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Preface 

Arachidonic acid (AA) and other 20 or 22-carbon polyunsaturated fatty acids 
(PUFAs) are precursors of signaling molecules that are critical in disease processes 
and in regulating normal cell function. Remodeling is critical in homeostatic control 
and in dictating how PUFAs are converted to mediators. Thus, understanding 
remodeling will unravel better therapeutic targets for controlling inflammatory dis­
eases. 

The review chapters associate AA remodeling and the biosynthesis of mediators 
of inflammation or pain. By following the movement of AA rather than discussing 
a single enzyme and its product, the influence of upstream biosynthetic pathways on 
the formation of lipid mediators and interrelationship between all AA-derived medi­
ators are examined in a comprehensive fashion. This approach innovates AA metab­
olism by describing new inhibitors, mode of action of these inhibitors and poten­
tially efficacious targets not previously examined. 

This volume is written by experts in the field to serve as a rich resource of knowl­
edge for scientists and clinicians in academia, and researchers in the pharmaceutical 
industry involved in inflammation and pain research. Since AA is derived from 
essential fatty acids, this volume is also of interest to nutritionists. 

July 2003 A.N. Fonteh 
R.L. Wykle 
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An outline of arachidonate remodeling and its biological 
significance 

Alfred N. Fonteh 

HMRI - Molecular Neurology Program, Huntington Medical Research Institutes, 99 North EI 
Molino Avenue, Pasadena, CA 91101, USA 

Introduction 

Arachidonic acid (AA) is a member of the n-6 family of essential fatty acids. Mam­
mals obtain AA directly from vegetable or animal oils or from successive elongation 
and de saturation of linoleic acid (LA, 18:2, n-6) by the liver (Fig. 1) [1,2]. Once 
presented to cells, AA is rapidly incorporated into glycerolipids. This incorporation 
is initiated by the ATP-dependent conversion of AA to arachidonyl CoA by arachi­
donyl CoA synthetases [3-6]. AA CoA can then be incorporated into lyso phos­
pholipids by CoA-dependent acyl transferases [7-10]. This initial incorporation of 
AA into phospholipids is directed mainly into I-acyl-linked subclasses. Once in 
these early AA pools, arachidonate is continuously and selectively transferred to 1-
ether-linked phospholipids by CoA-independent transacylase (CoA-IT) and CoA­
dependent transferase activities present in cells [11-14]. This selective transfer of 
arachidonate from I-acyl-linked to l-ether-linked phospholipids likely accounts for 
the asymmetrical distribution of arachidonate within phospholipid subclasses such 
that arachidonate is greater in ether-linked subclasses than in I-acyl-linked sub­
classes in many cell types [11, 13-17]. While the most characterized remodeling 
processes have involved mammalian cells, many studies have shown that remodel­
ing occurs in other cell types and may be a universal phenomenon in which the dis­
tribution of AA is maintained within glycerolipid classes. In most studies, remodel­
ing has been characterized as the transfer of AA from l-acyl-2-AA-GPC to ether­
linked phospholipids [16]. However, the initial pool of AA that is labeled may be 
different in many cell types or in different species. For example, in breast cancer 
cells, AA is initially incorporated into PI and then remodeled into PE while in amoe­
ba; AA is rapidly incorporated into PE and remodeled into Pc. Regardless of the ini­
tial entry pool for AA into a cell type, the eventual outcome of the remodeling 
process is a shift of AA to predominantly ether-linked or triglyceride pools for stor­
age or for utilization in mediator formation [14, 18, 19]. 

Arachidonate Remodeling and Inflammation, edited by Alfred N. Fonteh and Robert l. Wykle 
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Alfred N. Fonteh 

Pro-inflammatory lipid mediators 

Under resting conditions, the incorporation and remodeling process is well con­
trolled such that very low levels of free AA are found within cells. However, cellu­
lar activation is accompanied by a rapid increase in AA remodeling concomitant 
with a drastic increase in free AA and AA-derived products [5, 12]. AA is recognized 
as the major fatty acid precursor of an important class of lipid mediators that are 
collectively known as eicosanoids. This class of lipids that include leukotrienes, 
prostaglandins and thromboxanes has been shown to be important as intra- and 
extra-cellular mediators of cell function. Eicosanoids are produced by a series of 
enzymatic reactions. Various phospholipase A2s (PLA2 ) may initiate this process by 
releasing AA from the sn-2 position of glycerophospholipids [20-25]. Once 
released, free AA can induce biological responses in neighboring cells or may be 
converted to leukotrienes or prostaglandins by 5-lipoxygenases and cyclo-oxyge­
nases, respectively [26-28]. AA that is not converted to eicosanoids can undergo 
auto-oxidation [29-31] to form bioactive lipids, or it can be rapidly re-esterified 
into membrane glycerolipids. Under conditions where cells are exposed to high con­
centrations of AA, there is a shift in the incorporationlremodeling pattern such that 

Figure 1 

Overview of AA remodeling, role in lipid mediator formation and its potential biological sig­

nificance 

Free AA is obtained from vegetable or animal oils or from the elongation and/or desaturation 

of n-6 fatty acids by the liver (a). AA is converted to AA-CoA and incorporated into 1-acyl­

linked phospholipid subclasses by AA-CoA synthetase (b) and AA-CoA-dependent acyl trans­

ferases (c), respectively. Under resting conditions, AA is gradually remodeled from 1-acyl­

linked phospholipids to 1-ether-linked phospholipids by CoA-IT activity (d). During cell adi­

vation, the remodeling process is accelerated due to the formation of 1-alk-1enyl-2-lyso-GPE 

by PLA2 (e). Enhanced remodeling is also accompanied by an increase in the formation of 1-

alkyl-2-lyso-PAF, which is converted, to PAF by acetyl transferase (f). A combination of fatty 

acid CoA synthetases (FA-CoA synthetases) and acyl trasferases acylate Iyso phospholipid 

generated (g). Concomitantly, 5-LO utilizes free AA to form LTB4 (h), or COX transforms AA 
to prostanoids and thromboxanes (i). P450 enzymes or autoxidation reactions also convert 

free AA to potent bioadive lipids (i). AA that is not utilized for mediator formation (AA * *) is 

released from cells to ad as a second messenger or to be reincorporated into the remodeling 

cycle. When there is an excess of free AA within cells, there is increase incorporation into 

monoglycerides (ligand of CB2 receptors), diglycerides and triglycerides (k). A CoA-, calcium­

and ATP-independent transferase in combination with phosphodiesterase adivity (/) is 
responsible for generating arachidonoylethanolamide (ligand of CB1 receptor). Changes in 

AA distribution within lipid classes and the formation of lipid mediators likely play important 

roles in inflammation, analgesia, cell maturation, apoptosis, cell migration and proliferation. 
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AA does not only accumulate in glycerophospholipids, but is rapidly expanded in 
neutral lipids such as diglycerides and triglycerides [5, 19]. 

In addition to AA that is converted to bioactive metabolites, PLA2s also gener­
ates lyso phospholipids that are the precursor of another important class of bioac­
tive lipid known as platelet activating factor (PAF). Several studies suggest that 
CoA-IT and reacylation/deacylation reactions may playa crucial role in the forma­
tion of lyso phospholipids such as lyso-PAF (1-alkyl-2-lyso-GPC) when cells are 
activated [32-36]. CoA-IT catalyzes the selective transfer of arachidonate from 1-
alkyl-2-arachidonoyl-GPC to 1-alk-1-enyl-2-AA-GPE acceptors thereby forming the 
PAF intermediate 1-alkyl-2-lyso-GPC (Fig. 1). Acetylation orchestrated by acetyl 
transferase converts this intermediate to PAF [35]. 

Anti-inflammatory lipid mediators 

Serhan and colleagues have extensively characterized another class of AA-derived 
mediators, known as lipoxins (LX) [37]. LX are trihydroxytetraene-containing 
eicosanoids formed by a combination of various LO activities. Interestingly, aspirin 
has been shown to trigger the biosynthesis of LX and novel receptors for these medi­
ators have been cloned and characterized [38-40]. Various stable analogues of LX 
have been synthesized and shown to inhibit chemotaxis, adhesion and transmigra­
tion of inflammatory cells in various animal models of inflammation [41]. Togeth­
er, LX and RX are distinguished from other eicosanoids by having anti-inflamma­
tory properties that can be harnessed for the treatment of many diseases. 

In addition to AA-derived anti-inflammatory mediators, other long chain PUFAs 
have recently been shown to be precursors of novel mediators [42]. For example, 
human COX-2 has been shown to generate stereo specific-oxygenated products of 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA and DHA are 
n-3 fatty acids that are implicated in anti-inflammation. DHA, a major PUFA in 
brain and retina, is released from mainly phosphatidylethanolamine after cell acti­
vation and is then converted to novel docosatrienes by glial cells via various hydrox­
yperoxy-DHA and epoxide-containing intermediates [43]. Transcellular metabolism 
of 17-HDHA results in its conversion to resolvins. Docosanoids and resolvins regu­
late the resolution of the acute phase of inflammation in many animal models of 
inflammation [42, 43]. 

Conjugated AA species 

Recently, new classes of AA-derived metabolites consIstmg of AA attached to 
ethanolamine, or to amino acids such as glycine, have been described in mammalian 
brain tissues [44]. 

4 



An outline of arachidonate remodeling and its biological significance 

Arachidonoylethanolamide (also known as arachidonamide or anandamide) is 
the natural ligand of the cannabinoid CBl receptor while lipoamino acids such as 
N-arachidonoyl glycine, N-arachidonoyl y-aminobutyric acid and N-arachidonoy­
lalanine lack affinity to CBl receptors. Studies have shown that these widely dis­
tributed lipoamino acids have a physiological role in controlling analgesia [45,46]. 
A novel calcium-, CoA- and ATP-independent pathway, which is highly selective for 
AA as the aliphatic constituent, is specific for ethanolamine as the polar group, cat­
alyzes the synthesis of arachidonoylethanolamide. Enzymes responsible for the syn­
thesis of arachidonoylethanolamide are located in brain microsomal and cytosolic 
fractions. Arachidonoylethanolamide is formed either by the direct conjugation of 
AA to ethanolamine or by the combined activities of transacylase and phosphodi­
esterase. Initially, AA located in diarachidonoyl GPC is transferred to ethanolamine 
head group by transacylase. Subsequently, the arachidonoylethanolamide is cleaved 
by phosphodiesterase activity to release it within brain tissues [44, 47]. Thus, the 
incorporation and remodeling of AA from specific phospholipid pools to PE or to 
specific membrane locations within the brain may be crucial in regulating the for­
mation of arachidonoylethanolamide and these important lipoamino acids. Anoth­
er AA-derived molecule, arachidonoylglycerol has recently been shown to be the 
natural ligand of the cannabinoid CB2 receptor and is likely formed by acyl trans­
ferase-dependent mechanisms [48]. 

Oxidized phospholipids and novel pathways 

The classical pathway for eicosanoid biosynthesis assumes that AA must be released 
by lipases and made available for oxygenation. However, recent studies show that 
prostanoids and related oxygenated compounds can be found acylated to phospho­
lipids [49-53]. Moreover, prostanoids and related compounds can also be formed 
independent of enzyme activity via auto-oxidative pathways [54]. The oxidized 
lipids are very potent mediators of biological function and are implicated in many 
disease conditions. 

PUFA-derived products and lipidomics 

While the above outline has concentrated on the remodeling of AA and the genera­
tion of AA products, it is worthwhile noting that other PUFAs, especially those of 
20 or 22 carbon chain length, can also be utilized for generating lipid mediators as 
has been demonstrated by Serhan and colleagues [42,43,55]. One can envisage var­
ious COX or LO-derived products of these PUFAs. Interestingly, these products can 
also be conjugated to various amino acids leading to the formation of new classes 
of mediators. These new structures have different biological activities based on the 

5 
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affinities of the new compounds for novel receptors. The new field of structural elu­
cidation of all lipids, recently termed lipidomics, will be advanced rapidly as new 
tools are being utilized for characterizing these new molecules. Of interest is the use 
of liquid chromatography coupled to electrospray ionization tandem mass spec­
trometry to identify over 500 molecular species of phospholipids [56], discover 
docosatrienes or to identify oxidized phospholipid species [52, 57]. A comprehen­
sive determination of all lipid molecular species and oxidized products will be the 
backbone for a searchable database that will facilitate functional lipidomics. An 
understanding of the importance of lipids in diseases will be the basis for applied 
lipodomics where nutritional supplements can be used to control the signs and 
symptoms of diseases. 

Summary 

Overall, a critical look at AA metabolism suggests that it is a very complex 
process. First, AA levels are tightly controlled in resting cells by many enzyme 
activities. Secondly, AA is asymmetrically distributed between different phospho­
lipid classes and subclasses. In most cells, the bulk of AA resides in ether-linked 
phospholipid subclasses. Thirdly, cellular activation or injury creates an imbalance 
in AA incorporation/remodeling leading to the release and buildup of free AA lev­
els within cells. Under these conditions, the distribution of AA may be altered such 
that classes of glycerolipids that normally have low AA are substantially enriched 
with AA. Fourthly, cellular activation/injury is accompanied by rapid deacyla­
tion/reacylation of arachidonate within glycerolipid classes. These changes in 
arachidonate distribution are closely linked to pathological conditions. Fifthly, 
free AA is converted to bioactive lipid mediators. These mediators are implicated 
in inflammation, analgesia, apoptosis, cell migration, maturation and prolifera­
tion through processes linked to receptors, signaling pathways involving kinases 
and the activation of various transcription factors [14, 17, 45, 58-64]. Recent 
advances in technology are revealing that other PUFAs are remodeled in similar 
fashion as AA and can also be utilized in mediator formation. These important 
observations underscore the importance of the AA remodeling process in cell func­
tion. Details examining the critical roles of enzymes that regulate AA homeostasis 
(incorporation and remodeling) will be examined in detail in subsequent chapters 
of this book. 
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Acyl chain composition of glycerophospholipids 

For many years, lipids were long thought to be merely the bricks and mortar that 
composed cell membranes. However, in the past 20 years it has become evident that 
these molecules are not merely passive building blocks but contain information that 
can be unleashed when they are metabolized upon cell activation. The signaling 
properties of specific glycerophospholipids and their metabolites highlight the 
importance of lipid composition in cell homeostasis. For example, phospholipid to 
sterol ratios are tightly maintained and the loss of these ratios is thought to con­
tribute to foam cell death and the progression of atherosclerosis [1,2]. Different cell 
types not only vary in the relative abundance of each phospholipid class, but also in 
the fatty acyl composition within each class of phospholipids [3,4]. 

Glycerophospholipids consist of a glycerol backbone to which substituents are 
esterified (Fig. 1). The sn-3 carbon is occupied by a phosphate ester that in turn is 
associated with a polar alcohol (e.g., choline, ethanolamine, phosphorylated inosi­
tol). The glycerophospholipid class is determined by the polar alcohol at the sn-3 
position (choline, ethanolamine, etc.). Long chain hydrocarbons (fatty acids) are 
esterified at the sn-1 and sn-2 carbons. Typically, the sn-1 carbon is occupied by a 
saturated fatty acid, while some phospholipid subclasses contain ether- or vinyl 
ether-linked hydrocarbons at the sn-1 position [3,4]. In mammalian glycerophos­
pholipids, the sn-1 acyl chain length is typically C-16 or C-18 [3,4]. The acyl chain 
in the sn-2 position can vary tremendously, ranging from the minimal sn-2 acetyl 
moiety of platelet-activating factor (PAF) to acyl chain lengths that exceed 20 car­
bons. Although saturated fatty acids can occupy the sn-2 position of glycerophos­
pholipids, this position is often enriched in long chain unsaturated species [3, 4]. 
Inflammatory cells (macrophages, neutrophils) in particular are noted for the preva­
lence of polyunsaturated fatty acids in the sn-2 position [3, 5]. The fatty acyl com­
position of the glycerophospholipids of inflammatory cells has important implica­
tions for the functioning of these cells, as some of these substituents (arachidonic 
acid, in particular) are precursors of bioactive lipids that regulate the inflammatory 
response [5, 6]. 
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Phospholipase A2 and remodeling in inflammatory cells 

The acyl chain composition of glycerophospholipids is determined both by the 
endogenous fatty acids that are produced by a cell and by exogenous fatty acids that 
are derived from the diet. Acyl chain composition is also determined by the speci­
ficity of the biosynthetic enzymes that generate glycerophospholipids. In mam­
malian cells in general, saturated and monounsaturated fatty acids are incorporated 
during the de novo synthesis of glycerophospholipids [3,4]. However, the incorpo­
ration of long chain polyunsaturated fatty acids such as arachidonic acid occurs 
much later and is largely dependent on the Lands pathway [3,4, 7, 8]. In the Lands 
pathway, the sn-2 acyl chain is hydrolyzed from intact glycerophospholipid gener­
ating a lysophospholipid acceptor for polyunsaturated fatty acid. Typically, the 
source of the polyunsaturated fatty acid is a coenzyme A (CoA) adduct in a reaction 
catalyzed by a CoA-dependent acyltransferase. Although none of these enzymes has 
yet been cloned or purified to homogeneity, it is clear that they exhibit acyl chain 
specificity [3-5, 9-11]. This acyl chain specificity is of particular importance in 
inflammatory cells in which acyltransferases with specificity for arachidonic acid 
(C20:4) and other long chain polyunsaturated fatty acids have been identified 
[12-14]. The substrate specificity of the acyltransferases in inflammatory cells also 
impinges on the observation that sn-2 acyl chains are not static, but are remodeled 
during the lifetime of the glycerol backbone. For example, arachidonic acid is ini­
tially incorporated into diacylphosphatidylcholine (PC) but over time is transferred 
into ether-linked species of PC and phosphatidylethanolamine (PE) [5, 14-17]. This 
process of fatty acid remodeling typically involves CoA-independent transacylases 
that transfer polyunsaturated acyl chains directly from intact PC to lysophos­
phatidylethanolamine (lysoPE), most likely through an enzyme-fatty acid interme­
diate [3,4]. As a result of these reactions, the ether-linked subclasses of PE and PC 
in macrophages and neutrophils are enriched in polyunsaturated fatty acids 
[18-21]. As noted above, this enrichment has functional consequences for inflam­
matory cells, as it generates a pool of precursor for such bioactive lipids as the 
eicosanoids and platelet-activating factor (PAF). 

The phospholipases A2 

Both the initial incorporation of polyunsaturated fatty acids into glycerophospho­
lipids and their remodeling among phospholipid subclasses are dependent on 
sources of lysophospholipid [3-5]. The generation of these lysophospholipids is 
most closely associated with the phospholipase A2 (PLA2) family of enzymes [22, 
23]. These enzymes are defined by their hydrolytic actions on the sn-2 carbonyl of 
glycerophospholipids. Although the PLA2s vary in their substrate specificities, all of 
these enzymes generate lysophospholipids and unesterified fatty acids as the prod­
ucts of their reactions (see Fig. 1). As noted below, some of the PLA2 enzymes also 
possess lysophospholipase activity and therefore can limit the accumulation of 
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Table 1: Families of phospholipase A2 enzymes 

Enzyme M.W. (kDa) Ca2+? Active site Expression Location Regulation 

sPLA2 14-18 mM His-Asp Inducible Extracellular Expression 
cPLA2 85 (a) IlM GLSGS Constitutive Cytosol Ca2+, P04 (a,~) 

iPLA2 80 None GxSxG Constitutive Cytosol Oligomerization? 

detergent-like lysophospholipids. In addition, as lysophospholipids serve as the ini­
tial acceptors for polyunsaturated fatty acids, the PLA2s play important roles in 
determining the acyl chain composition of glycerophospholipids. 

The PLA2s vary tremendously in their primary, secondary, and tertiary struc­
tures, catalytic mechanisms, substrate specificities, subcellular localization, and reg­
ulatory mechanisms [22, 23]. To date, at least twelve PLA2 family members have 
been identified and these enzymes are found in a diverse array of species ranging 
from bacteria and invertebrates to reptiles and mammals. The PLA2s are typically 
grouped into three broad families of enzymes: the secreted or sPLA2s, the cytosolic 
or cPLA2s, and the calcium-independent or iPLAzs (Tab. 1). As will be noted below, 
some of these monikers are rather unfortunate as they describe members of several 
families of PLA2• 

The sPLA2s were the first family to be identified and studied intensely, in large 
part due to the accessibility of these enzymes [24]. As their name implies, the sPLA2s 
are all secreted enzymes and are found in high concentrations in snake and bee ven­
oms [23, 24]. In the late 1980s, it became apparent that mammalian cells also 
express sPLA2s and that the expression and secretion of these enzymes are induced 
in inflammation [25-31]. The sPLA2s are relatively small enzymes, ranging from 
-12-18 kDa in molecular mass. A common structural characteristic shared by all of 
the sPLA2s is the presence of multiple (5-8) disulfide bonds [23, 32, 33]. Thus, these 
enzymes have a rather rigid structure and are only active when sequestered away 
from the reducing environment of the cytosol. The catalytic activity of the sPLA2s 
is strictly dependent on calcium at mM concentrations and this cation plays an 
essential role in the catalytic mechanisms of these enzymes. The association with cal­
cium is mediated through the "calcium binding loop", a glycine-rich stretch of 
amino acids [23,24,32]. The calcium ion has been shown to co-ordinate with the 
sn-3 phosphate and sn-2 carbonyl and thereby to stabilize the transition state of 
substrate in the active site of the sPLA2 [34, 35]. The active site itself consists of a 
histidine-aspartic acid pair that participates in a charge relay system resulting in the 
polarization of a water molecule, the nucleophile that actually attacks the sn-2 car­
bonyl [34, 35]. The sPLA2s show little specificity for the acyl chain in the sn-2 posi­
tion, although some sPLA2s appear to preferentially hydrolyze anionic phospho-
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lipids [36-38]. Importantly, the expression of these enzymes is typically very low in 
resting cells but is induced upon activation with such pro-inflammatory stimuli as 
interleukin 1 (IL-l), interleukin-6 (IL-6), and bacterial lipopolysaccharides (LPS) 
[26, 39-43]. This regulatory mechanism impinges on the functioning of the sPLAzs 
in the lipid metabolism of activated mammalian cells, in particular on their roles in 
the production of eicosanoids and other pro-inflammatory lipids. 

The cPLAz family was initially named based on its localization in the cytosol of 
mammalian cells. This turns out to be a rather unfortunate choice, as it is now 
known that other PLAzs (the iPLAzs, in particular) are also localized to the cytosol 
[22, 23]. As a result, it has also been proposed that this family be called the calci­
um-dependent cytosolic PLAzs. This choice is also inappropriate, as at least one 
cPLAz family member is known to be calcium-independent [44,45]. Thus, cPLAz is 
a rather diverse class of enzymes that are grouped together based on rather loose 
structural homologies [22, 23]. The first family member to be described (and the 
best studied and understood) is the group IVA cPLAz-a. Although the catalytic 
activity of this enzyme is calcium dependent, requiring ""M concentrations like the 
sPLAzs, it has no structural homology and has a distinct catalytic mechanism. In 
fact, the catalytic mechanism of cPLAz-a is more closely akin to that of general 
lipases, as an active site serine serves as the nucleophile that attacks the sn-2 car­
bonyl [46-48]. The calcium-dependence of cPLAz-a is related to substrate binding. 
The enzyme has an N-terminal C2 domain and has been shown to translocate from 
cytosol to membrane (substrate) in a calcium-dependent manner [49-51]. Several 
lines of evidence indicate that cPLAz-a activity is augmented when the enzyme is 
phosphorylated on serine 505, although there is some discrepancy regarding the 
kinases that mediate this phosphorylation, the relationship of phosphorylation to 
calcium dependence/translocation, and the physiological relevance of phosphoryla­
tion [52-57]. Together, the regulation of cPLAz-a by calcium and phosphorylation 
suggest that this enzyme plays a role in the lipid metabolism of activated cells. This 
hypothesis is borne out by mounting evidence that the enzyme is activated in 
response to receptor-dependent stimuli and that it plays an essential role in the pro­
duction of bioactive lipids by activated cells [58-64]. To this end, it is of interest that 
cPLAz-a shows a preference for hydrolyzing arachidonic acid in the sn-2 position of 
glycerophospholipid and therefore contributes to eicosanoid production by inflam­
matory cells [65-67]. 

Two other cPLAz family members have been cloned, cPLAz-~ and cPLAz-y [44, 
45]. Little is known about the regulatory mechanisms of these enzymes and they do 
not appear to be as widely expressed as is cPLAz-a. However, we have demonstrat­
ed that cPLAz-y is most likely the isoform expressed by Naegleria fowleri amoebae, 
suggesting that this calcium-independent "paralog" may have important roles in the 
lipid metabolism of lower organisms [68]. 

