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The purpose of this book is to present the basic elements of numerical methods
for compressible flows. It is suitable for an advanced undergraduate or graduate
course, and for specialists working in high-speed flows. The book focuses on the
unsteady one-dimensional Euler equations, which form the basis for development
of numerical algorithms in compressible fluid mechanics. The book is restricted
to the basic concepts of finite volume methods, and is intended to provide the
foundation for further study and application by the reader. The text is supplemented
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Preface

The purpose of this book is to present the basic elements of numerical meth-
ods for compressible flows. The focus is on the unsteady one-dimensional
Euler equations which form the basis for numerical algorithms in compress-
ible fluid mechanics. The book is restricted to the basic concepts of finite
volume methods, and even in this regards is not intended to be exhaus-
tive in its treatment. Several noteworthy texts on numerical methods for
compressible flows are cited herein.

I would like to express my appreciation to Florence Padgett and Peter
Gordon (Cambridge University Press) and Robert Stengel (Princeton Uni-
versity) for their patience. Any omissions or errors are mine alone.

New Brunswick, NJ
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1

Governing Equations

All analyses concerning the motion of compressible fluids must necessarily
begin, either directly or indirectly, with the statements of the four basic
physical laws governing such motions.

A. Shapiro (1953)

1.1 Introduction

This chapter presents the governing equations of one-dimensional unsteady
flow of a compressible fluid without derivation.t The following assumptions
are made. First, the fluid is assumed to be calorically perfect, i.e., the
specific heats ¢, and ¢, at constant volume and pressure, respectively, are
constant. Thus, the internal energy per unit mass e; is

ei =c,T (1.1)
where T is the static temperature. The static enthalpy h is defined as
p
h=-e + = (1.2)
o
Second, the fluid is assumed to be thermally perfect,
p = pRT (1.3)

where p is the static pressure, p is the density, and R is the species gas
constant,

R=c,—c, (1.4)

1 The full equations of three-dimensional compressible viscous flow are presented, for example,
in Schreier (1982) and White (1974) .



2 Governing Equations
It follows that
h =¢,T (1.5)

Third, the fluid is assumed to be inviscid. Fourth, radiation effects and
chemical reactions are omitted, and the fluid is assumed to be homogeneous
(i.e., uniform molecular composition).

1.2 Conservation Laws

Consider one-dimensional, inviscid unsteady flow in a tube of constant cross-
sectional area A. We define a control volume V as shown in Fig. 1.1.

U, n <— — "N — T
\

Fig. 1.1. Control volume

The integral conservation equations for mass, momentum, and energy are

d
—/ pdV+/ pundA =0 (1.6)
dt Jv A
i/ pudV+/ (pu2+p) ndA =0 (1.7)
dt Jv A
d
dt/ pedV+/ (pe +p)undA =0 (1.8)

where n is the unit vector in the outward direction} and the total energy e
is

e=e;t lu? (1.9)
The differential forms of the conservation laws are
dp  Opu
1.1
ot o ox =0 (1.10)
dpu  Opu? dp
—_ = 1.11
ot + ox Ox ( )
dpe  Olpetp)u _ (1.12)

ot Oz
1 On the left face n = —1, and on the right face n = +1.



1.3 Convective Derivative 3

1.3 Convective Derivative

The convective derivative of a function f is defined as

DJ = 97 + ug (1.13)
Dt Ot ox
and represents the rate of change of the variable f with respect to time
while following a fluid particle. The differential form of the conservation
laws for momentum and energy can be rewritten in terms of the convective
derivative using the conservation of mass,

dp  Opu
—_— 4 — = 1.14
ot * Ox 0 (1.14)
to obtain
ou ou\ dp
o(G+5) = o (1.15)
de de\ Opu
P(a*“%) = o (1.16)

1.4 Vector Notation

The differential form of the conservation laws (1.10) to (1.12) may be written
in a compact vector notation as

00  OF _

= =0 1.17
ot + ox (L.17)
where
P
Q=1 pu (1.18)
pe
pu
F=X pu’+p (1.19)
PEU + PU
1.5 Entropy

The change in entropy per unit mass s is

p
Tds = de; — ?dp (1.20)



4 Governing Equations
For a thermally perfect gas, this equation may be integrated to obtain

T
s—slzcvlnT—Rlnﬁ (1.21)

1 f1

Using (1.3), two alternate forms may be obtained:

T D
§s—8 = c¢,In— —Rln— 1.22
! P P1 (1.22)
S—851 = ¢ In 2 —cplnﬁ (1.23)
b1 P1

Therefore, for isentropic flow between two states,

bz _ (@y (1.24)

b1 P1
TN\ v/ (=1
z—i - (ﬁ) (1.25)

The Second Law of Thermodynamics (Shapiro, 1953) may be expressed
as

0Q
ds > == (1.26)

where S is the entropy of a system (i.e., an identifiable mass of fluid), 6@ is
the heat added to the system, and T is the static temperature. In particular,
this implies that d.S > 0 for an adiabatic process.

1.6 Speed of Sound

The speed of sound is the velocity of propagation of an infinitesimal distur-
bance in a quiescent fluid and is defined by

dp
a= ,/8—/) S (1.27)

where the partial derivative is taken at constant entropy s. For an ideal gas,

a=/~RT (1.28)

The Mach number is the ratio of the flow velocity to the speed of sound:

w= (1.29)

a



1.7 Alternate Forms 5

1.7 Alternate Forms

The total enthalpy H is
H=c+ % (1.30)

The conservation of energy may be expressed as an equation for the total

enthalpy:
OpH  OpHu  Op
o " axr ot (1.31)

Alternately, the energy and momentum equations may be utilized to ob-
tain an equation for the internal energy e;,

ope;  Ope;u ou

ot ar Yo

Also, the energy may be rewritten in terms of the entropy. Using (1.20),

(1.32)

dps  Opsu
o o

=0 (1.33)

It is noted that equations (1.31) to (1.33) can be rewritten in terms of the
convective derivative using (1.10):

OH OH Op
P(F ) = o 134
oe; Oe; ou
- = _—p— 1.
p(8t+u8w) P oz (1.35)
0s 0Os
z i 1.
p<8t+u(‘3x> 0 (1.36)
Exercises
1.1 Derive the alternate form of the momentum equation (1.15) using
(1.11) and (1.10).
SOLUTION

The difference between (1.11) and (1.15) is the expression on the left side:

Opu  Opu? B ou dp ou dpu
ot "o T Pa e TMar e

= p(a—"+u8—2)+u(@+aﬂ)

Il
—
g|®

+

<
glE
~—

using (1.10). A similar derivation applies to (1.16).



6 Governing Equations
1.2 Derive the enthalpy equation (1.31).
1.3 Derive the internal energy equation (1.32).

SOLUTION

Multiply the momentum equation (1.15) by w:

(Za2) - 2
Pt "oz) T T“ou

0 1,2 0 1,2 _ Op
o () gy (1) =

which represents an equation for the kinetic energyt per unit mass %uz. Subtract from
the energy equation (1.16) using (1.9) to yield

(BeiJr Bei) 6( )+ op
i = — (—pu) +u—
o "o oz o
_ op ou op
- "am p8x+ ox
= o
B p@ac

Multiply the mass equation (1.10) by e; and add to the above to yield

apeiJereiu __ Ou
ot " ow  Tox

1.4 Derive the entropy equation (1.33).
1.5 Derive a conservation equation for the static enthalpy h.
SOLUTION

Add 9p/0t to both sides of the energy equation (1.12) to yield

OpH  OpHu @
ot ox ot

using (1.30). Multiply the mass equation by %uQ and add to the kinetic energy equation
(see above) to yield

Op

— (%pu2) + (;% (%pu2u) = —ua

Subtract from the previous equation to yield

Oph  Jdphu Op op
- — = 4 u—
ot oz ot oz

Using the mass equation, this may also be written as

Dh Dp

Dt Dt

t The equation is also known as the mechanical energy equation.



1.6

1.7

1.8

FExercises 7

In the presence of a body force per unit mass f, the momentum and
energy equations become

opu  Opu? B Op
ot " or - ax M
dpe  O(pe+pu
o T M

The mass equation is unchanged. Show that the total enthalpy equa-
tion is
OpH OpHu Op
o T or o T
Derive the following equation:
1 Dp 1 Ds ~vDp
pDt ¢, Dt ' pDt

and provide a physical interpretation of each of the terms.

SOLUTION
From the entropy equation (1.23),

P 4
s—51 =cyln— —cpln —
pP1 P1
Differentiating,
Ds ¢y Dp ¢ Dp
Dt p Dt p Dt
Thus,

1 Dp 1 Ds + v Dp

p Dt cy Dt p Dt
The term on the left is the normalized rate of change of the static pressure following
a fluid particle. The first term on the right is the rate of change of entropy (divided
by ¢y) following a fluid particle. Thus, an increase in entropy of the fluid particle acts
to increase its static pressure. For an inviscid, homogeneous flow, the rate of change
of entropy following a fluid particle is zero from (1.36), except when the fluid particle
crosses a discontinuity (i.e., at locations where the derivatives of the flow variables are
not defined). The second term on the right is the rate of change of the fluid particle
density (divided by p/v). Thus, an increase in fluid particle density acts to increase the
static pressure.

The total pressure p, at a point is defined as the static pressure
achieved by bringing a fluid particle at that point to rest isentrop-
ically. Similarly, the total temperature T, at a point is defined as
the static temperature achieved by bringing a fluid particle at that
point to rest adiabatically. Therefore,

=D,

v/(v=1)
2
]

Po = p[1+

T, = T [1+ @MZ]
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1.10

Governing Equations

Thus, the entropy definition (1.25) may be written

T, Po
s—8 =¢,In— — Rln —
P, Poy
Show that
» Dpo dp Ds

e Dt ot Dt
where p, = p,/RT,. Provide a physical interpretation of each of the

terms.
The mechanical energy equation (see Problem 1.3) is

D (5 z) __udp

Dt p O0x

Provide a physical explanation.

SOLUTION

The left-hand side of the equation is the time rate-of-change of the kinetic energy per
unit mass following a fluid particle. The right-hand side is the work done on the unit
mass by the pressure gradient. If the pressure increases in the direction of the flow (i.e.,
uOp/Ox > 0, which implies either a) u > 0 and dp/dz > 0 or b) u < 0 and Ip/dz < 0),
the kinetic energy decreases because the pressure gradient decelerates the flow. If the
pressure decreases in the direction of the flow (i.e., udp/0x < 0), the kinetic energy
increases because the pressure gradient accelerates the flow.

Derive an equation for the convective derivative of the Gibbs free
energy

g=h-—-"Ts
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One-Dimensional Euler Equations

Nature confronts the observer with a wealth of nonlinear wave phenomena,
not only in the flow of compressible fluids, but also in many other cases of
practical interest.

R. Courant and K. O. Friedrichs (1948)

2.1 Introduction

The remainder of this book focuses on numerical algorithms for the unsteady
Euler equations in one dimension. Although the practical applications of
the one-dimensional Fuler equations are certainly limited per se, virtually
all numerical algorithms for inviscid compressible flow in two and three
dimensions owe their origin to techniques developed in the context of the
one-dimensional Euler equations. It is therefore essential to understand the
development and implementation of these algorithms in their original one-
dimensional context.

This chapter describes the principal mathematical properties of the one-
dimensional Euler equations. An understanding of these properties is essen-
tial to the development of numerical algorithms. The presentation herein is
necessarily brief. For further details, the reader may consult, for example,
Courant and Friedrichs (1948) and Landau and Lifshitz (1958).

2.2 Differential Forms of One-Dimensional Euler Equations

The one-dimensional Euler equations can be expressed in a variety of dif-
ferential forms, of which three are particularly useful in the development

9
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of numerical algorithms. These forms are applicable where the flow vari-
ables are continuously differentiable. However, flow solutions may exhibit
discontinuities that require separate treatment, as will be discussed later in
Section 2.3.

2.2.1 Conservative Form

The one-dimensional Euler equations in conservative differential form are

0Q OF
— +=—=0 2.1
ot " ow @1)
where Q(x,t) is the vector of dependent variables,
o1 p
Q=< Qs =< pu (2.2)
Q3 pe

where p is the density, u is the velocity component in the z-direction, and e
is the total energy per unit mass. The flux vector F(x,t) is

F pU
F3 peu + pu

The static pressure p is obtained from

p=(y-1) (pe — $pu?) (24)

The flux vector F is a function of QO:

Qo
%o (-1 Z)
o TO-D{L-325
F= & " (2.5)
Q2Q3 _ % _lQ_%
o, "0 by, <Q3 291)

The term conservative form arises from the observation that in a finite
domain the mass, momentum, and energy are strictly conserved in this
formulation. Consider a region 0 < x < L. Integrating (2.1) over this

region,
LroQ oF
— 4+ —|dzx=0
/0 [at +8x} v
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Thus

o L
i / Qdx = F(0,1) — F(L, 1)
ot Jo

which indicates that the net increase in @ per unit time within the region
is due to the net flux into the region. This is the correct statement of the
physics, of course.

Many numerical methods are patterned after the conservative form (2.1).
The principal motivation is the requirement that flows with discontinuities
(e.g., shock waves and contact surfaces) must be accurately simulated. Lax
and Wendroff (1960), in their study of conservation laws, showed that nu-
merical algorithms that are both conservative and convergent can approxi-
mate the exact solution, including discontinuities, to an arbitrary precision
depending on the fineness of the spatial and temporal meshes.

2.2.2 Nonconservative Form

Equation (2.1) can also be written as

0Q 09
5 TAG =0 (2.6)

where A is the Jacobian matriz defined by

OF
and given by
0 1 0
(v=3) (%)2 D

Q203 <Q2>3 Qs (Q2>2 Qo

— +(v—1) [ == =2 3 (1) [ =2 =

lars: (v=1) ) gty 5(y—1) o, 7o,

(2.8)

t The exact solution satisfies (2.1) almost everywhere, i.e., at all points = in a finite domain
except for a finite number of discontinuities where the flow variables satisfy the jump conditions
discussed in Section 2.3.
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Using the definition of Q, the Jacobian may be written in terms of u and e,
0 1 0

Ao 023) B-mu (-1 (2.9)

—yeu+ (y—=1u®  ye—3(v-1u’  qu

Alternately, using
2

a 1,2
e=——+ 5u
yy-1) 2
the Jacobian may be written in terms of v and a,
0 1 0
-3
(=3, (3-7)u (1-1)
A= 2 (2.10)
2 _ 2 _
_ua + (v—2) w3 @ + (3—29) »:

(-1 2 (v—1) 2 e

Also, using the definition of the total enthalpy per unit mass H,

H = c, T+ %uQ
the Jacobian can be written in terms of u and H,
0 1 0
(v=3)
u B=u  (v—1)
A= 2 (2.11)
-1
(72 )u3—Hu H—(y—1u?  ~u

There are a number of important properties of the Jacobian matrix A. It
is straightforward to show that its eigenvalues are

M = u
A = u+a
A3 = u—a (2.12)

Equation (2.6) is hyperbolic since all of the eigenvalues of A are real (Garabe-
dian, 1964). The corresponding right eigenvectors are

1 1 1
ry = u , Tro= u+a , 3= u—a (2.13)
Tu? H +ua H —ua
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and the corresponding left eigenvectors are

_— {1_(7—1)u2 (1Y _(7—1)}

2 2’ a?’ a?
Lo Jo=Dw v (=Du 1 (-1
2 4 a? 24’ 2 a2 24’ 2a?
(y-Du* v (y=Du 1 (y-1)
Iy = van 2 2.14
3 { 4 a2+2a’ 2 a? 24’ 2a2 (2.14)

The Jacobian matrix A can be expressed asf
A=TAT™! (2.15)

where A is a diagonal matrix of eigenvalues of A,

A 0 0
A={ 0 X 0 (2.16)
0 0 X3

The matrixi T is the concatenation of the right eigenvectors of A,

1 1 1
T= u u+ta u—a (2.17)
%uQ H+ua H—wua

The inverse T~! is the concatenation of the left eigenvectors of A,

(v =1 w? u (v—1
1 v —nl -
2 a? (v )a2 a?
2
g ) =DHv Tu  (y-Du 1 (v—1)
= 4 a2 2a 2 a2  2a 2a2 (2.18)
G-V 1w (-Du 1 (-1
4 a? 2a 2 a2 2a 2a2

Two relationships between the left and right eigenvectors can be derived.
Denote

Th =94 Thy for k=1,2,3 (2.19)

t Equation (2.15) indicates that A is similar to the diagonal matrix A. This is true since A has
three linearly independent eigenvectors (Franklin, 1968).
1 The matrix T is not to be confused with the static temperature.



14 One-Dimensional Euler Equations

and
b={ I by by } fork=1,23 (2.20)

Then it may be directly verified}
3
Z rikljk = 5@' (2.21)
k=1
where 6;; is the Kronecker delta defined by

1 ifi=j
0ij = 2.22

" { 0 otherwise (2.22)
The second relationship between the left and right eigenvectors can be found
from the identity 77! = I. Since T is the concatenation of the eigenvectors
71, (taken as column vectors) and 7! is the concatenation of the eigenvectors
I, (taken as row vectors), the identity 77! = I yields

3
> e, = 0ij (2.23)
k=1

It can also be shown by direct substitution (Exercise 2.5) that
F=AQ (2.24)

This is known as Fuler’s Identity or the homogeneity property and is the
basis of some of the Fluz Vector Splitting methods that will be discussed in
Chapter 6.

2.2.3 Characteristic Form

The one-dimensional Euler equations may be written in a form that exhibits
their wavelike character. It is first useful to describe wavelike behavior.
Consider the scalar equation

of | of

o7 ez =0 (2.25)

where f(z,t) is a scalar function and ¢ is a positive constant. For an un-
bounded domain —oco < = < oo and initial condition f(z,0) = g(z), the
solution to (2.25) is

f(z,t) = g(x — ct) (2.26)

t The relationship (2.21) follows directly from the fact that the eigenvalues of A are distinct
(Isaacson and Keller, 1966).
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This represents a wave traveling to the right with velocity ¢ without a change
of form.

The wavelike character of (2.25) can also be discerned by considering the
behavior of f(x,t) along a curve x(t) as shown in Fig. 2.1.

4

x(t)

Fig. 2.1. Curve z(t)

Denoting the derivative of f with respect to ¢ along the curve z(t) by
df /dt, we then have

df d _ Ofdx(t) Of
@ = ar T
where 0f/0z denotes the partial derivative of f with respect to = holding

t constant, and likewise 0f /0t indicates the partial derivative of f with
respect to ¢ holding x constant. Comparing (2.25) and (2.27),

df da
o 0 on ik (2.28)

which indicates that the value of f is unchanged on the curve dx/dt = c or

(2.27)

x — ct = constant as seen in (2.26). The curves x — ¢t = constant are known
as the characteristics of (2.25).

The one-dimensional Euler equations can be recast in a form similar to
(2.27). The equations are

dp  Opu
5t = 0 (2.29)
opu  Opu? B dp
o o os (2:30)
ds ds
o Tus =0 (2.31)

where the energy equation has been replaced by the equation for entropy
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(1.36) assuming inviscid, nonheat conducting flow. It is evident that the
entropy equation is already in the form of (2.28) and can be written as

ds dx(t)
="

which implies that the entropy is conserved following a fluid particle.

= u(x(t),t) (2.32)

We seek a transformation of the remaining equations to a form similar to
(2.27). From the definition of entropy (1.23),

s — 81 = ¢y log <£> —¢plog (£>
P P1

Then
D2 (B Y (D0 0)
ot +u6x op <8t +u8x> p \ Ot “or
and thus
op . Op _7p <@ @) _
8t+u8x P 3t+u8x =0
From the conservation of mass,

o 0 _ _ 0u
ot " Yor = Por

and since a® = yp/p,

— — — =0 2.33
ot "or T as (2.33)
Using the conservation of mass, the conservation of momentum is rewritten
as
ou . ou Op
- Uy — = — —
Pac TP oz oz
and multiplying this equation by a and adding (2.33),
dp dp ou ou
E—i—(u—l—a)a—x—l—pa E—i—(u—i—a)%
or
1dp du dx
i <A ke = = 2.34
padt T dt on gy Tuta (2:34)

Assuming that the entropy at some initial time is uniform, from (2.32) the
entropy remains uniform, and thus p and a are functions of p alone. Hence,

d dp B
il et =0

(2.34) may be rewritten as
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Since p/p1 = (p/p1)” and a/a; = (p/p1) /27,

d ( 2 ) 0 on dx
7 e 1)a+u = — =u+ta
Similarly, it is possible to derive

E(L _ >_0 n T
dt (Py_l)a u | = O =Uu a

The unsteady one-dimensional Euler equations may therefore be rewritten

as
d 2 dx
%((vl)aqtu) = 0 on E:u+a
d 2 dx
a(w_l)a—u> = 0 on E:u—a
% =0 on Cfi—i:u (2.35)

These are known as Riemann invariants. Note that, in general, u and a
are functions of = and ¢. The curves dz/dt = u+a, dz/dt = uw—a, and
dx/dt = u are the characteristics. Equations (2.35) imply that the Riemann
invariants are convected without change along their respective characteris-
tics, i.e., the Euler equations admit wavelike solutions. However, Equations
(2.35) permit multiple-valued solutions that are unphysical and hence must
be supplemented with additional constraints, i.e., the solutions for discon-
tinuous waves (Section 2.3).

2.3 Discontinuous Waves

The one-dimensional unsteady Euler equations admit waves wherein one
or more flow variables are discontinuous across the wavefront. Consider a
wavefront with velocity u,(t). As shown in Fig. 2.2, a small control volume
0V spans the wavefront, where 6V has width dz and height dy. Relative
to an inertial reference frame, the fluid has velocities u; and us to the left
and right of the wavefront, respectively. The control volume is affixed to the
wavefront and is therefore moving at velocity w,, relative to the reference
frame.

The conservation of mass (1.6) applied to dV yieldst

op
ot

1 Strictly, to the lowest order.

dzx dy + p2 (u2 —uy) dy — p1 (U1 —uy) dy =0
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Uy Uy U2

d
| v |
Fig. 2.2. Control volume affixed to wavefront

where 5 = 1(p; + p2). Dividing by dy and taking the limit dz — 0,
p1 (U1 —uyw) — p2 (Uz—uyw) =0
or
[p (u—2w)],, =0 (2.36)
where we define

[flw=fi= 1 (2.37)

where f1 and fo represent the value of the function f on either side of the
wave surface. Note that f; is not necessarily equal to fs.

The conservation of z-momentum (1.7) yields
dpu

ot
and hence taking dr — 0 yields

[pu (u—uw) +pl, =0 (2.38)

dx dy + (p2uz (ug—uw) + p2) dy — (prug (U1 —uyw) +p1)dy =0

The conservation of energy likewise yields

(e (u—uy) + pu), =0 (2.39)

Equations (2.36) to (2.39) are the one-dimensional Rankine-Hugoniot con-
ditions and are summarized in Table 2.1. They admit two different types of
wavelike solutions.t The first is a contact surface defined by

u; = ug = U, (contact surface) (2.40)

t A third type of discontinuous solution (vortex sheet) is possible in two and three dimensions.
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This solution satisfies (2.36). From (2.38), p1 = p2. Equation (2.39) is
also satisfied. Note that there is no condition imposed on [p], or [pe],
Therefore, it is possible that p; # p2 and pie; # poes, with the latter
implying that T} # T5.

Table 2.1. One-Dimensional Rankine-Hugoniot Conditions

Equation Condition
Mass p(u—uw)], = O
Momentum  [pu (u— uw) Pl =
Enengy (e (i) 1 pi, = 0

The second is a shock wave for which
up # ug # Uy (shock wave) (2.41)

There are two cases, corresponding to the sign of u; — u,,. In the first case,
U] — Uy > 0, which corresponds to a wave moving to the left (i.e., the wave
speed is negative relative to a frame of reference traveling at u;). Equations
(2.36) to (2.39) admit a one-parameter family of solutions for given u; and
a1, where the parameter may be chosen to be the shock pressure ratiof
01 = pa/p1 that cannot be less than one.t The result is!

p2 _ (=D + 0+ Do (2.42)
pP1 Y+ + (v =1y
T:
2 - by (2.43)
Ty P2
P2 £1
—1 +1) 142
Uy = U] —a] {(727 ) + (727 )al] (2.45)
Note that Equation (2.44) can be rewritten as
-1
wy =y — (o= 1) (2.46)

¥ (w+1)0+( 1)

In the second case, u1—u,, < 0, which corresponds to a wave moving to the
right. Equations (2.36) to (2.39) admit a one-parameter family of solutions

1 The subscript | denotes a wave moving to the left.

1 The Second Law of Thermodynamics requires the entropy change to be nonnegative as the
flow crosses the discontinuity. It can be shown that this implies o; > 1 (Liepmann and Roshko
1957).
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for given uo and ag, where the parameter may be chosen to be the shock
pressure ratio o, = pj/pe, which cannot be less than one:

p1 (y—=1)+ (v +1)o,

P 9.47

- G FDTO-Do (2:47)

% = % o (2.48)

Uy = % |:u2 + Uy (% - 1)] (249)
-1 1 1/2

Uy = ug+ap [(72 ) | (72‘; )ar] (2.50)

Note that Equation (2.49) can be rewritten as

L1
wy =g+ 2o =V (2.51)

2
1 —1
~ \/(727 )Ur-i- (727)

2.4 Method of Characteristics

The characteristic form (2.35) of the one-dimensional Euler equations offers
a direct method for solution. The equations are

d 2 dx

— = — = 2.52

p ((7_1)a+u) 0 on — u+a (2.52)

d 2 dz

il —u) = . 2.

o ((7_1) a u) 0 on — =u-a (2.53)
ds dz
i — = = 2.54
7 0 on — =u (2.54)

For simplicity, we consider an unbounded domain —oco < x < co. The initial
entropy is uniform and denoted by s,. Initial continuous profiles of u(x,t)
and a(x,t) are specified as

u(z,0) = uo(w)

a(xz,0) = a,(x)

Consider a pointT p at an infinitesimal time dt > 0 as shown in Fig. 2.3.
There are three characteristics that emanate from ¢ = 0 and intersect p:

dx
dt

1 The point p is not to be confused with the static pressure.

= ut+a
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de
a - e
a3

where the slope of each characteristic is evaluated at its origin at ¢ = 0.

1 3 2

Fig. 2.3. The three characteristics intersecting at point p. The figure is drawn for
a>u>0.

From (2.52) and (2.53),

2 2
——aytu, = ai +u
(y_1 T CEE
2 2
T W = az — u2
e I )
which may be solved to yield
-1
ap = %(a1 +ag) + (v 1 ) (ug — ug) (2.55)
1 1
- - 2 2.5
Up o) (a1 — ag) + 5 (u1 + ug) (2.56)
From (2.54),
Sp = So (2.57)

and thus the flow remains isentropic. Therefore,

a, 2v/(v-1)

pp = Dr (a—) (2.58)
a,\ 2/

Pp = Pr (a—) (2.59)

where the subscript , indicates a reference value.
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It would appear that equations (2.55) to (2.59) provide an algorithm for
the complete solution to the flowfield at time dt, i.e., these equations could
be employed to determine the solution on a discrete set of points p. This
process could presumably then be repeated and thus the solution could be
obtained in principle. However, this is not the case. In fact, Equations (2.55)
to (2.59) cannot be used solely in all cases because they do not guarantee that
there will be only three characteristics intersecting point p, ¢.e., they do not
guarantee the uniqueness of the solution. Indeed, nonunique (i.e., multiple-
valued) solutions are mathematically possible in certain regions depending
on the initial conditions and in the absence of any additional constraints.
Since this is physically nonsensible, a modification is required which is the
introduction of a discontinuous wave (i.e., shock) when necessary. This issue
will be discussed in further detail in Section 2.7.

2.5 Expansion Fan

The Method of Characteristics can be used to determine the flow solution
within a simple wave joining two regions of uniform entropy at different
velocities, pressures and temperatures. Figure 2.4 illustrates the first type
of simple wave bounded by the positive characteristics dz/dt = u; + a; and
dx /dt = ug+ag bordering two regions of uniform flow denoted by subscripts
1 and 2. The region between these two positive characteristics is denoted
by an expansion fan. Consider points a and b on a positive characteristic
dzx/dt = u + a located within the expansion fan. A negative characteristic
dzx/dt = u — a drawn from a point ¢ will intersect point b, and likewise a
negative characteristic from point d will intersect point a. From (2.52),

2
=1 Qg + Ug = =1 ap -+ up (2.60)
From (2.53),
2 2
(’}/ — 1) Qg — Uqg = ('y — 1) aq — Uq (2.61)
2 2
( — 1)ab —Up = mﬂc — Ue (262)
Since points ¢ and d are in the uniform region 1,
2 2
g — Ug = ap — up (2.63)
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dx/dt = uy 4+ ay

Uy dx/dt = us + a9

ai

U2
az

T

Fig. 2.4. Right-moving expansion wave

From (2.60) and (2.63),
Ug = Up
Qg = Qp

and thus every characteristic dz/dt = u + a within the expansion fan is a
straight line. Now, from (2.61),

and thus

(ug — u2) + ag

Therefore, the characteristic inside the expansion fan is

de  (y+1)  (v-1)
7 5 Ug, 5 Ug + ao

Since u, is constant on the characteristic, the equation can be integrated to
obtain

. [(7;1)%_ (7;1)u2+a2}t
and thus
2 Jz (y-1)
u = (’}/+1) |:?+ 5 UQ—GQ] (2.64)
=1 [ 2
RS [?_UQ]JF(’YH)GZ (265)
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which represents the solution for v and a within the expansion fan. The
remaining flow variables can be obtained from the isentropic relations

= G
r- (@)
i \a

2/(v=1)
- (2)

In addition, by extending point a into region 1 and using Equation (2.61),
the flow conditions in regions 1 and 2 are related by

2
Ul = U + —— (a1 — as 2.67
() (267
Using the isentropic relations, Equation (2.66), this becomes
2a5 (Pl ) (v=1)/2v
U = ug + — —1 2.68
Y [ P2 (2.68)

Figure 2.5 illustrates the second type of simple wave bounded by the
negative characteristics dz/dt = u; — a; and dx/dt = uy — ay bordering two
regions of uniform flow denoted by subscripts 1 and 2. An analysis similar
to the first type yields the following solution within the expansion fan:

u = (vi 3 [% L0 5 Yo + al] (2.69)
-0 = 2
BCES) [—? + ul} + mal (2.70)

The remaining flow variables can be obtained from the isentropic relations
in Equations (2.66). In addition, the flow conditions in regions 1 and 2 are
related by

Uy = Ul + ———< (a1 — a2) (2.71)
(y=1
Using the isentropic relations in Equation (2.66), this becomes
2a1 (p2 ) (y=1)/2v
U2 = Uy — — —1 2.72
(v—1) [ D1 (2.72)

It should be noted that, although Fig. 2.4 shows that both characteristics
dzx/dt = u; + a1 and dx/dt = ug + az move to the right, this need not be
the case. An analogous conclusion holds for Fig. 2.5.
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t

dx/dt = us — as

uz
dx/dt = u1 — a;
as
b
a
U1
aq c

Fig. 2.5. Left-moving expansion wave

2.6 Domains of Dependence and Influence

It is evident from (2.55) to (2.58) that the flow at p depends only on a
limited range of data at t = 0 in z, i.e., the region

min(zq, x2, x3) < z < max(z1, 2, r3)

This region is known as the domain of dependence of the solution at point p,
as illustrated in Fig. 2.6.

dt |-————-—--—-

domain of
dependence

1 3 2

Fig. 2.6. The three characteristics intersecting at point p. The figure is drawn for
a>u>0.

Similarly, it is possible to define the points x1, x2, x3, which are the inter-
section of the three characteristics emanating from a single point p at t =0
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with ¢ = dt, as illustrated in Fig. 2.7. The region
min(z1, x2, x3) < < max(z1,x2, r3)

at t = dt defines the domain of influence of point p. A change of flow
conditions at p at t = 0 will only influence the flow within this region at
t = dt.

dt | === A= e — -

domain of
influence

p

Fig. 2.7. The three characteristics emanating from point p. The figure is drawn for
a>u>0.

2.7 Shock Formation

Depending on the initial conditions, the formal application of the Method
of Characteristics (Section 2.4) can yield nonunique solutions, i.e., more
than three characteristics intersect at some point p at some instant in time.
This is physically impossible, and therefore one or more of the assumptions
employed in deriving the characteristic equations (2.35) must be violated.
Specifically, the assumption that the flowfield is continuous and differen-
tiable is violated at discrete locations where a discontinuous solution of the
Euler equations (i.e., shock wave) appears.

The conditions for the formation of a shock wave and its position in space
and time can be determined. We follow the derivation of Landau and Lif-
shitz (1959). Consider an adiabatic, inviscid flow with no shocks. The
entropy s is assumed uniform at ¢ = 0. The Euler equations are

dp  Opu
i 0 (2.73)
Opu | Op® __0p

ot " or — on (2.74)
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0s . 0s
—_— u_
ot ox

From the entropy equation, s remains constant for ¢ > 0 until the possible

=0 (2.75)

formation of any shock waves.

We seek finite amplitude waves wherein the velocity u is a function of
density p. The conservation of mass becomes

p , dpudp _
ot dp 0x
and therefore
dp (0p dpu
ot Qm) T du (2.76)
4
<p p = constant
ot
ox
0 x

Fig. 2.8. Isocontours of density

Consider the isocontours of p in the z—t plane (Fig. 2.8). The vector
dx€e, + ote; is constructed to be parallel to the isocontour, where €, and &
are unit vectors in the z and t directions, respectively. By definition, the
gradient

Ip 6pq
AV
P=5a% T %
is orthogonal to the isocontour. Therefore, the inner product of these vectors
is zero:
op_. 0O R R
(8—pex 8;) t) - (0xé, + otey) =0
from which
dp (Op ox ox
- —_ = 2.
ot (833) ot ot |, (2.77)
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From (2.76) and (2.77),
ox dpu
—| = — 2.78
otl, dp (278)

From the conservation of momentum, using the conservation of mass,

ou ou 1@_

E+u%+;8x—0
Now

o _ op| dp , 0| 0s

ox  Opl, Oz ds|, 0z

The second term is zero, and using (1.27) the first term is a?dp/0z, where
a is the speed of sound. Since u is assumed to be a function of p,

du\ ! du

and the momentum equation can be rewritten as

Ou [ Ou\ a? [du\ !
O ON 279

By an argument similar to that leading to (2.77),

ou (Ou\ ! Ox
el (it == 2.80
ot (8JJ> ot |y, (2:80)
and since u is a function of p,
or|  Ox
otl, otl,
From (2.78) and (2.79),
dp p \dp
and thus
du a
— =+ 2.81
PP (2.81)
Therefore
u= i/%dp (2.82)

Since the flow is isentropic, using (1.24), (1.25), and (1.28),

u:iﬁ/da
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We assume that there is some point within the gas at ¢ = 0 where the
velocity is zero.T Then

2

u=t——(a—a
(v—1) 2
where a, is the speed of sound at the location where u = 0. Thus,
-1
a=a,+ %u (2.83)
and therefore
— 1) o 120D
p = po [1 + %a—] (2.84)
o
~ 1) 4 12/0-D
P = Do [1 + ¢l )a—] (2.85)
o

where p, and p, are the density and pressure at the location where u = 0.

From (2.79), (2.80), and (2.81),

Ox
= —u+ 2.
o). uta (2.86)
and using (2.83),
ox (v+1)
i +a, + 5 (2.87)
Therefore
1
v [i% + (7; M} E+ f(u) (2.88)

where f(u) is the constant of integration. Note that at ¢t =0, x = f(u).

Equations (2.84), (2.85), and (2.88) yield two solutions corresponding to
waves traveling to the left (—) and right (+). From (2.83) and (2.86), it is
evident that the characteristics are straight lines whose slopes depend on
the value of u at the x intercept at ¢t = 0. For each characteristic, the value
of u is a constant.

The formation of a shock wave depends on the initial conditions. Consider
a right traveling wave. From (2.87), the slope of a characteristic is

Oz (v+1)

— = —_ 2.89

at |, Go + 5 U ( )
Thus, each point on the initial wave travels to the right with a velocity that

1 This can always be assured by means of a Galilean transformation.
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is a monotonically increasing function of u. Thus, if u decreases with in-
creasing x over a portion of the initial wave, there will occur a crossing of
the characteristics at some time tz, implying a multiple-valued solution for
t > ts. Since this is physically unfeasible, a shock wave must occur at ¢
which satisfies the shock conditions in Table 2.1. This is shownt schemati-
cally in Fig. 2.9 for an initial periodic profile for w.

