F(f) is indeed a morphism of
representations. Let x € M, then

fopa(@) = fo(za) = f(za) = f(z)a = fa(z)a = ¢ fa(@).

Finally, it is trivially checked that F': Mod A — Repg(Q,Z) is a K-linear
functor and that F restricts to a K-linear functor mod A — rep(Q, 7).
(b) We construct a K-linear functor

G : Repg(Q,7) — Mod A, (1.6)

which is a quasi-inverse of F' as follows. Let M = (M,, ¢,) be an object of

Repy (Q,7). Weset G(M) = €@ M,, and we define an A-module structure
a€Qo
on the K-vector space G(M) as follows. Because A = KQ/Z, we start by

defining a K Q-module structure of G(M), then show it is annihilated by Z.
Let thus © = (z4)eecq, belong to G(M). To define a K Q-module structure
on G(M), it suffices to define the products of the form zw, where w is a
path in Q. If w = ¢, is the stationary path in a, we put

TW = TE€q = Tq.

If w = ajas...ap is a nontrivial path from a to b, we consider the
K-linear map ¢ = @a, - - - Pay : Mo — M. We put

(ZCUJ)C - 5bc§0w (xa),
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where 6. denotes the Kronecker delta. In other words, zw is the element of

G(M) = @ M, whose only nonzero coordinate is (zw)y = @y (q) € Mp.
a€Qo

This shows that G(M) is a KQ-module. Moreover, it follows from the

definition of G(M) that, for each p € 7 and z € G(M), we have zp = 0.
Thus G(M) becomes a K@ /Z-module under the assignment x(v +Z) = zv
for x € G(M) and v € KQ. This defines our functor G on the objects.

Let now (fs)acq, be a morphism from M = (M,, vo) to M' = (M, ¢,)
in Repy (Q,Z). We want to construct a homomorphism f : G(M) — G(M')

of A-modules. Because G(M) = @ M,and G(M') = @ M/ as K-vector
a€Qo a€Qo
spaces, there exists a K-linear map f = @ f, : G(M) — G(M'). We
a€Qo
claim that f is an A-module homomorphism, that is, for any x € G(M) and

any w € KQ/Z, we have f(zw) = f(z)w. It suffices to show the statement
for x =z, € M, and w = w+ Z, where w is a path from a to b in Q. Then

flzw) = f(raw) = fopuw(ra) = ‘P;ufa(xa) = fa(Ta)w = f()w

and our claim follows.

Finally, it is evident that G is a K-linear functor and that G restricts
to a K-linear functor mod A —repg(Q,Z). It is easy to check that
FG = 1Rep, (@,r) and GF = 1yoa 4. The second statement of the theorem
follows from the fact that, because @ is finite, for a K-linear representa-

tion M = (M,, ¢.) of (Q,T), we have dimg( @ M,) < oo if and only if
a€Qo
dimg M, < oo for all a € Q. O

1.7. Corollary. Let Q be a finite, connected, and acyclic quiver. There
exists an equivalence of categories Mod K @Q = Repy (Q) that restricts to an
equivalence mod KQ = repg(Q).

Proof. Because () is acyclic, by (II.1.4), the algebra K@ is finite di-
mensional. The statement follows by letting Z = 0 in Theorem 1.6. g

Another consequence of the theorem is the (trivial) remark that the
categories Repy (Q,7) and repg(Q,Z) are abelian.
We conclude this section with an example showing how one can verify

whether a given representation of a quiver is indecomposable. By (1.4.8), it
suffices to verify whether its endomorphism algebra is local.

In the following example and throughout this book we denote by J, »
the m x m Jordan block corresponding to the eigenvalue A € K, that is,
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A 0
Jm,)\: 1
0o ... 1 X

1.8. Example. Let Q be the Kronecker quiver 10 &=——"—— 02 and
B
1

M be the representation of Q defined by K3 K3, where 1 de-

Js,0
0 0 0

notes, as usual, the identity and J3o = [ 10 0 } the 3 x 3 nilpotent
0 1 0

Jordan block (identified with a linear map K® — K3 defined by J3 o in the
standard basis of K?). We claim that M is indecomposable. An endomor-
phism of M is given by a pair of 3 x 3 matrices (f1, fo) compatible with the
structure maps. Writing down the two compatibility conditions, we obtain
fi-1=1-fyand f1-J30=J30- fa. The first one says that

a1 az as
fi=fa=| b1 b2 b3 (say),
C1 C2 C3

whereas the second gives the matrix equation

a1 a2 as 0 0 O 0 0 O a1 a2 as
b1 by b3 10 0]=|1200 bi by b3 |,
C1 (6] C3 01 0 01 0 C1 (6] C3
that is, 4 as 0 0 0 0
bQ b3 0 = ay; a2 as
Co C3 0 bl bg b3

Thus as = a3 = by = 0,a1 = by = c3 = a (say) and by = ca = b (say).
Setting ¢1 = ¢, we get

a 0 O
f1:f2= b a 0
c b a
‘We have thus shown that
a 0
EndM%{{b a 0]| a,b,cEK}.

The ideal

0o 0 O
I:{[b 0 0]|b,ceK}
c b 0

of End M satisfies 73 = 0. Because (End M)/Z = K, then 7 is a maximal
ideal of End M. By (I.1.4), Z = rad(End M) and End M is local, and from
(I.4.8), it follows that M is indecomposable.
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We observe that we have a K-algebra isomorphism End M =2 K[t]/(t3)

a 0 O
given by { b a 0 ] — a+ bt + ct’, where t = ¢ + (t3).
c a

One shows exactly as earher that, for any m > 1, the representation
of @ defined by K™ 5: K™ is indecomposable, where 1 denotes

m

the identity map on K™ and Jm,o is the nilpotent m x m Jordan block
corresponding to the eigenvalue A = 0.

II1.2. The simple, projective, and

injective modules
Throughout this section, (Q,Z) will always denote a finite connected

quiver @ having | Qo |= n points and bound by an admissible ideal Z of
K@Q. We denote by A the bound quiver algebra A = KQ/Z. As seen in
(I1.2.12), A is a basic and connected finite dimensional K-algebra with an
identity, having R/Z as radical (where R denotes, as usual, the arrow ideal of
KQ) and {e, | a € Qo} as complete set of primitive orthogonal idempotents.
Throughout, we identify A-modules and K-linear representations of (Q,Z)
along the functor F' defined in (1.6). The aim of this section is to present
an explicit computation of the simple, the indecomposable projective, and
the indecomposable injective A-modules as bound representations of (@, 7).
We also deduce several interesting consequences of this description.

Let a € Qo; we denote by S(a) the representation (S(a)p,¢as) of @
defined as follows

0 ifdb#a
Slaky = {K -
Ya = 0 for all @ € Q.

Clearly, S(a) is a bound representation of (Q),Z) (for any Z), and we have
the following lemma.

2.1. Lemma. Let A= KQ/T be the bound quiver algebra of (Q,T).

(a) For any a € Qo, S(a) viewed as an A-module is isomorphic to the
top of the indecomposable projective A-module e, A.

(b) The set {S(a) | a € Qo} is a complete set of representatives of the
isomorphism classes of the simple A-modules.

Proof. For any a € @, the K-vector space S(a) is one-dimensional and
hence defines a simple representation of (Q,Z) and a simple A-module. Be-
cause by the proof of (1.6), we have Hom4 (e, A4, S(a)) = S(a)eq = S(a)q #
0, then there exists a nonzero A-module homomorphism from the indecom-
posable projective A-module e, A onto the simple A-module S(a). This
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proves (a), because e, A has a simple top (by (I.4.5)). On the other hand, if
a # b, it is clear that Homy4 (S(a), S(b)) = 0 and in particular S(a) 2 S(b).
Thus the simple modules S(a),a € Qp, are pairwise nonisomorphic. Be-
cause, by (1.5.17), there exists a bijection between a complete set of primi-
tive orthogonal idempotents and a complete set of pairwise nonisomorphic
simple A-modules given by e, — top(e,A), (b) follows. O

We say in the sequel that S(a) is the simple A-module corresponding to
the point a € Q.

We warn the reader that, in contrast to the description of the sim-
ple modules of (finite dimensional) bound quiver algebras K@Q/Z given in
(2.1)(b), any path algebra A = KQ of a finite quiver ) with an oriented
cycle has infinitely many pairwise nonisomorphic simple modules of finite
dimension, distinct from the modules S(a), with a € Q¢ (see Exercise 14).

An example of such an algebra is the path algebra A = K@ of the quiver

Q:10 <—Z—> o 2. Indeed, the A-modules S(1)= ([QE:’O),
5(2) =( <2— ), and Sy = (K—————K), with A € K, are all

simple, and one easily checks that Sy 22 .5, whenever A # p.

2.2. Lemma. Let M = (M,, pa) be a bound representation of (Q,Z).

(a) M is semisimple if and only if v, = 0 for every a € Q1.

(b) socM = N, where N = (Ng, ) with N, = M, if a is a sink,
whereas

N, = ﬂ Ker(pq : M, — My)

aza—b

if a is not a sink, and Yo = pq |N,= 0 for every arrow a of source a.
(¢) rad M = J, where J = (J4,7a) with J, = > Im(p, : My — M,)

ab—a

and Yo = Qo |, for every arrow « of source a.
(d) topM = L, where L = (Lq,%s) with Ly, = M, if a is a source,
whereas Lo = > Coker(y : My — M,) if a is not a source and 1o =0

ab—a

for every arrow « of source a.

Proof. (a) The first part follows easily from the fact that ¢, = 0 for
every a € @ if and only if M =2 @ S(a)dimrx Ma,
a€Qo
(b) Because o = ¢ |N,, N is a submodule of M. Because ¢, = 0
for each «, N is semisimple. Let S4 be a simple submodule of M. There
exists a € Qo such that S = S(a). We thus have, for each o : @ — b, a
commutative square:
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K = S(a)g — S(a)y =0

| |

M, 5% M,

Hence S(a)q, € Ker ¢, for each a: a — b, and so S(a), C N,. This shows
that S(a) € N and therefore N = soc M.

(¢) Let R be the arrow ideal of K Q. Because rad A = R/T is generated
as a two-sided ideal by the residual classes modulo Z of the arrows a € @1,
it follows from (1.3.7) that

J=radM =M -radA=M-(R/I)= > Mo,
acQq

where o = o+ Z. Hence, for any a € Qq, we have J, =) _, Mo, where
the sum is taken over all arrows of target a. For such an arrow o : b — a, the
definition of the functor F'in (1.6) yields Ma = Meya = Mya = po(Mp) =
Im ¢, because the action of ¢, corresponds to the right multiplication by
a. Hence J, =3, .. Im(pa : My — M,). Because J is a submodule of
M, we have Yo = Qo |Ja-

(d) Follows from (c), because L = M/(Mrad A) = M /rad M. O

2.3. Examples. (a) Let Q be the Kronecker quiver 10 &——"—— o2.
The simple K@-modules are given by the representations
S(1) = (K &=———=10) and S5(2) = (0 =———=K)
Let M be given by the representation K™~! §: K™, where m > 2

and 7y, 73 are the projections given by the (m 1) X m matrices
1 0 0 0 ... 0 01 00 0
00 10 ... 0 0 010 0
fae |00 0 1 o 0 g = |00 01 0
00 0 o0 ... 1 0 0 0 0 ... 1

Then soc M =rad M = (K™™' &———=0) = S(1)™!, while
topM = (0 &=——— K™) = 5(2)m5

(b) Let @ be the quiver 10 ; ° j 03, bound by
af =0,v0 =0, and let M be the bound quiver representation

L

[001] [(1)]
0.

[010]

Then
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socM = (KﬁE:KiZO) >~ S(1)a S(2),
01]

radM = ( L:1r<2<:0) ~ S(2)@(K:1:Kz:o),
00] 0

topM = (O‘ZK%K) >~ 5(2)@ S(3).

Moreover, an easy computation (as in example (1.8)) shows that End M is
local so that M is indecomposable. However, End M is not a field, because
S(2) occurs as a summand of both the top and the socle of M, so there
exist nonzero morphisms p : M — S(2) and j : S(2) — M, and hence the
composition jp : M — M is a nonzero endomorphism that is not invertible.

We now show how to compute the indecomposable projective A-modules.
Because A is basic and {e, | a € Qo} is a complete set of primitive orthogo-

nal idempotents of A, the decomposition A4 = @ ey, A is a decomposition
a€Qo
of A4 as a direct sum of pairwise nonisomorphic indecomposable projective

A-modules. We wish to describe the modules P(a) = e, A, with a € Qo.

2.4. Lemma. Let (Q,Z) be a bound quiver, A = KQ/Z, and P(a) =
e, A, where a € Q.

(a) If P(a) = (P(a)p, ¢3), then P(a)y is the K-vector space with basis
the set of all the w = w + Z, with w a path from a to b and, for an arrow
B :b — ¢, the K-linear map pg : P(a)y — P(a)c is given by the right
multiplication by 6 =0+ T.

(b) Letrad P(a) = (P'(a)y, ). Then P'(a)y = P(a)y forb # a, P'(a)a
is the K-vector space with basis the set of all w = w + Z, with w a non-
stationary path from a to a, @'B = g for any arrow B of source b # a and
O = Palpi(a), for any arrow o of source a.

Proof. (a) It follows from the definition of the functor F' in (1.6) that
the representation corresponding via F' to the A-module P(a)s = e, A is
such that, for each b € @y, we have

P(a), = P(a)ey = eqAep = eo(KQ/T)ey, = (ea(KQ)ep)/(eaZep)-

Moreover, if 3 : b — c is an arrow of @, then g3 : e, Aep, — e, Ae, is given
by the right multiplication by the residual class 6 = 8 + Z, that is, if w is
the residual class of a path w from a to b, then @g(w) = wp.

The statement (b) is a consequence of (a) and (2.2). O

We say in the sequel that P(a) is the indecomposable projective A-
module corresponding to the point a € Q. It follows from (2.1) that S(a)
is isomorphic to the simple top of P(a), and from (2.4)(b) that the radical of
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P(a) is given by (P'(a)p, ¢}3), where P’(a)y is the subspace of P(a), spanned
by the residual classes of paths of length at least one, and ¢j3 = ¢g |pr(a),-
An important particular case is when @ is acyclic and Z = 0. In this case,
P(a)p is equal to the vector space having as basis the set of all paths from
a to b.

2.5. Examples. (a) Let @ be the quiver

1
2007‘0’\503

The indecomposable projective K Q-modules are given by

K K K
P)=5S1)= 7~ N\, P2 = Y N ad PB)= 7 N
0 0 K 0 0 K
Here rad P(1) = 0, whereas rad P(2) = rad P(3) = P(1).
(b) Let @ be the quiver 10 g o = 03 bound by

§ 2 5
af = 0,70 = 0. The indecomposable projective A-modules are given by
P(1) =5(1),
;i B8
P(2) = (K <_WK§:O) and P(3) = (K éﬁ[( %K)
1 10

Here, rad P(1) = 0, rad P(2) = S(1)2, whereas

—=O

rad P(3) = (K‘;:K‘:O) ® (K == K ==0).

We note that the two indecomposable summands of P(3) are not isomorphic.

(c) Let Q be the quiver 10 =——"—— 02, bound by a8 = 0, Sa = 0.
B
Then
P(1) = (K # K) and P(2) = (K <?——’ K).

Here rad P(1) 2 S(2), while rad P(2) = S(1).
(d) Let @ be the quiver

e
G

bound by af = ~v§, 3\ =0, and A3 = 0. Then
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0 0 0 0
- g O S mam-mn Qe o
N N
0
P2)= o / \ rad P(2) = S(1);
AW A
0
P(3) — 010 / w ~
(3) 88(1) rad P(3) = P(1);

pn)

P(4) = @1<> rad P(4) = C\"l<>)

In this example, we note that for each indecomposable projective module
P, the module rad P is also indecomposable.

We now describe explicitly the indecomposable injective A-modules. By
(I.5.17), a complete list of pairwise nonisomorphic indecomposable injective
A-modules is given by the modules I(a) = D(Ae,) (with a € Qo), where
D = Homg (—, K) denotes, as usual, the standard duality between the right
and left A-modules.

2.6. Lemma. (a) Given a € Qo, the simple module S(a) is isomorphic
to the simple socle of I(a).

(b) If I(a) = (I(a)s, ), then I(a)y is the dual of the K-vector space
with basis the set of all w = w + Z, with w a path from b to a and, for an
arrow (3 : b — ¢, the K-linear map ¢p : I(a)y — I(a). is given by the dual
of the left multiplication by =0+ I.

(¢) Let I(a)/S(a) = (Lb, ). Then Ly is the quotient space of I(a)p
spanned by the residual classes of paths from b to a of length at most one,
and g is the induced map.

Proof. (a) We can apply (2.2)(b), or by dualising (2.1)(a) we get the
isomorphisms soc I(a) = P(a)/rad P(a) = S(a) of right A-modules.

(b) Because there are isomorphisms

I(a), = I(a)ey = D(Aey)ey = D(epAey) = D(ep(KQ)ea/eples),
the first statement follows from (2.4). Similarly, if 8 : b — ¢ is an arrow, the
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K-linear map g : D(ep(KQ)ea/erZes) — D(ec(KQ)ea/eLe,) is defined
as follows: let pg @ (ec(KQ)ea/ecZes) — (eb(KQ)ea/erZes) be the left
multiplication w — fw, then pg = D(ug) is given by pg(f) = fup for f €
D(ep(KQ)ea/ebZe,). In other words, pg(f)(w) = f(Bw). The statement
(c) is a consequence of (b). O

We say in the sequel that I(a) is the indecomposable injective A-module
corresponding to the point a € p. An important particular case is when
Q is acyclic and Z = 0. In this case, I(a), is nothing but the dual of the
vector space with basis the set of all paths from b to a.

2.7. Examples. (a) Let @ be the quiver
1
N
20 03

The indecomposable injective K Q-modules are I(2) = S(2), 1(3) = 5(3),

and K
m= v ~N
K K
Thus 1(2)/5(2) = 0, 1(3)/S(3) = 0, whereas I(1)/S(1) = S(2) @ S(3).
(b) Let @Q be the quiver 10 g 0 - 03,  bound by

5 2 v
aff =0, v6 = 0. The indecomposable injective K @Q-modules are given by
1(3) = 5(3),

10 10 9%
12) = (OZK%KQ) and (1) = (K%K%%KQ).
00

Here, 1(3)/S(3) = 0,1(2)/5(2) = S(3)?, and
I(1)/S(1) = (m:za;:m ® (o:m‘;:m.
Again, the two indecomposable summands of I(1)/5(1) are not isomorphic.
(c) Let Q be the quiver 10 ——"——= o2, bound by a8 = 0, 3a = 0,

then I(1) = P(2),1(2) & P(l),I(1)7S’(1) >~ S(2), and I(2)/5(2) = S(1).
This shows that A = KQ/Z is a self-injective algebra, that is, the module
A4 is injective.

(d) Let @ be the quiver

e
G

bound by a3 = ~§, BA =0, A> = 0. Then I(4) = S(4), 1(4)/S(4) = 0, and
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0 0
I(3) = o ©< > 1(3)/5(3) = 5(4);
0 1

! AN
1= [ @«l( >H s lef\ A

In particular, I(1)/S(1) is easily seen to be the direct sum of two indecom-
posable representations given respectively by

vl N
[98]@" N A and @0< >1

The previous results show that to each point a € @y correspond an
indecomposable projective A-module P(a) and an indecomposable injective
A-module I(a). The connection between them can be expressed by means
of an endofunctor of the module category.

2.8. Definition. The Nakayama functor of mod A is defined to be
the endofunctor v = DHoma(—, A) : mod A — mod A.

There is another possible definition for the Nakayama functor.

2.9. Lemma. The Nakayama functor v is right exact and is functorially
isomorphic to — Q) 4, DA.

Proof. The right exactness of v follows from the fact that v is equal
to the composition of two contravariant left exact functors. Consider the
functorial morphism ¢ : — @, DA — v = DHomy(—, A), defined on an
A-module M by

orm M @4 DA — DHoma(M,A), 2® f+— (¢ — flp(z))),

forz € M, f € DA, and ¢ € Homa (M, A). Clearly, ¢y is an isomorphism
if M4 = Ay. Because both functors are K-linear, ¢ is an isomorphism if
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M4 is a projective A-module. Let now M be arbitrary, and

Pl P1 PO POM 0

be a projective presentation for M. Because — ®4 DA and v are both right
exact, we have a commutative diagram with exact rows:

ProaDA 2224 po,pa 2224 hpe,.DA — 0
on [on o
vP; S N vP, P, vM — 0
Because ¢p, and ¢p, are isomorphisms, so is ¢ps. O

2.10. Proposition. The restriction of the Nakayama functor v :
mod A — mod A to the full subcategory proj A of mod A whose objects
are the projective modules induces an equivalence between proj A and the
full subcategory inj A of mod A whose objects are the injective modules.
The quasi-inverse of this restriction is given by v—! = Homa(D(4A),—) :
inj A — proj A.

Proof. For any a € Qo, we have vP(a) = DHomy (e, A, A) = D(Ae,) =
I(a). Hence the image of proj A under v lies in inj A. On the other hand,

Homa(D(aA),I(a)) = Homa(D(4A), D(Ae,))
>~ Homaop(4ey, A) = e, A = P(a). O

2.11. Lemma. Let A = KQ/T be a bound quiver algebra. For ev-
ery A-module M and a € Qy, the K-linear map (1.4.3) induces functorial
isomorphisms of K -vector spaces

Homu(P(a), M) — Me, — DHompu(M,I(a)).

Proof. By (1.4.2), the K-linear map Hom4(P(a), M)—=Me, given by
the formula f — f(e,) is a functorial isomorphism. The second isomorphism
is the composition

DHom (M, I(a)) = DHomy (M, D(Ae,)) = DHom gop (Aeq, DM)

~ D(eaDM) = D(DM)e, = Me,. O

As a consequence, we obtain an expression of the quiver of A in terms
of the extensions between simple modules.

2.12. Lemma. Let A = KQ/Z be a bound quiver algebra and let
a,b e Q.



II1.2. SIMPLE, PROJECTIVE, AND INJECTIVE MODULES 85

(a) There exists an isomorphism of K-vector spaces
Ext4(S(a),S(b) = eq(rad A/rad’A)e.

(b) The number of arrows in Q from a to b is equal to the dimension

dimg Ext!(S(a), S(b)) of ExtY(S(a), S(b)).

Proof. (a) Let ...— P 22 p 2 py 2% §—0 be a minimal pro-
jective resolution of the simple module S. We wish to compute Ext!, (S, S"),
where S’ is another simple module. Using the definition of Ext} (—,S")
as a right-derived functor, we consider the deleted complex ...—P; RN

P, 2% Py—0 to which we apply the functor Homy (—, S’), thus obtaining
the complex
0 — Homa(FPp,S5")

Hom 4 (p1,9) Hom 4 (p2,S”)

HOInA(Pl, SI)

Hom 4 (p3,9”) Hom 4 (p4,S”)

Hom 4 (P2, S") Hom 4 (Ps,S")
We claim that Hom 4 (p;+1,5") = 0 for every ¢ > 0. Let f € Homa(P;,S")
be a nonzero homomorphism. Because S’ is simple, f is surjective so
there exists an indecomposable summand P’ of P; such that f equals the
composition of the canonical projection P; — P’, the canonical homo-
morphism P’ — P’/rad P, and an isomorphism P’/rad P’ = S’. Now
Im p;+1 = Ker p; C rad P;, by definition of the minimal projective resolu-
tion. Hence

Homa(piv1,8")(f)(2) = (fpi1)(z) € f(Im piy1) € f(rad ;) = 0,
for any x € P;. Therefore Hom 4 (pi+1,5’)(f) = 0 and our claim follows.
In particular, we get Ext}(S,S") = Ker Hom4(p2, S)/Im Hom4(py, S’) =
Homa (Py, S").
If S = S(a) and we write rad P(a)/rad’P(a) = @ S(c¢)", a minimal
c€Qo
projective resolution of S(a) is of the form

co.— @ P(c)* — P(a) — S(a)—0,
c€Qo
so that

Ext} (S(a),S(b)) = Homa( S‘Z P(c)", S(b))

Hom 4 (rad P(a)/rad*P(a), S(b))
Hom 4 (rad P(a)/rad*P(a), I(b))
DHom 4 (P(b),rad P(a)/rad* P(a))
DHom 4 (epA, eq(rad A/rad?A))
D(eq(rad A/rad?A)ey)

ea(rad A/rad?A)ey,.

MR 1R R 1R

1
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(b) By definition, the number of arrows from a to b in the quiver @ is
equal to dimg (e, (rad A/rad®A)ey). Then (b) follows from (a). O

I11.3. The dimension vector of a module and
the Euler characteristic

In this section, we attach to each A-module a vector with integral coor-
dinates, called its dimension vector. This will allow us to use methods of
linear algebra when studying modules over finite dimensional algebras.

Let A be a basic and connected finite dimensional K-algebra and A &
KQ/T be a bound quiver presentation of A, where @) is a finite, connected
quiver and 7 is an admissible ideal of K@. Throughout this section, we
assume that the points of the quiver @ of A are numbered as {1,...,n}.
As usual, we denote by e; the primitive idempotent of A corresponding to
Jj € Qo and by P(j) = ejA (or I(j) = D(Ae;j), or S(j) = top(e;A)) the cor-
responding indecomposable projective A-module (or indecomposable injec-
tive, or simple, respectively), where D is the standard duality. In particular,
there is an indecomposable decomposition A4 = 1A D --- B e, A.

We recall from (1.6) and (2.11) that if M is viewed as a K-linear rep-
resentation (M, pg) of the bound quiver (Q,Z), then we have K-vector
space isomorphisms M; = Me; = Homyu(P(j), M) = DHoma (M, I(j)).
This leads us to the following definition.

3.1. Definition. Let A = KQ/Z be a K-algebra and let M be a
module in mod A. The dimension vector of M is defined to be the vector

dimK M€1
dim M = : = [dimg Me; ... dimg Me,]*
dimg Me,
in Z", where eq,...,e, are primitive orthogonal idempotents of A corre-

sponding to the points 1,...,n of Q.
Thus, the dimension vector of the simple module S(j) is the jth canon-
ical basis vector of the group Z". Note also that (2.11) yields
dimg Homy (P(1), M) dim g Homy (M, I(1))
dim M = : = g
dim g Homy4 (P(n), M) dimy Homy4 (M, I(n))
It follows from the unique decomposition theorem (I.4.10) that the vector

dim M does not depend on the choice of a complete set {ej,...,e,} of
primitive orthogonal idempotents of A, up to permutation of its coordinates.
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Throughout, by dim M, we mean the dimension vector of M defined
with respect to a given complete set {ej,...,e,} of primitive orthogonal
idempotents of A.

3.2. Example. In Examples 2.5 (d) and 2.7 (d), the dimension vectors
of the indecomposable projective and injective modules are the vectors
dimP(1) = [3000]", dimI(1) = [3131],
dimP(2) = 1100, dimI(2) = [0101],
dimP(3) = [3010", dimI(3) = [0011],
dimP(4) = 1111)", dimI(4) = [0001]".
It is sometimes convenient to represent dimension vectors in a more
suggestive way, following the shape of the quiver, as follows

dimI(1) = 3:1,)1 dimI(4) = 081

3.3. Lemma. If A~ KQ/ZT and0 - L - M — N — 0 is a short
exact sequence of A-modules, then dim M = dim L + dim N.

Proof. By applying the exact functor Hom4 (P(j), —) to the given short
exact sequence 0 — L — M — N — 0 we get the exact sequence of
K-vector spaces 0 — Le; — Me; — Ne;j — 0. Hence dimg Me; =
dimg Le; + dimg Ne; for each j € Qo and the statement follows. O

The property of the previous lemma is sometimes expressed by saying
that dim is an additive function. This brings us to another interpretation
of the dimension vector of a module in terms of the Grothendieck group of
mod A in the following sense.

3.4. Definition. Let A be a K-algebra. The Grothendieck group
of A (or more precisely, of mod A), is the abelian group Ko(A) = F/F,
where F is the free abelian group having as basis the set of the isomorphism
classes M of modules M in mod A and F' is the subgroup of F generated
by the elements M — L — N corresponding to all exact sequences

0—-L—-M-—=N-—=0
in mod A. We denote by [M] the image of the isomorphism class M of the
module M under the canonical group epimorphism F — F/F'.

We remark that F is a set, because each A-module M of a given dimen-
sion m admits an A-module epimorphism A™ — M.

Now we show that the group Ky(A) is itself free and in fact isomorphic
to the free group Z".

3.5. Theorem. Let A be a basic finite dimensional K -algebra and let
S(1),...,5(n) be a complete set of the isomorphism classes of simple right
A-modules. Then the Grothendieck group Ko(A) of A is a free abelian group
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having as a basis the set {[S(1)],...,[S(n)]} and there exists a unique group
isomorphism dim : Ko(A) — Z™ such that dim [M] = dim M for each
A-module M.

Proof. We first show that the set {[S(1)],...,[S(n)]} generates the
group Ky(A). Let M be a module in mod A and let 0 = My C M; C
My C --- C My = M be a composition series for M. By the definition of
Ky(A), we have

[M] = [My/M;_1] + [M;—1] ZM/MJ 1 Zci(M)[S(i)],

where c;(M) is the number of composition factors M;/M;_; of M that are
isomorphic to S(i). This shows that {[S(1)],...,[S(n)]} generates the group
Ky(A).

It is clear that M = N implies dim M = dim N. Moreover, the ad-
ditivity of dim (see (3.3)) implies the existence of a unique group homo-
morphism dim : Ky(A) — Z" such that dim [M] = dim M for all M in
mod A. Because the image of the generating set {[S(1)],...,[S(n)]} under
the homomorphism dim is the canonical basis of the free group Z", this set
is Z-linearly independent in Ky(A). It follows that Ko(A) is free and that
the homomorphism dim : Ky(A) — Z™ is an isomorphism. O

As a consequence, we show that the dimension vector of a module M
can also be regarded as a record of the number of simple composition factors
of M that are isomorphic to each simple module.

3.6. Corollary. Let A =2 KQ/Z be a K-algebra and let S(j), with
Jj € Qo, be a fixed simple A-module. For any module M in mod A the number
c;(M) of simple composition factors of M that are isomorphic to S(j) is
dimg Mej, and the composition length ¢(M) of M is given by {(M) =
ZjEQo dimK Mej = dimK M.

Proof. Aswe have seen, the equality [M]= Z i (M)[S(2)] holds. Hence

=1
n

we get dim M = dim[M] = 3 ,(M)dim [S(i)] = é c;(M)dim S(i).

Because {dimS(1),...,dim S( )} is the canonical basis of the abelian
group Z", we get, by equatlng coordinates, the required equality c;(M) =
dimg Me;. This also yields ¢(M) = Ejer ci(M) = 3 icq, dimg Me; =
dimp M. O

In particular, putting together the dimension vectors of the indecompos-
able projective (or injective) A-modules yields a square matrix with integral
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coefficients, called the Cartan matrix of A.

3.7. Definition. Let A be a basic finite dimensional K-algebra with a
complete set {ey, ..., e,} of primitive orthogonal idempotents. The Cartan
matrix of A is the n x n matrix

C11 ... Cinp
Cn1l oo Cpn
where ¢j; = dimg e;Aej, for i,5=1,...,n.

It follows from the unique decomposition theorem (I.4.10) that if C’, is
the Cartan matrix of A with respect to another complete set {e,..., e},
of primitive orthogonal idempotents of A, then C’; is obtained from C4 by
a permutation of its rows and columns and therefore the matrices C 4 and

'y are Z-conjugate. Throughout, by the Cartan matrix of A we mean the
Cartan matrix defined with respect to a given complete set {ey,...,e,} of
primitive orthogonal idempotents of A.

Because we have, by (2.10) and (2.11), K-vector space isomorphisms
epAe, =2 Homa(P(a), P(b)) = Homa(I(a),I(b)), the Cartan matrix of A
records the number of linearly independent homomorphisms between the in-
decomposable projective A-modules and the number of linearly independent
homomorphisms between the indecomposable injective A-modules.

We record some elementary facts on the Cartan matrix in the following
result.

3.8. Proposition. Let Cy4 be the Cartan matrix of a basic K-algebra
A= KQ/T.

(a) The ith column of C4 is dim P(7).

(b) The ith row of C4 is [dim I(7)]*.

(¢) dim P(i) = Cy4 - dim S(i).

(d) dimI(i) = CY - dim S(i).

Proof. The statement (a) follows from the definition and the obvious
equality e;Ae; = P(i)e; for all ¢,j. The statement (b) follows from the
definition and from the equalities dimg I(i)e; = dimg e;Ae; = ¢;; for all
i,7 (apply (2.11)). The equalities (¢) and (d) follow from (a), (b), and the
fact that the vectors dim S(1),...,dim S(n) form the standard basis of the
free abelian group Z™, where n = |Qo. O

3.9. Examples. (a) The Cartan matrix of the Kronecker algebra
A= (%,9) has the form Ca = (§ 3).
(b) If A is given by the quiver of (2.5)(a), (2.5)(b), (2.5)(c), or (2.5)(d)

respectively, then the Cartan matrix C4 of A is, respectively, the matrix
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1 1 1 1 2 2 11 3

0 1 0], 0 1 29, [ :| or .
1 1| 0

0 0 1 0 0 1 0

3.10. Proposition. Let A = KQ/Z be an algebra of finite global
dimension. Then det C4 € {—1,1}. In particular the Cartan matriz Ca
of A is invertible in the matriz ring M, (Z), that is, C4 € Gl(n,Z) =
{AeM,(Z); det A e {-1,1}}.

OO
OO W
e

Proof. Let n = |Qo| and a € Qp. By our hypothesis, the simple module
S(a) has a projective resolution 0 —» P, — -+ — P, — Py — S(a) — 0

a

in mod A, where m, is finite. It follows that dim S(a) = > (—1)’dim P;.

=0
By the unique decomposition theorem (I1.4.10), each of the modules P; is the
direct sum of finitely many copies of the modules P(1),..., P(n). Therefore
the ath standard basis vector dim S(a) of Z" is a linear combination of the
vectors dim P(1),...,dim P(n) € Z" with integral coefficients. It follows
from (3.8)(a) that there exists B € M,,(Z) such that

E=[dimS(1)| -+ | dimS(n)] = [dim P(1)| --- | dim P(n)|B = C4B,
where E is the identity matrix, and we denote by [v1 | ... | v,] the matrix
having as respective columns the vectors vy, ...,v, € Z"™. Consequently,
C4 - B = E and the result follows. O

We now use the Cartan matrix C4 to define a nonsymmetric Z-bilinear
form on the group Z".

3.11. Definition. Let A be a basic K-algebra of finite global dimen-
sion, and let C4 be the Cartan matrix of A with respect to a complete set
{e1,...,en} of primitive orthogonal idempotents of A.

The Euler characteristic of A is the Z-bilinear (nonsymmetric) form
(=, =)a: Z" x Z" — 7 defined by (x,y) 4 = x*(C,")y, for x,y € Z".

The Euler quadratic form of an algebra A is the quadratic form
qa : Z" — Z defined by qa(x) = (x,x) 4, for x € Z".

The definition makes sense, because the matrix C4 is invertible in the
matrix ring M, (Z), by (3.10).

3.12. Examples. (a) If A = (%, 9) is the Kronecker algebra, then
n=2 Cus=(}?,(C" =(3%"Y), and the Euler characteristic of A is
given by (X,y)a = x1y1 + T2y2 — 221Ys.

(b) Let A and B be as in Examples 2.5 (a) and 2.5 (b), respectively.
Then n = 3,

(€)= |1 1 of, and (Czl)f=|-2 1 o
= |- , an = |- .
4 -1 0 1 B 2 -2 1
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Hence the Euler characteristics of A and B are given by

(X, )4 = @y +w2y2 + T3y3 — T2y1 — T3Y1,
<X, y>B =  T1Y1 + Toy2 + x3Y3 — 2x2y1 + 2T3Y1 — 223Y2.

(c) The algebras of Examples 2.5 (¢) and 2.5 (d) have infinite global
dimension and hence their Euler characteristics are not defined. This follows
from (3.10) or directly from the fact that in (2.5)(c), the minimal projective
resolution of the simple module S(1) is infinite and has the form

..— P(1)— P(2) — P(1) - P(2) - P(1) —» S(1) — 0.

Similarly, in (2.5)(d), the minimal projective resolution of the simple module
S(1) is infinite and has the form

..— P(1)— P(1)— P(1) - P(1) - P(1) —» S(1) — 0.

We also note that the Cartan matrices of these algebras are not invertible
over Z.

The following proposition gives a homological interpretation of the Euler
characteristic.

3.13. Proposition. Let A be a basic K-algebra of finite global dimen-
sion and (—, —)a be the Euler characteristic of A. Then, for any pair M,

N of modules in mod A, we have

(a) (dim M, dim N), = ZO(—1)J' dimg Ext’, (M, N), and
j:

(b) qa(dim M) = i:;o (~1)7 dimg Ext’, (M, M).

Proof. Because g4(dim M) = (dim M,dim M) 4, it is sufficient to
prove the statement (a). We prove it by induction on d = pd M < oo.
Because both sides of the required equality are additive, we may, without
loss of generality, assume that M is indecomposable.

Assume that d = 0. Then M is projective, say M = P(i) = e;A for
some i € {1,...,n}. By (3.8) and (2.11), we have

(dimM,dimN)y, = (dimP(i),dimN)4
[dim P(i)]*(C,")tdim N

= [(C;Ydim P(i)]'dim N

= [dimS(i)]'dim N

= dimK Nei

= dimg Homa(P(z), N).

This shows the statement (a) if d = 0. Assume now that d > 1 and that
the result holds for all modules M’ with pd M’ = d — 1. Consider a short



92 CHAPTER III. REPRESENTATIONS AND MODULES

exact sequence 0 — L - P — M — 0 with P projective. It follows that
pd L = d—1 and, according to (A.4.5) of the Appendix, the sequence induces
a long exact Ext-sequence

0 —  Homa(M,N) — Homy(P,N) — Homu(L,N)
Lo, BExth,(M,N) — Exty(P,N) — Exty(L,N)

Om—1

— Exty(M,N) — ExtW(P,N) — Ext%/(L,N)
O ExtPHY (M, N) —

Counting dimensions and using the induction hypothesis yields

(dimM,dimN), = (dimP —dimL,dim N)4
= (dimP,dimN)4 — (dim L,dim N) 4

= ZO(—W' dimg Ext’, (P, N)
J:

- ZO(—UJ' dimg Ext’, (L, N)
=

(—1)7 dimg Ext?, (M, N),

|
18

0

<.
Il

because dim M = dim P — dim L, by (3.3). This finishes the proof. O

Another matrix with integral coefficients is useful for us. This is the
Coxeter matrix, defined as follows.

3.14. Definition. Let A be a basic K-algebra of finite global di-
mension, and let C4 be the Cartan matrix of A with respect to a complete
set {e1,...,en} of primitive orthogonal idempotents of A. The Coxeter
matrix of A is the matrix

¢, =-C,C,"

The group homomorphism ® 4 : Z" — Z" defined by the formula ® 4(x) =
®,4-x, forallx = [x1 ... z,]" € Z", is called the Coxeter transformation
of A.

3.15. Examples. (a) If A = (§2 (IJ() is the Kronecker K-algebra, then
®4=(53):
(b) Let A be as in Examples 2.5 (a) or 2.5 (b). Then ® 4 is the matrix

-1 1 1 -1 2 -2
-1 0 1 or -2 3 =2,
-1 1 0 -2 2 -1

respectively.
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(¢) The algebras of Examples 2.5 (¢) and 2.5 (d) have infinite global
dimension, hence their Coxeter matrices are not defined. O

We record some elementary properties of the Coxeter matrix in the fol-
lowing lemma.

3.16. Lemma. (a) ®4-dim P(i) = —dim I (i), for each i € {1,...,n}.
(b) <X7 Y>A = _<Ya ‘}AX>A = <¢AX7 ¢Ay>Aa for all X,y € z".

Proof. (a) By applying (3.8), we get dim S(i) = C,'dim P(i) and
hence dim I(i) = C4dim S(i) = C,,C,'dim P(i) = —® 4 - dim P(3).

(b) (x,y)a =x"(C;")'y =((y'C,")x)' =y'C,'x = y'(C,")'C, C,'x
= y(C ) (~®a)x = —(y,®ax)s. This gives the first equality. The
second follows on applying the first twice. O

Part (a) of (3.16) can be expressed by means of the Nakayama func-
tor v; see (2.8). Because, according to (2.10), for each i € @Qg, we have
vP(i) 2 I(i), we deduce that ®4 - dim P = —dim v P, for every projective
A-module P.

An application of the Coxeter transformation ® 4 in Auslander—Reiten
theory is presented in (IV.2.8) and (IV.2.9) of Chapter IV.

II1.4 Exercises

1. Let M = (M,, va) be a K-linear representation of the bound quiver
(Q,Z). The support supp M of M is the full subquiver of @ such that
(supp M)o = {b € Qo | My # 0}. Show that if M is indecomposable, then
supp M is connected (but the converse is not true).

2. Let @ be a not necessarily acyclic quiver. Show that

(a) There exists an equivalence of categories Mod K Q = Rep(Q).

(b) This equivalence restricts to an equivalence mod K@ £ repy(Q) if
and only if @ is acyclic.

3. Let (@,Z) be a bound quiver, A = KQ/Z and Q°P, Z°P be as in
Exercises 1 and 8 of Chapter II. We have two equivalences of categories
G :repy(Q,Z) — mod A, F : mod A°? — repg(Q°P,Z°P) so that we have
a duality FDG : repg(Q,Z) — repg (Q°P,Z°P) (with D = Homg(—, K),
which we also denote by D).

(a) Let M = (M,,pa) be an object in repg(Q,Z). For each a € Q
let M} = Hompg(M,,K) be the dual space and, for each a € @1, let
©r = Homg (9o, K). Show that DM = (M}, ¢?).

(b) Let f : M — M’ be a morphism in rep,(Q,Z). Describe the mor-
phism Df : DM’ — DM in rep g (Q°P,Z°P).
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4. In each of the following examples, describe the simple modules, the
indecomposable projectives and their radicals, and the indecomposable in-
jectives and their quotients by their socle.

[¢]

@ @ I

m e l , o

() @: o o ° o o  I=rad’KQ

@ Q i—f oo

(e) @ oﬁ/o\aoyo pa =0, py=0,
5\0/7 “\o A =0, af=~0

o e ] mmoaw

(6) Q: o————o0—" of = ary

(h)  Q: aiji Z;SB::OO’ By =0,

5. Let @ be the quiver
3

A

o
1
and M be the representation
K
4 T[o 1

K—K?
[0]
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of Q. Compute top M, soc M, and rad M. Show that the algebra End M is
not a field, but that M is indecomposable.
6. Let Q be the quiver o—=—————0,n > 1, and M be the repre-
sentation " 1 "
KITINT") === KIT]/{T")

of Q, where x is the K-linear map defined by x(f + (IT™) =T - f + (T"™)
for f € K[T]. Show that End M = K[T]/(T™) (hence M is indecom-
posable).

7. Let QQ be the quiver
()
5
< N
N

bound by a3 = 0. Show that the representation
RN
K K
i 0,]\ /| [9]
K2

is indecomposable.

8. Let @ be the Kronecker quiver oe————0. We define the repre-
sentation Hy of Q@ by K§1: K, for every A € K. Show that, for
A

every A € K, H) is indecomposable and that Hy = H,, if and only if A = p.

9. Let a € Qo be a point in a finite quiver Q = (Qo, @1)-

(a) Show that the projective K @-module P(a) is simple if and only if a
is a sink.

(b) Show that the injective KQ-module I(a) is simple if and only if a is
a source.

(c) Characterise the points a € Qo such that rad P(a) is simple.

(d) Characterise the points a € Qo such that I(a)/S(a) is simple.

10. Let Q be the quiver o———"———0 bound by Z = (af}, fa). Show

B
that the global dimension of the bound quiver algebra A = KQ /7 is infinite,
by completing the arguments given in (3.12)(c).

11. Let @ = (Qo, Q1) be a finite quiver, Z be an admissible ideal of
K@, and A= KQ/ZI. For each a € Qy, let P(a) = e, A. Show that
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(a) the top of P(b) is a composition factor of P(a) if and only if there
exists a path w:a — --- — b with w ¢ Z, and

(b) a,b € Qo are in the same connected component of @ if and only if
there exists a sequence a = as,as,...,a; = b (t > 1) of vertices in @ such
that, for each 1 <4 < ¢, P(a;) and P(a;3+1) have some composition factor
in common.

12. Compute the global dimension and the Cartan matrix of each of
the algebras of Exercise 4.

13. Let A = KQ, where @ is the quiver 1 o <::> o 2. Show that

(a) the A-modules S(1) = KZ<:>O, 5(2) = 0<2:K, and

S(1,2)x = 1—’K with A € K, are simple and that S(1,2)) %
2),, whenever )\ #+ 1, and

S(1,
(b) every finite dimensional and simple right A-module is isomorphic to
S(1), S(2), or to S(1,2), where A € K.
Hint: The field K is algebraically closed.

14. Let @ be a finite quiver with at least one cycle. Show that the
path algebra A = K@ has infinitely many pairwise nonisomorphic simple
modules of finite dimension.

15. Let A be the path K-algebra of the Kronecker quiver m::o

and My be the representation K[t] i:: K|t] viewed as a right A-

module, where ¢, is the identity map and ¢g is the multiplication by the
indeterminate ¢. Show that the infinite dimensional A-module M4 is inde-
composable and the algebra End M is not local.

Hint: Find K-algebra isomorphisms End M = End K[t] & K|[t] and
note that the algebra KJt] is not local and has only two idempotents 0
and 1.

16. Assume that @ is a finite and acyclic quiver.

(a) Let P(a) = (P(a)p,ps) be the indecomposable projective corre-
sponding to a € Q)p. Show that, for each arrow 3, the map ¢z is injective.

(b) Dually, let I(a) = (I(a)p,%s) be the indecomposable injective cor-
responding to a € Q9. Show that for each arrow [ the map g is surjective.

17. Determine the Coxeter matrix of the K-algebra A = (0 = ) Com-
pare it with Example 3.15.

18. Determine the Coxeter matrix of the K-algebras defined in Exercise
15 of Chapter II.



Chapter IV

Auslander—Reiten theory

As we saw in the previous chapter, quiver-theoretical techniques provide
a convenient way to visualise finite dimensional algebras and their modules.
However, to actually compute the indecomposable modules and the homo-
morphisms between them, we need other tools. Particularly useful in this
context are the notions of irreducible morphisms and almost split sequences.
These were introduced by Auslander [13] and Auslander and Reiten [19],
[20] while presenting a categorical proof of the first Brauer—Thrall conjec-
ture (see Section 5 and [136] for a historical account). Their main theorem
may be stated as follows.

Let A be a finite dimensional K -algebra and N4 be a finite dimensional
indecomposable nonprojective A-module. Then there exists a nonsplit short
exact sequence

0—L-LM-LN—0

in mod A such that

(a) L is indecomposable noninjective;

(b) if u: L — U is not a section, then there exists v’ : M — U such
that v =u'f; and

(¢) ifv:V — N is not a retraction, then there exists v' : V. — M such
that v = gv’.

Further, the sequence is uniquely determined up to isomorphism. Dually,
if La is indecomposable noninjective, a nonsplit short exact sequence as
preceding exists, with N indecomposable nonprojective and satisfying the
properties (b) and (c). It is again unique up to isomorphism.

Such a sequence is called an almost split sequence ending with N (or
starting with L). In this chapter, we introduce the notions of irreducible
morphisms and almost split morphisms, then prove the preceding existence
theorem for almost split sequences in module categories. This allows us
to define a new quiver, called the Auslander—Reiten quiver, which can be
considered as a first approximation for the module category. We then apply
these results to prove the first Brauer—Thrall conjecture.

Throughout this chapter, we let A denote a finite dimensional K-algebra,
K denote an algebraically closed field, and all A-modules are, unless other-
wise specified, right finite dimensional A-modules.

97
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IV.1. Irreducible morphisms and
almost split sequences

This first section is devoted to introducing the notions of irreducible,
minimal, and almost split morphisms in the category mod A of finite di-
mensional right A-modules. We recall that the ultimate aim of the repre-
sentation theory of algebras is, given an algebra A, to describe the finite
dimensional A-modules and the homomorphisms between them.

By the unique decomposition theorem (I1.4.10), any module in mod A is a
direct sum of indecomposable modules and such a decomposition is unique
up to isomorphism and a permutation of its indecomposable summands.
It thus suffices to describe the latter and the A-module homomorphisms
between them.

Before stating the following definitions, we recall that an A-homomor-
phism is a section (or a retraction) whenever it admits a left inverse (or
a right inverse, respectively).

1.1. Definition. Let L, M, N be modules in mod A.

(a) An A-module homomorphism f : L — M is called left minimal if
every h € End M such that hf = f is an automorphism.

(b) An A-module homomorphism g : M — N is called right minimal
if every k € End M such that gk = g is an automorphism.

(¢) An A-module homomorphism f : L — M is called left almost
split if

(i) f is not a section and

(ii) for every A-homomorphism w : L — U that is not a section there
exists u’' : M — U such that v’ f = u, that is, v’ makes the following triangle

commutative L Lowm
J/ u A/
U

(d) An A-homomorphism g : M — N is called right almost split if

(i) g is not a retraction and

(ii) for every A-homomorphism v : V' — N that is not a retraction,
there exists v’ : V' — M such that gv’ = v, that is, v’ makes the following
triangle commutative

1%
v:/ l”
M L N

(e) An A-module homomorphism f : L — M is called left minimal
almost split if it is both left minimal and left almost split.
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(f) An A-module homomorphism g : M — N is called right minimal
almost split if it is both right minimal and right almost split.

Clearly, each “right-hand” notion is the dual of the corresponding “left-
hand” notion. As a first observation, we prove that left (or right) minimal
almost split morphisms uniquely determine their targets (or sources, respec-
tively).

1.2. Proposition. (a) If the A-module homomorphisms f : L — M
and ' : L — M’ are left minimal almost split, then there exists an isomor-
phism h: M — M’ such that f' = hf.

(b) If the A-module homomorphisms g : M — N and ¢’ : M’ — N are
right minimal almost split, then there exists an isomorphism k : M — M’
such that g = ¢'k.

Proof. We only prove (a); the proof of (b) is similar. Because f and
f! are almost split, there exist h : M — M’ and b’ : M’ — M such that
f'=nhfand f =K f'. Hence f = Whf and f" = hh'f’. Because f and
f' are minimal, hh' and h'h are automorphisms. Consequently, h is an
isomorphism. O

We now see that almost split morphisms are closely related to indecom-
posable modules.

1.3. Lemma. (a) If f: L — M is a left almost split morphism in
mod A, then the module L is indecomposable.

(b) If g: M — N is a right almost split morphism in mod A, then the
module N is indecomposable.

Proof. We only prove (a); the proof of (b) is similar. Assume that
L = Ly ® Lo, with both L; and Ly nonzero and let p; : L — L; (with
i = 1,2) denote the corresponding projections. For any i (with ¢ = 1,2),
the homomorphism p; is not a section. Hence there exists a homomorphism
} : M — L satisfies

u; : M — L; such that u;f = p;. But then u = “

u2
uf = 1, and this contradicts the fact that f is not a section. g

1.4. Definition. A homomorphism f : X — Y in mod A is said to be
irreducible provided:

(a) f is neither a section nor a retraction and

(b) if f = f1fa, either f; is a retraction or fs is a section

X f

~
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Clearly, this notion is self-dual. An irreducible morphism in mod A is
either a proper monomorphism or a proper epimorphism: indeed, if f :
X — Y is irreducible but is not a proper epimorphism, and f = jp is
its canonical factorisation through Im f, then j is not a retraction, and
consequently p is a section, so that f is a proper monomorphism. The same
argument shows that the irreducible morphisms are precisely those that
admit no nontrivial factorisation.

1.5. Example. (a) Let e € A be a primitive idempotent. Then the
right A-module eA is indecomposable and the inclusion rad eA — eA is right
almost split and is an irreducible morphism. Indeed, if v € Homy4(V,eA)
and v is not a retraction, then Imv is a proper submodule of eA. It follows
from (I.4.5)(c) that Imv C radeA, that is, v : V' — eA factors through
radeA, and consequently, radeA — eA is right almost split. It follows
from the maximality of radeA in eA that radeA — eA is an irreducible
morphism.

(b) Let S be a simple A-module, and let E = E4(S) be the injective
envelope of S in mod A. Then the canonical epimorphism p : E — E/S is
left almost split and is an irreducible morphism. This follows from (a) by
applying the duality functor D : mod A — mod A°P and (1.5.13).

We now reformulate the definition of irreducible morphisms using the
notion of radical rad4 of the category mod A introduced in Section A.3
of the Appendix.

We recall that rad4 = radyoq 4 denotes the radical rade of the category
C = modA. If X and Y are indecomposable modules in mod A, then
rada(X,Y) is the K-vector space of all noninvertible homomorphisms from
X to Y. Thus, if X is indecomposable, rad 4 (X, X) is just the radical of the
local algebra End X. Further, if X and Y are arbitrary modules in mod A,
then rada(X,Y) is an End Y-End X-subbimodule of Hom4(X,Y"). This
implies that rada(—, —) is a subfunctor of the bifunctor Hom4 (—, —).

Similarly, if X and Y are modules in mod A, we define rad%(X,Y)
to consist of all A-module homomorphisms of the form gf, where f €
rada (X, Z) and g € rada(Z,Y) for some (not necessarily indecomposable)
object Z in mod A. It is clear that rad% (X,Y) C rad4(X,Y) and even that
rad% (X,Y) is an End Y-End X-subbimodule of rad 4 (X,Y).

The next lemma shows that the quotient space rad 4 (X,Y)/rad%(X,Y)
measures the number of irreducible morphisms between indecomposable
modules X and Y.

1.6. Lemma. Let X, Y be indecomposable modules in mod A. A mor-
phism f: X — Y is irreducible if and only if f € rada(X,Y) \radi(X, Y).
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Proof. Assume that f is irreducible. Then, clearly, f € rada(X,Y). If
f erad’(X,Y), then f can be written as f = gh, where h € rad4(X, Z) and
g € rada(Z,Y) for some Z in mod A. Decomposing Z into indecomposable
h1
¢ t
summands as Z = @ Z;, wecan write h = | : | : X —— @ Z; and
=1 h, i=1
t
g=1l91--.9t]: @ Zi ——— Y. Because f is irreducible, h is a section or g
i=1

t

is a retraction. Assume the former, and let b’ = [h]...h}] : @ Z; — X be
=1

such that 1x = h'h = Z h}h;. Because h; is not invertible (for any ), hlh;

is not invertible elther and so hih; € rada(X,X) = radEnd X. Because
End X is local, we infer that 1x € radEnd X, a contradiction. Conse-
quently, h is not a section. Similarly, g is not a retraction. This contradic-
tion shows that f ¢ rad%(X,Y).

Conversely, assume that f € rad (X, Y)\rad% (X,Y). Because X, Y are
indecomposable and f is not an isomorphism, it is clearly neither a section
nor a retraction. Suppose that f = gh, where h : X — Z,¢9: 72 — Y.

t
Decompose Z into indecomposable summands as Z = @ Z; and write
i=1
h1
h=1{:1]1:X

he

t t
P Zandg=[g91...9/|: D Z —— Y

i=1 =1

t
so that f = 3 g;h;. Because f & rad%(X,Y), there is either an index 4

i=1
such that h; is invertible or an index j such that g; is invertible. In the first
case, h is a section; in the second, g is a retraction. O

In the following lemma, we characterise irreducible monomorphisms (or
epimorphisms) in mod A by means of their cokernels (or kernels, respec-
tively).

1.7 Lemma. Let0 — L <> M 25N - 0bea nonsplit short exact
sequence in mod A.

(a) The homomorphism f : L — M is irreducible if and only if, for
every homomorphism v : V. — N, there exists v1 : V. — M such that
v=gv1 or vy : M — V such that g = vvs.

(b) The homomorphism g : M — N is irreducible if and only if, for
every homomorphism v : L — U, there exists u; : M — U such that
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u=urf orug:U — M such that f = ugu.

Proof. We only prove (a); the proof of (b) is similar. Assume first
that f : L — M is irreducible, and let v : V' — N be arbitrary. We have
a commutative diagram

f g

0O — L — F — V — 0

llL Jru Jrv
0 — L L. M 4 N — 0

with exact rows, where E denotes the fibered product of V and M over N.
Because f = uf’ is irreducible, f’ is a section or u is a retraction. In the
first case, ¢’ is a retraction and there exists v; : V' — M such that gv; = v.
If ' : V — FE is such that g'v’ = 1y, then v; = uu’ satisfies gv; = v. In the
second case, there exists vy : M — V such that g = vv,.

Conversely, assume that the stated condition is satisfied. Because the
given sequence is not split, f is neither a section nor a retraction. Sup-
pose that f = fife, where fo : L — U, f; : U — M. Because f is a
monomorphism, so is fo and we have a commutative diagram

0—>L£>U Vv — 0
bbb

0 — L L. M 4 N — 0

u

with exact rows, where V' = Coker fa. In particular, by (A.5.3) of the
Appendix, the module U is isomorphic to the fibered product of V and M
over N. If there exists v; : V' — M such that v = gvp, then the universal
property of the fibered product implies that u is a retraction and so fs is a
section. If there exists vo : M — V such that g = vvq, then, similarly, f; is
a retraction. This shows that f is irreducible. g

As a first application of Lemma 1.7, we show that irreducible morphisms
provide a useful method to construct indecomposable modules.

1.8. Corollary. (a) If f : L — M is an irreducible monomorphism,
then N = Coker f is indecomposable.

(b) If g : M — N is an irreducible epimorphism, then L = Kerg is
indecomposable.

Proof. We only prove (a); the proof of (b) is similar. Let g : M — N be
the cokernel of f and assume that N = N; & Ny with N; and N» nonzero.
Let ¢; : N; — N (with ¢ = 1,2) denote the corresponding inclusions. If
there exists a morphism w; : M — N, such that g = g;u;, then, because g
is an epimorphism, ¢; is also an epimorphism and hence an isomorphism,
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contrary to the fact that N7 # 0 and Ny # 0. Then, by (1.7), there exists,
for each 7 = 1,2, a homomorphism v; : N; — M such that gv; = ¢;. Thus
v = [v1 v2] : N1 & N2 — M satisfies gv = 1y, so that g is a retraction. But
then f is a section, and this contradicts the fact that f is irreducible. [

The following easy lemma is needed in the proof of the next theorem.

1.9. Lemma. (a) Let f : L — M be a nonzero A-module homo-
morphism, with L indecomposable. Then f is not a section if and only if
ImHom4(f, L) C rad End L.

(b) Let g : M — N be a nonzero A-module homomorphism, with N
indecomposable. Then g is not a retraction if and only if ImHom 4 (N, g) C
rad End N.

Proof. We prove (a); the proof of (b) is similar. Because L is inde-
composable, End L is local. If ImHoma(f,L) € radEnd L, there exists
h : M — L such that & = Homa(f,L)(h) = hf is invertible. But then
k~lhf = 11 shows that f is a section. Conversely, if there exists h such
that hf = 11, then Homa(f, L)(h) = 11, shows that Homu4(f, L) is an epi-
morphism. O

We now relate the previous notions, showing that one may think of
irreducible morphisms as components of minimal almost split morphisms.

1.10. Theorem. (a) Let f : L — M be left minimal almost split in
mod A. Then f is irreducible. Further, a homomorphism f': L — M’ of
A-modules is irreducible if and only if M’ # 0 and there exists a direct sum
decomposition M=M' & M" and a homomorphism f" : L — M" such that

.
ol

(b) Let g : M — N be right minimal almost split in mod A. Then
g 18 irreducible. Further, a homomorphism ¢ : M’ — N of A-modules is
irreducible if and only if M’ # 0 and there exists a direct sum decomposition
M = M' & M"” and a homomorphism g"” : M" — N such that [¢' "] :
M' & M" —— N is right minimal almost split.

Proof. We prove (a); the proof of (b) is similar. Let f : L — M be
a left minimal almost split homomorphism in mod A. By definition, f is
not a section. Because, by (1.3), L is indecomposable and f is not an
isomorphism, f is not a retraction either. Assume that f = fifo, where
fo: L — X and f1 : X — M. We suppose that f» is not a section and
prove that f; is a retraction. Because f is left almost split, there exists
14+ M — X such that fo = f5f. Hence f = f1fa = f1f5f. Because f is left
minimal, f1f} is an automorphism and so f; is a retraction. This proves
the first statement.

L —— M' ® M" is left minimal almost split.
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Let now f' : L — M’ be an irreducible morphism in mod A. Then
clearly, M’ # 0. Also, f’ is not a section, hence there exists h : M — M’
such that f’ = hf. Because f’ is irreducible and f is not a section, h
is a retraction. Let M” = Kerh. Then there exists a homomorphism

q: M — M" such that [h} : M — M'@® M" is an isomorphism. It follows
q

/
that H f= {ff] L — M’ @ M" is left minimal almost split.
q q

Conversely, assume that [ satisfies the stated condition; we must show
that it is irreducible. Because L is indecomposable and f’ is not an isomor-
phism, f’ is not a retraction. On the other hand, if there exists h such that

hf"=1g, then [h 0] [J{“} = 17, implies that []{N} is a section, a contradic-

tion. Thus, f’ is not a section. Assume that f/ = f;fs, where fo : L — X

and fi : X — M'. We suppose that f3 is not a section and show that f is

a retraction. We have {f:/} = {fl O] [fi}, where [fi} :L—-XoM
f 0o 1| |f f

and [J;I Ol X @& M’ — M' & M". Because f2 is not a section, it follows

from (1.9) that Im Hom 4 (f2, L) C rad End L. Similarly Im Homa (f”, L) C

fﬂ ,L) C radEnd L, hence, again

f//

rad End L. Consequently, Im Hom 4 ( [

1" 1"

by (1.9), [;2} is not a section. Because [f } is left minimal almost split

and hence irreducible, ];1 ?] is a retraction, and this implies that fi is a

retraction. The proof is now complete. O

We now define a particular type of short exact sequence, which is par-
ticularly useful in the representation theory of algebras.

1.11. Definition. A short exact sequence in mod A
0—LLM N0

is called an almost split sequence provided:
(a) f is left minimal almost split and
(b) g is right minimal almost split.

While the existence of almost split sequences is far from obvious, it
follows from (1.3) that if such a sequence exists, then L and N are indecom-
posable modules. Also, an almost split sequence is never split (because f is
not a section and ¢ is not a retraction) so that L is not injective, and N is
not projective. Finally, an almost split sequence is uniquely determined (up
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to isomorphism) by each of its end terms; indeed, if 0 = L - M — N — 0
and 0 — L' — M’ — N’ — 0 are two almost split sequences in mod A, then
(1.2) implies that the following assertions are equivalent:

a) The two sequences are isomorphic.

(b) There is an isomorphism L 2 L’ of A-modules.

(c) There is an isomorphism N 2 N’ of A-modules.

)
1.12. Lemma. Let
0 — L L M — N — 0

[ .
0 — L 1 M £ N — 0

be a commutative diagram in mod A, where the rows are exact and not split.
(a) If L is indecomposable and w is an automorphism, then u and hence
v are automorphisms.
(b) If N is indecomposable and u is an automorphism, then w and hence
v are automorphisms.

Proof. We only prove (a); the proof of (b) is similar. We may suppose
that w = 1. If u is not an isomorphism, it must be nilpotent (because
End L is local) and so there exists m such that ™ = 0. Then v™f =
fu™ = 0 and so v™ factors through the cokernel N of f, that is, there
exists h : N — M such that v = hg. Because gv™ = g, we deduce that
ghg = ¢ and consequently gh = 1y (because g is an epimorphism). This
contradicts the fact that the given sequence is not split. O

We end this section by giving several equivalent characterisations of
almost split sequences.

1.13. Theorem. Let 0 — L Jom LN — 0 be a short exact
sequence in mod A. The following assertions are equivalent:

(a) The given sequence is almost split.

(b) L is indecomposable, and g is right almost split.

(¢) N is indecomposable, and f is left almost split.

(d) The homomorphism f is left minimal almost split.

(e) The homomorphism g is right minimal almost split.

(f) L and N are indecomposable, and f and g are irreducible.

Proof. By definition of almost split sequence, (a) implies (d) and (e).
By (1.3), (a) implies (b) and (c). By (1.10) and (1.3), (a) implies (f) as well.
To prove the equivalence of the first five conditions, we start by proving that
(e) implies (b). Dually, (d) implies (¢). Thus, the equivalence of the first
three conditions implies that of the first five conditions. We show that (b)
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implies (c); the proof that (c) implies (b) is similar, and we prove that both
conditions together imply (a). Finally, we show that (f) implies (b), which
will complete the proof of the theorem.

Assume (e), that is, ¢ is right minimal almost split. By (1.10), g is
irreducible. Hence, by (1.8), L = Kerg is indecomposable. Thus, (e) im-
plies (b).

To show that (b) implies (c¢), it suffices, by (1.3), to show that f is left
almost split. Because ¢ is not a retraction, f is not a section. Let uw : L — U
be such that u'f # w for all v’ : M — U. We must prove that u is a section.
It follows from (A.5.3) of the Appendix that there exists a commutative

lu Jrv llN
0o — U LN Vv L N — 0
with exact rows, where V is the amalgamed sum. The lower sequence is
not split and hence k is not a retraction. Because g is right almost split,
there exists v : V' — M such that k = gv, and hence we get a commutative

di
lagraln 0 — I L M g N — 0

luu J,m} J,lN
0 — L L. M 4 N — 0

with exact rows, where u is derived from v and 1y by passing to the kernels.
By (1.12), uu is an automorphism. Hence w is a section.

Now, assume that both (b) and (c) hold; we must prove that f and g
are minimal. To prove that f is left minimal, let A € End M be such that
hf = f. We have a commutative diagram

0 — L L M 4 N — 0

llL J,h J,lN
with exact rows. By (1.12), h is an automorphism. Hence f is left minimal.
Similarly, g is right minimal.

We now prove that (f) implies (b). By hypothesis, L is indecomposable
and g is not a retraction. Assume that v : V. — N is not a retraction.
We may suppose that V' is indecomposable (replacing it, if necessary, by
one of its indecomposable summands). Because f is irreducible, (1.7) gives
v : V' — M such that v = gv’ (and then we are done), or else h : M — V
such that ¢ = vh. But in this case, because g is irreducible and v is not
a retraction, h must be a section. Because V is indecomposable, h is an
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isomorphism. But then v' = h~! satisfies v = gv’ and we have completed
the proof of our theorem. O

IV.2. The Auslander—Reiten translations

In this section and the next, we prove the existence of almost split sequences
in the category mod A of finite dimensional A-modules, for A a finite di-
mensional K-algebra. We first consider the A-dual functor

(=)' = Homa(—, A) : mod A ——— mod A°P.

We note that if Py is a projective right A-module, then P* = Hom4 (P, A)
is a projective left A-module; indeed, if P4 = eA, with e € A a primitive
idempotent, then P* = Homa(eA, A) = Ae, and our statement thus follows
from the additivity of (—)*. Moreover, one shows easily that the evaluation
homomorphism €5 : M — M defined by enr(2)(f) = f(z) (for 2 € M and
f € M?) is functorial in M and is an isomorphism whenever M is projective.
Thus, the functor (—)* induces a duality, also denoted by (—)*, between the
category proj A of projective right A-modules, and the category proj A°P of
projective left A-modules. We use this new duality to define a duality on an
appropriate quotient of mod A, and this duality is called the transposition.

We start by approximating each module M 4 by projective modules. Let

I
thus PP Py P M 0

be a minimal projective presentation of M, that is, an exact sequence such
that po : Py — M and p; : P} — Kerpg are projective covers. Applying the
(left exact, contravariant) functor (=), we obtain an exact sequence of left
A-modules

t t
0— Mt 2o pt 2L pt - Cokerpt — 0.
We denote Coker p} by Tr M and call it the transpose of M.
We observe that the left A-module Tr M is uniquely determined up to
isomorphism; this indeed follows from the fact that projective covers (and
hence minimal projective presentations) are uniquely determined up to iso-

morphism.
We now summarise the main properties of the transpose Tr.

2.1. Proposition. Let M be an indecomposable module in mod A.
(a) The left A-module Tr M has no nonzero projective direct summands.
(b) If M is not projective, then the sequence

t

PSPt — Tt M — 0

induced from the minimal projective presentation Py LM -0
of M is a minimal projective presentation of the left A-module Tr M.
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(¢) M is projective if and only if Tr M = 0. If M is not projective, then
Tr M is indecomposable and Tr (Tr M) = M.

(d) If M and N are indecomposable nonprojective, then M = N if and
only if Tr M = Tr N.

Proof. If M is projective, then the term P; in the minimal projective
presentation of M is zero, and therefore Tr M = 0. Conversely, if Tr M = 0,
then p! is an epimorphism, hence a retraction (because 4(Py) is projective).
Thus, p; is a section, and M is projective. This shows the first part of (c).

Assume that M is not projective. Then Tr M # 0. The sequence given in
(b) is certainly a projective presentation of the left module Tr M. We claim
it is minimal. Indeed, if this is not the case, there exist nontrivial direct
sum decompositions P} = E} @& E}, P} = E{ & E{ and an isomorphism
v: EY — FY such that this sequence is isomorphic to the sequence

(5 2]

E, & Bl E|&E —— TrM —— 0,

where u : Ej — FE{ is a homomorphism of left A-modules. But then apply-
ing (—)? yields a projective presentation of M of the form
Bt LB M0,

and this contradicts the minimality of the projective presentation of M.
This shows our claim. Moreover, if Tr M has a nonzero projective di-
rect summand, the homomorphism p} has a direct summand of the form
(0 — FE), with 4F projective. But, as earlier, this implies that p; has a
direct summand of the form (E* — 0), and we obtain another contradiction.
We have thus shown (a) and (b).

Applying now (—)¢ to the exact sequence in (b), we get a commutative

diagram
& rp 2 B 2 M  — 0

tt tt
pit ILoopit 2 TrTrM — 0
with exact rows. Hence there is an isomorphism M = Tr Tr M making the
right square commutative. This proves (c), and (d) follows immediately. O

We have shown that the transpose Tr maps modules of mod A to mod-
ules of mod A°P but does not define a duality mod A — mod A°P, because it
annihilates the projectives. In order to make this correspondence a duality,
we thus need to annihilate the projectives from mod A and mod A°P. This
motivates the following construction.

For two A-modules M, N, let P(M, N) denote the subset of Hom4 (M, N)
consisting of all homomorphisms that factor through a projective A-module.
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We claim that this defines an ideal P in the category mod A. First, for
two modules M, N, the set P(M, N) is a subspace of the K-vector space
Homy (M, N); indeed, if f, f' € P(M, N), then f and f’ can be respectively
written as f = hg and f’ = h'g’, where the targets P of g and P’ of ¢’ are
projective; consequently

[+ =hg+hg =[N {gg]

factors through the projective module P& P’. On the other hand, if A € K
and f € P(M,N), then A\f € P(M,N). Next, if f € P(L,M) and g €
Homy (M, N), then gf € P(L,N) and similarly, if f € Homa(L, M) and
g € P(M,N), then gf € P(L,N). This completes the proof that P is an
ideal of mod A.

We may thus consider the quotient category

mod A =mod A/P

called the projectively stable category. Its objects are the same as those
of mod A, but the K-vector space Hom 4 (M, N) of morphisms from M to
N in mod A is defined to be the quotient vector space

Hom 4 (M, N) = Homyu (M, N)/P(M,N)

of Homy4 (M, N) with the composition of morphisms induced from the com-
position in mod A. There clearly exists a functor mod A — mod A that is
the identity on objects and associates to a homomorphism f : M — N in
mod A its residual class modulo P(M, N) in mod A.

Dually, one may construct an ideal Z in mod A by considering, for each
pair (M, N) of A-modules, the K-subspace Z(M,N) of Hom (M, N) con-
sisting of all homomorphisms that factor through an injective A-module.
The quotient category

mod A =mod A/T

is called the injectively stable category. Its objects are the same as
those of mod A, but the K-vector space Hom4 (M, N) of morphisms from
M to N in mod A is given by the quotient vector space

Hom (M, N) = Hom4(M, N)/Z(M, N)

of Hom 4 (M, N) with the composition of morphisms induced from the com-
position in mod A. One again defines in the obvious way the residual class
functor mod A — mod A.

We now see that, although the correspondence M +— Tr M does not
define a duality between mod A and mod A°P, it does define one between
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the quotient categories mod A and mod A°P.

2.2. Proposition. The correspondence M +— Tr M induces a K -linear
duality functor Tr : mod A ———— mod A°P.

Proof. To construct this duality, we start by giving an alternative con-
struction of mod A as a quotient category. Let proj A denote the category
whose objects are the triples (Pi, Py, f), where P, Py are projective A-
modules, and f : P, — Py is a homomorphism in mod A. (The notation
proj A is meant to suggest that we are dealing with homomorphisms between
projective modules.) We define a morphism (Py, Py, f)—(P;, P, f') to be
a pair (u1,up) of homomorphisms in mod A such that u; : P, — P{ and
ug : Py — Pj satisfy f'u; = uof, that is, the following square is commuta-

tive Py f j 8

o
[ £

The composition of the morphisms (uy,ug) : (P, Po, f) —— (P, P}, f)

and (u},u)) : (P}, P}, ') — (P/', P}/, ") in the category proj A is de-

fined by the for% (uh,ug)(u1, ug) = (ujur, ufug).

Let now F : projA —— mod A denote the composition of the cokernel
functor ﬁ A — mod A, given by (P1, Py, f) — Coker f, with the resid-
ual class functor mod A — mod A. Let (u1,uo) : (P1, Po, f) — (P, P}, )
be a morphism in proj A. We claim that F(u1,u0) = 0 if and only if there
exists w : Py — P{ such that f'wf = ugf. The situation can be visualised

in the following diagram

p L. B

J,ul w JUO
p B
T T 0
Indeed, assume that such a homomorphism w exists and consider the com-
mutative diagram

p L. B L M — 0

J/U1 w luo v Jru

p o L w — 0
with exact rows, where M and M’ denote the cokernels of f and f’, respec-
tively, and w is induced from u; and ug by passing to the cokernels. Because
(uo — f'w)f = 0, there exists v : M — P} such that up — f'w = vg. But
then g'vg = g'up = ug gives g'v = u (because g is an epimorphism). Hence
u € P(M,M'") and F(u1,up) = 0. Conversely, assume that F'(u1,uo) = 0.
This means that the homomorphism u induced from w; and ug by passing
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to the respective cokernels of f and f’ factors through a projective module.
Because ¢’ is an epimorphism, this implies the existence of v : M — P}
such that v = g’v. But then ¢'(ug —vg) = g'up — g'vg = g'ug —ug = 0 and
there exists w : Py — Pj such that f'w = ug — vg. Hence f'wf = upf and
we have proved our claim.

T_his implies at once that the class pr—oj1 A of those ﬂ(})rphisms (u1,up)
in proj A such that F(ui,up) = 0 forms an ideal in projA. To see this,
assume that (uy,uo) : (Py, Py, f) — (P}, P}, f') is a morphism in proj;A
and let (vi,v0) : (P, P, f) — (P{, B{, f"") be any morphism in proj A. Tt
follows from the preceding claim that there exists w : Py — P] such that
f'wf = ugf. But then vyw : Py — P/ satisfies f”(vﬂf = (f"v)wf =
(vofYwf = (vouo)f so that (viug,voup) belongs to proj; A. Similarly, if
(u1,uq) is as earlier and (wy,wp) : (@1, QM — (P1, Py, f) is any morphism
in pToj A, then (ujwi,uowg) belongs to proj; A.

The foregoing considerations imply that the category mod A is equiva-
lent to the quotient of ﬁ A modulo ﬁl A. Indeed, if M is an object in
mod A, then we can write M = F(P,, Py, f), where P, 15 Py — M — 0
is a minimal projective presentation of M and, given a morphism u :
M — M’ in mod A, where M = F(Py, Py, f) and M’ = Fﬂ,Pé,f’),
there exists a morphism (u1,uo) : (P1, Fo, f) — (P, Pj, f') in proj A mak-
ing the following diagram commutative

p L. B — M — 0

ek

L P — M — 0

(where the rows are minimal projective presentations), that is, u = F'(u1, uo).
The morphism wu equals zero in mod A if and only if F(uq,u¢) = 0, that
is, if and only if (u1,uo) belongs to pr—oj1 A. This shows that we have an
“exact” sequence

0—>pr—ole—>pr_oin>modA—>O.

We are now in a position to construct a duality mod A — mod A°P
induced by the correspondence M — Tr M.

The duality (=)' : proj A —L, proj A°" induces obviously a dual-
ity proj A —— proj A°P given by the formula (P, Py, f) — (PP Y.
We also denote this duality by (—)!. Now we claim that the restriction
of (=)t to proj; A induces a duality proj, A—proj, A°?. Indeed, let
(ur,uo) : (P1,Po, f) — (P, P}, [') belong to proj, A; we must show that
(uf,ub) : (P, P! f'Y) — (PL PL f) belongs to proj; A°°. But the hy-
pothesis implies the existence of a homomorphism w : Py — P; such that
f'wf =uof. Hence flw'f'* = flul = u! ", and the conclusion follows.
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We thus have a diagram with “exact rows” and commutative left square

0—>ﬁ1A—>ﬁA—>modA—>0

|
l(—)t l(—)t ‘l
0 — ﬁlfl(’p — ﬁAOp — mod A®* — 0

We define Tr : mod A ——— mod A°P to be the unique functor that makes
the right square commutative, namely, if M = F(Py, Po, f), we set Tr M =
F(PL, P fY) and if w : M — M’ is a morphism in mod A, where M =
F(Py, Py, f) and M' = F(P{, Py, f'), there exists a commutative diagram

p Lo — M — 0

J{’U/l l’U/D J{’U/
Lo — M — 0
with exact rows. Applying the functor (—)! yields a commutative diagram
t

p Lopt — ™M — 0

o Tu
ug uy |
1t ‘
Pyt AN Pt — TcM — 0
with exact rows and a commutative left square. Let Tru : Tr M’ — Tr M

be the unique homomorphism that makes the right square commutative. It
follows easily from these considerations that

Tr : mod A ——— mod A°P
is a well-defined functor and, in fact, a duality. O

The duality Tr defined in (2.2) is called the transposition. It trans-
forms right A-modules into left A-modules and conversely. Thus, if we
wish to define an endofunctor of mod A, we need to compose it with an-
other duality between right and left A-modules, namely the standard duality
D = Homg(—, K).

2.3. Definition. The Auslander—Reiten translations are defined
to be the compositions of D with Tr, namely, we set

r=DTr and ~l=TrD.

In view of the importance of the translations in the sequel, we present in
the following proposition a construction method for the Auslander—Reiten
translate of a module.
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We first recall that the Nakayama functor (see (II1.2.8)),
v = D(-)" = DHoma(—, A) : mod A ————— mod 4,

14
induces two equivalences of categories proj A ————— inj A, where
-1

v
v~! = Homa(DA, —) is quasi-inverse to v.

2.4. Proposition. (a) Let P, 2% Py 2% M — 0 be a minimal pro-
jective presentation of an A-module M. Then there exists an exact sequence
OQTMﬁuplﬂupgﬂyM—»().

(b) Let 0 — N 29, By % Ey be a minimal injective presentation of

an A-module N. Then there exists an exact sequence

-1, -1
— 17 — 17 — —
0— v IN 2% vl S B —— 77 IN — 0.

Proof. (a) Applying successively the functors (—)! and D to the given
minimal projective presentation of M, we obtain an exact sequence

0—DITM —vP 2B v 22 v M — 0

and (a) follows.
(b) Applying successively the functors D and (—)! to the given minimal
injective presentation of IV, we obtain an exact sequence
0 — (DN)t 220 (pEyyt P (DR Te DN — 0.
For any A-module X we have a composed functorial isomorphism
(DX)" = Hom gop (DX, A) = Homa (DA, DDX) = Homa (DA, X) 2 v ' X.

This isomorphism induces a commutative diagram

0——(DN) P9 (pgyt LU (pE)Y —— TrDN——0
JV_ v l_ 1/711'1 JV_
0— v N —2 vl 2% vlE

with exact rows. Hence (b) follows. O

2.5. Example. Let A be given by the Kronecker quiver 1o:§:oz

and M 4 be the representation K §1: K, where 1 denotes, as usual,
the identity homomorphism and 0 the zero homomorphism. Then M is
indecomposable; indeed, an endomorphism f of M is given by a pair (a1, as)
of scalars such that a; -1 =1-a9 and a1 -0 = 0- as. These two conditions
yield f =a- 157, where a = a1 = ag € K. Thus End M4 = K and so M is
indecomposable. A minimal projective presentation of M4 is given by

0— P(1) 2 P(2) 2 My — 0,
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where P(1) = S(1) = (K &————=0) and P(2) = (K? # K)

are the indecomposable projective A-modules, p; is an isomorphislm of P(1)
onto the direct summand of rad P(2) equal to [] K &=———= 0, and p,
is its cokernel homomorphism. Thus, in particular, M4 is not projective.
By (2.4)(a), applying the Nakayama functor v to this exact sequence, we
get a short exact sequence

0 M I(1) 225 1(2) 0,
10
where I(1) = (K‘#Kg) and I(2) = 9(2) = (0=———=K) are

the indecomposable injective A-modules. An obvious computation shows
that the homomorphism v p; induces an isomorphism of the quotient module
of I(1) defined by 0&=——=[{] K) onto I(2). Then TM = Kervp; is

given by Kéé:K that is, 7M = M.

2.6. Example. Let A be given by the quiver

1 4
o o
N A Ne
o 06
i3 N
5 5

bound by af8 = «vé, dp = 0, and S\ = 0. Take the simple injective module

'\/'\

S(6) :
) /'\ /

The projective cover of S(6) is P(6) and the kernel L of the canonical
epimorphism P(6) — S(6) is the indecomposable module

0
'\1/\

/1\/
0

Because the top of L is isomorphic to S(4)®S5(5), then the projective cover of
L is isomorphic to P(4)® P(5) and therefore the module S(6) has a minimal
projective presentation of the form P(4) @ P(5) 2% P(6) 2% S(6) — 0
(see (1.5.8)). By (2.4)(a), applying the functor v to the exact sequence, we
get an exact sequence 0 — 75(6) — I(4) @ I(5) 225 I(6) — 0, because
vp1 # 0 and I(6) = S(6) is simple. Hence we get
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0 K
NN
T75(6) : 0 K
SN AN
0 K
and obviously 75(6) % S(6).

This proposition yields at once an easy and useful criterion for a module
to have projective, or injective, dimension at most one.

2.7. Lemma. Let M be a module in mod A.
(a) pdyM <1 if and only if Homa (DA, 7M) = 0.
(b) idaM < 1 if and only if Homy (771 M, A) = 0.

Proof. We only prove (a); the proof of (b) is similar. Applying the left
exact functor v~ = Homy4 (DA, —) to the exact sequence

0—7TM — vP ze, VPoﬂuM—m
given in (2.4) we obtain a commutative diagram

0 — viltM — vivPrh — v ivp

L

0 — Kerpy — P 2, Py 2M — 0
with exact rows. Thus Homa (DA, 7M) = v~ 17 M = Ker p; vanishes if and
only if pd M < 1. 0

The previous results yield formulas for the dimension vector of the
Auslander—Reiten translate in terms of the Coxeter transformation ® 4 :
Z™ —— 7" of any algebra A of finite global dimension (see (II1.3.14)).

2.8. Lemma. (a) Let M be an indecomposable nonprojective module
inmod A and P, 25 Py 2% M — 0 be a minimal projective presentation
of M. Then

dim7 M = ®4(dim M) — ®4(dimKerp;) + dimv M.

(b) Let N be an indecomposable noninjective module in mod A and
let 0 — N 2% Ey 2% E; be a minimal injective presentation of N.
Then

dim7 ' N = ®,'(dim N) — ® ;" (dim Cokeri;) + dimv " N.

Proof. We only prove (a); the proof of (b) is similar. The exact se-
quence 0 — Kerp; — P; 2P M —0 yields

dim M — dimKerp; = —dim P; + dim F,.
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Applying the Coxeter transformation ® 4 and using (I111.3.16)(a), we get
®4(dim M) — ®4(dimKerp;) = dimv P, —dimv Py.

Then the injective presentation) —7M — v P, —vFP) —vM — 0
of 7 M yields dim7 M = dimv P; —dimv Py+dimv M = & 4(dim M) —
P 4(dimKerpr) + dimwv M. O

2.9. Corollary. (a) If M is an indecomposable module in mod A such
that pd,M <1 and Homa (M, A) =0, then dim7T M = ® 4(dim M).

(b) If N is an indecomposable module in mod A such that idaN < 1
and Hom (DA, N) = 0, then dim7~' N = &' (dim N).

Proof. We only prove (a); the proof of (b) is similar. By our assump-
tion, M is not projective and v M = DHoma (M, A) = 0. Then (a) is a
consequence of (2.8), because pd 4M < 1 implies Ker p; = 0, in the nota-
tion of (2.8). O

The following proposition records some of the most elementary proper-
ties of Auslander—Reiten translations.

2.10. Proposition. Let M and N be indecomposable modules in
mod A.

(a) The module TM ‘s zero if and only if M is projective.

(a’) The module T~ N is zero if and only if N is injective.

(b) If M is a nonprojective module, then TM is indecomposable non-
injective and T~ T M = M.

(b') If N is a noninjective module, then 7=*N is indecomposable non-
projective and 77N = N.

(¢) If M and N are nonprojective, then M = N if and only if there is
an isomorphism TM = TN.

(") If M and N are noninjective, then M = N if and only if there is
an isomorphism 1M = 771N,

Proof. Because the translations 7 and 7—! are compositions of the
transposition Tr and the duality D, the proposition follows directly from
(2.1), (1.5.13), and the definitions. A detailed proof is left as an exercise

(see (IV.7.25)). O
2.11. Corollary. The Auslander-Reiten translations T and 7~ induce
mutually inverse equivalences mod A <i:1> mod A.
Proof. This follows directly from (2.27) and (2.10). O

For an A-module X, we consider the functorial homomorphism

<pX i (=) ®a X' — Homa (X, —)
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defined on a module Y, by

¥ 1 Y ®4 X! — Homa(X,Y)

yof = (zeyf(a),
wherex € X,y € Y and f € X, It is easily seen that if X is projective, then
©* is a functorial isomorphism and that if Y is projective, then @5 is an
isomorphism. We prove that the cokernel of 55 coincides with Hom 4 (X,Y").

2.12. Lemma. For any A-modules X and Y, there is an exact sequence

X
Y ®4 Xt =2 Homy(X,Y) —— Hom ,(X,Y) — 0
with all homomorphisms functorial in both variables.

Proof. For an A-module Y, let f: P — Y be an epimorphism with P
projective. We claim that for any A-module X, there is an exact sequence

Hom 4 (X, f)
5

Homa (X, P) Homy (X,Y) —— Homy(X,Y) — 0.

Indeed, it is sufficient to show that Im Hom4 (X, f) = P(X,Y). Because,
clearly, ImHom4 (X, f) € P(X,Y), we take g € P(X,Y). By definition,
there exist a projective module P/ and homomorphisms g» : X — P/,
g1 : P’ — Y such that g = g1g2. Because f : P — Y is an epimorphism
and P’ is projective, there exists h : P’ — P such that gy = fh. Then
g=g192 = fhga = Homa (X, f)(hg2) € ImnHom4 (X, f) and we have proved
our claim.

Because p3 : P ®4 X' — Homa(X, P) is an isomorphism and ¢~ is
functorial, we have a commutative diagram

P@a Xt fex Y ®4 Xt —s 0
- !
Hom (X, f)
Homy(X,P) ———> Homyu(X,Y) —— Homyu(X,Y) — 0
with exact rows. Consequently
meg =3 (f @ XOHP o X
— Homa(X, f)¢R(P ® X')

= ImHomu (X, f) =P(X,Y)
and therefore Coker o3 =2 Hom 4 (X,Y). a

2.13. Theorem (the Auslander—Reiten formulas). Let A be a
K-algebra and M, N be two A-modules in mod A. Then there exist isomor-
phisms
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Exty (M, N) = DHom, (7 'N,M) = DHomu(N,7M)
that are functorial in both variables.