Like cPLAz, the iPLAz family consists of a diverse array of enzymes with the 
group VIA enzyme being the most intensively studied and understood [22,23,69]. 
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As its name implies, the iPLA2 family shows absolutely no requirement for calcium 
in its catalytic mechanism. Like cPLAz, this family uses an active site serine as the 
nucleophile that attacks the sn-2 carbonyl and also acts as a lysophospholipase 
[70-75]. Unlike cPLAz-a. and cPLAz-Y, the group VIA iPLA2 shows little or no speci­
ficity for either the sn-2 fatty acid or head group of its substrate, although it has 
been suggested that some iPLA2s preferentially hydrolyze plasmalogens [70, 71, 76]. 
A key feature that distinguishes iPLA2 from the other two families is its regulatory 
mechanism, as this does not appear to be dependent on cell activation. Indeed, 
although ATP has been shown to "stabilize" iPLA2 activity in cell homogenates, 
there is no evidence that this involves a phosphorylation event [70, 77]. Interesting­
ly, the iPLA2 pre-mRNA has been shown to undergo alternative splicing events that 
may impinge on the regulation of enzyme activity [78, 79]. In this regard, it is use­
ful to consider the structure of iPLA2 by dividing the protein roughly in half. The C­
terminal portion of the protein contains the active site serine. Much of the N-ter­
minal portion consists of a series of ankyrin repeats that are thought to mediate the 
oligomerization of iPLA2 monomers into a-320 kDa active homotetramer [70, 79]. 
Two iPLA2 splice variants have been described that contain the N-terminal ankyrin 
repeats but lack the active site serine in the C-terminus [78,79] (see Fig. 2). When 
over expressed with the full length iPLA2 (containing both ankryin repeats and cat­
alytic domain), the splice variant proteins suppress iPLA2 activity, presumably by 
acting in a dominant negative fashion to inhibit the association of full length 
monomers into active tetramers [79]. These observations suggest that the catalytic 
activity of iPLA2 may be regulated through alternative splicing. Indeed, our prelim­
inary experiments indicate that the catalytic activity of iPLA2 is cell cycle dependent 
and may correlate with the accumulation of splice variant proteins (Manguikian and 
Barbour, unpublished). 

Regulation of glycerophospholipid composition by PLA2s 

As noted earlier, the glycerophospholipid composition of mammalian cell mem­
branes is tightly controlled, both at the level of the phospholipid classes and the acyl 
chains esterified to the glycerol backbones of each class of glycerophospholipid. 
Recent studies indicate that the PLA2s, in particular iPLA2, may play major roles in 
the regulation of glycerophospholipid composition of mammalian cells. The 
involvement of iPLA2 in these processes is consistent with the constitutive expres­
sion and regulatory mechanisms of this enzyme. Unlike the sPLA2s or cPLA2, iPLA2 

activity is not controlled by events associated with cell activation and hence this 
appears to be a homeostatic enzyme [22, 69]. In fact, iPLA2 appears to play several 
roles in glycerophospholipid homeostasis, ranging from the regulation of phospho­
lipid mass to the regulation of sn-2 acyl chain composition, to the accumulation of 
lipids for daughter cell membranes. 
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The role of iPLA2 in acyl chain composition has been most extensively studied 
by Balsinde et al. These investigators have used a selective inhibitor of iPLA2, bro­
moenollactone (BEL) and an antisense oligonucleotide strategy to study the enzyme 
in macrophage-like P388D1 cells [80-82]. Like most other mammalian cells, macro­
phages do not incorporate arachidonic acid into phospholipids through de novo 
pathways, but rather rely on the Lands pathway to esterify arachidonic acid into 
existing glycerophospholipid backbones [3,4]. Balsinde et al. showed that this ini­
tial incorporation of arachidonic acid was inhibited in cells with reduced iPLA2 

activity and/or expression, presumably because the enzyme was necessary to gener­
ate the lysophospholipid acceptor for arachidonyl-CoA. In macrophages, arachi­
donic acid is initially esterified into PC, but is rapidly remodeled into the various 
subclasses of PE and phosphatidylinositol (PI). Interestingly, neither the iPLA2 

inhibitor nor the antisense oligonucleotide had effects on this process. These data 
suggest that while iPLA2 is essential for the initial incorporation of polyunsaturated 
fatty acids into macrophage phospholipids, it is not involved in remodeling per se. 
To date, the identity of the PLA2 that generates the lysoPE acceptor for remodeled 
arachidonic acid remains unknown. Although it remains possible that remodeling is 
mediated by sPLA2, cPLA2, or one of the other known forms of iPLA2, it is likely 
that this important process is mediated by an as yet undescribed form of PLA2 [80]. 

In addition to its role in determining the acyl chain composition of glycerophos­
pholipids, several recent studies have also implicated iPLA2 in the regulation of 
phospholipid mass [83-85]. Most of these studies have focused on PC, the most 
abundant glycerophospholipid in mammalian cell membranes [86]. The initial stud­
ies were performed by Walkey and Cornell who showed that over expression of 
CTP - phospho choline cytidylyltransferase (CT), the rate limiting enzyme in PC 
synthesis - resulted in a compensatory increase in PC catabolism to maintain mass 
[87]. The increase in catabolism was associated with the accumulation of glyc­
erophosphocholine, suggesting the involvement of a PLA2• Baburina and Jackowski 
[83] subsequently over-expressed CT in a HeLa cell model and demonstrated that a 
suicide inhibitor of iPLA2, bromoenollactone (BEL), prevented the accumulation of 
glycerophosphocholine. Similarly, BEL treatment both induced PC accumulation in, 
and allowed the survival of, mutant Chinese hamster ovary (CHO) cells that could 
not synthesize PC [85]. Our laboratory extended these studies by demonstrating the 
induction of iPLA2 protein in CHO cells that over expressed CT [84]. Importantly, 
this induction was specific for iPLAz, as neither cPLA2 or lysophospholipase activi­
ty was induced in the over-expressing cells. Conversely, iPLA2 activity was sup­
pressed in mutant MT58 cells that exhibited little CT activity, although the expres­
sion of the enzyme remained unchanged (Barbour, unpublished observation). Based 
on these studies, we propose that iPLA2 is co-ordinately regulated with the activity 
of CT and other synthetic enzymes to maintain lipid homeostasis as is shown for PC 
in Figure 3. This model proposes that changes in glycerophospholipid synthesis are 
balanced by changes in iPLA2 activity such that the mass of a given glycerophos-
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Figure 3 

Proposed model for the regulation of glycerophospholipid mass 

The model shown is based on phosphatidylcholine metabolism, but is thought to be applic­

able to other glycerophospholipids. The activities of enzymes involved in glycerophospho­

lipid synthesis (for example, CT, CTP : phosphocholine cytidylyltransferase) are co-ordinate­

Iy regulated with iPLA2 activity so that glycerophospholipid mass remains balanced. 

pholipid remains relatively constant. This hypothesis is in accord with the observa­
tion that the ratios of glycerophospholipid species in mammalian cell membranes 
are tightly maintained [4, 12]. It should be noted that a recent report refutes this 
model and suggests that changes in iPLA2 expression do not necessarily induce com­
pensatory changes in PC synthesis [88]. While the experiments in this report were 
performed in transiently transfected COS cells, the proposed model is based on stud­
ies of phospholipid metabolism in stably transfected cells. Thus, it is possible that 
this discrepancy can be attributed to chronic versus acute alterations in phospho­
lipid metabolism. 

At least one circumstance exists in which homeostasis is not maintained: when 
lipids are accumulated during the cell cycle for daughter cell membranes. Several 
lines of evidence indicate that this accumulation occurs during S phase and is not 
the result of increased glycerophospholipid synthesis but rather a decrease in cata­
bolism [89-94]. Preliminary experiments in our laboratory (Manguikian and Bar­
bour, unpublished) and others [95] indicate that the accumulation of PC during S 
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phase may be mediated through a decline in iPLAz activity. Hence, iPLAz not only 
maintains lipid mass in resting cells, but also controls the accumulation of glyc­
erophospholipids in cells that are actively dividing. 

Relevance of lipid composition to the functioning of inflammatory cells 

The glycerophospholipids of inflammatory cells such as macrophages and neu­
trophils are relatively enriched in arachidonic acid (C20:4) and other long chain 
polyunsaturated fatty acids [3, 5]. This fatty acyl composition almost certainly has 
important implications for the physicochemical properties of membranes in these 
cells, as polyunsaturated fatty acids tend to increase membrane fluidity [96-99]. It 
is also possible that the degree of unsaturation may contribute to the formation of 
lipid rafts, discrete areas of the plasma membrane that are enriched in sphingolipids, 
cholesterol, and signaling proteins [100]. Apart from these physical effects, the 
enrichment of polyunsaturated fatty acids also provides macrophages and neu­
trophils with raw materials necessary for producing bioactive lipids associated with 
inflammation. Among these bioactive lipids are the eicosanoids (oxygenated deriv­
atives of arachidonic acid) and platelet-activating factor (PAF), a derivative of Pc. 
Inflammatory cells not only produce these bioactive lipids, but they respond to them 
as well, typically through G protein coupled receptors. 

Two pathways for the synthesis of PAF have been described, a de novo pathway 
and a pathway that is dependent on acyl chain remodeling. The remodeling path­
way is thought to be the most relevant in inflammatory cells [3,5,15,17101-104]. 
The goal of the remodeling pathway is to generate the PAF precursor 1-0-alkyl-2-
lyso-sn-glycero-3-phosphocholine (lyso-PAF), a substrate for the CoA-dependent 
acetyltransferase that generates PAF [101]. A prerequisite for this goal is the 
removal of the acyl chain at the sn-2 position of 1-0-alkyl-PC. This is accomplished, 
at least in part, through transfer of the acyl chain in a reaction catalyzed by coen­
zyme A independent transacylase (CoAIT). The CoAIT reaction requires a lyso-PE 
acceptor and it is thought that this substrate is generated through the actions of a 
PLAz· 

This mechanism was implicated in early studies in human mesanglial cells and 
HL60 granulocytes (a human neutrophil model) in which inhibitors of sPLAz (p­
bromophenacyl bromide, mepacrine) were shown to inhibit the synthesis of PAF 
[64, 105]. The role of sPLAz in PAF synthesis was later supported in a variety of pri­
mary cell types (human monocytes, PMN, and endothelial cells, for example) treat­
ed with scalaradial or SB203347, specific inhibitors of sPLAz [106-108]. In con­
trast, arachidonyltrifluoromethyl ketone (AACOCF3) and methyl arachidonyl fluo­
rophosphonate (MAFP), inhibitors of cPLAz and iPLAz have no effect on PAF 
synthesis by human monocytes, alveolar macrophages, or vascular endothelial 
growth factor- (VEGF-) stimulated endothelial cells [107-110]. Furthermore, anti-
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sense oligonucleotides against cPLA2 have been shown to suppress expression of the 
enzyme and the production of prostanoids but have no effect on the synthesis of 
PAF [107, 109]. Conversely, PAF synthesis is induced when U937 monocytes are 
treated with recombinant human sPLA2 while cPLA2 has no such effect [107]. 
Together, these data indicate that although sPLA2 and cPLA2 are both able to pro­
duce lyso-PE, the sPLA2 reaction is more relevant for PAF synthesis. These observa­
tions are somewhat surprising given that PE is enriched in arachidonic acid, that 
arachidonic acid release is typically observed in concert with PAF production, and 
that cPLA2 has been shown to selectively hydrolyze arachidonate containing glyc­
erophospholipids [65-67]. It is possible that the pool of lyso-PE generated by cPLA2 

is rapidly reacylated with long chain fatty acids and therefore is not available as a 
substrate for CoAIT. Alternatively, the lyso-PE generated by cPLA2 may be rapidly 
converted to glycerophosphocholine by the inherent lysophospholipase activity of 
the enzyme [74, 75]. There is at least one cell type in which cPLA2 activity may con­
tribute to the synthesis of PAE We have recently reported that monocyte-derived 
dendritic cells synthesize large amounts of PAF [111] and our preliminary experi­
ments indicate that this may be related to the high levels of cPLA2 activity that are 
exhibited by these cells (AI-Darmaki and Barbour, unpublished). 

As the sPLA2 inhibitors do not target specific sPLA2 isoforms, it is not known if 
the production of lyso-PE for PAF synthesis is mediated by specific sPLA2s. At least 
one isoform of sPLA2, the group IIa enzyme preferentially hydrolyzes PE and this 
may be relevant to the production of lyso-PE for PAF synthesis [36-38]. However 
monocytes express primarily the group V sPLA2 [112], suggesting that this may be 
the relevant isoform for PAF synthesis. Another cautionary note regarding the role 
of PLA2 in PAF synthesis regards endothelial cells. A recent report [113] suggests 
that thrombin-stimulated endothelial cells produce PAF in an iPLA2-dependent 
manner. However, the production of PAF by VEGF stimulated endothelial cells is 
not inhibited by bromoenollactone (BEL), a specific inhibitor of iPLA2 [108]. Taken 
together, existing data are consistent with a role for PLA2 in the acyl chain remod­
eling that precedes PAF synthesis, although the specific PLA2s involved may vary 
with different cell types and stimuli. 

The production of PAF by inflammatory cells is typically accompanied by the 
production of eicosanoids, oxygenated derivates of arachidonic acid [3, 5,101]. The 
two major families of eicosanoids, prostaglandins and leukotrienes, are produced 
through the addition of molecular oxygen to arachidonic acid (C20:4) in reactions 
catalyzed by the cyclooxygenase and lipoxygenase enzymes, respectively. Receptor­
dependent stimulation of inflammatory cells induces eicosanoids that then modulate 
cell behavior and biological responses through their binding to G protein coupled 
receptors (GPCR) [114, 115]. For example, activated macrophages produce PGE2, 

a bioactive lipid that induces such diverse responses as the production of Th2 
cytokines, interferon-y production, bone resorption, and the production of IgG2 
antibodies [116-119]. It has been proposed that the rate-limiting step in the pro-
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duction of both families of eicosanoids is the release of arachidonic acid from intact 
phospholipids by a PLAz [120,121]. However, it can also be argued that the limit­
ing step is the initial incorporation of arachidonic acid into glycerophospholipid 
pools, as this is clearly a prerequisite for arachidonate release. As noted above, this 
incorporation is mediated through the Lands pathway and involves the reacylation 
of lysophospholipid [3-5]. In macrophages, iPLAz activity is essential for generation 
of the lysophospholipid acceptor for arachidonyl-CoA [80-82]. Although most 
studies indicate that the release of arachidonic acid from glycerophospholipids of 
activated cells is mediated by either sPLA2 or cPLA2, iPLA2 has been implicated in 
these reactions as well [58,69, 122-124]. Thus, iPLA2 may play two distinct roles 
in eicosanoid production by inflammatory cells: the initial incorporation of arachi­
donate into glycerophospholipid and its release upon cell activation. Interestingly, 
although iPLA2 is involved in the release of arachidonic acid by activated pancreat­
ic islet cells, it is not required for the initial incorporation into phospholipids 
[125-127]. This again suggests that the roles of the various PLA2s in acyl chain 
remodeling may be cell type specific. 

For many years, it has been known that the eicosanoids can regulate cell behav­
ior by binding to GPCR in the plasma membrane [114, 115]. More recently, intra­
cellular receptors for the eicosanoids have been identified. These receptors, the per­
oxisome proliferator-activated receptors, PPAR, are DNA binding proteins that, 
when bound to ligand, translocate to the nucleus and regulate gene expression 
[128-130]. Three families of PPAR have been described and each family of receptors 
binds a different spectrum of bioactive lipids or lipophilic drugs. For example, 
PPAR-u is the target of the fibrate class of hypolipidemic drugs and has been shown 
to regulate fatty acid metabolism [131, 132]. Endogenous ligands of PPAR-u include 
linolenic acid and 8S-HETE [128-130]. The biological function of the PPAR-~/o 
subtype remains somewhat debatable, although this receptor has also been shown to 
bind linolenic acid [128-130]. A variety of functions have been ascribed to PPAR-y, 
including the regulation of adipogenesis and antagonism of the inflammatory 
response [133]. Most recently, the ligation of PPAR-y has been linked to cell cycle 
arrest through a novel mechanism that explains a large body of data [134]. 

For many years it has been known that exogenous prostanoids induce growth 
arrest in a variety of tumor cell types. Specifically, prostaglandin A2 (PGA2), prosta­
glandin D2 (PDG2), and 15-deoxy-~12,14 prostaglandin J2 (PGh) have been shown 
to arrest cells at the border of Gl and S phases [134-140]. This growth arrest has 
been linked to reduced expression of cyclin D and cdk4 proteins and the induction 
of p21, a cdk inhibitor [134, 135]. However the molecular mechanism of prostan­
oid-induced growth arrest has remained elusive until recently. Using MCF 7 breast 
carcinoma cells as a model, Wang et al. recently demonstrated that PGD2 and PGlz 
suppress cyclin Dl expression through their association with PPAR-y [134]. In these 
experiments, ligated PPAR-y was shown to recruit p300 away from a critical c-Fos 
binding site in the cyclin Dl promoter and thereby suppress transcription of the 
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Regulation of cell cycle progression by derivatives of arachidonic acid 

Once arachidonic acid has been released from glycerophospholipids by iPLA2' it can be con­

verted into oxygenated derivatives such as prostaglandin A2 (PGA2) and 15-deoxy-!112,14 

prostaglandin h (15-deoxy PGh). These bioadive lipids are known to down-regulate the 

expression of cyclin 01 and other proteins that are essential for progression from G1 to S 

phase and thereby to limit cell cycle progression. 

gene. Together, these data suggest that a cell's ability to generate prostanoids can 
have a major impact on its ability to proliferate. As prostanoids are derived from 
arachidonic acid, this in turn suggests that cell growth and viability are linked to the 
acyl chain composition of glycerophospholipid. We have recently demonstrated that 
the catalytic activity of iPLA2 (the PLA2 that provides the lysophospholipid accep­
tor for the initial incorporation of arachidonic acid into glycerophospholipid) 
exhibits cell cycle dependence and is lowest at the border of Gl and S phase (Man­
guikian and Barbour, unpublished). Our work is consistent with a recently pub­
lished study in human T-cells [141]. In contrast, other phospholipases (e.g., cPLA2) 

do not exhibit cell cycle dependent activity. We predict that loss of iPLA2 activity 
during Gl results in reduced levels of endogenous prostanoids and that this in turn 
facilitates entry into S phase (see Fig. 4). There are at least two potential roles for 
iPLA2 in this regard, as it can both modulate the amount of arachidonic acid in glyc­
erophospholipids and release incorporated arachidonic acid from glycerophospho­
lipids, thereby regulating the amount of substrate available for the synthesis of PGh, 
PGA2, and other prostanoids. Thus, iPLA2 regulation may be essential for cell cycle 
progresSiOn. 
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Conclusion and perspectives for the future 

For many years, it has been known that the distribution of fatty acids among glyc­
erophospholipid species is tightly controlled and is maintained in a cell type specif­
ic manner. Recently, it has become clear that this regulation is essential not only for 
maintaining membrane structure and fluidity, but also to control the way that cells 
interact with their environments. This is of special significance for inflammatory 
cells such as macrophages and neutrophils as these cells produce a battery of bioac­
tive lipids and are also capable of responding to these molecules in ways that dra­
matically affect the host immune response. Among these bioactive lipids are oxy­
genated derivatives of arachidonic acid and platelet-activating factor (PAF). Acyl 
chain remodeling is essential for production of both of these classes of bioactive 
lipids. This process is dependent on the activities of various forms of PLA2, the fam­
ily of hydro lases that generate lysophospholipid acceptors for acyl chain remodel­
ing. Hence, identification of the specific forms of PLA2 involved in remodeling and 
a clearer understanding of their catalytic mechanisms and regulation may facilitate 
the development of novel strategies to control inflammatory cells and the bioactive 
lipids that they produce. In addition, as some derivatives of arachidonic acid have 
been implicated in the regulation of cell cycle progression, such studies may also 
provide insights into novel mechanisms to control the proliferation of transformed 
cells. 
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Overview of phospholipases 

Phospholipases A2 are enzymes that share the common attribute to hydrolyze fatty 
acids from the sn-2 position of glycerol phospholipids [1-3]. Groups I, II, V and X 
PLA2 are four sets of enzymes in a highly conserved family of secreted PLA2 found 
in mammals [4-14]. Other non-secreted PLA2 enzymes include group N, cytosolic 
PLA2 (cPLA2) [15-17], group VI, calcium-independent PLA2 (iPLA2) [18-22] and 
groups VII and VIII, selective acetyl hydrolases [23-28]. The secretory family of 
enzymes has a number of features that distinguish them from other PLA2 families 
including a relatively low molecular weight (-14 kDa), high disulfide bond content 
and a requirement for relatively high concentrations of calcium for maximal activa­
tion [29, 30]. In contrast, cytosolic enzymes are generally higher molecular weight 
proteins and require no calcium or very low calcium concentrations for optimal acti­
vation [18,22]. Many sPLA2 isotypes are synthesized as proenzymes that contain a 
signal peptide sequence that facilitates its release from cells. sPLA2 isotypes have 
been studied extensively in mammals and in snake venoms, yet there is no clear 
understanding of their physiological and pathophysiological roles. Inspection of 
numerous publications dealing with sPLA2s reveals that they have potential to medi­
ate a wide range of biological activities including: 

1) Producers of AA that contributes to eicosanoid formation [31-36]; 
2) Generation of lysophospholipids that contribute to electrophysiologic alteration 

that lead to arrythmogenesis in the heart or altered airway permeability and sur­
factant properties in the lung [37-48]; 

3) Potent antibacterial effects and implications in viral infections [49-54]; 
4) Key components in glycerophospholipid digestion [55]; 
5) Serum markers and potential regulators of severe illnesses such as sepsis, shock, 

organ injury and pancreatitis, all of which are linked to the development of adult 
respiratory distress syndrome or multiple organ failure [56-75]; 
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6) Regulators of platelet aggregation in hemorrhagic diseases [76-78]; 
7) Prevention of apoptosis of inflammatory cells and initiators of cell proliferation 

in several cancer cell lines [79-82]; 
8) A potent modifying locus in intestinal tumorigenesis in mice that is absent in 

human [83]; 
9) Pro-inflammatory components in diseases such as rheumatoid arthritis and asth­

ma [84-93]. 

This overwhelming list of biological activities and diseases raises deep-seated ques­
tions as to whether sPLA2 cause or is merely associated with the aforesaid effects. It 
also raises questions about molecular mechanisms that this family of enzymes could 
influence in order to control such a wide range of biological activities. 

Role of sPlA2 on cell function and animal physiology 

With the milieu of so many potential biological activities, inhibitors, antibodies, 
antisense oligonucleotides and genetic models have been used to better define the 
essential processes induced by sPLA2 secretion into sites of inflammation [94-105]. 
While some inhibitors, antibodies and antisense oligonucleotides have been devel­
oped that block sPLA2 activity and inflammatory processes, the lack of selectivity 
among these reagents against different sPLA2 isotypes make data interpretation 
ambiguous. Various genetic models have been discovered or developed in order to 
address the complex issue of the role sPLA2 isotypes may play in diseases 
[106-111]. For example, peritoneal macrophages from mice with targeted gene dis­
ruption of group IV cPLA2 show a marked reduction in their capacity to synthesize 
leukotriene B4 (LTB4), leukotriene C4 (LTC4), prostaglandin E2 (PGE2) and platelet­
activating factor (PAF) [111]. These animals have attenuation in pulmonary 
responses and hyper-responsiveness after allergen challenge. In terms of sPLA2, 

Nevalainen and colleagues designed experiments where transgenic mice expressed 
more than eighty fold more group II PLA2 in most tissues including liver, lung, kid­
ney and skin than non-transgenic littermates. Histopathological analysis of these 
animals revealed a disorder in skin consisting of hyperkeratosis, epidermal and 
adrenectral hypoplasia [112]. Chronic hypoplasia and hyperkeratosis observed in 
these animals is similar to that seen in a variety of skin disorders including human 
psoriasis. Certain mouse strains (C57BLl6, 129, N], C58 and PI]) have been shown 
to have a natural disruption of group IIA PLA2 gene [106]. Thus, these strains are 
deficient in functional group IIA PLA2 and have been used to determine the need for 
this enzyme in cell function. Interestingly, mast cells obtained from PLA2g2a+/+ and 
PLA2g2a-i- mice both contained sPLA2 activity and release similar quantities of AA 
upon antigen stimulation. Studies using these animals and antisense oligonu­
cleotides reveal that group V sPLA2, and not IIA, is likely an important sPLA2 iso-

38 



Enzymatic and receptor mediated effects of secretory phospholipase A2 0 0 0 

type in mast cell immune activation [113]. Similar studies using antisense oligonu­
cleotide specific for group V PLA2 in macrophages also demonstrated that group V 
PLA2 has an important role in extracellular AA release after endotoxin and PAF 
stimulation [114]. Fonteh and colleagues have also shown that cells over-expressing 
group IIA PLA2 and group V PLA2 release more AA that mock-transfected cells 
[115]. Together, these studies show that various sPLA2 isotypes can induce AA 
release from a variety of inflammatory cells. 

