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I N T R O D U C T I O N

What is geometry? What is it that we learn when we learn geometry?
Points, lines, and surfaces are some of the things that mathe-

maticians study when they study geometry, but human beings have
always been interested in questions of line and form. Cave paint-
ings from Lascaux, France, made during the last ice age show
remarkably sophisticated pictures of wild animals. These beautiful
images were created about 15,000 years ago. In the history of
humankind they are almost unimaginably old. Humans were hunt-
ing mammoths when these pictures were painted. It was the Stone
Age. There was no written language anywhere in the world until
thousands of years after these images were completed, and yet
these cave paintings show that 15,000 years ago cave artists were
wonderfully sensitive in their use of line and form. Does this mean
that they knew geometry? And if they did know some geometry,
what part of the mathematical subject of geometry did they know?

For centuries European, Middle Eastern, and North African
mathematicians believed that they knew the answer to the ques-
tion of what constitutes geometry. For them the answer was easy.
The term geometry meant the geometry of the ancient Greeks.
This type of geometry is called Euclidean geometry after one of
the best known of all Greek mathematicians, Euclid of Alexandria.
The answer to the question, What is it that we learn when we
learn geometry? was (to them) equally obvious: We learn the the-
orems and proofs in Euclid’s most famous work, Elements. These
early mathematicians did not question whether other geometries
might exist. It was their belief that most of the geometry that
could be learned had already been learned elsewhere at an earlier
time and that all that was left for them to do were to master the
geometry of the Greeks and to clarify what they saw as those few
points remaining in Greek geometry that still needed clarification.
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Euclidean geometry was geometry. All of nature, they believed,
was an exercise in Euclidean geometry.

That the ancient Greeks made tremendous advances in geome-
try is common knowledge. For almost a thousand years Greek cul-
ture produced generation after generation of outstanding
mathematicians. It is a record of mathematical excellence and
longevity that no other culture has matched—either before or
since. Beginning almost from scratch, the Greeks asked profound
questions about the nature of mathematics and what it means to
understand mathematics. They created the idea of proof, and they
worked hard to place geometry on a firm logical foundation. Many
Greek mathematical discoveries—the proofs as well as the state-
ments of the results themselves—still sound modern to today’s
reader. The Greeks invented mathematics in the sense that we
now understand the term, but their work offers little insight into
contemporary mathematicians’ current understanding of geometry.
Today mathematicians recognize that Euclidean geometry is sim-
ply one geometry among many.

A more modern definition of geometry is that it is the study of
geometric properties. That is the short, easy answer. But it is
clearly an incomplete answer. It simply shifts our attention away
from the word geometry and toward the phrase geometric properties.

What are geometric properties? Points, lines, planes, angles,
curves, surfaces, and bodies in three (and even more!) dimensions
may all be worthy of geometric study, but not every property of an
object is a geometric property. The shape of a triangle may be con-
sidered a geometric property, but its color, its temperature, and its
distance from the reader are all examples of properties that are not
geometric. Perhaps that is obvious, but it is also important. The
key to understanding what mathematicians study when they study
geometry lies in recognizing which properties of an object are
geometric.

For example, imagine a triangle on a flat surface with the prop-
erty that all three of its sides are the same length. (A triangle with
three equal sides is called an equilateral triangle.) It is not difficult
to prove that because our triangle has three equal sides it must also
have three equal angles. That it has three equal angles is a conse-
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quence of the fact that it has three equal sides. We can go further:
Because the three angles within our triangle are equal, the meas-
ure of each angle must be 60°. So knowing that all three sides of our
triangle are the same length allows us to deduce that all angles
within our triangle are 60° angles.

Now suppose that we tilt our triangle out of its original position.
Is it still an equilateral triangle? Are all of its angles still of equal
measure? Does each angle still measure 60°? Can we be sure, or
do we have to reinvestigate our triangle each time we tilt it or
move it a little off to the side?

Most of us would simply assume that once we discover the meas-
ures of the angles of a triangle we should not have to reestablish our
discoveries just because we moved our triangle out of its original
position. Euclid made the same assumption. Tilting or sliding the
triangle from one position to the next should not change the
length of the sides or the measures of the angles. Perhaps this is
obvious to you. Less obvious, perhaps, is that this simple example
also contains the key to understanding what it is that mathemati-
cians study when they study geometry.

Geometry is the study of just those properties of a figure that do
not change under a particular set of motions. Euclidean geometry,
for example, is the study of those properties of a figure that do not
change when the figure is tilted (rotated) or when it is moved
along a straight line (translated). When the ancient Greeks proved
that some figure had a particular geometric property, the proof
also applied to every figure, located anywhere, that could, through
a series of translations and rotations, be made to coincide with the
original figure. This means that in Euclidean geometry lengths and
angular measurements are geometric properties, because lengths
and angular measurements are preserved under rotations and
translations.

Projective geometry, the geometry that began with attempts by
Renaissance artists to represent three-dimensional figures on
two-dimensional canvases, is an example of a geometry that is
defined by a different set of motions. The motions that define
projective geometry are called projections. Projections preserve
neither the length of a line segment nor the measure of an angle.
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This may sound exotic, but it is not. Projective geometry can be
used to describe how images change when they are projected from
the film onto the movie screen. In projective geometry two dif-
ferent-looking triangles can be made to coincide through a series
of projective “motions” even though initially the triangles may
have different shapes or sizes. Therefore in projective geometry it
is possible for two very different-looking triangles to be “the
same.” As a consequence, mathematicians who study projective
geometry do not concern themselves with either lengths or angu-
lar measurements; in projective geometry lengths and angular
measurements are not geometric properties.

Other geometries are defined by other sets of motions.
Mathematicians took a very long time to stretch their imagina-

tion from Euclidean geometry alone to today’s wonderful diversity
of geometries. They took almost as long to identify what makes a
geometric property geometric: A geometric property is a property
that is preserved under a group of motions. It is a surprising kind
of description. Geometry can seem so static, and yet each geome-
try is defined by a group of motions.

In this volume we trace the history of geometry, a story of
imagination and creativity and hard work. We see how some
ideas and some problems have been passed from one generation
of mathematicians to the next, how each generation has brought
new insights and new techniques to bear on these problems, and
how each generation of mathematicians has expanded on 
the original idea and reinterpreted what sometimes were first
viewed as relatively simple problems. Simple and complex, 
concrete and abstract—these contrasting descriptions charac-
terize geometry. It is a subject whose history is at least as old as
civilization.

Geometry continues to change and evolve. Mathematicians’
understanding of form and space continues to broaden and
deepen. The great geometric problems from antiquity—problems
that defied solutions for millennia by some of the finest mathe-
matical minds in history—have now been solved, but many other,
newer problems have been uncovered in the intervening years, and
many of those have not yet been solved.
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It is almost certainly true that some of the most interesting and
important geometric problems have yet to be revealed. After
more than 4,000 years of study and research, the pace of geomet-
ric discovery has never been faster. Many mathematicians feel as
if they have barely scratched the surface of their subject. We can
better appreciate the exciting developments of the present if we
have an appreciation of the past. Developing that appreciation is
the goal of this volume.
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PART ONE

GEOMETRY IN ANTIQUITY





3

1
geometry before 

the greeks

Geometry begins in Egypt. That was the opinion of the fifth-
century-B.C.E. Greek historian Herodotus. According to
Herodotus geometry began out of necessity. Each year the Nile
River overflowed its banks and washed across the fertile fields that
lay in the Nile floodplain. The river would sometimes destroy
boundary markers or change course and wash away plots of land.
The farmers were taxed according to their landholdings, so after a
flood the fields had to be resurveyed in order to establish field
boundaries and tax rates. The motivation for the development of
Egyptian geometry was, apparently, the desire for quick and accu-
rate methods of surveying the farmers’ fields. In response to these
simple demands the Egyptians soon developed a simple geometry
of mensuration, the part of geometry that consists of the tech-
niques and concepts involved in measurement.

One of the principal tools of these early applied mathematicians
was a length of rope that could be stretched into a triangle. In fact
these early surveyor–mathematicians were called rope stretchers.
The idea is simple enough. Suppose that a rope is divided—per-
haps by knots—into 12 equal segments. When it is stretched into
a triangle so that three units of rope make up one side of the tri-
angle, four units of rope make up the second side, and five units of
rope the third side, the triangle has the shape of a right triangle.
The angles of the rope triangle can be used to make simple angu-
lar measurements. The rope is a convenient tool for making linear
measurements as well. Simple rope techniques were, apparently,



just what was necessary for the Egyptians to make quick and accu-
rate surveying measurements. The skill with which they did this
made a big impression on their neighbors the Greeks.

Egyptian interest in geometry did not extend much beyond what
was needed for practical purposes. They developed formulas—some
of which were more accurate than others—to measure certain 
simple areas and simple volumes. They developed, for example, a
formula for computing the area enclosed within a circle. It was not
an exact formula, but for practical purposes an exact formula is gen-
erally no better than a good approximation, and the Egyptians did
not usually distinguish between the two. The error in their estimate
of the area enclosed within a circle arose when they approximated
the number π by the number 3 plus a small fraction. We also intro-
duce some error into our calculations whenever we enter π into our
calculators and for just the same reason. Unlike us, however, they
were either unaware of or unconcerned by the resulting error.
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The Great Pyramid at Giza. Egyptian monuments are usually extremely
massive and geometrically simple.  (Library of Congress, Prints and
Photographs Division)



In the study of three-dimensional figures, the Egyptians, not
surprisingly, were interested in the geometric properties of pyra-
mids. Given the length of the base and the height of a pyramid, for
example, they could compute the volume of the pyramid. (This is
important because it relates two linear measurements, height and
length, to a volume. Linear measurements are often easier to make
than volumetric ones.) They also described other mathematical
properties of the pyramid. For example, given the length of the
base of a pyramid and its height they knew how to compute a
number that characterized the steepness of the sides of the pyra-
mid. (This number is similar to—but not equal to—the slope of a
line that students compute in an introductory algebra course.) In
mathematics the Egyptians got off to a quick start. They worked
on a wide variety of two- and three-dimensional problems early in
their history. Egyptian mathematics soon stopped developing,
however. For more than 2,000 years Egyptian mathematics
remained largely unchanged.

For much of its long history ancient Egyptian geometry
remained at a level that today’s high school student would find eas-
ily accessible. This comparison can, however, be misleading.
Compared to our number system, the Egyptian number system
was awkward, and their methods for doing even simple arithmetic
and geometry were often more complicated than ours. As a conse-
quence although the problems they investigated may not have
been harder for them to understand than for us, they were cer-
tainly harder for the Egyptians to solve than they would be for us.

Our best source of knowledge about Egyptian mathematics is
the Ahmes papyrus. It is a problem text, so called because it con-
sists of a long list of problems copied onto an approximately 18-
foot (5.5-m) scroll. The copier, a scribe named Ahmes (ca. 1650
B.C.E.), was probably not the author of the text. Scholars believe
that the Ahmes papyrus is a copy of a papyrus that was probably
several centuries older.

To convey a feeling for the type of geometry the Egyptians
found appealing we paraphrase problem 51 from the Ahmes
papyrus, also called the Rhind papyrus. In problem 51 Ahmes
computes the area of an isosceles triangle. (An isosceles triangle is
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a triangle with the property that two of its sides are of equal
length.) To find the area of the triangle Ahmes imagines cutting
the triangle right down the center, along the triangle’s line of sym-
metry. Two identically shaped right triangles result. Then he
imagines joining the two triangles along their hypotenuses so as to
form a rectangle (see the accompanying illustration). He reasons
that the area of the resulting rectangle equals the area of the orig-
inal, isosceles triangle. He does so because he knows how to find
the area of a rectangle. The area of the rectangle is its height times
its width. The height of his rectangle equals the height of the
isosceles triangle. The width of the rectangle is half of the width
of the triangle. His conclusion is that the area of the triangle
equals the height of the triangle times one-half the length of the
triangle’s base. Briefly: (Area of triangle) = 1/2 × (width of base) ×
(height). He is exactly right, of course.

The Egyptians were not the only people studying geometry in the
time before the Greeks. Perhaps the most mathematically advanced
culture of the time was that of the Mesopotamians. Mesopotamia
was situated roughly 1,000 miles (1,600 km) from Egypt in what is
now Iraq. Mesopotamian architecture is less well known than that
of the Egyptians because the Egyptians built their monoliths of
stone and the Mesopotamians built theirs of less durable mud brick.
Mesopotamian mathematics, however, is now better known than

Egyptian mathematics because
the clay tablets that the
Mesopotamians used to record
their mathematics turned out
to be far more durable than
Egyptian papyrus. Whereas
only a few original Egyptian
mathematics texts survive,
hundreds of Mesopotamian
mathematics tablets have been
recovered and translated. This
is a small fraction of the hun-
dreds of thousands of tablets
that have been uncovered, but
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Ahmes’s method for finding the 
area of an isosceles triangle: Cut the
triangle along its line of symmetry
and reassemble it in the form of a
rectangle; then compute the area of
the rectangle.



many nonmathematical tablets with significant math content have
also been found. Astronomy tablets, for example, contain a lot of
information on Mesopotamian mathematics. So do construction
records, in which scribes performed fairly complicated computa-
tions to determine the amount of material required (mud bricks
were the primary building material) and the number of man-hours
required to complete the project.

These tablets make clear that Mesopotamian mathematicians
preferred algebra to geometry, and even their geometry problems
often have an algebraic feel to them. For example, the
Mesopotamians knew what we call the Pythagorean theorem
many centuries before Pythagoras was born. (The Pythagorean
theorem states that in a right triangle the square of the length of
the hypotenuse equals the sum of the squares of the two remain-
ing sides.) Their tablets contain many problems that involve the
Pythagorean theorem, but the emphasis in the problems is on
solving the resulting equation, so the Pythagorean theorem simply
provides another source of solvable algebraic problems.

The Mesopotamians were interested in geometry primarily as a
set of techniques to assist them in their measurements and com-
putations. Like that of the Egyptians, theirs was primarily a geom-
etry of mensuration. They could, for example, compute the
volume of an object that had the shape of a city wall—a three-
dimensional form with straight sides that is thicker at the bottom
than at the top but their emphasis was on the mud brick wall, not
the abstract form. Their apparent motivation was to find the num-
ber of bricks that had to be made and the number of man-hours
required in building the wall. They were more interested in esti-
mating costs than in investigating geometrical forms. For the
Mesopotamians, geometry was a means to an end.

The Mesopotamians had a much deeper understanding of
numbers and of the techniques of computation than did the
Egyptians. As a consequence they developed approximations of
solutions that were far more accurate than those of their
Egyptian counterparts. This is especially true in algebra, but it is
also true that some of the geometric problems that they solved
were more advanced than those studied in Egypt. The
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Egyptians, for example, were apparently unaware of the general
statement of the Pythagorean theorem. The Mesopotamians
understood the Pythagorean theorem at a much deeper level and
could solve a variety of problems associated with it. Some of
those problems would challenge a well-educated nonmathemati-
cian today. As the Egyptians, however, the Mesopotamians did
not usually distinguish between an exact solution and a good
approximation. Nor, apparently, was there much interest among
Mesopotamian mathematicians in proving that the results they
obtained were correct. They demonstrated little interest in
developing a rigorous approach to the subject of geometry as a
whole.

Egyptian and Mesopotamian mathematicians were primarily
concerned with developing a practical geometry. They sought to
find and use mathematical formulas to compute areas and vol-
umes of specific common geometrical forms given certain linear
measurements. (Given the diameter of a circle, for example, what
is the area?) The methods that the Egyptians developed for
expressing their numerical answers were quite different from
those developed by the Mesopotamians, however. The Egyptians
counted in base 10, as we do, and they wrote their numbers using
symbols specific to each power of 10. Writing the number 320,
for example, involved writing (or drawing) the symbol for 100
three times and the symbol for 10 twice. Notice that this method
for numeration, changing the order in which symbols are listed,
does not alter the value of the number. By contrast, the
Mesopotamians counted in base 60, and they wrote their num-
bers using an almost complete system of positional numeration
that is, in concept, similar to what we use today: Rather than
using 10 digits, as we do, they used 59 digits to write any num-
ber; for numbers larger than 59 they simply recycled the digits
into the next column—the value of each digit depended on the
column in which it appeared.

Although the methods that each culture used to express its 
numbers were very different, the geometrics developed by the two
cultures were similar in concept because both groups of mathemati-
cians sought numerical answers to resolve computational problems.
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Theirs was a geometry of mensuration. There were no overarch-
ing ideas in their work, nor did they develop a theoretical context
in which to place the formulas that they discovered. Theirs was 
a mathematics that was done one problem at a time; it was 
not mathematics in the common sense. Today, mathematicians
interested in geometry are generally concerned with deducing 
the properties of broad classes of geometric objects from general
principles. This “modern” approach is, however, not modern at all.
It dates back to antiquity and to the earliest of all mathematical
cultures with a modern outlook.
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10

2
early greek geometry

The approach of the Mesopotamians and the Egyptians to geom-
etry was characteristic of that of all known ancient cultures with a
tradition of mathematics with the exception of the Greeks. From
the outset the Greek approach to mathematics was different. It
was more abstract and less computational. Greek mathematicians
investigated the properties of classes of geometric objects. They
were concerned not only with what they knew, but with how they
knew it. Nowhere is this emphasis more easily seen than in the
work of the Greek philosopher and mathematician Thales of
Miletus (ca. 650–ca. 546 B.C.E.).

According to Greek accounts, Thales was the first in a long
line of Greek mathematicians and philosophers. He was more
than a mathematician and philosopher, however. Greek accounts
also describe him as a businessman, who, during a particularly
good olive growing year, bought up all the olive presses in his
district in order to establish a monopoly in that area during that
season. (Although he could have charged exorbitant prices when
the olives ripened, they say he did not. Apparently he just want-
ed to see whether he could corner the market.) Thales traveled
widely and received his early education in geometry from the
Egyptians. He must have proved an apt student because before
leaving Egypt he measured the height of the Great Pyramid at
Giza in a way that is so clever that his method is still remem-
bered 2,500 years later. On a sunny day he placed a stick verti-
cally into the ground and waited until the shadow of the stick
equaled the height of the stick. At that point he measured the
length of the shadow of the pyramid, because he knew that at



that instant the length of the pyramid’s shadow equaled the
height of the pyramid.

Thales has been credited with the discovery of many interesting
facts about geometry. Perhaps the stories are true. Compared with
descriptions of the accomplishments of the Egyptians, historical
accounts of Thales make him look very well informed, indeed. In
the late 19th century, however, as archeologists began to uncover
Mesopotamian cuneiform tablets and scholars began to decode the
marks that had been pressed into them, they were surprised, even
shocked, to learn that more than a thousand years before Thales,
the Mesopotamians had a knowledge of mathematics that far
exceeded that of the Egyptians and probably of Thales as well.
Perhaps Thales had traveled more widely than the stories indicate.
Perhaps he had also learned from the Mesopotamians. Still it is not
just what Thales knew that is important to the history of geometry;
it is how he knew it. There is no better example of this distinction
than the following theorem—a theorem that has been consistently
attributed to Thales: A circle is bisected by a diameter.
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In this theorem the word diameter means a straight-line segment
passing through the center of the circle and terminating on the
sides. What Thales showed is that a diameter—any diameter—
cuts a circle into two equal parts. This is a remarkable result—not
because it is surprising but because it is obvious. Any drawing of a
circle and one of its diameters makes it clear that the diameter

12 GEOMETRY

MATH WITHOUT NUMBERS

How did the Greeks investi-
gate the geometric proper-
ties of figures without refer-
ence to numbers or measure-
ments? The best way to
answer this question is an
example. This classical proof
about the measures of the
angles of a triangle is a para-
phrase of a proof from
Elements, one of the most
famous of all ancient Greek
mathematics texts. An espe-
cially elegant proof, it is a good example of purely geometric thinking,
and it is only three sentences long.

To appreciate the proof one must know the following two facts:

FACT 1: We often describe a right angle as a 90° angle, but we could
describe a right angle as the angle formed by two lines that meet per-
pendicularly. In the first case we describe an angle in terms of its meas-
ure. In the second case we describe a right angle in terms of the way it
is formed. The descriptions are equivalent, but the Greeks used only the
latter. With this description the Greeks described a straight (180°) angle
as the sum of two right angles.

FACT 2: When we cut two parallel lines with a third, transverse line,
the interior angles on opposite sides of the transverse line are equal.
(This sounds complicated, but the diagram makes clear what that
complicated sentence means.) Notice that no measurement is

A B C

D E F

Line ABC is parallel to line DEF.
Line EB is called the transversal.
Angle ABE equals angle BEF



bisects the circle. Mesopotamian and Egyptian mathematicians
never questioned this fact. Almost certainly Thales did not ques-
tion it, either, and yet he felt the need to deduce the result, that is,
to prove the truth of the statement.

This was a new way of thinking about mathematics: an approach
that deemphasizes intuition and instead emphasizes the impor-
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involved. We can be sure that
corresponding angles are
equal even when we do not
know their measure.

These two facts taken
together are all we need to
know to show that the sum of
the interior angles of a triangle
equals 180°, or as the Greeks
would say:

The sum of the interior
angles of a triangle
equals the sum of two
right angles.

(Refer to the accompanying diagram of the triangle as you read the
few sentences that make up the proof.)

Proof: Call the given triangle ABC. Draw a line EBF so that line
EBF is parallel to line AC.

1. Angle CAB equals angle ABE. (This is FACT 2.)

2. Angle ACB equals angle CBF. (This is FACT 2 again.)

3. The sum of the interior angles of the triangle, therefore,
equals angle ABE plus angle ABC plus angle CBF. These
angles taken together form the straight angle EBF. Notice
again that this type of reasoning does not require a protrac-
tor; nor does it make use of any numbers or measurements.
It is pure geometrical reasoning, the type of reasoning at
which the Greeks excelled.

E B F

A C

Diagram accompanying the proof that
the sum of the interior angles of a
right triangle equals the sum of two
right angles



tance of deductive reasoning. Deductive reasoning, the process of
reasoning from general principles to specific instances, is the char-
acteristic that makes mathematics special. Mathematics is a deduc-
tive discipline. All mathematicians today work by beginning with
known principles and then deriving new facts as logical conse-
quences of those principles, but Thales was the first to apply this
method rigorously.

Thales is also credited with other geometric results, some of
which are more obvious than others. Significantly he apparently
proved his results from general principles and without an appeal to
intuition. In the history of geometry Thales’s importance lies
largely in his approach to mathematics. This approach makes
Thales the first true mathematician.

We have to be careful, however, when we consider the accom-
plishments of Thales and his successors in ancient Greece.
Though their approach to mathematics was in many ways a mod-
ern one, their understanding was, nevertheless, quite different
from ours. Because of the way we learn mathematics today our
first impulse is to assign a number to a quantity. For example, we
have already seen that the Greeks understood the word diameter to
mean a line segment whereas many of us identify the word diame-
ter with a number—the distance across a circle. The Greeks also
had a much narrower conception of number than we do. In any
case their geometry developed in such a way that they often did
not need to use numbers or algebraic symbolism to express their
ideas. Instead they constructed their geometric insights. Often they
used a straightedge and compass to construct a figure with certain
properties. Once the figure was established all that was left was to
deduce the properties of the figure from their knowledge of the
techniques used in its construction and any relevant, previously
established geometric facts.

This is not to say that the Greeks measured their drawings to see
whether, for example, two angles were “really” equal. They did
not. They were not even very careful in making their drawings.
Their compasses and straightedges were often very simple, even
crude, and their drawings were often made in pits of sand or in
sand that was sprinkled on a flat, hard surface. The straightedge
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and compass drawings that they made were only aids that they
used to help them imagine and communicate their ideas. When
they examined three-dimensional problems they restricted their
attention to relatively simple geometric forms: cylinders, spheres,
cones, and the like. They obtained curves by considering the
intersection of various three-dimensional forms with planes. This
approach is not at all easy for modern readers to follow because we
are accustomed to expressing our ideas algebraically. Algebra
makes many Greek arguments easier to follow, but the Greeks
themselves did not begin to develop algebra until the very end of
their interest in mathematics. Consequently although the Greek
approach to mathematics was deductive, logical, and, in many ways,
very modern, the way that the Greeks expressed their results was
different from what most of us are accustomed to today.

The Pythagoreans
The next important Greek mathematician, who, according to 
legend, was a student of Thales, is Pythagoras of Samos (ca. 582–
ca. 500 B.C.E.). Unlike Thales, who was a man of business,
Pythagoras was a mystic. He was more interested in numbers than
in geometry, and his interest stemmed from religious as well as
mathematical convictions. (Certain numbers were important in
Pythagorean religious beliefs.) As Thales did, Pythagoras traveled
widely as a young man. By the time he finally settled down he was
something of a cult figure. Surrounded by followers, Pythagoras
established a somewhat secretive community where property was
shared and no one took individual credit for any mathematical 
discoveries. As a consequence we cannot know what Pythagoras dis-
covered and what was the work of his followers. We can, however,
be sure that he was not the first to discover the Pythagorean theo-
rem. We have already seen that the theorem that bears Pythagoras’s
name was known and used extensively by the Mesopotamians more
than a thousand years before Pythagoras’s birth. Some say that he
was the first to prove the theorem; perhaps he was, but there is no
evidence to support this claim. None of this diminishes his impor-
tance in the history of mathematics, however.
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Pythagoras’s effect on mathematics and philosophy was pro-
found. The most important discoveries of the Pythagoreans con-
cerned numbers and ratios. “All is number” was the Pythagorean
maxim. They believed that the universe itself could be described
by using only counting numbers and ratios of counting numbers.
(The expression counting numbers refers to the numbers belonging
to the sequence 1, 2, 3, . . ., that is, the set of positive integers.)
The Pythagoreans made one of the most important discoveries in
the history of mathematics: what we call irrational numbers. An
irrational number is a number that cannot be represented as a ratio
of whole numbers. (The number √2, for example, is an irrational
number.) This discovery proved that the Pythagorean idea that
everything could be represented by whole number ratios is false, a
fact that they supposedly tried to keep secret. In any case the dis-
covery of irrational numbers showed that intuition is not always a
good guide in discerning mathematical truths.

The Pythagoreans are also usually given credit for discovering
what later became known as the golden section. The golden 
section is a specific ratio, which the Greeks represented as the ratio
between two line segments. An easy way to see the golden 
section is to consider a star pentagon (see the accompanying 

figure). The distance AC
divided by the distance AB is
an instance of the golden 
section. Furthermore the dis-
tance AD divided by the dis-
tance BE is another instance
of the golden section.

The golden section is
sometimes described as “self-
propagating.” To see an
example of what this means
notice that the interior of the
star itself is a pentagon. By
connecting every other cor-
ner we can obtain another
star and more examples of the
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THE GOLDEN SECTION

The discoveries that the Pythagoreans (and later generations of Greek
mathematicians) made about the golden section resonated throughout
Greek culture. Even mathematicians of the European Renaissance,
2,000 years after the life of Pythagoras, were fascinated by the proper-
ties of the golden section. We can recapture some of the wonder with
which these mathematicians regarded this ratio when we see how the
golden section appears (and reappears!) in geometry, in human anato-
my, and in botany.

The Greeks incorporated the golden section into their architecture
because they believed it to be the rectangular form most pleasing to
the eye. They designed many of their temples so that the proportions 
of many important lengths in the temple façade equaled the golden
section. A rectangle with this property is sometimes called a golden
rectangle. This rectangle has a peculiar property that demonstrates
how the golden ratio is “self-propagating.” If we subtract away a square
with the property that one side of the square coincides with the origi-
nal golden rectangle we are left with another rectangle, and this rec-
tangle, too, is a golden rectangle. This process can continue indefinitely
(see the illustration).

D1 D2 C1

A1 A2

D3 C2C3

B2 B1

(continues)

Rectangles A1B1C1D1, A2B1C1D2, A2B1C2D3, and A2B2C3D3 are golden
rectangles.
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THE GOLDEN SECTION
(continued)

The golden section also appears repeatedly in the proportions used 
in landscape painting in Western art up until the beginning of the 20th
century. These uses of the golden section are, of course, by design.
What is just as remarkable is that the golden section appears frequently
in nature as well.

It is sometimes convenient to represent the golden section with a
number. The ratio of the lengths that determine the golden section
determines a number that is often denoted with the Greek letter φ, or
phi (pronounced FEE). It is an irrational number that is approximately
equal to 1.618. Here are some places where φ can be found:

� In the adult human body the ratio between a healthy person’s
height and the vertical height of the navel very closely
approximates the golden section as is the vertical height of
the navel divided by the distance from the navel to the top of
the head. (For adolescents, who are still in the process of
growing, the ratio between total height and navel height is
not a good approximation to the golden section.)

� The well-known Fibonacci series is closely related to the
golden section.

� The distribution of leaves, stems, and seeds in plants is fre-
quently organized in such a way as to yield the golden sec-
tion. Leaves and stems organized about the golden section
or ratio are “optimally” placed in the sense that they gather
the most sunshine and cast the least shade on each other.
(The mathematical proof of this fact was discovered in the
late 20th century.)

� The curve called the logarithmic spiral, a form that can be
found in many animal horns and spiral shells, is closely relat-
ed to the golden section. (Demonstrating this would take us
too far away from the history of Greek geometry, however.)

As we become more aware of the golden section, we can see how art,
mathematics, and nature mirror one another in the sense that the gold-
en section occurs frequently as an organizing principle in both natural
and human-made forms. It reflects a remarkable connection between
mathematics and the material world.



golden section. Similarly by extending the sides of the pentagon
that surrounds our original star we obtain a new, larger star and
still more examples of the golden section. This procedure can be
continued indefinitely.

The golden section was an important discovery to the
Pythagoreans. They used the star as their own special symbol, but
they had no monopoly on the ratio. Greek architects incorporat-
ed the golden section in the proportions of the buildings that they
designed. It is present in the proportions used in Greek art, and
the golden section can be found throughout nature as well (see the
sidebar The Golden Section). Many remarkable properties of this
ratio have been uncovered during the last few millennia.
Discoveries of this nature profoundly affected the Pythagoreans,
who believed that numbers were the building blocks of nature.

Geometry in Athens
When we think of Greece we generally think of Athens, the 
capital of present-day Greece. The Parthenon is, after all, locat-
ed in Athens, as are many other elegant ruins. If we think more
expansively about ancient Greece we might imagine that it
included all of present-day Greece. This is a much larger area
than the ancient city-state of Athens but not nearly as large as
Magna Graecia, the area that was once inhabited by the Greeks.
Nor did the Greeks hesitate to travel beyond even Magna
Graecia. Greek mathematicians were no exception. They gener-
ally moved around a lot. Pythagoras, as we have already seen,
traveled widely and eventually settled in a town on the south-
eastern coast of what is now Italy in the Greek city of Crotona
(modern Crotone). Little is known of Thales’ habits except that
he was fond of traveling. Archimedes, who is often described as
one of the greatest mathematicians in history, was educated in
Alexandria, Egypt, and lived in the Greek city-state of Syracuse.
(Syracuse was located on what is now the Italian island of Sicily.)
Eudoxus, who did live in Athens for a time, was from present-day
Turkey and to present-day Turkey he eventually returned. Many
more of the best-known Greek mathematicians lived much of
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their adult life in Alexandria. Few well-known mathematicians
lived in what is now Greece.

Though Athens was not the home of many mathematicians, a
few of them lived in Athens, which seems to be the place three of
the most famous problems in Greek geometry originated. The
first, which involves the problem of doubling a cube, began with
a terrible plague. Around 430 B.C.E. the people of Athens were
dying in great numbers. In desperation they turned to an oracle
for help. The oracle they consulted, the most famous oracle in
the Greek world, was located on the island of Delos. The oracle
advised them to double the size of the altar in their temple to
Apollo. The altar was in the shape of a cube. (To appreciate the
math problem, recall that if we let the letter l represent the
length of the edge of a cube then the volume of the cube is sim-
ply l × l × l or l 3.) In their haste to follow the advice of the ora-
cle, the Athenians constructed a new cubical altar with an edge
that was twice as long as the edge of the old one. This was a mis-
take. The height of the new altar was twice that of the original,
but so was its width and so was its depth. As a consequence, the
size, or volume, of the new altar was (2l ) × (2l ) × (2l ) or 8l 3. The
new altar was eight times the size of the original altar instead of
just twice as big. From this unhappy experience arose one of the
three great classical Greek geometry problems: Given a cube,
use a straightedge and compass to construct a line segment that
represents the edge of a new cube whose volume is twice that of
the given cube. In other words, find the dimensions of a new
cube whose volume is twice that of the original by using only a
straightedge and compass.

Also in Athens, at about the same time, two other problems were
proposed. One of them was about division of an angle into three
equal parts: Given an arbitrary angle, divide it into three equal parts,
using only a straightedge and compass. The third problem has worked
its way into our language. You may have heard people speak of
“squaring the circle” when describing something they considered
impossible to accomplish. This phrase summarizes the third classi-
cal problem: Given a circle and using only a straightedge and compass,
construct a square with the same area as the given circle.
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You can see that the common thread uniting all three prob-
lems is to find a solution by using only a straightedge and com-
pass. This restriction is critical. The problem of doubling the
cube, for example, was quickly solved by the Greek mathemati-
cian Archytas of Tarentum (ca. 428–ca. 347 B.C.E.), but his
method involved manipulating three curved surfaces. His was a
beautiful, though very technical, solution. It also required
Archytas to work in three dimensions. Archytas’s solution is not
one that can be duplicated by using only a straightedge and
compass, and to the Greeks it seemed that the doubling-the-cube
problem should be solvable with the use of only these simple
implements. So it was really an intellectual problem that the
Greeks were determined to solve. The same is true of the other
two problems.

These three problems drew the attention of mathematicians for
more than 2,000 years. The problems were never solved geomet-
rically because with only a straightedge and compass they cannot be
solved. That is an entirely different statement from saying that the
solution has not been found yet. The solution was not found
because it does not exist. This remarkable fact was discovered by
using a new and very powerful type of algebra developed during
the 19th century.

In addition to being the birthplace of three famous mathemati-
cal problems Athens was, of course, home to many philosophers.
Socrates (ca. 469–ca. 399 B.C.E.), for example, was an Athenian,
but Socrates did not make many contributions to the mathemati-
cal sciences. Here is what he had to say about mathematics:

for I cannot satisfy myself that, when one is added to one, the
one to which the addition is made becomes two, or that the two
units added together make two by reason of the addition.

(Plato. Phaedo. Translated by Benjamin Jowett. New York: Oxford
University Press, 1892)

Since Socrates could not convince himself that 1 plus 1 equals 2,
we should not be surprised that he did not contribute much to
mathematics.
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Socrates’ student Plato loved mathematics. He apparently had
learned about mathematics from the Pythagoreans. After
Pythagoras’s death, the Pythagoreans at Crotona were attacked
and many of them killed. The remaining disciples were scattered
about Magna Graecia, and later they were no longer so secretive
about the discoveries made at Crotona. Knowledge of the mathe-
matics of the Pythagoreans made a deep impression on Plato.
Plato eventually founded his own school in Athens and at his
school Plato encouraged his students to study mathematics. Plato
was not much of a mathematician himself, but one of his students,
Eudoxus of Cnidus (ca. 408 B.C.E.–ca. 355 B.C.E.), became the
foremost mathematician of his generation.

Eudoxus traveled widely for the sake of his art. Cnidus,
Eudoxus’s hometown, was, as noted previously, in present-day
Turkey. He was originally a student of Archytas and later, briefly,
became a student of Plato, who was also a friend of Archytas. (In
fact, Archytas helped save Plato’s life when Plato faced execution
in Athens, which was always a dangerous place to practice philos-
ophy.) Eudoxus later left Athens and founded his own school in
Cyzicus, also in present-day Turkey. Eudoxus was well known as
an astronomer as well as a mathematician. In geometry Eudoxus
discovered what is now known as the method of exhaustion, a pro-
found insight into mathematics that is also useful outside mathe-
matics. Eudoxus’s method allowed the Greeks to solve many
problems that were previously beyond reach. The method of
exhaustion is the Greek counterpart to the idea of a limit, which is
the main idea underlying the subject of calculus, discovered 2,000
years later.

The idea behind the method of exhaustion is that we can rep-
resent our answer as the limit of a sequence of steps. The more
steps we take, the closer we get to our answer. The method of
exhaustion is not a formula for finding an exact answer. Instead
it describes a general criterion that a successful formula or
process must meet to ensure that our process approaches the
answer that we desire. Depending on the particular process that
we devise we may be close to our answer five steps into the
process or we may need to repeat the process a thousand times

22 GEOMETRY



Early Greek Geometry  23

before we are close enough. (We decide what “close enough”
means.) Furthermore, it may well be that our process never
yields precisely the answer we want. What is important is that
the method of exhaustion guarantees that the difference between
the exact answer and our approximate answer will be as small as
we want provided we repeat our process often enough. The effect of
the method of exhaustion on the subsequent development of
Greek mathematics was profound.
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Elements by Euclid of Alexandria
Euclid is one of the best-known mathematicians in history; or
to be more precise, Euclid has one of the best-known names in
the history of mathematics. Almost everything else about him
is a mystery. We know he was working hard on mathematics
around the year 300 B.C.E. in the city of Alexandria in what is
now Egypt. We do not know when he was born or when he
died. We do not know his birthplace. He is called Euclid of
Alexandria because he worked at the museum at Alexandria, 
the school and library that attracted many of the best Greek
mathematicians.

We know that Euclid wrote a number of books, a few of which
have survived. The best known of Euclid’s works is called
Elements. It is the best-selling, most widely translated, most influ-
ential mathematics book of all time. Few—perhaps none—of the
theorems and proofs in Euclid’s work were discovered by Euclid,
however. Some of the results in the Elements were almost certain-
ly discovered by Eudoxus, but for the most part we do not know
whom to credit for the different ideas we find in the book because
Euclid does not tell us. Most of the results—perhaps all of the
results—described in the Elements were probably already well
known to the mathematicians of his time. Furthermore, Euclid
never referred to this geometry as Euclidean. Nevertheless, the



type of geometry described in Euclid’s book is now known as
Euclidean geometry.

The Elements has a very broad scope because it was written
more as a textbook than as a guide to mathematical research. The
book is organized into 13 “books” or chapters. The first book is
an introduction to the fundamentals of geometry, and the remain-
ing 12 books survey many of the ideas that were most important
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to the mathematicians of the time. Of particular interest to us are
the following:

� There is an extensive description of what has become
known as geometric algebra, although Euclid did not
call it that. (The Greeks of Euclid’s day had not yet
developed much algebra, but they needed to use the
kinds of ideas that we would express algebraically. They
responded by expressing these ideas in geometric lan-
guage rather than in the algebraic symbolism with
which we are familiar.)

� He covers the topic that we would identify as irrational
numbers, which he called the problem of incommensu-
rables.