Proof. We only prove the first isomorphism; the proof of the second
is similar. Clearly, it suffices to prove our claim for modules N having no
injective direct summand. In view of (2.10), we can suppose that N = 7L,
where L = 77IN. Let P, 2% Py 2% L — 0 be a minimal projective
presentation of L. Applying the functor v = D(—)!, we obtain the exact

sequence (see (2.4)(a))

0 — 1L — DP! 2% ppt P prt . g,
where both DP} and DP} are injective. The functor Hom4 (M, —) yields
the complex

0—Hom 4 (M, 7L)—Hom 4 (M, DP})X%Hom (M, DPY) 2% Hom o (M, DLY),

where, for brevity, we write p; for Hom 4 (M, Dp}) and p, for Hom 4 (M, Dpf).
Thus we have

Exth (M, N) = Exty (M, 7L) = Ker p,/Im p,.

On the other hand, applying the right exact functor DHom4(—, M) to the
minimal projective presentation of L yields an exact sequence

DHom (Py, M) 2% DHom A(Py, M) 2% DHom(L, M) — 0,

where, for brevity, we write p; for DHom 4 (p1, M) and pg for DHom 4 (pg, M).
Now associated to an A-module X there exists a functorial morphism ¢~ :
(—)®4 Xt — Hom4 (X, —) introduced earlier. The composition of the dual
homomorphism Dy* : DHomy (X, —) — D((—) ®4 X?) with the adjunc-
tion isomorphism 7% : D((—=)®a X*) — Hom(—, DX?) yields a functorial
morphism

w® =X Dy* : DHom 4 (X, —) — Hom4(—, DX?),
which is an isomorphism whenever X is projective. We thus have a com-
mutative diagram with exact lower row
Hom,(M,DP}) 2% Homu(M,DP!) 2% Homu(M,DL)

Pl Po | o L
wMTf wyrr | = wWnm

DHoma(P;,M) 2% DHoma(Py,M) 2 DHomu(L,M) — 0

The homomorphism pg (wﬁ’)’l of A-modules induces a homomorphism ) :

Kerp, — Ker w]@. Because pg is an epimorphism and wﬁ}’ an isomorphism,
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1) must be an epimorphism. Because Ker pg = Im p; and the maps wﬁo , wﬁ}

are isomorphisms, we deduce that Ker i = Im p;. Consequently, we have

Kerpy/Imp, = Kerpy/Kery = Kerwk,
= KerDpk, = DCokerpk,.

Thus there exist an isomorphism Ext’, (M, N) = DCoker %, and, by (2.12),
Coker ¥, = Hom 4 (L, M) = Hom 4 (77*N, M). The proof is complete. [

2.14. Corollary. Let A be a K-algebra and M, N be two modules in
mod A.
(a) If pdM <1 and N is arbitrary, then there exists a K-linear iso-
morphism
Exth (M, N) = DHom 4 (N, 7M).
(b) IfidN < 1 and M is arbitrary, then there exists a K-linear iso-

morphism
Ext) (M, N) = DHom4(r—'N, M).

Proof. The Auslander-Reiten formulas (2.13) give an isomorphism
Ext! (M, N) = DHom4(N,7M). Now pd M < 1 gives Homa (DA, 7M) =
0 (by (2.7)). Hence Z(N,7M) = 0, because every injective module in
mod A is a direct summand of (DA)®, for some s > 1. Consequently,
Homy (N, 7M) = Homa (N, 7M) and (a) follows. The proof of (b) is similar
to that of (a). O

2.15. Corollary. Let A be a K-algebra and M, N be two modules in
mod A.
(a) If pd M <1 andid N <1, then there exists a K -linear isomorphism

Hom 4 (N, 7M) = Homa ("' N, M).

(b) If pdM < 1,id7N <1 and N is indecomposable nonprojective,
then there is a K-linear isomorphism

Homa (7N, 7M) =2 Hom4 (N, M).

(c) If pd7='M < 1,idN <1 and M is indecomposable noninjective,
then there is a K -linear isomorphism

Hom4 (77 'N,77' M) = Hom (N, M).

Proof. The statement (a) is an immediate consequence of (2.14). Fi-
nally, (b) and (c) follow from (a) and (2.10). O
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IV.3. The existence of almost split
sequences

We are now able, using the results of Section 2, to prove the main exis-
tence theorem for almost split sequences, due to Auslander and Reiten. In
this section, as in the previous one, we let A denote a fixed finite dimen-
sional K-algebra, and we denote by rad 4 the radical of the category mod A.

3.1. Theorem. (a) For any indecomposable nonprojective A-module
M4, there exists an almost split sequence 0 — TM — E — M — 01in
mod A.

(b) For any indecomposable noninjective A-module N 4, there exists an
almost split sequence 0 — N — F — 77'N — 0 in mod A.

Proof. We only prove (a); the proof of (b) is similar. Let M be an in-
decomposable nonprojective A-module. By the Auslander—Reiten formulas
(2.13), there exists an isomorphism

DHom 4 (L, M) = Ext} (M, L)

for any indecomposable module L, which is functorial in both variables. Let
S(L,M)=Homa (L, M)/rads(L, M). Because P(L, M) C rada(L, M), we
have a canonical K-linear epimorphism py p : Hom (L, M) — S(L, M)
and hence a canonical monomorphism Dpy, pr : DS(L, M) — DHom 4 (L, M).

Now, M being indecomposable, End M and hence End M are local.
Because we have an epimorphism

pymv : End M — S(M, M) = End M /rad End M,

S(M, M) is isomorphic to the simple top of End M considered as a left or
right End M-module, and its image under Dpys,ar is the simple socle of the
End M-module DHom 4 (M, M). Let £’ be a nonzero element in DS(M, M)
and £ be its image in Ext!y(M,7M) = DHom 4(M, M). We claim that if &
is represented by the short exact sequence

0—™M LB 2 Mo,

then this sequence is almost split.

First, this sequence is not split, and by (2.10), the module 7M is inde-
composable. It suffices thus, by (1.13), to show that g is right almost split.
Because £ is a nonzero element in Extl (M, 7M), g is not a retraction. Let
v:V — M be a homomorphism that is not a retraction. We may assume
that V is indecomposable. Then v is not an isomorphism. It follows from
the functoriality that we have a commutative diagram
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DS(M, M) 2. DHom (M, M) —=— Extl(M,7M)
lDS(M,v) JVDHomA(M,v) lExt}A(vn;M)
DS(M,V) 2PV DHom,(M,V) —=— Exty(V,7M)

where the vertical maps are induced by v. By hypothesis, v € rada(V, M)
and therefore DS(M,v)(¢') = 0. Consequently, the image Ext! (v, 7M)(¢)
of ¢ in Ext!y(V,7M) is zero, that is, there exists a commutative diagram

Exty (v, 7M)(€) : 0o — o Lo v o
J,lTM J(w J(v
¢ 0 — ™ Jo B 4 oM — 0

with exact rows, where the upper sequence splits. Let thus ¢” : V — FE’
be such that ¢’¢” = 1y. Then v/ = wg” satisfies gv’ = gwg” = vg'g" = v.
This completes the proof that g is right almost split and hence the proof of

the theorem. g
The next corollary provides examples of almost split sequences.

3.2. Corollary. (a) If0 - 7M — E — M — 0 is an almost split
sequence in mod A then it represents a nonzero element & of the simple socle
of the End M-End M -bimodule Ext (M, 7M) = DHom 4(M, M).

(b) Let M be an indecomposable nonprojective module in mod A. Then
End M is a skew field if and only if End 7M is a skew field, and in this
case, any nonsplit exact sequence 0 — TM — E — M — 0 is almost split
and End M =2 K.

(¢) Let N be an indecomposable noninjective module in mod A. Then
End N is a skew field if and only if End 77N is a skew field, and in this
case, any nonsplit exact sequence 0 — N — F — 771N — 0 is almost split
and End N 2 K.

Proof. The statement (a) follows from the proof of (3.1). We only prove
(b); the proof of (c) is similar. The first statement of (a) follows from (2.11).
Assume that End M is a skew field. Because dimg End M is finite and the
field K is algebraically closed, End M = K and Ext} (M, 7M) is a one-
dimensional K-vector space (because it has simple socle, by (a)). Hence, by
the proof of (3.1), any nonsplit extension represents an element in the socle
of Ext!, (M, 7M) and thus is almost split. O

3.3. Example. Let A be the K-algebra given by the Kronecker quiver
lof————— 02 and M be the representation K ‘(1)7 K. As we

B
have seen before, End M = K and 7M = M. It follows from (3.2) that any
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nonsplit extension 0 — M — E — M — 0 is an almost split sequence. Let
FE Dbe the representation

The subrepresentation E’ of E given by [(1)] K ;‘: m K is clearly

~

isomorphic to M, and moreover E/E’ = M. We thus have a short exact
sequence as required. To prove that it is almost split, we show it is not split,
and it suffices to show that F is indecomposable. To do this, we observe

that any endomorphism f of E is given by a pair of matrices (¢ ), (Z,/ Zl,)

such that

@EDED=GD(e ) amd @)ED=0H(4Y).
These two conditions yield a = o’ =d =d, b=V =0, and ¢ = (.
Thus f = a-1p + g, where a € K and g € End E is nilpotent. Let
now I = {f € EndE | a = 0}. Then I is a nilpotent ideal of End E.

Because moreover (End E)/I = K, I is a maximal ideal of End E. Therefore
I =radEnd F and End F is local. Thus, F is indecomposable.

3.4. Example. Let A be the K-algebra given by the quiver

1 4
@] @]
’\A ﬁ/ ’\a
(@] 06
RN
5 g

bound by af = ~d, u = 0, A = 0. It was shown in Example 2.6 that
there is an exact sequence 0 — 75(6) — I(4) & I(5) 225 1(6) — 0. It
is clear that End 7.5(6) = K, hence End75(6) = K. In view of the unique
decomposition theorem (I1.4.10), this sequence does not split. It then follows

from (3.2)(b) that the sequence is almost split.

It also follows from (3.1) that there exists a right (or left) minimal al-
most split morphism ending (or starting, respectively) at any indecompos-
able nonprojective (or noninjective, respectively) module. We now want
to show the existence of such a homomorphism ending (or starting) at an
indecomposable projective (or injective, respectively) module.

3.5. Proposition. (a) Let P be an indecomposable projective module
inmodA. An A-module homomorphism g : M — P is right minimal almost
split if and only if g is a monomorphism with image equal to rad P.

(b) Let I be an indecomposable injective module. An A-module homo-
morphism f : I — M is left minimal almost split if and only if f is an
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epimorphism with kernel equal to socI.

Proof. We only prove (a); the proof of (b) is similar. It suffices, by
(1.2), to show that the inclusion homomorphism g : rad P — P is right
minimal almost split. Because ¢ is a monomorphism, ¢ is right minimal.
Clearly, g is not a retraction. Let thus v : V' — P be a homomorphism that
is not a retraction. Because P is projective, by (1.4.5), the module rad P
is the unique maximal submodule of P. Because v is not an epimorphism,
v(V) Crad P, that is, v factors through g. O

3.6. Corollary. Let X be an indecomposable module in mod A.

(a) There exists a right minimal almost split morphism g : M — X.
Moreover M = 0 if and only if X is simple projective.

(b) There exists a left minimal almost split morphism f : X — M.
Moreover, M = 0 if and only if X is simple injective.

Proof. The proof follows directly from (3.1) and (3.5). O

3.7. Example. Let A be the K-algebra given by the quiver 10— o2.
Consider the short exact sequence 0 — S(1) <= P(2) <% §(2) — 0 in
mod A, where f is the embedding of S(1) as the radical of P(2) and g is
the canonical homomorphism of P(2) onto its top. Because P(2) = I(1), it
follows from (3.5) that f is right minimal almost split and ¢ is left minimal
almost split. On the other hand, it will be shown in (3.11) that, because
the middle term is projective-injective, the sequence is almost split (thus, f
is also left minimal almost split and ¢ is right minimal almost split).

3.8. Proposition. (a) Let M be an indecomposable nonprojective mod-
ule in mod A. There exists an irreducible morphism f : X — M if and only
if there exists an irreducible morphism f': 7M — X.

(b) Let N be an indecomposable noninjective module in mod A. There
exists an irreducible morphism g : N — Y if and only if there exists an
irreducible morphism ¢’ : Y — 77IN.

Proof. We only prove (a); the proof of (b) is similar. Assume that
f: X — M is irreducible. By (1.10), there exists h : ¥ — M such that
[f ] : X &Y — M is right minimal almost split. But then [f h] is
an epimorphism, because M is not projective. Therefore, by (1.8), L =
Ker[f h] is indecomposable, and thus, by (1.13), the short exact sequence

[ﬂ [f h]
0 —L—XapY —M—0
is almost split. Consequently, there exists an isomorphism g : 7TM — L
and the homomorphism f’g : TM — X is irreducible. The proof of the
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converse is similar. O

3.9. Corollary. (a) Let S be a simple projective noninjective module
inmodA. If f: S — M is irreducible, then M is projective.

(b) Let S be a simple injective nonprojective module in mod A. If g :
M — S is irreducible, then M is injective.

Proof. We only prove (a); the proof of (b) is similar. We may clearly
assume M to be indecomposable. If M is not projective, there exists, by
(3.8), an irreducible morphism 7M — S, and this contradicts (3.6). O

This corollary allows us to construct examples of almost split sequences.
Indeed, let S be simple projective noninjective and f : S — P be left
minimal almost split. By (3.9), P is projective and by (3.5), for each inde-
composable summand P’ of P, the corresponding component f’: S — P’
of f is a monomorphism with image a summand of rad P’. It follows that,
if P is the direct sum of all such indecomposable projectives P’, then the
sequence 0 — S — P — Coker f — 0 is almost split.

3.10. Example. Assume that A is a K-algebra given by the quiver

1 2 3 4 . . L S
) ) o o. Then S(3) is a simple projective noninjective

summand of rad P(2) and is equal to rad P(4). Thus we have an almost
split sequence

0 — S(3) — P(2) @ P(4) — (P(2) ® P(4))/5(3) — 0.

The preceding remark is essentially used in the next section. We con-
clude this section with a further example of an almost split sequence.

3.11. Proposition. Let P be a nonsimple indecomposable projective-
injective module, S = soc P, and R =rad R. Then the sequence

q iy
0— R~ Risep = prs o

18 almost split, where i, 5 are the inclusions and p, q the projections.

Proof. Because R has simple socle S, it is indecomposable. Hence i :
R — P is, up to isomorphism, the unique nontrivial irreducible morphism
ending in P (by (3.5)). Dually, the module P/S is indecomposable and p :
P — P/S is, up to isomorphism, the unique nontrivial irreducible morphism
starting with P. It follows from (3.8) that R = 7(P/S). Because the
given exact sequence is not split, it remains to show (by (1.13)) that the
monomorphism [J] : R — R/S@® P is left almost split. Assume that v : R —
U is not a section. If u is a monomorphism, then, because P is injective,
u factors through P and we are done. If not, there exists a factorisation
u = vw'u”, with v’ : R — U’ a proper epimorphism and v’ : U — U a
monomorphism. Because Keru # 0, the simple socle S of R is contained



IV.4. THE AUSLANDER-REITEN QUIVER 125

in Keru = Keru”. Thus the epimorphism u” factors through R/S, that is,
there exists u; : R/S — U’ such that v” = u;q. Hence u = [u/uq, 0] satisfies

u[f] = [w'uy, O] [f] = v'uiqg = v'u" = u. O

3.12. Example. Let A be the K-algebra given by the quiver

bound by the commutativity relations: o8 = vd and v0 = Apv. The A-
module P(6) = I(1) is projective-injective and the almost split sequence
described in (3.11) with P = P(6) is of the form

P(5)
S(1)

_P(6)

0 — rad P(6) — S(2)® S(3) @ S(1)

@ P(6)

— 0.

IV.4. The Auslander—Reiten quiver of an
algebra

Let A be a finite dimensional K-algebra. We may wish to record the
information we have on the category mod A in the form of a quiver. Then
it seems clear that points should represent modules and arrows should rep-
resent homomorphisms. Because any module in mod A decomposes as the
direct sum of indecomposable modules uniquely determined up to isomor-
phism, we should let the points represent isomorphism classes of indecom-
posable modules. Similarly, the homomorphisms that admit no nontrivial
factorisation are the irreducible morphisms; thus our arrows should corre-
spond to the irreducible morphisms. But to be more precise, we need some
additional considerations on irreducible morphisms.

Let M and N be indecomposable modules in mod A. We have seen in
(1.6) that an A-homomorphism f : M — N is an irreducible morphism if
and only if f € rad4(M, N) \ rad’ (M, N). Thus the quotient

Irr(M, N) = rad 4 (M, N)/rad’ (M, N) (4.1)

of the K-vector spaces rad 4 (M, N) and rad? (M, N) measures the number of
irreducible morphisms from M to N. It is called the space of irreducible
morphisms. It is easily seen (see (1.6)) that Irr(M, N) is in fact an End N—
End M-bimodule, annihilated on the left by rad4 (N, N) = rad End N and
on the right by rad4 (M, M) = rad End M.
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We now give the relation between the space of irreducible morphisms
and minimal almost split morphisms.

t

4.2. Proposition. Let M = @ M" be a module in mod A, with the
M; indecomposable and pairwise nlonlisomorphic.

(a) Let f: L — M be a homomorphism in mod A with L indecompos-

f1 fix
able, f = | . |, where f; = L —— M. Then f is left minimal
fe fin,
almost split if and only if the f;; belong to rada(L, M;) and their residual
classes f;1,..., fin, modulo rady (L, M;) form a K-basis of Irr(L, M;) for
all i, and if there is an indecomposable module M’ in mod A such that
Irr(L, M) # 0, then M’ = M; for some i.

(b) Let g: M — N be a homomorphism in mod A with N indecompos-
able, g=1[g1 ... gi], whereg;, =[gi1 ... Gin;|: M —— N. Then
g is right minimal almost split if and only if the g;; belong to rada(M;, N)
and their residual classes g;q,. .., g;,, modulo rad? (M;, N) form a K -basis
of Irr(M;, N) for all i, and, if there is an indecomposable module M’ in
mod A such that Irr(M’, N) # 0, then M' =2 M; for some i.

Proof. We only prove (a); the proof of (b) is similar. Assume thus that
f is left minimal almost split. Note that, by the statement (a) of (1.10), if
u : U — V is irreducible and v : V' — W is a retraction, then vu : U — W
is irreducible. Because, again by (1.10), f : L — M is irreducible, this
remark implies that each f;; : L — M; is irreducible and thus belongs to
rada (L, M;) (by (1.6)).

On the other hand, (1.10) also shows that if there is an indecomposable
module M’ such that Irr(L, M’) # 0, so that there is an irreducible mor-
phism L — M’, then M’ = M; for some i. We now want to show that for
each 4, {f;1,... fi,,} is a K-basis of Irr(L, M;).

Let h € Trr(L, M;) be the residual class of h € rada(L, M;). Because h
is not a section, it factors through f, that is, there exists a homomorphism

i

w=[ur,...,u) : @ M* — M;, with up = [up1,..., Ugn,] : M;* — M;
k=1
such that
t ng
h=uf= 3> ukjfrj
E=1=1

Any wu;; is an endomorphism of M;. Because End M; is local and the base
field K is algebraically closed, we have that End M;/rad End M; = K, so
that u; = Aj-1ag, —|—u§j with \; € K and u’ij € rada(M;, M;) = rad End M;.
On the other hand, if k¥ # 4, then wug; € rada(My, M;). Because fi; €
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rada(L, My), we have ug; f; € radi(L, M;) for k # i. Thus
h= Zk:zukjfkj =2 N [
J J

This shows that {f;,..., f;,, } generates Irr(L, M;) as a K-vector space.
To prove the linear independence of this set, assume that j Ajfi; =01in
Irr(L, M;), where A; € K. Thus the homomorphism v = >, A; fi; belongs
to rad% (L, M;). Assume that \; # 0 for some j; then the homomorphism
I=[M,...; A\ : M™ — M, is a retraction, and, by the first remark, v =
If; is irreducible, a contradiction, because v € rad% (L, M;). Consequently,
Aj = 0. We have completed the proof that {f;,..., f;, } is a K-basis of
Irr(L, M;) and thus of the necessity.

For the sufficiency, assume that for each j, {f;1,..., f;,,} is a basis
of the K-vector space Irr(L, M;) and consider a left minimal almost split
morphism f' : L — U (see (3.6)). It follows that f : L — M is not a
section and applying the necessity part to U yields that U = M. Indeed,
let U = @2:1 U™ be a decomposition of U, where Uy, ..., U, are pairwise
nonisomorphic indecomposable modules. For each k, Irr(L, Uy) # 0 yields
U, = M; for some j and my = dimg Irr(L,Uy) = dimg Irr(L, M;) = n;.
Analogously, for each j, Irr(L, M;) # 0 yields M; = Uy, for some k. Hence
we deduce that U = @j_, U™ = @_, M;" = M.

Without loss of generality we may assume that U = M and f': L — M
is left minimal almost split. Applying the necessity part to f’ yields that
fr=1fs):L— @;:1 M;-Zj and, for each j, the set {f;-l,...7f;-nj} is a
basis of the K-vector space Irr(L,M;). Because f is not a section, there
exists h : M — M such that f = hf’. Hence we conclude that h is an
isomorphism. Consequently, f is a left minimal almost split morphism. [

4.3. Remark. Let P(a) = e,A be an indecomposable projective
A-module and I(a) = D(Ae,) be an indecomposable injective A-module.

(a) The embedding rad P(a) < P(a) is an irreducible morphism and
is right minimal almost split. If Xi,...X; are indecomposable and pair-
wise nonisomorphic A-modules such that rad P(a) = X" & --- & X},
then n; = dimg Irr(X;, P(a)) and every indecomposable A-module X with
Irr(X, P(a)) # 0 is isomorphic to X; for some j.

(b) The natural epimorphism I(a) — I(a)/socI(a) is an irreducible
morphism and is left minimal almost split. If Y7,...Y; are indecomposable
and pairwise nonisomorphic such that I(a)/socI(a) = Y™ & --- & Y™,
then m; = dimg Irr(I(a),Y;) and every indecomposable A-module ¥ with
Irr(I(a),Y) # 0 is isomorphic to Y; for some j.

The first statement of (a) follows from (3.5)(a). The remaining part of
(a) is a consequence of (4.2) and the unique decomposition theorem (1.4.10).
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The first statement of (b) follows from (3.5)(b). The remaining part of (b)
follows easily by applying the duality D : mod A°? — mod A.

We collect some of the previous results in the following useful corollary.

t
4.4. Corollary. Let 0 — L 2, @ M" 2L+ N — 0 be a short ex-

i=1
act sequence in mod A with L, N indecomposable and the M; indecompos-
fi

able and pairwise nonisomorphic. Write f = | 1| and g = [g1...4],

ft
fix
where f; = : L —— M and g = [gi1 - - - Gin,] : M]"" —— N.
Fin,
The following conditions are equivalent:

(a) The given sequence is almost split.

(b) For each i, the homomorphisms f;; belong to rada(L,M;), their
residual classes f;; modulo rad® (L, M;) form a K-basis of Irr(L, M;), and
if there exists an indecomposable module M' with Trr(L, M') # 0, then M’ =
M; for some i.

(c) For each i, the homomorphisms g;; belong to rada(M;, N), their
residual classes g;; modulo rad% (M;, N) form a K -basis of Irr(M;, N), and
if there exists an indecomposable module M' with Irr(M', N) # 0, then
M' = M; for some 1.

Further, if these equivalent conditions hold, then for each 1,

dimg Irr(L, M;) = dimg Irr(M;, N).

Proof. The equivalence of these conditions follows from (4.2), and the
last statement from (b) and (c). O

4.5. Corollary. Let X and Y be indecomposable modules in mod A.

(a) If X 20 and 7Y # 0, then there exists a K-linear isomorphism
Irr(7X,7Y) & Irr(X,Y).

(b) If =X #0 and 77Y # 0, then there exists a K -linear isomorphism
Irr(r— X, 77Y) 2 Ir(X,Y).

Proof. We only prove (a); the proof of (b) is dual. Because 7X # 0 and
7Y # 0, X is not projective, Y is not projective, and there exist almost split
sequences ) — 7X — U — X — 0and0 — 7Y — V %Y — 0in
mod A. First, we prove that Irr(X,Y) # 0 implies Irr(7X, 7Y) = Irr (X, Y).
Assume that Irr(X,Y) # 0. Because v is a right minimal almost split
morphism, according to (4.2)(b), the module X is isomorphic to a direct
summand of V| and by (3.8) there is an irreducible morphism 7Y — X.
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Then, by (4.4), there is a K-linear isomorphism Irr(7Y, X) = Irr(X,Y).
Because w is a right minimal almost split morphism and Irr(7Y, X) #
0, then, according to (4.2)(b), the module 7Y is isomorphic to a direct
summand of U and, according to (4.4), there is a K-linear isomorphism
Irr(7Y, X) = Irr(7X,7Y). Consequently, we get a K-linear isomorphism
Irr(7X,7Y) 2 Irr(X,Y).

Using these arguments, we also prove that Irr(7X,7Y) = Irr(X,Y) if
Irr(7X,7Y) # 0. This finishes the proof. O

We are now able to define the quiver of the category mod A.

4.6. Definition. Let A be a basic and connected finite dimensional
K-algebra The quiver I'(mod A) of mod A is defined as follows:

(a) The points of I'(mod A) are the isomorphism classes [X] of inde-
composable modules X in mod A.

(b) Let [M], [N] be the points in I'(mod A) corresponding to the in-
decomposable modules M, N in mod A. The arrows [M] — [N] are in
bijective correspondence with the vectors of a basis of the K-vector space
Irr (M, N).

The quiver I'(mod A) of the module category mod A is called the Auslan-
der—Reiten quiver of A.

We may define in exactly the same way the quiver I'(C) of an arbitrary
additive subcategory C of mod A that is closed under direct sums and sum-
mands. We leave to the reader the verification that if C = proj A, the quiver
I'(proj A) is the opposite of the ordinary quiver of A. In the rest of this
section, we examine the combinatorial structure of the Auslander—Reiten
quiver I'(mod A) of A.

It follows from the definition that the points of I'(mod A) are the isomor-
phism classes of indecomposable A-modules, and that there exists an arrow
[L] — [M] if and only if Irr(L, M) # 0, that is, if and only if there exists an
irreducible morphism L — M. By (4.2), (3.1), and (3.5), the set [M]~ of
the immediate predecessors of [M] coincides with the set of those points [L]
such that L is either an indecomposable direct summand of rad M, if M is
projective, or an indecomposable direct summand of the middle term of the
almost split sequence ending with M, if M is not projective. Similarly, the
set [M]* of the immediate successors of M coincides with the set of those
points [N] such that N is either an indecomposable summand of M /soc M,
if M is injective, or an indecomposable direct summand of the middle term
of the almost split sequence starting with M, if M is not injective. In par-
ticular, for every M, the sets [M]*T and [M]~ are finite. This shows that
each point of I'(mod A) has only finitely many neighbours.

A quiver having this property, that is, such that each point has only
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finitely may neighbours, is called locally finite.

An obvious consequence is that each connected component of an Auslan-
der—Reiten quiver has at most countably many points. Indeed, let x be an
arbitrary fixed point of a locally finite quiver I". Denote by N7 the set of
neighbours of x, and for each i > 2 define N; to be the set of neighbours of
points from N;_;. Because I' is locally finite, each N; is finite. Because I
is connected, the set I'o = |J N; is a connected component consisting of at

i>1
most countably many points.

It is clear that I'(mod A) is finite (or, equivalently, has finitely many
points) if and only if A is representation—finite, that is, the number of the
isomorphism classes of indecomposable finite dimensional right A-modules
is finite (see (I1.4.11)). In fact, we show in the next section that if T'(mod A)
has a finite connected component I', then T'(mod A) = T and, consequently,
A is representation—finite.

We recall that A is called representation—infinite if A is not representation—
finite.

A second observation is that every irreducible morphism f: M — N is
either a proper monomorphism or a proper epimorphism; see (1.4). More-
over, if M = N, then, because M is finite dimensional as a K-vector space,
f should be an isomorphism. This shows that the source and the target
of this homomorphism must be distinct and therefore an Auslander—Reiten
quiver has no loops.

The Auslander—Reiten quiver is actually endowed with an additional
structure. Let Iy (or I'y) denote the set of those points in I'(mod A) that
correspond to a projective (or an injective, respectively) indecomposable
module. For each [N] € I'(mod A)y \ I'j, the Auslander—Reiten translate
TN of N exists, and, by (2.10), we have [TN] € TI'(mod A)y \ I'j. This
defines a bijection

7:(mod A)y \ 'y —— T'(mod A)o \ Ty,
also denoted by 7. Thus, for each indecomposable nonprojective module N,
we have 7[N]| = [T N]. The inverse bijection is denoted by

771 T'(mod A)y \ Tj ——— T'(mod A)o \ T,
and, for each indecomposable noninjective module L, we have 77 1[L] =
[r71L]. We say that 7 is the translation of the quiver I'(mod A). Let thus
N be an indecomposable nonprojective A-module, and let
t
0— 7N — @M —N-—0
i=1

be an almost split sequence ending with N, with the M; indecomposable
and pairwise nonisomorphic. By (4.4), for each 4, we have

n; = dimg Irr(M;, N) = dimg Irr(7N, M;).
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Hence, corresponding to this almost split sequence is the following “mesh”
in I'(mod A):
[M]

au/‘/amlz ﬁlnl\]'\ﬁll

[TN] == ----mmm oo - - (V]

O‘ﬂ\i'\to‘lntz ﬁmt/’/bﬂ
[M]

In particular, we see that [TN]* = [N]~ and that for each [M;] in this set,
there exists a bijection between the set {a1, ..., qin, } of arrows from [T N]
to [M;] and the set {31, ..., Bin; } of arrows from [M;] to [N].

We may thus define a new combinatorial structure.

4.7. Definition. Let I" be a locally finite quiver without loops and 7 be
a bijection whose domain and codomain are both subsets of I'y. The pair
(T',7) (or more briefly, I') is said to be a translation quiver if for every
x € 'y such that Tx exists, and every y € ™, the number of arrows from y
to x is equal to the number of arrows from 7z to y.

A full translation subquiver of a translation quiver (I', 7) is a trans-
lation quiver (I',7’) such that I is a full subquiver of T' and 7'z = 7,
whenever z is a vertex of IV such that 72 belongs to I".

It follows directly from the definition that, if x € T’y is such that T
exists, then (72)* = 2~. The bijection 7 is called the translation of I". The
points of T, where 7 (or 771) is not defined are called projective points
(or injective points, respectively). The full subquiver of I' consisting of a
nonprojective point = € Ty, its translate 7z, and the points of (rx)* =z~
is called the mesh ending with  and starting with 72. Let T} denote the
subset of I'; consisting of the arrows with nonprojective target. Because, for
x € I'p nonprojective there exists a bijection between the arrows having z
as target and those having 7x as source, we can define an injective mapping
o : I'{ — T'1 such that if @ € '} has target x, then o« has source 72. Such a
mapping is called a polarisation of I". Clearly, if I' has no multiple arrows,
there exists a unique polarisation on I'. Otherwise, there usually exist many
polarisations. We have already proven the following lemma.

4.8. Lemma. The Auslander—Reiten quiver I'(mod A) of an algebra
A is a translation quiver, the translation T being defined for all points [M)]
such that M is not a projective module, by T[M] = [T M]. O

It is, of course, easy to construct examples of translation quivers that
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are not necessarily Auslander—Reiten quivers, for instance

Va T\{O// \y\o// y\\o L
OTu=u \04 \‘Ov
O/ 07{1‘; \Ow

In most cases we consider the Auslander—Reiten quiver has no multiple
arrows. This is the case for representation—finite algebras.

4.9. Proposition. Let A be a representation—finite algebra. Then
['(mod A) has no multiple arrows.

Proof. We must show that, for each pair M, N of indecomposable A-
modules, we have dimg Irr(M, N) < 1. We assume that this is not the case,
that is, that there exists a pair M, N such that dimg Irr(M,N) > 2. In
particular, Irr(M, N) # 0. Because every irreducible morphism M — N is
an epimorphism or a monomorphism, we must have dimyx M # dimg N.
Suppose dimg M > dimg N (the other case is dual). In particular, N
cannot be projective, and there exists an almost split sequence of the form
0 — 7N — M?@®FE — N — 0. Hence we get

dimg 7N =2dimg M + dimg F — dimg N
> dimg M > dimg N.

Furthermore, dimg Irr(7N, M) > 2. An obvious induction shows that, for
any two natural numbers 4, j such that ¢ > j, we have

dimg 7°M > dimg 7' N > dimg 77 M > dimg 77 N.

This implies that the mapping N — I'(mod A)g given by i +— 7¢[N] is injec-
tive, and the connected component of I'(mod A) containing [N] is infinite,
which contradicts the hypothesis that A is representation—finite. O

We now turn to the construction of the Auslander—Reiten quiver of an al-
gebra A. In many simple cases, it is possible to construct I'(mod A) without
constructing explicitly all the almost split sequences in mod A. We illus-
trate the procedure with examples. In these examples, we agree to identify
isomorphic modules and homomorphisms.

4.10. Example. Let A be the path K-algebra of the linear quiver

?Lgig. We have a complete list of the indecomposable projective
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or injective A-modules, given as representations (see (II1.2)):

P(1) = (K—0—0) = 5(1)
P(2) = (K—K«0)
P(3) = (K—K<~K)=1(1)
12) = (0—K<—K)
1(3) = (0+—0—K),

and we also have a simple module S(2), which is neither projective nor
injective. Further, we have

P(1) =radP(2)  P(2) = rad P(3)
I13) =1(2)/5(2)  1(2) =1(1)/S(1) = P(3)/5(1).

Because the A-module P(1) is simple projective and noninjective, by (3.9),
the target of each irreducible morphism starting with P(1) is projective.
Because P(1) = rad P(2), and P(1) is not a summand of rad P(3), the
inclusion i : P(1) — P(2) is the only such irreducible morphism and is ac-
tually the only right minimal almost split morphism ending with P(2). Thus
we have an almost split sequence 0 —P(1) —— P(2) — Cokeri — 0. It
is easily seen that Cokeri = P(2)/P(1) = S(2).

Now consider P(2). We have just seen that there exists an irreducible
morphism P(2) — S(2). On the other hand rad P(3) = P(2), hence there
exists an irreducible (inclusion) morphism P(2) — P(3). Now P(3) = I(1)
is projective-injective, hence, by (3.11), we have an almost split sequence
of the form 0 — P(2) — P(3) @ S(2) —I(2) — 0. On the other
hand, the homomorphism 1(2) — I(2)/5(2) = I(3) = S(3) is left minimal
almost split, with kernel S(2), so that we have an almost split sequence
0 — S(2) — I(2) — S(3) — 0. Putting together the information we
obtained, I'(mod A) is the quiver

]
N\
[

It is customary, when drawing I'(mod A), to put the translate 7z of a
nonprojective point x on the same horizontal line as x. We always follow

this convention.
4.11. Example. Let A be given by the quiver ° u 9 g 9 = °

bound by a8y = 0. We have the following list of indecomposable projective
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or injective A-modules (see (II1.2)):

P(1)=5(1);

P(2)= (K<—K<—0%0)

P(3)= (K<—K<—K<—0) I(1);
P(4)= (O<—K<—K<—K) 1(2);
I1(3) = (O<—0<—K<—K)

I(4) = 5(4).

We thus have two right minimal almost split morphisms P(1) — P(2),
P(2) — P(3) and two left minimal almost split morphisms I(2) — I(3),
I1(3) — I(4). Because P(3) and P(4) are projective-injective, we have al-
most split sequences (by (3.11))

P(2) P
S(1) S(1
rad P(4) _)P( )

S5(2) S5(2)
Here we observe that P(2)/S(1) = S(2), P(4)/S(2) = 1(3), and rad P(4) =
P(3)/5( 12 is the indecomposable module M in mod A given by the diagram
(0+—K«—K+«—0), and (rad P(4))/S(2) = S(3). Computing successively
kernels and cokernels, we obtain I'(mod A) of the form

0— P(2) — P(3)® ;—>O;

0 —radP(4) — P4) & — 0.

[P(1)] [5(2)] [SB3)] [S(4)]
N SN S N\ /
[P(2)] [M] —[P(4)]— [I(3)]
NS
[P(3)]

We remark that, if we replace each indecomposable module by its dimension
vector, we obtain

1000 0100 0010 0001

N N NS
1100 0110—0111— 0011
NS

1110

Thus, for each mesh of I'(mod A) of the form
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t

one has dim N + dim7N = } dim M;; this follows from the fact that
i=1

the corresponding almost split sequence is exact. This seemingly innocent

(and trivial) remark gives a method of construction we illustrate in the next

example.

4.12. Example. Let A be the K-algebra given by the quiver

2
(@]
B
10 4 r\0‘04
5\O/v
3N\E
o5

bound by af = vd, ¢ = 0. Any algebra A whose ordinary quiver Q4 is
acyclic admits at least one simple projective module. In our case, there

. . . . 40
exists only one, namely P(1), whose dimension vector is 1o9. We know

that no arrow of I'(mod A) ends in P(1) and that the target of each arrow
starting at P(1) is projective. In our case, we find two such arrows, namely
[P(1)] — [P(2)] and [P(1)] — [P(3)] (indeed, P(1) =rad P(2) = rad P(3)),
which are our first two arrows. Moreover, these are the only arrows of
targets P(2) and P(3), respectively. Because P(1) is not injective, we have
an almost split sequence

0 — P(1) — P(2)® P(3) — 7 'P(1) — 0.

Moreover, dim 77! P(1) = dim P(2) + dim P(3) — dim P(1) = 138 + 1(1)8 -
0

1
108 = 118. We see at once that 7=1P(1) = rad P(4), and hence there is a

unique arrow of target P(4), namely [7~1P(1)] — [P(4)]. This gives us the
beginning of I'(mod A) (where the isomorphism classes of indecomposable
A-modules are replaced by their dimension vectors):

10
%
/ N\
1% o, 1h
Y% 1o 0
N\ . /
1.0
1o

The calculation of the almost split sequences starting at P(2) and P(3),
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respectively, gives

1 0
1.0 0.0

% 1o

0 4 e 1 4 1
1.0 10 ., 171
% 1o 1o
N\ . / N\ )
1.0 0.0

1o %

Because S(3) = rad P(5), there exists a unique arrow of target P(5),
namely [S(3)] — [P(5)]. In this way, all the projectives have been ob-
tained. All other indecomposable modules are thus of the form 7L, with
L indecomposable: to obtain the dimension vector of such a module, we
consider the almost split sequence

0—L—M©®...&M, — 7 'L — 0.

Because we can assume by induction that dim L and dim M; (for all i with
1 <i <t) are known, we deduce dim 7L = 25:1 dim M; — dim L. This
allows us to construct the rest of I'(mod A). The construction stops when we
reach the injectives; indeed, the left minimal almost split morphism starting
at an indecomposable injective I(a) is the projection onto its socle factor
I(a)/S(a), and

dimg I(a) = 1+ dimg I(a)/S(a) > dimg I(a)/S(a).

Thus the previous method would give a dimension vector with negative coor-
dinates, a contradiction. Continuing the construction yields the Auslander—
Reiten quiver I'(mod A)

0 1
0.0 01
L %
. / N . / N .
1.0 0.0 0,1 01
% 1o 4 %
. / N\ / N / N . /
108 18 N 11(1J — 0,1 0,1
N\ . / N\ / N . / N .
1.0 0.0 0,1 0.0
1o % 1o 0

4.13. Example. Let A be the K-algebra given by the quiver

NN
I\
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bound by a8 = ~d, §u = 0, and SA = 0. Then I'(mod A) can be constructed
as earlier and is of the form

0.1
110°
10 0,0 4 \01 0.0 01
0% 1Y ot 0% 0%!?!
\“10/ \“00/ \“01/01\“01/ \“00
1Y oto? 0t1? 7ot 70t 0%!?
oo / \1 / \00/ \01/ \00/
J0,0 ol % 10 2000 011
\10 /
ot

Let M, N and L be the snnple A-modules such that dim M = 8
dim N = 0 0 1, and dimL = 0 O0. Because dim7tM = 1180,
Homy (DA, 7M) =0, and (2.7)(a) yields pd,M = 1.

On the other hand, pd4N > 2, because dim7N = 8011 and there-
fore there is a nonzero homomorphism from the indecomposable injective
A-module E of dimension vector 8111 to the module 7N. Then we get
Homy (DA, 7N) # 0 and (2.7)(a) yields pd4 N > 2. Actually, pdyN = 2,
because the minimal projective resolution of N has the form

0
0
e get

1.0 0.1 0
011O 110O 01

1

(==}
(=)

1

o O
(=]
o O
=
o

1
1

=

Similarly, id4 L > 2, because dim 7~ 'L = 8110 and there is a nonzero ho-
momorphism from 77 L to the indecomposable projective module P of di-
mension vector 8111. It follows that Hom (77 1L, A) # 0 and (2.7)(b) yields
idaL > 2.

The method presented in these examples works perfectly well for all
finite and acyclic Auslander—Reiten quivers. An interesting remark in this
case is that, as suggested by the examples, every indecomposable module is
(up to isomorphism) uniquely determined by its dimension vector. This is
shown later.

4.14. Example. Let A be the K-algebra given by the quiver

f‘/ e

10% o3
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bound by a8 = 0. Then I'(mod A) is given by

where modules are replaced by their dimension vectors and one must identify
the two copies of S(2) = g1, thus forming a Cycle Here, 1/1 represents the

indecomposable projective module P(3) = KO/ N K, whlle \ represents

the indecomposable injective module I(1) = Kl/ \OK. It follows that

indecomposable modules are not uniquely determined by their dimension
vectors, because P(3) 2 I(1) and dim P(3) = dim I(1).

IV.5. The first Brauer—Thrall conjecture

At the origin of many recent developments of representation theory are
the following two conjectures attributed to Brauer and Thrall.

Conjecture 1. A finite dimensional K -algebra is either representation—
finite or there exist indecomposable modules with arbitrarily large dimension.

Conjecture 2. A finite dimensional algebra over an infinite field K is
either representation—finite or there exists an infinite sequence of numbers
d; € N such that, for each i, there exists an infinite number of nonisomorphic
indecomposable modules with K-dimension d;.

The first statement has now been shown to hold true, whenever the field
K is arbitrary (see [13], [14], [140], [147], [148], [151], [154], [170]), and the
second one when K is algebraically closed (see [26], [27], [124], [140], [162],
and for historical notes see [83]). Our objective in this section is to give a
simple proof of the first conjecture.

Let A be a finite dimensional K-algebra. A sequence of irreducible
morphisms in mod A of the form

VAL LIS (R V5
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with all the M; indecomposables is called a chain of irreducible mor-
phisms from M, to M, of length ¢.

5.1. Lemma. Let t € N and let M and N be indecomposable right
A-modules with Homy (M, N) # 0. Assume that there exists no chain of
wrreducible morphisms from M to N of length < t.

(a) There exists a chain of irreducible morphisms

M= My 250 My s g

and a homomorphism g : My — N with gf;... faf1 #0.
(b) There exists a chain of irreducible morphisms

gt—1
N2 N NS Nyg=N

and a homomorphism f: M — Ny with g1...g:f # 0.

Proof. We only prove (a); the proof of (b) is similar. We proceed by
induction on ¢t. For ¢t = 0, there is nothing to show. Assume thus that
M and N are given with Hom4 (M, N) # 0 and that there is no chain of
irreducible morphisms from M to N of length < ¢t + 1. By the induction
hypothesis, there exists a chain of irreducible morphisms

M=M a2 Iy,

and a homomorphism ¢g : My — N with gfi...f1 # 0. The induction
hypothesis implies that g cannot be an isomorphism. Because M; and N
are indecomposable, g is not a section. We consider the left minimal almost
split morphism starting with M;

h1 s
=M, ——— P,
hl Jj=1
where the modules L, ..., Ls are indecomposable. Then ¢ factors through

h, that is, there exists u = [u1,...,us] : @ Lj —— N such that g =
j=1

uh = > ujh;. Thus, because 0 # gfi... fi = > ujhjfi... f1, there exists
j=1 j=1

j such that 1 < ] <s and Ujhjft . f1 75 0. Setting Mt+1 = Lj, ft+1 = hj
and ¢’ = u;, our claim follows from the fact that h; is irreducible. O

5.2. Lemma (Harada and Sai). For a natural number b, let

fab_q

My 5 My My o My, S My,
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be a chain of nonzero nonisomorphisms in mod A, with all M; indecompos-
ables of length < b. Then for_q ... faf1 = 0.

Proof. We show by induction on n that if

Mo vy - o M s Man
is a sequence of nonzero nonisomorphisms between indecomposable modules
of length < b, then the length of the image of the composite homomorphism
fon_1... fof1 is < b—mn. This will imply the statement upon setting b = n.
Let n = 1. If the length ¢(Im f1) of Im f; is equal to b, then f; is an
isomorphism, a contradiction that shows that ¢(Im f;) < b — 1. Assume
that the statement holds for n, and let

fan —1 n fan i1 fon+1_4
My 25 My P Moy S Mo B Moy T A

be a sequence of nonzero nonisomorphisms between indecomposable mod-
ules of length < b. We consider the two homomorphisms f = fon_1... fof1
and h = font1_q... fony1. By the induction hypothesis, /(Im f) < b—n
and £(Imh) < b —n. If at least one of these two inequalities is strict, we
are done. We may thus suppose that ¢(Im f) = ¢(Imh) =b—n > 0. Let
g = fan. We must show that ¢(Imhgf) <b—n—1.

We claim that if this is not the case, then g is an isomorphism, a contra-
diction that completes the proof. Assume thus that {((Imhgf) >b—n— 1.
Because {(Imhgf) < £(Im f) = b — n, this implies that {((Imhgf) = b — n.
Now

Im f

fImhgf) = é(Imf N Ker hg

) ={¢(Im f) — £(Im f N Ker hg).

This implies that ¢(Im f N Kerhg) = 0, hence Im f N Kerhg = 0. On the
other hand, Imhgf C Imhg C Imh and ¢(Imhgf) = ¢(Imh) = b —n give
{(Im hg) = b — n. Consequently,

((Ker hg) = €(Man) — (Imhg) = £(Man) — (b —n) = £(Man) — £(Im f).

This shows that Mon = Im f @ Ker hg. Because My~ is indecomposable
and f # 0, we have Ker hg = 0. Therefore hg is a monomorphism. Hence
g itself is a monomorphism. Similarly, one shows that Imgf N Kerh = 0,
hence that Mon 1 = Im gf @ Ker h. Because gf # 0 and the module Mon 1
is indecomposable then we get Mani1 = Imgf, so that gf and therefore g
are epimorphisms. This completes the proof that ¢ is an isomorphism, and
hence of the lemma. O

The following example shows that the bounds given in the Harada—Sai
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lemma are the best bounds possible.

5.3. Example. Let A be given by the quiver

(s

consisting of two loops o and 3, bound by o? = 0, 82 = 0, a8 = 0, and
Ba = 0.

We construct 7 indecomposable A-modules of length < 3 and 6 nonisomor-
phisms between them with nonzero composition.

The algebra A admits a unique simple module S4 and any A-module can
be written in a form of a triple (V, ¢q, pg), where V' is a finite dimensional
K-vector space and ¢q, ¢g : V — V are K-linear endomorphisms satisfying
the conditions ¢, = 0, ¢3 = 0, Yap = Pspa = 0, and a morphism
(Vyasp8) — (V', 95, ¢5) is a K-linear map f : V' — V' such that ¢, f =
foa and g f = fyp. Let thus

B _ N 3 [000 000
o= My = A= [T [RRED
My, = Mg = Aa/S = (K2 [99],0),

B B o 3 [010 001
My = M= (0= 0 el (R
My = Sa = (K,0,0).

Each of these modules has a simple top or a simple socle and hence is
indecomposable. Let now

01

fl = [68 ?] : Ml B M27 f2 = |:? 8:| M2 — M3,

f3 = [1o0] Mz — My, fa = m My — Ms,
10

foo= Godl + Ms — Ms, fo = [8 9] . My — M.

It is easily checked that each of these matrices defines an A-module homo-
morphism, and fofs fafsf2f1 = [300] #0.

We are now able to prove our criterion of representation—finiteness, which
was announced in the previous section and implicitly used in the construc-
tion of Auslander—Reiten quivers.

5.4. Theorem. Assume that A is a basic and connected finite di-
mensional K -algebra. If T'(mod A) admits a connected component C whose
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modules are of bounded length, then C is finite and C = T'(mod A). In
particular, A is representation—finite.

Proof. Let b be a bound for the length of the indecomposable modules
X with [X]in C. Let M, N be two indecomposable A-modules such that
Homa (M, N) # 0. If [M] € Cy, there exists a chain of irreducible morphisms
from M to N of length smaller than 2° — 1 = ¢, and in particular [N] € Cy.
Indeed, if this is not the case, there exists, by (5.1), a chain of irreducible
morphisms

MZMOLM1£M2—> "'_>Mt71L>Mt

and a homomorphism g : My — N with gf; ... fi # 0. However, (5.2) yields
ft...f1 = 0, a contradiction that shows our claim. Similarly, if [N] € Co,
we have [M] € Cy.

Let now [M] € Cy be arbitrary. There exists an indecomposable projec-
tive module P4 such that Hom 4 (P, M) # 0; hence we also have [P] € Cp. It
follows from (I1.3.4) and (I.5.17) that, for any other indecomposable projec-
tive P’, there exists a sequence of indecomposable projective modules P =
Py, Py,...,Ps = P’ such that Homa(P;_1, P;) # 0 or Homu(P;, P;—1) # 0
for each 1 < i < s, because the algebra A is connected, P & e, A and
P’ = e, A for some primitive orthogonal idempotents ey, e, of A, and
(I.4.2) yields Homy (e A, epA) = epAe,. Hence [P'] € Co. We deduce
that any indecomposable A-module X corresponds to a point [X] in C,
because there exists an indecomposable projective A-module P’ such that
Hom 4 (P’, X) # 0. This shows that C = I'(mod A).

On the other hand, for each indecomposable projective A-module P and
each indecomposable A-module M such that Homu4 (P, M) # 0, we know
that there exists a chain of irreducible morphisms from P to M of length
smaller than ¢ = 2° — 1. Because there are only finitely many nonisomor-
phic indecomposable projectives, there are only finitely many nonisomor-
phic indecomposable modules corresponding to points in C. Hence A is
representation—finite. O

As a consequence of (5.4) we get the validity of the first Brauer—Thrall
conjecture.

5.5. Corollary. Any algebra is either representation—finite or admits
indecomposable modules of arbitrary length. O

We end this section with the following corollary, which underlines the
importance of the irreducible morphisms and hence of the Auslander—Reiten
quiver, for the description of the module category of a representation—finite
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algebra.

5.6. Corollary. Let A be a representation—finite algebra. Any nonzero
nonisomorphism between indecomposable modules in mod A is a sum of com-
positions of irreducible morphisms.

Proof. Let M, N be indecomposable A-modules and ¢ > 1. Denote
by rad’ (M, N) the K-subspace of rad(M, N) consisting of the K-linear
combinations of compositions f1fs ... fi, where f1, fo,..., f; are nonisomor-
phisms between indecomposable A-modules. Because A is representation—
finite, the lengths of the indecomposable A-modules are bounded; hence, by
the Harada-Sai lemma (5.2), there exists m > 1 such that rad’y 7' (M, N) =
0 for all M and N.

Let g € rada(M, N) be nonzero. If g ¢ rad% (M, N), then g is irreducible
and there is nothing to prove. If g € rad% (M, N), there exists s such that
2 <s<mand g €rad’(M,N) \ rad’ (M, N).

We prove our statement by descending induction on s. If s = m, then
g is a sum of nonzero compositions g; - g2 - ... g, of nonisomorphisms
g1, 92, - - -, gm between indecomposable modules. Because rad’X“(M ,N) =
0, the homomorphisms g1, . . ., g, do not belong to the square of the radical
and therefore are irreducible. This proves the statement for s = m. Sup-
pose that s < m — 1. Then ¢ is a sum of nonzero compositions gigs ... gs
of nonisomorphisms between indecomposable modules. Let ¢’ denote the
sum of all the summands g1¢gs...gs of g in which all the homomorphisms
g1,92, - -, gs are irreducible. Then g’ = g — ¢’ € rad’™ (M, N). If ¢ = 0,
the statement is trivial. If g’ # 0, then, by the induction hypothesis, ¢” is a
sum of compositions of irreducible morphisms and therefore so is g = ¢’ +g".
The proof is now complete. O

IV.6. Functorial approach to almost
split sequences

Let A be a finite dimensional K-algebra. We present in this section
an interpretation of the almost split sequences in mod A in terms of the
projective resolutions of the simple objects in the categories Fun®® A and
Fun A of the contravariant, and covariant, respectively, K-linear functors
from the category mod A of finitely generated right A-modules into the
category mod K of finite dimensional K-vector spaces. These categories are
defined in Section A.2 of the Appendix and are both seen to be abelian.
We recall that, given a pair of functors F' and G in the category Fun°® A
(or in Fun A), we denote by Hom(F,G) the set of functorial morphisms



144 CHAPTER IV. AUSLANDER—REITEN THEORY

w: F— G
Of particular interest in our study is the following classical result.

6.1. Theorem (Yoneda’s lemma). Let C be an additive K-category
and X be an object in C.

(a) For any contravariant functor F : C — mod K, the correspondence
m:@ — px(lx) defines a bijection between the set Hom(Home(—, X), F)
of functorial morphisms ¢ : Home(—, X) — F and the set F(X).

(b) For any covariant functor F : C — mod K, the correspondence
m:¢ — @x(1x) defines a bijection between the set Hom(Home (X, —), F)
of functorial morphisms ¢ : Home (X, —) — F and the set F(X).

Proof. We only prove (a); the proof of (b) is similar. For a functorial
morphism ¢ : Home(—, X) — F, we have px(1x) € F(X), so 7 defines a
map Hom(Home(—, X), F') — F(X). We now construct its inverse

o: F(X) —— Hom(Hom¢(—, X), F).

Let a € F(X) and Y be an arbitrary object in C. We define the map
o(a)y : Home(Y,X) — F(Y) to be given by o(a)y(f) = F(f)(a), for
f € Home (Y, X).

To show that o(a) : Home(—,X) — F is a functorial morphism, we
must show that, for any morphism g : ¥ — Z, the following diagram is
commutative

Home (Y, X) 2. F(v)
Homc(g,X)T F(g)
Home(Z,X) 292, F(2)

Let thus f € Home(Z, X); then Fg)o(a)z(f) = F(g9)F(f)(a) = F(fog)(a),
while o(a)y Home(g, X)(f) = o(a)y (f o g) = F(f o g)(a).

It remains to show that 7 and ¢ are mutually inverse.

(i) Let a € F(X). To prove that mo(a) = a, we note that

no(a) = o(a)x(1x) = F(1x)(a) = 1px)(a) = a.
(ii) Let ¢ € Hom(Home(—, X), F'). To prove that on(¢) = ¢, we show

that, for any object Y in C, we have om(¢)y = py. By definition, for any
f € Home(Y, X), we have

on(@)y (f) = F(f)((p)) = F(f)ex(1x).

Because ¢ is a functorial morphism, the following diagram is commutative:
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Home(X,X) —2- F(X)
Home () | [P
Home(Y,X) —2 F(Y)
That is, F(f)ex = pyHome(f, X). Thus we have

on(p)y (f) = pyHome(f, X)(1x) = oy (f)

and the proof is complete. O

6.2. Corollary. Let C be an additive K-category and let X be an object
inC.

(a) Let F be a subfunctor of Home(—, X). The map f — Home(—, f)
is a bijection F(X) =2 Hom(Home(—, X), F'). In particular, for any object
Y in C, the map Home(X,Y) — Hom(Home(—, X), Home(—,Y)) given
by f +— Home(—, f) is a bijection.

(b) Let F be a subfunctor of Home (X, —). The map f — Home(f, —)
is a bijection F(X) = Hom(Home (X, —), F)). In particular, for any object
Y in C, the map Home(X,Y)—Hom(Home (Y, —), Home (X, —)) given by
f— Home(f, —) is a bijection.

Proof. We only prove (a); the proof of (b) is similar. Let f € F(X) C
Home (X, X). It was shown that the inverse of the bijection 7 in Yoneda’s
lemma 6.1 is given by o(f) : Home(—, X) — F. We show that o(f) =
Home(—, f). Indeed, let Y be an object in C and g € Home (Y, X); then
a(f)y(g) = F(g)(f) = fog = Hom¢(Y, f)(g) because, by definition, F(g) €
F(Y) € Home(Y, X). This shows the first assertion. The second follows
from the first applied to the functor F' = Home(—,Y). O

In particular, it follows from (6.2) that the categories Fun®® A and Fun A
are not only abelian, they are also additive K-categories. As a second corol-
lary, we now show that a Hom functor uniquely determines the representing
object.

6.3. Corollary. Let C be an additive K-category and let X, Y be two
objects in C.

(a) X 2Y if and only if Home(—, X) = Home(—,Y).

(b) X 2V if and only if Home (X, —) = Home (Y, —).

Proof. We only prove (a); the proof of (b) is similar. Clearly, X 2 Y
implies Home(—, X) = Home(—,Y). Conversely, assume that there is an
isomorphism Home(—, X) = Home(—,Y) of functors. By (6.2), there exist
morphisms f : X — Y and ¢g:Y — X in C such that Home(—, f) :
Home(—, X) —Home (—,Y) and Home(—, g) : Home(—,Y) — Home(—, X)
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are mutually inverse functorial isomorphisms. Thus the equalities
Home(—,1x) = laome (—,x) = Home(—, g) o Home(—, f) = Home(—, go f)
give go f = 1x, by (6.2) again. Similarly, fog= 1y. O

An object P in Fun®? A (or in Fun A) is said to be projective if for any
functorial epimorphism ¢ : F — G, the induced map of K-vector spaces
Hom(P, ¢) : Hom(P, F) —— Hom(P, G), given by 1 — @, is surjective.

We now observe that Yoneda’s lemma also gives projective objects in
the categories Fun®® A and Fun A.

6.4. Corollary. Let A be a K-algebra and M be a module in mod A.
(a) The functor Homa(—, M) is a projective object in Fun?A.
(b) The functor Homa (M, —) is a projective object in FunA.

Proof. We only prove (a); the proof of (b) is similar. We must prove
that, for any functorial epimorphism ¢ : F' — G, the induced map

Hom(Homa(—, M), ¢) : Hom(Homa(—, M), F) — Hom(Homa(—, M), G)

given by 1 — @1, is surjective. We claim that the following diagram
Hom(Hom a (—,M),p)

Hom(Homa(—, M), F) Hom(Homu(—, M), G)

|

o | =
F(M) o G(M

is commutative, where 7" and 7¢ denote the bijection 7 in Yoneda’s lemma
6.1 applied to F' and G, respectively. Indeed, let v € Hom(Homa(—, M), F),
then

I

)

enm (¥) = oubm(la) = () (1) = 7% (o0)
WGHom(HomA(—, M), o) ().

On the other hand, ¢y is surjective, because ¢ is a functorial epimorphism.
Hence so is Hom(Hom (—, M), ¢). O

A functor F' in Fun®PA (or in Fun A) is called finitely generated
if F is isomorphic to a quotient of a functor of the form Homy4(—, M)
(or Hom 4 (M, —), respectively) for some A-module M, that is, there ex-
ists a functorial epimorphism Homu(—, M) — F — 0, (or a functorial
epimorphism Homy (M, —) — F — 0, respectively).

We now characterise the finitely generated projective objects in our func-
tor categories Fun°® A and Fun A.

6.5. Lemma. (a) An object in Fun°P A is finitely generated projective
if and only if it is isomorphic to a functor of the form Homa(—, M), for
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M an A-module. Such a functor is indecomposable if and only if M is
indecomposable.

(b) An object in Fun A is finitely generated projective if and only if it
is isomorphic to a functor of the form Homa (M, —), for M an A-module.
Such a functor is indecomposable if and only if M is indecomposable.

Proof. We only prove (a); the proof of (b) is similar. The projectivity of
the finitely generated functor Hom4(—, M) follows from (6.4). Conversely,
let F be a finitely generated projective object in Fun®® A, then there ex-
ists a functorial epimorphism ¢ : Hom4(—, X) — F, for some A-module
X. Because F is projective, ¢ is a retraction and so there exists a func-
torial monomorphism ¢ : F' — Homa(—, X) such that ¢ip = 1p. Let
7 = Yy : Homa(—,X) — F — Homyu(—, X) (thus, F = Im7). By
(6.2), there exists an endomorphism f of X such that 7 = Homa(—, f).
Because 7 is an idempotent, we have Hom4(—, f?) = Homa(—, f)? = 2 =
7 = Homu(—, f) thus f? = f, again by (6.2), that is, f is an idempotent.
Consequently, M = Im f is a direct summand of X. Because Hom 4 (—, M)
is the image of Homa(—, f), we deduce that F' = Hom4(—, M). The same
argument shows the last assertion. 0

We now show that if M is an indecomposable module, the Hom functors
Hom(—, M) and Homyu (M, —) behave, in their respective categories, in
a similar way to the finitely generated indecomposable projective modules
over a finite dimensional algebra, in the sense that they have simple tops.

6.6. Lemma. Let M be an indecomposable A-module.

(a) The functor rada(—, M) is the unique mazimal subfunctor of the
functor Homa(—, M).

(b) The functor rada(M,—) is the unique maximal subfunctor of the
functor Hom 4 (M, —).

Proof. We only prove (a); the proof of (b) is similar. It suffices to show
that any proper subfunctor F' of Hom4(—, M) is contained in rada(—, M),
that is, for any indecomposable A-module N, we have F'(N) C rada(N, M).
If N 2 M, this follows from the fact that, by (A.3.5) of the Appendix,
rada (N, M) = Homa (N, M). Assume thus N = M and let f : M — M
belong to F(M). By (6.2), Homa(—, f) maps Homa(—, M) to F, which
is a proper subfunctor of Hom4(—, M). Consequently, the functorial mor-
phism Homy4(—, f) : Homa(—, M) — F — Homa(—, M) is not an iso-
morphism. Hence neither is f and thus f € rada (M, M). O

A nonzero functor is called simple if it has no nontrivial subfunctor.
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Lemma 6.6 thus implies the following corollary.

6.7. Corollary. Let M be an indecomposable A-module.

(a) The functor SM = Homa(—, M)/rads(—, M) is simple in Fun? A.

(b) The functor Spr = Homua (M, —)/rada(M, —) is simple in Fun A.

U

In particular, SM (M) = Sy (M) = End M /rad End M is a one-dimensio-
nal K-vector space (because the module M is indecomposable). By (6.2),
this implies that Hom(Hom 4 (—, M), S™) and Hom(Hom4 (M, —), Sps) are
also one-dimensional K-vector spaces and hence there exist nonzero func-
torial morphisms

M Homa(—, M) —— SM and 7y : Homa (M, —) —— Sy

M and

that are uniquely determined up to a scalar multiple. Moreover, 7
) are necessarily epimorphisms, because their targets are simple.
On the other hand, Corollary 6.7 also implies that if X is an indecompos-
able A-module not isomorphic to M, we have S™(X) = 0 and Sy (X) = 0.
Therefore the explicit expression of the functorial morphisms 7™ and 7y,
follows from the proof of Yoneda’s lemma, that is, if X is an indecom-
posable A-module, the morphisms 7 (X) : Hom (X, M) — SM(X) and
wp(X) : Homa (M, X) — Sy (X) are both isomorphic to the canonical
surjection End M — End M /rad End M if X = M and are zero otherwise.

Following (I.5.6), a functorial epimorphism ¢ : F' — G in Fun®? A (or in
Fun A) is called minimal if, for each functorial morphism ¢ : H — F, the
composite morphism ¢ is an epimorphism if and only if v is an epimor-
phism. A minimal functorial epimorphism ¢ : F' — G, with F' projective,
is called a projective cover of G.

An exact sequence Fy —2— Fy —2° . G 0 in Fun®A (or in
FunA) is called a projective presentation of G. If, in addition, g :
Fy — G is a projective cover and ¢q : Fi —5 Im ¢ is a projective cover,
the sequence is called a minimal projective presentation of G.

We now prove the converse of Corollary 6.7, namely, we show that any
simple contravariant (or covariant) functor is of the form described in (a)
(or in (b), respectively) of the corollary.

6.8. Lemma. (a) Let S be a simple object in Fun®? A. There exists, up
to isomorphism, a unique indecomposable A-module M such that S(M) # 0.
Further, S = SM | the functorial morphism ™ : Homa(—, M) — SM is
a projective cover and S(X) # 0 if and only if M is isomorphic to a direct
summand of X.

(b) Let S be a simple object in Fun A. There exists, up to isomorphism,
a unique indecomposable A-module M such that S(M) # 0. Further, S =
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Sn, the functorial morphism wy © Homa (M, —) — Sy is a projective
cover, and S(X) # 0 if and only if M is isomorphic to a direct summand
of X.

Proof. We only prove (a); the proof of (b) is similar. Let S be a sim-
ple functor. We first note that, by Yoneda’s lemma (6.1), S(X) # 0 for
some A-module X if and only if there exists a nonzero functorial morphism
7% . Homa(—,X) — S that is necessarily an epimorphism, because S
is simple. Because S # 0, there exists an indecomposable A-module M
such that S(M) # 0. Let X be an arbitrary module such that S(X) # 0.
We thus have functorial epimorphisms 7™ : Hom4(—, M) — S and 7% :
Homa(—, X) — S. By the projectivity of the functors Hom4(—, M) and

Homy (—, X) (see(6.4)), we obtain a commutative diagram with exact rows
M

Homu(—, M) —= S 0
HomA(—,f)l . J,ls

Homa(—, X) —~ S 0
HomA(*,g)J( o J/].s

Homu(—, M) —= S 0

where the existence of the morphisms f : M — X and g : X — M fol-
lows from (6.2). Because M is indecomposable, End M is local, hence
gf € End M must be nilpotent or invertible, by (1.4.6). However, if (gf)™ =
0 for some m > 1, we obtain 7™ = 7™Homu(—, (gf)™) = 0, a con-
tradiction. Hence gf is invertible so that f is a section and ¢ is a re-
traction. Consequently, the functorial morphism Hom(—,g) is a retrac-
tion. This shows that 7" : Homs(—, M) — S is a projective cover.
The uniqueness up to isomorphism of the indecomposable module M fol-
lows from the uniqueness up to isomorphism of the projective cover and
(6.4). Finally, because, by (6.6), Homa(—, M) has rad(—, M) as unique
maximal subfunctor, we infer the existence of a functorial isomorphism
S = Homa(—, M)/rada(—, M) = SM. O

We have thus exhibited a bijective correspondence M +— SM (or M
Snr) between the isomorphism classes of indecomposable A-modules and of
simple objects in Fun®®A (or in Fun A, respectively). We now show that
almost split morphisms in mod A correspond to projective presentations of
these simple objects.

6.9. Lemma. (a) Let N be an indecomposable A-module. A homo-
morphism g : M — N of A-modules is a right almost split morphism if and
only if the induced sequence of functors

Homa(—, M)

Hom 4 (

HomaC9), Homu(—, N) —= §N 0
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is a projective presentation of ST in FunPA.

(b) Let L be an indecomposable A-module. A  homomorphism f :
L — M of A-modules is a left almost split morphism if and only if the
induced sequence of functors

Homa (f,—)
_

Hom 4 (M, —) Homy (L, —) —~— Sp, 0

s a projective presentation of Sy in Fun A.

Proof. We only prove (a); the proof of (b) is similar. Assume that ¢ is
right almost split. To prove that the induced sequence of functors is a projec-
tive presentation of S™V in Fun°P A, it suffices, by (6.4), to prove it is exact,
or equivalently, by (6.7), to prove that Im Homy4(—, g) = rad4(—, V). Thus,
we must show that, for every indecomposable A-module X, Im Hom4 (X, g) =
radg (X, N)

Let h € rada(X, N). Then h: X — N is not an isomorphism. Because
g is a right almost split morphism, there exists k : X — M such that
h = gk = Homa(X,g)(k). Thus rada(X,N) C ImHoma(X,g). For the
reverse inclusion, assume first X 2 N, then rads (X, N) = Homa (X, N)
and clearly Im Hom 4 (X, g) € Hom4 (X, N); on the other hand, if X = N,
this follows from the fact that g is not a retraction and (1.9). We have thus
shown the necessity.

For the sufficiency, assume that the given sequence of functors is exact.
We must show that g is right almost split. Suppose first that g is a retraction
and ¢’ : N — M is such that g¢’ = 1y. Then, for any h € End N, we
have h = gg'h = Homu(N,g)(¢’h) € ImHoma(N,g) = KernX. This
implies that SV(N) = 0, a contradiction. Hence g is not a retraction.
Let X be indecomposable, and h : X — N be a nonisomorphism, that is,
h € rad4 (X, N). Because the given sequence of functors is exact, evaluating
these functors at X yields rada (X, N) = Ker 7} = Im Hom 4 (X, g). Hence
there exists k : X — M such that h = Hom (X, g)(k) = gk. Thus g is right
almost split. O

Furthermore, minimal almost split morphisms in mod A correspond to
minimal projective presentations of simple functors, as we show in the fol-
lowing lemma.

6.10. Lemma. (a) Let N be an indecomposable A-module. A ho-
momorphism g : M — N of A-modules is a right minimal almost split
morphism if and only if the induced sequence of functors

Hom 4 (

Homa(—, M) 2249, gom (=, N) —" §N 0

is a minimal projective presentation of SN in Fun°’A.
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(b) Let L be an indecomposable A-module. A homomorphism f : L — M
of A-modules is a left minimal almost split morphism if and only if the in-
duced sequence of functors

HOInA(M,—) HomA—(f’_)> HOInA(L,—) e St 0

is a minimal projective presentation of Sy in Fun A.

Proof. We only prove (a); the proof of (b) is similar. Assume that g is
right minimal almost split. It follows from (6.9) that the induced sequence
of functors is a projective presentation. We claim it is minimal, that is,
by (6.6), Homa(—,g) : Homa(—, M) — rada(—, N) is a projective cover.
Let thus ¢ : Homa(—, X) — rada(—, N) be a functorial epimorphism. It
follows from (6.4) and (6.2) that there exist morphisms v : M — X and
v : X — M such that we have a commutative diagram with exact rows

Hom 4 (—, M) Homa(=8), rada(—,N) —— 0
Homa (—,u) ll
Homu(—,X) —F—— rady(—,N) —— 0

HomA(—,v)Jr ll

Homy (—, M) [Homal~9), rad(—,N) —— 0

that is, Homa(—, g) o Hom(—,v) o Homu(—,u) = Homa(—,g). By (6.2)
again, g(vu) = ¢. Because ¢ is right minimal, vu is an automorphism.
Consequently, v is a retraction and therefore Hom(—,v) is a retraction.
This shows that Homa(—, ¢) : Hom(—, M) — rads(—, N) is a projective
cover.

Conversely, if the shown sequence of functors is a minimal projective
presentation, it follows from (6.9) that g is right almost split. We must
show that it is right minimal. Assume h : M — M is such that gh = g. We
have a commutative diagram with exact rows

Homa(—, M) Homal~9), rada(—,N) —— 0

HomA(77h)l 11

Homa(—, M) Homal~9), rad(—,N) —— 0
Because Homa(—, g) is a projective cover, Hom4(—, k) is an isomorphism

and hence so is h. O

We are now able to prove the main theorem of this section, which shows
that almost split sequences in mod A correspond to minimal projective res-
olutions of simple functors in Fun®® A and in Fun A defined in a usual way.
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6.11. Theorem. (a) Let N be an indecomposable A-module.
(i) N is projective, and g : M — N is right minimal almost split if and
only if the induced sequence of functors

Hom 4 (

0 —— Homa(—, M) 2249 gom (-, N) — = §N 0

is a minimal projective resolution of SN in Fun®P A.
(ii) N is not projective, and the sequence 0 — L —— M -2 N — 0 is
exact and almost split if and only if the induced sequence of functors

Homa (—,f) Homa (—,9)
_ ) —_—

0 — Homyu(—, L) Homy (—, M Homa(—, N)

LSN_,O

(where L # 0) is a minimal projective resolution of S in FunP A.

(b) Let L be an indecomposable A-module.

(i) L is injective, and f : L — M is left minimal almost split if and
only if the induced sequence of functors

Homa (f,—
_

0 ——Homu(M, —) ), Homu(L, —) — ™ 5, 0

is a minimal projective resolution of St in Fun A.
(ii) L is not injective, and the sequence 0 — L oM SN s
exact and almost split if and only if the induced sequence of functors

Homa (g,—) Homa (f,—)
- 9 -

0 — Homu (N, —) Homyu (M, —)

(where N # 0) is a minimal projective resolution of Sy, in Fun A.

Proof. We only prove (a); the proof of (b) is similar.

(i) Assume that N is projective, and g : M — N is right minimal almost
split. By (3.5), ¢ is a monomorphism with image equal to rad N. By the left
exactness of the Hom functor, Hom4(—, g) : Homa(—, M) — Homy(—, N)
is a monomorphism. Thus, it follows from (6.10) that the induced sequence
of functors

0 —— Homa(—, M) 59 Homu(—, N) — = gV 0

is a minimal projective resolution of S in Fun°®A. Conversely, if the
sequence of functors is a minimal projective resolution of SV in Fun°PA,
it follows from (6.10) that ¢ is right minimal almost split. Evaluating the
sequence of functors at A, yields that g is a monomorphism. But, by the
description of right minimal almost split morphisms in (3.1) and (3.2), this
implies that IV is projective.
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(ii) Assume that N is not projective, and let

0— 0 m N

be an almost split sequence. By the left exactness of the Hom functor, we
derive an exact sequence of projective functors

Hom (—,f) Hom 4 (
_ 5

Homu(—, M) [Homa(=9), Homa(—, N).

Because g : M — N is right minimal almost split, (6.10) yields that the
induced sequence of functors

0 —— Homa(—, L)

) Hom 4 (

0 — Homa(—, L) "2 Homy (=, M) 59 Hom o (—, N)

T8N 0

is a minimal projective resolution of SV in Fun°® A. Conversely, assume that
the sequence of functors (where L # 0) is a minimal projective resolution
of SV in Fun°PA. First, we claim that N is not projective. Indeed, if this
were the case, then SV has, by (a), a minimal projective resolution of the
form

71_N

0 —— Homy(—,rad N) —— Homu(—,N) —— R —(

where the first morphism is induced from the canonical inclusion of rad N
into N. We thus have a short exact sequence of functors

Hom (-, f)
—_—h

0—Homy(—, L) Homy(—, M)————Homu(—,rad N)—0

that splits, because Hom4(—,rad N) is projective. In particular, the mor-
phism Homa(—, f) is a section, a contradiction to the minimality of the
given projective resolution. This shows our claim that N is not projective.
In particular, N is not isomorphic to a direct summand of A4 hence, by
(6.8), SN(A4) = 0. Evaluating the given projective resolution at A4 yields
a short exact sequence of A-modules

0— L — M~ N,

where, by (6.10), g is right minimal almost split. But this implies, by (1.13),
that the sequence is almost split. O

It is useful to observe that it follows from (6.11)(a) that, for any pro-
jective A-module P, there exists a functorial isomorphism rads(—, P)
Homa(—,rad P). Dually, for any injective A-module I, there exists a

functorial isomorphism rada (I, —) = Homyu (I /soc I, —).
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IV.7. Exercises

1. Let f: M — N be a homomorphism in mod A. Show that the
following conditions are equivalent:

(a) For every epimorphism h : L — N, there exists g : M — L such
that f = hg.

(b) For every epimorphism h : L — N with L projective there exists
g: M — L such that f = hg.

(c) f € P(M,N), that is, f factors through a projective A-module.

2. State and prove the dual of Exercise 1.

3. Let M be a left A-module without projective direct summand. Show
that there is a functorial isomorphism Hom 4op (M, —) 2 Tor?' ? (M, —-).

4. Let p be a prime, n > 0, and Z,; = Z/(p’). Show that the exact
sequence in mod Z

[rn] i)

0— an _ an+1 D an—l n — 0

P
is almost split, where u; : Z,; — Zpj+1 is the monomorphism given by
x +— px and 7; : Zy; — Zyi— is the canonical epimorphism.

5. Let M be an indecomposable nonprojective right A-module and
let £ :0—717M — E — M — 0 be anonsplit exact sequence. Show
that the following conditions are equivalent:

(a) £ is almost split.

(b) For every homomorphism u : 7TM — U that is not a section, we
have Ext}, (M, u)(¢) = 0.

(¢) For every homomorphism v : V. — M that is not a retraction, we
have Exty (v, 7M) (&) = 0.

6. Let M be an indecomposable nonprojective right A-module and let
& 0 oM LB M — 0 be a nonsplit exact sequence. Show
that the following conditions are equivalent:

(a) The sequence ¢ is almost split.

(b) For every indecomposable A-module U and every nonisomorphism
u:7M — U, there exists u : E — U such that uf = u.

(¢) For every indecomposable A-module V' and every nonisomorphism
v:V — M, there exists v : V — FE such that gv = v.

7. Let 0 — L Jom LN — 0 be an almost split sequence in
mod A. Prove the following statements:

(a) If N’ is a nonzero proper submodule of N, then the short exact
sequence 0 — L — g~ }(N’) — N’ — 0 is split.
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(b) If L’ is a nonzero submodule of L, then the short exact sequence
0— L/L) — M/f(L) — N’ — 0 is split.

8 TLet0—L 1M 2N 0 be an almost split sequence in
mod A. Prove the following statements:

(a) For every nonsplit exact sequence 0 — X —— Y -5 N — 0 and
every commutative diagram with exact rows

0 — L L M 4 N — 0

N

0 — X 5 vy %5 N — 0
there exists a commutative diagram with exact rows

0o — X v % N — 0

b b

0 — L L M 4 N — o

such that h'h = 11, and ¥’k = 1,;. In particular, h and k are sections.
(b) For every nonsplit exact sequence 0 — L —— X —»Y — 0 and
every commutative diagram with exact rows

0o — L % X %Y — 0

N

0 — L L M 45 N — 0

there exists a commutative diagram with exact rows

0 — L L M 4 N — 0

N A

0o — L % X %Y — 0

such that hh/ = 1); and kk’ = 1. In particular, h and k are retractions.

9. Let £:0— L oM LN 0bea nonsplit short exact se-
quence in mod A. Prove the following statements:

(a) The homomorphism f is irreducible if and only if

(i) Im f is a direct summand of every proper submodule M’ of M such
that Im f C M’, and
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(ii) if X is an A-module and n € Ext! (N, X), then either there exists
an A-module homomorphism u : X — L such that Ext}(N,u)(n) = € or
an A-module homomorphism v : L — X such that Ext} (N, v)(€) = 7.

(b) The homomorphism g is irreducible if and only if

(i) g : M/L' — N is a retraction if L’ is a nonzero submodule of L =
Ker g, and

(ii) if X is a module and 5 € Ext} (X, L), then either there exists a ho-
momorphism u : N — X such that Ext}(u, L)(n) = € or a homomorphism
v: X — N such that Ext!,(v, L)(&) = .

10. (a) Let f: L — M be an irreducible monomorphism in mod A4,
with M indecomposable. Let h : X — N be an irreducible morphism,
where N = Coker f. Show that h is an epimorphism.

(b) Let g : M — N be an irreducible epimorphism in mod 4, with
M indecomposable. Let h : L — X be an irreducible morphism, where
L = Ker g. Show that h is a monomorphism.

11. Let f : L — M be an irreducible morphism in mod A, and X be
a right A-module.

(a) Show that Extl (X, f) : Ext(X, L) — Ext} (X, M) is a monomor-
phism, if Hom (M, X) = 0.

(b) Show that Exty(f, X) : Ext!(M, X) — Ext!,(L, X) is a monomor-
phism, if Hom4 (X, L) = 0.

12. Let g : M — N be a right almost split epimorphism. If Kerg is
not indecomposable, show that there exists a right almost split morphism
g1 : My — N such that ¢(M;) < ¢(M). Deduce that if M is of minimal
length such that there exists a right almost split epimorphism g : M — N,
then the short exact sequence 0 — Kerg — M <. N — 0 is almost
split.

13. State and prove the dual of Exercise 12.

14. Let 0 — 7M — @, E; — M — 0 be an almost split se-
quence, with the FE; indecomposable. Show that, for every i, we have
U(E;) # 6(M) and £(E;) # ¢(TM) so that no E; is isomorphic to M or 7M.

15. Let X be a nonzero module in mod A. Show that there exists at
most finitely many nonisomorphic almost split sequences

00— L, — M, — N; — 0
with X isomorphic to a direct summand of M;.

16. Let 0 — L — M — N — 0 be an almost split sequence in
the category mod A and suppose that M is not indecomposable. Show that
Hom 4 (L, N) # 0.
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17. Let 0 — L — M — N — 0 be an almost split sequence in
the category mod A. Show that if P is a nonzero projective module, the
following conditions are equivalent:

(a) P is isomorphic to a direct summand of M.

(b) There exists an irreducible morphism P — N.

(¢) There exists an irreducible morphism L — P.
(d) L is isomorphic to a direct summand of rad P.

(e) There is an indecomposable direct summand R of rad P such that
N=~7171R.

(f) If f: X — N is an epimorphism in mod A that is not a retraction,
then P is isomorphic to a direct summand of X.

18. Let 0 — L — M — N — 0 be an almost split sequence in
mod A. Prove the following statements:

(a) If there exists an irreducible epimorphism h : P — N with P inde-
composable projective, then N = P/S, where S is a simple submodule of P.

(b) If N/rad N is simple and M has a nonzero projective direct sum-
mand, there exists an irreducible epimorphism h : P — N, with P inde-
composable projective.

19. Let A be the K-algebra of Example 4.13. Let M and N be the
simple A- moduleb such that dim M = 0 and dim N = 0 1. Show that
dim7M = 1 00, and that Hom4 (DA, TM) =0.

20. Let A be given by the quiver g,ag’?,;f 5 —9
ﬂ/

bound by the relations Sa = 0, 3o’ = 0, and afy = v3'«’. Show that
P(1) = 1(1'), P(2) = I(2') and deduce the almost split sequences having as
middle terms P(1) and P(2), respectively.

21. Construct the Auslander—Reiten quiver of the algebra defined by
each of the follovving bound quivers:

ﬁ/\“

(a) af = ~6;

TN !
N

(b) o o a3 =0,70=0;
N\
B a

(c) /\ af =0.

N

In each case describe the structure of each indecomposable module.
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22. Construct the Auslander—Reiten quiver of the algebra defined by
each of the following bound quivers:

O/[?/ ’\ao
(a) (;\OA af=0,~6=0;
/-

[¢]

g 3
(b) o /\ af =0,vA =0, By = d¢;

N

N e

(c) o<—o<—“o pa = 0;

/e

[¢]

]
B P
(d) O‘/ \O af=0,v0=0, ée = 0;

(e) ,\/\lf/\ &n=0, uA =0, vu = 0;

O(— O(—O

5 2
O¢—— O«—O

(1) | 18 =0, aff = 0;

O«——O0<«——0O
[e3%

O[f/O\aO
NN

(g) o o o aﬂ = 75, )\Ozﬂa = uv;

N

4—6 OV ’\60

(h) o\ S N\ an = A, By = nv;
ANPZ
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af =79, ap =0, ud = 0;

A
§) \ aff =0, afe = 0;

(o] (o]
(k) N N\ an = A, By =nv, aff =0, uv = 0;
(@] 0]
ANVS
(o]
(1) m;:b aﬁ =0;
(m) O+O af =0, fa=0.

23. Let @ be either of the following quivers: . .
(a) ofr———o (b) \‘o'/
O/ r\O
Construct the component of the Auslander—Reiten quiver of the path K-
algebra A = K@ containing the indecomposable projective modules, and
show that it contains no injective modules.

24. Let A be a K-algebra such that rad’y = rad], ;4 = 0 for some
m > 1. Prove that any nonzero nonisomorphism between indecomposable
modules in mod A is a sum of compositions of irreducible morphisms.
Hint: Follow the proof of (5.6).

25. Complete the proof of Proposition 2.10.

26. Let0 — L Jom LN 0 be a nonsplit short exact sequence
in mod A. Prove the following statements:

(a) f is irreducible if and only if, for every subfunctor F of the functor
Homa(—, N), F either contains or is contained in the image of the functorial
morphism Homy(—, g) : Homa(—, M) — Homa(—, N).

(b) g is irreducible if and only if, for every subfunctor F' of Hom (L, —),
F either contains or is contained in the image of the functorial morphism
Homy(f, —) : Homa (M, —) — Homyu (L, —).



Chapter V

Nakayama algebras
and representation—finite group

algebras

In this chapter we describe the representation theory of one of the best
understood classes of algebras, that of the Nakayama algebras (which some
authors call generalised uniserial algebras, see [68]). These algebras are al-
ways representation—finite and, using only elementary methods, we are able
to give a complete list of their nonisomorphic indecomposable modules. The
latter turn out to have a particularly simple structure; indeed, Nakayama
algebras are characterised by the fact that any indecomposable module is
uniserial, that is, has a unique composition series. As a consequence, it
is also easy to describe the homomorphisms between two indecomposable
modules and to compute all almost split sequences. The understanding of
the module category of Nakayama algebras is very useful in the sequel, for
instance, when we study the regular modules over representation—infinite
hereditary algebras.

The final section of this chapter is devoted to a criterion allowing us to
verify whether a group algebra is representation—finite. It was obtained in
1954 by Higman [92].

Throughout this chapter, we let A denote a finite dimensional K-algebra
and all A-modules are, unless otherwise specified, right finite dimensional
A-modules.

V.1. The Loewy series and the Loewy
length of a module

For an A-module M, we consider the decreasing sequence of submodules
of M given by

M >rad M Drad®M > ...tad’M D ... D 0.

This sequence is called the radical series, or the descending Loewy
series of M. Because M has finite dimension as a K-vector space, it has

160
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finite composition length. Hence there exists a least positive integer m such
that rad™M = 0. It follows that the radical series is finite and has m
nonzero terms. The integer m is called the length of the radical series
and is denoted by r¢(M).

The dual notion is that of the socle series or ascending Loewy series
of M. We recall that the socle of M, soc M, is the sum of all the simple
submodules of M. For an integer i > 0, we define soc’M inductively as
follows: soc’ M = 0 and, if soc’ M is already defined and p : M — M /soc' M
denotes the canonical epimorphism, we set

soc ™ M = p~!(soc(M/soc' M)).
Thus, by definition, soc’™* M Dsoc’ M, and we obtain an increasing sequence
0 =soc’ M C soc M =soc'M C soc?M C ... Csoc!M C ... M

of submodules of M. Because M has finite composition length, there exists
a least positive integer m such that soc™M = M; it is called the length of
the socle series and is denoted by sf(M).

It follows directly from the definition that r¢(M) and s¢(M) are at most
equal to the composition length ¢(M) of M, that is, to the dimension of M
as a K-vector space.

In general, the radical and the socle series of a module M do not coincide
(see, for instance, Example 1.5). However, we prove that r¢(M) = s¢(M).

1.1. Lemma. Let f: Ma — Na be an A-module epimorphism. Then
f(rad’M) =rad'N for every i > 0.

Proof. It clearly suffices to show the result for i = 1. By (I1.3.7), we
have f(rad M) = f(Mrad A) = f(M)rad A = Nrad A =rad N. O

1.2. Corollary. Let 0 — LALMALNA — 0 be an exact sequence
of A-modules. Then r£(M) > max{r{(L),r{(N)}.

Proof. Indeed, we have f(radiL)v C rad'M and, by (1.1), g(rad'M) =
rad’N. Hence rad*M = 0 implies rad'L = 0 and rad*N = 0. O

We now show that s¢(M) = ré(DM) for any module M. We start with
some remarks on the construction of the socle series of a module. Let M4
be a module and let 4 > 1. Consider the exact sequence

0 —ssoc' M M —2— M/soc!M — 0

together with the inclusion j : soc(M/soc!M) — M/soc!M. It easily
follows from (A.5.3) in the Appendix that soc®™!M is the fibered product
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in the commutative diagram with exact rows

0 — soc'M —— soc™'M —— soc(M/soc'M) — 0

|1 I s
0 — soc!M — M £, M /soct M — 0

where the homomorphisms in the upper sequence are induced from those in
the lower one.