Cytokine-like effects of sPLA2 in inflammatory diseases 

sPLA2 may contribute to the pathogenesis of an inflammatory disease such as asth­
ma in one of the following ways. First, sPLA2 may induce lipid mediator formation. 
Second, sPLA2 may induce degranulation of inflammatory cells leading to the 
release of preformed mediators such as histamine. Third, sPLA2 may induce the syn­
thesis of inflammatory cytokines. Our data show that sPLA2 can also induce the for­
mation of cytokines that prevent mast cells from undergoing apoptosis, thus pre­
venting the resolution of inflammation. These potential effects of sPLA2 summa­
rized in Figure 1 and discussed in detail below can have significant ramifications in 
the management of inflammatory diseases. 

Eicosanoid biosynthesis 

Although the existence of sPLAz receptors has been recognized for several years, few 
studies have focused on the significance of receptor occupancy or the signaling 
mechanisms associated with receptor occupancy and how these events manifests 
themselves in inflammatory disease processes. Early work on sPLAz receptors 
focused on the neurotoxic effects of snake venom sPLAz acting through high affin­
ity for sPLA2 receptors. It has been speculated that somewhere along the evolution 
of sPLAz, the mannose receptor may have been duplicated to accommodate other 
forms of and other functions of sPLAz. These sPLAz receptors and their agonists 
(sPLAz) regulate events in inflammatory cells that are critical to the pathogenesis of 
diseases such as asthma. Thus, sPLA2 isotypes can act through their receptors in 
both autocrine and cytokine-like fashion. For example, mast cells contain and 
release group V PLA2 during antigen activation and our data reveal that mast cells 
contain plasma membrane receptors and respond to receptor occupancy by sPLAz 
[116, 117]. A sPLA2 receptor pathway could clarify several studies in the literature. 
For example, Arm and colleagues have shown that there are two phases of prosta­
glandin production in cultured mast cells that are primed with c-kit ligand and stim­
ulated with antigen [118, 119]. AA is supplied for the first phase of prostanoids syn­
thesis by cPLAz activation and AA for the second phase is provided by sPLAz. It has 
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Stimulation of mast cells by sPLA2, formation of mediators and their biological properties 

sPLA2 receptor occupancy results in the activation of mast cells. Mediators released include 

preformed biogenic amines (histamine), newly formed lipid mediators of inflammation 

(/eukotrienes (LTC4, LTB~, prostaglandins (PGD2) , thromboxane (TXB2) and platelet adivat­

ing fador (PAF)), neutral proteases, proteoglycans and cytokines. These mediators induce 

various biological functions that are linked to disease processes. 

been proposed that sPLA2 hydrolyzes AA from membrane phospholipids to supply 
the substrate for PGD2 biosynthesis. Fonteh and colleagues have provided evidence 
that sPLA2 binds to cell surface receptors on mast cells that may initiate subsequent 
activation of cPLA2, cyclo-oxygenase and lipoxygenase enzymes needed for AA 
release, prostaglandin formation and leukotriene biosynthesis, respectively [115, 
116]. sPLA2 also could have cytokine-like roles in that it could be released from one 
cell type and subsequently act on a variety of other cells types expressing sPLA2 

receptors_ For example, it is well documented that high levels of sPLA2 are found in 
serum of patients with sepsis, shock, organ injury or pancreatitis. Tools for study­
ing these diseases suggest that group HA sPLA2 is involved. However, many of these 
studies used antibodies that are non-specific recognizing group HA, V and X PLA2. 

Thus, it is not clear which of the various sPLA2 isotypes playa role in these diseases. 
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We have postulated that sPLA2 isotypes released from mast cells after antigen chal­
lenge are found in sites of inflammation and these sPLA2 isotypes induce lipid medi­
ator formation or influence the recruitment and function of cells that participate in 
airway diseases. A study by Reddy and colleagues showing that mast cells can pro­
vide sPLA2 to fibroblasts for prostaglandin production supports this postulation 
[120]. Cells other than mast cells can also provide sPLA2 in airways. For example, 
using an enzyme-linked immunoassay specific for groups IIA and V PLA2, has 
shown that human eosinophils have approximately 14-fold more of the enzymes 
than human neutrophils and this activity is released very rapidly upon cell activa­
tion [121]. In a related study, Hundley and colleagues have shown that sPLA2 is 
released from human basophils and likely participates in leukotriene generation 
[122]. Thus, there is also potential for sPLA2 from eosinophils or basophils to have 
both autocrine and cytokine effects in airway disease by inducing the formation of 
eicosanoids. 

Degranulation of inflammatory cells 

In addition to eicosanoid production, sPLA2 has been shown to induce degranula­
tion of several cells. Fonteh and colleagues showed that incubation of mast cells 
with different sPLA2 isotypes resulted in the release of histamine. Likewise Triggiani 
and colleagues have duplicated these mast cell studies using macrophages, mono­
cytes and eosinophils [123-125]. Their studies show that sPLA2 induce the release 
of ~-glucuronidase and the production of IL-6, IL-8, IL-12 and TNF-a by these 
cells. They conclude that this process is mediated via the mannose receptor and 
another receptor based on experiments showing that sPLA2 isotypes are not cyto­
toxic to macrophages that were used in their studies. Together, these studies suggest 
that sPLA2 may induce immune and inflammatory responses in cells by inducing 
exocytosis resulting in the release of mediators such as histamine and cytokines. 
Mast cells and macrophages also contain other proteases, which are released by acti­
vated inflammatory cells [126-129]. Induction of the release of these can result in 
bronchoconstriction, edema of the bronchial mucosa, chemoattraction, mucus 
secretion, vascular permeability and leakage, cell proliferation and expression of 
adhesion molecules (Fig. 1). Together, these biological properties constitute events 
related to inflammatory diseases of the airway. 

Induction of cytokine formation 

An important observation in mast cells, macrophages, monocytes and eosinophils 
incubated with sPLA2 is that these cells while releasing AA still remain viable, indi­
cating that these enzymes are not cytotoxic to these cells. This paradoxical effect can 
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be explained by the fact that sPLA2 acts on receptors to induce processes that pre­
vent apoptosis. For example, sPLA2 acting on sPLA2 receptors may activate mito­
gen-activated protein kinase (MAP kinase) and this process may result in the biosyn­
thesis of cytokines, which prevent apoptosis. We confirmed this process by showing 
that incubation of bone marrow-derived mast cells with low concentrations of 
sPLA2 resulted in the induction of IL-3 release into supernatant fluids. Only sPLA2 

isotypes that induced IL-3 production prevent apoptosis of mast cells [130]. A sim­
ilar study showed that some sPLA2 isotypes induce IL-6, IL-8, IL-12 and TNF-a for­
mation by other inflammatory cells [123-125]. In addition to preventing apoptosis, 
cytokines induced by sPLA2 also induce several biological effects including 
bronchial reactivity, chemoattraction, and activation of other inflammatory cells 
and the induction of adhesion molecules. Prevention of apoptosis of inflammatory 
cells such as mast cells and macrophages keep these cells longer in the site of 
inflammation and thus prevent quick resolution of the inflammatory process. 

Mechanisms that account for the biologic functions of sPLA2 

sPLA2 receptors 

To date, most of the biological activities of sPLA2 have been attributed to its capac­
ity to hydrolyze membrane phospholipids. However, several of the biological func­
tions described above cannot be easily reconciled with enzymatic activity alone. For 
example, intradermal injection of inactivated sPLA2 causes similar phenotypic 
changes in skin to those observed when the fully active enzyme was injected [131]. 
Similarly, others have shown that the physiologic action of sPLA2 is not due to 
hydrolytic activity [125, 132]. We have demonstrated that very low concentrations 
of sPLA2 (low nanomolar levels) of certain sPLA2 isotypes induce AA release, hist­
amine release, and proliferation of some cells and enhance the survival of other cells 
in a receptor-mediated fashion [82]. Our studies also show that sPLA/s cause the 
selective release of AA and not other more abundant fatty acids from cells that 
express sPLA2 receptors [115]. In contrast, cells that do not express sPLA2 receptors 
do not selectively release AA when incubated with low amounts of sPLA2• 

Recently, different subtypes of membrane receptors for sPLA2 have been identi­
fied in a variety of cells by determining their affinities for various types of sPLA2• 

Arita and colleagues described the existence of a specific receptor family termed 
PLATI receptor that is abundant in brain and several other tissues and has high 
affinity for the binding of pancreatic-type PLA2 [133-136]. More recently, receptors 
have been divided into two classes termed N-type receptors (neuronal) or M-type 
receptor (muscle). Lambeau and colleagues report that a major difference between 
N-type and M-type receptors is their capacity to bind group III PLA2 from bee 
venom [137, 138]. N-type receptor associates very tightly with both pancreatic 
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Domain organization of the sPLA2 receptor 

S, signal sequence; Cys, cysteine-rich domain; T. fibronectin type repeat; C1-C8, carbohy­

drate-like domain; M, membrane spanning domain; I, intracellular region 

sPLA2 and bee venom group III PLA2 while rabbit muscle M-type receptor tightly 
binds human synovial fluid group II PLA2 but does not bind bee venom sPLA2• Our 
studies show that bee venom sPLA2 at extremely low concentrations induced the 
selective release of AA from mast cells suggesting that this mast cell line expresses a 
protein that is similar if not identical to N-type receptors. Both membrane and plas­
ma bound sPLA2 receptors have been described [139]. The plasma bound sPLA2 

receptors seem to prevent the LPS-induced inflammatory process by binding sPLA2 

and thus preventing septic shock during bacterial infections [140]. 
Despite the fact that these receptor subtypes show somewhat different sPLA2 

binding profiles, their amino acid sequences are strikingly similar with as much as 
82 % homology. Additionally, the sequences of the cloned sPLA2 receptor is homol­
ogous to that of the macrophage mannose receptor and DEC-20S, suggesting that 
these proteins constitute a new family of membrane proteins [137]. The sPLA2 

receptor is composed of an N-terminal cysteine rich domain (Cys) a fibronectin-like 
type II domain (T), eight carbohydrate recognition domains (C1-C8), a membrane 
spanning domain (M) and an intracellular tail (I) (Fig. 2). sPLA2 is thought to bind 
to the M-type receptor via the carbohydrate domains (particular CS) [137]. 
Although occupancy of the sPLA2 receptor has been suggested to enhance cell sur­
vival, proliferation, cell migration, much remains to be learned about the molecular 
events and physiological ramifications of sPLA2 receptor activation. 

Hydrolytic activity of sPLA2 

In addition to receptor binding, the hydrolytic activity of PLA2 may also play an 
important role in releasing fatty acids from cells. There are several distinct features 
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that distinguish receptor-mediated effects of sPLA2 from enzymatic activity. First, 
whereas sPLA2 receptor-mediated release is specific for AA [35, 115, 116], hydrolyt­
ic activity releases other more abundant fatty acids and degrades phospholipids 
[141]. Various reports have shown more release of oleic acid than AA in cells where 
hydrolytic activity is the major mechanism of action. Secondly, very low levels of 
sPLA2 (nanomolar amounts) are required for receptor-mediated release of AA. In 
contrast, 1,000 fold more sPLA2 is needed to release fatty acids by hydrolytic activ­
ity. Thirdly, disruption of cell membrane is not required for receptor-mediated AA 
release, while perturbation of cellular membranes is needed for hydrolytic activity 
[79, 130, 142]. Disruption of cell membranes or loss of membranes phospholipid 
asymmetry is usually accomplished using cell-activating agents such as ionophore 
and thrombin in the case of platelets or antigen in the case of mast cells [143, 144]. 
Additionally, there is alteration in membrane asymmetry when cells are undergoing 
apoptosis. A combination of disruptive agents and sPLA2 treatment, or treatment of 
apoptotic cells, usually results in enhanced fatty acid mobilization. Fourthly, sPLA2 

receptor-mediated AA release is predominantly from the phosphatidylethanolamine 
pool whereas hydrolytic release favors phosphatidylcholine [35, 145, 146]. As 
shown in Figure 3, very low amounts of sPLA2 (0.1 nM) induce the selective for­
mation of lysophosphatidylethanolamine from [3H]-ethanolamine-labeled mast cells 
while higher concentrations (100 nM) are required to significantly form lysophos­
phatidylcholine from [3H]-choline labeled mast cells. It is important to note that the 
receptor-mediated release from a pool of phospholipid that is usually found within 
the inner bilayer of cell membranes will only be possible if there is recruitment of 
another lipase activity within cells. Importantly, it is worth noting that the profile of 
AA release in mast cells incubated with sPLA2 (receptor-mediated) is similar to that 
of IgE-receptor mediated release of AA. Finally, sPLA2-receptor mediated processes 
may lead to enhanced cell survival or cell proliferation while hydrolysis inevitably 
results in cell death as a result of lysis of cell membranes. Similarities between recep­
tor-mediated and hydrolytic activity revolve around the fact that both processes 
release AA from phospholipid pools and also form lysophospholipids. These 
lysophospholipids can be acetylated to form PAF or can act as mediators of several 
processes in cells [147-149]. Thus, AA and lysophospholipids released by hydrolyt­
ic action of sPLA2 can be converted to eicosanoid or PAF, respectively and these 
lipid mediators can then induce several biological effects at sites of inflammation. 

sPlA2 receptor-mediated signaling pathways 

Although several sPLA2 binding proteins have been described in various mammalian 
cells, little is currently known about signaling events that are initiated once sPLA2 

isotypes or mannose receptors are occupied by ligands. Although little is known 
about binding of group I PLA2 to N-type receptors, it is clear that calcium is not 
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Mobilization of Iysophospholipids by group 18 PLA2 

Mast cells labeled with [3Hl-ethanolamine or [3Hl-choline are incubated with increasing 

concentrations of group 18 sPLA2. Lysophosphatidylethanolamine (Lyso PE) and Iysophos­

phatidylcholine (Lyso PC) were isolated using thin layer chromatography and radioactivity 

in these lipid species determined using lipid scintillation counting (*p < 0.05). 

required, while calcium is required for the mannose receptor. Mannose receptor 
occupancy is linked with tyrosine phosphorylation while sPLA2 receptors have been 
recently shown to mediate cell proliferation and AA release by MAP kinase activa­
tion [116, 150]. Demonstration of sPLA2 receptor function as opposed to catalytic 
action is based on studies using catalytically inactive sPLA2 or ligands of sPLA2 

receptors that are devoid of hydrolytic activity. In these studies, catalytically inac­
tive sPLA2 induced the selective release of AA from mast cells and prevented apop-
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tosis of these same cells when they were cultured in cytokine-depleted cell culture 
medium. Likewise, a ligand of the mannose receptor, p-amino-phenyl-D-mannopy­
ranoside BSA (APDM-BSA) is shown to induce AA release from mast cells and to 
compete with sPLA2 in this process. Binding studies also show that only sPLA2 iso­
types that selectively induce AA release can compete with each other for specific 
binding. Interestingly, APDM-BSA does not prevent mast cells from undergoing 
apoptosis. This suggests that there are at least two sPLAz receptor subtypes in mast 
cells, one that is linked to AA release (binds APDM-BSA) and another that prevents 
apoptosis. Alternatively, there are multiple signaling pathways in mast cells activat­
ed differentially likely due to difference in receptor affinity of the different ligands. 
These signaling events are reviewed below. 

In receptor-mediated AA -release, another lipase activity must be recruited if 
sPLAz activity is not required. As described above, AA is mobilized from phospho­
lipid pools (mainly PE) that are normally found within cells. Therefore, an ideal 
PLA2 that can release this AA pool is the hormonally regulated cytosolic PLAz 
(cPLA2). cPLAz is translocated to a membrane location in response to an increase in 
cytosolic calcium and activated by phosphorylation of serine 505 or other phos­
phorylation sites by MAP kinases [151-154]. The extracellular signal-regulated 
kinase (ERKs, p42/p44) initially was thought to be the major kinases responsible for 
cPLAz phosphorylation. However, recent studies suggest that p38 kinase pathway, 
which can be activated by environmental stresses and inflammatory cytokines, may 
also phosphorylate/activate cPLA2• In stimulated platelets, inhibitors of p38 kinase 
have been shown to prevent cPLA2 activation while these same inhibitors indicate 
that ERKs and not p38 kinase may activate cPLA2 in other cell types [155, 156]. 
Wykle and colleagues have shown in human neutrophils that both ERKs and p38 
kinases are important in cPLA2 activation depending on the stimuli used. Fonteh 
and colleagues have also shown that tyrosine kinase inhibitors attenuate sPLAz-
induced cPLA2 and Ras activation [116]. Since Ras activation is upstream of MAP 
kinase activation, we have proposed the signaling pathway depicted in Figure 4A for 
cPLAz recruitment and AA release after sPLAz receptor occupancy. We have pro­
posed that the sPLAz receptor is similar to other protein tyrosine kinase (PTK) 
receptors that may have an intrinsic kinase activity or may be able to recruit kinas­
es from cytosol upon ligand binding. Once tyrosine kinases are activated, a sequence 
of events including Ras, ERKs or p38 activation lead to the phosphorylation and 
translocation of cPLA2 from cytosol to membranes [116]. This results in the mobi­
lization of AA that is utilized for eicosanoid formation (Fig. 4A). It is likely that the 
c-Jun pathway may also be linked to cPLAz activation. As the tools become avail­
able for studying and discriminating between the various signaling pathways, it will 
become clearer whether c-Jun kinases phosphorylate cPLAz and induce AA release 
from cells. 

The high affinity IgE receptor is a well-characterized membrane bound protein 
that belongs to the multi-chain system of receptors involved in hypersensitivity reac-
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sPLArreceptor mediated signaling pathways 

A) Cytosolic PLA2 activation. Binding of sPLA2 to its receptors results in the activation of 

kinase pathways (protein tyrosine kinase (PTK), tyrosine kinases (Syk, Syk and Btk), MAP 

kinases (ERK1I2, p38, c-Jun)). These kinases adivate cytosolic phospholipase A2 (cPLA2) via 

phosphorylation of various amino acid residues. Adivated cPLA2 translocates to membrane 

fradion of cells and releases AA that is used for eicosanoid biosynthesis. Other second mes­

sengers (DAG and Ca2+) are also initiated via PLCy. 

B) Anti-apoptotic signaling pathways. sPLA2 binds to its receptors and activates kinase path­

ways (phosphoinositide 3-kinase (PI3-K), phosphatidylinositol dependent kinase (PDK, 

glycogen synthase kinase (GSK)), transcription factors (nuclear fador kappa B (NF-KB) and 

anti-apoptotic proteins such as Bad. Adivation of these pathways prevents apoptosis of cells 

and/or induces cell growth and differentiation. 

tions [157]. These receptors lack intrinsic tyrosine kinase activity and so have to 
recruit cytoplasmic tyrosine kinase that phosphorylates the receptor at sites known 
as immunoreceptor tyrosine-based activation motifs (ITAMs). Phosphorylation of 
ITAMs results in protein tyrosine kinase activation. Three major PTKs have been 
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described in mast cells including Lyn, Syk and Burton's tyrosine kinase (Btk) that are 
upstream of the three subfamilies of MAK kinases (ERKs, p38 and c-Jun NH2 ter­
minal kinases) [158-160]. Activation of PTKs and their respective downstream 
MAP kinases result in cPLA2 activation and the formation of pro-inflammatory 
mediators described above. Another group of mast cell receptors characterized by 
kit, have intrinsic tyrosine kinase activity and are involved in mast cell survival and 
proliferation [160, 161]. Similar to kit, the high affinity nerve growth factor (NGF, 
165 kDa) receptor autophosphorylates tyrosine residues to activate multiple down­
stream effectors including PLCy, MAP kinases and phosphoinositide-3-kinase (PI3-
KlAkt). Of the many signaling pathways influenced by kit and NGF, the PI3-KlAkt 
pathway has been implicated in mast cell survival and growth. PI3-K is a dual kinase 
consisting of an 85 kDa regulatory unit and a 110 kDa catalytic unit. PI3-K adds a 
phosphate molecule specifically to the 3 position of the inositol ring of phos­
phatidylinositols resulting in the formation of products that have been implicated in 
survival, proliferation or cell migration. There are striking similarities between kit, 
NGF and the sPLA2 receptor when one examines mast cell survival. First, the cloned 
sPLA2 receptor (180 kDa) has one membrane-spanning domain, as does the NGF 
receptor. Secondly, NGF prevents apoptosis of mast cells, as does sPLA2 isotypes 
that bind specifically to sPLA2 receptors. Thirdly, NGF activates PI3-KlAkt path­
way. We have shown that PI3-K specific inhibitors reverse the anti-apoptotic effects 
observed in mast cells incubated with very low levels of sPLA2. Moreover, sPLA2 
also induce Akt phosphorylation in mast cells while inhibitors of nuclear factor 
kappa B (NF-KB) are shown to prevent sPLA2 effects on mast cells. Both active and 
catalytically inactive sPLA2 induce IL-3 production from mast cells and NF-KB 
inhibitors reverse this property of sPLA2 [130]. Taken together, these data show that 
sPLA2 produce IL-3 by activating the PTKlPI3-KlAktINF-KB pathway. Similarly 
antigen-stimulated mast cells have been shown to produce cytokines via PTKlPI3-
KlAktINF-KB activation. 

Conclusions 

The first step in designing new pharmaceutical agents is the identification of a can­
didate target. Elucidation of all biological properties of the identified target plays a 
crucial role in conceptualizing new strategies for selectively blocking disease-related 
events. 

The above review examines sPLA2 from mast cells as a candidate ligand and 
sPLA2 receptor as a potential target responsible for important biological functions 
linking sPLA2 to inflammatory diseases. To our knowledge, the concept that sPLA2 

receptors play an important role in inflammatory diseases is novel and potentially 
interesting to pursue in the development of agents to avert allergic and inflammato­
ry reactions associated with these diseases. 

48 



Enzymatic and receptor mediated effects of secretory phospholipase A2 ... 

Acknowledgements 
We are grateful for expert technical assistance by Tiffany Mendahall, Michelle 
Edens, Brooke Barham and Dennis Swan. 

References 

1 Dennis EA (1997) The growing phospholipase A2 superfamily of signal transduction 
enzymes. Trends Biochem Sci 22: 1-2 

2 Murakami M, Nakatani Y, Atsumi G, Inoue K, Kudo I (1997) Regulatory functions of 

phospholipase A2. Crit Rev Immunol17: 225-283 

3 Kramer RM (1993) Structure, function and regulation of mammalian phospholipases 
A2. Adv Second Messenger Phosphoprotein Res 28: 81-89 

4 Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepin­
sky RB (1989) Structure and properties of a human non-pancreatic phospholipase A2.] 