At the instant ¢s of the formation of the shock wave, the slope du/0x
becomes infinite. At this point,

2
8—3::() and Q

5al, 53| =0 (2.90)

t
From (2.88),

2 df d?
G+Ddu M @2
which defines the value of u at which (2.91) holds and the time ¢;. The
location of the shock formation is defined by (2.88). It is evident therefore
that the formation of a shock(s) requires one or more inflection points wus

in the initial velocity distribution where d?f/du? = 0 and a negative slope
df /du at u = us.

s =

=0 (2.91)

2.8 Shock Formation from Sinusoidal Disturbance

The following specific example will be employed in later chapters for evalu-
ating various numerical algorithms. The initial condition for w is chosen to

be
u(z,0) = ea, sin Kz (2.92)
with k = 27/X, where A is the wavelength and e is a dimensionless coeffi-

cient. The initial condition for the speed of sound a corresponding to a wave
traveling to the right is
-1
a=a,+ %u (2.93)

The initial conditions for the remaining flow variables are obtained from
(1.24) and (1.25). Now

F(u) = K~ Lsin <—> (2.94)

1 Only one period is shown for clarity.
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u

(a) Initial condition (¢t = 0)

-

(b) At time of shock formation (t = t;)

(c) After shock formation (¢t > ¢)

Fig. 2.9. Formation of shock wave

Taking into account the sign,

a _
du

From (2.95),

~1/2
. [(eao)2 —u? /

%
) (2.95)
kL [(eao)2 - uﬂ 2 z

& f

i 0 for u=0 (2.96)

31
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and from (2.91),

2
fo—— - 2.97
" (v + 1) era, (2:97)
From (2.88), the shock forms a distance a,ts to the right of the point where
u = 0 in the initial condition. Since the initial condition is periodic, a
countably infinite number of shocks initially appear at ¢5 at locations a,ts +
nAforn=0,%£1,....

2.9 General Riemann Problem

The General Riemann Problem, illustrated in Fig. 2.10, is a useful paradigm
for the development and testing of numerical algorithms for the one-dimen-
sional Euler equations. At time ¢ = 0, two different states of the flow exist
and are separated by a contact surface at x = 0. For x < 0, the velocity
uy, static pressure p;, and static temperature 7T; are given. For =z > 0,
the velocity uy4, static pressure ps, and static temperature T, are likewise
specified. Depending on the left and right states, there are fouri possible
solutions for ¢t > 0, which are illustrated in Figs. 2.12 to 2.15, namely, 1) two
shock waves, 2) one shock wave and one expansion wave, 3) one expansion
wave and one shock wave, and 4) two expansion waves. The solution of
the General Riemann Problem can be constructed from the individual solu-
tions for a propagating normal shock (Section 2.3) and an expansion wave
(Section 2.5). In each case, a contact surface separates the fluid that was
initially on either side of the interface at t = 0.

/’ diaphragm

|
|
up pr T : ug ps 1y
|
|

xT

Fig. 2.10. Initial condition for the General Riemann Problem

The specific solution is determined by the contact surface pressure p*,

t We assume identical values of the ratio of specific heats . The solution may be easily extended
to allow for different v on either side of the contact surface.

1 A fifth solution, comprised of left- and right-moving expansion waves and two contact surfaces
with a vacuum in between (Gottlieb and Groth, 1988) is physically implausible.
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which is defined by the transcendental equation§

arf(p*,p1) + asf(p*,pa) —ur +us =0 (2.98)
where
1(p _ W_Hﬁ+7_*171/2 for p* > p
. 2 2 =
fhp) =4 " (7 1) [+ (2.99)

«\ (v=1)/2 .
ﬁ [(%) — 1] for p* <p

and a = /YRT is the speed of sound. The behavior of f(p*,p) for v = 1.4
is shown in Fig. 2.11.

f(*p)

S = N W

I I I =Dp"/p

Fig. 2.11. Riemann function f(p*,p) for y =14

The four solutions are defined below and shown in Figs. 2.12 to 2.15. For
each solution, there are four regions, each of which is separated by a simple
wave (e.g., shock wave, contact surface, or expansion wave). Although the
simple waves are shown in Figs. 2.12 to 2.15 with a specific direction (e.g.,
the left shock in Fig. 2.12 moves to the left), the waves may travel in either
directiont.

§ The solution can be obtained using Newton’s method. The initial guess may be taken to be
(Gottlieb and Groth, 1988)

o= (p1a1p4 + paaap1 + p1paaias(ul — ua))
(p1a1 + paas)

Note that if p* < p1 and p* < ps (Case 4), the equation may be solved directly:

*

(y—1) _112v/(v=1)
p* = {(a1+a4)+7—(u1—U4)] [alp;(vfl)/%+a4p2(771)/2w} }

2

1 Of course, the simple waves cannot cross each other.
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2.9.1 Case 1. Two Shock Waves: p1 < p* and py < p*

The velocities of the left and right shock waves (cs,) and (cs,) and contact
surface (c.) are?

1 *
Cy, = ul—a \/w (p_ — 1) +1 (2.100)
2y P1
1 *
o = ust a4\/(’y +1) (p— - 1) +1 (2.101)
2y P4
* 1) p* —1 —1/2
e = u— 2 (p— = 1) {wp_ + M} (2.102)
v \p1 2y pm 2y

The flow variables in Region 2 (c5, < x/t < ¢.) are

Uy = ¢ (2.103)

p2 = p (2.104)
p* p* —1

= p|0-D+0+0E] |G+ +0-0E | e10)

The static temperature 75 can be found from the ideal gas equation. The
flow variables in Region 3 (¢, < z/t < cs,) are

uz = ¢ (2.106)

ps = P (2.107)
p_* -1

yZ

*

b = (7—1)+(7+1)§—4] (+D+ () (2.108)

contact
shock surface shock

X

Fig. 2.12. General Riemann Problem: Case 1 (two shock waves)
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2.9.2 Case 2. Shock and Expansion: p; < p* and py > p*

The velocities of the left shock (¢ ), the left and right boundaries of the right

expansion fan (¢ and ¢,), and the contact surface (c.) are

ur — al\/

Cs

a

Cr

Ce

The flow variables in Region 2 are

Uz

b2

P2

Ce

*

b

(v+1)

)

+1

3

(p*)(v—l)/% 9
P4 y—1

)

pr|(y—1+(y+1

[(v+1)p_*+ (v—
2y m

*

p
)Pl

and the flow variables in Region 3 are

u3

D3

P3

[lo+n+o-nE

<p*>1/7
P4\ —
D4

Within the expansion fan ¢; < z/t < ¢,

il e
[ () v

o

b

yZ

)1/7

2y

*

b1

:| 2v/(v=1)

1)]—1/2

-1

(2.109)

(2.110)
(2.111)

(2.112)

(2.113)
(2.114)

(2.115)

(2.116)
(2.117)

(2.118)

(2.119)
(2.120)

(2.121)
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t
contact
shock surface expansion fan
\
2\ 3
\
1 \ 4
\
x

Fig. 2.13. General Riemann Problem: Case 2 (shock and expansion)

2.9.3 Case 3. Expansion and Shock: p1 > p* and py < p*

The velocities of the right shock (¢s), the left and right boundaries of the

left expansion fan (¢; and ¢,), and the contact surface (c.) are*
1 *
cs = ust a4\/w (p— - 1) 1 (2.122)
2y \m4
CiI = Ui — aj (2.123)
(v +1) (p*)(vl)/%
6 = wta _ b (2.124
' y=1 (v=1)\pm )
* 1) p* 1 —1/2
e = u4+%<p——1) [(7+ )p—+u] (2.125)
7 \P4 2y pa 2y
The flow variables in Region 2 are
Uy = € (2.126)
p2 = p (2.127)
p* 1/v
p2 = p1 <—> (2.128)
b1
and the flow variables in Region 3 are
uz = cc (2.129)
p3 = D (2.130)
_ p* p* -1
ps. = pu|(y=DHOFD D+ (=D (2131)

Within the expansion fan ¢; < z/t < ¢,

2 T —1
_[_+('v )
y+11[1 2

uy + a1:| (2.132)
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-1 z 2 2v/(v=1)
= P [(/y )— <U1 - —> + } (2.133)
v+ a t)  (y+1)
p\'/"
b = <p_1> (2.134)
t
contact
expansion fan surface shock
/
2 /3
/
1 / 4
/
x

Fig. 2.14. General Riemann Problem: Case 3 (expansion and shock)

2.9.4 Case 4. Two Expansions: p; > p* and py > p*

The velocities of the left and right boundaries of the left expansion fan (¢,

and ¢, ), the right expansion fan (¢;, and ¢, ), and the contact surface (c.)

ZiJI'e5

Cl, = Ul —a (2.135)
92 1 #\ (v =1)/2v
e = uita _ o+ (p—> (2.136)
y-1 (v=1)\m
(v+1) <p*>(71)/27 2
= — - 2.1
Cly Ug + Qg (’Y — 1) s o ( 37)
Cro = Ugtay (2.138)
2a1 <p*>(7—1)/2“/
cc = ui—+ 1—(=— 2.139
e l P (2.139)
The flow variables in Region 2 are
uz = C¢ (2.140)
py = p (2.141)
p\ /7
p2 = p1 <—> (2.142)
P
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and the flow variables in Region 3 are

uz = ce (2.143)

ps = p* (2.144)
p* 1/~

p3 = p4 <—> (2.145)
P4

Within the left expansion fan ¢, < z/t < ¢,

u = % [% + o ; 1)u1 + a1} (2.146)
B (’Y . 1) 1 T 2 Q'Y/('Y*l)
b= pl[(wma_l(“l_?)*(vﬂ)} (2.147)
1
b = m (pﬁ) (2.148)

and within the right expansion fan ¢;, < z/t < ¢,,

2 [z, (1) }
= — = — 2.149
¢ 7+1[t+ g T (2.149)
(’Y _ 1) 1 <$ > 2 }27/(7—1)
g P [(’y+1)a4 ¢ (v+1) (2.150)
1
b = (2)7 (2.151)
P4
t
contact
expansion fan no. 1 surface  expansion fan no. 2
/
2 /3
/
1 / 4
/
x

Fig. 2.15. General Riemann Problem: Case 4 (two expansions)
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2.10 Riemann Shock Tube

The Riemann Shock Tube Problem is a special case of the General Riemann
Problem wherein the initial velocities u; and uy are zero. We may assume,
without loss of generality, that py > p; and hence the configuration cor-
responds to Case 2. Equations (2.98) and (2.99) can then be rewritten as
(Liepmann and Roshko, 1957)

p_v {1 (= D(@/a) @ fp - ) }WM
VIV (D - D)

p1 B p1
from which the shock pressure ratio p2/p1 = p*/p1 can be found by iteration.
The shock speed is obtained from (2.109) as

1 *
Cs:—al\/(’YQL) <p__1>+1
g P

The velocity of the left and right boundaries of the expansion fan are given
by (2.110) and (2.111) as

c =

(v+1) (p_*>(7—1)/27 B 92 ]
(v=1) \ps (v-1
C, = Q4

where p*/py = (p*/p1)/(pa/p1). The velocity of the contact surface is ob-
tained from (2.112) as

a1 (p* 1> [(’Hl)p* (7—1)]_1/2
—— (= - — +
Y \Dp1 2y m 2y

The flow variables in Regions 2 and 3 and the expansion fan are given by
Equations (2.113) to (2.121).

Cg =

p/p1

expansion fan
2 contact surface \ y———
1 ___J\
shock

! ! ! ! ¢
03 —1 0 1 2 z/a

Fig. 2.16. Pressure for Riemann Shock Tube for py/p; =2 and Ty /Ty = 1
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T/T,

L]

shock

1.1+ / /
1.0 -—/<—
0.9 expansion fan

| | | | "
083 1 0 1 2 =/

contact surface

Fig. 2.17. Temperature for Riemann Shock Tube for ps/p1 = 2 and Ty/T1 =1
u/ay

0.1

0.0 T T T x/a1t
shock

0.1+
contact surface

0.2 expansion fan

—0.3

Fig. 2.18. Velocity for Riemann Shock Tube for ps/p; =2 and Ty/T7 =1

The static pressure and temperature, velocity, and entropy are shown
in Figs. 2.16 to 2.19 for the initial conditions ps/p1 = 2 and Ty/T} = 1
with v = 1.4. The abscissa is x/t normalized by a;, whereby the solu-
tion at any time t can be obtained.t A shock moves to the left at ve-
locity ¢s/a; = —1.159479. The pressure, temperature, velocity, and entropy
change discontinuously across the shock. At the contact surface, the pressure
and velocity are continuous while the temperature (and hence the density)
and entropy change discontinuously. The expansion fan moves to the right
with left and right velocities ¢;/a; = 0.702978 and ¢, /a; = 1.0. Within the
expansion fan, all flow variables change continuously.

1 This is an example of a conical flow wherein there is no physical length scale.
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(s=s1)/cy

0.1 T T T T x/alt

0.0

Wl

shock
expansion fan
—0.2 - contact surface /

0.3

Fig. 2.19. Entropy for Riemann Shock Tube for py/p1 =2 and Ty/Ty =1

Exercises

2.1 Derive the Jacobian matrix (2.8).

SOLUTION

The Jacobian is obtained by differentiation of the flux vector F = (F1, Fa, F3)T using
(2.5). Denoting the element in the i*" row and j** column of A by A;;, we obtain

_9A _
AuianiO
_9A _
A12_8Q2_1
_9n _
A13—8Q3 =0
= 229 ()
BTN 2\,
OF> Qo
Agy = 222 _ (3 _ 22
2= 50, ~B7g,
OF2
A25—8—Q2—(’Y—1)
0F3 Q203 (Q2>3
Ay = 223 _ (=2
=50, 0 T TG,
OF3 Q3 3 (Qz 2
Agog = — = =~ =2 _ —(n=1) [ ==
2=58, " 7o, 277V
0F3 Q2
Aaq = I3 _ 22
¥ 00; o
2.2 Derive the eigenvalues of A.

2.3 Derive the right eigenvectors of A.

SOLUTION

A formal procedure for determining the eigenvectors can be defined using the property
that the eigenvalues (2.12) are distinct (Franklin, 1968). Let A be an n X n matrix. Let
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2.4
2.5

2.6

2.7
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Aq be the (n—1) x (n—1) matrix formed by crossing out row ¢ and column g of A, for
g =1,...,n. At least one of the A, is nonsingular (Franklin, 1968). An eigenvector

e = (e1,...,en)T can be found by setting the q'" element of e equal to 1 and solving
the nonsingular system of equations

n
Z (.AfL] - >\5ij) ej = —.Aiq for i=1,...,9—1,q+1,...,n (E2.1)
j=1
Ji#q
Consider the eigenvalue A = u. Let ¢ = 1. Then (E2.1) yields
(A22 — N ex + Azzes = —Aa
Azzea + (Azz —AN)es = —Asz (E2.2)
The solution is e2 = u and e3 = %uQ. Thus, the eigenvector corresponding to A\1 = u

is 11 = (1,u, 4u?)T, in agreement with (2.13). The remaining right eigenvectors are
obtained in a similar manner.

Derive the left eigenvectors of A
Prove Euler’s Identity (2.24).

SOLUTION
Denoting F = AQ and using (2.8),
Fi = Q2
(-3
Fo = (y-1)Qs— =2
2 (v=1)Qs 7 o
72295 (v-1) 93
F3 T2 =
Q1 2 Q7

which is equal or equivalent to (2.5).

Is it true in general that the matrix 7" in a general similarity form
(2.15) is the concatenation of the right eigenvectors of A, and the
matrix 7! is the concatenation of the left eigenvectors of .A? Hint:
Are the right and left eigenvectors unique?

For the case u;—u,, > 0 in Section 2.3, show that so —s1 > 0 implies
o > 1.

SOLUTION
From the definition of entropy,

p2 P2
S92 — 81 = ¢y log (—) —cplog <—)
p1 P1

Denote o = pa/p1. From (2.42),

p2_(=D+@+1De
pr (y+L)+(v—1o
Thus
1 -1 v
59— 51 = Cvlog{ [w} o}
=D+ O+

Therefore, s —s1 > 0 implies that the argument of log must be greater than one. Since

o >0 and v > 1, we may take the 1/v root of the argument and therefore

GHD+G-Da]
S ERAES
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Let v = o1/7. Then the above condition becomes

flv) >1
where
_ () (41 (v+1)
fo = ey T e
Therefore
a4 _ I AR G S S
72 v L o §
2
L L A RS
3
= A+ (G -1 - (- 2)

Thus, a Taylor’s series expansion for f(v) about v = 1 yields

(v+1)

f)y=1+2 o (v —1)3 +0((v — 1))

The Taylor series indicates that there exists a sufficiently small neighborhood of v =1,
where f > 1ifv > 1and f < 1ifv < 1. For v > 1, d>f/dv? > 0. Thus, it is not
possible for f to become less than one for v > 1, since this would require a change in
sign of d2f/dv?. By a similar argument, f < 1 for v < 1. Thus, f > 1 requires v > 1
and hence s2 — s1 > 0 requires o7 > 1.

Redraw Figs. 2.6 and 2.7 for the other three possible cases: 1) u > a,
2) —a<u<0,and 3) u < —a.

Determine the solution to the General Riemann Problem correspond-
ing to a vacuum and two expansion fans.

SOLUTION

The configuration is illustrated in the figure below. The solution in the left expansion
fan is

‘T win[%+wgnm+“}
« = -

a \ 2/ (v=1)
e

which is valid in the region u1 — a1 < z/t < ug — a2. By assumption, there is a vacuum
adjacent to the right boundary of the left expansion fan, and therefore as = 0. Thus,
from above,

ug = u] + ————ai

(-1
and hence the left expansion fan is the region

<P+ 2
w—a1 < = <up+ ———as
t (v—1
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Similarly, the solution in the right expansion fan is

e ] Chie et

O it e
o\ 2v/(=1)

wo- @)

which is valid in the region us + a3 < z/t < u4 + a4. By assumption, there is a vacuum
adjacent to the right boundary of the left expansion fan, and therefore ag = 0. Thus,
from above,

2
Uz = Uy — ———aq
(-1
and hence the left expansion fan is the region
2 x
Ug — ag < — <wug+ay
(=1 ¢

The contact surfaces coincide with the inner boundaries of the expansion fans. The
solution exists provided that the contact surfaces are separated,

ug —u1 > ——— (a1 +aq)
(v=1
t
contact contact
expansion fan no. 1 surface surface  expansion fan no. 2

Solve the General Riemann Problem using the linearized Euler equa-

tions

0Q 09
B + A% =0
where
B 0 1 0
A= (y=1)u?/2 B-ya  (v=1)
—Hu+(y-1)u3/2 H—(y-1)u* ~u
where
Ut ug
N 2
Hi+ Hy
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Accuracy, Consistency, Convergence, and Stability

It is perfectly obvious that a revolution of some sort became due in the field
of numerical methods with the advent of modern computing machines.

Robert Richtmeyer (1967)

3.1 Introduction

The chapter presents the concepts of accuracy, consistency, convergence, and
stability in the framework of the one-dimensional unsteady Euler equations.
A simple discretization is derived for the purposes of illustration. Practical
discretization methods are presented in subsequent chapters.

3.2 The Problem

The fundamental problem is to define an accurate algorithm for integrating
the one-dimensional Euler equations in control volume form:

i/ deder/ Fdy =0 (3.1)
dt Jy L%

where Q is the vector of dependent variables,

Q1 p
Q=1 Q2 =1 pu (3:2)
Q3 pe

45
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and F is the vector of fluxes

F1 pu
F3 peu + pu

3.3 Discretization

The conservation equations (3.1) are applied to a discrete set of control
volumes V;. The solution requires specification of a set of control volumes
and algorithms for the temporal and spatial quadratures.

Assume a uniform discretization of the z-axis into M cells of length Ax
with centroids x;, ¢ = 1,..., M as illustrated in Fig. 3.1. The cell faces,
located midway between the adjacent centroids, are denoted by x;, 1 for
1=0,...,M.

1—1 ) i+1 —=

Z‘i_% JJH_%

Fig. 3.1. Grid of control volumes V;_1,V;, V;4+1

Assume a discretization of time into discrete levels t", n = 1,..., where
T =4 AT (3.4)

For volume i, denote the volume-averaged vector of dependent variables by
1
Qilt) = [ Qdudy (3.5)
Vi Jvi

where V; = AzAy and Ay is the (constant) height of each cell. The spatial
(flux) quadrature involves faces i + 1 and ¢ — 1. Denote

1
A

Fi 1= Fdy (3.6)
1 Jx. 1
2 7«+§
where A;, 1= Ay is the surface area of the face at x; 1 The flux vector F
depends on Q. In the discretization, the dependence on Q can be replaced
by an assumed dependence on @, 1 which is some function f of a set of

the volume-averaged variables (); in the neighborhood of z;, 15 namely,

QH»% — f (Q’i—mu Qi—m+17 oo 7Qi) e 7Qi+n—17 Qi"rn) (37)



3.4 Four Issues 47
Qity

// /
i—m 2 i—1] i i—&-lZ itn
//

Tj— 1 JJH_%

Fig. 3.2. Domain of dependence for QH%

as illustrated in Fig. 3.2.
Then the Euler equations (3.1) become

dQ;V;
dt

Since V; is assumed to be independent of time,

+ (FH%Ay - Fi,%Ay) =0 (3.8)

Qs (Fuy - Fy) 0
dt Ax N
This is the semi-discrete method by which the Euler partial differential equa-

(3.9)

tions (2.1) are transformed into a system of ordinary differential equations.
This approach is also known as the Method of Lines (Hirsch, 1988; Fletcher,
1988; Holt 1984).

Given the solution @); for i = 1,..., M at time t", the solution at time
t"*t1 can be obtained by integration:

1 tn+1
1
Qi =Qr =5y | (Fry =~ Fioy) dt (3.10)
The problem therefore reduces to defining the temporal and spatial quadra-
ture algorithms for evaluating the second term on the right side of (3.10).

3.4 Four Issues

In developing algorithms for the solution of (3.10), there are four issues
which must be addressed (Richtmeyer and Morton, 1967; Anderson et al.,
1984; Hoffman, 1989; Morton and Mayers, 1994; Toro, 1997). The first is
accuracy, which is the quantitative measure of the agreement between the
numerical simulation and the exact solution on a given grid. The second is
consistency, which is the fidelity of the numerical simulation in representing
the actual solution of the governing partial differential equations. The third
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is stability, which represents the absence of temporally unbounded oscilla-
tions of a nonphysical nature in the simulation. The fourth is convergence,
which is the property that the numerical solution converges to a solution
when the spatial and temporal grid spacings are reduced to arbitrarily small
values.

These four issues will be made more precise in subsequent sections. First,
we present a class of discrete approximations to (3.10) for the purposes
of examining accuracy, consistency, stability, and convergence. Second, we
consider the accuracy of this specific class of discrete approximations. Third,
we determine the necessary conditions for the consistency of this class of
discrete approximations. Fourth, we examine the effect of the spatial flux
quadrature algorithm (3.6) on the stability of (3.9) viewed as an ordinary
differential equation, i.e., without discretization of the time derivative. We
show that the spatial flux quadrature algorithm must properly represent the
physics of the flow to prevent the occurrence of unphysical oscillations that
grow unbounded in time. Additionally, specific problems associated with the
formation of shock waves are identified. We assess the numerical stability of
the class of discrete approximations introduced earlier. Finally, we consider
the issue of convergence.

3.5 A Class of Discrete Approximations

We consider a class of discrete approximations to (3.10):
tn+1

Q?—H = Q7 - Ail'/t <Fl+% —Fi,%>dt

n

where, according to (3.6),

and thus
Fiiy =F(Qipy) = F(Qiry)

The class is limited in scope for the purposes of discussing the issues of ac-
curacy, consistency, stability, and convergence, and extensions are presented
in later chapters.

The approximation proceeds in two steps. First, we consider a two-level
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approximation to the time integral,

tn+l
| Foyydt = OF(QI 1) + (1= 0)F(QL,)| At (3.11)

where 6 is a constant and = indicates that the integral is replaced by the
discrete expression on the right. This is the generalized trapezoidal method.
Second, we replace Q; 11 in (3.11) by

Qir1 = Qivy (3.12)
where @, 1 is defined according to (3.7) as
QiJr% = f (Q’i—mv Qi—m—‘rl; cee 7Qi7 s 7Qi+n—17 Qi—‘rn)

and the specific form of the function f is yet to be determined (see Sec-
tion 3.8).

The discrete approximation to (3.10) is therefore

Q=g - Stlo[r@h - Fa))
At

- L 0-0[FQLy) -FQLY|} (313

3.6 Accuracy

In this section, we determine the accuracy of the specific class of discrete
approximations (3.13). We define the error £ in approximating (3.10) by
(3.13):

+ E(At, Ax) (3.14)

= Q!
¢ exact

1
Q™

discrete

where Q7! . is defined by (3.10) and £ depends on Az and At. We
exac
anticipate} that £ can be expanded in a Taylor series,

E(Az,At) = alAz+ bAt+ cAz? + dATAt + eAt* +
O(Az'At*™) Jte (3.15)

ERREE)

where the coefficients a,...,e are functions of x and ¢. The notation for
the remainder O(Az’At37%) indicates that the term is proportionalf to

t See Section 3.7.
1 More precisely,
flz) =0(g(z)) as x—z, if lim /@) =«

z—zo g(x)
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Az'At*~". The leading terms of £ are O(Ax) and O(At) since & must
vanish as Az and At approach zero for any reasonable discretization.

The first step is to replace @ in (3.13) by an expression involving Q. We
can assume that

Qivy = |Q(@) + AzRy (2) + Ar*Ro(z) + O(Az?)] (3.16)

T, 1
z+§
where R and Ry depend on the function f in (3.7). Using a Taylor expan-

sionf

F(Qiry) = F(Qx)+ AzRi(z) + Az’Ra(x) + O(Az?))

x. 1
z+7

= F@w) + 2 [aRu(@) + AxPRae) + 000

+0(Az?)
where the right side is evaluated at x; +1-

The second step is to expand the flux difference in (3.13):
PQlyy) ~ FQLy) = F(Q,) - F(QL)
0 (OF
+ Az — R) O(Az®)  (3.17
5 (5g™) o) @)

The third step is to substitute (3.17) into the discrete approximation (3.13),
which yields

Grt=qr — Se{olrenh - P}

- s {a-o[ran)-rery))

- a2 () Va0 (2w )

+ O(Az2At) (3.18)

~+ 8

The fourth step is to incorporate the error in the time discretization (3.11).
It may be shown (Mathews and Fink, 1998) that

OF QL) + (1= 0)F(Q )| At =

where « is nonzero and finite. An additional notation is

z) = o(g(x as T —x i im @
1@) = olg(x) o i lim oS

t Note that R1 and R2 are vectors and 0F/JQ is a matrix.
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tn+1

Fipydt + (0 = 3) AT (24 1) + O(AE) (3.19)
tn

where 77 is expressed in terms of F' and . Substituting into (3.18),

tn+1

n 1
QI =qQp - A—:E/tn (F(QZ'-‘F%) - F(Qi—%» dt
1y A29T 2 3
— (60— 3)At o O(At*Ax) + O(At)
o (OF  \" o (OF
NN le— <8QR1> (1-0)- (an) ]
+ O(Az2At) (3.20)
The discrete system (3.13) is therefore equivalent to
tn+1
Q= - / (Fiey — Fioy) dt +E(Aa, A1) (3.21)
Q? 1|exact
where the coefficients (3.15) in the error £(Az, At) are
a = 0
b = 0
c =0
0 (OF Al 0 (OF
= le% (507) +0-95 (557) ]
0T
— _—(p— LHZI= .22
e = ~(0-Hh (3.22)

The error is described in terms of its temporal and spatial components If
0= l , the algorithm is temporally second-order accurate, and if 6 # 5, 1t 18
tempomlly first-order accurate.t If Ry = 0, then the algorithm is spatially

second-order accurate, and if Ry # 0, then it is spatially first-order accurate.

3.7 Consistency

The discrete approximation (3.13) is consistent with the exact equation
(3.10) if it yields the integral equation (3.10) in the limit of At — 0 and

t Three typical values are 6 = % (Crank-Nicholson or trapezium), 6 = 0 (explicit Euler), and
0 = 1 (implicit Euler).
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the differential equation (2.1) in the limit of Az — 0 and At — 0. This is
determined by the nature of the error £(Az, At).

From (3.14),
Qn+l — Qn+1
(2 (2
where, from (3.15), we have

E(Az,At) = alAx+ bAt+ cAx? + dAzAt + eAt? +
O(AL' A3 gt

+ E(At, Ax)

discrete exact

and from (3.10) we have

1 tn+1

QI =Qp - Az ), (FH% - FZ;%) dt

Assume the values for Q7! are exact and that the discrete expression (3.13)
is used to determine Q?+1|discrete. Then

Q?—H - Qﬂexaet 1 it E
(FH% - F,%) dt =<7 (3.23)

discrete

At T Atas ),
Taking the limit At — 0, this must approach (3.9) as

dQ; (Fz l_Fi—l)
dt + +2Ax :

=0

which implies

. &
Al}sIBO AL 0 (3.24)

Ax fixed
Thus, the discrete approximation (3.13) is consistent with the integral equa-
tion (3.10) provided

O(Az' A3 is O(AZ'At?™) (3.25)

1=0,...,3

7=0,...,1

and so forth.

The additional requirement is consistency with the differential equation
(2.1). Taking the limit of (3.23) as At — 0 and Az — 0, the condition is

£
lim — =0 (3.26)
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which is already satisfied by (3.25). Thus, the discrete approximation (3.13)
is consistent! with (3.10).

3.8 Flux Quadrature and Stability

The choice of spatial discretization for (3.9) has a significant impact on the
accuracy of the solution. Certain discretizations will yield exponentially
growing solutions that are physically implausible.t Such discretications are
denoted unstable. Similarly, discretizations that avoid such exponentially
growing solutions are denoted stable.

In the following subsections, we present two different flux quadrature
methods. These methods are chosen for their obvious simplicityl to illus-
trate a fundamental requirement, namely, the spatial flur quadrature must
respect the physical domain of dependence. To this end, we show by example
that, irrespective of the temporal quadrature method, the failure to meet
this requirement leads to exponentially growing perturbations and an unsat-
isfactory solution. We also show that satisfying this requirement, although
necessary, is not sufficient to guarantee an acceptable solution everywhere
(Section 3.8.4).

3.8.1 A Simple Fluxr Quadrature

We begin with a simple and straightforward approach to illustrate the con-
cept. We make two assumptions, namely,

Fi+% = JT(QH%)
Qiry = 3(Qi+Qin1) (3.27)

The first assumption states that the flux quadrature is based on an inter-
polated value Q;, L i.e., an approximate value for Q is obtained at x; 1
from (3.7) which is used to define F;, ; using (2.5). The second assumption
defines the interpolation (3.7), i.e., Q;, 18 the simple spatial average.

We seek to determine the stability of (3.27) using the analysis developed
by von Neumann (1950)? . For purposes of simplicity, we assume that the

1 Here we distinguish purely numerical instabilities from physically unstable solutions of the
linearized equations of motion as those that arise in hydrodynamic stability theory (see, for
example, Chandrasekhara, 1981).

1 Albeit they would not likely be employed in any practical computation.



54 Accuracy, Consistency, Convergence, and Stability
flow is periodic in z over a length L = (M —1)Axz,

Q1 =0Qum (3.28)

and assume M is odd with M = 2N +1. Consider Q(z,t) to be a continuous
vector function that interpolates @Q;:

Q(xi,t) = Qi(t) (3.29)
Then the Fourier series for Q(z,t) is

I=N
Qz,t)= > Qut)e™ (3.30)

I=—N+1

where ¢ = v/—1 and the wavenumber k£ depends on [ according to

27l
k= — 31
L (3.31)

The Fourier coefficients Qk(t) are complex vectors whose subscript &k indi-
cates an ordering with respect to the summation index [, i.e., Qj (t) indicates
dependence on [ (through (3.31)) and on t. Given the values of ); at some
time t", the Fourier coeflicients Qk at t" are obtained from

i=2N

Z Qi(t™)e ki (3.32)
Consider the discrete Euler equations

i (Fiuy—Fy)
L. (3.33)

The flux vector F, i1 is expanded in a Taylor series about Q;,

Fipy=F(Qiry) = F(Q) + aQ (Qiry —@i) +O((2Q%)  (339)

where we have substituted F for F' using (3.27). The term 0F/0Q)|; is
denoted A; and is A(Q;).

The quantity O((AQ)?) represents the terms that are quadratic in the
difference AQ = Q; 1 Q;. Thus, truncating (3.34) to linear terms,

Fipy ~ F(Q) + A (Qiry — Qi) (3.35)
where the ~ sign will hereafter be replaced by an equals sign. Using (3.27),
Fipy = F(Qi) + 54i (Qi1 — Qi) (3.36)
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and similarly

Fi o =F(Qi) - 1A (Qi — Qi—1) (3.37)
Thus
Fipy = Fiy = 34 (Qir1 — Qi) (3.38)
and (3.33) becomes
dQ; +A'(Qi+1 —Qi-1) _ 0 (3.39)

dt ¢ 2Azx

Assume A is slowly varying in  and hence can be treated as a constant to
a first approximation. Substituting for @); from the (interpolating) Fourier
series (3.30),

& ko tkx; tk(zi+Ax) tk(z;—Ax)
> Ry A Z Qi [ehlrtan) — giklm=an] - (3.40)
=N “N+1

The coefficients of the individual Fourier terms e“**: must vanish, and there-

fore
d
% +GQr=0 forl=—-N+1,...,N (3.41)
or equivalently
d
C?t’“JrGQk_o for k= = CENED | x (3.42)

where

G=aA (3.43)

implying that each element of the matrix A is multiplied by the complex

coefficient o defined as

tsin kAzx
=" 44
o AL (3.44)

Equation (3.41) can be solved exactly. Using (2.15),

A=TAT! (3.45)
Multiplying (3.41) by T~! and defining
Qr=T"Q (3.46)
gives
dQy +aAQp =0 (3.47)

dt
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Defining
[ 9
Qk =14 @k (3.48)
Qs
gives
Qi () = Qk,, (0)e™ ! (3.49)
form=1,2,3andl = —N+1,..., N, where w,, are complex constants, and
Wim = QA (3.50)
Writing
Wm = Wi, + LWy, (3.51)

where wy,, and w,,, are the real and imaginary parts of w,,, gives

Qler () = Qp,, (0)ewmrlemtomit (3.52)

Thus, the condition for stability (i.e., the solution does not grow exponen-
tially in time) is

Wi, > 0 (3.53)
From (3.44) and (2.12), we have
W, = 0
sin kAx
= Am .54
o = (3.54)

Therefore, the flux quadrature formula (3.27) is stable.

This is shown in Fig. 3.3 for the problem described in Section 2.8. The
initial condition is defined by (2.92) with € = 0.1, and the domain 0 <
kx < 2m is discretized into 100 uniform cells where x = 2rL~!. Periodic
boundary conditions are imposed on the left and right boundaries. The
initial condition at ka,t = 0 and the solution at ka,t = 1.25 are shown. The
profile at ka.t = 1.25 shows close agreement with the exact solution.f}

3.8.2 Another Simple Flux Quadrature

We further illustrate the concept of spatial stability by considering a different
formula for the flux quadrature

Fi+% = JT(QH%)

t However, the agreement degenerates when the shock wave forms (Section 3.8.4).
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u/a,

0.15 - Kkaot =0 Kkaot = 1.25

0.10

o computed
— exact

0.05 -

0.00 : :

—0.05 -

—0.10 -

—-0.15%

Fig. 3.3. Computed and exact solutions for the flux quadrature (3.27)

Qg = @ (3.55)

This corresponds to using the Q; of the cell to the left side of the cell face at
Tl to determine F; L Proceeding as before, Equation (3.39) is replaced
by

dQ; (Qi — Qi—1)
Ai——==0 3.56
dt + Ax ( )
and Equation (3.41) by
dQ .
%%—GQk:O forl=—-N+1,...,N (3.57)
where
G =aA (3.58)
and
(I —coskAux) sin kAx
a= AL +e AL (3.59)
Following the same analysis used previously,
(1 —coskAx)
W, = s Am (3.60)
sin kAx
m; T T A \m .61
Wi, AL A (3.61)

for m =1,2,3. Since 1 — cos kAz > 0 for all k, w,,, > 0 requires

A > 0
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A > 0
A3 > 0 (3.62)
which implies
u>a (3.63)

Thus, the method in (3.55) is stable only for fluid traveling to the right at or
above the speed of sound. This is consistent with flow physics. The formula
(3.55) for the flux Fj;, 1 uses information only from the cell to the left of
the face at i + % This is physically sensible only if all three characteristics
defined by (2.35) have positive slope as illustrated in Fig. 3.4, i.e., the flow
at x;,; only depends on conditions at # < x;;4. The algorithm (3.55) is
of limited usefulness, however, due to the condition (3.63). If it were to
be employed, it would be necessary to test for satisfaction of this condition
at every timestep and every face and employ some other method if this
condition were not met.

dt |-

Fig. 3.4. The three characteristics intersecting x; 1 are shown with positive slopes

An example of the formation of the instability is shown in Fig. 3.5 for
the problem described in Section 2.8. The initial condition is defined by
(2.92) with € = 0.1, and the domain 0 < kz < 27 is discretized into 100
uniform cells. Periodic boundary conditions are imposed on the left and right
boundaries. The initial condition at ka,t = 0 and the solution at xka,t = 1.25
are shown. A numerical instability is apparent at ka,t = 1.25 wherein
the computed velocity displays a pointwise fluctuation. The instability is
expected as the condition (3.63) is not met.
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u/a,

0.15 - Kkaot =0 Kkaot = 1.25

0.10

o computed
— exact

0.05 - foys

0.00

—0.05

—0.10 ¢

—-0.15%

Fig. 3.5. Computed and exact solutions for the flux quadrature (3.55)

3.8.3 Numerical Domain of Dependence

It is useful to consider why the algorithm (3.27) does not exhibit a constraint
similar to (3.63). The explanation is again based on flow physics. Regardless
of the magnitude of u relative to a and the sign of u, the algorithm (3.27)
incorporates flow information corresponding to all three flow characteris-
tics in (2.35). Indeed, algorithm (3.27) incorporates more information than
necessary under certain circumstances. However, an excess of information
regarding the flowfield is not destabilizing, whereas an absence of relevant
flow information is destabilizing. In other words, the numerical domain of
dependence must include the physical domain of dependence.

