
Protected Mode
Software

Architecture

MINDSHARE, INC.

Tom Shanley

▲
▼▼

Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Harlow, England • Amsterdam

Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designators appear in this book, and Addi-
son-Wesley was aware of the trademark claim, the designations have been printed in
initial capital letters or all capital letters.

The authors and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

ISBN: 0-201-55447-X

Copyright ©1996 by MindShare, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

Sponsoring Editor: Kathleen Tibbetts
Project Manager: Deborah McKenna
Cover Design: Barbara T. Atkinson
Set in 10 point Palatino by MindShare, Inc.

1 2 3 4 5 6 7 8 9-MA-9998979696
First Printing, February 1996

Addison-Wesley books available for bulk purchases by corporations, institutions, and
other organizations. For more information please contact the Corporate, Government,
and Special Sales Department at (800) 238-9682.

Find A-W Developers Press on the World-Wide Web at:
http://www/aw.com/devpress/

To my pal Nancy.

Contents

v

About This Book
The MindShare Architecture Series .. 1
Cautionary Note .. 2
What This Book Covers ... 2
What this Book Does not Cover ... 2
Organization of This Book .. 2
Who this Book is For .. 3
Prerequisite Knowledge .. 3
Documentation Conventions .. 3

Hexadecimal Notation ... 4
Binary Notation ... 4
Decimal Notation .. 4

Signal Name Representation .. 4
Identification of Bit Fields (logical groups of bits or signals) ... 5
Register Field References .. 5
Visit Our Web Page .. 5
We Want Your Feedback .. 5

Part One
Background

Chapter 1: Single-Task OS and Application9
Operating System Overview ... 9

Command Line Interpreter (CLI) ... 9
Program Loader .. 10
OS Services ... 10

Direct IO Access .. 11
Applications Program Memory Usage .. 11
Task Initiation, Execution and Termination .. 11

Chapter 2: Definition of Multitasking13
Concept .. 13
An Example—Timeslicing ... 14
Another Example—Awaiting an Event ... 14

Task Issues Call to OS for Disk Read ... 14
OS Suspends Task ... 15
OS Initiates Disk Read .. 15
OS Makes Entry in Event Queue .. 15

Contents

vi

OS Starts or Resumes Another Task ... 15
Disk-Generated IRQ Causes Jump to OS .. 15
Task Queue Checked .. 16
OS Resumes Task .. 16

Chapter 3: Multitasking Problems ...17
OS Protects Territorial Integrity ... 17
Stay in Your Own Memory Area .. 18
IO Port Anarchy ... 18
Unauthorized Use of OS’s Tools .. 19
No Interrupts, Please! ... 20
BIOS Calls .. 21

Part Two: Register Set & Real Mode

Chapter 4: The Control Registers ...25
Control Register 0 (CR0) .. 25

CR0 Description .. 25
CR0 State after Reset ... 27

Control Register 1 (CR1) .. 28
CR1 Description .. 28
CR1 State after Reset ... 28

Control Register 2 (CR2) .. 29
CR2 Description .. 29
CR2 State after Reset ... 29

Control Register 3 (CR3) .. 29
CR3 Description .. 29
CR3 State after Reset ... 30

Control Register 4 (CR4) .. 30
CR4 Description .. 30
CR4 State after Reset ... 34

EFlags Register ... 35
EFlags Description .. 35
EFlags State after Reset .. 38

Interrupt Descriptor Table Register (IDTR) .. 40
Background .. 40
IDTR Description .. 41
IDTR State after Reset ... 41

Debug Registers .. 42
Debug Registers Description ... 42
Debug Registers State after Reset ... 42

Contents

vii

Chapter 5: Real Mode Operation ..45
Special Note ... 45
286/386/486/Pentium Power-Up State .. 45
Initial Memory Reads ... 48
IO Port Addressing ... 49
Memory Addressing ... 49

General .. 49
Accessing the Code Segment ... 51
Accessing the Stack Segment ... 53
Accessing DS Data Segment .. 56
Accessing ES/FS/GS Data Segments ... 56
An Example .. 57
Accessing Extended Memory in Real Mode ... 58
Big Real Mode .. 61

Real Mode Instructions and Registers .. 61
Registers Accessible in Real Mode ... 61
Registers Inaccessible in Real Mode ... 62
Instructions Usable in Real Mode ... 62
Instructions Unusable in Real Mode .. 62

Real Mode Interrupt/Exception Handling ... 63
Protection in Real Mode .. 67

Part Three: Protected Mode

Chapter 6: x86 Protected Mode Intro71
General .. 71
Memory Protection ... 72

Segmentation ... 72
Virtual Memory Paging ... 72

IO Protection .. 73
Privilege Levels ... 74
Virtual 8086 Mode ... 74
Task Switching .. 74
Interrupt Handling ... 75

Chapter 7: Intro to Segmentation ...77
Special Note ... 77
Real Mode Limitations ... 77
Introduction to Segment Descriptor .. 78

Contents

viii

Segment Register—Selects Descriptor Table and Entry ... 79
Introduction to Descriptor Tables ... 81

Segment Descriptors Reside in Memory ... 81
Global Descriptor Table (GDT) ... 82

Description .. 82
Setting GDT Base Address and Size ... 83

Local Descriptor Tables (LDTs) .. 85
General Segment Descriptor Format ... 90

Granularity Bit ... 90
Segment Base Address Field ... 90
Segment Size Field .. 90
Default/Big Bit .. 90

Code Segment Descriptor’s Default Bit .. 90
Stack Segment Descriptor’s Big Bit ... 92

Segment Type Field .. 92
Introduction to Type Field .. 92
Non-System Segment Types .. 92

Segment Present Bit .. 96
Descriptor Privilege Level (DPL) Field .. 96
System Bit ... 96
Available Bit ... 97

Chapter 8: Code Segments ...99
Selecting Code Segment to Execute ... 99
Code Segment Descriptor Format .. 101
Accessing Code Segment ... 104
Privilege Checking .. 107

General .. 107
Some Definitions ... 107

Definition of a Task ... 107
Definition of a Procedure .. 108
CPL Definition .. 108
DPL Definition ... 108
Conforming and Non-Conforming Code Segments ... 108
RPL Definition .. 109

Calling a Procedure in Current Task ... 110
Call Gate ... 110

The Problem ... 110
The Solution—Different Gateways .. 111
Call Gate Example ... 114

Execution Begins .. 114
Call Gate Descriptor Read .. 114

Contents

ix

Call Gate Contains Code Segment Selector ... 117
Code Segment Descriptor Read ... 117
The Big Picture ... 120

The Call Gate Privilege Check .. 120
Privilege Check for Call through Call Gate ... 120
Privilege Check for Jump through Call Gate ... 121

Automatic Stack Switch ... 122

Chapter 9: Data and Stack Segments125
Introduction .. 125
The Data Segments ... 125

Selecting and Accessing a Data Segment .. 125
Data Segment Privilege Check .. 127

Selecting and Accessing Stack Segment ... 131
Description ... 131
Expand-Down Stack ... 134

Problem ... 134
Description .. 134

Stack Segment Privilege Check ... 135

Chapter 10: Creating a Task ...137
What Is a Task? .. 137
Basics of Task Creation and Startup ... 137

Load All or Part of Task into Memory ... 138
Create TSS for the Task .. 138
Start Timeslice Timer .. 138
Switch to the Task ... 139

TSS Structure ... 139
General .. 139
IO Port Access Protection .. 141

IO Protection in Real Mode .. 141
Definition of IO Privilege Level (IOPL) .. 142
IO Permission Check in Protected Mode ... 143
IO Permission Check in VM86 Mode .. 144

IO Permission Bit Map Offset Field .. 144
Interrupt Redirection Bit Map ... 146
OS-Specific Data Structures ... 147
Debug Trap Bit (T) .. 147
LDT Selector Field ... 147
Segment Register Fields ... 147
General Register Fields .. 147

Contents

x

Extended Stack Pointer (ESP) Register Field .. 148
Extended Flags (EFlags) Register Field .. 148
Extended Instruction Pointer (EIP) Register Field ... 148
Control Register 3 (CR3) Field .. 148
Privilege Level 0 - 2 Stack Definition Fields .. 149
Link Field (to Old TSS Selector) .. 150

TSS Descriptor ... 150
How OS Starts Task .. 152
What Happens When Task Starts .. 152
Use of LTR and STR Instructions .. 152

General .. 152
STR Instruction .. 153
LTR Instruction ... 153

Chapter 11: Mechanics of a Task Switch157
Events that Initiate a Task Switch ... 157
Switch Via TSS Descriptor .. 160
Task Gate Descriptor .. 160

Task Gate Selected by Far Call/Jump .. 160
Task Gate Selected by Hardware Interrupt or Software Exception 161
Task Gate Selected by INT Instruction .. 161

Switch as Result of Hardware Interrupt or Exception ... 163
General .. 163
Suspension of Interrupted Task .. 163
Start Interrupt/Exception Handler Task ... 163
Return to Interrupted Task or...There and Back Again! .. 165

Switch as Result of Far Call .. 168
Suspension of Calling Task ... 168
Start Called Task ... 168
Return to Calling Task or...There and Back Again! ... 170

Switch as Result of Far Jump .. 171
Suspension of Task Executing Jump .. 171
Start Target Task ... 172

Switch as Result of BOUND or INT Instruction .. 173
Linked Tasks .. 174
Linkage Modification ... 177
The Busy Bit ... 177
Address Mapping .. 180

Linear vs. Physical Memory Address .. 180
GDT Purpose and Location ... 180
LDT Purpose and Location .. 180

Contents

xi

Paging-Related Issues ... 181
Background ... 181
Each Task Can Have Different Linear-to-Physical Mapping 181
TSS Mapping Must Remain Same for All Tasks ... 182
Placement of TSS Within Page(s) ... 182

Chapter 12: Interrupt Sources and Handling183
Special Note ... 183
General .. 183
Hardware Interrupts ... 184

Maskable Interrupt Requests .. 184
Maskable Interrupt Servicing .. 185

Automatic Actions ... 185
Handler Software Actions .. 186
PC-Compatible Vector Assignment .. 187

Non-Maskable Interrupt Requests ... 190
Software-Generated Exceptions ... 190

General .. 190
Faults, Traps, and Aborts ... 191
Instruction Restart ... 195
Software Interrupt Instructions .. 195

Interrupt/Exception Priority .. 196
Real Mode Interrupt/Exception Handling ... 198

Interrupt Descriptor Table (IDT) Structure ... 198
Real Mode Interrupt/Exception Handling ... 199

Protected Mode Interrupt/Exception Handling ... 200
General .. 200
Protected Mode Interrupt Descriptor Table (IDT) Structure 200
Interrupt Gates .. 203

General .. 203
Actions Taken when Interrupt Selects Interrupt Gate 204

Trap Gates .. 207
Using Procedure as Interrupt/Exception Handler .. 209

State Save .. 209
Jump to Handler .. 212
Return to Interrupted Program .. 212

Returning to Same Privilege Level ... 212
Returning to Different Privilege Level .. 212

Using Task as Interrupt/Exception Handler .. 213
Interrupt/Exception Handling in VM86 Mode .. 215
Exception Error Codes .. 215
Resume Flag Prevents Multiple Debug Exceptions ... 216

Contents

xii

Special Case Interrupts Disabled While Updating SS:ESP 217
The Problem ... 217
The Solution ... 217

Chapter 13: Virtual Paging ..219
Pentium Pro Paging Extensions ... 219
Problem Loading Entire Task in Memory is Wasteful ... 219
Solution Load Part and Keep Remainder on Disk .. 220

Load on Demand ... 220
Track Usage .. 220
Capabilities Required ... 221

Problem Running Two (or more) DOS Programs ... 221
Solution Redirect Memory Accesses to Separate Memory Areas 222
Global Solution: Map Linear Address to Disk or Other Physical Memory Address222
Paging Unit Is the Translator .. 222

Linear Memory Space Divided into 1M 4KB Pages ... 223
Physical Memory Space Divided into 1M 4KB Pages ... 223
Mass Storage Space Divided into 4KB Pages .. 223
Paging Unit Uses Directory to Remap Address ... 223

Three Possible Page Lookup Methods .. 224
First Method: Sequential Scan through Large Table .. 224
Second Method: Index into Large Table .. 224
Third Method: Index into a Selected Small Table .. 225

x86 Page Lookup Method .. 228
Enabling Paging .. 229
Page Directory and Page Tables ... 230
Finding Location of Physical Page ... 232

Find the Page Table First .. 232
When Target Page Table Is in Memory .. 232
When Target Page Table Isn’t in Memory ... 235

Find the Page Using an Entry in Page Table ... 238
When Target Page Is in Memory ... 238
When Target Page Isn’t in Memory .. 238

Checking Page Access Permission ... 240
The Privilege Check .. 240

Segment Privilege Check Takes Precedence Over Page Check 240
U/S Bit in Page Directory and Page Table Entries Checked 241
Accesses with Special Privilege ... 242

The Read/Write Check .. 242
Page Faults .. 243

Page Fault Causes ... 243
Second Page Fault while in Page Fault Handler .. 243

Contents

xiii

Page Fault During Task Switch ... 244
Page Fault while Changing to Different Stack .. 244
Page Fault Error Code .. 245

Usage of Dirty and Accessed Bits .. 246
Eliminating Page Location Lookup ... 247

386/486 TLB ... 248
Pentium TLBs .. 249

Code Page Access .. 249
Data Page Access ... 251
Pentium TLB Structure ... 251

TLB Maintenance .. 252
TLBs Cleared on Task Switch or Page Directory Change 253
Updating a Single Page Table Entry ... 253

Cache Issues ... 254
Page Directory Caching Policies ... 254

Page Directory Cacheability ... 255
Page Directory Write Policy ... 255

CR3[PWT] = 1 and Data Cache Hit .. 256
CR3[PWT] = 1 and Data Cache Miss ... 256
CR3[PWT] = 0 and Data Cache Hit .. 256
CR3[PWT] = 0 and Data Cache Miss ... 257

Page Table Caching Policies .. 257
Page Caching Policies ... 257

4MB Pages ... 257

Chapter 14: The Flat Model ...261
Segments Complicate Things ... 262
Paging Can Do It All .. 262
Eliminating Segmentation ... 262
Privilege Check .. 263
Read/Write Check ... 263
Each Task (including OS) Has Its Own TSS ... 263

Switch to Application Task .. 264
Switch to OS Task ... 264

Chapter 15: Virtual 8086 Mode ...265
A Special Note ... 265
DOS Application Portrait of an Anarchist .. 266
Solution Set a Watchdog on the DOS Application ... 266
The VMM ... 266

Contents

xiv

Entering or Reentering VM86 Mode ... 267
Task Creation, Startup and Suspension ... 267

Create TSS ... 267
Each Task Gets a Timeslice ... 267
Select DOS Task via Far Call or Far Jump .. 268

Leaving VM86 Mode .. 268
Task Switch Changes EFlags ... 269
Interrupt or Exception Clears EFlags[VM] .. 269
IRET Sets EFlags[VM] .. 269

DOS Task s Memory Usage .. 270
1st MB Is DOS Memory .. 270
Paging Provides Each DOS Task with Its Own Copy of 1st MB 270
Where VMM Resides .. 270
Dealing with Segment Wraparound .. 271

8086 Processor .. 271
Post-8086 Processors .. 271
Solutions .. 272

Segment Register Interpretation in VM86 Mode .. 272
Using Address Size Override Prefix .. 272

Privilege Level of VM86 Task .. 273
Restricting IO Accesses .. 273

The Problem ... 273
IO-Mapped IO ... 274

IO Permission in Protected Mode ... 274
IO Permission in VM86 Mode .. 274

Memory-Mapped IO .. 275
Segregate Ports into Two Groups of Memory Pages .. 275
Set Up Task’s Page Tables to Permit or Deny Access ... 275

Handling Display Frame Buffer Updates .. 276
IOPL-Sensitive Instructions .. 276

The Problem—Instructions with Side Effects ... 276
The Solution—IOPL-Sensitive Instructions .. 277

Interrupt/Exception Generation and Handling ... 278
Introduction ... 278
Normally Only One IDT .. 278
VM86 Mode—Tale of Two IDTs ... 279
Which IDT Is Used? .. 279
Processor Actions when Hardware Interrupt Occurs in VM86 Mode 279

Obtain Vector from Interrupt Controller ... 280
Use Vector to Select and Read Protected Mode IDT Entry 280
Switch to VM86 Task’s Level 0 Stack .. 280
Jump to Handler .. 283

Contents

xv

If Handler Expects Values in Data Segment Registers 283
When Handler Must Know if Entered from VM86 Mode 283
If Handler Must Return Values in Data Segment Registers 283
Exit Handler and Return to Interrupted VM86 Task ... 286

Why Data Segment Registers Were Cleared .. 286
Execution of IRET Instruction .. 286

Processor Actions when INT nn Executed in VM86 Mode 287
Processor Actions when Exception Occurs in VM86 Mode 287
Execute Protected Mode Handler or Pass Control to VMM 288
VMM Chooses Response Based on Vector .. 289

VMM Passes the Ball to a Real Mode Handler .. 289
Pass Control to Real Mode Handler .. 289
Real Mode Handler Executes .. 290
Exit Real Mode Handler Back to VMM ... 290
VMM Resumes Interrupted VM86 Task ... 291

VMM Handles Event ... 291
Attempt to Access Forbidden IO Port ... 292
Attempted Execution of CLI Instruction ... 292
Attempted Execution of STI Instruction ... 294
Attempted Execution of PUSHF Instruction .. 294
Attempted Execution of POPF Instruction ... 294
Attempted Execution of INT nn Instruction ... 295
Attempted Execution of IRET Instruction .. 295

Using Separate Task as Handler in VM86 Mode ... 296
VM86 Mode Extensions ... 297

Virtual Interrupt Enable Bit ... 297
Software Interrupt Redirection ... 298
Hardware Interrupt Redirection ... 298

Registers Accessible in VM86 Mode ... 301
Instructions Usable in VM 86 Mode ... 302

Index ... 303

Figures

xvii

1-1 Task/OS Relationship ..12
4-1 Control Register 0 (CR0) ..28
4-2 Control Register 2 (CR2) ..29
4-3 Control Register 3 (CR3) ..30
4-4 Control Register 4 (CR4) ..34
4-5 The EFlags Register...40
4-6 Interrupt Descriptor Table Register (IDTR) ..42
4-7 Debug Registers ..43
5-1 Segment Registers ...50
5-2 IP Register ..51
5-3 Stack Segment..55
5-4 Example Usage of Segment Registers in Real Mode ...58
7-1 Segment Register Contents in Real Mode ...79
7-2 Segment Selector ...80
7-3 The Segment Register, GDT and LDTs..81
7-4 Global Descriptor Table (GDT) ...84
7-5 The GDT and the LDTs ..86
7-6 Local Descriptor Table Register ..87
7-7 Format of LDT Entry in GDT ..88
7-8 LDT Structure ..89
7-9 General Format of Segment Descriptor ...95
8-1 Segment Selector ...100
8-2 Code Segment Descriptor Format ..103
8-3 Example Value in CS Register...105
8-4 Sample Code Segment Descriptor..106
8-5 32-bit Call Gate Descriptor Format ..113
8-6 CS Contents During Call through Example Call Gate ..114
8-7 Example Call Gate Descriptor...116
8-8 Code Segment Selector Specified in Example Call Gate ...117
8-9 Example Code Segment Descriptor..119
8-10 Call Gate and CS Descriptors, Code Segment and Called Procedure...............................120
8-11 Task State Segment Format ...124
9-1 Data Segment Descriptor Format ...128
9-2 Example Value in DS Register ..129
9-3 Example Data Segment Descriptor ..130
9-4 Example Value in SS Register ...132
9-5 Example Stack Segment Descriptor ...133
10-1 Task State Segment (TSS) Format ...141
10-2 The EFlags Register...143
10-3 Control Register 3 (CR3) ..149
10-4 The TSS Descriptor Format..151
10-5 The Task Register..155
11-1 The Task Gate Format ..162
11-2 The IDT (Interrupt Descriptor Table)...167
11-3 Example of Linked Tasks...176
11-4 TSS Descriptor Format ...179

Figures

xviii

12-1 Structure of Real Mode Interrupt Table...199
12-2 Interrupt Descriptor Table (IDT) ..202
12-3 Interrupt Descriptor Table Register (IDTR) ..203
12-4 32-bit Interrupt Gate Descriptor Format ...206
12-5 Trap Gate Format..208
12-6 Same Privilege Level and No Error Code ...210
12-7 Privilege Level Switch without Error Code ..211
12-8 Same Privilege Level with Error Code...211
12-9 Privilege Level Switch with Error Code ..211
12-10 Task Gate Format ..214
12-11 Error Code Format..216
12-12 Page Fault Error Code Format ..216
13-1 Paging Unit’s View of 32-bit Linear Address ...226
13-2 4GB Linear Memory Space Divided into 1024d Page Groups ...227
13-3 Each Page Group Consists of 1024d 4KB Pages ...228
13-4 Control Register 3 (CR3) ..229
13-5 Control Register 0 (CR0) ..230
13-6 Page Directory, Page Tables and Pages ...231
13-7 Page Directory Entry Format ..235
13-8 Page Fault Register (CR2) ..236
13-9 Page Directory (or Page Table) Entry if Page Table (or page) not Present in Memory ..236
13-10 Page Table Lookup Mechanism..237
13-11 Page Table Entry Format ...240
13-12 Page Fault Error Code Format ..246
13-13 486 TLB ...249
13-14 Pentium Segment Unit, TLBs, Paging Unit, and Caches...252
13-15 CR3 Format ..257
13-16 Control Register 4 (CR4) ..258
13-17 4MB Page Directory Entry...259
13-18 4MB Page..260
15-1 Privilege Level 0 Stack After VM86 Task Interrupted...281
15-2 32-bit TSS Data Structure ...282
15-3 Interrupt Gate Descriptor Format ..284
15-4 Trap Gate Descriptor Format ..285
15-5 Privilege Level 0 Stack after Exception with Error Code..288
15-6 EFlags Register ..296
15-7 CR4 Register ..299
15-8 32-bit TSS Format ..300
15-9 EFlags Register ..301

Tables

xix

4-1 Evolution of CR0... 26
4-2 CR4 Feature Bits ... 31
4-3 Evoluation of EFlags Register ... 35
4-4 EFlag Register Control Bits.. 35
4-5 EFlags State after Reset .. 39
5-1 Registers after Reset ... 46
5-2 Segment Register Usage in Real Mode.. 50
5-3 Exceptions and Interrupts ... 64
7-1 Data/Stack Segment Types ... 93
7-2 Code Segment Types.. 94
7-3 Types of System Segments .. 96
8-1 Code Segment Descriptor Format .. 101
8-2 How to Transfer Control to another Procedure in Current Task 110
8-3 Call Gate Descriptor Elements.. 112
8-4 Elements of the Example Call Gate (see Figure 8-7) Descriptor 115
8-5 Example Code Segment Descriptor ... 117
11-1 Events that Cause a Task Switch .. 158
12-1 PC-Compatible IRQ Assignment.. 187
12-2 Software Exception Types ... 191
12-3 Exception Categories .. 192
12-4 Interrupt/Exception Priority .. 197
12-5 Elements of Interrupt Gate Descriptor .. 203
12-6 Interrupt/Exception Handler State Save Cases ... 209
12-7 Exceptions that Return Error Codes .. 215
13-1 Page Directory Entry Format .. 232
13-2 Effect of U/S Bit Settings ... 241
13-3 Effect of W and CR0[WP] Bit Settings ... 242
13-4 Page Fault Error Code Interpretation .. 245

xxi

Acknowledgments

Kathleen Tibbetts, our editor at Addison-Wesley, remains calm and reasonable
when faced with all manner of calamity: repeatedly slipped schedules, unread-
able files, an author threatening suicide, etc. For her calming influence, I remain
thankful.

1

About This Book
The MindShare Architecture Series

The MindShare Architecture book series includes: ISA System Architecture, EISA
System Architecture, 80486 System Architecture, PCI System Architecture, Pentium
System Architecture, PCMCIA System Architecture, PowerPC System Architecture,
Plug-and-Play System Architecture, CardBus System Architecture, and Protected
Mode Software Architecture. The book series is published by Addison-Wesley.

Rather than duplicating common information in each book, the series uses the
building-block approach. ISA System Architecture is the core book upon which
the others build. The figure below illustrates the relationship of the books to
each other.

IS
A 48

6
Pen

tiu
m

EIS
A

Pow
er

PC

PCI

PCM
CIA

Plu
g &

Play

Platform-Independent

Car
dBus

Pr
ot

ec
te

d
M

od
e

Pen
tiu

m

USB

Pro

Protected Mode Software Architecture

2

Cautionary Note

The reader should keep in mind that MindShare’s book series often deals with
rapidly-evolving technologies. This being the case, it should be recognized that
each book is a “snapshot” of the state of the targeted technology at the time that
the book was completed. We attempt to update each book on a timely basis to
reflect changes in the targeted technology, but, due to various factors (waiting
for the next version of the spec to be “frozen,” the time necessary to make the
changes, and the time to produce the books and get them out to the distribution
channels), there will always be a delay.

What This Book Covers

The purpose of this book is to provide a detailed description of x86 protected
mode operation. However, real mode was the precursor to protected mode, so it
is also necessary to understand real mode’s capabilities and shortcomings. In
order to understand why each component of both real and protected mode soft-
ware architectures exist, the reader must first understand the problems that sin-
gle-task and multitasking OSs must deal with. After providing the necessary
background material, this book focuses on the protection mechanisms and mul-
titasking capabilities of the post-286 processors.

What this Book Does not Cover

This book does not describe the x86 instruction repertoire. There are a host of
books on the market that already provide this information.

Coverage of protected mode as implemented on the 286 processor has been
minimized. The focus is on the post-286 processors.

Organization of This Book

Protected Mode Software Architecture extends MindShare’s coverage of x86 pro-
cessor architecture to the software environment. The author considers this book
to be a companion to the MindShare books entitled 80486 System Architecture
and Pentium Processor System Architecture (both published by Addison-Wesley).
The book is organized into three parts:

About This Book

3

• Part One—Background
• Chapter 1: Single-Task OS and Application
• Chapter 2: Definition of Multitasking
• Chapter 3: Multitasking Problems

• Part Two—Register Set & Real Mode
• Chapter 4: The Control Registers
• Chapter 5: Real Mode Operation

• Part Three—Protected Mode
• Chapter 6: x86 Protected Mode Intro
• Chapter 7: Intro to Segmentation
• Chapter 8: Code Segments
• Chapter 9: Data and Stack Segments
• Chapter 10: Creating a Task
• Chapter 11: Mechanics of a Task Switch
• Chapter 12: Interrupt Sources and Handling
• Chapter 13: Virtual Paging
• Chapter 14: The Flat Model
• Chapter 15: Virtual 8086 Mode

Who this Book is For

This book is intended for use by hardware and software design and support
personnel. Due to the clear, concise explanatory methods used to describe each
subject, personnel outside of the design field may also find the text useful.

Prerequisite Knowledge

It is highly recommended that the reader have a good knowledge of x86 proces-
sor architecture. Detailed descriptions of the 286 and 386 processors can be
found in the MindShare book entitled ISA System Architecture. Detailed descrip-
tions of the 486 and Pentium processors can be found in the MindShare books
entitled 80486 System Architecture and Pentium Processor System Architecture,
respectively. All of these books are published by Addison-Wesley.

Documentation Conventions

This document utilizes the following documentation conventions for numeric
values.

Protected Mode Software Architecture

4

Hexadecimal Notation

All hex numbers are followed by an “h.” Examples:

9A4Eh
0100h

Binary Notation

All binary numbers are followed by a “b.” Examples:

0001 0101b
01b

Decimal Notation

Numbers without any suffix are decimal. When required for clarity, decimal
numbers are followed by a “d.” The following examples each represent a deci-
mal number:

16
255
256d
128d

Signal Name Representation

Each signal that assumes the logic low state when asserted is followed by a
pound sign (#). As an example, the CACHE# signal is asserted low when the
processor wants to read a line from memory into its cache.

Signals that are not followed by a pound sign are asserted when they assume
the logic high state. As an example, PCD is asserted high to indicate that the
memory location(s) being accessed are not to be cached.

About This Book

5

Identification of Bit Fields (logical groups of bits or
signals)

All bit fields are designated in little-endian bit ordering as follows:

[X:Y],

where “X” is the most-significant bit and “Y” is the least-significant bit of the
field. As an example, the IOPL field in the EFlags register consists of bits [13:12],
where bit 13 is the most-significant and bit 12 the least-significant bit of the
field.

Register Field References

Bit fields in registers are frequently referred to using the form Reg[field name].
As an example, the reference CR4[DE] refers to the Debug Extensions bit in
Control Register 4.

Visit Our Web Page

Our Web site is now online at:

www.mindshare.com

As with most web pages, the content and therefore its value to you will increase
over time.

Our publisher’s web page contains a listing of our currently-available books
and includes pricing and ordering information. Their home page is accessible
at:

www.aw.com

We Want Your Feedback

MindShare values your comments and suggestions. You can contact us via mail,
phone, fax or internet email.

Protected Mode Software Architecture

6

Phone: (214) 231-2216, and, in the U.S., (800) 633-1440
Fax: (214) 783-4715
E-mail: tshanley@interserv.com

To request information on MindShare seminars, email your request to:

tshanley@interserv.com.

Mailing Address:

MindShare, Inc.
2202 Buttercup Drive

Richardson, Texas 75082

Part One

Background

9

1 Single-Task OS
and Application

This Chapter

This chapter describes the basic operational characteristics of a typical single-
task OS and its relationship with applications programs designed to work with
it.

The Next Chapter

The next chapter provides a basic description of a multitasking OS.

Operating System Overview

A single-task OS basically consists of the following components:

• The command line interpreter, or CLI
• The program loader
• OS services

Command Line Interpreter (CLI)

Once the OS has been loaded into memory by the startup firmware, control is
passed to its initialization code. This sets up any necessary data structures (e.g.,
the interrupt table), loads and initializes device drivers, etc., and then passes
control to the CLI.

The CLI issues a prompt to the user requesting that the user identify the pro-
gram to be run. The exact form that the prompt takes and the method utilized to
make a selection is OS-dependent. In the case of DOS's COMMAND.COM CLI,

Protected Mode Software Architecture

10

the prompt is not very user-friendly. In response, the user keys in the name of a
program to be executed. In the case of DOS DOSSHELL, the user can use the
mouse to point and click on a file name.

Program Loader

Once the user selects a file name, the OS reads the file’s directory entry and
ascertains the amount of RAM memory necessary to hold the program. The OS
locates a block of free (i.e., unused) memory into which it can load the program.
The OS either directly accesses the disk controller to initiate the read, or issues a
disk read request to the disk BIOS routine in system memory or to the disk
device driver. The BIOS routine or driver issues the request to the disk control-
ler and, if the disk-to-memory transfer will be performed by the DMA control-
ler, programs the disk controller’s associated DMA channel to transfer the data
into the target memory. The DMA controller transfers the block of information
into memory and then instructs the disk controller to inform the BIOS routine
(or driver) that the transfer has been completed. The disk controller generates
its device-specific interrupt request, causing the processor to jump to the disk
interrupt service routine. The service routine checks the disk controller’s com-
pletion status to ensure that no errors were incurred during the transfer of the
information into memory. It then returns a good completion to the BIOS routine
(or driver), which returns with a good completion to the OS. Upon ascertaining
that the program has been transferred into memory, the OS executes a far jump
instruction to the program’s entry point. The applications program then begins
execution.

OS Services

In the course of accomplishing its task, the applications program may have to
communicate with a number of devices in the system. It may have to read/
write disk files, perform data communications, interface with the display and
keyboard, etc.

Rather than force the author of every applications program to write routines to
interface with these entities, the OS provides a variety of services to the applica-
tions program. When the programmer wishes to establish a communications
channel that can be used to access a disk file, for instance, he or she issues a “file
open” request to the OS. The OS performs this function for the programmer.
When the programmer needs to change the appearance of the display, a request
can be issued to the OS. In short, the OS provides a toolbox of services useful to

Chapter 1: Single-Task OS and Application

11

the applications program. This increases the productivity of the applications
programmer by lessening the amount of code to be written. It also renders the
applications program platform hardware-independent (because it doesn’t com-
municate directly with the devices).

Direct IO Access

In order to achieve better performance, many applications programs access IO
ports directly (rather than going through the OS services). As a side-effect, this
renders the program much more platform design-dependent. In addition, the
OS is left outside the loop, so it doesn’t always "know" the current state of an IO
device. In a single-task OS environment this usually will not cause problems
because the OS only starts one applications program at a time and lets it run to
completion before starting another. Because each applications program can
manipulate IO ports directly, applications programs (and the OS) cannot make
any assumptions about the current state of an IO device when they begin execu-
tion, but must always initialize all of the device’s IO registers to a known state
during each session.

Applications Program Memory Usage

Because a single-task OS only runs one program at a time, there is no need to
protect applications programs from invading each other’s memory space. As
long as the applications program doesn’t trash itself or the OS that gave birth to
it and that nurtures it, everything should be fine.

Task Initiation, Execution and Termination

Figure 1-1 on page 12 illustrates the application program's dependence on the
OS while it’s executing. The OS loads the task into memory and executes it.
While executing, the task may issue calls to the OS requesting performance of
various functions. Upon completion, the task returns control back to the OS.
The OS then deallocates the memory used by the program and prompts the user
for another program name.

Protected Mode Software Architecture

12

Figure 1-1: Task/OS Relationship

13

2 Definition of
Multitasking

The Previous Chapter

The previous chapter provided a basic definition of the typical single-task OS
and task. Once loaded and started by the OS, a task runs to completion and then
returns control back to the OS. The OS then deallocates its memory and
prompts the user for another program name.

This Chapter

This chapter provides a brief introduction to the concept of multitasking.

The Next Chapter

The next chapter defines the major problems that a multitasking OS must con-
tend with.

Concept

It is incorrect to say that a multitasking OS runs multiple programs (i.e., tasks)
simultaneously. In reality, it loads a task into memory, permits it to run for a
while and then suspends it. It suspends the program by creating a snapshot, or
image, of all of the processor’s registers in memory. In the x86 architecture, the
image is stored in a special segment referred to as a Task State Segment, or TSS.
This is accomplished by performing a series of memory write transactions. In
other words, the exact state of the processor at the point of suspension is saved
in memory.

Having effectively saved a “bookmark” to indicate the point of suspension and
the processor's complete state at that time, the processor then initiates another
task by loading it into memory and jumping to its entry point. Based on some
OS-specific criteria, the OS will at some point make the decision to suspend this

Protected Mode Software Architecture

14

task as well. As before, the state of the processor is saved in memory (in this
task’s TSS) as a “bookmark” for this task.

At some point, the OS makes the decision to resume a previously-suspended
task. This is accomplished by reloading the processor's registers from the previ-
ously-saved register image (i.e., its TSS). This is accomplished by performing a
series of memory read transactions. The processor then uses CS:EIP to fetch the
next instruction, thereby resuming program execution at the point where it had
been suspended earlier.

The criteria that an OS uses in making the decision to suspend a program is spe-
cific to that OS. It may simply use timeslicing—each program is permitted to
execute for a fixed amount of time (e.g., 10ms). At the end of that period of time,
it is suspended and the next task in the queue is started or resumed. The OS
may assign priority levels to programs, thereby permitting a higher priority
program to “preempt” a lower priority program that may currently be running.

An Example—Timeslicing

Prior to starting or resuming execution of a task, the OS would initialize a hard-
ware timer to interrupt program execution after a defined period of time (e.g.,
10ms). It then starts or resumes execution of a task. The task runs for 10ms
unhindered. When the hardware timer expires, it generates an interrupt, caus-
ing the processor to suspend the task and jump to the OS’s task scheduler. The
OS determines which task to run next.

Another Example—Awaiting an Event

Task Issues Call to OS for Disk Read

The applications program calls the OS requesting that a block of data be read
from a disk drive into memory. Once a disk read request is forwarded to the
disk interface, the disk read/write head mechanism must be moved to the tar-
get cylinder. This is a lengthy process typically requiring ten or more millisec-
onds to complete. The disk interface must then wait for the start sector of the
requested block to be presented under the read head. The duration of this delay
is defined by the rotational speed of the disk drive. Once again, this is a lengthy
delay that can be measured in milliseconds. Only then can the data transfer
begin.

Chapter 2: Definition of Multitasking

15

Rather than awaiting the completion of the disk read, the OS would better uti-
lize the machine’s resources by suspending the task that originated the request
and transferring control to another program so work can be accomplished while
the disk operation is in progress.

OS Suspends Task

As described earlier, the processor saves its current state, or register image, in a
special area of memory set aside for this task (the application’s TSS). Once this
series of memory write transactions has completed, the task has been sus-
pended.

OS Initiates Disk Read

The OS issues a disk read command to the fixed disk controller. The disk con-
troller begins seek the heads to the target cylinder.

OS Makes Entry in Event Queue

The OS makes an entry in its event queue. This entry will be used to transfer
control back to the suspended task when the disk interface completes the trans-
fer.

OS Starts or Resumes Another Task

Rather than waiting for the completion of the disk read operation, the OS will
start or resume another task.

Disk-Generated IRQ Causes Jump to OS

When the disk controller (or its associated DMA channel) completes the transfer
of the requested information into system memory, it generates an interrupt
request. This causes the processor to jump to the OS's disk interrupt service rou-
tine. The OS checks the completion status of the disk controller to ensure a good
completion.

Protected Mode Software Architecture

16

Task Queue Checked

The OS then scans the event queue to determine which suspended task is await-
ing this completion notification.

OS Resumes Task

The OS reloads the suspended task’s stored register image (its TSS) into the pro-
cessor’s registers. The processor then examines CS:EIP to determine what mem-
ory address to fetch its next instruction from. The resumed task then processes
the data in memory that was read from the disk.

17

3 Multitasking
Problems

The Previous Chapter

The previous chapter provided a brief introduction to the concept of multitask-
ing.

This Chapter

This chapter defines the major problems that a multitasking OS must contend
with.

The Next Chapter

The processor contains a number of registers, a subset of which contain bits that
control the processor’s operational characteristics. The next chapter introduces
the processor characteristics controlled by each register. In addition, it defines
the state of each of these registers immediately after reset is removed and the
resultant startup operational characteristics of the processor.

OS Protects Territorial Integrity

The multitasking OS provides a method for loading multiple tasks into memory
and permitting each to run for a slice of time. As described in an earlier chapter,
it permits a task to run for a timeslice, suspends it, permits another task to run
for a timeslice, suspends it, etc. If the OS is executing on a fast processor with
fast access to memory, this task switching can be accomplished so quickly that
all of the tasks appear to be executing simultaneously.

While the processor is executing a task, the OS and all of the other dormant
tasks are resident in memory. When each of the tasks (and the OS) were sus-
pended, the processor created a snapshot of the processor's register image in
memory at the moment it was suspended. In the x86 environment, the OS sets

Protected Mode Software Architecture

18

up a separate Task State Segment (TSS) for each task to be used during task
switches. When it’s time to resume execution of a program, the processor can
reload its register set from the task’s TSS and pick up right where it left off.

Stay in Your Own Memory Area

It should be obvious that the currently-executing program utilizes certain areas
of memory. Its program code resides in its code segment(s) within memory.
Some of the data that it acts upon is stored within the processor's registers and
much of it in the areas of memory designated as its data segments. When the
program needs to store the information from a register briefly so that it can use
the register for something else, it typically stores the data in the area of memory
designated as its stack segment.

The currently-executing program is only aware of two entities—itself and the
OS that created it. It is completely unaware of the existence of any other tasks
that are currently suspended. The currently-executing program should only
access its own memory. If permitted to perform memory writes anywhere in
memory, it is entirely probable that it will corrupt the code, stack or data areas
of programs that are currently suspended. Consider what would happen when
the OS resumes execution of a task that had been corrupted while in suspen-
sion. Its program and/or data would have been corrupted, causing it to mal-
function when it begins to run.

The OS must protect suspended tasks (including itself!) from the currently exe-
cuting task. If it doesn't, multitasking will not work.

IO Port Anarchy

Assume that the currently-executing task needs to initiate a disk access. To do
this, it must program the disk controller's IO registers with the information
defining the disk command type (e.g., disk read), the cylinder number, the head
(or surface) number, the start sector number and the number of sectors to be
transferred. This is accomplished by executing a series of OUT instructions that
cause the processor to perform a series of IO write transactions to transfer the
command and associated parameters to the disk controller. Now assume that
the task has programmed some, but not all of, the disk controller's registers
when the task's timeslice expires. The OS suspends the current task and starts or
resumes another task.

Chapter 3: Multitasking Problems

19

The new task, having no knowledge of the suspended tasks, may decide that it
also wants to issue a command to the disk controller. Assume that it does so and
that the operation completes without error. Eventually, the OS suspends this
task and reawakens the other task. This task doesn’t know that it was put to
sleep when it resumes execution at the point of suspension. In other words, it
completes the series of IO writes to transfer the remainder of the request param-
eters to the disk controller. It has no idea that the initial parameters that it sent
to the disk controller (before it was suspended) were overwritten by the other
task while it was asleep. The end result will be that this task’s disk operation
will not occur correctly.

Generally speaking, the system’s IO devices should be considered a pool of
shared resources to be managed by a central entity (the OS). Having one entity
perform all communications with IO devices ensures that there will be no con-
tention for IO devices between multiple tasks.

To accomplish this, the OS should not permit the tasks to talk directly to shared
IO ports. In other words, any attempt to execute an IN or OUT instruction
should cause the processor to trap (jump) to the OS. The OS then communicates
with the IO device for the task.

The OS and/or processor could be configured to permit a task to access certain
IO ports directly, but restrict access to other ports.

Unauthorized Use of OS’s Tools

The OS maintains the integrity of the system. It manages all shared resources
and decides what task will run next and for how long. It should be fairly obvi-
ous that the person in charge must have more authority (greater privileges) than
the other tasks currently resident in memory. It would be ill-conceived to permit
normal tasks to access certain processor control registers, system tables in mem-
ory, etc.

This can be accomplished in two ways: assignment of privilege levels to pro-
grams and assignment of ownership to areas of memory. The Intel x86 proces-
sors utilize both methods. There are four privilege levels:

• Level zero. Greatest amount of privilege. Assigned to the heart, or kernel,
of the OS. It handles the task queues, memory management, etc.

• Level one. Typically assigned to OS services that provide services to the
applications programs and device drivers.

Protected Mode Software Architecture

20

• Level two. Typically assigned to device drivers that the OS uses to commu-
nicate with peripheral devices.

• Level three. Assigned to applications programs.

The applications program operates at the lowest privilege level because its
actions must be restricted. The OS has a very high privilege level so that it can
accomplish its job of managing every aspect of the system. The integrity of the
system would be compromised if an applications program could call highly-
privileged parts of the OS code to accomplish things it shouldn't be able to do.
This implies that the processor must have some way of comparing the privilege
level of the calling program to that of the program being called. To gain entry
into the called program, the calling program's privilege level (CPL, or current
privilege level) must meet or beat the privilege level of the program it is calling.
Intel x86 processors incorporate this feature.

No Interrupts, Please!

An applications program written to run under a single-tasking OS is master of
all it surveys. It can communicate with any IO device, any memory location,
disable interrupt recognition if it doesn't want to be interrupted, etc. In a single
tasking environment, the programmer can disable recognition of interrupts if it
will not adversely affect the operation of this, the only program executing in the
system.

If this same program is run under the management of a multitasking OS, how-
ever, it can cause severe problems. If permitted to execute a CLI (Clear Interrupt
enable) instruction, the processor will no longer recognize interrupt requests
originated by IO devices throughout the system. This means that these devices
may not receive the servicing they require on a timely basis. As a result, they
may suffer from buffer overflow or underflow conditions. This can result in
anything from poor performance of a subsystem to completely flawed opera-
tion (data may be lost due to insufficient temporary buffer space within the sub-
system). It should be noted that an IO device may generate an interrupt request
to signal an event to another program that is currently suspended. The correct
action may be for the processor to recognize the request, perform a task switch
to the other program, service the request, and return to the interrupted task.

To summarize, the processor and the OS should not permit the applications task
to execute the CLI instruction. An attempt to execute a CLI should cause the
processor to trap out to the OS. The OS would then set a bit indicating that this
task prefers not to be interrupted. The EFlags[IF] bit would not really be cleared,
so the processor would still be able to recognize interrupt requests. The OS then

Chapter 3: Multitasking Problems

21

resumes execution of the task. If an interrupt request is detected while this task
is still executing, the processor jumps to a special routine to determine if this
particular interrupt request is deemed important enough to interrupt the cur-
rently executing program. If not, the OS marks this request for subsequent ser-
vicing and resumes the interrupted task. The request is serviced after the
current task has been suspended. If the request is considered important enough
to be serviced immediately, the OS executes the IO device’s interrupt service
routine and then resumes the interrupted task.

BIOS Calls

If an applications program that was originally written to run under a single-
tasking OS needs to communicate with an IO device, it may do this in two fash-
ions. It can communicate with the device directly by executing an IN or an OUT
instruction or it can issue a request to the device’s BIOS routine. The BIOS rou-
tine, in turn, performs the necessary series of INs and OUTs to communicate the
request to the IO device. The concept of trapping INs and OUTs was discussed
earlier.

DOS programs call BIOS routines by executing software interrupt instructions.
An example would be INT 13h to call the disk BIOS routine. In response, the
processor indexes into entry 13h in the interrupt table in memory and jumps to
the start address of the disk BIOS routine indicated in this entry. Since all, or
most, accesses to IO devices should be routed through the multitasking OS, the
processor should trap to the OS whenever an attempt is made by an application
program to execute an INT instruction. The OS can then use the IDT entry num-
ber specified by the INT instruction to determine what BIOS routine the task is
calling. The OS can then execute its own device driver to communicate the
request to the target IO device.

Part Two

Register Set
&

Real Mode

25

4 The Control
Registers

The Previous Chapter

The previous chapter defined the major problems that a multitasking OS must
contend with.

This Chapter

The processor contains a number of registers, a subset of which contain bits that
control the processor’s operational characteristics. This chapter introduces the
processor characteristics controlled by each register. In addition, it defines the
state of each of these registers immediately after reset is removed and the result-
ant startup operational characteristics of the processor.

The Next Chapter

After reset is removed, the processor begins operation in real mode. The next
chapter provides a basic description of processor operation in real mode.

Control Register 0 (CR0)

CR0 Description

Refer to Figure 4-1 on page 28. Table 4-1 on page 26 tracks the evolution of CR0.

Protected Mode Software Architecture

26

Table 4-1: Evolution of CR0

Bit Name Description

[3:0] TS, EM, MP,
PE

The lower half of CR0 (bits [15:0]), also referred to as
the Machine Status Word (MSW) register, was first
implemented in the 286 processor. Only the lower
four bits (bits [3:0]) were implemented, however.

[31] and [4] PG, ET The 386 processor expanded the register to 32 bits
and renamed it Control Register 0 (CR0). Bits [4]
(Extension Type, or ET) and [31] (Paging Enable, or
PE) were added. As stated earlier, the lower half of
the register is still referred to as the MSW register.
The state of ET tells the 386 processor whether the
attached x87 numeric coprocessor is a 287 or a 387
(so it knows which hardware communications proto-
col to use). Additional information on processor/
coprocessor interaction can be found in the Mind-
Share book entitled ISA System Architecture. The state
of PG disables or enables the processor’s paging
capability. A detailed description of paging can be
found in the chapter entitled “Virtual Paging” on
page 219.

[4] ET The 486 processor hardwires bit [4], the Extension
Type bit, to one (because processors beyond the 386
do not support the 287 numeric coprocessor).

[5] NE The 486 processor added bit [5], the Numeric Excep-
tion (NE) bit. The state of this bit tells the processor
the action to take in the event of a floating-point
exception—when cleared (zero), the processor
asserts its FERR# output in the event of a floating-
point error; when set (one), the processor generates
an exception 16d in the event of an error. A detailed
description of this bit can be found in the MindShare
books entitled 80486 System Architecture and Pentium
Processor System Architecture.

Chapter 4: The Control Registers

27

CR0 State after Reset

CR0 contains 60000010h after reset, yielding the following results:

• Paging is disabled (PG = 0).
• The internal cache is disabled (CD and NW =11b).
• The Alignment Check exception is disabled (AM = 0).
• Pages marked read-only can be written to by the OS (WP = 0 and assuming

that paging becomes enabled and the WP bit remains cleared).
• Protected mode is disabled (PE = 0; in other words, the processor is in real

mode).
• The floating-point unit is disabled (MP and EM = 00b).
• No task switch has occurred (TS = 0).

[16] WP The 486 added bit [16], the Write-Protect (WP) bit.
When set, denies the OS permission to write to pages
marked read-only. The 386 processor permitted pro-
grams with privilege levels 0 through 2 (i.e., the OS)
to write to read-only pages.

[18] AM The 486 added bit [18], the Alignment Mask (AM)
bit. When set, the AC (Alignment Check) bit in the
EFlags register controls whether or not an AC excep-
tion is generated when an attempt is made to per-
form a non-aligned memory access. When cleared,
the processor cannot generate AC exceptions (even if
the AC bit in the EFlags register is set). Detailed
descriptions of misaligned transfers can be found in
the MindShare books entitled ISA System Architec-
ture, 80486 System Architecture and Pentium Processor
System Architecture.

[30:29] CD, NW The 486 added bits [30:29], Cache Disable (CD) and
Not Write-through (NW) to control the internal
cache. A detailed discussion of these two bits can be
found in the MindShare books entitled 80486 System
Architecture and Pentium Processor System Architecture
(published by Addison-Wesley).

Table 4-1: Evolution of CR0 (Continued)

Bit Name Description

Protected Mode Software Architecture

28

Control Register 1 (CR1)

CR1 Description

CR1 has not been implemented in any of the x86 processors through the Pen-
tium processor.