BioI Chem 264: 5768-5775 

5 Cupillard L, Koumanov K, Mattei MG, Lazdunski M, Lambeau G (1997) Cloning, 
chromosomal mapping, and expression of a novel human secretory phospholipase A2.] 
BioI Chem 272: 15745-15752 

6 Balboa MA, Balsinde J, Winstead MV, Tischfield JA, Dennis EA (1996) Novel group V 

phospholipase A2 involved in arachidonic acid mobilization in murine P388Dl 
macrophages.] BioI Chem 271: 32381-32384 

7 Cho W, Han SK, Lee BI, Snitko Y, Dua R (1999) Purification and assay of mammalian 
group I and group IIa secretory phospholipase A2. Methods Mol BioI 109: 31-38 

8 Han SK, Lee BI, Cho W (1997) Bacterial expression and characterization of human pan­

creatic phospholipase A2. Biochim Biophys Acta 1346: 185-192 
9 Chen J, Shao C, Lazar V, Srivastava CH, Lee WH, Tischfield JA (1997) Localization of 

group IIc low molecular weight phospholipase A2 mRNA to meiotic cells in the mouse. 
] Cell Biochem 64: 369-375 

10 Tischfield JA (1997) A reassessment of the low molecular weight phospholipase A2 gene 
family in mammals.] BioI Chem 272: 17247-17250 

11 Seeds M C, Jones D F, Chilton FH, Bass D A (1998) Secretory and cytosolic phospholi­
pases A2 are activated during TNF priming of human neutrophils. Biochim Biophys 

Acta 1389: 273-284 

12 Shimbara S, Murakami M, Kambe T, Kudo I (1999) Comparison of recombinant types 

IIA, V and IIC phospholipase A2S, the three related mammalian secretory phospholipase 

A2 isozymes [In Process Citation]. Adv Exp Med BioI 469: 209-214 
13 Gelb MH, Valentin E, Ghomashchi F, Lazdunski M, Lambeau G (2000) Cloning and 

recombinant expression of a structurally novel human secreted phospholipase A2.] Bioi 

Chem275: 39823-39826 

14 Tischfield JA (1997) A reassessment of the low molecular weight phospholipase A2 gene 
family in mammals.] BioI Chem 272: 17247-17250 

49 



Chad R. Marion and Alfred N. Fonteh 

15 Kramer RM, Roberts EF, Hyslop PA, Utterback BG, Hui KY, ]akubowski]A (1995) Dif­

ferential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin 
receptor agonist peptide in human platelets. Evidence for activation of cPLA2 indepen­
dent of the mitogen-activated protein kinases ERK1I2. ] BioI Chem 270: 14816-14823 

16 Sharp ]D, White DL, Chiou XG, Goodson T, Gamboa GC, McClure D, Burgett S, 
Hoskins ], Skatrud PL, Sportsman ]R (1991) Molecular cloning and expression of 

human Ca(2+)-sensitive cytosolic phospholipase A2. ] BioI Chem 266: 14850-14853 

17 Pickard RT, Strifler BA, Kramer RM, Sharp ]D (1999) Molecular cloning of two new 
human paralogs of 85-kDa cytosolic phospholipase A2. ] BioI Chem 274: 8823-8831 

18 Ackermann E], Dennis EA (1995) Mammalian calcium-independent phospholipase A2. 

Biochim Biophys Acta 1259: 125-136 

19 Gross RW (1998) Activation of calcium-independent phospholipase A2 by depletion of 
internal calcium stores. Biochem Soc Trans 26: 345-349 

20 Hazen SL, Stuppy R], Gross RW (1990) Purification and characterization of canine 
myocardial cytosolic phospholipase A2. A calcium-independent phospholipase with 
absolute £1-2 regiospecificity for diradyl glycerophospholipids. ] BioI Chem 265: 

10622-10630 
21 Portilla D, Crew MD, Grant D, Serrero G, Bates LM, Dai G, Sasner M, Cheng], Buo­

nanno A (1998) eDNA cloning and expression of a novel family of enzymes with calci­

um-independent phospholipase A2 and lysophospholipase activities. ] Am Soc Nephrol 

9: 1178-1186 
22 Underwood KW, Song C, Kriz RW, Chang X], Knopf ]L, Lin LL (1998) A novel calci­

um-independent phospholipase A2, cPLA2-gamma, that is prenylated and contains 
homology to cPLA2• ] BioI Chem 273: 21926-21932 

23 Endo S, Inada K, Yamashita H, Takakuwa T, Nakae H, Kasai T, Kikuchi M, Ogawa M, 
Uchida K, Yoshida M (1994) Platelet-activating factor (PAF) acetylhydrolase activity, 
type II phospholipase A2, and cytokine levels in patients with sepsis. Res Commun 

Chem Pathol Pharmacol 83: 289-295 

24 MacPhee CH, Moores KE, Boyd HF, Dhanak D, He R], Leach CA, Leake DS, Milliner 
K], Patterson RA, Suckling KE et al (1999) Lipoprotein-associated phospholipase A2, 

platelet-activating factor acetylhydrolase, generates two bioactive products during the 

oxidation of low-density lipoprotein: Use of a novel inhibitor. Biochem ] 338 (Pt 2): 

479-487 

25 Nijssen ]G, Roosenboom CF, van den? BH (1986) Identification of a calcium-indepen­

dent phospholipase A2 in rat lung cytosol and differentiation from acetylhydrolase for 
l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF-acether). Biochim Biophys Acta 

876: 611-618 

26 Soubeyrand S, Lazure C, Manjunath P (1998) Phospholipase A2 from bovine seminal 
plasma is a platelet-activating factor acetylhydrolase. Biochem.T 329 (Pt 1): 41-47 

27 Tjoelker LW, Eberhardt C, Unger], Trong HL, Zimmerman GA, McIntyre TM, Staffori­
ni DM, Prescott SM, Gray PW (1995) Plasma platelet-activating factor acetylhydrolase 

is a secreted phospholipase A2 with a catalytic triad. ] BioI Chem 270: 25481-25487 

50 



Enzymatic and receptor mediated effects of secretory phospholipase A2 """ 

28 Touqui L, Herpin-Richard N, Gene RM, Jullian E, Aljabi D, Hamberger C, Vargaftig 

BB, Dessange JF (1994) Excretion of platelet activating factor-acetylhydrolase and phos­
pholipase A2 into nasal fluids after allergenic challenge: Possible role in the regulation 
of platelet activating factor release. ] Allergy Clin Immunol94: 109-119 

29 Fonteh AN, Bass DA, Marshall LA, Seeds M, Samet JM, Chilton FH (1994) Evidence 
that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid 
biosynthesis by mast cells. ] Immuno/152: 5438-5446 

30 Scott DL, Sigler PB (1994) Structure and catalytic mechanism of secretory phospholi­
pases A2. Adv Protein Chem 45: 53-88 

31 Bomalaski JS, Baker DG, Brophy L, Resurreccion NY, Spilberg I, Muniain M, Clark MA 
(1989) A phospholipase Aractivating protein (PLAP) stimulates human neutrophil 
aggregation and release of lysosomal enzymes, superoxide, and eicosanoids. ] Immunol 
142: 3957-3962 

32 Hsueh W, Tan XD, Qu Xw, Sun XM, Gonzalez-Crussi F (1997) Injurious and protec­
tive mechanisms in the gut. Interaction of PAF, phospholipase A2, eicosanoids, and nitric 
oxide synthase. Adv Exp Med Bioi 407: 365-369 

33 Kramer RM, Jakubowski JA, Deykin D (1988) Hydrolysis of 1-alkyl-2-arachidonoyl-sn­
glycero-3-phosphocholine, a common precursor of platelet-activating factor and 
eicosanoids, by human platelet phospholipase A2. Biochim Biophys Acta 959: 269-279 

34 Nakae H, Endo S, Inada K, Yamashita H, Yamada Y, Takakuwa T, Kasai T, Ogawa M, 
Uchida K (1995) Plasma concentrations of type II phospholipase A2, cytokines and 
eicosanoids in patients with burns. Burns 21: 422-426 

35 Fonteh AN, Bass DA, Marshall LA, Seeds M, Samet JM, Chilton FH (1994) Evidence 

that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid 
biosynthesis by mast cells. ] Immuno/152: 5438-5446 

36 Fonteh AN, Samet JM, Chilton FH (1995) Regulation of arachidonic acid, eicosanoid, 
and phospholipase A2 levels in murine mast cells by recombinant stem cell factor. J Clin 
Invest 96: 1432-1439 

37 Balsinde J (2002) Roles of various phospholipases A2 in providing lysophospholipid 
acceptors for fatty acid phospholipid incorporation and remodelling. Biochem J 364: 
695-702 

38 Metz SA (1986) Lysophosphatidylinositol, but not lysophosphatidic acid, stimulates 
insulin release. A possible role for phospholipase A2 but not de novo synthesis of 
lysophospholipid in pancreatic islet function. Biochem Biophys Res Commun 138: 

720-727 

39 Arbibe L, Koumanov K, Vial D, Rougeot C, Faure G, Havet N, Longacre S, Vargaftig 
BB, Bereziat G, Voelker DR et al (1998) Generation of lyso-phospholipids from surfac­
tant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a 
direct surfactant protein A-phospholipase A2 protein interaction. J Clin Invest 102: 
1152-1160 

40 Edelson JD, Vadas P, Villar J, Mullen JB, Pruzanski W (1991) Acute lung injury induced 

51 



Chad R. Marion and Alfred N. Fonteh 

by phospholipase A2. Structural and functional changes. Am Rev Respir Dis 143: 
1102-1109 

41 Fisher AB, Dodia C, Chander A, Jain M (1992) A competitive inhibitor of phospholi­
pase A2 decreases surfactant phosphatidylcholine degradation by the rat lung. Biochem 
] 288 (Pt 2): 407-411 

42 Furue S, Mikawa K, Nishina K, Shiga M, Deno M, Tomita Y, Kuwabara K, Teshirogi I, 

Ono T, Hori Y et al (2001) Therapeutic time-window of a group IIA phospholipase A2 

inhibitor in rabbit acute lung injury: Correlation with lung surfactant protection. Crit 
Care Med 29: 719-727 

43 Koike K, Yamamoto Y, Hori Y, Ono T (2000) Group IIA phospholipase A2 mediates 

lung injury in intestinal ischemia-reperfusion. Ann Surg 232: 90-97 

44 Liu L (1999) Regulation of lung surfactant secretion by phospholipase A2. ] Cell 
Biochem 72: 103-110 

45 Chilton FH, Averill Fj, Hubbard WC, Fonteh AN, Triggiani M, Liu MC (1996) Anti­

gen-induced generation of lyso-phospholipids in human airways. ] Exp Med 183: 
2235-2245 

46 De Windt Lj, Willems j, Roemen TH, Coumans WA, Reneman RS, Van Der Vusse Gj, 
Van Bilsen M (2001) Ischemic-reperfused isolated working mouse hearts: Membrane 

damage and type IIA phospholipase A2. Am ] Physiol Heart Circ Physiol 280: 
H2572-H2580 

47 Fletcher jE, Yang CC, Rosenberg P (1982) Basic phospholipase A2 from Naja nigricol­

lis snake venom: Phospholipid hydrolysis and effects on electrical and contractile activ­

ity of the rat heart. Toxicol Appl Pharmacol 66: 39-54 
48 Van Bilsen M, Van Der Vusse GJ (1995) Phospholipase-A2-dependent signalling in the 

heart. Cardiovasc Res 30: 518-529 
49 Gronroos JO, Laine Vj, Nevalainen TJ (2002) Bactericidal group IIA phospholipase A2 

in serum of patients with bacterial infections. ] Infect Dis 185: 1767-1772 
50 Juffrie M, Meer GM, Hack CE, Haasnoot K, Sutaryo Veerman Aj, Thijs LG (2001) 

Inflammatory mediators in dengue virus infection in children: Interleukin-6 and its rela­
tion to C-reactive protein and secretory phospholipase A2. Am] Trop Med Hyg 65: 
70-75 

51 Laine Vj, Grass DS, Nevalainen Tj (2000) Resistance of transgenic mice expressing 

human group II phospholipase A2 to Escherichia coli infection. Infect Immun 68: 87-92 

52 Rintala EM, Nevalainen Tj (1993) Group II phospholipase A2 in sera of febrile patients 

with microbiologically or clinically documented infections. Clin Infect Dis 17: 864-870 
53 Tunaz H, Park Y, Buyukguzel K, Bedick jC, Nor Aliza AR, Stanley DW (2003) 

Eicosanoids in insect immunity: Bacterial infection stimulates hemocytic phospholipase 
A2 activity in tobacco hornworms. Arch Insect Biochem Physiol 52: 1-6 

54 Degousee N, Ghomashchi F, Stefanski E, Singer A, Smart BP, Borregaard N, Reithmeier 
R, Lindsay TF, Lichtenberger C, Reinisch W et al (2002) Groups IV, V, and X phos­
pholipases A2s in human neutrophils: Role in eicosanoid production and gram-negative 
bacterial phospholipid hydrolysis. ] Bioi Chem 277: 5061-5073 

52 



Enzymatic and receptor mediated effects of secretory phospholipase A2 .. 

55 Borgstrom B (1980) Importance of phospholipids, pancreatic phospholipase A2, and 

fatty acid for the digestion of dietary fat: In vitro experiments with the porcine enzymes. 

Gastroenterology 78: 954-962 

56 Gijon MA, Perez C, Mendez E, Sanchez CM (1995) Phospholipase A2 from plasma of 

patients with septic shock is associated with high-density lipoproteins and C3 anaphy­

latoxin: Some implications for its functional role. Biochem ] 306 ( Pt 1): 167-175 

57 Gonzalez R], Moore EE, Ciesla D], Meng X, Biffl WL, Silliman CC (2001) Post-hem­
orrhagic shock mesenteric lymph lipids prime neutrophils for enhanced cytotoxicity via 
phospholipase A2. Shock 16: 218-222 

58 Green ]A, Smith GM, Buchta R, Lee R, Ho KY, Rajkovic lA, Scott KF (1991) Circulat­
ing phospholipase A2 activity associated with sepsis and septic shock is indistinguishable 
from that associated with rheumatoid arthritis. Inflammation 15: 355-367 

59 Marshall LA, Hall RH, Winkler ]D, Badger A, Bolognese B, Roshak A, Flamberg PL, 

Sung CM, Chabot-Fletcher M, Adams]L et al (1995) SB 203347, an inhibitor of 14 kDa 

phospholipase A2, alters human neutrophil arachidonic acid release and metabolism and 

prolongs survival in murine endotoxin shock. ] Pharmacal Exp Ther 274: 1254-1262 
60 Sorensen], Kald B, Tagesson C, Lindahl M (1994) Platelet-activating factor and phos­

pholipase A2 in patients with septic shock and trauma. Intensive Care Med 20: 555-561 
61 Vadas P, Pruzanski W, Stefanski E (1988) Extracellular phospholipase A2: Causative 

agent in circulatory collapse of septic shock? Agents Actions 24: 320-325 
62 Vadas P, Pruzanski W (1991) Serum phospholipase A2 values and septic shock. Crit 

Care Med 19: 988-990 
63 Xu D, Lu Q, Deitch EA (1995) Calcium and phospholipase A2 appear to be involved in 

the pathogenesis of hemorrhagic shock-induced mucosal injury and bacterial transloca­

tion. Crit Care Med 23: 125-131 

64 Aufenanger], Samman M, Quintel M, Fassbender K, Zimmer W, Bertsch T (2002) Pan­
creatic phospholipase A2 activity in acute pancreatitis: A prognostic marker for early 
identification of patients at risk. Clin Chem Lab Med 40: 293-297 

65 Bird NC, Goodman A], Johnson AG (1989) Serum phospholipase A2 activity in acute 
pancreatitis: An early guide to severity. BrJ Surg 76: 731-732 

66 Buchler M, Malfertheiner P, Schadlich H, Nevalainen T], Friess H, Beger HG (1989) 
role of phospholipase A2 in human acute pancreatitis. Gastroenterology 97: 1521-1526 

67 Eskola ]U, Nevalainen T] (1986) Pancreatic phospholipase A2 in human acute pancre­
atitis. Mater Med Pol 18: 132-135 

68 Friess H, Shrikhande S, Riesle E, Kashiwagi M, Baczako K, Zimmermann A, Uhl W, 

Buchler MW (2001) Phospholipase A2 isoforms in acute pancreatitis. Ann Surg 233: 

204-212 

69 Gronroos ]M, Nevalainen T] (1992) Increased concentrations of synovial-type phos­

pholipase A2 in serum and pulmonary and renal complications in acute pancreatitis. 
Digestion 52: 232-236 

70 Kemppainen E, Hietaranta A, Puolakkainen P, Sainio V, Halttunen ], Haapiainen R, 
Kivilaakso E, Nevalainen T (1999) BactericidaVpermeability-increasing protein and 

53 



Chad R. Marion and Alfred N. Fonteh 

group I and II phospholipase A2 during the induction phase of human acute pancreati­
tis. Pancreas 18: 21-27 

71 Matsuda Y, Ogawa M, Nishijima J, Miyauchi K, Mori T (1986) Usefulness of determi­
nation of serum immunoreactive pancreatic phospholipase A2 content for early identifi­
cation of severe acute pancreatitis. Hepatogastroenterology 33: 214-216 

72 Miura M, Endo S, Kaku LL, Inoue Y, Sato N, Wakabayshi G, Baba E, Katsuya H, Inada 
K, Sato S (2001) Plasma type II phospholipase A2 levels in patients with acute pancre­
atitis. Res Commun Mol Pathol Pharmacol109: 159-164 

73 Nevalainen TJ (1989) The role of phospholipase A2 in human acute pancreatitis. Klin 

Wochenschr 67: 180-182 
74 Schuppisser JP, Grotzinger U, Reichlin B, Tondelli P (1985) The role of phospholipase 

A2 in respiratory failure of acute pancreatitis. Helv Chir Acta 51: 665-667 

75 Touqui L, Arbibe L (1999) A role for phospholipase A2 in ARDS pathogenesis. Mol Med 
Today 5: 244-249 

76 Blackwell GJ (1978) Phospholipase A2 and platelet aggregation. Adv Prostaglandin 
Thromboxane Res 3: 137-142 

77 Hazlett TL, Deems RA, Dennis EA (1990) Activation, aggregation, inhibition and the 
mechanism of phospholipase A2. Adv Exp Med BioI 279: 49-64 

78 Nakano T, Hanasaki K, Matsumoto S, Arita H (1988) Retinol induces platelet aggrega­
tion via activation of phospholipase A2. Biochem Biophys Res Commun 154: 1075-
1080 

79 Atsumi G, Murakami M, Tajima M, Shimbara S, Hara N, Kudo I (1997) The perturbed 
membrane of cells undergoing apoptosis is susceptible to type II secretory phospholipase 
A2 to liberate arachidonic acid. Biochim Biophys Acta 1349: 43-54 

80 Yagami T, Ueda K, Asakura K, Hayasaki-Kajiwara Y, Nakazato H, Sakaeda T, Hata S, 
Kuroda T, Takasu N, Hori Y (2002) Group IB secretory phospholipase A2 induces neu­
ronal cell death via apoptosis. ] Neurochem 81: 449-461 

81 Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Takasu N, Tanaka K, 
Gemba T, Hori Y (2002) Human group IIA secretory phospholipase A2 induces neu­
ronal cell death via apoptosis. Mol Pharmacol61: 114-126 

82 Fonteh AN, Marion CR, Barham BJ, Edens MB, Atsumi G, Samet JM, High KP, Chilton 
FH (2001) Enhancement of mast cell survival: A novel function of some secretory phos­
pholipase A2 isotypes. ] Immunol167: 4161-4171 

83 Riggins GJ, Markowitz S, Wilson JK, Vogelstein B, Kinzler KW (1995) Absence of secre­
tory phospholipase A2 gene alterations in human colorectal cancer. Cancer Res 55: 
5184-5186 

84 Bomalaski JS, Clark MA (1990) Activation of phospholipase A2 in rheumatoid arthri­
tis. Adv Exp Med BioI 279: 231-238 

85 Bowton DL, Seeds MC, Fasano MB, Goldsmith B, Bass DA (1997) Phospholipase A2 
and arachidonate increase in bronchoalveolar lavage fluid after inhaled antigen chal­
lenge in asthmatics. Am] Respir Crit Care Med 155: 421-425 

54 



Enzymatic and receptor mediated effects of secretory phospholipase A2-

86 Busse W (1998) The role and contribution of leukotrienes in asthma. Ann Allergy Asth­

ma Immunol 81: 17-26 

87 Calabrese C, Triggiani M, Marone G, Mazzarella G (2000) Arachidonic acid metabo­
lism in inflammatory cells of patients with bronchial asthma. Allergy 55 (Suppl 61): 

27-30 

88 Hurt-Camejo E, Paredes S, Masana L, Camejo G, Sartipy P, Rosengren B, Pedreno ], 

Vallve ]C, Benito P, Wiklund 0 (2001) Elevated levels of small, low-density lipoprotein 

with high affinity for arterial matrix components in patients with rheumatoid arthritis: 

Possible contribution of phospholipase A2 to this atherogenic profile. Arthritis Rheum 
44:2761-2767 

89 Komatsubara T, Tojo H, Ying Z, Tomita T, Ochi T, Okamoto M (1995) Serum phos­

pholipase A2 activity and immunoreactive group II phospholipase A2 in rheumatoid 
arthritis. Clin Chim Acta 236: 109-112 

90 Kortekangas P, Aro HT, Nevalainen T] (1994) Group II phospholipase A2 in synovial 

fluid and serum in acute arthritis. Scand J Rheumatol 23: 68-72 

91 Kramer RM, Pepinsky RB (1991) Assay and purification of phospholipase A2 from 

human synovial fluid in rheumatoid arthritis. Methods Enzymol197: 373-381 

92 Lin MK, Farewell V, Vadas P, Bookman AA, Keystone EC, Pruzanski W (1996) Secre­

tory phospholipase A2 as an index of disease activity in rheumatoid arthritis. Prospec­
tive double blind study of 212 patients.] Rheumatol23: 1162-1166 

93 Pruzanski W, Vadas P (1988) Secretory synovial fluid phospholipase A2 and its role in 
the pathogenesis of inflammation in arthritis. J Rheumatol15: 1601-1603 

94 Barbour SE, Dennis EA (1993) Antisense inhibition of group II phospholipase A2 

expression blocks the production of prostaglandin E2 by P388D1 cells. J BioI Chem 268: 

21875-21882 

95 Bayburt T, Yu BZ, Lin HK, Browning J, Jain MK, Gelb MH (1993) Human nonpan­
creatic secreted phospholipase A2: Interfacial parameters, substrate specificities, and 
competitive inhibitors. Biochemistry 32: 573-582 

96 Bernard P, Pintore M, Berthon ]Y, Chretien ]R (2001) A molecular modeling and 3D 
QSAR study of a large series of indole inhibitors of human non-pancreatic secretory 
phospholipase A2• Eur J Med Chem 36: 1-19 

97 Blanchard SG, Andrews RC, Brown P], Gan LS, Lee FW, Sinhababu AK, Wheeler TN 
(1998) Discovery of bioavailable inhibitors of secretory phospholipase A2. Pharm 

Biotechnol11: 445-463 

98 Flower R (1978) Steroidal anti-inflammatory drugs as inhibitors of phospholipase A2. 

Adv Prostaglandin Thromboxane Res 3: 105-112 

99 Glaser KB (1995) Regulation of phospholipase A2 enzymes: Selective inhibitors and 

their pharmacological potential. Adv Pharmacol 32: 31-66 

100 Hansford KA, Reid RC, Clark cr, Tyndall JD, Whitehouse MW, Guthrie T, McGeary 

RP, Schafer K, Martin JL, Fairlie DP (2003) D-tyrosine as a chiral precusor to potent 
inhibitors of human non-pancreatic secretory phospholipase A2 (IIa) with anti-inflam­

matory activity. Chembiochem 4: 181-185 

55 



Chad R. Marion and Alfred N. Fonteh 

101 Jain MK, Streb M, Rogers J, DeHaas GH (1984) Action of phospholipase A2 on bilay­
ers containing lysophosphatidylcholine analogs and the effect of inhibitors. Biochem 

Pharmaco/33:2541-2551 

102 Kokotos G, Kotsovolou S, Six DA, Constantinou-Kokotou V, Beltzner CC, Dennis EA 
(2002) Novel 2-oxoamide inhibitors of human group IVA phospholipase A2. ] Med 

Chem45:2891-2893 

103 Kokotos G, Constantinou-Kokotou V, Noula C, Nicolaou A, Gibbons WA (1996) Syn­
thesis of lipidic amino acid and dipeptide inhibitors of human platelet phospholipase A2. 
IntJ Pept Protein Res 48: 160-166 

104 Lappas M, Munns MJ, King RG, Rice GE (2001) Antisense oligonucleotide inhibition 
of type II phospholipase A2 expression, release and activity in vitro. Placenta 22: 

418-424 
105 Tanaka K, Arita H (1995) Secretory phospholipase A2 inhibitors. Possible new anti­

inflammatory agents. Agents Actions (Suppl) 46: 51-64 
106 Kennedy BP, Payette P, Mudgett J, Vadas P, Pruzanski W, Kwan M, Tang C, Rancourt 

DE, Cromlish WA (1995) A natural disruption of the secretory group II phospholipase 
A2 gene in inbred mouse strains. ] BioI Chem 270: 22378-22385 

107 Lilja I, Smedh K, Olaison G, Sjodahl R, Tagesson C, Gustafson-Svard C (1995)Phos­
pholipase A2 gene expression and activity in histologically normal ileal mucosa and in 
Crohn's ileitis. Gut 37: 380-385 

108 MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD, Buchberg AM (1995) 
The secretory phospholipase A2 gene is a candidate for the Mom1locus, a major mod­
ifier of ApcMin-induced intestinal neoplasia. Cell 81: 957-966 

109 Fox N, Song M, Schrementi J, Sharp JD, White DL, Snyder DW, Hartley LW, Carlson 
DG, Bach NJ, Dillard RD et al (1996) Transgenic model for the discovery of novel 
human secretory non-pancreatic phospholipase A2 inhibitors. Eur ] Pharmacol 308: 

195-203 
110 Nevalainen TJ, Laine VJ, Grass DS (1997) Expression of human group II phospholipase 

A2 in transgenic mice. ] Histochem Cytochem 45: 1109-1119 
111 Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F, Komagata Y, Maki K, 

Ikuta K, Ouchi Y et al (1997) Role of cytosolic phospholipase A2 in allergic response 
and parturition. Nature 390: 618-622 

112 Grass DS, Felkner RH, Chiang MY, Wallace RE, Nevalainen TJ, Bennett CF, Swanson 
ME (1996) Expression of human group II PLA2 in transgenic mice results in epidermal 
hyperplasia in the absence of inflammatory infiltrate. ] Clin Invest 97: 2233-2241 

113 Bingham CO III, Murakami M, Fujishima H, Hunt JE, Austen KF, Arm JP (1996) A 
heparin-sensitive phospholipase A2 and prostaglandin endoperoxide synthase-2 are 
functionally linked in the delayed phase of prostaglandin D2 generation in mouse bone 
marrow-derived mast cells. ] BioI Chem 271: 25936-25944 

114 Balsinde J, Barbour SE, Bianco ID, Dennis EA (1994) Arachidonic acid mobilization in 
P388D1 macrophages is controlled by two distinct Ca2+-dependent phospholipase A2 
enzymes. Proc Natl Acad Sci USA 91: 11060-11064 

56 



Enzymatic and receptor mediated effects of secretory phospholipase A2 ... 