� He proves that there are infinitely many prime numbers.
� He covers Eudoxus’s method of exhaustion.
� He proves many theorems in plane geometry. (The pre-

ceding proof that the sum of the angles of a triangle
equals the sum of two right angles is taken, more or less,
from the Elements.)

� And he proves some theorems in solid geometry, or the
geometry of three-dimensional objects.

Elements is a remarkable textbook that is still worth reading. (A few
schools still use Euclid’s work as a textbook, and even today most
plane geometry textbooks are modeled on parts of the Elements.)

One reason Euclid’s work is so important is that it survived when
so many other texts did not, so it is our best glimpse—a very care-
fully written and beautiful crafted glimpse—into Greek geometric
thinking. It contains many ideas and theorems that the Greeks
held dear. The main importance of Euclid’s work, however—the
reason that it has influenced so many generations of mathemati-
cians and scientists—lies in the way Euclid approached geometry.
The Elements is the earliest surviving work that demonstrates what
is now called the axiomatic approach to mathematics. All branch-
es of mathematics use this approach now, but Euclid’s work set the
standard for almost 2,000 years.
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Earlier when we said that Thales, the first Greek mathematician,
proved new results in geometry, we did not examine exactly what
that entails. Nor probably did Thales. In geometry we discover
new results by deducing them from previously known ones. One
result leads logically to the next. But when we prove a new geo-
metric result, how do we know that the previous statements—the
ones that we used to prove our new result—are true as well? If you
spend much time with young children, you have almost certainly
had the kind of conversation in which the child asks you a ques-
tion and you answer it, and then the child asks, “Why?” At that
point, you know there is no escape. The routine is always the
same: You answer the first why question, and the child asks,
“Why?” again, and again, and again. Each of your answers takes
you one step further back from the original question, but because
there is no final answer, you never get any closer to satisfying the
child’s curiosity.

It is not just children who continually ask why and remain dis-
satisfied with the answers they receive. Early Greek mathemati-
cians were also faced with an endless series of unsatisfying
answers. What they wanted was a logical way of exploring geom-
etry, but what they had discovered instead was an endless chain of
logical implications. They could prove that condition C was a log-
ical consequence of condition B; they could prove that condition
B was a logical consequence of condition A; but why was condition
A true? For children the situation is hopeless. It may sound equal-
ly hopeless for mathematicians, but it is not. Euclid knew the
answer.

Euclid begins the very first section of the first book of the
Elements with a long list of definitions—a sort of mathematical
glossary—and then follows this list with a short list of axioms and
postulates. Euclid places the axioms and postulates at the begin-
ning of his work because they are so important to the subject he
loves. The axioms and postulates are the basic building blocks of
his geometry. (Euclid made a distinction between the axioms,
which he believed were fairly obvious and universally applicable,
and the postulates, which were narrower in scope. Both the axioms
and the postulates served the same function, however, and today
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mathematicians make no distinction between axioms and postu-
lates.) Euclid listed five axioms and five postulates. He asserted
that these 10 properties constituted an exhaustive list of the fun-
damental characteristics of the geometry that we now call
Euclidean geometry. The axioms and postulates are assumed true.
They do not require proof. In fact, they cannot be proved either
true or false within this geometry because the axioms and postulates
determine what the geometry is. Axioms and postulates are like the
rules of the game. If we change them, we change the geometry
itself. They are the ultimate answer to the question, Why is this
true? Any true statement in Euclidean geometry is true because in
the end it is a consequence of one or more of Euclid’s axioms and
postulates.

Euclid’s goal was an ambitious one. Any set of axioms and pos-
tulates must meet certain criteria. First, the axioms cannot contra-
dict one another; otherwise, we eventually uncover a statement
that can be proved both true and false. (Preventing this is impor-
tant.) Second, the axioms and postulates need to be logically inde-
pendent; that means that no axiom or postulate can be a logical
consequence of the others. (We do not want to derive one axiom
as a consequence of another one.) Finally, any set of axioms or pos-
tulates has to be complete: That is, all theorems should be logical
consequences of our axioms and postulates. Finding a set of
axioms that satisfies these conditions is trickier than it sounds.

A very formal, very logical approach to geometry was what made
Greek geometry different from everything that went before. The
Greeks introduced a new idea of what mathematical truth means.
For Euclid (and for all succeeding generations of geometers) the
test of whether something is true is not whether the result agrees
with our senses, but rather whether the statement is a logical con-
sequence of the axioms and postulates that describe the system. In
this approach to mathematics, once a complete and consistent set
of axioms is established, the act of geometric discovery consists
solely of deducing previously unknown logical consequences from
the axioms, the postulates, and any previously discovered results.
In other words Euclid’s goal was to make geometry a purely
deductive science.
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For the most part the axioms and postulates are stated in a
straightforward and easy-to-understand way, and later generations
of mathematicians were satisfied with most of the axioms and pos-
tulates that Euclid had chosen. An example of one of Euclid’s
axioms is “The whole is greater than the part.” An example of one
of his postulates is “A straight line can be drawn from any point to
any point.” Of the 10 axioms and postulates nine of them are brief
and matter-of-fact. The fifth postulate is the exception. In the fifth
postulate Euclid explains the conditions under which nonparallel
lines meet. Also called the parallel postulate, it inspired more than
2,000 years of controversy.

The controversy was due, in part, to the complicated nature of
the fifth postulate. Here is what the fifth postulate says:

If a transversal (line) falls on two lines in such a way that the
interior angles on one side of the transversal are less than two
right angles, then the lines meet on that side on which the angles
are less than two right angles.

(Euclid. Elements. Translated by Sir Thomas L. Heath. Great Books of
the Western World. Vol. 11. Chicago: Encyclopaedia Britannica, 1952.)

See the accompanying diagram for an illustration of the type of
situation that the postulate describes. Compared with the other
axioms and postulates the fifth postulate strikes many people as
strangely convoluted. Almost from the start, many mathematicians
suspected that one should be able to deduce the fifth postulate as a
consequence of the other four postulates and five axioms. If that
were the case—if those mathematicians were right—the fifth pos-
tulate would not be a postulate at all. Instead the fifth postulate
would be a consequence of the other nine axioms and postulates. In
that case, logically speaking, it would be a sort of fifth wheel; the
fifth postulate would not be one of the fundamental properties of
the geometry.

For centuries mathematicians researched the relationship
between the fifth postulate and Euclid’s other axioms and postu-
lates. Many mathematicians produced “proofs” that the parallel
postulate was a consequence of the other axioms and postulates,
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but on closer inspection each
proof contained some flaw.
The fifth postulate was like a
pebble in the shoe of mathe-
maticians everywhere — a
continual source of irritation.
For 20 centuries, however, it
was Euclid’s formulation of
geometry that dominated
mathematical thought.

Euclid attempted to axiom-
atize geometry—that is, he
tried to establish a logically
consistent and complete set
of “rules” from which the
entire subject of Euclidean
geometry could be deduced.
He almost got it right, and

he was right about the fifth postulate. His parallel postulate is
not a logical consequence of the other axioms and postulates.
Euclid’s 10 axioms and postulates are, however, not quite 
complete. There are several places in his work where Euclid
assumes that some property or another is true even though that
property cannot be deduced from the geometry as he conceived
it. These mistakes are not big mistakes and they were not 
especially “obvious” ones, either. In fact, it was not until late in
the 19th century, after mathematicians had discovered other
geometries and developed a far more critical eye for such matters
than the ancient Greeks ever did, that Euclid’s mistakes were
finally identified and corrected.

Despite these oversights, what Euclid and the other mathemati-
cians of Magna Graecia did was a tremendous accomplishment.
Only geometry reached this level of rigor until relatively recent
historical times. Various disciplines in algebra, for example, were
not axiomatized until the late 19th and early 20th centuries, and
probability theory was not axiomatized until well into the 20th
century. When a mathematical discipline can be expressed as a set
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of definitions and axioms and a collection of theorems derived
from the axioms and definitions, mathematical truth becomes
strictly testable. This was Euclid’s greatest insight.
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EUCLID REEXAMINED

By the end of the 19th century mathematicians had developed a num-
ber of geometries in addition to the one described by Euclid. Some of
these geometries are counterintuitive; that is another way of saying that
although these geometries violated no mathematical laws, our common-
sense notions of space and form are of little help in understanding them.
Algebra, too, became highly abstract during the 19th century. It was dur-
ing that time that many mathematicians began to recognize the impor-
tance of axiomatizing all of mathematics. Their goal was to ensure that
all mathematical questions would have strictly mathematical (as
opposed to commonsense) answers.

One of the foremost proponents of this approach was the German
mathematician David Hilbert (1862–1943). Late in the 19th century
Hilbert turned his considerable intellect to Euclid’s work. He identified a
number of logical shortcomings in the Elements, most of which would
never have occurred to Euclid because mathematics and logic were sim-
ply not advanced enough in Alexandria in 300 B.C.E. to make the short-
comings apparent. Hilbert rewrote Euclid’s definitions and proposed
replacing Euclid’s five axioms and five postulates with a list of 21 axioms.
These new axioms would make Euclid’s geometry logically consistent and
complete. Included in his list was an analog to Euclid’s parallel postulate,
but some of the other axioms addressed problems that would probably
have struck Euclid as a little strange. For example, among his 21 axioms,
Hilbert includes five that relate to order, such as “Of any three points situ-
ated on a straight line, there is always one and only one which lies
between the other two” (Hilbert, David. Foundations of Geometry.
Translated by E. J. Townsend. Chicago: Open Court Publishing Company,
1902). Seem obvious? Here is another order-related axiom: “If A, B, C are
points of a straight line and B lies between A and C, then B also lies
between C and A” (ibid.). The inclusion of these and similar axioms shows
that what might seem obvious to us is not logically necessary. In fact, with-
out these axioms Hilbert’s formulation of Euclidean geometry would have
been logically incomplete. It took well over 2,000 years, until 1899 and the
publication of The Foundations of Geometry by David Hilbert, for
Euclidean geometry finally to be made logically consistent.



The Method, On The Sphere and Cylinder,
and Other Works by Archimedes

Euclid’s Elements had an important influence on Greek mathemat-
ics and it continued to affect the direction and emphasis of math-
ematical thinking for millennia. The same cannot be said of the
works of Archimedes of Syracuse (ca. 287 B.C.E.–ca. 212 B.C.E.).
Although some of Archimedes’ results became widely known and
used in Greek, Islamic, and European culture, much of his work
was, apparently, just too technically difficult to attract much atten-
tion. Today the situation is different. Many of the problems that
Archimedes solved are now routinely solved in calculus classes.
What made these problems so difficult for so long is that
Archimedes solved them without the carefully developed notation,
the techniques, and even some of the ideas that now characterize
calculus. When we read Archimedes’ works we see the results of
extraordinary mathematical insight and tremendous effort.
Archimedes’ mathematical investigations are among the most
advanced and singular works of antiquity.

A great deal has been written about Archimedes’ personal life
and accomplishments. We know that he was born in the Greek
city-state of Syracuse, which was located on what is now the
Italian island of Sicily. He was apparently educated in Alexandria,
perhaps taking instruction from students of Euclid. He later
returned to his home in Syracuse, where he lived for the rest of
his life. He communicated his mathematical discoveries to promi-
nent mathematicians in Alexandria, including Eratosthenes of
Cyrene, who is best remembered for computing the circumfer-
ence of Earth.

Most accounts of Archimedes describe a man utterly preoccu-
pied with mathematics and science. It is an oft-told story that
Archimedes did not spend much time bathing. He preferred to
spend all of his time studying mathematics. When his friends
forced him to take a bath, he spent his time drawing diagrams
with his finger and concentrating on the ideas represented there-
in. More impressive to his fellow Syracusians was Archimedes’
genius for designing weapons of war. Archimedes’ knowledge of
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physics and his skill in designing simple machines enabled him to
invent weapons of war that the people of Syracuse used against
the attacking Roman armies. (Archimedes was already an old
man when his city was under Roman attack.) His weapons pre-
vented the Romans from conquering Syracuse by military might.
In response the Romans besieged Syracuse for two years.
Eventually they found a way to conquer Syracuse by subterfuge.
Archimedes was killed during the sacking of the city.

Part of the plunder that the Romans took from Syracuse was a
mechanical device designed by Archimedes to demonstrate a
Sun-centered model of the solar system, a model that had been
proposed by the Greek astronomer Aristarchus of Samos.
Archimedes’ device even demonstrated how eclipses occur.
Although Archimedes’ principal interest was geometry, he appar-
ently enjoyed designing and building objects to demonstrate 
scientific ideas and principles.

Archimedes’ mathematical works were almost lost to us. The
Greek originals are known largely through a single text that
survived into the 16th century, and one of Archimedes’ works,
The Method which is now one of his most famous works, was not
rediscovered until much later. The Method became available to
modern scholars for the first time in 1906 when it, together
with some known works of Archimedes, was found in a library
in Constantinople (now Istanbul, Turkey). It had remained
there, unnoticed, for almost a thousand years. The book was
not in good condition. Someone in the 10th century had
attempted to erase the entire text and copy religious writings
into the book in place of the mathematics. Fortunately the era-
sures were not quite complete, and most of Archimedes’ work
was recovered.

Of all Archimedes’ mathematical discoveries, his favorite result
was obtained in the two-volume work On the Sphere and Cylinder.
In these texts Archimedes proved that the volume of a sphere is
two-thirds the volume of the smallest circular cylinder that can
contain it (see the accompanying diagram). This was important
because the volume of the cylinder was already known: It is the
area of the base multiplied by the height of the cylinder.
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Archimedes was so proud of
this discovery that he wanted
the diagram that represented
the discovery engraved on his
tombstone. We know that
this was done, because more
than a century later the
Roman writer and statesman
Marcus Tullius Cicero visit-
ed Syracuse and found
Archimedes’ grave neglected
and overgrown with weeds.
He restored it.

In addition to his work 
on three-dimensional forms,
Archimedes studied curves.
He wrote an entire treatise entitled On Spirals. Here is how he
described the spiral:

If a straight line drawn in a plane revolve at a uniform rate about
one extremity which remains fixed and return to the position
from which it started, and if, at the same time as the line
revolves, a point move at a uniform rate along the straight line
beginning from the extremity which remains fixed, the point will
describe a spiral in the plane.

(Archimedes. On Spirals. Translated by Sir Thomas L. Heath. Great
Books of the Western World. Vol. 11. Chicago: Encyclopaedia
Britannica, 1952.)

There are several important points to notice about
Archimedes’ choice of subject and his description of it. First,
Archimedes was aware of only a small number of curves. This is
true of all the Greeks. Although devoting an entire book to the
study of spirals may strike some as excessive, it should be borne
in mind that Archimedes had only a dozen or so curves from
which to choose. This one book treats a significant fraction of all
the curves of which the Greeks were aware. Second, notice that
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Archimedes’ description of the curve is mechanical. He is
describing a physical procedure that would allow the user to
trace out a spiral. There are no symbols in his work. There are
no equations. This stands in stark contrast to today’s approach,
in which curves are generally defined by equations. Archimedes’
method is very laborious.

The awkward nature of Archimedes’ description arises
because he uses no algebra. The Greeks had little interest in
algebra. Our facility in generating new curves is due largely to
our facility with algebra. For the Greeks describing almost any
curve was a struggle. The length of his definition shows that
even for Archimedes, one of the best mathematicians in history,
describing a simple spiral meant a long, not-especially-easy-to-
follow description.

In On Spirals Archimedes made several discoveries about the
nature of this one type of spiral. For example, after one complete
revolution the area bounded by the spiral and the line covers one-
third the area of a circle with radius equal to the distance from the
“extremity” to the position of the point on the line after one com-
plete revolution. He goes on to prove a number of similar results.
He also is able to use his spiral to solve the classical problem of tri-
secting an arbitrary angle, but because his solution cannot be
completed by using only a straightedge and compass, he is not suc-
cessful in solving the problem as posed.

Archimedes was also interested in computing various areas, a
problem of great importance in mathematics and physics. In
Quadrature of the Parabola he finds an area bounded by a parabola
and a line. To do this he makes use of the method of exhaustion,
an idea that foreshadowed calculus. Although Eudoxus invented
the method of exhaustion, Archimedes was the most skilled math-
ematician in antiquity in using the concept to obtain new results.
He uses it repeatedly in many of his works.

Archimedes was a prolific and creative mathematician, but many
people, even mathematicians, have found reading his mathematical
writings frustrating. The main problem is that Archimedes’ writ-
ings on geometry are very terse. He provides the reader with little
in the way of supporting work, so we often cannot know how
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Archimedes performed his calculations nor how he got his ideas.
That is why The Method is very interesting to so many people.
Archimedes used The Method to communicate the way he begins
investigating a problem. The Method is not mathematics in the usual
sense. It is not a collection of theorems and proofs. It is
Archimedes’ own explanation of how he investigated an idea before
he tried to prove it mathematically. This is where we can see how
Archimedes’ interests in mechanics and geometry meshed.

Archimedes imagined that geometrical shapes have mass, and he
imagined balancing them. By determining the balance point he could
compare the area or volume of a figure that he already understood
with the one that he was trying to investigate. These were “thought
experiments.” They cannot be used in place of rigorous mathemati-
cal analyses, but they do give us insight into the way Archimedes
learned. The Method is also an attempt by the author to stimulate
mathematical research among his contemporaries and successors.
Here is how he explained his reasons for writing The Method:

I deem it necessary to expound the method partly because I have
already spoken of it and do not want to be thought to have
uttered vain words, but equally because I am persuaded that it
will be of no little service to mathematics; for I apprehend that
some, either of my contemporaries or of my successors, will, by
means of the method when once established, be able to discover
other theorems in addition, which have not yet occurred to me.

(Archimedes. The Method. Translated by Sir Thomas L. Heath.
Great Books of the Western World. Vol. 11. Chicago Encyclopaedia
Britannica, 1952)

Unfortunately by the time The Method was rediscovered early in
the 20th century, mathematics had moved on, and Archimedes’
hope remained largely unfulfilled.

Conics by Apollonius of Perga
Little is known of the life of Apollonius of Perga (ca. 262 B.C.E.–
ca. 190 B.C.E.). Apollonius was born in Perga, which was located in
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what is now Turkey. He was educated in Alexandria, Egypt, prob-
ably by students of Euclid. He may have taught at the university at
Alexandria as a young man. Eventually he moved to Pergamum,
which was located at the site of the present-day city of Bergama,
Turkey. Pergamum was one of the most prosperous and cultured
cities of its time. It had a university and a library that rivaled those
at Alexandria, and it was there that Apollonius taught. Apparently
he made Pergamum his permanent home. Pergamum was a pros-
perous and carefully planned city, built on a hill overlooking a
broad, flat plain. In addition to an excellent library and university,
it had a large theater built into the side of the hill. It must have
been beautiful.

“The Great Geometer” was what his contemporaries called
Apollonius. Today he is still known as a great geometer, although
almost all of his mathematical writings have been lost over the
intervening centuries. We know the titles of many of his works and
a little about their subject matter because many of the lost works
were described by other authors of the time. Two works by
Apollonius were preserved for the modern reader: Conics and
Cutting-off of a Ratio. Conics is a major mathematical work. It was
written in eight volumes, of which the first seven volumes were
preserved. It is here that we can see just how good a mathemati-
cian Apollonius was.

Apollonius begins Conics by summarizing the work of his prede-
cessors, including Euclid. He then forges ahead to describe cre-
ative approaches to difficult problems. His analysis is careful and
thorough. He sometimes provides more than one solution to the
same problem because each solution offers a different insight into
the nature of the problem. The discoveries Apollonius describes in
his treatise resonated in the imaginations and research of mathe-
maticians for many centuries.

So what is a conic, or, more properly, a conic surface? Here is how
Apollonius described it:

If from a point a straight line is joined to the circumference of a
circle which is not in the same plane with the point, and the line
is produced in both directions, and if, with the point remaining
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fixed, the straight line being rotated about the circumference of
the circle returns to the same place from which it began, then
the generated surface composed of the two surfaces lying verti-
cally opposite one another, each of which increases indefinitely
as the generating straight line is produced indefinitely, I call a
conic surface.

(Apollonius. Conics. Encyclopaedia Britannica, 1st ed., s.v. “Great
Books of the Western World”)

Notice that Apollonius’s description of conic surfaces is a
rhetorical one: That is, he expresses his ideas in complete prose
sentences. He uses no algebraic symbolism at all. The algebraic
symbolism necessary to describe conics simply and easily would
not be created for almost 2,000 more years. Because Apollonius’s
description is rhetorical, it is not especially easy for a modern
reader to follow.

To appreciate the type of surface Apollonius described, we begin
by describing a special type of conic surface, called a right conic
surface, in a more modern way: Imagine a point placed directly
under the center of a circle. Imagine a line passing through the
point and resting on the circle. In the description that follows the
point remains fixed. The line pivots about the point. To construct
the conic, move the line so that it remains in contact with the cir-
cle. As it moves along the circle’s circumference, it traces out a
shape in space that resembles two very tall ice cream cones joined
at their pointy bases. This is the conic. The point at which the two
cones are joined is called the vertex of the conic. The figure is
symmetric about the line that contains the pivot point and the cen-
ter of the circle. This line is called the axis of symmetry of the
conic (see the illustration).

From his conic surface Apollonius obtains three important curves:
an ellipse, a hyperbola, and a parabola. Discovering the properties of
these curves—each such curve is called a conic section—is actually
much of the reason that he wrote the book. He describes each curve
as the intersection of a plane with the conic surface. Alternatively we
can imagine the plane as a method of cutting straight across the
conic. In this case the curve is the cut we make into the conic. We
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begin by cutting the conic with
a plane so that the plane is per-
pendicular to the axis of sym-
metry of the conic. The result
is a circle. If, however, we tilt
our plane slightly when we cut
the conic we obtain an ellipse.
The more we tilt our plane, the
more elongated our ellipse is.
If we continue to tilt our plane
until it is parallel to a line gen-
erating the conic, it should not
pass through the vertex, then
we have made an infinitely
long curve along either the
upper or the lower cone but
not both. The resulting curve is called a parabola. Finally, if we tilt
our plane even more so that it cuts both the upper and lower cones—
while avoiding the vertex—we see the curve called a hyperbola. The
names of these curves are also due to Apollonius.

One reason that Apollonius’s mathematical discoveries 
were important is that he learned so much about these three 
fundamental curves. Because
the Greeks were aware of
only about a dozen curves,
Apollonius manages to study
about a quarter of all the
curves known at the time.
Furthermore Apollonius’s
analysis was very penetrating.
His work on conic sections
was as advanced as any work
on the subject for many cen-
turies. In retrospect another
reason that Apollonius’s
analyses of conic sections
turned out to be so important
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INVESTIGATING CONIC SECTIONS

In his multivolume set Conics, Apollonius studied three curves: hyper-
bolas, parabolas, and ellipses. These are some of the simplest known
curves, and yet Apollonius wrote eight volumes about their properties.
How is this possible?

One reason that Conics is so long is that Apollonius’s treatment of the
subject is synthetic: That is, he uses no algebra. The diagrams that
accompany the text help make his ideas clear, but without algebra the
exposition is, by modern standards, very long-winded. It is not uncom-
mon for Apollonius to take a page or two proving even a fairly simple
proposition. (Of course these propositions are only simple by contem-
porary standards. After mathematicians learned to apply algebra to the
solution of geometry problems, questions that had once challenged
expert mathematicians could be assigned as homework to high school
students.)

Another reason for the great length of Conics is that Apollonius’s
analysis of the subject is exhaustive. He carefully considers an extraor-
dinary number of properties. Many of his theorems and most of his
proofs are too technical to include here, but to convey a feeling for the
tone of Apollonius’s great work, we include Proposition 28, its diagram,
and a modern explanation (not a proof) of what Apollonius is trying to
prove.

Proposition 28 (book II)

If in a section of a cone or circumference of a circle some
straight line bisects two parallel straight lines, then it will be a
diameter of the section.

(ibid.)

The meaning of the word diameter when applied to a circle is well
known. When Apollonius uses the word diameter in connection with a
conic section he means an axis of symmetry of the section.

In the diagram the lines BFA and DEC are the parallel lines to which
Apollonius refers in his theorem. The conic section and the two paral-
lel lines are assumed to be given in the sense that the mathematician
has no control over the choice of conic section or the placement of the
parallel lines. There is one more line over which the mathematician can



is that conic sections have been extremely important in both sci-
ence and mathematics over the succeeding centuries. For exam-
ple, during the European Renaissance, Johannes Kepler correctly
claimed that planets move about the Sun in elliptical orbits, and
within a generation of Kepler’s discovery, Isaac Newton had con-
structed a reflecting telescope with a parabolic, or parabola-
shaped, mirror. Of course, neither of these applications was
known to Apollonius. He was investigating conic sections for
purely geometric reasons. He believed that imaginative, rational
thought is as interesting and as beautiful as art or music.

Collection by Pappus of Alexandria
Pappus of Alexandria was the last of the great Greek geometers
whose writings remain intact. The dates of his birth and death
are uncertain, but we know that he lived during the third centu-
ry C.E. There were almost certainly other important mathemati-
cians in Alexandria during this time. We can be sure that Pappus
was not alone because his writings contain references to other
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mathematicians and other lost mathematical treatises. Of some
of these mathematicians and their work we now know nothing
except what Pappus wrote. As a consequence it is difficult to
place Pappus’s work in a historical context. Most of the history is
missing. That is one reason that his principal work, Collection, is
important. Pappus’s Collection is the last of the extant great Greek
mathematical treatises.

The Collection consisted of eight volumes. The first volume and
part of the second have been lost. In the remaining six and a half
volumes Pappus describes many of the most important works in
Greek mathematics. He writes about, among others, Euclid’s
Elements, Archimedes’ On Spirals, Apollonius’s Conics, and the
works of the Greek astronomer Ptolemy. Pappus’s approach is
thorough. He generally introduces each important work and then
describes its contents. He clearly expects the reader to read the
original along with his commentary, but Pappus is not satisfied
with simply reviewing the work of others. Whenever he feels it
necessary or desirable, he provides alternative proofs for some of
the theorems that he is reviewing. Nor is he shy about improving
on the original. On occasion he contributes new ideas that are,
apparently, uniquely his. For Pappus the original text is the place
to begin, not end.

It is through Pappus’s book, for example, that we learn of a lost
work of Archimedes. In this lost work, Archimedes studied the
properties of what are now called semiregular solids. Semiregular
solids are three-dimensional, highly symmetric geometric forms.
Pappus seems to have learned of these objects through the works
of Archimedes; they are known to us through the work of Pappus.
Writing reviews and commentaries on the works of others had
become a common practice late in the history of Greek geometry.

But Pappus did not limit his efforts to the writing of commen-
taries. He was an imaginative mathematician in his own right. As
many of the Greek mathematicians who preceded him were, he
was interested in the solution of the three classical unsolved prob-
lems: the doubling of a cube, the trisection of an angle, and the
squaring of the circle. In each case Pappus describes a solution of
sorts. He describes, for example, a method for trisecting an angle
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that uses a hyperbola. Because
this algorithm cannot be
accomplished by using only a
straightedge and compass, it
is not a solution to the origi-
nal problem, which states that
the reader must restrict him-
self or herself to these imple-
ments. Nevertheless Pappus
can, when not restricted to a
straightedge and compass,
solve each of the three problems. In fact, he knows and describes
multiple solutions for the problems, although, again, none of his
solutions for any of the three problems can be derived with a
straightedge and compass alone.

More importantly from a theoretical point of view, Pappus clas-
sifies geometry problems into three distinct groups. Plane prob-
lems, he writes, are problems that can be solved by using only a
straightedge and compass. Solid problems, such as the problem of
trisecting an angle, are solvable through the use of conics. Finally,
he defines linear problems as problems that are neither plane nor
solid. What is significant about this definition is that Pappus
states, without proof, that the three classical unsolved problems of
Greek geometry are not plane problems! In other words they are
unsolvable as originally posed. His intuition is correct, but he does
not provide a proof of this assertion.

Another discovery by Pappus is now known as the theorem of
Pappus. This theorem has fascinated mathematicians for millen-
nia because it fits nicely into more than one branch of geometry.
The idea is simple enough. Suppose we imagine two lines and on
each line we choose three points. We may, for example, denote
the points on our first line, which we call l1, with the letters A, B,
and C and the points on our second line, l2, with the letters A',
B,' and C' (see the accompanying diagram). Now draw a line
through each of the following pairs of points: (A, C'), (C, A'), (A,
B'), (B, A'), (B, C'), and (C, B'). The first thing to notice is that
no matter how we draw l1 or l2 and no matter how we choose A,
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B, C, and A', B', C', the points of intersection of the correspon-
ding lines that we have just drawn always lie on a single line.
Another way of saying the same thing is that the points of inter-
section are collinear. Not so obvious is the curious relationship
between the nine points and nine lines of this problem. The nine
lines are grouped into sets of three lines because the three lines
intersect on a single point. Similarly the nine points are grouped
into sets of three points apiece because each set of three points
lies on a single line. This striking symmetry between the prop-
erties of the points and the properties of the lines is an example
of duality. Notice that if we interchange the words line with point
and intersect with lies (or vice versa) in each of the two sentences
we still get a true statement: “Each point lies on three lines” and
“Each line contains three points.” Duality proved to be an
important concept in the development of projective geometry
about 15 centuries after Pappus’s death, but Pappus’s work con-
tains one of the first examples of this important and surprising
property.

Pappus made several other observations that presaged important
discoveries in mathematics by many centuries. We have remarked
more than once in this chapter that the Greeks worked with a very
small vocabulary of curves. They were aware of circles, conics, spi-

rals, and a few other curves,
but until Pappus they had no
way of generating a large
number of different types of
curves. Pappus actually found
a way to generate many dif-
ferent kinds of curves, but he
seems to have not recognized
the significance of his discov-
ery. He begins with a problem
first solved by Apollonius for
generating a conic and gener-
alizes Apollonius’s method 
to an algorithm for generat-
ing what have since become
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known as higher plane curves. Pappus’s discovery in this area drew
little attention among mathematicians for 1,300 years.

Finally, we point out that Pappus was also a master of the
method of exhaustion, first described by Eudoxus 700 years earli-
er. Pappus used his skill with the method of exhaustion to study
solids of revolution. (Mathematically a solid of revolution is
obtained by rotating a two-dimensional curve about a line to
obtain a three-dimensional solid. A physical expression of this idea
is a table leg, baseball bat, or other object that is cut by using a
lathe. The cutting tool traces out the curve as the lathe rotates the
wood.) To appreciate Pappus’s theorem we present a simple exam-
ple: Consider a circle. If we rotate a circle about a line outside the
circle we get a figure that looks a lot like a bagel. The technical
term for a solid obtained in this way is a torus (see the accompa-
nying illustration). Pappus discovered that the volume of the torus
equals the area, A, enclosed by the circle times the distance that
the center of A must travel about the axis of rotation. If we let h
represent the distance traveled by the center of the circle, the
equation that expresses the volume of the torus is V = A × h.

Pappus went on to find a general formula for computing solids
of revolution. Calculating the volume of a solid of revolution is the
type of problem that is now usually solved over and over again in
an introductory calculus class. In Pappus’s time, however, the
problem was much harder because (1) the concept had not been
explored before, and (2) calculus had not been invented yet, and
(3) using the method of exhaustion is generally more difficult than
using standard calculus techniques.

The Greek mathematical tradition lasted many centuries and
produced a great deal of insightful mathematics about the proper-
ties of triangles, conic sections, spirals, and the like, but what did
this mathematics mean? When we reviewed the works of Euclid,
Archimedes, Apollonius, Pappus, and others, we chose those ideas
that seem to matter most today. Other results were omitted.
Sometimes those mathematical results that are most important to
us were not considered as important by the mathematicians
responsible for their discovery. Conversely what was important to
them may not seem significant to us.
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Today many mathematicians are fond of pointing out that
abstruse results that may seem pointless now may later prove to be
very important. But as any mathematician knows, the phrase “may
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THE END OF THE
GREEK MATHEMATICAL TRADITION

Pappus of Alexandria lived about 800 years after Thales of Miletus, the
first of the major Greek mathematicians. Pappus’s most important work,
Collection, is the last major Greek mathematics text to survive until mod-
ern times, but it is doubtful that Pappus was the last important Greek
mathematician. The museum at Alexandria remained an important place
of learning and scholarship for about a century after Pappus’s death.

Many historians associate the end of Greek mathematical scholarship
with the death of Hypatia (ca. 370–415), a prominent mathematician
and astronomer at the university at Alexandria. Hypatia wrote a number
of mathematical commentaries on the works of prominent mathemati-
cians and astronomers: Conics by Apollonius of Perga, Arithmetica by
Diophantus of Alexandria, and others. Her astronomical writings includ-
ed a commentary on the works of the most influential astronomer of
antiquity, Ptolemy. The practice of writing commentaries on the works of
other mathematicians and astronomers had become commonplace dur-
ing the last centuries of the Greek mathematical tradition.

Our knowledge of Hypatia is all secondhand since none of her work
survived. We know of her through some letters addressed to her by a
student as well as several descriptions of her and her work by writers 
of the time. Hypatia was apparently a well-known public figure in
Alexandria 16 centuries ago. Her prominence in mathematics and sci-
ence made her a controversial figure in the disputes that were occurring
between the early Christians and the pagans in Alexandria. The early
Christians of Alexandria associated mathematics and science with
pagan practices. The disputes between the Christians and pagans were
sometimes violent. Hypatia was eventually murdered by a Christian mob,
but her death did not end her influence. It had a profound impact on the
scholars in Alexandria and on the subsequent development of mathe-
matics. In reaction to her murder, many of the scholars in Alexandria
decided to leave. After about 700 years as one of the foremost centers
of mathematical learning in the world, Alexandria entered into a period
of decline from which it has yet to recover.



later prove to be important” is logically the equivalent of the
phrase “may later prove to be unimportant.” We should make the
effort to appreciate the accomplishments of the mathematicians
discussed in this chapter on their own terms. They undertook cre-
ative investigations into a world of mathematical ideas. Theirs was
the first serious attempt to develop a deductive science. Greek
mathematicians generally undertook their investigations without
reference to nonmathematical criteria, and it is apparent from the
work they left that that is how they wanted their work judged.
They believed that their work was as aesthetically important as
that of painters, musicians, and sculptors.

There is another aspect of their work, however, that they could
not possibly have appreciated. Greek mathematics is also impor-
tant to us because of the way their results were used by succeed-
ing generations of non-Greek mathematicians. Islamic
mathematicians, who were primarily interested in algebra, were
also familiar with the geometry of the Greeks. Greek standards
of rigor as well as Greek geometric insights influenced the devel-
opment of Islamic algebra, and Islamic algebra—especially the
algebra of Mohammed ibn-Mūsā al-Khwārizmı̄ (ca. 780–ca.
850)—heavily influenced the development of algebra in
Renaissance Europe. Greek mathematics also influenced the
development of European science. Renaissance scientists used
Greek geometry to gain insight into planetary orbits and the
flight of projectiles. Isaac Newton’s (1643–1727) great work
Philosophiae Naturalis Principia Mathematica is infused with Greek
ideas about mathematics, and Greek mathematics continued to
be used long after Newton. As previously mentioned, David
Hilbert revisited Greek geometry in 1899 when he published a
revised and corrected set of axioms for Euclidean geometry.
These new axioms reflected more modern ideas of rigor and a
higher standard of logic, but it was the geometry of Euclid that
still formed the basis of his research. As late as 1984, the
Hungarian mathematician Paul (Pál) Erdó́s (1913–96), one of
the most prolific mathematicians in history, gave a seminar that
consisted of a long list of unsolved problems arising in Euclidean
geometry.
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Most of the problems, solutions, and applications that have 
arisen during the centuries following the demise of the Greek
mathematical tradition could not have been anticipated by the
Greeks themselves. Their understanding of physics, logic, and
mathematics was quite different from that of those who came after
them. Our understanding and appreciation of their work, howev-
er, should also take into account the tremendous utility of the
ideas they developed as well as their intrinsic beauty.
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4
mathematics and art

during the renaissance

The next significant chapter in the history of geometry begins
during the European Renaissance. The Renaissance began about
1,000 years after Pappus’s death. One thousand years is, by most
standards, a very long gap to leave in the history of anything,
geometry included. These “lost” years belong to the medieval
period of European history. Sometimes this period is called the
Dark Ages, but that name applies to Europe alone. Elsewhere the
situation was different. There were other cultures in other places
that maintained a tradition of creative research into mathematics
throughout this period. The reason for the gap in this history is
that in this volume we are recounting the history of geometry, not
mathematics in general, and there was not much innovation in
geometry anywhere on Earth during the European Middle Ages.
Again this is not to imply that the entire field of mathematics lay
dormant while Europe, from a mathematical point of view, slept.

In what is now India, for example, mathematicians made one of
the most important and far-reaching innovations in the history of
mathematics. They incorporated a symbol for 0 into their system
of numeration and devised a true place-value system of notation.
Finally, accurate large-scale computations were practicable for the
first time. The computations necessary for commerce and science
were, with the help of the so-called Hindu system of numeration,
finally easy enough to be done by the nonspecialist. The impor-
tance of this innovation cannot be overstated. Hindu mathemati-
cians also contributed to the development of algebra, but they had



little interest in geometry as a separate discipline. Nor was India
the only place with a vigorous mathematical tradition during these
centuries.

Islamic culture was in full flower and produced many fine math-
ematicians. Learning in general, and mathematics in particular,
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was emphasized in the Islamic world just as it was on the Indian
subcontinent. Islamic mathematicians also preserved old knowl-
edge by translating and circulating the works of their Greek pred-
ecessors. Many well-known ancient Greek texts are now known to
us only through Arabic translations. Furthermore interaction
between Islamic and Hindu mathematicians occurred during this
time. Islamic mathematicians quickly recognized the importance
of the system of numeration developed by Indian mathematicians.
They translated some of the Indian texts into Arabic and quickly
absorbed the place-value notation of their neighbors far to the
east. In addition, Islamic mathematicians developed a new, rigor-
ous approach to algebra. This, too, was an important innovation.
All of this activity was important to the history of mathematics,
but little of it added to the history of geometry.

The history of geometry resumes in the 15th century with the
discovery of an entirely new geometry. This new geometry arose
from the efforts of Renaissance-era artists to draw and paint the
world as it appears to the eye, a type of art called representational
art. Their innovations led to the development of the first of the
non-Euclidean geometries. This new geometry is called projective
geometry, and it is unique among all geometries because its origins
lie in art rather than in science or mathematics.