CR1 State after Reset

Returns all zeros if read. This has no effect on the processor.Control Register 2
(CR2)

Figure 4-1: Control Register 0 (CR0)

Chapter 4: The Control Registers

29

Control Register 2 (CR2)

CR2 Description

CR2 was first implemented in the 386 and is identical in all x86 processors
through the Pentium processor (see Figure 4-2 on page 29). CR2 is only used if
the processor is in protected mode and paging has been enabled. Assuming that
this is the case, the processor uses CR2 to store the 32-bit linear address that
caused a page fault exception. A detailed description of the paging mechanism
can be found in the chapter entitled “Virtual Paging” on page 219.

CR2 State after Reset

CR2 contains 00000000h after reset. This has no effect on the processor’s opera-
tion.

Control Register 3 (CR3)

CR3 Description

Also referred to as the Page Directory Base Address register, CR3 was first
implemented in the 386 processor and is illustrated in Figure 4-3 on page 30.
However, the PCD and PWT bits were not implemented until the 486 processor.
CR3 has no effect unless the processor is in protected mode with paging enabled
(CR0’s PE and PG bits set).

Figure 4-2: Control Register 2 (CR2)

Protected Mode Software Architecture

30

CR3 contains the 4KB-aligned physical base address of the Page Directory in
memory. The PWT and PCD bits were first implemented in the 486 processor
(because, unlike the 386, it has an internal cache). These two bits define the
cacheability and the cache policy to be used on memory writes (write-back or
write-through) when the processor is reading an entry from or is updating one
of the entries in the page directory.

A detailed description of paging can be found in the chapter entitled “Virtual
Paging” on page 219. A detailed description of caching can be found in the
MindShare books entitled 80486 System Architecture and Pentium Processor Sys-
tem Architecture (published by Addison-Wesley).

CR3 State after Reset

CR3 is cleared after reset.

Control Register 4 (CR4)

CR4 Description

CR4 was first introduced in the initial version of the Pentium processor and was
later included in the newer versions of the 486 processor. The bits in this register
permit certain processor features to be enabled or disabled. The register is pic-
tured in Figure 4-4 on page 34. The feature bits are described in Table 4-2 on
page 31.

Figure 4-3: Control Register 3 (CR3)

Chapter 4: The Control Registers

31

Table 4-2: CR4 Feature Bits

Bit Name Description

[0] VME Bit [0] is the Virtual 8086 Mode Extension enable bit (VME). Intel
has kept the description of this bit under non-disclosure. However,
the author has taken the very small amount of information men-
tioned in the Pentium Family User’s Manual, Volume 3: Architecture
and Programming Manual, and has indulged in hopefully intelligent
speculation regarding this feature bit.
When cleared, the attempted execution of the interrupt-related
instructions (CLI, STI, INT, PUSHF, POPF, and IRET) are handled in
the same manner as the 386 processor. Assume that the processor is
in protected mode, is currently executing a DOS program (8086 pro-
gram), and it attempts to execute one of the instructions just men-
tioned (in other words, an instruction that may alter the state of the
processor’s external interrupt enable flag bit (IF) in the EFlags regis-
ter).
• If the VME bit is cleared, the processor generates an exception

and traps to the Virtual Machine Monitor (VMM) program
when one of these instructions is attempted.

• If the VME bit is set, the processor permits these instructions to
be executed and does not trap to the VMM. Instead of permit-
ting the instruction to alter the state of IF bit, however, a copy of
the bit is altered (the Virtual Interrupt Flag, or VIF, bit). Altering
the VIF bit in the EFlags register does not affect the ability of the
processor to recognize external interrupts.

A detailed discussion of Virtual 8086 mode can be found in the
chapter entitled “Virtual 8086 Mode” on page 265.

Protected Mode Software Architecture

32

[1] PVI Bit [1] is the Protected Mode Virtual Interrupt (PVI) bit. As with
the VME bit, Intel continues to keep the PVI bit under non-disclo-
sure. Once again, the author has indulged in hopefully intelligent
speculation regarding the usage of the PVI bit.
Assume that the processor is in VM86 mode executing an 8086
applications program (i.e., a DOS program at privilege level three)
that attempts to execute an INT instruction (e.g., to call DOS). There
are two possible cases:
• the IOPL field in the EFlags register has been set to a value <

three by the OS. In this case, the attempt to execute the INT
instruction results in the processor switching to the VMM pro-
gram. The VMM program must then determine the action to be
taken (e.g., call MS-DOS, or call the protected mode OS to
accomplish the desired function call).

• the IOPL field has been set to a value of three by the OS. Proces-
sor switches to privilege level zero and executes the protected
mode interrupt handler.

In either case, there is a substantial amount of software overhead
involved in servicing the INT call. If the PVI bit is set and the IOPL
is set to three when the DOS task attempts to execute an INT instruc-
tion, the processor does not switch to privilege level zero. It just
jumps to the indicated interrupt service routine (specified by the
value nn in the INT nn instruction) using the pointer from the entry
in the protected mode interrupt table. This eliminates much of the
software overhead in servicing the interrupt, resulting in better per-
formance.

[2] TSD Bit [2] is the Time Stamp Disable (TSD) bit. Intel has recently
removed the description of some of the Pentium processor’s perfor-
mance monitoring features from non-disclosure, but a discussion of
these features is outside the scope of this book.

[3] DE Bit [3] is the Debug Extensions (DE) bit. When cleared, the proces-
sor’s debug features are compatible with those of the 386 processor.
When the DE bit is set, IO breakpoint capability is enabled. This fea-
ture is described in the MindShare book entitled Pentium Processor
System Architecture (published by Addison-Wesley).

Table 4-2: CR4 Feature Bits (Continued)

Bit Name Description

Chapter 4: The Control Registers

33

[4] PSE Bit [4] is the Page Size Extension (PSE) bit. As with the VME bit,
Intel continues to keep the PSE bit under non-disclosure. Time for
some hopefully intelligent speculation again. When this bit is set,
the OS programmer may designate some pages as 4MB rather than
4KB in size. This capability is described in the chapter entitled “Vir-
tual Paging” on page 219. When the PSE bit is cleared, all pages are
4KB in size.

[6] MCE Bit [6] is the Machine Check Enable (MCE) bit. Exception 18d is the
machine check exception. It is processor-specific whether or not a
processor implements the machine check exception and, if so, the
conditions that cause the exception. On the Pentium processor, the
exception is taken if MCE is set and one of the following conditions
is detected:
• BUSCHK# is asserted by external logic during a processor-initi-

ated bus cycle. This indicates that the bus cycle cannot be com-
pleted for some reason.

• On a read, the processor detects a data parity error, asserts
PERR#, and, in response, external logic asserts PEN# to the pro-
cessor.

In both cases, the Pentium latches the address and the bus cycle (i.e.,
transaction) type into the Machine Check Address and Type regis-
ters, indicates (in the Machine Check Type register) whether the
exception is the result of a bus check or a parity error, and generates
an exception 18d. A more detailed discussion of BUSCHK#, PERR#,
and Machine Check may be found in the MindShare book entitled
Pentium Processor System Architecture.

Table 4-2: CR4 Feature Bits (Continued)

Bit Name Description

Protected Mode Software Architecture

34

CR4 State after Reset
After reset, CR4 is cleared to zero. This has the following effects:

• Virtual 8086 mode extensions are disabled (VME = 0).
• The Protected mode Virtual Interrupt (PVI) feature is disabled.
• The Time Stamp Disable (TSD) bit is cleared.
• Debug Extension bit (DE) is cleared, disabling processor’s ability to monitor

for IO breakpoints.
• The Page Size Extension bit (PSE) is cleared. All pages are 4KB in size.
• Machine Check Enable bit (MCE) is cleared, disabling ability of the proces-

sor to generate the Machine Check exception.

In other words, the processor is backward-compatible with the 386 processor.

Figure 4-4: Control Register 4 (CR4)

Chapter 4: The Control Registers

35

EFlags Register

EFlags Description

A subset of the bits in the Extended Flags register (EFlags) control certain
aspects of the processor’s operation. Table 4-3 on page 35 tracks the evolution of
the EFlags register.

The bits within the EFlags register that control aspects of the processor’s opera-
tion are defined in Table 4-4 on page 35.

Table 4-3: Evoluation of EFlags Register

Processor Description

8088/8086 The lower 16 bits ([15:0]) is referred to as the Flag register and was first
implemented in the 8088/8086 processor. However, those processors
did not implement the IOPL and NT bit fields.

286 The 286 processor added the IOPL and NT bits.

386 The 386 processor extended the 16-bit Flags register into the 32-bit
EFlags register. However, only the RF and VM bits were implemented in
the upper 16-bits of the register.

486 The earlier versions of the 486 processor implemented the AC bit. Later
versions also implement the VIF, VIP, and ID bits.

Pentium The first (and all subsequent) versions of the Pentium processor imple-
ment the VIF, VIP, and ID bits.

Table 4-4: EFlag Register Control Bits

Bit Name Description

8 TF Trap Flag. When set, places the processor in single-step
mode. A debug exception is generated at the completion of
each instruction. When cleared, program execution pro-
ceeds normally.

Protected Mode Software Architecture

36

9 IF Interrupt Flag. When set, the processor recognizes external
interrupt requests detected on its INTR input. When
cleared, requests for service are ignored.

10 DF Direction Flag. When cleared, the processor auto-incre-
ments the address associated with string instructions.
When set, the processor auto-decrements the address.

13:12 IOPL IO Privilege Level. When the processor is operating in pro-
tected mode, the processor cannot successfully execute cer-
tain instructions (IN, INS, OUT, OUTS, CLI, STI) if
the privilege level of the currently-executing program
doesn’t meet or beat the privilege level indicated the IOPL
field. The contents of the IOPL field can only be changed by
a task with the POPF or IRET instruction, but only if the
current task is running at privilege level zero. Likewise, the
state of the IF bit can only be changed by a task that meets
or beats the IOPL value.

14 NT Nested Task. Any interrupt that selects a task gate in the
interrupt descriptor table (IDT) causes a task switch to the
task that services the interrupt. In this case, the processor
sets the NT bit. When the IRET instruction is executed at
the end of the service task, the processor tests the state of
the NT bit. If set, the processor performs a task switch to
switch back to the interrupted task.
Any interrupt that selects an interrupt or a trap gate in the
IDT does not cause a task switch. The processor clears the
NT bit and jumps to the interrupt service routine pointed to
by the selected gate descriptor.

16 RF Resume Flag. Whenever the processor is exiting the debug-
ger to resume a program, the instruction used is the IRETD
instruction. Upon executing this instruction, the processor
sets the RF bit. This prevents the processor from immedi-
ately regenerating the same debug fault that originally
caused the debug interrupt.

Table 4-4: EFlag Register Control Bits (Continued)

Bit Name Description

Chapter 4: The Control Registers

37

17 VM Virtual 8086 Mode. This bit is set whenever a multitasking
OS switches to a VM86 task. The OS ensures that the VM bit
has been set in the EFlags field within the TSS associated
with the VM86 program. The processor copies the register
images (including that of the EFlags register) from the TSS
into the processor’s register set, thereby setting the VM bit.
This places the processor in VM86 mode when the task
starts. When the processor suspends the VM86 task, it saves
the current contents of EFlags in the VM86 task’s TSS and
then copies the EFlags value from the next task’s TSS into
EFlags.

18 AC Alignment Check. When the AM bit in CR0 is set, the AC
(Alignment Check) bit in the EFlags register controls
whether or not an AC exception is generated when an
attempt is made to perform a non-aligned memory access.
When AM is cleared, the processor cannot generate AC
exceptions (even if the AC bit in the EFlags register is set).

19 VIF Virtual Interrupt Flag. It must be noted that this bit is still
under non-disclosure. The following is based on hopefully intelli-
gent speculation. When the VME bit (CR4) is set and a DOS
task is executing in VM86 mode, execution of a CLI or STI
instruction affects the VIF bit rather than the IF bit. In other
words, interrupts are not really disabled by execution of a
CLI. Rather, the VIF bit is affected by the CLI and STI
instructions, instead of the IF bit.

Table 4-4: EFlag Register Control Bits (Continued)

Bit Name Description

Protected Mode Software Architecture

38

EFlags State after Reset

Reset forces the value 00000002h into the EFlags register. As a result, the control
bits in this register are set as indicated in Table 4-5 on page 39.

20 VIP Virtual Interrupt Pending. It must be noted that this bit is still
under non-disclosure. The following is based on hopefully intelli-
gent speculation. If the VME bit (CR4) is set, a DOS task is
executing in VM86 mode, and an interrupt is detected, one
of two cases exists:
• The IF bit is set. In this case, the processor recognizes

the interrupt and jumps to the OS. The OS checks the
state of the VIF bit to determine if the interrupted pro-
gram prefers not to be interrupted. If VIF is set, the OS
executes an interrupt handler to service the interrupt
request now. If VIF is cleared, the OS determines
whether the request is high priority. If not, the OS sets
the VIP bit to record that an outstanding request must
be serviced when the DOS program is suspended. If the
request is considered important by the OS, it jumps to
the appropriate interrupt handler and services the
request immediately.

• The IF bit is cleared. In this case, the processor will not
service the interrupt at this time.

21 ID CPU Identification. Before attempting execution of the
CPUID instruction, the programmer must first determine if
the processor implements the instruction. This is accom-
plished by attempting to change the state of the ID bit. If ID
is hardwired to zero, the processor does not support the
CPUID instruction. If ID is read/writable, CPUID is sup-
ported.

Table 4-4: EFlag Register Control Bits (Continued)

Bit Name Description

Chapter 4: The Control Registers

39

Table 4-5: EFlags State after Reset

Bit Name Description

8 TF Trap Flag cleared, disabling single-step operation.

9 IF Interrupt Flag cleared, disabling external interrupt detection
on the INTR input.

10 DF Direction Flag cleared, causing processor to auto-increment
the address during the execution of string instructions.

13:1
2

IOPL IO Privilege Level set to zero, permitting only programs with
privilege level zero to perform IO operations.

14 NT Nested Task cleared, causing the IRET instruction to work
normally (rather than causing a task switch).

16 RF Resume Flag cleared, enabling Debug fault recognition on
the instruction executed immediately after an IRETD instruc-
tion.

17 VM Virtual 8086 Mode cleared, disabling the processor’s "watch-
dog" logic that monitors the behavior of DOS programs.

18 AC Alignment Check cleared, disabling the generation of the
Alignment Check exception on misaligned transactions.

19 VIF Virtual Interrupt Flag cleared. Has no effect on startup.

20 VIP Virtual Interrupt Pending cleared. Has no effect on startup.

21 ID CPU ID bit cleared. Has no effect on startup.

Protected Mode Software Architecture

40

Interrupt Descriptor Table Register (IDTR)

Background

Whenever a maskable interrupt is detected on the processor’s INTR input while
interrupt recognition is enabled (EFlags IF bit is set), the processor obtains the
interrupt vector from the external interrupt controller and uses it to index into
the IDT. Whenever a software interrupt instruction (INT nn) is executed, the nn
value supplies the vector.

Figure 4-5: The EFlags Register

Chapter 4: The Control Registers

41

In real mode, the IDT consists of a series of 256 four-byte entries, each of which
specifies the start address of the interrupt service routine associated with that
interrupt vector. When the processor obtains the 8-bit interrupt vector, it multi-
plies it by four (four bytes per IDT entry) to identify the start address of the IDT
entry associated with the vector. It then reads the CS:IP value stored in that
entry and jumps to the interrupt service routine entry point.

In protected mode, the IDT consists of a series of up to 256 eight-byte entries,
each of which guards entry to the associated interrupt handler. When the pro-
cessor obtains the 8-bit interrupt vector, it multiplies it by eight (eight bytes per
IDT entry) to identify the start address of the IDT entry associated with the vec-
tor.

Detailed descriptions of interrupt handling can be found in the chapter on inter-
rupts in the MindShare book entitled ISA System Architecture; in the APIC-
related chapters in the MindShare book entitled Pentium Processor System Archi-
tecture; and in the chapter entitled “Interrupt Sources and Handling” on
page 183 of this book.

IDTR Description

The IDTR is pictured in Figure 4-6 on page 42. In both real and protected mode,
it identifies the base address and length of the IDT in memory. This register is
accessible from real mode (using the Load IDT (LIDT) and Store IDT (SIDT)
instructions), permitting the programmer to:

• set up a protected mode IDT anywhere in memory (while still in real mode)
• and then specify its base and size in the IDTR (using the LIDT instruction).

IDTR State after Reset

After reset, IDTR contains a base address of 00000000h and a limit of 03FFh. In
other words, the real mode IDT starts at memory location 00000000h and is 1KB
in length (256 entries of four bytes each). It should be noted that many of Intel’s
486 and Pentium documents state that reset forces the length to FFFFh, rather
than 03FFh. This is incorrect.

Protected Mode Software Architecture

42

Debug Registers

Debug Registers Description

Figure 4-7 on page 43 illustrates the Debug registers. Note that the Debug Mode
Control register was first implemented in the Pentium processor. These registers
permit the processor to monitor for both memory and IO breakpoint conditions
(note that only 486 and Pentium processors that implement the DE bit in CR4
can monitor for IO breakpoints). A detailed description of the Debug registers is
outside the scope of this book.

Debug Registers State after Reset

After reset, DR7, the Debug Control register, contains 00000400h, disabling all
breakpoint monitoring.

Figure 4-6: Interrupt Descriptor Table Register (IDTR)

Chapter 4: The Control Registers

43

Figure 4-7: Debug Registers

45

5 Real Mode
Operation

The Previous Chapter

The previous chapter provided an introduction to the registers that control vari-
ous aspects of the processor’s operation.

This Chapter

This chapter provides an introduction to processor operation in real mode.

The Next Chapter

The next chapter provides a brief introduction to the Intel x86 protected mode
environment and the facilities that it provides to solve the problems associated
with multitasking.

Special Note

This chapter contains a number of references to protected mode operation and
terminology. A detailed description of each is found in subsequent chapters.
They are mentioned in this chapter in the interest of completeness.

286/386/486/Pentium Power-Up State

When the system is first powered up, the reset signal is asserted until the power
supply output voltages have stabilized. Reset prevents the system from per-
forming any actions until the power is stable. In addition, it presets many
devices, including the processor, to a known state so that they always begin
operation in the same manner.

Protected Mode Software Architecture

46

The assertion of reset on power up forces the values indicated in Table 5-1 on
page 46 into the registers listed. This forces the processor to always come up in
real mode with caching, paging and interrupts disabled. When reset is deas-
serted, the processor fetches its first instruction from memory.

Table 5-1: Registers after Reset

Register State After Reset

CS Contains F000h. As a result, the code segment starts at memory
location 000F0000h. Actually, it starts at FFFF0000h (refer to the
section entitled “Initial Memory Reads” on page 48). The invisible
part of the CS register (referred to as the CS cache register) is
loaded with values that define the code segment as having the fol-
lowing characteristics:
• starts at FFFF0000h
• length of 0FFFFh (64KB)
• the segment is present in memory
• read/write segment
• segment has been accessed
A description of the cache registers can be found in the section
entitled “Segment Register—Selects Descriptor Table and Entry”
on page 79.

EIP Contains 0000FFF0h. The first instruction is fetched from location
0000FFF0h in the code segment (see previous table entry) that
starts at memory location FFFF0000h (in other words, location
FFFFFFF0h).

DS, ES, FS, GS All of the data segment registers contain 0000h. The invisible part
of the data segment registers (referred to as cache registers) are
loaded with values that define the segments as having the follow-
ing characteristics:
• start at 00000000h
• length of 0FFFFh (64KB)
• the segment is present in memory
• read/write segment
• segment has been accessed
A description of the cache registers can be found in the section
entitled “Segment Register—Selects Descriptor Table and Entry”
on page 79.

Chapter 5: Real Mode Operation

47

SS The stack segment register contains 0000h. The invisible part of the
stack segment register (referred to as a cache register) is loaded
with values that define the segment as having the following char-
acteristics:
• starts at 00000000h
• length of 0FFFFh (64KB)
• the segment is present in memory
• read/write segment
• segment has been accessed
• expand-up stack segment
A description of the cache registers can be found in the section
entitled “Segment Register—Selects Descriptor Table and Entry”
on page 79.

CR0 Contains 60000010h. As a result, the processor exhibits the follow-
ing characteristics:
• Real mode
• Floating-point unit disabled
• Do not emulate floating-point unit
• Use DOS-compatible floating-point error reporting (assert

FERR# output)
• OS can write to read-only pages
• Alignment Check exception disabled
• Internal cache disabled
• Paging disabled

EFlags Contains 00000002h. As a result, the processor exhibits the follow-
ing characteristics:
• Single-step disabled
• Recognition of external interrupts (on INTR) disabled
• String instructions auto-increment address
• IOPL set to zero (no effect in real mode)
• Debug fault checking enabled after execution of an IRETD

instruction
• Virtual 8086 mode disabled
• Alignment Checking disabled

CR2 Contains Page Fault Linear Address of 00000000h. No effect in real
mode (because paging disabled).

Table 5-1: Registers after Reset (Continued)

Register State After Reset

Protected Mode Software Architecture

48

Initial Memory Reads
x86 processors always starts up in real mode. All memory addresses are formed
by adding the segment base address to the offset. Since the offset is a 16-bit
value, all segments are restricted to a length of 64KB.

The CS register contains a segment start value of F000h and the EIP register con-
tains an offset of 0000FFF0h. It would seem that the first instruction would be
fetched from memory location 000FFFF0h. On power-up, however, the proces-
sor forms the memory addresses for the initial memory instruction reads differ-
ently than it does during normal real mode operation. The segment portion of
the address is FFFF000h, not 0000F000h. When the IP offset of 0000FFF0h is
added to the segment base address, the result is FFFFFFF0h. This is the address
that the processor drives onto the address bus during the initial memory
instruction read. The address for memory instruction reads is formed in this
way until the programmer loads any value into the CS register (even if it’s the
same value that it already contains)—in other words, until a far jump (or call) is
executed. Very typically, the first instruction found at the power-on restart
address (FFFFFFF0h) is a far jump to the start of the system's power-on self-test
(POST) program in ROM. The value loaded into the CS register becomes the 20-
bit base address of the code segment. The upper 12 bits of the base address are
always zero. From that point forward, the processor is only capable of address-
ing the first megabyte of memory space.

CR3 Contains Page Directory start address of 00000000h and page
directory caching policy set to enabled and write-back. No effect
(because paging disabled).

CR4 Contains 00000000h. Processor extensions disabled. No effect in
real mode.

ESP Contains 00000000h. Top-of-stack is set to memory location zero
(same as base).

Caches Invalidated. All memory reads and writes access external memory.

Debug DR7 contains 00000400h, disabling breakpoint recognition logic.

IDTR IDT base set to 00000000h with a size of 03FFh (256 entries, four
bytes each).

Table 5-1: Registers after Reset (Continued)

Register State After Reset

Chapter 5: Real Mode Operation

49

IO Port Addressing

The x86 processor family is restricted to a 64K range of IO addresses from 0000h
through FFFFh. The programmer uses one of two instruction forms to identify
the target IO location of a read or write operation. If the IO address is within the
range from 0000h through 00FFh, the following form may be used:

IN AL, nn ;read data from IO port 00nnh into AL

MOV AL, xx ;set up data in AL
OUT nn, AL ;write data in AL to IO port 00nnh

where nn equals the target IO address. When the IO address is within the range
from 0100h through FFFFh, the following form must be used:

MOV DX, nnnn ;set up the IO address in DX
IN AL, DX ;read data from address in DX into AL

MOV DX, nnnn ;set up the IO address in DX
MOV AL, xx ;set up the data in AL
OUT DX, AL ;write data from AL to IO port in DX

The IO address specified directly (as in the first form) or indirectly in DX (as in
the second form) is used by the processor’s bus unit when it starts the IO trans-
action and drives the IO address out onto the address bus (on A[15:0]; A[31:0]
are set to zero).

Memory Addressing

General

The 8088/8086/286 processors contain a set of four segment registers—CS, DS,
ES, and SS. The 386/486/Pentium processors contain a set of six segment regis-
ters—CS, DS, ES, FS, GS, and SS. In real mode, the programmer uses these regis-
ters to specify the start address of up to six different areas of memory space to
be utilized by the currently-running program as data, code and stack areas. Fig-
ure 5-1 on page 50 illustrates the segment registers.

Protected Mode Software Architecture

50

Each of the segment registers is only 16 bits in size. When the programmer loads
a value into one of these registers in real mode, the processor automatically
appends a least-significant digit (consisting of four bits of all zeros) to the lower
end of the value contained in the segment register. As an example, if the follow-
ing code is executed:

MOV AX, 1000
MOV DS, AX

the value 1000h is moved into the DS register and the processor appends a zero
digit to the low end of the value, yielding a data segment start address of
10000h. The use of the six segment registers is defined in Table 5-2 on page 50.

Figure 5-1: Segment Registers

Table 5-2: Segment Register Usage in Real Mode

Segment
Register

Usage

CS The Code Segment register indicates the start address in memory of
the currently running program. It is loaded by performing a far jump
or far call instruction.

SS The Stack Segment register points to the start address of the area of
memory used by the programmer and the processor to temporarily
store data. It is loaded using a MOV or LSS instruction.

DS The Data Segment register points to the start address of an area of
memory that holds the data that the currently running program acts
upon. It is loaded using a MOV or LDS instruction.

Chapter 5: Real Mode Operation

51

Accessing the Code Segment

The Code Segment (CS) and Instruction Pointer (IP) registers comprise a regis-
ter pair. Together, they indicate the memory location the next instruction is to be
fetched from. This is their only purpose. Figure 5-2 on page 51 illustrates the 16-
bit IP register.

A far jump instruction tells the processor to fetch its next instruction from a
location (offset) within a specific area of memory (the code segment). As an
example, the following instruction,

JMP 2000:0005

tells the processor to fetch its next instruction from location five in the code seg-
ment that starts at memory location 20000h. In order to execute this instruction,
the processor loads the segment start address, 2000h, into the CS register and

ES The Extra Data Segment register points to the start address of an area
of memory that holds additional data that the currently running pro-
gram acts upon. It is loaded using a MOV or LES instruction.

FS The F Data Segment register points to the start address of an area of
memory that holds additional data that the currently running program
acts upon. It is loaded using a MOV or LFS instruction.

GS The G Data Segment register points to the start address of an area of
memory that holds additional data that the currently running program
acts upon. It is loaded using a MOV or LGS instruction.

Figure 5-2: IP Register

Table 5-2: Segment Register Usage in Real Mode (Continued)

Segment
Register

Usage

015

Protected Mode Software Architecture

52

the offset within the segment into the IP register. It appends the trailing zero
(0000b) to the start address in the CS register and adds the offset to it, yielding
the physical memory address of 20005h. This process is illustrated below:

CS value:20000h
IP value: 0005h

20005h

The processor performs a read from this memory location to fetch the instruc-
tion that resides there. The instruction is then decoded and executed.

Unlike the far jump or far call, a near jump or call instruction only specifies an
offset within the current code segment. As an example,

JMP 0009

instructs the processor to jump to location nine in the current code segment. The
processor places the value 0009h into the IP register. If it is assumed that the CS
register currently contains the value 2000h, the processor will fetch the next
instruction from location 20009h.

Jumps and calls are two of the instructions that alter program flow. Each time
that an instruction is fetched from memory, the processor automatically incre-
ments the IP register to point to the start address of the next instruction in the
current code segment. Consider the following example:

MOV AL, 33
OUT 63, AL
ADD AX, BX
SUB CX, BX
JMP 3400

The first four instructions are not jump instructions and therefore do not load
new values into CS or IP. The processor just auto-increments IP to point to the
start of the next instruction. This is referred to as in-line code fetching. When the
processor fetches the fifth instruction, however, it loads the value 3400h into the
IP register, altering program flow. Because this is only a near jump, the CS regis-
ter isn’t altered.

It should be noted that the IP register is only 16-bits in size. This means that the
greatest offset within the code segment would be FFFFh, or 64KB. The code seg-
ment’s maximum size in real mode is therefore 64KB. This is one of the most
severe limitations imposed by real mode. If a real mode program is greater than
64KB in size, the programmer must break it up into separate 64KB code seg-

Chapter 5: Real Mode Operation

53

ments. Whenever the programmer wishes to transfer execution to an instruction
within another code segment, a far jump must be executed. This causes the start
address of the new code segment to be loaded into the CS register and the new
offset to be loaded into the IP register.

Accessing the Stack Segment

The area of memory designated as the stack is used as “scratch-pad memory”
by the programmer and the processor. Sometimes, the programmer needs to
save a value briefly and retrieve it later. The stack is frequently used for this
purpose. The programmer doesn't need to specify a memory address when
writing to or reading from stack memory. This makes it a very easy method for
temporarily storing information.

The Stack Segment (SS) register points to the start address of the area of mem-
ory to be used as the stack. The Stack Pointer (SP) register provides the offset
portion of the address and points to the exact location in the stack segment
where the last item was stored. At the beginning of a program, the programmer
places the base address of the program's stack segment in the SS register and the
offset of the top of the stack in the SP register. Since the real mode SP register is
only 16-bits in size, the stack cannot be greater than 64KB in size (an offset of
FFFFh). This is a real mode limitation. As data items are stored in the pro-
gram's stack, the stack grows downward (in protected mode, a stack can also be
defined to grow downwards toward location 00000000h from its base address,
but this is atypical) towards the stack segment start address specified in the SS
register. The value placed in the SP register determines the start of (i.e., the top
of) the stack.

Refer to Figure 5-3 on page 55. When the programmer wants to store a value on
the stack, a PUSH instruction is executed. As an example, PUSH AX causes the
contents of the AX register to be written into stack memory where SS:SP are cur-
rently pointing. Assume that the SS register contains 8000h, the SP register con-
tains FFFFh and the stack is empty. Also assume that the AX register currently
contains 1234h and BX contains AA55h. Now consider the following:

1. When the PUSH AX is executed, the processor first decrements the SP by
two (FFFFh - 2 = FFFDh). It then writes the two bytes from AX, 12h and 34h,
into memory starting at 8FFFDh (80000h + FFFDh). AL is stored in memory
location 8FFFDh and AH is stored in 8FFFEh.

2. If BX were now pushed onto the stack (PUSH BX), the SP is again decre-
mented by two and the two bytes from BX (AAh and 55h) are stored in
memory starting at location 8FFFBh.

Protected Mode Software Architecture

54

3. Each time the processor executes a subsequent PUSH operation, it first dec-
rements the SP by two and then stores the data in stack memory.

The stack grows downward in memory from the highest memory location in
the stack (i.e., the top) towards the segment base address specified in SS.

To read data back from the stack, the programmer uses the POP instruction.
When the programmer executes a POP instruction, such as POP BX, the proces-
sor reads two bytes off the stack using the current value in SS:SP to form the
memory address:

1. Continuing the example used earlier, a POP BX causes the processor to read
the two bytes (AAh and 55h) from locations 8FFFBh and 8FFFCh and place
them into the BX register.

2. The processor then increments SP by two, so SS:SP are now pointing at
8000:FFFD.

3. A POP AX causes the processor to read the two bytes (12h and 34h) from
locations 8FFFDh and 8FFFEh and place them into the AX register.

4. The processor then increments SP by two, so SS:SP are now pointing at
8000:FFFF, the top of the stack. The stack is now empty.

As implemented by the x86 processors, the stack is a LIFO (Last In, First Out)
buffer—the last object in is the first out.

If the programmer attempts to pop more data off the stack than was pushed
onto it, the processor generates a special type of interrupt called a stack excep-
tion to indicate that the stack is empty. Conversely, if the programmer pushes
data onto the stack until the entire segment is full and then attempts to push one
more word onto the stack, the processor generates a stack exception.

In addition to the programmer using the stack for temporary storage, the pro-
cessor also uses it. The following are some of the cases where the processor
implicitly uses the stack:

• When an INT instruction is executed, the processor pushes the current CS,
IP and EFlag values onto the stack before jumping to the target interrupt
routine.

• When a hardware interrupt occurs, the processor pushes the current CS, IP
and EFlag values onto the stack before jumping to the target interrupt ser-
vice routine.

• When a software exception occurs, the processor pushes the current CS, IP
and EFlag values onto the stack before jumping to the target exception han-
dler.

Chapter 5: Real Mode Operation

55

• When the processor executes a CALL instruction, it pushes the current IP
(for a near call) or CS:IP (for a far call) values onto the stack before jumping
to the target routine.

Figure 5-3: Stack Segment

00000000

000FFFFF

00080000

8000SS
FFFFSP

0008FFFF

8000:FFFF = 80000 + FFFF = 08FFFF

Protected Mode Software Architecture

56

Accessing DS Data Segment

Data is typically read from and written to the DS data segment using MOV
instructions. The programmer first loads the DS register with the start address
of the data segment in memory. This is accomplished using a MOV or LDS
instruction, but the data must first be moved into another register and then cop-
ied into the DS register:

MOV AX, 4500
MOV DS, AX

The data segment now starts at location 45000h. The data segment pointed to by
the DS register is the default data segment. In this example,

MOV AX, 4500
MOV DS, AX
MOV AX, [0100]

the contents of locations 45100h and 45101h are moved into the AX register. The
offset is enclosed within the brackets and the data segment to be used isn’t
explicitly specified in this instruction. The processor therefore uses the default
data segment, DS, to calculate the physical memory address to be accessed. In
real mode, it is illegal to specify an offset (portion within the brackets) greater
than FFFFh. This means that the data segment is limited to 64KB in length in
real mode. This is one of the drawbacks to real mode.

Accessing ES/FS/GS Data Segments
The following code is used to illustrate the process of accessing data segments
other than DS:

MOV AX, 1000
MOV DS, AX
MOV AX, 2000
MOV ES, AX
MOV AX, 3000
MOV FS, AX
MOV AX, 4000
MOV GS, AX
MOV BL, [0002] ;move from DS data segment
MOV BH, ES:[0002] ;move from ES data segment
MOV CL, FS:[0002] ;move from FS data segment
MOV CH, GS:[0002] ;move from GS data segment

Chapter 5: Real Mode Operation

57

The first memory read moves one byte from location 10002h into the BL register.
The second memory read moves one byte from location 20002h into the BH reg-
ister. The third memory read moves one byte from location 30002h into the CL
register. The fourth memory read moves one byte from memory location 40002h
into the CH register. ES:, FS: and GS: are referred to as segment overrides. They
instruct the processor to use the specified data segment rather than the default
data segment (DS).

In all cases, the offset specified within the brackets may not exceed FFFFh when
in real mode. All segments are therefore restricted to 64KB in size when in real
mode.

An Example

Figure 5-4 on page 58 illustrates the use of the segment registers in real mode.
The figure assumes that the following code has already been executed in real
mode:

0600:0050 JMP F000:0100 ;CS = F000, IP = 0100

F000:0100 MOV AX, D000
MOV DS, AX ;DS = D000
MOV AX, A320
MOV SS, AX ;SS = A320
MOV AX, 7200
MOV ES, AX ;ES = 7200
MOV AX, 3000
MOV FS, AX ;FS = 3000
MOV AX, 1000
MOV GS, AX ;GS = 1000

When the processor executes the far jump instruction fetched from memory
location 0600:0050 (06050h), the code segment register is set to F000h and the IP
register to 0100h. As a result, the processor fetches its next instruction from
memory location 000F0100h. The series of instructions starting at this location
causes the values indicated in the figure to be moved into the stack and data
segment registers. The figure illustrates how the processor then uses the seg-
ment registers to identify the six segments of memory space.

Protected Mode Software Architecture

58

Accessing Extended Memory in Real Mode

It is possible to access a small amount of extended memory (memory above
1MB) while in real mode. Consider the following example:

MOV AX,FFFF ;FFFFh to AX
MOV DS,AX ;transfer FFFFh to DS

Figure 5-4: Example Usage of Segment Registers in Real Mode

Chapter 5: Real Mode Operation

59

MOV AL,[0010];transfer contents of memory
 ;location FFFF:0010 into AL

In order to form the physical memory address to place on the address bus when
executing the third instruction, the processor appends the digit zero on the end
of the DS data segment value (FFFFh) to point to the start address of the data
segment (FFFF0h). It then adds the offset (0010h) to the data segment start
address to create the physical memory address:

DS + 0h= FFFF0h
OFFSET= 0010h

Physical memory address =100000h

The processor then performs a memory read transaction, driving the resultant
physical memory address, 00100000h, onto the address bus. Notice that the 21st
address bit, A[20], is a one. The processor is addressing the first memory loca-
tion of the second megabyte of memory address space. This is extended mem-
ory and the processor is addressing it in real mode!

Now consider this example:

MOV AX,FFFF ;FFFFh to AX
MOV DS,AX ;transfer FFFFh to DS
MOV AL,[FFFF] ;read byte from memory address

;FFFF:FFFF into AL

As before, in order to form the physical memory address to place on the address
bus when executing the third instruction, the processor places a 0h on the end of
the DS data segment value (FFFFh) to point to the start address of the data seg-
ment (000FFFF0h). It then adds the offset (FFFFh) to the data segment start
address to create the physical memory address:

DS + 0h = FFFF0h
OFFSET = FFFFh

Physical memory address = 10FFEFh

The processor then performs a memory read transaction, driving the resultant
physical memory address, 0010FFEFh, onto the address bus. With the value
FFFFh in the segment register and by supplying any offset in the range 0010h
through FFFFh, any extended memory location from 00100000h through
0010FFEFh can be accessed. A total of 65520d extended memory locations can
be accessed while still in real mode.

Protected Mode Software Architecture

60

This method is used by many DOS memory management programs to access
extended memory while remaining in real mode. This memory area is usually
referred to as the High Memory Area (HMA).

Notice that the code fragments shown earlier can be executed on an 8088/8086
processor. The results are different, however, when the code is executed on a
post 8088/8086 processor. If an 8088/8086 processor executes the code, address
bit A[20] will not be high (because the 8088/8086 processors do not implement
address lines above A[19]. Therefore, the 8088/8086 produces an address that is
between 00000000h and 0000FFEFh for the examples shown earlier. This is
called address or segment wraparound. The address space of the segment
wraps around from the highest physical addresses to the lowest physical
addresses.

Some programs written for the 8088/8086 may depend on segment wrap-
around to access data in the low addresses, such as the interrupt table or the
BIOS data area. If these programs are executed on a post-8088/8086 processor,
they do not operate correctly because they aren’t accessing the expected mem-
ory locations. In order for machines based on post-8088/8086 processors to be
compatible with such old code, the processor’s A[20] address output must be
forced to zero to simulate the address generated by the 8088/8086.

Note that address bit A[20] was set to one when a segment value of FFFFh and
offsets larger than 000Fh were used. Therefore, only A[20] needs to be masked.
A[31:21] are not set to one when executing the old code.

This discussion assumes that the system is a PC-compatible and the processor is
a 286 or 386. On the system board, external to the processor, A[20] is connected
to one input of an AND gate. The other input of the AND gate is supplied by a
signal called A20MASK#. The output of the AND gate becomes the A[20]
address bit that is broadcast with the rest of the processor’s address to the sys-
tem. If A20MASK# is asserted (i.e., zero), the AND gate’s output, the system’s
A[20] bit, is zero simulating an address generated by an 8088/8086. In a PC-
compatible machine, the A20MASK# signal comes from the keyboard control-
ler. Alternately, it can also be generated by intercept logic that watches for com-
mands issued to the keyboard controller to raise or lower this line.

The Pentium and 486 processors incorporate the A20 gate into the processor
itself and A20MASK# is an input to the processor.

Chapter 5: Real Mode Operation

61

Big Real Mode

Post-286 processors can address up to 4GB of memory space while in real mode,
so long as they have at least once been switched to protected mode and back to
real mode since the last reset. This is sometimes referred to as big real mode.

As an example, prior to switching back to real mode, the protected mode soft-
ware sets up a segment descriptor table entry (see the chapter entitled “Intro to
Segmentation” on page 77) that describes a segment as starting somewhere
above 1MB and having a length of 64KB. The segment register is then loaded
with a value that selects this descriptor, loading the invisible part of the seg-
ment register with the new start address and length. When the switch is made
back to real mode, as long as the programmer doesn’t load a new value into the
segment register, the previous segment definition holds true. This permits the
programmer to access any location within 64K of the segment’s base address.

Note that the offset is still restricted to a maximum of FFFFh. A GP exception
results when a larger offset is specified.

The 286 lacks this capability (because it cannot be switched from protected to
real mode without resetting the processor, thus setting the contents of the invis-
ible part of the segment register to values restricting the processor to accesses
within the first meg of memory space).

Real Mode Instructions and Registers

Registers Accessible in Real Mode

The registers accessible in real mode include all of the 8088/8086-compatible
registers plus many of the superset registers added by the 386 processor and 387
numeric coprocessor. This includes:

• FS and GS data segment registers
• the debug registers
• the control registers
• the test registers
• Global Descriptor Table register
• the Interrupt Descriptor Table (IDT) register
• the floating-point registers

Protected Mode Software Architecture

62

Registers Inaccessible in Real Mode

The following registers are not accessible in real mode:

• Local Descriptor Table register (LDTR)
• Task register (TR)

Instructions Usable in Real Mode

New instructions that permit access to the FS and GS registers are available and
the programmer may use the FS and GS segment overrides. Programs can use
applications-oriented instructions that were introduced for the 80186, 80188,
80286, 80386, 80486 and Pentium processors. The programmer may use operand
size overrides to access 32-bit variables. The LIDT instruction can be used in real
mode to change the base address of the interrupt table to somewhere other than
the default base at memory location zero. The size of the interrupt table can also
be changed using this instruction. It should be noted that many real mode soft-
ware packages assume that the interrupt table starts at location zero and do
not examine the IDTR to see where it really resides.

Instructions Unusable in Real Mode

The following instructions cause the invalid opcode exception when executed
in real mode:

• Verify Segment for Read (VERR). Tests the indicated segment descriptor’s
access rights byte to determine if the associated memory segment is accessi-
ble at the current privilege level and whether the segment can be read from
without causing an exception.

• Verify Segment for Write (VERW). Tests the indicated segment descrip-
tor’s access rights byte to determine if the associated memory segment is
accessible at the current privilege level and whether the segment can be
written to without causing an exception.

• Load Access Rights (LAR). Loads the specified register with the access
rights byte of the indicated code or data segment descriptor.

• Load Segment Limit (LSL). Loads the specified register with the segment
limit (i.e., its size) from the indicated segment descriptor.

• Load Task Register (LTR). Loads the Task Register with a segment selector
from the specified 16-bit register or from memory.

Chapter 5: Real Mode Operation

63

• Store Task Register (STR). Stores the segment selector currently in the Task
Register into the specified 16-bit register or memory.

• Load Local Descriptor Table Register (LLDT). Loads the Local Descriptor
Table register with a 16-bit selector (supplied from a 16-bit register or mem-
ory) that selects an entry in the Global Descriptor Table (GDT). The indi-
cated GDT entry describes a Local Descriptor Table.

• Store Local Descriptor Table Register (SLDT). Stores the GDT selector cur-
rently in the Local Descriptor Table register into a 16-bit register or memory.

Real Mode Interrupt/Exception Handling

The 8088/8086 processor does not have an IDT register (IDTR), but all of the
post 8088/8086 processors do. By definition, the 8088/8086 processor’s inter-
rupt table always starts at location 00000h and is 03FFh (1KB) in length, while
the location and length of the interrupt table is programmable for all subse-
quent x86 processors. In the subsequent x86 processors, the assertion of reset at
powerup presets the IDTR with an IDT base address of 00000000h and a table
length of 03FFh (1KB; 256 entries of four bytes each). In real mode, the program-
mer can use the LIDT and SIDT instructions to access the IDTR. Refer to the
warning under the heading “Registers Inaccessible in Real Mode” on page 62.

When a software (execution of INT nn instruction) or hardware (the assertion of
the processor’s INTR or NMI input) interrupt, or a software exception occurs in
real mode, the processor takes the following actions:

1. The interrupt vector selects an entry in the IDT. The processor multiplies the
vector by four and adds the result to the IDT base address (00000000h) to
obtain the start memory address of the indicated table entry. It then reads
the new CS and IP values (a total of four bytes) from the table entry, but
does not yet place them into CS and IP.

2. Pushes the current contents of the CS, IP, and EFlags registers onto the
stack. Saving CS and IP acts as a "bookmark" in the interrupted program.
Saving EFlags saves the state of IF bit (and other control bits) at the point of
interruption.

3. Clears the EFlags[IF] bit, disabling recognition of external interrupts.
4. Clears the EFlags[TF] bit, disabling the debug single-step mode (if it had

been enabled).
5. Moves the values obtained from the IDT entry into the CS and IP registers.
6. Resumes program execution using CS:IP. These two registers now point to

the first instruction of the interrupt/exception handler.

Protected Mode Software Architecture

64

The IRET instruction executed at the end of the handler reverses these steps,
returning program execution to the interrupted program with EFlags restored
to its original state.

Software exceptions do not return error codes in real mode (as some do in pro-
tected mode).

If the programmer uses the LIDT instruction to alter the length of the IDT and a
subsequent interrupt vector indexes to an IDT entry beyond the length of the
IDT, a double-fault exception is generated.

Table 5-3 on page 64 identifies the types of exceptions and interrupts that are
recognized by an x86 processor. Exceptions 10, 11, 14, and 17 do not occur in real
mode, but can occur while in VM86 mode.

Table 5-3: Exceptions and Interrupts

Type Vector Exception Source

Implemented in 8088/8086

Divide Error 0 DIV and IDIV instructions.

Single-Step 1 Completion of any instruction while
EFlags[TF} bit set.

NMI 2 Assertion of processor’s NMI input pin.

Breakpoint 3 Execution of INT3 (breakpoint) instruction.

Overflow 4 Execution of INTO with EFlags[OF] bit set.

Implemented in 286 and subsequent processors

Bounds Check 5 Execution of BOUND instruction where index
not within specified array.

Invalid Opcode 6 Attempted execution of reserved opcodes or
improper use of LOCK prefix.

Chapter 5: Real Mode Operation

65

Processor Exten-
sion not Available

7 Occurs when the programmer wants ESC in-
structions to be handled by software (CR0[EM]
is set), or when a WAIT or an ESC instruction
is encountered and the context of the floating-
point unit is different than that of the current
task (EFlags[TS] is set).

Implemented in 386 and subsequent processors

Double Fault 8 Generated when an exception is detected
while the processor is attempting to call the
handler for a prior exception and the two ex-
ceptions cannot be handled serially in a grace-
ful fashion.

Coprocessor seg-
ment overrun abort

9 Only generated by the 386, not by the 486 or
the Pentium (for the same condition, they gen-
erate an exception 13).

Invalid TSS 10d Occurs if an attempt is made to switch to a task
with an invalid TSS (something is wrong with
its contents).

Segment not present 11d Generated in protected mode if the selected
segment descriptor has its Segment Present bit
cleared to zero (indicating that the target seg-
ment is not currently present in memory).

Stack exception 12d Occurs for stack overflow and underflow, and
also when an attempt is made to load SS with
a value that selects a segment descriptor that is
valid except that the segment not present bit is
zero.

Table 5-3: Exceptions and Interrupts (Continued)

Type Vector Exception Source

Protected Mode Software Architecture

66

General Protection
fault

13d All protection violations that do not cause an-
other exception generate this one.

Page fault 14d Occurs when the selected page table or page is
not present in memory, or when the current
task does not have sufficient privilege to access
the target page table or page.

Reserved 15d Reserved.

Floating-point error 16d Occurs if CR0[NE] is set and a floating-point
error is detected.

Implemented in 486 and subsequent processors

Alignment check 17d Occurs if EFlags[AC] and CR0[AM] are set and
an attempt is made to perform a misaligned ac-
cess.

Implemented in Pentium and subsequent processors

Machine check 18d On the Pentium processor, occurs if CR4[ME]
is set and either BUSCHK# or PERR# is sam-
pled asserted during a bus transaction.

Intel Reserved 19-31d Reserved.

Software Interrupts 0-255d Occurs as a result of executing an INT nn in-
struction, where nn is any interrupt vector
from 0 through 255.

Maskable external
hardware interrupts

- System design dependent. In a PC-compatible
platform, the vectors associated with external
hardware interrupts are 8 through 15d (Fh),
and 112d (70h) through 119d (77h).

Table 5-3: Exceptions and Interrupts (Continued)

Type Vector Exception Source

Chapter 5: Real Mode Operation

67

Protection in Real Mode

When operating in real mode, the x86 processor does not provide any mecha-
nism to prevent one program from corrupting other programs or data that cur-
rently reside in memory. In addition, the currently-running program is
permitted to access any IO port directly, rather than going through the OS. For
these and other reasons, it would be very difficult to develop a multitasking OS
that would run under real mode and provide bulletproof protection. Real mode
is intended for use by a single task OS such as DOS. The next chapter describes
the operational characteristics of a typical single-task OS and applications pro-
grams designed to run under its control.

Part Three

Protected Mode

71

6 x86 Protected
Mode Intro

The Previous Chapter

The previous chapter provided an introduction to processor operation in real
mode.

This Chapter

This chapter provides a basic introduction to the concept of protection as imple-
mented in the Intel x86 processors.

The Next Chapter

The next chapter describes the usage of memory segmentation in isolating sus-
pended tasks from the currently-executing task.

General

This chapter provides a brief introduction to the various types of protection
offered in the x86 protected mode environment. The following topics are intro-
duced:

• Memory Protection
• IO Protection
• Privilege Levels
• Virtual Memory Paging
• Virtual 8086 Mode (also referred to as VM86 mode, or VM mode)
• Task Switching
• Interrupt Handling

Protected Mode Software Architecture

72

Each of the topics introduced in this chapter are discussed in detail in subse-
quent chapters.

Memory Protection

Segmentation

Using segmentation, the OS programmer can define multiple areas of memory
that may be accessed by the currently-executing program. In real mode, a seg-
ment has the following characteristics:

• Its start address must be in the first megabyte of memory space.
• The segment length is fixed at 64KB.
• The segment can be read from or written to by any program.

In a multitasking environment, the OS programmer must be able to define the
following characteristics of a segment:

• A start address anywhere in the 4GB memory address space that can be
addressed by the processor.

• A segment length ranging from one byte to 4GB.
• Program privilege level necessary to gain access to this segment of memory.
• Define the segment as read-only, execute-only or read/writable.
• Define the segment as a special segment used only by the OS or as a code or

data segment to be used by a task.
• Whether or not the segment has been accessed since it was created.
• Whether or not the segment of information is currently resident in memory

(it may be out on a mass storage device).