115 Fonteh AN, Samet JM, Surette M, Reed W, Chilton FH (1998) Mechanisms that 
account for the selective release of arachidonic acid from intact cells by secretory phos­
pholipase Az. Biochim Biophys Acta 1393: 253-266 

116 Fonteh AN, Atsumi G, LaPorte T, Chilton FH (2000) Secretory phospholipase A2 recep­
tor-mediated activation of cytosolic phospholipase A2 in murine bone marrow-derived 
mast cells. ] Immunol165: 2773-2782 

117 Bingham CO III, Fijneman RJ, Friend DS, Goddeau RP, Rogers RA, Austen KF, Arm JP 
(1999) Low molecular weight group IIA and group V phospholipase A2 enzymes have 
different intracellular locations in mouse bone marrow-derived mast cells. ] BioI Chem 

274: 31476-31484 
118 Fujishima H, Sanchez Mejia RO, Bingham CO III, Lam BK, Sapirstein A, Bonventre JV, 

Austen KF, Arm JP (1999) Cytosolic phospholipase A2 is essential for both the immedi­
ate and the delayed phases of eicosanoid generation in mouse bone marrow-derived 
mast cells. Proc Natl Acad Sci USA 96: 4803-4807 

119 Murakami M, Austen KF, Arm JP (1995) The immediate phase of c-sn-ligand stimula­
tion of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation 
through post-translational activation of cytosolic phospholipase A2 and 5-lipoxygenase. 

] Exp Med 182: 197-206 
120 Reddy ST, Winstead MV, Tischfield JA, Herschman HR (1997) Analysis of the secreto­

ry phospholipase A2 that mediates prostaglandin production in mast cells. ] BioI Chem 

272: 13591-13596 
121 Blom M, Tool AT, Wever PC, Wolbink GJ, Brouwer MC, Calafat J, Egesten A, Knol EF, 

Hack CE, Roos D et al (1998) Human eosinophils express, relative to other circulating 
leukocytes, large amounts of secretory 14-kD phospholipase A2. Blood 91: 3037-3043 

122 Hundley TR, Marshall LA, Hubbard WC, MacGlashan DW Jr (1998) Characteristics of 
arachidonic acid generation in human basophils: Relationship between the effects of 
inhibitors of secretory phospholipase A2 activity and leukotriene C4 release. J Pharma­
col Exp Ther 284: 847-857 

123 Triggiani M, Granata F, Oriente A, De MV, Gentile M, Calabrese C, Palumbo C, 
Marone G (2000) Secretory phospholipases A2 induce beta-glucuronidase release and 
IL-6 production from human lung macrophages. ] Immunol164: 4908-4915 

124 Triggiani M, Granata F, Oriente A, Gentile M, Petraroli A, Balestrieri B, Marone G 
(2002) Secretory phospholipases A2 induce cytokine release from blood and synovial 
fluid monocytes. EurJ Immunol 32: 67-76 

125 Triggiani M, Granata F, Balestrieri B, Petraroli A, Scalia G, Del Vecchio L, Marone G 
(2003) Secretory phospholipases A2 activate selective functions in human eosinophils. ] 
Immunol170: 3279-3288 

126 Galli SJ (2000) Mast cells and basophils. Curr Opin Hematol7: 32-39 

127 Galli SJ (1993) New concepts about the mast cell. N Engl ] Med 328: 257-265 
128 Gordon JR, Galli SJ (1991) Release of both preformed and newly synthesized tumor 

necrosis factor alpha (TNF-a)lcachectin by mouse mast cells stimulated via the Fe 

57 



Chad R. Marion and Alfred N. Fonteh 

epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-a during 

IgE-dependent biological responses. ] Exp Med 174: 103-107 

129 Wedemeyer J, Tsai M, Galli SJ (2000) Roles of mast cells and basophils in innate and 

acquired immunity. Curr Opin Immunol12: 624-631 

130 Fonteh AN, Marion CR, Barham BJ, Edens MB, Atsumi G, Samet JM, High KP, Chilton 

FH (2001) Enhancement of mast cell survival: A novel function of some secretory phos­

pholipase A2 isotypes. ] Immuno/167: 4161-4171 

131 Nair X, Nettleton D, Clever D, Tramposch KM, Ghosh S, Franson RC (1993) Swine as 

a model of skin inflammation. Phospholipase Arinduced inflammation. Inflammation 

17:205-215 
132 Babu AS, Gowda TV (1994) Dissociation of enzymatic activity from toxic properties of 

the most basic phospholipase A2 from Vipera russelli snake venom by guanidination of 

lysine residues. Toxicon 32: 749-752 

133 Arita H, Hanasaki K (1993) Physiological aspects of a high affinity binding site for pan­

creatic-type phospholipase A2. ] Lipid Mediat 6: 217-222 

134 Hanasaki K, Arita H (2002) Phospholipase A2 receptor: A regulator of biological func­
tions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat 68-69: 71-82 

135 Hanasaki K, Arita H (1996) Structure and function of phospholipase A2 receptor. Adv 

Exp Med Bioi 416: 315-319 
136 Ishizaki J, Kishino J, Teraoka H, Ohara 0, Arita H (1993) Receptor-binding capability 

of pancreatic phospholipase A2 is separable from its enzymatic activity. FEBS Lett 324: 

349-352 

137 Lambeau G, Lazdunski M (1999) Receptors for a growing family of secreted phospho­
lipases A2. Trends Pharmacal Sci 20: 162-170 

138 Lambeau G, Ancian P, Nicolas JP, Beiboer SH, Moinier D, Verheij H, Lazdunski M 
(1995) Structural elements of secretory phospholipases A2 involved in the binding to M­
type receptors. ] Bioi Chem 270: 5534-5540 

139 Ancian P, Lambeau G, Mattei MG, Lazdunski M (1995) The human 180-kDa receptor 
for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble 
form, expression, and chromosomal localization. ] Bioi Chem 270: 8963-8970 

140 Hanasaki K, Yokota Y, Ishizaki J, Itoh T, Arita H (1997) Resistance to endotoxic shock 
in phospholipase A2 receptor-deficient mice. ] Bioi Chem 272: 32792-32797 

141 Koduri RS, Gronroos JO, Laine VJ, Le Calvez C, Lambeau G, Nevalainen TJ, Gelb MH 
(2002) Bactericidal properties of human and murine groups I, II, V, X, and XII secreted 
phospholipases A2. ] Bioi Chem 277: 5849-5857 

142 Fourcade 0, Simon MF, Viode C, Rugani N, Leballe F, Ragab A, Fournie B, Sarda L, 

Chap H (1995) Secretory phospholipase A2 generates the novel lipid mediator lysophos­

phatidic acid in membrane micro vesicles shed from activated cells. Cell 80: 919-927 
143 Bevers EM, Comfurius P, Zwaal RF (1983) Changes in membrane phospholipid distri­

bution during platelet activation. Biochim Biophys Acta 736: 57-66 
144 Dekkers DW, Comfurius P, Bevers EM, Zwaal RF (2002) Comparison between Ca2+-

58 



Enzymatic and receptor mediated effects of secretory phospholipase A2 . 

induced scrambling of various fluorescently labelled lipid analogues in red blood cells. 
BiochemJ 362: 741-747 

145 Fonteh AN, Chilton FH (1993) Mobilization of different arachidonate pools and their 
roles in the generation of leukotrienes and free arachidonic acid during immunologic 
activation of mast cells. ] Immuno/150: 563-570 

146 Fonteh AN, Chilton FH (1992) Rapid remodeling of arachidonate from phosphatidyl­

choline to phosphatidylethanolamine pools during mast cell activation. ] Immuno/148: 

1784-1791 

147 Benveniste], Chignard M, Le Couedic ]P, Vargaftig BB (1982) Biosynthesis of platelet­
activating factor (PAF-ACETHER) II. Involvement of phospholipase A2 in the formation 

of PAF-ACETHER and lyso-PAF-ACETHER from rabbit platelets. Thromb Res 25: 

375-385 

148 Blank ML, Fitzgerald V, Smith ZL, Snyder F (1995) Generation of the precursor (lyso­

PAF) of platelet-activating factor via a Co A-dependent transacylase. Biochem Biophys 

Res Commun 210: 1052-1058 

149 Snyder F, Lee TC, Blank M, Malone B, Woodard D, Robinson M (1985) Platelet-acti­
vating factor: Alternate pathways of biosynthesis, mechanism of inactivation, and rea­

cylation of lyso-PAF with arachidonate. Adv Prostaglandin Thromboxane Leukot Res 

15: 693-696 

150 East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572: 

364-386 

151 Durstin M, Durstin S, Molski TF, Becker EL, Sha'afi RI (1994) Cytoplasmic phospholi­

pase A2 translocates to membrane fraction in human neutrophils activated by stimuli 
that phosphorylate mitogen-activated protein kinase. Proc Natl Acad Sci USA 91: 

3142-3146 

152 Gordon RD, Leighton lA, Campbell DG, Cohen P, Creaney A, Wilton DC, Masters D], 
Ritchie GA, Mott R, Taylor IW et al (1996) Cloning and expression of cystolic phos­
pholipase A2 (cPLA2) and a naturally occurring variant. Phosphorylation of Ser505 of 
recombinant cPLA2 by p42 mitogen-activated protein kinase results in an increase in 
specific activity. EurJ Biochem 238: 690-697 

153 Hazan-Halevy I, Levy R (2000) Activation of cytosolic phospholipase A2 by opsonized 
zymosan in human neutrophils requires both ERK and p38 MAP-kinase. Adv Exp Med 

Bioi 479: 115-123 
154 Hefner Y, Borsch-Haubold AG, Murakami M, Wilde ]1, Pasquet S, Schieltz D, 

Ghomashchi F, Yates]R III, Armstrong CG, Paterson A et al (2000) Serine 727 phos­

phorylation and activation of cytosolic phospholipase A2 by MNK1-related protein 

kinases. ] Bioi Chem 275: 37542-37551 
155 Kramer RM, Roberts EF, Hyslop PA, Utterback BG, Hui KY, ]akubowski]A (1995) Dif­

ferential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin 

receptor agonist peptide in human platelets. Evidence for activation of cPLA2 indepen­

dent of the mitogen-activated protein kinases ERK1I2. ] Bioi Chem 270: 14816-14823 

156 Kramer RM, Roberts EF, Urn SL, Borsch-Haubold AG, Watson SP, Fisher M], 

59 



Chad R. Marion and Alfred N. Fonteh 

Jakubowski JA (1996) p38 mitogen-activated protein kinase phosphorylates cytosolic 
phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline­

directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2• 

] BioI Chern 271: 27723-27729 
157 Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival 

by IgE. Nat Rev Irnrnuno/2: 773-786 
158 Hata D, Kawakami Y, Inagaki N, Lantz CS, Kitamura T, Khan WN, Maeda-Yamamo­

to M, Miura T, Han W, Hartman SE et al (1998) Involvement of Bruton's tyrosine kinase 

in Fc epsilon RI-dependent mast cell degranulation and cytokine production. ] Exp Med 
187: 1235-1247 

159 Petro JB, Khan WN (2001) Phospholipase C-gamma 2 couples Bruton's tyrosine kinase 
to the NF-kappa B signaling pathway in B lymphocytes. ] BioI Chern 276: 1715-1719 

160 Tsai M, Chen RH, Tam SY, Blenis J, Galli SJ (1993) Activation of MAP kinases, pp90rsk 
and pp70-S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine 

kinase or Fc epsilon RI: Rapamycin inhibits activation of pp70-S6 kinase and prolifera­

tion in mouse mast cells. EurJ Irnrnunol 23: 3286-3291 

161 Galli SJ, Tsai M, Wershil BK (1993) The c-kit receptor, stem cell factor, and mast cells. 

What each is teaching us about the others. ArnJ Patho/142: 965-974 

60 



Control of arachidonic acid levels in resting and activated 
U937 phagocytic cells by Ca2+-independent phospholipase A2 

Jesus Balsinde, Rebeca Perez, Yolanda Saez, and Marfa A Balboa 

Institute of Molecular Biology and GenetiCS, University of Valladolid School of Medicine, 

Avenida Ram6n y Cajal7, E-47005 Valladolid, Spain 

Phospholipase A2 regulation of arachidonic acid levels 

Availability of free arachidonic acid (AA) is widely recognized as a rate-limiting step 
in the formation of prostaglandins. This fatty acid is an intermediate of a reacyla­
tionldeacylation cycle of membrane phospholipids, the so-called Lands pathway, in 
which the fatty acid is cleaved from phospholipid by phospholipase Azs (PLAz) and 
reincorporated by acyltransferases. Whereas in resting cells reacylation dominates, 
in stimulated cells the dominant reaction is the PLArmediated deacylation. Never­
theless, increased AA reacylation during cellular activation is still very significant, 
as manifested by the fact that only a minor portion of the free AA released by PLAz 
is converted into eicosanoids, the remainder being effectively incorporated back into 
phospholipids. 

Phagocytic cells generally contain multiple PLA2s [1, 2]. Thus the challenge in 
recent years has been both to identify these PLAzs and to clarify their roles in AA 
metabolism. A general mechanism for PLAz-regulated AA metabolism in resting and 
activated cells has emerged from the studies by several laboratories [3, 4], and 
involves participation of all three major classes of PLAz, namely cPLAz (cytosolic 
PLAz), iPLAz (Ca2+ independent PLAz) and sPLAz (secreted PLAz) (Fig. 1). 

In resting conditions, iPLA2 accounts for most of the PLAz activity of cells. iPLAz 
is therefore the dominant PLAz involved in the liberation of fatty acids, including 
AA, during the continuous recycling of membrane phospholipids that takes place 
under these conditions. Since, as indicated above, the rate of AA release by iPLAz is 
lesser than the rate of its reacylation back into phospholipids, no net accumulation 
of free fatty acid occurs. Stimulation of the cells by receptor agonists results in the 
activation of cPLAz, which then becomes the dominant PLA2 involved in AA 
release. Under these conditions, the rate of AA release clearly exceeds that of rein­
corporation into phospholipids; hence net accumulation of AA occurs that is fol­
lowed by its conversion into different oxygenated compounds, collectively called the 
eicosanoids. 
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Figure 1 

PLA2 regulation of AA release. 

During long-term AA mobilization responses, i.e., those that are typical from 
immunoinflammatory cells such as macrophages or mast cells, the inducible sPLA2 

also participates in the process, thereby creating an amplification loop that results 
in a greatly enhanced release of AA for eicosanoid synthesis. At these stages, the 
contribution of sPLA2 to overall AA release often exceeds that of cPLA2• The sPLA2 

acts not only upon the cells that synthesized it but also upon surrounding cells, 
which allows for efficient propagation of the inflammatory response (Fig. 1). 

Within the framework of the model depicted in Figure 1, recent studies have fur­
ther explored the involvement of other PLA2s in addition to iPLA2 in housekeeping 
phospholipid and fatty acid remodeling. Possible iPLA2-roles in inflammatory sig­
naling distinct from receptor-regulated AA metabolism have also been investigated. 
These are discussed in the following sections. 

Production of Iysophospholipid acceptors for AA incorporation and 
remodeling into phospholipids 

Unlike saturated fatty acids, AA at physiologically relevant nanomolar levels does 
not generally enter cellular phospholipids via direct acylation of glycerol phos-
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phate/dihydroxyacetone phosphate or lysophosphatidic acid (i.e., the de novo path­
way) but rather does it at later stage, via direct acylation of pre-existing lysophos­
pholipid acceptors (the Lands pathway). Since lysophospholipids are produced by 
the hydrolytic action of (PLA2 on phospholipids, this class of enzymes necessarily 
plays a key role in AA incorporation into phospholipids. Initial incorporation of AA 
into phospholipids takes place primarily into phosphatidylcholine (PC); hence the 
lysophospholipid acceptor utilized is lysophosphatidylcholine (lysoPC) [5]. In many 
cells, the steady-state levels of lysoPC appear to be maintained by the continuing 
action of Ca2+ -independent group VI phospholipase A2 (iPLA2) on cellular phos­
pholipids [6]. Thus, a decrease in the activity of the iPLA2 frequently results in the 
diminished production of lysoPC and hence in the inhibition of AA incorporation 
into phospholipids. 

Once the AA has been incorporated into PC by the action of CoA-dependent 
acyltransferases, it is then transferred to certain lysophospholipids, particularly the 
ethanolamine lysophospholipids (lysoPE) in a process that generally takes several 
hours, and is governed by the enzyme CoA-independent transacylase (CoA-IT) [5]. 
Thus, for the efficient incorporation of AA into phospholipids, two kinds of 
lysophospholipid acceptors should be readily available in the cell (Fig. 2). 

Earlier studies on the initial incorporation of AA into the phospholipids of 
murine macrophages demonstrated that the process was essentially Ca2+ -indepen­
dent [7]. This suggested that the PLA2 activity responsible for generating lysophos­
pholipid acceptors for AA incorporation would correspond to that of an iPLA2-like 
enzyme [7]. Such an activity was later identified to belong to the group VI PLA2 in 
studies carried out with murine P388D1 macrophages [8, 9]. These findings were 
later extended by other authors to different cellular systems, such as human neu­
trophils [10], rat submandibular ductal cells [11], and rat uterine stromal cells [12]. 

Importantly, the contribution of group VI iPLA2 to maintaining the lysophos­
pholipid pool that facilitates AA incorporation appears to largely depend on cell 
type. Based on studies of iPLA2 inhibition by the selective inhibitor bromoenollac­
tone (BEL), the iPLA2 contribution ranges from - 90% in rat submandibular ductal 
cells [11], to 50-60 in phagocytic cells [8-10], and to only 20-25% in rat uterine 
stromal cells [12]. It follows from these findings that, in addition to the contribu­
tion of group VI PLA2 to the cellular lysophospholipid pools, the cells may possess 
other mechanisms to generate and maintain the appropriate levels of lysophospho­
lipid acceptors. 

The above notion was highlighted by a recent report in rat pancreatic islets [13], 
where iPLA2-inhibition by BEL does not result in diminished AA incorporation into 
phospholipids. Nevertheless, group VI PLA2 is estimated to contribute to at least 
20% of the very high steady-state lysophospholipid levels in pancreatic islets, indi­
cating that the enzyme possesses significant housekeeping activity in islets as well. 
Since rat pancreatic islets maintain cellular lysophospholipid levels at high levels, it 
is very likely that the amount of lysophospholipid present in these cells after BEL 
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treatment is still high enough to account for a normal rate of AA incorporation into 
phospholipids. In support of this contention, recent studies on AA incorporation 
utilizing cells over-expressing group VI PLA2 have demonstrated that the excess 
amount of lysophospholipid produced under those conditions does not serve to 
increase the rate of fatty acid incorporation [14]. Collectively, these findings have 
suggested that, while a threshold level of lysophospholipid seems necessary to sup­
port AA incorporation into phospholipids, increasing cellular lysophospholipid 
above that threshold level does not increase the rate of AA incorporation. Thus 
other factor(s) in addition to lysophospholipid availability limit AA incorporation 
into phospholipid. 

We have recently employed the U937 cell line as a system model to study the 
enzymes involved in generating and maintaining the lysophospholipid threshold 
level that is necessary for fatty acid incorporation into phospholipids. These cells 
differentiate into macrophage-like cells when treated with phorbol esters such as 
phorbol myristate acetate (PMA). U937 cells express group IV PLA2 (also known as 
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cPLA2 ) and group VI PLA2 (generally referred to as iPLA2 ) but not any of the AA­
releasing sPLA2s, including group IIA, liD, V and X (Balboa, Saez, Perez and 
Balsinde, unpublished observations). 

AA incorporation into phospholipids of both resting and ConA-activated PMA­
differentiated U937 cells exhibits features that are fully similar to those of other 
phagocytic cells such as P388D 1 macrophages and neutrophils [8-10], i.e., it is Ca2+­

independent and BEL-inhibitable. Interestingly, BEL reduces AA incorporation only 
partially, suggesting again the existence of Ca2+ -independent pathway(s) for AA 
incorporation into phospholipids that do not involve the BEL-sensitive group VI 
PLA2 [15]. 

Parallel studies comparing the features of AA incorporation to those of eicos­
apentaenoic acid (C20:5, w-3; EPA), show that the two fatty acids compete with 
each other for incorporation into the phospholipids of resting cells. Thus, AA and 
EPA share a common pathway for incorporation into phospholipids in resting cells. 
Since EPA incorporation is not affected by BEL, this common pathway must also be 
insensitive to BEL [15]. This situation contrasts with the one seen in ConA-activat­
ed cells, where AA and EPA do not compete with each other. Unlike AA, EPA incor­
poration into phospholipid is sensitive to cPLA2 inhibitors in ConA-activated cells 
[15]. Thus, it seems that the increased lysophospholipid availability produced as a 
consequence of stimulus-induced cPLA2 activation plays a role in EPA incorpora­
tion. In accord with this idea, the PE pools appear to be preferential targets for 
cPLA2 phospholipolysis in stimulated phagocytes [16, 17], and PE is the phospho­
lipid class to which EPA preferentially incorporates [15]. Thus, cPLA2 would pro­
vide an additional supply of lysoPE acceptors to be used by EPA but not by AA, and 
the existence of such an alternative route for EPA incorporation may explain why 
in the activated cells EPA does not compete with AA. 

After the initial incorporation of AA mostly into PC, a slow transfer of the fatty 
acid occurs toward PE in most cell types. These changes have been well document­
ed in other cell systems and reflect the remodeling action of the enzyme CoA-IT on 
cellular phospholipids [5]. A PLA2 is strikingly involved in the CoA-IT-driven 
remodeling reactions by providing the lysoPE acceptors utilized in the transacyla­
tion reaction [5]. 

The nature of such a PLA2 has recently been investigated in U937 macrophages 
[15] and peripheral T lymphocytes [18] by measuring the transfer of AA from PC 
to PE in the presence of different PLA2 inhibitors. Inhibitors of cPLA2 (methyl 
arachidonyl fluorophosphonate), iPLA2 (BEL) and sPLA2 (LY31172 7), all fail to 
exert any detectable effect on the transfer of AA from PE to PC in either cell type. 
These findings suggest that the PLA2 involved in this pathway might not be any of 
the previously identified PLA2s. The Ca2+ -independent nature of the response sug­
gests the involvement of an iPLA2-like activity different from the group VI enzyme. 
It should be noted that the aforementioned experiments are reported to be carried 
out at inhibitor doses that completely ablate the corresponding PLA2 activity [15, 
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18]. That excludes the possibility that residual PLA2 activity in the presence of any 
of these inhibitors might provide enough lysoPE to accommodate substrate needs of 
CoA-IT. 

Unlike other macrophage-like cells such as P388D1 cells [8], PMA-differentiated 
U937 cells exhibit a significant iPLA2 activity component that is resistant to BEL 
[15, 19]. This component is more evident when PE is used as a substrate for the 
assay [15]. It is very intriguing to speculate with the possibility that such an activi­
ty is the one generating lysoPC and lysoPE acceptors for incorporation into and 
remodeling among phospholipids under conditions where all other known PLA2s 
are not involved. Purification and characterization of this novel iPLA2 activity seems 
important to further clarify the mechanisms responsible for lysophospholipid level 
maintenance in resting and activated phagocytes. 

The intracellular level of Iysophosphatidylcholine as a regulatory signal 
for phagocyte secretion 

As a part of their surveillance functions in the immune system, monocytes/macro­
phages secrete large amounts of the bactericidal enzyme lysozyme to the extracellu­
lar medium. Lysozyme degrades bacterial cell walls of Gram-positive bacteria and 
the chitinous components of fungal cell walls. The enzyme occurs in many body flu­
ids such as tears, saliva or mucus, and is produced and secreted by phagocytic cells 
and a variety of cells of epithelial origin. Stimuli that induce lysozyme secretion 
from phagocytic cells also induce the PLA2-mediated mobilization of free AA. Thus 
the question arises as to whether these two phenomena are causally related. 