We now show by induction on i that, for any module M, there is an iso-
morphism D(soc’M) = DM /rad’DM. For i = 1, the isomorphism follows
immediately from the properties of the duality D collected in (1.5.13); we
leave it as an exercise. Assume i > 2. In view of (I.5.13), taking the dual
of the diagram yields that D(soci™'M) is isomorphic to the amalgamated
sum N in the commutative diagram with exact rows

0 — rad' DM — DM — DM/rad'DM — 0

! l b

0 — rad’DM/rad™DM — N 2 DM/rad'DM — 0

because, by induction, D(soc' M) = DM /rad* DM and hence D(M /soc! M) =2

rad* DM, so that, by applying the formula D(socX) = DX /rad DX, we ob-

tain the isomorphism D(soc(M /soc’M)) = rad’ DM /rad” ™' DM. Because

an obvious application of the Snake lemma yields an A-module isomorphism

N =DM/ rad”™ DM, the proof of the required isomorphism is complete.
As an easy consequence, we get s¢(M) = ré{(DM).

1.3. Proposition. For every A-module M, we have r{(M) = st(M).

Proof. We first prove by induction on s¢(M) that s¢(M) < r{(M).
Because sf(M) = 0 if and only if M = 0, if and only if 7¢(M) = 0, the
statement holds whenever s¢(M) = 0.

Assume that sf(X) < ré(X) for every module X such that s¢(X)=¢>0
and let M be such that s¢(M) =i+ 1. Put 7¢(M) = j. Then j > 0 and
rad’ "' M is a semisimple submodule of M, because rad(rad’~'M) = 0.
Hence rad’ 'M C socM. Thus there exists an A-module epimorphism
M /rad’'M — M/soc M. By (1.2), this implies that r¢(M /rad?~'M) >
r¢(M/soc M). Because (M) = j = 1 + r¢(M/rad’"* M) we deduce that
ré(M) > 14 r¢(M/soc M). On the other hand, s¢(M) =1+ s¢(M/soc M).
Hence, by the induction hypothesis, r¢(M/socM) > s¢(M/soc M). Conse-
quently, (M) > 1+ ré(M/soc M) > 1+ st(M/soc M) = sl(M), which
proves our claim.
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By applying this inequality to the left A-module DM, and using the
equality sé(M) = ré(DM) proved earlier, we get s¢(M) = r¢{(DM) >
st(DM) = r¢(D(DM)) = r¢(M). This finishes the proof. O

1.4. Definition. The Loewy length ¢/(M) of a module M4 is the
common value of (M) and st(M).

Again, it is clear that £6(M) < ¢(M) for every module M. Also, it
follows directly from the definition of a radical (or socle) series and (I1.3.7),
that a decomposition M = My & ... D M,, yields

(M) = max{ll(My), ..., L( M)}
1.5. Example. Let A be the path K-algebra of the following quiver

o ﬁi o i$ o bound by two zero relations o = 0 and
5
v =0. Let My be the representation

010 s 4

[001] m
0

The radical series of M is:

Ma(K%K%:O);(KéE:Kﬁ:o);o,

K.

and its socle series is:
010]
0c(K<g:Kz:0)c(KE%K3z:0)cM.
They are clearly distinct. We have ¢¢(M) = 3, while (M) = dimg M = 5.

V.2. Uniserial modules and right serial

algebras

One may ask which modules M have the property that ¢¢(M) = £(M).
This leads to the following definition.

2.1. Definition. An A-module M4 is said to be uniserial if it has a
unique composition series.

In other words, M is uniserial if and only if its submodule lattice is a
chain. Clearly, if M is uniserial, then so is every submodule of M, and every
quotient of M. Moreover, the dual DM of M is a uniserial left A-module.
Because a uniserial module M necessarily has a simple top (and a simple
socle), it must be indecomposable.
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We also notice that uniserial modules are determined up to isomorphism
by their composition series, that is, if M and N are uniserial modules and
have the same composition factors in the same order, then they are iso-
morphic. An isomorphism is constructed by an obvious induction on the
common composition length of M and N.

The following lemma characterises the uniseriality of a module by means
of its Loewy series.

2.2. Lemma. The following conditions are equivalent for a right
A-module M:

(a) M is uniserial.

(b) The radical series M D rad M D rad*M > ... D 0 is a composition
series.

(c) The socle series 0 C soc M C soc?M C ... C M is a composition
series.

(d) £(M) = Le(M).

Proof. We first prove the equivalence of (a) and (b). The proof of the
equivalence of (a) and (c) is similar. Then we prove the equivalence of these
conditions with (d).

We show that (a) implies (b) by induction on the composition length
L(M) of M. If {(M) = 1, then M is simple and the statement is trivial.
Assume the result holds for every uniserial module of composition length
< t, and let M be uniserial of composition length ¢. Because M is uniserial,
it has a unique maximal submodule, which is necessarily equal to rad M.
Because rad M C M, the module rad M is also uniserial. By the induction
hypothesis, radM D rad®M > ... D 0 is a composition series for rad M.
Hence M D rad M D rad?M D ... D 0 is a composition series for M.
Conversely, assume that

M=MyDODM;D...OM;=0 and M =NgDN;1D...ODON;=0

are two composition series for M. We show by induction on i that M; =

N; =rad'M for every 0 <4 < t. This is trivial if i = 0. Assume the result

holds for some i > 0. Because rad’M/rad’™ M is simple, rad"M has a

unique maximal submodule, which is necessarily equal to rad"™' M. Hence

Mty =Ny = rad”'lM7 and we have established our claim.

It follows directly from (b) that ¢(M) = £¢(M), thus (b) implies (d). To

prove that (d) implies (b), assume that m = (M) = ¢¢(M). It follows from
m—1 . . . .

(1.3.11) that m= 3 £(rad’ M /rad""'M) and therefore £(rad’ M /rad" M) =
i=0

1 for i =0,...,m— 1, because rad"M/rad"™* M # 0 for i < m — 1. This
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shows that the radical series of M is a composition series. O

We now describe those algebras that have the property that every inde-
composable projective module is uniserial.

2.3. Definition. An algebra A is said to be right serial if every inde-
composable projective right A-module is uniserial. An algebra A is called
left serial if every indecomposable projective left A-module is uniserial.

Equivalently, A is right serial if every indecomposable injective left A-
module is uniserial, and A is left serial if every indecomposable injective
right A-module is uniserial. Thus, an algebra A is right serial if and only if
its opposite algebra A°P is left serial.

2.4. Examples. (a) It follows from the results of (2.5) and (3.2) that
the finite dimensional K-algebra K[t]/(t"), n > 2, and the algebra T, (K)
of lower triangular matrices are both left and right serial.

(b) If G is a cyclic group of order m = p™ and K is a field of characteristic
p > 0then KG = K[t]/(t"™ — 1), as will be seen in (5.3), and therefore KG
is a left and right serial algebra.

(c) Readers familiar with commutative algebra recall that those commu-
tative discrete valuation domains that are also K-algebras are right and left
serial. This is the case, for instance, of the infinite dimensional K-algebra
K[[t]] of formal power series in one indeterminate ¢, whose ideals form the
infinite chain

K[t]>o®)>®)>...o¢") > "™ >...2(0).

We will show later that there exist left serial algebras that are not right
serial.

The shape of the ordinary quiver of a right serial algebra follows easily
from the next lemma.

2.5. Lemma. An algebra A is right serial if and only if for every
indecomposable projective right module P the module rad P/rang is simple
or zero.

Proof. If A isright serial and P is indecomposable projective, it follows
from (2.2) that the radical series P D rad P D rad’P > ... D 0 is a
composition series. In particular, rad P/ rad?P is simple or zero.

Conversely, assume that for every indecomposable projective right mod-
ule P, rad P/rad*P is simple or zero. By (2.2), we must show that the
radical series P D rad P D rad?P D ... D 0 is a composition series. We
know that top P = P/rad P of P is simple. We prove by induction on i > 1
that rad’~* P/rad’ P is simple or zero, and this implies the wanted result.
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By hypothesis, the statement holds for ¢ = 2. Let ¢ > 2, and assume
that rad’~ ' P/rad’P is simple. Let f : P/ — rad’"'P be a projective cover,
and p : rad”'P — radi_lp/radiP be the canonical epimorphism. Then
pf: P — radi_lP/radiP is a projective cover: indeed, f is minimal by hy-
pothesis, and p is minimal because rad’P = rad(rad’~'P), hence the com-
position pf is minimal, see (I.5.6). Because, by the induction hypothesis,
rad’" ! P/rad’ P is simple, P’ is indecomposable. By (1.1), the epimorphism
f restricts to epimorphisms f; : rad P/ — rad’P and f5 : rad®?P’ — rad"t! P.
By passing to the cokernels, we deduce the existence of a unique epimor-
phism f : radP’ /rad® P’ — rad’ P/rad"*! P such that we have a commutative
diagram with exact rows:

0 — rad’P’ — radP’ — radP'/rad®’P’ — 0

lf2 J/fl lf
0 — rad™P — rad’P — rad’P/rad™'P — 0

Because P’ is indecomposable projective, rad P’/ rad?P’ is simple or zero,
by hypothesis, hence so is rad’P/rad" ™ P. O

2.6. Theorem. A basic K-algebra A is right serial if and only if, for
every point a of its ordinary quiver Q 4, there exists at most one arrow of
source a.

Proof. It follows from (2.5) that the algebra A is right serial if and only
if, for every a € (Q4)o, the A-module

rad P(a) /rad®P(a) = e, (rad A/rad?A)

is simple or zero, that is, is at most one dimensional as a K-vector space.
This is the case if and only if there is at most one point b € (Q4)o such
that the K-vector space e,(rad A/rad®A)ey, # 0 and then, this vector space
is at most one dimensional. By definition of @ 4, this happens if and only
if there is at most one point b € (Q 4)o such that there is an arrow a — b,
and then there is at most one such arrow. ]

Two examples of connected quivers satisfying the conditions of the the-
orem are:

o o
° |
é O0—0¢—0¢—0
o— o o %
o— g‘/m—o Z / \
% 0—0—0—0 o
0—0—0—0<—0«—0, /

In particular, the ordinary quiver @ 4 of a connected right serial algebra
A either is a tree with a unique sink or contains a unique (oriented) cycle
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towards which all other arrows are pointing. We also remark that if A &
KQ4/T is right serial, the theorem imposes a condition on the quiver @ 4
of A, but the admissible ideal Z is arbitrary.

2.7. Notation. The following notation is useful when dealing with
uniserial modules. Let M 4 be uniserial, with the radical series

M=MyD>M D...OM;=0,

where M;/M;+1 = S(a;) for some point a; in @4, and 0 < i < t. Using the
fact that uniserial modules are uniquely determined up to isomorphism by
their composition series, the module M is written as

ao

ai
M:

at—1
Not only does this notation make the structure of M more apparent but,
by exhibiting the composition factors of M, it allows us to compute more
easily the homomorphisms. Indeed, it follows from Schur’s lemma that if
f: M — N is a homomorphism between uniserial modules M and N, the

simple top of M maps into an isomorphic simple in the composition series
of N.

2.8. Example. Let A be the right serial K-algebra given by the quiver

D)

and bound by a3? = 0 and 3% = 0. Then, as representations of the bound
quiver, the indecomposable projective A-modules are given by:

_ 6 00
Pla= K—K % 0]

and

P@a= 00— K3 [?88}
010

Using Notation 2.7, we can write them as P(1)4 = (%) and P(2)4 =
@) . In particular, Homy4 (P (1), P(2)) = 0, because the simple top S(1) of

P(1) does not appear as a composition factor of P(2), while there are two
(linearly independent) homomorphisms from P(2) to P(1), namely having
as respective images the radical (2 ) of P(1) and its socle (2).
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V.3. Nakayama algebras

3.1. Definition. An algebra A is called a Nakayama algebra if it
is both right and left serial.

That is, A is a Nakayama algebra if and only if every indecomposable
projective A-module and every indecomposable injective A-module are uni-
serial. Clearly, A is a Nakayama algebra if and only if its opposite algebra
A°P is also.

3.2. Theorem. A basic and connected algebra A is a Nakayama algebra
if and only if its ordinary quiver Q 4 is one of the following two quivers:

(a) O¢——— 00— 06— +++6—0——0
1 2 3 n—1 n
(b)

(with n > 1 points).

Proof. In view of (2.6), A is a Nakayama algebra if and only if every
point of @4 is the source of at most one arrow and the target of at most
One arrow. g

Again, if A = kQa/Z is a Nakayama algebra, the theorem imposes a
condition on Q 4, but the admissible ideal Z is arbitrary.

We now show that every indecomposable module over a Nakayama alge-
bra is uniserial, and we give a concrete description of these indecomposables.
We first need two easy lemmas.

3.3. Lemma. Let A be an algebra, and J be a proper ideal of A.
(a) If A is right serial, then A/J is also right serial.
(b) If A is a Nakayama algebra, then A/J is also a Nakayama algebra.

Proof. We only prove (a); (b) follows from (a) and its dual. If A4 =

n
P P, is a direct sum decomposition of A, with the P; indecomposable, then
i=1
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n
AJJ = @ (P;/P,J) is a direct sum decomposition of A/J, with the P;/P;J
i=1
indecomposable or zero. In particular, every indecomposable projective
A/J-module P’ is isomorphic to P;/P;J, for some i. Then the module P’
is uniserial, because it is a quotient of the uniserial module P;.
d

3.4. Lemma. Let A be a Nakayama algebra, and let P4 be an indecom-
posable projective A-module with L(P) = Ll(A4). Then P is also injective.

Proof. Let P — E be an injective envelope in mod A. Because P is
uniserial, its socle is simple and hence so is that of E. Consequently, F is
indecomposable. Because A is a Nakayama algebra, E is uniserial and we
have

U(Aa) =LU(P) =L0(P) <{U(E)=1lIE) < lL(A,).
Therefore, ¢(P) = ¢(F) and P & F is injective. O

3.5. Theorem. Let A be a basic and connected Nakayama algebra,
and let M be an indecomposable A-module. There exists an indecomposable
projective A module P and an integer t with 1 < t < (l(P) such that
M = P/rad'P. In particular, A is representation—finite.

Proof. Observe that each of the A-modules P/rad’P with P indecom-
posable projective and 1 < t < £¢(P), is uniserial and hence indecomposable.
Let now M4 be an arbitrary indecomposable A-module, and ¢ = £4(M)
denote its Loewy length. In particular, 0 = rad’M = Mrad’A shows
that M is annihilated by rad’A and hence M has a natural structure of
A/rad® A-module. Also, rad” " 'M # 0 implies that rad’"*4 # 0 and so
00(A/rad’ A) = t. On the other hand, by (3.3), A/rad’ A is itself a Nakayama
algebra. Moreover, there is a direct sum decomposition

Afrad' A = @ (P,/Prad' A) = @ (P, /rad' P,)
=1

i=1
with the modules P;/rad’ P; indecomposable.
Let f: @ P — M be a projective cover of M in mod(A/rad’A), with

the P’ mdecomposable Then
= 00(A/rad" A) > max{L(P]),... LL(P))} > (M) =

Hence there exists an index j, with 1 < j < r, such that M(PJ() =t. We
may assume that £(P]) =t whenever 1 < j < s and that £((P;) <t for all
j such that s < j <r. Let f; denote the restriction f|P]{ of f to P}. If no f;
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with j < s is a monomorphism, we would have ¢¢(Im f;) < ¢ for all j, while

T
the homomorphism @ Im f; — M induced by f is an epimorphism, and
=1

this would imply, by (1.2), that £¢(M) < ¢, which is a contradiction. Hence
there exists an index ¢ < s such that f, : Pé — M is a monomorphism.
Because (/(P)) = t = {(A/rad" A), it follows from (3.4) that P, is injective as
an A/rad’ A-module. Consequently, fq: Pé — M is a section. Because M is
indecomposable, f; is an isomorphism. Pé is an indecomposable projective
A/ rad’ A-module. Hence there exists an index ¢ with 1 < ¢ < n such that
P, =P/ rad’P;, and therefore there is an isomorphism M 2 P;/rad'P;. O

A direct consequence of the theorem is that the number of nonisomorphic
indecomposable A-modules is equal to

S 6P < n-4(4),

where n and the P; are as in the proof. We also remark that if M =
P/rad'P, for P indecomposable projective and 1 < ¢ < ¢/(P), the canonical
epimorphism P — M is a projective cover. Moreover, every indecomposable
A-module is uniquely determined, up to isomorphism, by its simple top
(or its simple socle) and its composition length. Indeed, let S(a) be the
simple top of an indecomposable A-module M, and ¢ > 1 be its composition
length. Because M is necessarily uniserial, t = ¢¢(M) and hence M =
P(a)/rad"P(a). We have the following useful fact.

3.6. Corollary. A basic and connected algebra A is a Nakayama algebra
if and only if every indecomposable A-module is uniserial.

Proof. The sufficiency follows from the definition, the necessity from

(3.5). O
3.7. Example. Let A be given by the quiver 0 u 9 g 2 = 9

and bound by afy = 0 (see (IV.4.11)). The indecomposable projective A-
modules are listed as representations of the bound quiver in the notation of
Section 2:

P(1) = (Ke0—0+0) = (1),
P@Q) = (Ko-Ke0—0) = (),
P@3) = (KEKEK—0) = @ = I(1),
PA) = (0—KKLK) = @ - I(2).
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By (3.5), the remaining indecomposable A-modules are

P(2)/rad P(2) = (0«—K«—0-—0) = (2),
P(3)/rad P(3) = (0+—0—K+«—0) = (3),
P@)/rad’P(3) = (0—K-K0) = (3),
P(4)/radP(4) = (0+—0——0—K) = (4) = I(4),
P@)/rad®P(4) = (0—0—K—K) = (3 = I@3).

The notation of Section 2 allows us to easily see the homomorphisms. For
instance, there exists a homomorphism P(3)/rad*P(3) — P(4)/rad®P(4)
of image S(3) and a homomorphism P(3) — P(4) of image P(3)/rad®P(3).
Neither of these homomorphisms is a monomorphism or an epimorphism.
On the other hand, we have a monomorphism P(2) — P(3) of cokernel
S(3), and an epimorphism P(4) — P(4)/rad>P(4) of kernel S(2).

We now characterise the self-injective Nakayama algebras. We recall that
an algebra is said to be self-injective (or a quasi-Frobenius algebra)
if the right module A4 is an injective A-module, or, equivalently, if each
projective right A s4-module is injective.

3.8. Proposition. Let A be a basic and connected algebra, which is not
isomorphic to K. Then A is a self-injective Nakayama algebra if and only
if A= KQ/I, where Q is the quiver

withn >1and I = R" for some h > 2, where R denotes the arrow ideal of

KQ.

Proof. If A is of the given form, then it is a Nakayama algebra by
(3.2) and it follows directly from the computation of the indecomposable
projective and injective A-modules (see (III.2.4) and (II1.2.6)) that A is
self-injective.
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Conversely, assume that A is a self-injective Nakayama algebra and A %
K. The ordinary quiver Q = Q 4 of A cannot be of the form

O 00— +++—0¢———O
1 2 3 n—1 n

with n > 1, because then P(1)4 would be a simple projective noninjective
module. By (3.2), @ has the required form. If n = 1, the only admissible
ideals of K@ are of the form Z = R" for some h > 2. We may thus suppose
that n > 1.

For each ¢ with 0 < ¢ < n, let ¢; denote the length of the shortest path
w1, of source ¢ that belongs to Z, and let h = max{t;| 0 < i < n — 1}.
Because Z is admissible, h > 2. Clearly, {w;, | 0 <i < n — 1} is a set of
generators for Z, hence it suffices to show that ¢; = h for every ¢. Indeed,
assume that this is not the case; then there exists an index i such that
t; < h. Let s € Qg be the source of the unique arrow in @ with target
i. We may clearly assume that t; = h. Let now j € Qo be such that
j+1=1i+t(modn). Because P(i)4 is injective, w; 1 is the longest
path of target j that does not belong to Z. Hence ws,, € Z, because the
target of w,, is j and it is longer than w;:, 1. By definition of ¢5, we have
h =ty <t; < h, which is a contradiction. O

3.9. Example. Let A be the K-algebra given by the quiver
1

y N
30 502
ol

and bound by a8y = 0, fya = 0, yaf = 0. Then A is a self-injective
Nakayama algebra. Its indecomposable projective (= injective) modules
are given by:

P = () = N, =10
P2 = (1) = ¥ : N =103),

P@= ()= &N, = 1)
1

and the remaining indecomposable modules are given by:

PUO)/dP1) = (1) = 0N
POdP = () = 1N

P@R)radP(2) = (2) = N\
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P2)/rad®P(2) = (}) = e \1 X

P(3)/radP(3) = (3) = . / Ny
0

P3)/rad®P(3) = () = , / 1\ p

V.4. Almost split sequences for Nakayama
algebras

We now show how to compute all almost split sequences in the module
category of a Nakayama algebra A. We recall that if M is an indecomposable
A-module of Loewy length ¢, then there exists, up to isomorphism, a unique
indecomposable projective A-module P (the projective cover of M) such
that M = P/rad’P. Moreover, M is nonprojective if and only if ¢t < £¢(P).

4.1. Theorem. Let M = P/radtP be an indecomposable nonprojective
A-module. The sequence

q
0 —rad P/rad'™' P ik (rad P/rad' P) @ (P/rad" ™' P)' =22 p/rad' P — 0

(where g and p are the canonical epimorphisms and i and j are the inclusion
homomorphisms) is an almost split sequence.

Proof. The given sequence is easily seen to be exact. It is not split and
has indecomposable end terms; hence, by (IV.1.13), it suffices to prove that
the homomorphism g = [—j p] is right almost split. It is clear that g is not
a retraction. Let V' be an indecomposable A-module and v : V — M be a
nonisomorphism. We have two cases. If v is not surjective, Im v is contained
in the unique maximal submodule rad M = rad P/rad"P of M = P/rad’ P
But then the homomorphism [ /] : V. —— (rad P/rad’P)& (P/rad"™' P)
satisfies g - [ V] = v. If, on the other hand, v is surjective, because it is not
an isomorphism, we must have V = P/rad’P for some s > t + 1. Hence
there exists an epimorphism v’ : V' — P/rad"™' P such that v = pv’. The
homomorphism [ ]V — (rad P/radt )& (P/rad" ™ P) satisfies g- [g,] = E

It follows immediately that an almost split sequence in the module cate-
gory of a Nakayama algebra has at most two indecomposable middle terms.

4.2. Corollary.  For every indecomposable nonprojective A-module
M, we have {(tM) = ¢(M). In particular, all the nonisomorphic simple
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A-modules belong to the same T-orbit.

Proof. By (3.5), if t denotes the Loewy length of M and P is the projec-
tive cover of M, then M = P/rad’P. Hence, by (4.1), 7M = radP/rad""'P.
Then, by (2.2),

((tM) = {(radP/rad"™ P) = t = ¢(P/rad"P) = {(M).

This shows that all modules in the 7-orbit of M have the same length as M.
O

4.3. Examples. We construct, with the help of (4.1), the Auslander—

Reiten quivers of the algebras of the examples of Section 3.
I6] «

(a) Let Abe the K-algebra given by the quiver ° ° 9 °
and bound by afy = 0. Then I'(mod A) is given by:
(1) (2) (3) (4)
N\ / N\ / ) N\ /
) @ - (3 - O

(compare with (IV.4.11)).
(b) Let A be the K-algebra given by tlhe quiver
N
30 5 Nep!
and bound by afvy = 0, fya =0, yaf = 0. Then I'(mod A) is given by
(1) (2) (3) (1)

Notice that the indecomposable modules (1) and @) appear at both the

extreme left and the extreme right of the quiver. One may thus think of
I'(mod A) as lying on a cylinder.
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V.5. Representation—finite group algebras

The aim of this section is to prove Higman’s characterisation [92] of
the representation—finite group algebras. Throughout this section, we let
K denote a commutative field (not necessarily algebraically closed) and G
a finite group. By algebra A is meant, as usual, a finite dimensional K-
algebra. We note that, if H is a subgroup of G, then the group algebra AH
of H can be identified to a subalgebra of the group algebra AG of G. We
thus have a restriction functor mod AG — mod AH defined in the obvious
way. Given an AG-module M, we also denote by M the corresponding
AH-module; it is always clear from the context which module structure is
being considered.

5.1. Lemma. Let A be an algebra, G be a finite group, and H be a
subgroup of G.

(a) If AG is representation—finite, then AH is also representation—finite.

(b) If the index |G : H] of H in G is invertible as an element of A then
every right AG-module M is isomorphic to a direct summand of M@ s AG.
Further, if AH is representation—finite, then AG is also representation—
finite.

Proof. (a) Let {Mj,..., M;} be a complete set of representatives of the
isomorphism classes of indecomposable AG-modules. Considering each M;
as an AH-module and applying the unique decomposition theorem (1.4.10)
we have that M; = N;1®- - -® Ny, , where each IV;; is an indecomposable AH-
module. We show that each indecomposable AH-module N is isomorphic
to N;; for some pair (4,75) with 1 < ¢ <¢, 1 < j <t;. This clearly means
that AH is representation—finite.

For this purpose, we first consider the K-linear map p : AG— AH
defined by the formula } /s agg — >, anh. Then pis clearly an epi-
morphism of AH-AH-bimodules and actually a retraction of left and right
AH-modules. Let N be an indecomposable AH-module. The composed epi-
morphism N @ 4z AG g Iv&p NQ@agAH g = Nag of AH-modules is
a retraction, so that N is isomorphic to an indecomposable direct summand
of N@ag AG . The AG-module N ® a4 AG 4y is isomorphic to the direct
sum of the modules M;, each of which is isomorphic as an AH-module to
the direct sum of the modules IV;;, with 1 < 5 < ¢;. Another application
of the unique decomposition theorem (I.4.10) yields that N = N;; for some
pair (i,7).

(b) Let s = [G : H] and {g1,92,...,9s} be a complete set of represen-
tatives of the left cosets of H in G, so that G = Hg1 U--- UHgs. Given a
right AG-module M 4G we define two homomorphisms of AG-modules by
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Mag —1— M @an AG gq, z— Y xg;®g; ", and
=1

1
M ®ap AGac L, Mg, T® g xgs

where x € M and g € G. It is easily verified that f and f’ are indeed
homomorphisms of AG-modules. Moreover, f' o f = 1,; indeed, for any
x e M,

(F o f)w) = f'(;slxgi@g;l)
= ixgigfls_
=1

1 1

= x8§ ~ = .

Thus, f is a section, that is, M ¢ is isomorphic to a direct summand of
M ®an AGac.

Assume now that AH is representation—finite and let {Ny,..., N;} be a
complete set of representatives of the isomorphism classes of indecomposable
AH-modules. Let M be an indecomposable AG-module. Then Mg is
isomorphic to a direct summand of M ® sy AGac. On the other hand,
the unique decomposition theorem allows us to write the AH-module M as
Mag & N @+ @ N, where n; > 0 for each 1 < i <t. Hence Maq is

t

isomorphic to an indecomposable direct summand of @ (N; @ ag AG ac)™.
i=1

Applying the unique decomposition theorem (1.4.10) to the AG-modules

N; @ ag AG g, where 1 < i <t, we can write

N; ®ag AGag = My @ -+ - ® My,

where each M;; is an indecomposable AG-module. Consequently, M = M;;
for some pair (7,7) with 1 < 4 < ¢;. This shows that the algebra AG is
representation—finite. [l

As an easy consequence of (5.1), we obtain Maschke’s theorem (1.3.5).

5.2. Corollary. If the characteristic p of K does not divide the order
of the group G then the group algebra KG is semisimple.

Proof. We apply (5.1) to A = K and H = {e}; then AH = K. It
follows from (5.1)(b) that every indecomposable K G-module is isomorphic

to an indecomposable summand of K Qx KGrxa =& KGga and thus is
projective. Consequently, the algebra KG is semisimple. ]

5.3. Lemma. Let K be a field of characteristic p > 0 and Cpm denote
the cyclic group of order p™ with m > 0.

(a) There exists an isomorphism K(Cym & Cpn) = Klt1,to]/(t7 ,15")
of K-algebras.
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(b) There exists an isomorphism KCpm = K[t]/(t"") of K -algebras.
(c) The group algebra K(C), & Cp) is representation—infinite.

Proof. (a) Let a and b denote, respectively, generators of the cyclic
groups Cpm and Cpn, and consider the K-algebra homomorphism

f : K[Tl,Tg] E— K(Cpm @Cpn)

defined by 3, A TiT] — 32, Nij(a’,b?), where A € K for all i,j.
Clearly, f is surjective and the ideal (77 - 1,78 - 1) is contained in
Ker f. Consequently f induces, by passing to the quotient, a surjective
K-algebra homomorphism

[ KTy, To)/(TP =1, T8 — 1) —— K(Cym & Cpn).
‘We have now
dimg K[Ty,To)/(TF" —1,TF" — 1) = p™*" = dimg K(Cym & Cyn).

Therefore f is an isomorphism. Finally, let ¢; :mTl -1 gnd to = Ty =1
Because p is the characteristic of the field K, t{ =77 —1and t§ =
Ty — 1 so that K(Cpm @ Cpn) = Kt1,t2]/ (8] ,t5 ), as required.

(b) The required isomorphism follows from the isomorphism in (a) after
setting n = 0.

(c) Let A = K[t1,t2]/(t1,t2)% Because (t],t5) C (t1,t2)?, we have a
surjective K-algebra homomorphism given by the composition

K(Cy & Cp) = Kty, o]/ (8], t5) ——— K]t1,ta]/(t1,2)* = A,

which induces a full and faithful embedding mod A — mod K(C), & Cp).
Hence it suffices to show that mod A is representation—infinite. For this
purpose, we construct an infinite family {M4}q>1 of pairwise nonisomorphic
indecomposable A-modules.

Let d > 1 be an arbitrary natural number. Consider the K [¢]-module
Ny = K[t]/(t%) of dimension d. It is well-known and easy to check that Ny
is indecomposable as a K[t]-module and that End k) Ng = K[t]/(t%).

We define a K[t1,tz]-module structure on the K-vector space My =
Ny @ N4 by the formulas (r,q) - t;1 = (0,7 - t) and (r,q) - t2 = (0,7), for
r,q € Ng. Because (r,q) - t? = 0, (r,q) - t3 = 0, and (r,q) - t1t2 = 0 for
any 7,q € Ng, we see that My is annihilated by the ideal (t1,%2)? and thus
has a natural A-module structure. Moreover, dimx My = 2d; hence the
modules M, are pairwise nonisomorphic. To complete the proof, we show
that for any d > 1 the endomorphism algebra End 4 My is local, so that My
is indecomposable as an A-module. Let

f=f 2] Nee Ne— Noa@ Ny
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be a K-linear endomorphism of the A-module My = Ny @ Ng, where f;; :
Ng — Ny are K-linear endomorphisms. Clearly, f is a homomorphism of
A-modules if and only if f((r,q) - t1) = (f(r,q)) - t1 and

f((rv Q) 't2) = (f(r, q)) -2

for all r,q € Ng. An immediate calculation shows that this is the case if
and only if f12 =0, f11 = fo2 and f1; is an endomorphism of Ny viewed as
a K[t]-module. Consider the K-algebra homomorphism

¢ Enda Mg — Endgpy) Ng = K[t]/(td)

defined by f +— f11. Clearly, ¢ is surjective and Ker ¢ consists of those
f € Enda My such that fi1 = fia = foo = 0 (thus f € Kery implies
f? =0). To show that End4 My is local, it suffices, by (1.4.6), to show that
any idempotent e € End g My equals either zero or the identity. Because
¢(e) is an idempotent of the local algebra

EndK[t] Ng = K[t]/(td),

p(e) is either zero or the identity. In the former case, e € Ker ¢, hence
e? =0 so that e = e? = 0. In the latter, 157, — e € Ker ¢ yields (157, —€) =
(1ar, — €)? = 0, hence e = 17,. This completes the proof. O

We note that the proof of (c) shows in fact that K(Cpm @ Cpn) is
representation—infinite for all m,n > 1. Moreover, the isomorphisms of
the lemma allow us to construct bound quivers representing the group alge-
bras arising from groups of the form Cpm @ Cp,». For instance, over a field
K of characteristic 2, the group algebra of the Klein four group Cy & Cs is

glVen by the qul\/er
o C\OQﬂ
1

and bound by o? = 0, 32 = 0, af = Ba. Moreover, this algebra is
representation—infinite (by (¢)). On the other hand, over a field of char-
acteristic p > 0, the group algebra of the cyclic group Cp= is given by the

quiver

and bound by a?” = 0. Such an algebra is a Nakayama algebra and thus
is representation—finite (by (3.7) and (3.5)).

We now need to recall a few facts from elementary group theory. Let G
be a finite group acting on itself by conjugation. To determine the number
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of elements in the conjugacy class of an element x € G, we consider the
centraliser
Zy={ye€CGlyay ' =z}

of x: this is a subgroup of G containing x. Clearly, yzy ! = zxz~! if and

only if yZ, = zZ, so that the number of distinct conjugates of z is the
same as the number [G : Z,] of left cosets of Z, in G. In particular, =
coincides with all its conjugates if and only if « belongs to the centre Z(G)
of G. Because every element of G belongs to exactly one conjugacy class,
we deduce the so-called class equation

G = 12(G)| + Y _[G: Zi],

where the sum is taken over a set of representatives {x} of those conjugacy
classes of G such that [G : Z,] # 1. Let p be a prime number. A finite
group G is called a p-group if |G| = p™ for some m > 0.

We need the following lemma.

Lemma 5.4. Let G be a p-group; then the centre Z(G) of G is nontriv-
ial. If, moreover, G is not abelian, then G/Z(G) is a nontrivial noncyclic
group.

Proof. The first assertion follows from the class equation. Indeed, if
the conjugacy class of z € G contains more than one element, then Z, # G.
By Lagrange’s theorem, p divides [G : Z,]. The class equation then implies
that p divides |Z(G)|. In particular, Z(G) is nontrivial.

Because G is not abelian, G/Z(G) is not trivial. Assume that G/Z(G) is
cyclic and is generated, say, by a coset z for some z € G. Then any element
y € G is of the form y = x®z, where s > 0 and z € Z(G). But this implies
that G is abelian, which is a contradiction. Hence G/Z(G) is not cyclic. O

Corollary 5.5. If |G| = p?, then G is abelian.

Proof. It suffices to show that G/Z(G) is cyclic, and this follows from
the fact that Z(G) is not trivial, so that |G/Z(G)| equals 1 or p. O

We are now able to prove Higman’s characterisation of the representation—
finite group algebras. We recall that if G is a finite group of order p™n,
where p is a prime that does not divide n, a Sylow p-subgroup G, of G
is a subgroup of order p™. The celebrated Sylow theorems assert that G
contains a p-Sylow subgroup and that all Sylow p-subgroups are conjugate
(and, in particular, are isomorphic).

5.6. Theorem. Let G be a finite group and let K be a field of charac-
teristic p dividing the order of G. The group algebra KG is representation—
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finite if and only if the Sylow p-subgroups G, of G are cyclic.

Proof. By definition of G, the integer p does not divide s = [G : G,)
and therefore s is invertible in K. By (5.1)(b), it suffices to prove the
theorem in case G = G, is a p-group. Assume that |G| = p™.

One implication is trivial: indeed, assume that G is cyclic, that is, G =
Cpm. Then, by (5.3)(b), the group algebra KG is a Nakayama algebra,;
hence it is representation—finite (by (3.5)).

Conversely, assume that G is not cyclic. We must prove that KG is
representation—infinite. For this purpose, we first show by induction on m
that there exists a group epimorphism G — Cp @ C).

If m = 2, then G is of order p?, hence is abelian, by (5.5), so that
G=C,oC).

Assume that m > 2. Clearly, the statement holds if G is abelian. If
this is not the case, then, by (5.4), G = G/Z(G) is a nontrivial noncyclic
group, of order p* with k < m, because Z(G) is nontrivial. The inductive
hypothesis implies the existence of a group epimorphism G — Cp & C),
and the required epimorphism follows after composing with the canonical
epimorphism G — G. This finishes the proof of our claim.

The group epimorphism G — C}, @& C, obviously induces a surjective
algebra homomorphism KG — K(C, @ C,) and consequently a full and
faithful K-linear functor mod K (Cp@®C),) — mod KG. By (5.3), the algebra
K(Cp, ® Cp) is representation-infinite. Hence K G is also representation-
infinite. U

5.7. Example. Let A4 denote the alternating group on four objects.
Then K A, is representation—finite if K is a field of characteristic 3 and
representation—infinite if K is a field of characteristic 2. Indeed, a straight-
forward calculation, left as an exercise to the reader, shows that the Sylow
3-subgroup of Ay is isomorphic to the cyclic group C35, while the Sylow
2-subgroup of Ay is isomorphic to the Klein four group Cs & Cs.

V.6. Exercises

1. A module M over an arbitrary algebra A is called a Nakayama
module if M is the direct sum of uniserial modules. Let A be a right (or
left, respectively) serial algebra. Show that every submodule (or quotient
module, respectively) of a Nakayama module is a Nakayama module.

2. Show that A is a Nakayama algebra if and only if A/radQA is a
Nakayama algebra.
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3. For each of the following bound quivers (Q,Z)

@) gy =0 =0
(b) 0 d o0 2 o——o  afi =0,y =0;
(c) 1°+02 af =0, fa=0;
lo—% 09
(d) 5T lﬁ aB=0,0y=0v5=0
Y

40— 03

describe the path algebra A = KQ/Z, all the indecomposable A-modules,
and the homomorphisms between them.

4. Let 0 — L — M — N — 0 be a short exact sequence. Show
that €6(M) < €0(L) + £4(N).

5. For each of the following bound quivers (Q,7)

(a) o# o2 o aff = 0;

(b) V N‘ afya=0,~vaf =0
o —'Y) o

describe the Nakayama algebra A = K(@Q/Z and compute all the indecom-
posable A-modules. Then, for each pair (M, N) of indecomposable modules,
compute the vector spaces Hom 4 (M, N), Hom 4 (M, N), and Hom 4 (M, N).

6. Construct the Auslander—Reiten quiver of the Nakayama algebras
defined by each of the following bound quivers:

(c) O(L o2 o af = 0;

(d) f/ N yaf =0, afya = 0;
o] —'Y) o
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() o—0 o 0o o aB = iy =8 = 0;
(f) ool 0l o0t o affy = 0,78 = 0;
(g) O<Z:>o af = 0;
(h) o——% afa = 0;
[©]

(i) ﬁ/ N” aff =y =~a=0;

[©] —7) e]

o %O

§) J lﬁ aff=py=~6=0.

O «——©O

7. Let A be a Nakayama algebra and P be indecomposable projective
with P/rad P = S. Show that

rad’ P/rad™' P = 1'S

for every 0 < i < ¢(P) (so that all the composition factors of P belongs to
the same 7-orbit).

8. Let A be a connected Nakayama algebra. Show that there exists an
ordering {Py, Ps, ..., P,} of the nonisomorphic indecomposable projective
A-modules such that

(a) Py1/rad Piyq & 77 1(P;/rad P;) for 1 <i <n—1, and if £(P;) # 1
then Py /rad P, = (P, /rad P,);

(b) ¢(P;) > 2 for i =2,...,n; and

(€) {(Piy1) <Ll(P)+1foreveryi=1,....,n—1and {(P) <{(P,)+1.
Such an ordering, called a Kupisch series for A, is unique up to a cyclic
permutation (or simply unique if ¢(P;) = 1).

9. Assume that A is a connected Nakayama K-algebra with Kupisch
series {P1, ..., P,}. Show that £(P,41) = ¢(P;) + 1 if and only if P; is not
injective for ¢ = 1,...,n — 1 and ¢(P;) = ¢(P,) + 1 if and only if P, is not
injective.

10. Compute a Kupisch series for each of the Nakayama algebras of
Exercise 6.
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11. Let A be a self-injective connected Nakayama algebra. Show that
every indecomposable projective A-module has the same length ¢¢(A).

12. Let A = KQ/R?, where Q is the quiver

(n > 3) and R is the two-sided ideal of K@ generated by the arrows. Show
that A is self-injective, but that eAe, where e = eg+e1+...+¢er (k <n—1),
is not.

13. Let (a1,...,a,) be a sequence of integers such that a; > 2 for all
Jj>2,0aj41 <1+a;for j <n-1,and a; <1+a,. Construct a Nakayama
K-algebra having the sequence (a1, ...,a,) as a Kupisch series.

14. Construct the Auslander—Reiten quiver of the K-algebra A defined
by the following bound quiver:
o

ﬂ‘/ N‘ vyaf =0, By =0.

O ——— O
~

Compute the global dimension gl.dim A of A.
15. Let A be the K-algebra given by the quiver 10 Z<:> o2 and
bound by the relation afa = 0. Using the notation (2.7), show that

P(2)a = @ and  P(1)4 = @ .

2
Prove that the K-vector space Hom 4(P(2), P(1)) is of dimension two.



Chapter VI
Tilting theory

Tilting theory is one of the main tools in the representation theory of
algebras. It originated with the study of reflection functors [32], [18]. The
first set of axioms for a tilting module is due to Brenner and Butler [46];
the one generally accepted now is due to Happel and Ringel [89]. The main
idea of tilting theory is that when the representation theory of an algebra
A is difficult to study directly, it may be convenient to replace A with
another simpler algebra B and to reduce the problem on A to a problem
on B. We then construct an A-module T', called a tilting module, which
can be thought of as being close to the Morita progenerators such that, if
B = End T4y, then the categories mod A and mod B are reasonably close to
each other (but generally not equivalent). As will be seen, the knowledge of
one of these module categories implies the knowledge of two distinguished
full subcategories of the other, which form a torsion pair and thus determine
up to extensions the whole module category. Because this procedure can be
seen as generalising Morita theory, it is reasonable to give special attention
to the full subcategory GenTy4 of all A-modules generated by T" and to use
the adjoint functors Hom 4 (T, —) and —® T to compare mod A and mod B.

Some notation is useful. Throughout this chapter, we let A denote an
algebra, by which is meant, as usual, a finite dimensional, basic, and con-
nected algebra over a fixed algebraically closed field K. For an A-module
M, we denote by add M the smallest additive full subcategory of mod A
containing M, that is, the full subcategory of mod A whose objects are the
direct sums of direct summands of the module M. In many places, we con-
sider the restriction to a subcategory C of a functor F' defined originally on
a module category, and we denote it by F|c.

VI1.1. Torsion pairs

It is a well-known fact from elementary abelian group theory that there
exists no nonzero homomorphism from a torsion group to a torsion-free one
and that these two classes of abelian groups are maximal for this property.
Generalising this situation, we obtain the concept of a torsion pair, valid in
any abelian category, but which we need only for module categories. The
following definition is due to Dickson [53].

184
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1.1. Definition. A pair (7, F) of full subcategories of mod A is called
a torsion pair (or a torsion theory) if the following conditions are satis-
fied:

(a) Homy(M,N)=0forall M € T, N € F.
(b) Homa (M, —)|7 =0 implies M € 7.
(¢) Homa(—, N)|z = 0 implies N € F.

The first condition of the definition says that there is no nonzero homo-
morphism from an object in 7 to one in F, and the other two conditions say
that these two subcategories are maximal for this property. In analogy with
the situation for abelian groups, the subcategory 7 is called the torsion
class, and its objects are called torsion objects, while the subcategory
F is called the torsion-free class, and its objects are called torsion-free
objects. It follows directly from the definition that the torsion class and
the torsion-free class determine uniquely each other.

1.2. Examples. (a) An arbitrary class C of A-modules induces a tor-
sion pair as follows: let F = {N | Homa(—,N)|c = 0} and 7 = {M |
Homy (M, —)|7 = 0}. Then (7,F) is a torsion pair, and 7 is in fact the
smallest torsion class containing C. The dual construction yields the small-
est torsion-free class containing C.

(b) If (7, F) is a torsion pair in the category mod A of all finite dimen-
sional right A-modules, and D : mod A — mod A°P denotes the standard
duality, then (DF, DT) is a torsion pair in mod A°P.

(c) Let A be the path algebra of the quiver

b B3
and let 7 = add {01040114001}, F = add {1004 1106111} (where the in-
decomposable A-modules are represented by their dimension vectors). Then
(T,F) is a torsion pair. We may illustrate (7, F) in the Auslander—Reiten
quiver I'(mod A) of A, adopting the convention (which we keep throughout
this chapter and the next) to shade the class 7 as (_ ) and the class F as

(d) Let A be as in (c). Then we have another torsion pair (7, F), illus-
trated as follows in I'(mod A):
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Our first objective is to give an intrinsic characterisation of torsion (or
torsion-free) classes. For this purpose, we need one further definition.

1.3. Definition. A subfunctor ¢ of the identity functor on mod A is
called an idempotent radical if, for every module M4, we have t(tM) =
tM and t(M/tM) = 0.

We recall that a subfunctor of the identity functor on mod A is a func-
tor t : mod A— mod A that assigns to each module M a submodule
tM C M such that each homomorphism M — N restricts to a homomor-
phism tM — tN. As we now show, each torsion pair induces an idempotent
radical and conversely.

1.4. Proposition. (a) Let T be a full subcategory of mod A. The fol-
lowing conditions are equivalent:

(i) 7 is the torsion class of some torsion pair (T,F) in mod A.
(il) 7 1s closed under images, direct sums, and extensions.
(iii) There exists an idempotent radical t such that T = {M | tM = M }.

(b) Let F be a full subcategory of mod A. The following conditions are
equivalent:

(i) F is the torsion-free class of some torsion pair (T,F) in mod A.
(ii) F s closed under submodules, direct products, and extensions.
(i) There exists an idempotent radical t such that F = {N | tN = 0}.

Proof. We only prove (a); the proof of (b) is similar.
(i) implies (ii). A short exact sequence 0 - M’ — M — M" — 0 of
A-modules induces a left exact sequence of functors

0 — Homu(M",—)|x — Homa (M, —)| — Homa(M', —)|#.

Hence M € T implies M"” € T and, similarly, M', M" € T imply M € 7.
The statement follows.

(ii) implies (iii). Let M be any A-module and tM denote the trace
of 7 in M, that is, the sum of the images of all A-homomorphisms from
modules in 7 to M. Because 7 is closed under images and direct (hence
arbitrary) sums, tM is the largest submodule of M that lies in 7. The trace
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defines a subfunctor of the identity: if f : M — N is a homomorphism,
then f(tM) C tN for, if g : X — M is a homomorphism with X € T,
then fg : X — N has its image lying in tN. Moreover, we clearly have
t(tM) =tM and M € 7 if and only if tM = M. Finally, let M be arbitrary
and assume that ¢(M/tM) = M'/tM with tM C M’ C M. Because 7T is
closed under extensions, tM, M'/tM € T yield M’ € T. Hence M’ C tM
and t(M/tM) = 0.

(iii) implies (i). Let F = {N | tN = 0}. Clearly, Homa(M,—)|r =0
for all M € 7. We claim that, conversely, Hom4 (M, —)|x = 0 implies
M € T. Indeed, t(M/tM) = 0 gives M/tM € F. The canonical surjection
M — M/tM being zero, we have M/tM = 0 so that M = tM € T.
Similarly, Hom4(—, N)|7 = 0 implies that N € F. O

An immediate consequence is that a torsion (or a torsion-free) class is an
additive, hence K-linear, subcategory of mod A, closed under isomorphic
images, extensions, and direct summands.

The idempotent radical ¢ attached to a given torsion pair is called the
torsion radical. It follows from its definition that, for any module My,
we have tM € T and M/tM € F. The uniqueness follows from the next
proposition, which also says that any module can be written in a unique
way as the extension of a torsion-free module by a torsion module.

1.5. Proposition. Let (T,F) be a torsion pair in mod A and M be an
A-module. There exists a short exact sequence

0 —tM — M — M/tM — 0
with tM € T and M/tM € F. This sequence is unique in the sense thal,

if0— M — M — M" — 0 is exact with M' € T, M" € F, then the two
sequences are isomorphic.

Proof. Only the second statement needs a proof. Because M’ € T
and tM is the largest torsion submodule of M, there exists a commutative
diagram with exact rows

0o —— M M M — 0
|
jJ, 11Wl fl
1

0 —— M M M/IM —— 0

where j denotes the inclusion and f is obtained by passing to the cokernels.
The Snake lemma (I1.5.1) yields tM /M’ = Ker f. Because tM/M’' € T and
Ker f € F, we get M" = M/tM and tM/M' = 0. O

A short exact sequence as in the proposition is called the canonical
sequence for M. For instance, in Example 1.2 (d), the canonical sequence
for the indecomposable module M = 110 (which is neither torsion nor
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torsion-free) is 0 — 100 — 110 — 010 — 0. The following obvious
corollary is sometimes useful.

1.6. Corollary. FEvery simple module is either torsion or torsion-free.
O

A torsion pair (7, F) such that each indecomposable A-module lies either
in 7 or in F is called splitting. This is the case in example (1.2)(c) (but
not in (1.2)(d)). Splitting torsion pairs are characterised as follows.

1.7. Proposition. Let (7,F) be a torsion pair in mod A. The following
conditions are equivalent:

(a) (T,F) is splitting.

(b) For each A-module M, the canonical sequence for M splits.
(c) ExtYy(N,M)=0 forall M e T, N € F.
(d) IfM €T, thent IMeT.
(e) If N € F, then TN € F.

Proof. (a) implies (b). Let M4 be any module and M’ (or M") denote
the direct sum of all the indecomposable summands of M that belong to
7T (or F, respectively). We have a split short exact sequence 0 — M’ —
M — M" — 0 with M’ € T, M" € F, which is, by (1.5), isomorphic to the
canonical sequence.

(b) implies (c¢). Any short exact sequence 0 — M — E — N — 0 with
M €T and N € F is a canonical sequence, by (1.5).

(c) implies (a). Let M be indecomposable. The hypothesis implies that
the canonical sequence for M splits. Hence M = tM @ (M/tM) so that
either M = tM or M = M/tM.

(a) implies (d). Let 0 — M — @, , E; — 7'M — 0 be the almost
split sequence starting with M, where the modules F1,... , E, are inde-
composable. Because Homa (M, E;) # 0 for all 4, the hypothesis implies
that F; € T for all 7. Hence @?:1 E; € T so that 77'M € T. We prove
similarly that (a) implies (e).

(d) implies (¢). Let M € T and N € F. By the Auslander—Reiten
formulas (IV.2.13), Ext! (N, M) = DHom (7'M, N). Because 7'M € T
and N € F, we have Homa (7~ M, N) = 0. Hence Ext! (N, M) = 0. We
prove similarly that (e) implies (c). O

Let T be an arbitrary A-module. We define Gen T to be the class of all
modules M in mod A generated by T, that is, the modules M such that there
exist an integer d > 0 and an epimorphism 7T¢ — M of A-modules. Dually,
we define CogenT' to be the class of all modules N in mod A cogenerated
by T, that is, the modules N such that there exist an integer d > 0 and a
monomorphism N — T¢ of A-modules.
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We ask when the class Gen T is a torsion class and when the class Cogen T’
is a torsion-free class. It is clear that Gen T is closed under images, Cogen T’
is closed under submodules, and both classes are closed under direct sums.
There remains thus, by (1.4), to see when they are closed under extensions.
This is generally not the case: let A be an algebra having two nonisomorphic
simple modules S, S’ such that Ext} (S, S”) # 0; then neither Gen (S & S”)
nor Cogen (S @ S’) is closed under extensions.

Before answering these questions, we derive a necessary and sufficient
condition for an A-module to belong to GenT (or to CogenT). We write
B = EndTy4 so that T is endowed with a natural left B-module structure,
compatible with the action of A, making it a B—A-bimodule.

1.8. Lemma. Let M be an A-module.
(a) M € GenT if and only if the canonical homomorphism

er s Homa (T, M) @ T — M

defined by f @t — f(t) is surjective, where B = EndT4.
(b) M € CogenT if and only if the canonical homomorphism

na : M — Homp(Homa (M, T),T)
defined by x — (g — g(x)) is injective.

Proof. We only prove (a); the proof of (b) is similar. Assume M €
GenT and let f1,...,fs be a basis of the K-vector space Homy (T, M).
Then f = [fi...f4] : T — M is an epimorphism. Indeed, there exist
m > 0 and an epimorphism g : T™ — M. It follows from the definition of
f that there exists h : T™ — T such that ¢ = fh, so that f is surjective.
Let L = Ker f, and apply Hom 4 (7', —) to the short exact sequence

0—L—1T¢ 0.

Because Hom 4 (T, f) is an epimorphism by the definition of f, this yields a
short exact sequence

Homa (T, f)
e

0 — Homu(T, L) — Homa(T,T%) Hom (T, M) — 0.

Applying — ®p T, we obtain the upper row in the commutative diagram
with exact rows

Homu(T, L) ®5 T — Homu(T,T?) @p T — Homa(T,M)®pT — 0
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The composite homomorphism
epa : Homua(T, T @p T = B* @5 T = T?

is an isomorphism. By the commutativity of the right square, the homo-
morphism e, is surjective.

Conversely, because Hom 4 (T, M) is a finitely generated B-module, there
exist m > 0 and an epimorphism g : B™ — Homa (T, M), hence an epimor-
phism

T =B 25T 21, Homa(T, M) @p T —— M,
so M € GenT. O

The following lemma answers our questions.

1.9. Lemma. (a) Assume that Exty (T, —)|genT = 0; then GenT is a
torsion class. If this is the case, then the corresponding torsion-free class is
the class {M | Hom (T, M) = 0}.

(b) Assume that Ext!y(—, T)|cogenT = 0; then CogenT is a torsion-free
class. If this is the case, then the corresponding torsion class is the class
{M | Homa(M,T) = 0}.

Proof. We only prove (a); the proof of (b) is similar. Assume that
0— M —M-—M' —0

is a short exact sequence with M’, M” € GenT. Because Ext! (T, M") = 0,
we have a short exact sequence

0 — Homu (T, M') — Homu (T, M) — Homa(T,M") — 0,

which yields, after applying — ®p T, the upper row in the commutative
diagram with exact rows

Homu (T, M"Y ®p T — Homua(T,M)®pT — Homua(T,M")®pT — 0

EM/l E]\{l EM//l

0—— M’ —_— M _— M — 0

Because, by (1.8), ey and ey are epimorphisms, so is ep. A further
application of (1.8) yields that M € GenT so that GenT is indeed closed
under extensions.

For the second statement, we notice that every torsion-free module M
satisfies Hom 4 (T, M) = 0. Conversely, if Hom4 (T, M) =0 and X € GenT,
there exist m > 0 and an epimorphism 7™ — X. But this implies that
Homy (X, M) = 0. O
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1.10. Definition. Let C be a full K-subcategory of mod A. An A-
module M € C is called Ext-projective in C if Ext! (M, —)|c = 0. Dually,
it is called Ext-injective in C if Ext! (—, M)|c = 0.

This definition, due to Auslander and Smalg [22], is clearly motivated by
Lemma 1.9. Thus GenT is a torsion class if T' is Ext-projective in Gen T’
and, dually, CogenT is a torsion-free class if T' is Ext-injective in CogenT'.
The following proposition characterises completely Ext-projectives and Ext-
injectives in torsion or torsion-free classes.

1.11. Proposition. Let (T,F) be a torsion pair in mod A and M be an
indecomposable A-module.
(a) Assume that M lies in T.
(i) M is Ext-projective in T if and only if TM € F.
(ii) M is Ext-injective in T if and only if there exist an injective
module E ¢ F and an isomorphism M = tE.
(b) Assume that M lies in F.

(i) M is Ext-injective in F if and only if T~1M € T.
(ii) M is Ext-projective in F if and only if there exist a projective
module P ¢ T and an isomorphism M = P/tP.

Proof. We only prove (a); the proof of (b) is similar. Suppose TM € F.
Then, for any X € 7, we have

Extly (M, X) 2 DHoma(X, ™M) C DHoma(X,7M) = 0.

Thus, M is Ext-projective in 7. Conversely, if 7TM ¢ F, then, in the
canonical sequence

0 — t(tM) % 7M - TM/t(TM) — 0,

the epimorphism v is not an isomorphism and, in particular, is not a retrac-
tion. Considering the almost split sequence

0—>TML>NL>M—>O,

we deduce the existence of a homomorphism i : N — 7M/t(7M) such that
hf = v. Because v is surjective, so is h, and we have a commutative diagram
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with exact rows and columns:

TM/t(rM) = TM/t(rM)

l l

0 0

The first row is not split (for if ¢’ were a retraction, so would be g) and
consequently Extl (M, t(rM)) # 0. Thus, M is not Ext-projective in 7.

Let E ¢ F be injective and X € 7. The functor Hom 4 (X, —) applied to
the short exact sequence 0 — tE — E — E/tE — 0 yields

0 = Homa (X, E/tE) — BExty(X,tF) — Ext4(X,E) = 0.

Thus tE is Ext-injective in 7. Conversely, let M € 7 be Ext-injective and
FE be its injective envelope. Because M C FE, we have M C tE. Consider
the short exact sequence 0 - M — tE — tE/M — 0. Because tE € T, we
have tE/M € T. The Ext-injectivity of M in 7 implies that the sequence
splits. Hence M is a direct summand of tE. The statement follows. O

In example (1.2)(c), 7 = Gen (010 & 011), the indecomposable Ext-
projectives in 7 are 010 and 011, and the indecomposable Ext-injectives
are 001 and 011, whereas F = Cogen (111) and every indecomposable in F
is both Ext-injective and Ext-projective.

VI1.2. Partial tilting modules and tilting modules

We now introduce a class of modules that induce torsion pairs in a natural
way.

2.1. Definition. Let A be an algebra. An A-module T is called a par-
tial tilting module if the following two conditions are satisfied:

(T1) pdTa <1,

(T2) ExtL(T,T)=0.
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A partial tilting module T is called a tilting module if it also satisfies the
following additional condition:

(T3) There exists a short exact sequence 0 — A4 — T — T — 0 with
T, 7" in add T.

Thus, any projective A-module is trivially a partial tilting module, and
any Morita progenerator is a tilting module. In fact, the axioms can be
understood to mean that a partial tilting module is a module that is “close
enough” to a projective module, and a tilting module is a module that is
“close enough” to a Morita progenerator. The third condition (T3) may be
reformulated to say that a partial tilting module T4 is a tilting module if
and only if, for any indecomposable projective A-module P, there exists a
short exact sequence

0 — Py —T) — T4 —0

with T/, 7" in add T.
One easy consequence of (T3) is that every tilting module is faithful. We
recall that an A-module is faithful if its right annihilator

AnmmM ={a € A| Ma=0}
vanishes. We need the following characterisation of faithful modules.

2.2. Lemma. Let A be an algebra and M be an A-module. The following
conditions are equivalent:
(a) My is faithful.
(b) For any basis {f1,..., fa} of the K-vector space Hom4 (A, M), the
K-linear map f = [f1... fa)' : Aa — M? is injective.
(c) Aa is cogenerated by M.
(d) DA, is generated by M.

Proof. Let {f1,..., fa} be a basis of the K-vector space Hom (A4, M).
Then M is faithful if and only if

f=1f1-. fa': Ay — M?

is a monomorphism; indeed, f(a) = 0 for some a € A if and only if g(a) =0
for some a € A and any g € Hom (A, M). Using the canonical isomorphism
M4 = Homyu (A, M), this is equivalent to saying that Ma = 0 for some
a € A. This implies the equivalence of (a), (b), and (c).

The right annihilator {a € A | Ma = 0} of M4 coincides with the left
annihilator {a € A | aDM = 0} of 4DM. Therefore, M4 is faithful if and
only if 4 A is cogenerated by 4 DM or, equivalently, DA 4 is generated by
D(DM) = M. O
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Applying the equivalence of (a) and (c), the monomorphism A4 — T
of (T3) shows that every tilting module is faithful.

Given a partial tilting module Ty, we ask whether the class GenT is a
torsion class. We also consider the full subcategory 7 (T') of mod A defined
by T(T) = {Ma | Ext}y(T, M) = 0}.

2.3. Lemma. Let T be a partial tilting module. Then

(a) GenT is a torsion class in which T is Ext-projective, and the cor-
responding torsion-free class is F(T) = {M4 | Homa (T, M) = 0};

(b) T(T) is a torsion class in which T is Ext-projective; and and the
corresponding torsion-free class is CogentT'; and

(¢) GenT CT(T).

Proof. Assume that M € GenT. There exist m > 0 and an epimor-
phism T — M. Because pd T < 1, this epimorphism induces an epimor-
phism 0 = Ext(T,7™) — Ext!4 (T, M). Hence ExtY (T, M) = 0. Thus
the functor Exth (T, —)|genT equals zero and, by (1.9)(a), GenT is a tor-
sion class in which T is Ext-projective. Moreover, we have shown that
GenT C 7(T) and (1.9)(a) implies that the torsion-free class correspond-
ing to GenT is F(T). This shows (a) and (c).

To prove (b), let 0 = M’ — M — M" — 0 be a short exact sequence.
Applying Homy (T, —) yields a right exact sequence

Ext! (T, M) — BExt4 (T, M) — Ext4 (T, M") — 0;

hence M/, M" € T(T)imply M € T(T)and M € T (T') implies M" € T(T).
Because 7 (T) is closed under direct sums, it is a torsion class, in which
T is clearly Ext-projective. For the corresponding torsion-free class, we
observe that, because pd T' < 1, we have, by (IV.2.14), that Ext!, (T, M) =
DHoma (M, 7T) and thus M € T(T) if and only if Homa(M,7T) = 0.
Moreover, for each X in Cogen 7T, we have

Ext! (X, 7T) = DHom 4(T, X) € DHoma (T, X) =0,

because Hom 4 (T, 7T) = 0. It follows that the restriction of ExtY (—, 77T") to
Cogen 7T is zero. Hence, by (1.9)(b), Cogen7T is a torsion-free class whose
corresponding torsion class is {M | Hom 4(M,7T) = 0} = T(T). O

It is easy to see that every injective A-module is torsion in the torsion
pair (7 (T'),CogentT). Also, if a projective module P lies in GenT', then
P € addT. Indeed, if P € GenT, there exist m > 0 and an epimorphism
T™ — P that must split, because P is projective.
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In Example 1.2 (c), the module T'= 010 011 is a partial tilting module.
Indeed, pd T < 1, as seen from the projective resolutions

0 — P(1) — P(2) — 010 — 0,
0 — P(1) — P(3) — 011 — 0.
In fact, it is easy to see that in this example, we have gl.dim A = 1. Algebras

with global dimension one are called hereditary and are studied in detail in
the following chapters. Because 011 is injective,

Ext!y (T, T) = Ext} (010 & 011,010) 2 DHom 4 (010, 7(010 & 011))
=~ DHom 4(010, 100 @ 110) = 0.

The torsion pair illustrated in Example 1.2 (c) is the pair (GenT, F(T));
the pair (7 (T'), Cogen7T) is illustrated as follows:

In this case, the inclusion of (2.3)(c) is proper.

In Example 1.2 (d), the module T = 100 & 111 & 001 is a partial tilting
module. Indeed, pdT < 1 because gl.dim A = 1. Because 100 & 111 is
projective, whereas 001 @ 111 is injective, we have

Extl(T,T) = Ext}(001,100) = DHom 4 (100, 7(001))
= DHom4(100,010) = 0.

In fact, T is even a tilting module: because P(1), P(3) € add T, the short
exact sequence
0 — P(2) — 111 — 001 — 0

shows that (T3) is satisfied. In this case, the classes (GenT,F(T)) and
(T(T),CogentT) coincide and are illustrated in Example 1.2 (d).

As the reader may have noticed, the formula of (IV.2.14), asserting that
Ext!y (T, M) = DHom (M, 7T) whenever pd T < 1, is extremely useful in
these computations.

The following lemma, known as Bongartz’s lemma [33], justifies the
name of partial tilting module; it asserts that a partial tilting module may
always be completed to a tilting module.



196 CHAPTER VI. TILTING THEORY

2.4. Lemma. Let Ty be a partial tilting module. There exists an A-
module E such that T @ E is a tilting module.

Proof. Let ey, ... ,e4 be abasis of the K-vector space Extk(‘T, A). Rep-
resent each e; by a short exact sequence 0 — A == E; 2T — 0.
Consider the commutative diagram with exact rows

d
0 — At L pp -2 17 —— 0

(+) 0 — A

f1 O g1 O

where f = , g = and k = [1,...,1] is the codiagonal
O fa O gd

homomorphism. We denote by e the element of Ext} (7%, A) represented

by the lower sequence (). Let u; : T — T be the inclusion homomorphism

in the ith coordinate. We claim that e; = Extl (u;, A)e for each i with

1 <1 < d. Indeed, consider the commutative diagram with exact rows

EE 2 T — 0

" ’ .

d
0 —— Ad f @Ei g T —— 0

7

T I

(+) 0 —s A —Y5 B M, 14 — ¢

where u}, u/ denote the respective inclusion homomorphisms in the ith
coordinate. Because ku; = 14, we deduce a commutative diagram with
exact rows

0 — A Ly B % 7 — 0
Ll
(%) 0 — A — E Y T4 —— 0

hence our claim. Applying Hom4 (T, —) to (%) yields an exact sequence

- — Homu (T, T%) -% ExtY(T, A) — Ext (T, E) — Ext4(T,T%) = 0.
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Because e; = Ext!y (u;, A)e = 6(u;), each basis element of Ext!, (T, A) lies in
the image of the connecting homomorphism J, which is therefore surjective.
Hence Ext!y (T, E) = 0. Applying now Hom(—,T) and Homa(—, E) to ()
yields respectively

0 = Exty (7%, T) — Ext!(E,T) — Ext'(A,T) =0,
0 = Ext4 (7%, E) — Ext4(E, E) — Ext'(A, E) = 0;

hence Ext4 (E®T, E®T) = 0. It follows from the short exact sequence ()
that pd E < 1, hence that pd (T @ E) < 1 and the module T @ E satisfies
the axiom (T3). O

The short exact sequence () constructed in the proof of the lemma is
referred to as Bongartz’s exact sequence. As a first consequence, we
obtain the following characterisation of tilting modules.

2.5. Theorem. Let Ty be a partial tilting module. The following condi-
tions are equivalent:

(a) Ty is a tilting module.

(b) GenT =T(T).

(¢c) For every module M € T(T), there exists a short exact sequence
0—-L—Ty—M—0 withTy €addT and L € T(T).

(d) Let X be an A-module. Then X € addT if and only if X is Ext-
projective in T (T).

(e) F(T) = CogentT.

Proof. Because (b) and (e) are clearly equivalent (by (2.3)), it suffices
to establish the equivalence of the first four conditions.

(a) implies (b). Assume that T is a tilting module and let M € T(T).
We must show that M € GenT or, equivalently, that M = tM, where t is
the torsion radical associated to the torsion pair (GenT, F(T)). Applying
Homy (T, —) to the canonical sequence 0 — tM — M — M/tM — 0 yields
an epimorphism Ext!, (T, M) — ExtY (T, M/tM). Because Ext! (T, M) =
0, we have ExtY (T, M/tM) = 0. Further, because M/tM € F(T), we
have Homa (T, M/tM) = 0. On the other hand, because T is a tilting
module, there exists a short exact sequence 0 — A — T" — T” — 0 with
T'.T" € addT. Applying the functor Homa(—, M/tM) to this sequence
yields an exact sequence 0 = Homa (7", M/tM) — Homu (A, M/tM) —
Ext!y (T", M/tM) = 0 so that M/tM = Homa(A, M/tM) = 0 and M =
tM € GenT.

(b) implies (c). Let M € 7T(T) and fi,...,fa be a basis of the K-
vector space Homa (T, M). Because M € GenT, the homomorphism f =
[fi...fa) : T® — M is surjective (see the proof of (1.8)). Letting L = Ker f
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and applying Hom 4 (T, —) to the short exact sequence 0 — L — T' I N
0 yields an exact sequence

- — Homu (T, T%) Homa(Thf) | Homa (T, M) — ExtY (T, L) — 0.

By construction, Homy4 (7', f) is an epimorphism. Hence Ext! (T, L) = 0
and L € T(T).

(c) implies (d). Let X € addT; then X is clearly Ext-projective in
T(T) = {M | Ext (T, M) = 0}. Conversely, let X be Ext-projective in
T(T), and consider the exact sequence 0 — L — Ty — X — 0 with
To € addT and L € T(T). Because X is Ext-projective in 7(T), this
sequence splits and X € addT.

(d) implies (a). Let 0 — A — E — T% — 0 be Bongartz’s exact sequence
corresponding to the partial tilting module T'. To show that T is a tilting
module, it suffices to show that F € addT or, equivalently, that F is Ext-
projective in 7 (T'). First, we observe that, because T @ F is a tilting module
by (2.4), we have Ext! (T, E) = 0 so that E € T(T). Letting M € 7(T) and
applying Hom 4 (—, M) to the previous Bongartz sequence yields an exact
sequence

0 = Ext!y(T% M) — Ext!y(E, M) — Ext}(A, M) =0.
Hence ExtY (E, M) = 0. O

2.6. Corollary. Let Ty be a tilting module and M € T(T). Then there
exists an exact sequence

=Ty — Ty — Ty — M — 0
with all T; in add T.

Proof. This follows from (2.5)(c) and an obvious induction. O

In the sequel, if T4 is a tilting module, we refer to the torsion pair
(GenT,F(Ty4)) = (T(Ta),CogentT) as the torsion pair induced by T
in mod A, and we usually denote it by (7 (Ta), F(Ta)).

As another consequence of (2.5), we can refine the result of (1.8)(a), in
the case where T is a tilting module.

2.7. Corollary. Let Ty be a tilting module, and B = EndTy. Then
M € T(T) if and only if the canonical A-module homomorphism ey :
Homa (T, M) @ T — M is bijective.

Proof. The sufficiency follows from (1.8) and (2.5). For the necessity,
we apply twice (2.5)(c) and find short exact sequences

00— Ly— Ty — M — 0,

00— L — Ty — Ly — 0,
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with Tp,Th € add T and Lo, L1 € 7(T'). Applying Hom 4 (7', —) yields short
exact sequences

0 — Homu (T, Ly) — Homa(T,Ty) — Homu (T, M) — 0,
0 — Homa (T, L1) — Homa(T,T1) — Homyu (T, Ly) — 0,

because Ext! (T, Ly) = 0 and Ext! (T, L) = 0. Applying the right exact
functor Homa (7T, —) ® g T to the exact sequence Ty — Ty — M — 0
we get the commutative diagram

HomA(T,Tl) KT — HomA(T, TO) KT — HomA(T, M) T — 0

€Ty J{ ETOJ( ejwl

T —_ To _— M — 0

with exact rows. Because e is just the canonical A-module isomorphism
Homa (T, T) ®p T = B ®p Ta = Ta, it follows that eg,, e, are isomor-
phisms. Hence so is . 0

2.8. Examples. (a) Let A be glven by the quiver

'\
e

bound by af = 74, v¢ = 0. Representing the indecomposable A-modules
by their dimension vectors, we consider the module

0 0 0 1 0
Ty = 1 0 0g1 1 0 g
0 1
Then T4 is a tilting module. Indeed, we have the following
0 0 1
(T1) pd T4 < 1, because the modules (1)00 = P(1), 1 10= P(4), (1)1 1=
P(5) are projective, and we have projective resolutions for the other two
summands of T’

0
0— P2 — P4 — 1,0 —0
0

0
0— P(3) — P(5) — 011 — 0.
0
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0. 0. 1 1, 0
(T2) Ext4 (T, T) = 0. Because Lol®!1 09! s projectiveand ! 10, !

is injective, this follows from

0 0 0 0 0
Exth(T,T)%Exth(llo@0117100@110@110>
0 0 0 1 0

0 0 0 0 0
gDHOHlA<1OO@110@110,7'(110@011))
0 1 0

0 0 0 0 1
=~ DHom 4 100@ 110@110’000@000 =0.
0 1 0 1 0

(T3) There exists, for each point a in the quiver of A, a short exact
sequence 0 — P(a) — T/ — T” — 0 with 77, 7" € addT. Because
P(1),P(4),P(5) € addT, it suffices to consider the two short exact se-
quences presented in (T1).

The torsion pair (7 (T), F(T)) induced by T in mod A is illustrated as
follows in T'(mod A), where we represent the indecomposable summands of
T by squares:

and consider the module Ty = 1 1(1) D11 i ®o 1(1) &) 00(1). We leave it to
the reader to verify that T is a tilting module and that the torsion pair
(7T(T),F(T)) induced by T in mod A is as illustrated here:
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(c) The following class of tilting modules, whose construction is due to
Auslander, Platzeck, and Reiten [18] (and, accordingly, are called APR-
tilting modules), were at the origins of the theory. Let A be an algebra and
S(a)a be a simple projective that is not injective (thus, the corresponding
point a is a sink in the quiver of A and there exists at least one arrow having
a as a target). We claim that

Ta=Tla) =7"'S(a) & (EP P®))

b#a

is a tilting module.

First, we note that, according to (IV.3.9) and (IV.4.4), the almost split
sequence in mod A starting from the simple projective module S(a) = P(a)
has the form

0 — S(a) — @P(c)m“ — 77 18(a) — 0,
c#a

where m, = dimgIrr(S(a), P(c)). This immediately yields (T1) and (T3).
The statement (T2) is a consequence of Ext!y (T, T) = DHomy (T, 7T) = 0,
because 7T = S(a) is simple projective. In this case, the only indecom-
posable A-module lying in F(T4) is S(a), whereas 7 (T4) is the additive
subcategory generated by all remaining indecomposables. Indeed, if M4
is indecomposable, then M € 7T(T) if and only if 0 = Ext!y(T, M) =
DHoma (M, S(a)) if and only if M 2 S(a). In particular, (7(7T"),F(T))
is splitting.

For instance, if A is as in (a), then there exist two APR-tilting modules
T[1] and T'[2], whereas, if A is as in (b), then there exists a unique APR-
tilting module corresponding to the only sink in the quiver of A.

The reader may have observed that in all of the examples, the number
of indecomposable nonisomorphic summands of a tilting A-module is equal
to the number of nonisomorphic simple A-modules (that is, to the rank of
the Grothendieck group Ko(A) of A). This is no accident, as will be shown
in (4.4).
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V1.3. The tilting theorem of Brenner and Butler

Tilting theory aims at comparing the module categories of two finite
dimensional algebras. Namely, let A be an algebra, T4 be a tilting module,
and B = End T4. Because T4 is, by definition, a module “close to” a Morita
progenerator, thus “close to” A4, it turns out that B = End T4 is “close to”
End A4 = A. An obvious functor allowing to pass from mod A to mod B is
the functor Hom (7, —). The following easy lemma shows that this functor
maps the objects in add T onto the projective B-modules. For this reason,
the procedure of passing from an algebra to the endomorphism algebra of
one of its modules is sometimes called projectivisation; see [21].

3.1. Lemma. Let A be an algebra, T be any A-module, and B = EndT4.
(a) For each module Ty € addT and each A-module M, the K -linear
map f — Homa (T, f) induces a functorial isomorphism

Hom  (To, M) = Hompg(Hom4 (T, Ty), Homa (T, M)).

(b) The functor Homa (T, —) induces an equivalence of categories be-
tween add T and the subcategory proj B of mod B consisting of the
projective modules.

Proof. (a) This follows from the additivity of the functors and from the
fact that the defined map is an isomorphism when Ty = T'.

(b) Clearly, Pp is an indecomposable projective B-module if and only if
P is an indecomposable summand of

Bp = (EndT4)p = Homyu(pTa,Ta),

if and only if Pg = Hom4(5Ta,Tp) for some indecomposable summand Tp
of T. Thus the functor Hom4 (T, —)|adaT maps into proj B and is dense.
Also, (a) shows that it is full and faithful. O

As an obvious consequence of (3.1)(b) we get that B is a basic algebra if
and only if two distinct indecomposable summands of T" are not isomorphic
(we then say that T is multiplicity-free).

In (3.1), no assumption on T was necessary. Until the end of this section,
we assume that T is a tilting A-module and

B =EndT4.
We consider the functor
Homa(T,—) : T(T4) —— mod B.

The following lemma ensures that this functor embeds 7 (T') as a full sub-
category of mod B, closed under extensions.
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3.2. Lemma. Let M, N € T(T); then we have functorial isomorphisms:
(a) Homy (M, N) = Homp(Homa (T, M), Homyu (T, N)).
(b) Exth(M,N) = Exth(Homu (T, M),Homa (T, N)).

Proof. By (2.6), there exists an exact sequence

To: =T 21 1y 2 M — 0

with T; € add T for all i. Applying Hom(—, V) to the right exact sequence
Ty — Ty — M — 0 yields a left exact sequence

0 — Homa (M, N) — Homy (T, N) — Hom (T3, N).

By (3.1)(a), we have a commutative diagram with exact columns
0

l

Homy(M,N) — — — Homp(Homyu (T, M),Homa (T, N))
Hom 4 (Tp, N) =, Homp(Hom (T, Tp), Hom4 (T, N))

| !

Hom 4 (T1, N) =, Homp(Hom (T, T1), Homa (T, N))
where the dotted arrow is induced by the others. This shows (a) by passing
to the kernels. For (b), let L = Imd;; we have a short exact sequence

0— L L To o, M — 0,

— O

to which we apply Hom4(—, N), thus obtaining an exact sequence
0 — Homa (M, N) — Homy (Tp, N) Homa(@N), Homa (L, N)
— Ext4y(M,N) — 0

so that Extl (M, N) = Coker Homa(j, N) is isomorphic to the first coho-
mology group of the complex Hom 4 (T, N). On the other hand, if we apply
Homa (T, —) to the complex T, we obtain, by (3.1)(b), a projective reso-
lution Homu4 (T, ) of Hom (T, M) in mod B, because Kerd; € T(T') and
hence Exth (T,Kerd;) = 0 for any i > 1. Therefore ExtL(Homa (T, M),
Hom (T, N)) is isomorphic to the first cohomology group of the complex
Homp(Hom4 (7T, Ty), Hom4 (T, N)), which is, by (3.1)(a), isomorphic (as
a complex) to Hom4 (7%, N). This completes the proof of (b). O

The key observation of tilting theory is that the tilting module T4 induces
a tilting B-module, which is the left B-module gT. Moreover, the algebra
A can be recovered from B and gT.
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3.3. Lemma. Let Ty be a tilting A-module and B = EndTy4.

(a) D(BT) = HomA(T, DA)

(b) BT is a tilting left B-module.

(¢) The canonical K -algebra homomorphism A — End (gT)°P, given by
a— (t — ta), is an isomorphism.

Proof. (a) D(gT) = D(BTa ®a A) = Homa(T,DA).

(b) We verify the axioms of tilting module:

(T1) pd T < 1. Indeed, because T4 is a tilting module, there exists
a short exact sequence 0 — Ay — T/ — T"” — 0 with T, 7" € addT.
Applying Hom(—, 5T4), we get a short exact sequence

0— HOHIA(T”, BTA) — HOHIA(T,, BTA) — HOHIA(A,BTA) — 0.

Because

I‘IOH?[A(A7 BTA) ~ gT and HomA(T’, BTA); HOIIIA(T”7 BTA) € add (BB),
we are done.

(T2) ExtL(T,T) = 0. Indeed, using (a) and the fact that DA € 7(T),
we get, by (3.2)(b),

Exty (DT, DT) = Exty(Hom 4 (T, DA), Homa (T, DA))
=~ Ext4 (DA, DA) =0,
hence the result.

(T3) Let 0 — P, — Py — T4 — 0 be a projective resolution. Applying
Homy(—, pT4), we get a short exact sequence

0 — Homu (T, pT'a) — Homy(Py, pTa) — Homu (P, gTa) — 0.

Because
Homa (T, gT4) = gB and Homu (Py, pTa), Homa (P, 5T4) € add (8T),
we are done.

(c) Let a € A belong to the kernel of this homomorphism. Then T'a = 0.
But every tilting module is faithful, hence ¢ = 0. Thus the given homo-
morphism is injective. By (a) and the fact that DA € 7(T), (3.2)(a) yields
vector space isomorphisms

A= End DA 2 EndHomy (T, DA) = End DT,

so that dimg A = dimgEnd (57T) and the canonical homomorphism is an
isomorphism. O

A first consequence of (3.3) is that B is a connected algebra. In fact, we
show more, namely that the centre is preserved under the tilting process.
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3.4. Lemma. Let A be an algebra and Ta be a tilting A-module. Then
the centre Z(A) of A is isomorphic to the centre Z(B) of B =EndTa.

Proof. We define ¢ : Z(A) — Z(B) by a — (pg : t — ta). Indeed, let
a € Z(A); then p, is an endomorphism of T4 for, if t1,t2 € T and a4, as € A,
then we have

pa(tlal + tgag) =ti1a1a + taasa = t1aaq + taaas = pa(tl)al + pa(tg)ag.
Also, p, is central for, if f € EndT4 = B and t € T, we have (p.f)(t) =
ft)a = f(ta) = (fpa)(t). Finally, ¢ is an algebra homomorphism for, if
a1,az € Z(A) then p(a1a2) = pajay = Pasas = P(a1)p(az) and, clearly,
p(ar +az) = p(a1) + ¢(az) and p(1) = 1.

To show that ¢ is an isomorphism, we construct its inverse. Following
(3.3)(c), we identify the algebra A with End (gT)°P via a — pg, then we
define ¢ : Z(B) — Z(A) by b — (A : t — bt). By (3.3)(b) and the first part,
1 is an algebra homomorphism. Let a € Z(A) and consider ¥p(a) = A,,; it
is given by A,, : ¢ — pa(t) = ta, that is, by the element a € A as identified
to the endomorphism p, € End (5T'). Thus tp(a) = a for every a € Z(A)
and ¥ = 17(4). By symmetry, we have o) = 17(p). O

3.5. Corollary. Let A be an algebra. If T4 is a tilting A-module, then
the algebra B = End T4 is connected.

Proof. Note that an algebra is connected if and only if its centre is (see

Exercise 8.8 in Chapter I), and then apply (3.4). O

Another consequence of (3.3) and the considerations in Section 2 is that
BT induces a torsion pair (7 (gT), F(gT)) in the category of left B-modules,
where, as before,

T(BT) = Gen (BT) = {BU | EX‘D%(T, U) = 0},
F(BT) = Cogent(pT) ={gV | Homp(T,V) = 0}.

Because we are interested in the category mod B of right B-modules, we
must rather consider the torsion pair (see Example 1.2 (b))

(X(Ta), Y(Ta)) = (DF(8T), DT (8T))-

3.6. Corollary. Let A be an algebra. Any tilting A-module T4 induces
a torsion pair (X(Ta),Y(Ta)) in the category mod B, where B = End Ty
and
X(TA) = {XB | HomB(X,DT) = 0} = {XB | X®pT= O},
V(Ta) = {Ys | Extp(Y,DT) = 0} = {Vp | Tor{ (Y, T) = 0}.
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Proof. This follows from the remark and the functorial isomorphisms
Homp (X, DT) = D(X ®p T) and Ext;(Y, DT) = DTorP(Y,T). The first
is the adjoint isomorphism. The second is a consequence of (A.4.11) in the
Appendix. O

Note that (T'4) contains all the projective B-modules. This subcategory
of mod B plays a r6 le fairly similar to that of 7(T4) in mod A. In fact, we
have the following analogue of (2.5)(c) and (2.7).

3.7. Lemma. Let A be an algebra, T4 be a tilting A-module, B =
EndTA, and Yg € y(TA).
(a) There exists a short exact sequence 0 — Y — T* — Z — 0 with T*
in add DT and Z in Y(Ta).
(b) The canonical homomorphism dy : Yp — Homu(T,Y @ T) defined
by y— (t — y®t) is an isomorphism.

Proof. (a) Because gT is a tilting module and D(Yg) € T (gT), there
exists a short exact sequence 0 — gY’ — T’ — (DY) — 0 with T’ €
add (gT), Y' € T(gT). Taking T* = DT’ and Z = DY’ completes the
proof.

(b) The duality isomorphism Hompg (X, DT) = D(X ®p T) yields DA
DHomp(T,T) & DT ®p T, so that opr : D(gT) — Homa(T,DA)
Hom (T, DT ®p T) is an isomorphism. Therefore, so is dr«, for any T* €
add DT. Applying (a) twice to Y € Y(T4), we obtain short exact sequences
0—-Y =Ty —=Yy—0and0— Yy =TIy — Y] — 0 with T5, T} € add DT
and Yy, Yy € Y(Ta), and so TorP (Y, T) = 0 and TorP? (Y1, T) = 0. Applying
— ®p T yields short exact sequences

0—-Y®RpT—-1T;®pT —Yo®pT — 0 and
0—-Yy®pT -1/ pT =Y, ®pT — 0.

These combine to a left exact sequence

1111

O—>Y®BT—>T;®BT—>T1*®BT

to which we apply Hom (7T, —), thus obtaining the lower row of the com-
mutative diagram with exact rows

o ——Y — T - Ty

§yl éng,g 5T1*lg
0 — Homu(T,Y @ T) — Homyu (T, T; @ T) — Homu (T, T} @5 T)

Because JTJ and dr; are isomorphisms, so is dy. O

We are now able to prove the main result of this section, which is known
as the Brenner—Butler theorem or the tilting theorem.
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3.8. Theorem. Let A be an algebra, T4 be a tilting module, B =
EndTa, and (T(Ta),F(Ta)), (X(Ta),Y(T4)) be the induced torsion pairs
in mod A and mod B, respectively. Then T has the following properties:

(a) BT is a tilting module, and the canonical K -algebra homomorphism
A — End (5T)°P defined by a — (t — ta) is an isomorphism.

(b) The functors Homa (T, —) and — ®@p T induce quasi-inverse equi-
valences between T (Ta) and Y(T4).

(c) The functors ExtY (T, —) and Tor? (—,T) induce quasi-inverse equi-
valences between F(Ta) and X(Ty).

Proof. Because (a) is (3.3)(b) and (3.3)(c), we prove (b). Let M €
7T (T4). The duality isomorphism established in (3.6) yields

DHOIHA(T, M) 2Ty ® DM € GGH(BT),

and therefore Hom4 (T, M) € Cogen DT = Y(T'). By (2.7), we have M
Homa (T, M) @ T. Conversely, if Y € Y(Ta), then Y @ 5 T4 € GenTy
T (T4) and, by (3.7), we have Y 2 Homa(T,Y ®@p T).

To show (c), we take N € F(Ty4). There is a short exact sequence
0—N—FE—L—0 with F injective. In particular, E € 7(T4) and
hence L € T(T4). Applying Homyu (T, —), we get a short exact sequence
0 — Homa(T,E) — Homu(T,L) — Ext.y(T,N) — 0. Applying
— ®p T, we get the left column in the commutative diagram

0

|

Tor? (Exty (T, N),T) ——— —

l

Homu(T,E)®p T ——2—

l

Homu(T,L) ®p T

l

EXtIIL‘(T, N) ®pT

l

0

1%

R Jé” R

O — N+— g e— =2 +— o

with exact columns, because L € T(T) implies Tor? (Homa (T, L), T) = 0,
by (b). Therefore we get Extl (T, N)®@ 5T = 0 (hence Ext! (T, N) € X(Ta)
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and N = Tor? (Exty(T,N),T). Dually, let Xg € X(T) and consider the
short exact sequence

0—-Y—-P—-X—0

with P projective. Then P € Y(T') and Y € Y(T). Applying — ®p T, we
get a short exact sequence

0 — Tor?(X,T) — Y®pT — PR T — 0.