To appreciate how projective geometry arose, it is helpful to
recall what European art was like during the Middle Ages.
Throughout the Middle Ages European artists strove to develop a
rich visual language. Bible stories, especially those taken from the
New Testament, formed the basis of many of their paintings. The
religious scenes that they depicted are often easy to identify, and,
indeed, communicating these stories to a largely illiterate popu-
lace was surely part of their aim. The central figures in these paint-
ings are generally depicted with halos. Often the main characters
in the story are painted much larger than the secondary characters.
Sometimes the pictures depict the main characters out of propor-
tion to the surrounding landscape as well, and the more important
a character is to the story the closer he or she is to the center of
the painting. The images can be very affecting. The composition
of a painting, the use of color, the highly stylized imagery, and the
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evident passion of an often-
anonymous artist make these
pictures worthy of study, but
to modern eyes the images
also look stiff. There are no
sense of motion and no feel-
ing of lightness or heaviness.
They have no sense of depth.
There are no shadows, no
apparent light sources, and no
attempt at establishing a geo-
metric perspective. These
pictures have more in 
common with Egyptian
hieroglyphics than they have
with the style of painting 
that developed during the
Renaissance. The recognition
of the beauty present in these
paintings is, for many of us,
only the result of careful
study. Medieval ideas of beau-
ty are often far removed from
our own.

One of the great triumphs of
the Renaissance was the devel-
opment of representational
art. Some of the most promi-
nent artists of the Renaissance
remain household names in
our own time. Even now many
of us are familiar with the
Italian artists Leonardo da
Vinci, Michelangelo, and
Raphael, and the German
painter Albrecht Dürer. Each
of these individuals created
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that the location of the light source
that illuminates the faces of the
main figures is not evident.
(Library of Congress, Prints and
Photographs Division)



paintings that have resonated with viewers for hundreds of years.
Today we remember these artists for their choice of subject matter
and for the ideas that they communicated through their art. They
are also remembered for their technical skill. The techniques 
that Renaissance artists employed were a vital part of what they
accomplished artistically. Technique was important to them.
Representational art was the goal of Renaissance artists, and they
needed more than talent and a good eye to succeed in producing it.

The skills required to create a representational painting or
drawing are not “natural.” No one, howsoever talented, is born
with these skills. Nor are we necessarily born with the desire to
develop them. There is no evidence, for example, that the painters
of medieval Europe were less talented than those who followed
them. Nor is there any evidence that these nonrepresentational
artists tried to develop representational techniques and failed. The
techniques required to create representational art had to be
invented, and the invention of these techniques occupied some of
the best minds of the time. It is fortunate that some of the best
artists of the Renaissance were also some of the best architects, sci-
entists, mathematicians, and inventors of their period. They had
the idea of creating representational art, and they had the skills
necessary to discover a way to succeed.

Mathematically speaking the main difficulty in making repre-
sentational art (and in what follows we restrict our attention to
painting and drawing) is that the artist is striving to create a two-
dimensional image of a three-dimensional object. As a conse-
quence there is certain to be some distortion involved as the artist
creates the flat image. Some Renaissance artists were well aware
that some distortion is unpreventable. Their goal was not to elim-
inate distortion, but, instead, to find a rational way to project the
image of a three-dimensional object onto a flat piece of canvas or
paper so as to minimize the distortion involved. They soon recog-
nized that there is a rational method for accomplishing this. A few
artists also recognized that the method they used had a mathe-
matical basis. Their search for the mathematical basis of these pro-
jection techniques marks the beginning of the development of
projective geometry.
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Leonardo da Vinci
The Italian artist, scientist, inventor, and architect Leonardo da
Vinci (1452–1519) was educated as an artist. During Leonardo’s life
aspiring painters in Italy learned their craft as apprentices, and at
about the age of 15 Leonardo was apprenticed to a prominent artist
named Andrea del Verrocchio (1435–88). As a beginning apprentice
Leonardo would have learned how to mix paints, stretch canvases,
and acquire other basic “painterly” skills. As he got better he would
have had the opportunity to finish paintings begun by the master.
Eventually he would “graduate” by becoming a member of an
artists’ guild. In 1472 Leonardo was accepted into the painters’
guild of Florence. At that time he could have begun work on his
own, but he remained at Verrocchio’s studio for an additional five
years. This training had a pro-
found effect on Leonardo. To
the end of his life he identified
himself as a painter even
though he completed only a
small number of pictures dur-
ing his lifetime. In fact he
refused many opportunities to
paint and failed to complete
many of the commissions that
he accepted. Nevertheless it is
clear from his writings that he
considered painting to be an
important discipline that
offered one the opportunity to
see more deeply into nature
than one could see without
studying painting. Today
fewer than 20 of Leonardo’s
pictures remain.

When Leonardo was about
30 years old he began to study
mathematics. He also began
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Leonardo da Vinci’s Mona Lisa.
Compare with The Lady of Kazan
in the preceding section  (Library of
Congress, Prints and Photographs
Division)



to keep notebooks. Leonardo wrote regularly in notebooks for the
rest of his life. The notebooks, which are our best source of infor-
mation about Leonardo, are profusely illustrated and contain
Leonardo’s ideas about art, architecture, design, mathematics,
numerous inventions, anatomy, physics, and a host of other sub-
jects. Leonardo used his background as an artist to investigate all
of these subjects. It is through his notebooks that we learn of
Leonardo’s ideas about the mathematical basis for representation-
al painting and drawing.

Leonardo was not the first to notice that there is a mathematical
basis to painting or drawing a scene in such a way that the three-
dimensional scene appears on a surface in the same way that it
appears to the eye. The Italian artists Leon Battista Alberti
(1404–72) and Francesco della Pierro (ca. 1420–92) had already
demonstrated that there was a mathematical basis for the tech-
niques then in use, but Leonardo saw more deeply into the geo-
metric ideas involved. Leonardo understood that visual images are
transmitted through space along straight lines, and because every
image must enter our pupils to be seen, the images have to form
what Leonardo called “pyramids.” “The eye sees in no other way
than by a pyramid,” he tells us, but these are not pyramids in the
usual sense. The vertex, or point, of the pyramid is a point just
inside the pupil of our eye. The base of the pyramid is the outline
of the object that the observer sees. When we see a round object,
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for example, the base of Leonardo’s optical pyramid is round.
When we see a dog, the base of the pyramid is in the shape of a
dog. The lines that make up the sides of the pyramid converge
toward a point just behind the pupil of the observer.

The idea that we have optical pyramids extending into our
pupils with bases formed by the objects around us, and the idea
that these pyramids form each time we open our eyes, are
admittedly unusual. Nevertheless they are very useful ideas if we
want to understand how we perceive objects. For example, sup-
pose we are looking at coins placed flat on a horizontal plane.
Suppose we are standing on the plane so that our eyes are above
it. The objects that are farther away appear higher up, and the
farther away we place a coin the higher it appears. No matter
how big the plane, however, no coin will ever appear to us to be
higher than the horizon. This observation explains why more
distant objects are generally drawn so as to appear closer to the
top of the painting.

Leonardo also uses this idea to explain why objects that are far-
ther away appear smaller. The farther away an object is placed, the
smaller the angle formed by the optical pyramid with that object
as base. To investigate this phenomenon further Leonardo sug-
gests holding a staff upright at various distances from the eye (see
the diagram). Notice that the farther from the eye we place the
staff, the narrower the pyramid formed by the ends of the staff and
our pupil. The rate at which the angle at the apex diminishes as the
base of the pyramid is moved farther away can be measured.
Leonardo suggests an experiment involving a staff and a tower.
Place the staff vertically between the eye and the tower so that the
ends of the staff appear to coincide with the bottom and top of the
tower. Now move the staff horizontally toward the observer. As
the staff moves toward the observer the top of the staff appears to
extend above the top of the tower, and simultaneously the bottom
of the staff appears to extend below the bottom of the tower.
Marks on the staff can be used to show that Leonardo’s optical
pyramid is, in fact, pyramidal in shape.

These observations are what one needs to draw a representa-
tional picture of an object or a scene. To render a representation-
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al drawing or painting all that is necessary is to imagine a pane of
glass between the object and the artist. The pane of glass cuts the
optical pyramid along a flat surface. The job of the artist is then to
paint or draw what appears on the glass. There is, however, more
than one way to position the glass so that it cuts the pyramid. We
can place the glass closer to the eye or farther away. We can tilt the
glass up or down, left or right. In each case the image that appears
on the glass changes: That is, our sense of perspective changes. If
we only move the glass back and forth the distances between var-
ious parts of the image change. If we tilt the glass, the angle
formed between the glass and the sides of the pyramid also
changes. When this occurs, the angles that make up the image on
the glass change as well. As a consequence, Leonardo’s method for
generating a perspective drawing preserves neither distances nor
angles. This is not a mistake. As we change position relative to a
fixed object, angles and distances do change. It is unpreventable.
Nevertheless, in every case if we follow Leonardo’s model, the
drawing is “in perspective” for that particular position of the
observer’s eye and that particular orientation of the pane of glass.

Leonardo’s optical pyramid is not an exact model of the way we
actually see the world around us. Leonardo acknowledges as much
in his writing. He points out that his model is a good representa-
tion for the way we see with one eye. With two eyes—as most of
us see the world—the situation is more complicated. His model
does not account for some of the phenomena that arise when we
look around us with both eyes. For example, if we place the side of
a hand between the eyes and along the nose, one eye sees one side
of the hand and the other eye sees the other side of the hand.
Leonardo’s model for vision does not take this effect into account.

Another consequence of Leonardo’s model is that our view of
a painting is distorted if we stand in the wrong place to observe
it. For example, suppose that from the artist’s perspective a
sphere appears on the plate of glass as a circle. The artist then
draws the sphere as a circle, but if we stand off to the side of the
picture to observe it, then from our perspective the artist’s circle
looks like an ellipse. In this case although the artist painted the
object correctly, our view of the “correct” image is distorted by
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the position from which we view it. Leonardo suggests that to
evaluate the technique of an artist properly we need to stand in
the proper place and look at the painting through one eye. From
a practical point of view, however, the real difficulty with
Leonardo’s approach is that there is in general no practical way
to connect his imaginary plane of glass with the painting we may
wish to produce.

Albrecht Dürer
Albrecht Dürer (1471–1528) was as well known and as much
admired in Germany and the Low Countries as Leonardo was in
Italy and France. Dürer’s first teacher was his father, who was a
goldsmith by trade. At the age of 15 Dürer was apprenticed to the
painter and printmaker Michael Wolgemut (1434–1519). By 1490
Dürer was finished with his apprenticeship and ready to begin a
lifetime in the pursuit of art.

Unlike Leonardo, Dürer was prolific. In addition to creating
paintings, Dürer was a successful engraver and a theoretician. He
wrote a four-volume work, Course in the Art of Measurement, about
the importance of geometry and measurement in representation-
al art. It is a mixed collection of results, but the general emphasis
is on the application of mathematics to problems in perspective.
Interestingly in Course in the Art of Measurement Dürer also
demonstrates an interest in classical Greek geometry. He writes,
for example, about the problem of doubling a cube, one of the
three unsolved problems of classical geometry, and he demon-
strates a familiarity with conic sections, although he is clearly
more interested in finding rational ways of drawing them than in
discovering their deeper mathematical properties. Dürer’s moti-
vation for his mathematical writings was to analyze and make
accessible to his contemporaries in Northern Europe the theory
behind the art that was being created primarily in Southern
Europe by Leonardo and others. The Renaissance arrived late in
Northern Europe.

It is clear from Dürer’s writings that he did not consider math
and art to be mutually exclusive subject areas. Math, to Dürer, was
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more than a tool. It was something he enjoyed. He even included
mathematical themes in some of his paintings, but his theoretical
conclusions about perspective were not much deeper, mathemati-
cally speaking, than Leonardo’s. What is different is that Dürer
showed how to make a practical, though extremely laborious,
device to implement his (and Leonardo’s) ideas about perspective.
Essentially Dürer tells us how to construct what we would now
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call a projection—and what Leonardo imagined as a pane of
glass—between the observer and the object. This device allows the
user to produce a practical demonstration of the techniques of
perspective drawing. It is a remarkable invention that is based on
several important geometrical ideas. We have included Dürer’s
own picture of the device, which was originally created in the form
of a woodcut, as a reference.

Dürer begins by identifying the apex and base of the optical
pyramid. In his example the base is the lute and the apex is the eye-
let attached to the wall on the right side of the illustration. If we
could place an eye at the eyelet and attempt to draw the lute as it
appears from the eyelet, we would encounter a technical chal-
lenge. The difficulty arises from the position of the lute. The neck
of the lute is pointed toward the observer. As a result the body and
neck of the lute appear severely foreshortened in any drawing that
we render from our position at the eyelet. Dürer’s device helps the
artist visualize the lute from the point of view of the eyelet. This
is important because his purely mechanical device enables the
artist to “cut” the optical pyramid that has its base at the lute and
apex at the eyelet in a way that Leonardo’s concept of a pane of
glass could not. Even better Dürer’s invention enables the artist to
see the results.

The first step in using this device is for the artist to erect a frame
with a door that can be opened and closed. On the back of the
door the artist collects what we might call “data points” for the
lute. (Dürer, of course, would have called them no such thing.)
The frame, with the door opened, corresponds to the pane of glass
that Leonardo imagined using to cut the optical pyramid. The
mathematical term for this pane of glass is a section.

String is used to make the sides of the optical pyramid visible.
The person on the left uses a pointer with the string tied at one
end. The pointer is used to select a spot on the lute for analysis.
The other end of the string loops through the eyelet on the right.
A weight is tied onto the string beneath the eyelet to keep it taut.
If we imagine the observer’s eye at the eyelet then the string shows
us the path that the ray of light travels from a point on the lute to
the observer’s eye.
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To help us visualize the image that the rays of light make on the
section, Dürer uses two more strings: a taut vertical string, paral-
lel to the vertical sides of the frame, and a taut horizontal string
that is parallel to the horizontal sides of the frame. The vertical
string can be moved back and forth along the frame and the hori-
zontal string can be moved up and down along the frame. Here is
how the device works:

STEP 1: The person on the left of the drawing places the
pointer at a point on the lute whose projection we wish to
investigate. In so doing, she or he creates a line (the string)
from the point on the lute to the eyelet.

STEP 2: The person on the right moves the two strings on
the rectangular frame until they cross at the point where
the line pierces the section, which is represented by the
frame.

STEP 3: The perspective line is withdrawn from the frame
and the door on the frame is closed. The two strings on
the frame now mark a point on the door, which the person
on the right marks.

This procedure is repeated as often as desired. The result is a col-
lection of dots that, if connected, enable the user to visualize how
the lute looks from the perspective of the eyelet. Notice that the
collection of dots on the door in the illustration form a nice out-
line of the foreshortened lute.

This is a beautiful math experiment to demonstrate the geome-
try of perspective, and the device is a concrete representation of
certain fundamental ideas in a branch of mathematics that would
later be known as projective geometry.

The search for a mathematical basis for the techniques of repre-
sentational art was an important first step in the development of
projective geometry. These artists provided a context for further
study as well as the first concrete examples of projections.
Although they proved no theorems, their work provided the basis
for more rigorous mathematical inquiries in much the same way
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that Egyptian surveying techniques are said to have inspired the
Greeks to begin their study of geometry.

This is not to say that these artists “reduced” their art to a series
of mathematical rules. The writings that they and their contem-
poraries left behind make it clear that they were fully engaged in
an artistic process. They sought to communicate emotions and
aesthetic values through their art. It would be a mistake to believe
otherwise. But it is also an error to fail to see that this style of art
has a mathematical basis and that some of the most important of
these artists knew that their art was founded on mathematical
principles, and that they believed that their artistic efforts were
most successful when they took place in a mathematical context.

These works of art have inspired art lovers the world over. They
also inspired a very creative 17th-century mathematician to
attempt to develop a new branch of geometry that would express
and extend the mathematical insights of these artists in a more rig-
orous and logically satisfactory way.
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5
the first theorems

A theorem is a statement that is not self-evident and that has been
proved true. Neither Leonardo nor Dürer produced a single theo-
rem in the field of projective geometry. It is true that they recog-
nized some of the basic concepts of this branch of mathematics.
We can read in their words the ideas that would eventually consti-
tute some of the axioms of this new branch of thought, but neither
Leonardo nor Dürer had the background necessary to place these
concepts in a rigorous mathematical context. The first person to
turn the work of the artists of the Renaissance into a collection of
mathematical theorems was the French mathematician Gérard
(also known as Gaspard or Girard) Desargues (1591–1661).

In addition to being interested in mathematics, Gérard
Desargues was an engineer and architect. In these capacities he
worked for the French government. He loved mathematics and he
knew many of the best mathematicians of his time. Desargues was
one of the fortunate few mathematicians of his time who had the
opportunity to attend weekly meetings at the home of the French
priest Marin Mersenne (1588–1648). Father Mersenne made his
home a place where the best mathematicians in Paris could gath-
er to trade ideas and to learn. Because there were no scholarly
journals, these clubs—there were similar clubs in other cities—
together with regular correspondence, were the means mathe-
maticians and scientists used to communicate their discoveries. It
was at these meetings that Desargues described his ideas for a new
geometry based on the techniques of Renaissance artists.

Desargues’s ideas were not well received. Part of the problem
was that Desargues expressed his new ideas in a new mathematical



vocabulary. He invented this vocabulary specifically to express
these ideas; that was unfortunate, because as a general rule it is
hard to convince most people to learn an entirely new vocabulary
just to evaluate a set of ideas that may or may not be worth con-
sidering. Furthermore Desargues wrote in a very terse style that
many people apparently found difficult to read. Matters of style
and vocabulary aside, however, Desargues’s ideas about geometry
were highly original. This difference alone would have made
Desargues’s geometry difficult to appreciate even under the best of
circumstances.

To appreciate the conceptual difficulties involved in understand-
ing this new geometry, recall that a projection of an image usually
changes both the angles and lengths one finds in the image. (This
is often expressed by saying that projections preserve neither
lengths nor angular measurements.) Desargues’s contemporaries,
however, were familiar only with Euclidean geometry, and lengths
and angular measurements are the currency of Euclidean geome-
try. They are exactly what mathematicians study when they study
this geometry. But Desargues’s projections destroyed exactly those
properties that his contemporaries recognized as geometric. The
first question, then, was whether there was anything left to study
in Desargues’s new geometry: What, if any, properties remained
the same from one projection to the next? Desargues needed to
identify interesting properties that are preserved under projections,
because those are the properties that must form the basis of the
subject. Because Desargues had already eliminated lengths and
angles as objects of study, it was not immediately clear whether he
had left himself anything to study.

The property of being a triangle is preserved under a projection.
Although neither the shape nor the size of the triangle is pre-
served, the image of any triangle under a projection is always
another triangle. Unfortunately this observation is almost self-
evident. What Desargues wanted to identify were other, deeper
properties that might be preserved under projections. From an
artistic point of view, there is good reason to suspect that many
properties are preserved by projections. Two distinct projections
are, after all, alternate images of the same object. It seems at least
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plausible that there would exist other, more interesting properties
that all projections of the same image would have in common.

Desargues’s first paper, Treatise on the Perspective Section, contains
what is now called Desargues’s theorem. It is one of the most
famous theorems in projective geometry, in part because it is the
first theorem, and in part because it shows the existence of a
nonobvious property of a projective transformation. To follow the
description of Desargues’s theorem, refer to the accompanying
diagram. Notice that triangles ABC and A'B'C' are “in perspec-
tive”: That is, each triangle is a section of the same optical pyra-
mid so that A' is the image of A under the projection, B' is the
image of B, and C' the image of C. Desargues’s theorem states that
if we extend corresponding sides of each triangle, not only will the
corresponding sides intersect, but also all three points of intersec-
tion, which we have marked as P1, P2, and P3, will lie on the same
line. With one important exception, this is true no matter how we
project our triangle ABC.

The exception to Desargues’s theorem arises—or at least seems
to arise—when the section that determines triangle A'B'C' is cho-
sen so that one or more sides of the two triangles are parallel with
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one another. If the corresponding sides of the triangles are paral-
lel then they do not intersect in the ordinary Euclidean sense. The
solution to the problem of parallel lines is to define them out of
existence. Here is how this is done: We assume the existence of an
extra point, the point at infinity—which is defined so that the “par-
allel” lines intersect at this extra point. Now we can say that in all
cases the three points that result from the intersection of corre-
sponding lines are collinear: That is, the three points lie on one
and the same line.

The existence of the extra point at infinity may seem artificial,
but it turns out to be a tremendous convenience. Furthermore
although it may sound strange to say that two parallel lines inter-
sect at the point at infinity, the phrase simply echoes what we
observe in any picture that purports to represent two parallel lines
receding toward the horizon. The two lines always converge to a
single point located on the horizon of the picture. The difference
between the language of projective geometry and the language of
representational art is that in art the point at infinity is called a
vanishing point. The vanishing point is the point where the two
parallel lines appear to meet. In projective geometry “the vanish-
ing point” is simply called the point at infinity. Desargues’s theo-
rem is an important example of a nonobvious property that a
triangle and its projection share. Here is a more formal statement
of Desargues’s theorem:

Given two triangles, if the lines determined by the pairs of cor-
responding vertices all meet at a common point, then the points
determined by corresponding sides all lie along a common line.

For Desargues this was just the beginning. After discovering the
theorem that bears his name, he turned his attention away from
simple triangles and toward conic sections. He wanted to know
which properties of a conic section, if any, were preserved under a
projection. His discovery is contained in his masterpiece Proposed
Draft of an Attempt to Deal with the Events of the Meeting of a Cone
with a Plane. Desargues investigates the same conic sections that
Apollonius investigated almost 2,000 years earlier. The difference
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is that Desargues treats them from his point of view, the point of
view of projective geometry. In doing so, he discovers something
startling about the nature of conic sections: No matter how a conic
section is projected, the result is another conic section. The image
of an ellipse under a projection need not be an ellipse. Under a
projection the image of an ellipse may, for example, be a parabola
or it may be a hyperbola. It may be a differently shaped ellipse as
well. The image of an ellipse under a projection depends on the
way we choose the section. What Desargues showed is that the
image of an ellipse must be (1) another ellipse, (2) a parabola, or (3)
a hyperbola. No other possibilities exist. Furthermore what has been
said of an ellipse can equally accurately be said of a parabola and a
hyperbola. A projection of a conic section is always a conic section,
and it is in this sense that all conics are “the same” in projective
geometry.

As Desargues developed his new geometry and described his
ideas at the home of Marin Mersenne, the future French philoso-
pher Blaise Pascal (1623–62), then a 16-year-old, became inspired
by Desargues’s work. Pascal attended the weekly meetings at the
home of Marin Mersenne along with his father, Etienne Pascal.
Etienne was a mathematician with very clear ideas about educa-
tion. It was he who taught his son. Etienne, in fact, taught Blaise
all the basic subjects except math, the teaching of which he intend-
ed to postpone until his son was 15 years old. As a consequence all
mathematics books were removed from the Pascal home. By the
age of 12, however, Blaise had begun to study mathematics unas-
sisted. When he discovered that the sum of the measures of the
interior angles of a triangle equals the sum of two right angles (the
proof of which is to be found in chapter 2 of this volume), his
father gave him a copy of Euclid’s Elements. From that time
onward Etienne encouraged Blaise in his study of mathematics.

Blaise turned out to be a prodigy, and of all the mathematicians
exposed to the work of Desargues, the young Pascal was one of
the very few who grasped its importance. Soon Blaise was busy
searching for other properties of geometric figures that were
invariant under projections. He found one. His discovery, which
relates hexagons and conic sections, was an important insight
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into projective geometry. He published it under the title Essay on
Conics. This theorem is now called Pascal’s theorem. Essentially
we can express Pascal’s theorem in five brief statements (see the
accompanying diagram):

� Suppose we have a conic section.
� Choose six points that lie on this conic.
� Connect the six points so as to form a hexagon. (The

hexagon is a very general type of hexagon. It has six 
vertices, but it usually does not resemble the familiar
regular hexagon.)

� Extend each pair of opposite sides of the hexagon until
they intersect.

� The three points of intersection will lie on a single line.

To do Pascal’s theorem full justice would require a much longer
description. Because opposite sides of even an irregular hexagon
may be parallel, we need to introduce the point at infinity again,
just as we did for Desargues’s
theorem, in order to state his
idea with precision. This,
however, would take us too
far afield, so we forgo the
technical niceties. Pascal’s
theorem, as Desargues’s theo-
rem did, pointed the way 
to a new type of geometry,
but for a long time neither
Desargues’s work nor Pascal’s
attracted much attention.

Pascal’s theorem is one-half
of an extraordinary discovery.
How much Pascal understood
about the implications of his
own discovery is not clear.
Pascal wrote a longer work
that extended his ideas about
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Illustration for Pascal’s theorem. The
hexagon ABCDEF is inscribed in the
conic. The pairs of opposite sides are
AB and DE, AF and CD, EF and
BC. Extending these sides determines
the three points P, R, and Q that are
contained on line l.



projective geometry, but this work was never published and is now
lost. It would be well over a century before Pascal’s theorem was
rediscovered and generalized by the French mathematician
Charles Jules Brianchon.

With the work of these two highly creative mathematicians,
Desargues and Pascal, projective geometry was off to a promising
start. Unfortunately their discoveries were, for the most part,
ignored. Desargues’s discoveries were so far from the mainstream
of mathematics at the time that some people ridiculed his work.
Only René Descartes, Desargues’s friend and himself a prominent
mathematician, offered any encouragement. Worse, Desargues
was soon working alone again, because although Pascal was very
imaginative, his interests changed as often as the weather. By the
age of 18 Pascal was busy designing and constructing one of the
first mechanical calculators in history.

Desargues’s ideas were ahead of what most mathematicians of
the time were prepared to imagine. His Proposed Draft of an
Attempt to Deal with the Events of the Meeting of a Cone with a Plane
was printed in 1639 and soon forgotten. All copies were lost and
all knowledge of Desargues’s treatise was restricted to a single
manuscript copy. In the early years of the 19th century, howev-
er, as mathematicians again began to ask and answer the same
questions that Desargues had grappled with 150 years earlier,
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Desargues’s work finally began to attract the attention that it
deserved. His ideas were expanded into an entire branch of
geometry that attracted the attention of some of the best 
mathematicians of the time. By the beginning of the 20th century
projective geometry had begun to fade from view again because
many of the most important questions had been resolved, but
Desargues could not be forgotten. Amazingly after centuries in
obscurity a single original, printed copy of Proposed Draft of an
Attempt to Deal with the Events of the Meeting of a Cone with a Plane
was rediscovered in 1951. In 1964 a crater on the Moon was
named after Desargues.

MARIN MERSENNE

The French priest Marin Mersenne (1588–1648) is a prominent figure
in the history of mathematics. He was a talented mathematician, who
enjoyed studying the theory of numbers and discovered a class of prime
numbers that are now called Mersenne primes. In addition to his own
research into mathematics he took an active interest in all matters sci-
entific and mathematical. Father Mersenne was a strong proponent of
rational thought. He strongly supported research in science and mathe-
matics, and he spoke out against the pseudosciences of alchemy and
astrology. Further Mersenne acted as a link between many of the most
prominent scientists and mathematicians of the time. He traveled wide-
ly and maintained an extensive correspondence with many well-known
scientists and mathematicians, including René Descartes, Galileo
Galilei, and Pierre de Fermat. When scientists and mathematicians
informed Mersenne of their discoveries he passed the news along. This
was a very important and time-consuming activity. Recall that at the time
there were no scientific journals. Father Mersenne’s letters provided an
important link, perhaps the most important link, connecting many of the
great thinkers of Europe. Moreover he held weekly meetings at his home
that attracted many of the best mathematicians in Paris. It was there that
ideas were exchanged and debated. The letters exchanged between
Marin Mersenne and his friends, as well as the weekly get-togethers at
his home, had a profound impact on the development of mathematics in
the 17th century.



Today, Desargues’s ideas are often taught to college undergrad-
uates enrolled in introductory “modern” geometry courses.
Furthermore, all mathematicians now have at least passing famil-
iarity with the concepts of projective geometry. Probably
Desargues would have taken some satisfaction in this turn of
events, but he probably would have found it even more satisfying
had his ideas received half as much attention while he was still
alive. His ideas have not changed, of course. His theorems are the
same now as they were then. Rather, society has finally caught up,
and we are now in the position to enjoy mathematical ideas that
impress many of us as beautiful but not especially exotic.
Desargues’s highly original ideas were far ahead of his time. He is
the first geometer in this narrative to suffer neglect because he saw
farther than his contemporaries, but we will soon see that his expe-
rience was by no means unique.
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6
projective geometry

rediscovered

The ideas of Desargues lay dormant for about 150 years.
Initially, many mathematicians were busy inventing the subject
that would lead to the calculus. Calculus is part of a branch of
mathematics called analysis. Almost from the start the results
obtained with the new analysis were useful in the sense that they
found immediate application in science and mathematics.
Consequently this new branch of thought attracted the attention
of many, perhaps most, of the best mathematicians of the era.
The field of geometry entered a period of dormancy. Analysis
was used to describe the motion of planets, the motions of fluids,
and the mystery of ocean tides. The discovery of the field of
analysis changed everything. For a while most mathematical
research was research into analysis. In particular the ideas of
Desargues and the young Pascal were largely forgotten.

The story of projective geometry resumes in the work of the
French mathematician Gaspard Monge (1746–1818). Monge led a
frantic, breathless life. He was interested in many branches of sci-
ence as well as mathematics. He was ambitious and impossibly
hardworking, and his life was greatly complicated by the political
turmoil that occurred in France during his lifetime.

Monge was born into a France that was ruled by aristocrats. He
showed mathematical promise early in life. As a teenager he devel-
oped his own ideas about geometry, but because his father was a
merchant, he found himself working as a draftsman at Ecole
Militaire de Mézières, an institution where the best places were



reserved for the sons of aristocrats. When Monge was asked to
determine gun emplacements for a proposed fortress, he saw an
opportunity to use his geometric ideas. The standard method of
determining gun emplacements at the time involved numerous
time-consuming arithmetic calculations. Using his own geometric
methods Monge solved the problem so quickly that at first his
solution was not accepted. After further reflection the authorities
accepted Monge’s ideas. They also classified his geometric method
as a military secret. Soon Monge was offered a position as a
teacher rather than as a draftsman. Monge was on his way up.

Monge’s ideas about geometry included ideas about shadows and
perspective, and he is credited with developing a type of mathe-
matics called descriptive geometry. (Descriptive geometry has
some ideas in common with projective geometry.) But Monge’s
interests extended far beyond geometry. He also wrote about math-
ematical analysis, chemistry, optics, meteorology, metallurgy, edu-
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cational reform, and other topics besides. He was indefatigable.
Within a few years of becoming a teacher at Ecole Militaire de
Mézières Monge had accepted a second, simultaneous position
teaching at the Académie des Sciences in Paris. When scheduling
conflicts arose he used his own money to hire someone to teach in
his place at one of the institutions. Eventually Monge would accept
still a third simultaneous position as examiner of naval cadets. It
was also during this time that he helped to establish the metric sys-
tem in France. As a scientist Monge was interested in theory and
experiment, and he contributed to the development of both.

Monge’s ideas about geometry were very inclusive. His class in
what he called descriptive geometry included chapters on the
study of surfaces, shadows, topography, perspective, and other
subjects. He used his insight into geometry to develop what later
became known as mechanical drawing, the mechanical represen-
tation of three-dimensional objects via perpendicular, two-
dimensional sections. Monge believed that geometry was in many
ways more fundamental than the field of mathematical analysis.
In fact he used what are now known as geometrical methods to
express and solve problems in analysis. It is through Monge’s
work that geometry again assumed a central place in the field of
mathematics.

When the French Revolution began, Monge supported the rev-
olutionaries. It was a dangerous time. There was turmoil within
France and at the borders between France and its neighbors. The
spirit of the times is apparent in his evolving research interests.
Monge wrote about manufacturing cannons and explosives. He
wrote about foundry work. He also continued to teach. As we shall
soon see, it was through his teaching that, in the end, Monge had
his greatest effect on the history of geometry.

The French Revolution was eventually subverted, and France
was put under the rule of Napoléon Bonaparte (1769–1821), the
French military and political leader. Monge and Napoléon
became fast friends. (Napoléon was very interested in mathemat-
ics.) During this time Monge traveled frequently. He was sent to
Italy by Napoléon to help identify art treasures that the French
could take for their own. He accompanied Napoléon to Egypt.
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Later when Napoléon’s fortunes took a turn for the worse,
Monge had to run for his life. After Napoléon was discredited,
the new government stripped Monge of the honors that had been
bestowed upon him by previous French governments, and he was
thereafter excluded from French scientific life. He died a few
years later.

Monge’s Students
Monge’s influence on mathematics was felt for many years
through his pupils. The French mathematician and teacher
Charles-Jules Brianchon (1785–1864) was a student of Monge.
As Monge’s was, Brianchon’s personal life was profoundly
affected by the turmoil of the times. After completing his formal
education Brianchon served in the French army as an artillery
officer in Spain and Portugal. Eventually his health took a turn
for the worse and he retired from the service. He settled into
teaching. For a while after he found work as a teacher he con-
tinued to do research in mathematics. Still later he turned his
attention toward chemistry. Brianchon’s mathematical output
was not large.

While Brianchon was a student he discovered a remarkable the-
orem that is closely related to Pascal’s theorem. It is for this theo-
rem that Brianchon is best remembered. As were most
mathematicians of the time Brianchon was unaware of Pascal’s
work in projective geometry. As a consequence he began his
research by rediscovering Pascal’s theorem. He then went on to
prove his own theorem, a theorem that has a peculiar symmetry
with Pascal’s theorem. (A picture illustrating the content of
Pascal’s theorem is to be found on page 68.) Here are the two the-
orems compared:

Pascal’s theorem:

Given a hexagon inscribed within a conic section, the points of
intersection of opposite sides of the hexagon are contained on a
single line.
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Brianchon’s theorem:

Given a hexagon circum-
scribed about a conic section,
lines connecting opposite
vertices of the hexagon 
intersect at a single point.

Notice that Brianchon’s 
theorem is essentially Pascal’s
theorem with the following
substitutions: (1) line is inter-
changed with point, (2) sides
is interchanged with vertices
(which is just another
line–point substitution), (3)
circumscribed is interchanged
with inscribed, and (4) contained on is interchanged with intersect
at. All of these substitutions simply involve interchanging words
that describe points with those that describe lines. (Even the cir-
cumscribed–inscribed substitution can be understood in this
way.) Notice, too, that if we begin with Brianchon’s theorem
instead of Pascal’s theorem, then we can obtain Pascal’s theorem
by making the appropriate substitutions.

Pascal’s theorem and Brianchon’s theorem are, in a sense, two
sides of the same mathematical coin. Projective geometry was not
yet sufficiently understood to make full use of this observation, but
Brianchon had discovered an early instance of what would later be
known as the principle of duality. It is to the discoverer of the prin-
ciple of duality, a remarkable and fundamental idea in projective
geometry, that we now turn our attention.

Jean-Victor Poncelet (1788–1867) was another of Monge’s stu-
dents and also a friend of Brianchon. (Poncelet and Brianchon
wrote a mathematics paper together.) As Monge’s and Brianchon’s
were, Poncelet’s life was in many ways determined by the turmoil
that engulfed France. After his student years Poncelet became a
military engineer in Napoléon’s army. He served under Napoléon
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during the invasion of Russia. For the French army, the invasion
of Russia was a disaster. The French not only were defeated, but
suffered very high casualties. Remnants of the French army man-
aged to return to France, but many were left behind. Jean-Victor
Poncelet was one of those who remained in Russia. Left for dead,
he spent the next two years in a Russian prison, and it was during
this time that he studied projective geometry. His contributions to
projective geometry so far exceeded those of Desargues, Pascal,
Brianchon, and others that he is sometimes described as having
founded the subject.

Prisons, especially those built for prisoners of war, have a repu-
tation for being harsh environments. The prisons in czarist Russia
were no exception. Nevertheless Poncelet thrived in the harsh
environment. During the two years that he was imprisoned in
Russia, Poncelet managed to do enough mathematics to produce
a two-volume work, Applications of Analysis and Geometry, which
was intended to serve as an introduction to another work, Treatise
on the Projective Properties of Figures. Poncelet’s plans did not unfold
smoothly after his term as a prisoner was completed. The Treatise,
which turned out to be the work for which Poncelet is best
remembered, was written after he returned to France in 1814. It
was published in 1822. Its introduction, Applications of Analysis and
Geometry, was eventually published in sections 40 years later dur-
ing the years 1862 to 1864.

Poncelet is often called “the father of projective geometry”
because it is in Poncelet’s work that many of the most impor-
tant concepts of projective geometry first appear. It was
Poncelet who first identified many of the most important char-
acteristics of figures that are preserved under projections.
Included in his discoveries was the very important concept of
cross-ratio.

As its name implies, the cross-ratio is a ratio, but a peculiar
kind of ratio. We already know that distances are not preserved
under projections. It was probably something of a surprise to
these early mathematicians that in addition ratios of distances are
not preserved. The ratio AB/BC is not equal to the ratio
A'B'/B'C'. What is preserved under projections is the ratio of the
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ratios of the distances, so
that the cross-ratio of four
points after a projection is
the same as the cross-ratio
before the projection (refer
to the following diagram).

The importance of the
cross-ratio stems from the
following essential fact:
Any transformation of
space that preserves the
cross-ratio is a projective
transformation. In other
words, the concepts of
cross-ratio and projection
are intimately related.
Additionally the cross-ratio
can be used to understand
how the positions of points
change under projections.

The cross-ratio is determined by the following formula:

AC A'C'
CB = C'B'

AD A'D'
DB D'B'

The only additional restriction is that the lengths represented by
the pairs of letters represent directed lengths: If we take the direc-
tion from A to C as positive then the segment AC is a positive
length and the segment DB is a negative one.

This, at least, was the original conception of cross-ratios. Later
it was discovered that one did not need to know anything at all
about the distances between the four points to know about their
cross-ratio. In projective geometry definitions and ideas that do
not depend on distances play a special role, because (again) in pro-
jective geometry distance is not a “geometric property.” The fact
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that Poncelet still used distances to define projective concepts
indicates that he had not quite freed himself from the ideas of
Euclidean geometry. He still saw Euclidean geometry as the more
fundamental of the two geometries, but further research would
soon indicate otherwise.

Poncelet also discovered a wonderful and surprising property of
projective geometry called the principle of duality. We have
already encountered an example of duality in our discussion of
Pappus’s theorem and in Brianchon’s theorem. In both instances
we saw that if we interchange the words line and point in each the-
orem and make a few other changes in the grammar, we obtain a
new and true statement. In projective geometry this surprising
property—that we can simply interchange the words point and line
in one theorem to get a new and true statement—is quite general.
Each time one statement is proved true, another true statement
can be obtained simply by interchanging the words point and line
and adjusting the grammar. When one statement is true, both
statements are true. For example, here is Desargues’s theorem
along with its dual:

Desargues’s theorem:

Given two triangles, if the lines determined by the pairs of cor-
responding vertices all meet at a common point, then the points
determined by corresponding sides all lie along a common line.