A detailed description of segmentation can be found in the chapters entitled:

• “Intro to Segmentation” on page 77
• “Code Segments” on page 99
• “Data and Stack Segments” on page 125
• “The Flat Model” on page 261

Virtual Memory Paging

When enabled and utilized by the OS, the processor’s paging unit can redirect a
memory access to either:

Chapter 6: x86 Protected Mode Intro

73

• an address in memory other than the address generated by the applications
program, or

• a page of data on a mass storage device.

Two programs may attempt to use the same area of memory. When one of the
programs is active, the paging unit can redirect accesses to one physical area of
memory. When the other program becomes active, the paging unit can alter its
redirection mechanism to redirect memory accesses to an area of physical mem-
ory separate from that used by the first program. This ensures isolated data
areas for the two programs (so they don’t interfere with each other). This pro-
cess is transparent to the applications program.

It is especially useful when the OS is attempting to timeslice (i.e., multitask)
multiple DOS tasks. Each will attempt accesses within the first megabyte of
memory space. Paging can be used to direct each of their memory accesses to
separate 1MB areas (other than the first megabyte). Also refer to the section enti-
tled “Virtual 8086 Mode” on page 74. A detailed description of paging can be
found in the chapter entitled “Virtual Paging” on page 219.

IO Protection

When operating in real mode, any program can execute IO-oriented instruc-
tions and communicate directly with IO devices. For reasons described in the
previous chapter, it is dangerous to permit direct IO by tasks executing in a mul-
titasking environment. To prevent this, the x86 processors implement the IO
privilege level (IOPL). By setting this two-bit field in the EFlags register to the
appropriate privilege level (a value between zero and three), the OS can ensure
that only tasks with a privilege level equal to or greater than that indicated in
the EFlags[IOPL] field are permitted to communicate directly with IO devices.
An IO attempt by a task with a privilege level less than the IOPL results in a
general protection exception. In other words, it's not permitted.

When a DOS task is executing in virtual 8086 (VM86) mode, the IOPL is not
used. Rather, when the OS creates the task, it also creates an IO permission bit
map (in the task’s TSS in memory). Each bit in this map corresponds to one of
the possible 64K IO ports. When the task attempts to access any IO port, the
processor first checks the task's IO permission map to determine if the access is
permitted. A general protection exception is generated if the access is prohib-
ited.

Protected Mode Software Architecture

74

Privilege Levels

As discussed in an earlier chapter, the Intel x86 processors provide four privi-
lege levels when executing in protected mode:

• Level zero is the highest privilege level. Typically, only the OS kernel will
run with privilege level zero. This permits it to perform any operation.

• Level one is next privilege level. It is typically assigned to high-priority
device drivers and OS services. It could also be assigned to debuggers to
protect them from alteration by low-priority device drivers and applica-
tions programs.

• Level two is typically assigned to lower-priority device drivers.
• Level three is the lowest priority and is typically assigned to applications

programs. This prevents them from performing actions that would be inju-
rious to the OS, debuggers, device drivers, or each other.

Virtual 8086 Mode

Because programs written for DOS behave as if they own the entire machine,
x86 processors (starting with the 386) implement a mode known as Virtual 8086
(VM86) Mode. When a task is executed with this processor feature enabled (via
the EFlags[VM] being set to one), the processor enables "watchdog" logic to
monitor the program’s behavior on an instruction-by-instruction basis. When
operating in VM86 mode, the processor traps out to a program referred to as a
Virtual Machine Monitor (VMM) whenever the task attempts to perform an
action inimical to the OS or the other currently-suspended programs. The VMM
emulates the action required by the task in a fashion that is friendly to the OS
and other programs. A detailed description of VM86 mode can be found in the
chapter entitled “Virtual 8086 Mode” on page 265.

Task Switching

The x86 processors provide automated mechanisms to handle the suspension of
one task and the initiation of another. The OS creates a task state segment (TSS)
for each task to be run. In a task’s TSS, the OS programmer defines the follow-
ing characteristics of the task:

• The initial settings of the processor's registers
• The task's IO permission bit map

Chapter 6: x86 Protected Mode Intro

75

• The task's interrupt redirection bit map (feature available on some 486s and
all Pentiums).

The task is launched by telling the processor the start address of its TSS. The
processor then loads its register set from the TSS and begins execution of the
program. When it's time to suspend the task and start or resume another task,
the processor first stores the current state of all of its registers in the TSS of the
task being suspended. It then loads its registers from the TSS associated with
the next task and begins or resumes its execution. A detailed description of task
switching can be found in the chapter entitled “Mechanics of a Task Switch” on
page 157.

Interrupt Handling

In real mode, each entry in the interrupt table is four bytes long and represents
the start address, in segment:offset format, of an interrupt handler. The handler
is typically one of the following:

• a hardware interrupt service routine
• a software error exception handler routine
• a software interrupt handler (called via an INT nn instruction)
• a BIOS routine
• an OS request handler

In real mode, any program can use the INT instruction to call a BIOS routine or
to make a request to the OS.

In protected mode, the OS must restrict entry to some routines that may be
called using the INT nn instruction. In addition, the OS programmer may wish
to handle some interrupts or exceptions by suspending the current task and
switching to another task designed to handle the event (rather than just jump-
ing to an interrupt or exception service routine within the same task).

To accommodate this added level of complexity, the structure of the interrupt
table changes in protected mode. Each entry consists of eight rather than four
bytes. In order to gain entry to a routine through an entry in the interrupt table,
the calling program must have sufficient privilege.

In addition, a task's privilege level must meet or beat the privilege level speci-
fied in the EFlags[IOPL] field in order to successfully execute a CLI or STI
instruction to disable or enable interrupt recognition. When a task is executing
in VM86 mode, it is typically not permitted to execute CLI or STI. Any attempt

Protected Mode Software Architecture

76

to do so causes a trap to the OS which will then emulate the action in a manner
"friendly" to the other elements of the system. For more information, see the sec-
tion entitled “Attempted Execution of CLI Instruction” on page 292.

77

7 Intro to
Segmentation

The Previous Chapter

The previous chapter provided an introduction to x86 protected mode.

This Chapter

This chapter introduces the following concepts:

• segment selector
• segment descriptor tables
• segment descriptor format

The Next Chapter

The next chapter provides a detailed description of code segments.

Special Note

Please note that the terms "program," "procedure," and "routine" are used inter-
changeably throughout the book.

Real Mode Limitations

In real mode, a segment has the following characteristics:

• Its start address must be in the first megabyte of memory space.
• The segment length is fixed at 64KB.
• The segment can read or written by any program.

Protected Mode Software Architecture

78

In order to have the maximum flexibility, the OS must be able to define a pro-
gram’s segments as residing anywhere within the 4GB memory address range.
In real mode, segments may only be defined within the first megabyte of mem-
ory space. They cannot occupy extended memory (i.e., memory above the first
megabyte).

Programs and the data they manipulate frequently occupy more than 64KB of
memory space, but each segment has a fixed length of 64KB in real mode, nei-
ther shorter nor longer. If the OS only requires a very small segment for a pro-
gram’s code, data or stack area, the smallest (and largest size) is 64KB. This can
waste memory space. If the code or data utilized by a particular program is
larger than 64KB, the programmer must set up and jump back and forth
between multiple code segments. This is a very wasteful use of the program-
mer's time and can be difficult to keep track of. It’s one of the major things pro-
grammers dislike about segmentation.

In real mode, a segment can be accessed by any program. This is an invitation
for one program to trash another’s code, data or stack area. In addition, any
program can call any other program. There is no concept of restricting access to
certain programs.

Introduction to Segment Descriptor

In a multitasking environment, the OS programmer must be able to specify the
following characteristics of each segment:

• The task that it belongs to.
• Its start address anywhere in the 4GB memory address range.
• Its length (anywhere from one to 4GB in length).
• How it may be accessed: read-only, execute-only, read/writable.
• The minimum privilege level a program must have to access the segment.
• Whether it's a code or data segment or a special segment that is only used

by the OS.
• Whether the segment of information is currently present in memory or

resides on a mass storage device.

Figure 7-1 on page 79 illustrates the manner in which the processor interprets
the contents of a segment register while operating in real mode. The only thing
it contains is the upper 16 bits of the 20-bit start address of the segment within
the first megabyte of memory space. The processor automatically appends the
lower four bits of the start address and always sets them to zero. As an example,
if the programmer moved the value 1010h into the DS register

Chapter 7: Intro to Segmentation

79

MOV AX, 1010
MOV DS, AX

this would set the start address of the data segment to 10100h.

As stated earlier in this chapter, when in protected mode the OS programmer
must be able to define many more properties of a segment in addition to its start
memory address. It should be obvious that it would not be possible to define all
of these characteristics in the 16-bit segment register.

In protected mode, it requires eight bytes of information to describe all of the
characteristics associated with a particular segment of memory space. The pro-
tected mode OS must provide an eight byte descriptor for each memory seg-
ment to be used by each program (including those used by the OS itself). It
would consume a great deal of processor real estate to keep descriptors for all
segments used by all programs in registers on the processor chip itself. For this
reason, the descriptors are stored in special tables in memory. The next section
provides a description of the descriptor tables.

Segment Register—Selects Descriptor Table and Entry

When a programmer wishes to gain access to an area of memory, the respective
segment register (the CS, SS, or one the data segment registers—DS, ES, FS, or
GS) must be loaded with a 16-bit value. In real mode, the value loaded into the
segment register represents the upper 16 bits of the 20 bit start address of the
segment in memory. In protected mode, the value loaded into a segment regis-
ter is referred to as the segment selector and is interpreted as illustrated in Fig-
ure 7-2 on page 80.

Figure 7-1: Segment Register Contents in Real Mode

Protected Mode Software Architecture

80

• The Requestor Privilege Level (RPL) field is described in the chapters enti-
tled “Code Segments” on page 99 and “Data and Stack Segments” on
page 125.

• Bit [2] (the Table Indicator, or TI bit) of the segment register selects either the
Global Descriptor Table (GDT) or the Local Descriptor Table (LDT). The
descriptor tables are described in the sections following this one.

• The index field is used to select an entry in the indicated table.

Whenever a value is loaded into a segment register in protected mode, the pro-
cessor multiples the index by eight to create the offset into the indicated table
(because there are eight bytes per entry). It then adds this offset to the respective
table's base address (supplied by either the GDT register, GDTR, or the LDT
register, LDTR), yielding the start address of the selected segment descriptor in
the table. The processor then performs a memory read to fetch the 8-byte
descriptor from memory and places it into the invisible part of the specified seg-
ment register (see Figure 7-2 on page 80). The invisible part is referred to as the
segment register's cache register. There is one segment cache register for each of
the six segment registers.

Figure 7-3 on page 81 illustrates the segment register, the global and local
descriptor tables, the GDTR and the LDTR. Note that although there is only one
GDT, there may be more than one LDT.

Figure 7-2: Segment Selector

Segment Base AddressSegment SizeAttributes

Chapter 7: Intro to Segmentation

81

Introduction to Descriptor Tables

Segment Descriptors Reside in Memory

Whenever the programmer attempts to access a new memory segment (by load-
ing a value into the respective segment register), the processor reads the indi-
cated segment descriptor from memory into a special segment descriptor cache
in the processor. From that point forward, the processor has instant access to the
base address, length and other attributes related to that segment.

There are three types of descriptor tables:

Figure 7-3: The Segment Register, GDT and LDTs

TITable Index

Protected Mode Software Architecture

82

• Global Descriptor Table (GDT). Describes segments of memory that are
global to all programs. There is only one GDT.

• Local Descriptor Tables (LDTs). A particular OS may not implement any
LDTS, only one LDT for all tasks, or a separate LDT for each task. Ideally,
the OS should implement a separate LDT for each task. The entries in the
LDT describe segments of memory local to the currently-executing task.

• Interrupt Descriptor Table (IDT). There is only one IDT. The entries in the
IDT describe interrupt and exception handlers and their respective access
rights.

The GDT and LDTs are described in this chapter, while the IDT is described in
the chapter entitled “Interrupt Sources and Handling” on page 183.

Global Descriptor Table (GDT)

Description

There is only one GDT defined in the system at a given instant in time. It is illus-
trated in Figure 7-4 on page 84, and may contain as many as 8192d entries.
Entry zero is not used. There can be five possible types of descriptors in the
GDT:

• One Task State Segment (TSS) descriptor for each task.
• One or more Local Descriptor Table (LDT) descriptors.
• Descriptors for shared code or data/stack segments of memory that may be

accessed by multiple tasks.
• Procedure Call Gates used to control access to programs.
• Task Gates used to switch to other tasks.

TSSs and Task Gates are described in the chapter entitled “Creating a Task” on
page 137. LDTs are described in the section entitled “Local Descriptor Tables
(LDTs)” on page 85. Procedure Call Gates are described in the section entitled
“Calling a Procedure in Current Task” on page 110. Code, data and stack seg-
ments are described in:

• the chapter entitled “Code Segments” on page 99.
• the section entitled “The Data Segments” on page 125.
• the section entitled “Selecting and Accessing Stack Segment” on page 131.

Chapter 7: Intro to Segmentation

83

Setting GDT Base Address and Size

The OS programmer is responsible for creating and maintaining the GDT in
memory. Once created in memory, the programmer must tell the processor the
base address and size of the GDT. This is accomplished using the LGDT (Load
GDT Register) instruction. When executed, six bytes of information are read
from memory starting at the specified memory address and are placed in the
processor’s GTDR register. The GDTR is illustrated in Figure 7-4 on page 84. The
information loaded into the GDTR consists of a 16-bit limit (i.e., size) plus a 32-
bit base address for the table. At a maximum, the table can contain 8192d
(minus one, because entry zero is unused) entries, each eight bytes long, for a
total table length of 64KB.

GDT entry zero is unused for a good reason. This permits the programmer to
place the null value of zero into any of the data segment registers without caus-
ing an exception (e.g., when initializing the register set). This selects entry zero
in the GDT. The processor does not actually access GDT entry zero.

Protected Mode Software Architecture

84

Figure 7-4: Global Descriptor Table (GDT)

Chapter 7: Intro to Segmentation

85

Local Descriptor Tables (LDTs)

Optimally, the OS programmer can define a set of segments for each separate
task. The segments local to, or owned by, a task are defined in the task’s LDT in
memory. The GDT must contain an LDT descriptor for each LDT defined. An
LDT descriptor in the GDT defines an LDT’s base address and size. Figure 7-5
on page 86 illustrates the relationship of the GDT entries to the LDTs.

In order to select an LDT, the programmer must execute the LLDT instruction.
The LLDT instruction loads a 16-bit value into the visible part of the processor’s
LDTR (Local Descriptor Table Register). The visible and invisible parts of the
LDTR are pictured in Figure 7-6 on page 87. The Requestor Privilege Level
(RPL) is discussed in the chapters entitled “Code Segments” on page 99 and
“Data and Stack Segments” on page 125. Table Indicator (TI) = 0 tells the proces-
sor to access the GDT and the index in bits [15:3] tells the processor which of the
8192d entries in the GDT to read. To access the indicated entry, the processor
performs the following series of actions:

1. Since each entry in a descriptor table is eight bytes long, the processor mul-
tiplies the index value by eight to create the proper offset into the GDT.

2. The offset is added to the GDT's base address supplied by the processor's
GDTR to yield the start memory address of the LDT’s descriptor in the
GDT.

3. The processor reads the eight byte descriptor from memory into the invisi-
ble portion of the LDTR.

From this point forward, the processor has immediate on-chip access to the base
address, size and attributes of the task's LDT. Figure 7-7 on page 88 illustrates
the format of a Local Descriptor Table entry in the GDT. Since an LDT is consid-
ered to be an OS segment, the System bit must be set to zero. The remainder of
the fields in the descriptor are defined later in this chapter (in the section enti-
tled “General Segment Descriptor Format” on page 90).

An LDT may contain:

• Code, data and stack segment descriptors for memory segments local to this
task.

• Procedure Call Gates that permit calls to procedures residing in code seg-
ments of a higher privilege level.

• Task Gates that permit the current task to execute another task.

Protected Mode Software Architecture

86

Figure 7-5: The GDT and the LDTs

Chapter 7: Intro to Segmentation

87

Figure 7-6: Local Descriptor Table Register

Protected Mode Software Architecture

88

Figure 7-7: Format of LDT Entry in GDT

Chapter 7: Intro to Segmentation

89

Figure 7-8: LDT Structure

Protected Mode Software Architecture

90

General Segment Descriptor Format

Figure 7-9 on page 95 illustrates the general format of a segment descriptor. A
description of each element of the descriptor can be found in the sections that
follow.

Granularity Bit

The granularity bit tells the processor how to interpret the size (also referred to
as the limit) field in the segment descriptor. G = 0 indicates that the size field
specifies the segment size in bytes. G = 1 indicates that the size is specified in
pages of 4KB each.

The size field is 20 bits wide. This means that, depending on the state of the
granularity bit, the segment’s size may be defined in the range from one to
1048576d bytes (i.e., 1M) or pages in length. 1048576d pages = 4GB.

Segment Base Address Field

The 32-bit base address field is used to specify the segment start address. It can
start at any address from 00000000h through FFFFFFFFh.

Segment Size Field

See “Granularity Bit” on page 90.

Default/Big Bit

The interpretation of this bit depends on whether this is defined as a code or a
data/stack (i.e., data or stack) segment.

Code Segment Descriptor’s Default Bit

In a code segment descriptor, this is defined as the Default size bit. A code seg-
ment is defined as either a 32- or a 16-bit code segment:

Chapter 7: Intro to Segmentation

91

• D = 0 indicates that it is a 16-bit code segment. Unless told otherwise (by
the addition of one or two special instruction prefix bytes), the processor
assumes the following when code from a 16-bit code segment is executed:
• all memory operands are 16 bits in size
• all memory addresses are 16 bits in size

• D = 1 indicates that it is a 32-bit code segment. Unless told otherwise (by
the addition of one or two special instruction prefix bytes), the processor
assumes the following when code from a 32-bit code segment is executed:
• all memory operands are 32 bits in size
• all memory addresses are 32 bits in size.

Programs that execute in real or VM86 mode use 16-bit addresses and 16-bit
operand size by default.

Assume that the processor is executing code from a 32-bit code segment (D=1)
and it fetches an instruction that uses 16-bit operands or addressing. In other
words, the format of the bytes that comprise the instruction are not what the
processor expects when operating in 32-bit mode. Unless the proper overrides
are used (i.e., the address size and/or operand size prefixes), the processor will
treat the instruction as a 32-bit instruction and will either execute it incorrectly
or generate an error. On the other hand, if the proper override(s) are used, this
warns the processor that the instruction that follows uses a different (pre-386)
format and the fields that comprise the instruction are then interpreted cor-
rectly.

The opposite scenario is also true. If the processor is currently-executing code
from a 16-bit code segment (D=0), it expects all instructions to adhere to the 16-
bit instruction format. In the event that an instruction uses 32-bit addresses
and/or data operands, it must be preceded by the appropriate overrides.

To override the processor’s assumptions (address and/or operand size), the
instruction must be preceded by the address size prefix (67h), the operand size
prefix (66h), or both prefixes. When detected by a processor executing code
from a 32-bit code segment (D=1), this instructs the processor to treat this as a
16-bit instruction (in interpreting the fields within the instruction that change
meaning in 32- versus 16-bit mode). Conversely, when detected by a processor
executing code from a 16-bit code segment (D=1), this instructs the processor to
treat this as a 32-bit instruction.

Only post-286 x86 processors can execute 32-bit code segments. The address
size and operand size prefixes were added in the 386 processor to permit it to
execute both 16- and 32-bit code correctly.

Protected Mode Software Architecture

92

Stack Segment Descriptor’s Big Bit

In a stack segment descriptor, this is defined as the Big bit. It defines the size of
the stack pointer (SP) register and the upper bound of an expand-down stack.

• B = 1 indicates that the 32-bit ESP register is used as the stack pointer and
the upper bound of the expand-down stack is FFFFFFFFh.

• B = 0 indicates that the 16-bit SP register is used as a stack pointer and the
upper bound of the expand-down stack is 0000FFFFh.

For a description of both expand-up and expand-down stacks, refer to the sec-
tion entitled “Selecting and Accessing Stack Segment” on page 131.

Segment Type Field

Introduction to Type Field

The four bit segment Type field defines what type of segment is defined by a
descriptor. The state of the descriptor’s System bit qualifies the meaning of the
Type field:

• S = 0 indicates that segment is a special OS System segment and the Type
field defines the type of OS segment. This topic is covered under “System
Bit” on page 96.

• S = 1 indicates that segment is either a code or a data/stack segment. The
Type field defines whether it is a code or a data/stack segment and some of
the segment’s access rights and its access history.

A detailed description of the Type field (for various types of non-system seg-
ments) can be found under the chapters entitled “Code Segments” on page 99,
and “The Data Segments” on page 125. The following description of the Type
field is general in nature and assumes that the System bit = 1 (non-system seg-
ment).

Non-System Segment Types

The segment Type field consists of bits [3:0] of byte five of the descriptor. Bit [3],
the C/D (code or data) bit, defines whether it’s a code or a data/stack segment
(C/D = 0 indicates that it is a data/stack segment, while C/D = 1 indicates that it
is a code segment). Table 7-1 on page 93 and Table 7-2 on page 94 define the
various types of non-system segments. Note that the definition of bits [2:0] is
different for code and data/stack segments.

Chapter 7: Intro to Segmentation

93

Stack segments must be designated as read/write. The subject of expand-up
versus expand-down stacks is covered under the heading “Selecting and
Accessing Stack Segment” on page 131.

The subject of conforming versus non-conforming code segments is covered
under the heading “Conforming and Non-Conforming Code Segments” on
page 108. Code segments that are marked "accessible for instruction fetch and
data reads" may, in addition to instruction fetches, be read using MOV instruc-
tions. This would be necessary if the code segment contains data constants that
would need to be read as data (using MOV instructions).

Table 7-1: Data/Stack Segment Types

Type Field Bits
Description

3 2 1 0

C/D E W A Data/Stack Segment Attributes & Access History

0 0 0 0 Not yet accessed (A=0), read-only (W=0), data seg-
ment (stack segment must be read/writable).

0 0 0 1 Accessed (A=1), read-only (W=0), data segment
(stack segment must be read/writable).

0 0 1 0 Not yet accessed (A=0), read/write (W=1),
expand-up stack (E=0) or data segment.

0 0 1 1 Accessed (A=1), read/write (W=1), expand-up
stack (E=0) or data segment.

0 1 0 0 Not yet accessed (A=0), read-only (W=0), data seg-
ment (stack segment must be read/writable).

0 1 0 1 Accessed (A=1), read-only (W=0), data segment
(stack segment must be read/writable).

0 1 1 0 Not yet accessed (A=0), read/write (W=1),
expand-down stack (E=1) or data segment.

0 1 1 1 Accessed (A=1), read/write (W=1), expand-down
stack (E=1) or data segment.

Protected Mode Software Architecture

94

Table 7-2: Code Segment Types

Type Field Bits
Description

3 2 1 0

C/D C R A Code Segment Attributes & Access History

1 0 0 0 Not yet accessed (A=0), accessible for instruction
fetch only (R=0), non-conforming (C=0).

1 0 0 1 Accessed (A=1), accessible for instruction fetch only
(R=0), non-conforming (C=0).

1 0 1 0 Not yet accessed (A=0), accessible for instruction
fetch and for data reads (R=1), non-conforming
(C=0).

1 0 1 1 Accessed (A=1), accessible for instruction fetch and
for data reads (R=1), non-conforming (C=0).

1 1 0 0 Not yet accessed (A=0), accessible for instruction
fetch only (R=0), conforming (C=1).

1 1 0 1 Accessed (A=1), accessible for instruction fetch only
(R=0), conforming (C=1).

1 1 1 0 Not yet accessed (A=0), accessible for instruction
fetch and data reads (R=1), conforming (C=1).

1 1 1 1 Accessed (A=1), accessible for instruction fetch and
data reads (R=1), conforming (C=1).

Chapter 7: Intro to Segmentation

95

Figure 7-9: General Format of Segment Descriptor

Protected Mode Software Architecture

96

Segment Present Bit

The state of this bit indicates whether the segment of code or data is currently in
memory. P = 1 indicates that the segment of information is present in memory
starting at the base address indicated in this descriptor.

P = 0 indicates that the segment of information is not present in memory. Bytes
zero through four, six, and seven may be used by the OS (e.g., to store a mass
storage address). Byte five is still the attribute byte and defines the privilege
level and segment type.

Descriptor Privilege Level (DPL) Field

This two bit field defines the segment’s privilege level. Generally speaking, the
processor only permits a program to access this segment if the calling program’s
privilege level meets or beats the descriptor’s privilege level. A detailed descrip-
tion of privilege checking can be found in the chapters entitled “Code Seg-
ments” on page 99 and “Data and Stack Segments” on page 125.

System Bit

A segment descriptor with the S = 0 defines a special segment used by the OS.
System segments are defined in detail in later sections of this book. Table 7-3 on
page 96 defines the system segment types.

Table 7-3: Types of System Segments

Type Field
Description

3 2 1 0

0 0 0 0 Reserved.

0 0 0 1 Describes an available 16-bit, 286 TSS (Task State
Segment). May only reside in the GDT.

0 0 1 0 Describes a Local Descriptor Table (LDT). An entry
in the GDT (Global Descriptor Table) would select
this descriptor.

Chapter 7: Intro to Segmentation

97

Available Bit

This bit is not used by the processor and can be used by the OS programmer to
describe an additional segment attribute.

0 0 1 1 Describes a busy 16-bit, 286 TSS. May only reside
in the GDT.

0 1 0 0 16-bit, 286 Call Gate. May reside in either the GDT
or the LDT, but not in the IDT.

0 1 0 1 Task Gate. May reside in GDT, LDT, or IDT.

0 1 1 0 16-bit, 286 Interrupt Gate. May only reside in the
IDT.

0 1 1 1 16-bit, 286 Trap Gate. May only reside in the IDT.

1 0 0 0 Reserved

1 0 0 1 Describes an available 32-bit, post-286 TSS. May
only reside in the GDT.

1 0 1 0 Reserved

1 0 1 1 Describes a busy 32-bit, post-286 TSS. May only
reside in the GDT.

1 1 0 0 32-bit, post-286 Call Gate. May reside in either the
GDT or the LDT, but not in the IDT.

1 1 0 1 Reserved

1 1 1 0 32-bit, post-286 Interrupt Gate. May only reside in
the IDT.

1 1 1 1 32-bit, post-286 Trap Gate. May only reside in the
IDT.

Table 7-3: Types of System Segments (Continued)

Type Field
Description

3 2 1 0

99

8 Code Segments

The Previous Chapter

The previous chapter introduced the following concepts:

• segment selector
• segment descriptor tables
• segment descriptor format

This Chapter

This chapter provides a detailed description of code segments.

The Next Chapter

The next chapter provides a detailed description data and stack segments.

Selecting Code Segment to Execute

In order for it to fetch instructions from an area of memory, the programmer
must inform the processor what code segment the instructions are to be fetched
from. This is accomplished by loading a 16-bit value (a selector) into the Code
Segment (CS) register. In real mode, this value represents the upper 16 bits of
the 20 bit start address of the segment in memory. In protected mode, the value
loaded into a segment register is interpreted as illustrated in Figure 8-1 on page
100.

Any of the following actions loads a value into the CS segment register, causing
the processor to begin fetching instructions from the new code segment in
memory:

Protected Mode Software Architecture

100

• Execution of a far jump instruction. This loads both CS and EIP with new
values.

• Execution of a far call instruction. This loads both CS and EIP with new
values.

• A hardware interrupt or a software exception. In response, the processor
reads values from the interrupt table into the CS and EIP registers.

• Execution of a software interrupt instruction. In response, the processor
reads values from the interrupt table into the CS and EIP registers.

• Initiation of a new task or resumption of a previously-suspended task.
During the task switch, the processor loads all of its registers, including CS
and EIP, with the values from the TSS associated with the new task.

• Execution of a far return instruction. The return address is popped from
the stack and placed in the CS and EIP registers.

• Execution of an interrupt return instruction (IRET). The return address is
popped from the stack and placed in the CS and EIP registers.

Figure 8-1: Segment Selector

Segment Base AddressSegment SizeAttributes

Chapter 8: Code Segments

101

Code Segment Descriptor Format

The value loaded into the visible part of CS (see Figure 8-1 on page 100) identi-
fies:

• the descriptor table that contains the code segment descriptor. TI = 0 if the
entry resides in the GDT, while TI = 1 indicates that the entry resides in the
LDT.

• the entry in the specified descriptor table. The Index field identifies one of
8192d entries in the table.

The processor multiplies the index by eight (eight bytes per entry) to obtain the
offset in the table. A check is performed to ensure that the offset is not beyond
the indicated table’s limit (supplied from the GDTR or LDTR register). An
exception results if it is. The offset is then added to the table base address (sup-
plied from the GDTR or LDTR register) to form the start address of the descrip-
tor in memory.

The processor reads the code segment descriptor from the selected segment
descriptor table and checks to ensure that the currently-executing program has
sufficient privilege to access this code segment. If not, a general protection (GP)
exception is generated. If the privilege test is passed, the processor saves the
descriptor information in its internal code segment cache register (the invisible
part of the CS register).

Figure 8-2 on page 103 and Table 8-1 on page 101 illustrate the format of a code
segment descriptor.

Table 8-1: Code Segment Descriptor Format

Field Value Description

S 1 S = 1 because a code segment is not a special OS seg-
ment.

C/D 1 Code or Data bit = 1, indicating that the descriptor
defines a code segment, rather than a data/stack seg-
ment.

Conforming
bit

0 or 1 Refer to the section entitled “Conforming and Non-
Conforming Code Segments” on page 108 for a
description of conforming versus non-conforming
code segments.

Protected Mode Software Architecture

102

R 0 or 1 If R = 0, only the instruction prefetcher may access this
code segment (in other words, the segment is execute-
only). Any attempt to access the code segment using
MOV instructions causes a GP exception. If R = 1, this
segment may be read by both the instruction
prefetcher and by using MOV instructions. This is nec-
essary if the code segment contains data constants that
must be read during the course of program execution.

Other fields The remaining bit fields in the code segment descrip-
tor are defined in the section entitled “General Seg-
ment Descriptor Format” on page 90.

Table 8-1: Code Segment Descriptor Format (Continued)

Field Value Description

Chapter 8: Code Segments

103

Figure 8-2: Code Segment Descriptor Format

Protected Mode Software Architecture

104

Accessing Code Segment

The processor accesses the code segment whenever it has to fetch an instruction
from memory. Consider the following unconditional near jump instruction:

JMP 0009

The programmer has specified an offset, 0009h, within the current code seg-
ment as the target of this unconditional jump. In response, the processor com-
pares the specified offset to the size, or limit, of the code segment currently in
use to ensure that the programmer isn’t attempting to jump outside the bounds
of the current code segment. The code segment start address, size and attributes
are stored in the processor’s internal CS cache register. If the target location is
within the bounds of the segment, the processor adds the specified offset to the
segment’s base address to yield the memory address of the instruction to be
jumped to. It then fetches the next instruction from that location.

In the following example, the programmer wishes the processor to perform an
unconditional far jump instruction to fetch the next instruction from a location
within a different code segment:

JMP 00D0:0003

Since this is an attempt to access a different code segment, the processor must
first verify that the currently-executing program is permitted to access the loca-
tion in the new code segment. To do this, it must read the new code segment
descriptor from memory and check its descriptor privilege level. The value
00D0h is placed into the CS register and is interpreted as indicated in Figure 8-3
on page 105 (the index field is binarily-weighted). The processor reads the 26th
entry from the GDT (TI = 0 selects the GDT). Figure 8-4 on page 106 illustrates
the example code segment descriptor read from the GDT.

The processor verifies that the new segment is a code segment (System bit = 1,
and C/D = 1) and is present in memory (P = 1). It must also determine if the
currently-executing program is sufficiently privileged to call or jump to the tar-
geted code segment. This subject is covered in the next section. It checks the
specified offset, 0003h, to determine if it exceeds the limit (size) of the code seg-
ment (the segment size is 126525d bytes (Granularity bit = 0, indicating that the
size is specified in bytes, not pages). If all tests are passed, it loads the new seg-
ment descriptor into its on-chip code segment cache register, adds the specified
offset to the new code segment’s base address (00131BCCh) and fetches the next
instruction from the target address—00131BCFh.

Chapter 8: Code Segments

105

Figure 8-3: Example Value in CS Register

012315

RPLTIIndex

0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

0026

Protected Mode Software Architecture

106

Figure 8-4: Sample Code Segment Descriptor

Chapter 8: Code Segments

107

Privilege Checking

General

The goal of privilege checking is to ensure that the currently-executing program
cannot access areas of memory unless permitted to do so. Any attempt to do so
results in a General Protection (GP) exception.

Some Definitions

Before permitting access to a segment, the processor must verify that the cur-
rently-executing program has sufficient privilege to access the segment. The
three components involved in this comparison are:

• the CPL (current privilege level) of the current program
• the RPL (requestor privilege level) in the segment register
• the DPL (descriptor privilege level) of the target code segment

Definition of a Task

The term "task" is used many times throughout this book. In a multitasking OS,
the OS typically permits the processor to execute each program, or task, for a
fixed period of time (e.g., 10ms). When the currently-executing task’s timeslice
has expired, a hardware timer is typically used to interrupt the task, forcing the
processor to "jump" back to the OS. The OS suspends the current task by taking
a "snapshot" of the processor’s current state (in other words, it makes a com-
plete copy of the processor’s register set). This is referred to as the processor’s
current context, and it is saved in memory in the current task’s TSS (task state
segment). The current context is saved so that the task can be resumed at a later
time at the point of suspension.

The processor determines the next task to be executed (or resumed at its point
of previous suspension) and switches to the new task by reading the contents of
the new task’s TSS into the processor’s register set. It then begins to fetch and
execute from the location pointed to by CS:EIP. The timeslice hardware timer is
initialized with the timeslice for the new task.

A task doesn’t necessarily consist of just one set of code and data segments. At
any time during task execution, the programmer can select a different code seg-

Protected Mode Software Architecture

108

ment and/or data segments (by placing a new 16-bit segment selector value in
the appropriate segment register). A task can consist of a number of programs
and data segments. Examples of tasks would be applications such as Lotus 123,
Word for Windows, etc. We tend to think of each of these as a program, when in
fact each consists of a group of programs that interact with each other to accom-
plish the overall task’s job. The programs that comprise an application may
reside in the same code segment, or may be distributed throughout a number of
code segments in memory.

Definition of a Procedure

The term "procedure" is used a number of times in the book and refers to a pro-
gram, or routine, within the current task.

CPL Definition

Normally, the current privilege level (CPL) is defined as the privilege level of
the code segment (i.e., the DPL) from which instructions are currently being
fetched. This is true unless the program currently executing resides in a con-
forming code segment (C = 1). Conforming and non-conforming code segments
are defined in the section entitled “Conforming and Non-Conforming Code
Segments” on page 108.

DPL Definition

Each code segment descriptor contains a two-bit descriptor privilege level
(DPL) field and a bit (the C bit) that identifies the code segment as either a non-
conforming (C = 0) or a conforming (C = 1) code segment. Together, these two
fields define what privilege level a calling program must have in order to jump
to or call code in the code segment defined by this descriptor.

Conforming and Non-Conforming Code Segments

Non-conforming code segments are far more common than conforming code
segments. The definition of both follow:

• A code segment with C = 0 is a non-conforming code segment. Code in a
non-conforming code segment can only be jumped to or called by programs
whose CPL matches the target code segment’s DPL (i.e., CPL = DPL).

• A code segment with C = 1 is a conforming code segment. Code in a con-
forming code segment can be jumped to or called by programs whose CPL
is less privileged than the segment’s DPL. Furthermore, the processor then
executes the code in the conforming code segment at the same privilege

Chapter 8: Code Segments

109

level as that of the program that called it. In other words, the code in the
conforming code segment "conforms to," or assumes, the privilege level of
the program that called it. The CPL remains the same as that of the calling
program.

As an example, if the CPL of the currently-executing program is two, it may
successfully call or jump to one of the following:

• a non-conforming code segment with a DPL that matches the CPL of the
calling program (in other words, the DPL = 2)

• a conforming code segment with a privilege level of zero or one.

It cannot jump to or call code in the following without causing a GP exception:

• a non-conforming code segment with a DPL that doesn’t match its CPL (in
this case, privilege level two)

• a conforming code segment with a privilege level of two or three.

RPL Definition

The 16-bit value that is placed in the CS register during execution of a far jump
or a far call instruction may have been created either by the program currently
executing, or may have been passed to it by another program as a parameter. It
was Intel’s intention that the RPL portion of this value (bits [1:0]) represent the
privilege level of the program that created the 16-bit value.

When the currently-executing program attempts to execute a far jump or a far
call to another code segment, a privilege check must be performed to determine
whether or not access permission will be granted. The privilege level value that
is compared to the target code segment’s DPL is the lesser-privileged of the CPL
and RPL.

As an example, assume that the currently-executing program’s CPL = 2 and the
CS register is loaded with a 16-bit value wherein the RPL = 3 (because the 16-bit
value was passed to it by a program with a privilege level of three). Also
assume that the target code segment of the jump or call is a non-conforming
code segment with a DPL = 2. The access attempt results in a GP exception
because the RPL (3) is not equal to the DPL (2). RPL, rather than CPL, was used
for the compare because it is the lesser privileged of the two (i.e., privilege level
three, the RPL, is less privileged than privilege level two, the CPL).

Protected Mode Software Architecture

110

Calling a Procedure in Current Task

This section describes how to transfer control to another procedure in the cur-
rently-executing task. Table 8-2 on page 110 is a list of the possible scenarios and
the method to be used.

Call Gate

The Problem

Assume that the OS includes a code segment residing at privilege level zero (the
most privileged level) containing a number of procedures to handle requests
from other programs. Some of the procedures within this code segment should
only be accessible by lower-privileged OS programs residing at privilege levels
one and two. Any attempt to call one of these procedures in this code segment
by a program residing at privilege level three (an applications program) should
be rejected (i.e., should cause a GP exception). Also assume that other proce-

Table 8-2: How to Transfer Control to another Procedure in Current Task

To Jump to or Call Use

Procedure in the same code seg-
ment

The programmer uses a near jump or near call
instruction.

Procedure in another code segment
(assuming that the target code seg-
ment is non-conforming) with the
same privilege level

The programmer uses a far jump or far call
instruction. A Call Gate (described in the next
section) could be used, but isn’t necessary.

Procedure in another code segment
with a higher privilege level

The programmer may use a far jump or far
call instruction if the target code segment is a
conforming code segment. A Call Gate could
be used, but isn’t necessary.

Procedure in another code segment
with a higher privilege level

The programmer must use a far jump or a far
call through a Call Gate if the target code seg-
ment is a non-conforming code segment. The
Call Gate is described in the next section of
this chapter.

Chapter 8: Code Segments

111

dures within the same OS code segment are designed to handle requests from
applications programs (privilege level three).

The problem is that the code segment has one privilege level, zero, which means
that all procedures within this code segment execute at privilege level zero.
Ordinarily, any attempt to transfer control to (i.e., call or jump to) one of these
routines from another privilege level would result in a GP exception. Making it
a conforming code segment isn’t the answer because all procedures within this
code segment could then be successfully called by programs with lower privi-
lege levels.

The Solution—Different Gateways

The solution is to define a separate gateway to control access to each procedure
within the code segment. Each gateway would contain the entry point of its
associated procedure and would limit access to the procedure based on the
privilege level of the caller. It would reject access attempts by programs whose
privilege level don’t match its criteria and permit access attempts by programs
that meet the criteria. These gateways are referred to as Call Gates.

A Call Gate is a special form of OS descriptor and may reside in either the GDT
or LDT. It may not reside within the Interrupt Descriptor Table (IDT). A Call
Gate is used to transfer control to a procedure whose privilege level is equal to
or greater than that of the calling program.

• Only far call instructions can use Call Gates to transfer control to proce-
dures with a higher privilege level than their own.

• Jump instructions can use Call Gates to transfer control to procedures with
either the same privilege level or to a conforming code segment with a
higher privilege level.

A Call Gate descriptor basically contains an indirect pointer to a code segment
and an entry point (i.e., an offset) within it. To access a Call Gate, the program-
mer executes a far call or a far jump instruction, thereby loading a 16-bit value
into the CS register. The CS value identifies the GDT or LDT entry containing
the Call Gate descriptor. The offset portion of the called address is discarded.
The format of a Call Gate descriptor is illustrated in Figure 8-5 on page 113. It
consists of the elements described in Table 8-3 on page 112.

Protected Mode Software Architecture

112

Table 8-3: Call Gate Descriptor Elements

Field Description

P Segment Present bit. 0 = descriptor contents not valid, 1 = contents
valid.

DPL Descriptor Privilege Level.

S S = 0 because a Call Gate is a System segment type.

X 0 = 16-bit Call Gate (formatted as defined for the 286 processor),
while 1 = 32-bit Call Gate (formatted as defined for the post-286
processors). A 16-bit Call Gate descriptor exhibits the following dif-
ferences from a 32-bit Call Gate descriptor:
• Dword count field indicates words rather than dwords.
• X = 0
• Bytes 6 and 7 are reserved (in other words, offset is 16 rather

than 32 bits).

Byte 5, [2:0] Contains 100b. Combined with S = 0, identifies this as a Call Gate
descriptor. Bit [3] of byte 5 further identifies whether this is a 16- or
a 32-bit Call Gate.

Dword Count Tells processor how many dwords to copy from the caller’s stack to
the stack of the called procedure (see section entitled “Automatic
Stack Switch” on page 122).

Selector Identifies the code segment descriptor that contains the base
address of the code segment that the called procedure resides
within.

Offset Identifies the offset of the called procedure within the target code
segment (see previous row).

Chapter 8: Code Segments

113

Figure 8-5: 32-bit Call Gate Descriptor Format

Protected Mode Software Architecture

114

Call Gate Example

Execution Begins

Now assume that the following instruction is executed by an applications pro-
gram (in other words, a program executing at privilege level three):

CALL 0067:0000 ;call a privilege level 0 procedure
;through the Call Gate in entry 12d
;of the currently-executing program’s
;LDT

Before permitting the call to take place, the processor must determine if this is a
far call directly to a code segment or a call through a Call Gate descriptor. To do
this, the processor reads the segment descriptor identified by the segment por-
tion of the target address placed into the CS register. Figure 8-6 on page 114
illustrates the 16-bit value placed into the CS register by the call instruction
(0067h). This selects entry 12d (the index field contains Ch—12d) in the LDT (TI
= 1).

Call Gate Descriptor Read

The descriptor read from entry 12d in the LDT is pictured in Figure 8-7 on page
116. The processor examines the S bit and the segment Type field to determine
the type of descriptor:

• S = 0, indicating that it is a special system segment.
• Type = 1100b, a 32-bit Call Gate descriptor

Figure 8-6: CS Contents During Call through Example Call Gate

012315

RPLTIIndex

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1

3112

Chapter 8: Code Segments

115

Table 8-4 on page 115 provides a breakdown of the Call Gate descriptor’s con-
tents.

Table 8-4: Elements of the Example Call Gate (see Figure 8-7) Descriptor

Field Location Description

P Byte 5, bit 7 P = 1 indicates that the descriptor is valid.

DPL Byte 5, bits
[6:5]

DPL = 11b, or 3. Defines the minimum privilege
level the caller must have to use the gate. In this
case, any program with a privilege level of 3 or
higher (0, 1, or 2) can use the gate without causing
an exception. The value compared to the DPL is
the less-privileged of the caller’s CPL and RPL.
Read the section entitled “The Call Gate Privilege
Check” on page 120 for more information.

S Byte 5, bit 4 S = 0, indicating that this is a special, system seg-
ment (see the next row).

Type Byte 5, bits
[3:0]

S = 0 indicates that this is a special, system seg-
ment, and Type = 1100b indicates that it is a 32-bit
Call Gate (formatted for the post-286 processors).

Dword
Count

Byte 4, bits
[4:0]

Dword Count = 00010b, indicating that 2 dwords
are to be copied from the caller’s stack to the called
procedure’s stack.

Selector Bytes 2 and 3 Selector = 0150h, indicating target code segment’s
descriptor is entry 42d of the GDT. The RPL por-
tion has no significance.

Offset Bytes 0, 1, 6, 7 The offset = 00003400h, indicating that the proce-
dure being called starts at location 00003400h in
the target code segment.

Protected Mode Software Architecture

116

Figure 8-7: Example Call Gate Descriptor

Chapter 8: Code Segments

117

Call Gate Contains Code Segment Selector

Table 8-4 on page 115 and Figure 8-7 on page 116 illustrate the code segment
selector found in the Call Gate descriptor. Figure 8-8 on page 117 shows the
selector divided into its component fields. The descriptor for the code segment
containing the target procedure is in entry 42d of the GDT.

Code Segment Descriptor Read

The processor reads the descriptor from entry 42d in the GDT. The descriptor is
pictured in Figure 8-9 on page 119 and its elements are identified in Table 8-5 on
page 117.

Figure 8-8: Code Segment Selector Specified in Example Call Gate

Table 8-5: Example Code Segment Descriptor

Field Location Description

G Byte 6, bit 7 G = 0 indicates that the 20-bit limit is expressed in
bytes rather than pages.

D Byte 6, bit 6 D = 1 indicates that this is a post-286, 32-bit code seg-
ment.

Avl Byte 6, bit 5 Avl = 0. This is an OS-specific bit and has no meaning
to the processor.

P Byte 5, bit 7 P = 1, indicating that the descriptor is valid and the
code segment is present in memory.

012315

RPLTIIndex

0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

(not used)042

Protected Mode Software Architecture

118

DPL Byte 5, bits
[6:5]

DPL of the code segment is 3 (the lowest privilege
level). See the section entitled “The Call Gate Privi-
lege Check” on page 120 for more information.

S Byte 5, bit 4 S = 1, indicating that this is not a special, system seg-
ment.

D/C Byte 5, bit 3 D/C = 1, indicating that this is a code rather than a
data/stack segment.

C Byte 5, bit 2 C = 0, indicating that this is a non-conforming code
segment. See the section entitled “The Call Gate Priv-
ilege Check” on page 120 for more information.

R Byte 5, bit 1 R = 0, indicating that this is an execute-only code seg-
ment.

A Byte 5, bit 0 A = 1, indicating that the code segment has been
accessed since it was placed in memory.

Base Bytes 2, 3, 4, 7 32-bit base address of code segment = 00131BCCh.

Limit Byte 0, 1, and
bits [3:0] of

byte 6

Segment length = 1EE3Dh (126525d bytes).

Table 8-5: Example Code Segment Descriptor (Continued)

Field Location Description

Chapter 8: Code Segments

119

Figure 8-9: Example Code Segment Descriptor

Protected Mode Software Architecture

120

The Big Picture

Figure 8-10 on page 120 illustrates the overall relationship of the instruction, the
Call Gate, the code segment descriptor and the called procedure.

The Call Gate Privilege Check

Privilege Check for Call through Call Gate

A Call gate may be used to transfer execution to a more privileged code seg-
ment or a code segment with the same privilege level (although it’s not neces-
sary when transferring execution to a code segment with the same privilege
level).

Figure 8-10: Call Gate and CS Descriptors, Code Segment and Called Procedure

Chapter 8: Code Segments

121

When executing a call through a Call Gate, a GP exception is generated unless
both of the following tests are passed:

1. Numerically greater of CPL and RPL ≤ call gate’s DPL. The Call Gate
descriptor’s DPL defines the minimum level of privilege a caller must have
to use the gate. The value compared to the DPL is the lesser-privileged of
the caller’s RPL and CPL.
As an example, a Call Gate descriptor with a DPL of two can be used by
callers with privilege levels of zero, one, or two. Any attempt by a caller
with a privilege level of three results in a GP exception.

2. Destination code segment’s DPL ≤ CPL. The caller’s CPL must be the same
as or less-privileged than the target code segment descriptor’s DPL. In
other words, using the Call Gate, the code segment may be called by any
program that doesn’t have a higher privilege level than the target code seg-
ment’s DPL.
As an example, if the code segment descriptor’s DPL is one, using a Call
Gate, it can be called by programs with a privilege level of one, two, or
three. An attempt by a program with a privilege level of zero to call this
code segment using a Call Gate results in a GP exception.

Privilege Check for Jump through Call Gate

Unlike a call, a jump cannot use a Call Gate to jump to a code segment with a
higher privilege level. The target of the jump may be in either a conforming or a
non-conforming code segment. The following paragraphs define the access
rules for both cases

When executing a jump through a Call Gate to a non-conforming code seg-
ment, a GP exception is generated unless both of the following tests are passed:

1. Numerically greater of CPL and RPL ≤ call gate’s DPL. The Call Gate
descriptor’s DPL defines the minimum level of privilege the program exe-
cuting the jump must have to use the gate. The value compared to the DPL
is the lesser-privileged of the jumper’s RPL and CPL. As an example, a Call
Gate descriptor with a DPL of two can be used by jumpers with privilege
levels of zero, one, or two. Any attempt by a jumper with a privilege level of
three results in a GP exception.

2. Destination code segment’s DPL = CPL. In other words, the program
attempting to jump to the destination code segment must have the same
privilege level as the destination code segment.

When executing a jump through a Call Gate to a conforming code segment, a
GP exception is generated unless both of the following tests are passed:

Protected Mode Software Architecture

122

1. Numerically greater of CPL and RPL ≤ call gate s DPL. The Call Gate
descriptor’s DPL defines the minimum level of privilege a jumper must
have to use the gate. The value compared to the DPL is the lesser-privileged
of the jumper’s RPL and CPL.
As an example, a Call Gate descriptor with a DPL of two can be used by
jumpers with privilege levels of zero, one, or two. Any attempt by a jumper
with a privilege level of three results in a GP exception.