Applying Hom 4 (T, —), we get the right column in the commutative diagram
with exact columns

Hom4 (T, Tor? (X, T))

l

_— HOIHA(T,Y®B T)

|

EEE— HOIHA(T,P®B T)

l

——— —  Exty(T, Tor? (X, T))

l

0

IR

>
v

R

O — X — Nge— < — o

because Ext!y (T, Y ® 5 T) = 0 by (b). Therefore Hom4 (T, Tor? (X, T)) = 0
(hence Tor?(X,T) € F(T4)) and X = Extl (T, Tor? (X, T)). O

It is possible to visualise the equivalence of (3.8) in the Auslander—Reiten
quivers of the algebras A and B. If one keeps in mind that 7(T4) contains
the injective A-modules and thus lies (roughly speaking) “at the right”
of T'(mod A), while F(T4) lies “on the left” of 7(T4) (because there is
no homomorphism from a torsion module to a torsion-free one) and, simi-
larly, Y(T4) contains the projective B-modules and thus lies “at the left” of
I'(mod B), while X (T'4) lies “on its right} one obtains the following picture,
which also shows the quasi-inverse equivalences:
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I'(mod A)

Ext! (T,-) Hom 4 (T,—)

—®BT Tor? (—,T)

I'(mod B)

Here, and in the sequel, the equivalent subcategories 7 (T4) and Y(T4)
are shaded as (C ) and the equivalent subcategories F(T'4) and X (T4) are

shaded as GED.

The following corollary asserts that the composition of any two of the
four functors Homy4 (T, —), ExtYy (T, —), —®p T, and Torf (—, T), which are
not quasi-inverse to each other on one of the shaded subcategories, vanishes.

3.9. Corollary. (a) Let M be an arbitrary A-module. Then

(i) Tor®(Hom (T, M),T) = 0;
(i) Extl (T, M)®p T =0; and
(iii) the canonical sequence of M in (T (Ta),F(T4)) is
0 — Homu(T,M)@p T =% M — TorP (Ext!y (T, M),T)) — 0.

(b) Let X be an arbitrary B-module. Then
(1) Homu(T, Tor?(X,T)) = 0;
(i) Exty(T,X ®5T) = 0; and
(iii) the canonical sequence of X in (X(Ta),Y(T4)) is

0 — Ext}y(T, Tor? (X, T)) — X 2% Homu(T, X @5 T) — 0.

Proof. We only prove (a); the proof of (b) is similar. Indeed, let
0—>tM—>M— M/tM — 0

be the canonical sequence of M in (7(T),F(M)). Applying the functor
Homa (T, —), we obtain isomorphisms Homy4 (T, M) = Homx (T, tM) and
Ext!y (T, M) = ExtY, (T, M/tM). Therefore tM € T (T) implies that

Torjlg(HomA(T, M), T)= Torjlg(HomA(T, tM), T)=0
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and
tM = }IOI'HA(T7 tM) QT = HOIHA(T, M) ®pT.

Similarly, M/tM € F(T) implies that
Exth (T, M) ®p T = Extl (T, M/tM) 25 T = 0
and

M /tM = TorB (ExtY (T, M/tM), T) = Tor? (Ext (T, M), T). O

To illustrate these statements on examples it is useful to have formulas
for the dimension vectors of modules in X(T4) and Y(T4).

3.10. Lemma. Assume that T is a multiplicity-free tilting A-module,
Ta=T1®...0T, is its decomposition into a direct sum of indecomposable
modules, and B = EndT4. Let e; € EndTy4 be the composition of the
canonical projection p; : T — T; with the canonical injection w; : T; — T.

(a) The elements ey, ... e, are primitive orthogonal idempotents of B

such that 1 = e1+...+e,; there is a B-module isomorphism e, B =
Homa (T, T,), for all a; and there exist K -linear isomorphisms

eaBey, = Hom (T, T,) and ExtY (e, T, N) = Ext} (T, N)e,

for all a, b and for any A-module N.
(b) For any pair of A-modules M € T(T4) and N € F(T4), we have

dim Hom (T, M) = [dimgHom4(Ty, M) ... dimgHoma (T, M)]" and
dim ExtYy (T, N) = [dimgHom4 (N, 7Ty) ... dimgHoma (N, 77},)]".

Proof. We recall that, for any L in mod A, the vector space Hom4 (7', L)
has a right B-module structure defined by fb = fob for f € Homu(T, L)
and b € B, where fob means the composition of b : T — T with f: T — L.
It follows from (3.1)(b) and from the assumption that T4 is multiplicity-
free that the B-modules Homa(T,T1),... ,Hom4(7T,T;,) form a complete
set of pairwise nonisomorphic indecomposable projective B-modules and,
obviously, there is a B-module isomorphism

B~ Homu(T,T1) @ ... ®Homa (T, T,).

It is easy to see that for any j the B-module homomorphism Hom 4 (T, T;) —
e;B, defined by f — wu;f = eju; f, is an isomorphism, and the first part of
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(a) follows. The isomorphism Hompg(epB,e,B) = e,Beyp, defined by h +—
h(ep) (see (1.4.2)), together with (3.8)(b) yields e, Bey, = Homp(ep B, e, B) =2
Homp (Homa (T, Ty), Homa (T, Ty,)) = Homa (Tp, Ty,).

Because p; = p; o e;, for each A-module L, the K-linear map

Hom 4 (e;T, L) — Homx (T, L)e;

g+— gop; = (gop;)e; is a K-linear isomorphism, which is functorial in L.
Hence, if I°® is an injective resolution of an A-module N, there is an iso-
morphism Hom (e, T, I*) = Homa (T, I*®)e; of complexes and it induces K-
linear isomorphisms of the cohomology spaces. In view of (A.4.1) in the Ap-
pendix, this yields the isomorphisms Ext!y (e;7, N) & H!(Homa (e;T, I*)) =
H'(Homa (T, 1%)e;) = H*(Homu (T, I°))e; = ExtYy (T, N)e;. It follows that
the ith coordinates of the vectors dim Homy (7, M) and dim Extl (T, N)
are as follows:

(dimHomu (T, M)); = dimgHoma(T, M)e; = dimgHoma(e; T, M)
= dimgHom(e;(T), M) = dimxHom 4 (T3, M),
(dim Ext! (T, N)); = dimgExtY (T, N)e; = dimgExth (e;T, N)
= dimgExty(e;(T), N) = dimgExt! (T}, N)
= dimg DHomy (N, 7T;) = dimgHom4 (N, 7T;),
because pd T; < 1 yields Exth (T3, N) & DHoma (N, 7T;), by (IV.2.14). O

3.11. Examples. (a) Consider, as in Example 1.2 (d), the algebra A
given by the quiver o«—o«—o. The tilting module T4 = 100 ® 111 ¢ 001
induces a torsion pair (7(T"), F(T)) in mod A illustrated as follows:

@

110

Hence, B = End T4 is given by the quiver o 026 bound by Ap = 0.
The induced torsion pair (X (7T), Y(T')) in mod B is illustrated in I'(mod B)
as follows:
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The effect of the functors Hom 4 (T, —) and Ext!y (T, —) can easily be com-
puted. We have

Hom 4 (T, 100) = 100, Hom 4 (T, 111) 2 110,
Hom 4 (T,011) = 010, Hom (T, 001) 2 011,

and finally Ext!, (T',010) = 001.
(b) Consider, as in Example 2.8 (a ) the algebra A given by the quiver

V’\
e
e

bound by Aprn = 0. The induced torsion pair (X (T"),Y(T)) in mod B is
illustrated as follows:
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0 0 0
Hom 4 (T7 1 00> = 10000, Hom 4 (T, 1 10> = 11000, Hom 4 (T, 1 10> = 11100,
0 1 0
1 0 0
Hom 4 (T, Ly 1) = 11110, Hom4 (T,O 1 0) = 01000, Hom 4 (T,O 1 0) = 01100,
0 1 0
1 0 1
Hom 4 (T,O 1 1) = o1110, Hom4 (T,O 1 1) =o1111, Hom 4 (T,OO 1) = 00010,
0 0 0
0 1 0 1 1
Homy (7,9¢1) = ooo11, Exty (1,909) =o00100, Exty, (71,949) = 00001
0 1 0

Observe that
(DT)p = Homa(T,DA) = 11110 ® 01000 & 01111 & 00010 & 00011.

(c) Consider, as in Example 2.8 (b), the algebra A given by the quiver

S
™

and the tilting module Ty =11 (1) D11 i do1 (1) D 00(1). Here, B =End T, is
given by the quiver
LN

O o

N

O

bound by a8 = 4. The induced torsion pair (X(T"),Y(T)) in mod B is
illustrated as:
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(d) Consider the algebra A of Example (b), with the APR-tilting module
T[2]. Here, B = End T'[2]4 is given by the quiver

PN
N

04———O

bound by Au = vno. The induced torsion pair (X (T'[2]), Y(T'[2])) in mod B
is illustrated as:

If, on the other hand, one considers the APR-tilting module T'[1], one ob-
tains the algebra End T'[1]4 given by the quiver

bound by the relation A\ur = 0. We leave to the reader the calculation of
(X(T[1]), Y(T[]))-
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V1.4. Consequences of the tilting theorem

In this section, we investigate the connection between an algebra A and
the endomorphism algebras of its tilting modules, using the tilting theorem
of Brenner and Butler. Throughout, we keep the notation used in Section 3.

Our first result says that, under tilting, the global dimension of an algebra
changes by at most one. As a consequence, this entails that the class of
algebras of finite global dimension is closed under the tilting process. We
need one lemma.

4.1. Lemma. Let A be an algebra, T4 be a tilting module, and B =
EndTx. If M € T(T), then pdHoma (T, M) < pd M.

Proof. We use induction on n = pd M. If n = 0, then M is projective.
Because M € T(T) = GenT, this implies that M € addT. Therefore
Homy (T, M) is projective (by (3.1)(b)), and we are done.

Now, assume n > 1. By (2.5)(c), there exists a short exact sequence

0—L—Ty— M —0
with Ty € addT and L € 7(T). Therefore we have a short exact sequence
0 — Homu (T, L) — Homu (T, Ty) — Homa (T, M) — 0.

Assume n = 1. Then the first short exact sequence yields an exact sequence
of functors

0 = Exty(To, — MNzray — Exty (L, Nzrry — Ext% (M, =z =0;

therefore Extl (L, —)|7(r) = 0, that is, L is Ext-projective in 7(T'). By
(2.5)(d), L € addT so that HomA(T L) is projective and the second exact
sequence implies that pd Hom4 (T, M) < 1. Finally, assume n > 2. Then,
according to (A.4.7) of the Appendix, the first short exact sequence yields
pd L <n—1, because pd Ty < 1. By the induction hypothesis, this implies
that pd Hom A(T L) < n —1. Hence the second short exact sequence gives

pdHomu (T, M) <1+ pdHoma(T,L) <1+ (n—1) =n. O

4.2. Theorem. Let A be an algebra, Ty be a tilting module, and B =
EndTy4. Then |gl.dim A — gl.dim B| < 1.

Proof. Let X be any B-module. There exists a short exact sequence

0—Y —P—X—0
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with P projective. Because P € Y(T), we have Y € Y(T') as well. By the
tilting theorem (3.8), there exists M € T (T') such that Y = Homa (T, M).
By (4.1), we have pdY < pd M. Hence pd X < 1+4+pdY <14pdM <1+
gl.dim A, and consequently gl.dim B < 1+ gl.dim A. Because, again by the
tilting theorem, g7 is also a tilting module, we have gl.dim A < 1+4gl.dim B.

O

In Example 3.11 (a), we have gl.dim B = 2, whereas gl.dim A = 1 (hence
the bound of (4.2) is sharp). In Example 3.11 (b), we have gl.dimA =
gl.dim B = 2.

There are the following other relations between the homological dimen-
sions in mod A and mod B (see Exercise 20):

(a) If N € F(T), then pd Ext} (T, N) <1 + max (1,pd N).
(b) If M € T(T), then idHom4 (T, M) <1+id M.
(c) If N € F(T), then id Ext (T, N) <id N.

In our next application, we show that the number of simple modules
is preserved under the tilting process. For this purpose we recall from
(II1.3.5) that the Grothendieck group Ko(A) of A is free abelian and that
the elements [S], where S ranges over a complete set of representatives of
the isomorphism classes of simple A-modules, constitute a basis of Ky(A).
The map [X] — dim X defines a group isomorphism

dim : Ky(A) = 7",
where n is the number of the isomorphism classes of simple A-modules.

Throughout, we identify the group Ko(A) with Z" and the element [X] of
Ko(A) with the dimension vector dim X in Z", for any module X in mod A.

4.3. Theorem. Let A be an algebra, Ty be a tilting module, and B =
EndTy4. Then the correspondence
dim M — dimHom (T, M) — dim Ext!y (T, M),
where M is an A-module, induces an isomorphism f : Ko(A) — Ko(B) of
the Grothendieck groups of A and B.

Proof. Because pd T4 < 1, any short exact sequence 0 — L4 — My —
N4 — 0 in mod A induces an exact cohomology sequence

0 — Homa(T, L) — Homyu (T, M) — Homx(T, N)
— Ext4 (T, L) — Ext4 (T, M) — Ext4(T,N) — 0
in mod B, from which we deduce the equality
dim Hom 4 (T, M) — dim Ext!, (T, M) =
= [dim Hom (T, L) — dim Ext* (T, L)]+
+ [dim Homy4 (T, N) — dim Ext' (T, N)]
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in Ko(B) (see (I11.3.3) and (II1.3.5)). Hence the given correspondence de-
fines indeed a group homomorphism f : Ko(A) — Ko(B).

Let S be a simple B-module. Because (X(T),Y(T)) is a torsion pair,
we have S € X(T) or S € Y(T) (by (1.6)). In the latter case, we have
S = Homa(T,S ®@p T) while ExtY(T,S @5 T) = 0, so that dim S =
f(dim S ®p T). In the former case, we have S = Ext\ (T, Tor?(S,T))
while Hom 4 (T, Tor? (S, T)) = 0, so that dim S = f(—dim Tor?(S,T)). In
either case, dim S lies in the image of f. Because, according to (III1.3.5),
the vectors of the form dim S, where S ranges over a complete set of rep-
resentatives of the isomorphism classes of simple B-modules, constitute a
basis of Ko(B), this shows that f is surjective. Consequently, the rank of
Ky(A) is greater than or equal to that of Ky(B). Because T is also a
tilting module and A = End (gT")°P, we have, by symmetry, that the rank
of Ky(B) is greater than or equal to that of Ky(A). Therefore these ranks
are equal, and the group epimorphism f is an isomorphism. O

For instance, in Example 3.11 (a), it is easily seen that f(100) = (100),
f£(010) = —(001), and f(001) = (011). Hence the matrix F of f in the
canonical bases of Ky(A) and K((B) is of the form

1 0 0
F=|0 O 1
0 -1 1

(where the elements of Ky(A) and Ky(B) are considered as column vectors).
Thus, the image of the dimension vector of the torsion module I(2) = 011
is given by

1 0o o0]fo 0
0 o 1|]1|=1]1],
0 -1 1|1 0

that is, is the dimension vector of the B-module 010.
We deduce from (4.3) and Bongartz’s lemma (2.4) a very useful criterion
for deciding whether a partial tilting module is a tilting module or not.

4.4. Corollary. Let T4 be a partial tilting module. Then Ty is a tilting
module if and only if the number of pairwise nonisomorphic indecompos-
able summands of T equals the number of pairwise nonisomorphic simple
modules (that is, the rank of Ko(A)).

Proof. If T4 is a tilting module, and B = End T4, then by (3.1)(b), the
number ¢ of pairwise nonisomorphic indecomposable summands of T" equals
the rank of Ko(B). Hence, by (4.3), t equals the rank of Ky(A).
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Conversely, assume that T4 is a partial tilting module satisfying the
stated condition. By Bongartz’s lemma (2.3), there exists an A-module E
such that T'@ F is a tilting module. The necessity part says that the num-
ber of pairwise nonisomorphic indecomposable summands of T' & E equals
the rank of Ky(A), hence, by hypothesis, equals the number of pairwise
nonisomorphic indecomposable summands of T'. Therefore E € addT and
T is indeed a tilting module. O

Assume now that A is an algebra of finite global dimension. We recall
from (I11.3.11) and (II1.3.13) that the Euler characteristic of A is the bilinear
form on Ky(A) defined by

(dim M,dim N)4 = > _(—1)°dimgExt’ (M, N),
s=0

where M, N are modules in mod A. The preceding sum is finite due to
our hypothesis on A. We next show that the Euler characteristic of A is
preserved under tilting; namely, that the isomorphism between the Grothen-
dieck groups of A and B defined in (4.3) is an isometry of the Euler char-
acteristics of A and B.

4.5. Proposition. Let A be an algebra of finite global dimension, T be
a tilting module, B = End Ty, and f : Ko(A) — Ko(B) be the isomorphism
of (4.3). Then for any A-modules M and N we have

(dim M, dim N) 4 = (f(dim M), f(dim N)) 5.

Proof. Let T1,...,T, denote the pairwise nonisomorphic indecompos-
able summands of 7. We claim that the vectors dimT;, where 1 < i < n,
constitute a basis of Ko(A). Indeed, by (3.1)(b), the B-modules

Homu(T,Th),... ,Homa(T,T},)

form a complete set of representatives of the isomorphism classes of inde-
composable projective modules. Because, by (4.2), B also has finite global
dimension, the vectors f(dim7T;) = dimHomx (7, T;), where 1 < i < n,
constitute a basis of Ko(B). Because, by (4.3), f is an isomorphism, this
implies our claim.

Also, the projectivity of the B-modules Hom 4 (7, T;) and the tilting the-
orem imply that, for any 4, 7 such that 1 <i,5 < n,

(f(dimT;), f(dimT}))p = (dimHomx (T, T;), dim Homa (T, T})) B
= dimgHomp(Homyu (T, T;), Hom 4 (T, T}))
= dimgHomx (T;,T;) = (dim T;, dim Tj) 4,
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because ExtY (T, T;) = 0. The conclusion follows from our claim. 0

Let A and B be the matrices defining the Euler characteristics of the
algebras A and B, respectively, and let F denote the matrix defining the
isomorphism f of (4.3). It follows from (4.3) that A, B, and F are all
square matrices of the same size, and from the explicit expression of f that
the matrix F has integral coefficients. Because for x,y € Ky(A), we have

(x4 = x' Ay and (/(x), /(y)) p = (Fx)'B(Fy) = x'(F'BF)y,

we infer from (4.5) that x!Ay = x'(F'BF)y for all x,y € Ko(A). That is,
A = F!BF; the matrices A and B are Z-congruent.
We deduce the following corollary.

4.6. Corollary. Let A be an algebra of finite global dimension, Tx be a
tilting module, and B = EndT4. Then the Cartan matrices C4 of A and
Cpg of B are Z-congruent.

Proof. By (I11.3.11) and the preceding discussion, we have A = (C')*
and B = (Cz")!. Thus, the equality A = F'BF can be written as (C ;) =
F!(C3")'F, or, equivalently, as Cp = FC,F*. O

These considerations also apply to the integral Euler quadratic form
ga : Ko(A) — Z attached to the Euler characteristic of A by the formula

ga(dim M) = (dim M, dim M) 4,
where M is an A-module; see (I11.3.11). The equality A = F'BF yields the
following corollary.

4.7. Corollary. Let A be an algebra of finite global dimension, Tx be a
tilting module, and B = EndT4. Then the Euler quadratic forms qa and
qB are Z-congruent. O

Let, for instance, A be as in Example 3.11 (a), that is, A is given by the
quiver

1 2 3
O¢—O0«——0O
Then
111
Ca=10 1 1],
0 01
and consequently
1 0
A=(CH=|-1 1 o},
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so that
z1

qa(x) = x'Ax = 2% + 23 + 22 — 1125 — 2273, for x = |:902:| € Ko(A).

3
We tilt A to B, where B is given by the quiver
noo2 A3
O O

1
O¢+———0¢———

bound by Ap = 0. Then

110
Cg=1|0 1 1],
0 01
and consequently
1 0 0
B=(Cz')=|- 1 of,
1 -1 1

so that
1

gp(x) =x'Bx = a:%—ka:%—i—x% —x1x9 — Tox3+ 173, for x = [m} € Ko(B).
z3

We have already observed that the matrix F defining the group isomor-
phism f : Ky(A) — Ko(B) is of the form

1 0 O
F=|0 0 1
0o -1 1
Finally, it is easily verified that
[1 0 0 1 0 1 0 O
F'BF = |0 0 -1 -1 1 0ff0 0 1
101 1 1 — 1 0o -1 1
[ 1 0 0
=1|-1 1 0] =A.
| 0 -1 1

As a third and final application of the tilting theorem, we consider those
almost split sequences in mod B whose left term lies in Y(7") and whose right
term lies in X' (7T'); such sequences are called connecting sequences. The
following easy lemma shows that there are only finitely many connecting
sequences.
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4.8. Lemma. If0 — Yp — Ep — Xp — 0 is a connecting sequence,
then there exists an indecomposable injective A-module I(a) such that Y =
Homy (T, I(a)).

Proof. Because Y € Y(T), according to (3.8), there exists M € T(T)
such that Y = Homu (T, M). Let f : M — N be an injective envelope in
mod A and consider the short exact sequence

0— M -1 N — N/M — 0.

Because N € T (T'), this sequence lies entirely in 7 (T"). Applying the functor
Hom 4 (T, —) yields a short exact sequence in Y(T')

0-—Y Hom (T, f)

Homa (T, N) ————— Homu (T, N/M) — 0.

Since 771V = X € X(T), we deduce from (1.11)(b) that Y is Ext-injective
in Y(T). Therefore the preceding short exact sequence splits, that is,
Hom (T, f) is a section. Applying — ®p T shows that f is a section.
We have thus shown that M is injective. Its indecomposability follows from
the indecomposability of Y. Hence M is isomorphic to an indecomposable
injective module I(a). O

Of course, not all indecomposable injective A-modules correspond to con-
necting sequences. The next lemma, known as the connecting lemma,
characterises those that do and gives the right term of such a sequence.
More precisely, one can show, exactly as in (4.8), that the right term X of
a connecting sequence 0 — Y — E — X — 0 satisfies X = Ext!y (T, P) for
some indecomposable projective A-module P. The connecting lemma says
that the top of P is isomorphic to the socle of I, and that P ¢ add T'.

4.9. Connecting lemma. Let A be an algebra, T4 be a tilting module,
and B =EndTa. Let P(a) be the projective cover of a simple module S(a)a
and I(a) be its injective envelope. Then

7 "Hom (T, I(a)) = Ext} (T, P(a)).

In particular, P(a) € addT if and only if Homu (T, I(a)) is an injective
B-module.

Proof. Let P = P(a) = e,A and I = I(a) = D(Ae,), where ¢, € A
is a primitive idempotent. By (II1.2.11), there is a functorial isomorphism
DHoma(T,I) =2 Homu(P,T). We need to show that the transpose Tr of
Homy (P, T) is isomorphic to Extl (T, P). For this purpose, we use the
definition of the transpose (IV.2).
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Because T4 is a tilting module, there exists a short exact sequence
0— Py — T, 10 —0

with T/, T" € add T. Applying Hom4(—, pT4) yields a short exact sequence

0 — Homu (1", pT)mattD)

Homa (T, 5T4) — Homu(P(a), sTa) — 0,
which is a projective resolution for the left B-module Homa(P,T). The
transpose (in mod B) of Hom 4 (P, T') is obtained by applying to the previous
sequence the functor (—)" = Homp(—, B) = Hompg(—,Homu(T,T)). If
Ty € add T, we have a functorial isomorphism in add 7" given by

Homy (T, Tp) = Homp(Homa (To, T'), Homa (T, T)).

Indeed, such an isomorphism exists when Ty = T and the functors are
additive. Hence the commutative square

Homp (Homa (7", T), Homa (T, T)) Homyu (T, T7)
HomB(HomA(f,T),HomA(T,T))l HomA(T,f)l
Homp(Homa (T",T),Homu (T, T)) Homy (T, T")

shows that Homa(f,T)* = Homu(7, f). On the other hand, applying
Homy (T, —) to the first short exact sequence yields an exact sequence

Homa (T, f)
— s

0 — Homu (T, P) — Homa(T,T") Homy (T, T")

— Ext4 (T, P) — 0.
By definition of the transpose, we deduce, as required
Exty (T, P) = Tr Homa (P, T) = Tr DHoma (T, I) = 7~ *Hom (T, I).

The second statement follows from the fact that a projective module P
lies in add T if and only if it lies in 7(7') = GenT, that is, if and only if
Extl, (T, P) = 0. O

The middle term of a connecting sequence, on the other hand, can only
be approximated by means of its canonical sequence.
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4.10. Corollary. Let P(a), I(a), and S(a) be as in (4.9), with P(a) ¢
addT. Consider the connecting sequence

0 — Homa(T,I(a)) - Ep —% Ext4 (T, P(a)) — 0.
The canonical sequence of Eg in the torsion pair (X(T),V(T)) is

0 — ExtY4(7T,rad P(a)) — Ep — Homa(T,I(a)/S(a)) — 0.

Proof. Because (7(T'),F(T)) is a torsion pair, the simple module S(a)
lies in either 7(T') or F(T) (by (1.6)).

(a) Assume that S(a) € 7(T); then ExtY (T, S(a)) = 0. Hence the short
exact sequence

0— S(a) — I(a) — I(a)/S(a) — 0

induces a short exact sequence
0 — Homa (T, S(a)) 1, Hom (T, I(a)) —& Hom (T, I(a)/S(a)) — 0.

On the other hand, P(a) ¢ addT implies P(a) ¢ 7(T) so that P(a) #
tP(a) and hence tP(a) C rad P(a), which yields a K-linear isomorphism
Hom (T, P(a)) = Homu(T,rad P(a)) and the exact sequence in mod A

0 —rad P(a) — P(a) — S(a) — 0
induces a short exact sequence
0 — Hom(T, S(a)) - Ext4(T,rad P(a)) - Ext (T, P(a)) — 0.

This sequence does not split; otherwise, there would exist a nonzero homo-
morphism from the torsion B-module

Ext!y(T,rad P(a)) = Ext! (T, rad P(a)/trad P(a))

to the torsion-free module Hom 4 (T, S(a)) (see (3.9)), a contradiction. In
particular, k is not a retraction. Because the given connecting sequence
is almost split, there exists a homomorphism f’ : Ext!(T,rad P(a)) — E
such that & = vf’. By passing to the kernels, there exists a homomor-
phism Homu4 (T, S(a)) — Homu (T, I(a)) whose composition with u equals
f'h. But the K-vector space Homp(Homa(T,S(a)), Homy (T, I(a))) =
Homy (S, I(a)) is one-dimensional. Hence this homomorphism can be taken
equal to f, after replacing h, if necessary, by one of its scalar multiples, so
that we have a commutative diagram with exact rows and columns
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0 0

l l

0—Homa(T, S(a)) - Extl(T,rad P(a)) —— Extl(T,P(a)) —0

| /| |

0—Homa(T, I(a)) - — BExt4 (T, P(a)) —0

Homy (T, I(a)/S(a))# Homy (T, I(a)/S(a))

l I

0 0

The middle column yields the result.
(b) Assume that S(a) € F(T'); then Homu4 (T, S(a)) = 0 and hence we
have short exact sequences

0 — Ext’(T,rad P(a)) — Ext4 (T, P(a)) — Ext}(T, S(a)) — 0,
0 — Homu (T, I(a)) — Hom(T, I(a)/S(a)) — Ext4 (T, S(a)) — 0.

The second sequence does not split and we deduce, exactly as in (a), a com-

mutative diagram with exact rows and columns
0 0

l I

Extl,(T,rad P(a)) — Ext(T,rad P(a))

0 — Homa(T,I(a)) - E s Ext4Y(T,P(a)) —0

!

0 — Homyu(T,I(a)) — Homa(T,I(a)/S(a)) — Exty(T,S(a)) — 0

0 0
Again the middle column yields the result. O
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For instance, in Example 3.11 (a), the only connecting sequence is the
sequence

0 — 010 — 011 — 001 — 0.

Here, S4 = 010, I4 = 011, P4 = 110 and we have Hom4(T,I) = 010 and
Ext!y (T, P) = 001. The middle term E lies entirely in Y(T'), hence

E = Hom(T,1/S) = Hom4(T,001) = 011.

In Example 3.11 (¢), the connecting sequence

1

1 0
0
—>110—>010€911

10 (1) 0 — 0 1 1 —0
corresponds to the simple A-module S =01 8. Here, I4 =01 1, Py=11 8,
Homu(T,1) =1 1 0, ExtL4 (T, P) =0 1 1. The middle term F is a direct sum
of three indecomposable modules. Indeed, I/S = o oé @ o 0(1J so that

HomA(T,I/S):HomA<T, 00(1))69H0mA<T, 00(1)) = 111 @ 0(1)0,

whereas rad P =10 8, so that Exth (T,rad P) = o (1) 0.
The reader may have noticed that in Examples (3.11), it turns out that
the indecomposable summands of F are either torsion or torsion-free (that

is, the corresponding canonical sequence splits). This is generally not the
case, as will be shown in Exercise 14.

VI1.5. Separating and splitting tilting modules

It is reasonable to consider those tilting modules that induce splitting
torsion pairs, one in mod A and the other in mod B, where B = EndT4.
This leads to the following definition.

5.1. Definition. Let A be an algebra, T4 be a tilting module, and
B =EndTy4. Then
(a) T4 is said to be separating if the induced torsion pair (7 (T'), F(T))
in mod A is splitting, and
(b) T4 is said to be splitting if the induced torsion pair (X (7T'), Y(T))
in mod B is splitting.
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For instance, let, as in Example 3.11 (a), A be given by the quiver
1 2 3
O¢——O0«——0O

Then the shown tilting module T4 = 100 & 111 ¢ 001 is splitting but not
separating. On the other hand, it is easily seen that, over the same alge-
bra A, the APR-tilting module T'[1]4 is both splitting and separating. In
general, however, an APR-tilting module is necessarily separating, as we
showed in Example 2.8 (c), but it is not always splitting, as was seen in
(3.11)(d). Finally, Example 3.11 (b) showed a tilting module that is neither
separating nor splitting.

Clearly, if T'4 is a splitting tilting module, then every indecomposable B-
module is the image of an indecomposable A-module via one of the functors
Homy (T, —) or ExtY (T, —), so that B has fewer indecomposable modules
than A (in particular, if A is representation—finite, then so is B). Moreover,
the almost split sequences in mod B are easily characterised.

5.2. Proposition. Let A be an algebra, Ta be a splitting tilting module,
and B =EndT4. Then any almost split sequence in mod B lies entirely in
either X(T') or Y(T'), or else it is of the form

0 — Homa (T, I) — Homa(T, I /soc I)@ExtY (T,rad P) — Ext!y (T, P) — 0,

where P is an indecomposable projective module not lying in addT and I is
the indecomposable injective module such that P/rad P = soc 1.

Proof. Let 0 - E' — E — E” — 0 be an almost split sequence in
mod B. Because (X (T),)Y(T)) is a splitting torsion pair, either this sequence
lies entirely in one of the subcategories X' (T") and Y(T) or we have E' € Y(T')
and E” € X(T); that is, it is a connecting sequence. In this last case, it
follows from (4.8) and (4.9) that it is of the form

0 — Homu(T,I) — Ep — Ext4 (T, P) — 0,

where P and I are as required. Further, it follows from (4.10) that the
canonical sequence for E in (X(T"), Y(T')) is of the form

0 — Ext}(T,rad P) — Ep — Homu(T,I/socI) — 0.

Because (X(T'),Y(T')) is splitting, this canonical sequence splits (1.7) so
that F = Ext!, (T, rad P) ® Homa (T, I /socI). O

The following lemma shows that the almost split sequences in mod A
lying entirely inside one of the classes 7 (T) and F(T') give rise to almost
split sequences in mod B.
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5.3. Lemma. Let A be an algebra, T'a be a splitting tilting module, and
B =EndTy. Let 0 — L oML NS 0 be an almost split sequence
in mod A.

(a) If the modules L, M, and N lie in T(T), then
0 — Homa (T, L) "I gom (1, M) 222409 Hom (T, N) — 0

is an almost split sequence in mod B, all of whose terms lie in Y(T).
(b) If the modules L, M, and N lie in F(T'), then

X 1 X 1
0 — Bxtl(T,L) 22T megd (7 0y 29 TD gt (r Ny - 0
is an almost split sequence in mod B, all of whose terms lie in X(T).

Proof. We only prove (a); the proof of (b) is similar. Because the mod-
ules L, M, and N lie in 7(T) = Gen Ty, Ext! (T, L) = 0 and the sequence
of B-modules

0 — Homu (T, L) Homy (T, M) Homu(T,N) — 0

is exact. Moreover, the B-modules Hom4 (7, L) and Hom4 (7T, N) are in-
decomposable, because N and L are. By (IV.1.13), it suffices to show
that Homa (7, f) and Homu (7', g) are irreducible. By (3.8), the functor
Hom 4 (T, —) induces an equivalence of categories Y(T') — T (T'), and there-
fore the homomorphism Hom4 (7T, f) is neither a section nor a retraction.
Assume that there exist u : Homa(T,L) — Y and v : Y — Homu (7, M)
in mod B such that Homa(T, f) = vu. Because u # 0 (because f # 0),
Y € Y(T) and there exists E € 7(T) such that Y = Homa (T, E). More-
over, there exist homomorphisms of A-modules v’ : L — E and v : E — M
such that u = Homu (T, v’) and v = Homy (T, ). Tt follows that f = v'u/,
and therefore v is a retraction or v’ is a section. Hence u is a retraction,
or v is a section. This shows that Hom (7, f) is an irreducible morphism.
The proof that Homy4 (T, g) is an irreducible morphism is similar. O

Hom (T, f) Hom 4 (T,9)
—_ —_

The following technical property will be needed in Chapter VIII.

5.4. Lemma. Let A be an algebra, I be an indecomposable injective A-
module, T4 be a splitting tilting module, and B = End T'4.

(a) If Yg € Y(T) is indecomposable, then there exists an irreducible
morphism Homa (T, 1) — Y in mod B if and only if there exists an
indecomposable A-module J such that Y = Homu(T,J) and J is
isomorphic to a direct summand of I /socI.

(b) If X € X(T) is indecomposable, then there exists an irreducible
morphism Homa (T, 1) — X in mod B if and only if there exists an
indecomposable injective A-module J such that X = Homyu (T, J)
and I is a direct summand of J/socJ. Further, in this case, X =
ExtYy (T, P), where P is the projective cover of soc J.
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Proof. Let p: I — I/socI be the canonical surjection. We claim that
the homomorphism f = Homa (7, p) is irreducible in mod B. By (3.8), the
functor Hom4 (T, —) induces an equivalence of categories Y(T)) — 7T(T),
and therefore f is neither a section nor a retraction. Assume that f = hg,
where g : Homy(T,I) — Z and h : Z — Homy (T, I/socl) are in mod B.
Because h # 0 (because f # 0), Z ¢ X(T') and therefore Z € Y(T),
because T4 is a splitting tilting module. By (3.8)(b), there exists M € 7 (T)
such that Z = Homa (T, M). Moreover, there exist homomorphisms of A-
modules ¢’ : I — M and i/ : M — I/socI such that g = Hom4 (T, g’) and
h = Homu (T, 1'). Tt follows that p = h'g’, and therefore h’ is a retraction
or ¢’ is a section. Hence h is a retraction or g is a section. This shows
that Homu4 (T, p) is an irreducible morphism. The sufficiency follows from
(IV.1.10) and (IV.4.2).

For the necessity, let Yp € Y(T') be an indecomposable module and
f : Homa(T,I) — Y be an irreducible morphism in mod B. Then there
exists an indecomposable A-module J such that Y = Hom4(7T,J) and a
homomorphism of B-modules f' : I — J such that f = Homx (T, f’).
Because, according to (IV.3.5)(b), p : I — I/socI is left minimal almost
split, there exists g’ : I /soc I — J such that f’ = g'p. Moreover, because f
is irreducible, so is f’ (by the equivalence Y(T)—7 (T')). Therefore ¢’ is a
retraction and so J is isomorphic to a direct summand of I/soc I.

(b) Let f : Homu(T,I) — Xp be irreducible with Xp € X(T) inde-
composable. Because all the projective B-modules lie in Y(T'), the module
X is not projective, hence there exists an irreducible morphism 7X —
Homy (T, I). Because Homu(T,1I) € Y(T'), we deduce that 7X € Y(T).
By (5.2), the almost split sequence ending with X is a connecting se-
quence, so that there exists an indecomposable injective A-module J such
that 7X = Homu (7, J). If P denotes the projective cover of socJ, then
X = Ext4(T,P). By (a), the existence of an irreducible morphism g :
Homy (T, J) — Homa (T, I) implies that I is isomorphic to a direct sum-
mand of J/socJ. This shows the necessity.

Conversely, assume that J4 is an indecomposable injective module such
that 7X = Homu(T, J) and I a direct summand of .J/soc J. Then (a) yields
an irreducible morphism 7X — Homa(7,I). Hence, in view of (IV.3.8),
there exists an irreducible morphism Homu (T, 1) — X. O

There exists a characterisation of separating and splitting tilting modules,
due to Hoshino [94]. To prove it, we need the following lemma.

5.5. Lemma. Let A be an algebra, T4 be a tilting module, and B =
EndTs. If M € T(T) and N € F(T), then, for any j > 1, there is an
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isomorphism

Ext, (M, N) = Ext}; ' (Homa (T, M), Ext} (T, N)).

Proof. Let 0 = N — I — N’ — 0 be a short exact sequence, with I
injective. Thus I and N’ belong to 7 (T). Applying Homu4 (T, —) yields a
short exact sequence in mod B

0 — Homy (T, I) — Homa (T, N') — Ext (T, N) — 0.

Applying the functor Homp(Hom 4 (T, M), —), we obtain the long exact
cohomology sequence

0—Homp(Homa (T, M), Hom4 (T, I))—Hompg(Hom (T, M),Hom 4 (T, N'))
— Homp(Homy (T, M), Ext! (T, N))—ExtL (Hom4 (T, M), Homa (T, I))

.. —Extl; (Homa (T, M), Hom (T, I))—~Ext’;(Hom 4 (T, M), Hom (T, N'))
— Bxtd (Homa (T, M), ExtY (T, N)) — Ext);" (Homa (T, M), Homa (T, I))

By the tilting theorem (3.8), we have

Ext?, (Homa (T, M), Homa(T, T)) 2 Ext’, (M, I) = 0,
for all j > 1, because [ is injective. Then the sequence
0—Homp(Homa (T, M), Homa (T, I))—Homp (Homa (T, M), Homa (T, N'))
— Homp(Homy4 (T, M), Ext (T, N)) — 0
is exact, and there is an isomorphism
Ext?, (Homa (T, M), Exty (T, N)) = Ext}(Homa (T, M), Homa (T, N'))
for all j > 1. Compare this exact sequence with the short exact sequence
0 — Homu (M, I) — Homu (M, N’) — Exty (M, N) — 0

obtained by applying the functor Homa (M, —) to the short exact se-
quence 0 — N — I — N’ — 0, using the injectivity of I and the fact that
N € F(T). Because, by the tilting theorem (3.8), there are isomorphisms
Homp(Hom4 (T, M),Homa (T, E)) = Hom4 (M, E),
Hom g (Hom (T, M), Homa(T, N')) = Hom (M, N'),



230 CHAPTER VI. TILTING THEORY

by passing to the cokernels, we obtain an isomorphism
Homp(Hom 4 (T, M), ExtY (T, N)) = Ext} (M, N),

which is the required statement whenever j = 1. Assume now j > 1. Then
the tilting theorem (3.8) again gives

Ext, (Homa (T, M), ExtY (T, N)) = Extd,(Hom4 (T, M), Hom4 (T, N'))
=~ Ext, (M, N') = Ext’," (M, N). O

5.6. Theorem. Let A be an algebra, Ty be a tilting A-module, and
B = EndTy4.

(a) T4 is separating if and only if pd X =1 for every Xg € X(T).

(b) Ta is splitting if and only if id N =1 for every Na € F(T).

Proof. We only prove (b); (a) follows using that gT is a tilting module.
We first show the sufficiency of the condition. Assume that, for every N €
F(T), we have idN = 1. Let X € X(T) and Y € Y(T). Then there
exist M € T(T) and N € F(T) such that X = Ext4(T,N) and YV =
Homy (T, M). Hence, by (5.5),

Exth(Y, X) = Exth(Hom (T, M), ExtY (T, N)) = Ext% (M, N) = 0,

because id N = 1. Therefore, by (1.7), the pair (X (T), V(7)) is splitting.
Conversely, assume that (X(T),Y(T)) is splitting and let N € F(T).
Take an injective resolution of N

d2
s I2 5 ...

0—N-L oL p
Let L° = Imd* and L' = Imd?. Then, by (5.5), because L' € 7(T) and
N € F(T), we have

Extl (L, L) = Ext?% (L', N) = Extl (Hom4(T, L'), ExtY (T, N)) = 0,

because Hom (T, L') € Y(T) and ExtL (T, N) € X(T), and (X(T),Y(T))
is splitting (see (1.7)). This implies that the short exact sequence 0 — L% —
I' — L' — 0 splits. Therefore, L is injective and consequently id N < 1.
Finally, because N € F(T'), N cannot be injective so that id N = 1. O

If A is an algebra and P(a) is simple projective noninjective, then the
APR-tilting module T'[a] (which is always separating, by (2.8)(c)) is splitting
if and only if id P(a) = 1. Moreover, we have the following corollary.



VI1.5. SEPARATING AND SPLITTING TILTING MODULES 231

5.7. Corollary. Ifgl.dim A <1, then every tilting A-module is splitting.

This is the case for the algebras of Examples 3.11 (a) and (c). These
algebras are studied in detail in future chapters.

Let T4 be a tilting A-module and let T1,...,T, denote the pairwise
nonisomorphic indecomposable summands of T. By (3.1), the modules
Homa(T,Th),... ,Hom4(T,T,) form a complete set of pairwise nonisomor-
phic indecomposable projective modules over the algebra B = EndT4. It is
less easy in general to describe the indecomposable injective B-modules. In
the splitting case, however, we have the following result.

5.8. Proposition. Let A be an algebra, T4 be a splitting tilting module,
B =EndTa, and Ty, ... ,T, be a complete set of pairwise nonisomorphic
indecomposable direct summands of T'. Assume that the modules Ty, ... , Ty,
are projective, the remaining modules Tp,11, ..., T, are not projective and
I,..., I, are indecomposable injective A-modules with soc I; = T} /rad T},
for j=1,... ,m. Then the right B-modules

Hom A(T,1),... ,Hom A(T, I;,), Ext Yy (T, 7T s1), . . . , Ext (T, 7T,)

form a complete set of pairwise nonisomorphic indecomposable injective
modules.

Proof. It follows from (4.9) that Hom 4 (T, I1),... ,Hom 4(T, I,,) are
paiwise non-isomorphic indecomposable injective B-modules, and belong
to Y(T). If m = n, they form a complete set of pairwise nonisomorphic
indecomposable injective B-modules.

Assume that m < n. Clearly, Exty(T,7Ty41), ... , Exty(T,7T,) are
pairwise nonisomorphic objects of the torsion class X' (7T4) of mod B. It
then suffices to show that, for each ¢ such that m+1 < i < n, the B-module
Ext!y (T, 7T;) is injective. Indeed, if this is not the case, then there exists an
almost split sequence 0 — Ext! (T, 7T;) — Fp — Xp — 0 in mod B.
Because, by our assumption, the torsion pair (X (7'),Y(T)) in mod B is
splitting and Ext!, (T, 7T;) maps to no module from Y(7T'), we deduce that
Fp € X(T), and similarly Xp € X(T). Thus, there exist an A-module E
and an indecomposable A-module N in F(T) such that Fp = ExtY (T, E)
and Xp = ExtY (T, N), and the almost split exact sequence becomes

0 — Exty(T,7T;) — Exty(T, F) — Ext4 (T, N) — 0.
The equivalence X (T") = F(T') yields a short exact sequence in F(T")
0— 7T, — F— N — 0.

Because T; = 77 1(rT;) € T(T), by (1.11)(b), the A-module 77; is Ext-
injective in F(T). Therefore, the short exact sequence splits, and applying
Ext!y (T, —) to it yields a split-almost split sequence, a contradiction. [
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V1.6. Torsion pairs induced by tilting modules

It is natural to ask which torsion pairs (7, F) in a module category mod A
are in fact induced by tilting modules, that is, are such that there exists a
tilting module T4 such that 7 = 7 (T4) and F = F(T4). This is useful in
practice, because in many applications it is easier to start by constructing
the torsion pairs and then finding the corresponding tilting module. Clearly,
because a torsion class induced by a tilting module 7" is of the form Gen T,
we may start our investigation by asking what the properties of a module
U are so that the class GenU is a torsion class. We need one definition.

An A-module U will be called Gen-minimal if, whenever U = U’ & U”,
U' ¢ GenU"”. We define dually Cogen-minimal modules.

Our first lemma is a partial converse of (1.9).

6.1. Lemma. Let A be an algebra.

(a) Let U be a Gen-minimal A-module such that GenU is a torsion
class. Then U is Ext-projective in GenU.

(b) LetV be a Cogen-minimal A-module such that CogenV is a torsion-
free class. Then V is Ext-injective in CogenV'.

Proof. We only prove (a); the proof of (b) is similar. Under the stated
assumptions, let M € GenU be such that Extl (U, M) # 0. Then there
exists an indecomposable summand Uy of U such that Extl(Uy, M) # 0,
and hence a nonsplit extension

O—»ML»EL»UO—>O,

Because M, Uy € GenU, and Gen U is a torsion class, we have E € Gen U,
and thus there exists an epimorphism p : U™ — FE for some m > 0. Let
U™ = R @ UJ"; then the composition f = wvp: U™ — Uy can be written as
f=lg, f1,---, fm] with g € Hom4(R,Uy) and f; € End Uy for each .

The surjectivity of f means that Uy = g(R) + Y .~ fi(Up). Because v
is not a retraction, no f; is an isomorphism, and consequently, f;(Uy) C
(rad End Up) - Up (because the indecomposability of Uy implies that End Uy
is local) for any 7 such that 1 < i < m. So Uy = g(R) + (rad End Uy) - Up.
Applying Nakayama’s lemma (1.2.2) to the left End Up-module Uy, we get
that Uy = g(R) so that g is an epimorphism. This, however, contradicts the
Gen-minimality of U. Thus Ext! (U, M) = 0 for all M in GenU. O

6.2. Corollary. Let A be an algebra.

(a) Let U be a Gen-minimal A-module. Then GenU is a torsion class
if and only if U is Ext-projective in Gen U.

(b) Let V be a Cogen-minimal A-module. Then CogenV is a torsion-
free class if and only if V is Ext-injective in CogenV.
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Proof. This follows from (1.9) and (6.1). O

6.3. Corollary. Let A be an algebra and let U be a Gen-minimal faithful
A-module such that GenU is a torsion class. Then U is a partial tilting
module.

Proof. Because U € GenU, (6.1) yields Ext! (U,U) = 0. On the other
hand, because U is faithful, by (2.2), we have DA € Gen U, whereas the Ext-
projectivity of U in the torsion class Gen U implies, by (1.11), that 7U lies
in the corresponding torsion-free class. Thus, we have Hom4 (DA, 7U) = 0.
Therefore, by (IV.2.7), we have pdU < 1. O

6.4. Lemma. Let A be an algebra.

(a) If T = GenU is a torsion class, then the numbers of isomorphism
classes of indecomposable Ext-projectives in T and of indecompos-
able Ext-injectives in T are finite and equal.

(b) If F = CogenV is a torsion-free class, then the number of isomor-
phism classes of indecomposable Ext-projectives in F and of inde-
composable Ext-injectives in F are finite and equal.

Proof. We only prove (a); the proof of (b) is similar. Because there
clearly exists a direct summand Uy of U that is Gen-minimal and such that
GenU = GenUpy, we may assume from the start that U is Gen-minimal.
Because, on the other hand, U is clearly faithful as an A/AnnU-module
and we have embeddings

7 — mod (A/AnnU) — mod A,

we may also assume that U is faithful.

By (6.3) and (6.1), U is a partial tilting module and is Ext-projective
in 7. Because DA € GenU (by (2.2)), all the indecomposable injective A-
modules are torsion and so, by (1.11), they coincide with the indecomposable
Ext-injectives in 7.

Let uq,... ,uq be a basis of the K-vector space Homa(A,U) and con-
w1

: Ay —— U4. Because U is faithful,

sider the homomorphism u = l :
Ug
according to (2.2), the map w is injective. We thus have a short exact

sequence

0— A5 U —U —0,
where U’ = Cokeru. Notice that U’ € 7. Also, because pdU < 1, we
have pd U’ < 1. We now show that U’ is Ext-projective in 7. Let M € T
and apply Homyu(—, M) to the preceding sequence. This yields an exact
sequence
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Hom 4 (u,M)
- '

0 — Homy (U, M) ———— Hom 4 (U?, M) Hom (A, M)

— Ext4Y(U', M) — 0,

because Extl(U? M) = 0 due to the Ext-projectivity of U in 7. We
claim that Homy(u, M) is surjective. Because M € T, there exists an
epimorphism p : U™ — M for some m > 0. Because A, is a projective
module, the homomorphism Homy (A, p) : Homa(A,U™) — Homyu (A, M)
is surjective. On the other hand, it follows from the definition of u that
Hom 4 (u, U™) : Homa (U, U™) — Homy(A,U™) is surjective. Therefore
the composition Hom(u,p) : Homa (U9, U™) — Homa(A, M) is surjec-
tive. Because Hom 4 (u,p) = Hom4(u, M) o Hom(U?, p), this shows that
Homy (u, M) is surjective. Therefore Extl (U, M) = 0, and hence U’ is
Ext-projective in 7.

We deduce that T4 = U®U’ is a tilting module. Indeed, pd T < 1 and the
Ext-projectivity of both U and U’ implies that Ext!y (T, T) = 0. Finally, the
short exact sequence 0 — A — U% — U’ — 0 shows that T is indeed a
tilting module. It follows from (2.5) that 7(T") = GenT = GenU = 7. By
(2.5)(d), the pairwise nonisomorphic indecomposable Ext-projectives in 7°
coincide with the pairwise nonisomorphic indecomposable direct summands
of T. Therefore, by (4.4), their number equals the rank of K((A) and thus
equals the number of pairwise nonisomorphic indecomposable Ext-injectives
in T = 7(T). O

6.5. Theorem. Let A be an algebra and let (T,F) be a torsion pair in
mod A. Then there exists a tilting module T such that T = T (Ta) if and
only if T = Gen M for some A-module M, and T contains the injectives.

Proof. Because the necessity is obvious, we only show the sufficiency.
Let 7 be a torsion class containing all the injectives such that 7 = Gen M
for some A-module M. Let T1,... ,T; be a complete set of pairwise noniso-
morphic indecomposable Ext-projectives in 7, and let T4 = @221 T;. We
claim that T4 is a tilting module. Indeed, the Ext-projectivity of T4 in 7
implies that ExtY (T,7) = 0. On the other hand,

t
Hom (DA, 7T) = @ Homa (DA, T;) = 0
i=1
(because 7T; is zero or torsion-free, by (1.11)(a), whereas DA € T by hy-
pothesis). Hence, by (IV.2.7), pd T < 1. Also, by (6.4), t equals the number
of pairwise nonisomorphic indecomposable injective A-modules. Therefore
t equals the rank of K(y(A) and so T is a tilting module, by (4.4).
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Because M is itself Ext-projective in 7, its indecomposable direct sum-
mands are also summands of T'. Therefore 7 C 7(T'). Because T € Gen M,
we also have 7(T) C 7 so that 7(T) =T7. O

We give an application of this theorem, but first we prove two important
corollaries. The first is obvious.

6.6. Corollary. Let A be a representation—finite algebra and (T,F) be
a torsion pair in mod A. Then there exists a tilting module T4 such that
T =T(Ty) and F = F(Ta) if and only if T contains the injectives.

Proof. Let {My,...,M,} be a complete set of pairwise nonisomorphic
indecomposable modules in 7 (such a set is finite, because A is representa-
tion—finite), and let M = M1®...®M,. Then T = Gen M, and the required
equivalence is a direct consequence of (2.5) and (6.5). O

6.7. Corollary. Let B be an algebra and (X,Y) be a torsion pair in
mod B. Then there exists an algebra A and a tilting module T s such that
B=EndTa, X = X(T4) and Y = Y(T4) if and only if Y = CogenY for
some B-module Y, and Y contains the projectives.

Proof. We first show the necessity. Let A be an algebra and Ty be a
tilting module such that B = EndT4. It follows from (3.1)(b) that Y(T4)
contains the projective B-modules. We claim that Y(T') is the class cogen-
erated by the B-module D(pT) = Homa (T, DA) € Y(T4). Let Y € Y(T4);
there exists an A-module M € T (T') such that Y = Homa (T, M). There
exists an injective A-module U and a monomorphism M — U and hence a
monomorphism Y = Hom4 (7T, M) — Hom4 (T, U). Because Homa (T,U) €
add D(pT), we deduce from (3.3)(a) that Y(T") C Cogen D(gT'). Because,
on the other hand, D(gT) € Y(T'), we have established our claim.

To prove the sufficiency, we notice that, by (6.4), the torsion class of
left B-modules DY is induced by a tilting module, that is, there exists a
left B-module T such that DY = T (pT) and DX = F(gT). Letting
A = End (gT)°, we deduce from (3.3) that T4 is a tilting A-module and
B = EndT4. Moreover, by (3.6), Y(T4) = DT (gT) = Y and X(T4) =
DF(5T) = X. O

To apply Corollary 6.7 in examples, we need the following easy compu-
tational lemma.

6.8. Lemma. Assume that the torsion pair (X,)) in mod B satisfies
the equivalent conditions of (6.7). Then D(gT) equals the direct sum of a
complete set of pairwise nonisomorphic indecomposable Ext-injectives in ).

Proof. We recall that D(pT) = Homu (T, DA) equals the direct sum
of modules of the form Homa(7T,I(a)), where I(a) runs over a complete
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set of indecomposable injective A-modules. Let I(a)a be indecomposable
injective. By the connecting lemma (4.9), either Homy4 (T, I(a)) is injective
in mod B (if the corresponding indecomposable projective lies in add T'4) or
7 'Homy (T, I(a)) € X. By (1.11), Hom4 (T, I(a)) is Ext-projective in ).

Conversely, let Y be indecomposable Ext-injective in V; then 77'Y € X.
If 771Y # 0; then, by (4.8), there exists an indecomposable injective A-
module (a) such that Y = Homa (7, I(a)). Assume now that 771Y = 0,
that is, Y is injective. Because Y € ), there exists an indecomposable
A-module M € T(T4) such that Y = Homu(T,M). Let M — E be an
injective envelope of M in mod A. Applying Hom4 (7', —) to the short exact
sequence

0— M —FE—E/M—0

yields an exact sequence in mod B

0 — Y — Homyu (T, E) — Homu (T, E/M) — 0,

because Extl (T, M) = 0. Because, by hypothesis, Y is Ext-injective in Y
and the previous sequence lies in ), it splits. Hence Y is isomorphic to
a direct summand of Homu4 (T, E), that is, there exists an indecomposable
summand I (a) of E such that Y = Homa (T, I(a)). O

Assume thus that (X,)) satisfies the conditions of (6.7). We indicate
how to find an algebra A and a tilting module T4 from which (X, Y) arises.
We first compute D(pT') using (6.8): Let Y1,...,Y, be a complete set of
pairwise nonisomorphic indecomposable Ext-injectives in ), then D(gT) =
@._, Y;. We next find

A = Endper(5T) = Endp(D(5T)) = Endp(EP V).

In doing the last calculation, we associate each of the Y; to a point in
the quiver of A. Thus, without loss of generality, we may assume that
Y; = Homy (T, I(4)) for each i such that 1 <14 < n. Letting T = @)_, T,
we have
(Tj)i = Homa(P(i)a, T;)

=~ DHomy (T, (1))

& DHomp(Hom (T, T;), Hom (T, I(i))

= DHOmB(P(j)B, )/1)

Thus, in particular, dimg(T}); is the jth coordinate of Y;. This gives
dim T;. The method is explained in the following example.
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6.9. Examples. (a) Let B be given by the quiver

1 no2 A3
O«——0«—0

bound by Ay =0 and (X, ) be the shown torsion pair in mod B (compare
with (3.11)(a))

where ) is shaded as (C D and X as ). Clearly, (X,)) satisfies the
conditions of (6.7). To find an algebra A and a tilting module T4 from
which (X,)) arises, we consider the indecomposable Ext-injectives in Y;
these are Y7 = 110, Y2 = 010, Y3 = 011. Thus D(T) = 110 ® 010 ¢ 011.
Hence A = Endges (pT) = Endg(D(5T)) = Endp(@;_, Vi) is given by the
quiver

1 2 3
O¢———0«+—0

where the point i corresponds to Y; (for each ¢ with 1 <4 < 3). To recover
T4, we notice that, in the preceding notation,

Homy (T, 1(1)) =110, Homa(T,1(2)) =010, Homyu(T,I(3)) = 011.

Thus, if one writes T' =T, & Ty & T3, with T3, T, T3 indecomposable, one
gets
Ty =100, Ty =111, T3 = 001.
(b) Let B be given by the quiver
n v 1% A

o ¢ [¢) [¢) [¢)
1 2 3 4 5

bound by Auvn = 0 and (X, )) be the shown torsion pair in mod B (compare
with (3.11)(b))
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where ) is shaded as (D and X as @&D. Clearly, (X,)) satisfies the
conditions of (6.7). The indecomposable Ext-injective modules in ) are
V; = 11110, Ya = 01000, Y3 = 00010, Y3 = 01111, and Ys = 00011. Thus,
A =End (@?:1 Y;) is given by the quiver

3
2N
10 05
‘6\ /
Oy

el
20

bound by a8 = 7§ and ve = 0, where the point i corresponds to Y; (for
each 7 with 1 <4 <5). To recover T4, we notice that

Hom 4 (T, 1(1)) = 11110,Hom 4 (T, I(2)) = 01000, Hom 4 (T, I(3)) = 00010,
Homa (T,1(4)) = 01111, Hom4 (7, 1(5)) = 00011.
Thus if one writes T = T1 D TQ D T3 D T4 D T5, with Tl, TQ, Tg, T4, T5
indecomposable, one gets

0 0 0 1 0
nn=1,0, =10 n=1,0 7=11"7,=01
0 1 0 0 0

—_

VI1.7. Exercises

1. Show that a pair (7, F) of full subcategories of mod A is a torsion pair
if and only if it satisfies the following four conditions:
(a) TNF ={0};
(b) T is closed under images;
(¢) F is closed under submodules; and
(d)

for every module M, there exists a short exact sequence
0—-M —-M—M'"—0with M €T and M" € F.

2. Verify the assertions in Example 1.2 (a).

3. A torsion pair (7, F) is called hereditary if 7 is closed under sub-
modules. Give an example of a hereditary torsion pair. Show that a torsion
pair (7, F) is hereditary if and only if F is closed under injective envelopes.

4. Let T4 be an A-module. Show that:

(a) GenT is a torsion class if and only if Ext!(T,T") = 0 for every
quotient T" of T.

(b) CogenT is a torsion-free class if and only if ExtYy(7’,7) = 0 for
every submodule T” of T



VI.7. EXERCISES 239

5. Assume that GenT is a torsion class for some module T'4. Show that
7T belongs to the corresponding torsion-free class.

6. Assume that GenT is a torsion class for some module T'y4.

(a) Show that if T4 is faithful, then T4 is a partial tilting module.
(b) Give an example showing that if T4 is not faithful, then T4 is gen-
erally not a partial tilting module.

7. Let T4 be a partial tilting module. Show that:

(a) If 7 is a torsion class such that T4 is Ext-projective in 7", then
GenT CT CT(T).

(b) 7(T) is induced by a tilting module having T as a summand.

8. Let T4 be a partial tilting module and E be the middle term of Bon-
gartz’s exact sequence. Show that any indecomposable direct summand E’
of E is projective or satisfies Hom 4 (E’,T') # 0.

9. An A-module M is called sincere if Hom4 (P, M) # 0 for any projec-
tive A-module P. Show that any faithful module is sincere (consequently,
any tilting module is sincere).

10. Let T4 be a tilting module. Show that any indecomposable projec-
tive-injective A-module is a direct summand of T'.

11. Let T4 be a tilting module and (7(T"), F(T')) be the induced torsion
pair in mod A. Show that if M3 — My — M; — M, is exact with M; €
T(T) for all 4, then the induced sequence

Homy (T, My) — Homy (T, My) — Homu (T, M)

is exact.

12. Let T4 be a tilting module and X' (7") be the induced torsion class in
mod B. Show that X(T) = Gen Ext! (T, A).

13. Let T4 be a tilting module and E4 be injective. Show that if IV €
F(T), then we have a functorial isomorphism

Hom 4 (N, E) = Exth (Exty (T, N),Homa (T, E)).

14. Let A be a K-algebra given by each of the bound quivers (i)—(iv).
(a) Verify that the given module T4 is a tilting module.
(b) Compute the bound quiver of B = End T'4.
(¢) Mlustrate in I'(mod A) and I'(mod B) the classes 7(T), F(T), X(T),
and Y(T).
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) Describe explicitly the equivalences 7 (T") = Y(T), X(T') = F(T).

) Compute the global dimensions of A and B.

) Describe all connecting sequences in mod A and mod B. For which
ones is the canonical sequence of the middle term not split?

(g) Find the matrix F of the isomorphism Ky(A) — Ky(B), the matrices

A and B of the Euler characteristics for A and B, respectively, and

verify the relation A = F!BF.

(i) 10 bound by a8 =0, v6 = 0,

V\B a
1.0,.1.0..0 0 0.1
3 =
Ta 000@011@01 EB01 ®1t
%

bound by af = vde,

0 1 0 0 0
B @ Tyx=1"0H1 14H0 0HO 0O~ 1
/\ A 11@11@10@11@11

10 05
N,/
04——0
3 & 4

bound by vd = 0,

3 v 4 6§ 5 TA:8001@8011@3110@?110@1110

(iii) 10

AW
L
|

20
(iv) L s bound by fa =0,
-
s Ty = @) @ (1) (in the notation of (V.2.7))

15. Let A be given by the quiver
y Y
10%03

bound by a3 = 0. Find all (nontrivial, multiplicity-free) tilting A-modules
and compute the bound quiver of the endomorphism algebra of each.

16. Let A be given by the quiver

/
\

™

&/
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bound by af = 0, 76 = 0, and de = 0. Compute the bound quiver of
the endomorphism algebra B of the unique APR-tilting module and the
Auslander—Reiten quivers of each of A and B and then describe the equiv-
alences T (T) = Y(T), F(T) = X(T).

17. Repeat Exercise 16 with A given by the quiver

4 ¢

2
o
y X
10 04&——05
k /
o
3

bound by aff = vd, ea = 0, and ey = 0.

18. Let T4 be a tilting module and B = End T'4. Show that if Jp € Y(T)
is an indecomposable injective B-module, then there exists an indecompos-
able injective A-module E4 such that J = Hom4 (7, F) and the indecom-
posable projective P4 such that P/rad P = soc I and P4 are not in add T'.

19. Let T4 be a tilting module and B = EndT4. If, for a point a of
Qa4, both P(a) and I(a) are in add T, then show that Hom4 (T, I(a)) is a
projective-injective B-module and, conversely, show that every indecompos-
able projective-injective B-module is of this form.

20. Let T4 be a tilting module. Prove the following implications:
(a) If N € F(T), then pd ExtY (T, N) < 1 + max(1,pd N).

(b) If M € T(T), then id Homu (T, M) < 1+ id M.

(c) If N € F(T), then id ExtL (T, N) <id N.
Hint: See the remark following (4.2).

21. The following construction, due to Brenner and Butler, generalises
that of the APR-tilting modules. Let A be an algebra and S(a) be a simple
A-module such that: (i) pd77!'S(a) < 1 and (ii) ExtY(S(a), S(a)) = 0.
Show that

(a) T=7""5(a) ® (B, P(b)) is a tilting module,

(b) F(T) = add S(a).
Let A be as in Exercise 14 (ii). Find a simple A-module S(a) satisfying (i)
and (ii), construct the corresponding tilting module T as in (a), compute the
bound quiver and the Auslander—Reiten quiver of B = End T', and describe
the equivalences 7 (T) = Y(T), F(T) = X(T).

22. An A-module Ty is called a partial cotilting module if T" satisfies

(CT1) idT <1 and
(CT2) ExtY(T,T)=0
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and a cotilting module if it also satisfies

(CT3) the number of pairwise nonisomorphic indecomposable summands
of T equals the rank of Ky(A).

Show that T4 is a (partial) cotilting module if and only if 4DT is a
(partial) tilting module. Then state and prove the analogues for (partial)
cotilting modules of the results of Sections 2 and 3.

23. Let (7,F) be a torsion pair in mod A. Show that there exists a
tilting module T4 such that 7 = T(Ta), F = F(T4) if and only if F is
cogenerated by a module N such that pd (77!N) < 1.

24. Let A be given by the quiver
/ \
BN /

e

bound by af = vd.
(a) ShowthatX—add{O OEBO 0690 1@8(1)169881} is a torsion-free

class in mod A.

(b) Find a class Y such that (X,)) is a torsion pair in mod A.

(¢) Show that there exists an algebra C' and a tilting module T¢ such
that A = EndT¢, X = X(T¢), and Y = Y(T¢). Compute the
algebra C' and the module T¢.



Chapter VII

Representation—finite hereditary

algebras

As we saw in Chapter II, any basic and connected finite dimensional alge-
bra A over an algebraically closed field K admits a presentation as a bound
quiver algebra A = KQ/Z, where @) is a finite connected quiver and 7 is
an admissible ideal of K@Q. It is thus natural to study the representation
theory of the algebras of the form A = K@, that is, of the path algebras
of finite, connected, and acyclic quivers. It turns out that an algebra A
is of this form if and only if it is hereditary, that is, every submodule of
a projective A-module is projective. We are thus interested in the repre-
sentation theory of hereditary algebras. In [72], Gabriel showed that a
connected hereditary algebra is representation—finite if and only if the un-
derlying graph of its quiver is one of the Dynkin diagrams A,,, with m > 1;
D,, with n > 4; and Eg, E7, Eg, that appear also in Lie theory (see, for
instance, [41]). Later, Bernstein, Gelfand, and Ponomarev [32] gave a very
elegant and conceptual proof underlining the links between the two theo-
ries, by applying the nice concept of reflection functors. In this chapter,
using reflection functors (which may now be thought of as tilting functors),
we prove Gabriel’s theorem and show how to compute all the (isomorphism
classes of) indecomposable modules over a representation—finite hereditary
algebra.

VI1I.1. Hereditary algebras

This introductory section is devoted to defining and giving various char-
acterisations of hereditary algebras. In particular, we show that the heredi-
tary algebras coincide with the path algebras of finite, connected, and acyclic
quivers. Throughout, we let A denote a basic and connected finite dimen-
sional algebra over an algebraically closed field K.

1.1. Definition. An algebra A is said to be right hereditary if any
right ideal of A is projective as an A-module.

Left hereditary algebras are defined dually. It is not clear a priori whether
a right hereditary algebra is also left hereditary, though we show in (1.4) that

243
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this is the case. The most obvious example of a right (and left) hereditary
algebra is provided by the class of semisimple algebras; because any right
(or left) module over a semisimple algebra is projective, then so is any right
(or left, respectively) ideal of the algebra. On the other hand, let A be
g [0(], see (1.2.4).
Then, denoting by e; = (3§ ) and e2 = (§ ) the matrix idempotents, an
immediate calculation shows that the only proper right ideals are e; A, ex A,
and en K = (% ) = e1 A, where ea; = (). Because e; A and ey A are
direct summands of A4, all these are projective A-modules and A is right
hereditary.

The following theorem, due to Kaplansky [100], is fundamental. We
warn the reader that, contrary to our custom, the modules we consider in
(1.2)—(1.4) are not necessarily finitely generated.

the full 2 x 2 lower triangular matrix algebra A = [

1.2. Theorem. Let A be a right hereditary algebra. Every submodule of
a free A-module is isomorphic to a direct sum of right ideals of A.

Proof. Let L be a free A-module with basis (ex)xea and M be a sub-
module of L. We wish to show that M is isomorphic to a direct sum of
right ideals of A. Without loss of generality, we may assume the index set
A to be well-ordered. For each A € A, let Ly = €D, ,(e,A4). Then Ly =0
and Ly = @uSA(el‘A) = L) ® (exA). An element 2 € M N Lyy; has a
unique expression of the form x = y + eya with y € Ly and a € A. We may
thus define an A-module homomorphism fy : MNLyy1 — A by x — a, and
hence we have a short exact sequence

0— MNLy —MnNLy 25 Imfy — 0.
Because Im f) is a right ideal of the right hereditary algebra A, it is pro-
jective and the sequence splits. Hence there exists a submodule N, of
M N Ly41, isomorphic to Im f and such that M N Lyy; = (M NLy)® Ny.
To complete the proof, it suffices to show that M = @, Na.

First, we show that M is equal to its submodule N =}, ., Nx. Because
L equals the union of the increasing chain of submodules (Ly)aenx, for each
x € L, there exists a least index A € A such that x € Lyy;. Denote this
index by p. If N C M, there exists z € M such that x ¢ N. Let p denote
the least p, with z € M, z ¢ N and take y € M such that y ¢ N and
= py. Wehavey € M N L,y hence y=u+v withu € MNL, and
v € N,. Therefore u =y —v € M and u ¢ N (otherwise, y € N, which is a
contradiction). But, on the other hand, w € M N L, gives p, < p, and this
contradicts the minimality of p. Hence M =3, Ny.
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There remains to show that the sum > aea Vo is direct. Assume that
1+ ...+ x, =0 with z; € N,,, where we can suppose that \; < ... < A,.
Then 1+ ...+ zp—1 = —x, € (M N Ly, )N Ny, =0 gives 2, = 0. By
descending induction, x; = 0 for each . O

1.3. Corollary. Let A be a right hereditary algebra. Every submodule
of a projective A-module is projective.

Proof. Indeed, any projective module is isomorphic to a direct summand
of a free module. O

We are now able to state and prove our first characterisation of right
hereditary algebras.

1.4. Theorem. Let A be an algebra. The following conditions are equiv-
alent:

(a) A is right hereditary.
) The global dimension of A is at most one.
¢) Every submodule of a projective right A-module is projective.
)
)

Every quotient of an injective right A-module is injective.

e) FEvery submodule of a finitely generated projective right A-module is
projective.

(f) Every quotient of a finitely generated injective right A-module is
injective.

(g) The radical of any indecomposable finitely generated projective right
A-module is projective.

(h) The quotient of any indecomposable finitely generated injective right
A-module by its socle is injective.

Proof. (a) is equivalent to (c). Indeed, it follows from (1.3) that (a)
implies (c). The converse is obvious.

(b) is equivalent to (c). If gl.dimA < 1 and My is a submodule of a
projective module P4 then, in the short exact sequence

0— M —P— P/M —0,

we have pd (P/M) < 1; hence, by (A.4.7) of the Appendix, M is projective.
Conversely, if every submodule of a projective module is projective, let N
be an arbitrary A-module. Then there exists a projective module P4 and
an epimorphism f : P — N. Because Ker f is a submodule of P, it is
projective. Hence the exact sequence 0 — Ker f — P JoN 0 gives
pd N < 1. Consequently, gl.dim A < 1.
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Obviously, (c) implies (e) and (e) implies (a), because A4 is finitely
generated as an A-module.

(e) is equivalent to (g). The necessity being obvious, let us show the
sufficiency. Let P be a finitely generated projective A-module and M be a
submodule of P. We prove that M is projective by induction on d = dimg P.
If d = 1, there is nothing to show. Assume d > 1 and that the statement
holds for every finitely generated projective A-module of dimension < d.
The module P can be written in the form P = P; @ P, where P is in-
decomposable and P, may be zero. Let p : P — P; denote the canonical
projection. If p(M) = Py, then the composition of the injection j: M — P
with p : P — P; is an epimorphism and hence splits, because P; is pro-
jective. Therefore M = Py & M’, where M’ = M N P, C P,. Because
dimg Py < d, the induction hypothesis yields that M’ is projective. Hence
M is also projective. If p(M) # Py, then M C (rad P;) ® P», where rad Py is
projective by hypothesis. Now dimg[(rad P;) @ P2] = d — 1, because rad Py
is a maximal submodule of P;. The induction hypothesis again implies that
M is projective. The equivalence with the remaining conditions is proven
similarly and left to the reader. O

Because condition (b) of the theorem is right-left symmetric (see (A.4.9)
of the Appendix), it follows that a finite dimensional algebra is right heredi-
tary if and only if it is left hereditary. Thus, from now on, we speak about
hereditary algebras without further specification, and hereditary algebras
also satisfy the “left-hand” analogues of the equivalent conditions of the
theorem. On the other hand, conditions (e) to (h) show that we may revert
to our custom of considering only finitely generated modules. From now on,
the term module means, as usual, a finitely generated module.

1.5. Corollary. Let A be a hereditary algebra.

(a) Any nonzero A-homomorphism between indecomposable projective A-
modules is a monomorphism.

(b) If P is an indecomposable projective A-module, then End P = K.

Proof. Let f : P — P’ be a nonzero homomorphism, with P and P’
indecomposable projective. Because Im f C P’ is projective, the short exact
sequence 0 — Kerf — P — Im f — 0 splits and P = Im f @ Ker f.
Because the module P is indecomposable and Im f # 0, Ker f = 0 and f
is a monomorphism, hence (a) follows. The statement (b) is an immediate
consequence of (a). O

The following lemma is used repeatedly in the sequel. We first recall
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that if A is a K-algebra and M, N are indecomposable modules in mod A,
then rad 4 (M, N) is the subspace of Hom4 (M, N) consisting of all noniso-
morphisms, and the subspace rad? (M, N) of rad4(M, N) consists of the
sums f1f] +...+ fif], where foreach i € {1,...,,t}, f/ € rada(M, L;) and
fi € rada(L;, N) for some indecomposable module L;. The space of irre-
ducible morphisms from M to N is then the K-vector space Irr(M, N) =
rada(M, N)/rad% (M, N). We use essentially the functorial isomorphism
0 : Homa(eA, M) —> Me, f + f(e), established in (I.4.2).

1.6. Lemma. Let A be a basic hereditary K-algebra and e, € primitive
idempotents of A. There exists an isomorphism of K-vector spaces

Irr(e’ A, eA) = e(rad A/rad?A)e’.

Proof. First we note that, because the canonical A-module projection
e(rad A)e’ — e(rad A/rad?A)e’ has kernel e(rad?A)e’, it induces a K-linear
isomorphism e(rad A/rad?A)e’ = e(rad A)e’ /e(rad?A)e’.

We split the proof into two cases. Assume first that e = ¢/. By (1.5),
any nonzero A-homomorphism eA — eA is injective, and hence is an iso-
morphism. Consequently, Hom4(eA,eA) = K and rada(eA,eA) = 0 (so
that Irr(eA, eA) = 0). On the other hand, e(rad A)e = rad(eAe) = 0. This
establishes the statement in this case.

Assume next that e # ¢’. Because A is basic, eA % ¢’ A and therefore
rad(e’A,eA) = Homa(e'A,eA) = Homy (e’ A,rad eA), because the idem-
potent e is primitive and radeA is the unique maximal submodule of eA
(by (I.4.5)). Because radeA = eA(rad A), it follows that the functorial
isomorphism € induces an isomorphism 6, : rads(e’A, eA) — (radeA)e’ =
e(rad A)e’. Similarly, the isomorphism € induces another A-module isomor-
phism 0] : Hom (e’ A, e(rad?A)) — e(rad?A)e’. Denote by

e(rad?4) > e(rad A) > eA
the inclusion homomorphisms. Then the functoriality of § implies the com-

mutativity of the following square
01

rada(e’'A, eA) —  e(rad A)¢/
i s
0/
Homy(e'A,e(rad®A)) ————  e(rad®A)e’

where j = Hom (e’ A, vu) and j’ is the restriction of u to e(rad?A)e’.

We claim that the image of j is contained in rad? (¢’ A, eA). Indeed, be-
cause A is hereditary, rad eA is projective. Because, clearly, no indecompos-
able summand of rad eA is isomorphic to eA, we have v € rad 4 (rad eA, eA).
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Similarly, u € rada(rad?eA, rad e4). Consequently, vu € rad? (rad?eA, eA)
and, therefore, for any homomorphism f € Homa(e'A, e(rad?A)) we have
vuf € rad? (e’ A, eA), because rad’ defines a two-sided ideal in the category
mod A.

Next we claim that 6, maps the space rad? (¢’ A4, eA) into e(rad?A)e’. Let
f €rad’(e’A,eA). Then there exist indecomposable modules Ly, ..., L in
mod A and, for each s € {1,...,,t}, homomorphisms f. € rada(e’A, L)
and fs € rada(Ls,eA) such that f = fiff +... + fif{. For any s €
{1,...,,t}, the submodule Im f, of the projective module eA is itself pro-
jective, because A is hereditary. Hence Im f; is isomorphic to a direct
summand of the indecomposable module Lg, so that L, = Im fs is pro-
jective. Therefore there exists a primitive idempotent e; of A such that
Ls = e;A. Because 0 induces isomorphisms Hom g (€A, esA) = eg(rad A)e’
and rada(e’A4, e, A) = egs(rad A)e’, we deduce that

01(fsf!) € e(rad A)es - es(rad A)e’ C e(rad?A)e’.

This shows that 6(f) € e(rad?A)e’ and, consequently, that 6; restricts to a

linear map 0y : rad% (e’ A, eA) — e(rad?A)e’. Therefore the previous square
induces the following commutative diagram:

rada(e’'A, eA) % e(rad A)e’
~ §
J J
rad% (e’ A, eA) — e(rad?A)e/
3] ) §
Hom (€’ A, e(rad? A)) % e(rad?A)e’/

It follows that 5 is bijective. Passing to the quotients yields
rada(e'A,ed)  e(rad A)e’ . rad A o
rad% (e/A,eA)  e(rad?A)e’  \rad24)

The lemma is proved. |

Irr(e' A, eA) =

Our next objective is to prove that an algebra is hereditary if and only
if it is the path algebra of a finite, connected, and acyclic quiver.

1.7. Theorem. (a) If Q is a finite, connected, and acyclic quiver, then
the algebra A = KQ is hereditary and Q4 = Q.
(b) If A is a basic, connected, hereditary algebra and {e1,...,en} is a
complete set of primitive orthogonal idempotents of A, then
(i) the quiver Qa of A is finite, connected, and acyclic; and
(ii) there exists a K-algebra isomorphism A = KQ 4.
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Proof. (a) Let @ be a finite, connected, and acyclic quiver and let &,
be the stationary path at a € Qg. To show that A = K@ is hereditary,
it suffices, by (1.4), to show that the radical rad P(a) of each indecompos-
able projective K@Q-module P(a) = ¢,K(Q is itself projective. In view of
(II1.1.6), we identify modules X in mod K@ with K-linear representations
(Xo, ©8)veqo,peq, of Q.

Let a € Qo. By (II1.2.4)(a), we have P(a) = (P(a)s, pg), where P(a)y, =
ea(KQ)eyp has as a basis the set of all the paths from a to b, and for an arrow
B:b— cin @, the K-linear map ¢g : P(a), — P(a). is given by the right
multiplication by 3, hence it is injective. For z,y € Qoq, let w(x,y) denote
the number of paths from = to y. We thus have dimg P(a), = w(a,b). By
(II1.2.4)(b), rad P(a) = (Jp,7y8) is a representation of @ with J, = P(a)
for b # a, J, = 0 and y3 = g for any arrow § of source b # a.

Let {b1,...,b:} be the set of all direct successors of a in @, and n; be
the number of arrows from a to b; (for 1 < i < t). By (I11.2.2)(d), the
top of rad P( ) is isomorphic to @'_, S(b;)™; hence we have a projective
cover f : @1 1 P(b;)" —rad P(a). On the other hand, for b # a, there
are K-linear isomorphisms

Jp = (rad e, (KQ))ep = Hompg(en(KQ),rade,(KQ))
= HOHlKQ(Eb(KQ), Ea(KQ)) = Ea(KQ)Eb = P(a)b.
Note that the existence of the isomorphism

Hompg(ep(KQ),rade,(KQ)) = Hompg(ep(KQ), ca(KQ))

is a consequence of the facts that e, (K Q) % ,(KQ) and rad e, (K Q) is the
unique maximal submodule of the right ideal ,(KQ). Consequently, for
any b # a in @, we have

dimg [rad P(a)]y = dimgJy, = dimg P(a), = w(a,b) = an (b, b)

—andlmKP( dlmK[@P ] :

=1
It follows that f is an isomorphism, and we are done.

Now we prove the statement (b).

(i) Because A is connected, its quiver @4 of A is connected, by (I1.3.4).
We notice that to each arrow o : @ — b in @4 corresponds an irreducible
morphism f, : A — e, A. By (1.5), fo is a monomorphism and obviously
Im f, C rade,A. To show that @4 is acyclic, assume to the contrary that
it is not and let ay ... be a cycle in @) 4 passing through a point a. Then
f="fa, - far : €aA — es A is a monomorphism, because each f,, is. But



250 CHAPTER VII. REPRESENTATION-FINITE HEREDITARY ALGEBRAS

also Im f C radey,A. Hence dimge, A = dimglm f < dimgrade, A <
dimgeg, A, which is a contradiction.

(ii) By (II.3.7), there exists an admissible ideal Z of KQ4 such that
A2 KQa/Z. Weidentify A with KQ4/Z and the idempotent e, € A with
the class g, = £, +7 of the stationary path e, at a € (Q4)o. By (II1.2.4), for
each a € @y, the corresponding indecomposable projective module P(a) =
e, A is viewed as a representation of Q4 as follows: P(a) = (P(a)s, ¢3),
P(a)y = Pla)ey, = eqAep = eq(KQ)ey/eqLey is the K-vector space with
basis the set of all w = w 4+ Z, where w is a path from a to b, and, for an
arrow @ b — ¢, the K-linear map ¢g : P(a), — P(a). is given by the
right multiplication by 8 = 8 4+ Z. Note that, because dimg(c,KQep)
equals the number w(a,b) of paths from a to b in Qa, dimgP(a)e, =
w(a, b) — dimge,Zey,.

We show that Z = 0. Assume that this is not the case. Because, according
to (i), the quiver Q4 is acyclic, we may number its points so that the
existence of a path from x to y implies x > y. Then there is a least a such
that there exists b € (Qa)o with £,Ze, # 0. In particular, a is not a sink,
and so rad P(a) # 0, by (I11.2.4). Because A is hereditary, the nonzero
module rad P(a) is projective, and therefore there exist ¢ > 1, vertices
bi,...,b € (Qa)o, and positive integers nq, ..., n; such that

rad P(a) = P(b))™ & -~ & P(b)™
It follows from (II1.2.4), (IV.4.3), and (1.6) that {by,...,b:} is the set of
direct successors of a in @ 4 and
n; = dimgIrr(P(b;), P(a)) = dimge, (rad A/rad?A)ey,

that is, n; is the number of arrows from a to b; in Q4 for i such that
1 <i < t. The minimality of a implies that ey, Ze, = 0 and dimg P (b;)ep =
dimgey, Aep, = w(b;, b) for each b and each i. It follows that

dimg (rad P(a))ep = ZmdlmKP an (b;, b) = w(a, b)
=1
> w(a,b) — dimge,Tep = d1mKP( )ebs

and this is clearly a contradiction. The proof is complete. O

We end this section with some remarks on the Auslander—Reiten trans-
lation and the Auslander—Reiten quiver of a hereditary algebra.
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1.8. Lemma. Let A be a hereditary algebra and M be an A-module.
There exists a functorial isomorphism Tr M = ExtY (M, A).

Proof. Because gl.dimA < 1, a minimal projective resolution of the
A-module M is of the form 0 — P, RN Py — M — 0. Applying the
functor (—)* = Hom4(—, A), we obtain an exact sequence of left A-modules

0— M' — Pt L Pt Bxtl (M, A) — 0.
The statement follows at once. O

Actually, the proof shows that the isomorphism TrM 2 Extl (M, A)
holds whenever pd M < 1. One consequence of this lemma is that the
Auslander-Reiten translations 7 = DTr and 7! = Tr D are endofunctors
of the module category mod A of a hereditary algebra A.

1.9. Corollary. Let A be a hereditary algebra, and M be an A-module.
There exist functorial isomorphisms
TM = DExtL (M, A) and 7'M = Ext!, (DM, A). O

We also have the following easy characterisation of hereditary algebras
by means of the Auslander—Reiten quiver.

1.10. Proposition. Let A be an algebra and T'(mod A) be its Auslander—
Reiten quiver. The following conditions are equivalent:

(a) A is hereditary.

(b) The predecessors of the points in T'(mod A) corresponding to the in-
decomposable projective modules correspond to indecomposable pro-
jective modules.

(¢) The successors of the points in T'(mod A) corresponding to the inde-
composable injective modules correspond to indecomposable injective
modules.

Proof. We prove the equivalence of (a) and (b); the proof of the equiv-
alence of (a) and (c) is similar.

For the necessity, let M be an immediate predecessor of an indecom-
posable projective P in I'(mod A). Then there exists an irreducible mor-
phism f : M — P. By (IV.1.10) and (IV.3.5), there exist a module N,
an A-module isomorphism h : M & N —rad P, and a homomorphism
f': N— P such that [f f'] = jh, where j : rad P — P denotes the inclu-
sion. Because A is hereditary, rad P is projective, hence the module M is
projective. Consequently, every immediate predecessor of an indecompos-
able projective is an indecomposable projective module. The statement fol-
lows from an obvious induction. Note that, because I'(mod A) contains only
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finitely many projectives, any indecomposable projective has only finitely
many predecessors.

The sufficiency follows from the fact that the given condition implies that
the radical of any indecomposable projective module is projective. O

VII.2. The Dynkin and Euclidean graphs

Certain graphs are of particular interest in this chapter (and the following
ones).

(a) The Dynkin graphs

Eﬁ:
[¢] [¢] [¢] [¢] [¢]
[¢]
]E7:
[¢] [¢] [¢] [¢] [¢] [¢]
[¢]
]Eg:
[¢] [¢] [¢] [¢] [¢] [¢] [¢]

(b) The Euclidean graphs

[¢]

Eﬁ: 9]

]E7:
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[¢]

]Eg:

] ] ] ] ] ] ] ]

The index in the Dynkin graphs always refers to the number of points
in the graph, whereas in the Euclidean, it refers to the number of points
minus one (thus, A,, has m points while A,, has m + 1 points). In fact, a
Euclidean graph can be constructed from the corresponding Dynkin graph
by adding one point. Dynkin graphs and Euclidean graphs are also called
Dynkin diagrams and Euclidean diagrams, respectively (see [41] and [72]).

We are interested in the path algebras of quivers having one of the pre-
ceding as underlying graph, that is, of quivers arising from arbitrary orienta-
tions of these graphs (excluding the orientation making A, an oriented cy-
cle; this orientation gives an infinite dimensional path algebra). As pointed
out in the introduction, the main result of this chapter says that the path
algebra of a quiver @) is representation—finite if and only if the underlying
graph @ of @ is a Dynkin graph.

We start with a purely combinatorial lemma.

2.1. Lemma. Let Q be a finite, connected, and acyclic quiver. If the
underlying graph Q of Q is not a Dynkin graph, then Q contains a Fuclidean
graph as a subgraph.

Proof. We show that if () contains no Euclidean subgraph, then @ is a
Dynkin graph. The exclusion of Am implies that @ is a tree. The exclusion
of Dy implies that no point in ¢ has more than three neighbours, and
the exclusion of ]1~)n with n > 5 implies that at most one point has three
neighbours. Hence @ is of the following form

[¢]

- —o

] C|) ] O

O e (e} o) e
~ ~ - ~ ~ -

s t
where we may assume without loss of generality that r < s < ¢. The
exclusion of Eg gives 7 < 1. If r = 0, then Q = Agyiy1. If 7 = 1, the
exclusion of E7 gives 1 < s < 2. If s =1, then @ = D;43. Finally, if s = 2,

the exclusion of I~Eg gives 2 < t < 4, so that @ is equal to Eg, E; or Eg. O

3

We use this lemma to show that if A = K(Q is representation—finite,
then @ is a Dynkin graph. To do so, we start by showing that if Q' is a
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subquiver of @ such that K@’ is representation—infinite, then KQ itself is
representation—infinite. It will then remain to show that if @’ is Euclidean,
then K@’ is representation—infinite.