The dual of Desargues’s theorem reads as follows:

Given two triangles, if the points determined by the pairs of
corresponding sides all meet on a common line, then the lines
determined by the corresponding vertices all intersect at a
common point.

Both statements are true. The discovery of the duality principle in
projective geometry led to a flurry of new theorems as mathe-
maticians simply looked at old theorems—theorems that had been
previously proved true—and rewrote them, interchanging the
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words point and line and correcting the grammar of the result. It
was that easy.

The existence of the duality principle was something of a sur-
prise. There is not, for example, a duality principle in Euclidean
geometry, although we can find isolated dual statements, such as
the theorem of Pappus. In Euclidean geometry when we inter-
change the words line and point we generally get a false statement.
For example, although it is true that in Euclidean geometry any
two points determine a line, it is, in general, false that any two
lines determine a point. (The exception occurs when the lines are
parallel.)

Poncelet was not the only mathematician to take credit for dis-
covering the principle of duality. Another student of Monge’s, the
French mathematician and soldier Joseph Diaz Gergonne
(1771–1859), also claimed to have discovered the principle of
duality. Gergonne’s father, like some of the Renaissance artists
who began to investigate the foundations of projective geometry,
was a painter and architect. He died when Gergonne was 12.
Gergonne displayed a lifelong interest in mathematics, but as so
many citizens of France did, he spent much of his early adulthood
participating in military campaigns. As Brianchon did, Gergonne
served in Spain. In the end Gergonne settled down to study math-
ematics and write about his discoveries. In publishing his ideas,
however, Gergonne had an advantage over most mathematicians
of his time. He had his own mathematical journal. Although he
originally called it Annales de mathématique pures et appliqués, it
came to be known as Annales de Gergonne. The ideas of many of
the best French mathematicians of the time were published in the
Annales. Brianchon and Poncelet, for example, had some of their
work published in Gergonne’s journal.

There was some competition between Gergonne and Poncelet.
In addition to the dispute about which of them had discovered the
principle of duality, they had competing ideas about the best way
to express geometry. Poncelet favored what is called synthetic
geometry, a method devoid of algebraic symbolism. Greek geom-
etry is often described as synthetic. Notice, for example, that 
in chapter 2 in the proof that the sum of the interior angles of a
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triangle equals the sum of two right angles, there is no algebra.
Monge, too, sometimes used synthetic methods. This type of rea-
soning fell out of favor with the rise of analysis, but it was used
again in the first half of the 19th century. Gergonne thought that
geometric truths were best expressed in the language of algebra.
That is, he favored analytic methods.

Though their competing visions and claims seemed to start off
amicably enough, the disputes between Poncelet and Gergonne
eventually became bitter. In retrospect the discovery of the princi-
ple of duality may well have been one of those cases of simultane-
ous discovery, and it may not be fair to assign credit to one and not
the other. But with respect to the question of whether synthetic or
analytic methods facilitate discovery in geometry, the question (for
now) has been largely resolved. Most mathematicians today prefer
analytic methods.

Projective Geometry as a 
Mature Branch of Mathematics

For all their disagreements Poncelet and Gergonne both used
measurement in their study of projective geometry. Though their
ideas were in many ways new, they still saw projective geometry in
terms of Euclidean geometry, in which the measurement of dis-
tances and angles is fundamental. But to really understand projec-
tive geometry and its place in mathematics, doing away with the
concept of measurement entirely is helpful. This was the contri-
bution of the German mathematician Karl Georg Christian von
Staudt (1798–1867).

Unlike the French mathematicians Brianchon, Monge,
Poncelet, and Gergonne, von Staudt led a quiet life. He was born
and grew up in Rothenburg, Germany. As a young man he studied
under Carl Friedrich Gauss, one of the most prolific mathemati-
cians of the 19th century. Under Gauss von Staudt began his stud-
ies in astronomy, but he eventually turned his attention to
geometry, especially projective geometry. Von Staudt’s contribu-
tion to geometry was less a matter of technique and more a mat-
ter of philosophy. His accomplishment was to restate the ideas of
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projective geometry, including the concept of cross-ratio, in a way
that was completely free of any reference to length. Essentially he
showed that projective geometry is an independent branch of
geometry. One did not need any results from Euclidean geometry
to understand projective geometry. Projective geometry could be
developed in a way that used none of the concepts of Euclid,
Apollonius, and Archimedes.

Von Staudt’s contribution was important because during the
19th century mathematicians were discovering numerous new
geometries. They were discovering many, very different ways of
thinking about points, lines, planes, and spaces. They had dis-
covered that there is not one geometry but many geometries.
The question that mathematicians then sought to resolve was
how these diverse geometries were related. They wanted to
know how much of each new geometry was really new and how
much was simply a novel way of restating old ideas. Von Staudt’s
work demonstrated that projective geometry is really a new
branch of geometry, not simply a peculiar way of looking at
Euclidean concepts.

The ideas and techniques of projective geometry continued to
draw the attention of leading mathematicians throughout the 19th
century, but as the century drew to a close, interest in the subject
began to wane. Perhaps the last great discovery about projective
geometry made during the 19th century was due to the efforts of
the German mathematician Felix Klein (1849–1925).

Felix Klein led the life of an academic. He was educated at the
University of Bonn and after graduation moved several times to
teach at different universities. Erlangen University and Göttingen
University were among the places he worked. Klein was a highly
imaginative mathematician with an interest in the big questions,
and in the 19th century geometric questions were on the minds of
many of the best mathematicians. The century saw the rise of
numerous other geometries. Projective geometry attracted much
of the attention, but as mathematicians realized that other, distinct
geometries existed, they felt free to create and investigate geome-
tries of their own invention. Geometry had fragmented. To an
outsider it must have seemed a random collection of questions and

Projective Geometry Rediscovered  85



answers. What, Klein asked, were the relationships among these
geometries?

The concepts necessary to uncover the logical relationships
between the different branches of geometry then known had
already been developed decades earlier. The necessary ideas were
not, however, part of geometry; they were part of algebra. As
geometry was fragmenting, mathematicians had developed new
conceptual tools to investigate the structure of mathematics.
These new concepts were in the field of algebra. One such idea
was the branch of mathematics now called group theory. It was
with the help of group theory that Klein was able to reunify the
field of geometry.

Beginning in the early 1800s the mathematicians Evariste Galois
(1811–32) and Niels Henrik Abel (1802–29) developed a new way
of thinking about mathematics. They began to recognize the exis-
tence of certain logical structures that are shared by very different-
looking kinds of mathematics. They noticed that the same logical

86 GEOMETRY

The mathematics building at Göttingen University during the time of
David Hilbert, Felix Klein, and Emmy Noether. For most of the 19th 
century and the first third of the 20th century, more of mathematics was
discovered in this modest building than in any other place in the world.
(Courtesy of University of Göttingen)



Projective Geometry Rediscovered  87

PROJECTIVE GEOMETRY TODAY

From the early 20th century onward there has not been much research
into the foundations of projective geometry, but the field has not been
entirely ignored. The University of Toronto has an excellent geometry
department, and Donald Coxeter, an important 20th-century geometer
at the University of Toronto, has obtained several interesting results
about projective geometry. Still it is fair to say that since Klein’s work,
mathematicians have turned their attention elsewhere. Projective geom-
etry is a mature subject. Most of the big theoretical questions in projec-
tive geometry have been answered for now, but that is not the end of
projective geometry.

Late in the 20th century, mathematicians and computer programmers
with a mathematical bent again became interested in projective geome-
try. They were interested in developing the computer programs necessary
to represent three-dimensional objects on flat (two-dimensional) comput-
er monitors. Representing a three-dimensional image on the surface of a
monitor requires one to be able to project the image on the screen cor-
rectly. This is essentially the same problem faced by Renaissance artists.
The difference is that the tool is not a paintbrush but a computer program.
Their goals are to write the instructions necessary for the computer to
represent a three-dimensional surface from a variety of viewpoints and for
the result to resemble the given object. It is a problem with which
Leonardo da Vinci and Albrecht Dürer would have been intimately famil-
iar. It is also a nice example of how this mathematical problem has come
full circle. Renaissance-era artists looked for a mathematical basis for the
techniques that they were developing. Their goal was to find the mathe-
matics necessary to represent a scene or object better. Now that the
mathematics has been so fully developed, the goal is to write software
that incorporates as much of the mathematics as necessary to represent
three-dimensional objects on two-dimensional surfaces artistically.

Another application of projective geometry involves computer vision.
Because the appearance of an object changes with the perspective of
the observer, identifying an object from different positions depends on
recognizing which properties remain invariant under a projective trans-
formation. Interpreting the flat, pixilated computer images is facilitated 
by concepts from projective geometry. It has been 500 years since
mathematicians began the search for the mathematical foundations of
representational art. After all of this time, the concepts of projective
geometry continue to fascinate the mathematically curious and help the
artistically ambitious.



structures exist in arithmetic and analysis, geometry and algebra.
The most prominent of these structures, the group, has proved to
be a very useful tool in helping mathematicians understand how
mathematics “works.”

A group is a set of symbols that can be combined, subject to cer-
tain restrictions, to produce other symbols that are also in the
group. Of course we can assign meanings to these symbols. We can
say that the symbols represent numbers or geometric transforma-
tions, or we can give them some other interpretation. The interpre-
tation that we place on the symbols depends on which questions we
are asking and which objects we wish to study. But the interpreta-
tion of the symbols has no relation to the group. It is entirely possi-
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GROUPS AND GEOMETRY

In mathematics a group is a collection of symbols and an operation.
Sometimes a group is represented with a pair of symbols like this: (G, ·).
The letter G represents the set of objects. We can say that G is the set
{a, b, c, . . .}. The dot following G in (G, ·) represents the operation we
use to combine the objects. The group operation is somewhat analo-
gous to multiplication. Every group satisfies four properties:

1. If a and b belong to G, then a · b, the product of a and b,
belongs to G.

2. If a, b, and c belong to G, then (a · b) · c = a · (b · c): That
is, we can combine a and b first and then combine c, or we
can combine b and c first and then combine a; the result is
the same.

3. Every group has one special element called the identity. It is
usually represented with the letter e. The identity has the
property that for any other element in G, e · a = a · e = a:
That is, no matter how we combine e with a, where a repre-
sents any other element of G, the result is always a.

4. Finally, every element in G has an inverse: If a is any element
of G, G must also contain another element called the
inverse of a, written a–1, with the property that a · a–1 = e.



ble to study groups without giving any interpretation to the sym-
bols. The exact definition of a group is not of immediate concern
here. What is important is that there are certain criteria that every
group satisfies, and that there are other criteria in which one group
may differ from another. The differences between one group and
another are what mathematicians use when they classify groups.

Klein’s method was to examine the set of motions that is charac-
teristic of each geometry. The set of all such characteristic motions
forms a group. Each geometry could be associated with a group of
motions; for example, in Euclidean geometry the set of motions
that defines the geometry is the set of all rotations and translations
that can be applied to any figure. (In a translation the figure is
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If this sounds too abstract to be useful, notice that the set of positive
rational numbers under the operation of multiplication is a group: (1) If
we multiply any two positive rational numbers together the result is
another positive rational number; (2) multiplication is associative; (3) the
identity is the number 1; and (4) the inverse of any positive rational num-
ber a is just 1/a.

Once mathematicians had formulated the definition of group, they
found groups everywhere. Furthermore breakthroughs in understand-
ing the abstract mathematical properties of groups gave insight into
the more “practical” expressions of groups. Some of the first applica-
tions of group theory remain some of the best known. Early in the 19th
century the theory of groups was used to solve the most intractable
problems in mathematics up to that time. For centuries mathemati-
cians had sought to find a formula analogous to the quadratic formula
that would enable them to solve certain classes of algebraic equa-
tions. By use of the theory of groups it was shown that the formulas
they sought did not exist. This discovery demonstrated the power of
group theory, but it was only the beginning. Today group theory is used
in theoretical computer science, physics, and chemistry as scientists
seek to find and exploit structure in information theory, atomic physics,
and materials science. Group theory is also used in many branches of
mathematics as a tool. It constitutes a separate discipline within the
field of algebra.



moved along a straight line without rotation.) These are called
Euclidean motions. The geometric properties of Euclidean geom-
etry—lengths and angular measurements—are exactly those prop-
erties that remain unchanged under every Euclidean motion.
Furthermore two such motions can be combined to yield a third
motion by first performing one motion on a figure—a translation,
for example—and then performing the second motion—either a
translation or rotation—on the same figure. We call this combina-
tion of two motions the product of the motions. The set of all such
motions, when combined in this way, forms a group called the
group of Euclidean motions. Once this was done, Klein dropped
the interpretation of the group as a set of motions and looked only
at the detailed structure of that group itself.

Aided by von Staudt’s reformulation of the ideas of projective
geometry, Klein discovered that the set of all projective motions
also forms a group. The elements in this group of motions leave
other properties—for example, the cross-ratio or the property of
being a conic—unchanged. (Geometers usually call projective
“motions” by another name, projective transformations, but the
idea is the same.) Klein discovered that compared with the group
of Euclidean motions, the group of all projective motions has a
somewhat more complicated structure.

These observations enabled him to compare projective geome-
try and Euclidean geometry in terms of their groups of motions.
This description revealed how Euclidean and projective geometry
are related to each other. But Klein went further. He managed to
categorize every geometry that had been discovered by its group
of motions. In concept the idea is similar to what biologists do
when they compare species of animals. They look for similarities
and differences in structure and function and use this information
to create a taxonomy. The taxonomy shows how the different
species are related. Of course, to do this they have to compare
skeletal structures and other characteristics that are not immedi-
ately visible to the eye. In a mathematical way Klein did the same
thing. First he described the group of motions associated with
each geometry; then he used this information to compare one
group with another. The comparison showed how the different
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geometries are related to each other. In general Klein’s investiga-
tions, called the Erlangen Programme after the university where
he had begun work on the project, restored order to the field of
geometry. His observations continue to be an important part of
geometry today.

Klein’s comparison of Euclidean and projective geometry
revealed a surprising relationship between the two. He discovered
that to every Euclidean motion there corresponds a projective
motion of the same type, but there are many projective motions
that are not Euclidean motions. This discovery proved that pro-
jective geometry is more fundamental than Euclidean geometry. It
proved that Euclidean geometry is actually a very special case in
the larger and more inclusive field of projective geometry.
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7
a non-euclidean 

geometry

The 19th century saw the birth of so-called non-Euclidean
geometries. Projective geometry, although it is a branch of geom-
etry quite distinct from Euclidean geometry, still seems intuitive
because it can be interpreted as the problem of representing three-
dimensional images on a two-dimensional surface. Projective ideas
still seem familiar to the modern reader. Some non-Euclidean
geometries, however, violate our commonsense notions of space.
In this section we describe the first of the nonintuitive, non-
Euclidean geometries. The pictures that are associated with this
geometry strike many people as strange even today. At the time it
was first proposed, many people considered this geometry ridicu-
lous. As a consequence the creator of the new geometry was large-
ly ignored and occasionally ridiculed for his work. The person
who was first scorned and later celebrated for making a radical
break with the past was the Russian mathematician Nikolai
Ivanovich Lobachevsky (1792–1856), sometimes called “the
Copernicus of geometry.” It was he, more than any other, who
worked to show that geometries that are radically different from
Euclid’s are possible.

Lobachevsky was one of three children in a poor family. His
father died when Nikolai was seven years old. Despite the diffi-
culties involved Nikolai eventually enrolled in Kazan University,
where he studied mathematics and physics. He remained at
Kazan University as a teacher and administrator for most of his
life. As a teacher he taught numerous and diverse courses in



mathematics and physics. As
an administrator he held
many positions within the
university, and throughout his
career he worked hard to
make it a better institution.
He worked at a furious pace.
A strong education had res-
cued Lobachevsky from a dif-
ficult life. He clearly believed
that education is the way for-
ward for others as well, and
he strove to ensure that a
good education awaited those
who chose the University of
Kazan. In many ways the uni-
versity was as central to
Lobachevsky’s life as was his
mathematics.

Lobachevsky was fascinated
with Euclid’s fifth postulate.
The fifth postulate, sometimes called the parallel postulate, was
described in detail in the third chapter of this book. It states,

If a transversal (line) falls on two lines in such a way that the
interior angles on one side of the transversal are less than two
right angles, then the lines meet on that side on which the angles
are less than two right angles.

(Euclid of Alexandria. Elements. Translated by Sir Thomas L. Heath
Great Books of the Western World. Vol. 11. Encyclopaedia
Britannica, 1952.)

See the illustration on page 30. The fascination with the fifth pos-
tulate stems from the fact that it seems so obvious. To many math-
ematicians it seemed as if it should be possible to prove that the two
lines that are the subject of the fifth postulate intersect and that
they must intersect on the side that Euclid indicates. It was as
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Nikolai Ivanovich Lobachevsky. His
far-reaching insights into the nature
of geometric truth attracted little
attention during his life.  (Library 
of Congress, Prints and Photographs
Division)



apparent to them—as it is apparent to most of us—that when two
lines appear as if they will intersect, it should be possible to show
that they will, in fact, intersect. For a long time it seemed unnec-
essary to require a separate postulate to state that the two lines in
question will, in fact, intersect. The goal then became to prove
that the lines will intersect by using all of Euclid’s axioms and pos-
tulates except the fifth postulate. For two millennia mathemati-
cians attempted to prove the fifth postulate. As a result of their
efforts the fifth postulate became as famous as the three classical
unsolved problems in Greek geometry, the trisection of the angle,
the squaring of the circle, and the doubling of the cube. It was also
as resistant to solution.

By the time that Lobachevsky had begun trying to prove the
fifth postulate, mathematicians had already established a 2,000-
year record of failure. Many “proofs” that the fifth postulate was
a logical consequence of Euclid’s other axioms and postulates had
been proposed over the years. Each time closer examination,
however, showed that each proof had actually assumed that
Euclid’s fifth postulate was true in order to “prove” it. All of
these so-called proofs had to be rejected, because logically speak-
ing they were not proofs at all. One cannot prove a statement is
true and simultaneously use the statement in the course of the
proof. Toward the end of the 1700s the pattern of attempting to
prove the fifth postulate, coupled with the subsequent failure to
do so, had become so familiar that some mathematicians had
begun to suggest that Euclid had gotten it right after all. They
had begun to think that mathematically speaking the fifth postu-
late was not a logical consequence of anything else in Euclidean
geometry but was a stand-alone idea. One could accept it or
reject it, but one could not prove it as a consequence of the other
postulates, axioms, and definitions that make up Euclidean
geometry.

Expressed in this way, the argument about Euclid’s fifth postu-
late strikes most people as reasonable enough. It is the next step,
the conceptual step that Lobachevsky had the imagination and
boldness to make, that many of us still find difficult to accept.
Why is this so? The truth is that although most people do not
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think much about Euclidean geometry, most of us are nonetheless
intellectually and emotionally invested in what Euclidean geome-
try sometimes purports to represent: the world around us. This is
what made Lobachevsky’s idea so controversial.

To understand Lobachevsky’s idea we rephrase the fifth postu-
late. This alternate version of the fifth postulate is expressed 
as follows:

Given a line, l, and a point, P, not on l, it is possible to construct
exactly one line that passes through P and is parallel to l.

This alternate version of the fifth postulate is logically equivalent
to Euclid’s version of the fifth postulate in the sense that if we
assume Euclid’s version then we can prove that the alternate ver-
sion is true. In addition we can prove Euclid’s fifth postulate is true
if we begin by assuming that the alternate version of the fifth postu-
late is true. Briefly the fifth postulate is true if and only if the alter-
nate version of the fifth postulate is true.

Lobachevsky’s great insight was that if the fifth postulate is real-
ly a thing apart from the other axioms and postulates of Euclid’s
geometry, then he should be able to develop a new, logically con-
sistent geometry by simply replacing the fifth postulate by a dif-
ferent postulate. Lobachevsky’s alternative to the fifth postulate
reads as follows:

Given a line, l, and a point, P, not on l, there exist at least two
straight lines passing through P and parallel to l.

In other words there are two distinct lines, which we have labeled
as l1 and l2, that pass through the point P and are parallel to l (see
the accompanying diagram; we emphasize that both l1 and l2 lie in
the plane of the diagram). In Lobachevsky’s geometry neither l1

nor l2 intersects with l, not because they do not extend far enough,
but because they are both parallel with l. It is also “clear” to most
people that line l2 must eventually intersect line l if both are
extended far enough, but this belief cannot be proved. Proving
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that l2 will intersect with l is
equivalent to proving Euclid’s
fifth postulate! This was the
conceptual barrier that
Lobachevsky had to cross, but
once he crossed it, he found
that he could develop a logi-
cally consistent geometry.

Lobachevsky’s geometry
was the first of the so-called
non-Euclidean geometries,
because it was developed from
a set of axioms and postulates

that were different from Euclid’s. It violates our perception of the
world around us, but violating one’s perceptions has nothing to do
with mathematics. In Lobachevsky’s geometry, for example, the
sum of the interior angles of a triangle is always less than 180°,
whereas in Euclidean geometry the sum of the interior angles of a
triangle is always precisely 180°. We emphasize that
Lobachevsky’s geometry is not mathematically wrong. It is logi-
cally self-consistent, and in mathematics we can ask for nothing
more. Admittedly it is not a geometry that appeals to the com-
monsense notions of most people, but mathematically speaking it
contains no errors. From the point of view of the mathematician
Lobachevsky’s geometry is as valid as Euclid’s.

It would be easy to dismiss Lobachevsky’s insights as clever but
meaningless. It is still “obvious” to most of us that in the preced-
ing diagram l2 intersects with l. It would, however, be a mistake to
dismiss Lobachevsky’s insights as a mere formalism. Lobachevsky
opened up whole new concepts of geometry, which have had
important ramifications in both mathematics and science. Since
Albert Einstein published his ideas about relativity theory in the
early years of the 20th century, many mathematicians and physi-
cists have been busy working out the logical consequences of the
theory. To appreciate Lobachevsky’s contribution it is important
to note that Einstein’s ideas made essential use of non-Euclidean
geometry. Lobachevsky’s keen intellect and willingness to publish
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Lobachevsky’s alternative to the fifth
postulate: Given a line l and a point P
not on l, there exist two distinct lines
passing through P and parallel to l.



ideas that were simply too for-
eign for most of his contem-
poraries to appreciate helped
make the breakthroughs of
the 20th century possible.

Lobachevsky was not alone
in discovering non-Euclidean
geometry. Three other people
also did. Lobachevsky pub-
lished first, but he did not
influence the others. In each
case the discovery of non-
Euclidean geometry was made independently. The other name most
often associated with the discovery of non-Euclidean geometry is
that of the Hungarian mathematician János Bolyai (1802–60). János
received his early education in mathematics from his father and later
attended the Royal Engineering College in Vienna. His father,
Farkas Bolyai, an accomplished mathematician himself, had spent a
great deal of effort trying to prove that the fifth postulate is a con-
sequence of Euclid’s other axioms and postulates. He warned János,
who was then a young military officer, against the study of the fifth
postulate, which he thought could only lead to disappointment.

Perhaps the warning had an effect, but not the one that the
father had intended. János Bolyai did study the fifth postulate, but
he did not spend much time trying to prove it. Instead he replaced
the fifth postulate with his own postulate. Bolyai’s postulate assert-
ed that given a line and a point not on the line, there exist infi-
nitely many distinct lines through the given point and parallel to
the given line. (This assertion is similar, but not identical, to that
of Lobachevsky.) Bolyai then researched the geometry that result-
ed from the substitution of his axiom for Euclid’s fifth postulate.

Bolyai’s discoveries about non-Euclidean geometry, entitled
Absolute Science of Space, were published as an appendix to a work
of his father’s. The father’s book had the long and charming title
An Attempt to Introduce Studious Youth to Elements of Pure
Mathematics. As Lobachevsky’s work was, Bolyai’s work was self-
consistent and therefore mathematically correct. As Lobachevsky’s
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Lobachevsky’s geometric ideas can 
be realized by doing geometry on 
the surface of this object, called a
pseudosphere.



work was, Bolyai’s Absolute Science of Space was also a major break
with past geometric thinking. It was published a few years after
Lobachevsky first published his own thoughts, but Bolyai devel-
oped his ideas contemporaneously with Lobachevsky.

The importance of János Bolyai’s discovery of non-Euclidean
geometry, as of Lobachevsky’s, was not recognized in his lifetime.
It is worth noting that both Farkas and János Bolyai were
“Renaissance men.” The father was a poet, playwright, and musi-
cian in addition to being a mathematician. The son, in addition to
being an accomplished mathematician, was a violin prodigy and a
renowned swordsman.
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IS OUR WORLD EUCLIDEAN?

Carl Friedrich Gauss (1777–1855) knew that one consequence of the
non-Euclidean geometry described by Lobachevsky is that the sum of
the interior angles of a triangle is always less than 180°. (In Euclidean
geometry the sum of the interior angles of a triangle is always precisely
180°.) Moreover in Lobachevsky’s geometry one can also prove that the
sum of the measures of the interior angles of a triangle diminishes as the
area of the triangle increases. These contrasting theorems about the
angles of triangles offered Gauss the opportunity to compare the world
around us with the theorems of Euclidean geometry and with the theo-
rems of Lobachevsky’s non-Euclidean geometry. To compare the real
world with the results of the two geometries, he needed only to meas-
ure the angles of real triangles and see whether or not the sum of the
angles differs from 180°. Through the use of precise measurements it is,
in theory, possible to determine which geometry more accurately repre-
sents the conditions around us. Accurate measurements of the interior
angles of triangles, thought Gauss, might enable him to determine
whether the world is not Euclidean.

This type of approach, however, is not guaranteed to succeed. The dif-
ficulty, as Gauss well knew, arises because he planned to use measure-
ments to check mathematical results. Mathematics is an exact science.
Measurements are necessarily inexact. In mathematics when we assert
that the sum of the interior angles of a triangle is 180°, we assert some-
thing that can never be proved by measurement. No matter how precise-
ly we measure there is always some margin of error in our measurements.



The other two names associated with the development of non-
Euclidean geometry are those of the German mathematician and
physicist Carl Friedrich Gauss (1777–1855) and the much less well-
known Ferdinand Karl Schweikart. Gauss was one of the outstand-
ing mathematicians and physicists of the 19th century. Although he
entered university to study languages, he soon became interested in
mathematics. His Ph.D. dissertation contained the proof of what is
now called the fundamental theorem of algebra, which, as the name
implies, is a very important insight into the field of algebra. Gauss
eventually found work at the University of Göttingen. He
remained at the university throughout his working life as both a
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Although Gauss’s measurements could not possibly verify that the sum
of the interior angles of a triangle is precisely equal to 180°, he might nev-
ertheless be able to verify that the sum of the angles is different from
180°. He would be successful in this regard if his margin of error were
smaller than the difference between 180° and the number he obtained
from the measurements he made of the angles of a triangle. If he could
show that the sum of the measures of the interior angles of a triangle was
not 180°, then he would have proved that Euclidean geometry is not a
completely accurate description of the world around us. If, however, all he
could show was that within the limits of precision of his measurements,
the sum of the interior angles of a triangle might be 180° then he would
have proved nothing. Gauss set out to search for a negative result.

Fortunately Gauss had the opportunity to supervise a very-large-scale
surveying project. As part of the work he had highly accurate devices
placed on the summits of three distant mountains—thereby forming a tri-
angle—and he used these devices to make a series of measurements at
the triangle’s vertices, which were located at the tops of the three sum-
mits. Recall that one theorem of the non-Euclidean geometry with which
Gauss was familiar was this: The larger the area of the triangle, the
smaller is the sum of the interior angles. Therefore the larger the triangle
one measures, the easier it should be to note any discrepancies
between the actual sum and the 180° of Euclidean geometry. This was
the reason he used widely separated mountain summits as the vertices
of his triangle. Within the limitations of the accuracy of the measure-
ments Gauss obtained, however, he was not able to disprove the
Euclidean assertion that the sum of the angles equals 180°.
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professor of mathematics and head of the university’s observatory.
Among his many interests Gauss also took time to think about
Euclid’s fifth postulate and he, too, considered the possibility of
developing a geometry using a different set of axioms and postu-
lates from those found in Euclid’s Elements. Gauss, however, feared
controversy, and he was aware that publishing the results of a non-
Euclidean geometry might produce more heat than light. He kept
his thoughts largely to himself and did not publish on the subject.
He did, however, correspond with a professor of law named
Ferdinand Karl Schweikart (1780–1859), who had developed the
same ideas. Little is known about Schweikart, but whatever his rea-
sons, he, too, did not publish his ideas.

These early ideas about non-Euclidean geometries were proposed
before most people, even most mathematicians, were prepared to
accept them. Eventually, however, these new concepts prepared the
way for a fresh look at geometry. As scientists and mathematicians
became accustomed to the idea that other geometries exist in a
mathematical sense, they discovered, much to their surprise, that
other geometries exist in nature as well. Some of the new geome-
tries proved to have physical as well as mathematical meaning.



PART THREE

COORDINATE GEOMETRY
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8
the beginnings of 
analytic geometry

There have been very few equations in the first two-thirds of this
book, because these geometries were developed largely without
algebraic symbolism. Although one does not need algebra to study
geometry, algebra can be a great help. The concepts and tech-
niques used in the study of algebra sometimes make difficult
geometry problems easy. The discovery of analytic geometry, the
branch of geometry whose problems and solutions are expressed
algebraically, accelerated the pace of mathematical and scientific
progress, because it allowed scientists and mathematicians the
opportunity to use insights from both geometry and algebra to
understand both better.

Beginning in the Renaissance European algebra became pro-
gressively more abstract. Especially important was the increasing
use of specialized algebraic notation. When the French mathe-
matician and lawyer François Viète (1540–1603) first used letters
to represent classes of objects in a way that is similar to the way we
first learn to “let x represent the unknown,” he attained a new level
of abstraction. Today this is a familiar and often underappreciated
algebraic technique, but its importance is difficult to overstate. By
using letters to represent types of objects Viète had discovered a
new kind of language that could be used to represent all sorts of
logical relationships. In particular Viète had found a language that
could be used to study the relationships among points, curves, vol-
umes, and other geometrical objects. It had the potential to
change mathematicians’ concept of geometry.



To merge the disciplines of algebra and geometry, however,
mathematicians needed to identify a conceptual “bridge” between
these two isolated disciplines. Coordinates acted as the bridge
between algebra and geometry. Coordinates enabled mathemati-
cians to perceive geometric spaces as sets of numbers that could be
manipulated algebraically. What, then, are coordinates?

Coordinates are ordered sets of numbers. The word ordered
serves to emphasize the fact that the coordinates (1, 3) are not the
same as (3, 1). A coordinate system enables the user to establish a
correspondence between sets of numbers and points in space. This
must be done in such a way that every point in space can be iden-
tified by a set of coordinates and every suitable set of coordinates
identifies a unique point in space.

The simplest example of this phenomenon is the so-called real
numberline, a line whose points have been placed in one-to-one
correspondence with the set of real numbers. To construct this
correspondence we choose a point on the line and call that point
0. The points to the left of 0 are placed to correspond to the neg-
ative numbers. The points to the right of 0 are placed to corre-
spond to the set of positive numbers. Next we choose one more
point to the right of 0 and call that point 1. The distance from 0
to 1 gives a scale to our line. The correspondence is now fixed.
The point that will be placed in correspondence with 2, for exam-
ple, is located to the right of 0 and is twice as far from 0 as is the
number 1. In fact given any number we can now identify the point
with which it is paired; conversely, given any point on the real line,
we can identify the number with which it is paired. In this case we
say that the correspondence between the real numbers and the
points on the real line is one-to-one: For each point there is a
unique number, and for each number there is a unique point.

Longitude and latitude form a system of coordinates that enables
the user to identify any position on Earth. This is an example of a
correspondence between coordinates—in this case the coordinates
are ordered pairs of numbers—and points on the surface of a
sphere. Traditionally the first coordinate is the longitude. The lon-
gitude identifies how many degrees east or west the location of
interest is from the prime meridian. (The prime meridian is chosen
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so that it is 0°. The longitude
tells the user that the location
is on a specific line connecting
the North Pole with the
South Pole. Knowing the lon-
gitude is, by itself, not enough
to identify a position on the
globe. It provides no informa-
tion about where on that line
the location of interest might
be found. This is the function
of the second coordinate, the
latitude. The latitude identi-
fies how many degrees north
or south of the equator the

point is located. The point is located where the line of longitude
and the line of latitude cross. (Notice that there are two exception-
al points in this scheme, the North Pole and the South Pole. There
is only one point on Earth that is 90° north of the equator, the
North Pole. There is no need to give the latitude. A similar state-
ment holds for the South Pole.)

This scheme can be carried
out for any sphere. We begin
by identifying the “north
pole.” The north pole can be
chosen arbitrarily. Once we
have identified the north
pole, the position of the south
pole is also determined.
Imagine a straight line enter-
ing the sphere at the north
pole and passing through the
center of the sphere. The
point on the surface where
the line exits the sphere is the
south pole. The equator is the
set of all points on the sphere
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that are equidistant from the two poles. This set of points forms a
circle. Choose a single point on this circle, and call this point 0.
The line of longitude that connects the north pole with the south
pole and passes through 0 is the prime meridian. This completes
the scheme. Now every point on the sphere can be identified with
two numbers, the longitude, which identifies how many degrees
east or west of the prime meridian the point is located, and the lat-
itude, which identifies how many degrees north or south of the
equator the point is located.

Another example of a coordinate system is the system used for
identifying points in three-dimensional space. Choose a single
point (called the origin). Draw three mutually perpendicular real
lines through the origin. Call one line the x-axis, the second line
the y-axis, and the third line the z-axis. Each line is a copy of the
real number line already described. Each point in space can now
be uniquely identified with three “coordinates” (see the accompa-
nying diagram). The coordinates must always be listed in the same
way: As a rule the first coordinate is the x-coordinate; the second
is the y-coordinate; and the last is the z-coordinate. As a conse-
quence the point identified by the three numbers (1, 2, 3) is dif-
ferent from the point (3, 2, 1).

Besides those described here, many other, very different coordi-
nate systems have been developed over the years as mathemati-
cians and scientists have sought to describe various spaces in ways
that are convenient and useful.

Menaechmus and Apollonius of Perga
Menaechmus (ca. 380 B.C.E.–ca. 320 B.C.E.) was a prominent
Greek mathematician of his time. Unfortunately none of his
works has survived. It is solely through the writings of other
Greek philosophers and mathematicians that we know of
Menaechmus at all. Worse, little about his life or his contribu-
tions to mathematics is known for certain. He is described as a
student of Eudoxus. It is known that he studied conic sections,
and some scholars claim that it was he who coined the terms
parabola, hyperbola, and ellipse. He also seems to have been very
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close to discovering a way to express geometric relationships
through a system of coordinates.

Menaechmus is most closely associated with the problem of
finding mean proportionals. Algebraically the problem is easy to
express: Given two numbers, which we represent with the letters
a and b, find two unknown numbers—we call them x and y—such
that a/x = x/y and x/y = y/b. (This statement is simple only because
it is expressed in modern algebraic notation. Menaechmus’s
description was almost certainly more complicated.) From the first
of these two equations we can conclude that ay = x2; this is a stan-
dard algebraic description of a parabola. The second equation tells
us that we can substitute y/b in the first equation for x/y. If we do
this, and we cross-multiply, we obtain ab = xy; this is an equation
for a hyperbola (again in modern notation). This problem seems
to indicate that Menaechmus was, in some general way, looking at
relationships between variables. Because Menaechmus had no
algebra, he was expressing these ideas in terms of line segments
and surfaces and curves, but it is not much of a jump from his
description of the problem to our more modern coordinate
description of the same problem.

Menaechmus is sometimes credited as the first of the ancient
mathematicians to use coordinates. Because we are so accustomed
to using coordinates to identify everything from positions on
game boards to positions in space, it certainly seems as if
Menaechmus was close to doing that. But the Greeks had no alge-
bra at that time. The conceptual jump that is so easy for us to
make was probably beyond what Menaechmus perceived in his
own method.

Another figure who was close to a modern conception of coor-
dinates was Apollonius of Perga. Apollonius was one of the major
figures in the history of ancient Greek mathematics. His biogra-
phy and his contributions have already been described elsewhere
in this volume. He is unique among ancient mathematicians
because he did invent a coordinate system.

Apollonius was a prolific mathematician, but many of his works
did not survive to our own time. Most of his works are known only
because they are mentioned in the writings of other mathemati-
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cians. The one major work of Apollonius that has survived to
modern times largely intact is Conics, a book about the mathemat-
ical properties of parabolas, hyperbolas, and ellipses, the so-called
conic sections. It is in Conics that we find the first systematic use of
a coordinate system.

Apollonius’s understanding and use of coordinates are very dif-
ferent from what we are familiar with today. Today we generally
begin with a coordinate system. We imagine a pair of lines, the
coordinate axes, and on these lines we graph the curve in which we
have an interest. This is something that Apollonius never did. He
began by describing a conic section, and then, as an aid to solving
certain problems relating to the conic section of interest, he con-
structed a coordinate system using the conic itself. One of
Apollonius’s coordinate axes was a line that was tangent to the
conic. The other axis was the diameter of the conic. (The diameter
of the conic is an axis of symmetry.) This method results in a
skewed system of coordinates in the sense that the resulting axes
are not perpendicular to one another. This is another big differ-
ence between the coordinate systems in general use today and
Apollonius’s system. Today our coordinate axes are generally cho-
sen to be perpendicular to one another. The reason is practical:
Perpendicular axes facilitate certain kinds of computations. There
is, however, no theoretical need for coordinate axes to be perpen-
dicular. Even when the coordinate axes are skewed, each point on
the plane can be identified by a unique set of coordinates relative
to the skewed axes. Moreover the computations that are facilitat-
ed by perpendicular axes are still possible with skewed ones; they
are, however, more awkward.

The coordinate system pioneered by Apollonius apparently had
little influence on his contemporaries. Even Apollonius found only
limited use for this idea. It is true that his coordinate system
enabled him to organize mathematical space in a new way, and he
could even point to problems that he had solved with this new
idea. For the most part, however, applications just did not exist.
Remember that the Greeks knew only about a dozen curves. One
of the reasons that coordinate geometry is useful today is that it
offers a very general way of describing many different curves.
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With so few curves in their mathematical vocabulary, Greek
geometers in general, and Apollonius in particular, had no reason
to develop a very general approach to their study of curves.
Apollonius’s coordinate system was one idea that was, for the most
part, far ahead of its time.

René Descartes
The French philosopher, scientist, and mathematician René
Descartes (1596–1650) is generally given credit for inventing ana-
lytic geometry, the branch of geometry that is studied with alge-
braic methods. The most common coordinate system in use today,
the Cartesian coordinate system, is named in honor of him.
Descartes’s approach to mathematics was new and important, but
it was only a small part of the contribution that he made to
Western thought.