Studies with cPLA2 knock-out mice have unambiguously demonstrated that this 
is the key enzyme in stimulus-induced AA mobilization [20, 21]. In keeping with 
these data, countless articles in the scientific literature have shown that inhibition of 
cPLA2 results in greatly diminished AA release responses. The classical method for 
studying the involvement of cPLA2 in a given cellular response is to use chemical 
inhibitors that are reasonably selective for this enzyme. While some of these studies 
may be flawed by the use of inhibitors that are actually not that selective for cPLA2 

[22], recent studies have described new chemical inhibitors of cPLA2 with improved 
potency and specificity. These are pyrrophenone [23] and related compounds [24]. 
Inhibition by pyrrophenone of pure cPLA2, as measured in an in vitro assay, is over 
two orders of magnitude more potent than that for other PLA2 types [23]. Impor­
tantly, much of this selectivity is retained in assays utilizing cell homogenates as the 
source of enzyme [24, 25], implying that pyrrophenone may indeed constitute an 
excellent tool to study the involvement of cPLA2 in cell function. For example, in 
U937 cells pyrrophenone completely inhibits stimulus-induced AA release at con­
centrations well below 1 f!M [25], and at this concentration no effect is seen on 
either iPLA2 or sPLA2 [26]. 
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Despite its potent effects on AA mobilization, pyrrophenone does not exert any 
effect on lysozyme secretion in activated U937 cells, indicating that cPLAz has no 
role in this process. However, lysozyme secretion is impaired by BEL, which suggests 
the involvement of iPLAz [27]. Such an involvement has been confirmed by anti­
sense oligonucleotide inhibition experiments, which selectively target the iPLAz [27] 

The low lysoPC level found in iPLAz-deficient cells appears to be related to the 
diminished capacity of these cells to secrete lysozyme, since exogenous supplemen­
tation of lysoPC fully restores the response. Other putative PLAz products such as 
exogenous AA and other fatty acids fail to restore lysozyme secretion in the U937 
cells deficient in iPLAz activity [27]. This suggests that stimulus-triggered increases 
in free AA levels have no role in regulating lysozyme secretion. Since in activated 
U937 cells AA mobilization appears to be under the control of cPLAz, these results 
are fully consistent with the aforementioned studies showing that cPLAz inhibition 
by pyrrophenone has no effect on lysozyme release. 

cPLAz activation transiently elevates cellular lysoPC levels in activated phago­
cytic cells [28]. Since cPLAz plays no discernible role in lysozyme release, it is the 
steady-state level of lysoPC (iPLAz-mediated), not the transient increase in lysoPC 
that occurs as a consequence of cellular activation (cPLAz-mediated), which is 
important for lysozyme secretion. In agreement with these observations, exogenous 
lysoPC in the absence of PMA neither triggers secretion on its own nor increases the 
secretory response of cells containing normal iPLAz levels (and hence, exhibiting 
normal steady-state lysoPC levels) [27]. 

Recently two important cellular functions that, like enzyme secretion, require 
profound membrane rearrangement have also been suggested to involve participa­
tion of the iPLAz. These are chemotaxis [29], and cell spreading [30]. Coincident 
with the aforementioned studies on lysozyme secretion, it is the constitutive activi­
ty of the iPLAz that was found to be necessary to sustain both of these functions. In 
addition, in these studies the contribution of the iPLAz was dissociated from cPLAz 
activation [29,30]. Altogether these findings underscore the importance of iPLAz in 
regulating processes that require changes in membrane phospholipid homeostasis 
and provide support to the idea that iPLAz and cPLAz play separate and often 
unique roles in inflammatory cell signaling. 

iPLArderived products and oxidative stress 

Phagocytic cells produce reactive oxygen intermediates such as superoxide anion 
and hydrogen peroxide in response to a variety of agonists. While the production of 
these oxygen metabolites plays an important role in cellular signaling and host 
defense, their uncontrolled production may constitute a serious pathophysiological 
factor for a wide variety of vascular-based disorders. Oxidative damage is often 
associated with AA mobilization from cells from the vascular system, such as 
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endothelial cells, smooth muscle cells, platelets and phagocytes. Reactive oxygen 
intermediates enhance AA release and prostaglandin production in different cell sys­
tems, but the molecular mechanism responsible for these effects appears to vary 
from cell to cell. PLA2 activation has been pointed out as the most likely mechanism 
for AA mobilization in vascular smooth muscle cells, stromal cells, and striatal neu­
rons exposed to H20 2 [31-34]. In other systems however, diminished AA incorpo­
ration into phospholipids, not PLA2 activation, has been suggested to be the event 
responsible for free AA accumulation [35, 36]. 

Our recent data in U937 cells have established a novel mechanism for AA mobi­
lization in phagocytic cells under an oxidative stress that involves participation of 
iPLA2 rather than of cPLA2 [25]. In these cells, H20 2 is able to induce a delayed AA 
mobilization response with a kinetics that strongly contrasts with the response of 
the cells to Con A, which is mediated by cPLA2 and hence shows the typical satu­
ration kinetics that is expected from a highly regulated cellular response such as AA 
release. The response to H20 2 however, is inhibited by BEL and by specific iPLA2 
antisense oligonucleotides [25]. 

Importantly, H20 2 treatment of the U937 cells does not increase the iPLA2 spe­
cific activity of the cells, as measured by different in vitro assays, indicating that a 
stable activation of the iPLA2 (e.g., phosphorylation) is not the mechanism for 
H20 T mediated AA release in U937 cells. When membranes from H20 T treated cells 
are used in the assay, the iPLA2 activity measured is significantly higher than that 
found in membranes from otherwise unstimulated cells. Therefore, treating the cells 
with H20 2 results in facilitated iPLA2 attack on membrane phospholipids. Since 
membranes from H20 2-treated cells contain significantly higher amounts of lipid 
peroxides than membranes from untreated cells [25], these findings suggest that 
lipid hydrolysis by iPLA2 occurs more readily in H20 T treated cells because of 
changes in the physical state of membrane substrates, which may result, at least in 
part, from lipid peroxide accumulation. 

Taken together, the above findings have suggested a model for fatty acid mobi­
lization in H20 2-treated cells whereby the oxidant induces lipid oxidation, which 
results in accumulation of lipid peroxides at the membrane. These lipid peroxides 
destabilize the membrane and render it more susceptible to iPLA2 attack, which 
results in increased liberation of fatty acids. An important aspect of the above model 
is that this fatty acid release appears to occur in the absence of cPLA2 activation, 
which underscores the apparent lack of a regulated signaling component in the 
process. Still, a mechanism such as this one may be very relevant under pathophys­
iological conditions such as oxidative stress, where increased iPLA2 activity may 
account for a significant phospholipid hydrolysis before cellular homeostasis is re­
established. 

Analysis of the AA metabolites produced after exposure of the cells to H20 2 
reveals a significant production of prostaglandins, particularly the pro-inflammato­
ry prostaglandins E2 and D2. This may suggest that an immediate biological conse-
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quence of H20 T induced AA release is to generate mediators that propagate and/or 
amplify the oxidative injury. However, unmetabolized free AA is, by far and large, 
the main compound released into the medium after exposure to H20 2, which rais­
es the possibility that its metabolism to eicosanoid mediators might not be its actu­
al fate or, at least, not the only one. Thus, further studies will be needed to address 
the biological roles of H20 T mediated release of unmetabolized AA in phagocytic 
cells. 

Another aspect that remains unknown is whether iPLAz, in addition to its house­
keeping role in U937 cells and phagocytic cells in general, also plays some role in 
regulated phospholipid hydrolysis in phagocytic cells. The fact that multiple splice 
variants of iPLA2 exist in some cells and that other iPLA2s distinct from the "clas­
sical" group VI enzyme have recently been described [6], suggest the possibility that 
iPLA2 may be subject to complex regulatory mechanisms that differ among cell 
types. Two recent reports utilizing cells over-expressing group VI PLA2 have shown 
the enzyme to be responsive to Ca2+ ionophore in HEK293 cells [37] and to glucose 
plus cAMP-elevating agents in INS-l insulinoma cells [38], thus suggesting that the 
enzyme might be capable of playing some signaling roles in cells. 
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Introduction 

Both AA-derived eicosanoids and platelet activating factor (PAF) serve important 
physiological functions, but also participate in pathological developments [1-4]. 
The metabolism and actions of PAF, arachidonic acid (AA), and AA-derived 
eicosanoids are closely linked in neutrophils, indeed they can be derived from the 
same phospholipid precursor, 1-0-alkyl-2-AA-GPC (sn-glycero-3-phosphocholine). 
Neutrophils playa major role in host defense and inflammation and many studies 
have focused on neutrophil signaling systems and pharmacological intervention in 
these systems. Since neutrophils are terminally differentiated cells and can be main­
tained for only short periods of time after their isolation, molecular approaches for 
their study have been limited. In addition, many of the enzymes that are responsible 
for PAF and AA metabolism, except for cPLAl (85 kDa cytosolic phospholipase A l ) 

and 5-lipoxygenase, are membrane proteins and have not been isolated. Thus much 
of our knowledge of the lipid metabolism and lipid-mediated signaling has been 
obtained through the study of crude systems and intact cells. This review attempts 
to summarize the work of my colleagues and me in this area and closely related 
work of others. Our understanding of neutrophil signaling draws on numerous 
studies of other cells and tissues largely beyond the scope of this review but gener­
ally acknowledged in the primary literature cited. 

Human neutrophils contain high levels of ether-linked phospholipids 
enriched in arachidonate 

At the time we began our studies of AA and PAF metabolism in neutrophils, two bio­
synthetic pathways for the formation of PAF had been found, a remodeling pathway 
in which lyso PAF derived from membrane lipids could be acetylated by an acetyl­
transferase to form PAF [5] and a de novo route which converted an acetylated alkyl 
diglyceride to PAF via a CDP-choline cholinephosphotransferase-catalyzed reaction 
[6]. We examined human neutrophils to determine if they contained enough 1-0-
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alkyl-2-acyl-GPC to support PAF synthesis by the remodeling pathway and con­
ducted experiments to see if we could find evidence for the de novo pathway. 

We were surprised to find that almost half of the cholined-containing phospho­
glyceride class (PC) was comprised of the 1-0-alkyl ether-linked subclass [7]. In 
addition, we found that two-thirds of the ethanolamine-containing phosphoglyc­
eride class (PE) was 1-0-alk-1' -enyl linked (plasmalogen). Thus the ether-linked 
phospholipids are major components of the neutrophil membranes. Eosinophils 
were found to contain even higher levels of the 1-0-alkyl and plasmalogen sub­
classes comprising 70 mol% of PC and 75 mol% of PE, respectively [8]. It is clear 
these cells contain far more 1-0-alkyl-2-acyl-GPC than needed to support PAF syn­
thesis by the remodeling pathway. Since the ether bonds are not hydrolyzed by phos­
pholipases it is possible the ether-linked subclasses help stabilize neutrophil mem­
branes when the cells leave the blood stream to invade other tissues. The high plas­
malogen content might also help protect against reactive oxygen species [9], which 
are actively produced by the cells particularly during the oxidative burst that is ini­
tiated to kill invading organisms. 

In studies of the ether lipid content of neutrophil lipids, Mueller and co-workers 
[10] found that although AA comprised only 7% of all fatty acyl chains found in 
the PC fraction, 63% of this amount was found as 1-0-alkyl-2-AA-GPC. The PE 
contained much greater levels of AA comprising 27% of the acyl chains; 80% of this 
amount was found as 1-0-alk-1' -enyl-2-AA-GPE (1-0-alk-I' -enyl-2-arachidonoyl­
sn-glycero-3-phosphoethanolamine). Chilton and Connell [11] observed a similar 
distribution of AA in human neutrophils based on mass spectral analysis. Similar 
enrichment of AA in the ether linked subclasses of rat neutrophils was reported by 
Ramesha and Pickett [12]. The subcellular distribution of the ether-linked phos­
pholipid classes and AA distribution was examined by MacDonald and Sprecher 
[13] who found that the subclass composition was markedly uniform throughout 
the subcellular membrane fractions yet the major pool of AA was localized in intra­
cellular membranes. Our laboratory made very similar observations (Venable and 
Wykle, unpublished). 

A number of studies have shown that when the diets of rats [14], monkeys [15] 
or humans [16-18] are supplemented with a fish oil diet containing eicosapen­
taenoic acid (EPA), the EPA is incorporated in a pattern almost identical to that of 
AA. Thus it is enriched in the ether-linked subclasses and is released form these 
pools upon stimulation of the cells. The incorporation of gamma linolenic acid into 
human neutrophils has also been examined [19]. Since the n-3 fatty acids yield less 
active lipoxygenase products, the substitution of EPA or other polyunsaturated fatty 
acids could importantly affect eicosanoid responses in inflammation [16]. 

These studies have revealed that human neutrophils contain high levels of ether­
linked phospholipids in their membranes and that these subclasses are enriched in 
AA. The ethanolamine plasmalogen fraction contains by far the greatest pool of AA 
in the cells and donate the most free AA upon stimulation [11]. 

74 



Arachidonate remodeling and PAF synthesis in human neutrophils 

Co-synthesis of PAF and eicosanoids 

It was early recognized that the same stimuli which elicit eicosanoids also elicit syn­
thesis of PAF. PAF and the eicosanoids have overlapping activities and act synergis­
tically to promote cell function [20,21]. The formation of lyso PAF from 1-0-alkyl-
2-acyl-GPC in the remodeling pathway of PAF synthesis requires the removal of the 
2-acyl chain by a phospholipase A2 (PLA2) or trans acylase reaction, a reaction 
which also requires formation of a lysophospholipid acceptor by a PLA2 reaction. It 
was at first puzzling why no [14C] lysophospholipid was observed in stimulated neu­
trophils labeled with [3H] AA in the sn-2 position and [14C] stearate in the sn-1 posi­
tion of PC, even though [3H] AA release was seen [22]. This was subsequently 
explained by the finding from the labeling studies that [3H] AA and [14C] stearate 
are not found in the same molecules; [3H] AA is in molecules containing unlabeled 
stearate in the sn-1 position while stearate-labeled PC species contain oleate and 
linoleate but not AA in the sn-2 position. Thus the specific release of [3H] AA releas­
es only unlabeled lyso Pc. In further studies [3H] AA was shown to be incorporat­
ed into seven molecular species of PC, 1-0-alkyl ether-linked species and 1-acyl­
linked species [23]. A similar pattern of incorporation was observed employing mass 
spectroscopy [24, 25]. These studies revealed that 1-0-alkyl-2-AA-GPC is actively 
formed in neutrophils and provided evidence that it could yield 1-0-alkyl-2-lyso­
GPC (lyso PAF) through the AA-specific action of PLA2. 

One of our most striking discoveries was the finding that when human neu­
trophils are exposed to PAF labeled in the 1-0-alkyl chain, 1-0[3H]hexadecyl-2-
acetyl-GPC, the cells rapidly remove the acetate and reacylate the [3H]lyso PAF in a 
highly specific manner with AA accounting for approximately 90% of the added 
acyl chains [26, 27]. Similarly exogenous [3H]lyso PAF was also rapidly taken up 
and acylated with AA [26-28]. This observation provided a labeling approach to 
specifically label the neutrophils with 1-0-[3H]alkyl-2-AA-GPC and only traces of 
other labeled products. Using neutrophils labeled in such a manner we were able to 
show directly that the arachidonate-containing species, 1-0-alkyl-2-AA-GPC is 
readily converted to PAF upon stimulation [28]. Thus the same precursor can yield 
both PAF and AA products. Similar conclusions were drawn from studies of 
macrophages by Albert and Synder [29]. In the acylation of lyso PAF, we found that 
neutrophils from monkeys on a fish oil diet substituted EPA for AA in the acylation 
of lyso-PAF in the same ratio of EPA:AA as found in the cells [15]. Again, it appears 
EPA from fish oil may interact in a centrally important pathway. 

Evidence that the arachidonate-containing molecular species, 1-0-alkyl-2-AA­
GPC is the obligate precursor of PAF was obtained from studies of HL60 cells grown 
in essential fatty acid-deficient media and differentiated into neutrophil-like granulo­
cytes [30]. The cells grown in essential fatty acid-deficient media could not make PAF 
unless they were supplemented with AA or other polyunsaturated fatty acids [30]. 
Rat neutrophils that were 90% depleted of AA synthesized 85% less PAF than con-
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trol cells containing normal levels of AA [31, 32]. Much of the AA was replaced by 
eicosatrienoate (20:3) but the 20:3-containing 1-0-alkyl-2-acyl-GPC did not serve as 
a precursor of PAF, indicating a highly specific deacylation reaction is required [33]. 

Molecular species of PAF and related products synthesized by 
stimulated neutrophils 

Although there are reports of the production of highly selective molecular species of 
PAF by human neutrophils, our laboratory observed several molecular species of 
PAF labeled by acetate formed upon fMLP stimulation, with the 16:0 (39%) species 
being the major product followed by 18:1 (22%), 18:0 (15%) and other minor 
alkyl-linked species [34]. In addition, 1-acyl-2-acetyl-GPC was produced and 
accounted for approximately 12-15% of the acetate-labeled products; the 1-acyl-2-
acetyl-GPC also accounted for the major PAF-like products synthesized by other 
cells [35]. The molecular species of acetate-labeled products was significantly dif­
ferent from the alkyl chain composition of the PC fraction and more closely fol­
lowed the AA-linked species. Pinckard and co-workers [36] also observed five mol­
ecular species of PAF as detected by reverse phase high performance liquid chro­
matography coupled with rabbit platelet aggregation assays; only one species was 
identified by mass spectroscopy, the 16:0 species. 

1-Acyl-2-acetyl-GPC containing a I-acyl linkage rather than ether linkage, which 
is at least a hundred-fold less active than the ether-linked species [37] is formed in a 
number of cells. Its predominance appears to reflect the arachidonate-containing 
species of Pc. If cells, such as endothelial cells, contain low levels of 1-0-alkyl-2-
AA-GPC and more 1-acyl-2-AA-GPC the acetylated product will be predominantly 
1-acyl-2-acetyl-GPC as shown by Chilton and co-workers. The function of this 
product is not clear but it may be able to act synergistically with other agonists to 
elicit responses. 

In addition to choline-containing acetate species, neutrophils produce an acetate­
containing 1-0-alk-l' -enyl-2-acetyl-GPE (ethanolamine plasmalogen) upon stimu­
lation [38]. The production of this compound is not surprising since large amounts 
of 1-0-alk-l' -enyl-2-lyso-GPE accumulates in stimulated neutrophils and reflects 
the high levels of AA found as 1-0-alk-l-enyl-2-AA-GPE. Upon stimulation of 
human neutrophils, the arachidonate- containing species of PE are selectively 
hydrolyzed [39]. 

Arachidonic acid incorporation into phospholipids and remodeling 

As in many other cells and tissues [40-42], radiolabeled AA given to neutrophils is 
first incorporated primarily into diacyl-GPC and phosphatidylinositol (PI) and grad-
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ually transferred to 1-0-alkyl-2-AA-GPC and the ethanolamine plasmalogen, 1-0-
alk-1'-enyl-2-AA-GPE [24, 43]. At higher concentrations, much of the exogenous 
AA is initially incorporated into triglyceride. It is generally agreed that exogenous 
AA is initially incorporated by a Land's cycle-type mechanism by which arachidon­
ic acid is first converted to CoA-AA and then incorporated into 1-acyl-2-lyso-GPC 
and PI by a CoA-dependent acyltransferase reaction. However, the ultimate dispo­
sition of the AA into the ether-linked pools is catalyzed by a CoA-independent 
transacylase (CoA-IT)-catalyzed reaction [41, 44-48]. The CoA-IT is an intrinsic 
membrane protein that is highly specific for polyunsaturated fatty chains especially 
AA and EPA [15,41,42,44,48,49]. It has no metal ion requirements or require­
ment for ATP. The enzyme was concluded in one study to be activated by TNF-a., 
but we were unable to confirm the activation of the enzyme in neutrophils [50]. The 
assay systems for measuring CoA-IT activity are quite complex and may explain 
these discrepant results; we now believe the CoA-IT is constitutatively active and 
specifically transfers AA to lysophospholipids and that its activity is dependent only 
on the appearance of an appropriate lysophospholipid acceptor. We found that the 
CoA-IT has a preference for 1-0-alk'-enyl-2-lyso-GPE, which could explain the 
enrichment of AA found in the ethanolamine-containing plasmalogen subclass [51]. 
However the enzyme also readily transfers AA to 1-acyl-2-lyso-GPC and 1-0-alkyl-
2-lyso-GPc. It seems likely that the CoA-IT acts in synchrony with the Ca2+-inde­
pendent PLA2 and the low molecular weight secreted PLA2 to achieve the pattern of 
AA distribution observed in intact neutrophils. 

A number of intriguing questions surround the role and action of CoA-IT. The 
high specificity of the enzyme for AA is maintained in isolated membrane fractions 
which readily convert trace amounts of lyso PAF, 1-0-alkyl-2-lyso-GPC, to 1-0-
alkyl-2-AA-GPC. The membrane fractions even more readily convert 1-0-alk-1'­
enyl-2-lyso-GPE to 1-0-alkyl-l'-enyl-2-AA-GPE. In these reactions the membranes 
supply the AA but what is the origin of the AA transferred? Also the transfer of AA 
from one molecular species of phospholipid to a lysophospholipid only generates 
another lysophospholipid. When 1-0-alkyl-2-lyso-GPC is formed by CoA-IT, some 
of it is converted to PAF by acetylation; more is likely reacylated by acyl-CoA­
dependent mechanisms. Many PLA2's and lysophospholipases exhibit trans acylase 
activity. This raises the possibility that CoA-IT with the help of chaperon proteins, 
or under certain conditions could act as a PLA2 and release free AA by transferring 
the enzyme-bound AA to water, rather than to a lysophospholipid acceptor; to our 
knowledge no evidence for such an action has been found. However, the CoA-IT 
activity observed under optimal enzymatic assay conditions is much greater than 
any cellular PLA2 activity we have observed. The CoA-IT clearly has the ability to 
cleave AA from phospholipids donors. Are the transferase and acylase sites of the 
enzyme the same? It should be possible to answer many of these questions once the 
structure of the enzyme is determined. Its purification from membranes has been 
problematic, in part because both donor and acceptor phospholipid substrates are 
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required and the effects of detergents on the interactions of the enzyme and sub­
strates are unknown. We have speculated that CoA-IT might be related to lysolec­
thin:cholesterol acyltransferase (LCAT). 

CoA-IT is clearly one of the most important enzymes in the remodeling of AA 
from diacyl-linked species to the ether-linked phospholipids and PE, and may also 
be a key enzyme in the synthesis of PAF as discussed below. Since the equilibration 
of labeled AA with endogenous pools requires many hours, studies of AA release 
based on short-period labeling can yield very misleading results that do not agree 
even closely with results based on mass. Thus the PE fraction of neutrophil phos­
pholipids is poorly labeled by exogenous AA within the time constraints of these 
labile cells and most observed loss of AA-label upon stimulation of prelabeled cells 
is from the highly labeled PC and phosphatidylinositol classes, whereas mass deter­
minations reveal that far more AA is lost from the PE plasmalogen fraction [11], 
which contains little labeled AA. 

The shift over time of AA from the diacyl-GPC into 1-O-alkyl-2-AA-GPC and 
1-O-alk-l'-enl-2-AA-GPE appears to provide an exciting tool for examining the 
subcellular movement of AA among organelles as well as the metabolic pools giving 
rise to 5-HETE, LTB4 and other eicosanoids. Thus by double labeling the cells by 
first incubating them for 30 to 60 minutes with [14C] AA, then washing the cells fol­
lowed by a five minute pulse labeling with [3H] AA, one should be able to observe 
a higher 3H:14C ratio in the more rapidly labeled pools and a lower ratio in the more 
slowly labeled pools such as 1-O-alkyl-2-AA-GPC and PE. Upon stimulation of the 
doubly labeled cells the 3H:14C ratio of products such as 5-HETE and LTB4 might 
reflect and reveal the pool of origin. By cooling the cells, isolating subcellular frac­
tions, and determining their 3H:14C ratio it might be possible to follow the move­
ment of the exogenous AA among the subcellular fractions. Although we obtained 
promising results using this approach, a number of problems make interpretation of 
such data difficult. One of the problems is the rapid labeling of phosphatidylinosi­
tol and release of labeled AA from that pool upon stimulation. In addition the sub­
cellular pools appear to be labeled very rapidly. Further, refinement of this approach 
might yet shed light on the role of various AA pools of neutrophils. The approach 
has been used in other cells. 

Stimulated release of AA and PAF synthesis 

Synthesis of PAF and release of AA 

The de novo pathway of PAF synthesis, which is dependent in the final step on a 
specific dithiotheitol insensitive CDP-choline cholinephospho-photransferase to 
convert 1-O-alkyl-2-acetyl-sn-glyceryl to PAF [6]. This pathway does not appear to 
be a significant route of PAF synthesis in neutrophils or other inflammatory cells. 
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Since the ether bond is derived from a fatty alcohol, hexadecanol e.g., should be 
incorporated into PAF in a 1:1 molar ratio with acetate to form 16:0 PAE We 
observed the synthesis of 1-0-alkyl-2-acyl-sn-glycerophosphate from [14C] hexade­
canol but no species containing a 2-acetyl moiety [52]. One study concluded that 
holine from CDP-choline can be incorporated into PAF upon treatment with PMA 
[53], but further confirmation of this finding and its mechanism of incorporation 
have not been reported. Since studies have not shown the direct incorporation of 
fatty alcohol into PAF, it is possible that the de novo pathway could be initiated by 
PLA2 and lysophospholipase D acting on 1-0-alkyl-2-lyso-GPC to generate 1-0-
alkyl-2-lyso-sn-glycero-3-phosphate that could then be acetylated and yield PAE 
However, we have been unable to detect lysophospholipase D in neutrophils. Over­
all, it does not appear the de novo pathway is responsible for PAF synthesis in stim­
ulated neutrophils. On the other hand, the remodeling pathway has been conclu­
sively demonstrated. 