2. Destination code segment s DPL ≤ CPL. The jumper’s CPL must be the
same as or less-privileged than the target code segment descriptor’s DPL. In
other words, using the Call Gate the code segment may be jumped to by
any program that doesn’t have a higher privilege level than the target code
segment’s DPL.
As an example, if the code segment descriptor’s DPL is one, using a Call
Gate it can be jumped to by programs with a privilege level of one, two, or
three. An attempt by a program with a privilege level of zero to jump to this
code segment using a Call Gate results in a GP exception.

Automatic Stack Switch

A call instruction automatically saves a pointer (CS and EIP are stored on the
stack) to the instruction that follows the call instruction and then jumps to the
called procedure. The called procedure executes. The last instruction in the
called procedure should be a RET (Return). Execution of the RET instruction
causes the processor to pop the previously-saved CS:EIP value off the stack,
load it into CS:EIP, and fetch the instruction it points to. This is the instruction
that follows the call instruction. Execution of the caller’s program resumes at
this point.

When calling a procedure that resides at a higher privilege level through a Call
Gate, some additional steps are necessary because of a potential, stack-related
problem. If the called procedure uses the same stack (pointed to by SS:ESP, or
SS:SP) as the caller, the stack may prove to be too small to hold additional val-
ues that the called procedure may push onto the stack. This would cause a stack
overflow exception. The processor addresses this problem by automatically
switching to a new stack of sufficient size to hold CS:EIP (address to return to in
the calling program), SS:ESP (pointer to the calling program’s stack area) and
any parameters that are passed by the caller (on the stack), as well as any local
variables that the called procedure may subsequently need to push onto the
stack.

When a procedure call (to a procedure on a higher privilege level) is made
through a Call Gate, the processor creates a new stack to receive the CS:EIP,

Chapter 8: Code Segments

123

SS:ESP and parameters from the caller. The Task State Segment (TSS) for the
currently-executing task is consulted by the processor to get the stack segment
selector and ESP pointer for the new stack. Figure 8-11 on page 124 illustrates
the format of the TSS. In the example, the call is to a level zero procedure, so the
processor uses SS0 to supply the base address of the new stack and ESP0 to sup-
ply the pointer to the top of its stack. These are loaded into SS:ESP and the
caller’s CS:EIP, parameters (if any), and the caller’s SS:ESP values are copied to
the new stack.

When calling a procedure (that resides at a higher privilege level) through a Call
Gate, the following series of actions are performed in sequence:

1. The program that is about to make the call pushes any parameters onto its
own stack that will be used by the procedure to be called.

2. The call instruction begins execution. The stack of the procedure being
called is checked to ensure that it is large enough to hold the caller’s SS:ESP,
the parameters to be copied from the caller’s stack, and the CS:EIP contents.
A stack exception is generated if it isn’t large enough.

3. The contents of SS:ESP are pushed onto the called procedure’s stack as two,
32-bit values (the upper 16 bits of the value from the 16-bit SS register is
filled with 16 bits of zero to form a 32-bit value).

4. The parameters are copied from the caller’s to the called procedure’s stack.
A value of zero in the DWORD COUNT field of the Call Gate descriptor
indicates that there are no parameters to be copied. In the example Call
Gate descriptor (see Figure 8-7 on page 116), a parameter count of two is
specified, so two doublewords are copied.

5. The contents of CS:EIP (pointer to the instruction after the call instruction)
are pushed onto the called procedure’s stack.

6. The processor then loads the CS cache register with the base address of the
target code segment and EIP with the offset of the called procedure within
the target code segment.

7. The called procedure executes. The parameters (if any) are read from the
new stack and are used.

8. A RET instruction executes at the end of the called procedure, causing the
processor to pop the CS:EIP and SS:ESP pointers off the called program’s
stack, and to adjust the caller’s ESP to deallocate the stack doublewords
used to store the passed parameters (the number of dwords to deallocate
are stated with the RET instruction (e.g., RET 2).

9. The processor uses the restored CS:EIP to resume execution at the instruc-
tion after the call instruction.

Protected Mode Software Architecture

124

Figure 8-11: Task State Segment Format

125

9 Data and Stack
Segments

The Previous Chapter

The previous chapter provided a detailed description of code segments.

This Chapter

This chapter provides a detailed description of data and stack segments.

The Next Chapter

The next chapter discusses the creation of a task. It provides a detailed discus-
sion of the TSS descriptor and the Task State Segment (TSS).

Introduction

Intel considers the stack segment to be a data segment. However, it is treated
separately in this chapter because it is used differently than the average data
segment.

The Data Segments

Selecting and Accessing a Data Segment

The post-286 processors have four data segment registers: DS, ES, FS and GS.
They identify up to four separate data segments (in memory) that are accessed
by the currently-executing program.

Protected Mode Software Architecture

126

To access data within one of the four data segments, the programmer must first
load a 16-bit value into the respective data segment register. In real mode, the
value in the data segment register specifies the upper 16 bits of the 20 bit mem-
ory start address of the data segment. In protected mode, the value selects a seg-
ment descriptor in either the GDT or LDT. Figure 9-1 on page 128 illustrates the
format of a data segment descriptor. The example

MOV AX, 4F36 ;load DS register
MOV DS, AX ;
MOV AL, [0100] ;read from data segment into AL
MOV [2100], AL ;write to data segment from AL

has the following effect. The value 4F36h is moved into the DS data segment
register and is interpreted by the processor as indicated in Figure 9-2 on page
129. The RPL is two. The processor accesses entry 2534d in the LDT to obtain the
data segment descriptor and perform an access rights check. Figure 9-3 on page
130 illustrates the example data segment descriptor fetched from the LDT. The
segment is:

• a data segment (C/D = 0) 31550d bytes in length
• starting at memory location 00083EA0h
• with a DPL of two
• and is read\writable.

Assuming that the privilege check is successful, the eight byte segment descrip-
tor is loaded into the DS register’s invisible cache register on board the proces-
sor.

When the third instruction of the example (MOV AL,[0100])is executed, the
processor performs a limit check to ensure that the specified offset, 0100h,
doesn't exceed the length of the DS data segment. 0100h is compared to the seg-
ment size in the DS cache register. Since 0100h is less than 07B3Eh, the access is
within the segment’s limit. The processor permits the access and the offset,
0100h, is added to the segment base address, 00083EA0h, yielding memory
address 00083FA0h. One byte is read from this location and placed into the pro-
cessor’s AL register. The next MOV instruction involves a memory write into the
DS data segment. Before permitting this, the processor checks the descriptor’s
W bit to ensure that this segment is marked as writable. Another limit check is
performed to ensure that offset 2100h doesn't exceed the segment length. The
offset, 2100h, is then added to the segment's base address, 00083EA0h, yielding
memory address 00085FA0h. The byte in the AL register is written into this
memory location.

Chapter 9: Data and Stack Segments

127

The following code fragment is the same as the previous one except for the fact
that it accesses the GS data segment instead of the DS data segment.

MOV AX, 4F36 ;load GS register
MOV GS, AX ;
MOV AL, GS:[0100] ;read from GS data segment
MOV GS:[2100], AL ;write to GS data segment

Data Segment Privilege Check

The RPL, CPL and DPL are involved in the privilege check. The 16-bit value
loaded into the respective data segment register is accepted if the lesser-privi-
leged of the RPL and CPL has the same privilege level or is more privileged
than the target data segment descriptor’s DPL. Another way of stating it—a
program can only access data in a segment with the same or a lesser privilege
level.

Assuming that the currently-executing program’s RPL and CPL are the same:

• a program with a CPL of zero can access data in a data segment with any
DPL value.

• a program with a CPL of one can access data in data segments with a DPL
of one, two, or three.

• a program with a CPL of two can access data in data segments with a DPL
of two or three.

• a program with a CPL of three can only access data in data segments with a
DPL of three.

Any violation of this criteria results in a GP exception.

Protected Mode Software Architecture

128

Figure 9-1: Data Segment Descriptor Format

Chapter 9: Data and Stack Segments

129

Figure 9-2: Example Value in DS Register

012315

RPLTIIndex

0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0

212534

Protected Mode Software Architecture

130

Figure 9-3: Example Data Segment Descriptor

Chapter 9: Data and Stack Segments

131

Selecting and Accessing Stack Segment

Description

A stack segment is a form of data segment. Its descriptor must identify it as a
read/writable segment so that the processor may perform both pushes (i.e.,
writes to the stack) and pops (i.e., reads from the stack). The descriptor also
describes the stack’s method of growth. Most often, a stack grows downwards
from its upper limit towards its base as items are pushed onto the stack. Intel
refers to this as an expand-up stack (sounds contradictory, doesn’t it). A stack
may also be designated as an expand-down stack, however. A description of the
expand-down stack can be found in the section entitled “Expand-Down Stack”
on page 134. It should be noted that most OSs implement expand-up stacks. The
discussion that follows describes the operation of an expand-up stack.

Assume that the processor is in protected mode and the following series of
instructions is executed:

MOV AX, 02FF ;put 02FFh in SS
MOV SS, AX ;
MOV ESP, 00005FFE ;set stack pointer initial value
PUSH BX ;save BX in stack
MOV BX, [0100] ;read value from memory to BX
ADD CX, BX ;add BX to CX, result in CX
POP BX ;restore original value in BX

The first two instructions set SS to 02FFh. This value is interpreted as illustrated
in Figure 9-4 on page 132. The processor reads the segment descriptor from
entry 95d in the LDT (TI bit = 1, indicating LDT, and the index field contains
95d), performs privilege checking and ensures that the descriptor defines a
read/write data segment (W = 1). The example stack segment descriptor is illus-
trated in Figure 9-5 on page 133, and has the following characteristics:

• The segment is a data/stack segment (System bit = 1 and C/D = 0)
• It can be read and written (W bit = 1)
• SS:ESP register (rather than the 16-bit SP register) is used to access it (B = 1)
• It can be accessed by a program with any privilege level (DPL = 3)
• The TOS (Top of Stack) equals the limit (07B3Eh, or 31550d)
• It is an expand-up stack that grows downward from the (base + limit)

towards its base address (E bit = 0)
• Its base address is 00083EA0h.

Protected Mode Software Architecture

132

When the PUSH instruction is executed, the processor decrements ESP by two
and then writes the contents of the BX register (two bytes) into memory. Before
performing the write, the processor performs a limit check to ensure that the
new ESP value (00005FFEh - 2 = 00005FFCh) doesn’t exceed the size of the stack
specified in the descriptor (00005FFCh is < 00007B3Eh). It also checks to ensure
that decrementing ESP by two doesn’t decrement ESP past 00000000h. If this is
the case, a stack exception is generated. The memory address is formed by add-
ing the current contents of the ESP register (00005FFCh) to the segment's base
address (00083EA0h), yielding memory address 00089E9Ch. The two bytes
from BX are written into memory locations 00089E9Ch and 00089E9Dh. This
example assumed that the code segment’s default operand size is 16-bits (in
other words, the code segment descriptor’s D bit = 0, indicating that this is 16-
bit, 286 code). When this is the case, the stack pointer is decremented by two
during the execution of a PUSH. When executing 32-bit code (D = 1), it is decre-
mented by four.

When the POP instruction is executed, the processor performs a two byte read
from memory starting at the location currently pointed to by ESP + the stack
segment’s base address. The two bytes from memory locations 00089E9Ch and
00089E9Dh are read, with the byte from location 00089E9Ch (the lower loca-
tion) placed in the lower half of BX (BL) and the byte from location 00089E9Dh
placed in its upper half (BH). The processor then increments ESP by two.

Figure 9-4: Example Value in SS Register

012315

RPLTIIndex

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1

3195

Chapter 9: Data and Stack Segments

133

Figure 9-5: Example Stack Segment Descriptor

Protected Mode Software Architecture

134

Expand-Down Stack

Problem

Assume that a programmer pushes a number of parameters onto the stack and
that some of these values are pointers to other values that were pushed onto the
stack. These pointers take the form of the offset from the BOS (bottom of stack).
For example, assume that the value 1234h is pushed into the stack at position
(i.e., offset) 00003000h (ESP = 00003000h) and that the programmer later pushes
a pointer to that value into stack position 00002FF0h. The value 1234h is stored
in the stack at offset 00003000h, while offset 00002FF0h contains the value
00003000h, the pointer to the value 1234h.

Now assume that the stack is approaching full (in other words, it has almost
reached its base address). To make the stack larger, the programmer copies the
current stack onto the top of a larger stack segment. Any pointers stored in the
stack (such as the one at offset 00002FF0h in the older, smaller stack) are now
wrong (because the base address has been changed relative to where the pointer
and the location it points to now reside). The value 1234h now resides at an off-
set other than 00003000h.

The expand-down stack solves the problem.

Description

Most OSs implement expand-up stacks (discussed earlier). However, a stack
segment with E = 1 in its descriptor is defined as an expand-down stack. When
this is the case, the processor views the stack differently. In an expand-up stack,
the lowest and highest stack addresses are defined as follows:

• Lowest address of the stack segment (i.e., the BOS, or bottom of stack) is
equal to the base address specified in its stack segment descriptor.

• highest address of the stack segment (i.e., the TOS, or top of stack) is equal
to base + limit.

In an expand-down stack, the lowest and highest stack addresses are defined as
follows:

• Lowest address of the stack segment (i.e., the BOS, or bottom of stack) =
base + (limit-1). If the result > FFFFFFFFh, wrap around to lower memory.

• Highest address of the stack segment (i.e., the TOS, or top of stack) = base
+ either FFFFh (if B bit = 0) or FFFFFFFFh (if B bit = 1).

Chapter 9: Data and Stack Segments

135

As an example, assume that the stack segment descriptor has the following
characteristics:

• Expand-down (E = 1)
• Big bit (B = 1)
• Limit = FFFh
• Base address = 90000000h

This results in the following TOS and BOS values:

• TOS = base + FFFFFFFFh = 90000000h + FFFFFFFFh = 8FFFFFFFh.
• BOS = base + (limit - 1) = 90000000h + (FFFh - 1) = 90000FFEh.

Stack Segment Privilege Check

The privilege check performed when a value is loaded into the SS register is the
same as that performed for a data segment (see “Data Segment Privilege
Check” on page 127).

137

10 Creating a Task

The Previous Chapter

The previous chapter provided a detailed description of data and stack seg-
ments

This Chapter

This chapter describes how the OS creates and starts a task.

The Next Chapter

The next chapter describes the mechanisms the OS and processor use to switch
from one task to another.

What Is a Task?

Each application consists of one more code segments, as well as a group of data
segments. In the course of executing, the current application must be able to
access one or more code and data segments in memory, as well as one or more
stack areas. All of these elements taken together comprise a task in a multitask-
ing OS environment. Examples would be Word for Windows, Corel Draw, etc.

Basics of Task Creation and Startup

The following sections describe the steps typically taken by the OS when it must
start (or resume) a task.

Protected Mode Software Architecture

138

Load All or Part of Task into Memory

The OS loads all or part of the task (i.e., at a minimum, the startup code for the
task) into memory.

Create TSS for the Task

The OS creates a data structure in memory defining the context of the processor
at the point when it first begins (or resumes) execution of the task. In other
words, the data structure defines an exact image of the information that should
be present in the processor’s register set when the processor initiates (or
resumes) execution of the task. This data structure is referred to as the Task State
Segment (TSS), and the OS must set up a separate TSS for each task.

The OS creates a special TSS segment descriptor in the GDT defining the base
address, length, and DPL of the TSS.

Start Timeslice Timer

A multitasking OS usually permits a task to execute for a predefined period of
time, typically referred to as a timeslice. This is accomplished by starting a hard-
ware timer prior to starting (or resuming) the task. The task is then started and
continues to execute until a hardware interrupt is generated by the timeslice
timer (unless the task is suspended by the OS prior to this for some other rea-
son). This interrupt selects an IDT entry that contains a task gate that points to
the OS’s task scheduler. The task that was executing is suspended (by copying
most of the processor’s registers into the task’s TSS). The new task (i.e., the OS
task scheduler) is restarted by loading the processor’s register set from the new
task’s TSS before resuming program execution.

Unlike many other processors (e.g., the PowerPC processor family), x86 proces-
sors do not incorporate a hardware "timeslice" timer to facilitate the timeslice
approach to multitasking. Instead, the system designer must incorporate a
hardware timer external to the processor. This timer is implemented as an IO
device that can be programmed for the desired interval and then be enabled. It
then initiates the timer and generates a maskable interrupt when the timer has
expired.

Chapter 10: Creating a Task

139

Switch to the Task

The task is started by executing a far jump or a far call that selects the TSS
descriptor in the GDT.

When the processor determines that a TSS descriptor has been selected, it sus-
pends the current task (in this case, the OS) by copying the majority of the pro-
cessor’s registers in the OS’s TSS. It then switches to the new task by loading the
processor’s register set from the new task’s TSS. The processor uses the pointer
placed in CS:EIP (from the new task’s TSS) and begins fetching code from the
new application.

TSS Structure

General

The 286 implemented a different TSS structure than that defined for the post-
286 processors. This is referred to as a 16-bit TSS and is not covered in this book.

The post-286 processors implement the TSS structure illustrated in Figure 10-1
on page 141. This is referred to as a 32-bit TSS. Note that the 386 and the early
486 processors did not implement the Interrupt Redirection Map. This was first
implemented in the Pentium processor and was later migrated to the new ver-
sions of the 486 processor, as well. It is described later in this chapter in the sec-
tion entitled “Interrupt Redirection Bit Map” on page 146.

At a minimum, the TSS must include locations 00h through 67h (104d loca-
tions). This required portion consists of three type of fields:

• Those locations shown as zeros are reserved by Intel and must not be used.
• Dynamic fields are read by the processor whenever the task is started or

resumed and are also updated by the processor whenever the task is sus-
pended (hence the term "dynamic" because these fields change dynamically
during system operation).

• Static fields are read by the processor but are not written to (in other words,
they remain static).

Protected Mode Software Architecture

140

The portion of the TSS that resides above location 67h consists of three areas:

• The OS may utilize the optional area starting at location 68h for OS-specific
data related to the task. The size of this area is OS-specific.

• The interrupt redirection bit map consists of 32 bytes (eight doublewords)
and is only necessary if the OS supports the VM86 mode extensions that are
enabled with the CR4[VME] bit.

• The IO permission bit map can be up to 8KB in size and is necessary if the
OS supports IO protection.

The sections that follow describe each field in the TSS.

Chapter 10: Creating a Task

141

IO Port Access Protection

IO Protection in Real Mode

When the processor is operating in real mode, there isn’t any IO protection. In
other words, any program may execute the x86 processor’s IO instructions at
any time. As stated earlier in the section entitled “IO Port Anarchy” on page 18,
the inability of the OS to restrict the ability of applications programs to talk

Figure 10-1: Task State Segment (TSS) Format

Protected Mode Software Architecture

142

directly to IO ports results in problems when multitasking. When operating in
protected mode, the OS can place restraints on the ability of applications pro-
grams to communicate directly with IO ports. The manner in which this is done
is discussed in the sections that follow.

Definition of IO Privilege Level (IOPL)

When the OS initially sets up the TSS for a task, it sets up the EFlags image in
the task’s TSS. A subset of this image is the EFlags[IOPL] field (see Figure 10-2
on page 143). Whenever a task is started (or resumed), the processor copies the
register images from the task’s TSS into the processor’s register set. Thus, the
processor’s IOPL is automatically set to the value from the TSS whenever the
task is started or resumed.

If the CPL of the currently-executing program is numerically ≤ IOPL (i.e., the
program’s privilege level is the same as or better than the IOPL), the processor
permits the program to execute IOPL-sensitive instructions. The sensitive
instructions are:

• IN. IO read instruction.
• INS. IO string read instruction.
• OUT. IO write instruction.
• OUTS. IO write string instruction.
• CLI. Clear interrupt enable instruction.
• STI. Set interrupt enable instruction.

If CPL > IOPL and the instruction is CLI or STI, a GP exception is generated. If
the instruction is one of the IO instructions, the manner in which the privilege
check is performed differs based on whether the processor is in VM86 mode or
not. The differences are described in the next two sections.

Chapter 10: Creating a Task

143

IO Permission Check in Protected Mode

When the processor is in protected mode but is not in VM86 mode (i.e.,
EFlags[VM] = 0) and attempts to execute an IOPL-sensitive instruction (see
page 142), the privilege check is performed in the following manner:

• If the CPL is numerically ≤ IOPL (i.e., program’s privilege level is the same
as or better than the IOPL), no exception is generated and the IO instruction
is executed.

• If the CPL is numerically > IOPL (i.e., the program’s privilege level is not as
good as the IOPL) and the instruction is one of the IO instructions (IN, OUT,
INS, or OUTS), the processor checks the current task’s IO permission bit
map (in its TSS) to determine if the current application is permitted to

Figure 10-2: The EFlags Register

Protected Mode Software Architecture

144

access the addressed IO port(s). If the bit map indicates that the task is per-
mitted to access the indicated IO port(s), no exception is generated and the
IO instruction is executed. Otherwise, a GP exception is generated.

• If the CPL is numerically > IOPL (i.e., the program’s privilege level is not as
good as the IOPL) and the instruction is either CLI or STI, the processor
generates a GP exception.

The IO permission bit map is described in the section entitled “IO Permission
Bit Map Offset Field” on page 144. For a discussion of memory-mapped IO pro-
tection, refer to the section entitled “Memory-Mapped IO” on page 275.

IO Permission Check in VM86 Mode

When the processor is in protected mode and VM86 mode (i.e., EFlags[VM] = 1)
and attempts to execute an IO instruction (IN, INS, OUT, or OUTS), the privilege
check is performed as follows.

• IOPL is not checked at all.
• The processor checks the current task’s IO permission bit map (in its TSS) to

determine if the current application is permitted to access the addressed IO
port(s). If the bit map indicates that the task is permitted to access the indi-
cated IO port(s), no exception is generated and the IO instruction is exe-
cuted. Otherwise, a GP exception is generated.

The IO permission bit map is described in the next section. A detailed descrip-
tion of VM86 mode can be found in the chapter entitled “Virtual 8086 Mode” on
page 265.

IO Permission Bit Map Offset Field

The two sections entitled “IO Permission Check in Protected Mode” on
page 143 and “IO Permission Check in VM86 Mode” on page 144 referred to the
IO permission bit map in the TSS (pictured in Figure 10-1 on page 141). Imple-
mentation of the IO permission bit map is mandatory under the following cir-
cumstances:

• The bit map is mandatory for any VM86 task that accesses IO-mapped IO
ports.

• The bit map is mandatory for any non-VM86 protected mode task where
the CPL of any part of the task that attempts IO is not as privileged as the
IOPL.

Chapter 10: Creating a Task

145

In both of these cases, the processor interrogates the bit map in the TSS to deter-
mine whether or not to grant access to the addressed IO port(s).

The bit map is optional under the following circumstances:

• The bit map is optional if no code in the task ever attempts to execute an IO
instruction (IN, OUT, INS, or OUTS). In other words, all IO devices are mem-
ory- rather than IO-mapped. This is true both in the case of a VM86 task or a
non-VM86 protected mode task.

• The bit map is optional if no code (within the task) attempts to execute an
IO instruction while executing with a CPL less-privileged than the IOPL
field.

To determine if the current task has permission to access the IO port(s)
addressed by the currently-executing IO instruction, the processor uses the IO
port address to index into the IO permission bit map in the TSS. It checks the
respective permission bit to determine whether or not to permit the access. If
the bit = 0, the access is permitted. If the bit = 1, a GP exception is generated. If
the IO instruction will access multiple locations, the permission bits corre-
sponding to each port are tested.

Locations 66h and 67h of the TSS contain the 16-bit, byte-specific offset of the bit
map start address from the TSS base address. Since the bit map resides at the
end of the TSS, the end of the bit map is delineated by the size of the TSS itself
(specified in the TSS descriptor in the GDT).

In order to designate the permission state for every possible IO port, 64K bits
would be required (one bit for each of the possible 64K IO ports, 0000h through
FFFFh). This would mean that the map would have to be 8KB in length (8KB * 8
bits/byte = 64K bits). In practice, however, the OS programmer only has to
define the permission state for IO port zero through the highest IO port address
the task attempts to access. As an example, if the task only attempts to access
the first 80d IO ports (0000h through 004Fh), the map would be 10 bytes in
length (10 bytes * 8 bits/byte = 80 bits).

IO ports are addressed at byte-specific addresses. In addition, an x86 processor
may address a set of contiguous IO locations when executing an IO instruction.
For example:

IN AL,00h ;reads contents of IO port 0000h
IN AX,00h ;reads contents of IO ports 0000h and 0001h
IN EAX,00h ;reads contents of IO ports 0000h through 0003h

In the preceding three examples, each of the addressed IO ports fall within the

Protected Mode Software Architecture

146

first eight IO port addresses. The permission bits for all of them are therefore
found within the first location (consisting of eight bits) of the bit map. The pro-
cessor would only have to read the bit map’s first location to check the respec-
tive permission bits. The following example

IN AX,07h ;reads contents of IO ports 0007h and 0008h

reads the 8th and 9th IO locations. The permission bit for port 0007h is the last
bit of the bit map’s first location, while the permission bit for port 0008h is the
first bit of the bit map’s second location. Before permitting this IO instruction to
execute, therefore, the processor would have to read the first two locations from
the bit map to check the permission bits related to the addressed ports.

In reality, x86 processors are designed to always read two locations at a time
when checking permission. This presents an interesting situation. Let’s say the
highest IO port that the task is permitted to access is 004Fh. This is the 80th IO
port. The bit map would have to be 10 locations long—a total of 80d bits. Now
assume that the following instruction is attempted:

IN AL, 4Fh ;read contents of IO port 004F

The processor would read the 10th and 11th bit map locations (remember that it
always reads two bit map locations at a time). In other words, its reading one
location beyond the end of the bit map. For this reason, the following must be
true:

• The location immediately after the actual bit map must be present and its
contents must be FFh (i.e., all bits = 1).

• The TSS descriptor’s limit must be set to include this last location.

Interrupt Redirection Bit Map

If VM86 extensions have been enabled by the OS using CR4[VME], the TSS
must include an interrupt redirection bit map (see Figure 10-1 on page 141).
This map must be 256 bits (32 bytes) in length. Each bit corresponds to one of
the 256 interrupt levels. The map's end address (plus one) is specified by the IO
permission bit map base address specifier in the TSS (see “IO Permission Bit
Map Offset Field” on page 144). For additional information, refer to the chapter
entitled“Virtual 8086 Mode” on page 265.

Chapter 10: Creating a Task

147

OS-Specific Data Structures

The OS may use the TSS area between the IO base address field and the start
address of the interrupt redirection bit map to store OS-specific data structures.

Debug Trap Bit (T)

The debug Trap bit (T) resides in bit zero of location 64h in the TSS. A debug
exception occurs whenever a task switch occurs to a task with the T bit set. In
other words, this provides a "breakpoint on task switch" capability.

LDT Selector Field

This 16-bit value is loaded into the processor’s LDTR (LDT register), identifying
the descriptor entry in the GDT that defines the start address and length of the
task’s LDT. This field permits the OS to define a separate LDT for each task,
defining the memory segments that are "local" to the task.

Segment Register Fields

The OS stores the initial values for the data (DS, ES, FS and GS), stack (SS), and
code segment (CS) registers in these TSS locations. When the task is started or
resumed, these values are automatically read into their respective registers,
automatically selecting the code, stack and data segments to be used at task ini-
tiation. When the task is suspended, the contents of the segment registers are
stored here.

General Register Fields

The OS stores the initial values for the EDI, ESI, EAX, EBX, ECX, EDX and EBP
registers in these TSS locations. When the task is started or resumed, these val-
ues are automatically read into the respective processor registers. When the task
is suspended, the contents of the processor’s general registers are stored here.

Protected Mode Software Architecture

148

Extended Stack Pointer (ESP) Register Field

The OS stores the initial value for the extended stack pointer register (ESP) in
this TSS location. When the task is started or resumed, this value is automati-
cally read into the processor’s ESP register. Together with the SS field, the ESP
field tells the processor the base address and top-of-stack. When the task is sus-
pended, the contents of the ESP register is stored here.

Extended Flags (EFlags) Register Field

The OS stores the initial value for the EFlags register in this TSS location. When
the task is started or resumed, this value is automatically read into the proces-
sor’s EFlags register. The EFlags register initial setting tells the processor:

• If interrupt recognition is enabled or disabled.
• If debug single-step interrupts are enabled or disabled.
• The direction to be used during string operations.
• The minimum privilege level at which to permit IO operations.
• If VM86 mode is enabled or disabled.
• If Alignment Checking is enabled or disabled.

When the task is suspended, the contents of the EFlags register is stored here.

Extended Instruction Pointer (EIP) Register Field

The OS stores the initial value for the extended instruction pointer register (EIP)
in this TSS location. When the task is started or resumed, this value is automati-
cally read into the processor's EIP register. Together with the CS field, the EIP
field tells the processor the location to fetch its next instruction from. When the
task is suspended, the contents of the EIP register is stored here.

Control Register 3 (CR3) Field

The OS stores the initial value for CR3 in this TSS location. When the task is
started, this value is automatically read into the CR3 register (pictured in Figure
10-3 on page 149). CR3[31:11] contains the 4KB-aligned base address of the Page
Directory. This permits the OS programmer to have a different Page Directory
for each task (because CR3 is loaded with the task’s page directory base address

Chapter 10: Creating a Task

149

whenever the task is started or resumed). In this way, two tasks that both
attempt to use the same memory space can have their memory accesses
remapped to other areas of memory, isolating them from each other in a manner
that is transparent to the tasks themselves. The chapter entitled “Virtual Pag-
ing” on page 219 provides a detailed discussion of paging. When the task is sus-
pended, the contents of CR3 is stored here.

Privilege Level 0 - 2 Stack Definition Fields
When a program within the current task (i.e., application program) on a less-
privileged level calls a more-privileged program (within the current task), the
processor automatically creates a new stack and copies the following items to
the newly-created stack:

• the pointer to the caller's stack
• the return address
• any parameters placed on the caller’s stack

The following fields in the TSS define where these new stacks are created and
how large they are:

• SS2:ESP2 fields define the base address and top-of-stack when a new stack
must be created for a call to a level two procedure.

• SS1:ESP1 fields define the base address and top-of-stack when a new stack
must be created for a call to a level one procedure.

• SS0:ESP0 fields define the base address and top-of-stack when a new stack
must be created for a call to a level zero procedure.

Figure 10-3: Control Register 3 (CR3)

Protected Mode Software Architecture

150

A more detailed description can be found in the section entitled “Automatic
Stack Switch” on page 122.

Link Field (to Old TSS Selector)
When an interrupt or exception causes a task switch (because it selects a task
gate in the IDT), the processor saves the processor’s current context in the inter-
rupted task's TSS and then switches to the interrupt handler task by loading the
register set from the interrupt servicing task's TSS (pointed to by the Task Gate
descriptor in the IDT). The EFlags[NT] (Nested Task) bit is set to a one. In per-
forming the task switch, the processor stores the 16-bit selector for the inter-
rupted task's TSS in the interrupt servicing task's Link field in its TSS.

At the conclusion of interrupt servicing by the interrupt servicing task, the last
instruction in the interrupt servicing task is an IRET. When executed by the pro-
cessor with EFlags[NT] set, the processor reloads the TR with the Link field’s
contents (the TSS selector for the task that was interrupted). This causes a task
switch back to the interrupted task. Reloading EFlags with its original value
(read from the interrupted task’s TSS) turns off the NT bit.

The same sequence occurs when a far call selects a TSS descriptor in the GDT.
As is the case for an interrupt, the called task must terminate with an IRET
instruction.

A more detailed description can be found in the chapter entitled “Mechanics of
a Task Switch” on page 157.

TSS Descriptor
The TSS descriptor is pictured in Figure 10-4 on page 151. A TSS descriptor may
only reside in the GDT and describes the following characteristics of a task’s
TSS:

• Base address of the TSS.
• Limit (i.e., the size) of the TSS.
• The DPL of the TSS. A far call or a far jump instruction can cause a task

switch if its CPL is at least as privileged as the TSS descriptor’s DPL. The
segment portion of the target address specified by the far call or far jump
selects the entry in the GDT that contains the TSS descriptor.

• Whether the target task is currently busy.

The minimum size of a TSS is one 104 bytes, the size of the TSS main body. If the
TSS limit is set to less than this value, an invalid TSS exception is generated.
Loading a TSS descriptor into a segment register causes a GP exception.

Chapter 10: Creating a Task

151

Figure 10-4: The TSS Descriptor Format

Protected Mode Software Architecture

152

How OS Starts Task

The OS builds an application’s TSS in memory and creates a TSS descriptor in
the GDT that points to the TSS. It can then select the task for initiation by exe-
cuting a far jump or a far call instruction that selects:

• a TSS descriptor in the GDT
• a Call Gate descriptor (that points to a TSS descriptor in the GDT) residing

in either the GDT or LDT
• a Task Gate descriptor residing in either the GDT or LDT

A detailed description of the actions taken in each of these cases can be found in
the chapter entitled “Mechanics of a Task Switch” on page 157.

What Happens When Task Starts

The next chapter fully describes the sequence of actions taken by the processor
when suspending one task and starting or resuming another.

Use of LTR and STR Instructions

General

The processor uses the TR (task register) to determine the base address and
limit of the TSS associated with the current task. The TR is illustrated in Figure
10-5 on page 155.

If the TI bit is set to one, indicating that the target descriptor is in the current
task’s LDT, a GP exception is generated (because TSS descriptors may only
reside in the GDT). Loading a new 16-bit value into the TR causes the processor
to read the TSS descriptor from the GDT entry indicated by the TR index field
into the invisible part of the TR. When initially loaded with a 16-bit value, it
uses that value to select an entry in the GDT. This entry must contain a TSS
descriptor. If it contains any other type of descriptor, or if the selected TSS
descriptor has its Busy bit set to one, the processor generates a GP exception. A
GP exception is also generated if the 16-bit value has TI = 1, selecting the LDT
rather than the GDT.

Chapter 10: Creating a Task

153

The x86 instruction set provides two instructions that the programmer can use
to place a new value in the TR or to read the current value from it. The LTR
(load task register) and STR (store task register) instructions may only be exe-
cuted when the processor is in protected mode (CR0[PE] = 1). Attempted execu-
tion of either in real mode results in an Invalid Opcode exception. The STR
instruction can be executed at any privilege level, while the LTR instruction can
only be executed by a program executing at privilege level zero. An attempt to
execute the LTR instruction at any other privilege level results in a GP excep-
tion.

STR Instruction

At any privilege level, the programmer may use the STR instruction to obtain
the selector for the currently-executing task’s TSS descriptor in the GDT. The 16-
bit value may be placed either into a 16-bit general purpose register or into
memory. Using this value, the programmer can then read the TSS descriptor
from the GDT to discover the base address and limit (i.e., the size of) the current
task’s TSS data structure.

LTR Instruction

At privilege level zero, the programmer may execute the LTR instruction to
place a new 16-bit value into the TR. When executed, the processor performs the
following actions:

• validates that the current program’s CPL is sufficiently-privileged to per-
form a task switch (since the CPL of the program executing the LTR instruc-
tion is zero, this isn’t a problem).

• generates a GP exception if the indicated GDT entry does not contain a TSS
descriptor or if the descriptor’s busy bit is set to one.

• generates a Segment Not Present exception if P = 0 in the TSS descriptor.
• generates a Page Fault exception if the page containing the TSS is not cur-

rently in memory.
• generates a GP exception if the CS selector in the TSS does not select a code

segment.
• generates a GP exception if any of the data segment selectors in the TSS

does not select a data segment.
• generates a Stack exception if the SS selector in the TSS doesn’t select a stack

segment.
• the invisible portion of the TR is loaded with the base address and limit of

Protected Mode Software Architecture

154

the new TSS.
• the Busy bit in the TSS descriptor is set to one.

The LTR instruction does not cause a task switch. In other words, although the
processor verifies the integrity of the new TSS and marks it busy, it does not
reload its register set from the new TSS. The TR contents after reset is unde-
fined. This instruction is typically used at startup time to identify the OS code’s
startup TSS for the processor. If the TR were not initialized in this manner, the
first task switch would cause the processor to save its register set into memory
within the TSS identified by the bogus TSS base address and limit defined by
the junk in the TR. In other words, the register set would be stored into some
undefined region of memory. This could have catastrophic results.

Chapter 10: Creating a Task

155

Figure 10-5: The Task Register

157

11 Mechanics of a
Task Switch

The Previous Chapter

The previous chapter described how the OS creates and starts a task.

This Chapter

This chapter describes the events that can cause a task switch. It also details the
sequence of actions taken by the processor when suspending the current task
and starting or resuming another one.

The Next Chapter

The next chapter provides a detailed description of interrupt and exception gen-
eration and handling.

Events that Initiate a Task Switch

There are a number of events that can cause the processor to suspend the cur-
rent task and start or resume another task. Table 11-1 on page 158 provides a
description of each event. The sections that follow detail the sequence of actions
taken by the processor when suspending the current task and starting or resum-
ing another one.

Protected Mode Software Architecture

158

Table 11-1: Events that Cause a Task Switch

Event Description

Far call/jump to TSS
descriptor

If the 16-bit segment address of a far jump or far call
selects a TSS descriptor in the GDT, a task switch
occurs. The offest portion of the target address is dis-
carded. The processor loads the 16-bit segment selec-
tor into the visible portion of the TR and then loads
the selected TSS descriptor from the GDT into the
invisible part of the TR. A privilege check is per-
formed and, if the currently-executing program has
sufficient privilege (CPL ≤ DPL), the state of the cur-
rent task is stored in its TSS and the new TSS (identi-
fied by the TSS descriptor) is loaded into the
processor’s register set. More detailed information
can be found in the sections entitled “Switch as Result
of Far Call” on page 168 and “Switch as Result of Far
Jump” on page 171.

Far call/jump to task gate
descriptor

All TSS descriptors must reside in the GDT. The DPL
of a TSS descriptor is typically set to zero. This means
that a program that resides at a less-privileged level
could not switch to the task defined by the TSS. If the
currently-executing program has access to a task gate
in its LDT, it can switch to a task (if the less-privileged
of the currently-executing program's CPL and RPL is
at least as privileged as the task gate's DPL). The TSS
DPL is ignored. The task gate has the format specified
in Figure 11-1 on page 162 and is described in the sec-
tion entitled “Task Gate Descriptor” on page 160.
Also refer to the sections entitled “Switch as Result of
Far Call” on page 168 and “Switch as Result of Far
Jump” on page 171.

Chapter 11: Mechanics of a Task Switch

159

INT execution that selects a
task gate in IDT

When the processor executes an INT nn instruction,
the value nn acts as an index into the IDT. If the
selected IDT entry contains a task gate descriptor and
the program executing the INT instruction has suffi-
cient privilege, a task switch results. Additional infor-
mation can be found in the sections entitled “Task
Gate Descriptor” on page 160 and “Switch as Result
of BOUND or INT Instruction” on page 173, and in
the chapter entitled “Interrupt Sources and Han-
dling” on page 183.

Hardware interrupt that
selects a task gate in IDT

When a hardware interrupt request is detected by the
processor, the interrupt vector obtained from the
interrupt controller is used as an index into the IDT. If
the selected IDT entry contains a task gate descriptor,
a task switch results (exceptions, interrupts and IRET
cause a task switch regardless of the task gate’s DPL).
Additional information can be found in the sections
entitled “Task Gate Descriptor” on page 160 and
“Switch as Result of Hardware Interrupt or Excep-
tion” on page 163, and in the chapter entitled “Inter-
rupt Sources and Handling” on page 183. Also refer
to “Start Timeslice Timer” on page 138.

Software exception that
selects a task gate in IDT

When a software exception condition is detected by
the processor, the exception condition type deter-
mines the index into the IDT. If the selected IDT entry
contains a task gate descriptor, a task switch results
(exceptions, interrupts and IRET cause a task switch
regardless of the task gate’s DPL). Additional infor-
mation can be found in the sections entitled “Task
Gate Descriptor” on page 160 and “Switch as Result
of Hardware Interrupt or Exception” on page 163,
and in the chapter entitled “Interrupt Sources and
Handling” on page 183.

Table 11-1: Events that Cause a Task Switch (Continued)

Event Description

Protected Mode Software Architecture

160

Switch Via TSS Descriptor

A far call or far jump can cause a task switch if the 16-bit segment portion of the
target address selects a TSS descriptor in the GDT. However, a GP exception
results if the following privilege check isn’t passed:

The less-privileged of the RPL (lower two bits of the 16-bit segment
address) or CPL must be at least as privileged as the TSS descriptor’s DPL.
Since TSS descriptors typically have a DPL of zero, this means that only
privilege level zero programs can call or jump to another task using a TSS
descriptor.

Task Gate Descriptor
TSS descriptors must reside in the GDT. Task Gate descriptors, on the other
hand, may reside in the GDT, an LDT, or the IDT (Interrupt Descriptor Table).
Figure 11-1 on page 162 illustrates the format of a Task Gate descriptor. It con-
tains a 16-bit value that selects an entry in the GDT containing a TSS descriptor.

Task Gate Selected by Far Call/Jump

When a far call or a far jump selects a Task Gate descriptor, the DPL of the Task
Gate, rather than the TSS descriptor, is checked during the privilege level check.
The DPL of the TSS is ignored. A task switch occurs if the less-privileged of the
RPL or CPL is at least as privileged as the Task Gate’s DPL value. As examples,

• A Task Gate with a DPL of three permits any program to jump to or call the
task pointed to by the TSS descriptor.

• A Task Gate with a DPL of two permits programs with privilege levels of
zero through two to cause a task switch, while a program with a privilege
level of three would cause a GP exception.

IRET execution with
EFlags[NT] bit set

Refer to the sections entitled “Link Field (to Old TSS
Selector)” on page 150 and “Return to Interrupted
Task or...There and Back Again!” on page 165 for a
detailed description.

Table 11-1: Events that Cause a Task Switch (Continued)

Event Description

Chapter 11: Mechanics of a Task Switch

161

Task Gate Selected by Hardware Interrupt or
Software Exception

When a Task Gate is placed in the IDT, any hardware interrupt or software
exception that selects the IDT entry containing the Task Gate causes a task
switch. Both the Task Gate’s and the TSS descriptor’s DPL are ignored. In other
words, the privilege check isn’t performed. More detail can be found in “Switch
as Result of Hardware Interrupt or Exception” on page 163.

Task Gate Selected by INT Instruction

If an INT instruction selects an IDT entry containing a Task Gate, the privilege
check is performed. The DPL of the Task Gate, rather than the TSS descriptor, is
checked during the privilege level check. The DPL of the TSS is ignored. A task
switch occurs if the less-privileged of the RPL or CPL is at least as privileged as
the Task Gate’s DPL value.

Protected Mode Software Architecture

162

Figure 11-1: The Task Gate Format

Chapter 11: Mechanics of a Task Switch

163

Switch as Result of Hardware Interrupt or Exception

General

A task switch results when a hardware interrupt or a software exception selects
an entry in the IDT (Interrupt Descriptor Table, pictured in Figure 11-2 on page
167) that contains a valid Task Gate. A privilege check is not performed.

Suspension of Interrupted Task

In response to the interrupt or exception, the processor performs the following
sequence of actions to suspend the current task:

1. Pushes CS, EIP and EFlags onto the stack.
2. Clears EFlags[IF] bit to mask further interrupts.
3. Checks that the TSS descriptor in the GDT that is pointed to by the Task

Gate descriptor is valid (P = 1) and has a valid limit. At a minimum, the
limit must be ≥ 67h (i.e., 103d). If P = 0, a Segment Not Present exception is
generated, while an Invalid TSS exception results if the limit is less than
103d.

4. A GP exception is generated if the Busy bit (B) in the TSS descriptor is set to
one. The busy bit is described in “The Busy Bit” on page 177.

5. Saves the state of the processor’s register set in the interrupted (i.e., the cur-
rent) task’s TSS (pointed to by the base address in the TR register). This is
accomplished by performing a series of memory write transactions.

6. This discussion continues in the next section.

Start Interrupt/Exception Handler Task

After suspending the interrupted task, the processor performs the following
steps to start the interrupt/exception handler task:

1. The 16-bit TSS selector from the Task Gate descriptor is read by the proces-
sor, but is not placed in the TR register until the selector’s integrity has been
validated:
• GP exception generated if TI = 1 (selecting LDT rather than GDT).
• GP exception if selected GDT entry is not TSS descriptor.
• Segment Not Present exception if P = 0 in TSS descriptor.

Protected Mode Software Architecture

164

2. 16-bit GDT selector not placed in TR register until TSS data structure integ-
rity is also validated:
• Using the 16-bit selector to index into the GDT, the processor reads the

base address and limit of the TSS from the TSS descriptor in the GDT.
• Validates that the TSS limit ≥ 103d and generates Invalid TSS exception

if < 103d (67h).
3. The processor reads new segment selector fields (CS, DS, ES, FS, GS, SS)

from the interrupt/exception service task’s TSS and validates each of them:
• An Invalid TSS exception is generated if CS or SS DPL does not match

CS or SS selectors’ RPL.
• An Invalid TSS exception is generated if a selector indexes to an

inappropriate descriptor entry. As examples, if the CS selector selects a
non-code segment descriptor; the SS selector selects a non-stack
descriptor; or one of the data segment descriptors selects a non-data
segment descriptor.

• A Segment Not Present exception is generated if any of the selected
segment descriptors (other than SS) have P = 0 (segment not present) in
their respective segment descriptors.

• A Stack exception is generated if the stack segment descriptor
has P = 0 (segment not present).

• An Invalid TSS exception is generated if the index portion of any
of the segment selectors addresses an entry beyond the limit of the
selected descriptor table (i.e., GDT or LDT).

• An Invalid TSS exception is generated if any of the data segment
selectors indexes to a descriptor entry that indicates the segment is non
-readable.

4. An Invalid TSS exception is generated if the LDT selector (from the new
TSS) does not select an LDT descriptor in the GDT, or if the LDT descriptor
has P = 0 (table not present).

5. If any of the TSS integrity checks fail, the TR register is not loaded with the
new TSS selector (the current TSS selector remains in it) and the exception
generated as a result of the integrity failure is serviced in the context of the
current task (in other words, the task switch does not occur).

6. When the integrity of the interrupt/exception service task’s TSS has been
verified, the task switch takes place. The TR register is loaded with the
selector (from the task gate descriptor) for the interrupt/exception service
task’s TSS.

7. The processor sets the Busy bit in the interrupt/exception service task’s TSS
descriptor.

8. The processor sets the CR0[TS] bit to indicate that a task switch has
occurred. This permits the OS programmer to compare the context of the
floating-point unit vs. the integer execution unit to synchronize floating-

Chapter 11: Mechanics of a Task Switch

165

point exceptions with the task they are associated with.
9. The processor sets EFlags[NT] to indicate that this task was entered from

another task that was interrupted and suspended. After the interrupt or
exception is serviced, the processor must switch back to the interrupted task
and resume execution at the point of interruption. The EFlags[NT] bit tells it
to do this (for more information, see “Return to Interrupted Task or...There
and Back Again!” on page 165.

10. The processor stores the old contents of TR register in the Link field of the
new task. This is the selector to the interrupted task’s TSS descriptor in the
GDT.

11. The processor reads the register fields from the new TSS into its registers.
12. The processor then resumes normal operation. In other words, it uses the

new values just placed in CS:EIP to fetch the first instruction. This is the first
instruction of the interrupt/exception service task. The program executes at
the privilege level indicated by the least-significant two bits of the CS field
from the new task’s TSS CS field (i.e., its RPL field). The task switch is now
complete.

Return to Interrupted Task or...There and Back
Again!

The body of the interrupt/exception service task services the interrupt request
or the software exception condition. When it has completed execution, the last
instruction in the task is an IRET instruction. When an IRET is executed with
EFlags[NT] set to one, the processor recognizes that it is to resume the inter-
rupted task at the point where it was interrupted. To do this, it takes the follow-
ing actions:

1. Performs the following tests on the current task’s TSS Link field (should
point to GDT TSS descriptor for interrupted task):
• Generate Invalid TSS exception if TI = 1 (LDT) because TSS descriptor

must be in GDT.
• Generate Invalid TSS exception if GDT Index exceeds GDT limit.
• Generate Invalid TSS exception if indicated descriptor in GDT isn’t TSS

descriptor.
• Generate Invalid TSS exception if Busy bit not set in TSS descriptor for

interrupted task.
• Generate Segment Not Present exception if P = 0 in TSS descriptor for

interrupted task.
2. Reload processor register set from interrupted task’s TSS. At this point, the

processor is ready to resume the interrupted task.

Protected Mode Software Architecture

166

3. Clear the Busy bit in the TSS descriptor for the interrupt/exception service
task.

4. Pop old CS, EIP and EFlags from stack into respective registers. This reen-
ables interrupt recognition.

5. Generate GP exception if EIP exceeds code segment limit.
6. Resume execution of interrupted program.

Chapter 11: Mechanics of a Task Switch

167

Figure 11-2: The IDT (Interrupt Descriptor Table)

Protected Mode Software Architecture

168

Switch as Result of Far Call

A far call instruction causes a task switch under the following circumstances:

• it selects a TSSdescriptor in the GDT. In this case, the lesser-privileged of
the selector RPL and the currently-executing program’s CPL must meet or
beat the privilege level indicated by the TSS descriptor’s DPL. This is typi-
cally zero, severely restricting the programs that are successful in selecting
the TSS descriptor.

• it selects a Task Gate descriptor in either the GDT or LDT. In this case, the
lesser-privileged of the selector RPL and the currently-executing program’s
CPL must meet or beat the privilege level of the Task Gate descriptor’s DPL
(which can be different than the DPL of the TSS descriptor it points to in the
GDT).

The difference between the two is in how the privilege check is performed. The
sections that follow assume that the privilege check has been passed.

Suspension of Calling Task

In response to the far call instruction, the processor performs the following
sequence of actions to suspend the current task:

1. Checks that the selected TSS descriptor in the GDT is valid (P = 1) and has a
valid limit. At a minimum, the limit must be ≥ 67h (i.e., 103d). If P = 0, a Seg-
ment Not Present exception is generated, while an Invalid TSS exception
results if the limit is less than 103d.

2. A GP exception is generated if the Busy bit (B) in the TSS descriptor is set to
one.

3. Saves the state of the processor’s register set in the caller’s (i.e., the current
task) TSS (pointed to by the base address in the TR register). This is accom-
plished by performing a series of memory write transactions.