In summary, we have observed} that the flow physics must be fully re-
spected by the spatial flux quadrature. This requirement is independent of
whatever algorithm is chosen for the temporal integration. This is a principle
reason for the development of flux algorithms that are strongly motivated
by flow physics. We shall discuss some of these algorithms in Chapters 5
and 6.

1 In a heuristic, and admitedly nonrigorous, manner.
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3.8.4 Shock Waves and Weak Solutions

It must be noted, however, that the simple flux algorithm

Fi+% = ]:(Qi+%)
Qivy = 3 (Qi + Qiy1)

is not adequate in general, despite satisfying the stability condition (3.53).
As noted in Section 2.8, the initial sinusoidal disturbance forms a train of
shock waves in a finite time. Figure 3.6 shows the computed and exact
profiles for the velocity for the same conditions as Fig. 3.3 at the time of
initial formation of the shock wave in (2.97). The computed profile dis-
plays severe oscillations immediately downstream of the shock wave (i.e., as
viewed by an observer traveling with the shock wave). These oscillations are
numerical in origin and represent a fundamental shortcoming of the flux al-
gorithm, namely, the assumption that Q is a continuous function in . The
appearance of the oscillations is analogous to the Gibbs phenomenon in the
Fourier series representation of a discontinuous function (see, for example,
Greenberg, 1998). A solution to this problem is presented in Chapter 8.

u/a,

0.15+

0.10 o o computed

! — exact

0.05

0.00

—0.05

—010F

—-0.15%

Fig. 3.6. Example of instability associated with a shock wave



3.9 Stability 61

3.9 Stability

The selection of a physically consistent spatial flux quadrature is not suffi-
cient to ensure the stability of the discrete approximation (3.13):

Gr=qr — S {e[r@h - F@]}

- S{a-o @iy -rFey))

as we shall now illustrate.

3.9.1 A Simple Flux Quadrature

We assume the simple flux quadrature (3.27),
Qit1 = 2 (Qit1 + Q)
This algorithm was shown to be stable for the semi-discrete stability analysis

(Section 3.8.1).

The stability analysis of the discrete approximation is similar to the sta-
bility analysis for the semi-discrete approximation presented in Section 3.8.
The flow is assumed periodic in z,

Q1=Qum

where M is odd and M = 2N + 1. Defining Q(x,t") to be a semi-discrete
vector function that interpolates QF, the Fourier series for Q(x,t") is

x tn _ Z Qn kx

I=—N+1

where ¢ = y/—1 and the wavenumber k depends on [ according to (3.31).
The Fourier coefficients Qz are complex vectors whose subscript k indicates
an ordering with respect to the summation index [ through (3.31) and the
superscript n indicates a discrete time level . Given the values of @); at
some time t", the Fourier coeflicients Q” at "™ are obtained from

i=2N

QZ — Z Q tn —vkx;

The flux vector F;, 1 is expanded in a Taylor series about Q;,

Fiiy = F(Qiry) = FQ) + A (Qiry — Qi) + 0 ((40Q)0)
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where A = 0F/0Q is assumed constant. Thus, (3.13) is approximated by

a=ar — al(eri-ery)

- aeAlo-o(en, -eny)

which yields

QGrt=qr — oafo(@t -]

A 0) Qe — Q1)

which is a discrete analog of (3.39). Substitute for @; from the (interpolat-
ing) Fourier series and note that the coefficients of the individual Fourier
terms e**® must vanish:

(I + AthaA] QY™ = [T — At(1 — 0)aA] QF (3.64)
where [ is the identity matrix} and
_tsinkAz
T T A

which is the same as (3.44). From (2.15),
A=TAT™!

where A is the diagonal matrix of eigenvalues \; defined in (2.12). Using
(3.46),

Qr =T7'Qx
Then (3.64) can be rewritten as
[T+ At0aTA QP = [T — At(1 — 0) a TA|Q}
Multiplying by T,
[T+ At0a A QP = [T - At(1 —0)a A Q}
and therefore
Qi =GaQy (3.65)

where
G=[T+At0aA [ —At(1—0)al] (3.66)

1 The identity matrix has 1’s on the diagonal and 0’s elsewhere.
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It is straightforward to show that

v 0 0
G = 0 v O (3.67)
0 0 3

where ; are the eigenvalues of G given by
vi=[1—At(1—0)aN][1+At0a )] fori=1,2,3 (3.68)
The solution for QZ“ is therefore
Wt =GrQL (3.69)
where Q}c is the initial condition and

G"=GG...G (3.70)
———

n times

Intuitively, QZ'H must remain bounded (in the absence of a physically
sensible instability) for any arbitrary initial condition,

Qi < C|Qi| for all k (3.71)

where |x| indicates the norm? of the vector x:

=n 1/2
2| = (Z !wiP) (3.72)
i=1
and C' is a constant independent of k. Thus
IG" Qx| < C|Q}| for all k

or

Gn
max | x| <

3.73
kax#0 |zl (8.73)

where the maximum is taken over all possible k and all nonzero complex
vectors x. The norm ||G|| of a matrix G is defined as*

||G|| = max —— (3.74)

and thus (3.73) is equivalent to
G"| <C (3.75)
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This is the condition for stability (Richtmyer and Morton, 1967), which may
be more precisely stated as

s . 0<At<T
G" is 1‘1n1formly bounded for 0<nAt<T (3.76)
or, equivalently, [|G"|| <C oLl K

for some positive 7 and 7.

Equation (3.76) is somewhat cumbersome to analyze due to the presence
of the power n. We therefore seek a simpler form. It is straightforward to
show that, for any matrix G,

1G]] = R(G) (3.77)
where R(G) is the spectral radius of G defined by
R(G) = max || (3.78)

where 7; are the eigenvalues of G. Additionally, it can be shown (Exercise
3.9) that

R < IG™| < G| (3.79)
Then, a necessary condition for stability is

O<At<T
R"™ < (Cy for 0<nAt<T (3.80)
all k£

for some positive 7, where Cj5 is a constant independent of k. Without loss
of generalityt we may take Cy > 1. Then,

1

1 At
R S CQ" — CQT

Now
F At
Cy' = exp(F log C2) = 1+ O(At)
At

Thus C{t is bounded by 1+ C3At for 0 < At < 7 and hence (3.80) becomes

O0<At<T
7] <1+ O(At) for 0<nAt<T (3.81)

all k

t If in fact C' < 1, we could redefine C2 to be equal to some value greater than 1 and the
necessary condition (3.80) would still hold.
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for all eigenvalues v; of G. This is the von Neumann condition for stabil-
ity. The term O(At) permits exponential growth where physically sensible
(Richtmyer and Morton, 1967); otherwise, the term O(At) is omitted.

If G is a normal matrixf, then (3.79) becomes (Exercise 3.8)
R"=[IG"|| = llG|" (3.82)

and the von Neumann condition is then clearly sufficient for stability.

It is evident from (3.67) that G is a normal matrix, and therefore the
necessary and sufficient condition for stability is

1—-aAt (1_9))‘1
< .
1+aAtoN, |~ ! (3:83)

assuming there are no physically sensible instabilities. Define

sin kAx

= h = .84
a =1 where (3 AL (3.84)
Then (3.83) becomes
(BAEN)? (1—260) <0 (3.85)
for all 7. The condition for stability is
0>1 (3.86)

Thus, for the flux quadrature
Qivy = $(Qi + Qiy1)

Euler explicit (0 = 0) is unconditionally unstablef, while Euler implicit (6 =
1) and Crank-Nicholson (f = %) are unconditionally stable. The instability
for Euler explicit is shown in Fig. 3.7 for the problem described in Section 2.8
with € = 0.01, the domain 0 < xkz < 27 discretized into 100 uniform cells,
and a time step At = Atcrpr, where Atopy, is defined in (3.94).

It is therefore evident that stability for the semi-discrete approximation
is not a sufficient condition for stability of the discrete approximation.

1 A normal matrix is an n X n matrix with n orthogonal eigenvectors. It can be shown (Franklin,
1968) that a normal matrix commutes with its adjoint, i.e., GG* = G*@G, where G* is the
complex conjugate transpose of G.

1 See, for example, Anderson et al. (1984).



66 Accuracy, Consistency, Convergence, and Stability
u/ay

0.015 kaot =0

0.010 - o computed

o ® — exact
0.005

0.000

—0.005 —

—0.010

—0.015 -
Fig. 3.7. Example of instability with Euler explicit

3.9.2 Another Simple Flux Quadrature
We consider the simple flux quadrature (3.55),
Qiyy = Qi

This algorithm was shown to be stable for the semi-discrete analysis (Section
3.8.2) provided

Ai >0 for i=1,2,3 (3.87)
By a similar analysis,
[T+ AthaA] QY = [T — At(1 — 0)aA] QF (3.88)
where
a=a+tbh (3.89)
where
Y - (1—cos kAx)
Az
b = % (3.90)

The necessary and sufficient condition for stability is again (3.83) where «
is defined by (3.89) and (3.90). The result is

(SR aman -] <o o
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fori=1,2,3.

For Euler explicit (0 = 0), the algorithm is conditionally stable with the
restrictions

A >0 and At < A?
for i =1,2,3. Thus,
u > a (3.92)
At < Atcrr 3.93
where
A
Atcpy, = min ;” (3.94)
More generally,
Ax

Atcpr = min (3.95)

W

The second restriction in (3.93) is the Courant-Friedrichs-Lewy (or CFL)
condition. The Courant number C is defined as

At
= 3.96
Atorr, ( )
and the second restriction can be rewritten as
c<l1 (3.97)

Note that the first restriction in (3.93) is identical to the condition obtained
for the semi-discrete stability analysis in (3.63).

For Crank Nicholson (0§ = %), the algorithm is conditionally stable with
the restriction

A >0 (3.98)
This, too, is identical to (3.63).
For Euler implicit (0 = 1), the stability condition is

A
At > max (— x) (3.99)
7 /\i
For A\; > 0, the algorithm is unconditionally stable. If one or more J; is neg-
ative, then the algorithm is conditionally stable with a minimum allowable
timestep.
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3.10 Convergence

In the context of a finite volume algorithm, a numerical solution Q7" con-
verges to the exact solution Q"¢ iff

lim [|Q;"° — Q7| =0 (3.100)
At—0
Az—0
at a fixed value t where Q. is the volume average of the exact solution over
cell i

1
Q" = —/ Qdzdy (3.101)
Vi Jv,

We employ the root-mean-square for the norm in (3.100) as

1 i=M 1/2

_ 2

Q7 - Q¢ll = {M > 9D @ - } (3.102)
PP, pe i=1

where the first Y implies summation over the three conservative variables

and Q. = (po,pgao,poag)T. For a spatially and temporally second-order

accurate algorithm,

Q= Qi+ O(AR, Ar?)

and therefore

Q7 — QI = O(AL, Aa?)

The results for the simple flux quadrature (3.27) are presented in Fig. 3.8
for the problem described in Section 2.8. The initial condition is defined by
(2.92) with € = 0.1, and the domain is 0 < kx < 27. The norm is evaluated
at kaot = 7, which is prior to the shock formation, and At o Axz. The exact
solution Q7 is obtained from (2.85) to (2.88). It is evident that the computed
solution converges quadraticallyt to the exact solution for sufficiently small
At.

The Equivalence Theorem of Lax and Richtmyer (1956) provides an im-
portant insight to the issue of convergence, as it is usually difficult to demon-
strate the convergence of the numerical solution except for simple problems
t We use the double vertical brace notation || - || to denote the norm of the composite of the

solutions for p, pu, and pe as defined in (3.102). This is not be confused with the matrix norm

introduced in Section 3.9.
1 The quadratic line in Fig. 3.8 is

Kao At
10—3

2
IIQ?’E—Q?HWOAt:( ) Q™ — Q| 105
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logyo Q7" = Q7]

0 —
1F -7
9oL
-3 computed
————— quadratic
—4
-5 L | J
-3 —2 —1 0
log KaAt

Fig. 3.8. Convergence study

whose exact solutions are known. The theorem applies to linear systems
(with properly posed initial conditions) discretized by a consistent finite dif-
ference approximation. Under these conditions, the theorem states that the
stability of the finite difference approximation is a necessary and sufficient
condition for convergence. In other words, consistency and stability imply
convergence.

3.11 Conclusion

In this chapter, we have introduced a family of discrete approximations
(3.13) to the Euler equations for the purpose of illustrating the concepts of
accuracy, consistency, convergence, and stability. This particular discretiza-
tion incorporates both unconditionally and conditionally stable methods,
and unstable methods. It is by no means a full catalog of discretization
schemes, and a significant number of other algorithms have been developed.®

Exercises

3.1 Show that a) sinz = O(x) as * — 0, b) cosz = O(z—7/2) as
x — /2, and ¢) zlogz =o(l) asx — 0
SOLUTION
a) By L’Hospital’s rule,
sinx cos T

lim = lim =1
z—0 X z—0 1




70 Accuracy, Consistency, Convergence, and Stability

Thus, sinz = O(z) as ¢ — 0.
b) By L’Hospital’s rule,
cos T . sinx

lim —— = lim -—
w2 (@—7)2)  a—msz 1

Thus, cosz = O(x—7/2) as ¢ — /2.
¢) By L’Hospital’s rule,

lo x .
hmxlogm—hmi—l —2:11m—a::0
z—0 =0zl  z-0 = z—0

Thus, zlogz = o(1) as z — 0.

3.2 Repeat the derivation in Section 3.8.2 with @, 1= Qi+1 and show
the method is stable only if u < —a. Discuss the physical signifi-
cance.

3.3 Find an explicit expression for the O(AQ)? terms in (3.34).

SOLUTION

The Taylor series expansion of a function f(z1 + Azi,z2 + Aze,z3 + Axs) about
(z1,x2,23) can be expressed as

flz1 + Azy, 20 + Azg,z3 + Azz) = f(z1,x2,23) +
Az
[ fxl facg facg ] Azxg +
Axg
Axq
[ Az Azy Az |H| Aw
Azxs

where H is the Hessian matrix

Jorz1 Sfeizs foies
H= f1211 fng fzzfvs

r3T1 T3T2 T3T3

and fg; = 0f/0x1, etc. Denote Hi, H2, and H3 as the Hessian matrices for the
conservation of mass, momentum, and energy. Then,

0 0 0
H1 = 0 0 0
0 0 0
2
—-(r- 3)Q—§ (v-3)g8 0
Ho = ' 1
2= (= 3)95 —(r=3)g; 0
0 0 0
29 _3,_1)L 4 e 2
2y Q 3(7 1)94 'YQ%+3('Y DQ? ’YQ%
Hs = _'Ygz +3(v-1)33 % —3(”/—1)% on
9 e
’YQQ 0 0

3.4 In deriving (3.41) and (3.64), it was stated that the coefficients of the
individual Fourier terms e“**i must vanish. Prove this statement.
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Prove that (3.62) implies (3.63).

SOLUTION
Equations (3.62) are

u > 0
u+a > 0
u—a > 0
which can be written
u > 0
> —a
> a

The third condition implies the first and second and therefore is the requirement.

Show that ||G|| > R(G), where R(G) is the spectral radius of G.
Prove that if ||G|| < 1, then

1 1
i S Q=67 < e
L+ |Gl L—|G]]

SOLUTION
From the identity
I=1-6)a-a)!

we have
M= -aa-a
Now
Nl-a)A-O) I <A-a) -1
and

1= <@+IGI)
Thus, since ||I]] =1,
L<@+[IGI) A=)t
and therefore

—L_<ja-o

L+ G|
From

I-a)yI-6)"t=1
we obtain

- t=1+GUI-&) !
and thus
NI=a) "I <1+GI T =)

Since ||G|] < 1,

1
NI =) € —=r
-G

(Isaacson and Keller, 1966).
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3.8 Show that if G is a normal matrix, then R" = ||G"|| = ||G||", where
R is the spectral radius of G.
3.9 Show that, in general, R™ < ||G"|| < [|G]|", where R is the spectral

radius of G.
SOLUTION
The proof for n = 1 is Exercise 3.6. Let n = 2 and let V denote the set of right
eigenvectors €' = (e}, €k, ..., el)T of G with eigenvalues \;. Then
max |GGzl
IG?|| = x#0
||
max |GGzl |G
| (GGl [Gal
|G| ||
max
> Y, |GGz| |Gz|
|Gz| ||

where the inequality arises since the set of eigenvectors V is a subset of all nonzero
vectors x. Furthermore,

max |GGz|Ga| _ max |Ghiel| [
—_—— = i -
|Gz| x| [Aief| e
max | |Gei I\i| |e?
B Nillet] el
max
= i AP
max 2
()
= R?

The proof for the general case follows by induction. The second inequality follows from
the matrix norm property ||AB]|| < ||A||||B||, where A and B are matrices (see the
Endnotes).

3.10  Derive the stability condition (3.86) from (3.83).
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Reconstruction

There is an extensive mathematical literature devoted to theorems about
what sort of functions can be well approximated by which interpolating
functions. These theorems are, alas, almost completely useless in day-to-

day work: if we know enough about our function to apply a theorem of any

power, we are usually not in the pitiful state of having to interpolate on a

table of its values!

William Press et al. (1986)

4.1 Introduction

The semi-discrete form of the Euler equations (3.9) is

%+ (FH%A—xﬂ%) .

where Q;(t) is the cell averaged vector of dependent variables,

Qilt) = 5 [ Qdrdy

2

F.

i+l is the spatial flux quadrature

1
Ajgy

Fdy

Fiyy =
Tixl

(4.1)

and A, 1= Ay is the surface area of the face at x;4 1 For a one-dimensional

flow,
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where F(Q) is given by (2.5).

The discretization of the domain (Section 3.3) and introduction of the vol-
ume averaged vector Q;(t) result in a loss of information regarding Q(z,t).
Consider, for example, the periodic function Q(z) = sinz for 0 < x < 2.
Assume ten cells are employed. The exact function Q(x) and cell averaged
values (); are shown in Fig. 4.1. Within a given cell, the cell averaged
value is only an approximation of the exact function Q. Of course, the
approximation improves as the size of the cell is reduced.

Q and Q;
1.0 - s cell average
= : RN — — exact solution
05— : : N
SR | | L ! ! !
x
0.0 1 2 3. 4 5 . 6/
—05F N /
N : : s/
—1.0F L

Fig. 4.1. Exact function Q(x) = sinz and cell averaged Q;

The time evolution of ); requires, from (4.1), the fluxes Fj, 1, which, in
turn, must be computed using the @; in the vicinity of x;4 1 Within each
cell i, a local approximate reconstruction Q;(x) of the exact function Q(x)
can be formed to compute the fluxes.t Note, however, that a discontinuity
may exist at each cell interface, i.e., Q;(x;, 3 ) # Qiv1(z;y 1 ). The algorithm
for the fluxes Fj 1 must take this discontinuous behavior into consideration.

The simplest reconstruction is Q;(z) = Q;, which is first-order accurate.
This method leads to excessive numerical diffusion, however, and is generally
not acceptable. We therefore seek reconstruction methods of higher order
accuracy. Three methods are presented in the following sections. Methods
for computing F; +} are described in Chapters 5 and 6.

t Note that @Q; is the cell averaged value in cell ¢ and is therefore a constant. Q;(z) is a function
defined in cell 7 that is in general not a constant. Q;(z) is constructed to provide a closer
approximation to Q(x) than is afforded by Q;.
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4.2 Reconstruction Using the Primitive Function

Colella and Woodward (1984) and Harten et al. (1987a) developed methods
for higher order reconstructioni. In each cell 7, a polynomial is constructed
to approximate Q. On the right face of cell ¢ at z,_ 1 the polynomial is
employed to estimate the value§ of Q denoted by Q7 _ 1 while on the left
face at ;. 1 the polynomial is employed to estimate the value of Q denoted

by Qé o1 (Fig. 4.2). A similar reconstruction is performed for all cells. For
2
cell ¢, the flux F;, ;1 is then determined using @', , and Q7 ,, and similarly
2 i+3 i+3

the flux F;_ 1 is then determined using QL ; and Q7
2
in Table 4.1.

1, This is summarized
3

right face at ;1 left face at ;1
7C :

ifl/i\*i+1 —=

.Ti,% Z'i+% I’i+%

Fig. 4.2. Reconstruction to interior faces of cell ¢

Table 4.1. Reconstruction of Q for Computing Fii%

Quantity Use reconstruction in cell

l
Qi_% i—1
” )
Qi_% ¢
l .
i+ t
;_,_% i+1

We present a particular form of a reconstruction method that employs the
cell averaged values @Q;—1, Q;, and ;11 to reconstruct the solution in cell 4.
We define a primitive function I(x) according to

I(x) :/ Qdr for =z 3 <z<wjy (4.2)
z._3
-3

where Az is assumed constant. Note that [(z) is defined for z within the

1 Earlier, Van Leer (1979) developed a second-order accurate method using piecewise linear
reconstruction with Godunov’s method.
§ It is also possible to interpolate a different set of variables, e.g., velocity, pressure, and density.
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limits of the three cells i—1,%, and ¢+1. Then

I(azi,%) =0

I(@;—y) = Az Qin

I(@ipy) = Az (Qi—1+ Qi)

I(zi13) = Az(Qi—1+ Qi+ Qiv1) (4.3)

There is a unique third-order polynomial P(x) that interpolates I(z) at the

four points z;_3, x;_1, Titl, and Tt The polynomial may be obtained
using Newton’s formula (Mathews and Fink, 1998)

P(x) = ag+ai(z— xi_%) + as(z — :L'Z_%)(x - xi_%) +
az(x — xl,%)(x - xif%)(x - $i+%) (4.4)

The coefficients are defined by

ayg = I[xi—%]

ay I[wi—%axi—%]

ax = I[xi—%a$if%7xi+%]

as = I[xi—%axi—%7$z+%7mi+%] (45)

where
Ilwig] = I(wi_g)
Iz, 1] — I[z;_3]
I[xi_%7xi_%] - X; 71 —Z;_3 :
Z—g 7/_§

I[xi—37xi—%vxi+%] =

2

Iz, s, @, 1,x; 1,T,.3| =
[1757 1—3) z+§7 z+§]

(4.6)
Now
I(z) = P(x) + E(z) for x5 <z <3 (4.7)
where E(x) is the error defined by
(r—zg)(@—x; 1) (0= 1) (0 —Tip3) d*T

where & depends on x and T3 < T<ws.

[NY)
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7

The reconstruction functionf for Q in cell i is denoted as Q(z) and is

defined by

Qi(r) =

Thus
Qi(z) =

I[z;_ 3,

Iz, T x
[ i—Lobipdslig 3

Defining

the coeflicients are

a Qi1
a; = (2Am)_1AQi,%
az = {G(AJT)Q}_I (AQH—% —AQi—%>
Define
§=z—ux;
and then
(AQir1 —AQi—1)  (AQiy1 +AQ;_1)
Qile) = Q- g v
(AQiyy —AQiy)
2(Ax)? ¢

.
|

E for =z,

g 21<l‘<{L‘H_1
T

a1 + as [(m—wi_%) + (:L‘—xl-_%)} +

6),

301 = Qin

1Tyl = Qi

%,xH%] = Qit1

1Tivy] = (2A2) 7" (Qi — Qi-1)
] = (282)7"(Qip1 — Qi)

AQiyy = Qiy1 — Qi

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

t Recall that Q; is the cell averaged value in cell ¢ and is therefore a constant, and Q;(z) is a
function defined in cell 7 that is in general not a constant.
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Reconstruction

The domain of dependence of Q;(z) for cell i is shown in Fig. 4.3. From
(4.14) it is evident that Q;(z) depends on Q;_1,Q; and Q4.

cells used to define Q;(x) for cell

1—1 1 1+1 —=

Ii_% in_% Z‘H_% J)H_%

Fig. 4.3. Cells used to define Q;(x)

From (4.2), (4.7), and (4.9),

dl  dE

W = ZTm
dE
i

From (4.8), it is evident that dE/dx = O(Az3). Therefore, Q;(x) is a
third-order accurate reconstruction of Q@ within cell 4.

Equation (4.14) can be applied to define the reconstruction within cell 1.

By replacing ¢ by i—1, the reconstruction within cell i—1 is obtained, and
similarly for cell ¢+1. Thus,

Qs = Qi +3AQiy +150Q;y

2

L% = Qi+1— %AQH-% - %AQH-%
Qi_% = Qi1+ %AQi—% + %AQi_%
L= Q- AQiy - 5AQu, (4.15)

Therefore, the computation of the flux contributions to cell ¢ involve cells
1—2 to ¢+2 as shown in Fig. 4.4.

cells used t|0 define F;_ 3

cells used to define F; 41
| 2

1 —2 i—1 ) 1+ 1 1+ 2 —=

ZL’i_% ZL’i_% .’bi_% Tiq 1 I'H_% I'H_%

2

Fig. 4.4. Dependence of F;_1 and Fj1
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An example of the reconstruction of a scalar function is presented in
Fig. 4.5. The exact function is Q(z) = sinz and it is assumed periodic.
Ten cells are employed. The function is reconstructed within each cell ¢
according to (4.14), with the symbols < and > indicating the values of Q7 _ 1

and Qé 41, respectively, for cell 7. It is evident that the reconstructed func-
2

tion Q;(z) is a close approximation to the exact function Q(x) within each

cell. There is a small jump in Q;(x) evident at the face of each cell. By

denoting

0Qiry = Qipy — Qfiy (4.16)
we have
0Qiry = § (AQiry —28Qi4) +2Q; )
and using (4.11),
0Qity = T (Qiy2 —3Qit1 +3Q; — Qi—1) (4.17)
Q and Q;(z)
1.0 <+—> reconstructed solution
— — — exact solution
0.5
| | l | | |
0.0 1 2 3 4 5 6 !
—0.5+
—-1.0+

Fig. 4.5. Reconstruction of sine using ten cells

4.3 No New Extrema

A problem arises with the reconstruction (4.14) when the function Q exhibits
a discontinuity as illustrated in Fig. 4.6. The exact function is

-1 forxz<m
Q) = { +1 form<x (4.18)

Ten cells are employed, with the discontinuity coinciding with the boundary
separating the fifth and sixth cells. The function is reconstructed within
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each cell ¢ according to (4.14), with the symbols < and > indicating the

values of Q7 _, and Qﬁ 41, respectively, for cell 1.
2 2

It is evident that the reconstruction (4.14) is a poor approximation of the
exact function ©Q within the fifth and sixth cells. The reconstruction has

introduced fictitious local extrema at x, 1 and xg 1 The jump Q5 1 at the
discontinuity (z = ) is incorrect. Using (4.17),

0Qs1 = 5(Q1 — Qr)

noting that @; = —1 for ¢ = 1 to 5 and Q; = +1 for ¢ = 6 to 10. Finally,
the reconstruction yields a variation of @Q;(z) with z in the fifth and sixth
cells while the exact function Q is a constant.

The source of the problem in Fig. 4.6 can be identified using Fig. 4.3.
When cell ¢ is immediately to the left of the discontinuity, the reconstruc-
tion algorithm (4.14) employs data from both the left and the right of the
discontinuity. A correct reconstruction would only employ data from the
left. Similarly, when cell ¢ is immediately to the right of the discontiuity,
the reconstruction algorithm (4.14) employs data from both the left and the
right of the discontinuity. A correct reconstruction would only employ data
from the right.

Q and Q;(x)

1.5~

1.0~ < > reconstructed  r f — ¢—d>¢—>¢—b¢—>

— — exact

0.5

0.0 | | L1 | | | z
—0.5
—1.0 ¢—b><t—bt—b<t—b— -/ —

1.5

Fig. 4.6. Reconstruction using ten cells

The criteria for developing reconstruction algorithms must therefore be
expanded. It is clearly insufficient to simply require a given formal order
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of accuracy of reconstruction. This approach assumes that the exact func-
tion Q possesses continuous derivatives up to some order depending on the
order of reconstruction. This assumption is not valid when Q manifests a
discontinuity (e.g., a shock or contact surface in gas dynamics).

In principle, the reconstruction algorithm could be revised to incorporate
an appropriate directional bias in the vicinity of a discontinuity. However, in
solving the Euler equations, the exact function Q is not known, and therefore
detection of the discontinuity is considerably more difficult.

A straightforward approach is to avoid the formation of new local extrema
relative to the cell averaged solutions in some neighborhood of cell 7. This
approach is denoted No New Extrema and may be summarized as follows:

No New Extrema (NNE): The reconstructed left and right
states Qé 41 and @, shall not introduce any new extrema
2 2

relative to Q’i—av Qi—a-i—la sy in sy Q’i+b717 Q’i+b7 where
a>0andb>0.

The constants a and b define the neighborhood of cells surrounding (and
including) cell ¢ that are utilized in the determination of the local extrema
(local maximum and minimum).f The modification to a reconstruction al-
gorithm to incorporate this principle is denoted a limiter. An example is the
Modified Upwind Scheme for Conservation Laws (MUSCL) described in the
following section. It should be emphasized, however, that the NNE principle
does not guarantee that a left or right state is correctly reconstructed at a
discontinuity in Q. An counterexample is presented in Fig. 4.22 later.

4.4 Modified Upwind Scheme for Conservation Laws

The reconstruction function (4.14) and face values (4.15) require modifica-
tion in the presence of discontinuities in @. We may restrict our attention
to the face values since they determine the flux at the cell face given the
flux quadrature algorithm. Equations (4.15) can be expressed in a general
form for cell ¢ as

Qs = Qi+1[(1=mAQiy +(1+/)AQy]

1 The constants a and b should be as small as possible, since the objective is to avoid the formation
of new local extrema (i.e., unphysical oscillations) in the reconstruction. The minimum values
a=b=0, Qi+ ;= QZT 1 = Q; correspond to a first-order reconstruction that is excessively

2 -z
diffusive. Thus, the relevant range is a > 1 and b > 1.
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Qiy = Qi-1[1-RAQuy +(1+mAQ |  (419)

where k = % The dependence of Qﬁ 41 and Q7_, on the adjacent cells is
2 2

shown in Figs. 4.7 and 4.8. Equation (4.19) is “upwind-biased” since Qé 41
2

depends on Q;_1, Q;, and Q;11, and thus Qi +1 (note left face) employs two

cells on the left of ;. 1 and one cell to the right. Similarly, Q7 , depends
2
on Q;—1, Q;, and Q;y1, and thus Q7 , (note right face) employs two cells on
2
the right of Ti-1 and one cell to the left. The above formulas can be applied

to each cell and thereby define the left and right face values for every face.

cells used to define Qi+7| L li+%

i

. NI
1—1 zl yi+1 —
1’1‘,% .’Ei,% $i+% I,H,%

Fig. 4.7. Cells used to define QL; for kK = %
2

Qi ;\//’\Cells used to define Q7
2N 3

PN

i—1 ¢ 7 1+ 1 —

l‘i_% xi_% $i+% .’Ei+%

Fig. 4.8. Cells used to define Q}_, for k = %
2

There are three additional interesting values for x that are summarized
in Table 4.2. Equation (4.19) is a second-order reconstruction if xk = —1
(Exercise 4.1). It is “upwind”, i.e., Qé+l depends only on @; and Q;_1,
which are to the left of x;, 1, as shown 2in Fig. 4.9, and similarly, Q! ,
depends only on @); and ;+1, which are to the right of x;_1, as illustrated
in Fig. 4.10. Equation (4.19) is a second-order upwind-biased reconstruction
if Kk = 0 (Exercise 4.4). In this case, the dependence of Qi. L1 and Q7 on
the adjacent cells is the same as shown in Figs. 4.7 and 24.8. Equation
(4.19) is also a second-order reconstruction if k = +1 (Exercise 4.3). It is a
“centered” reconstruction, i.e., Qé 41 depends only on @; and @41, which
are centered on T, 1, a8 shown in i“ig. 4.11, and similarly Q7_ 1 depends

only on QQ;_1 and Q);, which are centered on L1, as shown in Fig. 4.12.
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Table 4.2. Reconstruction
K Order Definition

ond Centered

3rd Upwind-biased
2nd  Upwind-biased
Upwind

— O W= =

2nd

l

cells used to define Q! +17\ il
2 2

i—/l \2 \i—l-l —

xi_% l‘i_% ZCH_% xi+%

Fig. 4.9. Cells used to define Qlile for k = —1
2

Qi L7 /i cells used to define Q]
2 2

iV i

i

€Ti—

[N

.Ti,% $i+% l’i+%

Fig. 4.10. Cells used to define Q7_, for k = —1
2

é+%—\ Acells used to define QEJF%

\

. . \ .
i1—1 z/ N Z}P 1 —
1’1'_% 1’1'_% Zi-‘r% SCH_%

Fig. 4.11. Cells used to define QLL for Kk = +1
2

cells used to define QL7\/— Q1
/

/ol )

1

i—1°7

7+ 1 -

Il_% I’i_% I’H-% I1+%

Fig. 4.12. Cells used to define Q] _, for x = +1
2
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Anderson et al. (1986) modified (4.19) by replacing AQ&% with Z@ii%:
Qé+% = Qit+j [(1 - ﬁ)@i—% + 1+ ”)E\QH%]
Qiy = Qi—1|0-mAQu, +(1+mAQ | (420

where mii 1= AQ;4 1 except when this would introduce new extrema in

Qé 4y or . 1 (i.e., a new minimum or maximum) relative to Q;_1,@Q; and

Qi+1. This implies four constraints:

QﬁJr% < max(Qi—1,Qi, Qi+1) (4.21)

§+% > min(Qi—1, Qi, Qit1) (4.22)
Qiny < max(Qi—1,Qi, Qiy1) (4.23)
Qi_y = min(Qi-1,Qi; Qit1) (4.24)

This approach is denoted Modified Upwind Scheme for Conservation Laws
(MUSCL).T There are four cases to consider for the values of x in Table 4.2.

4.4.1 Case 1: AQH% >0, AQ,-_% >0

The relative values of Q;_1, @;, and Q; 1 are illustrated in Fig. 4.13. The
first constraint (4.21) yields

Qi+1 [(1 _ ,{)Z@F% + (14 n)@i%} < Qit1

using (4.20). Assume that Z@ii% = AQii%. Then the above condition
becomes
AQ;— 3 <bAQ;
where b is a positive constant defined for k < 1 by}
3—K
b pu—

1—-k
Thus, provided AQF% < bAQH%, Wwe can assign E)ii% = AQH[%. When
AQi_% > bAQH%, we write

AQ;—y =bAQ;1 1 +0

(4.25)

t Earlier, Van Leer (1977a,1977b,1979) developed a combined reconstruction-evolution method
entitled Monotone Upwind Schemes for Scalar Conservation Laws denoted by the same acronym
(MUSCL). Hirsch (1988) uses the term Monotone Upstream-Centred Schemes for Conservation
Laws.

1 If Kk =1, then (4.21) is satisfied automatically.
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where § > 0. Substituting

11—k
§+% = Qi1+ ( 1 )6
and 0 must therefore be zero. Therefore, the first constraint (4.21) is satisfied
provided
Z\Qifl = { bAfl_% li iQ’_% < ZiQH‘%
2 Qiyy HAQ;_1 >bAQ;
AQiry = AQyy (4.26)

If K =1, then @ii% = AQii%.
The second constraint (4.22) yields
Qi+ {(1 - H)Z\Qi—% + (1 + ”)@H%} > Qi1
Assuming @ii 1= AQ;+ 1 this constraint becomes
(5 -K)AQ; 1 +(1+£K)AQ; L 20
Since AQ,;+ 12 0, this condition is satisfied.
The third constraint (4.23) yields
Qi— % [(1 - ﬂ)@w% +(1+ ”)E\Qi—%} < Qi1
Assuming @ii 1= AQ;. 1 this constraint becomes
(5— K)AQH% +(1+ R)AQZ-,% >0
which is satisfied.
The fourth constraint (4.24) yields
Qi—1 [(1 - Fé)@H% +(1+ H)@i_%} > Qi1
Assuming @ii 1= AQ;+ 1 this constraint becomes, for k < 1,
AQyy <DAQ;
By a similar argument as employed for the first constraint, we obtain
@i_% = AQ;y

AQir1 if AQirs <HAQ;

AQiry = {bAQF% if AQui1 > bAQ; (4.27)

Nl= Nl

If Kk =1, then mii% = AQ&%.
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Fig. 4.13. AQiyy >0, AQ;_3 >0

Combining (4.26) and (4.27) yields, for k < 1,

_ AQ, . if AQ,
AQiy = {bAQii% if AQ,_
Z\ N AQH% if AQH% <bAQ;-
Qs =\ bAQ, i AQL > bAQ

< bAQH-%

Nl= Nl

(4.28)

D= Nl

and Z\Qii% = AQ;yy for £ = 1. This is illustrated in Figs. 4.14 to 4.16 for
K < 1.