Although the remodeling pathway of PAF synthesis is firmly established, what is 
less clear is the relative contributions of a direct route of synthesis initiated by PLA2 

acting directly on 1-0-alkyl-2-AA-GPC to generate lyso PAF, and an indirect route 
in which PLA2 first acts on ethanolamine plasmalogen to generate 1-0-alk-1'-enyl-
2-lyso-GPE which then serves as an acceptor for the transfer of AA from 1-0-alkyl-
2-AA-GPC by the CoA-independent trans acylase (CoA-IT) to generate lyso PAE We 
believe both pathways are likely operative in stimulated neutrophils. The acetyl­
CoA:lyso PAF acetyltransferase responsible for the conversion of lyso PAF to PAF 
prefers 1-0-alkyl-2-lyso-GPC as a substrate but can also accept 1-acyl-2-lyso-GPC 
[5]; the same enzyme may be able to form the 1-0-alk-1'-enyl-2-acetyl-GPE 
observed [38]; however, Lee and coworkers [54] found evidence that a transacety­
lase which transfers acetate from PAF to 1-0-alk-1' -enyl-2-1yso-GPE is more active 
in the synthesis of the PE-derived product. In support of an indirect route of PAF 
synthesis: 

1) CoA-IT is highly specific for AA 
2) an accumulation of 1-0-alk-1' -enyl-2-lyso-GPE and its acetylated derivative is 

observed upon stimulation of the cells; 
3) the bulk of AA released upon stimulation is derived from the ethanolamine plas­

malogen; 
4) a loss of specificity for AA in the reacylation of lyso PAF is observed and 

explained by the buildup of 1-0-alk-1' -enyl-2-lyso-GPE which competes as an 
acceptor for AA in the CoA-IT reaction [3]; 

5) and the indirect route can be demonstrated in an enzymatic system or perme­
abilized neutrophils [55]. 

In support of the direct route, the 85 kDa cytosolic PLA2, cPLA2 can readily be 
shown to act directly on 1-0-alkyl-2-AA-GPC to generate lyso PAF and is also high-
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ly specific for AA. The direct route thus yields the concomitant release of AA and 
lyso PAF, which can be converted to PAE cPLA2 is widely believed to be the PLA2 

responsible for initiating PAF synthesis in neutrophils. Some of the strongest evi­
dence for such a role comes from studies of cells derived from cPLA2-knockout 
mice, which lose the ability to synthesize PAF [56]. Low molecular weight secreted 
PLA2, sPLA2, could also playa role [57,58] but might be acting through its recep­
tors to activate cPLA2 [59]. The relative importance of the direct and indirect routes 
has been difficult to determine; it should be noted that both routes require the action 
of a PLA2. The sPLA2 is not specific for AA, but by generating an ethanolamine 
acceptor for CoA-IT could lead to the specific release of AA from the PC class. We 
observed a selective loss of AA-containing species of PE based on measuring the 
molecular species of PE in stimulated and unstimulated neutrophils, a finding that 
appears to favor hydrolysis by an AA-selective PLA2 such as cPLA2 [39]. 

The cPLA2 has been extensively studied in many cells [60]. Its activity in neu­
trophils was earlier difficult to demonstrate since the cells contain high levels of pro­
teases that rapidly destroy its activity when the cells are disrupted. The activity of 
the enzyme is recovered when cells are disrupted in buffer containing a mixture of 
protease inhibitors [61]. The properties of cPLA2 and its movement from the cytosol 
to membranes in the presence of Ca2+ and upon phosphorylation has been well doc­
umented; see [60] for review. Phosphorylation has recently been shown not to be 
required for movement to the membranes [60]. The enzyme was thought earlier to 
migrate largely to the nuclear membrane but is now found to move to membranes 
throughout the cells based on studies of Leslie and co-workers [62]. 

Once AA is released, much remains as free arachidonic acid, which likely acts as 
a mediator itself, e.g., possibly serving to translocate protein kinase C to membranes 
and assist its activation. The free AA is also converted to eicosanoids largely 
leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE), both impor­
tant mediators of inflammation. The 5-HETE can be oxidized to the 5-keto com­
pound, 5-oxo-ETE [63]. The 5-HETE can also be reincorporated into phospho­
lipids. 

PAF and the eicosanoids are not only synthesized in concert, they act synergisti­
cally to elicit responses. The mediators serve to signal both other neutrophils and an 
array of other cells including endothelial cells that participate in the inflammatory 
process. Early studies of PAF revealed that although PAF alone can elicit the degran­
ulation response of neutrophils, the same response can be obtained with 100-fold 
lower concentrations of PAF in the presence of 5-HETE. In more recent studies, 5-
oxo-ETE was found to profoundly potentiate the activity of cytokines in neutrophils 
[64] and of PAF in eosinophils [65]. The findings suggest that 5-oxo-ETE produced 
by neutrophils may increase the responses of eosinophils to other stimuli and thus 
plays a major role in inflammation. 

Neutrophils exposed to certain agents that do not themselves elicit AA release 
become more responsive (primed) to subsequent exposure to agonists that do. The 
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mechanisms of priming are still poorly understood. In studies to compare the prim­
ing ability of diacyl diglycerides, which activate protein kinase C and 1-0-alkyl-2-
acyl diglycerides, which do not activate protein kinase C, both diglycerides primed 
neutrophils to release markedly more AA in response to the chemotactic peptide 
fMLP [66, 67]. However, one of the most interesting findings was that priming with 
the diacyl diglyceride resulted in the further conversion of the released AA to 5-
HETE and LTB4 whereas no conversion of the released AA to lipoxygenase prod­
ucts was observed when the cells were primed with the alkyl acyl diglyceride. Sub­
sequent studies revealed that while the diacyl diglyceride activates cPLA2, the ether 
species does not [68] but rather involves the mobilization of low molecular weight 
sPLA2 [57]. The lack of conversion to 5-HETE and LTB4 in the cells primed by the 
ether-linked diglyceride might result from lack of activation of the lipoxygenase, or 
release of AA from a pool not accessible to the lipoxygenase, or from other para­
meters. 

Activation of PAF synthesizing enzymes 

The key enzymes in the synthesis of PAF and the mobilization of arachidonate are 
the acetyltransferase, which converts lyso PAF to PAF by transferring an acetyl 
group from acetyl-CoA, the 85 kDa cPLA2, which specifically hydrolyzes AA from 
phospholipids, and the CoA-independent transacylase (CoA-IT), which allows the 
formation of 1-0-alk-l'-enyl-2-lyso-GPE to trigger lyso PAF formation by transfer­
ring AA from 1-0-alkyl-2-AA-GPC to the lyso plasmalogen acceptor, a reaction 
that is highly specific for AA and can generate lyso PAF without releasing free 
arachidonic acid. A role for sPLA2 or the Ca2+ -independent phospholipase A2 
(iPLA2) has not been ruled out. We have been unable to demonstrate activation of 
CoA-IT as discussed above; the appearance of a lysophospholipid acceptor appar­
ently is sufficient to trigger action of the enzyme to remove and transfer AA. On the 
other hand, activation of cPLA2 has long been recognized and widely studied as 
recently reviewed [60, 69] while the rapid activation (30 seconds) of the acetyl­
transferase (four- to ten-fold basal activity) upon stimulation was early recognized 
in a number of cell types [70-74]. 

The exact signaling pathways responsible for activation of the cPLA2 and the 
acetyltransferase have been difficult to pinpoint because of the extensive cross-talk 
between systems; e.g., protein kinase C activation can result in activation of ERK 
and p38 MAP kinases. Thus activation responses due to a protein kinase C activa­
tor such as PMA yet dependent on the direct action of a MAP kinase may be 
blocked by protein kinase C inhibitors due to the cross-talk. 

We recently carried out a series of studies that indicate the ERK's and p38 kinase 
playa central role in the regulation of PAF synthesis in human neutrophils [50, 75]. 
We further examined the priming of the cells by alkylacylglycerol and diacylglycerol 
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[68] and found that the diacyl diglyceride activated the p42 and p44 MAP kinases 
along with cPLA2, whereas the alkyl diglyceride, which did not activate protein 
kinase C, did not activate MAP kinases on cPLA2• These studies provided support 
for the phosphorylation of cPLA2 by ERK's linked to activation by protein kinase 
C. Many studies of neutrophil stimulation have employed the Ca2+ ionophore 
A23187; we recently found that the ionophore closely mimics physiological stimuli 
in the activation of MAP kinase and enzyme activities [50]. In further studies [50], 
the stimulated phosphorylation and activation of cPLA2 was found to be reduced 
both by SB203580, a p38 MAP kinase inhibitor and by the MEK inhibitor 
PD98059 which blocks activation of the ERK's; cPLA2 activity was suppressed 
below unstimulated levels when a combination of both inhibitors was used. On the 
other hand the acetyltransferase activation was blocked by the p38 inhibitor but not 
by the ERK inhibitor [75]. We also demonstrated using membrane fractions that 
active recombinant p38 increased the acetyltransferase to the maximal level 
observed with TNF-u. However, recombinant ERK's did not activate the enzyme 
[75]. We have found as reported by others [76, 77] that both the recombinant p38 
and ERK's can phosphorylate and activate recombinant cPLA2• 

These findings support a scheme by which both ERK's and p38 MAP kinase 
phosphorylate and activate cPLA2 whereas only p38 activates the acetyltransferase. 

Overall, a complex network of signaling pathways have now been revealed in 
human neutrophils linking PAF and AA metabolism through signaling by ERK's, 
p38 kinase and protein kinase C. More definitive studies can be carried out once the 
structures and genes for the acetyltransferase and CoA-IT have been determined. 
The earlier studies have shown that the metabolism of PAF and AA and their actions 
are very closely linked and constitute an important signaling system for neutrophils 
and other inflammatory cells as well as endothelial cells. 
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Overview of AA and PUFA metabolism 

AA and 20-22 carbon PUFAs playa number of roles in mammalian physiology 
[1-7]. These fatty acids serve as structural components of cellular membranes; as sig­
naling molecules; and as precursors of mediators of inflammation, pain, cellular dif­
ferentiation and cell growth [8-13]. Thus, their levels in mammalian systems are 
more tightly controlled than those of saturated fatty acids, which appear to primar­
ily serve a structural role. 

There are several levels of control of long chain PUFA levels. Mammalian cells 
lack 11-9 desaturase and cannot readily convert the more readily available oleic acid 
to PUFAs. PUFAs of the n-6 or n-3 families are obtained from the diet, mainly from 
plant oils and marine oils and are thus considered essential fatty acids (EFA) [14, 
15]. In addition to dietary sources, elongationldesaturation of precursors also con­
trols levels of long chain PUFAs. These precursors, linoleic acid (LA, 18:2, n-6), and 
a-linolenic acid (ALNA, 18:3, n-3), for n-6 and n-3 pathways, respectively, are 
sequentially elongated and desaturated by mitochondrial enzymes to form AA and 
other 20-22 carbon PUFAs [14, 16-21]. Once PUFAs are obtained from the diet or 
synthesized, they are rapidly incorporated into glycerolipids and transported 
between organs in plasma associated with fatty acid binding proteins and lipopro­
teins. Cellular activation or pathophysiologic conditions result in the release of 
PUFAs by lipases [22-24]. Enzyme-mediated oxygenation or auto-oxidative 
processes generate potent inflammatory mediators from AA and other PUFAs [12, 
25-39]. Thus, PUFAs are implicated in human diseases such as rheumatoid arthri­
tis, cardiovascular dysfunction, tumor growth and metastasis, diabetic neuropathy, 
cirrhosis of the liver, as well as Alzheimer's disease and other neurological disorders 
[33, 40-48]. 
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Dietary sources of fatty acids and mechanism of action 

Human breast milk is a rich source of EFAs such as gamma linolenic acid (GLA, 
18:3, n-6) and low amounts are found in meats [5,49-51]. High levels are found in 
plants, marine and fungal oils, mainly as components of triglycerides [52-54]. 
Major sources of GLA indude primrose oil, where GLA is mainly acylated at the 
sn-3 position of triglycerides, blackcurrant seed oil with acylation at the sn-3 posi­
tion, borage oil (sn-2 position) and fungal oils (sn-2 and sn-3 positions). Because of 
the importance of GLA in physiology and pathophysiology, many biotechnological 
approaches have been undertaken to engineer plants or unicellular organisms to 
produce GLA [54, 55]. For example, transgenic tobacco plants expressing 1\-6 desat­
urase or bacteria or yeast mutants have been designed for enhanced GLA produc­
tion [54, 56-58]. GLA may act to ameliorate the symptoms of a number of diseases 
due to its capacity to modify lipid composition of cells and its role in the synthesis 
of anti-inflammatory lipid mediators [59-65]. Following GLA supplementation, 
there is an increase in the levels of the elongase product, dihomo gamma linolenic 
acid (DGLA) within inflammatory cells such as neutrophils, without a correspond­
ing increase in the desaturase product, AA. However, there is a significant increase 
in AA content of serum, which may be detrimental in chronic disease conditions 
[62,64]. A combination of elongase inhibitors or substrate competitors or feed back 
inhibitors may prevent such a build-up of AA within serum, while maintaining the 
positive attributes of GLA supplements. Elongated GLA is rapidly incorporated into 
cellular membranes and these reside in the same cellular glycerophospholipid pools, 
as does AA. Thus, they are equally utilized for the biosynthesis of eicosanoids by 
lipoxygenases (LO) and cydo-oxygenase (COX) activities. The incorporation of 
elongase products into phospholipids is mediated by ligases and CoA-dependent 
acyl transferases, while remodeling within lipid pools is mediated by CoA-depen­
dent and independent transacylases. Upon cell activation due to disease processes, 
phospholipases A2 (PLA2) may release DGLA, which is a substrate of COX and LO 
enzymes. Similar to GLA metabolism, fatty acids from the n-3 pathways can also be 
elongated to form eicosapentaenoic acid (EPA, Fig. 1) and subsequently incorporat­
ed/remodeled within glycerophospholipids using similar enzymatic activities. These 
metabolic pathways compete with AA metabolism because similar enzyme activities 
are involved. Thus, supplementation of human diets with GLA or EPA may result 
in a decrease in the formation of pro-inflammatory mediators such as LTB4 and 
platelet activating factor formed during the rapid remodeling and reacylation of 
lipids. In addition to competing with AA, DGLA and EPA are converted to 
eicosanoids (1- or 3-series of prostanoids and 3- or 5 series of leukotrienes, respec­
tively) that are either anti-inflammatory in nature or thousands of folds less active 
than AA-derived eicosanoids (2-series prostanoids and 4 series leukotrienes). Sup­
plementation of human diets with GLA has been shown to reduce the signs and 
symptoms of chronic inflammatory diseases [42,43,46, 52, 66-74]. Being a pre-
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cursor of AA, it is counter intuitive that GLA supplementation results in a decrease 
in pro-inflammatory lipid mediator biosynthesis; however, studies using neutrophils 
from subjects fed with GLA supplements have shown decreased LTB4 and PAF 
biosynthesis [64]. Recent in vitro and in vivo studies have shown that human neu­
trophils do not express ,1-5-desaturase activity; thus, dietary GLA supplementation 
leads to the accumulation of DGLA, rather than AA, in cellular glycerolipids [62]. 
Levels of GLA, other n-6 fatty acids, and n-3 PUFAs available to cells after inges­
tion of nutraceuticals will likely be determined by pharmacokinetic parameters, 
stereo-specificity of lipases that release free fatty acids from triglycerides and the lev­
els of free fatty acids that are controlled by rapid acylation and remodeling process­
es. Together, various studies reveal that the conversion of AA precursors by endoge­
nous elongase activity to AA structural analogues such as DGLA or EPA can be an 
effective strategy for controlling the biosynthesis of mediators of inflammation. 

Enzyme activities that control AA and PUFA levels 

The synthesis of 20 and 22 carbon PUFAs 

Long chain PUFAs, which serve as eicosanoid precursors, may be obtained either 
through the diet or by elongation and desaturation of 18 carbon fatty acids (Fig. 1). 
Sprecher has also proposed that 22 carbon fatty acids are formed in mammalian sys­
tems by 2 elongation of 20 carbon fatty acids followed by a ,1-6 desaturation reac­
tion and retro conversion [75, 76]. Deficient retroconversion of 22:6 (n-3) to 20:5 
(n-3) has been demonstrated in fibroblasts from subjects with Zellweger Syndrome, 
suggesting a defect in ~-oxidation and peroxisomal function [77, 78]. 

AA (20:4, n-6) and DHA (22:6, n-3) are major acyl components of membrane 
phospholipids [79]. The brain, especially non-myelin membranes, is very rich in AA 
and DHA. Dietary deficiency in precursors of AA and DHA has been shown to 
reduce their levels in the central nervous system, resulting in altered learning behav­
ior and impaired visual function. In addition to dietary levels, free levels of these 
fatty acids may also be influenced by oxidation for energy, and their distribution 
and transport determined by acylation into phospholipids, triglycerides and choles­
terol esters. Thus key enzymes responsible for controlling levels of these PUFA 
include elongase, desaturase, acyl CoA-synthetase and acyl CoA transferases. 

Elongase enzymes 

Elongations of 18 carbon fatty acids, combined with de saturation (discussed 
below), generate 20 and 22 carbon fatty acids. Elongase activity converts GLA (18:3 
to n-6) to DGLA (20:3, n-6) and also AA (20:4, n-6) to docosatetraenoic acid (DTA, 
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22:4, n-6). Similarly, elongase converts stearidonic acid (SDA, 18:4 n-3) to eicosate­
traenoic acid (20:4, n-3) and EPA (20:5 n-3) to docosapentaenoic acid (DPA, 22:5 
n-3) (Fig. 1). While our understanding of the importance of elongation of fatty acids 
is advanced in unicellular organisms and plants, knowledge of the biochemical 
properties of elongase enzymes in animals is limited because these enzymes have 
only recently been cloned from animal sources. Human elongase (ELOVL5) uses 
monounsaturated and PUFA as substrates [80]. Two cDNA clones with 56.4% and 
58% amino acid identity to ELOVL5 encoding a 296 amino acid peptide have 
recently been expressed in yeast and shown to elongate 20 and 22 carbon fatty acids 
[80, 81]. Studies using various other cloning and expression strategies have been 
applied to bacteria, yeast and plants to provide the following mechanistic details 
about elongases [82-85]. The elongation process is thought to be a four-step process 
involving condensation of malonyl-CoA with acyl-CoA to form carbon dioxide and 
an elongated ~-ketoacyl-CoA. This first reaction catalyzed by ~-ketoacyl CoA syn­
thase is substrate specific and rate limiting. This condensation reaction is then fol­
lowed by reduction to ~-hydroxyacyl-CoA, dehydration to form enoyl-CoA and a 
final reduction to form acyl CoA. 

Desaturase enzymes 

Since 20 and 22 carbon PUFAs are synthesized from LA (18:3, n-6) and ALNA 
(18:3, n-3), the synthesis or ingestion of these precursors dictates the availability of 
these 20 and 22 carbon PUFAs. Sequential elongation and desaturation of precur­
sors by enzymes are key events in the synthetic pathways. Three desaturation 
enzymes are involved in this process (Fig. 1). These include a L1-6 desaturase that 
converts 18:2 (n-6) or 18:3 (n-3) to 18:3 (n-6) and 18:4 (n-3), respectively, a L1-5 
desaturase that converts 20:3 (n-6) or 20:4 (n-3) to 20:4 (n-6) and 20:5 (n-3), 
respectively and a L1-4 desaturase that converts 22:4 (n-6) or 22:5 (n-3) to 22:4 (n-
6) and 22:6 (n-3), respectively. Desaturases are complexes consisting of NADPH­
cytochrome b5 reductase, cytochrome b5 and L1-5 or L1-6 enzymes [57, 86-92]. The 
liver contains high levels of desaturases and is the site for the synthesis of most 

Figure 1 

Elongation and desaturation of n-6 and n-3 fatty acids. 

LA (18:2, n-6) and ALNA (18:3, n-3) are precursors for long chain PUFA synthesis by elon­

gase and desaturase activities. PUFAs are incorporated into phospholipids and subsequently 

utilized for the synthesis of prostanoids deSignated series 1, series 2 or series 3 from DGLA, 

AA and EPA, respectively. Leukotrienes generated from these same fatty acids are designat­

ed series 3, 4 and 5, respectively. 
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PUFAs [87,93,94]. Human lung, brain and heart have recently been shown to con­
tain comparable levels of 11-5 desaturase, while very low but detectable enzyme 
expression is described in other tissues. 11-6 is comparatively more abundant in most 
tissues than 11-5 desaturase, although age-related or nutritional-regulated processes 
may alter this balance. Human 11-5 and 11-6 enzymes have recently been cloned [87, 
88, 95, 96]. These genes are located on chromosome 11, have 75% nucleotide 
homology and 61 % amino acid homology. 11-5 is a single transcript of - 4.4 kb (444 
amino acid peptide) while 11-6 is 3.4 kb transcript. 11-5 desaturase has two mem­
brane-spanning domains characteristic of membrane anchored proteins, three histi­
dine-rich regions suspected for heme iron binding and contain cytochrome b5 
domain at the N terminus. In PUFA biosynthesis, 11-6 is considered the rate-limiting 
step in the pathway (Fig. 1). It is still controversial whether there are specific desat­
urases for n-3 and n-6 pathways. Studies using the enzyme inhibitor, N-ethyl 
maleimide showed differential inhibition of n-6 product formation, suggesting that 
there may be different desaturases specific for these pathways [97]. However, 
expression of cloned enzymes has shown that the same activity is responsible for 
both pathways [87]. Several studies have implicated regulation of desaturase activ­
ities on dietary intake of various fatty acids and on hormonal levels. For example, 
when animals are fed an EFA deficient diet, 11-6 and 11-5 activities increase. Similar­
ly, supplementation of animal diets with n-6 or n-3 fatty acids reduces 11-6 and 11-5 
desaturase activities [20, 98, 99]. In contrast, supplementation of diets with oleic 
acid (18:1, n-9) does not affect desaturase activity. While the biochemical mecha­
nisms that account for these dietary regulations have not been determined, it is pos­
sible that these enzymes share a regulatory sequence due to their localization and 
reverse sequence orientation on the same chromosome. These desaturases are also 
located on a chromosome that has been implicated in obesity, raising the possibili­
ty that these activities have pathologic importance. Further evidence for the involve­
ment of desaturases in diseases is provided by studies showing that 11-6 activity is 
induced by peroxisome proliferators and by insulin administration to diabetic ani­
mals [100-102]. As described above, 20 and 22 carbon PUFAs are implicated in 
many biological processes such as brain development, cognition, reproduction, 
inflammation, homeostasis, and pain [95, 101, 103, 104]. 11-6 desaturase abnor­
malities have been described in brain autopsy samples from subjects with 
Alzheimer's disease, where there is elevated LA and a corresponding reduction in 
20:4 (n-6), 22:4 (n-6) and 22:6 (n-3) [103]. Desaturases may influence these events 
and diseases by generating signaling molecules that control gene expression and 
influence lipid metabolism, thermogenesis and cell differentiation. 

Supplementation studies show that in brain astrocytes, the rate of DHA synthe­
sis is limited by elongation [105]. Addition of ALNA or EPA to these cells resulted 
in a decrease in 22:5 (n-3) and 22:6 (n-3) synthesis, whereas supplementation with 
LA (18:2, n-6) did not affect 22:5 (n-3) synthesis. Astrocytes also secret cholesterol 
esters and phosphatidylethanolamine (PE) containing AA and DHA. Similar studies 
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by Laposata and colleagues used a fibrosarcoma cell line deficient in EFA to show 
the importance of elongation and desaturation in PUFA synthesis [20]. During n-6 
fatty acid supplementation, these cells synthesize EPA via elongation while n-3 fatty 
acid supplementation results in a decrease in the de saturation of GLNA to AA and 
decrease in AA elongation to 22:4 (n-6). Interestingly, these supplementation strate­
gies also shifted the majority of EPA from phospholipids to triglycerides. These sup­
plementation strategies also resulted in the formation of series 1,2 or 3 prostanoids. 
Together, these studies show that there is co-ordinate regulation of n-3 and n-6 path­
ways by modulation of elongation and desaturation activities. These pathways are 
also important in directing the distribution of PUFAs into glycerolipids and in 
directing the types of eicosanoids that are formed. 

Incorporation of PUFAs into phospholipids 

20 and 22 carbon PUFAs obtained from the diet or through elongase and desaturase 
reactions are preferentially incorporated into phospholipids. The incorporation 
process involves PUFA activation by acyl CoA synthetase also known as ligase, fol­
lowed by acyl CoA transfer into glycerophospholipids. 