4. This discussion continues in the next section.

Start Called Task

The offset portion of the target address is discarded. After suspending the call-
ing task, the processor performs the following steps to start the called task:

Chapter 11: Mechanics of a Task Switch

169

1. The 16-bit TSS selector portion of the far call is not placed in the TR register
until the selector’s integrity has been validated:
• GP exception generated if TI = 1 (selecting LDT rather than GDT).
• GP exception if selected GDT entry is not TSS descriptor.
• Segment Not Present exception if P = 0 in TSS descriptor.

2. 16-bit GDT selector not placed in TR register until TSS data structure integ-
rity is also validated:
• Using the 16-bit selector to index into the GDT, the processor reads the

base address and limit of the TSS from the TSS descriptor in the GDT.
• Validates that the TSS limit ≥ 103d and generates Invalid TSS exception

if < 103d (67h).
3. The processor reads new segment selector fields (CS, DS, ES, FS, GS, SS)

from the called task’s TSS and validates each of them:
• An Invalid TSS exception is generated if CS or SS DPL does not match

CS or SS selectors’ RPL.
• An Invalid TSS exception is generated if SS DPL doesn’t match CPL.
• An Invalid TSS exception is generated if a selector indexes to an

inappropriate descriptor entry. As examples, if the CS selector selects a
non-code segment descriptor; the SS selector selects a non-stack
descriptor; or one of the data segment descriptors selects a non-data
segment descriptor.

• A Segment Not Present exception is generated if any of the selected
segment descriptors (other than SS) have P = 0 (segment not present) in
their respective segment descriptors.

• A Stack exception is generated if the stack segment descriptor
has P = 0 (segment not present).

• An Invalid TSS exception is generated if the index portion of any
of the segment selectors addresses an entry beyond the limit of the
selected descriptor table (i.e., GDT or LDT).

• An Invalid TSS exception is generated if any of the data segment
selectors indexes to a descriptor entry that indicates the segment is non
-readable.

• An Invalid TSS exception is generated if the CPL is not as privileged as
the DPL of any of the data segment descriptors.

4. An Invalid TSS exception is generated if the LDT selector (from the new
TSS) does not select an LDT descriptor in the GDT, or if the LDT descriptor
has P = 0 (table not present).

5. If any of the TSS integrity checks fail, the TR register is not loaded with the
new TSS selector (the current TSS selector remains in it) and the exception
generated as a result of the integrity failure is serviced in the context of the
current task (in other words, the task switch does not occur).

6. When the integrity of the called task’s TSS has been verified, the task switch

Protected Mode Software Architecture

170

takes place. The TR register is loaded with the selector (from the TSS
descriptor) for the called task’s TSS.

7. The processor sets the Busy bit in the called task’s TSS descriptor.
8. The processor sets the CR0[TS] bit to indicate that a task switch has

occurred. This permits the OS programmer to compare the context of the
floating-point unit vs. the integer execution unit to synchronize floating-
point exceptions with the task they are associated with.

9. The processor sets EFlags[NT] to indicate that this task was called from
another task that was suspended. After the call is complete, the processor
must switch back to the calling task and resume execution at the instruction
that follows the far call. The EFlags[NT] bit tells it to do this (for more infor-
mation, see “Return to Calling Task or...There and Back Again!” on
page 170.

10. The processor stores the old contents of the TR register in the Link field of
the called task. This is the selector for the calling task’s TSS descriptor in the
GDT.

11. The processor reads the register fields from the called task’s TSS into its reg-
isters.

12. The processor then resumes normal operation. In other words, it uses the
new values just placed in CS:EIP to fetch the first instruction. This is the first
instruction of the called task. The program executes at the privilege level
indicated by the least-significant two bits of the CS field from the new task’s
TSS CS field (i.e., its RPL field). The task switch is now complete.

Return to Calling Task or...There and Back Again!

The body of the called task is executed. When it has completed execution, the
last instruction in the task is a IRET instruction. When an IRET is executed with
EFlags[NT] set to one, the processor recognizes that it is to resume the calling
task at the instruction that follows the far call. To do this, it takes the following
actions:

1. Performs the following tests on the current task’s TSS Link field (should
point to GDT TSS descriptor for calling task):
• Generate Invalid TSS exception if TI = 1 (LDT) because TSS descriptor

must be in GDT.
• Generate Invalid TSS exception if GDT Index exceeds GDT limit.
• Generate Invalid TSS exception if indicated descriptor in GDT isn’t TSS

descriptor.
• Generate Invalid TSS exception if Busy bit not set in TSS descriptor for

calling task.

Chapter 11: Mechanics of a Task Switch

171

• Generate Segment Not Present exception if P = 0 in TSS descriptor for
calling task.

2. Reload processor register set from calling task’s TSS. At this point, the pro-
cessor is ready to resume the calling task.

3. Clear the Busy bit in the TSS descriptor for the called task.
4. Pop CS and EIP from stack into respective registers.
5. Generate GP exception if EIP exceeds code segment limit.
6. Resume execution of calling program at the instruction immediately follow-

ing the far call.

Switch as Result of Far Jump

A far jump instruction causes a task switch under the following circumstances:

• it selects a TSS descriptor in the GDT. In this case, the lesser-privileged of
the selector RPL and the currently-executing program’s CPL must meet or
beat the privilege level indicated by the TSS descriptor’s DPL. This is typi-
cally zero, severely restricting the programs that are successful in selecting
the TSS descriptor.

• it selects a Task Gate descriptor in either the GDT or LDT. In this case, the
lesser-privileged of the selector RPL and the currently-executing program’s
CPL must meet or beat the privilege level of the Task Gate descriptor’s DPL
(which can be different than the DPL of the TSS descriptor it points to in the
GDT).

The difference between the two is in how the privilege check is performed. The
sections that follow assume that the privilege check has been passed.

Suspension of Task Executing Jump

In response to the interrupt or exception, the processor performs the following
sequence of actions to suspend the current task:

1. Checks that the TSS descriptor in the GDT that is pointed to by the Task
Gate descriptor is valid (P = 1) and has a valid limit. At a minimum, the
limit must be ≥ 67h (i.e., 103d). If P = 0, a Segment Not Present exception is
generated, while an Invalid TSS exception results if the limit is less than
103d.

2. A GP exception is generated if the Busy bit (B) in the TSS descriptor is set to
one.

3. Clears the Busy bit in the TSS descriptor associated with the task executing

Protected Mode Software Architecture

172

the far jump.
4. Saves the state of the processor’s register set in the current task’s TSS

(pointed to by the base address in the TR register). This is accomplished by
performing a series of memory write transactions.

5. This discussion continues in the next section.

Start Target Task

After suspending the previous task, the processor performs the following steps
to start the target task:

1. The 16-bit TSS selector from the Task Gate descriptor is read by the proces-
sor, but is not placed in the TR register until the selector’s integrity has been
validated:
• GP exception generated if TI = 1 (selecting LDT rather than GDT).
• GP exception if selected GDT entry is not TSS descriptor.
• Segment Not Present exception if P = 0 in TSS descriptor.

2. 16-bit GDT selector not placed in TR register until TSS data structure integ-
rity is also validated:
• Using the 16-bit selector to index into the GDT, the processor reads the

base address and limit of the TSS from the TSS descriptor in the GDT.
• Validates that the TSS limit ≥ 103d and generates Invalid TSS exception

if < 103d (67h).
3. The processor reads new segment selector fields (CS, DS, ES, FS, GS, SS)

from the target task’s TSS and validates each of them:
• An Invalid TSS exception is generated if CS or SS DPL does not match

CS or SS selectors’ RPL.
• An Invalid TSS exception is generated if a selector indexes to an

inappropriate descriptor entry. As examples, if the CS selector selects a
non-code segment descriptor; the SS selector selects a non-stack
descriptor; or one of the data segment descriptors selects a non-data
segment descriptor.

• A Segment Not Present exception is generated if any of the selected
segment descriptors (other than SS) have P = 0 (segment not present) in
their respective segment descriptors.

• A Stack exception is generated if the stack segment descriptor
has P = 0 (segment not present).

• An Invalid TSS exception is generated if the index portion of any
of the segment selectors addresses an entry beyond the limit of the
selected descriptor table (i.e., GDT or LDT).

• An Invalid TSS exception is generated if any of the data segment

Chapter 11: Mechanics of a Task Switch

173

selectors indexes to a descriptor entry that indicates the segment is non
-readable.

• An Invalid TSS exception is generated if the CPL is not as privileged as
the DPL of any of the data segment descriptors.

• An Invalid TSS exception is generated if SS DPL doesn’t match CPL.
4. An Invalid TSS exception is generated if the LDT selector (from the new

TSS) does not select an LDT descriptor in the GDT, or if the LDT descriptor
has P = 0 (table not present).

5. If any of the TSS integrity checks fail, the TR register is not loaded with the
new TSS selector (the current TSS selector remains in it) and the exception
generated as a result of the integrity failure is serviced in the context of the
current task (in other words, the task switch does not occur).

6. When the integrity of the target task’s TSS has been verified, the task switch
takes place. The TR register is loaded with the selector (from the TSS
descriptor) for the target task’s TSS.

7. The processor sets the Busy bit in the target task’s TSS descriptor.
8. The processor sets the CR0[TS] bit to indicate that a task switch has

occurred. This permits the OS programmer to compare the context of the
floating-point unit vs. the integer execution unit to synchronize floating-
point exceptions with the task they are associated with.

9. The processor reads the register fields from the new TSS into its registers.
10. The processor then resumes normal operation. In other words, it uses the

new values just placed in CS:EIP to fetch the first instruction. This is the first
instruction of the target task. The program executes at the privilege level
indicated by the least-significant two bits of the CS field from the new task’s
TSS CS field (i.e., its RPL field). The task switch is now complete.

Switch as Result of BOUND or INT Instruction

A task switch occurs if any of the following instructions select a task gate in the
IDT:

• The BOUND instruction generates a Bound Range Exceeded exception if
the supplied array index is not within the bounds of the indicated memory
array. This selects entry five in the IDT. If this entry contains a Task Gate
descriptor, a task switch occurs. No privilege check is performed.

• The INT nn instruction selects entry nn in the IDT. If entry nn contains a
Task Gate descriptor and the CPL of the currently-executing program meets
or beats the DPL of the Task Gate descriptor, a task switch occurs.

• When the INTO (interrupt on overflow) instruction detects the EFlags[OF]
bit set to one, it indexes to entry four in the IDT. If this entry contains a Task
Gate descriptor, a task switch occurs. No privilege check is performed.

Protected Mode Software Architecture

174

If the instruction is BOUND, the resultant task switch and return is handled in the
same manner as an exception (because it is one). The actions taken are detailed
in the section entitled “Switch as Result of Hardware Interrupt or Exception” on
page 163.

If the instruction is INT nn or INTO, the resultant task switch and return is han-
dled in the same manner as a far call. The actions taken are detailed in the sec-
tion entitled “Switch as Result of Far Call” on page 168.

Linked Tasks

Under the following circumstances, a task is linked to the task that transferred
execution to it (because the old task must be resumed when the new task has
completed execution):

• if the task is called via a far call
• if the task is executed as a result of a hardware interrupt
• if the task is executed as a result of a software exception
• if the task is executed as a result of the execution of an INT nn or INTO

instruction

As part of the task switch, the processor takes the following actions:

• Updates the TSS Link field in the target TSS with the selector of the TSS for
the task it must return to (i.e., link back to) when the task has completed
execution.

• Sets the EFlags[NT] bit to one.
• Sets the Busy bit in the target task’s TSS descriptor.

When the target task has completed execution, the execution of the final instruc-
tion (IRET) causes a task switch back to the interrupted or calling task. The task
switch occurs because the processor detects EFlags[NT] set when the IRET is
executed. The actions taken are:

• EFlags[NT] is cleared.
• Old TSS descriptor’s Busy bit is cleared.
• Switch back to old task and resume (detailed in earlier sections of this chap-

ter).

The called task may, in turn, call other tasks, or may be interrupted to another
task. It may not, however, call a task that has already had the Busy bit set to one
in its TSS descriptor (the fact that its Busy bit is already set indicates that the
task is currently suspended and its TSS contains the register set contents at the

Chapter 11: Mechanics of a Task Switch

175

point at which suspension occurred). This attempt results in a GP exception. It
can, however, perform an interrupt return to a task with its Busy bit set (so the
old task can be resumed). There is no limit (other than memory) to the task nest-
ing depth. Figure 11-3 on page 176 illustrates an example where Task A has
called task B, and task B has called task C. It’s easy to see that a linked list has
been created.

• The Busy bit is set to one in all three of their TSS descriptors.
• The EFlags[NT] bits in tasks B and C’s TSS EFlag field are set to one.
• The EFlags[NT] bit in task A’s TSS EFlags field is cleared to zero.
• The Link field in task A’s TSS doesn’t contain a valid link.
• The Link field in task B’s TSS contains the selector for task A’s TSS.
• The Link field in task C’s TSS contains the selector for task B’s TSS.
• The EFlags[NT] register bit is set to one.
• The TR contains the selector for the current task’s (task C’s) TSS descriptor.

Protected Mode Software Architecture

176

Figure 11-3: Example of Linked Tasks

Chapter 11: Mechanics of a Task Switch

177

Linkage Modification

Refer to Figure 11-3 on page 176. Assume that task A called task B, and task B
called task C. If an IRET instruction is executed at the end of task C, a task
switch back to task B will result. Now assume that the programmer wants the
IRET instruction at the end of task C to cause a task switch to task A, rather
than to task B. This should be accomplished in the following manner:

1. Disable interrupts by executing a CLI instruction.
2. Replace the task C Link field (which currently contains the GDT selector for

the task B TSS descriptor) with the selector for the task A TSS descriptor.
3. Clear Busy bit in task B’s TSS descriptor.
4. Reenable interrupt recognition with an STI instruction.
5. Execute the IRET instruction.

The Busy Bit

Each TSS descriptor in the GDT has a Busy bit (see Figure 11-4 on page 179).
Whenever control is first passed to the task, its Busy bit is set to one by the pro-
cessor.

If the task is terminated with a far jump (performing an unconditional jump to
another task implies that the current task has completed and is therefore not
busy anymore) to another task, an IRET to return to a task that called it, or an
IRET to return to an interrupted task, the task’s Busy bit is cleared to zero.

If the task is exited via a far call to another task, or an interrupt/exception
causes a task switch to an interrupt/exception service task, the task has not yet
completed. Its Busy bit therefore remains set when control is passed to the other
task.

The processor generates a GP exception if the target task is already busy. This is
considered a serious error because busy implies that the target task saved a link
back to another task in its TSS when it was entered earlier. The fact that its Busy
bit is still set indicates it was originally entered via a call, or an interrupt/excep-
tion and has not yet returned to the task that originally passed control to it. If
the processor permits another task to enter it, the link will be overwritten with a
new one, thereby rendering it incapable of find its way back to the task that
originally switched to it.

Protected Mode Software Architecture

178

The processor automatically asserts its LOCK# output whenever it accesses the
busy bit in a TSS descriptor. In a multiprocessor system, this ensures that two
(or more) processors will not access the busy bit "simultaneously" and errone-
ously switch to the same task.

Chapter 11: Mechanics of a Task Switch

179

Figure 11-4: TSS Descriptor Format

Protected Mode Software Architecture

180

Address Mapping

Linear vs. Physical Memory Address

As discussed in earlier chapters, when addressing memory the post-286 proces-
sor forms the 32-bit memory address by adding the 32-bit offset to the segment
start address. The resultant 32-bit address is referred to as the linear address. If
the OS has not enabled the processor’s paging capability (CR0[PG] = 0), the lin-
ear address is the address that is used to address memory. In other words, the
linear address and physical address are the same.

On the other hand, if the processor’s paging capability is enabled (CR0[PG] = 1),
the paging unit can convert, or map, the linear address to any physical memory
address in the 4GB memory space. This is accomplished using the page direc-
tory and page tables.

GDT Purpose and Location

The GDTR (GDT register) contains the base linear address (and size) of the GDT
in memory. The GDT entries define segments that are common to all applica-
tions. It’s important to note that the contents of the GDTR does not change
when a task switch occurs. This means that all tasks use the same GDT to access
the pool of common segments.

CR3 contains the base physical memory address of the page directory. When a
task switch occurs, CR3 is changed to point to the page directory for the current
task (by copying the CR3 field from the new task’s TSS). It is important that the
page directory for every task be set up to map accesses to the GDT to the same
range of locations in physical memory. The goal of a shared GDT would be
defeated if each task mapped the GDT’s linear address range to different physi-
cal memory ranges. They would be using different GDTs. For more information
on paging, refer to the section entitled “Paging-Related Issues” on page 181 and
the chapter entitled “Virtual Paging” on page 219.

LDT Purpose and Location

Whenever a task switch occurs, the processor updates the LDTR from the new
task’s LDT selector field. The memory segments that can be used by the new

Chapter 11: Mechanics of a Task Switch

181

task consists of those defined by the GDT (which remains the same for all tasks)
and those defined by the task’s LDT as local for this task.

The OS sets up the LDT selector field of each task’s TSS to point to that task’s
LDT descriptor in the GDT. Ideally, the OS sets up the TSS fields so that each
task has its own, distinct LDT that defines the segments local to the task. How-
ever, the OS could set them up so all tasks shared one LDT, or so some tasks but
not others shared an LDT.

Paging-Related Issues
Background

When paging is enabled, the processor’s paging unit intercepts all linear mem-
ory addresses and converts them to physical memory addresses. The paging
unit deals with two, distinct memory ranges: 4GB of linear memory space and
4GB of physical memory address space. It considers each space as being subdi-
vided into 4KB pages of information.

When presented with a 32-bit linear memory address by the segmentation logic,
the address naturally lies within some 4KB range of linear memory space (i.e., a
linear memory page). The upper 20 bits of the linear address identify which of
the one meg (1,048,576d) linear memory pages is being addressed. It then uses a
directory lookup mechanism to find out which of the one meg physical memory
pages the linear page (identified by the upper 20 bits of the linear address)
should be mapped to. It replaces the linear page address (i.e., the upper 20 bits
of the linear address) with the physical page address (the 20 bit field obtained
from the page directories). The lower 12 bit portion of the linear address
remains untouched—it identifies exactly which of the 4096d locations within
the page is being addressed. In this manner, the paging unit converts the 32-bit
linear address into a corresponding 32-bit physical memory address.

The directories the paging unit consults to make the address conversion are in
memory and CR3 contains the start physical memory address of the top-level
directory used for the lookup and address conversion.

Each Task Can Have Different Linear-to-Physical Mapping

Each time that a task switch occurs the processor updates CR3 with the physical
start memory address of the new task’s page directory. CR3 is also referred to as
the Page Directory Base Register, or PDBR. In other words, by placing different
addresses in the CR3 field of each TSS, each task can use a different set of direc-
tories to perform the linear-to-physical address conversion.

Protected Mode Software Architecture

182

TSS Mapping Must Remain Same for All Tasks

The linear-to-physical mapping for the range of addresses associated with all
TSS segments must remain constant for all tasks. In other words, these linear
address ranges must be translated identically by all tasks. When a task switch
occurs from task A to task B:

• The register set’s current contents is saved in task A’s TSS (using task A’s
page directory to perform the translation of the TSS’s linear range to its
physical range).

• The task switch then occurs and the register set is reloaded from task B’s
TSS segment.

• The Link field of task B’s TSS is set to the GDT selector for task A’s TSS
descriptor.

• CR3 is loaded with the base address of task B’s page directory.
• When task B has completed and its time to resume task A, the processor

must restore its register set from task A’s TSS. It uses task B’s page directory
to perform the translation of task A’s TSS linear range to its physical range.
If task B’s page directory translates task A’s TSS linear range to a different
physical range than task A’s page directory translated it when storing the
register image, the processor would restore the wrong information to the
processor’s register set.

Placement of TSS Within Page(s)

An unrecoverable error results if a GP exception or a page fault occurs after the
processor has started to read the TSS for the new task when performing a task
switch. To prevent this, the following rules must be adhered to:

• If possible, place the entire first 104d bytes of the TSS (i.e., the part accessed
during a task switch) within a single page. If necessary, the TSS can straddle
a page boundary (i.e., an address divisible by 4KB), but both pages must be
present in memory (P = 1 in both of their page table entries).

• The page or pages that contain the old and new TSSs must be present in
memory and must be marked read/write (in the page table entry).

183

12 Interrupt Sources
and Handling

The Previous Chapter

The previous two chapters provided a detailed description of task management,
including task creation and switching.

This Chapter

This chapter provides a detailed description of interrupt and exception sources
and handling in both real and protected mode. Sources and handling of inter-
rupts or exceptions initiated by hardware interrupts, software interrupt instruc-
tions and software exceptions are covered.

The Next Chapter

The next chapter provides a detailed description of the processor’s virtual pag-
ing mechanism.

Special Note

The program executed to service a hardware interrupt or a software exception is
frequently referred to as a handler in this chapter. Alternately, it may be referred
to as an interrupt service routine.

General

There are three types of interrupt-related events that can cause the currently-
executing program to be interrupted:

Protected Mode Software Architecture

184

• an interrupt request from a hardware device external to the processor is rec-
ognized if recognition of external interrupts is enabled (EFlags[IF] = 1).

• execution of a software interrupt (INT) instruction.
• processor detection of a software exception error condition.

When any of these events occurs, the currently-executing program is inter-
rupted. In other words, the processor must:

1. suspend execution of the program
2. mark its place for later resumption
3. determine the type of request
4. jump to an event-specific interrupt service routine (or task) to service the

request.
5. return to the interrupted program and resume execution at the point of

interruption.

Hardware Interrupts

There are two types of interrupt requests that can be initiated by hardware
external to the processor:

• Maskable interrupt requests initiated by IO devices.
• Non-maskable interrupt requests.

For more detailed coverage of hardware interrupt generation and servicing in
the PC-compatible environment, refer to the chapter on interrupts in the Mind-
Share book entitled ISA System Architecture (published by Addison-Wesley). For
a detailed discussion of the Pentium processor’s Advanced Programmable
Interrupt Controller (APIC), refer to the MindShare book entitled Pentium Pro-
cessor System Architecture (published by Addison-Wesley).

Maskable Interrupt Requests

Some IO devices generate an interrupt request to signal that:

• an action is required on the part of the program in order to continue opera-
tion.

• a previously-initiated operation has been completed with no errors encoun-
tered

• a previously-initiated operation has encountered an error condition and
cannot continue.

Chapter 12: Interrupt Sources and Handling

185

In any of these cases, the IO device asserts an IRQ (interrupt request) signal to
the interrupt controller, which in turn asserts INTR (maskable interrupt request)
to the processor.

An interrupt request may be temporarily ignored when an IO device is request-
ing service if the programmer has disabled recognition of requests from IO
devices by executing a clear interrupt enable (CLI) instruction. This clears
EFlags[IF], causing the processor to ignore its INTR input until a set interrupt
enable (STI) instruction is executed. This feature must be used cautiously.
Many IO devices are sensitive to lengthy delays while awaiting service and may
suffer data overrun or underrun conditions if their interrupt requests are not
serviced on a timely basis.

In protected mode, the CLI and STI (set interrupt enable) instructions are sensi-
tive to the value in the EFlags[IOPL] field. They may only be successfully exe-
cuted when the current program’s CPL meets or beats the IOPL (IO privilege
level). Any attempt to execute them with insufficient privilege results in a GP
exception.

Other operations that affect EFlags[IF] are:

• Reset clears EFlags[IF], inhibiting recognition of maskable interrupts.
• The PUSHF (push flags) instruction copies EFlags to the stack and then

clears the EFlags[IF] bit. The Eflags bits, including IF, can then be examined
and modified in stack memory.

• The POPF instruction copies the EFlags image from stack memory into the
EFlags register.

• A task switch modifies the EFlags register when it copies the EFlags field
from the new TSS into EFlags. Task switching is covered in the chapter enti-
tled “Mechanics of a Task Switch” on page 157.

• The IRET instruction copies the EFlags image from stack memory into the
EFlags register.

• An interrupt that selects an IDT entry containing an interrupt gate descrip-
tor clears EFlags[IF] after EFlags has been copied to stack memory.

Maskable Interrupt Servicing

Automatic Actions

If interrupt recognition is enabled and the INTR input is sampled asserted, the
processor begins to service the hardware request upon completion of the cur-
rently-executing instruction. This discussion assumes that the system interrupt

Protected Mode Software Architecture

186

controller consists of either an 8259A programmable interrupt controller (PIC),
or the Pentium’s APIC is programmed for PIC-compatible mode. In response to
the assertion of INTR, the following sequence of actions is performed by the
processor:

1. Two, back-to-back interrupt acknowledge transactions are generated. The
first one tells the 8259A interrupt controller to prioritize the currently-pend-
ing interrupt requests from IO devices. The second one is a request to the
PIC for the interrupt vector number associated with the highest-priority
request— an index into the interrupt descriptor table (IDT) in memory.

2. Using the vector to select an IDT entry, the processor reads the contents of
the indicated IDT descriptor from memory.

3. The processor pushes the contents of its CS, EIP and EFlags registers onto
the stack. This is necessary to save its place in the interrupted program.

4. EFlags[IF] is cleared to disable recognition of subsequent interrupt requests.
5. The processor jumps to the device-specific interrupt service routine indi-

cated in the IDT entry. If the IDT entry contains a Task Gate descriptor, the
processor performs a task switch and begins execution of the interrupt ser-
vice task.

The actions just described are the ones that the processor performs automati-
cally in order to start an interrupt service routine. The following discussion
assumes that the IDT entry did not contain a Task Gate descriptor.

Handler Software Actions

Once in the interrupt service routine, the programmer must perform the follow-
ing actions:

1. Save (in stack memory) the contents of any registers that will be altered in
this routine. When control is returned to the interrupted program, all regis-
ters must be returned to their original states in order to ensure proper oper-
ation of the interrupted program.

2. Check the device's status and perform any device-specific servicing
requested by the device.

3. Issue an end-of-interrupt (EOI) command to the 8259A interrupt controller
to clear the request.

4. Execute an interrupt return (IRET) instruction. This causes the processor to
pop the original CS, EIP and EFlags values (reenabling recognition of exter-
nal, hardware interrupts) from the stack and load them into their respective
registers.

5. The processor resumes execution of the interrupted program.

Chapter 12: Interrupt Sources and Handling

187

PC-Compatible Vector Assignment

Table 12-1 on page 187 defines the typical hardware interrupt request line
assignment in a PC-compatible machine. It identifies the IDT entry number
associated with each.

The table also highlights a particularly aberrant characteristic of the PC-compat-
ible architecture. The original IBM PC was based on the Intel 8088 processor. As
with any of the x86 processors, the 8088 generates software exceptions when
certain special conditions are detected. Intel dedicated IDT entries 0 through 7
for these software exception conditions. The designers of the PC programmed
the 8259A interrupt controller to associate IDT entries 8 through 15d (Fh) with
the hardware interrupt lines IRQ0 through IRQ7. In order to be backward-com-
patible, the IBM PC-AT’s interrupt controller was also programmed to use IDT
entries 8 through 15d for these hardware interrupts. However, the PC-AT was
designed around the 286 processor and that processor generates more type of
software exceptions than the 8088. These new exceptions used IDT entries 8
through 13d. Later machines were based on the post-286 processors and they
added additional exceptions using IDT entries 14d and 15d. In other words, IDT
entries 8 through 15d can be selected when either hardware interrupt or soft-
ware exception events occur. Table 12-1 on page 187 explains the actions soft-
ware must take in order to ensure that all hardware and software events are
serviced correctly.

Table 12-1: PC-Compatible IRQ Assignment

IRQ
Line

IDT Entry Typically Used By

0 08h System timer. Same vector occurs on double-fault exception. This means
that occurrence of either a system timer tick or a double-fault exception
vectors to IDT entry 08. In a PC, the system timer interrupt handler hooks
this entry prior to the OS boot. During OS initialization, the OS reads and
saves the pointer to the timer handler and installs the pointer to its double-
fault exception handler in IDT entry 08. If either event occurs during run-
time, the processor jumps to the OS double-fault exception handler.
The double-fault exception handler determines if external interrupts are
enabled by testing for EFlags[IF] = 1 on the stack. If not enabled, execute
exception handler to service double-fault condition. If enabled, polls bit 0
in the master 8259A interrupt controller’s IRR (interrupt request register)
to determine if system timer has ticked. If it has, jump to and execute the
system timer interrupt handler. If it hasn’t, execute the exception handler to
service double-fault.

Protected Mode Software Architecture

188

1 09h Keyboard interface. Same vector occurs on Coprocessor segment overrun
abort exception. Occurrence of either keyboard request or overrun excep-
tion vectors to IDT entry 09. In PC, keyboard handler hooks this entry prior
to OS boot. During OS initialization, OS reads and saves pointer to key-
board handler and installs pointer to its segment overrun exception han-
dler in IDT entry 09. If either event occurs during run-time, the processor
jumps to the OS’s overrun exception handler.
Exception handler determines if external interrupts are enabled by testing
for EFlags[IF] = 1 on the stack. If not enabled, execute exception handler. If
enabled, poll bit 1 in master 8259A interrupt controller’s IRR (interrupt
request register) to determine if keyboard has generated request. If it has,
jump to and execute keyboard handler. If it hasn’t, execute exception han-
dler to service overrun exception.

2 0Ah (10d) Requests from slave interrupt controller.

3 0Bh (11d) Serial port two. Same vector occurs on Segment Not Present exception.
Occurrence of either serial port 2 interrupt or segment not present excep-
tion vectors to IDT entry 11d. In PC, serial port handler hooks this entry
prior to OS boot. During OS initialization, OS reads and saves pointer to
serial port handler and installs pointer to its segment not present exception
handler in IDT entry 11d. If either event occurs during run-time, the pro-
cessor jumps to the OS segment not present exception handler.
Exception handler determines if external interrupts are enabled by testing
for EFlags[IF] = 1 on the stack. If not enabled, execute exception handler. If
enabled, poll bit 3 in master 8259A interrupt controller’s IRR (interrupt
request register) to determine if serial port interrupt pending. If it is, jump
to and execute serial port handler. If it isn’t, execute the exception handler.

4 0Ch (12d) Serial port one. Same vector occurs on stack fault exception. Occurrence
of either serial port one request or stack exception vectors to IDT entry 12d.
In PC, serial port one interrupt handler hooks this entry prior to OS boot.
During OS initialization, OS reads and saves pointer to serial port handler
and installs pointer to its stack exception handler in IDT entry 12d. If either
event occurs during run-time, the processor jumps to the OS stack excep-
tion handler.
Exception handler determines if external interrupts are enabled by testing
for EFlags[IF] = 1 on the stack. If not enabled, execute exception handler. If
enabled, poll bit 4 in master 8259A interrupt controller’s IRR (interrupt
request register) to determine if serial port one generating request. If it is,
jump to and execute serial port handler. If it isn’t, execute the exception
handler.

Table 12-1: PC-Compatible IRQ Assignment (Continued)

IRQ
Line

IDT Entry Typically Used By

Chapter 12: Interrupt Sources and Handling

189

5 0Dh (13d) Parallel port two. Same vector occurs on GP exception. Occurrence of
either parallel port 2 interrupt or GP exception vectors to IDT entry 13d. In
PC, parallel port handler hooks this entry prior to OS boot. During OS ini-
tialization, OS reads and saves pointer to parallel port handler and installs
pointer to its GP exception handler in IDT entry 13d. If either event occurs
during run-time, the processor jumps to the OS GP exception handler.
Exception handler determines if external interrupts are enabled by testing
for EFlags[IF] = 1 on the stack. If not enabled, execute exception handler. If
enabled, poll bit 5 in master 8259A interrupt controller’s IRR (interrupt
request register) to determine if parallel port 2 generating interrupt. If it is,
jump to and execute parallel port handler. If it isn’t, execute the exception
handler.

6 0Eh (14d) Floppy interface. Same vector occurs on page fault exception. Occurrence
of either floppy interrupt or page fault exception vectors to IDT entry 14d.
In PC, the floppy interrupt handler hooks this entry prior to OS boot. Dur-
ing OS initialization, OS reads and saves pointer to floppy handler and
installs pointer to its page fault exception handler in IDT entry 14d. If
either event occurs during run-time, processor jumps to OS page fault
exception handler.
Exception handler determines if external interrupts are enabled by testing
for EFlags[IF] = 1 on the stack. If not enabled, execute exception handler. If
enabled, poll bit 6 in master 8259A interrupt controller’s IRR (interrupt
request register) to determine if floppy generating request. If it is, jump to
and execute the floppy handler. If it isn’t, execute exception handler.

7 0Fh (15d) Parallel port one.

8 70h (112d) Alarm output of the real-time clock chip.

9 71h (113d) VGA vertical retrace interrupt.

10 72h (114d) Available for use by expansion cards.

11 73h (115d) Available for use by expansion cards.

12 74h (116d) Mouse interface.

13 75h (117d) Error output of the numeric coprocessor.

14 76h (118d) Hard drive interface.

15 77h (119d) Available for use by expansion cards.

Table 12-1: PC-Compatible IRQ Assignment (Continued)

IRQ
Line

IDT Entry Typically Used By

Protected Mode Software Architecture

190

Non-Maskable Interrupt Requests

In the PC-compatible world, the processor’s non-maskable interrupt request
input (NMI) is used to report catastrophic hardware failures (such as a system
board DRAM parity check) to the OS. The programmer may mask out the exter-
nal hardware’s ability to generate NMI by writing a one to bit seven of IO port
70h. Caution should be exercised, however, because bits [6:0] of this same IO
port are assigned to the real-time clock chip’s address port. Although bit seven
of IO port 70h can be used to block the assertion of NMI, the programmer has
no way of commanding the processor not to service an NMI request when it
detects it active.

When an NMI request is detected, the processor saves its place on the stack and
jumps to the NMI interrupt service routine pointed to by IDT entry 2. The pro-
cessor automatically disables recognition of additional NMI interrupts until the
IRET instruction is executed at the end of the NMI interrupt service routine. In
this routine, the programmer polls the various external hardware devices that
are capable of generating an NMI in order to discover the type of failure. Upon
discovering the source of the failure, a failure-specific message is typically out-
put to the display, maskable interrupts are disabled, and a HALT instruction is
executed. In response to the HALT instruction, the processor broadcasts a halt
message (to inform external logic of its intention to stop fetching and executing
instructions) using its special cycle transaction and ceases to fetch and execute
instructions.

Software-Generated Exceptions

General

Software-generated exceptions fall into two categories:

• Software exceptions generated as a result of an error condition detected
while attempting execution of an instruction. The type of error condition
defines the IDT entry that is vectored to.

• Software exceptions deliberately generated by execution of special
instruction types (INT and BOUND). Generated by the INT nn, INTO, and
INT3 instructions. Execution of an INT nn instruction vectors to entry nn in
the IDT. Execution of an INTO instruction vectors to IDT entry four if
EFlags[OF] = 1. Execution of the INT3 instruction (the breakpoint instruc-

Chapter 12: Interrupt Sources and Handling

191

tion) vectors to IDT entry three. Conditionally generated by the BOUND
instruction if the indicated array index is not within the bounds of the indi-
cated memory array (causes processor to vector to IDT entry five).

Faults, Traps, and Aborts

Prior to executing each instruction, the processor pre-evaluates the instruction
to determine if it can be safely executed without adverse effects. Problems of
this nature are referred to as software exception conditions. When such a prob-
lem is detected, the processor invokes a special exception handler routine
designed to attempt a graceful recovery from the respective exception condi-
tion. The pointer to the various exception handlers are stored in dedicated slots
in the IDT. Software exceptions are categorized as faults, traps, or aborts. These
terms are defined in Table 12-2 on page 191. Table 12-3 on page 192 defines each
software exception and identifies it as a fault, trap, or abort.

Table 12-2: Software Exception Types

Type Definition

Fault An exception reported at the start of the instruction that caused the
exception. The fault is reported with the processor restored to a
state that permits the instruction to be restarted (i.e., all registers
are restored to their original state). The return address stored in
the stack points to the instruction that caused the fault, rather
than to the next instruction.

Trap A trap is reported after the instruction that caused it has com-
pleted. The return address in the stack points to the instruction
that follows the one that caused the exception. If the trap occurs
during execution of an instruction that alters program flow (e.g., a
jump instruction), the return address points to the address that is
the target of the instruction (e.g., the address being jumped to).
When the instruction has a repeat prefix and the count has not
been exhausted, the return address points to the same instruction
and the values in the other registers related to the instruction con-
tain the values for the next iteration.

Protected Mode Software Architecture

192

Abort An abort does not always reliably supply the address of the
instruction that caused the exception. This makes it impossible for
the exception handler to fix the problem and resume program exe-
cution.

Table 12-3: Exception Categories

Level Description Type

0 Divide-by-zero attempt can be generated during execu-
tion of the DIV or IDIV instruction.

fault

1 Debug exception caused by instruction address break-
point.

fault

Debug exception caused by data address breakpoint. trap

Debug exception caused by General Detect. This occurs
when an attempt is made to use the processor’s debug
registers when they are already in use by an in-circuit
emulator (ICE).

fault

Debug exception caused by single-step. trap

Debug exception caused by task-switch breakpoint. trap

2 NMI is not a software exception. trap

3 The INT3 instruction is also referred to as the Breakpoint
instruction. Unlike the two-byte INT nn instruction, it is
one byte long.

trap

4 Generated by execution of the INTO instruction if the
EFlags[OF] is set to one. Useful because the signed and
unsigned arithmetic instructions cannot detect an over-
flow of the result.

trap

5 Generated by the BOUNDS instruction if the specified
array index is not within the bounds of the specified
memory array.

fault

Table 12-2: Software Exception Types (Continued)

Type Definition

Chapter 12: Interrupt Sources and Handling

193

6 Generated when an invalid opcode is detected upon
attempted execution of the instruction (instruction
prefetch cannot cause this exception). Also generated
when an invalid operand is used with an instruction (e.g.,
specifying a register as the target of a jump). Use of the
LOCK prefix with instructions for which locking is not
supported also causes this exception.

fault

7 Device Not Available exception is generated under two
circumstances:
• CR0[EM] = 1 (indicating that FPU is not present) and

ESC instruction encountered (i.e., a FP instruction).
This exception handler can be used to emulate float-
ing-point instruction.

• CR0[TS] = 1, CR0[MP] = 1, and WAIT or ESC instruc-
tion encountered. The floating-point unit is about to
execute an instruction associated with another task
and a task switch has occurred.

fault

8 Double-fault encountered. The processor has encoun-
tered a fault while attempting to call an exception han-
dler for a previously-encountered fault. Most of the time
this can be handled by servicing the two exceptions seri-
ally, but some combinations are unrecoverable. These
result in a double-fault exception. If a third exception
occurs while the processor is attempting to call the dou-
ble-fault handler, the processor generates a special cycle
transaction to broadcast a shutdown message and then
enters the shutdown state.

abort

9 Coprocessor segment overrun abort is reserved in post-
386 processors. Only generated by the 386/387 when a
page or segment violation is detected during the transfer
of an operand to or from memory. The Pentium and i486
processors generate exception 13h instead (general pro-
tection)

abort

10 * Invalid TSS fault. Generated if a task switch is
attempted to a task with an invalid TSS.

fault

Table 12-3: Exception Categories (Continued)

Level Description Type

Protected Mode Software Architecture

194

11 * Segment Not Present. Generated when selected segment
descriptor (CS, DS, ES, FS, GS) has P = 0. An SS descriptor
with P = 0 results in a stack exception (number 12).

fault

12 Stack exception occurs for two reasons:
• Stack underflow or overflow error (in other words,

too many pops or pushes).
• Attempt to load SS with selector for a descriptor

marked not present (P = 0).

fault

13 General Protection (GP) exception. All protection viola-
tions that don’t cause another exception cause a GP
exception.

fault or trap

14 * Page fault exception. Occurs for one the following rea-
sons:
• Page table or page is not present in memory (page

directory entry’s P = 0, or page table entry’s P = 0).
• Current program’s CPL has insufficient privilege to

access the page.

fault

15 Reserved n/a

16 Floating-point error exception. Error generated by
attempted execution of a floating-point math instruction.
Can only occur when CR0[NE] = 1.

fault

17 * Alignment Check exception. Occurs if processor
attempts a misaligned transfer and alignment checking is
enabled. Alignment checking is enabled if all of the fol-
lowing are true:
• CR0[AM] = 1
• EFlags[AC] = 1
• CPL = 3 (applications program executing)

fault

18 Machine Check exception. May or may not be imple-
mented on a processor. If implemented, cause is proces-
sor model-specific. On the Pentium processor, occurs if
the machine check exception is enabled (CR4[MCE] = 1)
and either BUSCHK# (bus check) or PEN# (parity enable)
is sampled asserted.

abort

Table 12-3: Exception Categories (Continued)

Level Description Type

Chapter 12: Interrupt Sources and Handling

195

* Note: These exceptions do not occur in real mode, but may occur in VM86
mode.

Instruction Restart

When the processor generates any of the fault exceptions, it restores all of its
registers to the state that they were in prior to the attempted execution of the
instruction. The return address pushed onto the stack by the exception is there-
fore the CS:EIP value that points to the instruction that caused the fault. This
permits the fault handler to examine the instruction in question and determine
whether or not it can correct the problem and then re-execute the instruction
successfully.

A classic example would be a page fault exception. This occurs because the tar-
get page of information is not currently present in memory. In the exception
handler, the programmer could take the following actions:

1. Read the page from mass storage into a physical page in memory
2. Create a page table entry mapping any access within the linear page to that

physical page
3. Resume execution of the interrupted program at the instruction that caused

the page fault exception.

When the instruction is re-executed, the access takes place successfully because
the target page is now present in memory.

Software Interrupt Instructions

The software interrupt instruction emulates the hardware interrupt mechanism.
Consider the following example instruction (assume that the system is a PC
running DOS):

19-31 Intel reserved. Do not use. n/a

32-255 Available for use by maskable hardware interrupts and
the INT nn instruction.

traps

Table 12-3: Exception Categories (Continued)

Level Description Type

Protected Mode Software Architecture

196

INT 13h ;call disk BIOS routine

When executed by the processor, the following events take place:

1. The processor uses the immediate operand, 13h, as an index into the IDT.
2. The processor reads the contents of IDT entry 13h (19d) from memory.
3. The processor pushes the contents of its CS, EIP and EFlags registers onto

the stack. This is necessary to save its place in the interrupted program.
4. The processor jumps to the device-specific interrupt service routine indi-

cated in the IDT entry.
5. At the end of the routine, an interrupt return (IRET) instruction is executed,

causing the processor to pop the original CS, EIP and EFlags values from
the stack and into their respective registers.

6. The processor resumes execution of the interrupted program.

Interrupt/Exception Priority
It should be fairly obvious that the processor can only execute one program at a
time. This being the case, if multiple interrupts and/or exception conditions
occurred simultaneously, the processor can only execute one handler at a time.
This means that servicing of the other conditions will have to wait. This raises
the question of how the processor selects which interrupt or exception to service
first when more than one condition occurs simultaneously. It also raises the
question of the fate of the interrupts and/or exceptions that aren’t chosen for
immediate servicing.

The x86 processor family divides the possible types of interrupts and exceptions
into five classes (listed in Table 12-4 on page 197). Class one is the highest prior-
ity group, while class five is the lowest. The processor services the exception or
interrupt from the highest class first. Lower priority exceptions are discarded,
while lower priority interrupts are held in the pending state. Discarded excep-
tion conditions are generated again when the current handler returns execution
to the point of interruption.

Chapter 12: Interrupt Sources and Handling

197

Table 12-4: Interrupt/Exception Priority

Priority Class Description

Highest

Lowest

1 Traps on previous instruction:
• breakpoint caused by execution of INT3 breakpoint

instruction.
• debug trap exceptions caused by:

• single-step enabled (EFLags[TF] = 1).
• task breakpoint encountered (TSS T bit = 1).
• Hardware breakpoint detected using debug registers.

2 External maskable or non-maskable interrupts.

3 Faults caused by fetch of next instruction:
• Code breakpoint fault via debug registers.
• Code segment limit violation (EIP exceeds segment limit).
• Page fault on prefetch.

4 Faults on decode of next instruction:
• Illegal opcode.
• Instruction length > 15 bytes (includes prefixes).
• Coprocessor not available.

5 Faults on execution of an instruction:
• General detection
• Floating-point error on previous floating-point instruc-

tion.
• Interrupt on overflow.
• Bounds check.
• Invalid TSS.
• Segment Not Present.
• Stack exception.
• GP exception.
• Data Page fault.
• Alignment check.

Protected Mode Software Architecture

198

Real Mode Interrupt/Exception Handling

Interrupt Descriptor Table (IDT) Structure

In real mode, the interrupt table resides in memory starting at location zero.
This is true because the power-on assertion of reset forces the following values
into the IDTR (IDT register):

• Base address = 00000000h. IDT starts at location zero.
• Limit = 03FFh. IDT size is 1KB.

Each IDT entry (the IDT has a fixed length of 256 entries) contains four bytes of
information (hence the length of 1KB):

• The first two bytes of the selected IDT entry are loaded into the lower part
of the EIP register when the related interrupt or exception occurs. The
upper 16 bits of EIP is set to zero.

• The second two bytes of the selected IDT entry are loaded into the CS regis-
ter.

Figure 12-1 on page 199 illustrates the structure of the IDT in real mode. It is
1KB (1024d) in length. The default start address of the IDT in memory is loca-
tion zero. In real mode, the LIDT instruction to specify a different start address
and length for the table, but this is not advisable in a PC-compatible environ-
ment. Most PC software assumes that the interrupt table starts at location zero
and expects it to be there. Execution of the LIDT instruction is permitted in real
mode so that the programmer can set up a protected mode IDT and set its start
address in the IDTR.

Chapter 12: Interrupt Sources and Handling

199

Real Mode Interrupt/Exception Handling

Refer to the descriptions under the earlier headings, “Maskable Interrupt
Requests” on page 184, “Software Interrupt Instructions” on page 195, and
“Faults, Traps, and Aborts” on page 191.

Figure 12-1: Structure of Real Mode Interrupt Table

Protected Mode Software Architecture

200

Protected Mode Interrupt/Exception Handling

General

In real mode, a single program is executing, rather than multiple programs. In
this case, all BIOS and disk services and interrupt service routines exist solely to
support the program that is executing. This being the case, there is no need to
restrict access to these services when the program executes a software interrupt
instruction.

The protected mode environment, on the other hand, exists to support multi-
tasking OSs. When the currently-executing task attempts to access a procedure
using the software interrupt instruction, the processor must check to ensure that
this program is permitted to access the target procedure. If access is denied, a
general protection exception is generated. If a hardware event (an interrupt
request) occurs, it must have a higher priority (higher privilege level) than the
currently-executing program in order to be serviced.

This implies that the processor must not only know the start address of the
interrupt table and of each interrupt service routine, but must also know the
access rights necessary to permit access to the respective interrupt service rou-
tine. This means that each entry in the interrupt table must contain a descriptor
defining the start address of the code segment that contains the interrupt ser-
vice routine; the start address, or offset, of the interrupt service routine within
the code segment; and the DPL that must be met or beaten in order to gain
access to the interrupt service routine.

Protected Mode Interrupt Descriptor Table (IDT)
Structure

Figure 12-2 on page 202 illustrates the protected mode Interrupt Descriptor
Table, or IDT. The OS programmer specifies its start memory address using the
LIDT instruction. A six byte value is loaded into the IDTR (Interrupt Descriptor
Table Register) by the LIDT instruction (can only be executed at privilege level
zero when in protected mode; but can also be executed in real mode). This con-
sists of a 32-bit base address and a 16-bit IDT size. The value in the IDTR may
also be copied to memory using the SIDT (store IDT) instruction. The IDTR for-
mat is illustrated in Figure 12-3 on page 203.

Chapter 12: Interrupt Sources and Handling

201

Although the IDT can contain up to 256d entries (one for each interrupt and
exception type), it doesn’t have to (if the system doesn’t use all of the vectors).
The limit field in the IDTR must reflect the actual length of the IDT (in other
words, if the system only uses entries 0 through 149d, the table length should be
set to 150d * 8). In protected mode, each entry in the IDT contains an eight byte
segment descriptor. When an interrupt or exception occurs, the processor cre-
ates the offset into the table by multiplying the interrupt vector (entry number)
by eight. The resulting offset is then added to the table's base address (supplied
by the IDTR) to form the start address of the descriptor entry. If the offset
exceeds the table's size (specified in the IDTR), the processor ceases to fetch
instructions, executes a shutdown transaction, and stops. If the address is
within the table's limits, the processor then reads the eight byte descriptor from
memory. Three types of descriptors may be found in the IDT:

• interrupt gate descriptor
• trap gate descriptor
• task gate descriptor

The following sections defined the purpose, format and use of each of the three
descriptor types.

Protected Mode Software Architecture

202

Figure 12-2: Interrupt Descriptor Table (IDT)

Chapter 12: Interrupt Sources and Handling

203

Interrupt Gates
General
The processor does not permit an interrupt to transfer control to a procedure in
a code segment less-privileged than the current program. To state this more suc-
cinctly, the currently-executing program cannot be interrupted by an event with
a lesser privilege level. An attempt to do so results in a general protection
exception.

An interrupt gate descriptor permits more flexibility—a program can transfer
control to an interrupt service routine if the following rules are obeyed:

• In the first part of the privilege check, the processor compares the gate's
DPL to the currently-executing program's CPL—the CPL must be equal to
or less privileged than the DPL of the interrupt gate descriptor.

• In the second part of the privilege check, the DPL of the code segment that
contains the interrupt service routine must indicate that the destination
code segment is more privileged or the same privilege as the CPL of the
currently-executing program. In other words, you can invoke an interrupt
service routine in a code segment with the same or greater level of privilege,
but not a lesser level of privilege.

Figure 12-4 on page 206 illustrates the format of an interrupt gate descriptor.
The elements are discussed in Table 12-5 on page 203.

Figure 12-3: Interrupt Descriptor Table Register (IDTR)

Table 12-5: Elements of Interrupt Gate Descriptor

Element Description

Offset 32-bit offset of the interrupt service routine within the target code
segment.