BREE AQiy =bAQu,

AQi; =AQi
AQity = AQiyy

@i_% = bAQH%
AQiry = AQiry
AQi—y

Fig. 4.14. ZZ)H% and Z@i_% for Case 1
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AQiyy

Fig. 4.15. AQ,_, for Case 1

5G..,

AQi+y

Fig. 4.16. @H% for Case 1

4.4.2 Case 2: AQH%

AQi-y

87

The relative values are illustrated in Fig. 4.17, which is shown for AQ; 1>

—AQ,;_ 1. We consider the four values of « in Table 4.2.

For k = —1, Equation (4.20) is

l 1A
i+l T Qz+§AQz—%

L
iy = Qi—3AQn

Assume that R)ii% = AQ;+ ). Equations (4.22) and (4.24) imply

AQ,_
AQ;,

Nl N

IN IV
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xi,% Ti+l

Fig. 4.17. AQiyy >0, AQ;_3 <0

which is opposite of the conditions for Case 2. Thus, we take
K\Qi—% — 0
For x = 0, Equation (4.20) is
by = Qi+ 1(BQuy +A0, )
L= Q- 1(BQi, +A0y)
Assume that AQ;. 1 = AQ;1;. Equation (4.22) implies
AQiry +AQ;—1 20
while Equation (4.24) implies
AQiry +AQ; 1 <0
which are in general contradictory. Thus, we take

For k = %, Equation (4.20) is
by = Qg (AQiy+280u)
= Qi §(BQuy 250y

Assume that mii 1= AQ;. 1 except where a limiter must be employed.
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The following definitions satisfy Equations (4.21) to (4.24):

E\Q,il _ AQ%—% lf AQZ—% 2 —2 AQZ+1
=3 —2 AQZJ'_% lf AQ@—% < —2 AQZ'+1
K\ B AQH% if AQH% <=2 AQi—%

For k = 1, Equation (4.20) is
§+% = @it %AQH%
:;n.;_% = Qi— %AQz—%
Assume that @ii% = AQH[%. Then

QéJr% = Qi+ 3AQi

§+% = Q’L - %AQlf%
which satisfy the conditions in Equations (4.21) to (4.24).
4.4.83 Case 3: AQH% <0, AQ,-_% <0

The relative values are illustrated in Fig. 4.18. The analysis is similar to
Case 1. The result for k < 1 is

AQi—l lf AQi—l 2 bAQZ-f—%
bAQir 1 if AQi_y <bAQi)

ol

5@@-7% =

AQipy = {bAQi_l if AQ ;< bAQ; (4.29)

Nf= N

and @ii% = AQ;y; for k= 1.
4.4.4 Case 4: AQH% <o, AQi_% >0

The relative values are illustrated in Fig. 4.19. The analysis is similar to
Case 2. For k = —1 and 0, the result is

K\Qi—% — 0
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| H

Fig. 4.18. AQi1y <0, AQ;_3 <0

For x = %, the result is

S e v
- Qi+1 1 Qz—% > = QH—%
— AQH-l if AQH_l Z -2 AQi_l
AQHL = . 2
2 —2 AQi_% if AQH% < =2 AQi_%
For k = 1, the result is
AQH—% = AQH%
AQily = AQ;y
Q
I I
) | |
I I ! !
i1l i it
. . x

Ti—1 Tijy 1
i—3 z+5

Fig. 4.19. AQ;1 <0, AQ;_y >0

4.4.5 Summary
The MUSCL scheme is
Ly = Qi+ [1-mAQ Ly +(1+0)AQ,,]

1
2



For v =1,
1
For/-i—3

4.4 Modified Upwind Scheme for Conservation Laws

AQ;—;
AQH%

if AQ,

Qi_y =
2
@z-% =
@H% =
= AQ;—y
) — 2
AQZ—% { bAQer%

_ AQii 1
. = 2
Qi { bAQ; 4

[S ST

if AQ;_
if AQi 1 <HAQ,-
if AQuyy > bAQ,;

if AQ,_
if AQ,_
if AQ;y < —2AQ;
if AQ;y > —2AQ;

Nl= Nl
A
e
>
O
+

if AQ;yy 2 bAQ;
if AQiyy <bAQ;

if AQi1 > —2AQ;

EnnzgmmhAQH%EOMdAQF%SQ
5o, = {294
Yb T 20Qu,
a AQiy 1
AQiry = { _9 Aéi_l
2
For k = % with AQH% <0 and AQZ-_% <0,
= AQ; 3
. p— 2
AQ’!—% { bAQH_%
A AQi+l
AQiry = { bAQ:l
2
Eﬂn:%mﬁhAQH%SOmdAQF%ZQ
= AQ; 4
. — 2
AQ@—% { _9 AQlJr%
A AQiy g
AQuy = { -2 Aéi—%

For k = 0 and —1 (Exercise 4.7),

EC\Q:’—% =
@H% =

if AQuy1 < —2AQ,_

minmod (AQI-_% , bAQH%)
minmod (bAQi,% , AQH%)

Qi— 1 [(1 - “)EH% +1+ R)mi%}

SN

91

(4.30)
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where

x if |x| < |y| where z and y have the same sign
minmod (z,y) =< y if |z| > |y| where x and y have the same sign
0 where x and y have opposite signs

4.4.6 Results

The effect of the limiter on the reconstruction for the sin wave with ten cells
is shown in Fig. 4.20 using (4.20) with x = 5. The reconstructed values at
the left and right sides of each face are identical to Fig. 4.5, and thus the

limiter has no effect in this case. Similar results' are obtained for k = —1, 0,
and 1.
@
1.0~ > B < > reconstructed solution
7
s b % exact solution
05 <
4 \
/ ! ! i ! ! !
. N 'L\} x
0.0 1 2 3. 4 5 6/
\ /
/
—0.5 \l><1 A
N 7/
N s
~1.0 PA_ pd

Fig. 4.20. Reconstruction of sine using ten cells and xk = % with a limiter

The effect of the limiter on the reconstruction for the discontinuity (4.18)
with ten cells is shown in Fig. 4.21 using (4.20) with x = §. The limiter
yields an accurate reconstruction of the left and right states within each cell
including the discontinuity at * = w. Identical results are obtained with
k = —1 and 0. However, the left and right states at the discontinuity are

incorrectly reconstructed for k = 1, as shown in Fig. 4.22.

4.5 Essentially Non-Oscillatory Methods

In Section 4.2, the reconstruction polynomial Q;(x) within cell 7, given by
Equation (4.14), uses the cell average values Q;_1, @;, and Q;+1 as illustrated
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1.5

1.0 < > reconstructed A= DG — = DG —>J— H

- — exact
0.5

0.0 ' '

—0.5+

Vo - _

—1.0@ — b D — B D4 —

—1.5+

Fig. 4.21. Reconstruction using ten cells and xk = % with a limiter

1.0F « > reconstructed r— BDF — - B —DI- B

- — exact

0.5 |

0.0 | | bl | | | x

[

[

0.5 [
[

[

10K — <= D9 — B<— D9 — —

—1.5-

Fig. 4.22. Reconstruction using ten cells and x =1

in Fig. 4.3. This stencil of cells is symmetric about cell ¢ and fixed. For
smooth functions, this leads to an accurate reconstruction within the cell i
(e.g., Fig. 4.5). However, for discontinuous functions, the use of a fixed
symmetric stencil of cells in the vicinity of the discontinuity yields unphysical
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extrema (e.g., Fig. 4.6). The explanation is seen in Fig. 4.23. Reconstruction
of the @ in cell number 5 should utilize only information from cell number
5 and cells to its left. Similarly, reconstruction of () in cell number 6 should
utilize only information from cell number 6 and cells to its right. Use of a
symmetric stencil for reconstruction of @ within cells number 5 and 6 leads to
unphysical extrema as indicated in Fig. 4.6. The MUSCL scheme described
in the previous section eliminates the unphysical extrema as indicated in
Figs 4.21 and 4.22 while retaining a symmetric stencil.

Q
1.5
U r=———-——-=T - - ~-—-=--.
— — exact . : . :
0.5 6 7 8 9 10
0.0 ' ' ! :
o1 2 3 4 5 6

051 2 3 .4 5
0 T

15

Fig. 4.23. Discontinuous function with ten cells

Harten et al. (1987a) developed a reconstruction method that permits an
asymmetric stencil of cells. We develop the method for the case of a second-
order accurate reconstruction of Qé 41 and Q! , in cell i. The extension

2 2

to higher order is described in Harten et al. (1987b). The reconstruction
polynomial @Q;(z) is required to satisfy three conditions. First,

Q(z) = Q(z) + O(Az?) (4.31)

in regions where Q(z) is smooth. Second, @Q;(x) reconstructs the cell average
exactly,

0; = / " 0u(@) da (4.32)

Third, Q;(x) satisfies the Essentially Non-Oscillatory property
TV (Qi(z)) < TV(Q) + O(Az?) (4.33)
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where T'V is the Total Variation of a function defined as (Hirsch, 1988)
T, 1
V@) = [

z , |dx
T2

dz (4.34)

and constitutes a measure of the oscillatory behavior of @Q;(z) within cell 4
(see also Section 8.2).

Following Section 4.2, we define the primitive function

x
I(x) = Qdr for @, 3 <T < g4

x

(4.35)

ot

i—a—%
Note that I(x) is defined for x within the limits of the three cells i—a, i—a+1,

and i—a+2, and Equation (4.2) corresponds to a = 1 in Equation (4.35).
Then, similar to Equation (4.3),

I(J:i—a—%) = 0

I(@iqry) = AT Qi

I(@iay3) = Ar(Qia+ Qi—a+1)

I(@iar3) = Az(Qi—a+ Qimat1 + Qi—a+2) (4.36)

There is a unique third-order polynomial P(z) that interpolates I(x) at
the four points Ti—a—1» Ti—atls> Timatd and Tiq+t3- The polynomial may
be obtained using Newton’s formula (Mathews and Fink, 1998)

P(z) = aota(z—z 4 ) ta(e—a o 1)@ -2 0p1)+
az(z — xi—a—%)(x - $i—a+%)($ - l”z'—a+%)

The coefficients are defined by

ap = I[:Eifaf%]
ap = I[xi—a—% ) xz’—a-&-%]
az = I[xi—a—%¢xi—a+%7'ri—a+%]
as = I[xi_a—%axi—a—&-%axi—a—‘r%?l‘i—a—k%] (437)
where
I[xz_a—%} - I(xl—a—%)
I oy —Iwi oy
Iz, B = 2
[«Tz a %wxz a-‘r%} xzfaJr% _ xifaf%

I[‘/E’L'farfé ) %‘—a+g] - I[wifaf% , xifa+%]

Li—a+3 — Ti—a—1
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—1
I[xi—a—% s xi—a—&-% ) xi—a—f—% ) xi—a—i—%} = (xi—a-I-% - xi—a—%)
(I[xi—a—‘,-% ) xi—a—l—% ) xi—a—‘r%] -

I[xifafé »Ti—at1s xifaJr%])

(4.38)
Now
I(z) = P(x) + E(x) for =, 3 ST < o413 (4.39)
where E(x) is the error defined by
Bx) = (f—xi—a—%)(x—xi—aJr%i(!Jf—xi—aJrg)(x—l’i—wg) % 3 (4.40)
where & depends on z and Tiq—} <z <z atg

The reconstruction function for Q in cell 7 is denoted as Q;(z) and is
defined by

dP
Qi(x) = T for @1 <z <@y (4.41)
Thus
Qi(r) = ar+az {(w—%—ﬁ%) + (x_xi—a—%)} +

a3 [(0=Timas ) (@ Timary) T (@2 y) (@20 y)t

(2=i—0y) (@ Tigsy)] (4.42)

Using (4.36), (4.37), and (4.38),

I[xi—a—% y Lj— a+%] = Qi*a
I[ Li— at+i> Ti_q+ 3 QifaJrl
I[ Ti— a+3> Ti—q +5

= (282) 1 (Qi—a41 — Qiza)
= (282) ' (Qi—at2 — Qi—at1) (4.43)

I[.Iifai 1

1 Zi_ a+171:z a+

S [°V)

]
] = Qi*(]ﬁi’?
]
]

I[ Li— a+d> Ti_ a+3> Li— a+3

Using (4.11), the coefficients are

ap = Qi—q
az = (QAl‘)ilAQz’—aJr%

as = [6807] " (AQiarg — AQiary) (4.44)
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Using? (4.13),
(AQi—ar3 —AQiayy)
QZ(I) _ QZ _ 7 a+224 1—a+5

b2 [AQu iy + (- 3) (AQuary — 2@y )] €

(AQz a+ é AQ@ at+i ) 2
( x)?

(4.45)

where £ = x — x;.

From (4.35), (4.39), and (4.40),

dl dFE

QW) = T m
dF
= g

From (4.40), it is evident that dE/dx = O(Az3). Therefore, Q;(z) is a
third-order accurate reconstruction of Q. It is also straightforward to verify
(4.33) since

xX.
/ H%
T, 1

-3

dQ;
dx

x. 2
dr = /Hr%@ dEdac

de  dx?

AN
e\
- J

T, 1 dQ
dx
dx’ +/

1
2

2
T, 1
/ " Q’dw—i—@ Ax®)

IN

4.5.1 Determination of the Value of a

The three possible choices for the domain of dependence of Q;(x) for cell i
are shown in Fig. 4.24.

The value of a is determined by effectively minimizing TV (Q;(z)). From
(4.45),

fora=0

dr ) AQ_y  (AQ1-AQ, (4.46)

fora=1

for a =2

)

dQi At + L <$_$i+§> fora=1
(w-ai-y)
(z-ai-4)
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cells used to define Q;(z) for cell i for a = 2
1

1—2 | i—1 ? 141 i+ 2 —=

Jﬁi_% J)l_% .Ifi_% J)H_% QI‘H_% Q]‘H_%

cells used to define Q;(z) for cell ¢ for a =1

1—2 | i—1 B} 1+1 i+ 2 —=7

l'i_% I'i_% Ii_% I'H_% IH_% xi—i—%

cells used to define Q;(z) for cell i for a =0

1—2 | i—1 ) 1+ 1 742 — ==

T

et

.3 1 . .3 .5
€T; 2 xX; 1 (EH_% l’,H_E 1’14_%

Fig. 4.24. Choices for cells to define Q;(x)

Note that the two expressions for the case a = 1 are equivalent. We rewrite
the above as

dQ;  « p
Go = Ac A (7 ) (447

where «, 3, and k are defined in Table 4.3.

Table 4.3. Derivative of Reconstructed Function in Cell i
a « Jé] k

0 AQitr AQiyz —AQiyy 1
I AQi+y AQipy —AQi—y 1
1 AQi—y AQityr —AQi—y O
2 AQi-1 AQi-1 —AQi—z 0
Therefore,
T 1 dQ;
TV(Qi(x)) = / Tz d—l dx
x x

.1
=3
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T. 1 . 1
+4 o] w1 18l
< /x Ar d:c—i—/w‘ A (:c x2+k_%)’ dx

1 1
) =g

= la|+ 38| (4.48)

Following Harten et al. (1987a), we select a to minimize o and § in turn.
The algorithm is indicated in Table 4.4.

Table 4.4. Algorithm for Determining Value of a

1st criterion 2nd criterion k a
AQi+ 1| S [AQi—3| |AQitz —AQiy| < [AQiry —AQ;—3| 1 0
1AQits — AQit 1| > [AQiyy —AQ;—y| 1 1

AQit1] > [AQi—1| [AQity — AQi—1| < [AQ;—y —AQ;—z| 0 1
AQivy — AQi— 1| > [AQi—y — AQ;—z| 0 2

An alternate approach for Essentially Non-Oscillatory reconstruction was
developed by Liu et al. (1994). Instead of selecting the value of a that yields
the reconstruction with the minimum oscillation, all possible reconstructions
for a given order accuracy are generated and a weighted sum is used as the
actual reconstruction. This method is denoted Weighted Essentially Non-
Oscillatory reconstruction.

4.5.2 Results

The reconstruction for the sine wave with ten cells is shown in Fig. 4.25.
The reconstructed values at the left and right sides of each face are similar
to Fig. 4.5. The reconstruction of the discontinuity (4.18) with ten cells is
shown in Fig. 4.26. The correct values are reconstructed at all faces.

Exercises
4.1 Prove (4.19) is second-order accurate if kK = —1.
SOLUTION
Equation (4.19) becomes
Qé+% = @i+ %AQF%

T 1
Qi,% Qi —3AQ;41

Consider the primitive function

xT
I(z):/Qdaz for xi_%ﬁxﬁa}i_‘_%
€T .
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Q
1.0+ > g < > reconstructed solution
7
, AN exact solution
05 2 ™~
7 \
0.0 ! ! ! I ! ! !
) S B x
1 2 3\ 4 5 6/
\ /
_ _ \ /
0.5 b A
cell 0123456789 AN 7
a 1101111011 \D“<] >a 7
—1.0F -
Fig. 4.25. Reconstruction of sine using ten cells
Q
1.5+
10~ < > reconstructed A= D<E == BF —DdI—- >
— — exact :
0.5+ |
|
0.0 | | LI | | | T
1 2 31 4 5 6
|
—-0.5 [
|
|
10K — bt D — B<— D4 — B
—15F

Fig. 4.26. Reconstruction using ten cells

where Az is constant. Note that the range of the function is less than (4.2). Then

I(J?l-_%) = 0
I(:pii%) = Az Q;_1
Iz y) = Az(Qi-1+Qi)

There is a unique second-order polynomial that interpolates I(x) at the three points

Tiog, T, and Tit1 The polynomial may be obtained using Newton’s formula
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(Mathews and Fink, 1998)
P(z) =agp +a1(z —:ci_%) + az(x —zi_%)(z _331'—%)

The coefficients are defined by

ap = I[IF%]
ar = I[xi—%’xi—%]
a2 = I[Ii7%7xi7%7xi+%]

where I[wF%], I[zi—%7 x;

7%], and I[:cF% (T L a:z+%] are defined by (4.6). Thus,

a = 0
ar = Qi1
az = (2Az)7! AQF%
Then
I(z) = P(z) + E(z) for T3 <z< i1

where E(z) is the error defined by

(m*xz;% )(‘T*ZF%)(%*‘TH%) 3T

3! da3

r=x

E(z) =

where & depends on z and z;_ 3

i is denoted as @Q;(x) and is defined by

<z < Titl- The reconstruction function for Q in cell

Qi(x):£ for x;

dx i-3 ses Titg
and thus
Qi(z) = Q(x) + O(Az?)
Now
Q) =@t
! ! Az

where £ = x — x;. Thus,
1 1
i+ =Q; + §AQ1'_%
is a second-order accurate reconstruction of Q to the left face of x; 41 using cells ¢ — 1
2

and 7. Similarly, evaluating Q(z) at Ti g,
— 0O 1
QL% =Qi-1— 2AQ1’—%

is a second-order accurate reconstruction of Q to the right face of xF% using cells 4 — 1
and ¢. Letting ¢ — ¢+ 1,

QL% =Qi- %AQi+%
is a second-order accurate reconstruction of Q to the right face of :1:1-7% using cells ¢ and
i+ 1.
Verify that the reconstruction Q;(z) in (4.14) yields
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4.3

4.4
4.5

Reconstruction

Prove (4.19) is second-order accurate if k = +1.

SOLUTION

Equation (4.19) becomes

Qiry Qi+ 3AQi4 3

QL = Qi-1aQ,

Using the same primitive function as in Exercise 4.1 and letting ¢ — i 4 1,
Qi =Qi+34Qi

Using the primitive function again,

Q:_% =Qi— %AQi_%

Prove (4.19) is second-order accurate if x = 0.
Prove the following reconstruction is first-order accurate:

QL = &

SOLUTION

The solution is analogous to the derivation in Section 4.2. We define the primitive
function

xT
I(x):/ 1ch:zt for :Eif%gxgxw%
-3
Then
I(xz;%) = 0
I(wi_‘_%) = AzQ;

The first-order polynomial P(x) that interpolates I(x) at the two points z; 1 and x;,
2 2
is

P(z)=ao + a1 (9379317%)

where
apg = Ifx;_1]
ap = I[xi—%zm'pf%}
Now
I(z) = P(z) + E(z) for Ty gxng%

where E(z) is defined by
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4.7

4.8
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where xF% <z< xi+%. Thus,
dp
Q) = T
= al
= @
and
dI dE
Qz) = P
= QOz)+ O(Ax)
Derive Equation (4.29).
Prove that the limiter in Section 4.4 for kK = —1 and 0 is equivalent
to
AQF% = minmod (AQi—%vbAQH—%)
AQH% = minmod (bAQi—%yAQi—I—%)
where
x if |z| < |y| where z and y have the same sign
minmod (z,y) =< y if |z| > |y| where x and y have the same sign
0 where x and y have opposite signs
SOLUTION

Consider the expression

A/éi_% = minmod (AQi_%,bAQi+%)

For AQH% >0 and AQ, >0,

1
2
AQy  ifAQ;

. bAQi+L
minmod (AQ;_ 3, bAQ; 1) = bAQ; 3 I AQ; ;

<
> bAQ,

[N EEN

which agrees with the result for Case 1. For AQH_% > 0 and AQ,

i-3 < 0, and for
AQZ-+% < 0and AQ; >0,

1
2
minmod (AQi_%,bAQH_%) =0

which agrees with the results for Cases 2 and 4, respectively. Finally, for AQ, 1 <0
and AQ,_ 1 <0,

. AQZ; 1 if AQZ‘,
minmod (AQi_%,bAQH_%) = { bAQi.;,.Z%
which agrees with the result for Case 3. A similar analysis holds for Z\QH_%
Develop the third-order reconstruction analogous to Equation (4.14)

assuming an arbitrary mesh spacing Ax;.
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4.9 Show that the two expressions for a = 1 in Equation (4.46) are
equivalent.

SOLUTION

The first expression for a = 1 is

dQ;,  AQipy N (AQiy g —AQ; 1) (x fa:H;)

dz Az Az?
Using
T—Tipl = x_$i7%_(xz+%_‘r17%)
= z-z g — Az (E4.1)

the second expression for a = 1 is obtained.

4.10  Prove that the algorithm in Table 4.4 for determining the value of a
is equivalent to the following iterative scheme (Harten et al., 1987a,
see also Chu, 1997 ) for determining the leftmost cell of the three
cells used to reconstruct Q;(z) in cell

(a) Denote the index of the leftmost cell used in the reconstruc-
tion of cell i as iy (i), where k is the iteration number beginning
with k£ = 1.

(b) Since the reconstruction must include cell 4, set i1 (i) = i.

(c) Select the next iterate for the index of the leftmost cell ac-
cording to
A lk(Z) -1 if|][$%k(i)—%7$ik(i)—%’ L. ’$ik(i)—%+k]| <

ve1(2) = A 125 630 T4 i+ k]

1x(1) otherwise

for k =1,2.
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Godunov Methods

If T would have read Lax’s paper [Lax 1959] a year earlier, “Godunov’s
Scheme” would never have been created.

Sergei Godunov (1999)

5.1 Introduction

The reconstruction methods described in Chapter 4 inherently give rise to
a discontinuity in the reconstructed functions at the cell faces. For smooth
functions, the discontinuity may be slight as illustrated in Figs. 4.5, 4.20,
and 4.25. For discontinuous functions, the difference between the left and
right states can be of the same order as the function value itself as shown
in Figs. 4.21 and 4.26. This discontinuity in the reconstructed functions is
analogous to the Riemann problem described in Section 2.9 and therefore
suggests the development of a flux algorithm based on the solution of the
Riemann problem. The original concept was developed by Godunov (1959).
The class of flux algorithms based on exact or approximate solutions of
the Riemann problem (or some generalization thereof) are known as Go-
dunov, Riemann or Fluz Difference Splitting Methods (Hirsch, 1988; Van
Leer, 1997). In this chapter, we present three different methods. Additional
algorithms are described, for example, in Toro (1997).

5.2 Godunov’s Method

Godunov (1959) introduced the concept of utilizing the solution of the local
Riemann problem at each cell face as the basis for determining the flux Fj 1

105
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in the integral form of the Euler equations (3.10):
1 tn+1

Qrtl=qQr— e <Fi+% - Fif%) dt

5.2.1 Algorithm

Consider the solution @; for i = 1,..., M at time t". A typical component
of @Q); is illustrated in Fig. 5.1. In general, there is a discontinuity in @Q; at
each cell face.

@ Qit2

Qiy1

Qi—2

Qi—l

1+ 2

Q]
:
|
|
|
|

| |

| |
-1l i it

| |

| I

Ti— Ti— Ti4 % xiJr%

[N

%
Fig. 5.1. A typical component of @); at time ¢"

The flux F; 1 is determined from the solution of the local general Riemann
problem (Section 2.9) at Titl (Fig. 5.2). The left and right states th
2

and QL_% at x;; 1 may be taken to be

l —

i+3 Qi

= Qi+ (5.1)

which corresponds to a first-order accurate reconstruction of Q to the cell

T

it+3
face.t The solution to the general Riemann problem at x;, 1 for ¢t > t" de-
pends only on (z —;1)/(¢t—t") and not on x or ¢ separately. Consequently,

1 Alternately, a higher order accurate reconstruction can be performed using the methods of
Chapter 4.
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the solution for Q at x; L is independent of time, and therefore
¢nt+1
tnF”%dt = FH%At =

F(QR )AL
where QZR

(5.2)

, is the solution of the general Riemann problem at z;, 1 using
the reconstructed values Q' 41 and Q
Thus

v 1 A similar result holds for F
2

i1
Q= Q- o (Pl - F(QR ) (53)
This is Godunov’s Second Method.!
expansion fan shock
contact surface

shock

contact surface
expansion fan
tn;\ /
\ \
\

‘ i+1 At
\
tn

| Ax |

Fig. 5.2. Possible flow structure for Godunov’s Second Method

5.2.2 Stability

Intuitively, the time step At must be chosen to insure that the rightmost
wave emanating from the general Riemann problem at the left face does not
intersect the right face, and vice versa. This implies At = Atcpr, where

Az
Atopr = mln —
where ¢

Cinax
max

(5.4)
is the maximum absolute wave speed of the waves entering cell 4
and min; indicates the minimum value over all cells. The linear approxima-
tion to (5.4) is

Atcpr, ~ min (mln ﬁ—ﬁ)

(5.5)



108 Godunov Methods

where A\j,j = 1,2,3 are given by (2.12) and the minimum is taken over
all cells. Experience indicates that this criterion may be an overestimate
depending on the particular choice of parameters for the algorithm (e.g.,
reconstruction method) and flow, and consequently a more conservative es-
timate is employed,

At = CAtory, (5'6)

where the Courant number C is less than unity.

5.2.83 Accuracy, Consistency, and Convergence

We now consider the problem described in Section 2.8. The initial condition
is defined by (2.92) with ¢ = 0.1, and the domain is 0 < kz < 27. The
first-order reconstruction (5.1) is employed. The norm, defined by (3.102),
is evaluated at xa,t =7, which is prior to the shock formation. The time
step At is determined by

At = CAtcry, (5'7)
where the Courant number C = 0.46 and Atgpy is calculated according to
Atcpr, = min (m_in ﬂ) (5.8)

i\ 7 Al

using the initial condition. The time step At is held in fixed ratio to the
grid spacing Ax, and therefore At and Ax are decreased by the same ratio.
The exact solution Q;" is obtained from (2.85) to (2.88).

The convergence is displayed in Fig. 5.3. The solution converges linearlyt
to the exact solution for sufficiently small At. The linear convergence is a
direct consequence of the linear reconstruction (5.1). The computed result
(using 100 cells) and exact solution are displayed in Fig. 5.4. The significant
error in amplitude is attributable to the dissipative nature of the first-order
reconstruction (5.1). The speed of the disturbance is accurately predicted,
however. The error in amplitude is substantially reduced by using a second-
order reconstruction as indicated in Fig. 5.5, where the results are shown
using (4.20) with £ = 0 and the minmod limiter, together with results for
the first-order reconstruction, for ka,t=7 and C = 0.18.

1 The linear line in Fig. 5.3 is

Kao At
5x 10—4

107~ Q7 llapar = (505577 ) 1QF = QP laa,zvmsxio-s
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logyo 1@~ Q7]

0

computed

— — — linear

-3 -2 -1 0
log, ka,At

Fig. 5.3. Convergence for Godunov’s Second Method using first-order reconstruc-

tion

u/ay

0.15

0.10

0.05

0.00

—0.05

—0.10

—0.15

Kaot =17

o computed

RI

Fig. 5.4. Computed and exact solutions using first-order reconstruction

5.3 Roe’s Method

Roe (1981,1986) developed an algorithm based on an exact solution to an
approximation of the generalized Riemann problem. Unlike Godunov’s Sec-
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u/ay

0.15

o computed 1°¢ order
e computed 2" order
— exact

0.10

0.05

RI

0.00

—0.05

—0.10

—-0.15 %

Fig. 5.5. Computed and exact solutions using first- and second-order reconstruc-
tions

ond Method, Roe’s scheme does not require an iterative procedure to find
the fluxi.

5.3.1 Algorithm

Consider the Euler equations (2.6) in nonconservative differential form,

0Q 09
T .A— = (5.9)
where A is the Jacobian (2.11)
0 1 0
A(Q) = (y=3)u?/2 B-7u -1 (5.10)

—Hu+ (y—=10)u3/2 H—(y—1)u®> ~u

and H = e+ p/p is the total enthalpy. Roe sought a solution of the general
Riemann problem using an approzimate form of the Euler equations

LA (e e RLL Y (5.11)

where fl(Ql, Q,) depends on the left and right states Q; and Q, of the
general Riemann problem (Fig. 5.6) and is assumed constant.

1 Recall that the solution of the General Riemann Problem requires an iteration to find the
contact pressure except in the case of expansion-expansion.
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|
|

Ql : Qr
|

—2

Fig. 5.6. Initial condition for General Riemann Problem

The matrix A is an approximation to the matrix exact A and satisfies the
following four properties (Roe, 1981)

(i) A provides a linear mapping from the vector space of Q to the vector
space of F.

(i) A(Q1, Q) — A(Q) as Q@ — Qr — Q.
(iii) For any Q; and Q,, A(Q;, Q;) x (Q — Q,) = F — F;.
(iv) The eigenvectors of A(Q;, Q,) are linearly independent.

Property (i) implies that the individual components of the vector .AQ have
the same units as the corresponding components of the vector F. Property
(ii) implies that the solution to (5.11) is a close approximation to the solution
of (5.9) for smooth Q. Property (iii) requires satisfaction of the exact jump
conditions across a shock wave. Property (iv) is consistent with the assumed
hyperbolic character of (5.11), i.e., A(Ql, Q,) is diagonalizable with real,
distinct eigenvalues and linearly independent eigenvectors.

In order to determine the matrix A, several identities are needed. Consider
the arbitrary piecewise constant functions f and g that have left and right
states indicated by f;,¢; and f, g., respectively. The following identities
can be proven (Exercise 5.1):

A(f+g9) = Af+Ag
A(fg) = fAg+Afg

AQ/f) = —Af/F (5.12)
where Af = f; — f and similarly for Ag, and
fT = %(fl + fr)

f = Vik (5.13)

The matrix A is found in the following manner. A parameterization vector
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v = (v1,vs,13)7 is introduced as

N/
v=13 /pu (5.14)
VP H
and thus O and F are
vi
Q= 212 (5.15)

vivs/y + (y=1)v3 /2y

148
F={ (y=Dviws/y+ (y+1)v3 /2y (5.16)
Vols

Since Q and F are quadratic in the elements of v, it is possible to find
matrices B and C' such that

AQ = BAv (5.17)
AF = CAv (5.18)
where AQ = Q; — Q,, and so on (Exercise 5.2).
Therefore
AF = AAQ
CAv = ABAv
Av = C'ABAv (5.19)

and thus A = CB~1L.

Consequently, the determination of the matrix A reduces to the problem
of finding B and C. It is straightforward to show (Exercise 5.3)

20 0 0
B = 1% 21 0
v3/v (y=Din/y n/y
1% 1z 0
C = § (v=Duw/y (yv+Din/y (v=Dwn/y (5.20)
0 Vs )

and thus (Exercise 5.4)

0 1 0

(y=3)a*/2 _B=ya (-1 (5.21)
—Hu+(y-1)a3/2 H—(y-1)a® vu

A
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where

~ 2 _ \/ﬁul + \/ Prr

2 \/FTl"' \VPr

- U H, + /p-H,

i IiS _ \/ﬁ 1+ pridy (5'22)
n VPt A/ pr

The quantities @ and H are the Roe-averaged velocity and Roe-averaged total

enthalpy, respectively. The matrix fl(Ql, Q,) is the Roe matrix.

Clearly, A satisfies Property (i). By comparison with (5.10), A satisfies
Property (ii), since @ — u and H — H as Q — Q, — Q. Property
(iii) is satisfied by construction. Finally, the eigenvalues \; and the right
eigenvectors &; of A may be found directly (Exercise 5.5),

A Ao =00+ a, A3 =10 —a (5.23)
1 1 1

E1=% @ p,é={ d+a ¢,é3={ U—a (5.24)
s H + aa H — aa

where @ is the speed of sound based on the Roe-averaged total enthalpy and
velocity and is given by

i =1/(y—1)(H - i2) (5.25)

It may be directly verified that the eigenvectors are linearly independent,
thus satisfying Property (iv).

The ezact solution of the approrimate General Riemann Problem

% +A(Q,, )5 Q =0 (5.26)

is now sought, where A(Ql, Q,) is treated as a constant. The Roe matrix
may be diagonalized as

A(Q;,Q,) = SAS™! (5.27)
where S is matrix of right eigenvectors of fl(Ql, Q,),

1

Sy o=

1
S = - (5.28)
+

:t <
:I((l N3
|

:; <

i
2 H

3]

1
2
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and S~1 is
3 1 - (y-1)a*/2a° (y—1u/a? —(y-1)/a?
STt =2¢ (y=1)a%/4a® —u/2a —(y—1)a/2a® +1/2a (y—1)/2a>
(v—=1)a%/4a* +a/2a —(y—1)a/2a* —1/2a (y—1)/2a>
(5.29)

Since A(Q;, Q,) is treated as a constant, it is possible to multiply (5.26) by
S~! to obtain
OR  ;OR _

— =0 5.30
ot + ox ( )
where?
~ Rl
R=51'0={ Ry (5.31)
R3
and A is
i A 00
A= 0 X O (5.32)
0 0 Az
The solution of (5.30) is
dr - -
Ry = constant on curve C; defined by i Al =1
d ~
Ry = constant on curve Cy defined by d—j =X=u+a
d ~
Rs = constant on curve Cy defined by d—f =M =u—a

Cy, Cy, and Cj are the characteristic curves of (5.30). The solution is
illustrated in Fig. 5.7 assuming 0 < 4 < a. The solutions for Ry, Rz, and
R3 are shown together in Fig. 5.8.

t t
de/dt=X ‘ dax/dt=X\g da/dt=X\3
Ri=Ry, Ry=Rq, Ry=Ry, Ro=Rg, Rg=Rg)\ R3=Rg,
T ‘ T T
Solution for R; Solution for Ro Solution for R3

Fig. 5.7. Roe solution to the General Riemann Problem
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t
da/dt = s

(Rll ) RQZ ) R3 )

T

(Rll ) RQ[ ) R3l)

115
da/dt = A dz/dt = X

(era RQZ ’ R3r>

(er 3 RQM R3r)

Fig. 5.8. Roe solution to the General Riemann Problem

Consider now the semi-discrete form (3.9) of the Euler equations

dt
The flux Fiy 3 given by (4.1) is

F’H—% = .E+% =AQ = (S[\S_l) (S'R)

The individual components of R at
by

Ax =0

= SAR; ., (5.33)

i+l

Tiyy (i.e., x = 0 in Fig. 5.8) are given

Ryl = 5 (Ri, + Ry,) + g sien(Ae) (Re, — Ry,) (5.34)
for k = 1,2,3 where
] +1 if A >0
sign(A\)) =4¢ —1 if A\ <O (5.35)
0 if \pg=0
It is straightforward to show that
Firy = $SA (Ri+ R) + 55|A|(R; - R,) (5.36)
where
A 00
Al=¢ 0 X 0 (5.37)
0 0 [Ag]
Using (5.31),
Fipy =3 [SAS7H(Q+ Q) + 51A1S71(Q - Q.)] (5.38)
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Since SAS -19, = /lQl is the flux based on the flow variables on the left
side and similarly for the right side, then

Fiyy =% [A+F+ 38572 - 2) (5.39)

Approximating the left and right states by the reconstructed values

Q= Qi+%
Q= :+%
the flux becomes
Fioy =3 [Fi+ B+ SIAST QL) — Qy) (5.40)

where F; = F(Q§+%) and F, = F( :Jr%) This is Roe’s method for the flux
F. It uses an ezact solution to the approzimate Riemann Problem (5.26).
The flux Fi+% in (5.40) is taken to be an approzimate expression for the flux
in the ezact Riemann Problem.