René Descartes was born into a life of comfort. Both his parents
were members of well-off families. His mother, however, died
when Descartes was still an infant. His father was a lawyer.
Descartes’s father described him as an extremely curious boy who
was full of questions. His father enrolled Descartes in the best
school available, the Royal College, where Descartes demonstrat-
ed unusual proficiency in languages. He was especially gifted at
writing in French and Latin, and he demonstrated special interest
in mathematics and science. His teachers spoke highly of him, but
by Descartes’s own account he left the Royal College confused and
disappointed because he felt that he knew nothing of which he
could be certain. The search for certainty was an important theme
in Descartes’s thinking.

It was expected that as the son of a lawyer Descartes would him-
self become a lawyer. This was the path taken, for example, by
Descartes’s brother. After leaving the Royal College, Descartes
attended the University of Poitiers and earned a degree in law, but
it was not a vocation in which he had any interest. His indifference
to law seems to have caused some friction between him and his
father, but Descartes was undeterred. After obtaining his law
degree he decided to travel in search of what we might call “life
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experiences.” This search was
to take up about 10 years of
his life.

Descartes’s first adventure
consisted of joining the
Dutch army as an officer
under the leadership of
Maurice of Nassau. The
Dutch were fighting a war of
independence against the
Spanish. He did not remain
in the army long—perhaps a
year—and then resigned.
Descartes moved from place
to place. He joined and
resigned from other armies
engaged in other wars, but it
is doubtful that he participat-
ed in much fighting himself.
He was famous for “sleeping
in.” He also spent time seeking the company of interesting 
people. One newfound friend, the Dutch philosopher and math-
ematician Isaac Beeckman, introduced him to the algebra of
François Viète, a subject that had not been taught to Descartes
in school.

During his travels Descartes lived in Germany, Holland,
Hungary, and France. He met and became friendly with Father
Marin Mersenne, who gave freely of his time to promote science
throughout Europe. Descartes began to be recognized as an
insightful and innovative thinker. At last he decided to settle down
and begin writing about what he had learned. He moved to
Holland, and though he frequently changed residences, he
remained in Holland for most of the next 20 years.

It was during his stay in Holland that Descartes produced almost
all of the work for which he is known today. He studied philoso-
phy, optics, meteorology, anatomy, mathematics, and astronomy.
His first goal, however, was to invent a new science that would
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unite the many disparate, quantitative branches of knowledge that
were developing throughout Europe. Facts, he believed, were not
enough; he sought a philosophical context into which he could
place discoveries. Descartes’s goal was to develop a unified theory
of everything.

He began to believe that in large measure he had succeeded. In
Descartes’s view his science, math, and philosophy were com-
pletely intertwined. Although Descartes’s philosophical ideas con-
tinue to be subjected to critical scrutiny, some of his ideas about
science were later shown to be false. His work in mathematics, on
the other hand, has become part of mainstream mathematical
thought. In this volume we emphasize Descartes’s contributions to
mathematics; Descartes, however, probably perceived his work in
a different context.

Descartes’s main mathematical work is contained in the book
Discours de la méthode (Discourse on method). It is in this book that
Descartes makes his contribution to the foundations of analytic
geometry. Much of the Discours is given over to the interplay
between geometry and algebra, but not all of it is new. When
Descartes rephrased algebra problems in the language of geome-
try, he was going over old ground. Islamic mathematicians had
done the same sort of thing centuries earlier. But because
Descartes’s notation was so much better than that of the mathe-
maticians who preceded him, he was able to handle more sophis-
ticated problems more easily.

One important conceptual innovation was the way he interpret-
ed algebraic terms: Previous generations of mathematicians had
interpreted terms such as x2 (x squared) as an actual geometric
square. They interpreted the concept that we would write as x3 (x
cubed) as a geometric cube. Because ancient Greek mathemati-
cians and the Islamic mathematicians who followed them had
insisted on this geometric interpretation for higher powers of x,
they were hard pressed to assign a meaning to terms such as x4,
which in this interpretation would be a four-dimensional object.
By abandoning this limiting geometric interpretation Descartes
changed mathematicians’ perceptions of these symbols and made
working with them much easier.
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Descartes also sought to rephrase geometry problems in the lan-
guage of algebra, an important innovation. This may seem a triv-
ial goal, but synthetic geometry, which is geometry that is
expressed via diagrams and without algebraic symbols, can be very
taxing to read and understand. It is so hard that the complicated
diagrams and accompanying descriptions can themselves be a 
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ALGEBRAIC NOTATION IN GEOMETRY

One of Descartes’s goals in establishing the branch of mathematics
now called analytic geometry was to dispense with the difficult pre-
sentations that were characteristic of the ancient Greek mathematics.
To see why this was important to Descartes and the history of mathe-
matics we need only look at the style in which the Greeks expressed
their geometric ideas. The following theorem is taken from Apollonius’s
Conics:

If the vertically opposite surfaces are cut by a plane not through
the vertex, the section on each of the two surfaces will be that
which is called the hyperbola; and the diameter of the two sec-
tions will be the same straight line; and the straight lines, to
which the straight lines drawn to the diameter parallel to the
straight line in the cone’s base are applied in square, are equal;
and the transverse side of the figure, that between the vertices
of the sections, is common. And let such sections be called
opposite.

(Apollonius. Conics. Translated by Catesby Taliafero. Great Books of the Western
World. Vol. 11. Chicago: Encyclopaedia Britannica, 1952.)

Even with the accompanying diagram—which itself is very complicated—
reading this statement is very taxing. The proof of the statement, which
is about two pages long, is even more difficult.

What Descartes did was to replace complex diagrams and long
complicated sentences with algebraic equations. Descartes’s mathe-
matical notation is not difficult for a modern reader to follow. It looks
almost modern. This is surprising until one remembers that we got our
notation from his works. As we do, Descartes used a plus sign (+) for
addition, a minus sign (–) for subtraction, and letters toward the end
of the alphabet for variables. There are only a few differences
between his notation for analytic geometry and ours. In place of our
equals sign he used a symbol that resembled a not-quite-closed num-
ber 8 lying on its side. As we do, he used exponents for powers high-
er than 2; he, however, wrote xx where we would write x2. Given,
however, that Descartes died more than 350 years ago, the similari-
ties between his notation and contemporary algebraic notation are
striking.



barrier to progress. Descartes’s goal in this regard was to find a
way to express the same concepts in a more user-friendly way. He
succeeded. His method of solution involves imagining that the
geometry problem of interest is already solved. He suggests giving
names to each of the quantities, known and unknown. The known
quantities can be taken directly from the problem; they are repre-
sented by numbers. The unknown quantities are represented with
letters chosen to indicate that they are the quantities to be deter-
mined. He then expresses the problem in the form of an equation
and solves it algebraically. This, of course, is just what we do
whenever we “let x represent the unknown.” Discours de la méthode
contains some of the first instances of this technique of problem
solving.

Although there are many similarities between Descartes’s math-
ematics and modern analytic geometry—not surprising, since
many modern ideas have their origins in his work—there are also
important differences between the modern conception of analytic
geometry and Descartes’s ideas.

Descartes’s use of coordinates was haphazard. There is little
indication of the coordinate system that today bears his name.
Instead he often used oblique coordinates. (A coordinate system is
oblique when the axes meet at nonright angles.) Oblique coordi-
nates work well for identifying points in space, but they make, for
example, calculating distances between points on the plane diffi-
cult. Descartes seems not to have noticed. Furthermore he failed
to see the value of negative coordinates. Most importantly he did
not use one of the most important techniques in analytic geome-
try, a technique that was made possible only by his own work:
graphing. Analytic geometry made it possible to use geometric
methods (graphing) to investigate the mathematical properties of
functions, which are the “raw material” of algebra. Descartes,
however, does not graph a single function in his book.

Probably the most important connection between geometry and
algebra that Descartes discovered is an observation often referred
to as the fundamental principle of analytic geometry: Every inde-
terminate equation—recall that an indeterminate equation is an
equation that has infinitely many solutions—that is expressed in
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two unknowns represents a curve. By represents a curve we mean
that each solution of the equation consists of two numbers, one for
each unknown. These two numbers can be imagined as represent-
ing coordinates on a plane. The set of all such coordinates defines
a locus, or set of points. That locus of points forms a curve in two-
dimensional space.

This observation is a vital bridge between algebraic and geo-
metric ideas. Moreover it greatly expanded the vocabulary of
curves that were then available to mathematicians. To appreciate
Descartes’s observation, keep in mind that the Greeks knew only a
dozen or so curves. This poverty of curves was due in part to the
fact that they had no convenient way of discovering curves. With
Descartes’s observation about the relationship between curves and
equations it was easy to generate as many curves as one wished. Of
course, simply writing a formula for a curve gives no insight into
the properties of the curve, but Descartes’s observation at least
gives a simple criterion for increasing the collection of curves
available to mathematicians for study.

Descartes also discovered another important bridge between
algebra and the geometry of solid figures. He recognized that in
an indeterminate equation involving three variables the resulting
set of solution points forms a surface in three-dimensional space.
This observation allowed mathematicians to generate three-
dimensional shapes of all sorts. Before Descartes it was difficult to
get beyond the class of simple forms that were known to the
Greeks. After Descartes it became easy to produce as many shapes
as one desired. Again his work greatly increased the collection of
objects available for study.

Descartes’s ideas represented a turning point in the history of
mathematics, less as a result of the problems that he solved than
of the approach he adopted. Descartes showed mathematicians
a new and very productive way of looking at geometry and alge-
bra. His insights provided the spark for a great burst of creative
activity in mathematics. Descartes was not alone, however. 
As innovative as his ideas were, they were ideas whose time 
had come. Even as Descartes was making some of his most
important mathematical discoveries, those same discoveries
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were being made elsewhere by the French lawyer and mathe-
matician Pierre de Fermat.

Pierre de Fermat
Little is known with certainty about the early life of Pierre de
Fermat (1601–65). It is known that he received a law degree from
the University of Orleans and that his entire working life was
spent in the legal profession. He was, however, interested in much
more than the practice of law. It is his accomplishments outside
the legal profession for which he is best remembered today.

Fermat had a gift for languages and was fluent in several. He
enjoyed classical literature and the study of ancient sciences and
mathematics. Impressive as these activities are, there seems little
doubt that to Fermat they were just hobbies. Over the course of
his entire life Fermat published just one article on mathematics.
Instead we know of Fermat’s discoveries through two sources:
posthumous publications and personal correspondence. Fermat
corresponded with many of the finest mathematicians of his day.
Some of these letters were saved, and it is often from these letters
that we learn of what Fermat was doing.

By Fermat’s time ancient Greek texts had become widely avail-
able and mathematicians knew the names of many lost works—
books that did not survive to modern times. The lost works were
known only through references to them in the writings of others.
A common mathematical undertaking during Fermat’s life was the
attempt to “restore” these works. Here restoration means that the
new author attempted to re-create the work from references found
in other ancient texts. Fermat had learned of the existence of a 
lost work of Apollonius while reading the works of Pappus of
Alexandria. The book was Plane Loci. (A locus is a collection of
points determined by some condition. Plane loci are collections 
of points lying in a plane. In this case the reference is to curves.)

While reconstructing what Apollonius might have written,
Fermat noticed that the presentation could be considerably sim-
plified by applying algebra to geometry through the use of coor-
dinates. This observation was made independently of Descartes,
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and it marks the second beginning of analytic geometry. From this
observation Fermat noticed that an indeterminate equation in two
unknowns determines a locus of points on the plane. This was the
fundamental principle of analytic geometry again, but Fermat’s
emphasis was somewhat different from that of Descartes. Unlike
Descartes, Fermat did graph equations on his coordinate system in
a way that is somewhat analogous to the way students learn to
graph today. He soon noticed relationships between particular
types of equations and particular curves.

He noticed, for example, that the locus of points determined by
any first-degree equation in two variables—an equation that we
would write in the form ax + by = c—is a straight line. He noticed
that second-degree equations could be related to various conic
sections, and he recognized that the form of an equation is deter-
mined by the coordinate system in use. For example, in one coor-
dinate system the equation describing a particular hyperbola can
be written in the form 4x2 – y2 = 1, and in another coordinate sys-
tem the same hyperbola can be described by the equation 11x2 +
10√

–
3xy + y2 = 4. The fact that the same curve can be represented

by two such different-looking equations led Fermat to study how
changing coordinates changed the resulting equation. He wanted
to know when two different-looking equations represented the
same curve. He did all of this independently of Descartes.

As Descartes did, Fermat discovered that an indeterminate
equation in three variables represents a surface in three-dimen-
sional space. Though this observation would not be fully explored
until many years after Fermat’s death, Fermat had already, appar-
ently, anticipated the next big step. In his writings he seems to
indicate that he was aware that similar relations hold for even
more variables. For example, an indeterminate equation in four
variables would represent what we would call a four-dimensional
surface. Fermat, however, did not explore this radical idea.

Another famous discovery by Fermat stemmed from his study
of the works of the ancient Greek mathematician Diophantus.
Diophantus, as many ancient mathematicians were, was interest-
ed in identifying Pythagorean triples. These are sets of three nat-
ural numbers with the property that when each of them is
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squared, one of the squares is the sum of the other two. For
example, (3, 4, 5) is a well-known Pythagorean triple, because 32

+ 42 = 52. It has been known for thousands of years that there are
infinitely many Pythagorean triples. Fermat became interested
in generalizing this problem. He began by searching for triples
of positive integers that have the property that when each num-
ber is cubed the sum of two cubes is equal to the third. Stated in
symbols, he was searching for positive whole number solutions
to the equation a3 + b3 = c3. What he discovered is that there are
no such triples. Additional work convinced him that there are no
triples of positive integers that satisfy the equation an + bn = cn for
any positive whole number n greater than 2. He wrote in the
margin of his copy of Diophantus’s book that he had discovered
a remarkable proof of this fact but that the margin was too nar-
row to contain it.

This little margin note marked the start of the search for the
proof of what is now known as Fermat’s last theorem. No copy of
Fermat’s proof has ever been located and many mathematicians
have struggled to prove a result that seemed almost obvious to
Fermat. Large rewards have been offered for a proof, but until late
in the 20th century, Fermat’s last theorem had defied all efforts to
establish its truth. A complete proof was finally produced by using
mathematical ideas that were completely unknown to Fermat.

When Fermat became aware of Descartes’s Discours de la méth-
ode he began to correspond with Descartes. They did not write
to each other directly; they sent their letters through Father
Marin Mersenne in Paris. These letters contain discussions
about various aspects of mathematics. Although they occasional-
ly disagreed on some particular aspect of mathematics there is
little evidence that either was successful in convincing the other
to change his mind.

Fermat produced a great body of work. Together with the
French mathematician and philosopher Blaise Pascal, he helped
to establish the foundations for the theory of probability. He
developed some of the concepts that would later become central
to the subject of calculus, and he was very enthusiastic about the
study of the theory of numbers, which involves the study of the
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THE PYTHAGOREAN THEOREM
AND CARTESIAN COORDINATES

The Pythagorean theorem states that for a right triangle the square of
the length of the hypotenuse equals the sum of the squares of the two
remaining sides. This is a fact about triangles. It has nothing to do with
coordinate systems, and, in fact, the Pythagorean theorem was discov-
ered thousands of years before Cartesian coordinate systems were dis-
covered. Nevertheless the Cartesian coordinate system is ideally suited
to make use of the Pythagorean theorem.

Imagine a plane, two-dimensional surface on which we have drawn a
Cartesian coordinate system. Choose any point on the plane other than
the origin of coordinates. Call the coordinates of this point (a, b). We
can use the origin, the coordinate axes, and the point (a, b) to construct
a right triangle. Draw a line from the origin to (a, b). This line is the
hypotenuse of the triangle. The segment of the x-axis extending from the
origin to the point x = a forms the second side of the triangle. The third
side is formed by the line segment parallel to the y-axis and terminating
on the x-axis and at the point (a, b).

The Pythagorean formula then tells us that the distance from the ori-
gin to the point (a, b) is √a2

—
+ b2
—

. In two-dimensional space this is also
known as the distance formula. It can be generalized to give the dis-
tance between any two points in the plane: The distance between the
points (a1, b1) and (a2, b2) is √(a1

—
–
—

a2)2
—

+ (b1

—
–
—

b2)
—

2.
The reason this is especially important is that essentially the same

formula works in spaces of other dimensions. Though it is nothing
more than the Pythagorean theorem, it is called the distance formula
because it provides an easy way to measure the distance between
any two points. If (a1, b1, c1) and (a2, b2 c2) are any two points in three-
dimensional space, the distance between them is given by the for-
mula √(a1

—
–
—

a2)2
—

+ (
—

b1 –
—

b2

—
)2
—

+ (
—

c1 –
—

c2

—
)2. The same general formula

works in spaces of dimensions higher than 3. Descartes seems to
have given little thought to such spaces, but Fermat wrote a few
words that seem to imply that he knew that one could build a geom-
etry in higher-dimensional space. Later in the history of geometry dis-
tance formulas that are generalizations of the Pythagorean theorem
would become important in the development of a new type of geom-
etry called differential geometry. Differential geometry would also
depend on the analytic description of geometric objects that
Descartes and Fermat had pioneered.



properties of the set of integers. He wrote to other mathemati-
cians to convince them to take up the study of these problems,
but number theory, during the time of Fermat, was not a fash-
ionable subject, and Fermat had little luck in convincing others
to pursue it.

Fermat’s works, as those of Descartes did, sparked a new 
era in mathematical research. This French lawyer, linguist, and 
mathematical hobbyist remains one of the more influential 
mathematicians in history.
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9
calculus and 

analytic geometry

The analytic geometry of Descartes and Fermat is an important
tool for investigating geometry, but it also provides a language in
which the ideas of calculus can be expressed. Calculus provided a
new, extremely valuable tool for investigating geometry. The first
person to publish his ideas on calculus was the German philoso-
pher, diplomat, scientist, inventor, and mathematician Gottfried
Leibniz (1646–1716).

It would be hard to overstate how versatile Gottfried Leibniz
was or how hard he worked. Leibniz was born into comfortable
surroundings. His father, a university professor, died when his son
was six years old. Although Leibniz’s mother made sure that her
son received a good education, Leibniz acquired most of his early
knowledge in the family library. From his mother, a very religious
woman, Leibniz acquired his interest in religion. Religion would
always be an important part of Leibniz’s philosophical thinking.

Leibniz was educated at the University of Leipzig. He studied
philosophy, Latin, Greek, Hebrew, rhetoric, and a little math. As
so many of the mathematicians in this history did, he demonstrat-
ed a particular aptitude for languages. It was at Leipzig that
Leibniz was first exposed to the new sciences of Galileo,
Descartes, and others. These ideas made a deep impression on him
and he began to consider the problem of integrating the new sci-
ences with the classical thought of ancient Greece. After he
received his degree, Leibniz remained at Leipzig to study law, but
at age 20, having completed the requirements for a Ph.D., he was



refused the degree, apparently because of his age. When the uni-
versity refused Leibniz his degree, he left and never returned. He
was soon awarded a Ph.D. from the University of Altburg.

Leibniz had little interest in academia. He worked as an ambas-
sador and government official his entire life. Some scholars claim
that Leibniz avoided academic life because he could not tolerate
the segmentation of knowledge that characterizes the structure of
universities. Leibniz was always interested in unifying disparate
ideas. Though he made significant contributions to the intellectu-
al life of Europe, he never specialized. He moved easily from one
branch of knowledge to the next in pursuit of his intellectual
goals—and his goals were extremely ambitious.

Leibniz had been born into a region of Europe that was devas-
tated by the Thirty Years’ War, a terrible conflict that had its roots
in religious tensions between various sects of Christianity and in
territorial aggression among the European powers. With the
destruction of the Thirty Years’ War still everywhere apparent,
Leibniz worked patiently in a lifelong quest to reunite all of the
Christian sects.

Another of Leibniz’s goals was to harmonize all branches of
knowledge. At this time there were many scientific societies,
which were often informal groups organized to study and advance
the new sciences. Leibniz worked to try to coordinate research and
to organize the resulting discoveries in such a way as to illuminate
a greater, more inclusive view of the universe. Though Leibniz is
best remembered for his contributions to mathematics, his math-
ematical discoveries were only part of a much larger scheme.

Despite his very broad education, Leibniz was not, at first, a very
well-versed mathematician. His first attempts at mathematics were
not especially impressive. He used his diplomatic postings to
undertake a comprehensive study of mathematics. In particular he
studied mathematics under Christian Huygens, one of the fore-
most scientists and mathematicians of his time. Just as he educat-
ed himself as a boy, Leibniz largely acquired knowledge of
mathematics through self-directed independent study.

Leibniz had a gift for inventing good mathematical notation. With
respect to calculus he gave a great deal of thought to developing a
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notation that would convey the ideas and techniques that form the
basis of the subject. His exposition of the ideas and techniques that
calculus comprises is still learned by students today. The symbols
d/dx, ∫ fdx, and several others are all familiar to anyone who has
ever taken an introductory calculus course. Most of these symbols
are Leibniz’s innovations.

To appreciate the importance of Leibniz’s exposition of calculus,
comparing his mathematical legacy with that of Isaac Newton, the
codiscoverer of calculus, is helpful. There was a bitter argument
between the mathematicians of Great Britain, who accused
Leibniz of plagiarizing Newton’s work, and the mathematicians
living in continental Europe, who argued that Leibniz had discov-
ered calculus independently. (No one argued that Newton was not
first, but because he did not publish his ideas, they had little influ-
ence until Leibniz’s publications spurred Newton to share his dis-
coveries.) The nationalistic feelings that caused the dispute and
were simultaneously heightened by it caused many British mathe-
maticians to adopt the symbolism of Newton rather than that of
Leibniz. As a consequence for many years after the deaths of
Newton and Leibniz, mathematical progress in Great Britain
lagged behind that on the Continent, where Leibniz’s superior
notation had been adopted.

Leibniz did more than express calculus in a way that facilitated
future research. He used it to further his understanding of geom-
etry. Calculus can be an extremely important tool in the study of
geometry. It can be used to analyze curves and surfaces in a way
that cannot be done without it.

Recall that the fundamental principle of analytic geometry states
that a single equation in two variables determines a curve. This
principle makes writing equations for any number of curves very
easy, but gives no insight into what any curve looks like.
Consequently mathematicians acquired a new and huge vocabu-
lary of curves whose shapes were often not apparent. How could
they discover the properties of a curve that was described solely in
terms of an equation? For example, in order to graph a curve one
must answer a number of questions: Over what intervals is the
curve decreasing or increasing? At what positions, if any, does the
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curve attain a maximal or minimal value? These are the kinds of
questions that can be answered—and often easily—with the help
of calculus.

With calculus many more, perhaps less obvious, geometric ques-
tions could be answered as well. Mathematicians could determine
at what points the curve was steepest, and they could find the area
beneath the curve. These questions can be mathematically inter-
esting; moreover, when the curve represents a physical process
these questions also have scientific importance. Calculus enabled
Leibniz to use new tools to work on old and new problems. The
result was a long period of rapid advancement in the mathemati-
cal and physical sciences.

Isaac Newton, the New Geometry, and the Old
The new analytic geometry was too useful to ignore, but the
geometry of the ancient Greeks was not immediately supplanted
by the new ideas. The works of Euclid, Apollonius, and
Archimedes represented more than mathematics to the European
mathematicians of this time. Greek ideas about philosophy and
aesthetics still were very important, and many mathematicians still
used the straightedge and compass whenever they could. Nowhere
is this better illustrated than in the works of the British mathe-
matician and physicist Isaac Newton (1643–1727).

Isaac Newton was born in the village of Woolsthorpe,
Lincolnshire. This village, which still consists of a few houses built
along narrow, winding streets, is too small to be found on most
maps today. It is about a mile from the town of Colsterworth,
which is big enough to appear on maps. Woolsthorpe is about 150
km (90 miles) north northwest of London.

Newton’s childhood was a difficult one. His father died before
he was born. His mother remarried and sent Newton to live with
his grandmother while she moved to a different town to live with
her new husband. They reunited several years later after she again
became a widow.

As a boy Newton was known for his mechanical inventiveness.
He built kites, clocks, and windmills. He attended school in
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nearby Grantham, where he learned Latin but apparently little
more than basic arithmetic. (Most scholarly works were written
in Latin at this time.) Later at Trinity College Newton was intro-
duced to the works of Euclid and Descartes. He probably did not
learn of the work of Descartes in his classes, however. The uni-
versities of this time were still teaching the classical philosophy
of Aristotle. The scientific and mathematical revolution begun
by Galileo, Descartes, and others had affected everything except
the universities. On his own Newton began to read all of the
major modern scientific and mathematical treatises as well as
classical Greek geometry. He soon mastered these ideas and began
to develop his own theories about light, motion, mathematics,
and alchemy.

It is an interesting fact about Newton that he was always very
much interested in old, quasi-magical ideas about alchemy, the
medieval “science” that held out the promise of turning lead into
gold. Most thoughtful scientists had already abandoned this mys-

tical set of procedures and
beliefs, but Newton carefully
hand-copied page after page
of alchemy texts into his per-
sonal notebooks. Unlike many
scientists of his day Newton
always looked as far backward
as forward.

Though Newton had already
begun developing his great
scientific and mathematical
ideas while he was a student at
Trinity College, he kept to
himself, and he graduated
with little fanfare. No one,
apparently, was aware of the
work he had accomplished
there. In the year that
Newton graduated (1665)
Trinity College was closed. It
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remained closed for two years. England had been disrupted by
another outbreak of the bubonic plague. In the absence of effec-
tive medical treatment there was little to do but isolate infected
areas and wait for the plague to subside. During this time Newton
did much of his life’s work. When Trinity reopened, Newton
returned to earn his master’s degree. He then joined the faculty.

Today Newton is best remembered for his work in optics, the
theory of motion, the discovery of the law of gravity, and the
invention of calculus, but he also had an interest in geometry. His
approach to geometry was in many ways representative of the atti-
tudes of the time.

Newton never abandoned straightedge and compass geometry.
There was no need to continue to perform the straightedge and
compass constructions of the ancient Greeks. A straightedge and
compass cannot, in the end, construct more than a straight line
and a circle. In the hands of the Greeks they had been enough to
make many new and interesting discoveries, but by Newton’s time
mathematics had moved beyond these implements. Analytic
geometry—what Newton called the geometry of the moderns—
was both more convenient to use and better suited to calculus, the
branch of mathematics on which so much of his scientific analyses
depended. Nevertheless Newton persisted in the use of the
straightedge and compass whenever possible. Even in his most
famous work, Philosophiae Naturalis Principia Mathematica
(Mathematical principles of natural philosophy), better known
today as Principia, he used the geometry of Euclid rather than the
geometry of Descartes as often as possible. In another of his
books, Arithmetica Universalis (Universal arithmetic), he even
rejected the use of equations in geometry. He believed that equa-
tions, which were fundamental to the new analytic geometry, had
no place in geometry. Geometry, to Newton, meant synthetic
geometry, the geometry of diagrams that Descartes had rejected.

Whatever Newton’s beliefs about what was proper in geometry,
he used analytic methods whenever it was necessary. In fact he was
quite creative about several aspects of geometry. One interesting
example of Newton’s interest in analytic geometry is his develop-
ment of several new coordinate systems. He describes eight such
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systems in his book De
Methodus Fluxionum et
Serierum Infinitorum (On the
method of series and flux-
ions—better known as
Method of fluxions—is a
description of calculus.) One
of the coordinate systems,
polar coordinates, is widely
used today.

In a polar coordinates sys-
tem each point is identified by
a length and an angular meas-
urement. We let the coordi-
nates (r, θ) represent this pair;
the letter r represents the
length and the Greek letter θ

(theta) represents the angle. To understand Newton’s idea imag-
ine a point, P, and a ray, R, which can be imagined as a very long
arrow. The ray R has its “tail” located at the point P. We make 
our measurements with reference to P and R. The length, which
is usually represented with the letter r, identifies all points that 
are located a distance r from P. But the set of all points at a given
distance r from P is a circle centered at P of radius r. Therefore
the length, which is always positive, allows us to identify not a
point but a circle. By contrast the angular measurement allows 
us to identify a second ray. This is the ray with base at P that
together with R forms an angle, θ. The point of interest is locat-
ed where the ray intersects the circle. To Newton what we call
polar coordinates were useful in the study of spirals, although
today they are used in a much wider variety of applications (see
the accompanying illustration).

Newton had a much broader understanding of Cartesian coor-
dinates than his predecessors had. He was comfortable using neg-
ative coordinates. In contrast, Descartes used only positive
coordinates. One consequence of the use of negative coordinates
is that Newton could consider the entire graph of a function. He
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could look at the form the function took when the independent
variable was negative, so in this sense Newton’s graphs are “larg-
er” than those of his predecessors. This very inclusive understand-
ing of Cartesian coordinates enabled him to convey a more
complete picture of the properties of functions than his predeces-
sors. Because Newton’s functions often represented physical
objects or phenomena, he was able to see more clearly into the
phenomena that these functions represent.

Newton’s numerous coordinate systems are indicative of more
than technical skill. They are in part a reflection of the way he
sees the universe. Newton sees space as having an absolute qual-
ity. He perceives the universe much as we might perceive a stage,
as a place where a play unfolds. Strictly speaking the stage is not
part of the play; it is the location where the play takes place.
Similarly space is, to Newton, a huge, featureless expanse where
nature evolves. It is the mute and unchangeable background for
everything. Space is the location of the universe, but it is not,
strictly speaking, part of the universe. As the stage and the play
are, space is, for Newton, the place where the universe unfolds.
In Newton’s view things happen in space; they do not happen to
space. Absolute space is the name often given to this perception of
reality.

One consequence of this understanding is that when two
observers moving along their own straight-line paths at constant
velocities measure the distance between any two objects, they, if
neither makes a mistake, arrive at the same measurement. They
must arrive at the same measurement because in this model of
space they are simply measuring the distance between two fixed
points in space. A coordinate system that reflects this type of
“sameness” is the three-dimensional Cartesian coordinate system.
This model of the universe has proved to be a very useful geomet-
ric model, although, as we will see later, it is not the only useful
model from which to choose.

Newton has a similar attitude about time. He believes that time
is absolute in the same way that he believes that space is absolute.
Time, according to Newton, is outside the universe in the same
way that a stopwatch is outside a race. A race—a footrace, for
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example—may take place while the stopwatch is running, but the
race does not affect the watch, nor the watch the race. In this sense
the watch is not part of the race. Similarly the universe unfolds
over time, but the processes that occur in the universe do not
affect the passage of time. In Newton’s view any two observers
outfitted with accurate watches measure the same amount of time
provided their watches show an equal amount of time has elapsed.

Mathematicians, physicists, and engineers represent these ideas
of space and time by using a four-dimensional Cartesian coordi-
nate system. Three of the coordinates are used to identify a point
in space, and the fourth coordinate is used to identify a point in
time. Positions in this four-dimensional system are often repre-
sented with coordinates that look like this: (x1, x2, x3, t), where t
represents a point in time and the other coordinates are needed to
identify a point in space. Four dimensions are necessary because in
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Bipolar coordinates, another
coordinate system invented
by Isaac Newton, show how
the choice of coordinates can
facilitate the study of planar
geometry. Bipolar coordinates
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order to specify an event of any sort we need to specify its location
in space and the time at which it occurs. Newton believes that the
same coordinate system can be applied throughout space, because
distances and times are the same everywhere for everyone. This
model of the geometry of the universe is sometimes called a
Newtonian reference frame.

Newton’s ideas about the geometry of the universe remained at
the heart of Western science for centuries, but they have their lim-
itations. That Newton’s geometric perceptions were not (so to
speak) universally valid would not be recognized until the 20th
century. Newtonian reference frames are still used in most branch-
es of science and engineering, however, because they are accurate
enough for most applications. Newton’s geometric understanding
of space and time is still one of the most used and useful concepts
in modern science.
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which we call P1 and P2, and a length, an ellipse is the set of all points,
the sum of whose distances from P1 and P2 is equal to the given length.
To see how this works, let r represent the given length; let P represent
a point on the ellipse; and let x and y represent the distances from the
point P to P1 and P2, respectively. The distances x and y satisfy the
equation x + y = r. In fact a point is on the ellipse if and only if the dis-
tances from that point to P1 and P2 satisfy this equation. This equation
could not be any simpler looking. By contrast ax2 + bx + cy2 + dx = e is
the general equation of an ellipse in Cartesian coordinates.

Similarly a hyperbola is determined by two points and a distance. The
hyperbola can be defined as the set of all points, the difference in whose
distances from the points P1 and P2, is a constant r. Therefore the equa-
tion of a hyperbola in bipolar coordinates is x – y = r (see the illustration).

In Cartesian coordinates both of the equations x + y = r and x – y =
r, where x and y are the variables and r is a constant, represent straight
lines. The meaning of the equations evidently depends very much on the
coordinate system in which they appear. But coordinate systems are
mechanisms to convey ideas. The best coordinate system for a given
purpose is the system that conveys the required information as simply
and transparently as possible. Newton was one of the first to understand
and employ this principle. Today a variety of coordinate systems are in
common use.
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Leonhard Euler and Solid Geometry
The Swiss mathematician Leonhard Euler (1707–83) was a major
contributor to the development of analytic geometry. Euler loved
mathematics. When he became blind in one eye he is said to have
remarked that henceforth he would have less to distract him from
his work. This statement turned out to be prophetic. Although
mathematics is a highly visual field—equations, graphs, surfaces,
and curves are all better seen than heard—Euler had an extraordi-
nary mathematical imagination. He did not depend on his eyes to
do mathematics any more than Beethoven depended on his ears to
write music.

Euler, for example, was interested in the gravitational interac-
tion of the Sun, Moon, and Earth. These interactions are quite
complex, and any realistic mathematical model of this three-body
system involves difficult equations with difficult solutions, in part
because the geometry of the system changes continually. Euler had
attacked the problem with some success when he was middle-
aged, but he was not entirely happy with the solution. Many years
later he revisited the problem. In the intervening years, however,
he had become completely blind. Without vision Euler had to
imagine the equations and perform the corresponding computa-
tions in his head. His second theory was nevertheless an improve-
ment on the first. In the area of analytic geometry he developed
many algebraic techniques and concepts to help him visualize and
analyze surfaces in three-dimensional space. The study of the geo-
metric properties of objects in three-dimensional space is called
solid analytic geometry.

Euler was not the first person to study solid analytic geometry.
Even Descartes had displayed some awareness of ways that surfaces
can be described in three dimensions. As discussed earlier in this
volume, Descartes observed that a single indeterminate equation in
three variables defines a surface in the sense that each solution of
the equation is an ordered triplet of numbers and so identifies a
point in space. The set of all solutions is a surface whose properties
depend on the specific properties of the equation. To use these
observations, however, one must go further and establish specific
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correspondences between par-
ticular surfaces and particular
equations. Each surface of a
certain kind is the solution set
for a particular kind of equa-
tion. To be sure, Descartes had
established an important con-
nection between algebra (the
equation) and geometry (the
corresponding locus of
points), but he lacked the
mathematical tools for investi-
gating the properties of sur-
faces determined in this way. It
was left to Euler to begin ana-
lyzing the many relationships
that exist between equations
and surfaces.

To study geometry via alge-
braic equations Euler had to
determine how an equation
that describes a surface in one coordinate system changes when
the coordinate system itself changes. Changing coordinate sys-
tems changes the appearance of the associated equations but only
in very specific ways. One of the first problems Euler encountered
was establishing when two different-looking equations, each
describing a surface in three-dimensional space, actually describe
the same surface in different coordinates. He was not the first to
address this problem. Fermat had examined the problem earlier,
but because mathematics had developed since the time of Fermat,
Euler was in a better position to make progress.

Of special interest to Euler in this pursuit were changes to coor-
dinate systems that involve translations—coordinate changes that
involve moving the position of the origin of coordinates from one
location to another—and rotations—motions that involve rotating
the coordinate system about some preassigned axis. Recall that
these are the so-called Euclidean transformations: In Euclidean
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geometry two figures are said to be congruent if one can be made
to coincide with the other after a series of translations and rota-
tions. So Euler sought an analytic expression of Euclid’s idea of
congruence applied to three-dimensional space. This is important:
Given two equations, how can one determine whether there exists
a change of coordinates consisting of translations and rotations of
the coordinate axes that will cause the surface defined by one of
the equations to coincide with the surface defined by the other?
The answer to this question is often not immediately obvious, and
yet if one cannot determine when two objects are the same (or dif-
ferent!), there is not much one can do. One of Euler’s principal

133 GEOMETRY

Ellipsoid Hyperboloid of
one sheet

Hyperboloid of
two sheets

Elliptic cone Elliptic paraboloid Hyperbolic paraboloid

z

x
y

z

x y

z

x y

z

x y

z

x
y

z

x

y

The six quadric surfaces



problems was developing an analytic criterion that would enable
him to answer these types of questions.

Not only did Euler search for a generalized analytic expression of
congruence, he also generalized the idea of a conic. The generaliza-
tion he obtained is called a quadric surface. There are six main types
of quadric surfaces: the elliptic paraboloid, the hyperbolic parabo-
loid, the elliptic cone, the ellipsoid, and the hyperboloids of one and
two sheets. Each is determined by a second-degree equation in
three variables. The surfaces determined by these equations are best
compared by changing coordinate systems until each equation is in
a standard form. Graphing the surfaces is then relatively easy. The
graphs can be compared for similarities and differences. The
quadric surfaces were only part of what Euler studied. He also stud-
ied other surfaces and attempted a classification of these surfaces
that depended on the properties of the equations that defined them.

Euler’s work in solid analytic geometry was in one sense ground-
breaking. He went much further in the analytic description of
three-dimensional objects than anyone had. On the other hand, he
seems to have drawn his inspiration from the work done by the
ancient Greeks. There is no calculus in what has been described
here. Euler’s ideas of congruence and the conic sections are almost
classical except for the language in which they are expressed. This
is part of what makes his ideas so mathematically appealing. They
encapsulate Greek geometry, but only as a special case. His ideas
on solid analytic geometry are rooted far in the past, but they
extend the ancient results into something both new and useful.

Much of Euler’s success in the field of analytic geometry resulted
from his concept of a mathematical function. Although Descartes,
Fermat, Newton, and Leibniz had grappled with the idea of a
mathematical function, Euler was the first to use the concept sys-
tematically. For Euler functions are often representations of
objects—they often represent geometrical objects—to which Euler
could apply all of the ideas and techniques that he had done so
much to develop. The concept of function is something to which
all modern students are exposed early in their education. The mod-
ern emphasis on functions, almost to the exclusion of any other
approach to mathematics, means that many of us identify functions
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with mathematics. One can do math without functions, however.
There is, for example, no concept of a function in Apollonius’s
treatment of ellipses, hyperbolas, and parabolas. Functions are not
necessary, but they are extremely helpful. By changing the empha-
sis from synthetic descriptions of curves and surfaces to an alge-
braic emphasis on functions, Euler was able to move toward a more
abstract and ultimately more productive kind of mathematics.