2.2. Lemma. Let QQ be a finite, connected, and acyclic quiver. If Q'

is a subquiver of Q such that KQ' is representation—infinite, then KQ 1is
representation—infinite.

Proof. We must show that @) has at least as many nonisomorphic inde-
composable representations as Q'. Let M’ = (M/, ¢!,) be a representation
of @'. We define its extension E(M’) to be the representation (M,, ps) of
Q@ defined by

Ma:{M‘; if a € Qp, o, ifae @,
0 ifag Q) 0 ifagQ,
Given a morphism f' : M’ — N’ of representations of Q’, where M’ =
(M! ¢! ) and N’ = (N., L), we define f = E(f') : E(M’') — E(N’) to be
the morphism of representations of @ given by

fo ifaeQy,

f“_{o if a & Q).
Clearly, E induces a full and faithful functor mod KQ’' — mod KQ so that
EndggE(M') = Endgg M’ In particular, E(M’) is indecomposable if and
only if M’ is indecomposable (see (I1.4.8)), and we have M’ = N’ if and only
if E(M') = E(N"). O

and Yo = {

We now want to show that if @ is a quiver whose underlying graph
is Euclidean, then K@ is representation—infinite. The first step in this
direction is the following proposition.

2.3. Proposition. Let @ be a finite, connected, and acyclic quiver. If
KQ is representation—finite, then Q is a tree.

Proof. Because ) has no loops, that is, it is not a tree, is equivalent to
saying that @ contains a subquiver Q' with Q' = A&m for some m > 1. We
show that, in this case, K(Q' is representation—infinite. We may suppose
that the points of Q' are numbered from 1 to m + 1 and that there exists
an arrow « : 1 — 2. For each scalar A € K, let M(\) = (Mi()‘), <p§;‘)) be the
representation of Q' defined as follows

M™ =K foreach 1 <i<m+1

and
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) [ A =,
% (@) = { z ifB#a,

(that is, <p§;‘) is the identity map for each arrow (3 # «, and @&)‘) is the multi-

plication by A). Let A\, u € K. We claim that each nonzero homomorphism

f: M(X) — M(p) is an isomorphism and, if this is the case, then A = y and

End M (\) 2 K. Indeed, if f : M(\) — M(u) is a nonzero homomorphism,

then the commutativity relations |,

Mi()\) ¥B MJ(A)
fiJ, J,fj
M 2 M
corresponding to all arrows 3 : i — j with 8 # a give fi = ... = fm+1. In

particular, f # 0 implies f; # 0 for each i. Therefore, the map f;, being a
nonzero K-linear endomorphism of K is an isomorphism (and actually is the
multiplication by a nonzero scalar). Finally, the commutativity condition
corresponding to o : 1 — 2 gives
pfi(1) = o f1(1) = foelM(1) = fo(A) = Afa(1).

Because fi = f; and both are nonzero, we have A = p. On the other
hand, f is entirely determined by f1(1). Because fi is the multiplication
by a nonzero scalar v (say), we deduce that f : M(\) — M (u) is the map
v1p(n)- Thus End M(A) = K and M () is indecomposable.

We have shown that the family (M ()\))xex consists of pairwise noniso-
morphic indecomposable representations. Because K is an algebraically
closed (hence infinite) field, this gives an infinite family of pairwise non-
isomorphic indecomposable representations of Q. Therefore KQ' is repre-
sentation—infinite. By (2.2), K@ is also representation—infinite. O

We have considered, in the preceding proof, representations M having
the property that End M = K. Such a representation carries a name.

2.4. Definition. Let A be a finite dimensional K-algebra. An A-module
M such that End M = K is called a brick.

Clearly, each brick is an indecomposable module. On the other hand,
there exist indecomposables that are not bricks. Let, for instance, A be a
nonsimple local algebra (we may, for example, take A = K]Jt]/(t™), with
n > 2); then Ay is an indecomposable module that is not a brick, because
End Ay &2 A % K. We showed in the proof of (2.3) that if Q' is a quiver
with underlying graph A&m, with m > 1, then K Q' admits an infinite family
of pairwise nonisomorphic bricks.
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2.5. Proposition. Let @ be a finite, connected, and acyclic quiver and
Mkq be a brick such that there ezists a € Qo with dimgM, > 1. Let Q’
be the quiver defined as follows: Q' = (Qq,Q}), where Qp = Qo U {b};
Q) =1 U{a}; and a:b — a. Then KQ' is representation—infinite.

Proof. Let ¢ : K — M, be a nonzero K-linear map. We define M ()
to be the representation (Mg, ¢’,) of Q" given by the formulas:

M, if c € Qo, , oy 1Ly € Q,

. and Yo, = .
{K ife=5 K {1/) if vy =a.

Let ¢, : K — M, be nonzero K-linear maps and f : M(¢) — M (n) be
a nonzero morphism. Because the restriction f|ps of f to M is an endomor-
phism of the brick M, f|y equals the multiplication by some scalar A € K.
On the other hand, f, : M(¢), — M(n)p is a K-linear endomorphism of
K and hence it equals the multiplication by a scalar p € K. Note that,
because f # 0 and ¥, n # 0, we have A, u # 0. Counsider z € M (), and the
commutativity condition corresponding to the arrow «

n(x) = nfe(zpt) = fab(zp™) = (@) - (u™'A)
M@y, —5— M),

fo J,fa

M(n), —— M(n),

M. =

C

Thus g =1 - (=1 N\).

This relation implies that each M (1)) is a brick. Indeed, setting ¢ = 1,
we see that each endomorphism f of M () equals the multiplication by a
scalar: the preceding relation gives ‘A = 1; hence A = p and f is the
multiplication by A (or u).

Assume now f : M () — M(n) is an isomorphism. The maps 1 and
1 are given by column matrices with d = dimg M, coefficients (and d > 2
by hypothesis), that is, ¥ = [¢1...94]" and n = [n1...n4)". Hence n =
- (p=tA) yields n; = 9; - (u=t\) for each 1 < i < d. This can be expressed
by saying that (11, ... ,14) and (m1,. .. ,14) correspond to the same point of
the projective space Py_1(K). Because K is an algebraically closed (hence
infinite) field, Pq—1 (K) has infinitely many points. We have thus shown
the existence of infinitely many pairwise nonisomorphic bricks of the form
M(y). 0

We apply this proposition as follows: For each of the Dynkin graphs D,,,
E¢, E7, and Eg, we consider a quiver () having it as underlying graph, and
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we show that there exists a brick M over K(@Q and a point a € Q¢ such that
dimg M, > 1; applying the construction of the proposition yields that the
path algebra of the corresponding enlarged quiver (whose underlying graph
is Euclidean) is representation—infinite.

2.6. Lemma. Let Q be one of the following quivers with underlying
graph a Dynkin diagram:

On—
n 1 2 n—B/

2

(i) 0O————0———30— + - + —0——0 n >4,
Oon—1
6
o]
(i) |
o] o] o] o] 0]
5 4 3 2 1
5
o]
(iif) l
o] o] o] o] o] 0]
7 6 4 3 2 1
2
o]
(iv) |
o] o] o] o] o] 0] 0]
1 3 1 5 6 7 8

Then there exists a brick Mxg in mod KQ such that dimg M, > 1, where
a € Qo is the point 1, 6, 7, and 8 in cases (i), (ii), (iii), and (iv), respectively.

Proof. We exhibit in each case the wanted brick M = (M, ¢3) such
that dimg M, > 1.

(i) My = ... = M,_3 = K?, where K? is given its canonical basis
{e1,e2}, My,_1 = e1K, M,,_2 = exK, and M,, = (e; + e2)K. All the
g are taken to be the canonical inclusions. We claim that M is a brick
with dimgM; > 1. Let f € End Mkxg. The commutativity conditions
give fi, = ... = f,_3 = f (say) and f, = flp, fori = n—2,n—1,n.
Therefore f(e1) € e1 K, f(ez) € 2K, and f(e; +e3) € (e; +e2)K. Letting
fe1) = e1 A1, f(e2) = ex)y where A1, A2 € K, we have

f(e1 + 82) = f(el) + f(eg) =ei\1 + e\ € (61 + 62)K;

hence A1 = A2 and therefore f is a multiplication by the scalar A\;. This
shows that M is indeed a brick with dim g M7 > 2.

(i) M3 = K3, where K? is given its canonical basis {e1, ez, ez}, My =
elK, M2 = elK@ezK, M4 = ezK@egK, M6 = (e1 —|—82)K@ (82 —|—83)K,
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Ms = ez K. All the pg are taken to be the canonical inclusions. We observe
that M2 n M4 = GQK, M4 n M6 = (82 + eg)K, M2 n M6 = (e1 + QQ)K.
We claim that M is a brick with dimgMe > 1. Let f € End Mgg. Then
fi = flm, where f = f3 € EndgMs. Because f(M;) C M; for 1 < i < 6,
f(MQﬂM4) - f(MQ)ﬂf(M4) C MsNMy. Similarly, f(M4ﬂM6) C MyN Mg
and f(My N Mg) C My N Mg. Thus, there exist A1, \a, As, u, v € K such
that

fler) =eiAi, fle2) =ex)s, fles) =ess,
fler+e) =(e1+ez)u, flez+es)=(e2+es)r.
Hence \y = 4 = Ao = v = A3 and f equals the multiplication by their
common value. This shows that M is a brick such that dim x Mg > 2.

(iii) My = K*, where K* is given its canonical basis {e;,ez,es, €4},
Ml = elK, M2 = elK@egK, M3 = elK@egK@egK, M7 = (eg—eg)K@
(e1tes)K, Mg = (e1+er) KB (e1+es3) KB(e1+es) K, M5 = esKdes K. All
the g are taken to be the canonical inclusions. We observe that MsNMs =
egK, MgﬂMﬁ = (e1 —|—82)K, M5ﬂM6 = (83—84)K, MgﬂM7 = (eg—eg)K,
M7 N (Ml + M5) = (el + 84)K, Mg N [Ml + (Mg N M5)] = (81 + eg)K. We
claim that M is a brick with dimxg My > 1. Let f € End Mg¢. As earlier,
we show that f, = f|a, for 1 < i < 7, where f € Endg M, is such that
there exist A1, As, 1, po, ps, pa, ps € K satisfying the following conditions:

fler) = e, fles) =e3)s,
fles —es) = (e3 —eq)u1, fle1 +e2) = (e1 + e2)puz,
fle2 —e3) = (e —e3)pus, fle1+es) = (€1 + eq)ua,

f(e1 + 83) = (81 + eg),ug).
A straightforward calculation shows that f is indeed the multiplication by
a scalar. Hence M is a brick such that dim g M7 > 2.

(iv) My = K5, where K is given its canonical basis {e1,... ,es}, My =
(estes)Kd(e1t+estes) KP(er+eates)K, M3 = e Kbes Kdes K degK,
M4 = elK@eﬁK, M5 = elK@egK@egK@e4K@e5K, M6 = GQK@
esKdesK @esK, My =esK es K BesK, Mg =es K @es K. All the ¢g
are taken to be the canonical inclusions. We observe that My N M5 = e1 K,
M3 N M7 = egK, M3 N M6 = GQK @egK, M2 N M3 = (e1 +es — eﬁ)K,
(M4 + Mg) n M2 = (84 + eﬁ)K and M2 n M6 = (82 —e3+eq — 85)K. Let
f € End Mgq. As earlier, we show that f; = f|a, for 1 < ¢ < 8, where
f € EndgM;. Moreover, the subspaces My N M5, Ms N M7, Ms N Mg,
(My+Mg)N My, and MaNMg of K are invariant under f. A straightforward
calculation shows that if f is given in the canonical basis e, ... ,es by a
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6 x 6 matrix [aij], then a11 = Q22 = Q33 = Q44 — A55 — A6 and Q5 = 0 for
any i # j, and so f is a multiplication by the scalar a1;. Therefore M is a
brick with dimg Mg > 2. O

2.7. Corollary. The path algebra of each of the following quivers is re-
presentation-infinite:

n O On—
\1 2 n—B/

(i) O———0— +++ — O——0 n>4

2

n+10 Oon—1

—~
—
=
~—

WO O0¢—— 0O
[=2]

[©] ] O o
1 2 4 5
5
]
(i) l
] ] O o [©) o [0}
8 7 6 4 3 2 1
2
]
(iv) |
] ] ] O ] [0} [0} o]
4 3 1 5 6 7 8 9
Proof. This follows at once from (2.5) and (2.6). O

We have shown in this section that if K@ is representation—finite, then
Q@ is a tree (that is, ) contains no subgraph of the form &m, for some
m > 1) and contains no subquiver of one of the forms listed in (2.7). This
does not yet imply that () contains no subquivers whose underlying graph
is Euclidean. Indeed, there remains to show that if @ is a tree, K@ is
representation—infinite and @’ is a quiver such that Q' = @ (that is, @ has
the same underlying graph as @, but perhaps a different orientation), then
K@’ is also representation—infinite. To prove this, we need to develop some
new concepts.

VII.3. Integral quadratic forms

When studying hereditary algebras, it turns out that the Euler quadratic
form, that is, the quadratic form arising from the Euler characteristic (see
(IT1.3.11)) plays a prominent réle. This quadratic form is an integral qua-
dratic form, and this section is devoted to studying integral quadratic forms
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in general. Throughout, we denote by {ey,...,e,} the canonical basis of
the free abelian group Z™ on n generators. As usual, elements in Z™ are
written as column vectors.

3.1. Definition. A quadratic form ¢ = g(x1,...,x,) on Z™ in n inde-
terminates x1,...,z, is said to be an integral quadratic form if it is of
the form

n
§ : 2 § :

q(xl, . ,Jin) = Z; + Qi T35
=1

i<j

where a;; € Z for all 4, j.

Evaluating an integral quadratic form ¢ on the vectors x = [z ... z,]" in
Z", we obtain a mapping from Z" to Z, also denoted by q. We may endow Z"
with a partial order defined componentwise: a vector x = [z; ... z,|' € Z"
is called positive if x # 0 and x; > 0, for all j such that 1 < j <n. We
denote the positivity of a vector x as x > 0. An integral quadratic form ¢
is called weakly positive if ¢(x) > 0 for all x > 0; it is called positive
semidefinite if ¢(x) > 0 for all x € Z", and positive definite if ¢g(x) > 0
for all x # 0; finally, it is called indefinite if there exists a nonzero vector
x such that ¢(x) < 0. For a positive semidefinite form ¢, the set

radg={x€Z" | q(x) =0}

is called the radical of ¢, and its elements are called radical vectors. It
is a subgroup of Z™. Indeed, if ¢(x) = 0 = ¢(y), then

gx+y)+q(x—y)=2[qgx)+q(y)] =0gives ¢(x+y) = q(x—y) =0,
by the positive semidefiniteness of ¢, and hence x +y,x —y € rad g.

The rank of the subgroup radq is called the corank of ¢q. Clearly, ¢ is
positive definite if and only if its corank is zero.

3.2. Examples. (a) The integral quadratic form
q(x) = 23 + 23 + 23 — 1172 + 7173 + T2T3

on Z3 is weakly positive, positive semidefinite of corank 1 (hence is not
positive definite). Indeed, q(x) = (1 — a2 + Sx3)* + 3 (v2 + 23)? so that
rad ¢ is generated by the vector [1 1 — 1]*. This implies our claim.

(b) The integral quadratic form ¢(x) = 2% + 22 — 2125 = (21 — 22)? on
72 is positive semidefinite of corank 1 and rad ¢ is generated by the vector
[1 1]. In particular, ¢ is not weakly positive.
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We denote by (—, —) the symmetric bilinear form on Z" correspond-
ing to ¢, that is, for x,y € Z™, we have

i[Q(X +y) —qx—y)

For instance, if ¢ is as in Example 3.2 (b), we have

(x,y) =

(X,¥) = 21y1 + T2Y2 — T1Y2 — T2Y1-

It is easily seen that the following relations hold:
(a) q(x) = (x,x) for all x € Z"™;
(b) aij =2(e;,e;) for all 4, j such that 1 <i < j <n;and aj; = 2(e;, e;)
for all 7, j such that 1 < j < i < m;
() gix+y)=qx)+qly) +2(x,y) for all x,y € Z".

We also define the n partial derivatives of the quadratic form g to be the
group homomorphisms from Z™ to Z defined by:

5}
Diq(z) = 8; (x) = 2(e;,x) = 22; + Z ai Ty + Z Aty

1<t t<i

for each 7 such that 1 <i <n.

3.3. Lemma. Let q be a positive semidefinite quadratic form on Z™.
Then q(x) = 0 if and only if D;q(x) =0 for all i such that 1 <i <n.

Proof. If D;q(x) = 0 for all 4, then (e;,x) = 0 for all i. Consequently,
Q(X) = (Xa X) = Z?:l xi(eia X) =0.

Conversely, assume that ¢(x) = 0. For all A € R and y € R", we have
q(\y) = M2q(y). Because, by hypothesis, ¢(y) > 0 for all y € Z", we have
q(y) > 0 for all y € Q™. The continuity of ¢ and the density of Q™ in R™
imply that ¢(y) > 0 for ally € R™. Thus ¢(x) = 0 if and only if the function
q : R® — R admits a global minimum at x: the partial derivatives must
then vanish at this point. O

Let ¢ be an integral quadratic form on Z"™. A vector x € Z"™ such
that ¢(x) = 1 is called a root of g. All the vectors of the canonical ba-
sis {e1,...,e,} of Z™ are clearly roots of g. The reason for studying roots
is that, as we shall see, over a representation—finite hereditary algebra, there
exists a bijection between the positive roots of the Euler quadratic form and
the isomorphism classes of indecomposable modules. The following funda-
mental result, due to Drozd [59], shows that weakly positive quadratic forms
have only finitely many roots that are positive vectors of Z".
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3.4. Proposition. Let q be a weakly positive integral quadratic form on
Z". Then q has only finitely many positive roots.

Proof. We consider ¢ as a function from R™ to R. As in the proof of
(3.3), we see that g(x) > 0 for all x > 0 in Q™ and hence ¢(x) > 0 for all
x > 0 in R™. We show by induction on n that in fact g(x) > 0 for all x > 0
in R™.

This is trivial if n = 1 because if A € R, A\ # 0, then ¢()\) = A2¢(1) > 0.
Assume that there exists a weakly positive quadratic form ¢ in n indeter-
minates (with n > 2) and a positive vector x € R™ such that ¢(x) = 0. It
follows from the induction hypothesis that we can assume all the compo-
nents x; of x to be strictly positive. Then x lies in the positive cone of R™
and ¢ attains a local minimum at x. Consequently, we have Dyq(x) = ... =
D,,q(x) = 0. The linear forms D;q have integral, hence rational, coefficients,
and x € [, Ker D;q implies that the real vector space

V={zeR"| Dig(z) =...= Dyq(z) =0}

is nonzero . Hence the rank of the n X n matrix (with rational coefficients)
determining this system of linear equations is smaller than n. Thus the
rational vector space

U={yeQ"|Digly)=...= Dnq(y) =0}

is nonzero, and V has a basis contained in U. In particular, V is the closure

of U, because Q is dense in R. Therefore, there exists a positive vector x’

with rational coefficients lying in F] Ker D;q. But then ¢(x’) = 0 because
i=1

of (3.3) and the fact that D;q(x’) = 0 for all 1 <7 < n, and this contradicts

the fact that ¢(x’) > 0 because x’ € Q" is a positive vector. This completes

the proof of our claim that ¢(x) > 0 for all x > 0 in R™.

Let now || — || : R™ — R denote the Euclidean norm. Because the set
C={zxeR"|x>0, ||x|| =1} is compact in R", g|¢ attains its minimum
w1 on a point of C. It follows from the preceding discussion that p > 0. For
each x > 0 in R™, we have

w<a () = e

Consequently, |ly]] < \/1# for each positive root y of q. Thus, ¢ has only

finitely many positive roots. t
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3.5. Corollary. A weakly positive integral quadratic form always admits
mazimal positive Toots. ([

Let x = Z?:l r;e; be a vector in Z™. Its support is the subset of
{1,...,n} defined by suppx ={i |1 <i <n, z; # 0}.

3.6. Lemma. Let q be a weakly positive integral quadratic form on Z"
and x be a positive root of q such that x # e; for all i. Then there exists
1 € supp x such that D;q(x) = 1.

Proof. We have Y "'  2;D;q(x) =27 | z;(e;,x) = 2(x,x) = 2; hence
there exists ¢ such that z;D;q(x) > 1. Because x > 0, we have z; > 1
and D;q(x) > 1. Therefore, i € suppx. Because x # e; by hypothesis,
x —e; >0 and

0 <g(x—ei)=q(x)+q(e:) —2(e;; x) = 2 — Dig(x)
gives D;q(x) < 2. Counsequently, D;q(x) = 1. O

Let ¢ be an integral quadratic form on Z™ and let (—, —) be the corre-
sponding symmetric bilinear form on Z™. For each i with 1 < ¢ < n, we
define a mapping s; : Z" — Z™ by

si(x) = x — 2(x, €;)e;.
Such a mapping is called a reflection at i. Note that s;(e;) = —e;: that is,
s; transforms e; to its negative. The properties of reflections are summarised
in the following lemma.

3.7. Lemma. Lets; : Z™ — Z™ be a reflection. Then

(a) s; is a group homomorphism;
(b) (si(x),8i(y)) = (x,y) for all x,y € Z"; and
(c) s? =1, thus s; is an automorphism of Z™.

Proof. (a) This is evident.
(b) (si(x),5i(y)) = (x,¥) —2(x, €:)(y, &) —2(y, €:) (x, &) +4(x, &) (y, €;)
=(x,y)
(c) si(si(x)) = si(x — 2(x,e;)e;) = x — 2(x, €;)e; + 2(x, €;)e; = X. O
3.8. Lemma. Let q be a weakly positive integral quadratic form on Z"
and x be a positive root of q such that x # e; for all i. Then there exists
1 € supp x such that s;(x) = x — e; is still a positive root.

Proof. By (3.6), there exists ¢ € suppx such that D;¢(x) = 1. Now
D;q(x) = 2(x, ;) so that s;(x) =x —e; > 0. O
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3.9. Corollary. Let q be a weakly positive integral quadratic form on
Z" and x be a positive root of q. There exists a sequence i1,...,%t, j of
elements of {1,...,n} such that

X > 85, (X) > 8,85, (%) > ... > 8, .08, (%) =ej.

Proof. This follows at once from (3.8) and induction. O

3.10. Definition. Let g be a weakly positive integral quadratic form on
Z"™. The subgroup W, of the automorphism group of Z" generated by the
reflections s1, ..., s, is called the Weyl group of ¢q. A root x of ¢ is called
a Weyl root if there exist w € W, and ¢ with 1 <1 < n such that x = we;.

It follows from (3.9) and (3.7)(c) that every positive root x of a weakly
positive integral quadratic form ¢ can be written as x = s;, ...s;,e;: that
is, every positive root of a weakly positive form is a Weyl root.

As is shown later, this applies to the Euler quadratic form for the
representation—finite hereditary algebras; in this case, the form is positive
definite, hence weakly positive, and therefore all positive roots are Weyl
roots.

We end this section with an observation due to Happel [86] showing that
the converse to (3.4) also holds.

3.11. Proposition. Let q be an integral quadratic form having only
finitely many positive roots. Then q is weakly positive.

Proof. Let ¢ be an integral quadratic form on Z™. Suppose that ¢
is not weakly positive. Then n > 2 and there exists a positive vector
X = [z1 ... x,]" € Z™ such that ¢(x) < 0. Because any restriction of g to
a smaller number of indeterminates has also finitely many positive roots,
we may assume that x; > 0 for all ¢ with 1 < ¢ < n. Clearly, we may
also assume that ¢(x’) > 0 for any vector x’ € Z"™ with 0 < x’ < x. By
our assumption on g, we may also choose a maximal positive root y of q.
Then (y,e;) > 0 for all ¢ with 1 < ¢ < n, because, by (3.7), the reflections
si(y) =y —2(y, e;)e; are also roots of g. We claim that (x,y) > 0. Indeed,
if (x,y) <0 then Y1 | z;(e;,y) <0, and hence (e;,y) = (y,e;) = 0 for all
i with 1 <i < n. But then we get 1 = q(y) = (y,y) = >, vi(e;,y) =0,
a contradiction. Therefore, Y i | yi(x,€;) = (x,y) > 0 and there exists i
with 1 <4 < n such that (x,e;) > 0, because y > 0. Take now z = x — e;.
Then z > 0 and ¢(z) = ¢(x—e;) = ¢(x) +¢q(e;) —2(x,€;) =2—-2(x,¢;) <O0.
This contradicts our choice of x. Thus, ¢ is weakly positive. O
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VII.4. The quadratic form of a quiver

Throughout this section, we let @) denote a finite, connected, and acyclic
quiver. If we let n = |Qo| denote the number of points in @, it follows from
(IT1.3.5) that the Grothendieck group Ko(K Q) of the path algebra K@ is
isomorphic to Z"™. We denote, as usual, by {ey, ... ,e,} the canonical basis
of Z™. It is sometimes convenient to work in a Q-vector space rather than
in the abelian group Z". For this purpose, we denote by E the Q-vector
space

E=K)(KQ)®;Q=Q"

and by F' the subgroup of E consisting of the vectors having only integral
coordinates, that is, .
F=@eZ =72" = Ko(KQ).
i=1

The quadratic form of a quiver @ is defined to be the form

G(x) = Y #7 = Y Tu()Ti(a)s

1€Qo ac@Qq

where x = [21 ... z,]" € Z".

Our first objective is to describe the Euler quadratic form of K@ by
means of the quadratic form ggq.

A first, but important, observation is that gg depends only on the un-
derlying graph @ of @, not on the particular orientation of the arrows in Q.

4.1. Lemma. Let Q be a finite, connected, and acyclic quiver. Then
the Euler quadratic form qa of the path algebra A = KQ and the quadratic
form qq of the quiver Q coincide. Moreover,

qA(X) = Z x? — Z aijxixj,
1€Q0 1,5€Q0
where a;; = dimgExt!, (S(i), S(4)).

Proof. By (III.3.13), the Euler characteristic is the bilinear form defined
on the dimension vectors of the simple K@-modules S(i) by:

(dim S(i), dim S(5)) = > (—1)'dimgExt} o (S(), 5(4))
1>0

=dimxHomq(5(3), S(j)) —dimxExtje (S(0), S(5)),



266 CHAPTER VII. REPRESENTATION-FINITE HEREDITARY ALGEBRAS

because, by (1.4) and (1.7), gl.dim K@ < 1. Because there are no loops
in Q at 4, by (I11.2.12), dimgExtr(S(i), S(j)) equals the number a;; of
arrows from ¢ to j.

Taking i = j, we get (e;,e;) = (dim S(¢),dim S(7)) = 1. On the other
hand, if i # j, we get

(ei, ;) = (dim S(i), dim S(j)) = —dimgExte(5(i), S(j)) = —ai;-.

Hence, for two arbitrary vectors x =Y  z;€; and y = Y ;" y;€;, we get

n
<X,Y> = Z xiyj<ei,ej> = Z TilYi — Z Ai52:Y5

i,5=1 i€Qo 1,JEQo
= Z TiYi — Z Ts(a)Yt(a)-
1€Qo aceQr
The result follows at once. [l

The Euler quadratic form of the algebra K@ will be simply referred to
as the quadratic form of the quiver Q.

We denote by (—, —) the symmetric bilinear form corresponding to ¢g,
that is, the symmetrisation of the Euler characteristic. Thus,

1
(x,y) = Z TilYi — Z {Zs(a)¥t(a) T Te(a)Ys(a) }-
1€Qo acQ1

This can also be expressed in terms of the Cartan matrix Cgg; indeed,
(x,y) = x'(Cgp)'y, hence

() = x| J(Ciy + (C) v

Clearly, (x,x) = qq(x) for all x, and (x,y) = [90(x +y) — ¢o(x —y)] for
all x, y.
For example, if @ is the quiver

then qo(x) = 23 + 23 —maize = (1 — Ja2)* + (1 — “f )z2. Consequently,

qq is positive definite if m = 1, semidefinite of corank 1 if m = 2, and
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indefinite if m > 3. Observe also that for m > 2 and x = (m, m)? we have
¢o(x) <0, and hence gg is not weakly positive.

We saw in Section 3 that if gg is positive semidefinite then its radical
radqg = {z € F; qg(x) = 0} is a subgroup of F' = Z". After tensoring by
zQ, it yields a subspace of the Q-vector space

E=Ky(KQ)®z,Q=Q",

denoted by (rad go)Q. The dimension of this subspace (rad gg)Q equals the
corank of gqg. The following purely computational lemma provides many
examples of quivers with positive semidefinite form.

4.2. Lemma. Let Q be a quiver whose underlying graph @Q is Fuclidean.
Then qq 1s positive semidefinite of corank one and radqg = Zhg, where

hg is the vector

1...1 1 1 1 2 3
L1l 202 o3, 12343210 and oudsaz2

in case @ is the graph A&m, ]1~)m, I~E6, I~E7, and I~Eg, respectively.
Proof. (i) Assume that
i

~ o o
@=Am: o/ o o \o
1 m+1 i+1

for some m > 1. Then 2qo(x) = Y (z; — x;)?, where the sum is taken over
i=j
all edges i—j in Q. It follows that gg is positive semidefinite of corank 1
and a generator of rad q¢ is given by ', -1 1.
(ii) Assume that

Oon
~ \3 n—l/
. o o ]

20 On+l1
for some n > 4. Then 4qg(x) = (221 —23)* + (222 —23)? + (Tn—1 — 23,)*+
(Tn_1—2Tny1)? +2 Z?:_Bz(xi — z;41)%. It follows that g is positive semi-
definite of corank 1 and a generator of rad gq is given by 12. . .21.
(iii) Assume that

5
]
QZ]EF)I 04
] ] ] ] O
3 2 1 6 7
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Then 36qg(x) = (623 —3x2)?+ (627 —3x6)? + (65— 314)* +3[(3z2—211)* +
(3z6 — 221)? + (3z4 — 221)?]. It follows that qg is positive semidefinite of

corank 1 and a generator of rad gq is given by La2ay
(iv) Assume that
3
Q = ]E7 :
o o o o o o o
4 3 2 1 6 7 8

Then 24q¢(x) = 6[(2z4—3)*+ (225 —27)%]+2[(Bzs—222)% + (327 — 226)%]+
(4x9 — 3w1)% + (4a6 — 371)% +6(225 — 21)%. Here, qq is positive semidefinite
of corank 1, a generator of rad g is given by ;553521-

(v) Assume that

Qzﬂ’égt
o o o

[¢) [¢) [ [¢)
2 1 5 6 7 8 9

O
3
Then 120q¢(x) =30(2z9—x3)*+10(3z8—227) 2 +5(4x7 —316) > +3(5we — 4u5)>
+30(223 — 12)2 4+ 2(6x5 — 521)2 + 10(3w2 — 221)% 4 30(224 — 21)2. Tt follows
that g¢ is positive semidefinite of corank 1 and a generator of rad gq is given
by 94854321 d

We show later that the Dynkin and Euclidean graphs can in fact be char-
acterised by the positivity of their quadratic forms. We need the following
lemma.

4.3. Lemma. Let Q) be a connected quiver such that qq is positive semi-
definite and Q' be a proper full subgquiver of Q. Then the restriction qqg: of
qq to Q' is positive definite.

Proof. The form gqg- is certainly positive semidefinite, for every full
subquiver @)’ of Q). Let then @’ be a proper full subquiver of @) such that
q¢ is not positive definite. We may, without loss of generality, assume @’
to be minimal with this property. Let x’ = > }e; be a nonzero vector such
that go/(x’) = 0. The minimality of @’ implies that z} # 0 for each i € Q.
Actually, because g¢ is positive semidefinite, we may suppose that z; > 0
for each i € (Q)); indeed, the vector x” = " |z}|e; satisfies qq/ (x”) < g/ (x).

Let j € Qo \ Qp be a neighbour of k € Qf (such points j, k certainly
exist, because @’ is a proper full subquiver of the connected quiver Q). We
define a vector x = > z;e; in E = Q™ by the formula
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x; le S Qo,
xy=1Q sy ifi=j,
0 otherwise.

Then qq(x) = qo(x'+7,e;) = qq/ (x')+ 2'_21 xlxﬂ = x > xlxﬂ
1,./2 1,2 1 /2

af -y = 't — Sl = < 0, which is a contradlctlon O

4.4. Corollary. Let @) be a quiver whose underlying graph is Dynkin.
Then qq 1is positive definite.

Proof. This follows from (4.2), (4.3), and the observation that each
quiver whose underlying graph is Dynkin is a proper full subquiver of a
quiver whose underlying graph is Euclidean. t

We are now able to prove the characterisation of the Dynkin and Eu-
clidean graphs by means of their quadratic forms.

4.5. Proposition. Let Q be a finite, connected, and acyclic quiver and
let Q be the underlying graph of Q.
(a) Q is a Dynkin graph if and only if qg is positive definite.
(b) @ is a Euclidean graph if and only if qq is positive semidefinite but
not positive definite.
(c) Q is neither a Dynkin nor a Euclidean graph if and only if qq is
indefinite.

Proof. The necessity of (a) follows from (4.4) and the necessity of (b)
follows from (4.2). Conversely, assume gg to be positive semidefinite. Then
it follows from the example preceding (4.2) that @ does not contain a full
subgraph consisting of two points connected by more than two edges. Hence,
if @ is not Dynkin, then, by (2.1), @ contains a Euclidean graph as a full
subgraph. By (4.3), this Euclidean subgraph cannot be proper. Hence @ is
Euclidean. This shows (a) and (b).

Let @ be such that @ is neither a Dynkin nor a Euclidean graph. By (a)
and (b), g¢ is not positive semidefinite. Consequently, it is indefinite. The
converse follows clearly from the sufficiency parts of (a) and (b). O

We may clearly strengthen condition (b) as follows: @ is a Euclidean
graph if and only if qg is positive semidefinite of corank one.

4.6. Corollary. Let Q be a finite, connected, and acyclic quiver. The
following conditions are equivalent:

(a) qo is weakly positive.
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(b) qq is positive definite.
(¢) The underlying graph @ of Q is a Dynkin graph.

Proof. We have seen that (b) and (¢) are equivalent, and (b) implies (a)
trivially. Assume that q¢ is weakly positive. Then again () does not contain
a full subgraph consisting of two vertices connected by at least two edges.
Hence, if g¢ is not positive definite, then ) is not Dynkin so that, by (2.1),
Q) contains a full subquiver @’ whose underlying graph is Euclidean. We
computed in (4.2) generators for the (one-dimensional) radical subspaces of
the forms arising from Euclidean graphs. Let x’ be the generator of the
radical subspace of g¢g/. As seen in (4.2), x’ is positive. Consider the vector
x defined by

x, ifi € Qy,
Xl_{o it i ¢ Q).
Clearly, x is positive and gg(x) = 0. Thus g¢ is not weakly positive. d

A consequence of this corollary and the results of Section 3 is that if @ is
a Dynkin graph, then the positive roots of qg are Weyl roots and there are
only finitely many such positive roots. We thus proceed to define reflections
and the Weyl roots for the quadratic form gg of a finite, connected, and
acyclic quiver @. We recall that £ = Q™ and F = Z". For each point
i € Qo, we define the reflection s; : £ — E at i to be the Q-linear map
given by

si(x) =x —2(x,€;)e;

for x € E. In terms of the coordinates x; of x in the canonical basis

{e1,...,e,} of E, we see that y = s;(x) has coordinates
x; if j # 4,
Yi= —zi+ X o ifj =1,
k—i

where the sum is taken over all edges k—i. Because s;(F) C F, we see that
s; is indeed a reflection in the sense of Section 3.
For example, if @ is the quiver

1 3 2
O¢——O0——0

whose underlying graph is the Dynkin graph Az, then £ = Q® and the
reflections s1, s2, s3 are expressed by their matrices in the canonical basis
as
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-1 0 1 1 0 O 1 0 0
S1 = o 1 0], Sog = (0—-1 1/, S3= [0 1 0 .
0 0 1 0 0 1 1 1-1

The Weyl group Wy of Q is the Weyl group of the quadratic form g,
that is, the group of automorphisms of E = Q™ generated by the set of
reflections {s;}icq,-

Because, by hypothesis, @ is acyclic, there exists a bijection between Qg
and the set {1,...,n} such that if we have an arrow j — 4, then j > 4;
indeed, such a bijection is constructed as follows. Let 1 be any sink in @,
then consider the full subquiver Q(1) of @ having as set of points Qo \ {1};
let 2 be a sink of @(1), and continue by induction. Such a numbering of the
points of @ is called an admissible numbering. For instance, in the pre-
ceding example, the shown numbering of the points is admissible. Clearly, a
given quiver @) usually admits many possible admissible numberings of the
set of points.

Let (ai,...,a,) be an admissible numbering of the points of @ and let
E =Q". The element

C=S5q, - Sa38q, : FE — E

of the Weyl group Wg of @ is called the Coxeter transformation of Q
(corresponding to the given admissible numbering). Because, for each i, we

1

have sz =1, clearly, c™" = S4, Sq, - - - Sa,,- For instance, in the example, the

matrices of ¢ and ¢~ ! in the canonical basis are

10 0 1 0 0][-1 01 -1 0 1
C =838981 = |01 0 0-1 1 0 10|=1| 0 -1 1
11-1 0 0 1 0 01 -1 -1 1

1 -1 01 1 0 0 1 0 0 01 —1
C =~ = sS1S9S3 = 0 10 0-1 1 01 0 =|10-1].
0 01 0 0 1 1 1-1 11 -1

It turns out that the Coxeter transformation only depends on the quiver
@, not on the admissible numbering chosen. Indeed, if (ai,...,a,) and
(b1,...,by,) are two admissible numberings of the points of @, then there
exists an ¢ with 1 < ¢ < n such that b; = a;; because b; is a sink, there
exists no edge a; —a; with j < ¢ and, because it is easily seen that reflections
corresponding to non-neighbours commute, we have s4, 84, = 54,54, for all

and

j < i. The numbering (a;, a1, ... ,a;—1,@it1,--- ,0y,) is admissible and an
obvious induction implies that s, ...Sq, = Sp,, -..5p,. We thus refer to c
as being the Coxeter transformation of the quiver Q.

The matrix of the Coxeter transformation ¢, as defined earlier, is just the
Coxeter matrix ®xq of KQ, as defined in (I1I1.3.14).
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4.7. Proposition. The matriz of the Cozeter transformationc: E — E
of a quiver @ in the canonical basis of I/ is equal to the Cozxeter matriz ®rq

of KQ.

Proof. We recall that ®xq = —C’}(QCI_{Q, where Ckq denotes the
Cartan matrix of K. Assume that (1,...,n) is an admissible numbering
of Qu. Identifying the reflections s; and the Coxeter transformation ¢ to
their matrices in the canonical basis of the Q-vector space £ = Q", we
must show that —C? QC KQ = Sn...s1. For this purpose, it suffices to
show that —Clo = s, ...51Ckq, or, equivalently, that

CKQ51 = —Ckaq.
We show by induction on k that
CKQ51 Z =[-Cy | sz—k]a

where Cy, (or C!,_,) is the matrix formed by the k first columns of Ckg
(or of the (n — k) last columns of Clg, respectively). Recall that c;; =
dimge; (KQ)e; is the (i, j)-coefficient of Cxg. Moreover, let a;; be the
number of arrows from j to i. It is easily seen that:

(1) a;; =0fori > j (because (1,...,n)is an admissible ordering of Qy);
(2) ¢iit1 = a; 41, for each i;
(3) ¢i; = 1, for each i; and
4) ¢; = Zl<k<J a;iCrj, for ¢ < j.

For k =1, we then have

ri 0 o ... 0O -1 0 0 ... 0
C12 1 0 NN 0 a2 1 0 0
C%(Qsl — C13 C23 1 e 0] . ais 0o 1 ... 0
LCin Co2n C3n ... 1 QA1n 0o 0 ... 1
r—1 0 0 0
—C12 + ais 1 0 0
— | —c13 + a12c23 + a3 co3 1 0
L—Cin + Zlgign @1;Cin  C2n  C3n ... 1

Using (2), (3) and (4), we get Clpsi = [-Ci | C},_4].
Assume the result to hold for £ — 1. Then



VII.4. THE QUADRATIC FORM OF A QUIVER 273

t t t t t
Chqsi- -5k = [-Cr1 ] Cy_rialsi
r—1 —cio ... —Cl,k—2 —Cl k—1 0 0 . 07
0 -1 ... —C2 k-2 —C2,k—1 0 0 . 0 10 0 alk 0 0
01 0 aor O 0
0 0 1 —cposp1 O 0 ol |- SR :
=0 o0 0 -1 0 0 0 00...1ak-1,0...0
0 0 0 0 1 0 0 00 .0 -1 0 . 0
0 o o o croper 1 ol 000 o 1ill0
. . ' ’ 00 . 0 0 0 1
L 0 0 P 0 0 Ck,n Ck41,n - - 1_
B _ZISiSk AikCli T
—2a<i<k ®ikC2i
_Zk—2<i<.k AikCk—2,i t
= | Cr —Qk—1,k Cr-r
—1
0
L O -
The conclusion follows from (2), (3), and (4). O

For the rest of this section, we assume that @ is a quiver whose underlying
graph @ is Dynkin. Then qq is positive definite and hence weakly positive.
We denote by R, Rt, R~, R(Wg), respectively, the sets of all roots, all
positive roots, all negative roots, and all Weyl roots of gq. It follows from
(3.4) that R* is a finite set and, from (3.9), that Rt C R(Wg). We
note that, if x € F' = Z" is a root, the vector —x is also a root, because
qo(—x) = go(x). In particular, the assignment x — —x induces a bijection
between Rt and R~ (so that R~ is also finite).

4.8. Lemma. Let Q be a quiver whose underlying graph is Dynkin. Then
R=RYUR™ = R(Wg).

Proof. To show that R = RT U R™, it suffices to show that every root
x of qq is either positive or negative. We may write x = x™ + x~, where
xt is a vector all of whose nonzero coordinates are positive, while x~ is a
vector all of whose nonzero coordinates are negative. Put |x| = xT — x~.
Because x is a root, we have x # 0. Hence |x| # 0 and therefore, |x| > 0.

The inequalities [x|; > x; and the equalities |x|? = x7 for all j € Qo yield

0<gqo(xD) =Y X7 = > [xls@xlia

1€Qo acQ1

<Y XK= D XeXue) = 4o(x) = 1,

1€Qo acQ1
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and therefore gg(|x|) = 1, that is, |x| is a root. Consequently the equalities

2 = qo(x) + qo(|x]) = qo(x" +x7) + qo(x" —x7) = 2[go(x") + go(x 7))

yield qo(x1) + go(x~) = 1. Because qq is positive definite, we have either
go(xt) = 1 and qg(x~) = 0 (hence x = x* € RT) or qo(x~) = 1 and
qo(x*) = 0 (hence x = x~ € R™). This completes the proof that R =
RTUR™.

We have Rt C R(Wg). Similarly, if x € R™, then x € R(Wg); indeed,
—x € RT gives —x = we;, for some w € Wy and i € Qo, hence x
w(—e;) = ws;(e;) € R(Wg). Thus R~ C R(Wg) and R = RT UR™
R(Wg). Because, trivially, R(Wg) C R, we have indeed R = R(Wq).

OinN

4.9. Proposition. Let Q be a quiver whose underlying graph is Dynkin.
Then the Weyl group Wq of Q is finite.

Proof. We show that Wy is isomorphic to a subgroup of the group of
permutations of R. Because, by (4.8), R = RT™ U R~ is finite, this implies
the statement.

We first observe that W permutes the roots of gg because gg(x) = 1
implies go(wx) = 1 for every w € Wg (by (3.7)(b)). On the other hand,
the action of Wg on R is faithful, that is, the mapping w +— (o, : X — wx),
from Wy into the group of permutations of R is injective; indeed, o, = oy

1

for w,v € Wg) implies wx = vx and hence w™ " vx = x for every x € R.
Q

In particular, w™lve; = e; for every i € Qu, which implies, by linearity,
w~lvx = x for every x € E, that is, w™'v = 1 and w = v. This proves our

We need the following lemma.

4.10. Lemma. Let Q be a quiver whose underlying graph is Dynkin, x
be a positive root of qo, and i be a vertex of Q. Then either s;(x) is positive
orx =e;.

Proof. From (3.7)(b), we know that s;(x) is a root of gg. Because ¢g
is positive definite, we get the following:

0<go(xte)=(xLe,xte;) =qo(x)+qole:) £2(x,6) =2(1£(x,€;)).

Hence —1 < (x,€;) < 1. If (x,€;) = 1, then go(x—e;) = 0 and consequently
x = e;. On the other hand, if (x,e;) < 0, then s;(x) = x — 2(x,€;) > 0,
because x > 0. This proves our claim. (I
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4.11. Lemma. Let Q be a finite, connected, and acyclic quiver; ¢ be its
Cozeter transformation; s; be the reflection at i; and x € E = Q". The
following conditions are equivalent:

(a) ex=x,

(b) s;x = x for each point i € Qq, and

(¢) (x,y) =0 for each vectory € E.
If, moreover, the underlying graph @ of Q is Dynkin or Euclidean, then the
preceding conditions are equivalent to the following one:

(d) go(x)=0.
Proof. Clearly, (b) implies (a). Conversely, if (1,...,n) is an admissible
numbering of the points of @, ¢ = s, ...s; and cx = x holds, then, for any

i € {l,...,n}, we have z; = (¢x); = (sp...8;X);. Hence, by descending
induction on i, we get s;x=...=s,x=x. The equivalence of (b) and (c)
follows from the fact that s;x = x for each point i € Qg is equivalent to
(x,e;) = Ofor each point i € Qq, whereey, ... , e, is the standard basis of E.

If @ is Dynkin or Euclidean, then, by (4.5), the quadratic form gg is
positive semidefinite. Therefore |(x,y)|? < qo(x)qq(y) for each vector y €
E, so that (d) implies (c). The converse implication follows from the equality
qo(x) = (x,x). O

4.12. Corollary. Let @ be a quiver whose underlying graph is Dynkin
and ¢ be its Cozxeter transformation.

(a) If cx = x for a vector x € E, then x = 0.

(b) For every positive vector x, there exist s > 0 such that ¢*x > 0 but
cSTIx £ 0, and t > 0 such that ¢ tx > 0 but ¢t 'x % 0.

Proof. (a) If cx = x then, by (4.11), we get gg(x) = 0. Because, by
(4.5), qq is positive definite, this implies x = 0.

(b) Because Wy, is a finite group, ¢ has finite order m (say). Consider the
vector y = x + cx + ...+ ™ !x. Then cy = y. By (a), y = 0. Therefore,
there exists a least integer s > 0 such that ¢*T'x % 0 (and then c*x > 0).
Similarly, one finds ¢ as required. t

The preceding corollary implies that one should look at those positive

roots that become nonpositive after application of the Coxeter transforma-
tion.

4.13. Lemma. Let Q) be a quiver whose underlying graph is Dynkin and
c be its Cozeter transformation. For a positive root x, we have
(a) ex # 0 if and only if x = p; for some i such that 1 < i <n, where
Pi=S51---%-1€;.
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(b) ¢ 'x # 0 if and only if x = q; for some i such that 1 < i < n,
where q; = Sy ... S;+1€;.

Proof. We only prove part (a); the proof of (b) is similar. If ex =
Sp - ..81X # 0, there exists a least integer 4 < n such that s;_1...s1x > 0
and s;...s1x % 0. Then, invoking (4.10), we get s;—1...81x = €; and
s0 X = (8;_1...51) te; = s1...8;_1€; = p;. Conversely, it is clear that
cp; )5 0. ([l

The last two results yield an algorithm allowing us to compute all the
positive roots of the quadratic form of a quiver whose underlying graph is
Dynkin.

4.14. Proposition. Let Q be a quiver whose underlying graph is Dynkin
and c be the Coxeter transformation of Q.

(a) If m; is the least integer such that c=™i~tp; # 0, then the set

{e7pi|1<i<n, 0<s<m}
equals the set of all the positive roots of qq.
(b) If n; is the least integer such that citlq; # 0, then the set

{cq; [1<i<n, 0<t<n}
equals the set of all the positive roots of qq.

Proof. We only prove (a). The proof of (b) is similar. Because it is clear
that each ¢ ®p;, with 1 <7 < n, 0 < s < m; is a positive root, it remains
to show that each positive root is of this form. Let x be a positive root. By
(4.12), there exists s > 0 such that ¢*x > 0 but c**1x # 0. By (4.13), we
have ¢*x = p; for some 1 < ¢ < n. Therefore x = ¢~ *p; and clearly s < m;.

U

4.15. Examples. (a) Let @ be the quiver 6— 3 .2 whose un-

derlying graph is the Dynkin graph As. Then E = Q3 and, as before,
-1 0 1 10 0 100
S P :[ ! o ]
00 1 1 1-1
C:[_é —({ %:|, C_1:|:
-1 -1 1
We have thus
1

0 1
Plzelz[O], P225182=[1], P325152€3=[1]-
0 0
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Consequently,
0 1 0
oo =[], <2 = o] <'ps = 0]
1 1 1
2 0 -2 - 9 1
C "P1 :[—é :|}Oa C :|: :|}Oa Cc p3_|::%:|?£0

1
Hence all the positive roots are [0], [
0
(b) Let @ be the quiver

whose underlying graph is the Dynkin graph Dy. Then E = Q* and the
reflections are expressed by the following matrices (in the canonical basis):

11 1 1 10 0 0
01 0 0 1121 0 o
S1= 1] 0 0 1 of> S2= 10 0 1 0>
00 0 1 00 0 1
1 0 0 O 1 0 0 O
01 0 0 10 1 0 O
=01 0-1 o S4= 10 0 1 o0
00 0 1 1 0 0-1
Then 91 -1 -1

-1 _ _ |1 -1 0 0
(¢4 = 81828384 = 1 0 -1 0 .

1
0
p1281:[0‘|5 p225192:[]a
0
1
0
1
0

1
1
0
0
1
0
0
1

P3 = S182€3 = l ] ) P4 = S1S8283€4 = l ] .

Hence the complete list of the positive roots, given by the action of ¢~! on
the Pi:

We have
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ri7 riq ro
-1 -1 -1
1 c 0 c 1 c
0 1 0 %.0’
LOd L1 LOd
ri7 riq ro
-1 -1 -1
0 c 1 c 0 c
1 0 1 %.0’
LOd L1 LOd
ri7 rlq ro7
-1 -1 -1
0 c 1 c 0 c
0 1 0 %.0
L1 L0 L1

VIL.5. Reflection functors and Gabriel’s
theorem

We now return to the proof of Gabriel’s theorem. As said before, the
latter states that the path algebra of a connected quiver is representation—
finite if and only if the underlying graph of this quiver is a Dynkin diagram.
In particular, the representation—finiteness of a path algebra is independent
of the orientation of its quiver. This remark led to the definition of reflection
functors [32], which are now understood as APR-tilts (see [18]). Before in-
troducing these, we need some combinatorial considerations meant to make
more precise the idea of a change of orientation.

Let Q@ = (Qo, @1, s,t) be a finite, connected, and acyclic quiver and let
n = |Qol|. For every point a € Qq, we define a new quiver

UaQ = (Q/Oa Q/la S/a t/)

as follows: All the arrows of (Q having a as source or as target are reversed, all
other arrows remain unchanged. More precisely, Qf = Qo and there exists
a bijection 1 — @} such that if o/ € @) denotes the arrow corresponding
to a € @1 under this bijection, then:
(i) if s(o) # a and t(a) # a, then §'(a’) = s(a) and t'(/) = t(a);
whereas
(i) if s(a) = a or t(a) = a, then §'(a’) = t(a) and /() = s(«).
For instance, if @ is the quiver

04
2 3

1
oH(—o\

05
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then o3@Q is the quiver

04

1 2 3/
0&—o0—>0
\05

We defined, in the previous section, the notion of an admissible number-
ing of the points of a quiver. We now need a reformulation of this concept.
An admissible sequence of sinks in a quiver @ is defined to be a total
ordering (ay, ... ,a,) of all the points in @ such that:
(i) aq is a sink in @; and
(ii) a; is a sink in g4, , ...04,@, for every 2 < i < n.
Dually, an admissible sequence of sources in @ is a total ordering
(b1,...,by) of all the points in @ such that:
(i) by is a source in Q; and
(i) b; is a source in oy, , ...0p, @, for every 2 < i <mn.

It is clear that if (a1,...,ay,) is an admissible sequence of sinks, then
(an, ... ,a1) is an admissible sequence of sources, and conversely. Because,
by hypothesis, @ is acyclic, there exists an admissible numbering (1,...,n)
of its points. Such an admissible numbering is always an admissible sequence
of sinks and, conversely, if (a1,...,a,) is an admissible sequence of sinks,
then an admissible numbering of the points in @ is given by the mapping
a; +— 1. In general, a given quiver admits many admissible sequences of
sinks.

5.1. Lemma. Let Q be a finite, connected, and acyclic quiver whose n
points are admissibly numbered as (ai, ... ,an).

(a) If 1 <i < mn, then a; is a source and a;y+1 s a sink in oq, ...04, Q.
(b) If1 <i<mn, then a; is a sink and a;—1 s a source in oq, . ..0q, Q.

(¢) a0, Q=Q =04, ...04,Q.

Proof. For (a) and (b), an obvious induction on ¢ yields the result. For
(¢c), we need only observe that each arrow inQ1is reversed exactly twice. O

5.2. Lemma. Let Q and Q' be two trees having the same underlying
graph. There exists a sequence i1, ... ,1; of points of @ such that
(a) for each s such that 1 < s <t, iy is a sink ino;,_, ...0:,Q; and

(b) (oF P -O'ilQ = Q/.

Proof. It suffices to prove the result if Q and @’ differ in the orientation
of exactly one arrow. Let thus a : ¢ — 7 be an arrow in @) such that the
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corresponding arrow in Q) is o’ : j — ¢ whereas if 8 € Q1, 5 # «, then the
corresponding arrow ' € @} has the same source and target, respectively,
as 8. Let Q" = (Qo, @1\ {a}); then Q" is a (common) subquiver of (both
of the trees) @ and @’ and it is not connected. Indeed, i and j belong to
distinct connected components of Q”. We may thus write Q" = Q' U @7,
where Q7 and Q7 are connected subquivers of Q" containing i and j, respec-
tively. Because @’ and Q7 are trees, we may assume both to be admissibly
numbered with Q} = {1,...,m} and Q) = {m +1,...,n}. Because, by
(5.1), for each k such that 1 < k < m, k is a sink in oj_1...01Q%, hence a
sink in ox_1...01Q, and moreover we have o,,...01Q = @', the statement
follows. (I

We now come to the definition of reflection functors. Let A be a heredi-
tary algebra, which we can assume to be nonsimple. By (1.7), there exists
an algebra isomorphism A = K@ 4, where @ 4 is a finite, connected, and
acyclic quiver, with n = |(Qa)o| > 1. Then there exists a sink a € (Qa)o
that is not a source, so that the simple A-module S(a)4 is projective and
noninjective. Let

Tlala =77'S(a) & (@P(b))

b#a

denote the APR-tilting module at a (see (VI.2.8)(c)) and B = End T'[a] 4.

It also follows from the tilting theorem (VI.3.8) that the left B-module
pT[a] is a tilting module and that A 2 Endp(T'[a])°P. We will show that
Qp = 0,Q 4, and therefore a is a source in (). The functors

+
mod A —=— mod B

a

defined by the formulas S}t = Homu(T'[a], —) and S, = (—) ®p T|a] are
called, respectively, the reflection functor at the sink a € (Q4)o and the
reflection functor at the source a € (Qp)o. The following theorem shows
that passing from A to B amounts to passing from Q 4 to o,Q a; hence the
reflection functors correspond to changes of orientation in the quiver @ 4.

5.3. Theorem. Let A be a basic hereditary and nonsimple algebra, a be
a sink in its quiver Q 4, and T'[a] be the APR-tilting A-module at a.

(a) The algebra B = End T[a] 4 is isomorphic to K(o,Q4), a is a source
in Qp, the simple B-module S(a)p is injective and isomorphic to
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ExtY(T[a], S(a)), the left B-module gTa] is a tilting module, and
A = Endp(Ta])°P.

(b) The reflection functor S} : mod A — mod B induces an equivalence
between the K-linear full subcategory of mod A of all A-modules
without direct summand isomorphic to the simple projective module
S(a)a and the K-linear full subcategory of mod B of all B-modules
without direct summand isomorphic to the simple injective B-module
S(a)g. The quasi-inverse equivalence is induced by the reflection
functor S; : mod B — mod A.

Proof. Throughout this proof, we denote the APR-tilting A-module
Ta] briefly by T, and we use the notation introduced in (VI.3.10).

By our assumption and (1.7), the quiver @4 of A is finite, connected,
and acyclic; |(Qa)o] > 2; and we may suppose, without loss of generality,
that A = KQ 4. Note that S(a) = P(a) = e, A, where ¢, is the stationary
path at ¢ in Q 4.

By (V1.2.8)(c), we have T = @ T, where T, = 771, A = 771 P(a)

c€(Qa)o
and T, = e.A for ¢ # a. By (VI.3.1)(b), the right B-modules Hom4 (T, T,)

and Homu (T, T}), for b # a, form a complete set of pairwise nonisomorphic
indecomposable projective modules. For each ¢ € (Q4)o, denote by e. €
End T4 the composition of the canonical projection p, : T — T, with the
canonical injection u, : T, — T. According to (3.10), we have e.B =
Homy (T, T,) for all ¢ € (Q4)o and the elements e, are primitive orthogonal
idempotents of B = End T4 such that

B= P eB.
c€(Qa)o
It follows directly from the tilting theorem (VI.3.8) that the left B-module
T is a tilting module and that A = Endp(T)°P.
We claim that the simple B-module S(a)p = e, B/rad e, B is isomorphic
to ExtY (T, S(a)). For this, we notice first that
Ext! (T, S(a)) = DHom(S(a), 7T) = DHom (S(a), S(a)) = K.

Hence Ext!, (T, S(a)) is a one-dimensional K-vector space and is therefore
simple as a B-module. On the other hand, (VI.3.10)(a) yields

Ext4 (T, S(a))e, = Exthy(e,T,S(a))
=~ Ext! (7715(a), S(a)) = DHom (S(a), S(a))

I

K.

This establishes our claim.
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By (VI.2.8)(c), the tilting module T4 is separating, and

F(T) =addS(a)a,
whereas 7 (T) is the full subcategory of mod A generated by the remaining
indecomposable modules. On the other hand, by (VI.5.6)(b), T4 is also
splitting, so that X(T4) = add S(a)p, whereas Y(T') is the full subcate-
gory mod B generated by the remaining indecomposable modules. Then
(b) follows at once from the tilting theorem (VI.3.8).

To prove that B is hereditary it suffices, by (1.4), to show that, for each
simple B-module Sg, we have pd S < 1. If Sg % S(a)p, then Sg € Y(T);
hence there exists M € 7 (T) such that Sp = Homu (7T, M). By (VI1.4.1),
we have pd Sp < pd M4 < 1, because A is hereditary. On the other hand,
we know from (IV.3.9) and (IV.4.4) that the almost split sequence in mod A
starting with S(a)a = P(a) is of the form

0— S(a) — @P(C)mc — 77 18(a) — 0,
where P(c) = e.A and m.. :dianIrr(S(a), P(c))=dimge.(rad A/rad?A)e,,
by (1.6). In particular, m,. equals the number of arrows from ¢ to a in @ 4.
Thus the direct sum in the almost split sequence is taken over all ¢ € (Q4)o
that are neighbours of the sink a. Applying the functor S} = Hom4 (T, —)
to this almost split sequence yields a short exact sequence

0 — Homu(T, P P(c)™) — Homu(T,7S(a)) — S(a)p — 0

in mod B, because Hom 4(T,S(a)) = 0, Ext4(T,S(a)) = S(a)p and
ExtY (T, P(c)) & DHoma(P(c),S(a)) = 0 for any ¢ # a. Because the
B-modules Hom (T, 7715(a)) and Homu(T, P(c)) = e.B for ¢ # a are
projective, we infer that pd S(a)p < 1.

It remains to show that Qp = 0,Q. Clearly, (QB)o = (Qa)o = (0aQ4)o-
On the other hand, it follows from the tilting theorem (VI.3.8) that the
functor S;F = Homyu (T, —) : mod A — mod B induces isomorphisms of
K-vector spaces

a
a

Homa(e.A,775(a)) = Homp(e.B,e,B),and
Homa(771S(a),c,A) = Homp(e,B,e.B).
Also, Homp(e, B, ey B) = 0 for all b # a. Indeed, there are isomorphisms

Homp (e, B, ey B) = Homp(Hom 4 (T, 7 '5(a)), Hom4 (T, P(b)))
=~ Hom (77 'S(a), P(b)),
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and there is no nonzero homomorphism h : 7=1S(a) — P(b), because oth-
erwise, by (1.4), the A-module Im h is projective; hence 7=1S(a) is projec-
tive, and we get a contradiction. This shows our claim, which implies that
Irr(eq B, epB) = 0 for all b # a. Then, by (1.6), a is a source in Q.

We now show that S;” = Hom4 (T, —) induces, for all b # a and ¢ # a, an
isomorphism of K-vector spaces Irr(epA, €. A) = Irr(ep B, e. B). Because, by
(1.7), the quivers Q4 and Qp are acyclic, we may suppose that b # ¢. Then
epA % e.A and (consequently) ey B % e.B. Therefore, rada(epA,e.A) =
Hom 4 (epA, e.A) and radp(ep B, e.B) = Homp(e, B, e.B), so that the func-
tor Hom 4 (T, —) induces an isomorphism rad 4 (e, A4, £.A) = radg (e B, e.B).

We claim that it also induces an isomorphism between the subspaces
rad% (epA,e.A) and rad%(epB,e.B). Indeed, assume that f belongs to
rad% (epA,e.A). Then there exist indecomposable A-modules My, ..., M,
and homomorphisms fJ’- € rada(epA, M;), f; € rada(M;,e.A) such that
f=hfl+...4+ frfl. Forany j € {1,...,t}, Im f; is a submodule of
the projective module e.A and hence is projective by (1.4). Then Im f;
is isomorphic to a direct summand of the indecomposable module M; and
therefore M; = Im f;. Consequently, M; is projective and, by (I.5.17),
there exists a; € (Q.a)o such that M; = ., A. Note that a; # c, because f;
is a nonisomorphism.

The additivity of Hom (T, —) yields

¢
Hom 4 (T, f) = Homy (T Z fif}) = Homa(T, f;)Homa(T, f}).
j=1
Now f; € rada(M;j,e.A) unpheb that Homa (T, f;) € radp(eq, B, e.B), by

the observation. Similarly7 Hom 4 (T, fj’) € radp(eyB, eq; B), and conse-
quently, Homy (T, f) € rad%(eyB, e.B). Similarly, one shows that the re-
flection functor S; = — ® gT : mod B — mod A applies rad% (e, B, e.B)
into rad? (e A4, e.A). This shows our claim.
Applying (1.6) yields
e.(rad Afrad®A)ey =2 Irr(ep A, e A) =2 Trr(ep B, e.B) =2 e.(rad B/rad?B)ey,

Therefore, if b,c # a, then there is a bijection between the set of arrows
from ¢ to b in @4 and in @ p.

The same arguments as earlier show the existence of an isomorphism of
K-vector spaces Irr(ey A, 7715(a)) = Irr(ep B, eq B) for all b # a. Applying
(1.6) and (IV. 4.4), we get

ep(rad A/rad®A)e, =2 Irr(e, A, epA) = Irr(S(a), epA) =2 Irr(ep A, 77 15(a))
=~ Trr(ep B, e, B) = e4(rad B/rad?B)ey
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This defines a bijection between the set of arrows from a to b in Q4 and
the set of arrows from b to a in @ p, and it finishes the proof of the equality
UaQ = QB-

In particular, while S(a)4 is a simple projective noninjective module,
we have that S(a)p is a simple injective nonprojective module (because a
becomes a source in Qp). O

Now we show that the reflection functors S} and S, when applied to
indecomposable modules M, correspond to the reflection homomorphism
Sq 1 Z" — 7™ (as defined in Section 4) applied to their dimension vectors
dim M, where n = |Qo.

5.4. Proposition. Let A be a basic hereditary and nonsimple algebra,
a be a sink in its quiver Qa, and n = |Qo|. Let T[a] be the APR-tilting
A-module at a, B = EndT|a], S}, S, the reflection functors at a, and
Sq : L™ — 7 the reflection at a.

(a) Let M be an indecomposable A-module. Then M is isomorphic to
S(a)a if and only if STM = 0 (or equivalently, s,(dim M) % 0).
If M % S(a)a, then STM is an indecomposable B-module and
dim (S;F M) = s,(dim M).

(b) Let N be an indecomposable B-module. Then N is isomorphic
to S(a)p if and only if S; N = 0 (or equivalently, s,(dim N) %
0). If N 22 S(a)p, then S, N is an indecomposable A-module and
dim (S, N) = so(dim N).

Proof. We only prove (a); the proof of (b) is similar. We denote the
APR-tilting A-module T'[a] by T. Because T4 is an APR-tilting module,
F(T) = add S(a) 4, by (VI1.2.8)(c). It follows from (VI.2.3) that if M is an
indecomposable A-module, then S} M = Homa (T, M) = 0 if and only if M
is isomorphic to S(a) 4.

Assume that M is an indecomposable module nonisomorphic to S(a)4.
By (5.3), the B-module S}t M = Homy (T, M) is indecomposable. Let b # a
be a point in Q = Q4. By (VI.3.10), the fact that M € 7(T) implies that

(dim S;f M), = dimxHom 4 (Hom 4 (T, g, A), Homa (T, M))
= dimKHomA(sbA, M)
= dimKMEb = (dimM)b = (sa(dimM))b

On the other hand, if b = a, we have isomorphisms



VII.5. REFLECTION FUNCTORS AND (GABRIEL'S THEOREM 285

(S M)e, = Hompg(e, B, S M)
=~ Homp(Hom (T, 7~ 'S(a)), Hom4 (T, S} M))
=~ Homa (7~ 'S(a), M).

Consider the almost split sequence

0 — S(a) — @ P(c)™ — 771S(a) — 0
constructed in the proof of (5.3), where m. equals the number of arrows
from ¢ to a in Q4. Because M is indecomposable, S(a) is projective, and
M % S(a), there is no nonzero homomorphism M — S(a)a and there-
fore Ext!, (1715(a), M) = DHom (M, S(a)) = 0. It follows that applying
Hom 4 (—, M) to the almost split sequence yields the exact sequence

0 — Homy (771S(a), M) — Homy( @P(C)mi M) — Homy (S(a), M) — 0.

c—a

Therefore
(dim S} M), = dimg (S} M)e, = dimgHom 4 (71 S(a), M)
= —dimgHom(S(a), M) + Z medim g Hom 4 (P(c), M)

= —dimgMe, + Y me(dimg Me.) = (sq(dim M)),.

c—a

We have thus shown that dim S} M = s,(dim M).

It remains to show that there is an isomorphism M 2= S(a)s if and
only if the vector s,(dim M) is not positive. If M = S(a)4, then the ath
coordinate of s,(dim M) = s,(e,) equals —1. Conversely, if M % S(a)a,
then s,(dim M) = dim S} M > 0, and we are done. O

As shown in (I11.1.7), a module over a path K-algebra K@ can be thought
of as a K-linear representation of the quiver (). We now present the orig-
inal construction of reflection functors given by Bernstein, Gelfand, and
Ponomarev [32] for linear representations of quivers. Here we get it by
translating, in terms of representations of the quivers @4 and Qp = 0,Q 4,
the effect of the tilting functors S, S, between the categories of A-modules
and B-modules.

5.5. Definition. Let () be a finite connected quiver, a a sink in ), and
Q' = 0,Q. We define the reflection functor

5; rrepx (Q) — repr (Q')
between the categories of finite dimensional K-linear representations of the
quivers @ and Q' as follows. Let M = (M;, ¢a)icQy,acq: be an object in
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repx (Q). We define the object S M = (M], ¢,,)icq; acq, in repx(Q’) as
follows:

(a) M! = M; for i # a, whereas M/ is the kernel of the K-linear map
(Pa)a: @B  Mga)— M, (the direct sum is being taken over all arrows

as(a)—a

a in @ with target a);

(b) ¢, = pq for all arrows « : ¢ — j in Q with j # a, whereas, if
a:i— ais an arrow in Q, then ¢/ : M) — M/ = M, is the composition of
the inclusion of M, into @ M) with the projection onto the direct

a:s(B)—a
summand M,;.

Let f = (fi)icg, : M — N be a morphism in repx(Q), where M =
(M;, ¢o) and N = (N;,%,). We define the morphism

Sif=Ff=ficqy:SIM — SIN
in repg(Q’) as follows. For all i # a, we let f/ = f;, whereas f! is the
unique K-linear map, making the following diagram commutative

0 — (SIM)y —— @ My 20

as(a)—a

\
N JVQB fs(a) J, fa
1 -
0 — (S:N)a — @ NS(a)
as(a)—a
Now we define the reflection functor attached to a source.
Let Q' be a finite connected quiver, a be a source in @', and Q = 0,Q’.

We define a reflection functor

(Ya)a N,

S, irepr(Q') —— repr(Q)
between the categories of finite dimensional K-linear representations of the
quivers Q" and @ as follows. Let M’ = (M/, ¢, )icq;.acq; be an object in
repr (Q'). We define the object S; M’ = (M;, ¥a)icQo,acq, in repr (Q’) as
follows:

(a') M; = M/ for all i # a, whereas M, is the cokernel of the K-linear
map (¢ )a : M) — @( )Mt’(a) (the direct sum is being taken over all

aa—t(a
arrows « in @’ with source a);

(b") 9o = ¢, for all arrows « : i — j in Q' with ¢ # a, whereas, if
a:a— jisan arrow in @', then ¢, : M; = Mj — M, is the composition of
the inclusion of M} into @(ﬂ) M t’( g) with the cokernel projection onto M.

aa—t

Let f' = (fj)ieq, + M" — N’ be a morphism in repg(Q’), where
M = (M],¢)) and N' = (N/,¢.). We define the morphism S, f' =
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f=(fi)iegp : S; M' — S, N’ in repx(Q) as follows. For all i # a, we
let f; = fI, whereas f, is the unique K-linear map, making the following
diagram commutative
(‘Pa)a —
Mz/z I @ Mt/(oz) - (Sa M/)ll — 0

aa—t(a)
’ |
lf; l? ) | fa

l
N —— @ N, e (SN, — 0

t(c)

aa—t(a)

The following proposition shows that, up to the equivalences of cate-
gories (constructed in (II1.1.6)) between modules over a path algebra and
representations of its quiver, the reflection functors S and S, coincide
respectively with the reflection functors S} and S, defined earlier.

5.6. Proposition. Let Q be a finite, connected, and acyclic quiver; a be
a sink in Q; and Q' = 0,Q. Then the following diagram is commutative

+
mod KQ =—— mod KQ'
F | F |
Bl
repg (Q) ——— repk(Q’)

a

that is, STF = F'S; and S; F' = FS, where F and F' are the category
equivalences defined in (II1.1.6) for KQ and KQ', respectively.

Proof. We only prove that S} F = F'ST; the proof of the second state-
ment is similar. We let A = KQ and B = KQ’, and we use freely the
notation of (5.1)—(5.5). We recall from (III.1.6) that the functor F asso-
ciates with any module M in mod A the representation FFM = ((FM);, ¢a)
in repg (Q), where (FM); = Me; and, for an arrow « : ¢ — j in @, the
K-linear map ¢, : Me; — Me; is defined by x — za = zae;. The functor
F’ is defined analogously, with &; and e; interchanged.

Let b # a be a point in Q. It follows from (5.3) and (1.4.2), that

(F'SEM), = (S M)ey, = Homp(eyB, S; M) = Homp (S, (epA), S M)
it HOHlA(EbA, M) = Mey, = (S:FM)Z),
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and the composed isomorphism (F’'S} M), = (S} FM), is obviously func-
torial. On the other hand, if b = a, we have vector space isomorphisms

(F'SFM), = (S] M)e, = Hompg(e,B,S; M)
=~ Homp (S} (7715(a)), ST M)) = Homy (71 S(a), M).

We recall that the almost split sequence in mod A starting from the simple
projective module S(a) = P(a) is of the form

0 — S(a) % @P(C)mc — 77 18(a) — 0,
c#a
where P(c) = e.A, m. = dimgIrr(S(a), P(c)) = dimge.(rad A/rad®A)e,
is the number of arrows o : ¢ — a in . Hence, there are K-linear iso-
morphisms Irr(S(a), P(c)) & e.(rad A/rad?A)e, =2 @ Ka, because the

set of all arrows v : ¢ — a in Qa4 = @ gives (by de%flitiaon) a basis of the
K-vector space e.(rad A/rad? A)e,. The left minimal almost split morphism
u = (uc)c : S(a) — € P(c)™< is such that, for each ¢, the homomorphism
c#a

Ue = [Ue, ... U, ]": S(a) — P(c)™ is given by a basis {uc, ... uc,, } of
the K-vector space Irr(S(a), P(c)). We may therefore rewrite u. as (uq),
where a runs over all arrows ¢ — a, so that the almost split sequence
becomes

0— S(a) =(a)e, @ P(s(a)) ———71718(a) — 0
ais(a)—a
where the direct sum is being taken over all arrows o in Q4 = @ having
a as a target. Applying Hom4(—, M) yields the top left exact sequence in
the commutative diagram

0— Homa(r~(a), M) — Homa @) P(s(a)), 1)1

as(a)—a
| |

0— (STFM), — D (FM)yo —22, (FM),
as(a)—a

where (FM); = Mej, Homa(u, M) = (Homa(u, M)a)a:s(a)—a; and the
vertical isomorphisms are induced by the isomorphism Hom 4(eA, L) = Le
of (I1.4.2), where L is an A-module and e is an idempotent of A. The lower
row is (left) exact by definition of S}. Therefore there exists a K-vector
space isomorphism Homa(771S5(a), M) = (S} FM), making the left-hand

Hom 4 (S(a), M)
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square commutative. Hence (S FM), = (F'S;M),. A simple calculation
(left as an exercise) shows that the vector space isomorphisms (S F M), =
(F'StM), for ¢ € Qp induce an isomorphism of representations S} FM =
F'STM in repg(Q’). It is also easy to verify that this isomorphism is
functorial, so that we have F'S ~ SFF. O

The following corollary summarises the properties of the functors S},
S, that translate those of the functors S}, S

. into the language of rep-

resentations of a quiver. The proof is easy and left as an exercise to the
reader.

5.7. Corollary. Let Q be a finite, connected, and acyclic quiver with
at least two points; a a sink in Q; and Q' = 0,Q. The reflection functors
St repr(Q) — repr(Q') and S, : repr(Q’) — repx(Q) satisfy the
following properties:

(a) The functor S, s left adjoint to S;F.

(b) If M is indecomposable in repi(Q), then the following three condi-
tions are equivalent:

(i) S M #£0,

(i) M % S(a),

(iii) sq(dim M) > 0.

Moreover, if this is the case, then dimS; M = s,(dim M), S;SFM = M
and SF induces an algebra isomorphism End M = End(S; M).

(¢) If M’ is indecomposable in repk (Q'), then the following three condi-

tions are equivalent:
(i) Sg M"#0,

(i) M’ % S(a),

(iii) sq(dim M’) > 0.

Moreover, if this is the case, then dim S, M’ = s,(dim M’), SFS, M’ =
M/ and S, induces an algebra isomorphism End M’ = End(S,; M’).

(d) The functors S} and S, induce quasi-inverse equivalences between
the K-linear full subcategory of repi(Q) of the representations having no
direct summand isomorphic to the simple projective representation S(a),
and the K-linear full subcategory of repk (Q’) of the representations having
no direct summand isomorphic to the simple injective representation S(a).

(I

Let A be a hereditary nonsimple algebra and (j1, . .. , jn) be an admissible
numbering of the points of Q4. It follows from (5.1)—(5.4) that the functors

_ ot + - _ o- -
Ct=85...5 and C™=5;...5;

In
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are endofunctors of mod A. They are called the Coxeter functors. The
definition of Ct and C'~ does not depend on the choice of the admissi-
ble numbering (ji, ... ,j,) of the points of @4, because of the following
interpretation of the Coxeter functors in terms of the Auslander—Reiten
translation.

5.8. Lemma. Let A be a hereditary and nonsimple K-algebra, and let
(J1,- - -, Jn) be an admissible numbering of the points of Q4.

(a) If M is an indecomposable nonprojective A-module, then there are
A-module isomorphisms CTM = 7M and C~CTM = M.

(b) If N is an indecomposable noninjective A-module, then there are
A-module isomorphisms C™N =2 77N and CTC~N = N.

Proof. In view of (IV.2.10), it suffices to prove the first statements in
(a) and (b). We only prove (a); the proof of (b) is similar. We may as-
sume the points of @4 to be admissibly numbered as (1,...,n). Apply-
ing repeatedly (5.3) to the admissible sequence of sinks (1,...,n), we see
that for each ¢ such that 1 < i < n, the module P(i) is simple projective
over K(o;—1...01Q4) and that, for every indecomposable nonprojective

A-module M, we have

Hom 4 (T—l(@ P(k) @ (€D Py, M) ~ 8. .8 M.
k=1 I=it1
Therefore CTM = S} ... S M = Hom4 (771 A, M). Because the algebra A
is hereditary, (IV.2.14) applies to A and M, and we get A-module isomor-
phisms CT™M = Hom (77 1A, M) =2 Hom (A, 7M) = 7M. O

We also need the following technical result.

5.9. Lemma. Let A be a hereditary and nonsimple algebra, (j1,- .., jn)
be an admissible numbering of the points of Q 4, and M be an indecompos-
able module in mod A.

(a) Ifb<a<n andsj,...s; (dim M) >0, then s;, ...s;j (dim M) >
0, the module SJ'-'; . .Sth over the algebra K(oj, ...0;,Qa) is in-
decomposable, and dim SJ'-'; . .Sth =8, ...5; (dim M).

(b) If ¢(dim M) > 0, then the module CtM is indecomposable and
dim C* M = ¢(dim M).

Proof. We assume for simplicity that the points of @4 are admissibly
numbered as (1,...,n). Assume to the contrary that there exists b < a
such that sp...s1(dim M) % 0. We clearly may suppose that b is minimal
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with this property, that is, that s....s;(dim M) > 0 for all ¢ < b — 1.
It follows from (5.4)(a) and an obvious induction, that for any ¢ < b — 1,
the module S ...S M over the algebra K(o...01Q4) is indecompos-
able and dim (S} ... S M) = s....s;(dim M). Furthermore, the module
S, ...ST M = S(b) is simple projective over the algebra K(op...01Qa).
Therefore dim (S, | ...S{ M) is the canonical basis vector e, of Z" so that
Sq-.-s1(dimM) = s,...8p(€p) = Sq...Sp+1(—€p) = —ep ¥ 0, which is a
contradiction.

This shows indeed that s ...s1(dim M) > 0 for all b < a, but also that,
for any b < a, the module S; ... S; M over the algebra K (oy,...01Q4) is in-
decomposable and dim (S, ... S M) = s,...s1(dim M). This completes
the proof of (a). To prove (b), we apply (a) to the case where a =n. O

We are now able to prove Gabriel’s theorem.

5.10. Theorem. Let Q be a finite, connected, and acyclic quiver; K be
an algebraically closed field; and A = KQ be the path K-algebra of Q.

(a) The algebra A is representation-finite if and only if the underlying
graph @Q of @ is one of the Dynkin diagrams A,,, D, with n > 4,
]Eﬁ, ]E7, and ]Eg.

(b) If Q is a Dynkin graph, then the mapping dim : M +— dim M
induces a bijection between the set of isomorphism classes of inde-
composable A-modules and the set {x € N"; qo(x) = 1} of positive
roots of the quadratic form qq of Q.

(¢) The number of the isomorphism classes of indecomposable A-mod-
ules equals én(n +1), n? —n, 36, 63, and 120, if Q is the Dynkin
graph A, D, with n > 4, Eg, E7, and Eg, respectively.

Proof. Necessity of (a). Assume that @ is not a Dynkin diagram. By
(2.1), Q contains a Euclidean graph as a subgraph. By (2.2), we may assume
that Q is itself Euclidean. If Q = A,, for some m > 1, then (2.3) gives
that K@ is representation-infinite. Otherwise, we observe that, according
to (5.3), the algebra K@ is representation—infinite if and only if K(c,Q)
is representation—infinite for each sink (or source) a of Q. Thus, if Q is
Euclidean of type D, (for some n > 4) or INEp (for p =6, 7, or 8), it follows
from (2.7) and (5.2) that K@ is representation—infinite. We have thus shown
that if K@ is representation—finite, then @ is a Dynkin graph.

Sufficiency of (a). Assume that @ is a quiver whose underlying graph is
a Dynkin graph. We must show that A = K@ is representation—finite. We
may assume the points of @) to be admissibly numbered as (1,...,n). Let
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M be an indecomposable A-module. We claim that the vector x = dim M
is a positive root of the quadratic form gg of the quiver Q.

Let ¢ = s, ...51 denote the Coxeter transformation of Q and C*T =
St...8F, C~ =S ...8; be the Coxeter functors defined with respect to
the admissible numbering (1,...,n) of points of Q. By (4.12), there exists
a least t > 0 such that c¢fx > 0 but ¢!T'x % 0. Because ¢ = s, ...5s1,
there also exists a least 7 such that 0 < 3 < n —1, s;...s51cx > 0, but
Si4+1S54 - - .SlctX )5 0.

By applying (5.9)(b) repeatedly, we prove that the right A-modules
CtM,C*t2M,...,C*t*' M are indecomposable and that

dim C™ M = ¢/(dim M)
for all § < t. Then applying (5.9)(a) to CT*M we conclude that M’ =
St ...SFC* M is an indecomposable module over K(o; ...01Q) and

dim (S;" .. .Si"C"'tM) =5;...51c(dim M) = s;...51¢'x.

Because s;41(dim M') % 0, there is an isomorphism M’ = S(i 4+ 1), by
(5.4)(a). But then s;...s1c¢'x = e;y1, and according to (4.14) the vector
x = c¢7lsy...8e,41 = ¢ 'p;r1 (in the notation of (4.13)) is a positive
root of gg. Furthermore, in view of (5.8) and (5.3)(b), the isomorphism
St SO M = S(i +1) yields M = C~tSy ... S, S(i +1).

We have shown that the mapping dim : M +— dim M takes an inde-
composable A-module to a positive root of gg. Moreover, the integers i
and t as defined earlier, only depend on the vector x = dim M. Thus, if
M, N are two indecomposable A-modules such that dim M = x = dim N,
we have, as earlier S;...SFCT'M = S(i+1) 2 SF...SFCH'N so that
M~ C7tST...57S(i+1) 2 N. Thus dim is an injective mapping from
the set of isomorphism classes of indecomposable A-modules to the set of
positive roots of gq.

Finally, the mapping is surjective because, by (4.14), every positive root
x of g is of the form x = ¢ 'p;y1 = ¢ 'sy...s;€;41, for some i and t.
But then the indecomposable module M = C~'S] ...5 S(i + 1) satisfies
x = dim M. Because g¢ has only finitely many positive roots, by (3.4) and
(4.6), A has only finitely many nonisomorphic indecomposable modules.
This finishes the proof of (a) and (b).

The statement (c) follows from (b) and the fact that the number of
positive roots of g equals én(n +1), n? —n, 36, 63, and 120 if Q is the
Dynkin graph A,, D, with n > 4, Eg, E7, and Es, respectively (see [41],
[95], and Exercises 10, 11, and 12). O
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The reader may have observed that we have shown in the course of the
proof (with the preceding notation) the following useful fact.

5.11. Corollary. For any indecomposable module M over a represen-
tation—finite hereditary algebra A, there exist integers t > 0 and i with
0 <i< n— 1 (depending only on the vector dim M ) such that

M>~=C™ 'Sy ...87S(i+1). O

We can deduce from Gabriel’s theorem the shape of the Auslander—Reiten
quiver of a representation—finite hereditary algebra. We first obtain an
expression of the indecomposable projective and injective modules by means
of the reflection functors.

5.12. Corollary. Let @ be a Dynkin quiver with n points admissibly
numbered as (1,...,n) and let i be such that 1 <1i < mn. Denote by P(i) and
1(7), respectively, the corresponding indecomposable projective and injective
KQ-modules corresponding to the point i € Qq.

(a) If S(i) denotes the simple K(o; . ..0,Q)-module corresponding to i
inoi...onQ, then P(i) =2 ST ...S;_15(i) and p; = dim P(i).

(b) If S(i) denotes the simple K(o;...0,Q)-module corresponding to i
ino;...01Q, then I(i) = S ... 55 5(i) and q; = dim I(3).

Proof. We only prove (a); the proof of (b) is similar. By Gabriel’s
theorem (5.10), the indecomposable K@-modules are uniquely determined
up to isomorphism by their dimension vectors; hence it suffices to show that

pPi=51.. .81'_1(81') = dim P(Z)

We show by descending induction on k with 1 < k <4 that sx...s;—1(e;);
equals 1 if £ < j < ¢ and there exists a path from ¢ to k& through j, and
equals 0 otherwise. There is nothing to show if k = i. Assume k < i and
that the statement holds for all £ < j7 < 4. There is at most one point
7 in @ such that £k < j < ¢ and there is an arrow j — k and a path
from 7 to j. Indeed, the existence of two such points j would contradict
the fact that @ is a tree. Hence it follows from the definition of s; that
Sk ...8i—1(e;)r = 1 if there exists k < j < i such that there is an arrow
j — k and a path from 4 to j (that is, if there exists a path from i to k),
and s ...s;—1(e;)x = 0 otherwise. Because, by our inductive assumption,
[Sk8k+1 . .si_l(ei)]j = [Sk+1 . .si_l(ei)]j for all ] 7é k, this shows our
claim. The result follows after setting k = 1. O



294 CHAPTER VII. REPRESENTATION-FINITE HEREDITARY ALGEBRAS

5.13. Proposition. Let A be a representation—finite hereditary algebra.

(a) For every indecomposable A-module M, there exist t > 0 and an
indecomposable projective A-module P such that M = 77tP.
(b) The Auslander—Reiten quiver T'(mod A) of A is acyclic.

Proof. We assume for simplicity that the points of @4 are admissibly
numbered as (1,...,n). Let C— =57 ...S; be the Coxeter functor.

(a) By (5.11), there exists a pair of integers ¢ > 0 and 0 <47 < n —1 such
that M 2 C~'S7 ...S; S(i +1). The result follows from (5.8) and (5.12).

(b) Assume that

M0—>M1—>...—>MS=M0

is a cycle in I'(mod A). By (a), for each ¢ with 0 < ¢ < s, there exist t; > 0
and a; € (Qa)o such that M; = 7% P(a;). Let t = min{t; | 0 < i < s}.
Then the previous cycle induces a cycle

"My — 7'My — ... — 7'My = 7' M

in I'(mod A), because it follows from (IV.2.15) that Irr(X,Y) = Irr(7 X, 7Y)
for any pair of indecomposable nonprojective modules X and Y. Moreover,
by definition of ¢, this cycle passes through a projective A-module. Because
A is hereditary, by (1.10), the cycle consists of indecomposable projective
modules connected by irreducible monomorphisms, which is a contradiction.

(I

5.14. Corollary. Let M be an indecomposable module over a representa-
tion—finite hereditary algebra A. Then EndaM = K and ExtY (M, M) = 0.

Proof. By (5.13)(a), there exist ¢ > 0 and an indecomposable projec-
tive A-module P such that M = 7!P. Applying (IV.2.14) and (IV.2.15)
we get a sequence of isomorphisms Homy (M, M) = Homyu(7!P, 7'P) =
Homu (P, P) =2 K (by (1.5)) and  Exth(M, M) = DHom4(M,7M)
DHom (7! P, 71 P) = DHom 4 (P, 7P) = Ext! (P, P)=0.

1%

O

By (IV.2.14), the fact that each indecomposable module over a represen-
tation—finite hereditary algebra A is a brick implies that ExtY (M, 7M) is
one-dimensional for each indecomposable nonprojective module M4 and,
hence, any nonsplit short exact sequence 0 - 7M — L — M — 0 is almost
split.