A more convenient form is

Fiy=5|F+F+ +j§aj\i\jyéj] (5.41)
j=1
where

a; = |1-— <7;1):—§ Ap + {(’y—l)&—z] Apu —
-(7&—21)] Ape

@ = _(7;1)2_2 - 2%] {2{ - (751) %] Apu+
ki

ag = _(7;1)2—2—1— % Ap — [% + W;l) d_f;] Apu +
_(72;21)] Ape (5.42)

and Ap = p; — pr, and so on. The coefficients «; may be interpreted as the
strength of the k" wave that has speed \.
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5.3.2 Stability

We consider the semi-discrete stability of Roe’s Method.{ The Euler equa-
tions (3.9) are

dt Az
The flux F; i+1 depends on the left and right states,

We linearize F; it} as

Fioy =3 [A@QL, + QL) +1AIQL, — Q1)) (5.43)
where
] = SIAIS™
and A and |f1| are treated as constants.
We rewrite (3.9) as

dQZ 1 r
at = ( Z-‘r%’Q’L-‘r%’Qi—%—’Qi—%)

where
Ri=———"—= (5.44)

For clarity, we define
X = Qi’.t,_la Xy = Q:+l7 X3 = Ql L Xy = Q;_L
2 2 2
Thus,
R = Ri(X1, X2, A3, Xy)
We expand R; in a Taylor series about @;, yielding
Ri(Qfy, Qg @iy, Qy) = Ri(Q:, Qi, Qi, Qi)+
OR; , .. OR; , OR; , .,
(Qerl - Qi)+ 8—%( vy — Qi)+ a—‘Xg(Qif% - Qi)+ 8—2(4@"*% — Qi)+
O(AQ)

where OR; /0X;, j =1,...,4, are evaluated at (X1, Xo, X3, Xy) = (Qs, Qs, Qi, Qi)-

1 A discrete stability analysis of Roe’s Method is presented in Chapter 7.
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From (5.40),
8Fi+l ~ ~ 8Fi+l ~ ~
2 1 2 1 _
v =2 (A+1Al), et =5(A- 1)
2 _ 0’ 2 _ 0’ 2 _ 0’ 2 _ O
8X3 8.)(4 (9X1 8X2
8Fi, 8FZ,%

b))

To proceed further, the spatial reconstruction must be specified. We select
the simple first-order reconstruction

QiJr% = Qi
ity = Qin (5.45)
Moreover,
A = A+ 0(AQ)
Al = |A[+0(AQ)
and thus, to the lowest order,
1

Ri= == [A7 Qi + (A" = A7)Qs — ATQi] (5.46)
where
At = LA+|A) = TATT!
2
A~ = La-ja) = TaT! (547)
where
AT = diag {max(A\,,0)}
A~ = diag {min(\,,0)} (5.48)

Thus, AT is a diagonal matrix whose elements max(\,,,0) are thus non-
negative. Similarly, A~ is a diagonal matrix whose elements min(\,,,0)
are thus nonpositive. Thus, the linearized semi-discrete form of the Euler
equations is

dgi - _ﬁ [A7 Qi1 + (AT = A7)Qi — ATQi1] (5.49)

For purposes of simplicity, we assume that the flow is periodic in x over
a length L = (M —1)Axz,

Q1 =Qum



5.8 Roe’s Method 119

and assume M is odd with M = 2N +1. Consider Q(z,t) to be a continuous
vector function that interpolates Q);,

Q(zi,t) = Qi(?)
Then the Fourier series (3.30) for Q(z,t) is

=N R
Qz,t)= Y Qult)e™

I=—N+1
where ¢ = v/—1 and the wavenumber k depends on [ according to (3.31):

_ 2l

k
L

The Fourier coefficients Qk(t) are complex vectors whose subscript k indi-
cates an ordering with respect to the summation index [, i.e., Q(t) indicates
dependence on [ (through (3.31)) and on t. Given the values of ); at some

time t", the Fourier coefficients @y, at t" are obtained from (3.32).
Substituting into (5.49) yields

where the amplification matrix G is

1
G:—A—$[

From (5.47) and (5.48),

eLkAgcA— + A+ — A — e—LkAxA+i|

G=TDT!

where D is the diagonal matrix

o 1 LkAx A — + - —tkAx A +
D——E[e AT AT AT - emthApt] (5.51)

Defining

A = max(Ap,0)
A, = min(\,,0) (5.52)

it is evident that the eigenvalues of G are
1
A = =3 [eFA20 + A, = A — ethaa ] (5.53)

Defining
Qr=T""Qx
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Equation (5.50) becomes

dQy, ~
o DQy,
Defining
[
Qr =14 @k
Qk3

the solution is
ka = ka(O)e/\Gmt for m=1,2,3
The condition for stability is therefore
Real(Ag,,) <0 (5.54)

i.e., all of the eigenvalues A\g,,,m = 1,2, 3 of the amplification matrix G lie
in the left half or imaginary axis of the complex plane. Now

1
Real(Ag,,) = “Aa (AF = A (1 — cos kAx)

>0 >0

and hence the stability condition (5.54) is satisfied.

5.3.83 Accuracy, Consistency, and Convergence

We now consider the problem described in Section 2.8. The initial condition
is defined by (2.92) with ¢ = 0.1 and the domain is 0 < kz < 27w. The
first-order reconstruction (5.1) is employed. The norm, defined by (3.102),
is evaluated at ka,t =7, which is prior to the shock formation. The semi-
discrete form (3.9) of the Euler equations is employed and the time inte-
gration is performed using a second-order Runge-Kutta method (Chapter
7).

The convergence is displayed in Fig. 5.9. The solution converges linearlyf
to the exact solution for sufficiently small At. The linear convergence is a
direct consequence of the linear reconstruction (5.1). The computed result
(using 100 cells) and exact solution are displayedi in Fig. 5.10 for ka,t =7

1 The line in Fig. 5.9 is

Kao At

n,e n _
||QZ *Qi ||naoAt = (m

) Q7= Q| sapat—sx10—4

1 More precisely, the timestep rka,At = 0.025, which corresponds to C = 0.45 at t = 0.
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and C = 0.45. The significant error in amplitude is attributable to the
dissipative nature of the first-order reconstruction (5.1). The speed of the
disturbance is accurately predicted, however.

logy, [|Q; = Q7|

O_

| | | |
—4 -3 -2 -1 0

log, ka,At

Fig. 5.9. Convergence for Roe’s method using a first-order reconstructions
u/ay
0.15 1 Kaot =7

0.10 o computed

0.05

0.00 KT
—0.05

—0.10

—-0.15 -

Fig. 5.10. Computed and exact solutions using a first-order reconstruction
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The error in amplitude is significantly reduced by using a second-order re-
construction as indicated in Fig. 5.11, where results are shown using (4.20)
with k = 0 and no limiter together with results for the first-order recon-
struction. The convergence for the second-order reconstruction (using sec-
ond order accurate integration in time) is shown in Fig. 5.12 and displays
quadratic convergence.t

u/a,

Kaot =7

0.15+

0.10 o computed 1°¢ order

,,,,,,,,,, , e computed 2"¢ order
0.05

0.00 KT

—0.05

—0.10

—-0.15 -

Fig. 5.11. Computed and exact solutions using first- and second-order reconstruc-
tions

5.3.4 Entropy Fix

It is interesting to compare the exact solution of the Roe equations (5.11)

0Q - 0Q
5 TAQ Q)5 =0
with the exact solution of the Euler equations (2.1)
0Q  O0F
ot T or

for the Riemann Shock Tube (Section 2.10). The solution to the Roe equa-~
tions exhibits three waves corresponding to the eigenvalues (5.23). For the
1 The line in Fig. 5.12 is

KaoAt
5x 10—4

2
) HQ?’E—Q?HMOM:M 10—4

Q™ — Q| rayar = (
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logyo ||Q7 = Q7]
0 .

computed
— — — quadratic

—6 L L | J
—4 -3 -2 -1 0
log,, kaoAt

Fig. 5.12. Convergence for Roe’s Method using a second-order reconstruction
Riemann Shock Tube,

u = 0

{(7_1)‘3}7 (\/P_IT1 + v P4T4) / (V/p1 + \/pa)

o
Il

}1/2

and hence @2 = (y—1)H. The Roe eigenvalues are therefore

A 0
N = @
A3 = —a

The three waves divide the z—¢ domain into four regions (Fig. 5.13).

The matrix S is

0 a*/(y—1) a*/(v—1)
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§

dz/dt = —a dz/dt =0 de/dt = a

(Rll ) RQZ ) R3r) (le R2L ; R37»)

(Rlz ; R2z ; R3z) (Rl,«a RQM RST)

Fig. 5.13. Waves for Riemann Shock Tube

and the vector R is
i p— (y—1)pe/a’
R=5710={ pu/2a+ (y—1)pe/2a>
—pu/2a + (y—1)pe/2a?
and thus the solution Q = SR is
P1
Q= 0 for x < —at
pel

p1+ (v=1)(pes — pe1)/2a°
Q= (v=1)(pe1 — peq)/2a for —at <z <0
(per + pea)

pa — (v—1)(pes — per) /24>
Q= (v—=1)(pe1 — peq)/2a for 0 < x < at

2 (per + pes)

P4
Q= 0 for x > at

pea

The static temperature and pressure, velocity, and entropy are shown in
Figs. 5.14 to 5.17 for the initial conditions ps/p; = 2 and Ty /T = 1 with
v = 1.4. The abscissa is x/t, normalized by aj, whereby the solution at
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any time t can be obtained. The leftmost wave is a shock with exact speed
cs/ar = —1.159479. The Roe equations yield ¢s/a; = —a/a; = —1. The
center wave is a contact surface with exact velocity c./a; = —0.247519.
The Roe equations yield ¢./a; = 0. The right wave is an expansion whose
left and right boundaries are defined by the wave speeds ¢;/a; = 0.702978
and ¢./a; = 1. The Roe equations yield a discontinuous expansiont (an
expansion shock) with wave speed cs/a; = 1. Overall, the solution of the
Roe equations for the pressure, temperature, velocity, and entropy are an
approximation of the exact solution of the Euler equations.

p/p1
expansion fan
2 — contact surface \//——
1 N — Roe
shock ----  Exact
| | | | -
03 1 0 1 2 /o

Fig. 5.14. Pressure for Riemann Shock Tube for ps/p; = 2 and Ty/Th =1

T/Ty
1.2+~
shock

11k - / _______ . contact surface
1.0 : : ’

— Roe | /§
09 ---- FExact S 2 N expansion fan

| | | | ¢

0.8 - 5 ] 5 z/ar

Fig. 5.15. Temperature for Riemann Shock Tube for py/p; =2 and Ty4/Th =1

1 This example is intended to illustrate the phenomenon of an expansion shock using Roe’s
method. A finite-volume algorithm solution of this example problem based on Roe’s method
would not necessarily yield an expansion shock due to the effects of spatial and temporal
truncation errors. Detailed discussions of the concept of the entropy condition are presented
in Hirsch (1988) and Laney (1998).
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u/a;
0.1+
-1 0 1 2
0.0 ; I ; I z/art
! shock I,’ — Roe
~0.11 ! /| ----Exact
% contact surface AN
—-0.2 - i expansion fan
-03

Fig. 5.16. Velocity for Riemann Shock Tube for ps/p1 =2 and Ty/T1 =1

(s=s1)/co

0.1 I I I I z/ayt

---- Exact

i

shock |
! expansion fan
1

—0.2 - contact surface

Fig. 5.17. Entropy for Riemann Shock Tube for py/p1 =2 and Ty/Ty =1

R T | — Roe
=

—0.1-

Harten (1983) proposed the following remedy to the expansion shock. The
Roe eigenvalues \)\ | are replaced by the approximate eigenvalues |)\ |, where

. \2 /4ed 7 \; 7
] = { A7 /4ea +ea  for |\ < 2ea (5.55)

|Adl for [\;| > 2ea

where @ is a suitable velocity scale (e.g., @ = a) and ¢ is a small positive
number (e.g., ¢ = 0.1 when a = a). Therefore, |\;| > 0 for i = 1,2,3 and
det(S|A|S™1) > 0 always.
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5.4 Osher’s Method

Osher developed an approximate Riemann solvert based on the concept of
a series of path integrations in the space of solutions of the Euler equa-
tions (Engquist and Osher, 1980; Osher and Solomon, 1982; Osher and
Chakravarthy, 1983).

5.4.1 Algorithm

Consider the Euler equations (3.9) in semi-discrete form:

a@  (Fy—Fiy)

dt Ax
where the flux F;, S Fix 1 since the problem is one-dimensional. The
Jacobian matrix A defined by
oF
A=2g
can be expressed as
A=TAT™?
where
A0 0
A= 0 X O (5.56)
0 0 As

according to (2.15) and (2.16). The individual eigenvalues are split according
to

Y = max(\g,0) B
A = min(h,0) for k=1,2,3 (5.57)
Therefore,
Ne=Ap + A, fork=1,2,3 (5.58)

The diagonal matrix A is split according to
A=AT+A" (5.59)

t It could be also be argued that Osher’s Method is a Flux Vector Split Method (Chapter 6) on
the basis of (5.65). We choose to include it in this chapter on Godunov Methods since it is
based on an exact solution of one of the five cases of the General Riemann Problem.
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where
)\f 0 0
AT=¢ 0 A5 O (5.60)
0 0 A
and

0 0 A3
As an example, assume 0 < u < a. Then

U 0 0
AT={ 0 u+a O
0 0 0

(5.62)

and
0 0
0 0
0

u—a

A = (5.63)

Af 00
Am={ 0 A 0} (5.61)

o O O

The Jacobian matrix is therefore split according to
A=At + A" (5.64)
where
At = TATTT
A- = TAT
It is straightforward? to show that )\;r are eigenvalues of AT, A\ are eigen-

values of A7, and the right eigenvector corresponding to both )\; and A, is
) given by (2.13).

The flux is likewise split as

F=Ft+F" (5.65)
where
ort AT (5.66)
0Q '
OF~
— A 5.67
9Q 4 (567
and thus
Fiiy= f;% + 7 (5.68)
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The term .7-"Z.Jjrl represents the contribution to the flux associated with the
2

waves that move from left to right across the interface x;, 1 since AT =
TATT~! and AT is the diagonal matrix of eigenvalues that are positive
at ;. Similarly, the term .7-'; 1 represents the contribution to the flux
associated with the waves that move from right to left across the interface
Tit} since A~ = TA~T~! and A~ is the diagonal matrix of eigenvalues that

are negative at z; +1- Thus, it is reasonable to use Qé 1 to determine F; 11
3 3

and Q. s to determine .7-";% according to
Fiay = F Q) + 7 (Qhy) (5.69)

The essence of Osher’s method is to determine an algorithm for Fj, 1
that is equivalent to (5.69) but avoids entirely the need to actually compute
either 7T or F~. Consider the integral

Q’I‘
ATdQ
Qi

where we omit the subscript ¢ + % on Q' and Q" in the remainder of this
section for simplicity. From (5.66),

Q" Q" +
/ arag= [ a0 = Frory - FHQY
l Ql aQ

Similarly, from (5.67),

Q’l‘ QT —
/ ado= [ a0 - F (@) - F (@Y
Q1 Qi 09

and therefore
FHQ) = FHQ) - /jﬁd@
F Q") = ]-"(Ql)%-/;TAdQ
Thus,
Fp = FHQ)Y+F (@)

T

= P @) [ A
Ql

F=(@Qn)
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Thus,

QT
Fioy = F@Q)+ /Q " ATdQ (5.70)

which defines F; +1 without specific mention of either F* or F~. A similar
expression for F; 3 can be obtained in terms of F(Q") and the integral of

AT

Expression (5.70) is evaluated using the exact solution to the general
Riemann problem for two expansions (Section 2.9.4). This expression is
then assumed to be approximately valid for all cases. The wave structure is
shown in Fig. 5.18. The leftmost state (denoted by Q) corresponds to Q'
and the rightmost state (denoted by Q4) corresponds to Q".

t
contact
expansion fan no. 1 surface  expansion fan no. 2
/
2 /3
/
1 / 4
/
x

Fig. 5.18. General Riemann Problem: Case 4 (two expansions)

A closed-form expression for the entire solution can be obtained. The
contact surface pressure p* is (Exercise 5.7)

1
« _ |@m + a4 + (’y;l) (u1 — U4) ! 1
p= 6D e (5.71)

ap; P 4 aapy

2y

The solutions in Regions 2 and 3 are (Section 2.9.4)

9 " ("rzfl)
al p Y
Ce = U+ 1—(—)
‘ (v—1) y4!
Uy = Ce
p2 = p
w1

)
P2 = pPr|—

b1

us = cCe
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*

pbs = D

pP3 = P4\ —
yZh

The solutions within the left and right expansion fans are given by (2.146)
to (2.148) and by (2.149) to (2.151), respectively. The boundaries of the
expansion fans are given by (2.135) to (2.138).

We evaluate the integral in (5.70) by decomposing it into three separate
components:

/;T A‘dQ—/le_dQJr/;él_dQJr/;;l_dQ (5.72)
1 Io I3

where 71 = f12 A7dQ indicates the integralt from Region 1 to Region 2, and
so on. For each integral Z; we consider an integral curve in the space of
solutions Q defined by

dQ
E =0j(Q) for 0<(< (1, on Zj
where 0; depends on Q in some manner yet to be specified. Then

J+1

7, = [ AdQ
J
i+l 4O

= A" —d(

j dg

J+1
= A ojd¢ for j=1,2,3
J

A particularly useful choice for o; is one of the right eigenvectors (2.13) of A:

0 =Tk
where 7 is one of the following:
1 1 1
r = (7 , T = u—+a , T3 = u—a
%uQ H +wua H —ua

and the value of k depends on the integral Z; in some manner yet to be

1 Note that the actual integral is in the three-dimensional space of solutions Q, not in the x—t
plane.
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specified. Note that k # j in general. Since A, is an eigenvalue of A~ with
a right eigenvector rg,

A rp =AM, for k=1,2,3
and

j+1
Z; :/ A TRAG
J

Assume furthermore that for each integral 7; there is a particular eigenvector
i, for which A, is monotonic, i.e., A\;; changes sign at most one time on the
integral curve
dQ
@©

Let s denote the location in the space of solutions @ where A\ changes sign

re for 0< (¢ <G, (5.73)

if such a point exists. This is denoted the sonic point. Divide the integral
7, into two segments,

s 7+1

7, = /Aug+/ A=dQ
J s -
1 J

Z;
s J+1
= / AorrdC + [ ApredC (5.74)
7 s

Assume that Ay < 0 for 7;; and A\ > 0 for Zj5. Then A, # 0 for Z;; and
A, = 0 for Z;5. Hence

7, = A TrdC

= [ A dQ

J
5 OF n
= [(ZL —a*)d
[(5g—4")a0
saf‘ S
~ [%g —/A*d
i 0Q . i <
Saf S
= —dQ — [ Xfrpd
. 90 Q /] e Tk ¢
— /jg—‘ng since )\k*:OWhenA,;%O
= Fs—Fj
where Fy = F(Q,) and F; = F(Q;) for j =1,...,4. If Ay > 0 for Z;; and
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A < 0 for Zj9, then a similar analysis yields

Z, = Fju1—Fs
If A, > 0 for the entire path in Z;, then

Z; = 0

Similarly, if A < 0 for the entire path in Z;, then

Ij = Fin—F
In summary,

Fit1—F; if A\ <0 for Z;

Fs—Fj it A\p <0 for Z;; and A\ >0 for Zjo

J E+1 —Fs if Apy >0 for Ijl and A\ <0 for Ijg
0 if Ay >0 for Z;

(5.75)

This form permits the integrals Z; to be expressed in terms of the flux F
evaluated at specific points in the space of solutions Q. Thus, Fj 1 in (5.69)
is simply the sum of evaluations of F at these specific points.

It remains to demonstrate the two properties shown in Table 5.1 for each
integral curve Z; and determine expressions for Q at the sonic points.

Table 5.1. Requirements for Integral Curves

Property Requirement for Z;
1 There exists a particular eigenvector r; such that the integral
curve dQ/d{ = rj connects the solution points Q; and Q;41
2 The eigenvalue )y is monotonic on this integral curve

We proceed by construction for each integral beginning with Z;. From
(5.73) it is evident that ¢ has the units of density. The density decreases
monotonically from Region 1 to Region 2 since they are connected by an
expansion. Thus, we may choose ( = p — p1 with no loss of generality, and
all flow variables are then functions of the single variable p in the expansion.
Equation (5.73) then becomes

dp
dp
dQ | dou
dp dp
dpe
dp
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The first element in dQ/dp is 1. To determine the second element, we note

that
2

2
U+ ——a=u; + aq 5.76
oD oD 10
in the left expansion (Exercise 5.8). Thus,
du 2 da

dp~ (v=1)dp

Moreover, the speed of sound in the expansion is

a = E = ’Y—Z’)yl p('yfl)/z
V. p \/ P1

and therefore

da (y—1)a
dp 2 p
Hence, the second term is
dpu
O TP,
2 da
g — p—
(v—1)"dp
= u—a
and the third term is
dpe _ d 1 2,1 2>
dp — dp (7(7—1)pa e
a’ 4 12
= su” —ua
(v=1) ?
= H-—ua

where H is the total enthalpy. Thus,

1
u—a =73 (5.77)
H —ua

aQ _
dp
and Property 1 is satisfied. Next, we note that
A3=u—a
Using (2.146) to (2.148),

x
u-a=- for ¢, <

|8

< Crq
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Hence, A3 is monotonic on the integral curve
dQ
dp

and Property 2 is satisfied. To evaluate (5.75), we consider the possibility

of A3 = 0 on the integral curve. If this occurs, then the flow conditions at

this sonic point are (Exercise 5.9)

T3

(v—1) 2
Ui, = uy + ay
(y+1) (v+1)
als = uls
(als )2/@—1)
P, = p1
ai
2v/(v=1)
a
P, = M <i> (5.78)
ai
Since a1, > 0, the left sonic point exists only if
2
uy > — aq (579)
(y=1)

The four possible cases for Z; are determined using (5.75) and are presented
in Table 5.2.

For 75 we choose ( = p — p2 and

1
o9 =T1 = u
u?
Then
P3 P3
/ ridp = rl/ dp since us = ug
P2 P2
= (p3s—p2)r1
P3 — P2
= p3U3 — P2u2
1p3u3 — 1pau3
= 93— (5.80)
since
p3e3 — p2e2 = (Vp—jl) + $psu3 — (7]9%1) — 3p2u3

= %P3U:2’, - %pw%
(5.81)
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since p3 = po. Thus, Property 1 is proven. Since A\ = wu is constant in
Regions 2 and 3, A1 is monotonict and hence Property 2 is proven. The two
possible cases for Zo are presented in Table 5.2.

For 75 we choose ( = p — p3 and consider

dp
dp
dQ | dou
dp dp
dpe
dp

The first element in dQ/dp is 1. To determine the second element, we note
that

_ (’yil)a = Uyq — (’yil) ay (5.82)
in the right expansion (Exercise 5.8). Thus,
du 2 da
dp  (y—1)dp

The speed of sound in the right expansion is

ae JE_ [ 00
p P4

and therefore

da _ (y=1)a
dp 2 p
Hence, the second term is
dou 4
dp Tl
I T
(v=1)"dp
= uta
and the third term is
dpe d ( 9 1 2)
—— = | —F——=pa” +s5u
dp dp \y(v-1) 2

1 If the integral curve vector o; is constant, the curve is denoted linearly degenerate.
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CL2

= + Lu? + ua
(v=1) 2
= H+ua
where H is the total enthalpy. Thus,
1
d
d—Qz uta | =r (5.83)
P H 4 ua

and Property 1 is satisfied. Next, we note that
=u+a

Using (2.149) to (2.151),

x x
u+a:; for clz,g;gcm

Hence, )3 is monotonic on the integral curve

dQ
—_— =7
dp 2

and Property 2 is satisfied. A sonic point exists if Ay = 0 on the integral

curve. If this occurs, then the flow conditions at this point are

Uy, = (7_1)u4— 2 o
’ (y+1) (y+1)
ag, = —ug,
(a45 >2/(V—1)
Pas = P4
aq
DPa, = P4 <i> (5.84)
Qa4

Since a4, > 0, the right sonic point exists only if

Uy < agq (5.85)

(v=1)
The four possible cases for Z3 are determined using (5.75) and are presented
in Table 5.2.

From Table 5.2, there are 32 different possible cases. However, four com-
binations of conditions for Regions 2 and 3 are inadmissible as indicated in
Table 5.3. The admissible cases yield the flux formulas for F;, %shown in
Table 5.4.
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Table 5.2. Ewvaluation of Integrals

Integral Case fjﬁlA_dQ
I ur—a; >0, ug—ax >0 0
ur—a; <0, ug—a2<0 Fo—F
up—a; >0, ug—ax <0 Fp— Fi,
up—a1 <0, ug—ax >0 Fi —F
Is c. <0 F3— Fo
c. >0 0
13 uz+az >0, ug+as >0 0
us+as3 <0, ug+aqg >0 .7'-45—.7:3
ug+as3 >0, ug+ag <0 f4—f43
uz+az <0, ug+as <0 Fy—F;3

These integration paths employed for Z; are denoted the physical order-
ing or P-ordering (Toro, 1997). An alternate set of integration paths (the
original ordering or O-ordering) was originally proposed by Osher; however,
this approach is inaccurate or fails when |u; —u4| > 0 (Toro, 1997).

Table 5.3. Inadmissible Cases

Case Reason
ug—az >0 ¢, <0 wug+az >0 implies as <0
g —az >0 ¢, <0 wuz+az <0 implies as <0
s —as >0 ¢.>0 wuz+az3 <0 impliesasz <0
U2 —a3 <0 ¢ >0 wus+a3 <0 impliesas <0

Table 5.4. Fluz Formulas for Osher’s Method

uy —ai >0 uy—aiy >0 ur—a1 <0 ur —ap <0
Ug +aq4 >0 ug+aqg <0 ug +ayg >0 ug +aq4 <0
as < C. Fi Fi 4+ Fy— Fu, Fi, Fi, + Fa — Fu,
0<ec. <as flJer*}—ls .7:.1Jr.7:.2*‘7:.1S Fs .7:2+.7:4*f45
+F4 — Fu,
—a3<c. <0 F—-F,.+F F-F,+F Fs3 Fs+ Fy— Fa,
+Fy — Fa,
c. < —as F-F,+F, F-F,+F Fa, Fa
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5.4.2 Stability

We now consider the semi-discrete stability of Osher’s Method. The Euler
equations (3.9) are

a@  (Fy=Fy)
dt Ax N
The flux F;, 1 depends on the left and right states:

Fi+ = F(Qi_,_%,@%_%)

1
2
We rewrite (3.9) as

dQ;
dt

l l
= R’L(QH%? Q:+% ) Qi7%7 szé)

where

We consider a specific case of Osher’s Method from Table 5.4:

uyp — ajy Z 0
Ug + ayq 0 (5.86)

>
ag < ¢

and assume that this condition holds at the cell interfaces 7 =+ % Then

FH-% = f(QiJr%)
Fy = F@Qiy

We further assume a simple first-order reconstruction:

Qy = Qs
Expanding in a Taylor series about @); and neglecting higher order terms,
dQ; 1
o AQi - Q) (557)

where A = A(Q;) is treated as a constant.

For purposes of simplicity, we assume that the flow is periodic in x over a
length L = (M — 1)Axz, where M = 2N + 1 and N is an integer. Consider
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Q(x,t) to be a continuous vector function that interpolates @; and expand
Q(x,t) in a Fourier series,

=N

Qx,t) = Z Qr(t)er®

I=—N+1

where « = v/—1 and the wavenumber k£ depends on [ according to

2ml
k=—
L
Substituting this into (5.87) yields
dQy, A
=k _
7 Qrk

where the amplification matrix G is

G= Aix (e_LkAw - 1) A

Since G is a constant multiple of A,
G=TDT™!

where

D = AL:B (e_LkAa; - 1) A

It is evident that the eigenvalues of G are

Ny = A (2 1),

"~ 5
where the A, are given in (2.12). Defining
Qr=T""Qx
we have
dQy, =
— =D
7 Qrk
Defining
N Qky
Qk =19 @k
Qs

the solution is then

Qky, = Qr,, (0)€rm
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The condition for stability is therefore
Real (Mg, ) <0 form=1,2,3

Now

1
Real (\g,,) = N (coskAx — 1) A\,
—_—
<0

From (5.86), A, > 0. Therefore, the algorithm is stable.*

5.4.3 Accuracy, Consistency, and Convergence

We now consider the problem described in Section 2.8. The initial condition
is defined by (2.92) with ¢ = 0.1 and the domain is 0 < kx < 2m. The
first-order reconstruction (5.1) is employed. The norm, defined by (3.102),
is evaluated at xa,t =7, which is prior to the shock formation. The semi-
discrete form (3.9) of the Euler equations is employed and the time inte-
gration is performed using a second-order Runge-Kutta method (Chapter
7).

The convergence is displayed in Fig. 5.19. The solution converges linearlyt
to the exact solution for sufficiently small At¢. The linear convergence is a
direct consequence of the linear reconstruction (5.1). The computed result
(using 100 cells) and exact solution are displayedi in Fig. 5.20 for ka,t="7
and C = 0.45. The significant error in amplitude is attributable to the
dissipative nature of the first-order reconstruction (5.1). The speed of the
disturbance is accurately predicted, however.

The error in amplitude is significantly reduced by using a second-order
reconstruction as indicated in Fig. 5.21, where results are shown using
(4.20) with x = 0 and no limiter together with results for the first-order
reconstruction. The convergence for the second-order reconstruction (using
second-order accurate integration in time) is shown in Fig. 5.22 and displays
quadratic convergence.§

1 The line in Fig. 5.19 is

Kao At
5x 10—4

Q1 — QP | at = ( ) Q™ ~ QP 0 Avms x10-4

1 More precisely, the timestep ka,At = 0.025, which corresponds to C = 0.45 at t = 0.
§ The line in Fig. 5.22 is

Kao At
5x 10—4

2
) Q™ = Q7 e Armsx 10—

107 =@ lleasar =
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logyo 1@~ Q7]

0r ,
Ve
7/
e
7/
/
1k
-2 computed
— — — linear
3k
| | | |
—4 -3 -2 -1 0

log, ka,At
Fig. 5.19. Convergence for Osher’s Method using a first-order reconstruction

u/ae

0.15 - Kaol =

0.10 o computed

— exact

0.05

0.00 KX
—0.05

—0.10

—-0.15 %

Fig. 5.20. Computed and exact solutions using a first-order reconstruction

Exercises

5.1 Prove the identities (5.12).

SOLUTION
a) A(f+g)=Af+Ag
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u/ay

0.15) Kaot =17

0.10 o computed 1% order
, computed 2"¢ order

— exact

0.05

0.00 KT

—0.05

—0.10

—-0.15%

Fig. 5.21. Computed and exact solutions using first- and second-order reconstruc-
tions

The proof is straightforward.
b) A(fg) = fAg+Afg
ng+Af§ = %(fl“!‘fr)(gl_Qr)‘f'(fl_fr)%(gl'f‘gr)

% (figr — figr + frai — frar + figr + figr — frae — fror)
= % (2fig1 — 2frgr)

= A(fg)
) A(1/f) = —Af/f?
AQf) = f =t
= (f'l‘_fl)/flfr
—-Af/f?
5.2 Consider the quadratic function
f(Vl, Vg, 1/3) = a-+ b1V1 + b2V2 + b31/3 =+ 011/% + cov1Vo +

csvivsy + 041/22 + c5oV3 + 061/3?

Prove that
Af = d1Avy + doAvy + d3sAvg

where d1, d2, and d3 depend on the coefficients a, b;, ¢; and v, 7o and
Us.

5.3 Derive the intermediate matrices B and C used in the derivation of
Roe’s method.
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logyo ||Q7 = Q7]

0 ,
7
7
’
1k 7
_9L
-3
computed
— — — quadratic
4
_5
—6 | | | J
—4 -3 -2 -1 0
log,, kaoAt

Fig. 5.22. Convergence for Osher’s Method using a second-order reconstruction

SOLUTION
From (5.17) using (5.12),

201 Avq
AQ = o Avi + U1 Avs
U3Av /vy + 1 Avs/y + (y—=1)D2 Ava /v

and therefore

201 0 0
B = 1) 1z 0
vs/y (v=Dv2/y /vy

Also,

o Avi + 1 Avg
v3Avy + o Avs

AF = { (v=1D)o3Avi/y + (v=1)01 Avs /vy + (v+1) 2 Ava /v

and therefore

U2 vy 0
C= { (y=Vws/y  (y+Dz/y  (v=Dm/y }
0 U3 2]
5.4 Derive the Roe matrix A using A = CB~! and (5.20).
5.5 Derive the eigenvalues (5.23) and eigenvectors (5.24) of the Roe ma-
trix A.



5.6

5.7

FExercises

SOLUTION

By definition,

Using (5.21),

From (5.25),

which yields
2% 4302 + (a2 - 3a®)A + @ —aa? =0

which directly factors into

A-a)X-(a+a)A-(a-a)=0

Denote the eigenvector &; corresponding to the eigenvalue A\; = @ as

v1
€1 = Vg
v3
Then
Aél = A€
Thus,
v = uvi
—-3) . N -
% 201 + 3=y)ave + (y—1)vs = Gwvg
_fay =Y s T (v—1)i e = @
(—Hu+ g U Jui + (H — (y=1)a)ve + yavs = avs
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We may arbitrarily choose v1 = 1. Using (5.25), the above equations yield v2 = @ and

vz = %fﬂ. The remaining eigenvectors are obtained using a similar approach.

Show that the equivalent Rankine-Hugoniot conditions (Section 2.3)

for the Roe equations (5.11) are
AAQ — u,yAQ =0

Derive the expression for the contact surface pressure (5.71) for the

General Riemann Problem Case 4 (expansion-expansion).

SOLUTION
From (2.98) and (2.99), since p* < p1 and p* < ps for Case 4,

2 p*\ (v—D/ 2y p*\ D/ 2
ai (—) + a4 (—) =u1 —u4+
(v-1) D1 D4

_2
(v-1)

(a1 + aq)
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Solving for p* yields

27
F—1

—1
. a +a4+<”2 ) (uy — ua)
_ (72—1) _ (72—1)
aip; 7 4asp, 77

5.8 For the General Riemann Problem Case 4 (expansion-expansion),
show that in the left expansion

2 B n 2
'y—la_ul v—1

u +

and in the right expansion

5.9 Show that the left sonic point is defined by (5.78).

SOLUTION

At the left sonic point, A3, = u1, —a1, = 0. Since the Riemann invariant (5.76) applies
in the left expansion,

ul +

ar =ui, +

a
y—1 y—1 1s

These equations may be solved to obtain

(vfl)u _2 .
(v+1) ()

ul, =

Since the flow is isentropic within the left expansion,

ai, )2/@*1)

—_—c
ai

a1, \2/(r=1
Py = P1 (—)
al
A similar analysis applied to the right expansion using the Riemann invariant (5.82)
yields
2 2
ug — a4 = ugq, — a
4 -1 4 45 -1 45

and the right sonic point A2, = uz, + a2, = 0 yields (5.84).
5.10  Derive the admissible cases in Table 5.4.
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Flux Vector Splitting Methods

In fact, as far as characteristic modeling goes, aside from Riemann solvers,
the only currently available alternative is flux vector splitting.

Culbert B. Laney (1998)

6.1 Introduction

Consider the Euler equations (3.9) in semi-discrete form:

a@  (Fy=Fiy)

dt Az
where the flux F; 1= Fiy 1 since the problem is one-dimensional. The basic
concept of flux vector splitting is to decompose the flux vector F' into two
parts,

F=F"+F
where
OF+ . .
—— has nonnegative eigenvalues
0Q
0F~ . .
90 has nonpositive eigenvalues

The term F T represents the contribution to the flux associated with waves
that move from left to right across the cell interface at ¢ + % since the eigen-
values of its Jacobian OF 1 /9Q are positive (or zero). Thus it is reasonable
to use Qi +4 to evaluate FT. Similarly, the term F~ represents the contri-
bution to the flux associated with waves that move from right to left across

147



148

Fluz Vector Splitting Methods

the cell interface since the eigenvalues of its Jacobian 0F~/0Q are negative
(or zero). Thus it is reasonable to use @7, , to evaluate F~. Numerous al-
2

gorithms for F* and F~ have been developed. We present two methods in
this chapter. For additional algorithms, see Laney (1998) and Toro (1997).

6.2 Steger and Warming’s Method

Steger and Warming (1981) developed a flux vector split algorithm based

on Euler’s identity F = AQ; see also Sanders and Prendergast (1974).