A good example of Euler’s use of functions is his parametric rep-
resentation of surfaces. Systematically parameterizing surfaces was
another Euler innovation. He discovered that sometimes it is con-
venient—even informative—to introduce one or more auxiliary
variables into a problem, and then to write curves and surfaces in
terms of these auxiliary variables or parameters.

To convey Euler’s idea, we begin in two rather than three dimen-
sions and consider the problem of parameterizing a curve.
Suppose, for purposes of illustration, that we have a long, thin,
straight, flexible wire, and suppose that we draw a curve on a piece
of graph paper such that the curve does not cross itself. We can
then bend the wire until it follows the curve that has been drawn
on the paper. In doing so, we deform the wire into a new shape—
mathematicians call this mapping the wire onto the curve—but we
do not cut or otherwise destroy the wire. By deforming the wire in
this way we establish a one-to-one correspondence or “pairing”
between the points on the one-dimensional wire and the points on
the curve, which exists in a two-dimensional space.

We can identify each point on the wire with a single number,
the distance from the given point to one (fixed) end of the wire.
Let the letter t represent distance along the wire. Each point on
the plane, however, requires two numbers—one ordered pair—
to denote its location. Let (x, y) denote a point on the curve. By
placing the wire over the curve we establish a one-to-one corre-
spondence between t, the point on the wire whose distance from
the beginning of the wire is t units, and (x, y) the points on the
curve. This enables us to describe the curve in terms of the func-
tions determined by this correspondence—call the functions x(t)
and y(t). The functions x(t) and y(t) are called a parametric rep-
resentation of the curve.
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This is the physical analogy to what Euler did when he parame-
terized curves. The analog to the straight, thin, flexible wire is the
real number line or some segment of it. In place of physically
bending the wire, Euler used mathematical functions to describe
the distorted shape of the line or line segment. Introducing a
parameter in this way enables the mathematician to describe a
wide variety of curves more easily. Furthermore parameters are
often chosen to represent some physical quantity, such as time
or—as in our example—distance. This, of course, is exactly what
we do when we describe a distant location (relative to our own
location) in terms of the time required to drive there or in terms
of the distance along some highway. In that sense parameteriza-
tions are not simply convenient: They are also a more natural way
of describing curves.

One example of the type of curve to which Euler applied these
insights is called a cycloid. A cycloid has an easy-to-imagine
mechanical description. It is the path traced out by a particle on the
rim of a wheel as the wheel rolls along smooth ground without 
slipping. If we imagine the wheel rolling along the x-axis in the
positive direction, we can use equations involving the trigonomet-
ric functions sine and cosine to represent the path of the particle:

x = rt – r sin t
y = r – r cos t

where t is the parameter and r represents the radius of the wheel.
The equations show how the coordinates x and y can be written as
functions of the single variable t.

The analogous problem in three dimensions is the parametric
representation of surfaces. The physical analogy here is to imagine
a flat, thin, flexible sheet of rubber. Suppose that we imagine draw-
ing a Cartesian coordinate system on this flat sheet. If we now imag-
ine a three-dimensional body, we can “capture” or model the shape
of the body by stretching our flat sheet of rubber over the body until
it fits snugly. In this case we have “ mapped” a flat, two-dimensional
surface onto a three-dimensional body in such a way that we 
have again established a one-to-one correspondence. This time
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the correspondence is between the points on the plane—here
represented by the flat sheet of rubber—and the surface of the body.
Because the flat sheet is a two-dimensional object, only 
two numbers are needed to identify any point on the sheet: the x-
coordinate and the y-coordinate. On the other hand, every point in
three-dimensional space requires three coordinates to identify its
position (length, width, height). Consequently if we let the ordered
triplet (u, v, w) represent a point in three-dimensional space, and
we let (x, y) represent a point in two-dimensional space, parametric
equations for a surface are of the form

u = u (x, y)
v = v (x, y)
w = w (x, y)

where we have written the three-dimensional, surface coordinates
u, v, and w as functions of the two-dimensional, “sheet” variables
x and y.

We can find approximate values for the functions u(x, y), v(x, y),
w(x, y) for any ordered pair (x, y) by measuring the position of 
(x, y) in the three-dimensional coordinate system that we have
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chosen. The u-coordinate of the point, which is called u(x, y), is
simply the “length” measurement of (x, y) when measured in our
coordinate system. We denote this measurement as u(x, y). The 
v-coordinate is the “width” measurement of (x, y) in the three-
dimensional coordinate system—this measurement is v(x, y)—
and the w-coordinate is our measurement of the height of the
point (x, y) in our coordinate system, and we denote this as w(x, y).

A simple example of a parametric description of a surface is the
following description of a hemisphere, which is described by the
equations

u(x, y) = x
v(x, y) = y

w(x, y) = √1
—

– x
—2 –
—

y2

where the parameters x and y are restricted to the disk of radius 1,
centered at the origin of coordinates.

Having established the existence and general shape of several
types of objects, Euler then began to analyze other, more subtle
properties; here is where his knowledge of calculus came into play.
One important line of inquiry was related to the problem of mov-
ing along a curved surface in three-dimensional space: If one is
required to stay on the surface, and one is given two points on the
surface, what is the shortest path between these two points? The
difficulty in finding and computing paths of minimal length is that
the old Euclidean maxim “The shortest distance between two
points is a straight line” no longer applies. On the curved surface
there may not be any “straight” lines to connect the two points. So
the problem of determining the shortest distance between two
given points can be fairly complicated. The shortest path connect-
ing two given points on a surface is called a geodesic.

Euler opened a new mathematical world with this type of
analysis. He was able to describe new types of objects in three-
dimensional space and to examine their geometric properties
with the new mathematics. This was a huge step forward, and it
was immediately recognized as a highly innovative approach.
Other mathematicians quickly stepped up to continue the analysis.
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GASPARD MONGE

Some of the contributions of Gaspard Monge (1746–1818), as well as
a brief biography, have already been described in the section on projec-
tive geometry. He deserves mention in the section on analytic geometry
as well, because he helped invent it. Monge’s interests were very broad.
In addition to his work in mathematics, he was a dedicated teacher, a
scientist, and a follower of Napoléon. His work for Napoléon, his inter-
ests in all matters scientific, and the fact that he taught at several 
colleges simultaneously diluted his contributions to mathematics.
Nevertheless he was such a “natural” geometer that he was able to con-
tribute to several aspects of geometry while pursuing his other obliga-
tions and interests.

Monge believed that geometry is the language of mathematics. This
was decidedly a minority view at the time. Analysis attracted most of the
attention, and with good reason. Euler and others had made extraordi-
nary breakthroughs by using the tools of calculus and related concepts.
Progress was rapid and far-reaching. To Monge, however, these devel-
opments were not quite satisfying. Monge revisited problems in analysis
from the point of view of geometry. He rephrased problems in analysis
so that the geometric component of the problem was at the fore. Monge
thought geometrically.

To get a feel for the kind of problem of which Monge was particularly
fond we briefly review a particular class of problems that he was the first
to solve. Imagine two planes in a three-dimensional space. If they are not
parallel then they will intersect along the line. (In a Cartesian coordinate
system the two planes might be described with the questions ax + by +
cz = d and a'x + b'y + c'z = d', where x, y, and z are the variables and
a, b, c, d, a', b', c', and d' are numbers called coefficients and are
assumed to be known.) Monge used analytic expressions for these
planes to obtain an equation for a line. Then he imagined a third plane
perpendicular to this line, and he computed the equation of this third
plane in terms of the coefficients that were used to describe the first two
planes. This problem is the type that Apollonius would surely have
enjoyed had he known about analytic geometry. It has the feeling of
Greek geometry but it is expressed analytically. Monge, as Euler did,
also studied quadric surfaces, the three-dimensional generalizations of
the conic sections. His work is a nice synthesis of the aesthetics of
Greeks and the mathematics that grew out of the work of Descartes,
Newton, and Euler.



Finally, by combining the ideas and observations of Descartes
and Fermat with the new analysis, these mathematicians produced
an approach to geometry that is still studied and used extensively
today. What has changed is the perception of the geometry. When
Euler and others sought to describe various surfaces, they were
doing work that was perceived by their contemporaries as highly
abstract. Today, the same types of problems that Euler and others
studied are often associated with research in applied mathematics
and engineering. Their old discoveries are used in ways that the
discoverers could not have anticipated. This is a nice example of
how what is perceived as pure mathematics by one generation of
researchers is perceived as applied mathematics by a later genera-
tion of researchers.

Calculus and Analytic Geometry  140



141

10
differential geometry

Euler made great strides in developing the necessary conceptual
tools for representing and analyzing surfaces and curves. His
emphasis, however, was on describing surfaces globally; that is, he
sought to describe the surface of an entire object rather than
develop a careful analysis of the properties of a surface near a point
on the surface. Analyzing a small part of a surface in the neigh-
borhood of a point is called a local analysis. Though, at first
glance, a local analysis may seem to be less interesting than a glob-
al analysis, time has proved otherwise. The first person to see the
value of local analysis was the German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). He is generally regarded as
the founder of the subject of differential geometry, a branch of
geometry that uses the tools of analysis, that branch of mathemat-
ics to which calculus belongs, to study the local properties of sur-
faces. (Gauss’s contributions to non-Euclidean geometry are
recounted earlier in this volume.)

To understand Gauss’s work in differential geometry, knowing
that he was also interested in the very practical field of geodesy,
which involves the determination of the exact size and shape of
Earth and the precise location of points on Earth, is useful. In fact,
he directed a very large surveying effort for his government. The
problem of producing the most accurate possible flat maps of
curved surfaces is a good introduction to some ideas of differential
geometry.

Many of us take the accuracy of maps for granted. The maps 
that we use seem to indicate precise locations, sizes, and shapes of
geographic features. But all of these maps contain inaccuracies,



and the larger the areas that are mapped, the greater the inaccura-
cies the maps have. Some causes of distortion are obvious: A flat
street map of San Francisco, for example, fails to capture the steep
hills that are characteristic of that city. This results in a distortion
of short distances. Furthermore the angles at which the city streets
meet on the map may not correspond to the angles made by the
streets themselves. This, too, is the result of representing a curved
surface on a flat map. In fact, every map of a state, a county, or
even a large city must distort distances, even when the terrain is
not at all hilly, because no geographical feature of even modest size
is flat. Earth itself is round, and the geometric properties of its
large geographic areas must reflect the curved surface on which
they are situated.

Mathematically one method of approaching mapmaking is
through the use of something called a tangent plane. Consider a
sphere and a plane. Imagine positioning the plane so that it
touches the sphere at exactly one point. The plane is said to be
tangent to the sphere at the point of contact. There is only one
tangent plane at each point along the surface of the sphere, or,
to put it another way, any two planes that are tangent to a sphere
at a given point must coincide. One consequence of the unique-
ness of the tangent plane is that it is the best flat approximation
to the sphere at the point of tangency.

One method of making a
good map near the point of
tangency involves projecting
the region of interest onto the
tangent plane. This process is
stereographic projection. To see
how this might be done,
imagine placing a sphere on a
plane so that the sphere rests
on a single point, which we
will call the south pole. Now
imagine a line passing
through the south pole and
the center of the sphere.
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Extend this line until it intersects the top of the sphere, and call
this point of intersection the north pole. Transferring the lines of
latitude and longitude drawn on the sphere onto the plane is, in
principle, a simple matter: Extend a line from the north pole
through a point of the sphere until it intersects the tangent plane.
This procedure establishes a one-to-one correspondence between
points on the sphere and points on the plane. Every point on the
sphere is mapped to a point on the plane except the north pole.
The pattern near the south pole is transferred to the tangent plane
without much distortion, but the pattern near the north pole
becomes severely distorted when it is transferred onto the plane
that is tangent to the south pole. A line of latitude near the north
pole, which is really a small circle on the surface of the sphere cen-
tered on the north pole, is mapped onto a huge circle on the tan-
gent plane. (This huge circle is centered on the point that
coincides with the south pole.) This example shows why a map of
small areas near the south pole, when developed by using this
technique, shows little distortion, and why the accuracy of the map
begins to degrade as the surface being mapped begins to curve
away from the tangent plane (see the accompanying illustration).

The process can be reversed as well. We can imagine a figure
drawn on the plane. We place the south pole of the sphere on the
point of the plane that is of most interest and repeat the construc-
tion described in the preceding paragraphs. This enables us to
draw the plane figure onto the sphere, and in the neighborhood of
the south pole there is little distortion. We can even trace the
plane coordinate system onto the sphere along with the curve. In
this way we can draw a coordinate system onto the surface of the
sphere, and near the south pole the coordinate system will not be
badly distorted. The main theme in all of this is that as the surface
curves away from the tangent plane, the tangent plane becomes a
poor approximation of the surface.

Gauss recognized that the study of curvature of the surface in
the neighborhood of a point had to be understood in order to
make much progress in the study of surfaces, and one of his impor-
tant contributions to differential geometry was the study of curva-
ture. Gauss found a way to measure the curvature of a surface in a
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way that would enable the user to state quantitatively exactly how
curved a surface is. This is harder than it may first seem, because
we often confuse the curvature of a surface with that of a curve.

A procedure for comparing the curvature of two plane curves is
relatively simple to envision, although computing the curvature of
a plane curve may require a fair amount of mathematics. We can
compare the curvature of two plane curves at two points by simply
superimposing the two points, one on top of the other, and then
“tilting” one curve relative to the other until it becomes clear from
inspection which of the two is more curved in the region of the
point of interest. Intuitively at least the procedure is fairly clear.
The additional problem presented by curved surfaces is that they
can be curved in different directions at the same point. This is true
for even very simple surfaces. The surface of a saddle, for example,
is curved “up” when it is traversed from back to front and is curved
“down” when it is traversed from side to side. As a consequence
the curvature at any point on the axis of symmetry of the saddle is
not entirely evident.

Gauss’s solution to this was to reduce each three-dimensional
problem of the curvature at a point on a surface to a set of two-
dimensional problems involving curvatures of curves. To appreci-
ate Gauss’s idea, we begin by
imagining a point, which we
will call P, on a smooth surface.
Now, imagine the tangent
plane at P. (Recall that the tan-
gent plane is the unique plane
that is the best flat approxima-
tion to the surface at the point
of tangency.) Next imagine a
line, which we call l, extending
out of the surface at P and per-
pendicular to the tangent
plane. Now imagine a plane
containing the line l. This sec-
ond plane is perpendicular to
the tangent plane and extends
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right through the surface. The line l forms a sort of hinge about
which the plane can rotate.

No matter how we rotate the second plane about the line l, the
intersection of this plane and the surface forms a curve through P.
The shape of the curve usually depends on the orientation of the
plane. Now imagine rotating this plane about line l. At each new
position of the plane a new curve is formed by the intersection of
the plane and the surface. In this way we form a set of curves con-
taining the point P. For most surfaces of practical interest, there
are a curve of greatest curvature and a curve of least curvature.
One remarkable fact, discovered by Gauss, is that the direction of
the curve with greatest curvature at P is always perpendicular to
the direction of the curve of least curvature at P. Finally, Gauss
computed the maximal and minimal curvatures at P and used the
maximal and minimal curvatures to define something now known
as the Gaussian curvature of the surface at the point.

Our description of Gauss’s idea is rhetorical—expressed without
equations—because the mathematics used in differential geometry
is somewhat complex. Gauss, however, expressed his idea in the
language of analysis. This is important, because in differential
geometry a surface is described by one or more equations; the
rhetorical descriptions used by the Greeks were no longer ade-
quate. With just the equations to go on, the appearance of the sur-
face may not be at all obvious. Nevertheless we can investigate its
curvature by using Gauss’s methods. This is part of the value of the
analytical methods that Gauss helped pioneer.

The discovery of differential geometry allowed mathematicians
to approach geometry from a different point of view. The tools of
analysis made investigation of surfaces of increasing complexity
possible. Mathematicians began to consider the problem of how to
do mathematics on curved surfaces. For example, how can coordi-
nate systems be imposed on curved surfaces? What are their prop-
erties? How are two different coordinate systems on a curved
surface related to each other?

Coordinate systems and quantitative measures of the curvature
of a surface were just the beginning. Mathematicians wanted to do
mathematics on curved surfaces. They wanted to study curves and
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geometric figures on curved surfaces. For example, the curves
might enclose regions of the (curved) surface. How could one
compute the surface area enclosed by the curves? As Euler was,
Gauss was interested in the problem of geodesics, the identifica-
tion of the shortest path connecting two points on a curved 
surface. In ordinary two- or three-dimensional spaces a straight
line is the shortest distance between two points, so, in a sense, on
a curved surface geodesics are the analog to straight lines. These
problems were not especially easy, but they, too, were just the
beginning.

So far we have described the geometry of the surface as if we
were standing on the outside looking in. Suppose, instead, that we
were located on a very large curved surface from which we could
not escape and out of which we could not see. We would, in effect,
be two-dimensional beings. In this case the only geometry that we
could know would be the geometry that occurred on the surface
on which we lived. The only observations that we could make
would be from the neighborhood of our position on the surface.
This situation gives rise to many new questions: What could we
learn about the surface on which we were located from observa-
tions made at the surface? Could we recognize, for example,
whether or not the surface on which we lived were curved? Could
we compute its curvature? These were new questions, and they
provoked a lot of thought. One of the first mathematicians with
answers was the German mathematician Bernard Riemann.

Georg Friedrich Bernhard Riemann
Georg Friedrich Bernhard Riemann, better known as Bernhard
Riemann (1826–66), was one of the most imaginative mathemati-
cians of the 19th century. He did not live a long life, dying of
tuberculosis at 40. He did not publish many papers, and he had a
very difficult time earning a living throughout much of his life.
Nonetheless his mathematical insights were so striking that they
permanently changed how mathematics was done.

Riemann was born into a family of modest means. All accounts
of his early life indicate that his was a very close-knit family and
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that he remained close to his
parents even after moving
away. His father, a Lutheran
minister, educated his son at
home for several years before
enrolling the boy in school.
By the time Riemann had 
finished high school he had
progressed beyond what his
teachers could teach him. 
He seems to have especially
enjoyed calculus and the theo-
ry of numbers.

It was the hope of his father
that Riemann would study
theology, and when Riemann
entered university, he initially
did just that. Soon, however,
he wrote back to his father
asking for permission to

change his program of study so that he could concentrate on
mathematics. His father agreed, and Riemann began his work in
mathematics. As an undergraduate Riemann attended both Berlin
University and the University of Göttingen, which was to 19th-
century mathematics what Alexandria was to the mathematics of
antiquity. It was from the University of Göttingen that Riemann
eventually received a Ph.D. with Gauss as his thesis adviser. For
years after obtaining his Ph.D. Riemann lived in poverty. During
this time he produced several important mathematical papers.

Riemann’s main achievements were in the areas of physics,
geometry, number theory, complex variables, function theory, and
differential equations. His writings were distinguished from those
of most of his predecessors by the rhetorical way that he often
expressed his ideas. In contrast to many of his contemporaries,
who embraced the rigor that the new mathematics offered,
Riemann generally avoided computation and extensive use of alge-
braic symbolism. His preference for prose rather than algebraic
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notation, and for intuition
rather than strict rigor, was
somewhat controversial at the
time. Some mathematicians
perceived his work—or at
least the way that he expressed
his work—as a step backward
from the precision of Gauss
and others. These objections
have, for the most part, been
forgotten because Riemann’s
insights have proved so useful.

In geometry Riemann began
with the difficulties posed by
Euclid’s parallel postulate.
Riemann, though a young
man, was arriving late at the
topic. That Euclid’s parallel
postulate was a stand-alone
idea, independent of his other axioms and postulates, had already
been demonstrated by Nikolai Lobachevsky and János Bolyai, as
described earlier in this volume. Riemann, however, seems to have
been unaware of their work. In any case his geometry was differ-
ent from theirs. The alternatives to Euclid’s fifth postulate pro-
posed by Lobachevsky and Bolyai were roughly the same: Given a
line and a point not on the line, there exist more than one line
passing through the point parallel to the given line. Riemann, on
the other hand, created another axiom entirely. In effect it said
that given a line and a point not on the line there does not exist
any line passing through the point and parallel to the given line.
At first sight this axiom, too, seems counterintuitive, but
Riemann’s axiom is actually much easier to visualize than the
axioms of Lobachevsky and Bolyai.

To visualize this idea, imagine doing geometry on a sphere
instead of a plane—this is, after all, what mapmakers do every day.
Define a great circle as the line on the sphere determined by the
intersection of the sphere with any plane containing the center of
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the sphere. On a sphere these are the equivalent of straight lines.
Every line of longitude, for example, is half of a great circle,
because every line of longitude terminates at the poles. The equa-
tor is also a great circle. There are other great circles as well. For
example, consider the great circle formed by “tipping” the equa-
torial plane (the plane that contains the equator) so that it con-
tains both the center of the sphere and a point on the surface of
the sphere that is at latitude 45°N: Half of the great circle is
located above the equator; the other half is located below the
equator.

To illustrate Riemann’s axiom, choose a great circle passing
through the poles: Call it L1. If, now, we choose a point off L1, any
other great circle containing the point intersects our “line,” L1. To
see this, suppose that we pass a line of longitude through the point.
Call this line of longitude L2. The great circle containing L2 inter-
sects L1 at both the north and south poles of our sphere. On a
sphere, where the great circles correspond to lines, there are no
parallel lines.

Riemann’s geometry has a number of peculiar properties when
compared with Euclidean geometry. For example, the sum of the
interior angles of a triangle exceeds 180°. To see how this can hap-
pen we return to doing geometry on a sphere. (The sphere is just a
familiar example; Riemann’s ideas are actually much more general
than this.) Consider the triangle formed by the two lines of longi-
tude and the equator. Each line of longitude crosses the equator at
a right angle. Because the two lines of longitude meet at the north
pole to form an angle whose measure is greater than 0, the sum of
the interior angles of the triangle must exceed the sum of two right
angles (see the sidebar Is Our World Euclidean? in chapter 7).

Riemann also generalized the geometry of ordinary Euclidean
space, where we initially use the term Euclidean space for the so-
called flat two- and three-dimensional spaces on which we impose
a Cartesian coordinate system. Riemann extended this idea to
spaces of four and more (generally n) dimensions. Points in n-
dimensional space are placed in a one-to-one correspondence with
“n-tuples” of real numbers (x1, x2, x3, . . ., xn). In this way we can
impose a coordinate system on n-dimensional space.
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Riemann also sought to imagine other types of spaces. He was
especially interested in the idea of a curved space. Few, if any, of us
can imagine what higher-dimensional curved spaces look like, so
our intuition is of little value in trying to determine whether any
of these spaces is flat or curved, or even whether the terms flat and
curved have any meaning in these situations. Nevertheless space
can be curved, and Riemann wanted a criterion that would enable
him to determine whether a given space is curved or flat. He found
the criterion that he was looking for, and it depends on the
Pythagorean theorem.

Recall that the Pythagorean theorem in a Cartesian coordinate
system in Euclidean space can be interpreted as a distance formu-
la. If (x1, y1) and (x2, y2) are points in two-dimensional space, then
the distance between the points is √(x1
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This looks more complicated than the two-dimensional case, but the
idea, of course, is exactly the same. The only difference is that more
terms are required to measure distance in n-dimensional space than
in two-dimensional space.

Riemann said that regardless of the number of dimensions of the
space, if the distance between the points in the space is given by
the distance formula—that is, the generalized Pythagorean theo-
rem—then the space is Euclidean. He called these spaces flat by
analogy with a flat surface, for which the distance formula is easy
to interpret as an application of the Pythagorean theorem.

Of course, none of this answers the question, What’s the point?
Why should we be concerned with the geometry of a space of
dimension higher than 3? There are two answers to these questions.
First, although our senses do not extend to higher-dimensional
spaces, our imagination does. Mathematicians, scientists, and
engineers frequently find it convenient and sometimes even nec-
essary to compute in higher-dimensional spaces, as when they
solve practical problems that involve many independent variables.
These types of problems arise in fields as diverse as submarine
navigation, stock market analysis, and meteorology, as well as a
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host of other fields. Understanding the geometric properties of
higher-dimensional spaces is always helpful and sometimes vital in
this regard.

Solving practical problems was not Riemann’s goal, however.
Riemann sought to understand geometry “from the inside.” He was
searching for a geometry that is intrinsic to the space, whether that
space existed in two, three, or more dimensions. Happily what had
already been discovered about two-dimensional surfaces could be
applied (if not imagined) to spaces of higher dimensions. For exam-
ple, we have (for the most part) described surfaces as if we were out-
side the surface looking in. From outside the surface we can easily
observe several properties about the surface. From outside we can,
for example, see whether the surface is curved. We can also observe
whether the surface is of finite extent or whether the surface stretch-
es on into infinity. Now imagine an imaginary creature living on 
this surface. Riemann wanted to know how this creature could
determine the geometry of the surface without making any measure-
ments or observations from any point located off the surface.

Riemann also thought beyond surfaces. He wanted, for exam-
ple, to know how beings in a three-dimensional universe could
determine the geometry of the universe in which they lived with-
out making any measurements or observations from outside the
universe. If this sounds too theoretical to be of value, remember
that this is the sort of situation in which we find ourselves. There
is no way that we can leave the universe to observe it from the
outside. Any conclusions that we make about the geometry of
space must, therefore, be made from inside. It was Riemann’s
hope that these investigations would eventually prove useful to
science.

In his investigations of “geometry from the inside,” Riemann
imagined a system of geodesics. These would serve the same pur-
pose in space as the coordinate lines that occur in flat, Euclidean
space. A complete set of geodesics provided a coordinate system
that would enable an imaginary being to find its way through
space in just the same way, for example, that lines of longitude and
latitude enable us to find our way about the globe. In Euclidean
space the shortest distance between two points is a straight line; in
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a curved space the shortest distance between two points is a geo-
desic. Geodesics could be used to compute distances as well. To a
creature inside the space, the system of geodesics would resemble
Euclidean coordinates in the same way that near the point of tan-
gency a surface resembles its tangent plane.

Could a creature living inside the space distinguish ordinary,
three-dimensional Euclidean space (sometimes called flat space by
analogy with the two-dimensional case) from curved space?
Riemann’s answer was yes. The curvature of space could be inves-
tigated from inside with the help of the Pythagorean theorem: If
the distance between two points was not that predicted by the
Pythagorean theorem, then the space was not Euclidean space. It
had to be curved. In fact, the degree of curvature of the space
could be investigated by noting how much the actual distances
varied from those predicted by the Pythagorean theorem.

The curvature of space is important because of what it can mean
about the size and shape of the universe. If space is infinite in
extent, then it has no boundaries. In an infinite universe there can
be no boundary with the property that if we pass through it, we
will be “on the outside of it looking in.” An infinite universe
implies a universe without boundaries. The converse is, however,
false. If we claim that the universe has no boundaries, it does not
necessarily follow that the universe is infinite in extent.

Travel on the surface of the Earth illustrates this facet. In ages
past there were many individuals who believed that Earth had
edges (boundaries) such that if one traveled far enough in a
straight line, one would fall off the edge. Not everyone believed
this, of course. The Portuguese sailor and explorer Ferdinand
Magellan (ca. 1480–1511) led an expedition that sailed continual-
ly westward. Not only did this group of explorers not fall off
Earth, they eventually arrived back at their home port. This
accomplishment was dramatic proof that Earth’s surface has no
boundaries. One can sail about the oceans forever, in any direc-
tion, and not fall off. This is a consequence of the curvature of
Earth’s surface: It has no boundaries or edges off which Magellan
and his crew could fall. But Earth’s surface is not infinite in extent,
either. Any traveler proceeding in a straight line in any direction
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on Earth’s surface eventually returns to his or her starting point, as
Magellan’s expedition did, because the surface of the Earth is finite
in extent.

The reason this fact is important is that if space is curved, a sim-
ilar sort of phenomenon can occur. By traveling along whatever the
universe’s equivalent of a great circle is, we would eventually, as
Magellan’s expedition did, arrive back at our starting point by mov-
ing continually forward. Riemann in a highly abstract way was
dealing with some of the biggest of all scientific questions: What is
the shape of the universe? How can we know our ideas are correct?
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and time

Many mathematicians found Riemann’s ideas interesting and
intellectually appealing, and Riemann’s concepts led to a radical
reassessment of geometry and the way to do geometry. It was
Riemann’s hope that these ideas would also further understand-
ing in the physical sciences. Riemann’s ideas eventually 
found application outside mathematics, but Riemann himself 
did not live long enough to see this occur. It was not long, how-
ever, before ideas about the curvature of space found their way
into modern physics. Likewise, it was not long before the 
exotic geometries of Riemann began to appear better suited to
describing the structure of the universe than the commonsense
geometries of absolute space and absolute time that Newton had
held dear.

The German-American physicist Albert Einstein (1879–1955)
discovered that the geometry of the universe is substantially more
complicated than that envisioned by Isaac Newton. His discover-
ies changed physicists’ perceptions of space and time. Einstein
was not a mathematician himself—in fact, he seemed never to tire
of describing his difficulties with mathematics—but his discover-
ies added a great urgency to the study of differential geometry. A
curved universe was no longer simply the imaginary home for an
imaginary being; it was of interest to everyone. One hundred
years after Einstein published his first paper on the subject of rel-
ativity, the ideas contained therein still spur research in the field
of differential geometry.



Einstein was born in Germany. Throughout grammar school
and high school he was an indifferent student, but he was fasci-
nated with physics from an early age. In fact, as a youth he had two
main interests: physics and music. His uncles introduced him to
science and mathematics; his mother introduced him to music.
Through good times and bad for the rest of his life he continued
to play his violin and undertake research in physics—although not
necessarily in that order.

Einstein attended college at the Federal Polytechnic Academy in
Zürich, Switzerland. After graduation he became a Swiss citizen.
He worked briefly as a high school mathematics teacher and even-
tually found work as a patent examiner, one who evaluates applica-
tions for patent protection. This job apparently was not very
demanding of his time, and during his considerable free time he
continued his research into physics. In 1905 he published four
papers. One paper, on Brownian motion, enabled him to obtain a
Ph.D. from the University of Zürich. Another paper on what has
become known as the special theory of relativity changed scientists’
ideas about the geometry of the universe and showed that the
Newtonian reference frame was, for certain applications, not valid.

These papers attracted recognition from other scientists, though
general public recognition was still some years off. He resigned his
position as patent clerk and within the space of a few years taught
at several European universities, among them his alma mater, the
Federal Polytechnic Academy at Zürich, and later the University
of Berlin. Einstein was in Berlin when World War I began, and he
became involved in the antiwar movement. For much of his life
Einstein used his position of prominence in an attempt to further
his pacifist views. He was not very successful in this regard, and
this was a source of personal disappointment and, occasionally,
bitterness for him. As many other Jewish academics did, Einstein
fled Germany shortly after the Nazis gained power in 1933. He
made his way to the United States, where he settled in Princeton,
New Jersey.

After Einstein attained prominence his interests shifted. He
spent years arguing against many of the discoveries in the new
branch of physics called quantum mechanics. Most physicists of the
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time acknowledged the value
and importance of the new
ideas that arose out of this
field, but Einstein had difficul-
ty accepting them. His efforts
with respect to quantum
mechanics bore no fruit. He is
also remembered for having
called to the attention of
President Franklin Roosevelt
the potentially dangerous
implications of research that
was being conducted in
Europe on the splitting of the
atom. In a letter sent to the
president he described in 
general terms the possibility 
of using this new source of
energy to create a new type of
weapon. The letter was not
Einstein’s idea. Other scien-
tists urged him to write it, but
Einstein’s prominence as a 
scientist caused Roosevelt to
consider the possibility seri-
ously. The eventual result was
the Manhattan Project, the
successful wartime effort by
the United States to construct an atomic bomb. Einstein did not
participate in the Manhattan Project himself.

After World War II, Einstein advocated the creation of a single
world government to protect humanity from further large-scale
conflict. His health declined. He died in his sleep in a hospital in
Princeton.

Einstein’s best-known contribution to science is, of course, the
theory of relativity. (From long usage, relativity is still described as
the theory of relativity, but so many of the predictions that arose
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out of Einstein’s model of the universe have been confirmed that
it is now a firmly established scientific fact.) Though the theory of
relativity is, of course, related to physics, it is also a powerful state-
ment about geometry. In classical physics the geometry of space
and of time is considered to be as absolute as the laws of physics:
The laws of physics as Newton understood them are everywhere
the same, as is the geometry of space and time. This understand-
ing began to change during the latter half of the 19th century.

Newton’s ideas about the absolute nature of time and space had
been called into question by a series of carefully conducted exper-
iments by the German-born American physicist Albert Abraham
Michelson and the American chemist Edward Williams Morley.
The importance of what are now known as the Michelson–Morley
experiments was recognized immediately. These experiments
showed that it was not possible for both the laws of physics and the
geometry of space and time to be absolute. Einstein’s great accom-
plishment is that he argued that the laws of physics took prece-
dence over the geometry of space and time that Newton
envisioned. The result was the theory of relativity.

Geometry and the Special Theory of Relativity
Einstein’s ideas on relativity are generally expressed in two parts,
the theory of special relativity and the theory of general relativity.
The theory of special relativity was published first. It is a nice
application of two ideas that have played an important part in this
history of geometry, coordinate systems and the geometry of right
triangles. The theory of special relativity states that the laws of
physics, including the speed of light, are the same for any refer-
ence frame (coordinate system) in uniform motion. (Uniform
motion is motion along a straight line and at constant velocity.)

To see how this assertion destroys the geometry of time and
space that Newton envisioned, we can perform a simple thought
experiment. We imagine a rectangular box. We attach a laser to
the top of the box and point it downward so that when the laser is
turned on it illuminates the spot on the bottom of the box direct-
ly beneath it. We call the spot directly beneath the laser the target.
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The speed of light is 300,000 kilometers per second (186,000
miles per hour), so the target is illuminated almost immediately
after we turn on the laser, but there is a small delay. The light from
the laser takes time to reach the bottom of the box. Because there
is a delay, and because the speed of light in a vacuum is constant,
we can use the laser as a sort of clock. We set one unit of time
equal to the time the laser light takes to travel from the top of the
box to the target below.

Now we imagine four things: (1) We imagine the box traveling
along a straight line at constant speed. (2) We imagine turning
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The time light takes to move from the top of the box to the target at the
bottom can be used to calibrate a clock. We conclude that time passes at 
different rates for observers in different reference frames.



on the laser. (3) We imagine that we are inside the box watching
the laser beam travel down from the top of the box to the target.
(4) We imagine also watching the laser from a position outside
the box and at rest as the box travels directly across our field of
view.

If we were inside the box, our frame of reference would be the
box itself. The origin of our coordinate system would be a point
inside or on the box. This coordinate system would enable us to
observe how things move relative to us and to the inside of the
box. This is the “right” coordinate system for us because we are
motionless relative to the box. In this coordinate frame, the time
the laser takes to travel from the top of the box to the target is one
unit of time. That unit of time is the same for the person inside the
box no matter what the speed of the box, because according to the
principle of special relativity, the speed of light is the same in any
reference frame in uniform motion.

On the other hand, if we are positioned outside the box and
motionless relative to the box, then as the box moves past us we
see the tip of the laser beam follow a diagonal path as it travels
from the top of the box to the target. The reason is that the box
is not motionless relative to our outside-the-box coordinate sys-
tem. If the laser followed a vertical path in our coordinate system
then it would miss the target at the bottom of the box because
the box had moved. If the box is moving to the right relative to
our point of view, then the tip of the laser beam must also be
moving to the right relative to our point of view; if it does not, it
will miss the target, which is, after all, a moving target. These
observations allow us to imagine a right triangle. The vertical
side of the box constitutes one side of a right triangle. The dis-
tance traveled by the target from the time the laser was turned
on until it was illuminated forms the second side of the triangle.
The path of the tip of the laser beam forms the hypotenuse (see
the diagram). Since the length of the hypotenuse is always longer
than the length of either of the remaining sides, and since the
speed of light is always the same for any frame of reference, 
the light took longer to reach the target from our point of view 
outside the box. (The diagonal distance traversed by the laser can
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be computed by using the Pythagorean theorem.) Since we were
using the laser as a sort of clock, this shows that from the point
of view of the observer who is standing still outside the box, time
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THE PYTHAGOREAN THEOREM
AND SPECIAL RELATIVITY

Finding out how much more slowly time inside the moving box passes
relative to time outside the box requires only the Pythagorean theorem,
one of the oldest formulas in geometry. First, we compute how long the
horizontal and vertical legs of the triangle described in the main body of
the text are. Let t represent the time required for the laser light to travel
from the top of the box to the bottom, where t is measured from inside
the box. Let t̄ represent the time the light takes to move from the top of
the box to the bottom as measured from outside the box. Our goal is to
compute t in terms of t̄ .

Let v represent the speed with which the box moves to the right. The
distance the box moves to the right between the time the laser is fired
and the time it strikes the target is easily computed: It is vt̄ . The height 
of the box can also be computed in terms of time. Because light always
travels at constant speed—we let the letter C represent the speed of
light—the distance from the top to the bottom of the box in both coordi-
nate systems is Ct. The length of the hypotenuse is Ct̄ , the speed of light
multiplied by the time it takes for the laser to hit the target as measured
from outside the box. The three lengths, Ct̄ , vt̄ , and Ct, are all related
through Pythagoras’s theorem: C2t̄ 2 = v2t̄ 2 + C2t2. We use a little algebra
to solve this equation for t. The result is t = t̄√1

—
–
—
v2
—
/ C2. This shows that

time inside the box passes more slowly relative to time in the coordinate
system for the observer located outside the box, and that we can make it
pass as slowly as we please provided we make v, the speed of the box,
large enough. When v is about 0.87C, or about 87 percent of the speed
of light, time inside the box is elapsing at only half the rate of the time in
the coordinate system for the observer situated outside the box.

It must be kept in mind that this is a change in time itself. It has 
nothing to do with a mechanical effect on clocks. Time itself is elapsing
at a different rate inside the box than it is outside the box, and this is a
purely logical consequence of the assertion that the laws of physics
(including the speed of light) are the same in every frame of reference
moving along a straight line at constant velocity.



inside the box is passing more slowly than time outside it. (To
compute how much more slowly, see The Pythagorean Theorem
and Special Relativity.)
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THE GEOMETRY AND SCIENCE OF
“ORDINARY“ SURFACES

Differential geometry is often associated with the theory of relativity. The
theory of relativity makes a number of very spectacular and unexpected
predictions about the shape of the universe, and these predictions are
made in the language of differential geometry. Relativity is a famous, if
not widely understood, theory. But the study of curved surfaces has
proved to be important in other areas as well. One important application
concerns the physics of surface flow.