Protected Mode Software Architecture

204

Actions Taken when Interrupt Selects Interrupt Gate

When either a hardware interrupt occurs or a software interrupt instruction is
executed and an IDT entry containing an interrupt gate is selected, the follow-
ing sequence of events takes place:

1. The processor reads the interrupt vector supplied either by the 8259A inter-
rupt controller (if a hardware interrupt) or as an operand of the software
interrupt instruction.

2. The processor multiplies the vector by eight to create the offset into the IDT.
If the offset exceeds the limits of the IDT specified in the IDTR, a general
protection exception results.

3. The processor reads the eight byte descriptor from the respective IDT entry.
4. The processor compares the gate’s DPL to the currently-executing pro-

gram’s CPL. The CPL must be equal to or less privileged than the DPL of
the interrupt gate descriptor.

5. To obtain the start address and length of the code segment that contains the

Code segment
selector

The 16-bit segment selector identifies the code segment descriptor
(in either the GDT or LDT) that describes the code segment con-
taining the interrupt service routine.

X bit The X bit defines this as a 16- (X = 0) or 32-bit (X = 1) interrupt gate
descriptor.

S bit The System bit must be set to zero, indicating that this descriptor
defines a special system segment.

Byte 5[2:0] In combination with S = 0, 110b indicates that this is an interrupt
gate descriptor. The X bit further defines this as a 16- or 32-bit
interrupt gate descriptor. The format shown in Figure 12-4 on page
206 is that of a 32-bit descriptor. Bytes 6 and 7 are reserved in a 16-
bit (i.e., a 286) interrupt gate descriptor.

DPL The CPL of the currently-executing program must meet or beat the
gate’s DPL (descriptor privilege level) and must reside at a lower
privilege level than the target code segment.

P bit The segment Present bit must be set to one or a segment not
present exception is generated.

Table 12-5: Elements of Interrupt Gate Descriptor (Continued)

Element Description

Chapter 12: Interrupt Sources and Handling

205

interrupt or exception handler, the processor reads the eight byte descriptor
from the table entry (in either the LDT or the GDT) indicated by the code
segment selector field of the interrupt gate descriptor.

6. The processor performs the second part of the privilege check. The target
code segment’s DPL must indicate that the destination code segment is
more privileged or the same privilege as that of the CPL of the interrupted
program.

7. The jump to the interrupt service routine is permitted if both privilege level
tests were passed. The contents of the EFlags, CS and EIP registers are
pushed onto the stack to save a pointer to the interrupted program.

8. The processor clears EFlags[IF]. This blocks recognition of hardware-initi-
ated, maskable interrupts requests. In addition, the processor clears
EFlags[TF]. This disables a debugger’s ability to single-step through an
interrupt service routine (so single-step interrupts will not interfere with the
timeliness of interrupt servicing).

9. The processor moves the start address of the target code segment into the
invisible part of the code segment cache register. It moves the offset of the
interrupt service routine into the EIP register.

10. The processor fetches its next instruction from the address pointed to by
CS:EIP—the first instruction of the target interrupt service routine.

11. The body of the interrupt service routine is executed to service the request.
12. If this is a hardware interrupt service routine, an end-of-interrupt (EOI)

command is issued to the 8259A interrupt controller by the programmer. If
servicing an interrupt request in the range for IRQ8 through IRQ15, an EOI
must be issued to both the master and the slave interrupt controllers.

13. The IRET instruction is executed at the end of the routine, causing the orig-
inal values of the CS, EIP and EFlags registers to be reloaded from the stack.

14. The interrupted program resumes at the point of interruption.

Protected Mode Software Architecture

206

Figure 12-4: 32-bit Interrupt Gate Descriptor Format

Chapter 12: Interrupt Sources and Handling

207

Trap Gates

The difference between an interrupt gate and a trap gate is the treatment of
EFLags[IF]:

• When an interrupt or exception selects an IDT entry containing an interrupt
gate, EFlags[IF] is cleared after EFlags is pushed onto the stack. This pre-
vents the interrupt/exception handler from being interrupted by a
maskable interrupt.

• When an interrupt or exception selects an IDT entry containing a trap gate,
EFlags[IF] is not cleared after EFlags is pushed onto the stack. If EFlags[IF]
was set when the interrupt or exception is detected, the interrupt/exception
handler will continue to recognize maskable interrupts.

The trap gate format is illustrated in Figure 12-5 on page 208.

Protected Mode Software Architecture

208

Figure 12-5: Trap Gate Format

Chapter 12: Interrupt Sources and Handling

209

Using Procedure as Interrupt/Exception Handler

When an interrupt or exception selects an IDT entry that contains an interrupt
or a trap gate descriptor, the interrupt/exception handler pointed to by the
descriptor is called as if a CALL instruction had been used. This section defines
the processor actions taken in calling the handler and in returning to the inter-
rupted program.

State Save

Before jumping to the interrupt/exception handler, the processor saves state
information on the stack. At a minimum, this state information consists of the
return address (in the form of the CS:EIP contents) and the processor’s opera-
tional status (contents of EFlags register). Other factors include whether the
handler resides at a higher privilege level than the interrupted program and
whether or not the exception pushes an error code (see “Exception Error Codes”
on page 215) onto the stack. The four possible cases are listed in Table 12-6 on
page 209.

Table 12-6: Interrupt/Exception Handler State Save Cases

Case Description

Same privilege level with-
out error code

The only items pushed onto the stack are the EFlags, CS and EIP reg-
ister contents (see Figure 12-6 on page 210). The target handler
resides at the same privilege level as the interrupted program, so the
interrupted program’s stack contents aren’t copied to the handler’s
stack (i.e., the current stack is used). In this case, the interrupt/
exception does not supply an error code to the handler.

Privilege level switch
without error code

The items pushed onto the stack are SS, ESP, EFlags, CS and EIP. The
interrupt handler resides at a higher privilege level than the inter-
rupted program (DPL < CPL), so the processor uses the stack for the
handler’s privilege level (rather than the interrupted program’s
stack) to save the pointer to the old stack (SS:ESP), EFlags, CS and
EIP. The pointer to the new stack is obtained from the current TSS.
Depending on the privilege level of the handler, it consists of either
SS0:ESP0, SS1:ESP1, or SS2:ESP2. The stack switch process is
described in the section entitled “Automatic Stack Switch” on
page 122. Figure 12-7 on page 211 illustrates the contents of the han-
dler’s stack upon entry to the handler.

Protected Mode Software Architecture

210

Same privilege level with
error code

The items pushed onto the stack are the EFlags, CS and EIP register
contents (see Figure 12-8 on page 211). In addition, the 32-bit, excep-
tion-specific error code is pushed onto the stack. The target handler
resides at the same privilege level as the interrupted program, so
there is no need to copy the interrupted program’s stack contents to
the handler’s stack (i.e., the current stack is used). In this case, the
interrupt/exception does supply an error code to the handler.

Privilege level switch with
error code

The items pushed onto the stack are SS, ESP, EFlags, CS and EIP. In
addition, the 32-bit, exception-specific error code is pushed onto the
stack. The interrupt handler resides at a higher privilege level than
the interrupted program (DPL < CPL), so the processor must use the
stack for the handler’s privilege level (rather than the interrupted
program’s stack) to save the pointer to the old stack (SS:ESP), EFlags,
CS, EIP and the error code. The pointer to the new stack is obtained
from the current TSS. Depending on the privilege level of the han-
dler, it consists of either SS0:ESP0, SS1:ESP1, or SS2:ESP2. The stack
switch process is described in the section entitled “Automatic Stack
Switch” on page 122. Figure 12-9 on page 211 illustrates the contents
of the handler’s stack upon entry to the handler.

Figure 12-6: Same Privilege Level and No Error Code

Table 12-6: Interrupt/Exception Handler State Save Cases (Continued)

Case Description

Chapter 12: Interrupt Sources and Handling

211

Figure 12-7: Privilege Level Switch without Error Code

Figure 12-8: Same Privilege Level with Error Code

Figure 12-9: Privilege Level Switch with Error Code

Protected Mode Software Architecture

212

Jump to Handler

Instruction execution is transferred to the handler. The target address is formed
as follows:

• The offset supplied by the descriptor in the IDT is placed into EIP.
• The code segment selector supplied from the interrupt or trap gate descrip-

tor is placed into CS.

The processor begins fetching and executing the handler.

Return to Interrupted Program

At the conclusion of the handler, the last instruction must be an IRET (interrupt
return). When executed, it returns program execution to the interrupted pro-
gram at the point of interruption. Depending on whether the interrupt/excep-
tion was a fault or a trap, execution of the interrupted program resumes by
either re-executing the instruction that caused the exception (in the case of a
fault), or executing the next instruction (in the case of a hardware interrupt or a
trap).

Returning to Same Privilege Level. If there wasn’t a privilege level
change, the IRET causes the old CS, EIP and EFlags to be popped from the stack
back into their respective registers. The processor then resumes execution of the
interrupted program using the original CS:EIP values. It should be noted that
the EFlags[IOPL] register field is only restored if the CPL is zero, and the IF bit
is only changed if the CPL meets or beats the IOPL.

Returning to Different Privilege Level. If there was a privilege level
change, the IRET causes the processor to take the following actions:

1. Before restoring the original contents of the CS, EIP, SS, ESP and EFlags reg-
isters from the handler’s stack, an integrity check is performed on the val-
ues to ensure they make sense (e.g., CS selects valid code segment, EIP
wouldn’t exceed code segment limit, etc.). If any of the integrity tests fail,
the appropriate exception is generated.

2. Assuming that they pass the integrity check, the values are copied into their
respective registers from the handler’s stack. It should be noted that the
EFlags[IOPL] register field is only restored if the CPL is zero, and the IF bit
is only changed if the CPL meets or beats the IOPL.

3. Execution of the interrupted program resumes.

Chapter 12: Interrupt Sources and Handling

213

Using Task as Interrupt/Exception Handler

The OS programmer may wish to use a separate task (rather than a handler
within the same task) to service an interrupt or exception. This is accomplished
by supplying a task gate in the IDT entry that corresponds to the interrupt or
exception. The task gate takes the form illustrated in Figure 12-10 on page 214.
When the interrupt or exception event occurs, the processor indexes into the
IDT and reads the descriptor. If it is a task gate descriptor, the processor exe-
cutes a task switch. Task switching is discussed in detail in the chapter entitled
“Mechanics of a Task Switch” on page 157.

When an interrupt causes a task switch, the processor saves the entire processor
context (i.e., its register set) in the interrupted task's TSS and then switches to
the interrupt (or exception) handler task by loading the register set from the
handler's TSS. The EFlags[NT] (Nested Task) bit is set to one. In performing the
task switch, the processor also stores the 16-bit selector for the interrupted task's
TSS in the Link entry in the handler's TSS. At the conclusion of handler execu-
tion, the last instruction in the handler task is an IRET. When the IRET is exe-
cuted by the processor with EFlags[NT] set, the processor reloads the TR with
the TSS selector (obtained from the handler’s TSS Link field) for the task that
was interrupted. This causes a task switch back to the interrupted task and the
reloading of EFlags with its original value turns off the NT bit.

Protected Mode Software Architecture

214

Figure 12-10: Task Gate Format

Chapter 12: Interrupt Sources and Handling

215

Interrupt/Exception Handling in VM86 Mode

For a discussion of interrupt and exception handling when the processor is
operating in virtual 8086 mode, refer to the chapter entitled “Virtual 8086
Mode” on page 265.

Exception Error Codes

The processor pushes a 32-bit error code (if the current code segment’s default
operand size is 16-bits, it’s a 16-bit error code) onto the stack for certain types of
software exception conditions. Table 12-7 on page 215 lists the exceptions that
return error codes. The format of the error code is shown in Figure 12-11 on
page 216. The error code indicates the following:

• Sets the EXT bit if an event external to the program caused the error. As an
example, EXT = 1 if a hardware interrupt selected a task gate pointing to an
invalid TSS selector in the IDT.

• Sets the IDT bit if the error is associated with an entry in the IDT. In this
case, the Selector Index field indicates the IDT entry in question.

• A zero in the IDT bit indicates that the error is associated with an entry in
the LDT or GDT. The state of the TI (Table Indicator) bit then indicates
whether the entry in question resides in the GDT (TI = 0), or LDT (TI = 1).
The Selector Index field indicates the table entry in question.

Table 12-7: Exceptions that Return Error Codes

Exception Vector Is Error Code Standard Format?

Double-fault 8 No. Always 00000000h.

Invalid TSS 10 Yes.

Segment not present 11 Yes.

Stack fault 12 Yes.

GP exception 13 Yes.

Page fault 14 Special format (see Figure 12-12 on page
216).

Alignment check 17 No. Always 00000000h.

Protected Mode Software Architecture

216

Resume Flag Prevents Multiple Debug Exceptions

When a debug instruction breakpoint exception occurs, the processors jumps to
the debugger’s exception handler. Because this exception is a fault, the CS:EIP
return address value on the stack points to the instruction that caused the
exception, rather than to the instruction that follows it. In the handler, the break-
point is reported to the programmer. If the programmer chooses to resume the
interrupted program and executes an IRET rather than an IRETD (interrupt
return from debugger), execution of the interrupted program resumes at the
same instruction and the same exception is generated again.

To prevent this, the exception handler should set the EFlags[RF] (resume flag)
bit in the EFlags image on the stack. In addition, an IRETD rather than an IRET
should be executed at the end of the exception handler. When the IRETD is exe-
cuted, the processor loads the EFlags register from the stack, thus setting the

Machine check 18 Processor model-dependent.

Figure 12-11: Error Code Format

Figure 12-12: Page Fault Error Code Format

Table 12-7: Exceptions that Return Error Codes (Continued)

Exception Vector Is Error Code Standard Format?

Chapter 12: Interrupt Sources and Handling

217

EFlags[RF] bit. Execution of IRETD with RF set causes the processor to resume
execution of the interrupted program at the instruction that caused the excep-
tion, but not generate the instruction address breakpoint exception again.

Special Case—Interrupts Disabled While Updating SS:ESP

The Problem

Assume that the programmer executes the following code to switch to a differ-
ent stack:

MOV SS,AX ;move new value into SS
MOV ESP, StackTop ;move new top-of-stack offset into ESP

Now assume that the processor is interrupted after execution of the first move
but before the second begins execution. When the processor pushes the CS, EIP
and EFlags values onto the stack, it will be using the new stack segment
descriptor to obtain the stack base address and the old ESP value—in other
words, you’ve got a mess on your hands.

The Solution

To prevent this problem, x86 processors automatically inhibit recognition of
interrupts and debug exceptions after either a move to SS or a pop to SS instruc-
tion until the instruction boundary following the next instruction is reached. If
the LSS (load full pointer into SS) instruction is used (instead of two moves),
this problem does not occur. The double-move method is often used, however.

219

13 Virtual Paging

The Previous Chapter
The previous chapter provided a detailed description of interrupt and exception
handling in real and protected modes.

This Chapter
This chapter provides a detailed description of the processor’s virtual paging
mechanism. It discusses linear vs. physical addresses, the page directory, page
directory entries, page tables, page table entries, page faults, the translation
lookaside buffers, and Pentium paging extensions.

The Next Chapter
The next chapter describes how the x86 processor may be set up to operate as if
segmentation does not exist. Memory appears to be a single linear array 4GB in
size, rather than being subdivided into many segments of various sizes. Protec-
tion is implemented via the paging unit rather than using segmentation.

Pentium Pro Paging Extensions
For a detailed description of the paging enhancements implemented in the Pen-
tium Pro processor, refer to the MindShare book entitled Pentium Pro Processor
System Architecture (published by Addison-Wesley).

Problem—Loading Entire Task in Memory is Wasteful
Consider the following scenario:

1. A machine has 16MB of RAM memory.
2. The power-on self-test completes and the boot program reads (i.e., boots)

the OS loader into memory.
3. The OS loader reads the entire OS into memory, consuming 6MB of mem-

ory. The OS is a multitasking OS, permitting the end user to start multiple
programs. The OS rapidly timeslices between them, giving the appearance
that all of the programs run simultaneously.

4. The user tells the OS to start a word processing program. In response, the

Protected Mode Software Architecture

220

OS loads the entire program into memory, consuming 2.5MB of memory.
5. The user starts three more programs, each of which is loaded in its entirety

into memory, consuming an additional 7MB of memory.
6. 15.5MB of memory is now in use and only .5MB remains free. The user

attempts to start another program, causing the OS to respond that there is
insufficient memory.

In this scenario, both the OS loader and the OS task manager manage the pool
of free memory in a very inefficient fashion. The entire OS is loaded into mem-
ory even though large portions of the OS code may never be required during
the current work session. Every time the user starts a program, the OS loads the
entire program into memory. Once again, large portions of the application’s
code may never be required during the current work session. As an example,
Word for Windows 6.0 implements hundreds of features, most of which are
never called upon during a typical work session.

Solution—Load Part and Keep Remainder on Disk

Load on Demand
The OS loader should be designed to load only the portions of the OS:

• that are necessary to initiate applications programs
• that are used very frequently and must always reside in memory in order to

yield good performance.

The remainder of the OS should be kept on disk until it is required.

Likewise, the OS applications program loader should be designed to load only
enough of an applications program into memory to get it started. Additional
portions of the applications program should only be read into memory upon
demand.

Track Usage

After a portion of the OS or an application program has been loaded into mem-
ory, the OS should track how long it has been since the information was last
used. If it hasn’t been used for quite a while, the OS should eliminate it from
memory. In the event that some of the information has been updated since it
was read from disk, the OS should swap it back to disk before eliminating it
from memory.

Chapter 13: Virtual Paging

221

Capabilities Required

In order to implement the capabilities just discussed, the OS must have the fol-
lowing capabilities:

• Whenever an instruction (or the instruction prefetcher) initiates a memory
code or data access, the processor must in some manner quickly determine
if the target information is already in memory (and, if so, where). If it isn’t
in memory, the processor must be able to quickly determine the mass stor-
age address of the required information so it can load it into memory to be
accessed by the current program.

• The processor must have some way of determining if the block of informa-
tion has been accessed since it was placed in memory, and, if so, was it
changed (i.e., written to).

• Although not mentioned in the preceding discussion, it would also be nice
if the processor could determine:
• if the currently-executing program is permitted access to the informa-

tion (i.e., it has sufficient privilege).
• if the currently-executing program is permitted to write to the targeted

area.

Problem—Running Two (or more) DOS Programs

Applications programs designed for the DOS environment are written using
8088 code and only access information in the first 1MB of memory space (i.e.,
from 00000000h through 000FFFFFh). Furthermore, each DOS application
believes itself to be the only program executing and, as long as it doesn’t man-
gle the OS (which also resides in the first 1MB area), it can access any location
within the first 1MB of memory space.

If a multitasking OS were to load two or more DOS applications programs into
the first 1MB of memory, the second one loaded would almost certainly over-
write a portion of the first one (thereby rendering it useless). Even if they occu-
pied mutually-exclusive areas of the first 1MB (highly unlikely), each of the
programs would feel free to build (i.e., write) data structures in the memory
areas occupied by the other program(s).

In a word, anarchy!

Protected Mode Software Architecture

222

Solution—Redirect Memory Accesses to Separate Mem-
ory Areas

The OS can multitask multiple DOS applications by taking the following pre-
cautions:

• Load each DOS application program into a separate 1MB area of memory.
• When a DOS program is executing, it only generates memory accesses

within the first 1MB of memory. Since it actually resides in a different 1MB
area other than the first MB, the processor must automatically redirect each
of its memory accesses to the 1MB area that it really resides in.

Global Solution—Map Linear Address to Disk Address or
to Different Physical Memory Address

Both of the problems discussed earlier are solved by treating the memory
address generated for each code or data access as a logical, or intermediate,
address. The processor then translates (or redirects) the address into one of the
following:

• a physical disk address. The OS programmer then reads the block of infor-
mation from the specified disk device into an available block of RAM mem-
ory. The original memory access is then reattempted and the processor
redirects the access to the block of memory that contains the information.

• a physical memory address. The processor substitutes the actual physical
location of the information for the logical address submitted by the pro-
gram.

In both cases, the program that initiated the memory read or write access is
unaware of the fact that the memory address it generated has been redirected to
somewhere else. All it knows is that it is permitted to access the desired item of
information.

Paging Unit Is the Translator

The processor’s paging unit makes both forms of address translation possible. It
intercepts the logical memory address (referred to as the linear address by Intel)
generated by the currently-executing program and converts it to a different
memory address.

Chapter 13: Virtual Paging

223

Linear Memory Space Divided into 1M 4KB Pages

In protected mode, the currently-executing program can generate memory
accesses anywhere within the 4GB range from 00000000h through FFFFFFFFh.
When the processor’s paging unit is enabled, the memory address generated by
the currently-executing program is called the linear address. From the paging
unit’s point-of-view, the 4GB linear space available to the currently-executing
program is subdivided into 4KB (4096d locations) pages. When the page size is
divided into the overall size of linear space, 4GB, there are 1M (220) linear pages.
By definition, then, any memory access targets a location within one of these
linear pages.

• The upper 20 bits of the linear address identify the linear page (1-of-1M).
• The lower 12 bits identify the exact target location (1-of-4096d) within the

page.

Physical Memory Space Divided into 1M 4KB Pages

The processor’s external address bus (on the 386, 486, and Pentium processors)
consists of 32 address signal lines. This permits the processor to address any
location in external memory from 00000000h through FFFFFFFFh, a 4GB range.
This is referred to as physical memory space. As with linear memory space, the
processor’s paging unit views the 4GB physical memory space as consisting of
1M 4KB pages.

Mass Storage Space Divided into 4KB Pages

An OS that implements paging considers all of the information on mass storage
devices as being divided into 4KB pages of information. As an example, a 1GB
hard drive can be viewed as 256K pages of information.

Paging Unit Uses Directory to Remap Address

The upper 20 bits of the linear memory address identify the target linear page.
Using the linear page address (1-of-1M pages), the paging unit must perform a
lookup in a directory to determine the current location of the physical page (in
physical memory or on a mass storage device). Since the linear page can be
mapped to any of 1M physical memory pages, it would appear that the proces-

Protected Mode Software Architecture

224

sor must maintain a directory with 1M entries. Each entry maps one linear page
to its corresponding page in physical memory or to a page on a mass storage
device. It should be fairly obvious that a table of this size cannot be kept in the
processor itself. It is kept in memory.

Three Possible Page Lookup Methods

When a 32-bit linear memory address is submitted to the paging unit, the pag-
ing unit must somehow scan the directory in memory to determine where the
page of information currently resides in physical memory or on a mass storage
device. The sections that follow describe three possible methods that the proces-
sor’s paging unit could perform the directory table scan.

First Method: Sequential Scan through Large Table

Using this method, the paging unit starts at the first directory entry and com-
pares the target linear address to every entry looking for a match. If the last
entry is reached without a match, the page isn’t currently in memory. This
method has the following characteristics:

• each entry contains a complete 20-bit linear page address and the corre-
sponding 20-bit physical page address that it is mapped to. In addition,
there would be a Page Present bit to indicate whether or not the page is cur-
rently in physical memory. In all, each entry is 41 bits in length (5 bytes plus
one bit of another byte).

• the entire table (containing 1M entries) is resident in memory all the time.
The table alone consumes approximately 5MB of memory (just to keep
track of the pages of information currently in memory).

• the amount of time necessary to determine that a page of information isn’t
currently in memory would be colossal.

Second Method: Index into Large Table

Use the 20-bit linear page address as a 20-bit table index to select a directory
entry to compare against. Since only this specific linear page address would
select this table entry, it wouldn’t be necessary to store the 20-bit linear address
in the entry. It’s only necessary to store the physical page address it’s mapped
to, and to have a Page Present bit indicating whether the page currently resides
in physical memory. This method has the following characteristics:

Chapter 13: Virtual Paging

225

• As a positive, it’s fast. The paging unit only has to read one entry to deter-
mine if the page is in physical memory and, if so, where.

• As another positive, each table entry only contains 21 bits: 20 to hold the
physical page address and a Page Present bit.

• As a negative (and a large one), the entire 1M entry table has to be memory
resident (consuming 1M x 21 bits/entry = approximately 3MB).

Third Method: Index into a Selected Small Table

The fast lookup provided by the previous method would be ideal if the table
consumed considerably less memory. Consider a variation that has the follow-
ing characteristics:

• From the perspective of the paging unit, a 32-bit linear address is viewed as
illustrated in Figure 13-1 on page 226.

• The 4GB of linear memory space is divided into 1M 4KB pages grouped
into 1024d page groups (see Figure 13-2 on page 227).

• Each page group contains 1024d linear pages (see Figure 13-3 on page 228).
• Each page group has its own directory consisting of 1024d entries. There

can be 1024d page group directories.
• Each entry in a page group directory contains the location of the respective

page (in physical memory or on disk) that the associated linear page is
mapped to.

• At a given moment in time, only some of the page group directories are
resident in memory, while the remainder reside on disk. The disk-resident
page group directories are only loaded into memory on an as-needed basis.

• The paging unit’s master directory in memory identifies the page group
directories currently in memory, as well as those that are still on disk.

• Each entry in the master directory contains a page group directory present
bit indicating whether the respective page group directory is present in
physical memory and, if so, where (i.e., the start physical memory address
of the respective page group directory).

• Each entry in a page group directory contains a page present bit indicating
whether the respective page is present in physical memory and, if so, where
(i.e., the start physical memory address of the associated page).

Whenever the currently-executing program must perform a memory access, the
32-bit linear address is submitted to the paging unit and the following actions
are taken to remap the access to the correct physical memory page:

Protected Mode Software Architecture

226

1. The upper 10 bits of the address identifies the page group and selects one
of the 1024d master directory entries. In other words, they select the page
group directory that keeps track of the physical location of each of the
1024d pages that comprise the target page group.

2. Assuming that the selected master directory entry’s Present bit = 1, the
selected page group directory is present in memory and its start physical
address is obtained from the selected master directory entry.

3. The middle 10 bits of the address identifies one of the 1024d pages within
the selected page group. It selects the entry within the page group direc-
tory that identifies the location of the respective 4KB page.

4. Assuming that page present = 1 in the selected page group directory entry,
the target 4KB page is present in physical memory and the 20-bit start phys-
ical address of the page is obtained from the selected page group directory
entry.

5. The paging unit forms the 32-bit physical memory address in the following
manner:
• The upper 20 bits (the 20-bit physical page address) is obtained from

the selected entry in the selected page group directory.
• The lower 12 bits of the linear address become the lower 12 bits of the

physical memory address. This part of the linear address is never trans-
lated. It identifies the target location within the 4096d locations that
comprise the 4KB page.

Figure 13-1: Paging Unit’s View of 32-bit Linear Address

Chapter 13: Virtual Paging

227

Figure 13-2: 4GB Linear Memory Space Divided into 1024d Page Groups

Protected Mode Software Architecture

228

x86 Page Lookup Method

The method described in the previous section is the one implemented by post-
286 processors. The pre-386 processors did not have paging capability. The sec-
tions that follow provide a detailed description of the x86 paging method.

Figure 13-3: Each Page Group Consists of 1024d 4KB Pages

Chapter 13: Virtual Paging

229

Enabling Paging

The x86 processor’s paging unit is only enabled by an OS that makes use of pag-
ing. Before enabling the paging unit, the OS programmer must create a mini-
mum of two tables in memory:

• One is the master directory, referred to as the page directory. Each entry in
the page directory points to a page group directory.

• The other is a page group directory, referred to as a page table. Each entry
in a page table points to a physical page in memory.

Each page table can identify the physical location of up to 1024d linear pages,
each containing 4KB of information (in other words, a total of 4MB of informa-
tion).

After creating the tables in memory, the OS must store the physical base address
of the master table, referred to as the page directory, in CR3. The upper 20 bits of
the 32-bit physical base address are stored in CR3[31:11]. The lower 12 bits of
the base address are assumed to be zero. The page directory must start on a 4KB
address boundary. Figure 13-4 on page 229 illustrates the format of CR3.

The OS enables the paging function by setting CR0[PG] to one. Figure 13-5 on
page 230 illustrates CR0. From that point forward, the paging unit intercepts all
32-bit linear memory addresses generated by the segment unit and performs its
redirection function.

Figure 13-4: Control Register 3 (CR3)

Protected Mode Software Architecture

230

Page Directory and Page Tables

The paging unit’s page directory contains 1024d 32-bit entries, each of which
may contain the base address of a page table in memory. In addition, each entry
contains a page table present bit that indicates if the respective page table is cur-
rently present in memory.

Each page table, in turn, contains 1024d 32-bit entries, each of which defines the
physical location of a 4KB page of information:

• in physical memory (by specifying its base address), or
• its location on a mass storage device.

Each page table entry contains a page present bit to indicate whether the page of
information is currently present in memory or not. If it is, the upper part of the
entry contains the 20-bit, 4KB-aligned base address of the page in physical
memory. If the page isn't present in memory, the upper part of the page table
entry (bits [31:1]) can contain a mass storage address. Figure 13-6 on page 231
illustrates the relationship of the page directory, page tables and pages of infor-
mation. CR3 identifies the base physical address of the Page Directory.

Figure 13-5: Control Register 0 (CR0)

Chapter 13: Virtual Paging

231

Figure 13-6: Page Directory, Page Tables and Pages

P
PP
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
PP

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
PP
P

P
P
P
P
P
P
PP
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

P
P
P
P
P
P
P
P
P
PP
P
P
P
P
P

Protected Mode Software Architecture

232

Finding Location of Physical Page

Find the Page Table First
Refer to Figure 13-10 on page 237 during the following discussion. When the 32-
bit linear address is supplied to the paging unit by the segment unit, the upper
ten bits, [31:22], identify the target page group. The 10-bit group number is used
to index into the page directory, selecting 1-of-1024d page group tables. Since
each page directory entry is four bytes long, the paging unit multiplies the
index by four to create the offset into the page directory. It then adds the result-
ing offset to the page directory base address (from CR3) to create the start
address of the page directory entry in physical memory. The entry is read from
memory and the page group table present bit (bit zero) is tested to determine if
the target page group table is present in memory.

When Target Page Table Is in Memory
The paging unit interprets the page directory entry as illustrated in Figure 13-7
on page 235. Table 13-1 on page 232 describes each element of the page direc-
tory entry. P = 1 indicates that the page table is in memory, and PS = 0 indicates
that the selected page directory entry contains the physical base address of a
page table in bits [31:12] (rather than the base address of a 4MB page). 4MB
pages are covered later in this chapter in the section entitled “4MB Pages” on
page 257.

If P = 0, the page table is not present in memory. The actions taken by the paging
unit are covered in the section entitled “When Target Page Table Isn’t in Mem-
ory” on page 235.

Assuming that the proper page table has been located, the paging unit must
access it to discover the location of the physical page. This topic is covered in
the section entitled “Find the Page Using an Entry in Page Table” on page 238.

Table 13-1: Page Directory Entry Format

Field Description

P bit P = 1 if the page table is present in memory. If P = 0, the
page table is on a mass storage device and bits [31:1] of
the entry can be used by the OS to indicate the mass stor-
age address.

Chapter 13: Virtual Paging

233

W bit W = 1 if the page table is considered read/writable. When
W = 0, the page table can be read (but cannot be written)
by applications programs (executing at privilege level 3).
The later versions of the 486 and all versions of the Pen-
tium processor implement CR0[WP]. When CR0[WP] = 0,
programs executing at the supervisor level (privilege lev-
els, 0, 1, or 2) can both read and write all pages (regardless
of the state of a page’s W bit). When CR0[WP] = 1, pages
with W = 0 can only be read by both applications and
supervisor-level programs. Any attempt to write to a
write-protected page when not permitted results in a GP
exception.

U/S bit U/S (user/supervisor) = 0 when access to the page table is
restricted to programs executing at privilege levels 0, 1, or
2. When U/S = 1, the page table can be accessed by any
program.

PWT bit When Page Write-Through (PWT) = 1, the processor's
(later versions of the 486 and all versions of the Pentium)
internal and external cache controllers use a write-
through policy when dealing with memory writes within
the page table defined by this entry. This means that, on
an internal cache hit, the new data is written into the
internal cache and a memory write transaction is initiated
to write the data to the external cache and system RAM
memory. The processor's PWT output is asserted during
the memory write bus cycle to instruct the external cache
to write the data through to system RAM memory.
When PWT = 0, a write-back policy is used to handle
memory writes within the page of information defined by
this entry. On an internal cache hit, the data is updated in
the cache but isn’t written to the external cache and sys-
tem RAM memory. For a detailed discussion of write-back
cache operation, refer to the MindShare books entitled
Pentium Processor System Architecture and ISA System
Architecture, both published by Addison-Wesley.

Table 13-1: Page Directory Entry Format (Continued)

Field Description

Protected Mode Software Architecture

234

PCD bit When Page Cache Disable (PCD) = 1, the processor (later
versions of the 486 and all versions of the Pentium)
doesn’t cache information from the page table pointed to
by this entry. In addition, when the processor initiates a
memory read or write transaction within this page table, it
asserts its PCD output, instructing the external cache not
to cache information from this address.
PCD = 0 permits the processor to perform cache lookups,
and, in the event of a cache miss, to cache the line from
external memory. The processor’s PCD output is deass-
serted during the cache line fill, giving the external cache
permission to cache the line as well.

A bit The processor automatically sets A (accessed) = 1 on any
read or write access to the page table defined by this page
directory entry. Once, set, the processor doesn't automati-
cally clear this bit. This is the OS programmer's responsi-
bility.

PS bit PS (page size) = 0 indicates that the page directory entry
points to a page table, while PS = 1 indicates that it points
to a 4MB page. See the discussion of 4MB paging in the
section entitled “4MB Pages” on page 257 for more infor-
mation.

Avail This 3-bit field is available to the OS for usage. It can be
used to define additional, OS-specific page table
attributes.

Page Table base address The upper 20 bits of the selected page table’s base physi-
cal memory address is stored in bits [31:12].

Table 13-1: Page Directory Entry Format (Continued)

Field Description

Chapter 13: Virtual Paging

235

When Target Page Table Isn’t in Memory
If P = 0 in the selected page directory entry, the target page table isn’t currently
in memory. This results in a page fault exception. The return address pushed
onto the stack points to the instruction that submitted the 32-bit linear address
to the paging unit. The processor latches the linear address into CR2, the Page
Fault Address register (see Figure 13-8 on page 236), so that it may be examined
by the OS’s page fault exception handler. The following actions are taken:

1. The 32-bit linear address is stored in the Page Fault register, CR2 (see Figure
13-8 on page 236).

2. The processor generates a Page Fault exception and jumps through entry
14d (0Eh) in the IDT to the Page Fault exception handler routine.

3. The programmer reads the linear address that caused the Page Fault from
CR2.

4. The upper 10 bits identifies the page table that needs to be read from disk to
memory.

5. The OS may use the upper 10 bits (i.e., the page table ID) to index into the
page directory and read the entry that caused the Page Fault. This entry
could specify the mass storage address where the target page table resides
(see Figure 13-9 on page 236).

Figure 13-7: Page Directory Entry Format

Protected Mode Software Architecture

236

6. A memory allocation call is made to the OS requesting the start address of
an available 4KB block of physical memory.

7. A request is issued to the mass storage device driver to perform a 4KB read
from the specified mass storage device into the memory buffer allocated for
this purpose.

8. When the mass storage read has completed (signaled by a hardware inter-
rupt) and the page table is resident in memory, the programmer inserts the
page table base address into the page directory entry, the page table present
bit is set to one, the writable bit is set to zero to protect the table from write
attempts, the user/supervisor bit is set to zero to protect the table from
accesses by applications programs, and the accessed bit is set to one to indi-
cate that the table has been accessed.

9. The last instruction executed in the page fault handler is the IRET instruc-
tion. This causes the processor to pop the return address into CS:EIP from
the stack and to resume execution at the same instruction that caused the
page table fault.

10. The same 32-bit linear address is submitted to the paging unit for a lookup
in the page directory. The same page directory entry is selected, but this
time P = 1, indicating that the page table is in memory and its base address
is contained in bits [31:12] of the page directory entry.

Now that the proper page table has been located in memory, the paging unit
must access it to discover the location of the physical page. This topic is covered
in the section entitled “Find the Page Using an Entry in Page Table” on
page 238.

Figure 13-8: Page Fault Register (CR2)

Figure 13-9: Page Directory (or Page Table) Entry when Page Table (or page) not Present in
Memory

031

0Mass Storage Address

1

Chapter 13: Virtual Paging

237

Figure 13-10: Page Table Lookup Mechanism

P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP

P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP

P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P

P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP
P
PP

Protected Mode Software Architecture

238

Find the Page Using an Entry in Page Table

Now that the correct page table has been located (see “Find the Page Table
First” on page 232), the table must be accessed to obtain the location of the
physical page in memory that the linear page is mapped to. The base address of
the page table was obtained from the page directory entry (see Figure 13-7 on
page 235). The middle 10 bits of the linear address identifies the page (1-of-
1024d) within the page group and the corresponding entry in the page group’s
directory. The processor’s paging unit indexes into the page table by multiply-
ing the 10-bit page number by four (because there are four bytes per entry). The
resulting offset is added to the table’s base address to obtain the start physical
memory address of the page table entry for the target page. Figure 13-11 on
page 240 illustrates the page table entry associated with a page. The paging unit
checks the P bit (page present) to determine if the physical page is currently in
memory. The two sections that follow describe the actions taken when the page
is in memory versus when it’s not in memory.

When Target Page Is in Memory

When P = 1, the target physical page is in memory. It starts at the 4KB-aligned
base address indicated in the entry’s base address field. The paging unit creates
the exact 32-bit address of the physical location in the page as follows:

• the upper 20 bits are obtained from the entry’s base address field
• the lower 12 bits are supplied directly by the lower 12 bits of the 32-bit lin-

ear address

This 32-bit address is submitted to the processor’s code or data cache for a
lookup.

When Target Page Isn’t in Memory

If P = 0 in the selected page table entry, the target page isn’t currently in mem-
ory. This results in a page fault exception. The return address pushed onto the
stack points to the instruction that submitted the 32-bit linear address to the
paging unit. The processor latches the linear address into CR2, the Page Fault
Address register (see Figure 13-8 on page 236), so that it may be examined by
the OS’s page fault exception handler. The following actions are taken:

1. The 32-bit linear address is stored in the Page Fault register, CR2 (see Figure
13-8 on page 236).

2. The processor generates a Page Fault exception and jumps through entry

Chapter 13: Virtual Paging

239

14d (0Eh) in the IDT to the Page Fault exception handler routine.
3. The programmer reads the linear address that caused the Page Fault from

CR2.
4. The upper 10 bits identifies the page group table and its respective entry in

the page directory.
5. The programmer reads the indicated entry from the page directory and

checks the P bit to determine if the page group table is in memory.
6. In this example the table is in memory (i.e., P = 1) and the programmer uses

the middle 10-bit of the linear address in CR2 to select the entry in the
selected page table.

7. The programmer reads the indicated entry from the selected page table and
determines if the page is in memory (i.e., P = 1). In this case, P = 0, indicat-
ing that the page is not in memory.

8. Bits [31:1] of the entry in the selected page table could specify the mass stor-
age address where the target page resides (see Figure 13-9 on page 236).

9. A memory allocation call is made to the OS requesting the start address of
an available 4KB block of physical memory.

10. A request is issued to the mass storage device driver to perform a 4KB read
from the specified mass storage device into the memory buffer allocated for
this purpose.

11. When the mass storage read has completed (signaled by a hardware inter-
rupt) and the page is resident in memory, the programmer inserts the page
base address into the entry in the page table, the page present bit is set to
one, and the accessed bit is set to one to indicate that the page has been
accessed.

12. The last instruction executed in the page fault handler is the IRET instruc-
tion. This causes the processor to pop the return address into CS:EIP from
the stack and to resume execution at the same instruction that cause the
page fault.

13. The same 32-bit linear address is submitted to the paging unit for a lookup
in the page directory. The same page directory entry and page table entry
are selected, but this time P = 1 in both of them, indicating that the page is
in memory and its base address is contained in bits [31:12] of the page table
entry.

The page starts at the 4KB-aligned base address indicated in the entry’s base
address field. The paging unit creates the exact 32-bit address of the physical
location in the page as follows:

• the upper 20 bits are obtained from the entry’s base address field
• the lower 12 bits are supplied directly by the lower 12 bits of the 32-bit lin-

ear address

Protected Mode Software Architecture

240

This 32-bit address is submitted to the processor’s code or data cache for a
lookup.

Checking Page Access Permission

There is no performance penalty incurred in order to perform the page privilege
and access rights checks. The paging unit performs these checks in parallel with
address translation. The two sections that follow describe the privilege level
and access rights checks.

The Privilege Check

Segment Privilege Check Takes Precedence Over Page Check

The processor always evaluates segment-level protection before performing the
page-level protection check. As an example, assume that a segment (code or
data) has been defined as 64KB in length and starts on a page boundary (i.e., an
address divisible by 4KB). Also assume that the DPL of the segment descriptor
is set to three. This means that the segment may be accessed by a program with
a CPL (current privilege level) of 0, 1, 2, or 3 (in other words it can be accessed
by any program).

Figure 13-11: Page Table Entry Format

Chapter 13: Virtual Paging

241

The segment encompasses 16 pages (16 * 4KB = 64KB). There is a separate page
table entry for each page within the segment, each with a U/S bit (see Figure 13-
11 on page 240) defining the privilege level necessary to access the page. In this
example, some of the page table entries have U/S = 0, while other have U/S = 1.
The CPL of the current program must have a privilege level of 0, 1, or 2 to access
a supervisor page (U/S = 0), while any program can access a page with U/S = 1
(user access permitted).

When a code or data memory access is attempted, the processor first checks for
sufficient privilege at the segment level before checking for sufficient privilege
level to access the target page within the segment. If the currently-executing
program doesn’t have sufficient segment-level privilege, the page-level privi-
lege check isn’t performed and the access isn’t permitted to proceed (i.e., it
causes a GP exception). If, on the other hand, the segment privilege check
passes, the page-level check is then performed. If it passes, the access is per-
formed, otherwise it results in a page fault exception.

U/S Bit in Page Directory and Page Table Entries Checked

Both the page directory entry and the page table entry have a U/S bit. The page-
level protection check is performed based on the more restrictive of the two U/
S bit settings. The U/S bit in the page directory entry defines the privilege level
necessary to access any page within the page group, while a page table entry’s
U/S bit setting defines the privilege level necessary to access any location
within a specific page in a group. Table 13-2 on page 241 illustrates the affect of
the four possible U/S bit combinations.

Table 13-2: Effect of U/S Bit Settings

Page Directory
Entry U/S

Page Table Entry U/S Page can be accessed by

0 0 Supervisor program.

0 1 Supervisor program.

1 0 Any program (supervi-
sor or user).

1 1 Any program (supervi-
sor or user).

Protected Mode Software Architecture

242

Accesses with Special Privilege

Regardless of the currently-executing program’s CPL, the following accesses are
have an implied privilege level of 0 (i.e., they have supervisor privilege):

• Accesses to segment descriptors in the GDT, LDT, IDT descriptor tables.
• Accesses to the privilege level 0, 1, or 2 stack caused by execution of a CALL

instruction, or an interrupt or exception. This occurs when the called pro-
gram or interrupt/exception handler resides within a code segment with a
DPL of 0, 1, or 2.

The Read/Write Check

Whether a page is restricted to read accesses or permits both reads and writes is
defined by the state of the W bit in both the page directory and page table entry,
as well as by the state of CR0[WP] (note that this bit was reserved on the 386
and on early 486 processors; it was first introduced in the Pentium and then
migrated to later versions of the 486). As with the U/S privilege check, the read/
write check is performed based on the more restrictive of the two W bit set-
tings. Even if a page is marked read-only, supervisor programs (i.e. privilege
level 0, 1, or 2) have read/write access when CR0[WP] = 0. When CR0[WP] = 1,
however, supervisor programs only have read access to a page marked read-
only. An attempt to write to a page with read-only access results in a page fault
exception.

Table 13-3: Effect of W and CR0[WP] Bit Settings

Page Directory
Entry W Bit

Page Table
Entry W Bit

CR0[WP] Page accesses may be

0 0 0 Read-only by user programs.
Read/write by supervisor pro-
grams.

0 1 0 Read-only by user programs.
Read/write by supervisor pro-
grams.

1 0 0 Read-only by user programs.
Read/write by supervisor pro-
grams.

Chapter 13: Virtual Paging

243

Page Faults

Page Fault Causes

Any one of the following events results in the generation of a page fault excep-
tion:

• Selected page directory entry’s P bit = 0, indicating that the page group’s
directory is not present in memory.

• Selected page table entry’s P bit = 0, indicating that the target page is not
present in memory.

• Attempt to write to a read-only page.
• Insufficient page-level privilege to access the page table or the page.
• A reserved bit set to one in the page directory or page table entry.

If the page fault occurs due to page not present or page privilege access viola-
tion (privilege or write), the A and D bits are affected in the page directory
entry, but not in the page table entry. The page table entry’s A and D bits are
only affected if the page access succeeds.

Second Page Fault while in Page Fault Handler

In the event that a second page fault occurs while handling a previous one, the
processor automatically pushes the linear address (in CR2) that caused the first
page fault onto the stack.

1 1 0 Read/write by all programs.

0 0 1 Read-only by all programs.

0 1 1 Read-only by all programs.

1 0 1 Read-only by all programs.

1 1 1 Read/write by all programs.

Table 13-3: Effect of W and CR0[WP] Bit Settings (Continued)

Page Directory
Entry W Bit

Page Table
Entry W Bit

CR0[WP] Page accesses may be

Protected Mode Software Architecture

244

Page Fault During Task Switch

During a task switch, the processor must access memory for the following rea-
sons:

1. Read the GDT to obtain the TSS descriptor for the new task.
2. Read the values stored in the new task’s TSS to check them for correctness.
3. Before switching to the new task, "snapshot" the processor register set in the

current task’s TSS.
4. Load the processor’s register set with the values from the new task’s TSS.
5. Resume execution using the new values.

A page fault may occur during any of these accesses. If a page fault occurs dur-
ing number one or two, the exception occurs in the context of the old task. In
other words, the old task’s stack is used and the CS:EIP values pushed onto the
stack point to the next instruction of the old task.

If the page fault occurs during number three or four, the exception occurs in the
context of the new task. In other words, the new task’s stack is used and the
CS:EIP values pushed onto the stack point to the next instruction of the new
task. If the OS permits page faults to occur during a task (i.e., the OS doesn’t
guarantee that the GDT and both the old and new TSSs are resident in mem-
ory), the page fault handler should be called through a task gate in the page
fault’s IDT entry.

Page Fault while Changing to Different Stack

The following instruction sequence is frequently used in pre-386 code to change
to a new stack:

MOV SS,AX ;move stack segment pointer to SS
MOV SP, StackTop ;move top of stack offset to SP from memory

The second instruction fetches the top-of-stack value from memory and places
into the SP register. There is no danger of a page fault when the second instruc-
tion is executed on a pre-386 processor because paging isn’t implemented.
However, a page fault could result when it is executed on a post-286 processor
with paging enabled.

If a page fault were to occur at this point, the stack segment base address has
been changed, but the stack pointer register still points to the top of the old

Chapter 13: Virtual Paging

245

stack. When the processor begins its automatic sequence to jump to the page
fault exception handler, it pushes CS:EIP, and EFlags to the stack. If the page
fault handler is at the same privilege level and in the same task, the register val-
ues are pushed into spurious memory locations. This can be prevented by using
the LSS instruction instead of the two instruction sequence.

On the other hand, they are correctly pushed to a new stack (not the spurious
one) if the page fault exception entry in the IDT contains a task gate, or if the
exception handler is in the same task but at a higher privilege level.

Page Fault Error Code

In addition to latching the 32-bit linear address in CR2, a 32-bit error code is
pushed onto the stack when a page fault exception occurs. Its format differs
from that of error codes associated with other exceptions, however. The normal
error code format is shown in Figure 12-11 on page 216, while that for a page
fault is shown in Figure 13-12 on page 246. Table 13-4 on page 245 details the
interpretation of the page fault error code that is pushed onto the stack.

• P = 0 when the fault occurs due to a page (or page table) not present
• P = 1 when the fault occurs due to a page protection violation.
• W/R = 0 when the access that caused the fault was a read.
• W/R = 1 when the access that caused the fault was a write.
• U/S = 0 when the program that causes the fault was executing at the super-

visor privilege level (0, 1, or 2).
• U/S = 1 when the program that causes the fault was executing at the user

privilege level (3).

Table 13-4: Page Fault Error Code Interpretation

P W/R U/S Description

0 0 0 A program executing at supervisor privilege level (0, 1, or 2)
attempted a read, resulting in a page table or page not
present.

0 0 1 A program executing at user privilege level (3) attempted a
read, resulting in a page table or page not present.

0 1 0 A program executing at supervisor privilege level (0, 1, or 2)
attempted a write, resulting in a page table or page not
present.

Protected Mode Software Architecture

246

Usage of Dirty and Accessed Bits
A page of information in memory usually originates on mass storage and is
copied into memory by the OS’s page fault handler when the program requires
access to one or more locations within the page. Whenever the processor
accesses a page, it automatically sets the A (accessed) bit in the corresponding
page table entry to one. On a write to any location within a page, the processor
also automatically sets the D (dirty) bit. Once set, it’s the programmer’s respon-
sibility to clear the bits (the processor will not clear them). A better name for the
dirty bit would be the modified bit. When set, it indicates that the copy of the
page in memory is no longer the same as the original page on mass storage. Of
the two, the page in memory is fresh while the one on disk is stale. Note that the
D bit is only implemented at the page-level (in the page table entry), not at the
page table-level (in the page directory).

These bits can serve a number of purposes. Uses include:

0 1 1 A program executing at user privilege level (3) attempted a
write, resulting in a page table or page not present.

1 0 0 A program executing at supervisor privilege level (0, 1, or 2)
attempted a read, resulting in a page protection violation.

1 0 1 A program executing at user privilege level (3) attempted a
read, resulting in a page protection violation.

1 1 0 A program executing at supervisor privilege level (0, 1, or 2)
attempted a write, resulting in a page protection violation.