From (2.15),

where

with

and

6.2.1 Algorithm

A:
T —
1
2
(v -1 u?
1— bl
2 a?
(y—=1Du? 1u
4 a®> 2a

(y-Du® lu

4 a2 2a

A=TAT™!
A 000
0 X O
0 0 Mg

)\1 = U

A = u+ta

A3 = u—a

1 1 1
U U+ a uUu—a

w? H+wua H—ua
u
(’Y—l)a—g
(v—=1) u 1
2 a?  2a
(v—=1) u 1

(6.2)
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Steger and Warming assumed a wave speed splitting,

A=A+ (6.3)
with
Aj_ = %()\z““)\zb
A= s =1 (6.4)

This is equivalent to

Ai i >0
+ % i =
AL = { 0 if\ <0 (6.5)
_ 0 itXN>0
Ar = { Ai if A <0 (6.6)
Thus
A=AT+A"
where
A 000 A 00
AT=¢ 0 A 0 and A-=4¢ 0 A, O (6.7)
0 0 A 0 0 X5
Using (2.15) and (2.24),
F = AQ
= TAT'Q
TATT'Q + TA"T71Q (6.8)
Ft F-
The terms F* can be written as (Exercise 6.1)
(1) 1 1 1
FE = Py—pkfE u +2ﬁ)\§t u+a +£)\3ﬂ: u—a (6.9)
i %u2 " H 4 ua i H —ua

There are four possible cases for the eigenvalues )\Z-i depending on the
Mach number{ M as indicated in Table 6.1 (Exercise 6.2). The fluxes F*
and F~ can be determined from (6.9) as described below.

For Case 1, all eigenvalues are negative, and the wave speed splitting

t The Mach number is strictly a nonnegative quantity defined by M = |u|/a. In the context of
Steger and Warming’s method, we define the Mach number M = u/a and interpret a negative
Mach number to imply u < 0.
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Table 6.1. Four Cases for Figenvalues

Case Range DYIEED FUED AN VD VD ¥
1 M<-1 0 0 0 A1 A A3
2 —1<M< 0 0 Ao 0 A1 0 A3
3 O<M< 1 A1 Ao 0 0 0 )\3
4 M> 1 X X A3 O 0 0

yields )\;F =0and \; = X\; <0 for i =1,2,3. All waves intersecting the

cell face at z; 1 originate from the right as illustrated in Fig. 6.1, which

is drawn for u = —%a. Thus, the flux is evaluated using the flow variables

reconstructed to the right face:

1 1 1

—1
F = Mpr)‘lr Uy + 5_’!‘)\2T Ur + ap + g_r)\3r Uy — Qr
v %u% v H, + u,a, v H, —u,a,
(6.10)
t
)\2 )\2
/\1 )\1
A3 A3 .
X; Tit+1 Ti+1

Fig. 6.1. Case 1

For Case 2, two eigenvalues are negative and one eigenvalue is positive.
The wave speed splitting yields )\;r =0, )\;' = Ao, )\g' =0, A\ = A, Ay =0,
and A3 = A3. The wave corresponding to Ay intersects the cell face at z; 1
from the left, while the waves corresponding to A; and Ag intersect the cell
face at x;, 1 from the right as illustrated in Fig. 6.2, which is drawn for

M = —%. Thus, the flux is evaluated using the flow variables reconstructed
to the right face and left face according to
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(v—1) ! p ! p !
F=——=p\1, | Ur + 2—Z)\2l u; + ag + 2—r)\3r Up — QA
v %u% v Hy 4+ way " H, — u,a,
(6.11)
t
)\1 )\2 )\1 >\2
A3 A3
X
x; Tit+l Tit1

Fig. 6.2. Case 2

For Case 3, two eigenvalues are positive and one eigenvalue is negative.
The wave speed splitting yields \{ = A1, A\ = Ao, )\; =0, =0,); =0,
and A3 = A3. The waves corresponding to A\; and Ag intersect the cell face
at x4 1 from the left, while the wave corresponding to A3 intersects the cell
face at x;, 1 from the right as illustrated in Fig. 6.3, which is drawn for

M = % Thus, the flux is evaluated using the flow variables reconstructed

to the right face and left face according to

a-y ] 1 1
F = PIAY, u; + 2P_l)\2l u; + ay + g—r)\gr Up — G
1u? v H; + way H, —u,a,
(6.12)

For Case 4, all eigenvalues are positive. The wave speed splitting yields
A =)\ and \; =0 for i = 1,2,3. All waves intersecting the cell face at
;4 originate from the left as illustrated in Fig. 6.3, which is drawn for

M = % Thus, the flux is evaluated using the flow variables reconstructed

to the left face according to
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t
A3 A1 A3 A1
/\2 )\2
T
T Titl Tit1
Fig. 6.3. Case 3
(v=1) ! p ! p !
F = P, u; + 2—1)\21 u; + aq + 2—l)\31 u; — ay
%u% v Hy 4+ v H; —wq
(6.13)
t
A3 A3
)\1 >\1
A2 A2
T
X; fL'iJr% Ti+1

Fig. 6.4. Case 4

In practice, the value of M is the average Mach number at the interface,
which may be defined as
Uy + Uy
a; + a,

M = (6.14)

The wave speeds /\fE have a discontinuity in slope at /\fE = 0, which can
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lead to spurious numerical behavior at these locations. Therefore, /\?E is
replaced by (Laney, 1998)

No=1 ()\i + /A2 + 52d2> (6.15)

where @ is a suitable velocity (e.g., @ = a) and ¢ is a small number (e.g.,
e=0.1).

6.2.2 Stability

We consider the semi-discrete stability of Steger and Warming’s Method.
The Euler equations (3.9) are

We rewrite them as

dQ; -
g - (QﬁJrl’QHl’Ql'*%’QF%)
where
o (P —Fy)
’ Ax
We assume a simple first-order reconstruction:
§+% = Qi
;«J’_% = Qi—l—l
Thus,
Fi—i—% = F;__%( z+l)+F ( i+l )
= F* (Qz) (Qi—i—l)
_ OF~
= FHQ)+F (Qi)+ 90 (Qit1 — Qi) + O(AQ?)
and

= FL(Qy)+F Q)

1
2
- Ft

Qi—1) + F(Qy)

(
T OFt - 2
(Qi) + W(Qiq — Qi)+ F(Q:) + O(AQ7)

~
|
o=
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where we evaluate OFT/0Q at i and neglect its variation in z. Defining

OF T
0Q
= TATT!
OF~
0Q
= TA T}

At =

we then have

dgl - _AL.%' [A_Qi-l—l + (A+ - A_)Qz - A+Qi—l} (616)

For simplicity, we assume that the flow is periodic in z over a length
L=(M-1)Ax,

Q1=Qum
and we assume M is odd with M = 2N + 1. Consider Q(z,t) to be a
continuous vector function that interpolates @);,
Q(zi, 1) = Qi(t)
Then the Fourier series (3.30) for Q(x,t) is

=N

Qz,t) = Y Qult)e™

I=—N+1
where ¢« = v/—1 and the wavenumber k depends on [ according to (3.31):

_ 2l
L

k

The Fourier coefficients Qk(t) are complex vectors whose subscript k indi-
cates an ordering with respect to the summation index [, i.e., Q(t) indicates
dependence on [ (through (3.31)) and on t. Given the values of @); at some

time t", the Fourier coefficients () at t" are obtained from (3.32).

Substituting the Fourier series into (6.16) yields

dQy, A
— =G 6.17
o Qk (6.17)
where the amplification matrix G is
1
G=_—— eLkAa:A— + A+ A — e—Lk:AzA—Q—}
Ax
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Now
G=TDT!

where D is the diagonal matrix

_ 1 kA A — + — —kAz A+
D_—E[e AT AT — A - emhApt] (6.18)
The eigenvalues of G are
_ 1 LkAx y — + - —tkAxy+
A =~ 3= [eFA20L + A, = A — ethAna ] (6.19)
Defining
Qr=T"Qx
gives
Qs ~
— =D
7 Qk
Defining
[
Qr =19 Q.
Qks

then the solution is
Qr,. = Qp,. (0)e*emt for m=1,2,3
The condition for stability is therefore
Real(Ag,,) <0 (6.20)

Now
1

Real(/\gm) = _A_x

(AL =) (1 — cos kAx)

m

>0 >0

and hence the stability condition (6.20) is satisfied.

6.2.3 Accuracy, Consistency, and Convergence

We consider the problem described in Section 2.8. The initial condition is de-
fined by (2.92) with € = 0.1 and the domain is 0 < kx < 2m. The first-order
reconstruction (5.1) is employed. The norm, defined by (3.102), is evalu-
ated at kaot =7, which is prior to the shock formation. The semi-discrete
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form (3.9) of the Euler equations is employed and the time integration is
performed using a second-order Runge-Kutta method (Chapter 7).

The convergence is displayed in Fig. 6.5. The solution converges linearlyf
to the exact solution for sufficiently small At¢. The linear convergence is a
direct consequence of the linear reconstruction (5.1). The computed result
(using 100 cells) and exact solution are displayed in Fig. 6.6 for ka,t =7
and C = 0.45. The error in amplitude is attributable to the dissipative
nature of the first-order reconstruction (5.1). The speed of the disturbance
is accurately predicted, however.

logy [|Q7 = Q7|

O_

| | | J
—4 -3 -2 -1 0

log, ka,At

Fig. 6.5. Convergence for Steger-Warming Method using a first-order reconstruc-
tion

The error in amplitude is significantly reduced by using a second-order
reconstruction as indicated in Fig. 6.8, where results are shown using (4.20)
with kK = 0 and no limiter together with results for the first-order re-
construction. The convergence for the second-order reconstruction (using

t The line in Fig. 6.5 is

Kao At
5x 10—4

Q7 = Q7 [ way st = ( ) Q™ — Q2w At 104
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u/a,
0.15 - Kaot =17
0.10 computed
exact

0.05

0.00

RI

—0.05

—0.10

—-0.15%

Fig. 6.6. Computed and exact solutions using a first-order reconstruction

second-order accurate integration in time) is shown in Fig. 6.7 and displays
quadratic convergence.f

6.3 Van Leer’s Method

Van Leer (1982) developed a flux vector split method based on the Mach
number.

6.3.1 Algorithm

The flux vector F can be written (Exercise 6.4)

palM
pa’
P (ym? +1)
= v (6.21)
1
3 1 2
M Ly
- [(7—1) i }
1 The line in Fig. 6.7 is
OA 2 n,e n
107 = Q7 llause = (5205 ) QL= Q7 s armsro-s
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logyo ||Q7 = Q7]
0 .

computed
— — — quadratic

—6 L L | J
—4 -3 -2 -1 0
log,, kaoAt

Fig. 6.7. Convergence for Steger-Warming Method using a second-order reconstruc-
tion

Each expression in (6.21) involves three quantities, namely, the density
p, the speed of sound a, and the Mach number M. The term involving the
Mach number is split into two parts, with p and a evaluated using Q' or Q"
as appropriate. For the mass flux, the term involving the Mach number is
simply M and is split according to

M=M"+M" (6.22)
The mass flux is taken to be
pu = piagM™ + pra. M~ (6.23)

where the subscripts [ and = imply that the quantities are evaluated using
Q' and Q", respectively. Van Leer proposed

0 for M<-1
Mt =S ff for —1<M<1 (6.24)
M for M >1
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u/ay

0.15

o computed 1%¢ order
e computed 2"¢ order
— exact

0.10

0.05

0.00 KT
—0.05

—0.10

—-0.15%

Fig. 6.8. Computed and exact solutions using first- and second-order reconstruc-
tions

and
M for M < -1
M~ =< fi for —1<M<1 (6.25)
0 for M >1
where M is the average Mach number at the interface, which may be defined
as
M= (6.26)
a; + a,
This yields
pra. M for M < —1
pu=1< pafi +prafy for —1<M <1 (6.27)
pra M for M >1

For M < —1 the eigenvalues are negative, implying that all waves are moving
to the left. It is therefore reasonable to use Q" to compute p and a. Similarly,
for M > 1 the eigenvalues are positive, implying that all waves are moving
to the right. Hence, @' is employed to compute p and a.

It remains to determine the functions f1+ and f; . They are chosen to
satisfy (6.22) and to provide the continuity of M* and its first derivative
with respect to M at M = £1. It can be shown (Exercise 6.5) that

o= 1+
= w13 (6.28)
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The complete expressions for M* are therefore

0 for M < —1
Mt=¢ L (M+1)? for —1<M<1 (6.29)
M for M > 1
and
M for M < —1
M- ={ -L(M-1)° for —1<M<1 (6.30)
0 for M >1

The functions are shown in Fig. 6.9. The mass flux is obtained from (6.23)

20

1.5

-20%

Fig. 6.9. M+ and M~

For the momentum flux, the term involving the Mach number is (yM?24-1)
and is split according to

(VM2 +1) = (7M2 + 1)+ + (7M2 + 1)*

(6.31)
The momentum flux is taken to be

+ -
pu? +p=7"paf (YM?+1)" 47 ppa? (vM? + 1) (6.32)
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Van Leer proposed

0 for M <1
(M2 + 1)t =S fF for —1<M<1 (6.33)
YM? +1 for M >1
and
YM? +1 for M <1
(YM?+1)" =% fy for —1<M<1 (6.34)
0 for M >1
This yields
Y praZ(yM? 4-1) for M < —1
pu +p =3 Y lpralfy + v paify for —1<M <1 (6.35)
v pa? (yM? + 1) for M > 1

It remains to determine the functions f, and f; . They are chosen to satisfy
(6.31) and to provide the continuity of (yM?2+1) and its first derivative with
respect to M at M = £1. It can be shown (Exercise 6.6) that

= 1M 412 [(y—-1)M +2]
fo = —i(M =1)*[(y—1)M -2 (6.36)

The complete expressions for (yM? + 1)* are therefore

0 for M < —1
(M2 + 1)t = LM+ 1) [(v-1)M +2] for —1<M <1 (6.37)
yM? +1 for M > 1
and
yM? +1 for M < —1
(YM?+1)" = LM -1)?[(y-1)M —-2] for —1<M<1 (6.38)
0 for M >1

The functions are shown in Fig. 6.10. The momentum flux is obtained
from (6.32).

For the energy flux, the term involving the Mach number is
M([(y —1)~! + $M?] and is split according to

M{(y=1)"" 3 M%) = M[(v=1)"" + 30+ M[(v=1)""+ 3 M%) (6.39)
The energy flux is taken to be

(pe +p)u = paf M[(y — 1)1+ 202" + praM[(y — 1)1 + LM~ (6.40)
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7_

(yM?+1)~

| | |
-20 -15 —-10 -0.5

=D

0 05 10 15 20
Fig. 6.10. (yM? + 1)* and (yM? + 1)~

Van Leer proposed

0 for M < —1
My -1t +IMT = S for —1<M<1
M[(y=1)"1+1M?] for M >1
(6.41)
and
M[(y =171+ 1M?] for M < -1
M[(fy_l)*l_F%MQ]*: fs for —1<M<1
0 for M >1
(6.42)

This yields

praiM[(y—1)"' + $M?] for M < —1
(pe+plu= 4 palf +pradfy for —1<M<1  (6.43)
praiM[(y = 1)~ + IM?] for M >1

It remains to determine the functions f3+ and f; . They are chosen to satisfy
(6.39) and to provide the continuity of M[(y—1)~'+3M?] and its derivative
with respect to M at M = £1. It can be shown (Exercise 6.7) that

f= 30+ =DM+ 1) [(y - DM + 2P

fy ==y D) (=DM = 1P [(y - )M — 2 (6.44)
The complete expressions for M[(y — 1)~ + 2 M?]* are therefore
My = 1)+ gM%)* =
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0 for M < -1
4+ My =DM M+ 1) [(y - 1)M +2]* for —1<M <1 (6.45)
M[(y— 1)1 + M2 for M > 1
and
My =17+ 3M%) =
M[(y—1)"t + 1 Mm?] for M < —1
Ly + )My =) M = 1) (v - )M —2]* for —1< M < 1(6.46)
0 for M >1

The functions are shown in Fig. 6.11. The energy flux is obtained from (6.40).

10§

Fig. 6.11. M[(y—1)~' + 1 M?* and M[(v—1)"' +

6.3.2 Stability

The stability analysis for Van Leer’s method is identical to that in Sec-
tion 6.2.2 provided that the fluxes F'™ and F~ satisfy

+ A
80% = TATT! (6.47)
A (6.48)

oQ
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where AT and A~ are diagonal matrices whose elements are the eigenvalues
)\i+ of 0F " /0Q and A; of OF~ /0Q, respectively, and

Xf are nonnegative (6.49)

A;  are nonpositive (6.50)

We now consider (6.49). There are three possible cases: For M > 1,
F* = F and the eigenvalues of 0F"/0Q are given by (2.12). Since M >
1, all eigenvalues are nonnegative. For M < 1, F™ = 0 and there is no
contribution to the stability analysis. For —1 < M < 1, the eigenvalues were
determined by Van Leer (1982). Since the energy flux may be expressed as

N S s
T

the third row of dFT/0Q is a linear combination of the first and second
rows, and hence det(0F1/9Q) = 0 for —1 < M < 1. Thus, A; = 0 is an

eigenvalue of det(0F " /0Q) for —1 < M < 1. The remaining two eigenvalues
are solutions of the quadratic equation (Van Leer, 1982)

(y—-1)-1)
129(y+1)

(M—-1)

8y(v+1)

for —1<M<1

A —3a(M +1) {1 - {V(M—l)Q +2y(M—1) — 2(7+3)] } A

e+ 1 {1 - [41-DO-1) + (+DE-)] ) =0

(6.51)

Van Leer concluded that both roots of this equation are positive provided
1 < v < 3. A similar analysis proves (6.50).

6.3.3 Accuracy, Consistency, and Convergence

We consider the problem described in Section 2.8. The initial condition is de-
fined by (2.92) with € = 0.1 and the domain is 0 < kx < 27. The first-order
reconstruction in (5.1) is employed. The norm, defined by (3.102), is eval-
uated at ka,t="17, which is prior to the shock formation. The semi-discrete
form (3.9) of the Euler equations is employed and the time integration is
performed using a second-order Runge-Kutta method (Chapter 7).

The convergence is displayed in Fig. 6.12. The solution converges linearlyf

t The line in Fig. 6.12 is

Kao At
5x 10—4

Q™ — Q| ar = ( ) Q™ = QP e At x 10—
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to the exact solution for sufficiently small At. The linear convergence is a
direct consequence of the linear reconstruction in (5.1). The computed result
(using 100 cells) and exact solution are displayed in Fig. 6.13 for ka,t =7 and
C = 0.45. The error in amplitude is attributable to the dissipative nature
of the first-order reconstruction in (5.1). The speed of the disturbance is
accurately predicted, however.

logyo [|Q7— Q7]

O —
Ve
Ve
v
Ve
1k
-2 computed
— — — linear
3L
| | | |
—4 -3 -2 -1 0
logo kao,At

Fig. 6.12. Convergence for Van Leer’s Method using a first-order reconstruction

The error in amplitude is significantly reduced by using a second-order
reconstruction as indicated in Fig. 6.14, where the results are shown using
(4.20) with x = 0 and no limiter together with results for the first-order
reconstruction. The convergence for the second-order reconstruction (using
second-order accurate integration in time) is shown in Fig. 6.15 and displays
quadratic convergence.t

t The line in Fig. 6.15 is

Kao At
5x 10—4

2
) \\Q?’E—Q?Hnaomzsx 10—4

||Q?76_Q?HmaoAt = <
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u/a,

0.15 Ka,t =17

0.10 o computed

— exact

0.05

0.00 KX
—0.05

—0.10

—-0.15%

Fig. 6.13. Computed and exact solutions using a first-order reconstruction

u/ay

0.15] Kaot =17

0.10 o computed 1%¢ order
computed 2"? order

— exact

0.05

0.00 KT
—0.05

—0.10

—-0.15 -

Fig. 6.14. Computed and exact solutions using first- and second-order reconstruc-
tions

Exercises
6.1 Derive the expression (6.9).

SOLUTION

From (6.8),

FE=TATT'Q
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logyo ||Q7 = Q7]

0 ,
7
7
’
-1~ /
_9L
-3
computed
— — — quadratic
4
_5
—6 | | | J
—4 -3 -2 -1 0
log,, kaoAt

Fig. 6.15. Convergence for Van Leer’s Method using a second-order reconstruction

B { (v=1)p/~ }
T Q= p/2y
p/2y

Using (6.1), the expression for F* in (6.9) is obtained.

6.2 Derive Table 6.1 using (2.12), (6.5), and (6.6).

6.3 Determine the discontinuity in the slope of )\fc at )\Z?t = 0. Show that
(6.15) provides a continuous slope at )\fE =0.

Using (6.2),

SOLUTION
From (6.4),
AAfd 1 X>0
D = d—)\ii(Az‘-i-MiD:{ 0 \<O
i d {0 XN>0
e *Kio\i_p‘il)*{ 1 A<O
From (6.15),
dxt
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6.4
6.5

6.6

6.7

6.8

Fluz Vector Splitting Methods

and thus
d\F
d\; N

1
— 2

i—0

Derive the expression (6.21).

Show that the expressions (6.28) for M™* satisfy (6.22), are contin-
uous, and have continuous first derivatives with respect to M at
M = +1.

SOLUTION

From (6.28),

(M +1)? = (M —1)?
(M2+2M+1—M2+2M—1)

i+ 1
1
4

= M

and therefore (6.22) is satisfied. By inspection, the expressions for M+ in (6.29) and for
M~ in (6.30) are continuous at M = +1. From (6.29),

dM+

- A
= 0 ataM=-1
= 1 atM=1

and thus dM* /dM is continuous at M = +1. A similar results holds for M.

Show that the expressions (6.36) for (yM? + 1)* satisfy (6.31), are
continuous, and have continuous first derivatives with respect to M
at M = +1.

Show that the expressions (6.44) for M[(y — 1)~! + $M?|* satisfy
(6.39), are continuous, and have continuous first derivatives with
respect to M at M = +1.

SOLUTION

From (6.44), the identity (6.39) is obtained by substitution. By inspection, the expres-
sions for M[(y — 1)~ + 2M2]* in (6.45) and for M[(y — 1)~! + £ M?]~ in (6.46) are
continuous at M = 41. The derivatives of M[(y —1)~! + %MQ]i can be shown to be
continuous at M = £1 by straightforward differentiation.

Prove that the momentum flux splitting in (6.32) implies a pressure

splitting (Laney, 1998):

0 M<1
2
pt=pd (L) 2-M) —1<M<1
1 M>1
1 M<1
T = M-1\? (9 4 pf 1<M<1
p =D _(T)(+ ) —1< <

0 M>1
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6.9 Derivation of the eigenvalues of F'* for Van Leer’s method requires,
for example, an expression for d(paM™*)/dp. Find this expression in
terms of a, M and ~.

SOLUTION
By definition, for —1 < M < 1,

) ) M+ 1)\?2

_(paM+):_ pa< + )

op dp 2
where 0/0p implies holding pu and pe constant. Thus,

o M+1 2 M+1\? da M +1\ OM
— (paMt) =a 0 1 pa Z
Bp( ) ( 2 ) ( 2 ) dp ( 2 ) dp

Now

a2 4 (pu) 2

pe = P
y(y—-1)

and thus differentiating with respect to p gives

da a
— = —1M? -1
%~ 25 [v(v=1) ]
Now
2
pa’M? = (pL)
P

and thus differentiating with respect to p gives

2 M 2
M2 o2 M (ﬂ)
op op p
Inverting the definition of pe gives
2
pa? = ~(7-1) | pe — L
p
and thus
Opa?
oy (y=1)u?
Thus,
oM M 2
o = 2 [y(y=1)M> + 1]

Substituting into the initial equation gives

6% (paM*) = =2 (M? 1) [y =DM + 1]

6.10  Show that the eigenvalues At obtained from (6.51) are positive for
1<y <3
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Temporal Quadrature

A great many if not all the problems in mathematics may be so formulated
that they consist in finding from given data the values of certain unknown
quantities subject to certain conditions.

Carl Runge (1912)

7.1 Introduction

We consider algorithms for the temporal quadrature of the semi-discrete
Euler equations

a@  (Fy—Fiy)

7.1
dt Ax (7.1)

Temporal quadrature algorithms can be categorized as explicit or implicit.
For explicit methods, the values @; at each timestep (or subiterate within the
timestep) may be evaluated independently. This is the simplest approach.
However, explicit methods are restricted by the Courant-Friedrichs-Lewy
condition introduced in Section 3.9.2. Explicit methods are easily paral-
lelized.t For implicit methods, all values of @); at each timestep must be
solved simultaneously. Implicit methods typically are not subject to the
Courant-Friedrichs-Lewy condition. These methods can also be extended to
parallel computation, albeit with greater effort.
t Parallelization is the use of multiple central processing units (cpus) to solve a single problem.
Recent results in the development of parallel algorithms for computational fluid dynamics are

presented in Matsuno (2003). A history of parallel computers (through the late 1980s) is
presented in Hockney and Jessope (1988).

170
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We rewrite the semi-discrete Euler equations as

dQ;
dt

= R; (7.2)

with
(Firy ~ Fiy)
Ax
where R; is denoted the residual. In general,

Fiyp = F(Q§+%,Qf+%)

where Qi +3 and Q7 y are the left and right states reconstructed to the face
at ¢+ % Thus, the residual R; depends on

l r l r
Ri=R; (QH-%?QH—%?Qi—%’Qi—%)
and hence the semi-discrete form is

dQ; I . I r
dt = RZ (Qi+%)Qi+%aQi_%aQi_%> (74)

7.2 Explicit Methods

There are numerous methods for explicit temporal integration. Probably the
most commonly used techniques are the two- and four-stage Runge-Kutta
methods (Abramowitz and Stegun, 1971; Gear, 1971; Press et al., 1986).
Additional methods include Bulirsch-Stoer (1970), Jameson et al. (1981)
and Adams-Bashforth-Moulton (Press et al., 1986; Gear, 1971).

7.2.1 Runge-Kutta

The two-stage Runge-Kutta methody is
Q& = o
o = Q@+ LR
Q = Q/+AtR;
Q= (75)

where we introduce the temporary vectors Q?, il, and Q?. The temporary
vector QY is identified as Q. The first step computes an intermediate value

1 Also known as the midpoint method.
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Q} where Rg implies evaluation using Q?. The second step computes the
final value of Q?H with R; evaluated using Q}. The vector Q? is identified
as Q?H.

The algorithm is temporally second-order, i.e., the error in Q?H is O(At3)
(Exercise 7.1). Two time levels of computer storage are required (i.e., QY and
an intermediate level that stores Q} and is overwritten by Q%) plus separate
storage for R;. Hence, the minimum storage requirement is approximately
32M.

The four-stage Runge-Kutta method is

Q= Q (7.6)
Q= @+ SR (7
Q = Q?+%R} (7.8)
Q) = QY+ AtR? (7.9)
Qf = @+ TR vom! 1 2R? 4 R (7.10)
= Qf (7.11)

The algorithm is temporally fourth-order, i.e., the error in Q?H is O(AtY)
(Exercise 7.2). Two time levels of computer storage are required (i.e., QY,
and an intermediate level that successively stores Q}, Q% @3, and Qf)
plus separate storage for the flux quadrature R; at each step and for the
sum of the fluxes in (7.10). Hence, the minimum storage requirement is

approximately 4 -3 - M.

7.3 Implicit Methods

There are several methods for implicit temporal integration. The commonly
used methods are Beam and Warming (1976) and Briley and McDonald
(1973).



7.8 Implicit Methods 173

7.3.1 Beam-Warming

Following Beam and Warming (1976), we may expand @); in time as follows:

At d@”+ﬂ<&h

(1+a)

n+1 sz n
ot
(7.12)
where a and 3 are constants. It may be directly verified (Exercise 7.3) by
comparison with the Taylor series expansion for (); that the error in this
expression is

Q! = Qi+ (@ —Qi )+

(0%
(1+a) dt dt

N——
| E—

E= (ﬁ —a- -) O(AL)? + O(AL)? (7.13)

Three common temporal integration methods can be defined based on the
values of o and S listed in Table 7.1.

Table 7.1. Implicit Temporal Integration Methods

Case Method a 0 E
1 Trapezoidal 0 1 O(A?
2 Euler implicit 0 1 O(At)?
3 Three point backward 3 1 O(At)®

Into (7.12) we substitute

dup _ (B Ay (714)
dt Az ’
(R - 71s)
dt N Az ’

The flux F”Jﬁ1 is a function of Q! il and Q7 i+ evaluated at t"*!. We denote

n+1

= lQ?_:‘%l (7.16)

Q1+ 1

and similarly for Q7 1 evaluated at t"t!. We therefore expand F ’fll

oF | oF |"
n+1 _ L yn+1 Ln ryn+1 r N 2
Fiy = F+1+8Ql <Qi+1 Hl) Q" |14 ( @iy ~ Z+1>+O(At)
(7.17)
Define
N OF | A oF |"
Al = 2 d AT, = — 1
Ty, T T T ey, e
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where it is understood that flﬁ 41 and fl: 41 are evaluatedf using the data
2 2
at t". Thus, (7.15) becomes

ntl (Fry -,

Ry e “y) +O(At)?

Az
n+1 n+1

[ (0 - o) Ay (] )

2

dQ;
dt

terms involving left face at i 4=

~ap A (e —ray) Ay (e —reny)]

2

terms involving right face at i &=

(7.19)
We now introduce the “delta” notationf
0QF = QT - QF (7.20)

For any linear reconstruction,

n+1 n A n+1
Ay (o) —'aly) -4y (0 -'ely) =
AL 0Q7 — A1 6Q, + O((Ax)*At) (7.21)

Thus, (7.12) becomes

—vAL6Qr + [I+u (A§+% - )} OQ) + VAT, 6Q, =
FTL
T . (7 1) (7.22)
(1+«) (1+«) Az
where
B At
= — 2
(1+a) Az (7.23)

The error in this expression compared to a Taylor series expansion is
E = O((Az)*At) + (8 — a— 1) O(A1)? + O(A1)? (7.24)

where the first term arises from (7.21). Equation (7.22) comprises a block-
tridiagonal system of equations for integrating the Euler equations.

1 Note that Aiil are the Jacobians of the flux vector function F' and thus depend on the specific

choice of the flux algorithm.
t Not to be confused with (4.16).
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The Jacobians Aii , depend on the specific choice for the flux algorithm.
2
For Roe’s Method (Section 5.3),

Al _ 1 l
r — (A Al
it T2 ( i+ |A‘z+%>

(7.25)
where Aé+l = A(QL;) and A7, = A(Q7, ), where A is the Jacobian (2.8)
2 2 2 2

and the Roe matrix |A| is treated as a constant in (7.18).

7.4 Stability of Selected Methods

In contrast to the semi-discrete stability analyses presented in Chapters 5
and 6, here we present the fully discrete stability analyses of selected explicit
and implicit temporal integration methods.

7.4.1 Runge-Kutta

We consider the application of the second-order Runge-Kutta algorithm with
Roe’s method for the spatial fluxes

Q = Q

A
Qf = Q4R
Q = Q+AR;

Qrtt = @?
1 1
with the simple first-order reconstruction
l
Q@'Jr% = Qi
:—i—% = Qi-l—l

We consider a von Neumann stability analysis. The residual R; is lin-
earized (5.46) as
1

i = Az

[A" Qi1 + (AT — A7)Qi — ATQ,1]

where
At = L(A+|A]) = TATT

1
2
A = La—ja) = TA T (7.26)
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and

AT = diag {max(\,,0)}
A~ = diag {min(\,,,0)}

where A, for m = 1,2, 3 are the eigenvalues (2.12).

Substituting into the first Runge-Kutta step,

A
Qb = QI — 53 [A™ QI + (AT — A7)QY — A¥QL ] (7.27)

Similarly, substltutlng into the second Runge-Kutta step,

Q= Q- R [AQly + (AT - ARl - ATQL) ] (7aw)

Substituting (7.27) into (7.28) yieldsf
1 o
Qi = SATATQI+ XA - AD)AT —adT| Q1

_l’_

2
I—a(A* — A7)+ %(Awﬁ FAA - 4A+A)] Q7
+ [—aQ(A+ — AD)AY +ad*| Q1

O; ATATQ, (7.29)
wheref

At

The solution Q); is expanded as a Fourier series as in Section 5.3.2. The
Fourier components satisfy

n+1 GQk

where the amplification matrix G is

2
G = %eLQkAxA—A— +6LkAx {O[Q(A—i- _ A_)A_ . O[A_}

_|_

2
I—a(AT — A7)+ %(A+A+ +A A — 4A+A‘)]

e AT [_a2(At — A7) A 4 aAt]

t Note that At A~ = A~ At AT|A| = |A|AT, and A~|A| = |A|A~ based on the structure of
these matrices.
1 Note that « in (7.30) is not the same as a in (7.12).
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.
+67L2kAx?A+A+ (731)
It is evident that G can be written in the form
G=TDT !

where D is the diagonal matrix
a?
D = TeMATATAT ek [0?(AT = A7)A” —aA” |

_l’_

2
I—a(AT —A )+ %(A+A+ FATA - 4A+A—)]

+e AT a2 (AT — AT)AT + aAt]

2
+e—L2kAz %A-i-A-‘r (7'32)

Defining

A = max(\y,,0)

A, = min(An,,0) (7.33)
it is evident that

.
Ao, = eI ek [0, = A — adg]

_l’_

2
I—a\, =X\ + %(A;;)\;; + A — 4%)\;)1

e AT [ (X = AL A + af]

o2

+e*L2’€A$3A;A; (7.34)
This can be compared with the result for the semi-discrete stability analysis
in (5.53):
1

— | pthATy— + = _ —tkAxy+
A =~ 3 (R8T + A, = A — eRaA ]
Define
AT
ot —
a=a\" = AL
_ AN
b=a\ A (7.35)

where the subscript m is omitted but implied. Writing

AG,, = Wr,, + W,
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we have
Wy, = @ cos 20 + (a — b)[1 — (a — b)] cos
+1—(a—b)+i(a—b)*—ab
w,, = @ sin20 — (a + b)[1 — (a — b)] sin 6
where
0 = kAx

There are three possible cases, which are shown in Table 7.2.

Table 7.2. Cases

Case a b

An >0 >0 0
Am <0 0 <0
Am =0 0 0

For A\, > 0,
a® a®
Wy, = 700529+a(1—a)cos9+1—a+7
a2
Wi =~ sin26 — a(1 — a)sin @ (7.36)
For A\, <O,
b? b?
Wy, = 500529—6(1+b)c059+1 +b+ )
b2
Wi = sin26 — b(1 + b) sin 6 (7.37)
For \,, =0,
wp, = 1
w,, = 0 (7.38)
Letting 6 = —0 and b = —B, it is evident that the second case is equivalent
to the first.

Stability (3.81) requires
Al <1 (7.39)

Clearly, the case A, = 0 satisfies this condition. Thus, it is necessary to
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determine the conditions for which A, > 0 satisfy this condition. Equa-
tions (7.36) represent a parametric curve in the complex Ag plane with the
parameter 6. This curve can be rewritten as

([t 2] o -
(1 - a)? { [#} : n [%r} (7.40)

This is the Limacon of Pascal. 1t is shown in Fig. 7.1 for a = 0.8.

Wy

W
Fig. 7.1. Limacon of Pascal for a = 0.8
The condition for stability in (7.39) yields
a<l1l (7.41)
and thus
+
Ax  —

where A\ indicates consideration of both A} and A... This may be rewritten
as

At < Atcrr
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where
Ax
Atopp = min ——
i A
or
<1
where C is the Courant number:
At
Atcrr

7.4.2 Beam-Warming

We consider the application of the Beam-Warming algorithm with Roe’s
method for the spatial fluxes. We assume a = 0 for simplicity (i.e., trape-
zoidal rule or Euler implicit time integration). We treat A and |A| as con-
stants. The Roe matrix |A| may be expanded as

Al = Al + O(AQ) (7.42)
Thus,
A§+% =1(A+]4]) =TA'T
T =S A) =TAT
where
AT = diag {max()\,,0)}
A~ = diag {min(A\,,0)}
We denote
AT = TA'T
AT = TN T

Beam-Warming’s algorithm (7.22) becomes

—VvATSQ} | + [T+ v (AT — A7)]6QF + vA QY =
At

~ATQR (AT A QP - ATQR] (T49)

The solution @; is expanded in a Fourier series as in Section 5.3.2:

I=N
Q(z,t) = Z Qr(t)er®

I=—N+1
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where k = 27/l. We denote Q7 = Qx(t"). Substitution into (7.43) yields

Gt = G,Qp

where
Gy = —veRATAY L T4 (AT — A7)] 4 vethArg-
G, = Me—LkAa:A—&- + [I — (A-i- _ A_)] _ ue—i—LkAocA—
and
At
V= P
At
= (1-p8)=
p -0
The matrices D; and D, can be factored as
G, = TDT!
G, = TDT!
where
Dy = —ve FATAT L [T+ v (AT — A7)] + e A7A-
Dr — Me—LkAzA—i- + [I — (A+ o A—)] _ Me-‘rbk‘AxA_

The matrices D; and D, are diagonal and may be written as

D = diag{Ap,,}
D, = diag{\p,, }

where
Apy, = —ve FAINL 4 [L4v (A = Ap)] FrettATa
Abo, = peIAE (L= (M — An)] - petRATA

Equation (7.44) becomes
D@y = D,Q}

where
Q=170
Defining
[ @m
Qr =19 Qk

Qs

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)
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the solution is then

Ap, ~
P g (7.54)

n+1
Qk.. ¥

Im

The necessary condition for stability is therefore
IAp,..| < [Ap, | for m=1,23 (7.55)
Now
Ap,. = 1+v (AL =) (L—cosf) +w (N, +A;,) sind
Ap, = l—p(N, = A,) (L—cos@) —uu (N + Ay,)sind  (7.56)
where 0 = kAz. The stability condition (7.55) then becomes

2
(W= Aa) (1= cos0)? (55) (25 -1)

At
T _AC)(1— 29—

+ (A +A5)%sin? 0 (%)2 (28—-1) > 0 (7.57)

Now A\f —A. > 0 and therefore the second term is nonnegative for all 8 (i.e.,
for all kAz). The first and third terms are nonnegative for 5 > % Thus,

the necessary condition for stability is satisfied without any constraint on
At.