We also note that it follows from (1.10) and (5.14) that the combinatorial
method of constructing the Auslander—Reiten quiver explained in Examples
(IV.4.10)—(IV.4.14) works perfectly well for representation—finite hereditary
algebras.
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5.15. Examples. (a) Let @ be the quiver 6—3 .2 whose un-

derlying graph is the Dynkin graph Az. We wish to construct a complete
list of the nonisomorphic indecomposable K @Q-modules.
The simple representations are:

S(1) = (K«—0—0), S(2) = (0+—0—K), and S(3) = (0«—K—0).
The indecomposable projective representations are:

P(1) = S(1), P(2) = S(2), and P(3) = (K——K-K).
The indecomposable injective representations are: 1(3) = S(3),

I(1) = (K—K—0), and I(2) = (0—K—>K).
The positive roots of gg have been computed in (4.15)(a). We see in par-
ticular that every indecomposable K @Q-module is either projective or injec-
tive. To construct T'(mod K Q) as in (IV.4.10), it suffices to observe that
rad P(3) = P(1) @ P(2). The construction proceeds easily:

100 011
NN
111 010

SN S

1 110

00 1

(b) Let @ be the quiver

20

SN
e

30
whose underlying graph is the Dynkin graph D4s. We wish to construct a
complete list of the nonisomorphic indecomposable K @Q-modules.

The simple representations are:

0 0
\ \

S(1) = ( K<—O> S(3) = ( 0<—0>
o/ K/
K 0

S(2) = (O >0<—0> S4) = <0>0<—K>
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The indecomposable injective representations are:

1(2) = S(2), 1(3) = 5(3), and I(4) = S(4).

The positive roots of gg have been computed in (4.15)(b). To obtain the
remaining indecomposable representations, it suffices, by Gabriel’s theorem
(5.10), to exhibit, for each positive root x, an indecomposable representation
having x as dimension vector. We thus have four other indecomposable
representations, given respectively by:

K
, . N o
(1) dim M; = (12 1), then M; = K2« § | (this is indeed an
A
indecomposable representation, by the proof of (2.6));
0
: 0 N KK
(2) dim M, = (11 1), then My = i
P!
K
. 1 N 1
(3) dim M3 = (01 1), then M3 = KK
%
0
K.
4) dim My = (! then My— | ke
(4) dim My = (10, then M, = . 0
g

(indeed, My, Ms, and M, are indecomposable, because each has a simple
socle isomorphic to S(1)).
To construct I'(mod K@), we note that there are isomorphisms

rad P(2) & rad P(3) & rad P(4) = P(1).

The construction then proceeds easily, as in (IV.4.10)—(IV.4.14):

0 1 0

AR AR

— — — — — 1
10\01 1/121\110/11 1\00
0 1 0

110 011 0

1 0
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(¢) Let @ be the quiver

[¢] [¢]
1 2

DO0O—— 0w

[0} [0}
5 4

with underlying graph Eg. Then I'(mod K Q) is the quiver

0 0
00001 10000

0 1 0
00011 00000 11000

ZONTTN
00010\ /11111\ /01000
/ \

0
11110 11111 01111

|

11100 12221 00111
NSNS
12211 01110 11221
SN LN

0 2 0
01111 12321 11110

N LN S

1 1 1
01221 11211 12210

SN LN

1 1 1
00110 12321 01100

|

1 0 1
11210 01110 01211

SN LN
11?00 01%10 00?11

NSNS

0 1 0
01100 00100 00110

|

0
00100
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We leave to the reader as an exercise to describe explicitly each of the
indecomposable K@-modules as a representation. Notice that the largest

root ;,3,; has already been described in the proof of (2.6).
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VII.6. Exercises

1. Show that each of the following matrix algebras is hereditary:

K O0O0O0 K 00O
w [grar] o [eee] o
KO0 0K

KK 0K

TR

0
K
0
0
0
0

Nooooo

0
0
0
0
K
K

XRRRRe O
coXRooo

In each case, give the ordinary quiver, then describe the indecomposable
projective and the indecomposable injective modules.

2. Construct, as a matrix algebra, a hereditary algebra whose ordinary
quiver is one of the following:

O\O/O
O/ \O

3. Let A be an algebra. Show that the following conditions are equiva-

(a)

lent:
(a) A is hereditary.
(b) For each module My, the functor Ext!y (M, —) is right exact.
(b) For each module 4N, the functor Tor{'(—, N) is left exact.

4. Let A be a finite dimensional basic connected hereditary algebra. Show
that the following conditions are equivalent:

(a) A is a Nakayama algebra.
(b) AT, (K) for some n > 1.
(¢) A admits a projective-injective indecomposable module.

5. An algebra A is called triangular if there exists a hereditary algebra
H and a surjective algebra morphism ¢ : H — A such that Ker ¢ C rad?H.
Show that A is triangular if and only if @ 4 is acyclic.

6. Let @ be the quiver
O
L

; ; i ; | 1 1
Construct bricks having as dimension vectors ;,5,0, 12321, and (;3471, T€-
spectively.

[©] ] o [0
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7. Show that each of the following integral quadratic forms is positive
definite:

(a) 22 + 22 + 22 + 27 — 172 — 1173 — ToXy — T3T4 + T1T4.

(b) 2% + 23 + 23 + 22 — 2129 + X173 — X1T4 — To2T3 + To2Ty — T3T4.

8. Show that each of the following integral quadratic forms is weakly
positive but not positive definite.

(a) 22 + 2% + 2% — 2129 + 21273 + T273.

(b) 22 + 23 + 23 + 23 — 2172 — T173 — ToTy — T3T4 + 27174,

(¢) 2% + 23 + 23 + 25 + 22 + 2% — 2124 — T2Ty — T3T4 — T4T5 — T4Tg
+21T5 + T1X6 + T2T5 + Take + T3T5 + T3T6.

Show that the quadratic form (c) is not positive semidefinite.

9. A vector x € Z" is called sincere if all its coordinates are nonzero .

Let x be a sincere positive root of a weakly positive integral quadratic form
q. Show that the following conditions are equivalent:

(a) x is a maximal root.
(b) s;(x) < x for each i.
(¢) D;g(x) > 0 for each i.

10. Let @ be a quiver with underlying graph
A 5 3 Mgt g (m=1).

Show that the positive roots of qg in F = @]", e;,Z are just the vectors

el,...,ep and ;+e;41 + ...+ e€;, where 1 <i < j <m. Thus @ affords

1 . .
m(“;r ) positive roots.

11. Let @ be the quiver with underlying graph

o1

n—1 3/
o

\

o2

D,, :

o3
@]
@]

(n>4).

Show that the positive roots of go in F = @, €;,Z are just the vectors
€e,...,€en, € +e 1 +...+e;, where 1 <i<j<n,and j >3, e +e3+
...+ ej, where j > 3, e1 +ex+2(es + ...+ €;) + €41 + ...+ ej, where
3 <i<j<n. Thus Q affords n(n — 1) positive roots.

12. Compute all the positive roots for Eg, E7, and Eg (one finds, respec-
tively, 36, 63, and 120 positive roots).






Chapter VIII

Tilted algebras

As seen in the preceding chapters, the Auslander—Reiten quiver of an
algebra is a very useful combinatorial invariant allowing us to store algebraic
information about the module category. We were, for instance, able to use
it to compute homomorphisms and extensions between modules, as well
as to construct an algebra obtained by tilting from one that was known
before. However, its usefulness is not restricted to being a device for storing
information. As we shall see in this chapter, its combinatorial properties
can be used to characterise classes of algebras.

We start from the results of Chapter VII on the Auslander—Reiten quiver
of a representation—finite hereditary algebra A; it follows from these results
that the full subquiver of T'(mod A) consisting of the projective points is
connected, acyclic, and meets each 7-orbit of I'(mod A) exactly once and
every path in I'(mod A) having its source and target in it must entirely
lie in it. These three properties characterise what is called a section in a
(generally infinite) component of the Auslander-Reiten quiver.

We first generalise this remark by showing that any representation—
infinite hereditary algebra has sections in two infinite components, which
we call postprojective and preinjective. We then define a new class of alge-
bras, the so-called tilted algebras, which now play a prominent role in the
representation theory of algebras and which are obtained from hereditary
algebras by tilting. The main result of this chapter is a handy criterion,
independently obtained by Liu [111] and Skowroniski [156], which charac-
terises the tilted algebras as being those algebras B having a faithful section
3 in a component C of I'(mod B) such that Hompg (U, 7V) = 0 for all mod-
ules U, V from ¥. Throughout this chapter, and contrary to the previous
ones, our emphasis is on studying representation—infinite algebras rather
than representation—finite ones.

VIII.1. Sections in translation quivers

Because our objective in this chapter is to describe combinatorial prop-
erties of connected components of the Auslander-Reiten quiver of a (not
necessarily representation—finite) hereditary algebra or of an algebra “close”
to being hereditary, we recall that such a component has the combinatorial
structure of a translation quiver, as defined in (IV.4.7). We need a special
type of translation quiver.

301
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1.1. Definition. Let ¥ = (3(,¥;) be a connected and acyclic quiver.
We define an infinite translation quiver (ZX, 1) as follows. The set of
points of ZX is (ZX)g = Z x 3¢ = {(n,x) | n € Z, = € Lo} and, for each
arrow « : ¢ — y in X, there exist two arrows

(n,a): (n,x) = (n,y)  and  (n,d): (n+1,y) = (n, 1)
in (ZX)1, and these are all the arrows in (ZX);. We define the translation
T on ZY by 7(n,z) = (n+ 1, ) for all (n,x) € (ZX)o.

For every (n,z) € (ZX)o, we define a bijection between the set of arrows

of target (n,z) and the set of arrows of source (n + 1, ) by the formulas

o(n,a)=(n,a’) and o(n,a')=Mm+1,a).

For example, let 3 be the quiver

02

10——>03

o
4\
o

5

Then 73 is the translation quiver

(2,2) (1,2) (0,2) (-1,2) (—-2,2)
SoOoN N N 7N SN
: _>(2’3) _>(1’1) H(1’3) H(0’1) H(0’3) H(_1’1) _>(_1’3) _>(_2’1) _>(_2’3) —O0- -
N N SN/ NS NS
(2,4) (1,4) (0,4) (—1,4) (—2,4)

SoON N N SN SN

(2,5) (1,5) (0,5) (—1,5)

We denote by N¥ the full translation subquiver of Z¥ consisting of all
points (n,z) € (ZX)o with n > 0 and, similarly, by (—N)X the full transla-
tion subquiver of Z¥ consisting of all points (n,x) € (ZX)o with n < 0.

Clearly, the quiver ZY thus defined is a translation quiver with nei-
ther projectives nor injectives, and the maps 7 : (ZX)y — (ZX)o and
o : (Z%); — (ZX); are bijective. Moreover, it is easily verified that the
quiver ¥, identified with the full translation subquiver of Z3: consisting of
the points (0, ), with z € Xy, and of the arrows (0, ), with @ € X1, is a
section of Z¥ in the sense of the following definition.

1.2. Definition. Let (I',7) be a connected translation quiver. A con-
nected full subquiver ¥ of I is a section of I if the following conditions are
satisfied:

(S1) X is acyclic.
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(S2) For each x € Ty, there exists a unique n € Z such that 7"z € 3.
(S3) If xg — x1 — -+ — x¢ is a path in T with xg, 2 € X, then x; € g
for all ¢ such that 0 <17 < ¢.

For a translation quiver (T, 7), the 7-orbit of a point 2 € Ty is defined to
be the set of all points of the form 7"z, with n € Z. With this terminology,
(S2) can be restated to say that X meets each 7-orbit exactly once.

A full subquiver ¥ of a quiver I is defined to be convex in I if, for any
path zg — 1 — -+ — x4 in I’ with xq, z; € 3, we have x; € ¥ for all 4
such that 0 <4 < ¢. Thus, (S3) says that a section of T" is convex in T

1.3. Examples. (a) Let A be a connected hereditary algebra and 3 4 be
the full subquiver of the Auslander—Reiten quiver I'(mod A) consisting of the
points corresponding to the isomorphism classes of all the indecomposable
projective A-modules. We know, by (VIL.1.4)(g), that any indecomposable
projective A-module has only projective predecessors. Because, according
to (VIL.1.6), for any two indecomposable projective A-modules P(a) = e, A
and P(b) = e A, there exists a K-linear isomorphism

eq(rad A/rad? A)ey, =2 Irr(P(b), P(a)),
then ¥4 = Q°F. In particular, ¥ is connected.

Similarly, I'(mod A) contains a section induced by the indecomposable
injective A-modules. Indeed, let ¥/, be the full subquiver of the Auslander—
Reiten quiver I'(mod A) consisting of the points corresponding to the iso-
morphism classes of indecomposable injective A-modules. Then the duality
D : mod A — mod A°® carries X'y to D(X'y) = Y a0e. By applying these
arguments to A°P, we get 3400 = Q) 4, and consequently

Y, 2 Q¥ 2T,

Assume now that A is representation—finite. We claim that Y4 is a
section of T'(mod A). Indeed, because @ 4 is acyclic, so is ¥ 4. The convexity
of ¥4 follows from (VIL.1.9), because A is hereditary, and therefore the
indecomposable projectives have only projective predecessors. Finally, it
follows from (VII.5.12)(a) that ¥4 meets each T-orbit exactly once, proving
our claim.

As we shall see in Section 2, the same statement holds for representation—
infinite hereditary algebras.

(b) We now give an example of a nonhereditary representation—finite
algebra having a section in its Auslander—Reiten quiver. Let A be given by
the quiver
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V
\

7\/

[©]
5

bound by a8 = ~§, €¢§ = 0. Then I'(mod A) is given by

/\/\
/\/\/\/
\/\/\/\

where indecomposable modules are represented by their dimension vectors.
We notice that each of the following two sets of indecomposable modules

110 000 010 111 000 and 000 111 010 011 000
15 1 0 1 1 1 15 0 » 15 1
0 0 0 1 0 0 0 0 1

defines a section of I'(mod A).

It turns out that the mere existence of a section ¥ in a translation quiver
(T, 7) implies that (", 7) can be fully embedded in ZX. Before proving this
statement, we need an easy lemma.

1.4. Lemma. Let (I',7) be a connected translation quiver and ¥ be a
section of (T, 7). Then the following hold:

(a) If v — y is an arrow in T and x € Xy, theny € Xg or Ty € Xp.
(b) If x — y is an arrow in T and y € g, then x € ¥g or 771z € Xy.

Proof. We only prove (a); the proof of (b) is similar. By (S2), there
exists m € Z such that 7y € 3. Assume that m < 0; then there exists
a path in (T, 7) of the form 2 — y — -+ — 7™y with both ends in X. By
(S3), we have y € ¥y. Hence, by (S2), m = 0. Similarly, m > 0 yields
TY € Y. U
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1.5. Proposition. Let (I',7) be a connected translation quiver and X
be a section of I'. Then I is isomorphic to the full translation subquiver
of ZY. consisting of the points (n,x) withn € Z, x € Xy such that ™"x is
defined in I'. In particular, T is acyclic.

Proof. Let 2 be the full translation subquiver of ZY consisting of all
pairs (n,z) € (ZX)p such that 7"z is defined in I". Considering Q as a
subquiver of I', we see that €2 is the translation subquiver of I' such that
Qo =Ty and Q; consists of all possible arrows of I'; of the forms

"o =0t — 1ty and o7t =" la: Ty -y,
where n € Z and « : x — y is an arrow in ;. We need to show that in fact
)y =TI'y, that is, each arrow in I'; lies in €.

Let @ : a — b be an arrow in I'. By (S2), there exist z,y € ¥p and
m,n € Zsuch that a = 7™z and b = 7"y. Assume m = 0. Then a = x € ¥.
By (1.4), b or 7b belongs to ¥g. In either case, o € €. Because the case
n = 0 is similar, assume that m # 0 and n # 0. Suppose first m > 0 and
n > 0. Because all 7%z, 77y, with 0 < i < m, 0 < j < n are defined, this
implies that there exists in I'y an arrow of the form

g2mtl n—mtly L p or o a7 "z —y.
In the first case, (1.4) yields that 7"~ *ly € ¥ or 7 ™y € . By (S3),
this implies 7"~y = y or 7™y = y; thus, by (S1), m = n+1or m = n.
Hence a € 2. We proceed analogously in the second case.

The case where m < 0 and n < 0 being similar, we may suppose that
m > 0 and n < 0. Then I" contains a path of the form

y— - — 1ty =b —r1tla=7""1r — ... — 1.

QT

By (S3), all points on this path belong to ¥ and, in particular, ¥ contains
two points of the 7-orbit of = (or y), a contradiction to (S2). Finally, the
case where m > 0 and n < 0 is treated in the same way. O

For example, if A is the algebra of Example 1.3 (b) and X is one of the two
sections of I'(mod A), then it is readily seen that I'(mod A) is isomorphic
to the connected full subquiver of ZX consisting of all (n,z) € (ZX)q such
that 7™z corresponds to an indecomposable A-module (thus, for instance, if

0
x =0, 8, then only 7o, 77!z and 72z are defined). We have the following
obvious corollary.

1.6. Corollary. Let A be a section in ZY.. Then ZA = 7Y, O

In particular, if a is a sink in a finite, connected, and acyclic quiver ¥,
then o,% (see (VIL5)) is isomorphic to the full translation subquiver of ZX
consisting of the points (1,a) and {(0,b) | b € Xo, b # a}. Clearly, this
is a section in ZY, so that Z(0,X) = ZX. Inductively, if (a1,...,a,) is
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an admissible sequence of sinks in X, then Z(o,, ...04, %) = ZX. These
remarks, together with (VII.5.2), imply the following lemma.

1.7. Lemma. Let ¥ and A be two trees having the same underlying
graph. Then 73 = ZA. O

The statement of (1.7) characterises trees. Indeed, we have the following
result.

1.8. Lemma. Let ¥ and Y’ be quivers having the same underlying graph
of type Ap,. Then ZX = ZY' if and only if the quivers ¥ and X' have
the same number of clockwise-oriented arrows and the same number of
counterclockwise-oriented arrows.

Proof. Let a be a sink in ¥. Then ZY contains a unique section A
such that a is the unique sink in A and A has a unique source. By (1.6),
ZA = ZY.. We may thus assume from the start that each of ¥ and ¥’ has
a unique source and a unique sink. But then the statement is clear. O

VIII.2. Representation—infinite hereditary
algebras

We know from Chapter VII that the representation—finite hereditary al-
gebras coincide with the path algebras of Dynkin quivers and that their
Auslander-Reiten quivers are finite and acyclic and (by (1.3)(a)) have at
least two sections consisting of, respectively, the indecomposable projective
modules and the indecomposable injective modules. Furthermore, the sec-
tions are Dynkin quivers. We now generalise these statements to hereditary
algebras, which are not necessarily representation—finite.

2.1. Proposition. Let A = KQ, where Q) is a finite, connected, and
acyclic quiver, and let T'(mod A) be the Auslander—Reiten quiver of A.

(a) T'(mod A) contains a connected component P(A) such that
(i) for every indecomposable A-module M in P(A), there exist a
unique t > 0 and a unique a € Qg such that M = 77tP(a);
(ii) P(A) contains a section consisting of all the indecomposable
projective A-modules; and
(iii) P(A) is acyclic.
(b) T'(mod A) contains a connected component Q(A) such that
(i) for every indecomposable A-module N in Q(A), there exist a
unique s > 0 and a unique b € Qq such that N = 7°1(b);
(ii) Q(A) contains a section consisting of the indecomposable injec-

tive A-modules; and
(iii) Q(A) is acyclic.
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(¢) P(A) = Q(A) if and only if A is representation—finite.

Proof. (a) Let 3 be the full subquiver of the Auslander—Reiten quiver
I'(mod A) of A consisting of the points corresponding to the indecomposable
projective A-modules. As pointed out in (1.3)(a), there is a quiver isomor-
phism ¥ = Q°P. We let P(A) be the connected component of I'(mod A)
containing X.

(i) We claim that any indecomposable module in P(A) is isomorphic
to a module of the form 77tP(a), with ¢ > 0 and a € Qo. Indeed, we
first show, by induction on ¢, that if f : M — 77tP(a) is an irreducible
morphism, with M indecomposable, then M is of the wanted form. If
M is projective, there is nothing to prove. So assume it is not. Because
predecessors of projectives are projective, we have ¢ > 1 and there exists
an irreducible morphism o?f = 7f : TM — 77" P(a). By the induction
hypothesis, there exist » > 0 and b € Qg such that 7M = 77" P(b); hence
M = 777=1P(b). Next, assume that there exists an irreducible morphism
g: 7 'P(a) — M. If M is projective, there is nothing to prove. So assume
it is not. There exists an irreducible morphism og : TM — 77 !P(a). By
the preceding argument, 7M is of the required form, hence so is M. These
two statements and induction imply our claim.

We now prove that ¢ and a are uniquely determined. If 77!P(a) =
77 "P(b), then assuming, without loss of generality, that ¢ > r, we have
P(a) =2 7= "P(b), hence t = r and a = b.

(ii) We must show that ¥ is a section in P(A). Because ¥ = Q°P, we
have that 3 is acyclic. Because predecessors of projectives are projective,
we also have that ¥ is convex in P(A). Finally, it follows from (i) that 3
meets each 7-orbit of P(A) exactly once.

(iii) This follows from (ii) and (1.5).

(b) The proof is entirely similar to that of (a) and is omitted.

(¢) Clearly, if A is representation—finite, then I'(mod A) is connected,
and so P(A) = Q(A). Assume conversely that P(A) = Q(A). Then, in
particular, P(A) contains all the indecomposable injective A-modules. Let
m = max{t > 0 | 77"P(a) be injective for some a € Qo} and n denote the
number of points in Q. Then P(A) contains at most mn indecomposable
modules so that it is a finite component of I'(mod A). By (IV.5.4), A is
representation—finite. [l

2.2. Definition. Let A be an arbitrary (not necessarily hereditary)
K-algebra, and I'(mod A) the Auslander-Reiten quiver of A.

(a) A connected component P of T'(mod A) is called postprojective if P
is acyclic and, for any indecomposable module M in P, there exist ¢ > 0 and
a € (Qa)o such that M =2 77¢P(a). An indecomposable A-module is called
postprojective if it belongs to a postprojective component of I'(mod A),
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and an arbitrary A-module is called postprojective if it is a direct sum of
indecomposable postprojective A-modules.

(b) A connected component Q of I'(mod A) is called preinjective if Q
is acyclic and, for any indecomposable module N in Q, there exist s > 0
and b € (Qa)o such that N = 7°I(b). An indecomposable A-module is
called preinjective if it belongs to a preinjective component of I'(mod A),
and an arbitrary A-module is called preinjective if it is a direct sum of
indecomposable preinjective A-modules.

The postprojective components and the postprojective modules are also
sometimes called the preprojective components and the preprojective mod-
ules, respectively (see [21]). Here we use the term “postprojective” intro-
duced by Gabriel and Roiter in [77].

With this terminology, we have the following obvious corollary of (2.1)
and its proof.

2.3. Corollary. Let @ be a finite, connected, and acyclic quiver that is
not a Dynkin quiver, and let A = KQ.

(a) The quiver T'(mod A) contains a postprojective component P(A) that
is isomorphic to (—N)Q°P and contains all the indecomposable pro-
jective A-modules.

(b) The quiver T'(mod A) contains a preinjective component Q(A) that
is isomorphic to NQ°P and contains all the indecomposable injective
A-modules. O

Clearly, the assumption that @ is not a Dynkin quiver is equivalent to
saying that A is a representation—infinite hereditary algebra. We notice that,
because P(A) contains all the indecomposable projective A-modules, it is
necessarily the unique postprojective component of I'(mod A). Similarly,
Q(A) is the unique preinjective component of T'(mod A).

2.4. Examples. (a) Let A be the path algebra of the Kronecker quiver

of——o

Then the postprojective component P(A) is given by

2t
2t 1

8 4
ZER /SN 7\ //
B B 3+

and the preinjective component Q(A) is given by

527

{ B
// N, 7 \\[Q]// \\[O]

2s+1
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where indecomposable modules are represented by their dimension vectors.
These components are easily computed starting, respectively, from the in-
decomposable projectives and injectives and using the procedure used in
(IV.4.10)—(IV.4.14).

(b) Let A be the path algebra of the quiver

[=NelNeNe)

02
%;ii;3
1O
\04
05
Then P(A) is given by
1 0 2
0 1 1
Yo 7 8!
0 1 1
0 1 1
1! 2! 32
0 1 1
/ \ 1 2 3
0 1 1
1 2 3
3 5 7
1 2 3
\\\\ﬂ 0 ////2 1 ! 2 ! 3
L0 . 51
1 0 2
0 1 1
0 1 1
0 1 1
Yo 7 8!
1 0 2

and Q(A) is given by

AN, NN
N NS
AT ANN
N N
LN NS

1 2 0 1

2 1 1 0

39 2 by %9

2 1 1 0

2 1 1 0

3; 2? 12 oé

////7 2 \\\\$ 3 1 2 1 L 0
. 53 52 1
3 2 1

\\\\3 2 ///2 1 1 0
3 2 1

52 51 1 00

1 2 0 1

2 1 1 0

2 1 1 0

2 1 1 0

39 2 by %9

1 2 0 1
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(c) If A is not hereditary, its postprojective component may contain injec-
tives. This is clear if A is representation—finite (see, for instance, Example
1.3 (b)). The following is an example of a representation—infinite algebra

having a postprojective component containing all projectives and one injec-
tive. Let A be given by the quiver

M_OV
N
/

bound by a8 = ~d, Be =0, and de = 0. Then P(A) is given by

0130 0010
/ 0 N / ' 0\ /
1 1 1
1080 41180 40180 0110 40111 40231 e
0 0 0 0 0 0\ / 1 0\ 1 0/ 2 1\
1 1
0120 _>01?0 02,0 01,0 ...
/ 1 0\ 1 1/ 1 1\ 0 0/
0080 0120 0110
1 0 0 0 1

0
and it is easily seen to contain the injective I(1) =1 (1) 08 .

(d) If A is not hereditary, then it may contain more than one postpro-
jective component. Let, for instance, A be given by the quiver

B
¢ 2
105 Ox
v
o5
M /
VAL A

bound by a8 =0, ay =0, Au = 0, A\v = 0. Then I'(mod A) contains two
postprojective components, respectively given by

21 4
0 30

//00 \\32 //00 \\

10
OO0 OO0

and
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000 00O

) //21 \\00 //43 \\

but it contains only one preinjective component, given by

00" 000
2N N\
23 01 00
00° 00" 01!
01! 00!
250 010 00!
Ny S N\
00, 00,
34 12

We notice that the preinjective component contains all injectives and one
projective P(5) = 8 1 1. Because all indecomposable projective and injective
A-modules appear in these three components, these are all the postprojec-

tive and preinjective components of I'(mod A).

We now let A be an arbitrary (not necessarily hereditary) algebra and
record some of the properties of the postprojective and preinjective modules
in the following lemmas.

2.5. Lemma. Let A be an arbitrary (not necessarily hereditary) algebra.

(a) Let P be a postprojective component of the quiver T'(mod A) and M
be an indecomposable module in P. Then the number of predeces-
sors of M in P is finite and any indecomposable A-module L such
that Homa (L, M) # 0 is a predecessor of M in P. In particular,
Homa (L, M) = 0 for all but finitely many nonisomorphic indecom-
posable A-modules L.

(b) Let Q be a preinjective component of the quiver I'(mod A) and N
be an indecomposable module in Q. Then the number of succes-
sors of N in Q is finite and any indecomposable A-module L such
that Homyu (N, L) # 0 is a successor of N in Q. In particular,
Homa (N, L) = 0 for all but finitely many nonisomorphic indecom-
posable A-modules L.

Proof. We only prove (a); the duality reduces (b) to (a).
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First, we show that there is a simple projective predecessor of M in
P. Because M = 77t P(qag) for some ¢ty > 0 and an indecomposable pro-
jective A-module P(ag), according to (IV.4.3) and (IV.4.4), the modules
TM,72M, ... , 7% M = P(ag) are predecessors of M in P. If P(ay) is simple,
we are done. If P(ag) is not simple, the radical rad P(ag) of P(ag) is nonzero
and, by (IV.4.3), every indecomposable summand M; of rad P(ayp) is a pre-
decessor of P(ag) and of M in P. By our assumption, M; = 77 P(ay)
for some ¢; > 0 and an indecomposable projective A-module P(a;), and we
conclude, as earlier, that P(aq) is a predecessor of M in P. Continuing in
this way, we find a simple predecessor P(a,) of M in P, because P is acyclic
and contains only finitely many indecomposable projective A-modules.

Denote by h(M) the length of a longest path connecting M with a simple
projective module in P. We prove the remaining statements in (a) for all
modules M in P by induction on h(A).

Assume that h(M) > 1, because if h(M) = 0, then the module M is sim-
ple projective and there is nothing to show. Then M is not simple projective
and there exists a right mimimal almost split morphism M’ — M. If Ny is
any indecomposable summand of M, then (IV.4.2)(b) yields h(Ny) < h(M)
and Nj belongs to P. By the induction hypothesis, the statement (a) holds
for N7. Because, by (IV.4.2)(b), all immediate predecessors N of M in P are
isomorphic to direct summands of M’, h(N) < h(M). Moreover, if L % M
is an indecomposable module such that Hom 4 (L, M) # 0, then any nonzero
homomorphism f : L — M factors through M’ — M and therefore there
exists an indecomposable summand N of M’ such that Hom4(L, N) # 0.
In view of h(N) < h(M), it follows from the induction hypothesis that (a)
holds for all indecomposable summands N of M’, and therefore (a) holds
for M. This completes the proof. U

In the course of the proof, we showed that any indecomposable A-module
M in P has a simple projective predecessor, and any indecomposable A-
module N in Q has a simple injective successor.

We restate the results of (2.5) in slightly different terms. Let M, N
be two indecomposable A-modules. A path in mod A from M to N is a
sequence

M=M 25w Lomy — o L= N

where all the M; are indecomposable, and all the f; are nonzero noniso-
morphisms. In this case, M is called a predecessor of N in mod A and N
is called a successor of M in mod A. A path from an indecomposable A-
module M to itself, that is, a sequence of nonzero nonisomorphisms between
indecomposables of the form

M=M, 2% a2y — IS v, =
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is called a cycle in mod A. Then (2.5) says that, in the case of modules
lying in postprojective or preinjective components, these module-theoretical
notions can be expressed graphically.

2.6. Corollary. Let A be an arbitrary (not necessarily hereditary) K-
algebra.

(a) Let P be a postprojective component of T'(modA) and M be an
indecomposable module in P. Then
(i) any predecessor L of M in mod A is postprojective and there is
a path in P from L to M, and
(i1) M lies on no cycle in mod A.
(b) Let Q be a preinjective component of T'(mod A) and N be an inde-
composable module in Q. Then
(i) any successor N of L in mod A is preinjective and there is a
path in @ from N to L, and
(ii) N lies on no cycle in mod A.

Proof. We only prove (a); the duality reduces (b) to (a).
(i) Let L be a predecessor of M in mod A and

L=My—M — - -—M;_1 —>M =M
be a path in mod A. By (2.5), M;_; lies in P and is a predecessor of M in

P. The statement now follows by induction.
(ii) follows from (i) and the acyclicity of P. O

2.7. Lemma. Let A be an arbitrary (not necessarily hereditary) alge-
bra and M be an indecomposable postprojective, or preinjective, A-module.
Then End M = K and ExtYy (M, M) = 0.

Proof. Let M be an indecomposable postprojective or preinjective A-
module. Assume to the contrary that dimgEnd M > 1. Because End M is
local, this implies rad End M # 0, thus there exists a nonzero nonisomor-
phism f: M — M. Tt follows from (i) of (2.6)(a) and (2.6)(b) that M lies
on a cycle in mod A, a contradiction with the statements (a)(ii) and (b)(ii)
of (2.6).

Next suppose that Extl (M, M) # 0. By the Auslander—Reiten formula
(IV.2.13), we have

Ext (M, M) = DHom (M, 7M) C DHom (M, 7M).
Hence there exists a nonzero homomorphism M — 7M and thus a cycle
M—TM —x— M

in mod A. Hence we again get a contradiction with the statements (a)(ii)
and (b)(ii) of (2.6). O
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Our next aim is to show that any representation—infinite hereditary alge-
bra has indecomposable modules that are neither postprojective nor prein-
jective. For this purpose, we need the following lemma, valid over an arbi-
trary (not necessarily hereditary) algebra.

2.8. Lemma. Let A be an arbitrary (not necessarily hereditary) algebra
and
0—-L—-M-—>N=—-0

be a nonsplit short exact sequence of A-modules. Then

dimgEnd M < dimgEnd (L & N).

Proof. We have the following commutative diagram with exact columns
and rows

0 — Homa(N,L) — Homu(N,M) — Homa(N,N)

0 — Homa(M,L) — Homyu(M,M) — Homa(M,N)

3

0 — Homa(L,L) — Homua(L,M) — Homyu(L,N)

)

Ext! (N, L)

such that the connecting homomorphism ¢ : Hom4 (L, L) — Ext! (N, L)
maps the identity homomorphism on L to the class of the given nonsplit
short exact sequence 0 — L — M — N — 0. In particular, § # 0 and hence

dimgHom (M, L) < dimgHoma (N, L) + dimgHoma (L, L).
Consequently,
dimgEnd M <dimgHoma (M, L) + dimgHom 4 (M, N)
<dimgHoma (N, L) + dimgEnd L 4+ dimgEnd N

+ dimgHom 4 (L, N)
=dimgEnd (L & N). O
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2.9. Proposition. Let A be a representation—infinite hereditary algebra.
Then there exists an indecomposable A-module M such that ExtY (M, M) #
0. In particular, M is neither postprojective nor preinjective.

Proof. Because A is representation—infinite, it follows from (VII.4.6)
that ga is not weakly positive. Hence there exists a positive vector x €
K(A) such that ga(x) < 0. Clearly, there exists a nonzero (not necessarily
indecomposable) A-module N such that x = dim N. Let thus N be an
A-module such that x = dim N and dimgEnd N is the smallest possible.
We notice that, in view of (II1.3.13), we have

dimgEnd N — dimgExt! (N, N) = g4(dim N) <0,

and consequently
dimgExt! (N, N) > dimgEnd N > 1,

so that Exty(N,N) # 0. Hence there exists an indecomposable sum-
mand M of N such that Exty (M, N) # 0. We claim that ExtY (M, M) #
0. Indeed, if this is not the case, then, writing N = M & L, we have
Exth (M, L) = Ext,(M,N) # 0 so that there exists a nonsplit short ex-
act sequence 0 — L — E — M — 0. By (2.8), we get

dimgEnd E < dimgEnd (L & M) = dimgEnd N.
Because

dimFE =dimL +dimM =dim (L ® M) =dim N =x,

this contradicts the minimality of NV, thus showing our claim.
Finally, the last statement follows from (2.7). O

2.10. Corollary. Let A be a representation—infinite hereditary algebra.
Then there exists an infinite family of pairwise nonisomorphic indecompos-
able A-modules that are neither postprojective nor projective.

Proof. It follows from (2.9) that I'(mod A) has a component C that is
different from the unique postprojective component and the unique prein-
jective component. Because A is representation—infinite, C is infinite by
(IV.5.4) and, clearly, no module in C is postprojective or preinjective. [

2.11. Example. Let A be given by the Kronecker quiver o &——— o.
Then A is a representation—infinite hereditary algebra. Let m > 1 and
A € K be arbitrary; then consider the module H,,()) given by

1
K™ éJ: K™,
m,A

where Jp, » denotes the Jordan block corresponding to the eigenvalue A.
Then it is easily seen that H,,(A\) is indecomposable (this was done in
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(IT1.1.8) for A = 0 and is done in exactly the same way for any value of
A). On the other hand, comparing

dim H,,(\) = (m,m)
with the dimension vectors of the postprojective and preinjective A-modules
as computed in (2.4)(a), we see that H,,(\) is neither postprojective nor
preinjective. Because it is easily seen that H,,(\) = H,(u) if and only if
m =mn and X\ = u, we obtain an infinite family of indecomposable modules
that are neither postprojective nor preinjective.

It follows from (2.10) that the Auslander—Reiten quiver of a representat-
ion—infinite hereditary algebra has components containing neither projective
nor injective modules.

2.12. Definition. Let A be an arbitrary (not necessarily hereditary) al-
gebra. A connected component C of T'(mod A) is called regular if C contains
neither projective nor injective modules. An indecomposable A-module is
called regular if it belongs to a regular component of I'(mod A) and an
arbitrary A-module is called regular if it is a direct sum of indecomposable
regular A-modules.

Let A be a representation—infinite hereditary algebra. We denote by
R(A) the family of all the regular components of I'(mod A) and by add R(A)
the full subcategory of mod A whose objects are all the regular A-modules.
We may visualise the shape of T'(mod A) as follows:

P(A) Q(4)

We now show that in this picture, the homomorphisms can only go from
left to right.

2.13. Corollary. Let A be a representation—infinite hereditary algebra
and L, M, and N be three indecomposable A-modules.

(a) If L is postprojective and M is reqular, then Homy (M, L) = 0.

(b) If L is postprojective and N is preinjective, then Hom4 (N, L) = 0.

(¢) If M is regular and N is preinjective, then Hom 4 (N, M) = 0.

Proof. This easily follows from (2.5). O
The statement of (2.13) is more briefly expressed by writing

Homy (R(A),P(A))=0, Homa(Q(A),P(A))=0, Homu4 (Q(A), R(A))=0.
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2.14. Corollary. Let A be a representation—infinite hereditary algebra.
Then the mutually inverse equivalencesmod A —————mod A (IV.2.11),

induced by the Auslander—Reiten translations T and 7!, induce mutually
inverse equivalences of categories

add R(A) =——— add R(A).

Proof. Let M, N be two regular nonzero A-modules. It follows from the
definition that the modules 7M, 7N, 77! M, 7' N are nonzero and regular.
By (2.13), no homomorphism from M to N factors through a projective or
injective module. Hence Hom 4 (M, N) = Homyu (M, N) = Homa(M, N).
The result follows from (IV.2.10) and (IV. 2.11). O

The structure of the category add R(A) will be discussed in detail in the
second volume of this book.

VIII.3. Tilted algebras

As we have seen, each of the postprojective and preinjective components
of the Auslander—Reiten quiver of a hereditary algebra is completely deter-
mined by a section. It follows from (2.3) that such a component is obtained
by repeated applications of the Auslander—Reiten translations to the section
consisting of the indecomposable projective modules or the indecomposable
injective modules, respectively. The use of sections in acyclic components
of Auslander—Reiten quivers is not limited to hereditary algebras. We now
introduce a class of algebras (containing the class of hereditary algebras)
that, as we shall see, are characterised by the property that their Auslander—
Reiten quiver has an acyclic component containing a section satisfying rea-
sonable properties.

3.1. Definition. Let @ be a finite, connected, and acyclic quiver. An
algebra B is said to be tilted of type @ if there exists a tilting module T’
over the path algebra A = KQ of @ such that B = End T'4.

Because we are only interested in basic algebras, we may (and shall)
always assume that T4 is multiplicity-free. We notice that, by (V1.3.5), a
tilted algebra is always connected.

For instance, any hereditary algebra is tilted. Indeed, let @) be a finite,
connected, and acyclic quiver and let A = KQ; then A4 is a tilting mod-
ule so that A = End A4 is tilted of type @. In Chapter VI, the examples
(VI.3.11)(a) and (VI.3.11)(c) show endomorphism algebras of tilting mod-
ules over hereditary algebras, thus tilted algebras, which are not hereditary.

We now wish to list some elementary properties of tilted algebras that
follow directly from the results of Chapter VI. One terminology is useful



318 CHAPTER VIII. TILTED ALGEBRAS

here. Let A be an additive full subcategory of mod A, closed under iso-
morphic images and direct summands. We say that A is closed under
predecessors if, for any path L — --- — M in mod A, with M in A, the
module L belongs to A as well; similarly, A is closed under successors if,
for any path L — --- — M in mod A, with L in A, the module M belongs
to A as well.

3.2. Lemma. Let A be a hereditary algebra, Ta be a tilting module, and
B=EndTy.

(a) The torsion pair (X(T),Y(T)) in mod B is splitting.

(b) Y(T) is closed under predecessors and X (T) is closed under succes-
sors.

(¢) If A is representation—finite, then so is B.

(d) Any almost split sequence in mod B lies either entirely in X (T) or
entirely in Y(T), or else it is a connecting sequence.

(e) gl.ldim B < 2 and, for any indecomposable B-module Z, we have
pdZp <1 oridZg <1.

Proof. (a) Because A is hereditary, it follows from (VI.5.7) that T4 is a
splitting tilting module.

(b) This follows from (a); indeed, let Z = Zy — Z; — -+ — Zy_1 —
Zy =Y be a path in mod A, with Y € Y(T). Then Homa(Z;—1,Y) #
0 implies that Z;_; ¢ X(T); hence, by (a), Z;—1 € Y(T). An obvious
induction completes the proof that Y(T) is closed under predecessors. The
other statement is proved similarly.

(¢) This also follows directly from (a).

(d) This follows from (a) and (VI.5.2).

(e) The first statement follows from (VI.4.2). Let Z be an indecomposable
B-module. By (a), Z belongs to either X(T) or Y(T). If Z € Y(T), there
exists an indecomposable A-module M € T (T') such that Z = Hom (T, M).
But then by (VI.4.1), we get pd Zp < pd My < 1. Assume Z € X (7).
Because (X (T),Y(T)) is splitting, it follows from (VI.1.7) that 7717 €
X(T). On the other hand, Bg € Y(T). Hence Homp(r~1Z, B) = 0 and,
by (IV.2.7)(b), we have id Zp < 1. O

We notice that (c) can be reformulated by saying that any tilted algebra
of Dynkin type (that is, whose type is a Dynkin quiver) is representation—
finite.

We now wish to prove that the ordinary quiver of a tilted algebra is
acyclic. This follows from the next lemma.

3.3. Lemma. Let A be a hereditary algebra. If Ty and T are indecom-
posable A-modules such that ExtY (T2, T1) = 0, then any nonzero homomor-
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phism from Ty to Ty is a monomorphism or an epimorphism. In particular,
if Ty is indecomposable and ExtY (Ty,T1) = 0, then End T} ¥ K.

Proof. Let f: 171 — T, be a nonzero homomorphism, and assume that
f is neither a monomorphism nor an epimorphism. Letting M = Im f,
we can factor f as f = gh, where h : 17 — M is the canonical epimor-
phism. Because f is neither a monomorphism nor an epimorphism, we have
dimg M < dimgT; and dimg M < dimgTs. In particular, M is isomor-
phic to neither T} nor Ty. Applying the functor Exth(T2/M, —) to the
short exact sequence 0 — Kerh — T3 LN M — 0, we obtain an exact
sequence

Ext! (Ty/M, Ty) Ext (Ty/M, M) —— Ext?(T»/M, Ker h),

where the last term vanishes, because A is hereditary. Then ExtY (T%/M, h)
is surjective. It follows that there exists an A-module N and a commutative
diagram with exact rows

Ext’ (To/M,h)
_

0 — I 2> N —— T/M 0

L] !

0O — M - T, —— T,/M —— 0.

This implies that we have a short exact sequence

h
0 T [_g/] Ma&N T 0.

Because Exth (T2, T1) = 0, by hypothesis, this sequence splits. Therefore
M@ N =T, Ty By the unique decomposition theorem (I1.4.10), M is
isomorphic to one of the indecomposable modules T; or Tb, and this is a
contradiction.

The last statement follows from the fact that, because any nonzero ho-
momorphism 77 — 73 is a monomorphism or an epimorphism, it is an
isomorphism. (I

lgh']

3.4. Corollary. If B is a tilted algebra, then the quiver Qp of B 1is
acyclic.

Proof. Assume that B = End T4, where A is hereditary and Ty is a
tilting module. Let T7, Ty, T4 be three indecomposable direct summands of
T,and f:T{ — Ty, g : Ty — T4 be nonzero A-module homomorphisms. We
claim that we cannot have that f is a proper epimorphism and g is a proper
monomorphism. Indeed, if this is the case, then gf : T — T4 is nonzero
and is neither a monomorphism nor an epimorphism, and this contradicts
(3.3). By (I1.3.3) and (VI1.3.10)(a), any cycle in @p induces a cycle

=T, — T, 5T
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in the category mod A, where fi,..., f. are nonzero nonisomorphisms and
11,75, ...,T, are indecomposable direct summands of T'. By our preceding
claim, this cycle cannot involve an epimorphism followed by a monomor-
phism. Hence all the f; are either epimorphisms or monomorphisms. It
follows that f....f1 € EndT,, is an epimorphism or a monomorphism,
hence an isomorphism. Consequently, f; is an isomorphism and we get a
contradiction. O

We now show, by applying (VI.5.4), that the Auslander—Reiten quiver
of a tilted algebra has an acyclic component containing a finite section. To
apply (VI.5.4) to the case where A is hereditary, we need only observe that if
I(a) is an indecomposable injective A-module, then any direct summand of
I(a)/soc I(a) is injective; consequently, there exists an irreducible morphism
I(a) — J in mod A, with J indecomposable, if and only if J = I(b), and
there exists an arrow b — a in Q4.

3.5. Theorem. Let A be a hereditary algebra, T4 be a tilting mod-
ule, and B = EndTy. Then the class % of all B-modules of the form
Homu (T, I), where I is an indecomposable injective A-module, forms a sec-
tion lying in an acyclic component Cr of T'(mod B). Moreover, ¥ is iso-
morphic to QY, any predecessor of ¥ in Cr lies in Y(T'), and any proper
successor of ¥ in Cr lies in X(T).

Proof. We first show that there exists a quiver isomorphism between X
and the section in I'(mod A) consisting of the indecomposable injective A-
modules (which, by (1.3), is isomorphic to Q). Indeed, let Hom4 (T, I) —
Hom4 (T, I’) be an irreducible morphism in mod B, where I and I’ are inde-
composable injective A-modules. By (V1.5.4)(a), I’ is isomorphic to a direct
summand of I/soc I, so that there exists an irreducible morphism I — I’ in
mod A. Conversely, if there exists an irreducible morphism I — I’ in mod A,
then I’ is isomorphic to a direct summand of I /soc I so, again by (VI1.5.4)(a),
there exists an irreducible morphism Hom 4 (T, I) — Hom (7T, I’) in mod B.
Because, in this case, the equivalence Y(T') = 7 (T') yields an isomorphism
Irr(1, ') = Trr(Homa (T, I), Homa (T, I')), we are done.

This quiver isomorphism shows that > is a full connected subquiver of
I'(mod B) and that ¥ is acyclic. Let Cr denote the connected component
of I'(mod B) containing 3.

Because X consists of modules from Y(T), which is closed under prede-
cessors, then any predecessor of ¥ in Cr lies in Y(T'). On the other hand,
if there exists an irreducible morphism Y — X with Y in 3, but X not in
%, then, by (VI.5.4)(a), X & Y(T). Therefore X € X(T). Because X(T)
is closed under successors, this shows that any proper successor of ¥ lies
in X(T). This implies that X is convex in Cp; let Yy — -+ — YV} be a
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chain of irreducible morphisms, where Yy, Y; lie in X, then Y7 € Y(T) (be-
cause it precedes Y; € Y(T)) hence (VI.5.4)(a) gives that Y7 lies in X thus,
inductively, all the Y; lie in .

We next observe that any indecomposable projective B-module lies in
Y(T) and so cannot be a proper successor of ¥ in Cr. On the other hand,
any indecomposable injective B-module that belongs to Y(T') must lie on
3: indeed, if Hom (T, M) is indecomposable injective, let j : M — I be an
injective envelope in mod A, then Hom (7, j) : Homa (T, M) — Homy (T, I)
is a monomorphism (because j is), hence a section, so that Hom 4 (T, M) is
isomorphic to a direct summand of Hom 4 (7', I), thus lies on X. This shows
that no proper predecessor of ¥ in Cp is injective.

We now prove that 3 intersects each 7-orbit in Cr. We claim that if Y
belongs to ¥ and Z (in Cr) belongs to a T-orbit that is neighbouring to the
T-orbit of Y, then ¥ intersects the 7-orbit of Z. This claim and induction
clearly yield our statement. Thus, assume that there exist n € Z and an
irreducible morphism 7Y — Z or Z — 7"Y. We now show that we may
suppose n = 0. If this is not the case, and |n| is minimal, we have two cases:

(a) If n < 0, then Z € Y(T). If not, Z € X(T) implies that Z is
not projective hence there exists an irreducible morphism 7'y — 72
or 7Z — 7" H1Y respectively, and this contradicts minimality. Now there
exists a chain of irreducible morphisms Y — % — 771Y. Because V(7)) is
closed under predecessors and, by (VL.5.2), 7=1Y € X(T), then Z cannot be
a successor of 77'Y". Hence there exists an irreducible morphism Z — 77'Y’,
and so an irreducible morphism Y — Z.

(b) If n > 0, then either Z belongs to ¥ and we are done, or Z €
X(T). Indeed, if Z is in neither ¥ nor X (T'), then Z is not injective; hence
there exists an irreducible morphism 7"~'Y — 77'Z or 7712 — 7771Y,
respectively, and this contradicts minimality. If Z € X(T), then Z is a
neighbour of 7Y, for some n > 0, so is a predecessor of Y € Y(T'), and we
get a contradiction.

Consider thus the case n = 0, that is, there exists an irreducible mor-
phismY — Z or Z — Y. In the first case, it follows from (VI.5.4) that either
Z or 7Z lies in X. In the second case, we have necessarily that Z € Y(T).
Thus, either Z belongs to ¥ and we are done, or Z is not injective; hence
there exists an irreducible morphism ¥ — 771Z and the first case shows
that either Z or 7717 lies on X.

Finally, 3 intersects each 7-orbit exactly once; indeed, if both Y and
77tY, with ¢ > 1, belong to ¥, then 77tY € Y(T) implies 771Y € Y(T),
and this contradicts (VI.5.2). This completes the proof that ¥ is a section
in Cp. The acyclicity of Cr follows from (1.5). O

One may think of the component Cr of T'(mod B) as connecting the
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torsion-free part Y(T') with the torsion part X' (T) along the section X. For
this reason, the component Cp is called the connecting component of
I'(mod B) determined by T.

We may visualise the situation as in the following picture:

V(T) CrnY(T) CrnX(T) X(T)

_ sQy ~

If B is representation—finite, then Cr = I'(mod B), so that we have the
following easy corollary.

3.6. Corollary. Let B be a representation—finite tilted algebra. Then
the Auslander—Reiten quiver T'(mod B) is acyclic and contains a section.

d

3.7. Examples. (a) Let A be the path algebra of the quiver @

of type D5. Because A is a representation—finite hereditary algebra, its
Auslander—Reiten quiver is easily computed to be

where the indecomposable modules are represented by their dimension vec-
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tors. Consider the module T4 :@?:17}, where
0 1 1
T1:P(5):0001, T2:P(4):1111, T3:0111,
1 1
T4:I(5)=0011, T5=I(4)=0000.

It is easily checked that T' is a tilting A-module and that B = End T is
given by the quiver
O g o 2l o A o @ O
1 2 3 4 5

bound by afvd = 0. Computing the Auslander-Reiten quiver of B yields

Here, as in Chapter VI, we denote by ¢ the classes 7(T") and Y(7T") and
by the classes F(T') and X (T).
The section X consists of the indecomposable B-modules

Hom (T, I(1)) =01000, Hom(T,1(2))=01100, Homy (T, I(3))=01110,
Hom (T, 1(4))=01111, Hom(T,I(5))=11110.

We see that ¥ = Q9.
(b) Let A be the path algebra of the quiver @

wO——0o

[¢] [¢]
1 2

O o
4 5

of type Eg. Because A is a representation—finite hereditary algebra, its
Auslander—Reiten quiver is easily computed to be
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1 R
0010Q

/ i \
- 01100 00100 -00110
/ O\ L / \
11100 '.'.01210 00111.
\ R l \ /

11210 '01110 01211

. / \ 1 / \
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00110- . P 12321 P P 01100

\ /i\ /

01221 11211 12210

/ \l/ \
01111 S -'-12321 7- -:-11110-

N /l\ L

'.12211 ﬂ/;/g 11221H

1 1
Conblderlthe module TAI_ @1 1 T, whfre T, = 01110, T =00111
Bi=111700 i=g1110 5511110 To= 00000

It is easily checked that T is a tilting A-module and that B = End T is
given by the quiver
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The section ¥ consists of the indecomposable B-modules

0 0 1
Hom (T, I(1)) =0 (1) 0, Homa(T,1(2)) = 1 1 0, Homa(T,I(3)) = 1 1 0,

1 1 1

1 1 1 1 1 1
Hom (T, I(4)) =10, Homa(T,1(5)) =0, 0, Homa(T.1(6) =1 1.

0 0 1

We note that ¥ = Q9.

For examples of representation—infinite tilted algebras, we refer the reader
to the next section.

VIII1.4. Projectives and injectives in the
connecting component
We start with the following useful consequence of (VI1.5.3).

4.1. Proposition. Let A be a representation—infinite hereditary algebra,
Ty be a tilting module, B = EndT 4, and Cr be the connecting component
of T'(mod B) determined by T.

(a) Cr contains a projective module if and only if T has a preinjective
direct summand.

(b) Cr contains an injective module if and only if T has a postprojective
direct summand.

Proof. Let X be the class of all B-modules of the form Homa(T), ),
where T is an indecomposable injective A-module. It follows from (3.5) that
3 is a section lying in the component Cp.

(a) We assume that T has no preinjective direct summand and claim
that Cr contains no projective B-module. If Zp in Cr is an indecomposable
projective, then, by (3.5), it is a predecessor of .. Hence there exists ¢t > 0
such that 77tZ lies in X, that is, there exists an indecomposable injective
A-module I such that Z = 7'Hom(T,I). The assumption that T has
no preinjective direct summand and (2.13) imply that all preinjective A-
modules lie in

T(T) = {Ma|Extly (T, M) =0} = {M4|Homa(M,rT) = 0}

and hence so do all the almost split sequences with preinjective end terms.
Therefore, applying repeatedly (VI.5.3)(a) yields Z = 7'Homyu(T,1) =
Homu4 (T, 7¢I). Now, 7'I lies in the preinjective component and hence is
not a direct summand of T'. Therefore Z is not projective.
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Conversely, assume that 7" has a preinjective direct summand. Because
the preinjective component is acyclic, there exists a “last” preinjective di-
rect summand of 7', that is, a preinjective indecomposable direct summand
To such that no proper successor of Tj is a direct summand of 7T'. This im-
plies that all successors of Ty lie in 7 (T") (for, if M is a successor of Ty, then
M is a predecessor of no other indecomposable summand of T'; however,
0 # Ext4 (T, M) = DHom (M, 7T gives an indecomposable summand T}
of T such that there exists a path M — 777 — * — T1). Because Ty is prein-
jective, there exists t > 0 such that 77!Ty = I is injective. Hence, applying
(VL.5.3)(a) repeatedly, 7 *Homu (T, Ty) = Hom (T, 7 'Ty) = Hom (T, 1)
lies in 3. But then the projective B-module Homa (T, Tp) = 7'Hom4 (T, I)
belongs to Cr.

(b) We assume that T has no postprojective direct summand and claim
that Cp contains no injective B-module. If Zp in Cp is an indecomposable
injective, then, by (3.5), it is a successor of . Hence there exist ¢ > 0 and
an indecomposable injective A-module I such that Z = 7= 'Homa (T, I).
The assumption implies that no projective A-module is a direct summand
of T. By (VI1.4.9), Homy (T, I) is not injective. Hence ¢ > 1 and, if P
denotes the projective cover of soc I, we have Z = r=!*'ExtL (T, P). On
the other hand, it follows from the assumption that 7" has no postprojective
direct summand and (2.13) that all postprojective A-modules lie in F(T')
and hence so do all the almost split sequences with postprojective end terms.
Therefore, applying repeatedly (V1.5.3)(b) yields Z = 7—'T'Ext! (T, P) =
Ext (T, 771 P). Now 77'T1P is a postprojective A-module and hence
cannot be injective. Therefore, Z is not injective either; see (VI.5.8).

Conversely, assume that T" has a postprojective direct summand. If 7" has
actually a projective summand P, then if I denotes the injective envelope
of the top of P, we have, by (VI1.4.9), that Hom (7T, I) is injective and
lies on ¥ and hence in Cp. We may thus assume that 7" has no projective
direct summand. Because the postprojective component is acyclic, there
exists a “first” postprojective direct summand of T', that is, a postprojective
indecomposable direct summand Ty of T" such that no proper predecessor
of Ty is a direct summand of T'. This implies that all proper predecessors
of Ty lie in F(T'). Because Ty is postprojective, there exists ¢ > 0 such that
7Ty = P is indecomposable projective. Let I denote the injective envelope
of the top of P. Applying repeatedly (VI.5.3)(b) yields

7 "Homu (T, I) = 7" ExtYy (T, P) = Ext!y (T, 77" P) = Ext!y (T, 7Tp).

Thus, Extl(T,7Ty) belongs to Cr. By (VL 5.8), the right B-module
Ext! (T, 7Tp) is injective. This completes the proof. O

As a first corollary, we have the following.
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4.2. Corollary. Let A be a hereditary algebra, Ty be a tilting module,
B =End T4, and Cr be the connecting component of T'(mod B) determined
by T. Then Cp is a regular component if and only if T is a regular module.

Proof. Indeed, Cr is regular if and only if 7" has neither postprojective
nor preinjective direct summands. Because over a hereditary algebra A
all projective modules lie in the postprojective component and all injective
modules lie in the preinjective component, the statement follows. O

The existence of a regular tilting module over a (necessarily representa-
tion—infinite) hereditary algebra is far from obvious. In fact, as we shall
see, there exists no regular tilting module if @) 4 is a Euclidean quiver, while
there exist regular tilting modules over the path algebras of quivers with at
least three points that are neither Dynkin nor Euclidean.

4.3. Corollary. Let A be a hereditary algebra, T be a tilting A-module,
B =End T4, and Cr be the connecting component of T'(mod B) determined
by T.

(a) B is representation—finite if and only if Cr is both postprojective
and preinjective.

(b) If B is representation—finite, then T4 has both a postprojective and
a preinjective direct summand.

Proof. (a) Assume that Cr is postprojective, then ¥ has finitely many
predecessors by (2.5). Similarly, if Cr is preinjective, then ¥ has finitely
many successors. Thus, Cr is finite. By (IV.5.4), B is representation—finite.

Conversely, if B is representation—finite, then I'(mod B) = Cr is acyclic.
Every module Z in Cr can be written in the form Z = 7Y, for some
Y in ¥ and some ¢t € Z. Because B is representation—finite, there exist
an indecomposable projective module P and s > 0 such that 7°Y = P.
Therefore Z = 7¢=*P. This shows that Cr is a postprojective component.
Similarly, it is a preinjective component.

(b) This follows from (a) and (4.1). O

We have already pointed out that any tilted algebra of Dynkin type is re-
presentation—finite. We present in (4.8) and (5.8) examples showing that we
may obtain representation—finite tilted algebras by tilting representation—
infinite hereditary algebras. In fact, for tilted algebras of Fuclidean type,
the converse of (4.3)(b) is also true.

4.4. Proposition. Let Q be a Euclidean quiver, A = KQ, and T4 be
a tilting module having both a postprojective and a preinjective direct sum-
mand. Then B = End Ty is representation—finite.
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Proof. Because T is a splitting tilting module, it suffices to show that
each of 7(T) and F(T) contains only finitely many nonisomorphic inde-
composable modules.

Let Ty be a postprojective indecomposable direct summand of 7. We
claim that there exist only finitely many nonisomorphic indecomposable
modules M such that Hom(Tp, M) = 0. This clearly would imply that
F(T) has only finitely many nonisomorphic indecomposable modules. Be-
cause Ty is postprojective, there exist ¢ > 0 and a € Qg such that Ty =
77'P(a). Let M be an indecomposable A-module such that Hom 4 (Tp, M) =
0. Because A is hereditary, then (IV.2.15) yields

Homa(P(a), 7'M) = Hom (7'Tp, 7'M ) =2 Hom 4 (T, M) = 0.

This implies that (dim7¢M), = 0, that is, 7! M is annihilated by the idem-
potent e, corresponding to a € Q9. Then, 7¢M is zero or an indecompos-
able module over the path algebra of the quiver Q(®) obtained from Q by
deleting the point a and all the arrows having a as source or target. Be-
cause Q is a Buclidean quiver, Q(® is a disjoint union of Dynkin quivers;
hence its path algebra is representation—finite. This shows that there exist
only finitely many nonisomorphic indecomposable A-modules M such that
Hom 4 (Tp, M) = 0. Our claim follows.

Dually, let 77 be a preinjective indecomposable direct summand of T.
There exist s > 0 and b € Qo such that Ty = 7°1(b). Thus, if N is an
indecomposable A-module such that ExtY (71, N) = 0, then (IV.2.15) yields

Hom4 (7757 'N, I(b)) = Homa(r " 'N,77°T})
=~ Homa (7' N, T1) = DExt} (Ty, N) = 0,

and 77°"! N is zero or an indecomposable module over the path algebra of
the quiver Q® obtained from @ by deleting the point b and all the arrows
having b as source or target. Because, as earlier, Q) is a disjoint union
of Dynkin quivers, there exist only finitely many isomorphism classes of
indecomposable A-modules N such that Ext! (71, N) = 0 and consequently
of indecomposable modules in 7 (7). O

We note that if we tilt a representation—infinite hereditary algebra A
to a representation—finite algebra B by a tilting module T4, then each of
T(T) and F(T') contains only finitely many nonisomorphic indecomposable
A-modules, and consequently there is usually a big difference between the
categories mod A and mod B. At the other extreme, we now exhibit a
class of representation—infinite tilted algebras whose module categories are
as close as possible to that of the hereditary algebra from which we tilt.



330 CHAPTER VIII. TILTED ALGEBRAS

4.5. Theorem. Let A be a representation—infinite hereditary algebra, T
be a postprojective tilting A-module, and B = End Ty .

(a) T(T) contains all but finitely many nonisomorphic indecomposable
A-modules, and any indecomposable A-module not in T(T) is post-
projective.

(b) F(T) contains only finitely many nonisomorphic indecomposable A-
modules, and all of them are postprojective.

(¢) The connecting component Cr of TI'(mod B) determined by T is a
preinjective component Q(B) containing all indecomposable injective
modules and all indecomposable modules from X (T) but no projective
module.

(d) The images under the functor Homa (T, —) of the regqular components
from R(A) form a family R(B) of reqular components in T'(mod B).

(e) The images under the functor Homu (T, —) of the postprojective tor-
sion A-modules form a postprojective component P(B) containing
all indecomposable projective B-modules but no injective modules.

(f) T(mod B) is the disjoint union of P(B), R(B), and Q(B), and we
have

Homp(R(B),P(B))=0, Homp(Q(B),P(B))=0, Homp(Q(B),R(B))=0.

(g) pdZ <1 andidZ <1 for all regular modules Z and all but finitely
many nonisomorphic indecomposable B-modules Z in P(B)U Q(B).

Proof. (a) and (b). Because the postprojective component P(A) of the
quiver I'(mod A) is isomorphic to (—N)Q’, it contains infinitely many sec-
tions, all isomorphic to Q9. Because, on the other hand, T has finitely
many nonisomorphic indecomposable direct summands, P(A) contains a
section A such that the full translation subquiver Pa of P(A) consist-
ing of all successors of A contains no indecomposable direct summand
of T. Because T is postprojective, it follows from (2.5) and (2.13) that
T(T) = {M4 | Ext(T,M) = 0} = {Ma|Homa(M,7T) = 0} contains all
the modules from Pa, as well as all the regular and preinjective modules.
Moreover, all nontorsion, and in particular all torsion-free, modules must
precede A and hence are postprojective.

(¢)—(f). Let X be the section in Cr constructed as in (3.5). Because T'
has no preinjective direct summand, we know from (4.1) that Cr contains
no projective module. Further, by (3.5), any proper successor of 3 in Cp
lies in X(T'). Tt follows from (b) and the equivalence X(T') = F(T) that ¥
has only finitely many successors.

On the other hand, the translation subquiver Pa of P(A) lies in 7(T)
and, by (VIL.5.3), its image under the functor Homa (7T, —) is a full trans-
lation quiver closed under successors lying in some component P(B) of
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I'(mod B). For the same reason, the image of R(A) under the functor
Hom 4 (T, —) is a family of regular components of I'(mod B).

Observe that I'(mod B) is infinite, hence it has no finite component. Be-
cause (X(T),Y(T)) is a splitting torsion pair in mod B, we get that all the
indecomposable modules from X (T') belong to Cr, and P(B) is the image
under the functor Homa (T, —) of P(A) N7 (T). Clearly, P(B) is a post-
projective component containing all the indecomposable projective modules
(because P(A) N7 (T) contains all the indecomposable direct summands of
T). Also, Q(B) = Cr is a preinjective component containing all the in-
decomposable injective B-modules, and I'(mod B) is the disjoint union of
P(B), Q(B), and the family R(B) of regular components. Finally, applying
(2.5), (2.13) and using that (X(T"), Y(T)) is a torsion pair, we obtain (f).

(g) Because all the indecomposable projective B-modules belong to P(B)
(thus have only finitely many nonisomorphic predecessors), whereas all the
indecomposable injective B-modules belong to Q(B) (thus have only finitely
many nonisomorphic successors), we have

Homp(DB,7Z) =0 and Homp(r7'Z,B)=0
for all but finitely many nonisomorphic indecomposable B-modules Z in
P(B) U Q(B) and for all regular modules Z. We then apply (IV.2.7). O

Under the assumptions and with the notation of Theorem 4.5, we may
visualise the situation in the following picture:

R(A)

Q(4)

I'(mod A)

Exth (T,-)

I'(mod B)

Q(B)=Cr
R(B)

Here, and as usual, we denote by ¢ » the classes 7(T") and Y(T") and by
the classes F(T) and X (T).

As can be seen, if B is not hereditary itself, its module category is very
close to that of a hereditary algebra. Indeed, with the preceding nota-
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tion, the functor Hom4 (T, —) induces an equivalence between the addi-
tive full subcategories of mod A generated by the indecomposables from
PANT(T), R(A), and Q(A), and the additive full subcategories of mod B
generated by the indecomposables from P(B), R(B), and Q(B) N Y(T),
respectively, and all but finitely many nonisomorphic indecomposable A-
modules or B-modules, respectively, belong to one of these subcategories.
Also, gl.dimB < 2 and pdZ < 1,id Z < 1 for all but finitely many non-
isomorphic indecomposable B-modules Z in P(B) U Q(B) and for all reg-
ular modules Z. One may then think of I'(mod B) as “concealing” some
hereditary full subcategory involving all but finitely many nonisomorphic
indecomposable B-modules. This explains the following terminology.

4.6. Definition. Let ) be a finite, connected, and acyclic quiver that is
not a Dynkin quiver. An algebra B is called concealed of type Q if there
exists a postprojective tilting module T' over the path algebra A = K@ such
that B =EndTy.

Clearly, the statement that @ is not a Dynkin quiver just means that A
is representation—infinite.

We quote the analogue of (4.5) for the tilted algebras arising from prein-
jective tilting modules. Its proof is similar to that of (4.5) and therefore is
omitted.

4.7. Theorem. Let A be a representation—infinite hereditary algebra, T
be a preinjective tilting A-module, and B = End T 4.

(a) F(T) contains all but finitely many nonisomorphic indecomposable
A-modules and any indecomposable A-module not in F(T) is prein-
jective.

(b) T(T) contains finitely many nonisomorphic indecomposable A-mo-
dules and all of them are preinjective.

(¢) The connecting component Cr of I'(mod B) determined by T is a
postprojective component P(B) containing all indecomposable pro-
jective modules and all indecomposable modules from Y(T) but no
injective module.

(d) The images under the functor ExtY (T, —) of the regular components
from R(A) form a family R(B) of reqular components in T'(mod B).

(e) The images under the functor Extl (T, —) of the preinjective torsion-
free A-modules form a preinjective component Q(B) containing all

indecomposable injective B-modules but no projective modules.
(f) T(mod B) is the disjoint union of P(B), R(B), and Q(B) and

Homp(R(B),P(B))=0, Homp(Q(B),P(B))=0, Homp(Q(B), R(B))=0.

(g) pdZ <1 and idZ < 1, for all reqgular modules Z and all but finitely
many nonisomorphic indecomposable modules Z in P(B) U Q(B). O
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Under the assumptions and with the notation of Theorem 4.7, we may
visualise the situation as in the following picture:

R(A)

P(A)

I'(mod A)

I'(mod B)

P(B)=Cr

Q(B)
R(B)

The functor ExtY (T, —) induces an equivalence between the additive
full subcategories of mod A generated by the indecomposable modules from
P(A), R(A), and Q(A)NF(T) and the additive full subcategories of mod B
generated by the indecomposables from P(B) N X(T), R(B), and Q(B),
respectively. Thus, as before, one may think of mod B as “concealing” a
hereditary full subcategory involving all but finitely many nonisomorphic
indecomposable modules. In fact, one can prove (see Exercise 6.9) that, for
a representation—infinite hereditary algebra A, an algebra B is of the form
End T4 for some postprojective tilting A-module T' if and only if

B~ EndT},
for some preinjective tilting A-module 7”. Thus the class of concealed alge-

bras coincides with the class obtained from representation—infinite heredi-
tary algebras by preinjective tilting modules.

4.8. Examples. (a) Let Abe the path algebra of the Euclidean quiver @ :
3

.,
g

3

o
N



334 CHAPTER VIII. TILTED ALGEBRAS

of type :&3. Consider the indecomposable A-modules:

0 0
Tl = P(l) = K<O>O T2 = K‘,1< :>1K
K
2N N
T3 = K\O /K Ty=1I(4)= O\O/K

We see that T7 = P(1) is postprojective, whereas Ty = I(4) is preinjective.
We claim that Ty and T3 are regular. Indeed, consider the simple A-module
S(2); it has a minimal projective presentation
0 — P(1) 2 P(2) — S(2) — 0.
Hence, by (IV.2.4), 75(2) is the kernel of vp : vP(1) — vP(2). Because
vP(1) 2 I(1) and vP(2) = I(2), we get 75(2) = Ty. Similarly, 7715(2) =
Ty and 7715(3) = T3 =2 75(3). Thus there exist cycles
Ty —»%x— S2) -+ —>Thand T3 — x — S(3) = x — Ty

in mod A. In particular, 75 and T lie in neither P(A) nor Q(A). This
shows our claim. Moreover, it is easy to check that 71(4) = o 1 1.

Let Ta = @, Ti. Then (IV.2.14) yields the isomorphisms

Ext} (T, T) = DHom (T, 7T) = DHom4(T, S(2) @ S(3) @ 71(4)) = 0,
and consequently T is a tilting module. Because @ is Euclidean and T

contains both a postprojective and a preinjective direct summand, it follows
from (4.4) that B = End T4 is representation—finite. In fact, B is given by

the quiver
2
o
RN
10 04
s O%

3

bound by a8 =0, v6 = 0. The Auslander-Reiten quiver I'(mod B) is given
by
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We note that the indecomposable modules 110, 020, 030, 0 1 1 form a
section X in I'(mod B) isomorphic to Q°P.
2 3

(b) Let A be the path algebra of the quiver @ : b— 3 o.
Then the beginning of the postprojective component P(A) of I'(mod B) is
of the form

221 463 e
2Ny 42\~
110 342 .
SN SN S
00 010 332 e
and the end of the preinjective component Q(A) of F(mod A) is of the form

//\\//\\//
\/\/

Consider the module Ty = S(1) @ I(1) @ I1(3). Then (IV.2.14) yields
Exty (T, T) = DHom4 (T, 7T) = DHom (T, 7I(1) & 71(3)) = 0,

and hence T is a tilting A-module. The tilted algebra B = End T4 is given
by the quiver

1 5 2 @ 3
O¢——O O

bound by ay =0, §y = 0. Because the he?editary algebra given by the full
subquiver with points 2 and 3 equals the quotient of B by the two-sided
ideal generated by the idempotent e; corresponding to the point 1, and is
representation—infinite (it is indeed isomorphic to the Kronecker algebra),
we conclude from (VII.2.2) that B is also representation—infinite. This shows
that in (4.4) the restriction that A be the path algebra of a Euclidean quiver
is essential.

(c¢) Let A be the path algebra of the Kronecker quiver é:% Then
P(A) and Q(A) are respectively of the forms

P(2) 7 1P(2) T72P(2)

PO N 7 N N

P(1) T71P(1) T72P(1)

721(1) TI(1) I(1)

w: g N 7N 7N

721(2) T1(2) 1(2)
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If M is an indecomposable A-module not isomorphic to the simple in-
jective module S(2) = I(2), then Homa(P(1), M) # 0. Similarly, if N
is an indecomposable A-module not isomorphic to the simple projective
module S(1) = P(1), then Homa(P(2), N) # 0. This first implies that
there exists no tilting module T' = T} & 15 such that T is indecompos-
able postprojective and 75 is indecomposable preinjective. Indeed, assum-
ing that this is the case, then there exist ¢,s > 0 and two indecompos-
able modules: P projective and I injective, such that 77 = 77!P and

= 75]. In view of (IV.2.14) and (IV.2.15), this gives 0 = DExt} (Ts, T1) =
Hom(Ty, 7T%) = Homa (77t P, 7571I) = Hom 4 (P, 7t+1I), which contra-
dicts the preceding remarks. Consequently, any tilted algebra obtained from
A is representation—infinite (by (4.3)(b)).

The same remarks also show that if a € {1,2} and s >0, ¢t > 1, then

Homa (7 *P(a), 7 *"'P(a)) = Homa(P(a), 7 "P(a)) # 0;

therefore, if T'= T} & T5 is a postprojective tilting module, with T} and T3
indecomposable, then T and T, belong to distinct 7-orbits. Assume thus
that a # b and s,t > 0 are such that T} = 775P(a) and Th = 757 'P(b).
Then (IV.2.14) and (IV.2.15) yield the isomorphisms

DExthY (Ty, T1) = Homa(Ty, 7Te) = Homa (1 *P(a), 7 * "1 P(b))
=~ Homa (P(a), 71 P(b))

and this vanishes if and only if a =2, b =1, and ¢ < 1, that is, if and only
if Ty = rsP(1) @7 P(2), or Ta = 775P(2) ® 7 *"1P(1) for some s > 0.

Similarly, if T is a preinjective tilting module, then T' = 751(1) @& 7°1(2)
or T = 75 [(1) ® 7°1(2), for some s > 0. Finally, we prove in the second
volume of this book that, for any regular indecomposable A-module R, we
have Ext! (R, R) # 0 and consequently R cannot be a summand of any
tilting module. This shows that we have obtained all the possible tilting
modules. As a consequence, any tilted algebra from A is concealed and
isomorphic to A.

(d) Let A be the path algebra of the Euclidean quiver

S
SN

20

10

of type Ds. The beginning of the postprojective component P(A) is of the
form
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It is easily verified that the postprojective A-module

0 0 0 0 1 0 1 1 1 0 0 1
T =
A O111 691110 691211 691331 691221 691221
is a tilting A-module. Therefore B = End T} is a concealed algebra of type

Ds. It is given by the quiver

bound by af = «4d. The postprojective component P(B) of I'(mod B) is
the image of P(A) N7 (T) under the action of the functor Hom4 (T, —) and
is of the form

1ho 0% 211
AN N
1.0 1ot et 0% 8t L
000\ /110\110/231\121/242\
1% 1% 280, 1t 22t
AN 1/ 21\0 0/231\221/
) ¥ 1% 12}
whereas the preinjective component Q(B) of I'(mod B) equals the connect-

ing component Cp determined by T' and is of the form
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0
1

We note that the indecomposable modules

(=)

2 2 0
) 117 327 32701

1
2 1 1 form a section ¥ = Q°P in I'(mod B).

VIIL.5. The criterion of Liu and Skowronski

To decide whether a given algebra is tilted, we need some intrinsic char-
acterisation. The objective of this section is to give such a characterisation,
obtained independently by Liu [111] and Skowronski [156]. This result uses
the concept of section. There exist many other characterisations, using
related concepts such as that of slice (see, for instance, [145]). But the cri-
terion of Liu and Skowronski is very useful for practical applications. Our
presentation here follows essentially that in [158].

Let A be an algebra. We recall that an A-module M is said to be faithful
if its right annihilator Zpy = {a € A | Ma = 0} vanishes. We showed in
(VI.2.2) that an A-module M is faithful if and only if A 4 is cogenerated by
My, or equivalently, if and only if D(A)4 is generated by M4.

Let A be an algebra. We recall from (VI.2.2) that any tilting A-module
is faithful and from (VI.6.3) that any Gen—minimal faithful A-module is a
partial tilting module. We now give an alternate sufficient condition for a
faithful A-module to be a partial tilting module.

5.1. Lemma. Let A be an algebra and M be a faithful A-module.

(a) If Homa(M,7M) =0, then pd M < 1.
(b) If Homa(r—'M, M) = 0, then id M < 1.

Proof. We only prove (a); the proof of (b) is similar. Because the
module M is faithful, there exist ¢+ > 1 and an epimorphism M?! — DA,
by (VI.2.2). Applying the functor Homy(—,7M) yields a monomorphism
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Hom4 (DA, 7M) — Homa(M,7M)". Hence Homa(DA,7M) = 0 so, by
(IV.2.7), we get pd M < 1. O

Thus, if M is a faithful module such that Homu(M,7M) = 0, it is
a partial tilting module (because pd M < 1 and there are isomorphisms
ExtY (M, M) = DHoms (M, 7M) = 0, by (IV.2.14)).

We now need the following lemma, relating the Auslander—Reiten trans-
lates of the same module in two module categories.

5.2. Lemma. Let A be an algebra, T be a two-sided ideal of A, and
B = A/I. If M is a B-module, then the Auslander—Reiten translate g M
of M in mod B is a submodule of the Auslander—Reiten translate TAM of
M in mod A.

Proof. For any module N4, we set
tz(N) ={n € N; nZ =0}.

It is easy to see that t7(IV) C N is a B-module and, for each homomorphism
f € Homu (N, L), the restriction tz(f) : tz(N) — tz(L) of f to tz(N) is
a homomorphism of B-modules. Obviously, we have defined a covariant
functor t7 : mod A — mod B.

Assume now that Mp is a B-module. Without loss of generality, we may
assume that M4 is indecomposable. First we note that if M is projective
when viewed as an A-module, then Mp is projective. Indeed, if g : X —
Y is an epimorphism of B-modules, then it is an A-module epimorphism
and Hom p(M,g) : Hom p(M, X) — Hom p(M,Y) is surjective, because
Hom (M, Z) = Hom 4 (M, Z) for any B-module Z.

Assume now that Mp is not projective. Then M4 is not projective, and
there exists an almost split sequence 0 — 74aM -5 E 25 M — 0 in
mod A. Applying the functor t7 yields an exact sequence in mod B

tz(f)

0 — tr(raM) —Z ¢ (p) 29

M — 0,

where tz(M) = M, because M is a B-module. The homomorphism tz(g) is
right almost split in mod B. Indeed, it is clearly not a retraction and, if Xp
is a B-module and v : Xp — Mp is not a retraction, then u : X4 — My
viewed as a homomorphism of A-modules is not a retraction. Because g is
right almost split in mod A, u lifts to a homomorphism v : X4 — F4 in
mod A such that u = gv. It is clear that Imv C tz(E), because XZ = 0.
Consequently, u lifts to a homomorphism v : Xp — tz(F) in mod B such
that u = tz(g)v, and we are done.

Because Mp is not projective, there exists an almost split sequence

0 —mMIE Lm0
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in mod B. Because tz(g) is right almost split in mod B and ¢’ is not a
retraction, there exists a homomorphism h : E' — tz(E) of B-modules
such that tz(g)h = ¢’. It follows that h is a section because ¢’ is minimal
right almost split. Consequently, we get a commutative diagram with exact
rows

0 — 7mM f—/> E —2 . M — 0
1 Y

0 —tr(raM) —Z sty 29 ) — 0
I | 5

0 — 7aM N E —9 M — 0

where the vertical homomorphisms are injective. As a consequence, Tg M is
isomorphic to a submodule of tz(74M) and thus to a submodule of 74 M.
O

The following lemma, obtained in [157], is crucial in the sequel.

5.3. Lemma. Let A be an algebra and n be the rank of the group Ko(A).
Assume that an A-module M is a direct sum of m pairwise nonisomorphic
indecomposable modules and Homu (M, 7M) = 0. Then m < n.

Proof. Let Zps be the right annihilator of M, that is, Zpy = {a € A |
Ma = 0}. Then Zy; is a two-sided ideal of A. Thus, if B = A/Zy, we
have, by (5.2), that 75 M is a submodule of 74 M = 7M. The assumption
that Homa (M, 7M) = 0 implies that Homp(M,75M) = 0. Because M
is a faithful B-module, we deduce from (5.1)(a) that M is a partial tilting
B-module. By Bongartz’s lemma (VI.2.4), there exists a B-module N such
that M @ N is a tilting B-module. By (VI.4.4), m < rk Kx(B). On the
other hand, clearly, rk Ko(B) < n. O

To motivate the assumptions of the following lemma, we recall that, if
Y is a section in a component of the Auslander—Reiten quiver I'(mod B)
of an algebra B, say, then, by (1.4), if Ug belongs to ¥ and there exists
an irreducible homomorphism V' — U, then Vg belongs to either ¥ or
7Y = {7W | W on X}; similarly, if there exists an irreducible morphism
U — V, then V belongs to either ¥ or 77!¥ = {#=1W | W on X}.

5.4. Lemma. Let B be an algebra, C be a component of T'(mod B), and
3 be a finite and acyclic connected full subquiver of C.

(a) Assume that if U belongs to X and there exists an irreducible mor-
phism V. — U, then V belongs to either ¥ or 3. Then any homo-
morphism f : Y — U between indecomposables U on X and Y not
on X must factor through a direct sum of modules from 1.
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(b) Assume that if U belongs to ¥ and there exists an irreducible mor-
phism U — V, then V belongs to either ¥ or 7—'%. Then any
homomorphism g : U — X between indecomposables U on ¥ and X
not on ¥ must factor through a direct sum of modules from 771X,

Proof. We only prove (a); the proof of (b) is similar. Assume that
f Y — U is a homomorphism between indecomposables U on ¥ and
Y not on 3. Because X is finite and acyclic, we prove the statement by
induction on an admissible sequence of sources in X (see (VIL.5)). Assume
first that U is a source in X, and consider the right minimal almost split
morphism u : E — U. Then every indecomposable summand of £ belongs
to 73. Because f factors through u, we are done. Assume that U is not a
source, and consider the right minimal almost split morphism v : £ — U.
Then E = E' & E”, where all the indecomposable summands of E’ belong
to 7Y, whereas all the indecomposable direct summands of E” belong to
3. and are predecessors of U in the admissible sequence. Then f factors
through

u=[uu"]:EeFE —— U

Because the homomorphism Y — E” thus obtained factors through a direct
sum of modules from 73, by the induction hypothesis, the proof is complete.
U

5.5. Lemma. Let B be an algebra, C be a component of T'(mod B) con-
taining a finite section X, and Tp be the direct sum of all modules on .
Then Homp (T, 7T) = 0 if and only if Homp(7 1T, T) = 0.

Proof. Let p : P — 77T be a projective cover. Applying (5.4)(a) to
7713, we get that p factors through a direct sum of modules from . Con-
sequently, there exist ¢ > 1 and an epimorphism f : 7% — 71T Similarly,
considering the injective envelope of 771", we find s > 1 and a monomorphism
g: 17T —=T%.

Assume that Hompg(T,7T) # 0 and let h : T — 7T be a nonzero ho-
momorphism of B-modules. Applying (5.4)(b) to X, we get » > 1 and a
factorisation h = hohy, where hy : T — (77" and hy : (t71T)" — 7T.
Then the composed homomorphism ghy : (771T)" — T* is nonzero, and
consequently Homp (77T, T) # 0. Similarly, Hompg (71T, T) # 0 implies
Homp(T,7T) # 0. O

Now we are able to prove an important criterion of Liu and Skowronski,
which characterises the tilted algebras as being those algebras B having a
faithful section ¥ such that Homp(U,7V) = 0 for all modules U and V
from X.
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5.6. Theorem. An algebra B is a tilted algebra if and only if the quiver
I(mod B) contains a component C with a faithful section ¥ such that
Homp(U,7V) = 0 for all modules U, V' from X. Moreover, in this case, the
direct sum Tg of all modules on X is a tilting B-module with A = EndTp
hereditary, and C is the connecting component of T'(mod B) determined by
the tilting A-module T = D(4T).

Proof. Let B be a tilted algebra; then there exist a hereditary algebra
A and a tilting A-module T such that B = End T4. By (3.5), the class ¥ of
all modules of the form Hom (T, I), where I is indecomposable injective,
forms a section in the connecting component Cr of I'(mod B) determined
by T.

By (VI.3.3), there is an isomorphism Homu (T, DA) = (DT)p of B-
modules. Moreover, the B-module

HOInA(T, DA) = D(BTA XA A) = (DT)B

generates DB. Indeed, because gT is a tilting module, there exist m > 1
and a monomorphism p B — pT™. Hence we get an epimorphism (DT)} —
DB.

Because the module (DT') g = Hom 4 (T, DA) is the direct sum of modules
from X, we get from (VI.2.2) that ¥ is faithful. Finally, by the connecting
lemma (VI.4.9), the module 7~ 'Homy (T, DA) = Ext!(T, A) belongs to
X(T), whereas Homu (T, DA) € Y(T'). Thus, if U, V are two modules from
¥, we have Homp (771U, V) = 0. By (5.5), Hompg(U,7V) = 0. This shows
the necessity.

For the sufficiency, let B be an algebra such that I'(mod B) has a com-
ponent C containing a faithful section ¥ such that Homp(U, 7V) = 0 for all
U,V from X. By (5.3) and our assumption, X is finite. Let Tz be the direct
sum of all modules on ¥. We claim that Ty is a tilting module such that
A = EndTg is hereditary. Then it follows from (VI1.3.3) and (VI.4.4) that
T% = D(4T) is a tilting A-module such that the canonical homomorphism

¢: B — EndT},

defined for b € B, t € T and f € T* by »(b)(f)(t) = f(tb), is an isomor-
phism. Moreover, there are isomorphisms

Hom(T*, DA) = Hom (DT, DA) = Homu (A, T) = T

of right B-modules, and hence C equals the component Cr~ of I'(mod B)
determined by T and ¥ is the section constructed as in (3.5).

By hypothesis, T is a faithful module with Homp (T, 7T) = 0. By (5.5),
Homp (7T, T) = 0. By (5.1), we have pd Tg < 1 andid T < 1, so that T
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is a partial tilting B-module. Let f1, ..., fq be a K-basis of Homp(B,T) &
Ty, then consider the monomorphism f = [f1,..., f4] : B — T9. We have
a short exact sequence

0—B-Lmd 9y o,

where U = Coker f. Because pdTp < 1 and Bp is projective, we have
pdUp < 1, so that pd (T @ U) < 1. We claim that

Extp(T @ U,ToU)=0.

Applying the functor Hompg(—,T) to the preceding short exact sequence
yields an exact sequence

Homp(T%,T) Homp(f,1)

Homp(B,T) — Exth(U, T) — Exth(T?% T) = 0,
because Exth(T,T) = DHomp(T,7T) = 0. Because, by definition of f,
the homomorphism Hompg(f,T) is surjective, ExtLb(U,T) = 0. Applying
Homp (U, —) to the same short exact sequence yields

0 = Exth (U, T%) — Exth(U,U) — Ext%(U, B) = 0,

because pdU < 1. Hence Exth(U,U) = 0. Finally, applying Hompg (T, —)
yields
0 = Exth(T,T%) — Exth(T,U) — Ext%(T, B) = 0,

because pd T < 1. Hence Exth(7,U) = 0. This completes the proof of our
claim and shows that T' @ U is a tilting B-module.