1 1 1 A program executing at user privilege level (3) attempted a
write, resulting in a page protection violation.

Figure 13-12: Page Fault Error Code Format

Table 13-4: Page Fault Error Code Interpretation (Continued)

P W/R U/S Description

Chapter 13: Virtual Paging

247

• The OS can schedule a task to be executed on a periodic basis that scans the
page table entries looking for any pages that have been modified. The
page is copied to disk (to freshen the permanent copy) and the A and D bits
are cleared by the programmer. This provides insurance that, in the event of
a power failure, the information on disk has been updated to reflect all
changes performed up until the most recent refresh.

• The OS can schedule a task to be executed on a periodic basis that scans the
page tables (and the page directory) looking for pages (or page tables) that
have not been accessed in a while (the algorithm implemented by the OS
to "age" a page is OS-specific). These pages can then be eliminated from
physical memory to increase the pool of free memory. The P bit is cleared to
zero in the respective page table and page directory entries.

• When a page fault occurs because a page table or a page isn’t in memory (P
= 0), the page fault exception handler program must load the required page
table or page into memory. In order to do this, the programmer must locate
an unused 4KB page of physical memory to load the new page table or page
into. If the free memory pool is running low, the OS programmer may have
to swap a page currently in memory back to disk to make room for the
new page table or page. The page directory and page tables can be scanned
and the D and A bits checked to locate a page to swap out to disk. If the
selected page is "clean," the programmer can clear its respective page table
entry’s P bit to mark it not present. The new page can then be loaded to that
page in memory and its respective linear page’s page table entry updated (P
= 1 and the page’s base address pointed to the physical page) to reflect the
presence and location of the page.

• When the user indicates that the system is about to be shutdown, the OS
scans the page tables and page directory and writes all modified pages to
disk. Only when all modified pages have been written to disk would the
user be given permission to power down the system.

Eliminating Page Location Lookup
Before the processor can access a memory location, the paging unit must per-
form two overhead memory reads to access the page directory and page table
entries. This can have a severe effect on performance.

When a page is first accessed, the processor performs these two memory reads
to obtain the page directory and page table entries. To eliminate the need to
access this same page table entry for future accesses within the same page, x86
processors incorporate a relatively small, special-purpose cache that keep cop-
ies of the most-recently accessed page table entries. The size and organization of
this cache can vary from processor to processor.

Protected Mode Software Architecture

248

386/486 TLB
The 386 and 486 processors each incorporate one cache, referred to as a transla-
tion lookaside buffer, or TLB. Figure 13-13 on page 249 illustrates the relation-
ship of the TLB to the segment address generation logic, the paging unit, and
the 486’s internal cache (the 386 doesn’t have an internal cache).

The 32-bit linear address created by the segment address generator is submitted
to the paging unit for a lookup. The TLB is a very fast lookaside cache that sits
off to the side and compares the upper 20 bits of the linear address (i.e., the tar-
get linear page number) to those stored in its entries. If there isn’t a match, the
paging unit (which is much slower than the TLB) is permitted to proceed with
the two memory reads to obtain the page directory and page table entry. When
the page table entry is obtained, two actions are taken:

1. The 32-bit physical memory address is created from the upper 20 bits of the
physical page address (obtained from the page table entry) and the lower 12
bits of the linear address. The 32-bit physical memory address is submitted
to the processor’s cache for a lookup.

2. The paging unit makes an entry in the TLB consisting of approximately 45
bits (Intel doesn’t define the content of a TLB entry, but it makes sense that
it contain the elements listed below):
• A bit that indicates whether this TLB entry contains valid page map-

ping information.
• The upper 20 bits of the linear address. This is the linear page number.
• The upper 20 bits of the physical page address (i.e., the physical page

number) that the linear page is mapped to.
• The PCD bit, indicating whether the page is defined as cacheable or not.
• The PWT bit, indicating whether the processor should use a write-

through or a write-back policy in handling memory writes within the
page.

• The U/S bit, defining the privilege level necessary to access the page.
• The W/R bit, defining the page as read-only or read/write.

Any subsequent accesses within the same linear page will result in a TLB hit. In
the case of a TLB hit, the TLB inhibits the paging unit from generating the two
memory reads. Instead, the TLB supplies the upper 20 bits of the physical page
address, while the lower 12 bits are supplied directly by the lower 12 bits of the
linear address. The 32-bit physical memory address thus created is submitted to
the processor’s internal cache for a lookup.

Chapter 13: Virtual Paging

249

Pentium TLBs

The 386 and 486 processors used a single, unified TLB cache to store the physi-
cal start addresses and attributes of the most-recently accessed code and data
pages. The Pentium processor implements separate code and data TLB caches.
The discussion that follows assumes that the processor is a Pentium.

Memory accesses generated by the instruction prefetcher access code pages,
while those generated by the integer and floating-point execution units access
data pages. The actual code and data from the pages are cached in the proces-
sor’s code and data caches, while the page table entries that define the start
address and attributes of the most-recently accessed pages are cached in the
data and code TLBs, respectively.

Figure 13-14 on page 252 illustrates the relationship of the Pentium’s segment
unit, paging unit, code TLB, code cache, data TLB and data cache. Code and
data lookups are performed in the following manner.

Code Page Access
The segment address generator forms a 32-bit linear memory address for the
instruction prefetcher by adding the contents of EIP to the code segment base
address supplied by the selected code segment descriptor (in the GDT or LDT).
The linear address is submitted to the paging unit and the code TLB simulta-

Figure 13-13: 486 TLB

Protected Mode Software Architecture

250

neously. Remember, however, that the TLB can be accessed much faster than the
page directory and page table.

1. The upper 20 bits (the 10-bit page table and 10-bit page IDs) of the linear
address is compared to a set of entries in the code TLB for a match.

2. Assuming that there is a miss on the code TLB, the paging unit performs a
memory read to obtain the page directory entry and another to obtain the
page table entry.

3. If either entry has P = 0, a Page Fault exception results and the page table or
page must be obtained from disk.

4. Assuming neither memory access causes a Page Fault, the 32-bit physical
addresses of the page directory entry and the page table entry are sequen-
tially submitted to the data cache for a lookup (because page directory and
page table entries are cached in the data cache as well as in the TLBs).

5. If both the page directory and page table entries are found in the data cache,
the page start address and attributes are obtained very quickly. If either (or
both) aren’t found in the data cache, the processor must obtain the entry (or
entries) from external memory. This causes a degradation in performance
while the processor performs the bus transaction(s) necessary to obtain
them.

6. Once it has the page table entry (and assuming P = 1), the paging unit
obtains the 20-bit physical page address from the entry and forms the 32-bit
physical memory address by appending the lower 12 bits of the linear
address to the 20-bit physical page address. In addition, the code TLB
makes a copy of the page table entry along with the upper 20-bits of the lin-
ear address (the page table/page IDs). The page attributes (e.g., U/S, W,
etc.) are also stored in the TLB entry. Future accesses within the same code
page will result in hits on the code TLB, obviating the need for the page
directory and page table reads.

7. The processor submits the target physical memory address to the code
cache for a lookup (if the page table entry’s PCD bit = 0).

8. If the access results in a code cache hit, the requested code is immediately
delivered to the instruction prefetcher to place in the prefetch queue.

9. If the access results in a code cache miss, the code cache issues a cache line
fill request to the processor’s bus interface unit.

10. The processor starts a memory read transaction with its CACHE# output
asserted (indicating it wants to read a 32 byte cache line from memory), and
sets its PCD output = 0 to indicate to the external cache (if present) that the
address is cacheable.

11. The external cache or the main memory transfers the line of information
back to the processor and the line is placed in the code cache and is also
supplied to the instruction prefetcher for placement in the prefetch queue.

If the lookup in the code TLB had resulted in a hit, steps 2 through 6 are unnec-

Chapter 13: Virtual Paging

251

essary. This can result in dramatic performance increases. At a given instant in
time, the Pentium’s code TLB can hold 32 page table entries, covering 128KB of
memory space (32 pages of 4KB each). As long as the processor accesses only
locations within these code pages, the paging unit doesn’t need to perform the
two reads usually necessary to obtain the page table entry. It only needs to per-
form the memory access to obtain the desired code from the page.

Data Page Access
Data page accesses utilize the data TLB and the data cache. The Pentium’s data
TLB can hold 64 page table entries, so it can keep track of the physical location
of up to 256KB of data (64 pages of 4KB each).

Pentium TLB Structure
It was stated earlier that Figure 13-14 on page 252 is a simplified view of the
relationship between the segment address generator, data TLB, data cache, code
TLB, code cache and paging unit. The illustration has been kept simple in order
to communicate the TLB lookup process clearly. In reality, the Pentium TLBs
and associated logic consists of the following elements:

• A data TLB for 4KB pages. This is a 4-way, set-associative cache with 64
entries.

• A data TLB for 4MB pages. This is also a 4-way, set-associative cache and
has eight entries.

• The Pentium processor’s segment address generator can output a 32-bit lin-
ear address for both instruction pipelines (for a detailed description, refer
to the MindShare book entitled Pentium Processor System Architecture, pub-
lished by Addison-Wesley) simultaneously.

• The data TLB is dual-ported and can perform a lookup for linear addresses
from both pipelines simultaneously.

• The code TLB is 4-way, set-associative and has 32 entries.
• The code TLB is single-ported because it only needs to perform lookups for

addresses originated by the instruction prefetcher.
• The replacement algorithm used by the TLBs is pseudo least-recently-used

(LRU) and is implemented with three bits. This is the same LRU algorithm
used for line replacement by the 486 processor's internal code/data cache
(for a detailed description, refer to the MindShare book entitled 80486 Sys-
tem Architecture, published by Addison-Wesley).

Protected Mode Software Architecture

252

TLB Maintenance
Once a page table entry has been copied into the TLB, the paging unit no longer
accesses the original entry in the page table in memory. Any access within a
page with a cached TLB entry uses the mapping and protection information in
the TLB rather than the entry in memory.

Figure 13-14: Pentium Segment Unit, TLBs, Paging Unit, and Caches

Chapter 13: Virtual Paging

253

On the surface, it would seem that any change (i.e., memory write) that the OS
programmer makes to a page table entry in memory can be detected by the TLB
and that it can "snarf" a copy of the change to keep its TLB entry current. How-
ever, this is not the case. The TLB is not aware of writes performed to page table
entries in the page tables in memory. Since this is the case, the OS programmer
must take care to ensure that the TLBs always contain up-to-date page table
entries. If this were not done, subsequent accesses within a page with a stale
cached entry would use the old, stale mapping and protection information,
rather than the fresh copy of the page table entry in memory. The sections that
follow discuss the methods utilized by the OS programmer and the processor to
ensure that the TLB doesn’t use stale entries to perform address mapping and
protection checks.

TLBs Cleared on Task Switch or Page Directory Change
CR3 contains the base physical address of the page directory in memory.
Assume that the processor’s TLBs have been caching page table entries from the
page tables defined by the page directory currently pointed to be CR3. Placing a
new value into CR3 identifies an entirely new set of page tables with different
linear-to-physical address mapping and protection definition. By definition, this
renders every page table entry currently residing in the TLBs stale. Any time a
new value is loaded into CR3, the x86 processor therefore automatically clears
all page table entries from the TLBs. A new value is loaded into CR3 under the
following circumstances:

• Task switch. When a task switch occurs, the processor saves its current reg-
ister set contents in the TSS of the old task and then loads its register set
with the values from the new task’s TSS. As a result, CR3 is loaded with a
new page directory base address and all TLB entries are invalidated (elimi-
nating all page table entries cached from the old set of page tables).

• OS programmer loads a new value into CR3. When a privilege level 0 pro-
gram is executing, the programmer may choose to switch to a new set of
mappings. This is accomplished by creating a new page directory and set of
page tables and then loading CR3 with the base address of the new page
directory. All TLB entries are invalidated (eliminating all page table entries
cached from the old set of page tables).

Updating a Single Page Table Entry

The OS programmer may update individual page table entries using memory
writes. Whenever the contents of a page table entry is altered, the programmer
must explicitly instruct the TLBs to discard the affected page table entry from
the TLBs. On the 486 and Pentium processors, this is accomplished by execution
of the INVLPG (invalidate page) instruction. The 32-bit linear page address sup-

Protected Mode Software Architecture

254

plied as the instruction operand is used to perform the TLB lookup and invali-
dates a single page table entry.

The 386 does not implement the INVLPG instruction. When executing on a 386,
the programmer must therefore load CR3 with a value when a page table entry
has been changed. This causes the TLB to discard all TLB entries. From a perfor-
mance standpoint, this is much less efficient than the 486 and Pentium’s ability
to delete a single page table entry from the TLB.

Note: The Pentium programmer’s reference manual states that in most cases
execution of the INVLPG instruction causes the code TLB to flush a single entry,
but that, in some cases, it causes the entire code TLB to be flushed. The author
has been unable to obtain an explanation of what these cases might be (and can-
not think of what they might be).

Cache Issues
The OS programmer is responsible for setting up the page tables. In addition to
the physical start address of the page in memory, each page table entry defines
the 4KB page area as cacheable or non-cacheable. With respect to memory
writes performed within the page, the respective page table entry instructs the
processor’s internal and external (if present) caches to utilize a write-through or
a write-back policy in handling memory writes within the page.

The OS programmer must define the cacheability and write policy for three
entities:

• the page directory
• each page table
• each page

The sections that follow describe the mechanisms that the programmer uses to
define the cacheability and write policy for each of the three.

Page Directory Caching Policies

Some memory accesses target entries within the page directory. For each of
these accesses, the processor must determine whether the contents of the loca-
tion may be cached and, if the access is a write, whether to use a write-though
or write-back policy with respect to the cache. The sections that follow describe
how the OS programmer instructs the processor with respect to cacheability
and write policy when performing accesses within the page directory.

Chapter 13: Virtual Paging

255

Page Directory Cacheability
The processor must be instructed as to whether or not the locations within the
page directory may be cached or not. This is accomplished with CR3[PCD] (see
Figure 13-15 on page 257). CR3[PCD] = 0 permits the processor to cache entries
from the page directory, while CR3[PCD] = 1 inhibits caching from the direc-
tory. The section that follows this one describes how the processor handles
memory writes to the page directory when it is marked cacheable.

When the page directory is defined as cacheable (CR3[PCD] = 0), the processor
performs data cache lookups for read and write accesses to the page directory.
In the event of a cache miss on a read, the processor initiates a memory read
transaction on its external bus and asserts its CACHE# output to request the
entire 32-byte cache line that the page directory entry resides within. It also
drives the state of CR3[PCD] and CR3[PWT] onto its PCD and PWT outputs to
instruct an external cache (if present) regarding the cacheability of the page
directory and its policy in handling a memory write (if this were a memory
write). If external logic agrees that the addressed region of memory is cacheable,
it asserts KEN# (cache enable) to the processor and transfers the line to the pro-
cessor. The entire line is placed in the data cache and the requested page direc-
tory entry is supplied to the paging unit.

When the page directory is defined as non-cacheable (CR3[PCD] = 1), the pro-
cessor bypasses the data cache for both read and write accesses within the page
directory. On a read, it initiates the 4-byte (32-bit) memory read on the external
bus, but does not assert its CACHE# output. This indicates to external logic that
the processor does not want the entire cache line that contains the requested
page directory entry. Rather, it only expects to read the requested 32-bit page
directory entry. The processor also drives the state of CR3[PCD] onto its PCD
output to inform the external cache (if present) that the access is not to be
cached. When received from memory, the entry is routed directly to the paging
unit (in other words, it is not placed in the data cache). On a write to a page
directory entry, the processor does not perform a data cache lookup. Rather, it
initiates a memory write transaction on its external bus (with its PCD output =
1) to update the page directory entry in memory.

Page Directory Write Policy

This section describes how the processor handles memory writes to page direc-
tory entries when the directory is marked cacheable (CR3[PCD] = 0). The man-
ner in which the memory write is handled depends on the following factors:

• The state of CR3[PWT]. This is the page write-through bit.
• Whether the write results in a data cache hit or miss.

Protected Mode Software Architecture

256

CR3[PWT] = 1 and Data Cache Hit. Since the write results in a hit on
the data cache, the page directory entry is updated in the data cache. PWT = 1,
indicating that the write data must also be written to external memory. The pro-
cessor therefore initiates a memory write transaction to update the page direc-
tory entry in memory. The processor’s PWT output is asserted, instructing the
external cache (if present) to also write the data through to the directory in
memory. If the write resulted in a hit on the external cache, its copy of the page
directory entry is also updated. Using a write-through policy ensures that the
page directory in memory is always kept up to date.

CR3[PWT] = 1 and Data Cache Miss. In the event of a data cache miss
on a page directory write, the processor initiates a memory write transaction to
update the page directory entry in memory. The processor’s PWT output is
asserted, instructing the external cache (if present) to also write the data
through to the directory in memory. If the write resulted in a hit on the external
cache, its copy of the page directory entry is also updated. Using a write-
through policy ensures that the page directory in memory is always kept up to
date.

CR3[PWT] = 0 and Data Cache Hit. Since the write results in a hit on
the data cache, the page directory entry is updated in the data cache. PWT = 0,
indicating that the write data doesn’t necessarily have to be written to external
memory (this is referred to as a write-back policy). There are three possible
cases and the handling of the write is case-dependent:

• If the write hits on a data cache line in the Shared (i.e., S) state, this indi-
cates that at least one other cache in the system has an identical copy of the
line. The processor cannot just change its copy and not tell the other people
that have copies. This would result in the other caches having stale copies
and not knowing that they were wrong. The processor therefore initiates a
memory write transaction to update the page directory entry in memory.
The processor’s PWT output is deasserted, instructing the external cache (if
present) that it may also use a write-back policy in handling the write.

• If the write hits on a data cache line in the Exclusive (i.e., E) state, this indi-
cates that no other cache in the system needs to be notified of the change.
The processor’s data cache is updated and the state of the cache line transi-
tions from the E to the M (i.e., modified) state, indicating that it is no longer
the same as the copy in external memory.

• If the write hits on a data cache line in the Modified (i.e., M) state, this
indicates that no other cache in the system needs to be notified of the
change. The processor’s data cache is updated and the state of the cache line
stays in the M state.

Chapter 13: Virtual Paging

257

CR3[PWT] = 0 and Data Cache Miss. The processor has permission to
use a write-back policy (PWT = 0) for writes to the page directory. A data cache
miss results in the initiation of a memory write transaction to update the page
directory entry in memory. The processor deasserts its PWT output, indicating
to the external cache (if present) that it may (if capable; it may be strictly a write-
through cache, however) use a write-back policy in handling the memory
write.

Page Table Caching Policies
Each page directory entry (with P = 1) points to a page table. The processor
must be instructed regarding the cacheability of that page table and how to han-
dle writes to entries within the page table. Like CR3, each page directory entry
contains PWT and PCD bits that define the cacheability of the associated page
table and how to handle memory writes to entries within the page table.

Page Caching Policies
Each page table entry (with P = 1) points to a page in memory. The processor
must be instructed regarding the cacheability of that page and how to handle
writes within the page. Like CR3 and each page directory entry, each page table
entry contains PWT and PCD bits that define the cacheability of the associated
page and how to handle memory writes to locations within the page.

4MB Pages
The paging unit implemented in the Pentium processor is a superset of the early
486’s paging unit. Later versions of the 486 include the same paging-related

Figure 13-15: CR3 Format

Protected Mode Software Architecture

258

enhancements as the Pentium processor. Intel has not publicly documented the
changes, but information in publicly available documentation reveals enough to
figure out most, if not all, of its new operational characteristics. The reader must
note, however, that this description is based on hopefully intelligent speculation on
the author’s part.

To enable the paging extensions, the Page Size Extensions (PSE) bit in CR4 must
be set to one. CR4 is illustrated in Figure 13-16 on page 258. When CR4[PSE] is
set to one, the paging unit can map memory addresses to either 4KB or 4MB
memory pages. When a linear address is presented to the paging unit for a
lookup, the respective page directory entry is read and the state of bit seven, the
Page Size (PS) bit, is checked. Figure 13-17 on page 259 illustrates the Page
Directory entry.

When PS = 0 and P = 1, the entry points to a page table that identifies 4KB
pages. When PS = 1 and P = 1, however, the entry defines a 4MB memory page
(see Figure 13-18 on page 260). Bits [31:22] define the upper 10 bits of the page’s
base address and bits [21:0] define the page’s attributes. The paging unit adds
the offset specified in bits [21:0] of the linear address to the 4MB-aligned base
address of the page to produce the 32-bit physical memory address to be
accessed within the 4MB page.

As an example of its usage, a 4MB page would be handy for defining one con-
tiguous, high-resolution display frame buffer in memory with one set of rules
(i.e., read/writability, cacheability, write policy, necessary privilege level, etc.).
Without the ability to define a 4MB page entry, the OS programmer would have
to create and manage 256 page table entries, each with identical attributes, to
define a 1MB video frame buffer with the same set of operational rules through-
out. The same could be accomplished with a single 4MB page entry.

Figure 13-16: Control Register 4 (CR4)

Chapter 13: Virtual Paging

259

Figure 13-17: 4MB Page Directory Entry

Protected Mode Software Architecture

260

Figure 13-18: 4MB Page

02131 22

Page Directory
Index (1 of 1024)

Page Directory
Index (1 of 1024)

Memory Page
start address

Memory Page
start address

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

Location in Page (1 of 4,194,304)

Page Directory base address

261

14 The Flat Model

The Previous Chapter

The previous chapter provided a detailed description of the processor’s virtual
paging mechanism. It discussed linear vs. physical addresses, the page direc-
tory, page directory entries, page tables, page table entries, page faults, the
translation lookaside buffers, and Pentium paging extensions.

This Chapter

Many of today’s OSs utilize the flat memory model. This chapter describes how
the x86 processor may be set up to operate as if segmentation does not exist.
Memory appears to be a single linear array 4GB in size, rather than being subdi-
vided into many segments of various sizes. Protection is implemented via the
paging unit rather than using segmentation.

The Next Chapter

The next chapter discusses virtual 8086, or VM86, mode. It describes:

• The problems typically experienced when running DOS programs in a mul-
titasking environment.

• Creation of a VM86 task.
• Entering and leaving VM86 mode.
• The virtual machine monitor, or VMM.
• Memory address formation in VM86 mode.
• The use of paging to isolate DOS tasks from each other.
• Implementation of virtual video frame buffers.

Protected Mode Software Architecture

262

Segments Complicate Things

The use of segments complicates the programmer’s life. The programmer
should only have to think of what 32-bit memory location to access and not
have to worry about what segment it’s in.

Paging Can Do It All

If segmentation could be eliminated and paging substituted, the paging unit
can provide complete protection, as well as demand mode paging. The paging
unit provides the following checks on each memory access attempt:

• Privilege check using the page table entry’s U/S bit.
• Read/write permission checking using the page table entry’s R/W bit.

When a memory access is attempted, the paging unit deals with one of three
cases:

1. The target page is currently in memory (P = 1 in the page table entry).
Assuming that the currently-executing program has sufficient privilege to
access the page and that it’s not attempting to write to a read-only page, the
access is permitted.

2. The target page isn’t in memory (P = 0 in the page table entry). This results
in a page fault exception. The page fault handler examines the 32-bit linear
address and determines whether or not the target page belongs to the cur-
rently-executing program. If it does, the page is read into memory and the
page table entry is updated with its location and P is set to one. The access
that caused the fault is then restarted and completes successfully.

3. The target page isn’t in memory (P = 0 in the page table entry). This results
in a page fault exception. The page fault handler examines the 32-bit linear
address and determines whether or not the target page belongs to the cur-
rently-executing program. If the page doesn’t belong to the program, the
OS alerts the end user that the program has a bug and shuts the offending
program down.

Eliminating Segmentation

There is no way to disable the x86 processor’s segmentation logic. However, if
all segments are described (in the GDT) as starting at location 00000000h and
are 4GB in length, segmentation is effectively eliminated.

Chapter 14: The Flat Model

263

The code segment is defined as a 32-bit code segment (D = 1), with a base
address of 00000000h and a length of 4GB. Defining it as a 32-bit code segment
has the following effects:

• All memory addresses generated by the EIP register are 32-bits wide, per-
mitting access to any location in the 4GB code segment.

• All memory addresses generated by instructions for data accesses are 32-
bits wide, permitting the program to access operands anywhere within the
4GB data segment.

Privilege Check
The code segment descriptor used by the OS would have its DPL set to 0, while
the code segment descriptor used used by all applications programs would
have its DPL set to 3. As described in the previous chapter, the CPL of the cur-
rently-executing program must first pass the segment descriptor’s privilege
check and then the page’s privilege check.

Since an application program’s code segment DPL is set to 3 (and the DPL
becomes its CPL), it can successfully access any page with its U/S (user/super-
visor) bit set to one, indicating user access permitted. However, if it attempts to
access a page with U/S = 0, a GP exception results (because only programs with
a privilege level of 0, 1, or 2 are permitted access to supervisor pages).

The code segment for the OS, however, has a DPL of 0 and the OS therefore exe-
cutes at privilege level 0. It can access both user and supervisor pages.

Read/Write Check

Assuming that the currently-executing program has sufficient privilege to
access a page, it is not permitted write access to a page if the page is write-pro-
tected. The OS, however, can write to a read-only page if CR0[WP] = 0, but
incurs an exception if CR0[WP] = 1.

Each Task (including OS) Has Its Own TSS

When a task switch occurs, the processor automatically loads its segment regis-
ters with the values from the new task’s TSS. The GDTR register is not loaded
with a new value, however. This means that all tasks share the same GDT, but
each can select a different set of segment descriptors within the GDT when it is
started or resumed (via a task switch).

Protected Mode Software Architecture

264

Switch to Application Task

If the new task is an application program, the value loaded into the CS register
from its TSS selects a code segment descriptor with a DPL of 3. This means the
CPL of the task’s entry program is 3.

A new value is also loaded into CR3, selecting the page directory used while the
application task is executing. The task’s page directory and its associated set of
page tables describes the pages that the task is permitted to access and how it
may access them (i.e., read/write or read-only). The task may be permitted to
access up to 1M pages of information (4GB) some of which are contained in
memory while others are on mass storage.

Switch to OS Task

If the new task is the OS, the value loaded into the CS register selects a code seg-
ment descriptor with a DPL of 0. This means the CPL of the task’s entry pro-
gram is 0. A new value is also loaded into CR3, selecting the page directory
used while the OS task is executing. The task’s page directory and its associated
set of page tables describes the pages that the task is permitted to access and
how it may access them (i.e., read/write or read-only; qualified by the state of
CR0[WP]). The task may be permitted to access up to 1M pages of information
(4GB) some of which are contained in memory while others are on mass stor-
age.

265

15 Virtual 8086 Mode

The Previous Chapter

The previous chapter described how the x86 processor may be set up to operate
as if segmentation does not exist. Memory appears to be a single linear array
4GB in size, rather than being subdivided into many segments of various sizes.
Protection is implemented via the paging unit rather than using segmentation..

This Chapter

This chapter discusses virtual 8086, or VM86, mode. It describes:

• The problems typically experienced when running DOS programs in a mul-
titasking environment.

• Creation of a VM86 task.
• Entering and leaving VM86 mode.
• The virtual machine monitor, or VMM.
• Memory address formation in VM86 mode.
• The use of paging to isolate DOS tasks from each other.
• Implementation of virtual video frame buffers.

The Next Chapter

The next chapter provides an overview of the floating-point unit.

A Special Note

The terms "DOS task" and "VM86 task" are used interchangeably in this chapter
(because the vast majority of VM86 tasks are DOS tasks). It should not be con-
strued, however, that only DOS tasks are candidates to be VM86 tasks. Any real
mode task that must be executed by a multitasking OS should be set up as a
VM86 task.

Protected Mode Software Architecture

266

DOS Application—Portrait of an Anarchist

The chapter entitled “Multitasking Problems” on page 17 discussed the many
ways in which DOS programs are disruptive in a multitasking environment.
They may attempt to access memory belonging to currently-suspended pro-
grams, communicate directly with IO ports, can call OS code (even routines
they shouldn't be able to), disable interrupt recognition when they don't wish to
be interrupted, and call BIOS routines to indirectly communicate with IO
devices (thereby bypassing the OS). In addition, the task assumes that DOS is
the OS it is interacting with when it may be a completely different OS. In this
case, all OS calls initiated by the DOS task must be intercepted and passed to the
host OS (or another program that substitutes for the DOS OS).

Solution—Set a Watchdog on the DOS Application

Intel’s solution to this problem is to provide a hardware/software combination
tasked with monitoring the behavior of an DOS program and intercepting all
actions which may prove injurious to the overall multitasking environment.
Intel implemented VM86 mode in the 386, 486 and Pentium processors for this
purpose.

The OS creates a separate 32-bit TSS associated with each DOS task (it cannot be
a 16-bit, 286-style TSS because the 286 TSS only has a 16-bit field for the Flag
register image; it doesn’t have a 32-bit EFlags register field containing the VM
bit). When the OS creates the TSS for a DOS task, it sets the VM bit to one in the
EFlags register image within the TSS. Whenever a task switch to a DOS task
occurs, the processor copies the EFLags image from the task’s TSS into the
EFlags register, setting EFlags[VM] = 1. EFlags[VM] = 1 informs the processor
that the current task is a DOS task and enables the processor’s watchdog logic
that monitors for anarchistic behavior. Note that "watchdog" is the author’s
term, not Intel’s.

The VMM

When the processor hardware associated with VM86 mode detects that the cur-
rently-executing DOS task is attempting a potentially disruptive action, it sus-
pends the VM86 task and jumps to the GP exception handler. As with any
exception, before jumping to the exception handler, the processor first stores the
current EFlags register contents on the stack. It then clears the EFlags[VM] bit,

Chapter 15: Virtual 8086 Mode

267

disabling VM86 mode. Upon entry to the GP exception handler, the program-
mer examines the VM bit in the EFlags image stored on the stack to determine if
the exception was generated by a DOS task (i.e., EFlags[VM] = 1). If it was, the
GP exception handler jumps to the watchdog program associated with that
DOS task. If it wasn’t, the body of the normal, protected mode GP exception
handler is executed.

The watchdog program associated with a DOS task is referred to as the virtual
machine monitor (VMM). The VMM’s job is to determine the action attempted
by the DOS task and to accomplish it in a manner that is not disruptive to the
multitasking OS or the other suspended tasks.

Having emulated the potentially disruptive action in a benign fashion, the
VMM program then resumes execution of the DOS task at the instruction after
the one that caused the exception. In order to have full access to all of the pro-
cessor’s facilities to deal with problems, the VMM executes at privilege level 0.

When a GP exception occurs, the processor transfers control to the GP exception
handler. The discussion in this chapter indicates that the GP exception handler
code determines whether a VM86 task was executing when the exception
occurred and that it jumps to the VMM program if this is the case. Please note
that, rather than having the GP handler jump to the VMM program, the VMM
program itself could serve as the GP exception handler.

Entering or Reentering VM86 Mode

Task Creation, Startup and Suspension

Create TSS

Before the multitasking OS initially starts a DOS task, it creates a 32-bit TSS for
the task, setting the EFLags[VM] bit to one in the TSS’s EFlags field. It also cre-
ates a TSS descriptor (in the GDT) that points to the task’s TSS in memory.

Each Task Gets a Timeslice

A multitasking OS usually permits a task to execute for a predefined period of
time, typically referred to as a timeslice. This is accomplished by triggering a
hardware timer prior to starting (or resuming) the task. The task is then started
and continues to execute until a hardware interrupt is generated by the
timeslice timer (unless the task is interrupted prior to this for some other rea-

Protected Mode Software Architecture

268

son). This interrupt selects an IDT entry containing a task gate that points to the
OS’s task scheduler. The task that was executing is suspended and the new task
(i.e., the OS task scheduler) is resumed.

Unlike many other processors (e.g., the PowerPC processor family), x86 proces-
sors do not incorporate a hardware "timeslice" timer to facilitate the timeslice
approach to multitasking. Instead, the system designer must incorporate a
hardware timer external to the processor. This timer is implemented as an IO
device that can be programmed for the desired interval and enabled. The timer
generates a maskable interrupt when it has expired.

Select DOS Task via Far Call or Far Jump

The task is started by executing a far jump or a far call that selects the TSS
descriptor in the GDT. The offset portion of the target address is discarded.

When the processor determines that a TSS descriptor has been selected, it sus-
pends the current task (in this case, the OS) by copying the majority of the pro-
cessor’s registers into the OS’s TSS. It then switches to the new DOS task by
loading the processor’s register set from the DOS task’s TSS. When the EFlags
register is loaded from the TSS, EFlags[VM] is set to one, placing the processor
into VM86 mode. In other words, the watchdog logic is activated just before the
task starts (or resumes) execution.

Leaving VM86 Mode

The processor temporarily exits VM86 mode when an interrupt or exception
occurs. The IDT entry selected by the interrupt or exception can contain one of
the following descriptor types:

• Task gate. When the interrupt or exception selects an IDT entry that con-
tains a task gate, a task switch occurs—the current task is suspended and
another task is initiated.

• Trap or an Interrupt gate. A task switch does not occur when an entry con-
taining a trap or an interrupt gate is selected. Rather, the processor executes
the interrupt or exception handler pointed to by the selected IDT descriptor.

The sections that follow describe the two methods of leaving VM86 mode.

Chapter 15: Virtual 8086 Mode

269

Task Switch Changes EFlags

While executing a DOS task in VM86 mode, a task switch results when an inter-
rupt or exception selects an entry in the protected mode IDT that contains a task
gate. A classic example would be the hardware interrupt generated by the
timeslice timer. This interrupt typically selects an IDT entry that contains a task
gate and a task switch occurs.

When the DOS task is suspended, the current contents of most of the proces-
sor’s registers are saved in the DOS task’s TSS. The copy of the EFlags register
saved in the TSS has EFlags[VM] set to one. The processor’s registers (including
EFlags) are then loaded from the new task’s TSS.

• If the new task is also a DOS task, the copy of EFlags read from the new
task’s TSS also has EFlags[VM] set to one and the processor reenters VM86
mode when the new task starts.

• If the new task is not a DOS task, the copy of EFlags read from the new
task’s TSS has a zero in EFlags[VM] and the processor exits VM86 mode
when the new task starts.

Interrupt or Exception Clears EFlags[VM]

If an interrupt or exception occurs and selects an IDT entry containing an inter-
rupt or trap gate, the current state of EFlags (including EFlags[VM]) is saved on
the stack before the selected handler is executed. The processor then clears
EFlags[VM] and VM86 mode is turned off for the duration of the handler’s exe-
cution.

IRET Sets EFlags[VM]

At the end of the handler’s execution, execution of the IRET instruction causes
the EFlags register to be reloaded from the stack. Since the EFlags image on the
stack has EFlags[VM] set to one, this automatically reenables the watchdog
logic before execution of the interrupted DOS task is resumed.

Protected Mode Software Architecture

270

DOS Task’s Memory Usage

1st MB Is DOS Memory

Each DOS task believes that it resides within and interacts with other programs
residing within the first megabyte of memory space (the linear address range
from 00000000h through 000FFFFFh).

Paging Provides Each DOS Task with Its Own Copy
of 1st MB

If multiple DOS tasks are being run under a multitasking OS, each of them,
when active, performs memory reads and writes within the first megabyte of
linear memory space. The currently-executing DOS task can easily alter the con-
tents of memory locations that are also being used by other DOS tasks that are
currently suspended. This would obviously cause severe problems.

This problem can be avoided using the processor’s virtual paging capability.
When a task switch occurs to a DOS task, one of the registers loaded from the
task’s TSS is CR3. This register contains the base address of the page directory
that maps linear memory addresses generated by the program to actual physi-
cal memory space. The OS sets up a separate page directory for each DOS task
and initializes the CR3 image in each task’s TSS with the start address of its
respective page directory. The page directories for the DOS tasks are set up to
direct memory accesses by each DOS task to a separate 1MB region of physical
memory. In this manner, the currently-executing DOS task is prevented from
corrupting data or code within another (currently-suspended) DOS task’s
megabyte of memory space. Whenever an DOS task generates a memory access
within the first megabyte of linear memory space, the paging unit accesses the
task’s set of page tables and remaps the access to its own, dedicated megabyte
of memory space.

Where VMM Resides

A DOS task is capable of performing memory accesses within the first MB of its
linear memory address space. Some DOS tasks that were written to run on the
post-8086 processors (i.e., 286 and later) can generate memory accesses within

Chapter 15: Virtual 8086 Mode

271

the linear memory address range from 0000000h through 0010FFEFh (for addi-
tional information, refer to “Dealing with Segment Wraparound” on page 271).

In order to ensure that the DOS task does not read or write the memory area
occupied by the VMM, the VMM should be located above linear memory
address 0010FFEFh.

Dealing with Segment Wraparound

8086 Processor

The 8088/8086 processors have 20 address lines. Memory addresses are formed
by adding the programmer-specified offset to a segment start address. Consider
the following code fragment:

MOV AX, FFFF ;set DS base address = FFFF0h
MOV DS, AX ;
MOV AL, [0010h];read one byte into AL register

When the third instruction is executed, the processor extends the DS value by
adding hex 0 on its lower end, yielding a data segment start address of FFFF0h.
The offset 0010h is added to the base address, resulting in the 21-bit memory
address 100000h. This is the first location of the second MB of memory space
(i.e., the first location in extended memory). When the 8086/8088 processor out-
puts the address onto its 20-bit address bus to perform the memory read, the
upper bit is stripped off. This results in a read from memory address 00000h,
rather than 100000h. In other words, the processor wraps around to the bottom
of the first MB of memory. With a segment base address of FFFF0h, any offset
from 0010h through FFFFh causes a wraparound to locations near the bottom of
memory.

Post-8086 Processors

Post-8086 processors have more than 20 address lines. When the same code
fragment is executed, the processor can generate address 00100000h and access
extended memory. If the offset specified by the programmer were FFFFh, the
address generated would be 0010FFEFh.

Protected Mode Software Architecture

272

Solutions

Some DOS programs depend on segment wraparound occurring while others
deliberately use this method to access the extended memory directly above the
first MB.

• Wraparound Required by Task. The currently-executing DOS task may
require memory accesses to linear locations 00100000h through 0010FFEF to
access the same physical memory locations as those that access linear
addresses from 00000000h through 0000FFEFh. In this case, the task’s page
tables must be set up to map accesses within both ranges to the same area of
physical memory.

• Wraparound Not Required by Task. The currently-executing DOS task
may not want accesses to linear memory addresses 00100000h through
0010FFEFh to address the same memory as those to linear addresses
00000000h through 0000FFEFh. In this case, the task’s page tables must be
set up to map accesses within each range to different areas of physical mem-
ory.

Segment Register Interpretation in VM86 Mode

Whenever a new value is moved into a segment register and the processor is in
protected mode (CR0[PE] = 1), the processor checks the state of EFlags[VM] to
determine how to use the new value:

• When EFlags[VM] = 0, the processor is not in VM86 mode. It therefore
treats the segment register value as a selector to select a descriptor from
either the GDT or LDT. The selected descriptor defines the base address and
size of the segment.

• When EFlags[VM] = 1, the processor is in VM86 mode. It therefore inter-
prets the segment register value (plus a least-significant hex digit of 0h) as
the segment’s base address and the segment has an implicit length of 64KB.

Using Address Size Override Prefix

Although it is legal to use an address size override prefix to force an instruction
to generate a 32-bit address, an exception results if the specified offset is greater
than 64KB (i.e., > 0000FFFFh). A GP exception is generated if the processor is
not addressing the stack, while a stack exception results if the processor is
addressing the stack.

Chapter 15: Virtual 8086 Mode

273

Privilege Level of VM86 Task

All VM86 tasks execute at privilege level three (in other words, they’re under-
privileged).

Restricting IO Accesses

The Problem
This section is a copy of the section entitled “IO Port Anarchy” on page 18 from
the chapter entitled “Multitasking Problems”. It is repeated here to eliminate
the need to turn back to that section. It states the nature of the IO-related prob-
lem that must be dealt with in VM86 (and other) programs.

Assume that the currently executing task needs to initiate a disk access. To do
this, it must program the disk controller's IO registers with the information
defining the disk command type (e.g., disk read), the cylinder number, the head
(or surface) number, the start sector number and the number of sectors to be
transferred. This is accomplished by performing a series of OUT instructions that
cause the processor to execute a series of IO write transactions to transfer the
command and associated parameters to the disk controller. Now assume that
the task has programmed some, but not all of, the disk controller's registers
when the task's timeslice expires. The OS suspends the current task and starts or
resumes another task.

The new task, having no knowledge of the suspended tasks, may decide that it
also wants to issue a command to the disk controller. Assume that it does so and
that the operation completes without error. Eventually, the OS suspends this
task and reawakens the other task. This task doesn't even know that it was put
to sleep and resumes execution at the point of suspension. In other words, it
completes the series of IO writes to transfer the remainder of the request param-
eters to the disk controller. It has no idea that the initial parameters that it sent
to the disk controller (before it was suspended) were overwritten by the other
task while it was asleep. The end result will be that this task's disk operation
will not occur correctly.

Generally speaking, the system's IO devices should be treated as a pool of
shared resources to be managed by a central entity (the OS). Having one entity
perform all communications with IO devices ensures that there will be no con-
tention for IO devices between multiple tasks.

Protected Mode Software Architecture

274

To accomplish this, the OS can not permit the tasks to talk directly to IO ports.
In other words, any attempt to execute an IN or OUT instruction (or INS or
OUTS) should cause the processor to trap (jump) to the OS. The OS then com-
municates with the IO device for the task.

The OS and/or processor could be configured to permit a task to access certain
IO ports directly, but restrict access to other ports.

The sections that follow describe the methods used to monitor DOS task IO
accesses in both IO and memory-mapped IO space.

IO-Mapped IO

IO Permission in Protected Mode

When the processor is in protected mode but is not in VM86 mode (i.e.,
EFlags[VM] = 0) and attempts to execute an IOPL-sensitive instruction (see
page 142), the privilege check is performed in the following manner:

• If the CPL is numerically ≤ IOPL (i.e., program’s privilege level is the same
as or better than the IOPL), no exception is generated and the IO instruction
is executed.

• If the CPL is numerically > IOPL (i.e., the program’s privilege level is not as
good as the IOPL) and the instruction is one of the IO instructions (IN, OUT,
INS, or OUTS), the processor checks the current task’s IO permission bit
map (in its TSS) to determine if the current application is permitted to
access the addressed IO port(s). If the bit map indicates that the task is per-
mitted to access the indicated IO port(s), no exception is generated and the
IO instruction is executed. Otherwise, a GP exception is generated.

The IO permission bit map is described in the section entitled “IO Permission
Bit Map Offset Field” on page 144.

IO Permission in VM86 Mode

When the processor is in protected mode and VM86 mode (i.e., EFlags[VM] = 1)
and attempts to execute an IO instruction (IN, INS, OUT, or OUTS), the privilege
check is performed as follows.

• IOPL is not checked at all.
• The processor checks the current task’s IO permission bit map to determine

if the current application is permitted to access the addressed IO port(s). If

Chapter 15: Virtual 8086 Mode

275

the bit map indicates that the task is permitted to access the indicated IO
port(s), no exception is generated and the IO instruction is executed. Other-
wise, a GP exception is generated.

The IO permission bit map is described in the section entitled “IO Permission
Bit Map Offset Field” on page 144.

Memory-Mapped IO

The system may implement memory-mapped IO ports that are used to commu-
nicate with IO devices. Just as with IO-mapped IO ports, the OS should provide
a mechanism that permits the current task to communicate directly with some
memory-mapped IO ports while denying direct access to others. This can be
implemented using the paging mechanism.

Segregate Ports into Two Groups of Memory Pages

The system designer can group the memory-mapped IO ports that tasks are
permitted to access directly into one (or more) 4KB pages of physical memory
space. Those memory-mapped IO ports that only the OS should be able to
access should be grouped in one (or more) 4KB pages of linear memory space.

Set Up Task’s Page Tables to Permit or Deny Access

In each task’s page tables, memory-mapped IO accesses that are to be permitted
should be mapped to the physical pages actually occupied by the memory-
mapped IO ports. Conversely, map memory-mapped IO accesses that are to be
denied to a pages that are marked not present (P = 0).

When the task attempts a memory access to a port that access is permitted to,
the paging unit translates the linear memory address into the physical memory
address of the port and performs the access.

When the task attempts a memory access to a restricted port, the paging unit
selects a page table entry with P = 0 and a GP exception is generated. This
invokes the task’s VMM. The VMM can then examine the IO instruction
attempted and the 32-bit linear address targeted and decide what to do (e.g.,
terminate the task, perform the access itself, etc.).

Protected Mode Software Architecture

276

Handling Display Frame Buffer Updates

As discussed earlier, each DOS program “owns” a 1MB block of memory linear
space that it thinks is the first megabyte of physical memory space. Many DOS
programs update the display frame memory directly (rather than making a
BIOS or DOS function call) by performing memory writes to the display frame
buffer area (000A0000h through 000BFFFFh). The OS sets up the page tables for
each VM86 task to direct all accesses within its linear address range 000A0000h
through 000BFFFFh to a separate physical memory buffer (a "virtual" frame
buffer) for each task.

Whenever a DOS task is resumed, the VMM can then copy the DOS program's
“virtual” frame buffer into the physical frame buffer residing in physical mem-
ory in the range from 000A0000h - through - 000BFFFFh. At some point (due to
timeslice exhaustion or some other interrupt), the OS suspends the VM86 task
and transfers control to another task. If the next task is another VM86 task, the
OS first copies the task’s virtual frame buffer into the real frame buffer and then
resumes the task. This ensures that the screen looks just as it did at the point
when the task was suspended earlier.

IOPL-Sensitive Instructions

The Problem—Instructions with Side Effects

In addition to IO instructions, a DOS task may attempt to execute other instruc-
tions that may interfere with the multitasking OS or other tasks that are cur-
rently suspended, or that may attempt to call services provided by a non-
resident OS (e.g., DOS) or the BIOS. These instructions are listed below:

• CLI. If the DOS task is permitted to execute the CLI instruction, the inter-
rupt enable bit (EFlags[IF]) is turned off and the processor will not recog-
nize subsequent external hardware interrupts received on its INTR input.
Although the currently-executing DOS program may not care to be inter-
rupted by IO devices at this point, an IO device that had been stimulated by
another (currently-suspended) program at an earlier time may be signaling
for service. The currently-executing program is completely unaware that
this device was previously stimulated by another program and therefore
thinks it can disable interrupt recognition without any ill consequences.
This is obviously not the case in a multitasking OS.

Chapter 15: Virtual 8086 Mode

277

• STI. If the DOS task is permitted to execute the STI instruction, the inter-
rupt enable bit (EFlags[IF]) is turned on and the processor will recognize
subsequent external hardware interrupts received on its INTR input.
Although the currently-executing DOS program may not mind being inter-
rupted by IO devices at this point, the OS (without the knowledge of the
currently-executing program) may have disabled interrupt recognition for
some reason. The currently-executing program is completely unaware of
this and therefore thinks it can enable interrupt recognition without any ill
consequences. This is obviously not the case in a multitasking OS.

• PUSHF. If the DOS task is permitted to execute the PUSHF instruction, the
EFlags register is copied to the stack and the EFlag[VM] and EFlag[RF] bits
are then cleared. This would disable VM86 mode, preventing the processor
from continued monitoring of the VM86 task’s behavior.

• POPF. When executed, the POPF instruction copies the EFlags image on the
stack into the EFlags register. If the programmer had altered this image, a
number of problems could result:
• The VM bit could be cleared, disabling VM86 mode and preventing the

processor from continued monitoring of the VM86 task’s behavior.
• The IF bit could be cleared and the processor would no longer recog-

nize external hardware interrupts.
• The IF bit could be set and the processor would recognize external

hardware interrupts.
• INT nn. DOS programs call DOS or BIOS routines using the software inter-

rupt instruction. Instead, the VMM should be invoked because DOS may
not be present and/or because the DOS task cannot be permitted to ask
BIOS routines to talk directly to IO ports.

• IRET. Like the POPF instruction, the IRET instruction copies the EFlags
image on the stack into the EFlags register. If the programmer had altered
this image, a number of problems could result:
• The VM bit could be cleared, disabling VM86 mode and preventing the

processor from continued monitoring of the VM86 task’s behavior.
• The IF bit could be cleared and the processor would no longer recog-

nize external hardware interrupts.
• The IF bit could be set and the processor would recognize external

hardware interrupts.

The Solution—IOPL-Sensitive Instructions

For the reasons stated in the previous section, the x86 processor design provides
a mechanism that automatically alerts the VMM if the DOS program attempts
to execute one of these instructions when the EFlags[IOPL] field contains a

Protected Mode Software Architecture

278

value < 3. A GP exception results. In the GP exception handler, the programmer
jumps to the VMM if the EFlags[VM] bit stored on the stack (when the excep-
tion occurred) = 1. The VMM then examines the instruction that caused the
exception and substitutes an action (or series of actions) that accomplishes the
same thing but in a manner that doesn’t disturb the overall multitasking envi-
ronment. For an example, refer to the section entitled “Attempted Execution of
CLI Instruction” on page 292.

Interrupt/Exception Generation and Handling

Introduction

The topic of interrupts was covered in the chapter entitled “Interrupt Sources
and Handling” on page 183. Basically, interrupts fall into two categories:

• Hardware-initiated interrupts.
• Software-initiated exceptions.

Software exceptions can be further divided into two categories:

• Software exceptions that result from an error while attempting to execute
an instruction.

• Software exceptions that result from the execution of a software interrupt
instruction (i.e., INT nn).

In all of these cases, the interrupt or exception type provides a one-byte index
into the interrupt descriptor table (IDT), selecting an IDT entry (1-of-256d). The
selected IDT entry contains the start address of the interrupt- or exception-spe-
cific handler routine that must be executed to handle the hardware or software
condition.

Normally Only One IDT

Normally, there is only one IDT. When the processor is operating in real mode,
the IDT starts at memory location 00000000h and contains 256, 4-byte entries.
Each entry contains the physical memory start address of a handler.