Exercises

7.1 Prove that the two-stage Runge-Kutta method (7.5) is second-order
accurate.

SOLUTION
From (7.5),

= Q%+ AtR}
where R%, defined in (7.3), is a function of the Q]l in a neighborhood about 7 based on

the reconstruction method. For example, if the reconstruction (4.15) is used, then R}
depends on QELQ, Q?il, Q?, Q?+17 and Q?+2. We write

R} = Ri(Q})
and thus
1 _ p.(n0 L At po
R; = RZ(QJ- + TR;‘)

Expanding in a Taylor series,

R} = R;(Q%) +ZBRZ ALRO + O(At)?
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7.3

74
7.5

7.6

FExercises 183

Thus,
OR;
Q2 = QY + AtR;(QY) + Z (0% RO 1 o(At)?
Now
d2Qi _ dRi _ Z 8R,‘ dQJ Z 8Rz .
d2 dt —~ 9Q; dt oQ; R;
J
and using
dQi _ R
dt ‘
then
sz‘ d2Qz ( )
=qQ° At O(At
Qi+ At —3 + oA’

Thus, the two-stage Runge-Kutta method is second-order accurate.

Prove that the four-stage Runge-Kutta method (7.11) is fourth-order
accurate

Derive the expression (7.13) for the truncation error of the expansion
(7.12).

SOLUTION

Consider Case 1 in Table 7.1. The expansion (7.12) is

At (dQi|™ | dQ; |t
n+l _ ~n = —
@ =I5 ( dt dt
Expanding
dQ; " _ Qi nAt+ PQu|" (At)? +0O(A)?
dt S odt dt2 dt3
Substituting into (7.12),
dQ; | d2Q; " (AD)?  d3Q; " (AL)3
ntl _ gn At : : oAt
@ @t dt * de? 2 de3 . (&)

This expression agrees with the Taylor series expansion up to and including O(At)2.
Thus the error E = O(At)3. The error for Cases 2 and 3 may be found in a similar
manner.

Prove that the error in (7.17) is O(At)2.
Prove that the error in (7.19) is O(At)2.

SOLUTION
From (7.17), the error in the expansion for Fz_ﬁl is O(At)?, specifically,
2

n+1 _ lHn+1 l A n+1 2
Fz+1 B F+1 +A ( QH—% N Q?‘F%) +A:+% (TQH-% - rQ?—r%) +0(A)
Thus, the error in expansion for F_T'll — F"lis O(Az(At)?). Substituting into (7.15),

it i—5
the error in (7.19) is O(At)2.
Prove that the error in (7.21) is O((Axz)2At).
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.7 Derive the expression (7.25) for the matrices Al L1and A7 .
2 2
SOLUTION
The flux expression for Roe’s Method in (5.39) is

Fiiy =3 [Fi+Fe+SIAS1(Q - Q)]
Thus,
oF [BFZ - ~,1]
212348
where the Roe matrix S|A|S~1! is treated as constant. Thus,
OF v a4
agr =2 (A 141
Similarly,
OF 1T ar -
s~ #1471
7.8 Prove that the Limacon of Pascal lies within or on the unit circle if

(7.41) is satisfied.
7.9 Prove that the error in the expansion (7.42) is O(AQ;).
SOLUTION
The expansion is
|A] = |Al + O(AQ:)
Now
|A| = S|A|8!

We rewrite the above equation as

Al = [T+ & =D)] [IAI+ (A = [AD] [T~ + (B =)

Thus,
Al = TIATT!
+TIA|(S™ =T ) + T(A| = [ANT 1 + (S = T)|A|T
+ terms that are quadratic in the differences (E7.1)

Now, from (2.17) and (5.28), we have
5—T=0(AQ:)
and similarly for the other differences. Thus,
4] = 4] + O(AQ:)

7.10  Derive the stability result for Beam-Warming with o = %
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TVD Methods

The theoretical basis of TVD methods is sound for scalar one-dimensional
problems only. In practical, non-linear, multi-dimensional problems, the
accumulated experience of numerous applications has demonstrated that
the one-dimensional scalar theory serves well as a guideline for extending
the ideas, on a more or less empirical basis.

Eleuterio F. Toro (1997)

8.1 Introduction

It is instructive to examine whether a proper reconstruction method (Chap-
ter 4) with a Godunov (Chapter 5) or flux vector split algorithm (Chapter 6)
is capable of computing oscillation-free solutions of the Euler equations in
the presence of discontinuities (i.e., shock waves or contact surfaces). We
consider the problem of Section 2.8 with ¢ = 0.1 for a domain 0 < kr < 27
for which a shock wave forms at ra,t; = 8.333. We first consider the Go-
dunov algorithm with a third-order (k = 1) reconstruction (4.19) with no
limiter. Figure 8.1 displays the velocity profile at xa,t = 14. Oscillations
have formed in the vicinity of the shock. These oscillations are unphysical
(and therefore undesirable) and are attributable to the numerical algorithm.

It seems likely that the oscillations in the vicinity of the shock in Fig. 8.1
are attributable to the reconstruction algorithm, since no limiter was em-
ployed in Fig. 8.1 to prevent oscillations in the reconstructed variables (see
Fig. 4.6). Therefore, we consider the same algorithm but with the min-
mod limiter in reconstruction. Figure 8.2 displays the velocity profile at

185
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u/a,
015} o computed
o — exact
0.10 Kaot = 14
0.05
5 6

0.00
~0.05

T T RI

—0.10 -

—-0.15 -

Fig. 8.1. Velocity at ka,t = 14 using Godunov’s Method, a third-order reconstruc-
tion, and no limiter

kao,t = 14. The magnitudes of the oscillations have been reduced signifi-
cantly, but on closer inspection it is evident that the oscillations have not
been entirely eliminated.

u/a,

0.15 L o computed
— exact

0.10
0.05

0.00 KX

—0.05

—0.10

—-0.15 -

Fig. 8.2. Velocity at ka,t = 14 for Godunov with a third-order reconstruction and
min-mod limiter

It is therefore evident that the elimination of unphysical oscillations in the
reconstruction does not guarantee the elimination of unphysical oscillations
in the computed solution of the Euler equations. However, the elimination
of unphysical oscillations in the reconstruction through limiters would be
expected to reduce the magnitude of the unphysical oscillations in the com-
puted solution of the Euler equations. Nevertheless, the elimination of all
unphysical oscillations in the computed solution of the FEuler equations re-
quires modification of the fluxes, since the evolution of the solution Q;(t) is
directly a consequence of the integral of the fluxes across the control volume
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according to (3.9):

8.2 Total Variation

Harten (1983,1984) introduced the concept of Total Variation (TV) of a
function as both a means of proving the convergence of a discrete system of
equations to their exact solution and as a technique for quantifying the ex-
tent of oscillations in the discrete solution. Consider the computed solution
in Fig. 8.3. The Total Variation of the velocity u; is defined as

TV(u) = Z \u, — ’U,i_1’ (8.1)

The Total Variation of other flow variables can be similarly defined. For the
periodic smooth profile shown in Fig. 8.3,

TV (u) = 2(max u; — min u;) (8.2)

The appearance of oscillations in a solution typically increases the TV. It
is straightforward to show (Exercise 8.1) for a periodic function u that

TV(u) =2 (Umax; — Umin;) (8.3)
where Umax; and umin, are the local maxima and minima of w. Thus, the
appearance of oscillations in the solution increases the number of terms in
the above expression and typically increases the value of T'V.

u/a,
0.15
0.10
0.05
0.00

KT

—0.05

—0.10

—-0.15%

Fig. 8.3. Computed solution using Van Leer’s Method with a first-order reconstruc-
tion
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The TV concept can be extended to a general function u(z) according tot
TV (u) = hmsup(s/ u(z +0) —u(z)| do (8.4)

provided that T'V'(u) is finite. For a smooth function, this becomes

% | Oy
TV(u):/_OO o

da (8.5)

provided du/0z approaches zero sufficiently fast as |z| approaches infinity.

Harten (1984), Boris and Book (1976), and others introduced algorithms
for a hyperbolic system of equations that have a nonincreasing value of TV
in time. These methods are denoted Total Variation Diminishing (TVD).t
A numerical algorithm for a scalar function v is TVD if

TV (u™) < TV (u™) (8.6)

A related concept is Total Variation Bounded (TVB). A numerical algorithm
is TVB if

TV@W")<B for 0<t<rT (8.7)

for all n such that ndt < 7, where B depends only on 7'V (u°) and 6t satisfies
a Courant-Friedrichs-Lewy condition if applicable.

We examine the Total Variation of the solution of the problem described
in Section 2.8. The initial condition is defined by (2.92) with e = 0.1, and the
domain 0 < kx < 2m is discretized into 100 uniform cells. Periodic boundary
conditions are imposed on the left and right boundaries. The timestep is
defined by (5.8) with C = 0.46, and the second-order Runge-Kutta algorithm
(7.5) is employed.

First, we consider the first-order reconstruction (5.1). Figure 8.4 displays
the Total Variation of p, pu, and pe normalized by po, poto, and p,a2,
respectively, where p, and a, are the undisturbed density and speed of sound,
respectively. The flux algorithm is Roe’s method. The Total Variation is
seen to decrease for all three variables. Thus, the algorithm is TVD; however,
the Total Variation is significantly below the exact value, implying excessive
numerical dissipation. The velocity profile at ¢ = 14 is shown in Fig. 8.5.
Considerable diffusion and decay of the profile in the vicinity of the shock
is evident, which is attributable to the use of first-order reconstruction.

t The supremum (denoted sup) of a set is the least upper bound of the set (Ahlfors, 1953).
t A more correct nomenclature would be Total Variation Non Increasing (TVNI).
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TV

1.50
<4 TV(p) computed o TV(pu) computed > TV(pe) computed
1.25+3 TV(p) exact o TV(pu) exact 5 TV(pe) exact
1.00 =
0.75
0.50 — B
B —e—

0.25 .,
0.00 | | | | | | | Kayt
0 2 4 6 8 10 12 14

Fig. 8.4. Total Variation of p, pu, and pe

u/a,
0.15 L o computed
— exact
0.10

0.05
0.00

—0.05

—0.10 - M

—-0.15 -

Fig. 8.5. Velocity at ka,t = 14

The Total Variation of pu is shown in Fig. 8.6 for five different flux al-
gorithms using first-order reconstruction. Notwithstanding the quantitative
differences, it is evident that all methods are TVD and underpredict the
exact solution.

Second, we consider the third-order upwind-biased reconstruction (4.19)
with k = % but no reconstruction limiter. The flux algorithm is Godunov’s
method (i.e., the exact solution of the General Riemann Problem is em-
ployed for the flux.) The behavior of TV (pu), shown in Fig. 8.7, is essentially
constant up to the time of shock formation but then increases in contrast
to the exact solution. The resulting velocity profile at ka,t = 14, shown in
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TV(pu)
0.5+ ‘.,
0.4 = \I/
0.3 -
o Godunov
0.2 4 Roe
<4 Osher
> Steger-Warming
0.1+ ¢ Van Leer
o Exact
| | | | | | | t
005 2 4 6 8 0 12 14 %
Fig. 8.6. TV(pu) for different flux algorithms
TV(pu)
0.5+ ¢ w
0.4 \Il & v
0.3
o No limiter
0.2 — ¢ Min-mod limiter
o Exact
0.1+
0.0 | | | | | | e kayt
0 2 4 6 8 10 12 14

Fig. 8.7. TV(pu) for Godunov with a third-order reconstruction with and without
reconstruction limiter

Fig. 8.1, displays oscillations on both sides of the shock, which accounts for
the increase in TV (pu).

Third, we consider the third-order upwind-biased reconstruction with the
min-mod limiter. The flux algorithm is Godunov’s Method. The TV (pu),
shown in Fig. 8.7, is significantly better than the previous solution, which did
not employ a limiter. The velocity profile in Fig. 8.2 displays only a slight
oscillation in the vicinity of the shock. We conclude that the reconstruction
limiter has virtually eliminated the oscillations but that the method is not
precisely TVD.

Toro (1997) classifies TVD methods into two categories. The first cate-
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gory is flux limiters. This approach is based on a dynamic combination of
high- and low-order expressions for the flux. The second category is slope
limiters. This approach imposes a limit on the reconstruction to achieve
TVD behavior. In the following sections, we present one example of each of
these two approaches. Additional examples are presented in Toro (1997).

8.3 Flux Corrected Transport

Boris and Book (1973) introduced a flux limiter method that combines a
low-order and high-order flux algorithm to achieve a TVD scheme. The
algorithm is further described in Book et al. (1975), Boris and Book (1976),
and Zalesak (1979).

8.3.1 Algorithm

Consider the semi-discrete form (3.9) of the Euler equations

1@ (Fy=Fy) |
dt Az B

(8.8)

For simplicity, we utilize first-order Euler integration of (8.8) in time and
denote the solution at time t" by Q7.

The algorithm is composed of two steps. In the first step, an intermediate
solutionf Q; is generated using (typically) a first-order (i.e., low order}) flux
algorithm le 1

2

Qi = Q”——(E+1 FLy) (8.9)

The flux algorithm Fl.l +1 is chosen to satisfy the maximum principle, i.e.,

the solution Q; does not exceed the range of the initial data. This inter-
mediate solution (Q; exhibits significant diffusion that leads to an excessive
broadening of discontinuities.

In the second step, a corrected flux F€ ,, is employed, which is given by

+17

Fiyy = oy FY (8.10)

t Referred to as the transported and diffused solution (Zalesak, 1979).
1 Hence the superscript [



192 TVD Methods
where F} | is an anti-diffusive fluz* given by
2
o —Fh, —F, (8.11)
2 2 2

where Fl’jr , is a higher order flux (i.e., generated using a higher order recon-
2

struction) and oy, 3 is a coefficient (denoted the hybridization parameter)
determined by the requirement that the updated solution given by

A At
Qn+1 _ Q c c
' " Ax ( ity Fi—%) (8.12)

does not introduce any new extrema relative to the set (Qi_g, .. ,Qi+2).
The anti-diffusive flux is formed using the intermediate solution.

Boris and Book specify the following expression for the corrected flux:

£} = Sivy max {0, K4} (8.13)
where

Kooy =min{|F2 |, S0 AQiva, i1y AQ: ) (8.14)

with
AQ;i = Qi — Qi1 (8.15)

and
AQ; = %Aéi (8.16)

and
Sy =sign (F‘i%) (8.17)

The algorithm in (8.9) to (8.17) is Fluz Corrected Transport (FCT). From
(8.12) to (8.14), it is evident that Q7 depends on the six quantities

AQi—1, AQ;, AQiy1, AQit2, Fia_%, {l%,

There are 64 (i.e., 2°) possible cases to evaluate for determining the effect

of FCT on Q?H, corresponding to the two possible values of the signs of

AQi-1,AQi, AQit1, AQit2, F 1, and F? ,. These cases may be divided
2 2

into 16 classes based on the signs of AQi_l, AQi, AQZ-H, AQiH as indicated
in Table 8.1.

We establish three important properties of FCT. First, it may be shown
(Exercise 8.7) that

sign (Fig%) = sign (F;;%) it Ffy #0 (8.18)
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Table 8.1. Classes for Flux Corrected Transport
Class AQi—1 AQi AQit1 AQito

1 - + + +
2 - + + —
3 - + — +
4 - — + +
5 — + + +
6 - + - -
7 + — + —
8 — + + —
9 + — — +
10 - - -~ +
11 - - - +
12 + — — —
13 - + - -
14 —~ — + -

—
ot
|
|
|
+

Thus, the corrected flux FY, , (if it is nonzero) has the same character as
2

the anti-diffusive flux F, ;. Second, it may be shown (Exercise 8.8) that
2

Gy A0 iff sign (AQi) = sign (AQiyo) =sign (%)  (8.19)
Thus, the corrected flux Fy, , exists if and only if the anti-diffusive flux FY, ,
2 2

is aligned with (i.e., has the same sign as) the gradient of Q as defined by
the one-sided differences AQ); and AQ; 2 on either side of the interface at
i+1. Third, it may be shown (Exercise 8.9) that

Ffy =0 if sign(AQi42) = —sign(AQ;) (8.20)

This is a corollary to (8.19). If AQ; and AQi+2 have opposite signs, then it
is not possible (in the context of FCT) to define a direction of the gradient
of Q at 1+ 1, and thus the corrected flux is set to zero. Fourth, in a more
general sense, it may be shown that

Ff1 20 if AQua >0 and AQ; >0
G, <0 i AQiy» <0and AQ; <0
f=0  if sign(AQi12) = —sign(AQ;) (8.21)

This may be proven as follows. Consider AQi+2 >0 and AQi > 0. Assume



194 TVD Methods

Si+% = 1. Then Ki+% > 0 and cm+% > 0. Assume S-_% = —1. Then
K.

ity < 0 and F{, ; = 0. The remaining three possible cases for the signs of
2

AQ,-+2 and AQZ- may be considered and the result proven.

From (8.20), Ff_, = 0 for Classes 6, 8, 9, and 11. Therefore, Q"+ does
2
not introduce any new extrema (i.e., new maximum or minimum) relative

to the set (Qi_g, ... ,Qi+2) for these classes.

We now examine the remaining classes to ascertain whether new ex-

trema can be introduced at ¢ relative to the set (Qi_g, . ,Qi+2). Note
that (Q;—2,...,Qit2) represents the minimumtf set from the intermediate
solution used to obtain Q7!. For reference, we combine (8.12) and (8.13),
n+1 o At
Qi = Qi = - [Shyy max [0, KH%} — ;3 max [o, KZ-,%}] (8.22)
Fe Fe
i+ i-1

8.3.1.1 Class 1

For Class 1, the intermediate solution Ql is monotonically increasing as
shown in Fig. 8.8. There are four possible cases depending on the sign of

2 . We consider the possible generation of new extrema. For Class 1, the

i+l
largest value of @ in the set (Q;—_2,...,Qit+2) is Qi+2, and the smallest value
is Q2.
Q
o
| |
| | O
| |
| (@] |
| |
Ffy20—>= ——=F;, >0
2 o | | 2
| |
o 1—1 t+1

Fig. 8.8. Class 1

We first consider the possible creation of a new maximum at ¢. From

t Depending on the method of reconstruction used to obtain F'Lai ., a larger set may be employed.
2
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(8.22),
QU — Q; = —AQit1 + S, 1 max |0 ﬁK
% 42 — i+1 _% N l_%
Ay
R At
— AQZ'+2 + Sz+% max O, EKZ+% (823)
Ao

We now show that the terms A; and As are each nonpositive, thereby
proving that no new maximum is created. For Aj, there are two possible
cases. If sign(F? ;) = —1, then K;_; <0 from (8.14) and therefore

2

A1 =-AQin
which is negative (Fig. 8.8). If sign(F? ;) = +1, then
2

Ay = —AQ;4+1 + min A—;EZ%,AQHL AQi—1
which is nonpositive since

—a +min(a,b,...) <0 (8.24)
for any scalar quantities a, b, .... Thus, term A; is nonpositive.

For A, there are two possible cases. If sign(F7, ;) = —1, then Ky <0
2
from (8.14) and therefore

Ay =—AQits
which is negative (Fig. 8.8). If sign(F? ,) = +1, then
2

At
As {AQHQ -+ min [A +1 ) AQH% AQJ }

which is negative. Thus, the term Ag is negatlve Thus, no new maximum
is created at ¢ relative to the set (QZ 2, ... ,Ql+2)

We next consider the possible creation of a new minimum at ¢. From
(8.22),

. R At
Q;H*l _ Qi—2 = AQi—l + S_% max l:O, A—Kl_%:|
X

A

At
{AQrL +1 max |:0 A—xKZJ’_%

Ao
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We now show that the terms A; and Agy are each nonnegative, thereby
proving that no new minimum is created. For Aj, there are two possible
cases. If sign(F? ;) = —1, then K;_1 <0 and therefore

2

Ar=AQin
which is positive (Fig. 8.8). If sign(F* ,) = +1, then
2

. CTAE L.
Ay = AQ;—1 + min EFZ-_%,AQiH, AQi—1

which is positive. Thus, Aq is positive.

For A,, there are two possible cases. If sign(ﬂﬁl) = —1, then Ki+§ <0
2
and

Ay = AQ;
which is positive (Fig. 8.8). If sign(Fy ;) = +1, then
2

Az = AQ, — min ﬁ @ AQAH—Q? AQ@

Ag” ity
which is positive from (8.24). Thus, Ay is positive. Therefore, no new
minimum is created at i relative to the set (Q;—2,...,Qi1+2)-

8.3.1.2 Class 2

For Class 2, the intermediate solution Qz is monotonically increasing to Qi_l,_l
and decreasing from Q);+1 to Q;+2 as shown in Fig. 8.9. Since sign(AQ;12) =
—sign(AQ;), thus F? ; =0 from (8.21). Thus, from (8.22),

2

R At
1

Since sign(AQ;41) = sign(AQ;_1) = +1, therefore Ff , >0 from (8.21).
2

For Class 2, the largest value of @ in the set (Qi_g, . ,Qi+2) is Q;41, and
the smallest value is min(Q;_2, Qi+2).

There are two possible cases depending on sign (£} 1 ). If sign(F 1 ) =—1,
FZ,C_% = 0 from (8.19) and thus Q;H'l — ;, and hence no new extremum
is created. If sign(Fi“_% ) = +1, we consider the possible creation of a new
maximum. Now,

QM — Qit1 = —AQi41 + S;_ 1 max {07 ﬁKi—l]
3 Az 3
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| |

| | o]

| |

| |

| © | o

c 1 | c —
Ff,>0—= | F, =0
O | |

| |

1 I
o 1—13 1+3

i—2  i—1 1 i+1 142

Fig. 8.9. Class 2

and thus
n+1 A - _A A : At e A A A A
Q7" — Qi1 = —AQji4+1 + min A liob Qiv1,AQ;—1
which is nonpositive from (8.24). Thus, no new maximum is created relative

to the set (QZ’_Q, PN ,Qi_l,_Q).

We consider the possible creation of a new minimum when sign(F ;) =
2

+1. The minimum value of Q in the set (Qi_g, .. ,Qi+2) is min(Qi_Q, Qi+2).
Now,

A R A At
Q;H-l —Qilo = AQ; +AQ;_1 + Si,% max {O, A—Kl%}
N—— X
A

Az
Now A; > 0 and
A . [At A A
Ay = AQ;—1 +min |[—F" 1, AQi1+1,AQi—1
Ax "2
and thus Ay > 0. Now,
QU — min(Qy—2, Qiy2) > QI — Qi

and thus no new minimum is created.

8.3.1.3 Class 3

For Class 3, the intermediate solution QZ is monotonically increasing to Qi,
decreasing from @; to @Q;+1, and increasing to ;12 as shown in Fig. 8.10.
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Since sign(AQiH) = —sign(AQi,l), thus F¢ , = 0. Thus,
2

At
Q;L—i_l QZ 1+1
Since sign(AQy42) = sign(AQ;) = +1, thus F7, > 0. For Class 3, the
2
largest value of @ in the set (Q;—2,...,Qi+2) is max(Q;, Q;r2), and the
smallest value is min(Q;_2, Q;+1).

Q

Fig. 8.10. Class 3

There are two possible cases depending on sign(£7, ;). If sign(FY, ) = -1,
2

then cm+% = 0 from (8.19) and no new extremum is created. If sigm(FZ“+ 1)

+1, we examine the possible creation of a new extremum. Now,

A At
Q?+1 _ Qz = —min A z+1 R AQZ+2, AQz

Aq
where A; > 0. Thus,

QM — max(Q, Qive) < QM —Q; <0

Thus, no new maximum is formed. Also,

Q?Jrl Qz 1= AQZ — min H—l ) AQH—% AQz

Ay

A
Az

and from (8.24), A; > 0. Now,
QM —min(Q—2,Qi+1) = QI — Qi1 +Qi—1 — min(Qi—2, Qi+1)

>0 >0

Thus, no new minimum is formed.
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8.8.1.4 Class 4

For Class 4, the intermediate solution Q; is monotonically increasing to Qi_l,
decreasing from @Q;_1 to @;, and increasing to (); 12 as shown in Fig. 8.11.
Since sign(AQ;y2) = —sign(AQ;), thus an_% = 0. Since sign(AQ;4+1) =
sign(AQ;—1) = +1, thus F¢ ; > 0. Thus,

2

QI =Qi+ At

C
Aslid
For Class 4, the largest value of Q in the set (Qi,g, e Qi+2) is max(@i,l, Qi+2),
and the smallest value is min(Q;_2, @Q;).

Q

i—2  i—1 i i+1 42
Fig. 8.11. Class 4
There are two cases depending on sign(F}* ). If sign(F ;) = —1, then
2 2

F? , =0 and no new extremum is created. If sign(F?" ,) = +1, we examine
3 3
the possible creation of a new extremum. Now,

) ) AL .
QI = Qis1 = —AQi41 + min A lieg A+, AQiy

Ay

where from (8.24), A; < 0. Now,

QM —max(Q;_1,Qire) = QU — Qiv1 + Qi1 — max(Q;_1, Qiro)
<0 <0

and thus no new maximum is created. Furthermore,

w6 —min |2 AGL AC
Q! 1 _Q; = min A_mFi*%’ AQit+1, AQi—

Ao
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where Ay > 0. Now,

QM —min(Qi—2,Qs) = QM — Qi + Q; — min(Qi—2, Q;)

>0 >0

and thus no new minimum is formed.

8.3.1.5 Class 5

For Class 5, the intermediate solution Ql is monotonically decreasing to
Q-1 and increasing to ;2 as shown in Fig. 8.12. Since sign(AQ;t+1) =
—sign(AQ;—1), thus F? ; = 0. Thus,

2

At

ntl _ 5 _ =2
Qi =Qi-

C
Ff,

Since sign(AQ;42) = sign(AQ;) = +1, thus Ff ., > 0. For Class 5, the
2

largest value of Q in the set (Qi,Q, . ,Qi+2) is max(@i,Q, Qi+2), and the
smallest value is Q;_1.

Q
I | o
I |
I |
1 | O
I |
OF.571:O| —»Fil >0
1— 5 | o | 15
I |
le) | |
1 1
1 — 3 1+ 3

i—2  i—1 i i+1  i+2
Fig. 8.12. Class 5

There are two possible cases depending on sign(F, ;). If sign(Fy, ;) = —1,
2 2
then £, = 0 and no new extremum is created. If sign(Fy, ,) = +1, we
2
examine the possibility of a new extremum. Now,

n A . At a S o
Qi 1 Q; = —min A_a: H%,AQH%AQ@'

Ay
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where A1 > 0. Now,

Q?+1 — max(@i_z, Qi+2) = Q?+1 — Qz + Qz - maX(Qi—Za QH—Z)

<0 <0

Thus no new maximum is formed. Furthermore,

. A i
QI = Qi1 = AQ; — min Ax ity AQit2, AQ;

Ao

where from (8.24), Ag > 0. Thus no new minimum is formed.

8.3.1.6 Class 6

For Class 6, the intermediate solution Ql is monotonically increasing to

Q; and decreasing to ()12 as shown in Fig. 8.13. Since sign(AQ;+1) =

—sign(AQ;—1), thus Ff , = 0. Since sign(AQi;2) = —sign(AQ;), thus
2

Fy = 0. Thus, Q;‘H = @;, and no new maximum or minimum in formed.
3

Q

s

+ o
=
[

o

i—2  i—1 1 t+1 42

Fig. 8.13. Class 6

8.3.1.7 Class 7
For Class 7, the intermediate solution Q; is oscillatory as shown in Fig. 8.14.
Since sign(AQ;+1) = sign(AQ;—1) = +1, thus F* ; > 0. Since sign(AQ;42) =
2
sign(AQ;) = —1, thus F7, , <0.
2
From (8.22),

At

QM =Q, - A {SH% max [O,KH%} — S; 3 max [O,Ki,%}}
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Fig. 8.14. Class 7

Assume that the anti-diffusive fluxes F , are aligned with the local gra-
2

dients, i.e., SZ-,% = +1 and Si+% = —1. We show by example that a new

maximum can be formed. Assume

AQ; 1 =5, AQ; = —1, AQjs1 =3, AQij0 = —2, 2—;3‘1% > 3, i—; Fia|>1
Then

QI =Qi+4
which is a new maximum relative to the set (Q;_s,...,Qit2). A new mini-

mum cannot be formed, however, since

o At
Qi +1 _ QZ = _SH—% max |:0, EKH_%

Al AQ

At
-+ Sz—% max |:O, EKZ_%]

and both A; and Ay are nonnegative.

8.3.1.8 Class 8

For Class 8, the intermediate solution Q; is monotonically decreasing to

Q;_1, increasing to @}; 11, and decreasing to ;12 as shown in Fig. 8.15. Since

sign(AQj+1) = —sign(AQ;_1), thus FZC_% = 0. Similarly, since sign(AQ;+2) =

—sign(AQi), thus F7 , = 0. Thus, Q"' = Q; and no new maximum or
2

minimum is formed.
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| | le)
! I
o | |
! I
| o) | X
Ef, = : : Fiﬁr% =0
! I
° I o
I i
t— 3 141
1—2 -1 1 i+1 142

Fig. 8.15. Class 8

8.3.1.9 Class 9

203

For Class 9, the intermediate solution QZ is monotonically increasing to
Qi—1, decreasing to @;11, and increasing to ();12 as shown in Fig 8.16.
This is equlvalent to the reflection of Class 8 about 4. Since :ﬂgn(AQHl)

—sign(AQ;_1), thus Fe

N

=0. Slmllarly, since s1gn(AQz+2) =

—mgn(AQz)

thus F¢, = 0. Thus, Q" = Q, and no new maximum or minimum is
i+i ) 7

formed.

! I
o ! I
| | (e}
| I
| I
F_y =01 ° | By, =0
| I
o ! , o ©
t—1 i+3
i—2 i—1 ) i+1 i+2

Fig. 8.16. Class 9
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8.3.1.10 Class 10

For Class 10, the intermediate solution Q; is oscillatory. Since sign(AQiH) =
sign(AQ;—1) = —1, thus F¢ ;, < 0. Similarly, since sign(AQ;;2) = sign(AQ;)
2
+1, thus Fic—i-l > 0.
2

Fig. 8.17. Class 10
From (8.22),
Q= Q- S Sy [0.K,yy| - Sy max 0,55y}

Assume that the anti-diffusive fluxes F} Ly are aligned with the local gra-

dients, i.e., S;_1 = —1 and Sz+1 = +1. We show by example that a new
minimum can be formed. Assume

Nl

. A A . At At
AQi—1= -2, AQ; =1, AQiy1 = =2, AQit2 =2, Ar F'.|>2, A—Fa 1
Then

Qi =Q; -3
which is a new minimum relative to the set (Qi_g, ce Qi+2). A new maxi-
mum cannot be formed, however, since
At At
Q:;H—l QZ = Z+1 max |:O EK%’_% + Sz—% max |:0, EKZ_%]
Al A2

and both A; and Ay are nonpositive.

>1
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8.3.1.11 Class 11

For Class 11, the intermediate solution Q; is monotonically decreasing to

Q; and increasing to (;;+2 as shown in Fig. 8.18. Since sign(AQ;+1) =

—sign(AQ;—1), thus F ; = 0. Similarly, since sign(AQ;42) = —sign(AQ;),
2

thus Ff , = 0. Thus, Q"' = @; and no new maximum or minimum is
3
formed.
o | | o
| |
| |
o | I o
| |
C J— (& —
Ff, =0 | Do firy T 0
| o) |
| |
| I
1 — 31 1+ 3

i—2  i—1 1 t+1 42

Fig. 8.18. Class 11

8.3.1.12 Class 12

For Class 12, the intermediate solution Ql is 1ncreasmg to QZ 1 and decreas-
ing to Qi as shown in Fig. 8.19. Since Slgn(AQZ+1) = —ﬁgn(AQZ 1), thus
Fe¢ 1= = 0. Thus,

1

A At
+1 _
Q! = Qi T-FL

Since sign(AQ;42) = sign(AQ;) = —1, thus +1 <O0.
There are two possible cases depending on sign(F?, ) If sign(F i ) = +1,
then Ff , = 0 and no new extremum is created. If sign (F; +1) = —1, we
2
examine the possibility of a new extremum. Now,
QM — Q; AQ + min At F |, —AQit2, —AO;
i—1 = 7 A.%' i+ i+2; 7

A1
Ao



206 TVD Methods

&
I
”2

Fig. 8.19. Class 12

Since Ay < —Aq, no new maximum is formed. Furthermore,

At A
A +1a AQH-Q, AQ@

A

Q?H Ql + min

Since A1 > 0, no new minimum is formed.

8.3.1.13 Class 13

For Class 13, the intermediate solution Q; is decreasing to Qi_1, mcreasmg
to Q;, and decreasing to QHQ as shown in Fig. 8.20. Since s1gn(AQ,+2)
—&gn(AQZ), thus F¢ , = 0. Thus,

2

At
QI =Qi+ L Foy

Since sign(AQ;41) = sign(AQ;_1) = —1, thus Fe, <0.
2

) =+1,
then F° ; = 0 and no new extremum is created. If sign(F" l) = —1, we
2

There are two possible cases depending on sign(F;* ;). If sign(F;
2

wIH

examine the possibility of a new extremum. Now,

. C [At ~
QM — Q; = —min [_A  —AQiy1, — AQz‘—l}
x
Ay

z—i—l

Since Ay > 0, no new maximum is formed. Furthermore,
ntl A A . [At A A
Q" — Qiy1 = —AQji41 — min N , —AQi+1, —AQ;
—— z

A
1 e

a
Fe,
2
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F°1<Oe'_

Fig. 8.20. Class 13

Since Ay < A1, no new minimum is formed.

8.8.1.14 Class 14

For Class 14, the intermediate solution QZ is decreasing to QZ, 1ncreasmg to
Qz+1, and decreasing to QHQ as shown in Fig. 8.21. Since s1gn(AQl+1) =
—s1gn(AQl,1), thus F¢ , = 0. Thus,

2

n A At c
Q'L‘Jrl = Ql - EFH_l

2

Since sign(AQ;42) = sign(AQ;) = —1, thus Ff, <0.
2

Q

-+ cm1<0
2

Fig. 8.21. Class 14

There are two possible cases depending on sign(F?, {5} ). If sign(F? i ) = +1,

then F¢ il = = 0 and no new extremum is created. If sign( = —1, we

H—l)
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examine the possibility of a new extremum. Now,

A A
Q! — Qs = min [—t

Azx ’+1

) AQH—Qv AQ1:|

A

Since Aq > 0, no new minimum is formed. Furthermore,

. R R o [At A
Q' — Qi1 = AQ; +min [E i+ ~AQiy2, — AQz‘]
Ay pe

Since Ay < Ay, no new maximum is formed.

8.3.1.15 Class 15

For Class 15, the intermediate solution Qz is decreasing to Qi“ and increas-
ing to Qi+2 as shown in Fig. 8.22. Since sign(AQ;+1) = —sign(AQ;), thus
+1 = 0. Thus,

At
1
Q;’LJ’» Q'l - —l‘FliQ

Since sign(AQ;4+1) = sign(AQ;_1) = —1, thus Fc <0.

[e) | |
I I
o | °
I |
c < | | c _
Fi_%g() - © IFH—%_O
I I
l | o)
| I
1 — 4 1+ 4

=2  i—1 1 t+1 142
Fig. 8.22. Class 15

There are two possible cases depending on sign(F;* , ). If sign(F? ,) = +1,
2 2
then F° ; = 0 and no new extremum is created. If sign(F? ,) = —1, we
2
examine the possibility of a new extremum. Now,

Q' — Qi = —min [g

A.%' ) _AQ’H-lv _AQi—l

Ay

F*
=3
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Since Ay > 0, no new maximum is formed. Furthermore,

F?

=3

,—AQit1, —AQi 1

Az

- A . [At
Q?H — Qit+1 = —AQi41 —min {A_
N—— x

A

Since Ay < Ay, no new minimum is formed.

8.3.1.16 Class 16

For Class 16, the intermediate solution QZ is monotonically decreasing as
shown in Fig. 8.23. There are four possible cases depending on the sign of

z%cl' This case is similar to Class 1. No new extrema are created relative
3

to the set (Qi_g, o ,QZ‘+2). The proof is left as an exercise (Exercise 8.10).