Most “hands-on” science museums now have something called a
bubble hoist. It consists of a rectangular frame, a bar, cables, and a
trough of prepared liquid. The cables are attached to both ends of the
frame and threaded through small holes in the bar. The bar is lowered

The study of the geometry and of the dynamics of flows inside membranes
has become an important branch of applied mathematics.  (CORBIS)



The words slowly and quickly are relative terms, of course. To the
person inside the box, everything is just as it should be. The laser
still takes exactly one unit of time to leave the top of the box and

The Shape of Space and Time  162

into the trough by a rope, and when it is pulled up, usually by means of
a rope, it draws up a large soapy film after it. The film extends from one
cable to the other and from the bar to the trough. It is thinner than a hair,
and, in particular, it is millions of times thinner than it is wide or tall. Close
inspection of the bubble reveals that it is not static. Fluid is flowing down
the film in a complicated pattern.

Complicated two-dimensional flows can sometimes be described by
using the ordinary flat Cartesian coordinate system with which we are
familiar, but in this case there are complications that make this impossible.
The membrane is very flexible. A slight breeze causes it to bend. Small
vibrations of the frame are transmitted to the membrane through the bar
and cables. The two-dimensional surface of the membrane responds to
these forces by deforming. The forces that hold the membrane together
are exerted from inside the surface, and the strength of these forces is
determined in part by the curvature of the surface. Meanwhile the motion
of the fluids inside the membrane is continually responding to the curva-
ture of the surface. Successful models of these types of phenomena must
be built on a geometry that is intrinsic to the surface. In other words sci-
entists need the more sophisticated geometry pioneered by Bernhard
Riemann to describe the physics of flow within the bubble hoist.

The range of problems that use these geometric ideas is now quite
wide. For example, when two immiscible liquids, such as oil and water,
contact each other, they interact across a surface of constantly chang-
ing shape. Understanding the dynamics of the interface between these
two fluids is important if one wants to control processes that involve two
nonmixing fluids. Another example of a phenomenon that is sometimes
modeled by using geometric methods that are intrinsic to the surface is
flame-front propagation. In this model the flame is the interface between
two different materials: the reactants, which are the chemicals that are
to be burned, and the products, which are the chemicals produced by
the combustion reaction. Almost any process that involves two separate
materials separated by a surface can benefit from this type of analysis.
Riemann would almost certainly be pleased that the highly abstract
problems with which he grappled almost a century and a half ago are
now applied to such practical problems.



hit the target on the floor. This cannot change because (according
to the theory of special relativity) the speed of light is the same in
every reference frame in uniform motion.

In the same way that the passage of time can be different for
different observers, distance, too, is different for observers in dif-
ferent reference frames. This should not be surprising. If time
can dilate, then we should expect changes in distance as well. (In
our own experience we often assume the equivalency of time and
distance. Whenever we describe a location as a two-hour drive
away, we are substituting a time measurement for a distance
measurement.)

To see how distances, too, can be different for different observers
imagine two planets in space that are not moving relative to each
other. Suppose that, from the point of view of a creature on one of
the planets, the planets are one light-year apart. (A light-year is the
distance that light travels in a single year.) So from the creature’s
point of view, travel from one planet to the next must always take
at least a year, because nothing travels faster than the speed of light.
But time passes more slowly for the passenger inside a rocket trav-
eling between the two planets than for an observer situated on one
of the planets, for the same reason that time passes more slowly for
the observer in the box described earlier than for the observer in
the coordinate system outside the box. Furthermore the faster one
travels, the more slowly time inside the rocket passes relative to
time on the planet. This means that from the point of view of
someone inside the rocket, travel from one planet to the next might
take only six months. This cannot mean that the rocket is traveling
faster than the speed of light, because (again) nothing goes faster
than the speed of light. It can only mean that from the point of view
of someone inside the rocket the two planets are less than one-half
light-year apart. The faster one goes relative to the speed of light,
the shorter distances become. The simple-sounding statement
“The laws of physics are the same for any frame of reference that
moves at constant speed along a straight line” implies that neither
time nor space is absolute. There is no escaping it: The geometry
of the universe is more complicated than it first seemed; the geom-
etry of the universe is flexible.
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Einstein’s discoveries in special relativity are surprising to
most people. The reason is that his results depend on the speed
of light. Travel at speeds that are near the speed of light is com-
pletely outside our ordinary experience. Because we move so
slowly relative to the speed of light the changes predicted by the
theory of relativity are so small that we cannot detect them.
They are so small that no one knew about them until Einstein
deduced their existence, although the relative dilation of time
and space occurs whenever one observer moves relative to
another.

Einstein later published his general theory of relativity. The
general theory shows that space and time are even more flexible
than his special theory indicated. The geometry of the universe
could be not only dilated but also curved. Riemann had wanted to
know how much an imaginary being living upon a curved 
surface could discover about the surface without stepping outside
it. His questions were now of interest to scientists as well as math-
ematicians. Scientists now wanted to know about the geometric
structure of the universe, too. Einstein indicated that space could
be curved, but how curved is it, and in what direction is it curved?
These are questions that are still being investigated.

Emmy Noether and Symmetry
Einstein is sometimes described as a kind of scientific prophet,
leading his fellow physicists to a new, relativistic universe. It is
worth remembering, however, that at the time of his discoveries
Einstein was not the only one searching for a satisfactory explana-
tion to the experiments of Michelson and Morley. He was not
alone in recognizing that the old concepts did not adequately
explain the new data, and he was not alone in suspecting that
Michelson and Morley’s experiment pointed the way toward the
next Big Idea in physics.

To be sure Einstein was the person first to propose the theory of
relativity, but he was not so far ahead of his time that his ideas were
unappreciated. Many other physicists and mathematicians quickly
recognized the validity of his discoveries. This does not always
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occur with important discoveries. There have been scientists and
mathematicians who were so far ahead of their time that their con-
tributions were not recognized until long after their death. It was
otherwise with Einstein. Both the theory of relativity and its prin-
cipal theorist were widely celebrated within a few years after
Einstein began publishing his ideas.

As Einstein’s fellow scientists have, the popular press has always
accorded the theory of relativity a good deal of attention. On the
one hand this is surprising. The dilations of time and space that
are predicted by the theory only become easily noticeable under
conditions that are far beyond ordinary human experience.
Despite all the descriptions so regularly recounted in newspapers
and magazines of identical twins moving at different speeds and
aging at different rates, no human has ever traveled relative to
another human at a speed that is a significant fraction of the speed
of light. No country has plans to accelerate an astronaut or 
cosmonaut to such speeds at any time in the foreseeable future.
The practical difficulties involved in attaining such speeds (and
then slowing down) are enormous.

In many ways the theory of relativity is old news, but even its
most basic predictions continue to fascinate both the trained sci-
entist and the interested layperson. Part of the reason for this con-
tinued interest must be that the theory predicts that time and
space are mutable. Geometry, according to Einstein, is not quite
as fundamental as most of us are still led to believe.

To the ancient Greeks there was no physics in the modern
sense. They learned about nature through geometry. Science in
ancient Greece was applied geometry. Devoid of the concepts of
force, mass, and energy, the Greeks saw geometry as the central
organizing principle of nature. Later Galileo, Isaac Newton, and
others saw geometry and physics as complementary. There are
laws—physical laws—governing the motion of bodies, but these
motions and the laws that describe them exist in a geometric 
context, the geometry of absolute time and space described by
Newton. It was Einstein who asserted that there were circum-
stances in which the laws of geometry (as they had been under-
stood since antiquity) and the laws of physics sometimes conflict.
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It was part of his great discovery that when a conflict arises
between physics and geometry, physics prevails. Distances
change, time dilates, but the speed of light remains constant. This
idea was surprising when Einstein first discovered it, and it con-
tinues to surprise most of us today.

It may seem geometry had been “dethroned” from the place 
it had occupied in the human imagination for millennia, and 
in some ways this is exactly what had happened. But the idea 
of geometry as a central organizing principle of nature was 
successfully reintroduced not long after Einstein published 
his paper on the general theory of relativity in 1915. (General
relativity is an extension of the ideas of special relativity, the 
relativity described in the previous section.) The person to
reestablish the importance of geometry as an organizing princi-
ple in nature was the German mathematician Emmy Noether
(1882–1935).

Noether grew up in Erlangen, Germany, the daughter of the
prominent mathematician Max Noether, a professor at Erlangen
University. As a youth the younger Noether showed facility with
languages, and her original goal was to teach foreign languages in
secondary schools. To that end she received certification as a
teacher in English and French, but she never taught languages.
Instead she began to study advanced mathematics.

Higher mathematics was a difficult career path for a woman in
Germany at this time. A woman could take university-level
courses, but only with the permission of the instructor.
Furthermore it was a general rule that women were barred from
taking the exams that would enable them to become faculty
members at universities. This was the situation in which
Noether found herself.

Noether eventually received a Ph.D. in 1907 from the
University of Erlangen, and for a while she remained at Erlangen
and taught an occasional class for her father, but she did so with-
out pay. She continued her studies and eventually drew the atten-
tion of David Hilbert and Fritz Klein at Göttingen University.
Noether moved to Göttingen in 1915. Although Klein and
Hilbert advocated that the university offer her a position on the
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faculty, this was initially denied. Other faculty members objected
to the hiring of women. Nevertheless Noether began to teach an
occasional course under David Hilbert’s name. As she became
better known, mathematicians from outside the university began
to sit in on the classes that she taught. In 1919 she was offered a
position at Göttingen. Noether remained at the university until
1933, when she and the other Jewish faculty members were fired
from their positions. She then moved to the United States, where
she taught at the Princeton Institute for Advanced Studies,
Princeton, New Jersey, and Bryn Mawr College, Bryn Mawr,
Pennsylvania, until her death of complications associated with
surgery.

To appreciate Noether’s contributions to geometry some
knowledge of conservation laws is helpful. A conservation law is
a statement that a certain property—energy, for example—is
conserved. The word conserved has a very special usage in this 
situation. It means that in a system that is isolated from its 
environment—by sealing the material of interest inside a test
tube, for example—the total amount of the conserved property
cannot change. Mass, momentum, and energy are all examples of
conserved properties. More generally if the system is not isolat-
ed from the environment then we should be able to keep track of
changes in the (conserved) property by measuring how much
crosses the boundary of the system. Because the property is 
conserved, the only way that the property inside the system can
increase is if more of it enters the system from the outside; the
only way it can decrease is if some crosses the boundary of the
system on its way outside.

Consider the example of conservation of mass. It is a basic tenet
of classical physics that mass is conserved over the course of a
chemical reaction. In other words if we cause a chemical reaction
to occur inside a sealed test tube, then the mass of the material in
the tube before the reaction equals the mass of the material in the
tube after the reaction. (This is what conserved means.) In particu-
lar if we want to diminish the mass in the tube, then we must allow
some of the material in the tube to cross the boundary of the tube;
that is just a formal way of stating that if we want the mass to
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diminish we have to take something out of the tube. We cannot
simply make what is in the tube disappear.

When Einstein first proposed his ideas about relativity, there
were questions among some scientists about whether energy is
conserved in Einstein’s theory. (It has been a basic tenet of science
since the middle of the 19th century that energy is a conserved
property.) If it could be shown that energy would not be con-
served, then the correctness of Einstein’s ideas would be called
into question. Hilbert, who was very interested in relativity, was
unable to resolve the issue of energy conservation. He asked
Emmy Noether to investigate the problem.

Noether quickly responded with some fundamental observa-
tions about the nature of conservation laws in general. She discov-
ered that there exists a very close relationship between
conservation laws, which for centuries have been the fundamental
concepts on which Western science is based, and the geometric
principle of symmetry.

In geometry symmetry is an important organizing principle, and
certain types of symmetry are familiar to us all. The bodies of most
people are almost perfectly symmetric. The left half of the body is
the mirror image (more or less) of the right half. The term for this
is bilateral symmetry. Other types of symmetry are possible. For
example, a cylinder is rotationally symmetric about the line that
passes through the axis of symmetry of the cylinder: No matter
how we rotate the cylinder about the line, the position in space
occupied by the cylinder itself is unchanged. Ideas about symme-
try have been generalized over the years so that mathematicians
can talk about several different types of symmetry, some of which
are easier to appreciate than others.

To return to the cylinder described in the pervious paragraph,
suppose we form a set consisting of every geometric transforma-
tion of the cylinder that leaves its spatial configuration
unchanged. (Geometric transformations are described in chapter
6.) As indicated in the previous paragraph, we can rotate the
cylinder about its line of symmetry and it will occupy the same
position in space after the rotation as it did before the rotation
took place, so rotations belong to this set of transformations.
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Next, consider the reflection of the cylinder about the plane that
passes through the center of the cylinder and is perpendicular to
the cylinder’s axis of symmetry. This transformation produces a
“mirror image” of the cylinder, and it, too, belongs to our set.
And we can do more: If we choose any two symmetry transfor-
mations of the cylinder and combine them by performing first
one transformation on the cylinder and then the other—this is
called a product of the transformations—then we obtain still
another symmetry transformation. In fact, the set of such sym-
metry transformations on the cylinder forms a group. The exis-
tence of such symmetry groups and their logical structure is as
important in physics as in mathematics.

What Noether discovered is that each conservation law is an
assertion about a particular kind of symmetry, and, conversely,
each symmetry group present in a system of equations indicates a
certain type of conservation law. For example, one consequence of
Noether’s discovery is that the assertion that energy is conserved
is also an assertion about symmetry with respect to time. To see
why this is so, imagine time as a line. We can imagine translating
ourselves forward or backward along this line and occasionally
pausing to look at a particular isolated system. The statement that
energy is conserved is an assertion that no matter where we find
ourselves along the time line, the energy of that isolated system is
the same in the past as it is in the future. Like a mirror image, the
condition of the system is the same on both sides of our position
on the line no matter where we choose to stop. In fact, the princi-
ple of conservation of energy is valid if and only if this kind of
symmetry with respect to time holds: In other words if the sym-
metry condition holds, then no matter how we divide the timeline,
the energy on one side of the divide (say the “future” side) is the
mirror image of the energy on the other (past) side. Conversely if
energy is conserved the symmetry with respect to time must hold
as well.

We can even summarize Einstein’s special theory of relativity
simply by saying that it is the statement that the laws of physics are
invariant with respect to a group called the Poincaré group of
symmetry transformations.
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Noether’s observations about the role of symmetry in physics
restored geometry as an organizing principle in science. Although
it is true that the laws of physics prevail over the old ideas of
absolute time and absolute space, it is now known to be true that
the laws of physics are themselves expressions of certain geomet-
ric principles. Geometric symmetries and laws of nature cannot be
viewed as competing concepts. The truth of the laws depends on
the validity of the symmetries, and the validity of the symmetries
assures the truth of the laws.
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12
infinite-dimensional

geometry

Our intuition is often a useful guide for understanding geometry in
two and three dimensions, a fact well illustrated by the investiga-
tions of Greek geometers. In the 19th century Riemann extended
geometry from two- and three-dimensional spaces to spaces 
of higher dimension. Imagining the geometry of four-, five-, and
higher-dimensional spaces is more challenging, but many of the
properties of spaces of two and three dimensions carry over direct-
ly to spaces of higher dimensions as Riemann showed. All of the
spaces that Riemann considered, however, were finite-dimensional:
That is, the spaces had a limited—though perhaps a very large—
number of dimensions. The restriction to finite-dimensional spaces
was lifted in the 20th century when some mathematicians began
the study of spaces of infinitely many dimensions.

Much of the motivation to create and study infinite-dimensional
spaces arises out of the need to understand sets of functions. The
study of abstract sets of functions is called functional analysis. It
was pioneered by the German mathematician and physicist David
Hilbert (1852–1943), and many of the most common infinite-
dimensional spaces are today classified as Hilbert spaces.

Hilbert was one of the most versatile and influential mathemati-
cians of the 20th century. Although he died before the middle of the
century, his influence extended throughout the century. Hilbert’s
hometown was Königsberg, now Kaliningrad. He attended univer-
sity there, and after he received a Ph.D. he remained for several
more years to teach. Eventually as many of the main figures in the



history of geometry did,
Hilbert joined the faculty at
Göttingen, where he remained
for the rest of his life.

Hilbert made a number of
important contributions to
several areas of mathematics
and physics. He developed the
so-called field equations for
relativity theory—equations
that are the mathematical
expression of the ideas of rela-
tivity theory—at about the
same time that Einstein did.
He made important contribu-
tions to other branches of
physics as well. He also made
important discoveries in alge-
bra, and he developed a com-
plete, logically consistent set
of axioms for Euclidean
geometry. His influence on later generations of mathematicians
stems from a series of problems that he formulated in 1900. In an
address to a mathematical congress in Paris, he described those
problems that he believed would be important to the development
of mathematics in the new century. His speech placed these 23
problems right at the center of mathematical research. Hilbert’s
choice of problems helped to guide mathematical research
throughout the century, though there can be little doubt that his
own professional prestige also drew attention to the list and caused
the problems to be taken more seriously than they otherwise
would have been.

Hilbert spaces, the infinite-dimensional spaces of most interest
to us in this volume, sound exotic. In some ways they are. Infinite-
dimensional spaces have a number of properties that make them
different from finite-dimensional spaces. Nevertheless many of
the basic properties of Hilbert spaces are relatively straightforward
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generalizations of the properties of the “flat,” finite-dimensional
spaces that we have already encountered. To study a Hilbert space,
for example, we first need a method that enables us to “find our
way around”: to this end we need to introduce a coordinate sys-
tem. Recall that in the study of two-dimensional spaces, mathe-
maticians associate an ordered pair of numbers, (x1, x2), with each
point in space. In three-dimensional spaces mathematicians asso-
ciate an ordered triplet, (x1, x2, x3), with each point in space. More
generally in n-dimensional space, where n can represent any natu-
ral number, we establish a correspondence between points in space
and ordered n-tuples, (x1, x2, x3, x4, . . ., xn). In accordance with this
pattern, each point in the Hilbert spaces we consider can be placed
in correspondence with an ordered, infinite sequence of numbers,
(x1, x2, x3, x4,. . .), although, as we will soon see, the generalization
is not quite so straightforward as it might first appear.

Having established position in this infinite-dimensional space, we
must find a way of measuring distances. Again we can look to finite-
dimensional spaces for guidance. In two-dimensional space the dis-
tance between any two points, (x1, x2) and (y1, y2), is given by the
Pythagorean theorem: √(x1
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dimensional space the distance between the points (x1, x2, x3, x4, . . .)
and (y1, y2, y3, y4, . . .) is again given by a straightforward extension
of the Pythagorean theorem: √(x1
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An important difference between finite-dimensional and infinite-

dimensional spaces arises when we try to apply the distance for-
mula. In an n-dimensional Euclidean space, where n represents
any natural number, any collection of n numbers identifies a point
in the space. For example, the point (x1, x2, x3, x4, . . ., xn) is located
at a distance √
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2 from the origin. The situation is
more complicated for a Hilbert space. To observe the difference
let (x1, x2, x3, x4, . . .) represent a possible point in a Hilbert space.
Consider √
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. , an expression that purports to rep-
resent the distance from the origin of coordinates—the origin has
coordinates (0, 0, 0, . . .)—to the point (x1, x2, x3, x4, . . .). It is quite
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possible that the sum underneath the square root sign “diverges,”
that is, the sum becomes larger than any number that we can
imagine provided we add enough terms in the series. On the other
hand, the sum may “converge”; that means that no matter how
many terms in the sum we add together, our answer remains
smaller than some fixed number. Under these latter circumstances
the “infinite sum” under the square root sign represents some
number. If the sum inside the square root sign converges, then the
point (x1, x2, x3, x4, . . .) belongs to the Hilbert space. If, however,
the sum diverges, then we conclude the corresponding infinite
sequence of numbers does not represent a point in Hilbert space.
There are many infinite sequences of numbers that cannot be
placed in correspondence with points in a Hilbert space. The
point (1, 1, 1, . . .) is an example of such a sequence.

Having established both a coordinate system and a way to
compute distances, we can begin discussing the geometry of infi-
nite-dimensional space. There are infinite-dimensional spheres,
lines, and so forth—though of course, for most of us, imagining
what these might look like is impossible. There is, however, a
way around our inability to “see” in spaces of infinite dimension.
One key to doing geometry in infinite-dimensional spaces is to
choose our descriptions of objects so that they apply to spaces of
any number of dimensions. Once this has been done we can use
our three-dimensional intuition to guide our infinite-dimensional
understanding.

Consider the example of a sphere. In three-dimensional space a
sphere is completely described once its radius and the location of
its center are specified: Let the letter r represent the radius, and
describe the sphere with radius r and center at the origin as “the
set of all points that are at a distance r from the origin.” Notice
that in this definition we do not mention anything about the
dimension of the space; we use only the facts that the space has an
origin and a distance function. Because our three-dimensional 
definition does not depend on the dimension of the space, we 
can use the same definition of a sphere for every other space with
an origin and a distance function. Our definition even works in an
infinite-dimensional space: “The set of all points that are at a 
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distance r from the origin” is a complete description of an infinite-
dimensional sphere of radius r centered at the origin. Other sur-
faces and properties can be defined in a similar way.

None of this, of course, indicates why anyone would want to
study infinite-dimensional spaces. Much of the value of infinite-
dimensional spaces is that they enable the user to understand func-
tions in a new way. In this very broad viewpoint functions are
pictured as “points” in space. This type of description offers a new
way of thinking about functions. Such “function spaces” enable
the user to bring much of what has been learned about the geom-
etry of Euclidean space to bear on the analysis of functions and
sets of functions. We can discuss the distance between functions,
the geometry of certain sets of functions, and many other more
abstract properties in much the same way that we are taught to
study sets of points in three-dimensional space. The ability to use
this type of analysis is important because it often provides mathe-
maticians with a useful context for analyzing a function or class of
functions.

Before the development of Hilbert spaces progress in under-
standing large sets of functions was slow. Each set had to be ana-
lyzed individually. Many of these sets could, in fact, be modeled
as subsets of a Hilbert space, but this potential was not yet recog-
nized. Without a conceptual framework the relations between the
different sets of functions was not clear. There was no unity to the
subject. With the invention of Hilbert spaces mathematicians
could reframe specific questions about sets of functions in terms
of the general geometry of Hilbert spaces. The results they
obtained through the study of Hilbert spaces could then be
applied to many specific classes of functions. This development
gave conceptual unity to a wide and previously fragmented field.
Functional analysis, of which the study of infinite-dimensional
function spaces is only a part, has proved to be an important
branch of mathematics with applications to the sciences as well as
other branches of mathematics.

Hilbert spaces are only one type of infinite-dimensional space.
There are many others, each of which has its own distinct mathe-
matical properties. Some of these other spaces are named after
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their founders. For example, two of the most widely studied spaces
are Banach spaces, named after the Austro-Hungarian–born
mathematician Stefan Banach (1892–1945), and Sobolev spaces,
named after the Russian mathematician Sergei Lvovich Sobolev
(1908–89). Other widely studied infinite-dimensional spaces have
more utilitarian-sounding names, for example, nuclear spaces and
distributional spaces. All of these spaces were invented (or discov-
ered, depending on one’s point of view) in response to specific
mathematical problems. Having become acquainted with these
spaces, however, many mathematicians became fascinated with
their properties as mathematical objects. Some of these mathe-
maticians now study infinite dimensional spaces for their intrinsic
interest in just the same way that Greek mathematicians studied
Euclidean geometry more than 2,000 years ago: Contemporary
mathematicians seek to classify these spaces and to ask and answer
questions that reveal important structural properties possessed by
each type of space. Although the mathematical subject matter has
changed, the spirit of mathematical curiosity that motivates these
mathematicians is the same one that motivated Apollonius, Euclid,
and Archimedes so many years ago.

The existence of so many infinite-dimensional spaces is, how-
ever, also a reflection of their utility outside of mathematics.
Mathematicians and physicists have now learned how to use spe-
cific spaces to ask a variety of important questions in the physical
sciences. Solutions to problems in the flow of turbulent fluids,
shockwaves, and the inner structure of the atom, for example,
have sometimes depended on insight into the nature of infinite-
dimensional spaces. Research into infinite-dimensional spaces
began early in the 20th century, and it remains an active area of
inquiry today.

Infinite-dimensional spaces are only one example of the most
recent extensions of the concepts of geometry to ever more exotic
spaces. Over the course of thousands of years the straightedge and
compass constructions of the ancient Greeks—carried out on flat
stones sprinkled with sand—gave way to alternative geometries,
geometries in higher-dimensional spaces, and an ever-increasing
level of abstraction. But Euclidean geometry, the geometry of the
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ancient Greeks, remains with us. It forms an important part of
every student’s mathematical education, and it is used extensively
in many scientific and engineering disciplines. Most importantly
the geometric ideas of Euclid—though they have been general-
ized, modified, and refined by his successors well past a point at
which Euclid would recognize his own handiwork—have not been
abandoned by the mathematicians of today. The Pythagorean the-
orem, axiomatic reasoning, and the concept of a point remain as
important in higher mathematics as they were in Euclid’s time.
This unity of subject does not exist for every branch of higher
mathematics. There are other types of mathematics that have been
entirely transformed. These disciplines—algebra is but one exam-
ple—have nothing in common with their historical roots but a
name. Geometry, on the other hand, has evolved without losing its
emphasis on lines, surfaces, and shapes. It is still an expression of
the way we see the world.

177 GEOMETRY



C H R O N O L O G Y

ca. 3000 B.C.E.
Hieroglyphic numerals are in use in Egypt.

ca. 2500 B.C.E.
Construction of the Great Pyramid of Khufu takes place.

ca. 2400 B.C.E.
An almost complete system of positional notation is in use in
Mesopotamia.

ca. 1800 B.C.E.
The Code of Hammurabi is promulgated.

ca. 1650 B.C.E.
The Egyptian scribe Ahmes copies what is now known as the
Ahmes (or Rhind) papyrus from an earlier version of the same
document.

ca. 1200 B.C.E.
The Trojan War is fought.

ca. 740 B.C.E.
Homer composes the Odyssey and the Iliad, his epic poems about
the Trojan War.

ca. 585 B.C.E.
Thales of Miletus carries out his research into geometry, marking
the beginning of mathematics as a deductive science.

ca. 540 B.C.E.
Pythagoras of Samos establishes the Pythagorean school of philosophy.

ca. 500 B.C.E.
Rod numerals are in use in China.
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ca. 420 B.C.E.
Zeno of Elea proposes his philosophical paradoxes.

ca. 399 B.C.E.
Socrates dies.

ca. 360 B.C.E.
Eudoxus, author of the method of exhaustion, carries out his
research into mathematics.

ca. 350 B.C.E.
The Greek mathematician Menaechmus writes an important work
on conic sections.

ca. 347 B.C.E.
Plato dies.

332 B.C.E.
Alexandria, Egypt, is established. It will become the center of
Greek mathematics.

ca. 300 B.C.E.
Euclid of Alexandria writes Elements, one of the most influential
mathematics books of all time.

ca. 260 B.C.E.
Aristarchus of Samos discovers a method for computing the ratio of
the Earth–Moon distance to the Earth–Sun distance.

ca. 230 B.C.E.
Eratosthenes of Cyrene computes the circumference of Earth.

Apollonius of Perga writes Conics.

Archimedes of Syracuse writes The Method, Equilibrium of Planes,
and other works.

206 B.C.E.
The Han dynasty is established; Chinese mathematics flourishes.

ca. C.E. 150
Ptolemy of Alexandria writes Almagest, the most influential astron-
omy text of antiquity.
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ca. C.E. 250
Diophantus of Alexandria writes Arithmetica, an important step
forward for algebra.

ca. 320
Pappus of Alexandria writes his Collection, one of the last influential
Greek mathematical treatises.

415
The death of the Alexandrian philosopher and mathematician
Hypatia marks the end of the Greek mathematical tradition.

ca. 476
The astronomer and mathematician Aryabhata is born; Indian
mathematics flourishes.

ca. 630
The Hindu mathematician and astronomer Brahmagupta writes
Brahma-sphuta-siddhānta, which contains a description of place-
value notation.

641
The Library of Alexandria is burned.

ca. 775
Scholars in Baghdad begin to translate Hindu and Greek works
into Arabic.

ca. 830
Mohammed ibn-Mūsā al-Khwārizmı̄ writes Hisāb al-jabr wa’l
muqābala, a new approach to algebra.

833
Al-Ma’mūn, founder of the House of Wisdom in Baghdad (now
Iraq), dies.

ca. 840
The Jainist mathematician Mahavira writes Ganita Sara Samgraha,
an important mathematical textbook.

1071
William the Conqueror quells the last of the English rebellions.

Chronology  179



1086
An intensive survey of the wealth of England is carried out and
summarized in the tables and lists of the Domesday Book.

1123
Omar Khayyám, author of Al-jabr w’al muqābala and the Rubáiyát,
the last great classical Islamic mathematician, dies.

ca. 1144
Bhaskara II writes the Lilavati and the Vija-Ganita, two of the last
great works in the classical Indian mathematical tradition.

ca. 1202
Leonardo of Pisa (Fibonacci), author of Liber Abaci, arrives in Europe.

1360
Nicholas Oresme, French mathematician and Roman Catholic
bishop, represents distance as the area beneath a velocity line.

1471
The German artist Albrecht Dürer is born.

1482
Leonardo da Vinci begins to keep his diaries.

ca. 1541
Niccolò Fontana, an Italian mathematician, also known as
Tartaglia, discovers a general method for factoring third-degree
algebraic equations.

1543
Copernicus publishes De Revolutionibus, marking the start of the
Copernican revolution.

1545
Girolamo Cardano, an Italian mathematician and physician, pub-
lishes Ars Magna, marking the beginning of modern algebra. Later
he publishes Liber de Ludo Aleae, the first book on probability.

ca. 1554
Sir Walter Raleigh, explorer, adventurer, amateur the mathemati-
cian, and patron of the mathematician Thomas Harriot, is born.
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1579
François Viète, a French mathematician, publishes Canon
Mathematicus, marking the beginning of modern algebraic 
notation.

1585
The Dutch mathematician and engineer Simon Stevin publishes
“La disme.”

1609
Johannes Kepler, author of Kepler’s laws of planetary motion,
publishes Astronomia Nova.

Galileo Galilei begins his astronomical observations.

1621
The English mathematician and astronomer Thomas Harriot dies.
His only work, Artis Analyticae Praxis, is published in 1631.

ca. 1630
The French lawyer and mathematician Pierre de Fermat begins a
lifetime of mathematical research. He is the first person to claim to
have proved Fermat’s last theorem.

1636
Gérard (also Girard or Gaspard) Desargues, a French mathematician
and engineer, publishes Traité de la section perspective, which marks
the beginning of projective geometry.

1637
René Descartes, a French philosopher and mathematician, publish-
es Discours de la méthode, permanently changing both algebra and
geometry.

1638
Galileo Galilei publishes Dialogues Concerning Two New Sciences
while under arrest.

1640
Blaise Pascal, a French philosopher, scientist, and mathematician,
publishes Essai sur les coniques, an extension of the work of
Desargues.
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1642
Blaise Pascal manufactures an early mechanical calculator, the
Pascaline.

1648
The Thirty Years’ War, a series of conflicts that involves much of
Europe, ends.

1649
Oliver Cromwell takes control of the English government after a
civil war.

1654
Pierre de Fermat and Blaise Pascal exchange a series of letters about
probability, thereby inspiring many mathematicians to study the
subject.

1655
John Wallis, an English mathematician and clergyman, publishes
Arithmetica Infinitorum, an important work that presages calculus.

1657
Christian Huygens, a Dutch mathematician, astronomer, and
physicist, publishes De Ratiociniis in Ludo Aleae, a highly influential
text in probability theory.

1662
John Graunt, an English businessman and pioneer in statistics,
publishes his research on the London Bills of Mortality.

1673
Gottfried Leibniz, a German philosopher and mathematician, con-
structs a mechanical calculator that can perform addition, subtrac-
tion, multiplication, division, and extraction of roots.

1683
Seki Köwa, a Japanese mathematician, discovers the theory of
determinants.

1684
Gottfried Leibniz publishes the first paper on calculus, Nova
Methodus pro Maximis et Minimis.
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1687
Isaac Newton, a British mathematician and physicist, publishes
Philosophiae Naturalis Principia Mathematica, beginning a new era
in science.

1693
Edmund Halley, a British mathematician and astronomer,
undertakes a statistical study of the mortality rate in Breslau,
Germany.

1698
Thomas Savery, an English engineer and inventor, patents the first
steam engine.

1705
Jacob Bernoulli, a Swiss mathematician, dies. His major work on
probability, Ars Conjectandi, is published in 1713.

1712
The first Newcomen steam engine is installed.

1718
Abraham de Moivre, a French mathematician, publishes The
Doctrine of Chances, the most advanced text of the time on the the-
ory of probability.

1743
The Anglo-Irish Anglican bishop and philosopher George Berkeley
publishes The Analyst, an attack on the new mathematics pioneered
by Isaac Newton and Gottfried Leibniz.

The French mathematician and philosopher Jean Le Rond
d’Alembert begins work on the Encyclopédie, one of the great works
of the Enlightenment.

1748
Leonhard Euler, a Swiss mathematician, publishes his Introductio.

1749
The French mathematician and scientist George-Louis Leclerc
Buffon publishes the first volume of Histoire naturelle.
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1750
Gabriel Cramer, a Swiss mathematician, publishes Cramer’s rule, a
procedure for solving systems of linear equations.

1760
Daniel Bernoulli, a Swiss mathematician and scientist, publishes his
probabilistic analysis of the risks and benefits of variolation against
smallpox.

1761
Thomas Bayes, an English theologian and mathematician, dies. His
“Essay Towards Solving a Problem in the Doctrine of Chances” is
published two years later.

The English scientist Joseph Black proposes the idea of latent heat.

1762
Catherine II (Catherine the Great) is proclaimed empress of
Russia.

1769
James Watt obtains his first steam engine patent.

1775
American colonists and British troops fight battles at Lexington and
Concord, Massachusetts.

1778
Voltaire (François-Marie Arouet), a French writer and philosopher,
dies.

1781
William Herschel, a German-born British musician and
astronomer, discovers Uranus.

1789
Unrest in France culminates in the French Revolution.

1793
The Reign of Terror, a period of brutal, state-sanctioned repres-
sion, begins in France.
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1794
The French mathematician Adrien-Marie Legendre (or Le
Gendre) publishes his Éléments de géométrie, a text that influences
mathematics education for decades.

Antoine-Laurent Lavoisier, a French scientist and discoverer 
of the law of conservation of matter, is executed by the French
government.

1798
Benjamin Thompson (Count Rumford), a British physicist, pro-
poses the equivalence of heat and work.

1799
Napoléon seizes control of the French government.

Caspar Wessel, a Norwegian mathematician and surveyor, publish-
es the first geometric representation of the complex numbers.

1801
Carl Friedrich Gauss, a German mathematician, publishes
Disquisitiones Arithmeticae.

1805
Adrien-Marie Legendre, a French mathematician, publishes
“Nouvelles méthodes pour la détermination des orbites des
comètes,” which contains the first description of the method of
least squares.

1806
Jean-Robert Argand, a French bookkeeper, accountant, and
mathematician, develops the Argand diagram to represent 
complex numbers.

1812
Pierre-Simon Laplace, a French mathematician, publishes Théorie
analytique des probabilités, the most influential 19th-century work on
the theory of probability.

1815
Napoléon suffers final defeat at the battle of Waterloo.
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Jean-Victor Poncelet, a French mathematician and “father of
projective geometry,” publishes Traité des propriétés projectives des
figures.

1824
The French engineer Sadi Carnot publishes Réflexions, wherein he
describes the Carnot engine.

Niels Henrik Abel, a Norwegian mathematician, publishes his
proof of the impossibility of algebraically solving a general fifth-
degree equation.

1826
Nikolai Ivanovich Lobachevsky, a Russian mathematician and “the
Copernicus of geometry,” announces his theory of non-Euclidean
geometry.

1828
Robert Brown, a Scottish botanist, publishes the first description of
Brownian motion in “A Brief Account of Microscopical
Observations.”

1830
Charles Babbage, a British mathematician and inventor, begins
work on his analytical engine, the first attempt at a modern 
computer.

1832
János Bolyai, a Hungarian mathematician, publishes Absolute Science
of Space.

The French mathematician Evariste Galois is killed in a duel.

1843
James Prescott Joule publishes his measurement of the mechanical
equivalent of heat.

1846
The planet Neptune is discovered by the French mathematician
Urbain-Jean-Joseph Le Verrier from a mathematical analysis of the
orbit of Uranus.
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1847
Georg Christian von Staudt publishes Geometrie der Lage, which
shows that projective geometry can be expressed without any con-
cept of length.

1848
Bernhard Bolzano, a Czech mathematician and theologian, dies. His
study of infinite sets, Paradoxien des Unendlichen, is published in 1851.

1850
Rudolph Clausius, a German mathematician and physicist, publish-
es his first paper on the theory of heat.

1851
William Thomson (Lord Kelvin), a British scientist, publishes “On
the Dynamical Theory of Heat.”

1854
George Boole, a British mathematician, publishes Laws of Thought.
The mathematics contained therein later makes possible the design
of computer logic circuits.

The German mathematician Bernhard Riemann gives the historic
lecture “On the Hypotheses That Form the Foundations of
Geometry.” The ideas therein later play an integral part in the the-
ory of relativity.

1855
John Snow, a British physician, publishes “On the Mode of
Communication of Cholera,” the first successful epidemiological
study of a disease.

1859
James Clerk Maxwell, a British physicist, proposes a probabilistic
model for the distribution of molecular velocities in a gas.

Charles Darwin, a British biologist, publishes On the Origin of
Species by Means of Natural Selection.

1861
The American Civil War begins.
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1866
The Austrian biologist and monk Gregor Mendel publishes his ideas
on the theory of heredity in “Versuche über Pflanzenhybriden.”

1867
The Canadian Articles of Confederation unify the British colonies
of North America.

1871
Otto von Bismarck is appointed first chancellor of the German
Empire.

1872
The German mathematician Felix Klein announces his Erlanger
Programm, an attempt to categorize all geometries with the use of
group theory.

William Thomson (Lord Kelvin) develops an early analog computer
to predict tides.

Richard Dedekind, a German mathematician, rigorously establishes
the connection between real numbers and the real number line.

1874
Georg Cantor, a German mathematician, publishes “Über eine
Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen,” a
pioneering paper that shows that all infinite sets are not the
same size.

1890
The Hollerith tabulator, an important innovation in calculating
machines, is installed at the United States Census for use in the
1890 census.