We now show that U € addT. If this is not the case, let U’ be an
indecomposable direct summand of U that is not in add7T. Then there
exists an epimorphism 7% — U — U’, and therefore Hompg(T,U’) # 0.
By (5.4)(b), we have Homp (77T, U’) # 0. Because id T < 1, we have, by
(IV.2.14),

Extp(U’,T) = DHomp(r 'T,U’) # 0,

a contradiction to ExtL (U, T) = 0.

This shows that T is a tilting module. It remains to show that A =
End T is hereditary. Let P4 be indecomposable projective and f : M — P
be a monomorphism with M indecomposable. It suffices to show that M4
is projective. The tilting module Tp determines a torsion pair (7 (1), F(T))
in mod B and another (X (T), Y(T)) in mod A. Because P4 € Y(T'), which
is torsion-free, we have M4 € Y(T'). That is, there exists a homomorphism
g:U — VinmodB, with U,V € T(T), Homp(T,g) = f, Homp(T,U) =
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My, Homp(T,V) = Pa, and V lying on X. Because M # 0, there exists
an indecomposable projective A-module P/ and a nonzero homomorphism
f': P — M. Then there exists a homomorphism ¢’ : V/ — U in mod B,
such that V' lies on ¥, Homp(T,V’) = P} and Homp(T,¢') = f’. Because
f is a monomorphism we have ff’ # 0 and hence gg’ # 0.

We prove that U belongs to X. Assume, to the contrary, that U does not
belong to ¥. It then follows from (5.4)(a) that there exist homomorphisms
of B-modules ¢t : W — V and h : U — W such that g = th and W is a
direct sum of modules of 7. Because thg' = gg’ # 0, there is a nonzero
homomorphism hg’ : V! — W, and consequently Hompg (T, 7T) # 0. This
is a contradiction to our assumption on ¥. Consequently, U belongs to X
and therefore the A-module M4 = Homp(T,U) is projective. This finishes
the proof. O

5.7. Examples. (a) Let B be the path K-algebra of the quiver

V\
‘\/

bound by two relations a8 = vd and €6 = 0 (see Example 1.3 (b)). Then
the Auslander-Reiten quiver I'(mod B) of B is given by

where the indecomposable modules are represented by their dimension vec-
tors. We consider the illustrated section X of I'(mod B). It is easily seen that
any indecomposable projective B-module is a submodule of a module lying
on X; hence, by (VII1.2.2), ¥ is a faithful section. Clearly, Homg(U,7V) =0
for all U, V on X. Therefore, applying (5.6), we get that B is a tilted al-
gebra, and in fact that if T denotes the direct sum of the modules on ¥,
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then A = End T's is hereditary and T* = D(4T) is a tilting A-module such
that B = EndT%. A straightforward calculation shows that A is given by
the Dynkin quiver:

40
\ 1 2 3
/’o%o%o
50

of type Ds. We now compute the module T7; using the procedure explained
in (VI.6.9). It is known that the points of ¥ are of the form Hom 4 (T*, I(a)),
where a is a point in the quiver of A. Thus

1 0
HMQMTﬁHU)zllg HmmMTaHm)zolg
0 1
Hmdeﬁﬂw)zol? HmmMTaH@)zllé
1
Homy(T*,1(5)) = 0 , 0
0

Thus, if one writes
Th=TreTy®T; &T; & TF,
with 17, T35, Ty, Ty, T¢ indecomposable, one gets
1 1 1

Ty=-100, Ty=_100, Tf=_111,
P=,100 5 00 i=,

1 0
= R T* 1
0 000 0 00
(b) Let B be given by the quiver

1 o 2
o%o%o

bound by two zero relations v5 = 0 and on = 0. Constructing the Auslan-
der-Reiten quiver I'(mod B) of B as usual yields



CHAPTER VIII. TILTED ALGEBRAS

346

coco o

coco ~

o - - -
- o - - - o
oo o o-o oo o o-o o
o o o o
o o o o
/. ) \_ ) /. )} \_ ) /. i \_ ) /. . \_ ) /. )
o - o SRR - - oo - o - o - o
HHH O —0H0 O —=HHO0 A —3-H00 A —>~H-H0 4 —0-H0 0 —>-H-H0 0 —>-H00 0 —000 O

(=] (=] (=] (=] (=] (=] (=] (=] (=]
(=] (=] (=] (=] (=] (=] (=] (=] (=]
NN N LN N
o - o o' -
- -—=Oo O O ~ coco o (=]
(=] (=] (=] (=] (=]
(=] (=] (=] (=] (=]
NN N SN S
o~ a o - (=T ]
e O =0 O coco ~ cococ o
(=] (=] (=] (=]
(=] (=] (=] (=]
NN LN S
[ =} - O (=T ]
e O coco o coco ~
(=] (=] (=]
(=] (=] (=]
NS
- O
co=HO
(=]
(=]

—
o o

co o
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We consider the illustrated section ¥ of I'(mod B). Any indecomposable
projective B-module is a submodule of a module on 3, so ¥ is faithful.

Because Hompg (U, 7V) = 0 for all modules U, V on X, we have, by (5.6),
that B is a representation—finite tilted algebra of type X°P:

|

Observe that 3°P is neither a Dynkin nor a Euclidean quiver.

[©] ] [0}

o O [0} e]

(¢) Let B’ be given by the quiver

ot O
-3

bound by v8 = 0, o = 0, and e = 0. Thus B’ is a quotient of the algebra
B of Example (b). Then I'(mod B’) is the quiver

11 01
00 01
00 01
/ SN
10 01 00 01 00
00 00 11 01 01
00 00 10 00 01
SoN S N N
00 01 01 01 00 00 00
10 — 11 — 01 — 12 — 11 — 01 00
00 10 10 10 00 00 01
NSNS
00 01 00
00 11 01
10 00 10

which contains no section. Therefore B’ is not tilted. This shows that a
quotient algebra of a tilted algebra is not necessarily tilted.

(d) Let B be given by the quiver

bound by ca = 0, 8 = 0, ny = 0, and n0 = 0. Then B is the gluing of
three hereditary algebras: Bj given by the full subquiver with points 1 and
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2, By given by the full subquiver with points 3 and 4, and Bs given by the
full subquiver with points 2, 4, 5, 6, and 7.

One can show that if Mis an indecomposable B-module, then it is a
module over one of the algebras By, Bs and Bs (see Exercise 14). Because
the radical of P(5)p is equal to S(2) ® S(4), S(2) is also a simple injective
Bj-module, whereas S(4) is a simple injective Ba-module. We infer that
the component C of I'(mod B) containing P(5) is a gluing of the prein-
jective components of I'(mod By) and I'(mod Bg) with the postprojective
component of I'(mod Bs), that is, C is of the form

. .TI(1) 1(1)

\\rsw)/ 7 \\S@) T 15(2) T725(2)
\ /3(6\ /1P<6>
AN TN //
P(5) 7=1P(3) T P(5)
N N \l\
/ P(7) T LP(7)
75(4) S(4) T1S(4) T725(4)
7
...7I(3) 1(3)

The modules I(1), S(2), 1(3), S(4), P(5), P(6), and P(7) form a faithful
section X in C and Hompg(U,7V) = 0 for all U, V on 3. By (5.6), the
algebra B is tilted (and clearly representation—infinite).

(e) Let B be given by the quiver

bound by the commutativity relations fa = v = pA = nv.

Denote by C the hereditary algebra given by the full subquiver with
points 1, 2, 3, 4, and 5 and by D the hereditary algebra given by the full
subquiver with points 2, 3, 4, 5, and 6.

Finally, let B’ denote the algebra with the same quiver as B, bound by
fa =086y =pur=nv=20.
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Clearly, B’ is a quotient of B and one can show that any indecomposable
B’-module is a C-module or a D-module and that any indecomposable B-
module not isomorphic to P(6) = I(1) is a B’-module (see Exercise 15). By
(IV.3.11), we have an almost split sequence of the form

0 — rad P(6) — rad P(6)/S(1) & P(6) — P(6)/S(1) — 0
in the category mod B. There is a decomposition
rad P(6)/S(1) = S(2) @ S(3) ® S(4) ® S(5),
rad P(6) is the indecomposable injective C-module I(1)c, whereas
P(6)/5(1) is the indecomposable projective D-module P(6)p. Therefore,
the component C of I'(mod B) containing P(6) = I(1) is the following gluing

of the preinjective component of T'(mod C') with the postprojective compo-
nent of I'(mod D):

e 5(2) S(2) 75 5(2)
/TCS(N /s‘(g\ %lsw)
\,x\‘ AN ANy e \_1 //
Tcl(l) 1(1)c — P(6)B — P(6)p 7~ P(6)p
7 NI
\TOS(V \7(4)/ %15(4/
¢ S(5) 5(5) 5 S(5)

where 7¢ and 7p denote, respectively, the Auslander—Reiten translations in
mod C' and mod D. The modules S(2), S(3), P(6)p, S(4), S(5), P(6)p form
a section X in C. The indecomposable projective B-modules are submodules
of P(6)p and so ¥ is faithful. Because Homp(U,7V) = 0 for all U, V on
3., we deduce that B is tilted of type

N

We observe that I'(mod B’) is obtained from I'(mod B) by removing P(6)p
and all the arrows with source or target in P(6) Thus, I'(mod B’) has a
component C’ obtained from C by removing P(6) 5. Moreover, the modules
IM)e=1(1)p, S(2), S(3), S(4), S(5), and P(6)p = P(6)p form a faithful
section ¥’ in C’ such that Homp/ (U', 75/ V') = 0 for all U’, V' on X'
Therefore, B’ is a tilted algebra of type ¥/°P = Qp.
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VIII.6. Exercises

1. Construct ZX if ¥ is one of the following quivers:
o

(a) |
O O 0] o)
o
(b) / \
o O 0] 0]
2. Let C be a component of the Auslander—Reiten quiver of an algebra
B, having a faithful section ¥. Show that:
(a) if ¥ has finitely many predecessors, then C is postprojective contain-
ing all projective modules and B is a tilted algebra.

(b) if ¥ has finitely many successors, then C is preinjective containing
all injective modules and B is a tilted algebra.

3. Let A be a representation—finite algebra and P be an indecompos-
able projective-injective A-module. Show that P belongs to any section in
I'(mod A).

4. Construct the postprojective and the preinjective component of the
Auslander—Reiten quiver of each of the following algebras A:

(a) A is given by the quiver

o<——oO

(b) A is given by the quiver

(¢) A is given by the quiver
o=
(d) A is given by the quiver
of——o+«—o0

(e) A is given by the quiver
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O

O

T

AV

[e]

[¢]

VA

bound by three zero relations a3 = 0, v = 0, de = 0.
(f) A is given by the quiver

O
e]

d
\

O

INAT

]

O
[©]

O

AVA

N

le]

y

o]
bound by five zero relations cp = 0, vno = 0, de = A, ve = 0,
af =0.

5. Let A be the Kronecker algebra, and for A € K, let Hi(\) be the
indecomposable A-module given by
K&=——=K

where A denotes the multiplication by A (see Example 2.11).

(a) Compute a minimal projective presentation for H;(\) and deduce
that THl()\) = Hl()\)

(b) Show that ExtY (H1(\), H1(\)) = K and that the canonical short
exact sequence

0 — Hi(\) — Ha(\) — Hi(\) — 0

is almost split, where the module Hy(\) is given by
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6. Let A be the hereditary algebra given by the quiver
02
1/ 3
Youl °
77&04
05

Show that, for any pair (A, u) € K2\ {0}, the module H (), u) given by

K

[o]

KQ\

T
2]

is regular and that H(\, u) = H(N, ') if and only if the pairs (A, ) and
(N, p') correspond to the same point on the projective line Py (K).

—

—

K

7. Show that, up to isomorphism, there is only one multiplicity-free tilting
module over the Nakayama algebra A = K[t]/(t"), where m > 2.

8. Let B be a tilted algebra and M be an indecomposable B-module.
Show that Ext% (M, M) = 0.

9. Let B be a concealed algebra, that is, there exists a postprojective
tilting module T" over a hereditary algebra A = K@ such that B = End T'4.
Show that the postprojective component P(B) of B contains a section iso-
morphic to Q°P. Deduce that there exists a preinjective tilting A-module
T’ such that B~ End T",.

10. Let A be a representation—finite algebra such that I'(mod A) is
acyclic. Show that A is tilted if and only if I'(mod A) contains a section.

11. Show that each of the following algebras is a representation—finite
tilted algebra.

(a) A given by the quiver
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bound by three zero relations ay =0, o =0, £&n = 0.
(b) A given by the quiver

[e5% (63} Qp—2 Qp—1
o O O e O O
1 2 3 n—1 n

(with n > 3), bound by ay—1...c1 =0.
(¢) A given by the quiver

\ UL
/

o4>o
4 8

N
’/\

bound by two relations ozﬁ =~o, n€ =0.

/’\
/‘\/\

N

(d) A given by the quiver

bound by two commutativity relations v4 = do, £v8a = no.

(e) A given by the quiver

10 06

€ n
\W o 2/
o N

bound by the zero relation oyBa = 0.

20 o7

(f) A given by the quiver

353
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SN N
\/3 R

bound by the relations Ba = yo, pi = np, and o = 0.
(g) A given by the quiver

2 B 4 v 6

04— 0&—0
. ,7 / ’KW
e A

bound by two commutativity relations v8a = £n and o€ = §o.

12. Show that each of the following K-algebras B is a tilted algebra.
Then compute a hereditary algebra A and a tilting A-module T' such that
BX=EndTy,.

(a) B given by the quiver

2 (e 3
04———0

B
Y
10— o4
J A
’x \
o&——o
5 u 3

bound by two commutativity relations a8 = 6 and \§ = pv.

(b) B given by the quiver

B
10/ \05
N
30 4
bound by the commutativity relation af = ~de.

(¢) B given by the quiver
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bound by two relations a8 = v§ and Ay = 0.

13. Show that each of the following algebras B is a concealed algebra:

(a) B given by the quiver

bound by two commutativity relations a8 = yo and no = wd.

(b) B given by the quiver

bound by the commutativity relation a8 = vo.

(¢) B given by the quiver

=
2
™)
Y
ot
=
oo

o] o
8 o 7T § '3 B 4

bound by the commutativity relation a8 = vo.

(d) B given by the quiver
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3
O

(0%
7 2 /
O O
\5/‘ y
o——30
/6 n 1\
oe——oK 7 T Mo o
9 ¢ 8 4 o 5
bound by two zero relations do = 0 and afBvyp = 0.

14. (a) Let A be given by the quiver 108=>—5«" o3 bound by

~va = 0, 78 = 0. Show that any indecomposable A-module M = (M;, ©q)
with My # 0 is such that (Ker o) N (Ker @) = 0; deduce that if M 2 S(3)
and M % P(3), then M is an indecomposable module over the Kronecker
algebra.

(b) Let B be as in Example 5.7 (d). Show that any indecomposable
B-module is a module over one of the hereditary algebras By, B or Bs.

15. (a) Let B, B, C, D be as in the Example 5.7 (¢). Show that any
indecomposable B’-module M = (M;, ¢o) such that M; # 0 and Mg # 0
must have one of the homomorphisms ¢., ¢, @, or ¢, a monomorphism.
Deduce that any indecomposable B’-module is a C-module or a D-module.

(b) Show that any indecomposable B-module not isomorphic to P(6) &
I(1) is a B’-module.



Chapter IX

Directing modules and

postprojective components

Let A be an algebra. We studied in Chapter VIII some types of compo-
nents of the Auslander-Reiten quiver I'(mod A) of A that are acyclic, that
is, that contain no cyclic paths, such as the postprojective, the preinjec-
tive, and the connecting component of a tilted algebra. We now study more
generally those indecomposable modules that lie on no cycle of nonzero non-
isomorphisms in the module category. These modules are called directing
modules. Although their properties generalise those of modules lying in
one of the aforementioned components, they also enjoy some properties of
their own. For instance, we show that any algebra having a sincere and
directing indecomposable module is a tilted algebra. We next study the
class of representation—directed algebras, which are those algebras having
the property that each indecomposable module is directing, and we show in
particular that these algebras are representation—finite. It is usually diffi-
cult to predict whether a given algebra is representation—directed; we give
here an easily verified sufficient condition — the so-called separation con-
dition — for an algebra to have a postprojective component and so to be
representation—directed whenever it is representation—finite. The last two
sections are devoted, respectively, to algebras having the property that all
their indecomposable projective modules belong to postprojective compo-
nents and to the classification of the tilted algebras of type A,,.

IX.1. Directing modules

We recall from (VIII.2) the definitions of path and cycles in a module

category. Let A be an algebra. A path in mod A is a sequence
My o Loy — s — M S

of nonzero nonisomorphisms fi, ..., f; between indecomposable A-modules
My, My, ...M; with t > 1. We then say that M, is a predecessor of M,
or that M; is a successor of M. A path in mod A is called a cycle if its
source module My is isomorphic with its target M;. An indecomposable
A-module that lies on no cycle in mod A is called a directing module.

Clearly, the requirement that the fi, ..., f; are nonzero nonisomorphisms
amounts to say that they belong to

rad4 = rad moq 4,

357
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the radical of the category mod A (see Section A.3 of the Appendix). Be-
cause the arrows of I'(mod A) represent irreducible morphisms, any path
between points in I'(mod A) induces a path in mod A. The converse, how-
ever, is generally not true; indeed, the f; may map between indecomposables
lying in distinct components of I'(mod A).

Our first lemma provides examples of directing modules.

1.1. Lemma. (a) Let A be an algebra and C be a postprojective or prein-
jective component of T'(mod A). Then every indecomposable A-module in C
is directing.

(b) Let H be a hereditary algebra, T be a tilting H-module, A = End Ty,
and Cr be the connecting component of T'(mod A) determined by T. Then
every indecomposable A-module in Cr is directing.

(¢) Let A be a representation—finite hereditary or tilted algebra. Then
every indecomposable A-module is directing.

Proof. (a) This is just (VIIL.2.6).
(b) Let M4 be an indecomposable in Cr and suppose, to the contrary,
that there exists a cycle

M=M 25 m L2omy — oo — M S M =M

3

where ¢ > 1, the homomorphisms fi, ..., f; are nonzero nonisomorphisms,
and the modules M; are indecomposable. By (VIIL.3.5), Cr contains a
finite section ¥ such that all predecessors of ¥ belong to the torsion-free
part Y(T'), and all its proper successors belong to the torsion part X (7).
Moreover, Cr is acyclic. Then there exists ¢ such that 1 <4 < ¢ and there
is no path of irreducible morphisms from M;_; to M;.

Let r be the least integer such that 1 < r < ¢ and there is no path of
irreducible morphisms from M,._; to M,.. Then M = My, ..., M,_1 belong
to Cr. Now (IV.5.1) yields a chain of irreducible morphisms

M,y =Uy—-U—--—U

such that U, is a proper successor of ¥ in Cr and rada(U,, M,) # 0. In
particular, U, € X(T). Because X(T') is closed under successors, we have
M, € X(T) and consequently M = M; € X(T). Similarly, let s be the
maximal integer such that 1 < s < ¢ and there is no path of irreducible
morphisms from M,_; to M, in mod A. Then the modules My, ... ,M; = M
belong to Cr and there is a chain of irreducible morphisms V;, — --- — V; —
Vo = M; such that V; is a predecessor of X in Cp and rad s (Ms_1,Vy) # 0.
In particular, V; € Y(T'). Because Y(T) is closed under predecessors, we
have My_; € Y(T) and consequently M = My € Y(T). Therefore M €
X(T)NY(T), a contradiction. Hence M is directing.

(¢) This follows easily from (b). O
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It is important to observe that, although in Lemma 1.1, all Auslander—
Reiten components considered are acyclic, there exist examples of directing
modules lying in components containing cyclic paths.

1.2. Example. Consider the algebra A given by the quiver

B!
bound by af = 0 (see Example IV.4.14). Then I'(mod A) is given by
P(2) 1(2)

SN SN
(1) M S(3
N SN S
P(3) 1(1)

NS NG
5(2) N 5(2)

S )

where M = (P(2) ® P(3))/S(1), N = P(3)/5(2), and we identify the two
copies of S(2) along the dotted lines. Clearly, S(1), P(2), I(2), and S(3)
are directing, but none of the other indecomposable modules is.

We now look at the support of a directing module. Let A = KQa/ZT
be a bound quiver presentation of an algebra A and M be an A-module.
The support of M is the full subquiver supp M of @4 generated by all
the points i € (Qa)o such that (dim M); # 0 (equivalently, such that
Hom 4 (P(i), M) # 0). An indecomposable A-module M is called sincere
whenever its support equals Q4 (thus, for instance, any faithful A-module
is clearly sincere).

Observe that if e; denotes the primitive idempotent corresponding to
J € (Qa)o and e = 7 o upp ar), €» then M s sincere viewed as a module
over the algebra A/AeA, called the support algebra of M.

We recall from (VIIL.1) that to say that supp M is a convex subquiver of
Q4 means that any path in Q4 having its source and its target in supp M
lies entirely in supp M.

1.3. Proposition. Let A = KQa/Z and M4 be a directing indecom-
posable A-module. Then the support supp M of M is a convex subquiver

of Qa.

Proof. Assume to the contrary that supp M is not convex. Then there
exists a path ag — a1 —% -+ 2™ q,, in Q4 such that m > 2, ag, am €
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(supp M)o but a1,...,am-1 & (supp M)o. Let oy = fBi,...,0s be all the
arrows in @ 4 from ag to a; and «a,, = 71,...,% be all the arrows in Q4
from a,,—1 to a,,. Let J be the two-sided ideal of KQ 4 generated by all
paths of the form 3,0 or §v;, with § € (Qa)1,1 < i <s,1<j <t. Consider
the algebra A" = KQa/(I+ J). Because M is annihilated by .J, it is an A’-
module. Moreover, Hom 4/ (P(ag) ar, M) # 0 and Hom 4/ (M, I(am)ar) # 0.
For any r with 1 <r < m—1, let U, denote a uniserial A’-module of length
two having S(a,.) as top and S(a,4+1) as socle. Then there exists a path in
the category mod A’

I(am)ar — S(am—1) — Um—2 — S(am—2) —
- — S(a2) — Uy — S(a1) — Pl(ap)ar,
where the homomorphisms are the obvious ones. Therefore we get a cycle
M — I(am)ar — S(am-1) — --+ — S(a1) —P(ag)ar — M

in mod A’, hence also in mod A, because A’ is a quotient of A. This contra-
dicts the hypothesis that M is directing and finishes the proof. O

1.4. Proposition. Let A be an algebra and M be a directing indecom-
posable A-module. Then End M = K and Ext’, (M, M) =0 for all j > 1.

Proof. Because M is directing and indecomposable, mod A contains no
cycle of the form M — M; hence rad EndgaM = rada (M, M) = 0, and so
EndaM = K. Denote by U the class of all predecessors of M in mod A.
We show by induction on j > 1 that Ext’y(U,M) = 0 for all U in U.
This will clearly imply our claim. Assume j = 1. If 0 # Ext! (U, M) =
DHom 4 (M, 7U) for some U in U, there exists a nonzero homomorphism
M — 71U, hence a cycle M — 7U — * — U — ... — M, and we get
a contradiction. Therefore Ext!, (U, M) = 0 for all U in Y. Assume that
Ext’, (U, M) = 0 for some j > 1 and all U in Y. Take U in U and a short
exact sequence 0 — V — P — U — 0 with P projective. By (A.4.5)
of the Appendix, we have Extfjl(U, M) = Extf4 (V, M), for j > 1, and the
latter vanishes, because all indecomposable summands of V' belong to U.
This finishes the proof. U

1.5. Corollary. Let A be an algebra of finite global dimension and M
be a directing indecomposable A-module. Then dim M is a positive root of
the Euler quadratic form qa of A.

Proof. It follows from (1.4) and (111.3.13) that

ga(dim M) = Z(—deimKExth(M, M) = 1. O
i>0
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IX.2. Sincere directing modules

In this section, we show that any algebra having a sincere directing mod-
ule is tilted. Further, we show how to construct a faithful section in the
Auslander—Reiten quiver of such an algebra. For this purpose, we need a
definition: A path My — - -+ — M; in the Auslander—Reiten quiver of an al-
gebra A is called sectional if, for all i with 1 < ¢ < ¢, we have TM; % M,;_».
Clearly, if all the M; belong to a section in I'(mod A), then each such path
between the M; is sectional. Owur first proposition due to Bautista and
Smalg [28] (see also [35]) says that if the composition of the irreducible
morphisms corresponding to a path in I'(mod A) vanishes, then this path
cannot be sectional.

2.1. Proposition. Let A be an algebra, My, ..., M,11 be indecompos-
able A-modules, and f; : M; — M;y1, 1 < i < n, be irreducible morphisms.
If the composition f, ... f1 either equals zero or there is a commutative di-
agram

where N is an indecomposable module not isomorphic to M,,, h : My — N
is a homomorphism of A-modules and g : N — M,1 is an irreducible
morphism, then there exists | such that 3 <l <n+1 and TM; = M;_».

Proof. We use induction on n. Assume n = 1. Because f; is irreducible,
then fi # 0 and f1 = gh, with g : N — M, irreducible. It follows that h
is a section. Because N and M, are indecomposable, h is an isomorphism.
This contradicts our hypothesis that N 2 M;.

Assume n > 1 and let f = f,_1...f1. Consider first the case where
fnf = 0. If f =0, the result follows from the induction hypothesis. If
f # 0, then f,, is not a monomorphism, so it is an epimorphism. Hence the
module M, ;1 is not projective and there exists an almost split sequence of
the form

4]
v

0—>TMn+1—>Mn@LM>

Mn+1 — 0

with f/ and I’ irreducible. Applying Homa (M7, —) yields a left exact se-

quence
om R f;
M Homa(My, M,, & L)
Homa (M1, [fn 1])

0— HOHlA(Ml, TMn+1)
HOHlA(Ml, Mn+1).
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0
k: My — 7M, 11 such that f = fl k. If M,,_1 = 7M,+1,and we are done.
Otherwise, the irreducibility of f! : 7M,+1 — M, yields the result by the
induction hypothesis applied to N = 7M,,4+1, g = f/, and to

f1 f2 fn-1

Because f,f = 0, we have [f} € Ker Homy (M7, [fn 1]); hence there exists

In

M, M, e M, 1 M, M1
x} /

TMn+1 .

This finishes the proof in case f,f = 0. Assume now f,f = gh # 0, with
g : N — M, irreducible and N indecomposable not isomorphic to M,.
We claim that M,, 1 is not projective. Assume to the contrary that M, is
projective. Then the irreducible morphisms f,, and g are not epimorphisms;
hence they are monomorphisms. Because N 2 M, and rad M, ;1 is the
unique maximal submodule of M,, 1, then the modules Im f,, and Im g are
distinct direct summands of rad M,, 11 and therefore Im f,, NIm g = 0. On
the other hand, the relation f, f = gh implies Im f,, NIm g # 0, and we get
a contradiction. Consequently, M, 11 is not projective.

Because f,, and g are irreducible, N 2 M,, and M, is not projective,
then there exists an almost split sequence of the form

4]
/]

0 — 7Myy —Pd M eNerp gl

Mn+1 — 0.

Applying Hom 4 (M7, —) yields a left exact sequence

([2))
Homg | My, g/
l/

0 — Homu (My, 7Mp41) ————L =% Homa(My, M, & N & L)

Homa(My,[fn g 1) Hom g (M, Mp41)

f
Because f,f = gh, we have [—h € Ker Homy (M, [fn ¢ 1]). Hence there

0
exists k : My — 7 My, 41 such that f = f/ k. If M,,_1 = 7M, 41, we are done.
Otherwise, the irreducibility of f] : 7M,+1 — M, yields the result by the
induction hypothesis applied to N = 7M,,4+1 and g = f,. d

A first, easy, important consequence of (2.1) is the following fact, men-
tioned earlier.

2.2. Corollary. Let A be an algebra. If M S, Ms LN ft—_l> M; is a

path of irreducible morphisms corresponding to a sectional path in T'(mod A),
then ft—l---fl 750 O

A second consequence of (2.1) is that no sectional path is a cycle.
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2.3. Corollary. Let A be an algebra. If M N Ms LN g M; is
a sectional path in T'(mod A), then My % M.

Proof. Assume to the contrary that M; = M,. By (2.2), f = fi—1... f1
is a nonzero endomorphism of M, which is not an isomorphism (because
the homomorphisms fi, ..., fi—1 are irreducible). Because End M is local,
f is nilpotent. But then the given sectional cycle induces a longer one

in which the composition of the homomorphisms is zero, a contradiction
to (2.2). O

We now proceed to the proof of our main result. We need two lemmas.

2.4. Lemma. Let A be an algebra and M be a directing indecomposable
A-module. Let f : P — P’ be a nonzero homomorphism between indecom-
posable projective A-modules. Then the induced homomorphism

Hom4(f, M) : Hom(P', M) — Homa (P, M)

is either a monomorphism or an epimorphism.

Proof. Assume to the contrary that Hom 4 (f, M) is neither a monomor-
phism nor an epimorphism, and set U = Coker f. Because Hom 4 (f, M) is
not a monomorphism, Homa (U, M) = Ker Homa(f, M) # 0. For an in-
decomposable projective A-module eA, we have functorial isomorphisms
Hom4((eA)!, DM)~Homa (Ae, DM)=eDM = D(Me) =~ DHomy (eA, M),
where, as usual, (—)! = Hom(—, A). It follows that the diagram

DHom (P, M) — 22wl pyom (P, M)

Hom, (P!, DM) —2maULPM) - gom (P, DM)

is commutative. Because the linear map Homa (f, M) is not an epimor-
phism, DHom 4 (f, M) and Hom 4 (ft, DM) are not monomorphisms. Conse-
quently, Hom 4 (Coker ft, DM) = Ker Hom (f*, DM) # 0. However, P and
P’ are indecomposable projective A-modules; hence P — P’ — U — 0
is a minimal projective presentation, so that Coker f! = TrU. Hence we
get Homa(TrU, DM) # 0 and therefore Homa(M,7U) # 0. We know
that Homa (U, M) # 0. Also U, being a quotient of P’, has a simple
top and hence is indecomposable. We deduce the existence of a cycle
M — 7U — * - U — M in mod A, contrary to the assumed directed-
ness of M. O

As we observed before, any faithful module is sincere (for example, any
tilting module is sincere). We next show a partial converse of this statement.
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2.5. Lemma. Let A be an algebra. Then any sincere and directing in-
decomposable A-module is faithful.

Proof. Let M be a sincere and directing indecomposable A-module, and
let e1,...,e, be a complete set of primitive orthogonal idempotents of A.
Suppose to the contrary that the right annihilator R = {a € A | Ma = 0}
of M is nonzero. Then there exist ¢, j such that 1 <4, j < n and e;Re; # 0.
Let € R be such that e;xe; # 0. Because e;Ae; = Homu(e; A, e;A), the
element e;re; induces a nonzero homomorphism f; : e;4 — e; A, eja —
(e;xej)eja, for a € A. Because M is sincere, Me; = Homu(e; A, M) # 0
and Me; = Homy(e;A, M) # 0. But our choice of x guarantees that
Homa(fz, M) = 0, so that Homa (fz, M) is neither a monomorphism nor
an epimorphism, a contradiction to (2.4). Consequently, M is faithful. O

We are now able to prove the main result of this section due to
Ringel [145].

2.6. Theorem. Let A be an algebra having a sincere and directing in-
decomposable module M .

(a) If C is a component of T'(mod A) containing M, then C contains a
faithful section % containing M.
(b) A is a tilted algebra.

Proof. Let M be a sincere and directing indecomposable A-module and
C be the component of I'(mod A) containing M. Let X denote the full
subquiver of C consisting of all the successors U of M in C having the
property that every path from M to U in mod A is sectional (that is, there
exists no path of the form M — --- - 7W -« - W — ... — U, in mod A
with W indecomposable). Because M is directing, M itself belongs to X.
Further, for any U,V € ¥y we have Hom (U, 7V) = 0; indeed, a nonzero
homomorphism from U to 7V yieldsapath M — --- - U - 7V — %« = V|
a contradiction to the assumption that V' € 3. Next, by (2.5), M is faithful.
We prove that X is a section of C; then applying (VIIL.5.6) will complete
the proof.

We notice that ¥ has the following property: If there exists a path

M= >N=...>U

with N € Cp and U € X, then N € ¥g. If this is not the case, then there
exists a nonsectional path M — --- - 7W — % - W — ... — N; hence,
by composition, a nonsectional path from M to U, which is a contradiction.
This implies that 3 is convex: If Uy — --- — U, is a path with Uy, U; € X,
then there exists a path M — --- — Uy — --- — U; so that all U; belong
to 2.

We claim that ¥ is acyclic. If not, then there exists a cycle



IX.2. SINCERE DIRECTING MODULES 365

Uy—U —---—= U =0
in ¥. Because all these modules lie in ¥, we have 7U; 2 U; for all ¢, j.
Consequently, this is a sectional cycle, a contradiction to (2.3).

It clearly follows from the definition of ¥ that it contains at most one
module from each 7-orbit in C. We claim that 3 intersects each 7-orbit in
C. Suppose that this is not the case. Because C is a connected translation
quiver, there exist modules U,V € Cy such that U € ¥, the 7-orbit of
V' does not intersect > but U and V have neighbouring orbits; that is,
there exist p,q € Z and an arrow 7PU — 79V or an arrow 7V — 7PU.
If p <0, then 7PU cannot precede any indecomposable projective module
P € Cp; indeed, if this is the case, then U itself precedes P, and the sincerity
of M yields a cycle M — -+ - U — --- — P — M, contrary to the
assumption that M is directing. Similarly, if p > 1, then 7PU cannot
succeed any indecomposable injective module I € Cy. Indeed, if this is
the case, then U itself succedes I, and the sincerity of M yields a path
M—-I—...- 71U - % — P71U — ... = U, a contradiction, because
U € .

It is easily shown that these two remarks imply the existence of an arrow
N = 7'V — U. It follows from our assumption that N ¢ ¥y. Because N
precedes U € ¥, we have no path M — --- — N. In particular, N is not
injective, because M is sincere. Now the arrow U — 7~ !N induces a path
M — .- - U — 77'N. Our assumption implies that 7' N ¢ Xy; hence
there exist an indecomposable L4 and a path

M—...—w7L— % —L=Ly—1L — -+ — L,=7"1N.

We have Homy (L;, A) = 0 for all ¢ with 0 < < ¢. Indeed, if this is not the
case, then there exist an indecomposable projective A-module P’ and an ¢
such that 0 <4 <t and Hom(L;, P") # 0, and the sincerity of M yields
Hom4 (P, M) # 0, hence a cycle

M—--—7L—%—L=Ly— L ——L;— P— M,
which is a contradiction. This implies that, for any ¢ such that 1 < i < ¢,
we have 0 # Homa(L;—1, L;) = Hom 4(L;—1, L;) and so

0 # DHoma(L;_1,L;) = DHom 4(L; 1, L;) = ExtYy (Li, 7L;_1)

>~ DHomu(7L;—1,7L;) € DHoma(7L;—1,7L;).
We thus deduce the existence of a sequence of nonzero homomorphisms
tTL=17Ly — 7Ly — ---— 7L, = N;

hence a path M —» --- - 7L =7Ly — 7L; — --- — 7L; = N, which is a
contradiction. This shows that 3 intersects any 7-orbit in C and thus is a
section. Because ¥ is faithful, according to (VIIL.5.6), A is a tilted algebra.

(Il
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Dually, one can show that (with the same hypothesis and notation) the
full subquiver of C consisting of all the predecessors V of M having the
property that every path from V to M is sectional, is a faithful section in
C, to which we can apply (VIIL.5.6).

The converse of (2.6) is clearly not true. For instance, the algebra given
by the quiver L 8 2 o 3 bound by a8 = 0 is tilted but has no sincere
indecomposable module.

2.7. Corollary. Let A be an algebra and M be a sincere and directing
indecomposable A-module. Then gl.dimA <2, pd M <1 andid M < 1.

Proof. Because A is a tilted algebra, (VII1.3.2) yields gl.dimA < 2.
Moreover, we have Homa(I,7M) = 0 for every indecomposable injective
A-module I. Indeed, Hom4 (M, I) # 0 and Hom4 (I, 7M) # 0 yield a cycle
M — I —- 1M — x — M, a contradiction. Consequently, pd M < 1 by
(IV.2.7). Dually, id M < 1. O

The next corollary asserts that if M is a directing indecomposable A-
module, then there exists a tilted algebra B (which is a quotient algebra of
A) such that M is a sincere and directing B-module. Thus the structure
of the directing modules over any algebra A is completely determined by
those over the tilted quotients of A.

2.8. Corollary. Let A be an algebra and M be a directing indecompos-
able A-module. Then the support algebra B of M is tilted.

Proof. Clearly, M is a sincere and indecomposable B-module. Also,
Because B is a quotient of A, a cycle in mod B induces a cycle in mod A,
so M is a directing B-module. Applying (2.6) yields that B is tilted. O

IX.3. Representation—directed algebras

In this section we study the algebras having the property that every
indecomposable module is directing. However, we start with a more gen-
eral result asserting that directing modules (over an arbitrary algebra) are
uniquely determined by their composition factors.

3.1. Proposition. Let A be an algebra and M, N be indecomposable
A-modules. If M is directing and dim M = dim N, then M = N.

Proof. Let B be the support algebra of M. It follows from (2.7) that
gl.dim B < 2. In particular, the Euler characteristic (—, —) 5 of B is defined
(see II1.3.11). Moreover, because M is sincere when viewed as a B-module,
pdMp <1 and id Mp < 1, again by (2.7). Finally, by (1.5), dim M is a
root of the quadratic form ¢p, because M is indecomposable and directing
(when viewed as a B-module).
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Assume, to the contrary, that M 2 N and dim M = dim N. Clearly,
B is also the support algebra of N. Because pd Mp < 1, Ext4(N, M) =0
and, according to (I11.3.13) and (1.5), we have

1 =¢p(dim M) = (dim M, dim M)p = (dim M,dim N)p
= dimgHomp (M, N) — dimgExty (M, N);

hence Homy (M, N) = Homp (M, N) # 0. Similarly, id Mp < 1 implies that
Ext%4 (N, M) = 0. It follows that

1 =¢p(dim M) = (dim M,dim M)p = (dim N,dim M)p
= dimgHomp (N, M) — dimgExty (N, M);

hence Homy (N, M) = Homp (N, M) # 0. This gives a cycle M — N — M
in mod A, contrary to the assumption that M is directing. Consequently,
there is an isomorphism M = N of A-modules. O

The hypothesis in (3.1) that M is directing is essential; as is shown by
Example (1.2), the indecomposable modules P(3) and I(1) have the same
composition factors but are clearly not isomorphic.

Proposition 3.1 and Lemma 1.1 imply that all postprojective and all
preinjective indecomposable modules as well as all indecomposables that
belong to the connecting component of a tilted algebra are uniquely deter-
mined by their composition factors.

We saw in (VIIL.4.3) that the Auslander-Reiten quiver of any repre-
sentation—finite tilted algebra is acyclic and, consequently, any indecom-
posable module is directing. On the other hand, the Example VIIL.5.7 (c)
shows that there exist representation—finite algebras with acyclic Auslander—
Reiten quivers that are not tilted. This motivates the following definition.

3.2. Definition. An algebra is called representation—directed if ev-
ery indecomposable A-module is directing.

We recall that Gabriel’s theorem (VII.5.10) provides a bijection between
the indecomposable modules over a representation—finite hereditary algebra
and the roots of the corresponding quadratic form. The same result holds
more generally for a representation—directed algebra with global dimension
at most two.

3.3. Theorem. Let A be a representation—directed K-algebra with
gl.dimA < 2. The Euler quadratic form qa of A is weakly positive, and
the correspondence M +— dim M defines a bijection between the isomor-
phism classes of indecomposable A-modules and the positive roots of qa.

Proof. Because A is representation—directed, every indecomposable A-
module M is directing and, according to (1.5), the dimension vector dim M
of M is a positive root of 4.
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Let x be a positive vector in Kp(A). Then there exists a nonzero A-
module M such that x = dim M. Choose such a module M with
dimg (End M) as small as possible. Let M = @.", M; be a decomposition
of M into indecomposable summands. We claim that Ext} (M}, M;) = 0
for any pair (i,j) with ¢ # j. Suppose that this is not the case. Then
Ext (D i Mj, M;) # 0 for some i and therefore there exists a nonsplit
exact sequence

0— M, — N — P M —o.
g

It follows that dim N = dim (M; & (B,,; M;)) = dim M. By (VIIL.2.8),
we get dimgEnda N < dimgEnd 4 (M; & @j# M;) = dimgEnd 4 M, which
contradicts the minimality of M. Consequently, Ext(M;, M;) = 0 when-
ever i # j.

Because each M; is directing, we also have Ext!, (M;, M;) = 0 for any i,
by (1.4). Therefore Ext! (M, M) = 0 and, because gl.dim A < 2, we have

qa(x) = ga(dim M) = dimgEnd M + dimgExt? (M, M) > 0.

Thus, g4 is weakly positive. Moreover, if x = dim M is a positive root of
qa, then 1 = dimgEnd M + dimg Ext? (M, M). It follows that End M = K
and M is indecomposable.

Also, if M, N are indecomposable A-modules such that dim M = dim N,
then (3.1) implies M = N. Hence, in view of (1.5), M — dim M establishes
a bijection between the set of isomorphism classes of indecomposable A-
modules and the set of positive roots of ¢4. (I

3.4. Corollary. Any representation—directed algebra is representation—
finite.

Proof. Assume that A is a representation—directed algebra. Let A =
KQ4/T be abound quiver presentation of A, and let M be an indecompos-
able A-module. By our assumption, M is directing and, according to (2.8),
the support algebra B of M is a tilted algebra, whose quiver supp M is, by
(1.3), a convex full subquiver of @ 4. It follows from (3.3) that the quadratic
form ¢p of B is weakly positive and that M — dim M defines a bijection
between the isomorphism classes of indecomposable B-modules and the pos-
itive roots of ¢p. But, by (VIL.3.4), a weakly positive quadratic form has
only finitely many positive roots. Therefore B is representation—finite. Be-
cause the finite quiver @ 4 has only finitely many convex full subquivers, A
is also representation—finite. O

Note that (3.3) and (3.4) apply in particular to all representation—finite
tilted algebras.
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3.5. Lemma. Let A be a connected representation—finite algebra. Then
A is representation—directed if and only if it admits a postprojective compo-
nent.

Proof. Because A is representation—finite, it follows from (IV.5.4) that
the Auslander-Reiten quiver I'(mod A) of A is connected. Assume that
A is representation—directed. Because I'(mod A) is connected, obviously
I'(mod A) is a postprojective component. Conversely, assume that A admits
a postprojective component. Because I'(mod A) is connected, it coincides
with its postprojective component. In particular, all indecomposable A-
modules are directing, by (1.1). O

Because the support algebra of any directing module is a tilted alge-
bra, we may look at a representation—directed algebra as being a gluing of
finitely many representation—finite tilted algebras given by the supports of
the indecomposable modules.

3.6. Examples. (a) Let A be given by the quiver

10 o4
a v
\g <
W
bound by four zero relations yao = 0, da = 0, 73 = 0, and 63 = 0. Then
I'(mod A) is the quiver

S@) ----- I(1) N\ N\
P(B) ------ S(4)
In particular, A is representation—directed. Also, we have in T'(mod A) a
section given by the modules I(1), I(2), S(3), P(4), P(5). Hence A is
tilted of type Dy, and so gl.dimA < 2. Applying (3.3), we get that ga

. . . . 1.0 00 1.0 1,0 0,0
is weakly positive, and the dimension vectors 097 19 1207 0tor 1t0>
0,0 0.1 0.0 0.1 0 1 0.0 .

1 1 1 1 - 3
0 o 007 0l10 010 0% o0 of the indecomposable A-modules form a

complete list of the positive roots of g4. On the other hand, g4 is not
positive definite, because it is Z-congruent to the Euler form of hereditary
algebra of Euclidean type Dy (see (VI.4.7), (VIL.4.2)).

(b) Let n > 2 be a positive integer. Consider the algebra given by the
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quiver s as no an
[©] ] ] cee O ]
0 1 2

30

bound by a;y1ce; =0 for all 4, 1 < i < n — 1. The simple module S(7) has
a minimal projective resolution

fo

0— PO) % Py 2 . Pi—-1) TS PG — SG) — 0

and, for each j, S(j) = Coker f;. Therefore, pd S(i) = ¢ for any ¢, and
gl.dim A = n. On the other hand, I'(mod A) is of the form

P(1) P(3) P(n)

/! N /! N N
5(0) S(1) S(2) S(n —1) S(n)
N /! NS

P(2) P(n—1)

and so A is representation—directed. Therefore there exist representation—
directed algebras of arbitrary finite global dimension. Let n = 3 (thus
gldimA = 3) and consider the module M = S(0) & S(3). Using the
projective resolution, we get ExtY(5(3),S(0)) = 0, Ext?%(5(3),S(0)) = 0
while Ext? (5(3),5(0)) = K. Because the module S(0) is projective, we
have Ext% (S(0),S(3)) = 0 for all i > 1. Similarly, Ext?,(5(0), S(0)) = 0
for all 4 > 1. Finally, Ext%(S(3),S5(3)) = 0 for all i > 1, because S(3) is
directing and (1.4) applies. Hence, according to (II1.3.13),

ga(dim M)=> "(~1)"dimxExt’; (S(0) & S(3), S(0) & S(3))
i>0

=dimgEnd S(0)+dimg End S(3) —dim g Ext? (S(3), S(0)) =1.

Therefore, dim M is a positive root of g4, but it is not the dimension vector
of an indecomposable A-module. This shows that the assumption on the
global dimension of A in (3.3) is essential.

(c¢) Let A be given by the quiver

bound by fa =0, v8 =0, 68 = 0, ¢4 = 0. It follows from the imposed
relations that any indecomposable A-module is an indecomposable module
over one of the hereditary algebras: H; given by the points 1 and 2, Hy
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given by the points 2 and 3, or H3 given by the points 3, 4, 5, and 6. Hence
I'(mod A) is of the form

0 1 0 1
1100 0018 001% 0000
0
N A A N
1000 0100 0010—0011—0021—0010—0011—0001
0 0 0 0 1 1 1
NN 7 NS N
0110 0010 0011 0000
0 1 0 1

Thus A is representation—directed. The simple modules S(i), withi =4,5,6
have minimal projective resolutions of the form
0 — P(1) — P(2) — P(3) — P(i) — S(i) — 0.

Hence pd S(i) = 3 for i« = 4,5,6. Clearly, pd S(3) = 2, pdS(2) = 1,
and pdS(1) = 0. Then gl.dimA = 3. Calculating the extension spaces
Ext5 (S(7), S(4)) for s > 1 and 1 < 4,5 < 6, we find that each of the spaces

Ext}y (S(2), S(1)), Ext} (S(3), 5(2)), Exty(S(4), S(3)), Ext}y(S(5), S(3)),
Extsy(S(6), 5(3)), Ext%(5(3),5(1)), Ext%(5(4), S(2)), Ext%(S(5), S(2)),
Ext%(5(6), S(2)), Ext®(S(4), S(1)), Ext3(S(5), S(1)), Ext?(S(6), S(1))

is isomorphic to K, whereas the remaining spaces vanish. Thus, for any
4

vector x = (rl z2 3 %o) € Ko(A), the Euler form g4(x) of A is defined by

6
the formula

6 6 6 6
1 2 3
ga(x) = Zx? - Z U/,Sj)xixj + Z agj)xixj - Z agj)xixj,
i=1 ij=1 ij=1 ij=1
where o = dimgExt$ (S(i), 5(j)) for s = 1,2, 3. It follows that
qa(x) =27 4+ 23 + 5 + 25 + 2% + 28 — 2120 — ToTz — T3T4 — T3T5 — T3T6
+ X123 + Toxyg + X2X5 + ToTg — T1T4 — T1X5 — T1X6-
1
In particular, for x = (1 011 ), we have g4 (x) = 0. Hence ¢4 is not weakly
1
positive. Moreover, y = (1 021 ) satisfies ¢4 (y) = 1, and y is clearly not the

1
dimension vector of an indecomposable A-module. Also, for z = (1 111 ),

we have g4(z) = 2. On the other hand, for any indecomposable A-module
M, we have, by (1.5), ga(dim M) = 1.
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IX.4. The separation condition

The aim of this section is to give an easily verified sufficient (though by
no means necessary) combinatorial criterion for an algebra to have a post-
projective component and thus to be representation—directed whenever it is
representation—finite (see (3.5)). Because representation—directed algebras
have an acyclic ordinary quiver, we assume throughout this section that all
algebras we deal with have an acyclic ordinary quiver.

4.1. Definition. Let Abe an algebra with an acyclic quiver @ 4.

(a) An indecomposable projective module P(a) 4 is said to have a sepa-
rated radical if, for any distinct indecomposable summands M and N of
rad P(a), the supports supp M and supp N lie in distinct connected compo-
nents of the full subquiver Q4(@’) of Q4 generated by the nonpredecessors
of a. The algebra A is said to satisfy the separation condition if each
indecomposable projective A-module has a separated radical.

(b) An indecomposable injective module I(a)4 is said to have a sepa-
rated socle factor if, for any distinct indecomposable summands M and N
of I(a)/soc I(a), the supports supp M and supp N lie in distinct connected
components of the full subquiver Q4 (‘@) of Q4 generated by the nonsuc-
cessors of a. The algebra A is said to satisfy the coseparation condition
if each indecomposable injective A-module has a separated socle factor.

Thus, A satisfies the separation condition if and only if the opposite
algebra A°P satisfies the coseparation condition.

Clearly, if an indecomposable projective module P(a)4 has a separated
radical, then two distinct indecomposable summands of rad P(a) are neces-
sarily nonisomorphic. On the other hand, if P(a)4 has an indecomposable
radical, then it has a separated radical. Trivially, any simple projective has
a separated radical.

4.2. Examples. (a) Let A be given by the quiver

/\
\/

bound by af = vd. The radical of each indecomposable projective is inde-
composable or zero. Hence A satisfies the separation condition.

(b) Let A be given by the same quiver as in (a), bound by a8 = 0,
73 = 0. Here, rad P(a) = S(b) ®S(c) and Qa(@ )o = {b,c,d}, thus Qa(@)
is connected. Hence P(a) does not have a separated radical. Thus A does
not satisfy the separation condition, even though P(b), P(c), and P(d) have
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separated radicals. One shows that the algebra A is representation—finite
and has a postprojective component.
(c) Let A be given by the same quiver as in (a), bound by 76 = 0. Here,
rad P(a) = P(b) @ S(c¢), and so P(a) does not have a separated radical.
(d) Let A be given by the qulver

///

o

bound by ad = v\, Be = du, Au =0, vo =0, af = 0. Then A satisfies the
separation condition.

(e) There exist algebras satisfying the separation condition, but not the
coseparation condition. Let A be given by the quiver

RN

o(—

bound by a8 = vd, \3 = ué. Each mdecomposable projective has indecom-
posable (or zero) radical, hence A satisfies the separation condition. On the
other hand, neither I(b) nor I(c) has a separated socle factor.

a

o O

The examples should inspire the reader for the following picture. The
algebra A satisfies the separation condition if and only if, for any a € (Q)o,
the full subquiver of Q 4 generated by a and Q 4(@’) has the following shape

Q1

Q2

O a

Qm

with no walk not passing through a between two distinct connected com-
ponents @Q; and Q; of Q4(@).

The following lemma, used in Section 6, is also strongly suggested by the
preceding examples.
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4.3. Lemma. Let A be an algebra such that Q4 is a tree. Then A
satisfies the separation condition. Conversely, if A is bound only by zero re-
lations, satisfies the separation condition, and is representation—finite, then
Q4 is a tree.

Proof. If Q4 is a tree, then it follows from (I11.2.2) that rad P(a) is a
direct sum of indecomposables with simple top, the support of each being
contained in a distinct connected component of Q4(7@’). For the converse,
assume that @) 4 is not a tree. Then it contains a full subquiver @’ that is
a (nonoriented) cycle.

Because Q4 is acyclic, Q' has at least one source a and one sink b, so
that it has the following shape, where w and w’ are walks

Because A is representation—finite, so is the algebra B given by the full
subquiver @’ with the inherited relations. Hence @’ is bound by at least
one relation, which is necessarily a zero relation. But then rad P(a)4 is not
separated, a contradiction. O

We want to show that an algebra satisfying the separation condition
admits a postprojective component. Clearly, this sufficient condition is not
necessary. Indeed, the algebra of Example 4.2 (b) is representation—directed
(as one verifies easily by direct computation of its Auslander—Reiten quiver)
and thus admits a postprojective component, but it does not satisfy the
separation condition.

We need some notation. Assume that A satisfies the separation condition
and that a € (Qa)o is a source of Q4. Letting B denote the algebra given
by the quiver Q4(7@’) with the inherited relations, we get B = [[/", B;,
where each B; is given by a distinct connected component of Q4(7a’). We
may write rad P(a) = @Zl R;, where each R; is an indecomposable B;-
module. Because each B; is a quotient algebra of A, any B;-module can be
considered as an A-module. We denote by 75, and 74 the Auslander—Reiten
translations in mod B; and in mod A, respectively.

4.4. Lemma. Assume that A is an algebra satisfying the separation
condition. Let a € (Qa)o and let B, B;, R; be as earlier. Assume that
I'(mod B;) has a postprojective component P; and let M € (P;)o be such
that R; is not a proper predecessor of M.

(a) Ewvery predecessor of M in T'(mod A) is a predecessor of M in P;.
(b) If M 2 R;, then TE}M o~ TglM.
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Proof. We use induction on the number n(M) of predecessors of M in
Pi. If n(M) =1, then M is a simple projective B;-module, hence a simple
projective A-module, so that (a) follows trivially. On the other hand, any
irreducible morphism in mod A of source M has a projective target P(b),
so that if M 2 R;, then b # a, because R; is the unique indecomposable
B;-module that is a radical summand of P(a) and so P(b) is a projective
Bj;-module. But then the cokernel term in the almost split sequence

00— M — @P(b)—w';lM—N)
is a B;-module. This implies (b).

For the induction step, we first claim that, for each irreducible morphism
L — M in mod A, with L indecomposable, L is a B;-module. Indeed, if M
is a projective A-module, then it is a projective B;-module; hence L, being
a submodule of M, is also a B;-module. If M is not a projective A-module,
then it is not a projective B;-module, and n(7p, M) < n(M). The induction
hypothesis gives M = TgilTBiM ~ T;lTBiM so that 1AM = 75, M is a B;-
module. The almost split sequence 0 — 75, M — L®L — M — 0
in mod A guarantees that L is a B;-module. This implies (a).

We now show (b). Assume M % R;. To prove that TE_;}M ~ 7 M, it
suffices to show that TglM is a B;-module. Let M — N be an irreducible
morphism in mod 4, with N indecomposable. We claim that N is a B;-
module. If N is not projective, then there exists an irreducible morphism
74N — M and the claim implies that 74N is a B;-module. Hence so is
N = 7'7yN = 75l7AN = 774N, If N is projective, then because
M % R;, we have N = P(b) for some b # a. We claim that P(b)4 is
actually a projective B;-module. Indeed, if this is not the case, then b is
a predecessor of a so that we have a path b = by — by — --- — b = a,
with ¢ > 1. Because M is a radical summand of P(b), there exists a direct
successor b’ of b lying in supp M, which is a convex full subquiver of @p,,
by (1.1)(a) and (1.3). On the other hand, because supp R; is also a convex
full subquiver of @p,, there is an arrow a — a, with o’ € (@p,)o. Because
B; is connected, there exists a walk b’ e o —aqe— - — b
in @4 with & and b; both direct successors of b. By hypothesis, P(b) has
a separated radical, and M is a summand of rad P(b). Therefore b; must
lie in the support of M, a contradiction to the fact that M is a B;-module.
This proves our claim.

We are now able to show that 7'M is a B;-module. If M is an injective
A-module, then it is certainly injective as a B;-module. If M is not an
injective A-module, then, in the almost split sequence

0—>M—>E%T;1M—>O
in mod A, we have just shown that F is a B;-module. Hence so is TglM . O
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4.5. Theorem. Let A be an algebra.

(a) If A satisfies the separation condition, then A admits a postprojective
component.

(b) If A satisfies the coseparation condition, then A admits a preinjective
component.

Proof. We only prove (a); (b) follows from (a) and the standard duality
D : mod A — mod A°P.

We use induction on |[(Q 4)o|; we have two cases to consider. Assume first
that there exists a source a € (Qa)o and a radical summand R; of P(a)
that does not belong to a postprojective component of I'(mod B;) (with
the preceding notation). By induction, I'(mod B;) admits a postprojective
component P. By (4.4)(a), P is a postprojective component of I'(mod A).

If this is not the case, then we construct a postprojective component of
I'(mod A) by constructing a sequence (Py,) of full subquivers of I'(mod A)
such that:

(a) Each P, is finite, connected, acyclic, and closed under predecessors.

(b) 7';177,1 U Pn g Pn+1.

Then P = J,,~q Pn is the wanted postprojective component.

We start by setting Py = {S}, where S is a simple projective. To obtain
Pr+1 from P,, we consider the (finite) set S of indecomposable modules
M in P, having the property that TglM is not in P,. We let P,4+1 be
the full subquiver of I'(mod A) generated by P, and , for each M in S, all
the predecessors of TglM in T'(mod A). If § is empty, we let P41 = Pp.
Clearly, P41 satisfies (b). We must show that it satisfies (a).

For this purpose, we start by numbering the modules M1, ..., M; in S in
such a way that if M; precedes M, then ¢ < j (this is possible because P,
is acyclic). We use induction on i. We show the induction step. Consider
the almost split sequence 0 — M;,; — E — T;lMH_l —— 0 in mod A.
We must show that if L is an indecomposable summand of E, then L has
only finitely many predecessors and is directing. If L is projective, say
L = P(a), then by assumption, each of the radical summands R; of P(a)
lies in a postprojective component of I'(mod B;) and the statement follows
from (4.4)(a). If L is not projective, then either L is in P, and we are
done, or L is not in P,, and then the existence of an irreducible morphism
TaL — M;1q, together with the fact that M;y; is in P,,, which is closed
under predecessors, implies that 74L is in P,. Consequently, T4L = M;
for some j < i; then L 2 7, "M, satisfies our assumption by the induction
hypothesis. The case ¢ = 1 is shown likewise. O

We now consider the situation from another point of view. As we have
seen, a representation—finite algebra satisfying the separation condition is
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representation—directed. We wish to characterise, among the representa-
tion—directed algebras, which ones satisfy the separation condition. For
this purpose, we need a new combinatorial invariant introduced in [40].

4.6. Definition. Let (I',7) be a postprojective component of an Aus-
lander-Reiten quiver F(mod A)), viewed as a translation subquiver of
(T(mod A)), 7). The orbit quiver Orb(I") of I is defined as follows. The
points of Orb(T") are the 7-orbits w,, of the points x € Ty (and thus are in a
bijective correspondence with the projectives in I'). For a projective p € Ty,
let x1,...,xs be all its direct predecessors and for each ¢ with 1 <7 < s, let
n; be the number of arrows from x; to p, and let p; be the unique projective
in the 7-orbit of x;; then put n; arrows from w,, to wy, in Orb(T).

One may thus speak of the orbit quiver of I'(mod A), where A is a
representation—directed algebra.

Let (T, 7) be a postprojective component of an Auslander-Reiten quiver.
There exists an arrow w, — wy in Orb(T') if and only if the 7-orbit of x
contains a direct predecessor of the unique projective in the 7-orbit of y.
If this is the case, then there exists a path in I' from the projective in the
7-orbit of x to the projective in the 7-orbit of y. Also, because I is acyclic,
so is the orbit quiver Orb(T").

4.7. Examples. (a) Let A be as in (4.2)(a). Then I'(mod A) is given by

0/\/\/\
NN N

and obviously the orbit quiver Orb(I'(mod A)) is given by

WP(b)

WP(d) ?WP(a)

WP(c)

(b) Let B be as in (4.2)(b). Then I'(mod B) is given by
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011 081
1 SN S
100 010 001
SN S
180 110
NN
1(1)0 030 0(1)1

It is clear that the orbit quiver Orb(I'(mod B)) is given by

WP(b)

WP(a)

i
N

WP(c)

In these examples, both algebras A and B are representation—directed. The
first satisfies the separation condition (and its orbit quiver is a tree), whereas
the second does not (and its orbit quiver is not a tree).

4.8. Theorem. Let A be a connected and representation—directed alge-
bra. Then A satisfies the separation condition if and only if the orbit quiver
Orb(T'(mod A)) is a tree.

Proof. (a) The necessity is shown by induction on [(Qa)o|. Assume
that A satisfies the separation condition. Because I'(mod A4) is acyclic and
has only finitely many projective points, there exist an indecomposable
projective A-module P(a) having no other indecomposable projective as
a successor. This choice guarantees that a is a source in Q4. Let B be
the (not necessarily connected) algebra whose quiver is the full subquiver
of Q4 generated by all points except a, with the inherited relations. Let
B =B; x...x By, where By, ..., B,, are connected algebras, and

rad P(a) = R1®...® Ry,

where each R; is an indecomposable B;-module. Because a is a source, each
B; satisfies the separation condition and the induction hypothesis implies
that Orb(I'(mod B;)) is a tree. We notice that if an indecomposable A-
module M is not a proper successor of P(a), then Homy(P(a), M) = 0;
hence M has its support entirely contained in B, so that it is a B;-module
for some i. For each i € {1,...,m}, let P(b;) be the unique indecompos-
able projective B;-module in the 7-orbit of R;. Then Orb(T'(mod A)) is
constructed from the disjoint union of the trees Orb(I'(mod B;)) by adding
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one extra point wp(,) and an arrow wp(;) — wWp(,) for each i. Hence it is a
tree.

(b) For sufficiency, we suppose that Orb(I'(mod A)) is a tree but that A
does not satisfy the separation condition. There exists a € (Q 4)o such that
P(a) does not have a separated radical. We may choose a so that, for each
proper successor a’ of a in @4, the module P(a’) has a separated radical.
Because A is representation—directed, it is representation—finite, hence, by
(IV.4.9), distinct direct summands of rad P(a) are not isomorphic. Then
there exist two nonisomorphic indecomposable summands M, N of rad P(a)
and two points b; in supp M and b; in supp N that are connected by a walk

b1 ba e bt

in Qa(@). Let ¢,d € (Qa)o and 7,5 > 0 be such that M = 77"P(c) and
N = 77%P(d). Because by is in supp M, we have Hom (P (b1), M) # 0;
hence we have a path from P(b;) to M and similarly a path from P(b;)
to N in I'(mod A). Consequently, the points ¢, by, ..., b, d all belong to
the same connected component @ of Q4(@). Let B be the algebra given
by the quiver @ with the inherited relations. By our assumption on a,
the algebra B satisfies the separation condition. Because it is a quotient
of A, it is representation—finite. Hence B is representation—directed, be-
cause I'(mod B) is postprojective, by (4.5)(a), and the necessity part yields
that Orb(I'(mod B)) is a tree. On the other hand, the hypothesis that
Orb(I'(mod A)) is a tree implies that ¢ # d (otherwise, we would have two
arrows from wp(;) to wp(q)). Consequently, Orb(I'(mod A)) contains two
distinct arrows, wp(e) — wp(a) and wpg) — Wp(a), and hence a cycle

Wpa)«—WPE) " WP(by) e Wph,) WP T WP(a)s

contrary to the hypothesis that Orb(I'(mod A)) is a tree. O

IX.5. Algebras such that all projectives
are postprojective

We know that if A is a representation—directed or concealed algebra, then
I'(mod A) has a postprojective component containing all indecomposable
projective A-modules [see (VIIL.4.5)]. This is not true in general. For
instance, the algebra A given by the quiver

B
S —
¥
bound by a8 = 0 is such that the module P(3) is not postprojective. Indeed,
the algebra has a unique postprojective component equal to that of the path
algebra of the full subquiver generated by points 1 and 2, and it is easily seen

that rad P(3) (which is indecomposable) does not lie in this component.
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In general, we have the following characterisation of algebras having the
property that all indecomposable projectives are postprojective.

5.1. Proposition. Let A be an algebra and T'(mod A) the Auslander—
Reiten quiver of A. The following three conditions are equivalent:

(a) The quiver T'(mod A) admits postprojective components the union of
which contains all indecomposable projective A-modules.

(b) There is a common bound on the length of paths in mod A the targets
of which are indecomposable projective A-modules.

(¢) The number of paths in T'(mod A) the targets of which are indecom-
posable projective A-modules is finite.

Proof. Assume (a). It follows from (VIII.2.5) that each path in mod A
with target that is an indecomposable projective A-module is of finite length.
Then (b) follows at once.

Because the quiver I'(mod A) is locally finite, (b) implies (c) trivially.
Now we assume (c) and prove (a). Let C be a component in I'(mod A) that
contains an indecomposable projective A-module. We claim that C is post-
projective. Let D denote the full translation subquiver of C generated by
all modules in C that are predecessors of a projective module in C. Clearly,
by our assumption, D is finite, acyclic and closed under predecessors. In
particular, for any M in D, there exist 7 > 0 and an indecomposable pro-
jective module P in D such that 7" M = P. We now prove that, for any N
in C, there exist s > 0 and a module M in D such that N = 77°M. Clearly,
this will imply that N = 7=¢P, for some ¢ > 0 and some indecomposable
projective P.

Let N be a module in C, and assume it is not in D. Because C is con-
nected, there exists a walk

M = My M,y M., M1 =N
in C, for some M inD. We may assume that none of the modules M;,. .. ,M,,
belongs to D. Then the modules My, ..., M,,4+1 are not projective; hence

there is a walk
M, e TM,, TMp41.

By induction, we conclude that the module 7M,,+1 = 7N is of the form
775L for some s > 0 and some L in D, and consequently N = 7 571L,
We complete the proof by showing that C is acyclic. Assume that

L=L; — Ly — --- — Ly=1L

is a cycle in C. There is an integer » > 0 such that 7"L; is projective for
some ¢ and 7"L; # 0 for all j # 4, where ¢ and j are such that 1 <4,j <t.
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Hence, there is a cycle
7"L=717"L — -+ — 7L — -+ — 7" Li=7"L

in C passing through the projective module 7" L;. Thus there are paths in C
of arbitrarily large length with a target that is the projective module 7" L;,
a contradiction. O

We now aim to prove the following theorem, which will play an important
role later.

5.2. Theorem. Let A be an algebra and assume that T'(mod A) admits
postprojective components the union of which contains all indecomposable
projective A-modules. Then, for any idempotent e € A, T'(mod (A/AeA))
admits postprojective components the union of which contains all indecom-
posable projective A/ AeA-modules.

Proof. It follows from (5.1) that there is a common bound, say m, on the
length of paths in mod A with targets that are indecomposable projective
A-modules. We prove that any path in mod (4/AeA) with a target that is
an indecomposable projective A/AeA-module is of length at most m. The
result will follow from (5.1). Let

MTL)MT_1_> _>M1L>M0:p/

be a path in mod (A/AeA), with P’ projective. There exists an indecom-
posable projective A-module P such that P’ = P/PeA, and we have an
exact sequence

0 — PeA ~% P 2% P — 0
in mod A. Constructing successively fibered products along the f; yields a
commutative diagram in mod A with exact rows:

0 —s Ped —*“*+ N, —*“» M, ——s 0
l lfr
0 — PeA —r—1, N, Yot "y — 0

! !

0 —— Ped — P —— P —— 0
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We note that Imwu; = N;eA, and M; = N;/N;eA for each ¢ such that
1 <17 <r. Hence
N, =L; ® Lé,

where L; is an indecomposable A-module, and L/ is an A-module such that
L, = LieA. Moreover, v; induces an isomorphism L;/L;eA = M; for each
7. Hence we get a commutative diagram in mod A with exact rows

0 —— LeA s L. ", M, —— 0
i bl r

0 —— L,_qeA —— L., —— M,.; —— 0

0 —— LieA S N Ly _ M, — 0
1’ fi fi
0 —— PeA LN P L NN P’ —s 0

where all the homomorphisms are the obvious ones. Beacause f; belongs to
rad s (M;, M;_1) for each i, we infer that

fl/ S radA(le, Li—l)

for each i. Hence, we deduce the existence of a path

I fi

LT—T>LT—1—>"' —>L1—1>P

in mod A with target in the projective module P, so that » < m. This
finishes the proof. O

Our next question is whether a postprojective component containing all
projectives also contains enough sincere indecomposable modules. To mo-
tivate our result, we start with the following two examples.

5.3. Examples. (a) Let A be given by the quiver

40
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bound by de = 0, avy = 0. Then I'(mod A) has a unique postprojective
component P(A) of the form

P(5):(1JlOO 8010——--3132—---8143—---?154——-—
oON N N N SN
P(4):(1JOOO 8100 2110 8021 3143 8154
N N N N SN SN S
P(3):(1J100 8110 ?121 8032 (1)154 8165
N N N N SN SN
P(Z):(lJllo 8121 2132 8043 3165
N N SN N S NS
P(1):(1J121 8132 2143 8054 3176
oON N N N SN
0 1 0 0 0
gOL0= === 132~ - - 143- - 154----0065---~~---

where the modules along the horizontal dotted lines have to be identified.
One sees that P(A) contains all the indecomposable projective modules and
that the dimension vector of any module in P(A) is zero at either point 4
or point 5. Hence P(A) does not contain sincere indecomposables. We
note that the modules P(1) = 31 21, 771P(2) = 81 21, 7 2P(3) = 21 21,
T3P(4) = 8021, and 772P(5) = 3132 form a section ¥ of underlying
graph Ay Tt is easily seen that any indecomposable projective A-module is
a submodule of a module on ¥, hence by (VI.2.2), ¥ is a faithful section.
Clearly, Hom4(U,7V) = 0 for all U, V on X. Applying (VIIL.5.6) yields
that A is a tilted algebra of type Ay4. It is not concealed. Indeed, I'(mod A)
has a preinjective component of the form

0067 0045 0023 0001

SN N N

and hence A cannot be concealed by (VIII.4.5)(c).
(b) Let A be given by the quiver

1 o 2 @ 3
O¢«——oO O
B

bound by ay = 0. Then I'(mod A) has a unique postprojective component
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P(A) of the form
P(1)=100 010 - 132 - --=-- 165----

\/\/\ N
/

/ /!
/\/\ N\

P(2)=110
PB3)=121
SN SN SN S
010 ---- 132 ---- 054 ---- 165 ----

where the modules along the horizontal dotted lines have to be identified.
One sees that P(A) contains all indecomposable projectives, infinitely many
sincere indecomposable modules, and infinitely many nonsincere indecom-
posable modules. On the other hand, one shows easily, as in (a), that A is
a tilted algebra of type A, but is not concealed.

Our present objective is to show that this situation does not occur for
concealed algebras. Let @ be a finite, connected, and acyclic quiver that
is not Dynkin. We prove that if B is concealed of type @, then all but
finitely many modules from the unique postprojective component P(B) of
I'(mod B) are sincere. We start by proving that this is the case for the path
algebra A = KQ of Q. We need two lemmas.

5.4. Lemma. Assume that A = KQ, where Q is a finite, connected,
and acyclic quiver that is not Dynkin. Let P and P’ be two indecompos-
able projective A-modules. Then the sequence dimgHom 4 (P, 7=™P"), with
m > 1, is not bounded.

Proof. We recall from (VIII.2.1) that the unique postprojective compo-
nent P(A) of I'(mod A) consists of all modules 7= P(j), where j € Qo and
m > 0. For i,j € Qo, let

dij = lim dimgHoma(P(¢), 7~ ™P(5)).

m—00

Because @) is not Dynkin, the algebra A is representation—infinite. It follows
from (IV.5.4) that P(A) is infinite and the dimensions

dimg " P(j) = > dimgHoma(P(i), 7" P(j))

1€Qo
of the indecomposable postprojective A-modules 77™P(j) are unbounded.

Consequently, not all d;; are finite. We claim that in fact all d;; are infinite.

Let b — a be an arrow in Q. Because, according to (VII.1.6), there exist
isomorphisms ej(rad A/rad?A)e, = Irr(P(a), P(b)) = Irr(I(a), I(b)), there
exist irreducible morphisms P(a) — P(b) and I(a) — I(b). It follows that
there exist almost split sequences of the form

0 — P(a) — Pb)®E — 77 'P(a) — 0,
0 — P(b) — 7 'Pla)® F — 77 'P(b) — 0,
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and all their nonzero terms are postprojective. Because the component
P(A) is infinite, according to (VIII.2.1), for each m, the modules 7=™P(a)
and 7™ P(b) are nonzero. Hence, there exist almost split sequences of the
form

0 — 7 ™P(a) — 7 ™Pb)®T ™E — 7 ™ 'P(a) — 0,
0 — 7 ™P(b) — 7 ™ 'Pla) @7 ™F — 7 ™" 1P(b) — 0

for each m > 1. Applying the exact functor Hom4 (P (i), —), we get exact
sequences, and we easily conclude that

dip <2d;, and  diq < 2dsp

for any ¢ € @Qy. Consequently, d;; is infinite if and only if d;, is infinite.
Further, (IT1.2.11) and (IV.2.15) yield

dimycHom (P(i), 7" P(j)) = dimxHoma(r~"P(j), 1(3))
= dimgHomy (P(j), 7™1(4))
= dimgHom 4 (7™I(3), I(j)).

Analogously, there exist almost split sequences of the form

0 — 7I(b) — I(a) ® E' — I(b) — 0,

0 — 7l(a) — 7I()® F — I(a) — 0,
and all their nonzero terms are preinjective. By (VII1.2.1), the preinjective
component Q(A) of T'(mod A) is infinite and the modules 7 (a) and 7™1(b)

are nonzero for all m > 0. Hence, there exist almost split sequences of the
form

0 — 7™M () — 7" I(a) ® T E — 7™I1(b) — 0,
0 — 7™ I(a) — 7™ (D) & T™F — 1™I(a) — 0

for each m > 1. Applying the exact functor Homa(—, I(j)), we get exact
sequences and we easily conclude that

daj < dej and dbj < 2daj

for any j € Qo and, consequently, dy; is infinite if and only if d,; is infinite.
Our claim then follows from the connectedness of Q. O

In the following lemma and proposition, we need the notions of reflection
of a quiver and associated reflection functors, as defined in (VIL5).
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5.5. Lemma. Assume that A = KQ, where Q is a finite, connected,
and acyclic quiver that is not Dynkin. Let a be a sink in Q and A’ be the
path algebra of the quiver 0,Q. Then all but finitely many indecomposable
postprojective A’-modules are sincere if and only if all but finitely many
indecomposable postprojective A-modules are sincere.

Proof. Consider the APR-tilting module T'[a] 4 =T_1S(a)@(@b¢a P(b))
and the reflection functors S = Homa(T[a],—) : mod A — mod A" and
S, =—®a T[a] : mod A’ — mod A as defined in (VIL.5). Because S(a)4 =
P(a) 4 is a simple projective A-module whereas S(a) 4+ is a simple injective
A’-module, it follows from (VII.5.3) that S;” and S, induce an equivalence
between the full subcategory of mod A consisting of all indecomposable
postprojective A-modules except S(a)a and the full subcategory of mod A’
consisting of all indecomposable postprojective A’-modules. Moreover, a is
a source in 0, with corresponding projective module

P(a)ar = Hom4(T[a], 7" S(a)) = SF7r71S(a).

Let M 2 S(a) be an indecomposable postprojective A-module. In view of
(IV.2.15) and (VIL5.3), we have

Hom (P(a) 4, M) = Homa(S(a), M) = Hom (7~ *S(a), 7' M)
=~ Homua/ (S 7718 (a), STt M)
=~ Homua/ (P(a)ar, 7~ 1S M)

and, for any b # a,

Hom 4 (P(b), M) = HomA/(SjP(b), S;rM) =~ Hom 4/ (P(b) ar, SjM).
This establishes the lemma. O

5.6. Proposition. Assume that A = KQ, where Q is a finite, connected,
and acyclic quiver that is not Dynkin.

(a) All but finitely many indecomposable postprojective A-modules are
sincere.

(b) All but finitely many indecomposable preinjective A-modules are sin-
cere.

Proof. (a) Because @ is not Dynkin, according to (VIII.2.1) the postpro-
jective component P(A) of I'(mod A) is infinite. Suppose, to the contrary,
that P(A) contains infinitely many nonsincere indecomposable modules.
Then there exists a € Qo such that Hom 4(P(a), M) = 0 for infinitely many
modules M in P(A). We claim that we may assume a to be a source in
Q. Indeed, if this is not the case, then by (VIL.5.1), there exists an admis-
sible sequence of sources ai, ... ,a; such that a is a source of o, ...04,Q.
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Invoking (5.5) completes the proof of our claim. Therefore, assume that a
is a source in ). Letting ), denote the full subquiver or ) generated by
all points except a, and H = KQ,, it follows from our assumption that
P(A) contains infinitely many indecomposable H-modules. We may write
H = B x C, with B connected and such that P(A) contains an infinite
sequence (M;);>1 of indecomposable B-modules. We recall that any in-
decomposable module from P(A) has only finitely many indecomposable
predecessors in mod A. Because B-modules are A-modules, each of the M;
has only finitely many indecomposable predecessors in mod B. But B is a
representation—infinite hereditary algebra, so we infer that all M; are post-
projective B-modules (indeed, it follows from the definition of a preinjective
component that preinjective modules have infinitely many preinjective pre-
decessors whereas, if R is a regular indecomposable B-module, there exists
an indecomposable projective B-module P such that Homp (P, R) # 0 and
(IV.5.1) shows that R has infinitely many postprojective predecessors). Fur-
ther, because the postprojective component of I'(mod B) has finitely many
T-orbits, each indecomposable postprojective B-module is a predecessor of
some M;, and hence all indecomposable postprojective B-modules lie in
P(A). Let rad P(a) = N®N’, where N is a B-module and N’ is a C-module.
Clearly, N is nonzero (because A is connected) and projective. By (5.4),
there exists an indecomposable nonprojective postprojective B-module U
such that dimgxHomp (N, U) > 3. Applying the functor Homa(75'U, —) to
the short exact sequence 0 — N @& N’ — P(a) — S(a) — 0 yields an exact
sequence

0 = Homu (75'U, S(a)) — Extl(r5'U, N @ N')
— Extly (75U, P(a)) — Ext}y(r5'U, S(a)) = 0,
because 75U is a B-module, and S(a) is an injective A-module. Moreover,

because A = K@ is hereditary, so is B; hence the projective dimension of
the B-module 75 LU is at most 1, and we have

Extl(75'U,N @ N') = Exth(r5'U, N) =2 DHomg(N,U).
Consequently, dimgExtYy (75U, P(a)) > 3. Let
0— Pla) =V —715'U—0
be a nonsplit short exact sequence in mod A. It follows from (VIIIL.2.8) that
dimgEndV < dimgEnda(P(a) @ 75'0)
= dimgEnd 4 P(a) + dimgEnda (75'U) = 2
because Homa(P(a),75'U) =0 and
Homy (75U, P(a)) = Homp (5 'U, N) =0
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(because N is projective in mod B). Therefore, dimgEnd 4V =1 and Vy is
indecomposable. Moreover, V' belongs to P(A), because it is a predecessor
of 75'U. On the other hand, we have

ga(dimV) = (dimV,dim V) 4
= (dim P(a) + dim 75'U,dim P(a) + dim75'U) 4
=qa(dim P(a)) + ga(dim75'U) + (dim P(a),dim75'U) 4
+ (dim 75U, dim P(a))
<14+14+0-3=-1.

Therefore, 1 — dimgExtY(V, V) = ga(dim V) < 0, and so Ext (V, V) # 0,
which contradicts the fact that V' lies in P(A) and finishes the proof of (a).
Because (b) follows from (a) and from the duality D : mod A — mod A°P,
the proposition is proved. ([

We finally prove the announced result.

5.7. Theorem. Let Q) be a finite, connected, and acyclic quiver that is
not Dynkin, and let B be a concealed algebra of type Q. Then all but finitely
many indecomposable postprojective B-modules are sincere.

Proof. Let A = K@ and B = End T4 for some postprojective tilting
module T4. We know from (VIII.4.5) that the unique postprojective com-
ponent P(B) of I'(mod B) consists of modules of the form Hom4 (T, M),
where M ranges over all but finitely many isomorphism classes of inde-
composable postprojective A-modules. Moreover, in view of (VI.3.10), if
T=T\&...%T, is a decomposition of T into indecomposable A-modules,
then the modules Hom (T, T;) form a complete set of representatives of
the indecomposable projective B-modules, and these modules lie in P(B).
Fix an index ¢ € {1,...,n}. Because T; lies in the postprojective com-
ponent P(A) of T'(mod A), there exist a; € Qo and m; > 0 such that

3 =2 77™iP(a;). Further, in view of (VI.3.8) and (IV.2.15), for any inde-
composable module M from P(A) with Homy (T, M) # 0, there are isomor-
phisms

Homp(Hom (T, T}), Homa (T, M))=Hom 4 (T;, M) 2Hom4 (P (a;), 7™ M).
Because, by (5.6), Homa(P(a;), N) # 0 for all but finitely many modules

N in P(A), we deduce that Homp(Homy (T, T;), X) # 0 for all but finitely
many modules X in P(B), as required. O
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IX.6. Gentle algebras and tilted algebras
of type A,

In this section, we consider a class of algebras, the gentle algebras, be-
cause they offer a particularly interesting example and because we need in
the sequel a subclass, that of the tilted algebras of type A,,. We give here
a complete classification of the latter.

6.1. Definition. Let A be an algebra with acyclic quiver Q4. The
algebra A = KQ /7 is called gentle if the bound quiver (Q4,Z) has the
following properties:

(G1) Each point of @ 4 is the source and the target of at most two arrows.
(G2) For each arrow « € (Q4)1, there is at most one arrow 8 and one
arrow ~y such that a0 ¢ 7 and va ¢ 7.
(G3) For each arrow « € (Q4)1, there is at most one arrow £ and one
arrow ( such that a€ € I and (a € I.
(G4) The ideal 7 is generated by paths of length two.
If Qa4 is a tree, the gentle algebra A = KQ /7 is called an algebra given
by a gentle tree, or simply, a gentle tree algebra.

6.2. Examples. The following three bound quiver algebras are gentle:
(a) the algebra A given by the quiver

V

bound by af =0, vé = 0;
(b) the algebra B given by the quiver

5 0 Y B a
o o
1 2

/\

wo
&0
SiNe}
[=2]

bound by af = 0, de = 0; and
(c) the algebra C given by the quiver

/Y

bound by a8 =0, vé = 0.

We now show that the tilted algebras of type A,, are gentle. To do so,
we start by proving a lemma measuring the Hom-spaces in a hereditary
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algebra of type A,,. We notice first that, over a hereditary algebra of type
A,,, the middle term of any almost split sequences is a direct sum of at most
two indecomposable modules [this indeed follows from (IV.3.9), (VIIL.1.6),
and (VIL.5.13)]. Consequently, every point in the Auslander—Reiten quiver
is the source or target of at most two sectional paths. We need the following
notation.

Let A be a representation—directed algebra satisfying the separation con-
dition, and assume that the middle term of any almost split sequence in
mod A is a direct sum of at most two indecomposable modules. Let M
be an indecomposable A-module. Draw the two maximal sectional paths
starting at M (that is, sectional paths, that are not properly contained in
other sectional paths). They have respective targets M; and M, and they
determine a full subquiver ¥ of I'(mod A) with underlying graph A,,. We
construct Z3 in which there is a unique maximal sectional path starting at
each of M7 and M. These two sectional paths intersect at a point X in Z3
(which may not correspond to an indecomposable A-module). We then let
R(M) denote the set of all indecomposable A-modules N such that there
is a path

M—-— i — N — oo — X

in Z3. For example, let A be the path algebra of the quiver

[¢]

[¢] [¢] [¢]
2 3 4

o] o]
6 5 1
and M4 be the indecomposable A-module such that dim M = 011110. We

have indicated in the following picture of I'(mod A) the points of R(M) by
black dots:

Ve
\ [ ] [ ]
NN NN

6.3. Lemma. Let A be a representation—directed algebra satisfying the
separation condition, and assume that the middle term of any almost split
sequences in mod A is a direct sum of at most two indecomposable modules.
Let M and N be indecomposable A-modules. Then dimgHoma(M,N) =1
if and only if N € R(M), and Hom4 (M, N) = 0 otherwise.
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Proof. Let 0 — N’ — N — N” — 0 be a short exact sequence in mod A
such that the modules N” and N” are indecomposable and Hom 4 (M, N') #
0. Applying the functor Hom4 (M, —) yields an exact sequence

0—Hom 4 (M, N')—Hom (M, N) — Homa(M,N") — Ext! (M, N’).

Assume Ext! (M, N’) # 0. By (IV.2.13), there exists a homomorphism
N’ — 7M that induces a cycle

M— N —-1tM — % — M,

contrary to the assumption that A is representation—directed. This shows
that ExtY (M, N’) = 0, and we get

dimgHoma (M, N) = dimgHomy (M, N') + dimgHom4 (M, N"),

that is, the function fj; = dimgHom4 (M, —) is additive on short exact
sequences with indecomposable end terms, provided it is nonzero on the
first term. Clearly, fas (M) = 1. Also, by (IV.5.6), if fa;(N) # 0, then N is
a successor of M. The result follows from an easy induction. O

6.4. Corollary. Let A be a hereditary algebra of type A, and T be a
tilting module. Then B = End T4 is a gentle algebra.

Proof. Let T'(a) be an indecomposable summand of T' and T'(b) be an-
other indecomposable summand such that Homy (T'(a), T(b)) # 0. Assume
first that T'(a) is not injective. Because

Hom (77T (a), T(b)) = DExtY (T(b),T(a)) =0,

T(b) is a successor of T'(a) but not of 77T (a); hence it lies on one of the
(at most two) maximal sectional paths starting with T'(a). This is also
(trivially) the case if T'(a) is injective, for then R(7T'(a)) is reduced to these
two paths. Because

dimgHom 4 (T'(a), T(b)) < 1,

in view of (VI.3.10) there is exactly one nonzero path from b to a in Qp.
Similarly, if T'(¢) is another summand of T' such that Hom 4 (T'(¢), T'(a)) # 0,
then T'(¢) lies on one of the (at most two) sectional paths ending with T'(a),
and there is exactly one nonzero path from a to ¢ in @p. This shows (G1).

If T(c), T'(a), and T'(b) are as described earlier and they lie on the same
sectional path, then Hom 4 (T'(c), T'(b)) # 0 (by (2.2)). If, on the other hand,
they do not lie on the same sectional path, then in particular T'(c) is not
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injective and Hom4 (77 17'(c), T'(b)) = 0 implies Hom 4 (T'(c), T'(b)) = 0 (see
the following picture). This shows (G2) and (G3).

T(b)

T(c)

%

Because there are at most two sectional paths starting or ending at each
indecomposable summand of T, the argument also proves (G4). O

T(a)

We now show that tilted algebras of type A,, are given by gentle trees. For
this purpose, it suffices, by (4.3), to show that they satisfy the separation
condition.

6.5. Proposition. Let A be a representation—finite hereditary algebra,
Ty be a tilting module, and B = EndTy4. Then B satisfies the separation
condition.

Proof. Assume to the contrary that B does not satisfy the separation
condition. Then there exists a € (@p)o such that rad P(a)p has two inde-
composable summands M; and Ms, having two points b; and b in their
respective supports, which are connected by a walk in Qz(@’). By (VI.3.8),
this walk induces a walk linking P(b;) and P(bs) in I'(nod B) (on which no
module has a in its support). Because there exist paths from P(by) to M;
and P(by) to My, this yields a closed walk w in I'(mod B)

P(a) «— My «— --- «— P(b1) P(by) — -+ — My —> P(a).

We can, of course, assume w to be of minimal length. By (VIIIL.3.5),
I'(mod B) is acyclic, hence w contains sources and sinks. One can sup-
pose that every sink corresponds to a projective B-module. Indeed, if the
sink U is such that Up is not projective, then we can replace U by 7U and
each arrow V' — U by the corresponding arrow 7U — V (note that this
process does not affect the length of w). On the other hand, the minimality
of w implies that, repeatedly applying this process, we cannot reach another
point of the original walk w.