Q

Fig. 8.23. Class 16

8.3.2 Accuracy, Consistency, and Convergence

We consider the problem described in Section 2.8. The initial condition is

defined by (2.92) with € = 0.1 and the domain is 0 < kx < 27. The low-

order flux Fil 11 1s computed using a first-order reconstruction (Qi b1 =Qi
2 2

and Q_ 1= Q;), and the high-order flux is computed using a third-order

upwind biased reconstruction (4.19) with x = 3. The flux algorithm is

Godunov’s Method. The norm, defined by (3.102), is evaluated at ka,t=7,
which is prior to the shock formation. The timestep At is determined by

At = CAtepy, (8.26)
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where the Courant number C = 0.46 and Atopy is calculated according to
(5.8) using the initial condition. The timestep At is held in fixed ratio to
the grid spacing Ax, and therefore At and Ax are decreased by the same
ratio. The exact solution Q" is obtained from (2.85) to (2.88).

The convergence is displayed in Fig. 8.24. The solution converges lin-
earlyT to the exact solution for sufficiently small At. The linear convergence
is a consequence of the first-order temporal integration. The computed
result (using 100 cells) and exact solution are displayed in Fig. 8.25 for
kaot = 7 and C = 0.45. The error in amplitude is associated with the
first-order time integration and is significantly reduced by decreasing the
timestep (Fig. 8.26).

logy [|Q7 "~ Q1]

O —
Ve
Ve
Ve
Ve
1k
-2 computed
— — — linear
3L
| | | J
—4 -3 -2 -1 0

logo kao,At

Fig. 8.24. Convergence for Flux Corrected Transport

t The line in Fig. 8.24 is

Kao At
5x 10—4

Q™ Q7 | at = ( ) Q™ — Qs 104
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u/a,

0.15 Ka,t =17

0.10

o computed
— exact

0.05

0.00

RI

—0.05

—0.10

—-0.15%

Fig. 8.25. Computed and exact solutions (ka,At = 0.025)

u/a,

0.15

0.10 o computed

— exact

0.05

0.00 KT
—0.05

—0.10

—-0.15 -

Fig. 8.26. Computed and exact solutions (ka,At = 0.00125)

8.3.3 Total Variation

We examine the Total Variation of the solution of the problem described
in Section 2.8 with ¢ = 0.1 and the domain 0 < kx < 27 is discretized
into 100 uniform cells where x = 2rL~!. Periodic boundary conditions
are imposed on the left and right boundaries. The timestep is defined by
(5.8) with C = 0.46, and a first-order time integration is employed. The
Total Variation of pu is shown in Fig. 8.27 for four different high-order flux
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algorithms (Godunov, Roe, Osher, and Steger-Warming). The low-order
flux Fil 1 is computed using a first-order reconstruction (Qi 41 = Q; and
Qr_ 1= Q;), and the high-order flux is computed using a third-order upwind-
biased reconstruction (4.19) with x = %. All flux algorithms are evidently
TVD with the incorporation of FCT. The decrease in TV is associated with
the magnitude of At. In Fig. 8.28, the TV is shown for a second-order Runge-
Kutta time integration with the same At. The decrease in TV is virtually
the same as in Fig. 8.27. A reduction in At to At = 0.00125 virtually
eliminates the drop in TV as shown in Fig. 8.29. The velocity profile is
displayed at ka,t = 14 in Figs. 8.30 and 8.31 for At = 0.025 using first-
order FEuler and second-order Runge-Kutta integrations, respectively. The
shock wave is diffused over several cells. A reduction in At to At = 0.00125
minimizes the diffusion of the shock as shown in Fig. 8.32.

TV(pu)

0.5

M

0.3
o Godunov
0.2 - A Roe
4 Osher
> Steger-Warming
0.1 o Exact
0.0 | | | | | | o kayt
0 2 4 6 8 10 12 14

Fig. 8.27. TV(pu) for FCT with different flux algorithms (first-order Euler with
ka,At = 0.025)

8.4 MUSCL-Hancock Method

The MUSCL-Hancock method (Quirk, 1994; VanLeer, 1985) is a TVD-like
algorithm based on the concept of a slope limiter. It is strictly TVD for
a linear equation; however, experience has shown that it achieves TVD or
near-TVD performance for the Euler equations (Toro, 1997). We present
here one version of the MUSCL-Hancock method.
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TV(pu)
0.5+ "
0.3
o Godunov
02k A Roe
< Osher
> Steger-Warming
0.1 o Exact
0.0 | | | | | | e fayt
0 2 4 6 8 10 12 14

Fig. 8.28. TV(pu) for FCT with different flux algorithms (second-order Runge-
Kutta with At = 0.025)

TV(pu)
0.5+ ”
0.4 B \Il
0.3+
o Godunov
02k A Roe
4 Osher
> Steger-Warming
0.1 o Exact
0.0 | | | | | | > ka,t
0 2 4 6 8 10 12 14

Fig. 8.29. TV(pu) for FCT with different flux algorithms (first-order Euler with
At = 0.00125)

8.4.1 Algorithm

Consider the semi-discrete form (3.9) of the Euler equations

9 (mif—%) 0

The MUSCL-Hancock Method proceeds in three steps. First, the flow vari-
ables are reconstructed within cell ¢ using a linear expression:

¢
Az

(8.27)

Qz) = Qi + -=A; (8.28)
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u/a,

0.15

0.10

0.05

0.00

—0.05

—0.10

—0.15

TVD Methods

raot = 14

o computed
— exact

5 6

T T KT

o
o
[¢]

M

Fig. 8.30. Velocity at ka,t = 14 for FCT with Godunov’s Method and third-order
reconstruction (first-order Euler with At = 0.025)

u/a,

0.15

0.10

0.05

0.00

—0.05

—0.10

—-0.15

o computed
— exact

5 6

T T RI

o]
[¢]
(¢]

M

Fig. 8.31. Velocity at ka,t = 14 for FCT with Godunov’s Method and third-order
reconstruction (second-order Runge-Kutta with At = 0.025)

where

f=x—w

(8.29)

and A; is a limited linear combination of AQ,_ 3 and AQ,; i according to

where A; is

~

A =<(p)A;

Ai = 3(1 = R)AQ;—y + 51+ K)AQ

(8.30)

(8.31)
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u/a,
0.15L Kaot = 14
0.10 o computed
— exact
0.05
5 6

0.00

T T KT

—~0.05 %

—0.10 -

—-0.15 -

Fig. 8.32. Velocity at ka,t = 14 for FCT with Godunov’s Method and third-order
reconstruction (second-order Runge-Kutta with At = 0.00125)

and —1 < k <1 and ¢(p) is a slope limiter that depends on the ratiof

AQ;_1
0= 2 8.32
o (8:32)
A slope limiter analogous to the MinMod flux limiter is (Toro, 1997)
0 0<0
¢=4q 0 0<po<1 (8.33)
min(1,{(0)) o0>1
where
$ = 2 (8.34)
g_1—,%—i—(1—i—/<;)g '
Thus,
i.}.l - Qz + %Az
o= Qi A (8.35)

Second, the boundary values are updated in time by %At according to

- At
l l 1
A Qi—&-% T2, <Fi+% - Fi—%)
5 At
b= @y g (R - Ay) (8:36)

t The ratio in (8.32) is evaluated for each of the conservative variables. Thus, for the conservation
of mass, o = Apiié/ApiJr%.



216 TVD Methods

where Fi+% and F-_% are computed from (2.3) using QéJrl and Q! _,, re-
2 2
spectively. Third, the flow variables are updated according to
At /- -
1
Qi =07 - s (Fz'+% - er%) (8.37)

where FZ +1 is computed using Godunov’s method based on the flow variables
Qi 41 and Q: 1, and similarly for Fi, 1 It can be shown that the method
2 2

is second-order accurate in time (Hirsch, 1988).

8.4.2 Accuracy, Consistency, and Convergence

We consider the problem described in Section 2.8. The initial condition is
defined by (2.92) with e = 0.1 and the domain is 0 < Kz < 27. The norm,
defined by (3.102), is evaluated at kao,t = 7, which is prior to the shock
formation. The timestep At is determined by

At = CAtcry, (8.38)

where the Courant number C = 0.46 and Atopy, is calculated according to
(5.8) using the initial condition. The timestep At is held in fixed ratio to
the grid spacing Az, and therefore At and Ax are decreased by the same
ratio. The exact solution Q" is obtained from (2.85) to (2.88).

The convergence is displayed in Fig. 8.33. The solution converges quadrat-
icallyt to the exact solution for sufficiently small At. The computed result
(using 100 cells) and exact solution are displayed in Fig. 8.34 for ka,t =7
and C = 0.45.

8.4.3 Total Variation

We examine the Total Variation of the solution of the problem described in
Section 2.8. The initial condition is defined by (2.92) with € = 0.1, and the
domain 0 < kx < 27 is discretized into 100 uniform cells. Periodic boundary
conditions are imposed on the left and right boundaries. The timestep is
defined by (5.8) with C = 0.46. The Total Variation for p, pu, and pe are

t The line in Fig. 8.33 is

Kao At
5x 10—4

2
) Q7 —QF | gapat—sx10—4

Q™ — Q7w at = (
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logyo [1Q;“ — Q7|

1 —
/
0 /
7/
/
/
1L
—9oL
-3+ s computed
— — — quadratic
4
5L
-6 | | | J
—4 -3 -2 -1 0
log Ka,At

Fig. 8.33. Convergence for MUSCL-Hancock

u/a,

0.151+ Kol =
0.10

0.05

0.00

RI

—0.05

—0.10

—-0.15 %
Fig. 8.34. Computed and exact solutions (ka,At = 0.025 and 100 cells)

shown in Fig. 8.35 compared with the exact solution. The agreement is very
good.

The velocity profile is displayed at ka,t = 14 in Fig. 8.36 for ka,At =
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TV

1.50+
<4 TV(p) computed o TV(pu) computed > TV(pe) computed
1.25 3 TV(p) exact o TV(pu) exact 5 TV(pe) exact
1.00 S
0.75
0.50 B
0.25 ‘.
0.00 | | | | ¢' | | | Kayt
0 2 4 6 8 10 12 14

Fig. 8.35. Total Variation of p, pu, and pe (ka,At = 0.025 and 100 cells)

0.025 and 100 cells. A decrease in the grid spacing and timestep by a factor

of two improves the accuracy of the solution in the vicinity of the shock

(Fig. 8.37).

u/ae

0.15

0.10

0.05

0.00

~0.05

—0.10

—0.15

o computed
— exact

RX

Fig. 8.36. Velocity at ra,t = 14 for MUSCL-Hancock (ka,At = 0.025 and 100

cells)
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u/a,
0.15L Kaot = 14
0.10 o computed
— exact

0.05

0.00

R

—0.05

—0.10

—-0.15 -

Fig. 8.37. Velocity at ka,t = 14 for MUSCL-Hancock (rka,At = 0.0125 and 200
cells)

Exercises
8.1 For a periodic function u, show
TV(U) =2 Z (Umaxi - umini)

where Upmax, and umin, are the local maxima and minima of u.

To+A
TV (u) = /
Zo

where z, is an arbitrary point and A is the wavelength. Consider a single maximum at
z1 and minimum at x2 where x, < 1 < z2 < o + A. Then, by assumption,

SOLUTION
From (8.5),

ou

d
8331

Su >0 forxo<z<ux
— = <0 forzy <z <uzo
O >0 foras <z <xod A

Thus,

x1 T2 To+
TV = 9u dx — Ou dx + @ dx
ox ox ox
x 1 2

= uw(@1) —u(wo) — (w(@2) — uw(z1)) + u(o + A) — u(z2)
= 2(u(z1) —u(z2))

since u(zo) = u(xzo + A) from periodicity. The above result can also be shown to be
true if zo < 1. Now assume that there are two local maxima (and therefore two local
minima) in £, < < o+ A. The interval may be subdivided into two intervals in which
there is only one local maximum and one local minimum. A straightforward evaluation
of the above integral yields (8.3).
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8.2

8.3

TVD Methods

Consider the Riemann Shock Tube Problem (Section 2.10). Assume
that the tube is of finite length with impermeable ends. Is TV (p)
constant for all time ¢ >0 7
Consider the scalar equation

Ou  Of _

ot o

where f(u) is the flux. The equation may be rewritten in semi-

0

discrete form as

d(Zi _ _AL:E (fi—l—% - fl—%)

where f;; 1 (ui,uiy1) is the discrete flux at x; 3 and is assumed to
depend only on u; and u;41. Therefore, we may write

¢ 7 +
fi+% - fi—% = CH%AUH% + CF%A%‘—%

where

AUH% = Uit — Uy

and Ci_+ 1 and Cit , are coefficients that may depend on u;_1,u; and

2
Ui+1. Show that the necessary conditions for the semi-discrete form

to be TVD are (Hirsch, 1988)

- +
C'Z.Jr% <0 and Ci+% >0

SOLUTION
Using
dui 1 _ +
T = ae (Cayhuy + O youy)
thus
d L - + - +
r (wig1 —uq) = “Aa Ci+%Aui+% +Ci+%Aui+% - CiJr%AuH_% - Ci,%A“i—%

The discrete expression for TV (u) is

TV (u) = Z |wir1 — u;
i
and thus

dTV (u) d
T :Zsi+%a(ui+1 _ui)

k3

where Si4d = sign(u;4+1 — u;). For any function g,

d‘| s dg
4 sion oY
a9 T eIy
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except at g = 0, where d|g|/dt is possibly undefined. Thus,
dTV(u) 1 _ + _ +
v Z { (CH% - CH%) Augpy = CF gDy g + CF%Aui_%} Sipl
i

Assume a periodic domain. Then

ZC;%M”

Si+% = E CZ-+%A“1‘+%3¢—%

(M)

and

Thus,

dTV(’LL) _ 1 _ + — +
S = me e (g - Oly) S Chyeiey H Oy Auy

Therefore, a sufficient condition for the semi-discrete form to be TVD is either

sign¢i+% =Syl

where
Piyl = Sip} (C;; - C;;%) —Casicg+ C;;%SH%
for all AUH% or
¢i+% =0
A total of eight different cases can be considered as indicated in the following table:

Case s,,3 S,.,1 S,_1
it+35 it+5 =5

1 +1 +1 +1
2 +1 +1 -1
3 +1 -1 +1
4 +1 -1 -1
5 -1 +1 +1
6 -1 +1 -1
7 -1 -1 +1
8 -1 -1 -1

For Case 1, ¢;, 1 = 0. For Case 2, C;, , < 0. For Case 3, Ctrl —C~, >0. For

1
3 ity ity

Case 4, C’; 1 > 0. Consideration of these and the remaining cases (see Exercise 8.4)
2
yields the necessary conditions
+
i+3 = 0
C, +1 < 0

Evaluate Cases 5 through 8 in Exercise 8.3 and show that the nec-
essary conditions are

+
CH%

Cijr% < 0

v
o
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8.5

8.6

8.7

8.8

TVD Methods

Consider the scalar equation of Exercise 3. Show that

Cipy C+1 = [f(uit1) — f(u3)] (w5 — ui—1) ™"

SOLUTION

Consistency of the discrete flux expression fiJrl (g, wig1) requires f(u,u) =
2

f(u) is the flux. Assume u;—1 = u;. Then, the flux difference expression

f¢+l - fi,

2

=C

1+1Au+1 +C Auii%

[N

yields

firy = fw) =€ Augyy
Similarly, assume u; = u;41 and obtain
fws) ~Fiy =CF | Au
Combining these equations yields
C;r% = [fi+% - f(ui):| (wig1 —ug) ™"
Cit% = {f(ui) - fi,%} (wi —ui—1) ™"
Combining again,

Cisy +C+1 = [f(uir1) = fui)] (wi —uim1) ™"

f(u), where

Assume f = au for the scalar equation of Exercise 8.3, where a is a

constant. Assume the discrete flux is given by

fi+% =

a
5 (Wit +ui)

Is this method TVD?

Prove that the corrected flux F7 , has the same sign as the anti-
2

diffusive flux [Equation (8. 18)].

z—|— L
SOLUTION

From Equation (8.13), if Ki+% > 0, then cm+ L = i+%Ki+% and hence Equation (8.18)
3

holds. If Ki+% < 0, then Fﬁr% =0.
. . .
Prove FZ.+% # 0 if and only if

sign (AQ,) = sign (AQ,-+2) = sign ( Z‘l%>
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8.10
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Prove that

Ffy =0 if sign(AQi) = —sign(AQ;)

SOLUTION
From (8.14) it is evident that KiJr% < 0if sign(AQsy2) = —sign(AQ;). Therefore, from
(8.13)

Fe€

C1 =0 if sign(AQiy2) = —sign(AQ;)

Nf=

For Class 16 in Flux Corrected Transport, there are four possible
cases depending on the sign of F, ,. Prove that no new extrema are
2

created relative to the set (Qi,g, . ,QZ’+2).
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Notes

Chapter 2

Consider a locally planar shock at rest in the frame of reference (i.e., uw = 0) as
shown in Fig. 1. The flow states on the left and right sides are denoted by the
subscripts 1 and 2, respectively. The component of the velocity normal to the shock
is denoted by u.

u1 u2

p1 — P2

Ty 15
Uy =0

Fig. 1 Normal shock at rest

The Rankine-Hugoniot conditions (Table 2.1) yield

pP1UL = p2uU2 (8.1)
pluf +p1 = pzug + p2
hi + %u% = hs + %ug

where in (8.3) the conservation of mass (8.1) and definition of static enthalpy
h = ¢, T have been used. Equation (8.3) indicates that the total enthalpy
H=h+ %u2 is conserved across the shock, and thus the total temperature
T, = H/c, is also conserved.

Define the sonic static temperature T™ as the static temperature achieved when the
flow is compressed or expanded adiabatically to sonic conditions (i.e., at constant
total enthalpy). Thus, the sonic temperature T and total temperature T, are related
by

2
(v+1)

T. = T

224
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The sonic speed of sound a. is defined as

asx = \/YRT:

and is conserved across the shock.
From (8.2),
pluf +p1 = p2ug + p2
Divide the left side by piui and the right side by p2uz (noting p1ui = paus),

Pr =P 4,
piu p2u2
Since a = YRT = \/7vp/p,
2 2
a
— tuy = 22 + u2
Yu1 Yuz

Equation (8.3) may be rewritten as

2
ai 1,2 (v+1) »
+ 35Ul = 57— 0%
-1 20—
and since ax is conserved across the shock, then
+1 -1
@2 = (V2 )ai_(’YQ )uf
2 = (’Y‘*‘l)ai_ (7—1),“;
2 2
and therefore
2 2

Ay Ay
— tur=—+u2
Ul U2

which yields the Prandtl relation
UruU2 = af

or, equivalently,
M., M,, =1 (8.4)

where M, = u/a.. Using the definition of as,

M. o ue

a Qx

U a ao

a Go Qs
TTO 1/2

[
To Tk

Il
=
—
RS
—
+

o)
N |
=
=
[\v)
N———
)
+
=

Thus, from (8.4),
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From (8.1),
P2 _ W
P1 u2

using (8.4.3). Thus, from (8.5),

P_2:(7+1)M12 {1+(’Y—1)M12]
pl 2 2

From (8.2),

p2—p1 = prul — pau3

using (8.1), and thus

DP1 P2
and thus
D2 2y 2
— =1+ -1
P1 (v+1) (=1

From the ideal gas equation,

T2_|:1_|_ 2y (M2 1)} {(7_1)M12+2}

(y+1) VT (y+ 1)M?

From the definition of entropy,

S2 — 81 2y 2 2+ (=M ]"
e _ln{[l+(w+1) (Ml‘l)H (v + DM? } }

The results for the stationary normal shock may be summarized as follows:

P2 _ (DM
p1 (v=1)M? +2
ur _ P2
U2 p1
p2 2y 2
Z = 1+ -1
p1 (v+1) (i = 1)
T3 2y > (y =DM +2
20— g M2 o) (=0 e
T [ (v+1)( ' )H (v + )M
_ 2
2yM7 — (v—1)

$3— 81 2y > 2+ (y—1)MZE]”
T ln{{”(wm (i 1>H (v + )M} } } =0
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Additionally, the density and pressure ratio across the shock are related by

p2 (Y =Dpr+(v+Dp2
pr (Y+Dpi+ (v —1p2 (88)

Now consider a frame of reference in which the shock is moving with velocity w.,, and
the normal components of the velocity are u; and u, on the left and right sides of the
shock, respectively. There are two possible cases as indicated in Fig. 2, where the
velocity components are shown in the frame of reference attached to the shock.

U1 u2

p1——=|—= D2

T 15
Uy

Fig. 2 Normal shock moving with velocity .,

Case 1: u1 —uyw >0

The fluid moves from left to right across the shock in the frame of reference of the
shock. From the normal shock relations applied in the frame of reference of the shock

wave,
) _ 2
P2 _ I Y (ul uw) 1
P1 (v+1) a

and thus

y+1
w = - -1 1
(7 U1 al\/ 27 ((J’l )+

where o, = p2/p1 is the static pressure ratio across the shock. The negative sign is
taken for the square root since u1 — u,, > 0. The density and velocity are related by

Bt (8.9)
pP1 U2 — Uw
and furthermore, using (8.8),
p2_ (v =D+ +1Da
pr (y+ 1)+ (= Do
From the ideal gas equation,
o _p1
T p2
and from (8.9),
Uz = p2 [u1+uw (p_2 )]
pP1 p1
which can be rewritten as
wpmy (@) (8.10)

Y (v+1)gl + (=1
2y

2y
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Case 2: u1 —Uyp <0

The fluid moves from right to left across the shock in the frame of reference of the
shock. From the normal shock relations,

D1 2y (Uw_u2)2
L1y -1
P2 (v+1) [ a2

and thus

v+1
= L —1)+1
U u2+a2\/ 5 (o )+

where o, = p1/p2 is the static pressure ratio across the shock. The positive sign is
taken for the square root since u; — u, < 0. The density and velocity are related by

P1 Uw — U2

= —" 8.11
P2 Uw — UL (&11)
and furthermore, using (8.8),
pr_ =D+ +1or
p2 (y+1)+(y—1or
From the ideal gas equation,
T
T _pa
T  m;
and from (8.11),
u =2 [u2+uw (& - 1)]
P1 P2
which can be rewritten as
up = uz + a2 (or ) (8.12)

or—1
Y +1 (-1
/(’YQW g, + “/27 )
2 The solution consists of four regions divided by the left shock, the contact surface,

and the right shock. The compatibility conditions are
U2 = us
p2 = p3
Using (2.46) and (2.51), the first condition becomes
ur — a1 f(p*,p1) = ua + as f(p", pa)

where p* denotes the static pressure at the contact surface (and hence p2 = ps = p*),

and
s 1(p _N\|[G+Dhp  (-D|
- (2 1) [0 o

1/2

which correspond to (2.98) and (2.99) for p* > p; and p* > ps. Equations (2.100) to
(2.108) follow from the results in Section 2.3.
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The solution consists of four regions divided by the left shock, the contact surface,
and the right expansion. The compatibility conditions are

U2 = us
b2 = DP3
Using (2.46) and (2.72), the first condition becomes
ur — a1 f(p",p1) = us + as f(p", pa)

where p* denotes the static pressure at the contact surface (and hence p2 = ps = p*).
Since p* > p1, the expression for f(p*,p) on the left side of the equation is

s 1(p N[a+yp -]
f(p’p)_v(p* 1)[ o 27]

Since p* < p4, the expression for f(p*,p) on the right side of the equation is

L NG 1

Equations (2.109) to (2.121) follow from the results in Section 2.3.

The solution consists of four regions divided by the left expansion, the contact
surface, and the right shock. The compatibility conditions are

U2 = us
p2 = P3
Using (2.51) and (2.68), the first condition becomes
w1 — a1 f(p",p1) = ua + aaf(p", pa)

where p* denotes the static pressure at the contact surface (and hence p2 = ps = p*).
Since p* < p1, the expression for f(p*,p) on the left side of the equation is

. B 2 P (v=1)/2v ,
f(p 7p)_ (771) (;) -

Since p* > pa, the expression for f(p*,p) on the right side of the equation is

* —1/2

v\ P 2y p 2y
Equations (2.122) to (2.134) follow from the results in Section 2.3.

The solution consists of four regions divided by the left expansion, the contact
surface, and the right expansion. The compatibility conditions are

U2 = us
b2 = DP3
Using (2.68) and (2.72), the first condition becomes
ur —arf(p",p1) = us + aaf(p", pa)

where p* denotes the static pressure at the contact surface (and hence p2 = ps = p*).
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Since p* < p1 and p* < pa, the expression for f(p*,p) on the both sides of the

equation is
9 »* (y=1)/2v X
(v=1) [\ p

Equations (2.135) to (2.151) follow from the results in Section 2.3.

f(p*,p) =

Chapter 3

1 Inconsistent discrete approximations are relatively rare in computational science,
although they are certainly possible to create. The classic example is the
DuFort-Frankel (1953) algorithm for the heat equation

or _ o°T
ot 0x2

Assuming the temperature T is defined at a discrete set of equally spaced points x;,
the algorithm is

(8.13)

e S I e S S (8.14)
At - Az? '

Expanding each term in a Taylor series about x; at t" yields

e W€ T e U S

At Ag?
or  9°T
- — Az, A
ot " a2 +E(Az, A1)
where
£(Ax, At) = & (ﬁ)Q PT L one? + 0 +o 2L (8.15)
’ T\ Az) o2 Ax? ’
The discrete approxiation (8.14) is consistent with (8.13) provided
At
lim — =
arno Az 0
At—0

This can be achieved, for example, if At x k™! Az?. For a grid refinement study
employing a succession of smaller spatial grid spacings,

Azy > Axg > ... > Az > ...
(e.g., Ax1=Az, Axo= %Aw, ...), and a corresponding sequence of smaller timesteps
Aty > Aty > ... > Aty > ...

this implies that the corresponding timestep must decrease according to

Atj+1 _ ACL‘]'J,-I
At; Az

2
) for j=1,2,...
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Conversely, if the timestep was selected according to At = ¢ Az, where ¢ is a
constant having dimensions of velocity, then for Ax — 0 and At — 0 the discrete
approximation would be consistent with

2 2 2

az  “ a2 Tk ot
which is a hyperpolic equation with fundamentally different properties than (8.13).

2 The Von Neumann Method for stability analysis was developed by John von
Neumann at Los Alamos during World War II and was originally classified. It was

later declassified and published in Crank and Nicholson (1947) and Charney et
al. (1950) (Hirsch, 1988).

3 The norm of a vector z is a measure of the length of the vector. The norm is denoted

|z| and satisfies the following properties (Isaacson and Keller, 1966):

(i) For each vector z, there is a unique real norm |z|.
(ii) The norm is nonnegative for all z and |z| = 0 if and only if z = 0.
(iii) For any scalar o and any =,

|laz| = |af|z]

(iv) For any vectors z and y,
|z +y| < |z] + [yl

which is the triangle inequality.

For a vector x with elements x;,i = 1,...,n, examples of norms are

i=n

el = ) il

i=1

i=n
s = <Z w)
=1

i=n
el = <Z |xi|p>
=1

2l = max |
K

[N

Sl

where |z|2 is recognized as the Euclidean norm. The proof of the triangle inequality
for these norms is presented in Isaacson and Keller (1966).

4 The norm of a matrix A is a measure of the “stretching” achieved by multiplication
of a vector & by the matrix. Thus,

Az
11| = sup L2211
a0 |||
where || - || is a suitable vector norm (see above). This definition implies (Isaacson
and Keller, 1966)
[Az|l < [IAll [l
A+ Bl < [IAll+Bll
IABI| < [[A]l[IB]|
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5 A classic method is the two-step algorithm of Lax-Wendroff (Lax and Wendroff,
1960; Richtmyer and Morton, 1967). Originally developed as a finite-difference
algorithm, it can be readily interpreted as a finite-volume method using two sets of
control volumes. The first set of control volumes is a uniform discretization of the
r-axis at time t" into M cells of length Ax with centroids z;, i =1,..., M as
illustrated in Fig. 3. The volume-averaged vector of dependent variables on the first
set of control volumes is defined by

.
= — Qdxdy
Vi Vi

The1 second set of control volumes is a uniform discretization of the x-axis at time
"t =" 4 %At into M cells of the same length Ax with centroids at Tyl i.e., the

cells are shifted an amount %Am with respect to the first set. The volume-averaged
vector of dependent variables on the first set of control volumes is defined by

1
Qu(t) =3~ . Qdxdy
tn i—1 i i+1 —==
T T T T
A T N e T
¢n+1 i—1 i i+1

Fig. 3 Alternating grids for Lax-Wendroff

The first step of Lax-Wendroff is equivalent (to second order in Azx) to an explicit

Euler integration of (3.1) on the second set of control volumes V; for a time interval
1

At

2

n At
Q+2*Q1/f—< ey — FI l)
JJ 2

where, to O(Azx)?,

b=3(QF +Qi1)
and the flux is evaluated by

Fi=FQ7)

2

The second step of Lax-Wendroff is equivalent to an explicit Euler integration of
(3.1) on the first set of control volumes V; for a time interval At:

QU = Qr - ﬂ (F@+% 7Fn+ )
.’L'

7,+% 7,72
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where the flux is evaluated using the results of the first step at s,

n+i n+d
Fy = F(Q;7)
Thus, the algorithm is
nt+l n n At n n
Q. * 5 (QF + Qi) — E(F(Qi)*F(QFl))

n+1 o n At n+% n+%
Qi Qz - A_ZL‘ (F(Qi/+1) - F(Qz/ ))

233

(8.17)

(8.18)

The algorithm is second-order accurate in x and ¢ (for fixed ratio A¢t/Ax) and

consistent.

The stability can be determined using the von Neumann method as described in
Section 3.8.1. Expanding (8.17) in a Taylor series and retaining the lowest order

terms,

QU = L@ Q) e AQ) - Q1)

where A is the Jacobian matrix (2.8) defined in Section 2.2.2 and is assumed

constant. Thus,
n+i At At
Q ? Z%{(I—A—A)Qz <I+ A_A> Q7 1}

Expanding (8.18) in a similar manner and substituting yields

ot = —2ha(r-La)on, + [I (ﬁ—i)uﬂ Q!
+2AA—1;A ( + —A) Qi1
Substituting the Fourier series
=N
Q.t)= > Qu(t)e™
I=—N+1

into the previous equation, where ¢ = v/—1 and k = 2rxlL~!. Thus
= Qs
where the amplification matrix is
At\? 2 At
G=I1+ (A_x> (coskAz—1) A" — ‘A sin kAzA
The von Neumann stability condition is

|)\Gi| <1

where A\g, are the eigenvalues of G. Since G is a rational function of A, its

eigenvalues are (Protter and Morrey, 1964)

Ag, =1+ oz? (cos kAx — 1) — ta; sin kAx
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where
A,
YT A
Ui
3
Fig. 4 Stability diagram for Lax-Wendroff
Let
¢ = Real()\g,)
n = Imag(ig,)

Then (8.4.3) is
[M} L (2] <1

This represents the interior of an ellipse with center at (£,7) = (1—a?,0), semi-major
axis o, and semi-minor axis a. The ellipse is shown in Fig. 4. The ellipse lies within
the unit circle |[Ag,| = 1 provided

\ai|§1
which is
A
At < min d
i |l

The results for the sample problem of Section 3.8.1 are shown in Fig. 5.

Chapter 4

1 The results for k = —1,0, and 1 are shown in Figs. 6 to 8. The reconstructed left and
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u/ay
0.15- kao,t =0  Kaot =1.25
0.10 — o computed
— exact
0.05 —
0.00
—0.05 |-
—0.10 |-
—-0.15 %
Q@
1.0~ D — g < > reconstructed solution
7
q7 S o exact solution
>/ R
05+ ~ N
/ / A
0.0 ! ! > ! ! ! r
1 2 3% 4 5 6/
\ /
0.5 \ d
>\<]\ A>/<1
N Ve
—-1.0 - - 4
Fig. 6 Reconstruction of sine using ten cells and x = —1 with limiter

right states are less accurate in comparison with the exact solution than for kK =
This is expected due to the lower order of accuracy.

2 The following identity is used in deriving (4.44):

ala—1
Qi =Qi—a+ aAQifzrl»% + % (AQF(H% - AQiﬂH%)

This follows from

1 [Ti+d

Az |

i—

Q(z)dx = Q;

1
2

by construction. It may be verified directly for a = 0,1, or 2, which are the only
allowable values of a.

1

235

3-
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@
1.0 - B g < > reconstructed solution
7
s A exact solution
pA Py
05 7/ N
7 \
0.0 ! | | b | | |
. x
1 2 3%, 4 5 6/
N /
—0.5 \ /
A
N\ P
N 7
~1.0 B— <
Fig. 7 Reconstruction of sine using ten cells and x = 0 with limiter
@
1.0 - i . < > reconstructed solution
, % N exact solution
L < >
0.5~ JF N
4 \
/ \
0.0 & | | b | | S e
1 2 3\ 4 5 6/
\ /
—0.5 ™ i
N /
Spa pa 7
~1.0F R4 Do

Fig. 8 Reconstruction of sine using ten cells and x = 1 with limiter
Chapter 5

1 Godunov’s First Method is based on the definition
QM = 1 Q(t"“)dm
¢ Az f,,

Consider the piecewise constant solution Q; for i = 1,..., M at t™. The left and right
states for Q at x;, 3 may be taken to be QF and Q7. ,, respectively. The general
Riemann problem is solved for each face as shown in Fig. 9. Provided that there is no
intersection of waves from the left and right face Riemann solutions at "', the
solution for Q is therefore known at t"*! as a combination of two general Riemann

solutions and (possibly) an intermediate uniform region. The solution for Q7"*' is
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therefore

Q= 2

x T zi+l

R ]
i = A Qiféd:p—i— Q?daz—i—/ QH%d:p (8.19)

T, 1 x] Ty

2

where Qi 1 and Qi 1 are the solutions to the general Riemann problems at z,_ 1
2 2
and x;, 1 respectively, and z; and x, are the location of the rightmost wave from
Qﬁ 1 and leftmost wave from Qﬁ 1 at tn+1, respectively. The appropriate
2 2

modifications when ; < z,_1 or z, > x;, 1 are obvious. The method implies that

x; < xr, i.e., the wave systems of the two general Riemann problems do not intersect.
This implies a constraint on the allowable timestep At, which may be estimated by

At = min (8.20)

Cmax

where €., is the maximum absolute wave speed of the waves entering cell i.

This method is less appealing than Godunov’s Second Method because the
integration in (8.19) requires more cputime.

expansion fan shock

contact surface contact surface
shock T T, expansion fan
N \ /
\ \
\ \

7—1\ i \ i+1 At

t" | | x
- Az -
Fig. 9 Possible flow structure for Godunov’s First Method

2 The vector R is

[ 1a? (y—1) (@ —u)?
= 1—--=-— -~ ‘" 7
= PIPT5a 2 a?
(oD @E—9® | w—a)  1d
R = Pl T Tm Tyw
_ Jo=Yw-9* @w-@) 14
Bo= el & % a2
and similarly
p Ri+ R2+ R3
pu = R+ (@+a)R2+ (4 —a)Rs

pe = 3@Ri+ (H+aa)Re + (H — ua)Rs
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3 An eigenvector 7 of A is an eigenvector of AT corresponding to the eigenvalue )\: if

.AJrT'k = )\2»7‘1@

Writing
AT = TATTT!
l1
= {7“1 re T3 }A+{ l2 }
l3
T —_——

where ry, are the column vectors in (2.19) and ) are the row vectors in (2.20). From
(2.21),

—1
T T = €k

where the unit vectors ey are defined as

R

Also,
TAY ={ Xfri Afre Mrs }
Therefore,
TATT v, = { A Mra Al }ek
= M

Similarly, ry is an eigenvector of A~ corresponding to the eigenvalue X .

4 It is necessary to investigate the condition
az < cc

at the interfaces ¢ £ 1. For the left expansion,

2 2
UL+ ——<a1 = U2 + ——<02
(v=1) (v=1)
Furthermore,
U2 = Ce
Thus,
-1
az = a1 + (72 )(m —Ce)
Therefore, the condition
az < ¢
becomes
2 1
u1 + a; < (v+ )cc
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From the solution in Regions 2 and 3,

9 . - 9 . (p*>(71)/27
—01 =Cc+ T—a1 | —
(v=1) (v=1)  \m

Noting that p* = ps and

ur +

D2 (a2)2w/(vfl)
P \a
we obtain

Ce > Q2

But since ¢, = ua,
uz2 —az >0

This is the same condition assumed for the cells i and ¢ — 1 and therefore may be
expected to hold.

Chapter 8

The diffusive character of Fil 1 can be illustrated for the linear case F' = a() where

2
a > 0 is a constant. Using a simple first-order upwind reconstruction,

l
F,L-Jr% = CLQZ‘

oQuyy — a2 29

5 Bn + O(Az?) (8.21)

i+l

Thus, to first order, the semi-discrete equation becomes

_, 9@

i+% ox

aQ: (0@uy —0@y) _ At (v 29
dt Az - ox

_ 1) (8.22)

where v = aAxz /2. This equation is analogous to

0Q  0aQ  9°Q

ot "~ ox o2

indicating the diffusive effect of a first-order upwind reconstruction for the flux. The
low order flux F Zl 1 therefore generates an anti-diffusive contribution to the corrected
2

(8.23)

flux:

iy = oy (Fi’;% - Fj+%) (8.24)
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