1899
The German mathematician David Hilbert publishes the definitive
axiomatic treatment of Euclidean geometry.

1900
David Hilbert announces his list of mathematics problems for the
20th century.
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The Russian mathematician Andrey Andreyevich Markov begins
his research into the theory of probability.

1901
Henri-Léon Lebesgue, a French mathematician, develops his
theory of integration.

1905
Ernst Zermelo, a German mathematician, undertakes the task of
axiomatizing set theory.

Albert Einstein, a German-born American physicist, begins to pub-
lish his discoveries in physics.

1906
Marian Smoluchowski, a Polish scientist, publishes his insights into
Brownian motion.

1908
The Hardy-Weinberg law, containing ideas fundamental to popu-
lation genetics, is published.

1910
Bertrand Russell, a British logician and philosopher, and Alfred
North Whitehead, a British mathematician and philosopher, pub-
lish Principia Mathematica, an important work on the foundations of
mathematics.

1914
World War I begins.

1917
Vladimir Ilyich Lenin leads a revolution that results in the found-
ing of the Union of Soviet Socialist Republics.

1918
World War I ends.

The German mathematician Emmy Noether presents her ideas on
the roles of symmetries in physics.
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1929
Andrei Nikolayevich Kolmogorov, a Russian mathematician, pub-
lishes General Theory of Measure and Probability Theory, establish-
ing the theory of probability on a firm axiomatic basis for the first
time.

1930
Ronald Aylmer Fisher, a British geneticist and statistician, publish-
es Genetical Theory of Natural Selection, an important early attempt
to express the theory of natural selection in mathematics.

1931
Kurt Gödel, an Austrian-born American mathematician, publishes
his incompleteness proof.

The Differential Analyzer, an important development in 
analog computers, is developed at the Massachusetts Institute 
of Technology.

1933
Karl Pearson, a British innovator in statistics, retires from
University College, London.

1935
George Horace Gallup, a U.S. statistician, founds the American
Institute of Public Opinion.

1937
The British mathematician Alan Turing publishes his insights on
the limits of computability.

1939
World War II begins.

William Edwards Deming joins the United States Census Bureau.

1945
World War II ends.

1946
The Electronic Numerical Integrator and Calculator (ENIAC)
computer begins operation at the University of Pennsylvania.
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1948
While working at Bell Telephone Labs in the United States, Claude
Shannon publishes “A Mathematical Theory of Communication,”
marking the beginning of the Information Age.

1951
The Universal Automatic Computer (UNIVAC I) is installed at the
U.S. Bureau of the Census.

1954
FORmula TRANslator (Fortran), one of the first high-level
computer languages, is introduced.

1956
The American Walter Shewhart, an innovator in the field of quality
control, retires from Bell Telephone Laboratories.

1957
Olga Oleinik publishes “Discontinuous Solutions to Nonlinear
Differential Equations,” a milestone in mathematical physics.

1964
IBM Corporation introduces the IBM System/360 computer for
government agencies and large businesses.

1965
Andrey Nikolayevich Kolmogorov establishes the branch of
mathematics now known as Kolmogorov complexity.

1966
The A Programming Language (APL) computer language is imple-
mented on the IBM System/360 computer.

1972
Amid much fanfare, the French mathematician and philosopher
René Thom establishes a new field of mathematics called catastrophe
theory.

1973
The C computer language, developed at Bell Laboratories, is essen-
tially completed.
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1975
The French geophysicist Jean Morlet helps develop a new kind of
analysis based on what he calls wavelets.

1977
Digital Equipment Corporation introduces the VAX computer.

1981
IBM Corporation introduces the IBM personal computer (PC).

1989
The Belgian mathematician Ingrid Daubechies develops what has
become the mathematical foundation for today’s wavelet research.

1991
The Union of Soviet Socialist Republics dissolves into 15 separate
nations.

1995
The British mathematician Andrew Wiles publishes the first proof
of Fermat’s last theorem.

Cray Research introduces the CRAY E-1200, a machine that 
sustains a rate of 1 terraflop (1 trillion calculations per second) on
real-world applications.

The JAVA computer language is introduced commercially by Sun
Microsystems.

1997
René Thom declares the mathematical field of catastrophe theory
“dead.”

2002
Experimental Mathematics celebrates its 10th anniversary. It is a
refereed journal dedicated to the experimental aspects of mathe-
matical research.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena create a brief,
elegant algorithm to test whether a number is prime, thereby solv-
ing an important centuries-old problem.
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2003
Grigory Perelman produces what may be the first complete proof
of the Poincaré conjecture, a statement on the most fundamental
properties of three-dimensional shapes.
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G L O S S A R Y

absolute space the belief that physical space exists independently of
what it encloses

absolute time the theory that asserts that the passage of time pro-
ceeds at the same pace in all reference frames

algebra a generalization of arithmetic in which letters are used
instead of numbers and combined according to the usual arithmetic
procedures

analytic geometry the study of geometry by means of algebra and
coordinate systems

axiom a statement accepted as true to serve as a basis for deductive
reasoning. Today the words axiom and postulate are synonyms

calculus the branch of mathematics that is based on the ideas 
and techniques of differentiation and integration. The techniques 
of calculus have enabled researchers to solve many problems in math-
ematics and physics

Cartesian coordinates the method of establishing a one-to-one 
correspondence between points in n-dimensional space and n-tuples
of numbers by using n lines that meet at a central point (the origin)
at right angles to each other, where the letter n represents any 
natural number

congruence the geometric relation between figures that is analo-
gous to “equality” in arithmetic. Two triangles are said to be congru-
ent if they can be superimposed one on the other via a combination
of translations and rotations

conic see CONIC SECTION
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conic section any member of the family of curves obtained from the
intersection of a double cone and a plane

coordinate system a method of establishing a one-to-one corre-
spondence between points in space and sets of numbers

cross-ratio a property preserved by projective transformations. Let
A, B, C, and D be four collinear points, listed in the order along the
line in which they are positioned. Let A', B', C', and D' be their
images under a projective transformation. Let AB, C'D', for example,
represent the directed distances between the points A and B, and C'
and D', respectively. The cross-ratios, defined as (AC/CB)/(AD/DB)
and (A'C'/C'B')/(A'D '/D'B'), are always equal

deduction a conclusion obtained by logically reasoning from gener-
al principles to particular statements

derivative the limit of a ratio formed by the difference in the
dependent variable to the difference in the independent variable as
the difference in the independent variable tends toward 0

differential geometry that branch of geometry that uses calculus in
the study of the local properties of curves and surfaces

differentiation the act of computing a derivative

duality, principle of the principle in projective geometry that asserts
that every theorem about points and lines remains true when the
words point and line are interchanged and the grammar adjusted
accordingly

ellipse a closed curve obtained by the intersection of a right circular
cone and a plane

Euclidean geometry the geometry that developed as a series of log-
ical consequences from the axioms and postulates listed in Euclid of
Alexandria’s Elements

fifth postulate one of Euclid’s statements defining the nature of the
geometry that he studied. It asserts, in effect, that given a line and a
point not on the line, exactly one line can be drawn through the given
point that is parallel to the given line

196 GEOMETRY



fundamental principle of analytic geometry the observation that
under fairly general conditions one equation in two variables defines
a curve

fundamental principle of solid analytic geometry the observation
that under fairly general conditions one equation in three variables
defines a surface

geodesic the shortest path between two points lying in a given surface

geometric algebra a method of expressing ideas usually associated
with algebra by using the concepts and techniques of Euclidean
geometry

group a set of objects together with an operation analogous to mul-
tiplication such that (1) the “product” of any two elements in the set
is an element in the set; (2) the operation is associative, that is, for any
three elements, a, b, and c, in the group (ab)c = a(bc); (3) there is an ele-
ment in the set, usually denoted with the letter e, such that ea = ae =
a, where a is any element in the set; and (4) every element in the set
has an inverse, so that if a is an element in the set, there is an element
called a–1 such that aa–1 = e

hexagon a polygon with six angles and six sides

Hilbert space a type of mathematical space named after the mathe-
matician David Hilbert (1862–1943). Hilbert spaces are usually infi-
nite dimensional and are generally used in the study of sets of
functions

hyperbola a curve composed of the intersection of a plane and both
parts of a double right circular cone

indeterminate equation an equation or set of equations for which
there exist infinitely many solutions

integration the ideas and techniques belonging to calculus that are
used in computing the lengths of curves, the size of areas, and the vol-
umes of solids

invariant unchanged by a particular set of mathematical or physical
transformations
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method of exhaustion the proposition in Greek geometry that
given any magnitude M one can, by continually reducing its size by
at least half, make the magnitude as small as desired. Given a “small”
positive number, usually denoted by the Greek letter ε (epsilon), and
a number r such that 0 < r < 1/2, then M × r n < ε provided that n is
a sufficiently large natural number. This proposition formed the
basis for the Greek analog to calculus

parabola the curve formed by the intersection of a right circular
cone and a plane that is parallel to a line that generates the cone

perspective the process of representing on a planar surface the spa-
tial relations of three-dimensional objects as they appear to the eye

point at infinity in projective geometry the point at infinity is anal-
ogous to the vanishing point in representational art. It is the point of
intersection of two “parallel” lines

postulate see AXIOM

projection in projective geometry, a transformation of an image or
object that maintains a sense of perspective

projective geometry the branch of geometry concerned with the
properties of figures that are invariant under projections

Pythagorean theorem the statement that for a right triangle the
square of the length of the hypotenuse equals the sum of the squares
of the lengths of the remaining sides

Pythagorean triple three numbers, each of which is a natural num-
ber, such that the sum of the squares of the two smaller numbers
equals the square of the largest number

quadric surface any surface described by a second-degree equation
in the variables x, y, and z. There are six quadric surfaces: ellipsoid,
hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone,
elliptic paraboloid, and hyperbolic paraboloid

reference frame a system of lines that are imagined to be attached
to a point called the origin and that serve to identify the position of
any other point in space in relation to the origin
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set a collection of objects or symbols

special relativity a physical theory based on the assertion that the
laws of physics—including the speed of light—are the same in all
frames of reference in uniform motion

solid analytic geometry the branch of analytic geometry that is
principally concerned with the properties of surfaces

synthetic geometry geometry that is expressed without the use of
algebraic or analytic symbols

tangent the best straight-line approximation to a smoothly varying
curve at a given point

transformation the act or process of mapping one geometrical
object onto another such that it establishes a one-to-one correspon-
dence between the points of the object and its image
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May 2003. This is a valuable resource for anyone interested in
learning more about the history of mathematics. It contains an
extraordinary collection of biographies of mathematicians of differ-
ent cultures and times. In addition it provides information about
the historical development of certain key mathematical ideas.

PERIODICALS, THROUGH THE MAIL AND ON-LINE

+Plus

URL: http://pass.maths.org.uk
A site with numerous interesting articles about all aspects of high
school math. They send an email every few weeks to their sub-
scribers to keep them informed about new articles at the site.

Function

Business Manager
Department of Mathematics and Statistics
Monash University
Victoria 3800
Australia
function@maths.monash.edu.au
Published five times per year, this refereed journal is aimed at
older high school students.

The Math Goodies Newsletter

http://www.mathgoodies.com/newsletter/
A popular, free e-newsletter that is sent out twice per month.

Parabola: A Mathematics Magazine for Secondary Students

Australian Mathematics Trust
University of Canberra
ACT 2601
Australia
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Published twice a year by the Australian Mathematics Trust 
in association with the University of New South Wales, Parabola
is a source of short high-quality articles on many aspects of
mathematics. Some back issues are also available free on-line.
See URL: http://www.maths.unsw.edu.au/Parabola/index.html.

Pi in the Sky

http://www.pims.math.ca/pi/
Part of the Pacific Institute for the Mathematical Sciences, this
high school mathematics magazine is available over the Internet.

Scientific American

415 Madison Avenue
New York, NY 10017
A serious and widely read monthly magazine, Scientific American
regularly carries high-quality articles on mathematics and mathe-
matically intensive branches of science. This is the one “popular”
source of high-quality mathematical information that you will find
at a newsstand.
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definition of  12
Thales’ theorem on
11–13

in conic section  42, 107
Greek understanding of
14

differential geometry
applications of  160–161
definition of  140
development of  118
Einstein and  153
Gauss’s work in  140,
142–144

importance of  144
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relativity theory and  160
studies in  144–145

Diophantus of Alexandria
Arithmetica, Hypatia’s
commentary on  48

Fermat’s study of
116–117

directed lengths  81
Discours de la méthode
(Descartes)  110
excerpt from  111
problem-solving tech-
nique in  113

distance(s)
in projective geometry
80, 81

special relativity theory
and changes in  162

distance formula  118, 149,
172
for infinite-dimensional
spaces  172–173

distortion
in maps  141, 142
in representational art  56

distributional spaces  175
duality, principle of  46, 79

Gergonne and  83
Poncelet and  82–83

Dürer, Albrecht  55, 61–64
Course in the Art of
Measurement 61

drawings by  53
interest in mathematics
61–62

E
e (group identity)  88
Earth

circumference of, early
computation of  32

gravitational interactions
with Sun and Moon
130

size and shape of, deter-
mination of  140

surface of  151–152
École Militaire de
Mézières, Monge at
75–76, 77

Egypt
Ahmes papyrus from
5–6

geometry of  3–6, 6

Greek mathematicians in
10, 19–20

number system of  5, 8
pyramids of  4, 5

height of, Thales’s
measurement of
10–11

Einstein, Albert  153–156
non-Euclidean geometry
and  96

pacifism of  154, 155
on physics vs. geometry
164–165

on quantum mechanics
154–155

relativity theory of
155–163
general  156, 163, 165
special  154, 156–163,
157

on space and time  153,
156–160, 162–163

wide acceptance of ideas
of  163–164

Elements (Euclid)
axioms and postulates in
27–29

errors/omissions in  30,
31

fifth (parallel) postulate
in  29, 30
attempts to prove
93–94

Bolyai’s alternative to
97, 147

controversy over
29–30

Gauss on  100
Lobachevsky’s alterna-
tive to  94, 95–96,
96, 147

Riemann’s alternative
to  147, 147–148

importance of  26
Pappus on  44
scope of  25–26
on sum of interior angles
of triangle  12–13, 13

title page of 15th-centu-
ry edition  25

ellipse
Apollonius on  40, 41,
41

bipolar coordinates and
128, 128–129

coining of term  105
projection of  70

ellipsoid  132, 133
elliptical orbits, of planets
43

elliptic cone  132, 133
elliptic paraboloid  132,
133

energy, conservation of
167, 168

equations
coordinate systems and
changes in  116, 131

and curves, Descartes’s
observation about  114

indeterminate
Descartes on  113–114
Fermat on  116

parametric, for surfaces
136

equilateral triangle  xiv–xv
Erastothenes of Cyrene  32
Erdó́s, Paul (Pál)  49
Erlangen University

Klein at  85
Noether at  165

Erlangen Programme  91
Essay on Conics (Pascal)  71
Euclid of Alexandria  xiii,
24
and axiomatic approach
to mathematics  26, 28,
30–31

Elements 24–31
axioms and postulates
in  27–29

errors/omissions in
30, 31

importance of  26
Pappus on  44
scope of  25–26
title page of 15th-cen-
tury edition  25

fifth (parallel) postulate
in  29, 30
attempts to prove
93–94

Bolyai’s alternative to
97, 147

controversy over
29–30

Gauss on  100
Lobachevsky’s alterna-
tive to  94, 95–96,
96, 147
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Riemann’s alternative
to  147, 147–148

on sum of interior angles
of triangle  12–13, 13

Euclidean geometry  xv,
25
absence of duality princi-
ple in  83

appeal of  95
axioms and postulates in
28

congruent figures in  132
geometric properties of
90

Hilbert’s formulation of
31, 49

importance of  175–176
motions defining  89–90
Poncelet’s support for
82

and projective geometry
Klein’s comparison of
90, 91

relationship of  84, 85
and real world, corre-
spondence between
98–99

Riemann’s generalization
of  148–149

wide acceptance of
xiii–xiv

Euclidean space  148
vs. curved space, distin-
guishing between  151

Riemann on  149, 151
Euclidean transformations
131–132

Eudoxus of Cnidus  19, 22
and Euclid’s Elements
24

method of exhaustion
discovered by  22–23

students of  105
Euler, Leonhard  130–137,
131
on conics  132, 133
parametric representa-
tion of surfaces
134–137

European art
during Middle Ages
54–55, 55

during Renaissance  54,
55–56. See also repre-
sentational art

European science
Greek mathematics and
49

during Middle Ages  52
during Renaissance  xv,
52

exhaustion, method of. See
method of exhaustion

F
Federal Polytechnic
Academy (Zürich,
Switzerland), Einstein at
154

Fermat, Pierre de  115–119
and analytic geometry
116

and Descartes  117
and Mersenne  73
on Pythagorean triples
117

Fermat’s last theorem  117
Fibonacci series  18
flame-front propagation
161

fluid dynamics  161
four-dimensional Cartesian
coordinate system, space
and time expressed by
128–129

four-dimensional surface,
indeterminate equation in
four variables and  116

French Revolution  76, 77
function(s)

Euler on  133, 134
graphing of  113

Newton and  126–127
modern emphasis on
133–134

functional analysis  153
infinite-dimensional
geometry and  170, 174

fundamental principle of
analytic geometry
Descartes on  113
Fermat on  116

fundamental theorem of
algebra  99

G
Galileo Galilei, and
Mersenne  73

Galois, Évariste  86
Gauss, Carl Friedrich
98–100
and differential geome-
try  140, 142–144

on Euclid’s parallel pos-
tulate  100

and non-Euclidean
geometry  99

and Riemann  146
and von Staudt  84

Gaussian curvature  144
general relativity, theory of
156, 163, 165

geodesics  137
as coordinate system
150–151

on curved surface  145
geodesy  140
geometric algebra, in
Euclid’s Elements 26

geometric property(ies)
xiv–xv
definition of  xvi
in Euclidean geometry
90

in projective geometry
xvi

geometry(ies). See also spe-
cific types of geometry
and algebra, conceptual
bridge between  103

algebraic notation in,
Descartes and  111,
111–113

algebra in study of  102
calculus as tool in study
of  122

current understanding of
xiv

definitions of  xiii, xiv, xv
diversity of  xvi
military applications of
75–76, 77

motion in  xvi, 89–90
new, 19th-century dis-
coveries of  85

origins of  3
and physics, relationship
between  164–165, 169

relationships among
branches of, Klein on
86, 89, 90–91

synthetic vs. analytic
methods in  83–84
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geometry of mensuration
9
Egyptian  3
Mesopotamian  7

geometry problems
classical Greek, unsolved
20–21
Pappus on  44–45

Pappus’s classification of
45

Gergonne, Joseph Diaz  83
and analytic geometry
84

and Poncelet, competi-
tion between  83–84

global analysis  140
golden rectangle  17, 17
golden section  16, 16–19

applications of  17–18
discovery of  16
in nature  18
“self-propagating”  16,
17

Göttingen University
Gauss at  99
Hilbert at  165, 166,
171

Klein at  85
mathematics building at
86

Noether at  165–166
Riemann at  146

graphing
analytic geometry and
113, 116

of curves  122–123
of functions  113

Newton and  126–127
great circle, on sphere
147–148

Great Pyramid at Giza
(Egypt)  4
height of, Thales’s meas-
urement of  10–11

Greece. See also Greek
geometry
origins of mathematics
in  xiv

temples of  11
golden section in  17,
19

territory occupied by  19
Greek geometry  xiii–xiv

absence of numbers in
12–13, 14

and algebra, lack of
interest in  15, 36, 42,
106

Apollonius of Perga and
37–39

Archimedes of Syracuse
and  32–37

Athens as center of
20–22

classical unsolved prob-
lems of  20–21
Pappus on  44–45

coordinates in  106
curves in  15, 35–36, 46,
107–108, 114

drawings used in  14–15
Dürer’s interest in  61
Euclid of Alexandria and
24–31

and Euler’s ideas  133
Hypatia and  48
importance of  47–50
lost works of  115
Menaechmus and
105–106

and Monge’s work  138
Pappus of Alexandria
and  43–47

Pythagoreans and  15–19
rhetorical descriptions in
112, 144

Thales of Miletus and
10–14

group
definition of  88–89
of Euclidean motions
90

example of  89
of projective motions
90

properties of  88
symbols for  88

group operation  88
group theory  86–87

applications of  89
Klein and  89, 90

H
hemisphere, parametric
description of  137

Herodotus (Greek histori-
an)  3

hexagon, in Pascal’s theo-
rem  71, 71

Hilbert, David  31, 49,
170–171, 171
and energy conservation
in relativity  167

and functional analysis
170

and Noether  165, 166
problems posed by  171

Hilbert spaces  170,
171–172
distance formula for
172–173

and functional analysis
174

Hindu mathematics
52–53

Holland, Descartes in  109
human body

golden section in  18
symmetry in  167

Huygens, Christian  121
Hypatia (Greek mathe-
matician)  48

hyperbola
algebraic description of
106

Apollonius on  40, 41
bipolar coordinates and
128, 128–129

coining of term  105
projection of  70

hyperbolic paraboloid  132,
133

hyperboloid, of one and
two sheets  132, 133

I
identity, of group  88
incommensurables, prob-
lem of, in Euclid’s
Elements 26

indeterminate equations
Descartes on  113–114,
130–131

Fermat on  116
India, contributions to
mathematics  52–53

infinite-dimensional geom-
etry  170–175
applications of  175
descriptions in  173–174
distance formula in
172–173

value of  174
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infinite-dimensional
space(s)  170, 171–172
distance formula for
172–173

types of  174–175
infinite universe, properties
of  151

infinity, point at
definition of  69
in Pascal’s theorem  71

intuition, in study of
geometry  16, 170
vs. deductive reasoning
13–14

Riemann and  147
inverse, in group  88
irrational numbers  16

in Euclid’s Elements 26
Islamic mathematicians

and analytic geometry
110

contributions of  53–54
Greeks and  49

isosceles triangle
area of, Egyptian com-
putation of  5–6, 6

definition of  5–6

J
journals, scientific, 
communication of ideas 
in absence of  66, 73

K
Kazan University,
Lobachevsky at  92–93

Kepler, Johannes  43
Khw?rizm?, Mohammed
ibn-M?s? al-  49

Klein, Felix  85
and group theory  89, 90
and Noether  165
on relationships among
branches of geometry
86, 89, 90–91

L
The Lady of Kazan
(painting)  55

language(s)
aptitude for, mathemati-
cians and  108, 115,
120, 165

mathematical, Viète and
102

Lascaux (France), cave
paintings from  xiii

latitude  103, 104
laws of nature

conservation  166–167
and geometric symme-
tries  169

special relativity and
156

Leibniz, Gottfried
120–123
and calculus, notation in
121–122

intellectual goals of  121
religious beliefs of  120

length(s). See also
distance(s)
directed  81

Leonardo da Vinci  55,
57–61
Mona Lisa 57
notebooks of  58
optical pyramid of  58,
58–59

study of mathematics
57, 58

light, speed of, in special
relativity  156, 162, 163

light-year  162
limit, idea of, Greek coun-
terpart to  22

line(s)
nonparallel, Euclid on
29

parallel
Desargues’s theorem
and  69

Euclid on. See parallel
postulate

intersection in point at
infinity  69

in Pascal’s theorem  71
and point, interchange-
ability in projective
geometry  79, 82

in projective geometry
67

straight, first-degree
equations and  116

line and form, human
interest in  xiii

linear problems, Pappus on
45

Lobachevsky, Nikolai
Ivanovich  92–97, 93
contributions of  96–97
and Euclid’s parallel pos-
tulate, alternative to
94, 95–96, 96

non-Euclidean geometry
of  92, 96

local analysis  140
locus, definition of  115
logarithmic spiral  18
longitude  103–104

M
Magellan, Ferdinand  151
Magna Graecia  19
Manhattan Project  155
mapping, in parametric
representation of curves
134

maps, of curved surfaces
140–142

mass, conservation of
166–167

mathematics
axiomatic approach to,
Euclid and  26, 28,
30–31

deductive reasoning in
14, 27

Greeks and origins of
xiv

measurements in  98
Socrates on  21

Maurice of Nassau  109
mean proportionals, prob-
lem of finding  106

measurements
in mathematics  98
in projective geometry
84

mechanical drawing  77
Menaechmus (Greek math-
ematician)  105–106

meridian, prime  103–104
Mersenne, Marin  66, 70,
73, 109, 117

Mesopotamia  6
algebra of  7
clay tablets from  6–7
geometry of  7–8
number system of  8
superior mathematics of
11
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The Method (Archimedes)
34, 37

method of exhaustion
Archimedes’ use of  36
vs. calculus techniques
47

in Euclid’s Elements 26
Eudoxus and  22–23
Pappus’s use of  47

metric system, Monge and
77

Michelangelo Buonarroti
55

Michelson, Albert
Abraham  156, 163

Middle Ages  52
European art during
54–55, 55

military applications of
geometry  32–34, 75–76,
77

Mona Lisa (Leonardo da
Vinci)  57

Monge, Gaspard  75–78,
138
and analytic geometry
138

and descriptive geometry
76, 77

and Napoléon  77–78,
138

and projective geometry
75–76

students of  78–84
synthetic methods used
by  84

Moon, gravitational inter-
actions with Sun and
Earth  130

Morley, Edward Williams
156, 163

motion(s)
in geometry  xvi, 89–90

product of  90
uniform, in special 
relativity  156

N
Napoléon Bonaparte

invasion of Russia
79–80

and Monge  77–78, 
138

and Poncelet  79

nature. See also laws of
nature
golden section in  18
non-Euclidean geometry
in, Gauss’s investigation
of  98–99

negative coordinates  113
Newton’s use of
126–127

Newton, Isaac  123–129,
124
and alchemy, interest in
124

Arithmetica Universalis
125

and calculus, discovery
of  122

coordinate systems of
125–127, 126,
128–129

De Methodus Fluxionum
et Serierum Infinitorum
126

Philosophiae Naturalis
Principia Mathematica
49, 125

on time and space
127–128, 156

Newtonian reference frame
129

Nile River  3
90° angle. See right angle
Noether, Emmy  
165–166
on conservation laws
167, 168

Noether, Max  165
non-Euclidean
geometry(ies)
Bolyai’s  97–98
first  54
Gauss’s contribution to
99

Lobachevsky’s  92, 96
and real world, corre-
spondence between
98–99

and relativity theory  96
Riemann’s  147–148
Schweikart’s contribution
to  100

nonparallel lines, Euclid on
29

North Pole  104
nuclear spaces  175

number(s). See also specific
kinds of numbers
absence in Greek geom-
etry  12–13, 14

ordered sets of  103
Pythagoras’s interest in
15

Pythagoreans on  16, 19
number system

Egyptian  5, 8
Hindu  52
Mesopotamian  8

number theory, Fermat and
117–119

O
oblique coordinates  113
180° angle. See straight
angle

On Spirals (Archimedes)
35–36
Pappus’s commentary on
44

On the Sphere and Cylinder
(Archimedes)  34, 35

optical pyramid
Desargues’s  68, 68
Dürer’s  62, 62–64
Leonardo’s  58, 58–59

P
Pappus of Alexandria
43–47, 48, 115
Collection 44, 48
theorem of  45, 45–46

papyrus, Egyptian  6. See
also Ahmes papyrus

parabola
algebraic description of
106

Apollonius’s study of  40,
41, 41

Archimedes’ study of  36
coining of term  105
projection of  70
in reflecting telescope
43

parallel lines
Desargues’s theorem and
69

intersection in point at
infinity  69

in Pascal’s theorem  71
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parallel postulate, Euclid’s
29, 30
attempts to prove  93–94
Bolyai’s alternative to
97, 147

controversy over  29–30
Gauss on  100
Lobachevsky’s alternative
to  94, 95–96, 96, 147

Riemann’s alternative to
147, 147–148

parametric equations, for
surfaces  136

parametric representation
of curves  134–136, 136
of surfaces  134, 137

Pascal, Blaise  70
contribution to projec-
tive geometry  70–71

Essay on Conics 71
mechanical calculator of
72, 72

and probability theory
117

Pascal, Etienne  70
Pascal’s theorem  71, 71

Brianchon’s rediscovery
of  78–79, 79

pentagon, star, golden sec-
tions in  16, 16–19

Pergamum (Greek city)  39
perspective, in art

Dürer’s device for repre-
senting  62, 62–64

Dürer’s study of  53
Leonardo’s method for
representing  58, 58–61

phi (?)  18
Philosophiae Naturalis
Principia Mathematica
(Newton)  49, 125

physics
and geometry, relation-
ship between  164–165,
169

laws of, special relativity
and  156

Riemann’s ideas and
153

π (number), Egyptian
approximation of  4

Pierro, Francesco della  58
place-value notation

Indian system of  52
Islamic adoption of  54

plane curves, comparing
curvature of  143

plane geometry
in Euclid’s Elements 26
Pappus on  45

Plane Loci (Apollonius)  115
planets, elliptical orbits of
43

plants, golden section in
18

Plato (Greek philosopher)
22

Poincaré group of symme-
try transformations  168

point
at infinity

definition of  69
in Pascal’s theorem  71

and line, interchange-
ability in projective
geometry  79, 82

polar coordinates  126, 126
polar-ring galaxy  155
Poncelet, Jean-Victor
79–82
Applications of Analysis
and Geometry 80

on cross-ratio  80–81, 81
and duality principle,
discovery of  82–83

and Gergonne, competi-
tion between  83–84

and synthetic geometry
83–84

Treatise on the Projective
Properties of Figures 80

prime meridian  103–104
prime numbers

in Euclid’s Elements 26
Mersenne on  73

Princeton Institute for
Advanced Studies,
Noether at  166

Principia (Newton). See
Philosophiae Naturalis
Principia Mathematica

probability theory, founda-
tions of  117

problem solving, in
Descartes’s Discours de la
méthode 113

projection(s)
definition of  xv
properties preserved
under  67–68

stereographic  141,
141–142

projective geometry
xv–xvi, 52–91
applications of  87
art and origins of  54,
56, 64–65

Brianchon’s contribution
to  78–79, 79

conceptual difficulties 
in understanding  67

conic sections in  
69–70

Desargues’s ideas for
66–67

Desargues’s theorem in
68, 68–69

duality principle in  46,
82–83

Dürer’s contribution to
62–64

and Euclidean geometry
Klein’s comparison of
90, 91

relationship of  84, 
85

geometric properties in
xvi

importance of  73–74
Klein’s contribution to
85, 91

language of, vs. language
of representational art
69

Leonardo’s contribution
to  58–61

Monge’s contribution to
75–76

vs. non-Euclidean geom-
etry  92

Pascal’s contribution to
70–71

Poncelet’s contribution
to  80–82

today  87
von Staudt’s contribution
to  84–85

projective
transformation(s)  68, 81
group of  90

proof, idea of, origins of
xiv

proportion, use of mathe-
matical methods in study
of  53
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Proposed Draft of an Attempt
to Deal with the Events of
the Meeting of a Cone with
a Plane (Desargues)  69,
72, 73

pseudosphere  97
Ptolemy (Greek
astronomer), Hypatia’s
commentary on  48

pyramids, Egyptian  4, 5
height of, Thales’s 
measurement of
10–11

Pythagoras of Samos  15,
19

Pythagoreans  15–19
on golden section  16,
16–19

on numbers  16, 19
religious beliefs of  15
spread of knowledge of
22

Pythagorean theorem  7
and Cartesian coordi-
nates  118

for curved space  151
as distance formula  118,
149, 172

for infinite-dimensional
space  172–173

Mesopotamian use of  7,
8

Pythagoras and  15
special relativity and
159

Pythagorean triples
116–117

Q
quadratic formula, search
for formula analogous to
89

Quadrature of the Parabola
(Archimedes)  36

quadric surfaces  132, 133
Monge’s study of  138

quantum mechanics,
Einstein on  154–155

R
Raphael Santi  55
ratios, under projections
80–81, 81

real number line  103
in parametric represen-
tation of curves  135

rectangle, golden  17, 17
reflecting telescope  43
relativity theory  155–163

and differential geome-
try  153

and energy conservation
167

field equations for  171
general  156, 163, 165
non-Euclidean geometry
and  96

special  154, 156–163,
157

wide acceptance of
163–164

religious art, medieval
54–55, 55

religious beliefs
and attitude toward
mathematics  48

and Leibniz’s philosoph-
ical thinking  120

Pythagorean  15
Renaissance  52

algebra during  102
art during  53, 54,
55–56, 57. See also
representational art

geometry during  xv, 54,
56, 64–65

representational art  54,
55–56
distortion in  56
Dürer’s optical pyramid
and  62, 62–64

language of, vs. language
of projective geometry
69

Leonardo’s optical pyra-
mid and  58, 58–61

mathematical basis of  65
and projective geometry,
origins of  54, 56,
64–65

skills required for  56
Rhind papyrus. See Ahmes
papyrus

Riemann, Georg Friedrich
Bernhard  145–152, 146,
170
application of ideas of
153, 163

and Euclidean geometry,
generalization of
148–149

and Euclid’s parallel pos-
tulate, alternative to
147, 147–148

on higher-dimensional
curved space  149, 150

Riemann’s axiom  147,
147–148

right angle, descriptions of
12

Roosevelt, Franklin  155
rope, Egyptian surveyor-
mathematicians’ use of
3–4

rotation, and changes to
coordinate systems  131

Royal Engineering College
(Vienna, Austria), Bolyai
at  97

Russia, Napoléon’s inva-
sion of  80

S
Schweikart, Ferdinand Karl
99, 100

scientific journals, commu-
nication of ideas in
absence of  66, 73

semiregular solids  44
Sobolev, Sergei Lvovich
175

Sobolev spaces  175
Socrates (Greek philoso-
pher), on mathematics  21

solar system, Archimedes’
Sun-centered model of
34

solid analytic geometry
130–133
Descartes and  130–131
Euler and  132, 132–133

solids
geometry of

Descartes and  114
Pappus on  45

of revolution  47
semiregular  44

South Pole  104
space(s)

curved
vs. Euclidean space
151
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general theory of rela-
tivity and  163

Pythagorean theorem
applied to  151

Riemann on  149, 150
Einstein’s understanding
of  153, 162–163

Euclidean  148
vs. curved space  151
Riemann on  149, 151

in four-dimensional
Cartesian coordinate
system  128–129

in general relativity  163
higher-dimensional

applications of mathe-
matics of  149–150

Riemann on  149, 150
infinite-dimensional
170, 171–172
distance formula for
172–173

types of  174–175
Newton’s understanding
of  127

in special relativity
162–163

three-dimensional
coordinate system for
104, 105

distance formula in
118

special relativity, theory of
154, 156–163, 157
and Poincaré group of
symmetry transforma-
tions  168

and Pythagorean theo-
rem  159

speed of light, in special
relativity  156, 162, 163

sphere
coordinate system for
104, 104–105

and cylinder,
Archimedes’ compari-
son of volumes of  34,
35

great circle on  147–148
in infinite-dimensional
space  173–174

Riemann’s axiom for
147, 147–148

and tangent plane  141,
141–142

spiral(s)
Archimedes’ study of
35–36

logarithmic  18
star pentagon, golden sec-
tions in  16, 16–19

stereographic projection
141, 141–142

Stone Age, cave paintings
from  xiii

straight angle, Greek
description of  12

straightedge
Greek use of  14, 20–21,
45

Newton’s use of  125
straight line, first-degree
equations and  116

Sun
in Archimedes’ model of
solar system  34

and elliptical orbits of
planets  43

gravitational interactions
with Moon and Earth
130

surface(s)
curvature of, Gauss’s
study of  142–144, 143

curved
applications of study
of  160–161

coordinate system on
144

geodesics on  145
maps of  140–142

Euler’s study of
131–137, 140

geodesic on  137
indeterminate equations
representing  116,
130–131

parametric equations for
136

parametric representa-
tion of  134, 137

quadric  132, 133, 138
surface flow, physics of
160, 160–161

surveying, and develop-
ment of geometry  3–4,
140

symmetry  167
and conservation laws
168

symmetry transformations
167–168

synthetic geometry
difficulty with  111
Newton and  125
Poncelet and  83–84

Syracuse (Greek city-state)
19, 32
Archimedes’ grave in  35
Roman siege of  34

T
tangent plane, of sphere
141, 141–142

taxonomy  90
telescope, reflecting  43
Thales of Miletus  10–14,
19, 48
and deductive reasoning
14

on diameter of circle
11–13

on height of Egyptian
pyramid  10–11

importance in history of
geometry  14

theorem(s)
Brianchon’s  78–79, 79
definition of  66
Desargues’s  68, 68–69
fundamental, of algebra
99

Pappus’s  45, 45–46
Pascal’s  71, 71
Pythagorean  7. See also
Pythagorean theorem

Thales’s  11–13
Thirty Years’ War  121
three-dimensional problems

Descartes and  114
Greeks and  15

three-dimensional space
coordinate system for
104, 105

distance formula in  118
Euler’s work in  130, 137
indeterminate equations
for  116

time
Einstein’s understanding
of  153, 156–160

in four-dimensional
Cartesian coordinate
system  128–129
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Newton’s understanding
of  127–128

special relativity theory
and  156–160

symmetry with respect
to, and energy conser-
vation  168

torus  46, 47
volume of  47

transformation(s)
Euclidean  131–132
projective  68, 81
symmetry  167–168

translation
and changes to coordi-
nate systems  131

definition of  89–90,
131

Treatise on the Projective
Properties of Figures
(Poncelet)  80

triangle(s). See also specific
types
area of, formula for  6
in projective geometry
67

sum of interior angles of
Greek proof for
12–13, 13

in Lobachevsky’s
geometry  96, 98

Pascal’s discovery of
70

in Riemann’s geome-
try  147, 148

Trinity College, Newton at
124–125

trisection of angle
Archimedes on  36
classical Greek problem
of  20

Pappus on  44–45

U
uniform motion, in special
relativity  156

universe
geometry of

general relativity 
theory and  163

special relativity 
theory and  162

infinite, properties of
151

Newton’s understanding
of  127–129

shape of, questions about
152

three-dimensional,
Riemann’s inquiries
about  150

University of Altburg,
Leibniz at  121

University of Berlin
Einstein at  154
Riemann at  146

University of Bonn, Klein
at  85

University of Erlangen
Klein at  85
Noether at  165

University of Göttingen.
See Göttingen University

University of Kazan,
Lobachevsky at  92–93

University of Leipzig,
Leibniz at  120

University of Orleans,
Fermat at  115

University of Poitiers,
Descartes at  108

University of Toronto,
geometry department at
87

University of Zürich,
Einstein at  154

V
vanishing point, in art  69
Verrocchio, Andrea del  
57

Viète, François  102
influence on Descartes
109

von Staudt, Karl Georg
Christian  84–85

W
weapons, Archimedes’
designs for  32–34

Wolgemut, Michael  61
women mathematicians

German  165
Greek  48

Z
zero (0), symbol for  52
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