When the processor is operating in protected mode, the IDT can start at any
location in memory and contains up to 256, 8-byte entries. Each entry contains
one of the following:

Chapter 15: Virtual 8086 Mode

279

• An interrupt gate descriptor. Points to a protected mode handler. When an
entry containing an interrupt gate descriptor is selected, the contents of
EFlags is pushed onto the stack and the EFlags[IF] bit is then cleared, dis-
abling hardware interrupt recognition while in the handler. Execution of the
IRET at the end of the handler causes EFlags to be reloaded from the stack,
automatically setting EFlags[IF], reenabling recognition of hardware inter-
rupts.

• A trap gate descriptor. Points to a protected mode handler. When an entry
containing a trap gate descriptor is selected, the contents of EFlags is
pushed onto the stack, but, unlike the interrupt gate, the EFlags[IF] bit is
not cleared, permitting hardware interrupt recognition while in the handler.

• A task gate. Points to the TSS for a separate task that acts as the handler for
the condition that selected this IDT entry.

VM86 Mode—Tale of Two IDTs

A VM86 task is a real mode task that is executing under protected mode. The
VM86 task has its own 1MB linear memory address space that it thinks is the
first MB of memory consisting of locations 00000000h through 000FFFFFh. The
real mode IDT exists within the task’s 1MB linear space, residing in linear
memory locations 00000000h through 000003FFh. Each of the 256, 4-byte entries
points to a real mode interrupt or exception handler.

In addition to the real mode IDT, the OS’s protected mode IDT is also in mem-
ory starting at the linear memory location contained in the IDTR register. The
protected mode IDT contains up to 256, 8-byte entries.

Which IDT Is Used?

Although there are two IDTs when a VM86 task is executing, interrupts or
exceptions always select an entry in the protected mode IDT, not the real mode
IDT.

Processor Actions when Hardware Interrupt Occurs
in VM86 Mode

If hardware interrupt recognition is enabled (EFlags[IF] = 1) and the processor’s
INTR input is asserted by the interrupt controller, the processor recognizes the
hardware request upon completion of the currently-executing instruction. This

Protected Mode Software Architecture

280

discussion assumes that the system interrupt controller consists of either an
8259A programmable interrupt controller (PIC), or the Pentium’s APIC is pro-
grammed for PIC-compatible mode.

Obtain Vector from Interrupt Controller

Two, back-to-back interrupt acknowledge transactions are generated. The first
one tells the 8259A interrupt controller to prioritize the currently-pending inter-
rupt requests from IO devices. The second one is a request to the interrupt con-
troller for the interrupt vector number— an index into the interrupt descriptor
table (IDT) in memory.

Use Vector to Select and Read Protected Mode IDT Entry

Using the vector to select a protected mode IDT entry, the processor reads the
contents of the indicated IDT descriptor from memory. Assuming that the entry
doesn’t contain a task gate descriptor (which would result in a task switch), the
processor checks the descriptor’s DPL to see if it’s set to three. If it isn’t, the
interrupt isn’t permitted (a GP exception results).

The processor also checks to ensure that the handler’s code segment has a privi-
lege level of 0. This is accomplished by using the selector field of the trap gate or
interrupt gate descriptor to obtain the code segment descriptor for the handler
from the LDT or GDT. The handler’s code segment DPL is then checked to
ensure that the privilege level of the handler is zero. If it isn’t or is defined as a
conforming code segment, a GP exception is generated. In other words, it’s a
rule that all VM86 interrupt and exception handlers must have a privilege level
of 0 (so that they have access to the full spectrum of processor resources to han-
dle the event).

Switch to VM86 Task’s Level 0 Stack

Refer to Figure 15-1 on page 281 during the following discussion. Before initiat-
ing execution of the handler pointed by the selected IDT descriptor, the proces-
sor automatically takes the following actions:

1. Temporarily saves the current SS:ESP values in an invisible processor regis-
ter.

2. Reads the SS0:ESP0 fields from the VM86 task’s TSS (see Figure 15-2 on
page 282) and loads them into SS:ESP. SS:ESP then points to the top of the
task’s privilege level 0 stack.

3. Stores the current contents of ES, DS, FS, and GS on the privilege level 0
stack.

Chapter 15: Virtual 8086 Mode

281

4. Stores the old SS:ESP values on the privilege level 0 stack.
5. Stores the current contents of EFlags on the privilege level 0 stack.
6. If the selected IDT entry contains an interrupt gate descriptor, the processor

clears EFlags[IF] and EFlags[TF], disabling recognition of subsequent exter-
nal hardware and single-step interrupts before entering the handler. The
processor also clears EFlags[VM], permitting the handler to execute instruc-
tions that would cause an exception in VM86 mode.
If the selected IDT entry contains a trap descriptor, the processor clears
EFlags[TF], disabling single-step interrupts but permitting recognition of
subsequent external hardware interrupts before entering the handler. The
processor also clears EFlags[VM], permitting the handler to execute instruc-
tions that would cause an exception in VM86 mode.

7. Stores the current contents of CS:EIP on the privilege level 0 stack.
8. Clears ES, DS, FS, and DS registers to zero (refer to “Why Data Segment

Registers Were Cleared” on page 286).

Figure 15-1: Privilege Level 0 Stack After VM86 Task Interrupted

Protected Mode Software Architecture

282

Figure 15-2: 32-bit TSS Data Structure

Chapter 15: Virtual 8086 Mode

283

Jump to Handler

The processor then loads the CS register with the segment selector field (Figure
15-3 on page 284 if it’s an interrupt gate descriptor or Figure 15-4 on page 285 if
it’s a trap gate descriptor) from the selected entry in the IDT and loads EIP with
the offset field from the IDT entry.

Using the table indicator and index fields in the CS register, the processor
selects either the GDT or LDT and reads the code segment descriptor from the
entry selected by the index in CS. This code segment descriptor supplies the
base address of the code segment that contains the handler, while the offset field
in the IDT entry supplies the offset of the handler’s entry point within that code
segment. The offset field is loaded into the EIP register.

The processor then resumes normal operation. In other words, it uses CS:EIP to
fetch the next instruction—the first instruction of the handler.

If Handler Expects Values in Data Segment Registers

Remember that the processor automatically saved the values from the data seg-
ment registers on the privilege level 0 stack and then cleared them before enter-
ing the handler. If a particular handler expects values to be passed to it in the
data segment registers, it must obtain the values from the privilege level 0 stack.

When Handler Must Know if Entered from VM86 Mode

When a handler must know whether or not it was entered from an interrupted
VM86 task, it cannot test the state of EFlags[VM] to determine this (because
EFlags[VM] was cleared by the processor before entering the handler). Rather,
the programmer must test the state of the VM bit within the EFlags image that
was pushed onto the privilege level 0 stack.

If Handler Must Return Values in Data Segment Registers

When the IRET instruction is executed at the end of the handler, the processor
pops the original contents of the data segment registers (i.e., DS, ES, FS, and GS)
back into those registers. Consequently, any handler that must return values in
any of the data segment registers must store those values in the data segment
register images stored on the privilege level 0 stack before executing the IRET.

Protected Mode Software Architecture

284

Figure 15-3: Interrupt Gate Descriptor Format

Chapter 15: Virtual 8086 Mode

285

Figure 15-4: Trap Gate Descriptor Format

Protected Mode Software Architecture

286

Exit Handler and Return to Interrupted VM86 Task

Why Data Segment Registers Were Cleared. Oftentimes, the code at
beginning of a handler may save the contents of the data segment registers. The
handler may not be specific to handling an interrupted VM86 task and it
assumes that the data segment registers contain values that must be saved on
entry and restored before exiting the handler. Since the interrupted task is a
VM86 task, however, the data segment registers contain all zeros because the
processor had cleared them. Before exiting, the programmer may attempt to
restore the original values to the data segment registers. Since they are all zeros
in this case, they all select entry 0 in the GDT. This is a null descriptor and
selecting it will never result in an exception. If a non-zero selector were loaded
back into a data segment register, it may select a segment descriptor that causes
a protection exception. The processor cleared all of the data segment registers
before entering the handler to prevent this possibility.

Execution of IRET Instruction. The final instruction in the handler is
always an IRET instruction. When it is executed, the processor takes the follow-
ing actions (refer to Figure 15-1 on page 281):

1. Pops the original CS:EIP values from the privilege level 0 stack into CS:EIP.
The next instruction fetched (after the following steps have completed) will
be the one that would have been executed if the VM86 task had not been
interrupted.

2. Pops the original EFlags value from the privilege level 0 stack into the
EFLags register. Since this copy of EFlags was made before the VM, TF and
IF bits were cleared, the pop restores them to ones. This reenables recogni-
tion of external hardware and single-step interrupts, and also reenables
VM86 mode.

3. Reads the VM86 task’s stack base and top-of-stack pointer (SS:ESP) value
from the privilege level 0 stack into an invisible processor register tempo-
rarily.

4. Reloads the data segment registers (DS, ES, FS, and GS) from the privilege
level 0 stack.

5. Copies the VM86 task’s stack base and top-of-stack pointer from the tempo-
rary holding register to SS:ESP.

The processor’s register set has now been restored to its state at the point of
interruption and the processor resumes normal operation. It uses CS:EIP to
fetch the instruction that would have been executed next if the VM86 task had
not been interrupted.

Chapter 15: Virtual 8086 Mode

287

Processor Actions when INT nn Executed
in VM86 Mode

When the INT nn instruction is executed, the processor determines if the
EFlags[IOPL] field is set to a privilege level numerically < 3 (the CPL of the
VM86 task) and generates a GP exception if it is (because the INT nn instruc-
tion is an IOPL-sensitive instruction). Assuming that it’s not, the INT nn is exe-
cuted. The nn value supplies the vector used to select an IDT table entry. The
processor does not generate interrupt acknowledge transactions on its external
bus to obtain the vector.

This discussion assumes that the selected IDT entry does not contain a task gate
descriptor. Aside from the vector source, in all other respects the actions taken
by the processor when executing an INT nn instruction are identical to those
that it takes in response to a hardware interrupt (see“Processor Actions when
Hardware Interrupt Occurs in VM86 Mode” on page 279).

Processor Actions when Exception Occurs
in VM86 Mode

Exceptions occur for a variety of software-related problems that may be encoun-
tered while attempting to decode or execute an instruction. The various causes
are discussed in the section entitled “Software-Generated Exceptions” on
page 190.

The type of exception dictates the vector used to select an IDT entry. This dis-
cussion assumes that the selected IDT entry does not contain a task gate
descriptor. Although the source of the vector differs, the actions taken by the
processor in response to a software exception are the same as those taken in
response to the execution of an INT nn instruction (see the previous section). It
should be noted that, unlike hardware interrupts or INT nn instructions, some
exceptions push an error code onto the stack (see Figure 15-5 on page 288).

Protected Mode Software Architecture

288

Execute Protected Mode Handler or Pass
Control to VMM

As previously discussed, when an interrupt or exception occurs while a VM86
task is executing, the processor vectors to the appropriate protected mode han-
dler and starts executing it. In the protected mode handler’s entry code, the pro-
grammer must determine whether to service the interrupt or exception or to
pass control to the VMM.

Upon entry to a specific protected mode handler, the designer of a specific pro-
tected mode handler has two options:

1. Handle all events of this type with the protected mode handler. In this
case, the programmer doesn’t care whether the event occurred during a
VM86 task or a regular, protected mode task. The body of the protected
mode handler is executed.

Figure 15-5: Privilege Level 0 Stack after Exception with Error Code

Chapter 15: Virtual 8086 Mode

289

2. Handle events of this type that occur during execution of regular, protected
mode tasks by executing the body of the protected mode handler. If the
interrupted task is a VM86 task, however, pass control to the VMM.

When option 2 is used, the programmer examines the EFlags[VM] bit pushed
onto the privilege level 0 stack by the processor to determine whether or not to
pass control to the VMM.

• If VM = 0, the interrupted task is not a VM86 task, so the body of the pro-
tected mode handler is executed.

• If VM = 1, the interrupted task is a VM86 task. At this point, the protected
mode handler may jump to the VMM and let it decide how to handle the
event. In this case, it provides the VMM with its vector number.

The next section discusses possible actions taken by the VMM when a protected
mode handler passes control to it.

VMM Chooses Response Based on Vector

When a protected mode handler passes control to the VMM, it supplies it with
its corresponding IDT vector. This tells the VMM what type of interrupt or
exception occurred. The action taken by the VMM is defined by the event type,
as well as the OS implementation.

Based on the vector supplied to it by the protected mode handler, the VMM has
two basic options:

1. Handle the event within the VMM.
2. Pass control to the real mode handler that corresponds to the vector number

received from the protected mode handler.

The sections that follow describe both options.

VMM Passes the Ball to a Real Mode Handler

Pass Control to Real Mode Handler. The programmer must take the
following actions to pass control to the corresponding real mode handler:

1. Multiply the vector of the protected mode handler being executed by four
(because the real mode IDT consists of four bytes per entry) to obtain the
offset into the real mode IDT.

Protected Mode Software Architecture

290

2. Since the real mode IDT starts at linear memory address 00000000h, the off-
set obtained in the previous step is the start linear address of the corre-
sponding real mode IDT entry (you could add a base address of 00000000h
to it, but what’s the point?).

3. Read the new CS:EIP value from the real mode IDT entry. This is the entry
point of the corresponding real mode handler.

4. Obtain the interrupted VM86 task’s EFlags, CS:EIP values from the privi-
lege level 0 stack and store them on the VM86 task’s privilege level 3 stack
(level 3 stack’s base and top-of-stack values are obtained from the SS:ESP
values that were pushed onto the privilege level 0 stack). These return val-
ues will be used when the IRET instruction is executed at the end of the real
mode handler (see step 9).

5. Read the CS:EIP return address previously saved on the privilege level 0
stack by the processor. This address points to the VM86 task instruction that
would have been executed next if the task had not been interrupted. Save
this return address to be used later (see step 3 in “Real Mode Handler Exe-
cutes” on page 290).

6. Store the real mode handler entry point address into the privilege level 0
stack in place of the address just read and saved.

7. Execute an IRET instruction. This pops the start address of the real mode
handler into the CS:EIP registers. In addition:
• the EFlags image from the privilege level 0 stack is popped into the

EFlags register. Since the VM bit = 1 in this image, VM86 mode is reen-
abled.

• the VM86 task’s stack base and top-of-stack are popped into SS:ESP.
• the data segment (DS, ES, FS and GS) register values are popped into

their respective data segment registers.
8. The processor begins execution of the real mode handler. Execution of the

real mode handler services the interrupt or exception.

Real Mode Handler Executes. The real mode handler executes, servicing
the event that caused the interrupt or exception.

Exit Real Mode Handler Back to VMM. At the conclusion of the han-
dler’s execution, the following actions are taken:

1. The IRET instruction at the end of the real mode handler is executed. Since
IRET is an IOPL-sensitive instruction (and assuming that the IOPL < 3) and
the handler is executing with EFlags[VM] = 1, the attempt to execute it
causes a GP exception.

2. The processor saves CS:EIP, SS:ESP, EFlags, DS, ES, FS, and GS on the privi-
lege level 0 stack. It then clears EFlags[VM], [IF] and [TF] and jumps to the
protected mode GP exception handler. The VM bit on the privilege level 0

Chapter 15: Virtual 8086 Mode

291

stack is examined and, because VM = 1, the GP exception handler jumps to
the VMM.

3. The VMM replaces the previously-saved (see step 5 in “Pass Control to Real
Mode Handler” on page 289) pointer to the interrupted VM86 task into the
privilege level 0 stack.

VMM Resumes Interrupted VM86 Task. Once the real mode handler
has passed control back to the VMM and the VMM has cleaned up the stack, it
returns to the interrupted VM86 task:

1. The VMM executes an IRET instruction (the IRET executes successfully
because the processor is no longer in VM86 mode), causing the processor to
pop the previously saved values (CS:EIP, SS:ESP, EFlags, DS, ES, FS, and
GS) from the privilege level 0 stack.

2. The processor resumes execution of the VM86 task.

VMM Handles Event

Rather than passing control to a real mode handler, the VMM may choose to
handle the event itself. This would certainly be the case if the VM86 task had
attempted one of the following:

• Direct access to an IO port and the corresponding bit in the TSS’s IO permis-
sion bit map is set. In other words, the VM86 task attempted to access an IO
port that only the multitasking OS is permitted to access, resulting in a GP
exception. The protected mode GP handler passed control to the VMM
because the interrupted task is a VM86 task.

• Attempted execution of an IOPL-sensitive instruction when EFlags[IOPL] =
3. In other words, the VM86 task does not have sufficient privilege to exe-
cute the instruction, resulting in a GP exception. The protected mode GP
handler passed control to the VMM because the interrupted task is a VM86
task.

Each of these cases results in a GP exception, interrupting the VM86 task. Since
the GP exception is a fault, the return address that is pushed onto the privilege
level 0 stack points to the instruction that caused the exception. The processor
jumps to the protected mode GP handler. The GP handler checks the state of
VM bit in the EFlags image on the privilege level 0 stack to determine if the
interrupted task is a VM86 task. In these cases, VM = 1 indicating a VM86 task
was interrupted. The GP handler therefore jumps to the VMM and passes its
vector number, 13d.

Protected Mode Software Architecture

292

Using the return address that was pushed onto the privilege level 0 stack, the
VMM examines the VM86 task’s instruction that caused the exception. The fol-
lowing sections describe the typical actions taken by the VMM for these cases.

Attempt to Access Forbidden IO Port. The VM86 task attempted to
access an IO port that it is not permitted to access directly (because the OS and
other tasks would not be aware of the change in the IO device’s state caused by
the IO access). The action taken by the VMM is implementation-specific. Some
typical actions might be:

• The VMM is part of the OS and acts as the central point for communication
with all shared IO devices. The VMM may perform the IO access and keep
track of the IO device’s current state. It is the author’s opinion that this
would be the most commonly-used method.

• The VMM may decide to terminate the VM86 task.
• The VMM may ignore the IO access attempt. In other words, it may choose

to resume execution of the interrupted VM86 task at the instruction after the
IO instruction that caused the exception.

• If the instruction is an IO write (OUT or OUTS), the VMM may simply
update a copy of the IO port’s contents that is maintained in memory (in
other words, a virtual copy of the IO port). If the instruction is an IO read
(IN or INS), the VMM may return the contents of a virtual copy of the IO
port that is maintained in memory.

Attempted Execution of CLI Instruction. The VM86 task has
attempted to disable recognition of external hardware interrupts (because it
doesn’t want to be bothered by interrupts during execution of a critical piece of
code). The processor did not successfully execute the instruction, so interrupt
recognition is still enabled. There are three possible cases:

• the VMM checks the state of the IF bit in the EFlags image on the privilege
level 0 stack and determines that interrupt recognition had already been
disabled (by the VMM or OS) at some earlier point in time. In this case,
the VMM adjusts the return pointer on the privilege level 0 stack to point to
the instruction following the CLI that caused the exception, and then exe-
cutes an IRET to resume execution of the interrupted VM86 task at the
instruction that follows the CLI.

• the VMM may know that this is a safe time to disable interrupt recogni-
tion (because there are no high-priority interrupts expected). In this case,
the VMM could choose to execute a CLI instruction, adjust the return
pointer on the privilege level 0 stack to point to the instruction following
the CLI that caused the exception, and then execute an IRET to resume exe-
cution of the interrupted VM86 task at the instruction that follows the CLI.

Chapter 15: Virtual 8086 Mode

293

• the VMM may know that this not a safe time to disable recognition of
hardware interrupts. The text that follows provides a detailed description of
this case.

The multitasking OS cannot permit the VM86 task (which doesn’t know of the
existence of the multitasking OS or other, currently-suspended tasks) to sum-
marily disable interrupt recognition. At an earlier point in time, another task
may have stimulated an IO device (e.g., a disk interface) to perform an opera-
tion and generate an interrupt when it has been completed. The device may
complete the requested operation and generate the interrupt while the VM86
task is executing. Furthermore, the device may be quite sensitive to being ser-
viced on a timely basis. The VM86 task is unaware of any of this.

Based on the attempted execution of the CLI instruction, the VMM will note (in
a memory location somewhere) that the currently-executing task prefers not to
be interrupted. In other words, the VMM maintains a virtual copy of
EFlags[IF] bit in software. It alters the return address on the privilege level 0
stack to point to the instruction that follows the CLI and then executes the IRET
to resume execution of the interrupted VM86 task at the instruction that follows
the CLI.

If a hardware interrupt should subsequently occur, the VM86 task is interrupted
and the hardware interrupt’s protected mode handler then passes control to the
VMM. If the VMM knows that the interrupting device requires fast servicing, it
immediately executes either the protected mode or real mode handler to service
the device. In other words, it ignores the preference of the VM86 program that it
not be interrupted. In this case, the VM86 task was interrupted even though it
preferred not to be. The VMM designer should make every attempt to accom-
plish the check just described as expeditiously as possible and return control to
the interrupted task. Otherwise, the interrupted VM86 task may not function
correctly (because of the lengthy delay imposed by the VMM’s software over-
head necessary to determine whether to service the hardware interrupt right
away or to defer servicing it until the task’s timeslice has expired).

On the other hand, the VMM may determine that the interrupting device can
stand some delay in being serviced and that the virtual copy of the EFlags[IF]
bit indicates that the VM86 task prefers not to be interrupted. In this case, the
VMM would set a bit in a VMM-specific data structure (let’s call it the deferred
interrupt data structure) indicating that the specified interrupt handler should
be executed when the VM86 task completes its timeslice. It then executes the
IRET instruction to resume execution of the interrupted VM86 task. Later, when
the VM86 task’s timeslice has expired and a task switch occurs back to the OS,
the OS checks the deferred interrupt data structure (mentioned earlier) to deter-

Protected Mode Software Architecture

294

mine if the servicing of any hardware interrupt(s) was deferred. If it was, the OS
calls the respective interrupt handler(s) to service the hardware device(s).

Attempted Execution of STI Instruction. If the VM86 task attempts to
reenable interrupt recognition, one of three cases is true:

• the VMM checks the state of the IF bit in the EFlags image on the privilege
level 0 stack and determines that interrupt recognition is already enabled.
In this case, the VMM adjusts the return pointer on the privilege level 0
stack to point to the instruction following the STI that caused the excep-
tion, and then executes an IRET to resume execution of the interrupted
VM86 task at the instruction that follows the STI.

• the VMM may know that this is a safe time to enable interrupt recogni-
tion. In this case, the VMM could choose to execute a STI instruction,
adjust the return pointer on the privilege level 0 stack to point to the
instruction following the STI that caused the exception, and then execute
an IRET to resume execution of the interrupted VM86 task at the instruc-
tion that follows the STI.

• the VMM knows that this is not a safe time to reenable recognition of hard-
ware interrupts. In this case, the VMM adjusts the return pointer on the
privilege level 0 stack to point to the instruction following the STI that
caused the exception, and then executes an IRET to resume execution of
the interrupted VM86 task at the instruction that follows the STI.

Attempted Execution of PUSHF Instruction. If the DOS task is permit-
ted to execute the PUSHF instruction, the EFlags register is copied to the stack
and the EFlag[VM] and EFlag[RF] bits are cleared. This would disable VM86
mode, preventing the processor from continued monitoring of the VM86 task’s
behavior. The VMM could emulate this in a benign fashion, copying the EFlag
contents to the VM86 task’s stack (SP:ESP are on privilege level 0 stack) without
clearing EFlag[VM]. The VMM adjusts the return pointer on the privilege level
0 stack to point to the instruction following the PUSHF that caused the excep-
tion, and then executes an IRET to resume execution of the interrupted VM86
task at the instruction that follows the PUSHF.

Attempted Execution of POPF Instruction. When executed, the POPF
instruction copies the EFlags image on the stack into the EFlags register. If the
programmer had altered this image, a number of problems could result:

• The VM bit could be cleared, disabling VM86 mode and preventing the pro-
cessor from continued monitoring of the VM86 task’s behavior. The VMM
must copy the data from the VM86 task’s stack into the EFlags register,
ensuring that the VM bit remains set to one.

Chapter 15: Virtual 8086 Mode

295

• The IF bit could be cleared, disabling the processor so it would no longer
recognize external hardware interrupts. The VMM could treat this attempt
to disable interrupt recognition in the same manner as an attempt to execute
a CLI instruction (see “Attempted Execution of CLI Instruction” on
page 292).

• The IF bit could be set, reenabling the processor to recognize external hard-
ware interrupts. The VMM could treat this attempt to enable interrupt rec-
ognition in the same manner as an attempt to execute a STI instruction (see
“Attempted Execution of STI Instruction” on page 294).

Attempted Execution of INT nn Instruction. Many VM86 tasks uti-
lize the INT nn instruction to call the real mode OS or BIOS services. An attempt
to execute an INT nn instruction when the EFlags[IOPL] field < 3 results in a GP
exception. The processor executes the protected mode GP exception handler.
The handler checks the VM bit in the EFlags image on the privilege level 0 stack
to determine if the interrupted task is a VM86 task. If it is (VM = 1), the GP han-
dler passes control to the VMM. The VMM must then determine what to do in
response. There are two basic cases:

1. The VMM determines that it is not legal for the VM86 task to call the target
vector. In this case, the VMM would be forced to terminate the VM86 task.

2. The VMM determines that the VM86 task is attempting to call a DOS or
BIOS service.

In the second case, the VMM must choose one of the following options:

1. Pass the call to a real mode handler. This is accomplished in the manner
already described in “VMM Passes the Ball to a Real Mode Handler” on
page 289.

2. Pass the call to the protected mode OS to handle. When the OS has com-
pleted the request, the VMM then returns control to the interrupted VM86
task at the instruction immediately following the INT nn instruction.

Attempted Execution of IRET Instruction. As discussed earlier, in
some cases the VMM may pass control to a real mode handler to service an
interrupt or exception. VM86 mode is reenabled when control is passed to the
real mode handler. At the conclusion of the real mode handler, attempted exe-
cution of the IRET instruction results in a GP exception. The protected mode GP
handler passes control back to the VMM, which in turn passes control back to
the interrupted VM86 task. This was described in detail in “VMM Passes the
Ball to a Real Mode Handler” on page 289.

Protected Mode Software Architecture

296

Using Separate Task as Handler in VM86 Mode

If an interrupt or exception occurs while a VM86 task is executing and the vec-
tor selects a protected mode IDT entry that contains a task gate, a task switch
occurs. The processor suspends the VM86 task and starts up the task that is
being used to handle the interrupt or exception. Upon entry to the new task,
EFlags[NT] (nested task; see Figure 15-6 on page 296) is set. The TSS selector
(see Figure 15-2 on page 282) for the VM86 task is stored in the Link field of the
new task’s TSS.

When the IRET is executed at the end of the task, the set NT bit forces the pro-
cessor to perform a task switch back to the interrupted task. The processor uses
the GDT selector stored in the TSS Link field to locate the VM86 task’s TSS. The
processor’s register set is reloaded from the VM86 task’s TSS and execution
resumes at the next instruction.

Figure 15-6: EFlags Register

Chapter 15: Virtual 8086 Mode

297

VM86 Mode Extensions

By now, it should be somewhat apparent that there is a lot of software overhead
involved when the processor must intercept potentially disruptive actions initi-
ated by a VM86 task. When one of these attempts is detected, the processor exe-
cutes the protected mode GP handler which in turn transfers control to the
VMM. The VMM must then determine the proper action to take.

• The VMM must decide whether the real or protected mode handler should
handle an interrupt or exception event.

• The processor prevents the VM86 task from altering the state of the inter-
rupt enable bit in the EFlags register.

The Pentium processor and later versions of the 486 processor implement the
CR4 register (see Figure 15-7 on page 299). Setting CR4[VME] to one enables
extended capabilities that permit faster handling of these disruptive actions.

The description of these extended capabilities was under non-disclosure until
the Pentium Pro processor was introduced. At that time, Intel included a
description in the processor data books. The sections that follow provide a brief
introduction to these topics. A detailed description of these capabilities can be
found in MindShare’s Pentium Pro Processor System Architecture book (published
by Addison-Wesley).

Virtual Interrupt Enable Bit

When the processor's VM86 mode extensions are enabled (CR4[VME] = 1), a
new EFlags bit, EFlags[VIF], becomes available (see Figure 15-6 on page 296).

When operating in VM86 mode with the extensions enabled, the processor
operates differently when an attempt is made to execute an instruction (CLI or
STI) that would alter the state of the processor's IF flag bit. The discussion that
follows assumes that CR4[VME] = 1.

As stated earlier, the multitasking OS must be in sole control of the interrupt
enable bit. When an attempt by a VM86 task to execute the CLI instruction is
detected with an IOPL < 3, the processor doesn’t generate a GP exception. The
CLI clears the virtual IF bit (EFlags[VIF]), rather than the actual EFlags[IF] bit.
Detection of an attempt to execute the STI instruction causes EFlags[VIF] to be

Protected Mode Software Architecture

298

set to one (rather than the EFlags[IF] bit). The VIF bit takes the place of the vir-
tual copy of the IF bit software had to maintain (see “Attempted Execution of
CLI Instruction” on page 292).

Software Interrupt Redirection

When the processor is operating in VM86 mode and the VM86 extensions are
enabled (CR4[VME] = 1), the processor uses the software interrupt vector (a
number between 0 and 255d) to index into the interrupt redirection bit map in
the VM86 task's TSS. This is a 32-byte bit map (pictured in Figure 15-8 on page
300) that defines the action to be taken for each of the 256 interrupt vectors (32
bytes x 8 bits/byte = a 256 bit map). The base address of the IO permission bit
map field in the TSS identifies the start address of the IO permission bit map
and the end address (plus one) of the interrupt redirection bit map. When the
OS initially sets up the TSS for a VM86 task, it selects the states of the up to 256
bits in the redirection bit map to indicate which software interrupt types are to
use the real mode handlers and which use the protected mode handlers.

Hardware Interrupt Redirection

Hardware interrupts are never redirected. They are always vectored through
the protected mode interrupt table.

Chapter 15: Virtual 8086 Mode

299

Figure 15-7: CR4 Register

Protected Mode Software Architecture

300

Figure 15-8: 32-bit TSS Format

Chapter 15: Virtual 8086 Mode

301

Registers Accessible in VM86 Mode

A program operating in VM86 mode has access to all of the 8086 registers, as
well as the two additional data segment registers—FS and GS. The FS and GS
segment override prefixes may be used. As an example:

MOV AH, FS:[0100] ;read byte from location 0100h in FS
;data segment into AH register

Figure 15-9: EFlags Register

Protected Mode Software Architecture

302

Instructions Usable in VM 86 Mode

In addition to the 8086 instruction set, a VM86 task may utilize instructions that
access the FS and GS data segment registers. Instructions may make use of the
operand size override prefix to utilize 32-bit (rather than 8- or 16-bit) operands.
The following is a list of post-8086 processor instructions that may be utilized
by a VM86 task:

• Instructions introduced on the 286 processor
• PUSH immediate data
• PUSHA and POPA
• Multiply immediate data
• Shift and rotate by immediate count
• INS and OUTS
• ENTER and LEAVE
• BOUND

• Instructions introduced on the 386 processor
• LSS, LFS, and LGS
• Long-displacement conditional jumps
• Single-bit instructions
• Bit scan instructions
• Double-shift instructions
• Byte set on condition instruction
• Move with sign/zero extension
• Generalized multiply instruction

• Instructions introduced on the 486 processor
• BSWAP
• XADD
• CMPXCHG

• Instructions introduced on the Pentium processor
• CMPXCHG8B
• CPUID

Index

303

Numerics
287 26
386/486 TLB 248
387 26
4MB memory page 258
4MB page 232, 260
4MB paging 234
8088 187
8259A programmable interrupt controller

186, 280
A

A bit 93, 118, 234
A20MASK# 60
Abort 192
aborts 191
AC 35
AC bit 27, 37, 39, 66, 194
Access History 93
accessed 72, 221, 234
Accessed Bit 246
Address Mapping 180
Address Size Override Prefix 272
address size prefix 91
addressing, real mode 49
Alarm 189
Alignment Check 27, 37, 39
Alignment check 197, 215
Alignment Check exception 194
Alignment Checking 148
Alignment Mask 27
AM bit 27, 37, 66, 194
APIC 186, 280

B
B bit 92, 131, 135
Big bit 92
big real mode 61
BIOS routine 21
BOS 134
bottom of stack 134
BOUND 64, 173, 190
Bounds check 197
BOUNDS instruction 192

breakpoint 192, 197
breakpoint monitoring 42
breakpoint, data address 192
breakpoint, IO 32, 42
bus check 194
BUSCHK# 33, 66, 194
busy bit 152, 163, 164, 166, 170, 175, 177
busy TSS 97

C
C 108, 118
C/D bit 92, 101, 104, 131
cache 27, 30
Cache Disable 27
Cache Issues 254
cache register 80, 101
CACHE# 255
caches 48
Call Gate 97, 110
Call Gate descriptor 152
Call Gate descriptor format 113
Call Gate Privilege Check 120
Call Gate, elements of 112
Call Gate, example 114, 115, 116
Call Gates 82, 85, 111
CALL instruction 55, 209
CD bit 27
clear interrupt enable 185
CLI 9, 20, 75, 144, 185, 276, 292, 297
Code breakpoint 197
Code Page Access 249
code pages 249
code segment 18, 99, 117
code segment descriptor 101
Code Segment descriptor, example 119
Code segment limit violation 197
code segment selector 117, 204
code segment, 16-bit 91
code segment, 32-bit 91
code segment, accessing 51
code segment, non-conforming 93
code segments, conforming 93
Command Line Interpreter 9

Index

304

COMMAND.COM 9
Conforming bit 101
conforming code segment 93, 108, 121
coprocessor 26
Coprocessor not available 197
Coprocessor segment overrun abort 188,

193
CPL 107, 108, 121, 127, 142, 153, 158, 160,

168, 185, 241, 263
CPU ID 38, 39
CR0 25, 28, 47, 164, 230
CR1 28
CR2 29, 47, 235, 236, 239
CR3 29, 48, 148, 149, 180, 181, 229, 253, 255,

257, 264, 270
CR4 30, 31, 34, 48, 258, 297, 299
CS 46, 50, 99
current privilege level 107, 108

D
D bit 117
D/C bit 118
Data Cache 256
Data Page Access 251
Data Page fault 197
data pages 249
data segment 56, 93, 125
data segment descriptor format 128
data segment descriptor, example 130
data segment privilege check 127
data segment registers 46, 283, 286
data segments 56, 125
DE bit 32
Debug 39, 48
Debug exception 192
Debug Extensions 32
Debug Mode Control register 42
Debug registers 42, 43
debugger 36
default size bit 90
deferred interrupt data structure 293
demand mode paging 262
descriptor privilege level 96, 104, 107, 108,

112
descriptor table 61, 101
descriptors 79
Device Not Available exception 193
DF bit 36, 39
Direction Flag 36, 39
Dirty bit 246
DIV 64
Divide-by-zero 192
DMA channel 15
DOS and frame buffer 276
DOS application 221
DOS Memory 270
DOS task 265
DOS tasks, multiple 270
DOSSHELL 10
double-fault exception 187, 193, 215
DPL 96, 107, 108, 109, 112, 115, 118, 121,

127, 131, 138, 158, 161, 168, 200, 204,
263, 264, 280

DS register 50, 125
dword count 112, 115, 123

E
E bit 93, 135
E state 256
EFlags register 35, 38, 40, 47, 142, 143, 296,

301
EIP 46
EM bit 26, 27, 65, 193
end-of-interrupt command (EOI) 186
EOI command 186
error code 209, 215
error code format 216
error code format, page fault 216
ES register 51, 125
ESC instruction 65, 193
ESP register 48
ET bit 26
event queue 15
exception 100, 159, 161, 268, 287
exception 16d 26
Exception 18d 33

Index

305

exception Error Codes 215
exception handling 183
exception types 191, 192
exception, Alignment check 66
exception, Bounds Check 64
exception, Breakpoint 64
exception, Coprocessor segment overrun

abort 65
exception, Divide Error 64
exception, Double Fault 65
exception, Floating-point error 66
exception, general protection 66, 101
exception, Invalid Opcode 64
exception, Invalid TSS 65
exception, Machine check 66
exception, Overflow 64
exception, Page fault 66
exception, Processor Extension not Avail-

able 65
exception, Segment not present 65
exception, Single-Step 64
exception, Stack 65
exceptions 64, 159, 190
Exclusive state 256
execute-only 72, 102
expand-down stack 131, 134
expand-up stack 93, 131, 134
Extended Flags register 35
extended memory 58
Extension Type 26
external interrupts 184

F
far call 100, 111, 139, 152, 158, 160, 168, 268
far jump 100, 111, 139, 152, 158, 160, 171,

268
far return 100
fault 191, 195
FERR# 26
Flag register 35
flat memory model 261
Floating-point error 194, 197
Floppy interface 189

FPU is not present 193
Frame Buffer Updates 276
FS register 51, 125

G
G bit 90, 117
GDT 80, 82, 101, 104, 111, 126, 145, 147,

150, 152, 153, 158, 160, 168, 177, 262,
268, 280

GDT register (GDTR) 80, 180
GDTR 80, 83, 101, 180, 263
General Detect debug exception 192
General detection 197
General Protection 194
GP exception 101, 102, 107, 109, 110, 121,

127, 142, 144, 150, 152, 153, 160, 163,
166, 168, 175, 177, 182, 189, 194, 197,
215, 241, 263, 266, 267, 272, 278, 280

granularity bit 90, 104
GS register 51, 125

H
HALT 190
Hard drive interface 189
Hardware breakpoint 197
hardware interrupt 159, 161, 184
High Memory Area 60
HMA 60

I
IBM PC 187
ICE 192
ID bit 35, 38, 39
IDIV 64
IDT 21, 36, 40, 63, 82, 111, 150, 159, 160,

163, 185, 268, 278
IDT structure 167, 198
IDT, protected mode 41, 75, 202
IDT, real mode 41
IDT, real mode structure 199
IDTR 40, 48, 63, 198, 200, 203
IF bit 20, 31, 36, 39, 184, 207, 279, 298
in-circuit emulator 192
index field 80
Instruction length 197

Index

306

instruction prefetcher 221, 249
Instruction Restart 195
INT 21, 32, 40, 54, 63, 66, 75, 159, 161, 173,

184, 190, 195, 196, 277, 287, 295
INT3 64, 190, 197
interrupt 100, 159, 161, 268
interrupt acknowledge transactions 186,

280
interrupt and exception priority 196
interrupt controller 159, 186
Interrupt Descriptor Table 82, 111, 160,

163, 186
Interrupt Descriptor Table (IDT) Structure

198
Interrupt Descriptor Table register 40, 200
interrupt enable 31
Interrupt Flag 36, 39
interrupt gate 97, 185, 201, 203, 206, 207,

268, 279, 284
interrupt handler 150, 183
interrupt handling, real mode 63
interrupt levels 146
interrupt on overflow 173, 197
interrupt recognition 20, 148
interrupt redirection bit map 139, 140, 146
interrupt request 185
interrupt return 100, 212
interrupt service routine 41
interrupt table 75, 100
interrupt vector 41, 280
interrupt, hardware 54
interrupt, NMI 64
interrupts 159
INTO 64, 173, 192
INTR 36, 39, 40, 63, 185, 279
invalid opcode 193, 197
invalid TSS exception 165, 193, 197, 215
INVLPG 254
IO 73
IO addresses 49
IO addressing 18
IO devices 184

IO operations 39
IO permission bit map 73, 140, 144, 291
IO Permission in Protected Mode 274
IO Permission in VM86 Mode 274
IO port 291
IO port 70h 190
IO ports 11, 145
IO ports, memory-mapped 275
IO privilege level 36, 39, 73, 142, 185
IO protection 71, 73, 141
IOPL 32, 35, 36, 39, 73, 75, 142, 143, 144,

145, 185, 212, 274, 287, 297
IOPL-sensitive instructions 142, 276, 291
IP register 52
IRET 36, 39, 64, 100, 150, 159, 160, 165, 170,

174, 177, 185, 186, 190, 212, 216, 239,
269, 277, 286, 290, 294, 295, 296

IRETD 36, 39, 216
IRQ 185
IRQ0 through IRQ7 187

K
KEN# 255
keyboard controller 60
Keyboard interface 188

L
LDT 80, 82, 85, 96, 101, 111, 126, 147, 152,

160, 168, 280
LDT Purpose 180
LDT register (LDTR) 80
LDTR 80, 85, 101, 147, 180
least-recently-used (LRU) 251
LGDT 83
LIDT 63, 198, 200
linear address 180, 181, 223, 235
linear memory space 270
linear page 181, 223, 224, 238
Linear-to-Physical Mapping 181
Linked Tasks 174
LLDT 85
Local Descriptor Table 80, 82, 96
Local Descriptor Table Register 85
Local Descriptor Tables 82

Index

307

LOCK 64, 178
LOCK prefix 193
logical memory address 222
LRU 251
LTR 152, 153

M
M state 256
Machine check 216
Machine Check Address register 33
Machine Check Enable 33
Machine Check exception 194
Machine Check Type register 33
Machine Status Word 26
maskable interrupt 185, 197
mass storage 73, 223, 230
mass storage address 221
master directory 225, 229
MCE 33, 194
ME bit 66
memory protection 71
memory-mapped IO ports 275
message 190
misaligned transactions 27, 39
Modified state 256
Mouse interface 189
MP bit 26, 27
MSW 26
multiple DOS tasks 270
multitasking 13, 17

N
NE bit 26, 66, 194
near jump 104
Nested Task 36, 39, 213
NMI 63, 190, 192
non-aligned memory access 37
non-conforming code segment 93, 108, 121
non-maskable interrupts 197
Not Write-through 27
NT 165
NT bit 35, 36, 39, 150, 165, 174, 213, 296
numeric coprocessor 189
Numeric Exception 26

NW bit 27
O

OF bit 192
operand size prefix 91
OS loader 220
OS Services 10
OS task scheduler 220, 268
overflow 192

P
P bit 96, 112, 115, 117, 204, 232, 238, 262
page 66
Page Access Permission 240
Page Cache Disable 234
Page Caching Policies 257
Page Directory 30, 148
page directory 180, 229, 230, 264
Page Directory Base Address register 29,

181
Page Directory Caching Policies 254
Page Directory Change 253
page directory entry 232, 238
page directory entry format 235
Page Directory Entry, 4MB 259
page fault 29, 182, 215, 244, 247
Page Fault Address register 235
Page Fault Causes 243
Page Fault Error Code 245
page fault error code format 216, 246
page fault exception 189, 194, 195, 235, 238
Page fault on prefetch 197
page group 225, 227
page group directory 225, 229
page present bit 224, 230, 238
page Privilege Check 240
page size 234
Page Size Extension 33, 258
page swap 247
page table 66, 180, 229, 230, 264, 270
Page Table base address 234
Page Table Caching Policies 257
page table entry 238
page table entry format 240

Index

308

page table entry’s U/S bit 262
Page Write-Through 233
page, 4MB 33
pages 181, 223, 228
paging 180, 181, 262, 270
Paging Enable 26
paging unit 222
Parallel port one 189
Parallel port two 189
parity check 190
parity enable 194
PCD bit 30, 234, 255
PDBR 181
PE bit 26, 153, 272
PEN# 33, 194
Pentium TLB Structure 251
Pentium TLBs 249
performance monitoring 32
PERR# 33, 66
PG bit 26, 180, 229
physical address 180
physical disk address 222
physical memory address 181, 222
physical memory pages 181
physical memory space 223
physical page 223, 238
PIC 186, 280
POP 131, 132
POPF 36, 185, 277, 294
POST 48
PowerPC 138, 268
Power-Up State 45
prefix 91
priority, interrupt 196
privilege 221
Privilege Check 101, 120, 158, 163, 240,

262, 263
privilege check, data segment 127
privilege check, stack segment 135
privilege checking 107
privilege level 19, 71, 74, 96
procedure 108

programmable interrupt controller 186,
280

Protected Mode Handler 288
protected mode IDT 198
Protected Mode IDT Entry 280
Protected Mode IDT Structure 200
Protected Mode Virtual Interrupt 32
protection 262
PS bit 234
PSE 33, 258
PUSH 131, 132
push flags 185
PUSHF 185, 277, 294
PVI bit 32
PWT bit 30, 233, 255, 256

R
R bit 102, 118
read/writable 72
Read/write permission 242, 262, 263
read-only 27, 72
real mode 77
Real Mode Handler 289
real mode, big 61
real-time clock 189
Redirection, hardware interrupt 298
Redirection, interrupt/exception 298
refresh 247
Requestor Privilege Level 80, 85, 107
reset, state after 27
Resume Flag 36, 39, 216
RET 122
RF bit 35, 36, 39, 216
ROM 48
RPL 80, 85, 107, 109, 115, 121, 126, 127, 160,

161
S

S bit 92, 101, 112, 115, 118
S state 256
segment base address 90
segment descriptor 90, 201, 242
Segment Not Present 163, 165, 168, 188,

194, 197, 215

Index

309

segment present bit 96, 112, 204
Segment Privilege Check 240
segment register 49, 79
segment selector 79, 117
segment type 92
segment wraparound 60, 271
segmentation, eliminating 262
Selector 112, 115, 117
sensitive instructions 142, 143, 276, 291
Serial port one 188
Serial port two 188
set interrupt enable 185
Shared state 256
shutdown 193, 201, 247
SIDT 63, 200
single-step 148, 192, 197
slave interrupt controller 188
software exception 54, 159, 161
software exception error condition 184
Software exceptions 190
software interrupt 100, 184
software interrupt instruction 195
Special Privilege 242
SS register 47, 50, 65
SS0 and ESP0 149
SS1 and ESP1 149
SS2 and ESP2 149
stack 53, 217
stack exception 132, 194, 197
Stack fault 215
stack fault 188
stack memory 186
stack overflow 65, 194
stack segment 93, 131
stack segment descriptor 92
stack segment descriptor, example 133
stack switch 122, 280
stack underflow 65, 194
stack, expand-down 134
stack, expand-up 93
STI 75, 144, 185, 277, 294, 297
STR 152, 153

string operations 39, 148
supervisor pages 263
Suspension of Calling Task 168
Suspension of Interrupted Task 163
System bit 92
System segments 96
System timer 187

T
T bit 147
Table Indicator 80, 85
task 108
task creation 137
task gate 36, 82, 85, 97, 150, 158, 163, 213,

268, 279
Task Gate descriptor 150, 152, 159, 160,

163, 171, 186, 201
Task Gate descriptor’s DPL 168, 171
Task Gate format 162, 214
Task Linkage Modification 177
task manager 220
task register 152, 155
task scheduler 138, 268
Task State Segment 13, 18, 74, 82, 107, 123,

138
task suspension 139, 157
task switch 27, 36, 39, 71, 74, 100, 147, 150,

157, 185, 244, 253, 268
task switch, events that cause 158
task, definition of 137
task, starting a 152
task-switch breakpoint 192
TF bit 35, 39, 64, 197
TI bit 80, 85, 101, 152
Time Stamp Disable 32
timeslice 107, 267
timeslice timer 138, 267
timeslicing 14
TLB 249
TLB Maintenance 252
TLB Structure 251
top-of-stack 148
TOS 134

Index

310

TR register 150, 152, 163
Trap 191
trap 191
Trap Flag 35, 39
Trap Gate 97, 207, 268
trap gate descriptor 201, 279, 285
trap gate format 208
TS bit 26, 65, 164, 193
TSD bit 32
TSS 13, 15, 18, 37, 73, 74, 82, 96, 97, 100, 107,

123, 138, 139, 142, 143, 144, 146, 152,
163, 168, 182, 185, 263, 264, 266, 267,
270

TSS CR3 field 148
TSS data structure 124, 139, 141, 282, 300
TSS Debug Trap Bit 147
TSS descriptor 152, 158, 160, 161, 171, 177,

268
TSS descriptor format 151, 179
TSS descriptor’s Busy bit 152
TSS EFlags field 148
TSS EIP field 148
TSS ESP field 148
TSS General Register Fields 147
TSS LDT Selector field 147
TSS Link field 150, 165, 174, 175
TSS Segment Register Fields 147
TSS Stack Definition Fields 149
TSS structure validation 164
TSS T bit 197
TSS, Dynamic fields 139
TSS, invalid 65
TSS, minimum size 150

U
U/S 233, 241
unsigned arithmetic instructions 192
user/supervisor 233

V
Vector 280, 289
vector assignment, PC-compatible 187
VGA vertical retrace interrupt 189
VIF bit 31, 35, 37, 39, 297, 298

VIP bit 35, 38, 39
Virtual 8086 Mode 37, 39
virtual IF bit 293
Virtual Interrupt Flag 37, 39
Virtual Interrupt Pending 38, 39
Virtual Machine Monitor 31, 74
virtual machine monitor 267
Virtual Memory Paging 71
VM 35, 37, 39, 143, 144, 266, 267, 268, 269,

272, 283
VM86 31, 32, 37, 39, 73, 74, 75, 91, 142, 144,

145, 148, 215
VM86 and IO Accesses 273
VM86 and the IDTs 279
VM86 instructions 302
VM86 mode 71
VM86 Mode Extensions 297
VM86 registers 301
VM86 task 265
VM86 task switch on interrupt 296
VM86 task’s Privilege Level 273
VME bit 31, 37, 146, 297
VMM 31, 74, 267, 270, 288

W
W bit 93, 233, 242
WAIT 65, 193
watchdog 266
WP bit 27, 242, 263
write-back policy 30, 256
Write-Protect 27
write-through policy 30, 256

X
x87 26

Technical Seminars

PCI System Architecture
PCI Software Environment

PCMCIA System Architecture
486 System Architecture

EISA System Architecture
CardBus System Architecture
Pentium System Architecture

Plug and Play System Architecture
ISA System Architecture

PowerPC Hardware Architecture
PowerPC Software Architecture

MindShare courses are presented at your site and are tailored to suit the needs of the
audience.

To Contact MindShare

Email: mindshar@interserv.com
Web Site: www.mindshare.com

Compuserve: 72507,1054
Phone: (214) 231-2216

Fax: (214) 783-4715

MindShare, Inc.
2202 Buttercup Drive
Richardson, TX 75082

Note: New courses are constantly under development. Please contact MindShare for the
latest course offerings.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