Let Y be a point of w that is not a sink. There exists a path from Y
to some sink P, but Pp is projective and hence belongs to the torsion-free
class Y(Ta). Because T4 is splitting, Y(T4) is closed under predecessors.
Thus Y € Y(T4), and all modules on w belong to Y(T4).
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Let Z be a source on w and put Ny = Z ®p T. If N is not injective,
then by (VI.5.2), the almost split sequence starting with Z = Homy (T, N)
lies entirely in Y(T4); hence we may replace Z by 7717 and each arrow
Z — 'Y by the corresponding arrow Y — Z, thus obtaining a new walk w’
in Y(T4) of the same length as w and such that, for each source Z on w’
the A-module N is injective. We note that w’ may have sinks that do not
correspond to projectives: what matters to us is that it still lies entirely
inside Y(T4).

Applying the functor — ®p T, we obtain a closed walk w’ in I'(mod A)
having all its sources injective. This however is impossible, because A is
a hereditary algebra of Dynkin type and hence satisfies the coseparation
condition. d

6.6. Corollary. Let B be a tilted algebra of type A,,. Then B is a gentle
tree algebra.

Proof. This follows from (6.4), (6.5), and (4.3). O

Our present objective is to characterise among the gentle tree algebras
which ones are tilted of type A,. That they are not all so is shown by
Example 6.2 (b). In fact, we show in (6.11) that this is essentially the only
“bad” example.

6.7. Proposition. Let A = KQa/Z be a gentle tree K-algebra and
n = 1[(Qa)o|- Then there exists a sequence of algebras A = Ag, A1, ..., An

and a sequence of separating tilting modules ng?)), . ,TXZ}:P such that
Aj+1 = End TIgJ]), or Aj+1 = (End T[gj;))op

forall j € {1,...,m}, and Ay, is hereditary of type A,. In particular, the
algebra A is representation—finite.

Proof. We show that we can tilt A to another algebra given by a gentle
tree, having one fewer relation. The statement follows from an obvious
induction on the number of relations on @ 4. Up to duality, we can assume
that Q4 has a sink with exactly one neighbour so that the bound quiver of
A has the form

with a8 = 0 and ¢t > 2. It follows that the beginning of the Auslander—
Reiten quiver I'(mod A) has the form
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P(Z)O/
/N

P(2)/P(1)

P(1)0

We define Ty = @), T(i) by

[ P®/P-i) 1<i<t,
@ = { P i>t.

It is easy to see that T4 is a tilting module. We now show that T4 is
separating. Let A denote the additive full subcategory of mod A consisting
of direct sums of the indecomposable modules the support of which lies
completely inside {1,...,t —1}.

We claim that F(T) = A, whereas 7 (T') consists of direct sums of the
remaining indecomposable modules. Indeed, because for each ¢ < t and
each indecomposable A-module M, Homa (P(t)/P(i), M) is a subspace of
Hom 4 (P(t), M), we have Hom4 (T, M) = 0 if and only if Hom 4 (P(j), M) =
0 for all j > t. This shows that F(T) = A.

To show that 7 (T) consists of direct sums of the remaining indecompos-
able modules, it suffices, by maximality of the torsion class, to show that
if M ¢ A is indecomposable, then Homy(M,—)|4 = 0. So, let N € A
be an indecomposable A-module such that Hom4 (M, N) # 0. Applying
(IV.5.1) repeatedly, our assumptions that Homa (M, N) # 0 and M ¢ A
imply that Homy (M, P(1)) # 0, but this is impossible, because P(1) is
simple projective.

We claim that the bound quiver of B = End T4 has the following form

, Qg o1 "
Qe O———O0¢— +++ «—0«—0O Qs
t t—1 1 t+1

where Q5 = @', and is bound by the same relations as @', whereas Q5 =

Q') and is bound by the same relations as Q4. Moreover, the path
t+1—-1—---—>t—1—1t

is not bound; there exists a relation of the form £a; in B if and only if there

exists a corresponding relation £« in A; and there are no other relations in

B involving the arrows aq, ... , .
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Because the points of Qp lying inside Q5 or Q% correspond to those
summands of Ty that are the indecomposable projective A-modules corre-
sponding to the points of @’y or Q’4, respectively, we deduce that Q5 = @'y,

't = @'y, and they are bound by the same relations as Q4 or @'}, respec-
tively.

In view of (V1.3.10), the existence of the irreducible morphisms

P(t) — P()/P(1) — -+ — P(t)/P(t—1) — P(t+1)

in mod A implies the existence of the arrows

Ry e N - NN
in Qp. Clearly, for i € {1,...,t — 1}, there is no homomorphism from

P(t)/P(i) to a projective corresponding to a point in @', and no homomor-
phism from a projective corresponding to a point in @’ to P(t)/P(i). On
the other hand, all the homomorphisms from projectives corresponding to
points of @', to P(t)/P(i) must factor through P(t), and all the homomor-
phisms from P(t)/P(i) to projectives corresponding to points of @) must
factor through P(¢+ 1). Thus @Qp has the required form.

Next, if there exists a relation starting in a € (Q’4)o) and ending in ¢,
it must be of the form o = 0, where £ : @ — ¢t + 1. It is replaced in B
by a relation of the form £ay = 0, because Hom 4 (P(¢), P(a)) = 0 implies
Homu4 (P(t)/P(1), P(a)) =0.

We claim that there are no new relations. Indeed, a new relation can
either start at Q%5 and end at some ¢ € {1,...,t — 1} or start at some
i € {1,...,t — 1} and end in Q%5. Suppose a € (Q’4)o is such that
Hom 4 (P(a), P(t)/P(i)) = 0 but Hom(P(a), P(t)) # 0. Then there exists
a nonzero homomorphism P(a) — P(t) having its image in P(:) C P(¢),
which is a contradiction.

Finally, if b € (Q’))o is such that Homu(P(t)/P(i), P(b)) = 0 but
Homyu(P(t 4+ 1), P(b)) is nonzero, we again have Homy (P(t), P(b)) = 0
and hence one of the zero relations discussed earlier. Thus, in particular, B
is given by a gentle tree with one fewer zero relation.

To finish the proof, assume that A is representation—infinite. Because
T is separating, B is also representation—infinite. But applying this pro-
cess inductively, we end with a hereditary algebra of type A,,, which is
representation—infinite and thus we have a contradiction. (I

6.8. Corollary. Let A= KQa/Z be a gentle tree algebra.

(a) If n = |(Qa)ol|, there exists a hereditary algebra H of type A,;
a sequence of algebras H = Ag, A1,...,Am = A; and a sequence

of splitting tilting modules ng?, ngll), - ,TXZ;” such that
Ai—i-l = End TX) or Ai—i-l = (End ng?)Op
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forallie{l,... ,m—1}.

(b) The algebra A satisfies the separation condition.

(¢) The middle term of any almost split sequences is a direct sum of at
most two indecomposable modules.

(d) Assume that M and N are indecomposable modules in mod A.
Then dimgHoma(M,N) = 1 if and only if N € R(M), and
dimgHom 4 (M, N) = 0 otherwise.

Proof. (a) This follows from the fact that B = End T4, where T4 is a
separating tilting module, if and only if A = (End gT)°P, where gT is a
splitting tilting module.

(b) Because @4 is a tree, we just apply (4.3).

(c) We apply the description of the almost split sequences in (VI.5.2).

(d) We apply (c) and (6.3). O

6.9. Lemma. Let B be a tilted algebra of type A,,. Then the bound
quiver of B contains no full bound subquiver of the form

4 lo% o
O¢——0+—0 O+———0+——0

1 2 3 t—2 t—1 t
witht >4, af =0, v0 = 0; all unoriented edges may be oriented arbitrarily;
and there are no other zero relations between 2 and t — 1.

Proof. Assume first that the bound quiver of B contains such a sub-
quiver with ¢ > 5; then consider the indecomposable B-module M having
as support the subquiver 3 o o t—2 (that is, M; = K for
3 <i<t—2and M; =0 otherwise).

We claim that pd M > 1. To construct the projective cover of M, we
take all the sources si,...,sg in supp M, then top M = @le S(s;) and
the projective cover of M is P = @le P(s;). Tt remains to show that the
kernel of the canonical surjection p : P — M is not projective. But there
exists a source s; and a path s; — -+ — 3, and P(s;) contains a submodule
L, which is a direct summand of Ker p, has simple top S(2) but no simple
composition factors isomorphic to S(1). Now L is not projective; if it were,
it would have S(1) as a composition factor. Then pd M > 1. Similarly,
id M > 1. Therefore, by (VIIL.3.2)(e), B is not tilted.

It remains to consider the case where t = 4. Here, the bound quiver of
B has the form

@ @ﬁ@ )
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bound by a8 =0, fy = 0. We write the beginning of a minimal projective
resolution for S(4). Clearly, the canonical surjection P(4) — S(4) has in
its kernel a summand Z having simple top S(3). The projective cover of Z
being P(3), the canonical surjection P(3) — Z has in its kernel a summand
Y having simple top S(2). The kernel of the canonical surjection P(2) — Y
has a summand X having simple top S(1). Thus, the beginning of a minimal
projective resolution for S(4) is

hence, pd S(4) > 3 and so gl.dimB > 3. Consequently, by (VIIL.3.2)(e),
the algebra B is not tilted. O

6.10. Lemma. Let A’ be a gentle tree algebra with bound quiver

B1  ai az P

¢} ¢} 0¢—0«—0 0——0——0-+-0 ¢} O-++0—0
ao ay az ar Ar41

such that there is no zero relation having its midpoint between a; and ajy1;
there is a zero relation of midpoint a, pointing left or right according to
whether r is odd or even; and no two consecutive zero relations point in the
same direction. Assume that there exists a path I(ag) — -+ — P(ar4+1) in
T'(mod A”). Then r <1 and Homas(I(aog), P(art1)) # 0.

Proof. Let, for each j such that 0 < j <r, A’ denote the (hereditary)
algebra given by the full subquiver of @ 4/:

a; O o o O ajt1

Then it is easily seen that I'(mod A’) has the following shape

I'(mod Ay)
I'(mod AY)
I'(mod A})
|
1
I'(mod A”)

and I'(mod A%) NI"(mod A’ ;) = {S(a;41)}. In particular, the existence of
a path from I(ag) to P(a,4+1) implies that the path must factor over S(aq),
r < 1, and the quiver of A’ is of the form

B1 3
o) o) e o) e o
ag al as

bound by a1 = 0. Clearly, we then have Hom 4/ (I(ag), P(ag))) #0. O
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6.11. Theorem. A gentle tree algebra A is tilted of type A, if and only
if its bound quiver contains no full bound subquiver of the form
5

Y B a
O¢——0O«——0O o] e o] O¢——0O«——0O
1 2 3 t—2 t—1 ¢t

witht >4, af =0, v0 = 0; all unoriented edges may be oriented arbitrarily;
and there are no other zero relations between 2 and t — 1.

Proof. Thanks to (6.9), we only need to show the sufficiency. We con-
struct a section in I'(mod A). We consider the connected full subquiver of
I'(mod A) consisting of those M such that there is a path M — .-+ — P(s)
for some source s in @ 4, and ¥ is the right border of this subquiver, that is,
Y is the connected full subquiver of T'(mod A) consisting of those M such
that there is a path from M to P(s) for some source s in Q4, and every
such path is sectional.

It follows from the definition of ¥ that it is convex and that it intersects
each 7-orbit at most once. We now show that ¥ intersects each 7-orbit.

First, we notice that no indecomposable projective A-module is a proper
successor of X. Indeed, let P(a) be an indecomposable projective. There is
a source s, in @4 and a path s, — -+ — a that induces a path P(a) —

- — P(sq) in I'(mod A). This establishes our claim.

Next, we show that no indecomposable injective A-module is a proper
predecessor of ¥. Assume that there exists a path from I(a) to X. We
claim that I(a) in fact lies on 3. There exists a source s, in Q4 and a
path I(a) — -+ — P(s,) in I'(mod A). The hypothesis shows that the walk
linking a to s, in @ 4 is of one of the forms

B1  oaq az P
(D o .-+ o0é&—0¢—o0--+ O0—H0-50 -+ O O +--—0
a=ag ay az ar Ar4+1=S8aq
ar B B2 sz
(I1) 0O -+ 0—30—>0:-+ 0¢—0¢—0 -+ O O +-:¢—0
a=ag ay az ar Ar4+1=S8aq

where unoriented edges may be oriented arbitrarily; there are zero relations
with midpoints a1, ..., a,, no two consecutive of which are oriented in the
same direction; and no other zero relations.

We consider only the case (I); the other is similar. Let A’ be the al-
gebra given by the bound quiver of (I), and let I’(a) and P’(s,) denote,
respectively, the indecomposable injective A’-module corresponding to a,
and the indecomposable projective A’-module corresponding to s,. Let
E : mod A’ — mod A be the full, faithful, and exact embedding defined
by E(M% =M, ifi € (QA/)O; E(M% =0if 4 ¢ (QA/)O; E(M)a = M,
if o€ (Qa)r; and E(M)o =0 if a € (Qa/)1 (under the identification of
modules over A and A’ with representations of corresponding bound quiv-
ers). Then if R : mod — mod A’ denotes the restriction functor, we have
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RE = lmoda. Thus EI'(a), # 0, and hence there exists a nonzero ho-
momorphism FEI'(a) — I(a). Similarly, we have a nonzero homomorphism
P(sq) — EP'(sq). Thus, the existence of a path I(a) — --- — P(sq4)
implies the existence of a path

EI'(a) — I(a) — My — -+ — My, — P(sq) — EP'(s4).

We claim that, by applying the functor R, this yields a path in
I(mod A") from I'(a) to P'(sy). Indeed, because RE = 104 4/, this oc-
curs if supp M; N Q4 # 0 for all j with 1 < j < m.

Let @)y denote the branch

Qa@ Qb@ Qs
fe) e o) e o———
a b

Sa

of the tree @ 4+ attached at the point b of Q /. Suppose that supp M;NQ a» =
() for some j. Because supp I(a) N Qas # 0 and supp P(s,) NQas # 0, there
exist t1 and ty with ¢; < ¢9 such that all M; (with ¢; <t < t3) have their
supports not intersecting @ 4+, whereas M, 1 and My, have their supports
intersecting Q 4-. Because My, is indecomposable and supp M;, N Q4 = 0,
there exists b € (Qa/)o such that supp Mz, C Q. For the same reason, all
the My, with t; <t < t3, have their supports inside the same Q. However,
Hom g (M, —1, My,) # 0 and Hom 4 (My, 1, My,) # 0 imply that

supp M, -1 Nsupp My, # 0  and  supp My, 1 Nsupp My, # (.

Therefore, b € supp My, —1 and b € supp M,; hence there exist nonzero
homomorphisms f; : P(b) — My, 1 and fo : P(b) — M,;,. Let g denote
the composition My, -1 — My, — -+ — M,,. Because b ¢ supp M, ,
we have Hom 4 (P(b), My,) = 0; hence gf; = 0. But, by (6.8)(d), any two
paths from P(b) to My, give rise to the same homomorphism, up to scalar
multiplication, hence Hom 4 (P (b), M;,) = 0, which is a contradiction.

We thus have the required path in I'(mod A’). Then (6.10) yields
Homa/(I'(a), P'(sq)) # 0. Hence Homa (EI'(a), EP'(s,)) # 0 implies that
Homy(I(a), P(sq)) # 0. Because I(a) is injective and P(s,) # 0 is pro-
jective, according to (6.3) and (6.8), there is a sectional path from I(a) to
P(sq), and so I(a) lies on X.

This completes the proof that X is a section. Clearly, Homa (U, 7V) =0
for all U, V on 3. To apply (VIIL5.6), it suffices to observe that the direct
sum @,/cx, M is a tilting module (and therefore is faithful): indeed, we
have just seen that the number of points on ¥ equals the rank of the group
Ko(A), and that Ext} (U, V) = 0 for all U, V on ¥; on the other hand,
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Homa (DA, 7U) = 0 for all U € 3, because no injective lies on the left of

¥, and thus pdU < 1. (I
To sum up, we have proved the following useful fact.

6.12. Corollary. An algebra is tilted of type A, if and only if its bound
quiver is a finite connected full bound subquiver of the infinite tree

KK RK¥Y KK K¥Y K¢ K¥ K¢ KK
VAR WA VAR
MA’\/%\ ,/o!\ ™
VX B8 a s %

5 Ay N

m/ch Ny N kY Nk

YN ¥R KUK UK ¥K ¥K ¥K YK

N
N

KA KA
AR A
=N N A

X AKX AKX AXK AKX AKX

N

Q

@

bound by all possible relations of the forms a8 = 0 and Bfa = 0 and contains
no full bound subquiver of the form

) o B a
O¢——0O«——O o] e o] O¢——0O«——0O

1 2 3 t—2 t—1 t

witht >4, af =0, v0 = 0, all unoriented edges may be oriented arbitrarily;
and there are no other zero relations between 2 and t — 1.

Observe that an algebra is a gentle tree algebra if and only if its bound
quiver is a finite full bound subquiver of the infinite bound tree presented
n (6.12). Moreover, it follows from (6.8) that any gentle tree algebra may
be obtained from a hereditary algebra of type A, by a finite sequence of
tilts and cotilts.

IX.7. Exercises

1. Let A be a representation—finite algebra. Show that every path in
mod A gives rise to a path in I'(mod A), and conversely.
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2. Let A be the path algebra of the Kronecker quiver o —

o. Give
an example of a sincere A-module M that is not faithful, and exhibit a cycle
containing M.

3. Show that each of the following algebras is representation—directed
but not tilted:

(a) A given by the quiver
€ g i B a
O O O O
1 2 3 4 5 6

bound by afy =0, fvd =0, and yde = 0;
(b) A given by the quiver

8
N
‘\/
V’\
bound by ap =0, A\ =0, 6n =0, vy=0, yo =0, and g6 = 0;

(¢) A given by the quiver

1o

V/
/\/\

bound by Ba = o7y, 908 =0, g0 =0, £&n =0, and an = 0; and
(d) A given by the quiver

10 9
@] @]
lg 1/)

10%0%0 13

14
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bound by asa1 = 0, auaz = 0, 5281 = 0, 83682 = 0, pay = 0, pBz = 0,
031/) = Oa o1 = 0) 627 = Oa 75 = 0) and 775 =0.

4. Show that representation—directed algebras have finite global dimen-
sion.

5. Let A be a representation—directed algebra and a € (Q 4)o. Show that
P(a) does not have a separated radical if and only if there is a closed walk
in I'(mod A) of the form

P(a) e M, o Mo 2 sl et M; LN P(CL);

where, for each i with 1 < i < ¢, we have supp M; C Q4(@).

6. Let A be a representation—finite algebra satisfying the separation con-
dition.

(a) Let M and N be two indecomposable A-modules such that there
exists a path in I'(mod A) from M to N. Show that any two such paths
contain exactly the same number of arrows.

(b) Let M be an indecomposable A-module and let ZAs be the infinite
quiver

. -1 1 3 .
N\ 2/ \0/ \2/ \4/
Find a unique translation quiver morphism 7 : I'(mod A) — ZAs such that
m(M) = 0.

7. In the proof of (2.6), when showing that ¥ intersects each 7T-orbit in
C, show in detail that there exists an arrow N = 7'V — U.

8. In the proof of (4.5), do the case where i = 1.

9. Let A be a representation—finite algebra. Show that A satisfies the
separation condition if and only if it satisfies the coseparation condition.

10. Let A be the gentle algebra given by the quiver
2
y r&
log 03

v
bound by af = 0. Show that for every nonprojective separating tilting
module T, the ordinary quiver of End T has a cycle.

11. In the proof of (6.3), do in detail the induction step.

12. For each of the following gentle tree algebras, construct a sequence
as in (6.7):






Appendix A

Categories, functors, and

homology

For the convenience of the reader, we collect here the notations and
terminology we use on categories, functors, and homology, and we recall
some of the basic facts from category theory and homological algebra needed
in the book.

We introduce the notions of category, additive category, K-category,
abelian category, and the (Jacobson) radical of an additive category. We
also collect basic facts from category theory and homological algebra. In this
appendix we do not present proofs of the results, except for a few classical
theorems that we frequently use in the book. For more details and complete
proofs, the reader is referred to the following textbooks and papers on this
subject [1], [2], [24], [41], [46], [47], [66], [70], [77], [95], [111], [112], [114],
[115], [125], [129], [133], [148], and [149].

A.1. Categories

1.1. Definition. A category is a triple C = (Ob C, HomC, o), where
Ob C is called the class of objects of C, HomC is called the class of
morphisms of C, and o is a partial binary operation on morphisms of C
satisfying the following conditions:

(a) to each pair of objects X, Y of C, we associate a set Home (X,Y),
called the set of morphisms from X to Y, such that if (X,Y) # (Z,U)
then the intersection of the sets Home(X,Y) and Home(Z,U) is empty;
and

(b) for each triple of objects X, Y, Z of C, the operation

Home (X, Z), (g9,f)—gof

(called the composition of f and g), is defined and has the following two
properties:

(i) ho(gof) = (hog)o f, for every triple f € Hom¢(X,Y), g €
Hom¢ (Y, Z), h € Home(Z,U) of morphisms; and

o: Home (Y, Z) x Home (X, Y)

404
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(ii) for each object X of C, there exists an element 1x € Home (X, X),
called the identity morphism on X, such that if f € Home(X,Y) and g €
Home(Z, X) then folx = fand 1xog =g.

We often write f: X — Y or X LY instead of f € Home(X,Y), and
we say that f is a morphism from X to Y. We also write X € Ob C to
mean that X is an object of C.

We say that a diagram in the category C is commutative whenever the
composition of morphisms along any two paths with the same source and
target are equal. For instance, we say that the diagram

X#Y

") E
Vv — z
is commutative if go f =i o h.

1.2. Definition. Let C be a category. A category C’ is a subcategory
of C if the following four conditions are satisfied:

(a) the class Ob C’ of objects of C’ is a subclass of the class Ob C of
objects of C;

(b) if X,Y are objects of C’, then Home/(X,Y) C Home(X,Y);

(¢) the composition of morphisms in C’ is the same as in C; and

(d) for each object X of C’, the identity morphism 1’y in Home: (X, X)
coincides with the identity morphism 1x in Home (X, X).

A subcategory C’ of C is said to be full if Home/ (X,Y) = Home(X,Y)
for all objects X, Y of C'.

Let X and Y be objects of a category C. Any morphism h : X — X
in C is called an endomorphism of X. A morphismu: X — Y inCisa
monomorphism if for each object Z in Ob C and each pair of morphisms
f,g € Hom¢(Z, X) such that uo f = uog, we have f = g. A morphism
p: X — Y in C is an epimorphism if for each object Z in Ob C and
each pair of morphisms f, g € Hom¢(Y, Z) such that fop = g op we have
f =g. A morphism v : X — Y in C is an isomorphism if there exists a
morphism v : Y — X in C such that uv = 1y and vu = 1x. In this case,
the morphism v is uniquely determined by w, it is called the inverse of u,
and it is denoted by u~!.

If there exists an isomorphism u : X — Y in C, we say that the objects
X and Y are isomorphic in C, and we write X = Y. It is easy to see
that any isomorphism is both a monomorphism and an epimorphism. The
converse implication does not hold in general (see Exercise 6.4).
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A direct sum (or a coproduct) of the objects Xi,..., X, of C is an
object X1 & ... X, of C together with morphisms

uj: X; —— X1®...0 X,

for j = 1,...,n, such that for each object Z in Ob C and for each set of
morphisms f1 : X1 — Z, ..., fn : X, — Z in C, there exists a unique
morphism f : X; @ ... ® X,, —— Z such that f; = f owu; for all
i=1...,n

If such an object X1 ®...0 X, exists, it is unique, up to isomorphism.

We often write @ X, instead of X1 & ... 8 X,.

For each j 6 {1 ,m}, the morphism u; : X; — X;1 & ... & X, is
called the jth summand embedding (or summand injection).

1.3. Definition. A category C is an additive category if the follow-
ing conditions are satisfied:

(a) for any finite set of objects Xi,...,X,, of C there exists a direct
sum X1 ®...® X, in C;

(b) for each pair X,Y € Ob C, the set Hom¢(X,Y') of all morphisms
from X to Y in C is equipped with an abelian group structure;

(¢) for each triple of objects X, Y, Z of C, the composition of morphisms
inC

o:Home (Y, Z) x Home(X,Y) ——— Home (X, Z)

is bilinear, that is, (f+f")og = fog+f'og and fo(g+g') = fog+fog, for
all morphisms f, f’ € Hom¢ (Y, Z) and all morphisms g, ¢’ € Hom¢ (X,Y);
and

(d) there exists an object 0 € Ob C (called the zero object of C)
such that the identity morphism 1g is the element zero of the abelian group
Homc (0, 0)

It is easy to see that the zero object of an additive category C is uniquely
determined, up to isomorphism.

For any additive category C, we define the opposite category C°P
of C to be the additive category the objects of which are the objects of C,
Homeor (X,Y") = Home (Y, X) for all objects X and Y in Ob C; the addition
in Homeor (X, Y) is the addition in Home (Y, X); and the composition o’ in
Hom C®P is given by the formula g o’ f = f o g, where o is the composition
in HomC. Tt is clear that (C°P)°P = C.

Assume that C is an additive category and let X; & ... X,, € Ob C be
the direct sum of objects X1,..., X, of C. Let u; : X; — X1 ®...® X,, be
the jth summand embedding. One can show that, for each j € {1,...,n},
there exists a morphism p; : X; & ... ® X,, — X (called the jth sum-
mand projection) such that pj o u; = 1x,, pjou; = 0 for all i # j and
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Uropr+...+uUpopn = lx,4..0x,. Moreover, given a set of morphisms
g : X — X4,...,9m : X — X, in C, there exists a unique morphism
g: X — X1®--- @ X, suchthat pjog=g;forj=1,...,n.

In presenting morphisms between direct sums of objects in an additive
category C, we use the following matrix notation. Given a set of
morphisms

h: Xi—Y ... fn: Xj,—Yandg: Y —Z1,...,9m Y — 2,

in C we denote by
g1
F=1h - fl: Xae X, ——Y, g= [ } Y —— 21002,
Im
the unique morphisms f and g in C such that fou; = fjfor j=1,...,n
and pjog = g; fori = 1,...,m, where u; : X; —— X; @& ---® X,, is
the jth summand embedding and p; : 21 ® --- & Z,,, —— Z; is the ith
summand projection. f X = X; ®--- @ X, and Z =2, B --- B Z,, then

any morphism h: X — Z in C is identified with the m x n matrix

== [ ?ﬂ,
[ T
where h;; = p; o hou; € Home (X, Z;).
1.4. Definition. Let K be a field. A category C is a K-category
if, for each pair X, Y € Ob C, the set Hom¢(X,Y) is equipped with a K-
vector space structure such that the composition o of morphisms in C is a
K-bilinear map.

We note that for any object X of a K-category C, the group
EndeX = Home (X, X)

of all endomorphisms of X in C, equipped with the multiplication o, is a
K-algebra (not necessarily finite dimensional) with the identity 1x. We call
it the endomorphism algebra of X.

Throughout, we identify any object X € C with the morphism 1x €
Home (X, X). This allows us to think about C as a class Hom C of morphisms
with the partial associative multiplication o having “local” identities 1x,
where X € Ob C. If, in addition, C is a K-category we think about C as a
“partial” K-algebra (HomC, o, +) with “local” identities 1x € Home (X, X)
and local zeros 0x € Home (X, X), where X € Ob C; see [115].

Let C be an additive category and f:X — Y be a morphism in C.
A kernel of f is an object Ker f together with a morphism « : Ker f — X
satisfying the following two conditions: (1) fou = 0, and (2) for any object Z
of C and for any morphism h : Z — X in C such that foh = 0, there exists
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a unique morphism b’ : Z — Ker f such that h = uoh’. A cokernel of f
is an object Coker f together with a morphism p : Y — Coker f satisfying
the following two conditions: (1) po f =0, and (2) for any object Z of C
and for any morphism g : Y — Z in C such that h o f = 0, there exists a
unique morphism ¢’ : Coker f — Z such that g = ¢’ o p. It is clear that u
is a monomorphism and p is an epimorphism.

Assume that every morphism in C admits a kernel and a cokernel. Then
for each morphism f : X — Y in C, there exists a unique morphism f in
C making the square in the following diagram

Ker f——— X Iy P Coker f

g

Coker ULKQI‘p

commutative (that is, f = u' o f op’), where v’ : Kerp — Y is the kernel
of pand p’ : X — Cokerwu is the cokernel of u. Indeed, because po f = 0,
there exists a unique morphism f’ : X — Kerp such that f = v/ o f'.
Moreover, because v o f'ou = fou = 0 and v is a monomorphism,
f'ou = 0 and hence, by the definition of cokernel, there exists a unique
morphism f : Coker u — Kerp such that f' = f op’. Consequently, the
morphism f makes the preceding square commutative. One shows easily
that f is unique. The object Ker p is called the image of f and is denoted
by Im f.

1.5. Definition. A category C is an abelian category if

(a) C is additive; and

(b) each morphism f: X — Y in C admits a kernel u : Ker f — X
of f and a cokernel p : Y — Coker f of f and the induced morphism
f : Cokeru — Kerp is an isomorphism.

Let C be an abelian category. A sequence (infinite or finite)
e X Ix, X,
in C is said to be exact if Ker f,,_1 = Im f,, for all n. Any exact sequence
of the form 0 — X =Y -4 Z — 0 in C is called a short exact se-
quence.

Let K be a field and A be a K-algebra. In this book, we are mainly
interested in the following two classes of abelian K-categories:

(1) the category Mod A of all right A-modules, and

(2) the full subcategory mod A of Mod A of finitely generated modules.

The objects of the module category Mod A (or mod A) are the right
A-modules (or the finitely generated A-modules). The set of morphisms
between the modules M and N is the set Homy (M, N) of all A-module
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homomorphisms A : M — N, endowed with the usual K-vector space
structure. The composition of morphisms is just the composition of maps,
and the direct sum M & N of two modules M and N is just the usual direct
sum of K-vector spaces endowed with the A-module structure given by the
formula (m,n)a = (ma,na) for all m € M, n € N, and a € A.

The kernel of a morphism f : M — N in Mod A is the A-module
Ker f = {m € M; f(m) = 0}, and the cokernel Coker f of f is the quotient
A-module N/Im f, where Im f = {f(m); m € M} is the image of f.

It is clear that Mod A and mod A are abelian K-categories.

A.2. Functors

2.1. Definition. A covariant functor 7 : C — C’ from a category
C to a category C’ is defined by assigning to each object X of C an object
T(X) of C’ and to each morphism h : X — Y in C a morphism T'(h) :
T(X) — T(Y) in C’ such that the following conditions are satisfied:

(a) T(1x) = 1p(x), for all objects X of C; and

(b) for each pair of morphisms X Ly andy-LZinc , the equality
T(go f) =T(g)oT(f) holds.

A contravariant functor T : C — C’ from a category C to a category
C’ is defined by assigning to each object X of C an object T'(X) of C’, and
to each morphism h : X — Y in C a morphism T'(h) : T(Y) — T'(X) in
C’ such that the following conditions are satisfied:

(a) T'(1x) = lpey), for all objects X of C; and

(b) for each pair of morphisms X —-Y and Y -2 in C, the equality
T(go f) =T(f)oT(g) holds.

It is clear that any contravariant functor T': C — C’ can be viewed as
a covariant functor T : C — C’°P or T : C°» — (’ in an obvious way.

IfT:C— C and T' : ¢’ — C” are functors, we define their compo-
sition T'T : C — C" as follows. For each object X of C, we set T'T'(X) =
T'(T(X)), and, for each morphism x-Lvin C,weset T'T(f) =T"(T(f)).
It is easy to see that T'T is a functor.

Given a pair of categories C and D, we define their product C x D to
be the category the objects of which are the pairs (C, D) with C € Ob C,
D € Ob D, and morphisms h : (C, D) — (C’, D') are the pairs h = (hq, h2),
where hy € Home(C, C’) and hy € Homp (D, D’). The composition o in C x
D is defined by (g1, g2)o(h1, he) = (g10h1, g20hs), for all h; € Home(C, C"),
g1 € Home(C',C"), hy € Homp(D, D'), and g2 € Homp (D', D"”). Any
functor F': C x D —— (' is called a bifunctor.

Let T,7" : C —— C' be functors. A functorial morphism ¥ :
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T— T’ (or a natural transformation of functors) is a family ¥ =
{Tx}xeobc of morphisms Ux : T(X) — T’(X) such that, for any mor-
phism f: X — Y in C, the diagram

T(X) —2 T/(X)

T(f)l lT’(f)
T T(Y)

in C' is commutative. In this case, we write ¥ : T — T’. We call ¥ a
functorial isomorphism (or a natural equivalence of functors) if, for
any X € Ob C, the morphism ¥y : F(X) — F’(X) is an isomorphism in C’.

A covariant functor T : C — C’ is called an equivalence of cate-
gories if there exist a functor F : ¢’ — C and functorial isomorphisms
U :l¢c — FT and ® : 1o — TF, where 1¢r and 1¢ are the identity
functors on C’ and C, respectively. In this case, the functor F is called a
quasi-inverse of T'. If there exists an equivalence ¥ : T— T of categories
C and C’, then we say that C and C' are equivalent categories, and we
write C = C’. A contravariant functor D : C — D is an equivalence of
categories if the induced covariant functor D : C°? — D is an equivalence
of categories.

2.2. Definition. A contravariant functor D : C — D that is an
equivalence of categories is called a duality.

Let K be a field, A be a finite dimensional K-algebra, and A°P be the
algebra opposite to A defined in Chapter I. An important example of a
duality is the standard duality D = Homg (—, K) : mod A —— mod A°P,
defined in (I1.2.9), between the category mod A of finite dimensional right
A-modules and the category mod A°P of finite dimensional left A-modules.

A covariant functor T : C — C’ is called dense if, for any object A of
C’, there exists an object C' in C and an isomorphism T(C) = A. We say
that T is full if the map

TXY : HOInc(X, Y) — HOIDC/(T(X),T(Y)),

given by f+— T'(f), is surjective for all objects X and Y of C. If Txy is an

injective map, for all X,Y € Ob C, the functor T is called faithful.
Assume that T : C — C’ is a covariant functor between additive cate-

gories C and C’. We say that T preserves direct sums if, for any objects

X1, X5 € Ob C, the morphisms T(X1) — L (X, Xs) 20 7(xy)
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induced by the direct summand embeddings X; — X; & Xy <= X, yield
an isomorphism T'(X;) ® T(X3) — T(X; ® X3). The functor T is ad-
ditive if T preserves direct sums, and, for all X,Y € Ob C, the map
Txy : Home(X,Y) — Home/ (T'(X),T(Y)), given by h +— T'(h), satisfies
T(f+g)=T(f)+T(g), for all f,g € Hom¢(X,Y).

If C and C' are K-categories, then T : C — (' is called K-linear if T
is additive and T'xy is a K-linear map for all X,Y € Ob C.

A full, faithful, and K-linear covariant functor T': C — C’ between ad-
ditive K-categories C and C’ is called a fully faithful embedding. In other
words, a K-linear functor T is a fully faithful embedding if, for each pair X
and Y of objects of C, the map Txy : Hom¢(X,Y) — Home: (T'(X), T(Y))
is an isomorphism of K-vector spaces.

Throughout the text, we agree that the unqualified term “functor” al-
ways means a covariant functor. Moreover, by a functor between additive
categories (or K-categories), we always mean an additive functor (or a K-
linear functor, respectively).

Assume that C and C’ are abelian categories. A covariant additive func-
tor T : C — (' is right exact (or left exact) if, for any exact sequence
X Ly £ Z — 0(orexact sequence 0 — X 5 Y -4 Z)in C, the
induced sequence

7(x) Y vy 29 17y — o
(or 0 — T(X) YL, 7rvy 29, 7(Z), respectively) in €' is exact. The

functor T is exact if it is both left and right exact.

It is obvious that the corresponding definitions for contravariant functors
are analogous to the ones for covariant functors. In particular, a contravari-
ant additive functor F' : C — C’ between abelian categories C and C’ is left
exact (or right exact) if, for any exact sequence X ==Y -4 Z — 0
(or exact sequence 0 — X - Y %5 Z)in C, the induced sequence

F(f)
—_—

0 — F(z) 29 Ry F(X)
(or F(Z) o) F(Y) ) F(X) — 0, respectively) in C’ is exact.

L

2.3. Definition. Let A

functors between abelian categories A and B. The functor L is left adjoint
to R and R is right adjoint to L if there exists an isomorphism

B be a pair of additive covariant

Homp(L(X),Y) = Homu(X, R(Y))
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for any object X of A and any object Y of B, which is functorial at X
and Y.

It was shown in (1.2.11) that, given two K-algebras A, B and an A-B-
bimodule o Mpg, the functor L = — ®4 Mp : Mod A ——— Mod B is left
adjoint to the Hom-functor R = Hompg(aMp, —) : Mod B —— Mod A.

We state without proof the following useful lemma (see [6], [148]).

2.4. Lemma. Let A and B be abelian categories and let A — B
be a pair of additive covariant functors such that L is left adjoint to R.
Then L is right exact and R is left exact. g

The following important fact is frequently used in the book.

2.5. Theorem. A covariant functor T : C — C’ is an equivalence of
categories if and only T is full, faithful, and dense.

Proof. Assume that T is full, faithful, and dense. We define a quasi-
inverse functor F : C' — C of T as follows. For any X’ € Ob C’, we fix
an object X of C and an isomorphism ®x/ : X’ — T(X) in C’. We set
F(X') = X. Given a morphism f’ € Home/ (X', Y"), we choose a morphism
f € Home (X, Y) making the following diagram

X -2 )

3l |7

vy 2 )

commutative. We set F(f’) = f. It is easy to check that this procedure
defines a covariant functor F. Moreover, for any X’ € Ob C’, the following
diagram

X - rRxY)

f! lTF ()
yo 2 TRy
is commutative. This shows that the family {®x/}x con e of isomorphisms
defines a functorial isomorphism ® : 1o, — T'F.
Next, we define a functorial isomorphism ¥ : 1o — F'T as follows. For

any Z € Ob C, we set X, = T(Z). Then ®p(z) = ®x, is the composed
morphism

T(Z) = X, — % TF(XL) = T(FT(Z)).
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Because the functor T is full and faithful, there exists a unique isomorphism
Uy :Z — FT(Z) such that T(¥y) = (I’X/Z = (bT(Z)-

Let g : Z — V be an arbitrary morphism in C. We show that the
following diagram

z Y2 . Fr(2)

gl JFT(Q)

v -2 FT(V).

is commutative. Because ® : 1¢» — T'F is a functorial isomorphism, the
following diagram

D7 (z)

7(2) TF(T(2))
T(g)l lTF(T(g))
(V) —EL TR(T(V))

is commutative. It follows from the choice of Wz and Wy that ®pz) =
T(¥z) and ®p(yy = T(¥y). Hence, we get

T(Uy og) = T(¥y) o T(g) = TFT(g) o T(¥z) = T(FT(g) 0 ¥).

Because T is faithful, the equality yields Wy o g = FT(g) o Uz, as required.
Consequently, the functorial morphism ¥ : 1o — FT is a functorial iso-
morphism.
Now assume that T : C — C’ is an equivalence of categories and that F :

C' — C is a quasi-inverse of T. Let ¥ : 1o — FT and ® : 1o — T'F be
functorial isomorphisms. Then, for any X’ € Ob C’, there is an isomorphism
X' 2 TF(X'’), and therefore T is dense. Moreover, for any morphism
f': X' — Y’ in C’, the diagram
By

X —— TFX))
/| e

yr 2 (
is commutative. This implies that the functor F' is faithful. Similarly, for
any morphism h: U — V in C, the diagram

TF(Y")

U —Y . FTU)
h FT(h)
L

vV —— FT(V)
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is commutative. This implies that the functor T is faithful. To show that
T is full, we take f’ € Home/ (T(U),T(V)), where U,V € Ob C, and we
set h = Wy,' o F(f') o Wy € Home (U, V). Then the commutativity of the
diagram yields F/(f') = Wy oW o F(f)o¥yoW ' = Uyoholy,' = FT(h).
It follows that f' = T'(h), because F is faithful. This finishes the proof. O

2.6. Example. Let A be the lower triangular K-subalgebra

A= {g IO(] —{(); abce K}

of the matrix algebra Ma(K). We show that the category mod A of all
finite dimensional right A-modules is equivalent with the category Mapg
of K-linear maps between K-vector spaces, which we will define.

We define Map g to be the category with objects that are triples (V, W, f),
where V' and W are finite dimensional K-vector spaces and f:V — W is
a K-linear map. A morphism from (V, W, f) to (V/, W', f') in Mapk is a
pair (hi, he) of K-linear maps such that the diagram

v .w

ol e

VLW

is commutative. If (hY, h%) is a morphism from (V', W', ') to (V" , W" ")
in Mapg, we set (hy,hy) o (hy,hs) = (hih1,hhs). Tt is easy to see that
(h1, h2) is an isomorphism in Mapy if and only if hy and hy are isomor-
phisms. The direct sum in Mapg is defined by the formula

VW, eV WL =VeV ., WeW, f&f)

that is, it is the direct sum of the K-linear maps f and f.
To construct an equivalence of categories

p:mod A —— Mapg,

we note that the matrices e; = ({ 9), e2 = (39), ea1 = (¢ ) form a basis

of Aover K, 14 = e1 + e, e1ea = eqe; = 0, €91 = egea; = eg1e7 and
e1e21 = egreg = 0. It follows that every module X in mod A, viewed
as a K-vector space, has a direct sum decomposition X = Xe; ® Xes.
Therefore, X uniquely determines the triple p(X) = (Vx, Wx, fx ), where
Vx = Xez, Wx = Xey, and fx : Vx — Wx is the K-linear map given
by fx(v) = vear = veajer, where v = xes € Vx. If g: X — Y is a
homomorphism of right A-modules, we define p(g) : p(X) — p(Y) to be
the pair p(g9) = (g1,92), where g1 : Vx — Vy and g : Wx — Wy are
the restrictions of g to Vx and to Wx, respectively. It is easily checked
that p is a full, faithful, dense, and K-linear functor, and, according to
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(2.5), the functor p is an equivalence of categories. The quasi-inverse p; :
Mapx —— mod A of p is defined by attaching to any object (V, W, f) in
Mapg the K-vector space X = WV with the right action - : XxA — X
of A on X defined by the formula (w,v) - (§ %) = (wa + f(v)b,vc), where
veV,weWanda,b,ce K.

2.7. Example. Let A and B be finite dimensional K-algebras, and
let 4Mpg be a finite dimensional A-B-bimodule. We illustrate the notion
of an equivalence of categories by showing that the category of modules
over the lower triangular matrix K-algebra C = ( N I\E}B ?4) is equivalent
with a category rep(4Mp), called the category of representations of the
bimodule 4Mp, and defined as follows.

The objects of rep(4Mp) are the triples (X, X%; ), where X/, is a
module in mod A, X7, is an module in mod B, and ¢ : X' ®4 Mp — X} is
a B-module homomorphism. A morphism from (X', X%;¢) to (Y4, Y5; )
in rep(aMp) is a pair (', f") : (X4, X%;0) — (Y4, YS;9), where f/ :
Xy — Y} is an A-homomorphism and f” : X}, — Y} is a B-homo-
morphism, making the diagram

X' ©aMp £ Xy

(*) lf/®M J(f//
Y'®4 Mp -5 Y
commutative. The composition of morphisms and the direct sum in rep(4 Mp)
are defined componentwise. It is easy to check that rep(aMp) is a K-
category.
The set C' = (3 %) of all matrices (5, 9), where a € A, b € B, and

m € M, endowed with the multiplication given by the formula

b 0 fo0y bf 0
m a v e B mf4+av ae ’

is a finite dimensional K-algebra with identity element 1 = epg + e 4, where
e =(59),ea=(07). We define a functor

F :modC — rep(aMp)

as follows. For each module X¢ in mod C, we set F(X¢) = (X, X%;0),
where Xy = Xea, X}, = Xep, and ¢ : X' ®4 Mp — X}, is a B-module
homomorphism defined by ¢(z' @ m) = 2/ - (9 ) = 2’ - (%, Jep. If f :
X¢ — Y is a C-module homomorphism, we define F'(f) : F(X) — F(Y)
to be the pair (f’, f"), where f' : Xeyq — Ye, is the A-homomorphism
given by xeq — f(zes) = f(xea)ea, and f” : Xep — Yep is the B-
homomorphism zep — f(zrep) = f(xzep)ep. A straightforward calculation
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shows that the diagram (x) is commutative and therefore F(f) is a mor-
phism in rep(4Mp). It is easy to check that F is a covariant K-linear
functor.

To show that F' is faithful, we note that if F(f) = 0 then f' =0, /" =0,
and, in view of the equality 1 = ep + e, we get f(z) = f(xea) + f(zep) =
f'(xea) + f"(xep) =0, for all z € X. Hence f =0 and it follows that the
K-linear map f +— F(f) is injective and therefore the functor F is faithful.
In view of (2.5), to prove that F is an equivalence of categories, it remains to
show that F is dense and full. For this purpose, take an object (X4, X5%; ¢)
in rep(4Mp). The K-vector space X = X% & X/, endowed with the right
C-action - : X x C — X defined by the formula

(33”, Z‘/) ' (?n 2) = (Qf/lb + <p(x’ ® m)a Z‘/CL)

for 2’ € Xy, 2" € X, a€ A, be Band m € M, is a right C-module. It
is immediate that F(X) = (X', X};¥), so F is dense. Now let (f’, f") :
(X%, Xt 0) — (Y4, Y[;4) be a morphism in rep(4aMp). A simple calcu-
lation shows that the K-linear map f = [g// (},] XX, — Y eY)is
a homomorphism of right C-modules X = X/, X/, and Y =Y/ @Y such
that F(f) = (f', f”). This shows that F is full. Consequently,the functor
F' is an equivalence of categories.

Usually we identify right C-module X with F(X). In other words, we
view a module X in mod C' as a triple X¢ = (Xy, X%;¢), where X/, is a
module in mod A, X7, is a module in mod B, and ¢ : X' ®4 Mp — X}, is
a B-module homomorphism. Any C-module homomorphism f : X — Y
is identified with the pair f = (f’, f"”), where f' : X/, — Y} is an A-
homomorphism and f” : X}, — Y}/ is a B-homomorphism such that the
diagram (x) is commutative.

In view of the adjunction isomorphism (1.2.11), the C-module X can be
also identified with the triple X¢ = (X, Xj5;¢), where X’; and X} are as
given earlier, and

¢ : X — Homp(aMp, X})

is the A-homomorphism adjoint to ¢ defined by p(z')(m) = ¢(a’ ® m).
The preceding discussion can be summarised as follows. If A and B
are finite dimensional K-algebras and 4 Mp is a finite dimensional A-B-
bimodule, then there exist equivalences of categories
mod(A]’VBIB ?4) rep(aMp) & mod(‘04 AA;B). (2.8)

The left-hand equivalence is given by the functor F' in (2.7). Its quasi-
inverse is defined by associating to any object (X', X7%; ) in rep(uMp)
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the K-vector space X7 & X'y endowed with the right action
(X e X4) < (g, a) — XE@ X

defined by the formula (z”,2’) - (b, 9) = (z"b+¢(z’ ® m),z'a) for 2’ € X/,
2" e X, a € A, b € B, m € M, and to any morphism (f’, f"”) :
(X', X1 90)— (Y4, YE; o) the homomorphism f"@f’ : Xe X \—Y &Y
of right (A J\B}B %)—modules. The right-hand equivalence in (2.8) can be

proved similarly. One can deduce from (2.8) an equivalence mod (ﬁ (}() =
Mapg constructed in (2.6).

We finish this section with basic properties of the categories of functors
from module categories over K-algebras to the category of K-vector spaces.

Let A be a finite dimensional K-algebra. An important role in Auslander-
Reiten theory is played by the categories Fun®® A and Fun A of the con-
travariant, and covariant, respectively, K-linear functors from the category
mod A of finitely generated right A-modules into the category mod K of
finite dimensional K-vector spaces, which we now define as follows.

We define Fun®® A (and Fun A) to be the category the objects of which
are all contravariant (and covariant) K-linear functors 7' : mod A — mod K,
respectively, from the category mod A of finite dimensional right A-modules
to the category mod K of finite dimensional K-vector spaces. Given a
pair of K-linear functors T7,S : mod A —— mod K, we define the set
Hom(S,T) of morphisms from S to T to be the set of all functorial mor-
phisms ® : S — T. If T, 7", T" are functors in Fun®A (or in Fun A)

and T —2 7' 2 7" are functorial morphisms given by ¥ = {Ux}x and
® = {Px} x, we define the composite functorial morphism ®oW¥ : T —— T
of U and ® by the formula ® o ¥ = {®x U x}x, where X runs through all
modules in mod A. A routine calculation shows that Fun®®* A and Fun A
are categories.

Assume that S and T is a pair of functors in Fun°®A (or in Fun A).
We say that S is a subfunctor of T if there is a functorial morphism
u = {ux}x : § — T such that, for each module X in mod A, we have
S(X) C T(X) and the K-linear homomorphism uy : S(X) — T(X) is
the inclusion.

We are now able to prove that the functor categories Fun°® A and Fun A
are abelian.

2.9. Theorem. For any finite dimensional K -algebra A, the categories
Fun®A and Fun A are abelian K -categories.

Proof. First, we prove that Fun°® A and Fun A are additive K-categories.
Let T, T be a pair of functors in Fun®® A (or in Fun A). Let A, N € K
and U, ¥ : T —— T’ be functorial morphisms given by ¥ = {¥x}x and
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U’ = {U%}x, where X runs through all modules in mod A. We define the
functorial morphism WA + ¥\ : T ——— T’ by the formula ¥A 4+ '\ =
{Tx\+ Ui N}x. A routine calculation shows that we have defined a K-
vector space structure on the set of morphisms Hom(T,T"). Moreover, the
composition
o:Hom(T',T") x Hom(T,T') ——— Hom(T,T")

is a K-bilinear map. Further, we define the direct sum of a finite set of
functors Ty, ..., T, in Fun°®A (or in Fun A) to be the functor Ty @& ... T,
together with direct summand embeddings

UjZ{Uj,X}XZTj—>T1€B...EBTn,

for j = 1,...,n, defined as follows. For each module X in mod A, we set
e..eT)X)=Ti(X)®...0T,(X) and
u; x TJ(X)—>T1(X)@ ... D T,L(X)

is the jth direct summand embedding. For each A-homomorphism f :
X — YinmodA, weset (T1®...0T,)(f) =T1(f)®...®Tn(f). A direct
calculation shows that 77 @ ...® T, is the direct sum of functors T, ..., T,
in the categories Fun®® A and Fun A, respectively.

Finally, we define the zero functor by associating to each X in mod A
the zero vector space, and to each A-homomorphism f: X — Y in mod A
the zero map. It is clear that the zero functor is the unique zero object
in Fun°®A and Fun A. Consequently, Fun’* A and Fun A are additive K-
categories.

It remains to prove that the categories Fun°® A and Fun A are abelian.

Let U = {Ux}x : T —— T’ be a functorial morphism in Fun°®A
(or in Fun A), where X runs through all modules in mod A. We define
the kernel Ker U of ¥ and the image ImW¥ of ¥ to be the subfunctor of
T and the subfunctor of 7" given by the formulas (Ker U)(X) = Ker Ux
and (Im¥)(X) = Im ¥, for each module X in mod A. Further, we de-
fine the cokernel Coker ¥ of ¥ by associating to each module X in mod A
the quotient vector space Coker¥Ux = T'(X)/Im Ux, and to each A-
homomorphism f : X — Y in mod A the unique K-linear map (Coker ¥)(f)
such that the diagram

T'(X) —2X— Coker ¥y T'(X) 25 Coker ¥y
T’(f)T T(%ker )(f) (or T’(f)l yCOkem)(f) )
T'(Y) —2X— Coker Uy T'(Y) —2X— Coker ¥y

is commutative, where px and py are the canonical projections. A routine
calculation shows that Coker ¥ is a functor and, together with the func-
torial morphism p = {px} : 77 ——— Coker ¥, it is the cokernel of the
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morphism ¥ in the category Fun®® A (or in Fun A, respectively). By ap-
plying the previous definitions, it is easy to see that the categories Fun® A
and Fun A are abelian. In particular, it follows from the proof that a short
sequence in Fun? A (or in Fun A)

P

0 T T
is exact if and only if, for each module X in mod A, the induced sequence
of K-vector spaces

0— T/(X) 25 7(X) 25 77(X) —0

is exact. O

The categories Fun®® A and FunA are studied in detail in Section IV.6.

We now give an example showing that the category Fun°® A is equivalent
to the category Mod B of right modules over a finite dimensional algebra
B if the algebra A is representation—finite, that is, if the number of the
isomorphism classes of the indecomposable modules in mod A is finite.

2.10. Example. Assume that A is a representation—finite K-algebra
and let My,..., M, be a complete set of the isomorphism classes of the
indecomposable modules in mod A. Let M = My & ... ® M,. The finite
dimensional K-algebra

B=End M

is known as the Auslander algebra (see [21], [31], [151], [164]) of the
representation—finite algebra A. Consider the K-linear functor

H: Fun®®* A ———— Mod B

defined as follows. If T': mod A —— mod K is a contravariant functor, we
denote by H(T") the vector space T'(M) endowed with the structure of right
B-module given by zf = T(f)(z), for all z € T(M) and f € B. If ¥ =
{Ux}x : T —— T’ is a functorial morphism in Fun°®A, where X runs
through all modules in mod A, then we take for H(¥) : H(T) — H(T")
the B-module homomorphism W, : T(M) — T’(M). One shows that H
is a K-linear functor which establishes an equivalence of categories

Fun®®A = Mod B.

This follows from the fact that every functor 7' : mod A —— mod K is
uniquely determined by its restriction to M, that is, by the B-module T'(M),
because the algebra A is representation—finite (see [12], [13], [115], [146], and
[150] for details).
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Hence, it follows from (IV.6.8) and (IV.6.11) that the projective dimen-
sion (defined in Section A.4) of any simple right B-module is at most 2. This
implies [as will be seen in (4.8)] that the global dimension of the algebra B
is at most 2.

A.3. The radical of a category

Following Kelly [103], we introduce here the notion of a radical rade
of any additive category C (see also Mitchell [115]). We collect elementary
properties of the radical rade, mainly in case C is the category mod A of
finite dimensional modules over a finite dimensional K-algebra A. More
information on rad4 := radmeq 4 can be found in [21]. We try in this book
to show that the radical rad4 of mod A and its powers rad’y, where m > 2,
are very efficient tools for describing the structure of the module category
mod A.

3.1. Definition. Let C be an additive K-category. A class Z of mor-
phisms of C is a two-sided ideal in C if Z has the following properties:

(a) for each X € Ob C, the zero morphism Ox € Hom¢(X, X) belongs
to Z;

(b) if f,g: X — Y are morphisms in Z and A\, u € K, then fA+gu € Z;

(¢) if f € T and g is a morphism in C that is left-composable with f,
then go f € 7; and

(d) if f € T and h is a morphism in C that is right-composable with f,
then foh e .

Equivalently, a two-sided ideal Z of C can be thought as a subfunctor
Z(—,~) € Home(—, —) : C? x € ———— Mod K

of the bifunctor Home(—, —), defined by assigning to each pair (X,Y) of
objects X,Y of C a K-subspace Z(X,Y) of Hom¢(X,Y) such that:

(i) if feZ(X,Y) and g € Home(Y, Z), then gf € Z(X, Z); and

(i) if f e Z(X,Y) and h € Hom¢(U, X), then fh € Z(U, Z).

Given a two-sided ideal 7 in an additive K-category C, we define the
quotient category C/Z to be the category the objects of which are the
objects of C and the space of morphisms from X to Y in C/Z is the quotient
space

Home,7(X,Y) = Home (X, Y)/Z(X,Y)

of Home(X,Y') modulo the subspace Z(X,Y). In particular, if X is a class
of objects of C, then C/[X] denotes the quotient category of C modulo the
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two-sided ideal [X] in C consisting of all morphisms having a factorisation
through a direct sum of objects from X

It is easy to see that the quotient category C/Z is an additive K-category
and the projection functor « : C — C/Z assigning to each f: X — Y in C
the coset f +Z € Home,7(X,Y) is a K-linear functor. Moreover 7 is full
and dense and Kerm = 7.

By the kernel of a K-linear functor T : C — C] we mean the class
KerT of all morphisms h: A — B in C such that T'(h) = 0. It is easy to
check that KerT is a two-sided ideal in C and the isomorphism theorem for
algebras generalises to additive K-categories as follows.

3.2. Lemma. Let T : C — C’ be a full, dense, and K-linear func-
tor between additive K -categories C and C'. Then T induces a K-linear
equivalence of K -categories C/KerT = C’. g

3.3. Definition. (a) The (Jacobson) radical of an additive K-category
C is the two-sided ideal rad¢ in C defined by the formula

rade(X,Y) = {h € C(X,Y); 1x — g o his invertible for any g € C(Y, X)}

for all objects X and Y of C.

(b) Given m > 1, we define the mth power radz’ C rade of rade by
taking for radg'(X,Y) the subspace of rade(X,Y") consisting of all finite
sums of morphisms of the form

X = Xoux, "Xy — o X, X, =Y

where h; € rade(X;—1,X;). In case C = mod A is the category of finitely
generated right A-modules, we set

radg = radmedq 4-

It is clear that the intersection

o0

rady = ﬂ rad’y

m=1
of all powers rad’y of rads is a two-sided ideal of mod A, known as the
infinite radical of mod A.

3.4. Lemma. Let C be an additive K -category.
(a) For each m > 1, rad;' is a two-sided ideal of C.
(b) Let X1,...Xn,Y1...,Y,, be objects in C. A morphism

f11 %12 ?n n m
l:Ql S Z@Xi —_— @Yj
] i=1 j=1

.}.ml .'fm2 e fm

f=
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in C belongs to rade(®f_; Xi, ®7L,Y;) if and only if the morphism fj; :
X, — Y] belongs torade(X;, Y;) fori=1,...,nand j=1,...,m.

Proof. (a) We only prove the statement for m = 1; because the proof
is similar for m > 2.

Assume that f € rade(X,Y) and let A’ : Y — Z’ be a morphism in
C. Tt follows that, for any ¢’ : Z/ — X, the morphism 1x — ¢’ o h' o f
is invertible and therefore h' o f € rade(X, Z’) for any morphism h'. Let
h : Z — X be a morphism in C. We prove that foh € rade(Z,Y) by
showing that 1, —go foh is invertible for any morphism g : Y — Z. By the
assumption, there exists ¢ : X — X such that (1x —hogo f)op = 1x and
po(lx —hogof) = 1x. It follows that (1 —go foh)o(lz+gofopoh) =1y
and (1z +go fopoh)o(ly—go foh)=1yz, and we are done.

Now we prove that if f, f’ € rade(X,Y), then f — f' € rade(X,Y) by
showing that the morphism 1x —go (f — f’) is invertible, for any morphism
g:Y — X in the category C. Because f € rade(X,Y), t(1x —gof) =1x
and (1x — go f)t = 1x, for some morphism ¢ : X — X. Because [’ €
rade(X,Y), t/(1x — (=tog)o f') = 1x for some morphism ' : X — X.
Thus ¢ ot(1x —go (f — f')) = 1x. Further, by the first part of the proof,
we get f ot € rade(X,Y), and therefore (1x — (—g) o (f' ot))t” = 1x for
some t” : X — X. It follows that (1x —go (f — f')otot” = 1x and
therefore 1x — go (f — f’) is invertible for any morphism g : Y — X in C

as required.
n

(b) If f = [fji] : @ Xis — €D Y; is a morphism in C then

=1 7j=1

fii=pjofou; €C(X;,Y;) and f= Zijm
i=1 j=1
where wu; : X; — X716 Xo ® -+ ® X, is the ¢th summand embedding and
pj i Z1® - @B Ly — Zj is the jth summand projection. Thus (b) is a
consequence of (a). O

3.5. Proposition. Let C be an additive K -category.

(a) For any object Z in C, rade(Z,Z) is the Jacobson radical of the
endomorphism algebra EndeZ = Home(Z, Z) of Z.

(b) Assume that X and Y are objects of C such that the K-algebras
Home (X, X) and Home (Y, Y) are local; that is, each of them has a unique
maximal ideal. Then rade(X,Y) is the vector space of all nonisomorphisms
from X toY inC. In particular, if X 2Y thenrade(X,Y) = Home(X,Y).

Proof. The statement (a) follows from the definition of the radical and
(I.1.3).
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(b) If f € rade(X,Y) then f is not invertible because, otherwise, in
view of (I.1.3), the element 0 = 1 — f~! o f would be invertible, which is a
contradiction.

Assume that f: X — Y is a nonzero nonisomorphism in C. We show
that f belongs to rad¢(X,Y).

First, we prove that for any morphism ¢ : ¥ — X in C, the endomor-
phism go f : X — X is not invertible. Assume to the contrary that g o f
is invertible. Let s : X — X be such that sogo f = 1x. It follows
that the element e = f o sog € Home(Y,Y) is nonzero and the equality
(1y —e)oe = 0 holds. Then, in view of (I1.1.3), e ¢ rad(Home¢ (Y, Y)), because
otherwise 1y — e is invertible and the equality (1y —e)oe = 0 yields e = 0,
which is a contradiction. Because, by our assumption, rad(Hom¢(Y,Y))
is the unique maximal right ideal, there exist r € rad(Hom¢(Y,Y")) and
h € Hom¢(Y,Y) such that 1y = r + e o h. It follows from (I.1.3) that the
element eo h = 1y —r € Home(Y,Y) is invertible. If ¢ € Home(Y,Y)
is such that e o hot = 1y, then the equality (ly —e)oe = 0 yields
ly —e = (ly —e)oeohot = 0. It follows that f is invertible and
f~! = s0g, contrary to our assumption that f is not an isomorphism.

Because go f : X — X has no left inverse and rad¢ (X, X) is the unique
maximal left ideal of Home (X, X), go f € rade(X, X) and, by (I1.1.3), the
element 1x — g o f is invertible for any ¢ : ¥ — X. This shows that
f €erade(X,Y) and finishes the proof. O

The description of the radical of morphism spaces given in (3.5) is very
useful in applications for C = mod A, because we proved in Chapter I that
finite dimensional indecomposable modules satisfy the hypothesis of the
proposition.

The following corollary indicates that indecomposable objects with lo-
cal endomorphism algebras are somewhat akin to indecomposable finitely
generated modules over finite dimensional algebras.

3.6. Corollary. Let X be an object of an additive K -category C.

(a) If the endomorphism algebra Ende X = Home (X, X) of X is local,
then X is indecomposable.

(b) Assume that C is abelian. If X is indecomposable and dimg Ende X
1s finite, then the K -algebra Ende X is local.

Proof. (a) Assume to the contrary that X decomposes as X = X1 @ Xo
with both X7 and X5 nonzero. Then there exist projections p; : X — X;
and injections u; : X; — X (for ¢ = 1,2) such that u; o p; +ugops = 1x,
but neither u; o p; nor us o ps is invertible. This is a contradiction because
of (1.4.6).

(b) By (1.4.6), it is sufficient to prove that any idempotent e € Ende X
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equals zero or the identity 1x. However, for such an idempotent e, a simple
calculation shows that X = Kere @ Ker (1 —e). Our claim follows from the
indecomposability of X. a

A.4. Homological algebra

We collect in this section basic notions and elementary facts from ho-
mological algebra needed in the book. In particular, we define the functors
Ext”; and Tor;?, the projective and injective dimensions of a module, and
the global dimension of an algebra and we give several characterisations of
them. For more detailed information on homological algebra, the reader is
referred to [41], [47], [77], [95], [111], [125], [148], and [168].

Throughout this section, K is a field and A is a K-algebra (not neces-
sarily finite dimensional).

A chain complex in the category Mod A is a sequence

dnt1 d dn—1 d d d
C.: el T n+2—>Cn+1—n>Cn—>Cn71—> —2>Cl—1>00—0>0

of right A-modules connected by A-homomorphisms such that d,d,11 =0
for all n > 0. A cochain complex in the category Mod A is a sequence

ool Lor et on S ont T gnsz_,
of right A-modules connected by A-homomorphisms such that d"*1d" = 0
for all n > 0. For each n > 0, the nth homology A-module of the chain
complex Cy and the nth cohomology A-module of the cochain complex C*
are the quotient A-modules

H,(C,) =Kerd, /Imd,{; and H"(C®)=Kerd"/Imd"*,

respectively.
We start with two simple lemmas.

4.1. Lemma. Let e be an idempotent of a finite dimensional K -algebra
A, and let

col oo Lot L, ot on Sonn I onbz
be a cochain complex in mod A. For every n > 0, there exists a functorial
isomorphism H™(C*®e) = H™(C*®)e.

Proof. For each n > 0, we denote by d?»~! : C""le — C"e and
dy=l o €1 — ) — C™(1 — e) the restriction of d"~! to C"'e and
C"1(1 — e), respectively. Because e is an idempotent, C*e and C*(1 — ¢)

are subcomplexes of C'* such that C* = C®e & C*(1 — e). Moreover, for
each n > 0, we have direct sum decompositions
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Ker d"t! = (Kerd"* e @ (Kerd"™1)(1 — e) = Kerd?*! @ Ker d7*! and
Imd" = (Imd")e ® (Imd")(1 —e) =Imd? @ Imd}_,.
Hence we get

K n+1 K n+1 K dnJrl
erd erde erdy_. ~ Hn(co )@H"(C'(l—e))

B = g = Imdr ~ Imd} ,

Because obviously H"(C®e)e = H"(C®e) and H"(C*(1 — ¢))e = 0, we get
H™(C®*)e = H"(C®e)e = H"(C"e). O

4.2. Lemma. Assume that A is a finite dimensional K-algebra. Let
D =Homg(—, K) : mod A — mod A°? be the standard duality and let

1 2 +1
cootor Lor L Lo o L onr T oz

be a cochain complex in mod A. Then DC® is a chain complex in mod A°P,
and there exists a functorial isomorphism H,(DC*®) = DH"(C*®) for every
n > 0.

Proof. For each n > 0, there is a short exact sequence
0 — Imd" — Kerd"™ — H"(C*) — 0.
By applying the duality D, we get the exact sequence
0— DH"(C*) — D(Kerd"*') — D(Imd") — 0
of left A-modules. On the other hand, because D is a duality, we get
D(Kerd"™') =  Coker Dd"*' = DC™/Im Dd""!,
D(Imd™) = DC™/KerDd",
see (1.5.13). It then follows that the exact sequence
0 — DH"(C*) — DC"/ITm Dd""' — DC™ /Ker Dd"™ — 0

yields an isomorphism DH™(C*®) = Ker Dd"/Im Dd"™! = H,,(DC*), which
is obviously functorial. a

Let K be a field and A be a K-algebra. We recall that any right A-
module has a projective resolution and an injective resolution in Mod A. If,
in addition, A is finite dimensional over K, then any module in mod A has
a minimal projective resolution and a minimal injective resolution in mod A
(see Chapter I).

4.3. Definition. Let K be a field and A be an arbitrary K-algebra.
(a) The projective dimension of a right A-module M is the non-
negative integer pd M = m such that there exists a projective resolution
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0— Pplmpy y — o — PP 0

of M of length m and M has no projective resolution of length m —1, if such
a number m exists. If M admits no projective resolution of finite length,
we define the projective dimension pd M of M to be infinity.

(b) An injective dimension of an A-module N is the nonnegative
integer id N = m such that there exists an injective resolution

m
h m

0—>Nh—O>IOh—1>Il—> RPN (RN & RN ||

of N of length m and NN has no injective resolution of length m — 1, if such
a number m exists. If N admits no injective resolution of finite length, we
define the injective dimension id N of N to be infinity.

One can show that the projective dimension of a module M is the length
of a minimal projective resolution of M. Similarly, the injective dimension
of a module NV is the length of a minimal injective resolution of N.

The right global dimension and the left global dimension of a
K-algebra A are defined to be the numbers

r.gldimA = max {pd M; M is a right A—module} and
lLgldimA = max {pd L; Lisaleft A—module}7

respectively, if these numbers exist; otherwise, we say that the right global
dimension of A (or the left global dimension of A, respectively) is infinity.

It follows from the previous definitions that pd M = 0 if and only if M
is projective and id M = 0 if and only if M is injective. One can prove that
gl.dim K[t] = 1 and, clearly, the global dimension of any finite dimensional
semisimple K-algebra is zero.

4.4. Example. Let B be the algebra K[t]/(t?). Then the map h :
B — B given by b+ tb is a homomorphism of B-modules, Ker h = rad B,
B/rad B = rad B, and the sequence

e.——spplp—... p B
together with the canonical epimorphism hy : B—B/rad B, is a mini-

mal projective resolution of the B-module B/rad B = K. It follows that
pd (B/rad B) = oo and r.gl.dim B = 0.

Let A be a K-algebra. For each m > 0, the mth extension bifunctor
Ext’y : Mod A)°P x Mod A ——— Mod K

is defined as follows. Given two modules M and N in Mod A, we take a
projective resolution P, of M and construct the induced cochain complex

Homa (h1,N)
_5

Homy (P., N) :0 — Hom 4 (Po, N) Homy (Py,N) — ---

Hom 4 (h7n+1 )N)
_ 5

- — Homy (P, N) Homa (Ppy1, N) — - -+
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of K-vector spaces. We define Ext’y (M, N) to be the mth cohomology K-
vector space H™ (Hom4 (P, , N)) of the cochain complex Hom 4 (P, V), that
is,

Ext’y (M, N)=H™(Hom4 (P,, N))=Ker Hom 4 (h,+1, N)/Im Hom 4 (hy,, N),

where we set hg = 0. One shows that, up to isomorphism, the definition does
not depend on the choice of the projective resolution of M. If f : M — M’
is a homomorphism of A-modules and P, is a projective resolution of M

then one can easily show that there is a commutative diagram

h hi ho

-— P, = P4 —— P — P — M -0
lfm lfmfl lfl lfo lf
eop e M M g

The system fo = {fm}men (called a resolution of the homomorphism f)

induces the commutative diagram

0 — Homa(P},N) 220N yom (PLN) — -
lHomA(f(hN) lHomA(flxN)

Homa (h1,N)
—_

0 — Homa(Py, N) Homa (P, N) — -

, HomA(h'erl,N) ,
- —  Homyu(P,,,N) ————— Homu(P},,,N) — -
lHomA(fnL,N) lHomA(fm+1,N)

HomA(herhN)
-

- —  Homa(P,,N) Homu (P41, N) — ---

It follows that Hom (fm, N)(Ker Homa(h),, 1, N)) € Ker Hom4(hp+1, N)
and Hom(fm, N)(ImHomy (hl,, N)) C Im Hom g (hy,, N).

Therefore, the homomorphism Hom(f,,, N) induces a K-linear map
Exty (f,N) : Ext’y (M',N) —— Ext’y (M, N). One shows that Ext’y (f, N)
does not depend on the choice of the resolution f, of f and that

Ext’}(—, N) : Mod A Mod K

is a contravariant additive functor.

Let ¢ : N — N’ be a homomorphism of right A-modules. It is clear
that the family Homy(P,,g) = {Homa (P, 9)}men defines a morphism
Homy (P,, g) : Homy(Ps, N) — Hom 4(P., N') of cochain complexes, that
is, the diagram
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0— Homa(PRy,N) —™MU0N - gom, (PLN) —

J{HomA(Pg,g) lHomA(Phg)

Hom 4 (h1,N”)
- - T 5

0 — Homa (P, N') Homyu (P, N') — ---

- —  Homu(P,,,N) Homathm i, N),

Hom 4 (Pm,g) Homa (Pm1,9)

Homu(Pyy1, N) — -«

- — Homa (P, N) —>H0mA(hm+1’N/)
is commutative. It follows that

Hom (P, g)(KerHoma (hy41,N)) € KerHomy (hpy1, N') and

Hom (P, g)(Im Hom 4 (A, N)) C ImHomy (hy,, N'),
and therefore Hom4 (P, g) induces a K-linear map

Ext’y (M, g) : Exty (M, N) —— Ext’{ (M, N').

One shows that Ext’y (M, g) does not depend on the choice of the resolu-
tion Py of M and that Ext’}y(M,—) : Mod A —— Mod K is a covari-
ant additive functor. Consequently, we have defined an additive bifunc-
tor Ext’y(—,—) for any m > 0. One can show that the K-vector space
Ext’y (M, N) is isomorphic to the mth cohomology K-vector space of the
cochain complex Homu4 (M, I*), where I® is an injective resolution of the
module N.

4.5. Theorem. (a) For any right A-modules M and N, there is a
functorial isomorphism Ext% (M, N) = Hom4 (M, N).

(b) Let M and N be right A-modules. Then any short exact sequence
00— X —Y — Z — 0 in Mod A induces two long exact sequences

0 — Homa(Z,N) — Homyu(Y,N) — Homa(X,N)

Homa (P41, N') — -

2 EBExth(Z,N) — Exty(Y,N) — Exti(X,N)

- —  ExtW(Z,N) — Ext%(Y,N) — Exth(X,N)
2 ExtytN(Z,N) — , and

0 — Homus(M,X) — Homu(M,Y) — Homa(M,Z2)
20 Bxth(M,X) — Exti(M)Y) — Exth(M,2)

c—  ExtW(M,X) — Ext}W(M,Y) — ExtW(M,Z2)

2 BxtP (M, X)) —
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By applying (4.5), one proves the following useful results.

4.6. Corollary. (a) pd M = m if and only if Ext’y ™' (M, ~) = 0 and
Ext’y (M, —) # 0.

(b) id N =m if and only if Exty (=, N) = 0 and Ext}y(—, N) # 0.

(c) rgldimA=max {idN; N is a right A-module}. O

4.7. Proposition. Let 0 — L — M — N — 0 be a short ezact
sequence in Mod A.

(a) pd N < max(pd M,1+pd L), and the equality holds if pd M # pd L.

(b) pd L <max(pd M, —14+pd N), and the equality holds if pd M #pd N.

(¢) pd M < max(pd L,pd N), and the equality holds if pd N # 1+pd L.

U

In computing the global dimension of an algebra, the following result
due to Auslander [10] is very useful.

4.8. Theorem. If A is a finite dimensional K -algebra, then
rgldimA = max{pdS; S isa simple right A-module}
= 14+ max {pd (radeAd); e € A is a primitive idempotent}.
O

Assume that A is a finite dimensional K-algebra. It follows from (4.8)
that r.gl.dim A is the minimal number m such that, for each simple right A-
module S, the functor Ext’XH(S, —):Mod A —— Mod K is zero. Hence,
one concludes that r.gl.dim A is the minimal number m such that, for each
pair of modules M and N in mod A, we have Ext’} ™ (M, N) = 0. In view
of (4.6), this yields

rgldimA = max {id N; N isin mod A}
= max {de; M is in modA}.
Obviously, a similar formula holds for the left global dimension of A. Hence,
by applying the standard duality D : mod A — mod A°P, we get the fol-
lowing result.

4.9. Corollary. IfA is a finite dimensional K-algebra, then r.gl.dim A=
l.gl.dim A. O

The common number r.gl.dim A = l.gl.dim A is denoted by gl.dim A and
is called the global dimension of the finite dimensional K-algebra A.

For each m > 0, we define the mth torsion bifunctor

Tor? : Mod A x Mod A°®° ———— Mod K

as follows. Given a right A-module M and a left A-module N, we take a
projective resolution P, of M and denote by P, ® 4 N the induced chain
complex
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P @aN"8'P, @A N— .- — P @sN“ 2P o,4N — 0.

We define Tor?, (M, N) to be the mth homology vector space Hy,(Po®4 N)
of the chain complex P, ® 4 N; that is,

Tor (M, N) = Hyy(Pe @4 N) = Ker(hy © 1)/Im(hpyr ® 1).

One shows that the definition does not depend, up to isomorphism, on
the choice of the projective resolution of M. If f : M — M’ is a ho-
momorphism of right A-modules, P, a projective resolution of M’ and
fo = {fm}men is a resolution of the homomorphism f, then fo induces
a morphism fo ®4 1x : Po ®4 N —— P. ®4 N of chain complexes. The
induced homomorphlsm of the mth homology K-vector spaces is denoted
by Tor2 (f,N) : Tors (M, N) —— Tor’ (M’, N).

One shows that Tor? (f, ) does not depend on the choice of the res-
olution f, of f and that Tor’ (—, N) : Mod A — Mod K is a covariant
additive functor. If g : N— N’ is a homomorphism of left A-modules, then,
modlfymg the previous argumentb one defines a K-linear map Tor’ (M g):
Tor?: (M, N) —— Tor’: (M, N') and proves that Tor?. (M, ) is a covariant
additive functor. One can show that the K-vector space Tor?, - (M, N) is iso-
morphic to the mth homology vector space of the chain complex M ® 4 P,
where P) is a projective resolution of the left module N.

The following result is often used.

4.10. Theorem. Let A be a K-algebra and M be a right A-module.

(a) For any left A-module N, there is a functorial isomorphism of K-
vector spaces Tor{ (M, N) = M @4 N.

(b) Any short exact sequence E : 0 — X —Y — Z —0 of left A-
modules induces a long exact sequence

- TorréLJrl(MaZ)
—  Tor(M,X) — TorX(M,Y) — Tor’(M,Z)

—  Tor}(M,X) — Tor(M,Y) —  Tor}(M,Z)
— M X — M®sY — M®apZ — 0

depending functorially on M and E.

(¢c) Let N be aleft A-module. Then any short exact sequence of right
A-modulesE' : 0 — X' — Y’ — Z’ — 0 induces a long exact sequence
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—  Tori,1(Z',N)
—  Tor(X',N) — Tor (Y’ N) — Tor’(Z',N)

—  Tord(X',N) — Tor}(Y',N) —  Tori(Z',N)

— X' ®@a N — Y' ®@a N — Z'@s N —0
depending functorially on N and E'.
O

We finish this section with the following result.

Proposition. 4.11. Let B be a finite dimensional K-algebra. For all
modules Y and Z in mod B, there exist functorial isomorphisms of K-vector
spaces Homp (Y, DZ) = D(Y ®@p Z) and DExty (Y, DZ) = Tor? (Y, Z).

Proof. The first formula is just the adjoint isomorphism D(X ®p Z) =
Homg (X ®p Z, K) = Homp(X, DZ) for any module X in mod B. To prove
the second, take a projective resolution

d dm_1 d d
- — P, - Ph,_1 — —>P2—2>P1—1>P0—>Y—>0

with each P; finite dimensional projective. Applying the functorial isomor-
phism Y ®p Z = DHomp(Y, DZ) proved in the first part, to each term of
the complex

d dm—1
Py:-o — P, dmp

. — P p P 0
yields an isomorphism of complexes P, ® g Z = DHompg(P,, DZ). Hence,
by applying (4.2), we get the following functorial isomorphisms:

Tor? (Y, Z) H,(P, ®p Z) = H'(DHompg(P,, DZ))
DH,(Homp(P,,DZ)) = DExty(Y,DZ). O

It

A.5. The group of extensions

We give an interpretation of the group Extjl4(N , L) in terms of the short
exact sequences 0 — L — M — N — 0 in Mod A by constructing a
group Exth (N, L) of extensions of a right A-module L by a right A-module
N and by establishing an isomorphism Ext} (N, L) = Ext)(N,L). This
interpretation of Ext! (NN, L) is frequently used throughout this book.

In the definition of ExtYy (N, L), we use the notions of fibered product
and of amalgammed sum defined as follows.

5.1. Definition. (a) The fibered product (or pull-back) of a pair
of homomorphisms X 78y of right A-modules is the submodule

P={(z,y) e XaY; fl(z)=gy)}
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of X @Y together with two homomorphisms X TPV defined by the
formulas f'(z,y) =z and ¢'(z,y) = y.

(b) The amalgammed sum (or push-out) of a pair of homomor-
phisms X <« Z - Y of right A-modules is the module

S=XeaY)/{(uz),-v(2), z€ Z}

together with two homomorphisms X U—I>S L,Y defined by the formulas
u'(x) = (x,0) and v'(y) = (0,y), where (z,y) is the image of (z,y) € XY
under the canonical epimorphism X @Y — S.

The following result is easily verified.

5.2. Lemma. (a) If (P, f',g’) is the fibered product,of X%ZLY,
then ff' = gg and, for any pair of homomorphisms X P Ly such
that f " = gg”, there exists a unique homomorphism t : P’ — P such that
the diagram

P/ f//
N
P — X
f/
g" lg’ lf
Y — Z

18 commutative.

(b) If (S,u',v") is the amalgammed sum of X <——Z—-Y , then u'u = v'v
and, for any pair of homomorphisms X ~— S &— Y such that u"u = v"v,
there exists a unique homomorphism r : S — S’ such that the diagram

u

Z — X
A
Y — S u’
™
'U// SI

18 commutative.
O
The following result will be frequently used.

5.3. Proposition. Let 0——LL M2 N—50 be a short evact se-
quence in mod A.

(a) Ifv:V — N is an A-module homomorphism and (V' ,v',¢g') is the
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fibered product of V—-N<2-M, then there exists a commutative diagram

0 — L 5 v Yy o

llL lgf l (5.4)
0 — L L M & N — 0

with exact rows.
(b) Ifu:L — U is an A-module homomorphism and (U’, f',u') is the
amalgammed sum of M~ —L—5U, then there exists a commutative diagram

0 — L 4 M 2 N — 0

lu l P llN (5.5)
0 — U X v L N — 0
with exact rows.
(c) If there exist commutative diagrams (5.4) and (5.5) with exact rows
then V' is isomorphic to the fibered product of V——N<—M and U’ is
isomorphic to the amalgammed sum of U«—L——M.

The proof can be found in [6], [41], and [148]. O

Any short exact sequence 0——LL M2 N—-0 in mod A is called an
extension of L by N. Two extensions

E:0—L-M-2N—0 and E : 0—L-IsM' - N—0
are said to be equivalent if there exists a commutative diagram

E: 0 — L 4% M 2 N — o

llL lh J,lN
E:0 — L 5 om0 L N — 0
where h is an A-isomorphism. In this case, we write E ~ E’. We denote
by E(N, L) the set of all extensions of the A-module L by the A-module N.
Given two extensions E and E in £(N, L), we define their sum E + E’ to be
the extension . .,
E+E: 0—LisM"4N—0,

where M" = W/V and W = {(m,m') € M & M'; g(m) = ¢'(m')},
V={({f(z),—f'(z')) e M®&M'; =z e L}. The homomorphisms f” and ¢”
are induced by the homomorphisms L — W, z — (f(x),0), and W — N,
(m,m’) — g(m), respectively.
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Consider the set
Exty(N,L) = E(N, L)/ ~ (5.6)
of the equivalence classes [E] = E/~ of extensions F in £(N, L). The set
Exty (N, L), equipped with the addition [E] + [E'] = [E + E’], is an abelian
group. The class represented by the split extension is the zero element of
Exth (N, L). We call Ext (N, L) the group of extensions of L by N.

IfEisan extensionand v : V — N, u : L — U are A-homomorphisms
then, in view of (5.3), there exist commutative diagrams (5.4) and (5.5)
with exact rows and with the fibered product V' and the amalgammed sum
U’. Tt follows from (5.3)(c) and (5.2) that E, u, and the commutativity of
(5.5) determine the lower exact row in (5.5) uniquely, up to equivalence of
extensions. Similarly, E, v, and the commutativity of (5.4) determine the
upper exact row in (5.4) uniquely, up to equivalence of extensions.

We denote by Extly (N, u)[E] the equivalence class in ExtY (N, U) repre-
sented by the lower row in (5.5), and we call it the extension induced by
u. Similarly, we denote by ExtY (v, L)[E] the equivalence class in Extl (V, L)
represented by the upper row in (5.4), and we call it the extension induced
by v. A straightforward calculation shows that, for any right A-modules N
and L, we have defined two functors

Ext!y(N,~) : mod A —— Ab and Exty(—,L): (mod A)°P — Ab, (5.7)

where Ab is the category of abelian groups.
For each pair of A-modules L and N, the extension group £zt (N, L) is

related with the first extension group Extjl4(N , L) by the group homomor-
phism

x: Exty (N, L) —— Ext!y(N, L) (5.8)
defined as follows. Let [E] be an element of Extl (N, L) represented by the
exact sequence E: 0 — L—M—N — 0, and let

hm h
P, : "'_’Pm_’Pm71—>"'_>Pl_1’PO

together with an epimorphism hg : Py — N be a projective resolution of
N. Because the module Py is projective, there exists a commutative diagram

p o op op N oo

ltl lto JIN
0o — L “ M X N — 0

It is easy to see that Homa(he,L)(t1) = t1he = 0, and therefore the
A-homomorphism ¢; belongs to KerHomy(ho,L). If t{ : P — L and
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ty : Po — M is another pair of A-homomorphisms making the diagram
commutative, then v(tg — t;) = ho — ho = 0, and therefore there ex-
ists an A-homomorphism s : Py — L such that ¢y — ¢, = us. It fol-
lows that u(t; —¢}) = (to — t3)h1 = ushi, and the injectivity of u yields
t1 —t = sh1 = Homg(h1,L)(s) € ImHomy(hy, L). This shows that the
coset

X[E] = t1 4+ Im Homa (hy, L) € Ext (N, L)

of the A-homomorphism ¢; € KerHomy4(hg, L) modulo Im Hom 4 (hy, L)

does not depend on the choice of t; and tg, or on the choice of the extension

E in the class [E]. It is easy to check that x is a group homomorphism.
The following important result is frequently used.

5.9. Theorem. For any pair of A-modules M and N, the group homo-
morphism
X : Extly (N, L) —— ExtYy(N, L)

defined earlier is a functorial isomorphism.

For the proof the reader is referred to [6], [41], [111], and [148]. O

A.6. Exercises

1. Let A, B be two K-algebras and f : A — B be a surjective ho-
momorphism. Let A; denote the full subcategory of Mod A the objects of
which are the modules M such that M (Ker f) = 0.

(a) For any B-module X, we define F/(X) to be the vector space X
equipped with the multiplication - : X x A — X given by z - a = zf(a),
for all z € X and a € A. Show that this multiplication is well-defined and
induces a right A-module structure on X.

(b) Show that any homomorphism ¢ : X — Y of B-modules induces
a homomorphism F(p) : F(X) — F(Y) of A-modules, and deduce that
F : Mod B — Mod A is a functor.

(¢) Show that the functor F' : Mod B — Mod A is additive, K-linear,
full, faithful, and exact.

(d) Show that F' : Mod B — Mod A induces an equivalence of cate-
gories Mod B — Aj.

2. Prove that the upper row of the diagram (5.4) in Proposition 5.3
and the lower row of the diagram (5.5) in Proposition 5.3 are short exact
sequences.

3. Prove that for each pair of A-modules M and N, the addition in
Exth (M, N) (defined in Section 5) is associative and commutative.
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4. Let u : Z — Q be the embedding of the ring Z of integers in
the field @ of rational numbers. Prove that u is a monomorphism and an
epimorphism in the category of rings but that it is not an isomorphism in
that category.

5. Let B be the algebra K[t]/(t?).

(a) Prove that the algebra B is self-injective, that is, the module Bp is
an injective B-module.

(b) Show that the projective dimension of the simple one-dimensional
B-module S = B/rad B is infinite and that the injective dimension of the
simple B-module B/rad B = K is infinite, by applying the minimal projec-
tive resolution constructed in Example 4.4.

(¢) For any B-module M and each m > 0, compute the extension groups
Extg (S, M), Exty (M, S), and Torg (S, M).

6. Let A be a K-algebra and M be a right A-module.

(a) Show that the covariant functor Hom4 (M, —) : Mod A — Mod K is
left exact and that it is exact if and only if M is a projective module.

(b) Show that the functor Homa(—, M) : Mod A —— Mod K is left
exact and that it is exact if and only if M is an injective module.

7. Let A be a K-algebra and assume that the following diagram
0o — L L M L N — 0

lh, lh lh,,
0o — 1 o LN o

in mod A is commutative and has exact rows. Prove that the following three
conditions are equivalent:

(a) There exists a homomorphism u : M — L’ of A-modules such that
uf =h'.

(b) There exists a homomorphism v : N — M’ of A-modules such that
gI’U = h.

(¢) There exist homomorphisms v : M — L' and v : N — M’ of A-
modules such that f'u 4+ vg = h.
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