Acyl CoA synthetase (ACS) 

ACS catalyzes the reaction of a long chain carboxylic acid with ATP and CoA to 
form acyl-CoA, AMP and diphosphate. The enzyme acts on a variety of saturated 
and unsaturated fatty acids but enzymes from different tissues show differences in 
specificity. The enzyme from the liver acts on C6-C20 fatty acids while the enzyme 
from the brain acts on fatty acids with up to 24 carbons [106, 107]. ACS has been 
purified from many sources and Majerus and colleagues have described isoforms 
that are specific for AA [108-110]. Five ACSs have been cloned in mammalian tis­
sues and their expression has helped elucidate substrate requirement and cellular 
distribution of these enzymes [111-116]. ACS2 and ACS3 mRNA are expressed in 
brain but not in liver, while ACS4 and ACS5 mRNA are expressed in steroid pro­
ducing cells and intestines. ACS4 is a 75 kDa protein that is modified by translation 
and shows various changes in its expression during brain development [117]. ACSl 
and ACS5 show very broad substrate specificity while ACS4 has marked preference 
for AA and EPA. Likewise, ACS3 has been shown to be AA specific and to be 
expressed in brain and heart tissues. ACS belongs to a super family of enzymes with 
two luciferase-like regions, an AMP and fatty acid binding sites located in both 
luciferase-like regions. ACS1, 2 and 3 have 60% amino acid identity but may be 
independently regulated by diet and hormones [118, 119]. Once formed by ACS, 
fatty acyl CoA may be metabolized via ~-oxidation, used for glycerolipid synthesis, 
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elongated or desaturated, used for synthesis of cholesterol esters, protein acylation 
or may serve as signaling molecules [120, 121]. Long chain ACS is linked to sever­
al pathologic conditions including X-linked adrenoleukodystrophy and polymor­
phism of the ACS gene is linked to risk factors of hypertriglyceridemia, visceral obe­
sity and hypertension [122-124] and is deleted in a family with Alport syndrome, 
alliptocytosis and mental retardation [115, 116, 118, 122, 125-129]. 

CoA-dependent acyl transferase 

Once acyl CoAs are formed, they are rapidly incorporated into glycerolipids by 
CoA-dependent acyl transferase (Fig. 2). Two major forms of acyl transferases syn­
thesize phosphatitic acid by sequentially adding acyl CoA to glycerol-3-phosphate 
(Kennedy pathway) [130, 131]. In addition, acylation of lysophospholipids 
described by Lands and colleagues utilizes acyl CoAs [132-134]. In these acylation 
reactions, selectivity depends on whether the acyl CoA is saturated or unsaturated, 
the concentration of the acceptor molecules and the types of bond at the sn-l posi­
tion of lysophospholipid acceptors. This selectivity distinguishes de novo synthesis 
from the incorporation of low AA amounts into glycerolipids. Studies using human 
cells have shown that very low free levels of 20 and 22 carbon PUFAs are present 
under resting conditions [135]. ACS and CoA acyl transferase activities play the cru­
cial role of controlling these levels by activating and rapidly incorporating fatty 
acids into glycerophospholipids. 

Transacylase 

Both CoA-DT and CoA-IT move acyl groups between phospholipid pools. Due to 
the selectivity of these activities, they play major roles in asymmetrically distribut­
ing fatty acids in phospholipid subclasses. CoA-DT transfers fatty acids from one 
phospholipid to another utilizing an acyl CoA and lysophospholipid intermediate. 
Waku and colleagues have demonstrated that the preferred substrates for CoA-DT 
are AA, LA and SA [136-140]. The major activity that transfers 20- and 22-carbon 
fatty acids between phospholipid subclasses is known as CoA-independent transacy­
lase (CoA-IT). CoA-IT is specific in transferring these fatty acids from mainly dia­
cyl phospholipid donors to 1-alkyl- or 1-alk-l-enyl-linked lysophospholipid accep­
tors and does not require a cofactor (CoA) or ATP for its activity [141-143]. Thus, 
CoA-IT is responsible for the fact that the majority of 20- and 22-carbon PUFAs are 
found in ether-linked phospholipids and not in the early ester-linked phospholipids 
in which they are initially synthesized. The main acceptors are 1-alkyl-2-lyso glyc­
erophosphocholine or 1-alk-l-enyl-2-lyso glycerophosphoethanolamine (Fig. 2). 
CoA-IT thus generates the major precursor of platelet activating factor. CoA-IT is a 
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Figure 2 

Remodeling of AA in inflammatory cells 

AA and other PUFAs presented to mast cells or human neutrophils are rapidly incorporated 

into 1-acyl-linked glycerophospholipids, (1-acyl-2-PUFA-GPC and 1-acyl-2-PUFA-GPO. 

Transacylase activity transfers AA to ether-linked phospholipid subclasses (1-alk-1-enyl-2-

PUFA-GPE and 1-alkyl-2-PUFA-GPC). This remodeling process is completed by the slow 

release of AA from these maior ether pools and is enhanced when these cells are activated 

by antigen, cytokines or bacterial peptides such as FMLP or endotoxins. 

membrane bound enzyme that has not been purified or cloned. However, gel filtra­
tion studies and native gel electrophoresis data suggest t'ttat CoA-IT is a - 60 kDa 
protein that is found in great quantities in microsomal fractions [144]. Various bio­
chemical and pharmacological approaches have been utilized to gain a comprehen­
sive insight into CoA-IT activity and function. Using radiolabeled assays or mass 
spectroscopic experiments, we have identified specific phospholipid subclasses and 
molecular species that are donors or acceptors of PUFAs during the remodeling 
process in neutrophils or mast cells [142]. Importantly, these studies have also 
shown how PUFAs get incorporated into inflammatory cells and get remodeled 
between phospholipid subclasses [145, 146]. Further evidence lending credence to 
these biochemical studies comes from experiments in which CoA-IT inhibitors block 
the movement of AA between phospholipid subclasses (discussed below). 
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Role of inhibitors in modulating PUFA levels 

PUFA levels may be manipulated through dietary control or through inhibition of 
specific enzymes that maintain PUFA homeostasis. Currently, advances have been 
limited to inhibitors of desaturases, ligases and CoA-IT. Needleman and colleagues 
used a /1-6 desaturase inhibitor (SC-26196) that was shown to increase LA levels, 
concomitant with a decrease in AA and DHA levels in mice [147, 148]. Interesting­
ly, the decrease in AA was specific for PC, PI and cholesterol esters and not for PS, 
PI or triglycerides, and the molecular species formed were determined by the fatty 
acids at the sn-l position of the phospholipid. These studies suggest that phospho­
lipid remodeling mediated by /1-6 desaturase is important in de novo synthesis of 
glycerolipids and cholesterol esters. 

Similar to desaturase and elongase, inhibitors of acyl CoA-synthetase activity 
have the potential of influencing PUFA biosynthesis. Various inhibitors have been 
used to show the importance of ACS in fatty acid metabolism and in disease 
processes. Of these inhibitors, products of the Streptomycin species known as triac­
sin (Fig. 3A) have been shown to be very potent ACS inhibitors (Tab. 1) [113, 
149-152]. In addition to triacsin, structurally related compounds having an N­
hydroxytriazone moiety (WS-1228) that are known hypotensive vasodilators inhib­
it ACS activity. These inhibitors show that there are different ACSs in cells that 
show different selectively by inhibiting the activation of some fatty acids. Addition­
ally, inhibitor studies show that there are likely different acyl CoA pools in different 
cells. Importantly, triacsin interferes with PAF formation, suggesting that it blocks 
reacylation by enhancing the supply of lysoPAF [136]. Triacsin blocks de novo syn­
thesis of triglycerides and phospholipids but not the reacylation of lysophospho­
lipids or the synthesis of cholesterol [151]. In some cells, triacsin inhibits OA incor­
poration without affecting AA and controls fatty acid distribution into glycerolipids 
during neuronal outgrowth [127]. In addition to triacsin, the potent antidiabetic 
agents, thiazolidinedione drugs (triglitazones) achieve their pharmacologic effects in 
part by direct interaction with ACS4, independent of PPAR-y [113]. Similar to tri­
acsin, triglitazones inhibit long chain fatty acid incorporation into cellular lipids. 
Medium chain ACS is also inhibited by quinolone antimicrobial agents and by non­
steroidal anti-inflammatory agents [153]. 

Inhibitors of AA-remodeling 

Ether lipids playa prominent role in cell biology especially in inflammation, cancer 
biology and in CNS pathophysiology. As described above, AA is transferred froml­
acyl-linked phospholipids to l-ether-linked phospholipids, leading to the latter class 
containing most of the mass of cellular AA. Inflammatory cells such as mast cells, 
macrophages or neutrophils contain high amounts of ether-linked phospholipids 
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Figure 3 
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99 



Allen M. McAlexander et al. 

Table 1 - Inhibitors of AA incorporation and remodeling 

Inhibitor Enzyme IC50 Refs. 

Triacsin A ACS 17-18 f.lM [152] 

Triacsin C 4-10 f.lM 

SK&F 98625 CoA-IT < 11 f.lM [142] 

CoA-O transferase 5Of.lM 

PLA2 > 5Of.lM 

SK&F 45906 CoA-IT < 2O f.lM [142] 

CoA-O transferase 35 f.lM 

PLA2 NO 

ET-18-0-0CH3 CoA-IT 0.5 f.lM [159] 

AACOCF3 ACS -5f.lM [160] 

CoA-IT 3 f.lM 

cPLA2 > 10 f.lM 

sPLA2 NO 

iPLA2 NO 

NO denotes not determined. 

that are rich in arachidonate. These ether lipids provide most of the AA that is 
released by stimulated cells. As well as providing lyso PAF that is acetylated to form 
PAF, radiolabel studies show that ether lipids provide the majority of AA that is used 
for eicosanoid biosynthesis [135, 146, 154]. Laposata has provided additional evi­
dence for a role of ether lipids in eicosanoid and PAF formation by demonstrating 
that depletion of AA in ether lipids reduces eicosanoid and PAF formation [155]. 
Because 1-alkyl-2-AA-GPC is the common precursor for LTB4 and PAF, inhibitors 
of the formation of this precursor are likely to have significant anti-inflammatory 
properties. One approach that has been investigated by Winkler and colleagues is 
the inhibition of the transfer of AA from 1-acyl-linked phospholipids to 1-ether­
linked phospholipids [142, 156-159]. CoA-IT has been the major focus on the 
development of various inhibitors described below. 

Diethyl 7 -(3,4,5-triphenyl-2-oxo-2,3-dihydro-imidazole-l-yl) hepatane phos­
phonate (SK&F 98625, Figs 3B and C) 2-[2-(3-4chloro-3 (trifloromethyl) phenyl) 
ureido] -4-( trifluoromethylphenoxy] -4,5 -dichlorobenzenesulfonic acid (SK&F 
45905, Fig. 3C)-SK&F 98625 and SK&F 45905 are two inhibitors of CoA-IT 
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which were developed with the assumption that the mechanism of action of CoA­
IT resembled that of acyl transferases such as LCAT or ACAT and that the inhibitor 
should have the capacity to recognize similar substrates as PLA2s [142]. Thus, ana­
logues of ACAT inhibitors (SK&F 98625) and a PLA2 inhibitor (SK&F 45905) have 
shown great promise as inhibitors of CoA-IT (Figs. 3B and 3C). These inhibitors 
block the movement of AA from i-acyl-linked phospholipids to 1-ether-linked phos­
pholipids in cell-free and whole cell assays with ICso < 20 lAM (Tab. 1), 3-5-fold 
lower than their ICsos for inhibition of PLA2 or other transferases. CoA-IT inhibi­
tion produces a decrease in PAF and LTB4 biosynthesis, concomitant with an 
increase in intracellular and extracellular free AA levels [157, 161]. Inhibition of 
lipid mediator biosynthesis likely accounts for the anti-inflammatory effects of these 
compounds in animal models of inflammation, while the build-up of free AA may 
account for induction of cancer cell apoptosis by these same compounds [143, 145, 
159, 162, 163]. While none of the above inhibitors have been clinically developed, 
they have revealed several critical aspects about levels of control of lipid mediator 
biosynthesis and the potential of targeting specific enzymes for therapeutic benefits. 

1-0-0ctadecyl-2-0-methyl-sn-glycer-3-phosphorylcholine (ET-18-0CH3) 

ET-18-0CH3 (Fig. 3D) is an ether lipid that has been shown to induce apoptosis of 
cancer cells and to display a range of other biological properties. In addition to its 
inhibitory effects on kinases, ET-18-0CH3 has been shown by Winkler and col­
leagues to be a potent inhibitor of CoA-IT (ICso = 0.5 lAM) [159]. 

Arachidonoyl trifluoromethyl ketone (AACOCF3) 

AACOCH3 (Fig. 3E) has been extensively used as a specific slow binding inhibitor 
of cPLA2 or iPLA2 in mixed micelle assays [164]. However, other studies have 
shown that AACOCF3 is a very non-specific inhibitor of many enzyme activities 
including CoA-IT (ICso = 3 lAM), 5-LO (90% inhibition by 10 lAM) and anandamide 
amidase, which is completely inhibited by 7.5 lAM [160]. Higher concentrations of 
AACOCF3 inhibited all AA-metabolic processes, including the incorporation of AA 
into cellular phospholipid pools. The implications of AAOCF3 inhibition of CoA-IT 
have been many fold. First, treatment of human neutrophils with < 10 lAM resulted 
in the inhibition of LTB4 and PAF formation without significant effects on AA 
release, suggesting that there are distinct arachidonate pools within inflammatory 
cells; one of which is destined for PAF and LTB4 formation and is linked to the CoA­
IT-mediated formation of the common precursor 1-alkly-2-AA-GPC. A second 
revealing aspect of these studies is that AA release alone is not sufficient for lipid 
mediator biosynthesis. It requires the incorporation of AA into specific AA pools, 
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accompanied by the remodeling of AA into ether-linked phospholipid pools for lipid 
mediators to be formed. Thus, remodeling may not only be needed to maintain 
membrane structure, but may be an essential process that transfers AA to specific 
membrane regions such the endoplasmic reticulum where it is further metabolized 
by 5-LO. 

Conclusion 

AA is an EFA derived from the diet or synthesized by the liver or brain cells using 
LA as the major precursor. LA is sequentially elongated and de saturated to form 
AA. AA is incorporated into cellular lipids by CoA-dependent enzymes and then 
remodeled within various phospholipid subclasses and molecular species by 
transacylases. Specific inhibitors of the aforementioned enzyme activities can be 
used to control AA levels. These inhibitors have been shown to alter the distribution 
of AA within cellular pools in inflammatory cells and to influence the biosynthesis 
of lipid mediators. Thus, use of combinatorial chemistry and structure-activity rela­
tionships of existing inhibitors, will likely result in the discovery of new and potent 
classes of anti-inflammatory agents. These inhibitors will be beneficial in controlling 
inflammatory diseases such as arthritis and asthma. In addition to specific 
inhibitors, nutraceuticals are becoming an essential component of the health man­
agement regimen of many people in industrialized countries. Examination of fatty 
acid supplements shows that some diets may have dangerous side effects due to the 
build up of AA levels in serum. Therefore, it is important that biochemical modifi­
cations and all key enzymes responsible for controlling AA be studied in order to 
avoid any detrimental side effects. Biochemical side effects may be avoided by using 
combinations of fatty acids in dietary supplements or specific inhibitors of key 
enzymes. Dissecting how AA and other PUFA pools are altered in various diseases 
provides pathophysiologic mechanisms that will be the basis of future therapeutic 
design or the design of efficacious dietary supplements. 
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Introduction 

Arachidonic acid (AA) is a key molecule in the modulation of several pathophysio­
logical events in mammalian cells, including gene expression, membrane signal 
transduction, cell differentiation and apoptosis, exocytosis and generation of 
eicosanoids [1-4]. It has been now convincingly demonstrated that the intracellular 
levels of free AA within mammalian cells are crucial for most of these events and, 
therefore, they are carefully regulated by complex biochemical reactions [5, 6]. 
These reactions are catalyzed by enzymes involved in both AA mobilization and re­
esterification into the storage sites and transfer from one intracellular pool to anoth­
er [7, 8]. 

Under normal circumstances, AA is stored within different phospholipid and 
neutral lipid pools. The distribution of AA in the lipid pools of the cell is a highly 
dynamic phenomenon that may follow routes different from cell to cell and in the 
same cell exposed to various conditions [9, 10]. The changes in the distribution of 
AA within the glycerolipid pools have been referred to as remodeling. In the last ten 
years a large body of evidence has accumulated indicating that remodeling of AA 
between lipid pools is an important mechanism to regulate the intracellular levels of 
free and esterified AA and to determine the quantities of AA that can be mobilized 
at any time from the storage pools [11-13]. 

The rate and extent of AA remodeling is strongly influenced by the stage of mat­
uration and differentiation of the cell and by its state of activation [14-17]. Increas­
ing evidence also suggests that AA remodeling may be biochemically or pharmaco­
logically modulated and that this type of intervention has relevant and complex 
effects on a variety of intracellular processes [18-21]. 

AA metabolism is a crucial biochemical event in cells involved in inflammatory 
and immune responses. In both humans and experimental animals, inflammatory 
cells contain relatively large quantities of esterified AA that is utilized primarily for 
the production of prostaglandins, thromboxanes, leukotrienes and other metabo-
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lites involved in inflammation [22, 23]. In addition, AA in inflammatory cells has 
been implicated in the degranulation process leading to the release of preformed 
mediators [4,24,25], in the production of cytokines and chemokines [26-28], acti­
vation of respiratory burst [1, 29], chemotaxis and phagocytosis [2, 30] as well as 
in the survival of cells recruited at sites of inflammation [13, 31]. 

Arachidonic acid pools in human inflammatory cells 

The bulk of AA in human inflammatory cells under resting conditions is esterified 
into various phospholipid pools [6]. Data obtained with cells isolated from periph­
eral blood of healthy donors including neutrophils [32-34] and eosinophils [35] 
show that the majority of AA in unstimulated cells is esterified in phosphatidyl­
ethanolamine (PE), followed by phosphatidylcholine (PC), phosphatidylinositol (PI) 
and phosphatidylserine (PS). In these cells a small percentage of the total cellular AA 
(1-5%) is usually associated with neutral lipid pools, primarily triglycerides (TG), 
diglycerides (DG) and cholesterol esters [36,37]. Most of the AA in resting inflam­
matory cells isolated from blood is esterified into the i-alkyl and the 1-alk-l' -enyl 
(plasmalogen) subclasses of PE and the i-alkyl subclasses of PC [32, 33]. 

The distribution of AA in inflammatory cells resident within tissues, i.e., the lung 
or the gastrointestinal tract, is to some extent different from that of inflammatory 
cells circulating in the blood. For example, mast cells purified from the human lung 
contain approximately 50% of the total cellular AA esterified into TG [38]. Simi­
larly, macrophages isolated from the lung or the peritoneal cavity contain 10-25 % 
of AA associated with TG [39, 40]. 

Major differences also exist in the distribution of AA within phospholipid pools 
between tissue and blood inflammatory cells. For example, the majority of AA in 
mast cells purified from the human lung or skin is esterified into i-acyl-PC and 1-
acyl-PE [41,42], making these, and not the 1-ether-linked, the major AA-contain­
ing phospholipid subclasses. As previously mentioned, it is believed that the distri­
bution of AA into glycerolipid pools may to some extent dictate the quality and 
quantity of eicosanoid produced upon cell activation [32, 43, 44]. Several studies 
have shown that some classes and subclasses of membrane phospholipids represent 
preferential substrates for PLA2s [31,45]. In other words, certain intracellular pools 
of AA are predominantly involved in the production of eicosanoids whereas others 
may represent primarily storage pools [39, 43]. A good correlation between the 
amount of AA in certain phospholipid pools (l-ether-linked) and products 
(eicosanoids) has been demonstrated in several inflammatory cells such as neu­
trophils, eosinophils, macrophages and mast cells [43, 44, 46, 47]. In particular, 
only AA derived from the i-alkyl subclasses of phosphatidylcholine and phos­
phatidylethanolamine has been closely linked to eicosanoid synthesis. In contrast, 
AA derived from other classes of phospholipids (phosphatidylinositol and phos-
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phatidylserine) or from the 1-acyl subclass of phosphatidylcholine and phos­
phatidylethanolamine may be preferentially secreted as free AA or may remain 
inside the cell functioning as a second messenger. 

Remodeling of arachidonic acid in inflammatory cells migrating to the lung 

The possibility of comparing cells in a relatively resting state (isolated from blood) 
with those retrieved by bronchoalveolar lavage (BAL) in patients with inflammato­
ry diseases of the lung offered a great opportunity to explore AA remodeling and 
changes in lipid mediator synthesis induced by the cell recruitment in an inflamed 
tissue. 

In initial studies we compared the total cellular content and the distribution of 
endogenous AA in the glycerolipid classes of neutrophils isolated from peripheral 
blood or from the BAL of patients with adult respiratory distress syndrome (ARDS), 
an acute and severe inflammation of the lung with extensive neutrophilic infiltration 
[36]. Neutrophils from the BAL of ARDS patients contain an amount of total AA 
almost four times higher than that found in neutrophils from peripheral blood of 
the same patients (4.3 ± 1.2 versus 1.3 ± 0.4 nmol/106 cells). The major difference 
between the distribution of AA in the glycerolipid classes between neutrophils from 
peripheral blood and those from the BAL of ARDS patients is the accumulation of 
large quantities of AA in TG [36]. BAL neutrophils contain a pool of AA associat­
ed with TG that is almost ten-fold larger than that in resting blood neutrophils. AA 
in TG accounted for 28.7 ± 7.9% versus 3.1 ± 1.2% of total cellular AA in BAL and 
peripheral blood neutrophils, respectively. In addition, a smaller but significant 
increase in the percentage of AA esterified in PC can be detected in BAL neutrophils. 
The percentage of AA in PE, which is the major pool in blood neutrophils, is 
reduced by 30% in BAL neutrophils. These data indicate that there is a significant 
increase in the total cellular content of AA and a major remodeling of AA within 
glycerolipid pools in human neutrophils migrating from the blood to the lung and 
the alveolar space. In particular a large pool of AA in TG is constituted in neu­
trophils entering the inflamed lung in vivo [48]. 

A similar observation has been made in human eosinophils. Blood eosinophils 
from normal donors contain 3-5% of AA into the TG pool [38]. However, when 
the eosinophils are isolated from the blood of patients with hypereosinophilic syn­
dromes, they are found to contain up to 30% of AA esterified into TG [36]. This 
observation suggests that in inflammatory cells, such as eosinophils and neutrophils 
activated in the blood or recruited in the lung during an inflammatory response, 
there is a remodeling of AA pools, with an increase of AA associated with the TG 
pool. 

Subsequent studies suggested that the pool of AA associated with TG may be 
located in the lipid bodies, non-membrane-bound cytoplasmic organelles whose 
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function is unknown [49]. Lipid bodies are abundant in human lung macrophages 
and mast cells, but they are very few in resting blood neutrophils and eosinophils 
[49,50]. However, there is a dramatic increase in the number of lipid bodies in neu­
trophils and eosinophils isolated from the BAL of ARDS and asthmatic patients, 
respectively [36]. In these cells the increase in the number of lipid bodies correlates 
significantly with the accumulation of AA in the TG pool [36]. 

The remodeling of AA pools observed in the cells isolated ex vivo can be repro­
duced in vitro. For example, peripheral blood neutrophils from normal donors sig­
nificantly increase their TG pool of AA and the number of lipid bodies when incu­
bated with high concentrations of exogenous AA [37]. Similarly, eosinophils from 
normal donors acquire the same characteristics of the eosinophils recruited in the 
airways of asthmatic patients when they are cultured with GM-CSF for 24 hrs in the 
presence of exogenous AA [38, 46]. In these experimental conditions, both neu­
trophils and eosinophils acquire the morphologic features of "hypodense" cells, 
similar to those found in BAL eosinophils and macrophages of asthmatic patients. 
Taken together, these observations suggest that a large increase in the amount of AA 
occurs in cells recruited in an inflammatory area, such as the eosinophils and the 
neutrophils in the lungs of asthmatics and of patients with ARDS, respectively. This 
increase is mostly due to the expansion of the TG pool, which presumably functions 
as a large reservoir for AA. 

Remodeling of arachidonic acid into TG pool induced by cell 
differentiation and maturation in the lung 

The aforementioned studies have shown that TG may be the largest arachidonate­
containing pool in certain inflammatory cells. For example, mast cells isolated from 
the human lung contain up to 50% of endogenous AA esterified in TG [38]. Other 
cells such as macrophages, eosinophils, monocytes, endothelial cells and muscular 
cells contain 5-30% of the total cellular AA associated with TG [38, 39, 51, 52]. 
The large variability in the AA content of the TG pool from cell to cell is in contrast 
with the relatively constant distribution of this fatty acid within the phospholipid 
pools. 

The reasons for the wide variation in the TG pool of AA are not known. Like 
other pools of AA, that associated with TG is a dynamic pool and its size can great­
ly change under various conditions. For example, accumulation of AA in TG occurs 
in neutrophils when they are recruited into an inflammatory area in vivo [36]. This 
phenomenon can be reproduced in vitro by incubating neutrophils or HL-60 cells 
with high concentration of exogenous AA [36, 53, 541. Antigen-induced activation 
of murine mast cells or ionophore-induced activation of human macrophages results 
in a transient increase in the AA content of the TG pool [14, 39]. These data sug­
gest that the AA pool in TG is not constitutive but it may be induced by different 
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stimuli. Understanding the cellular events that are able to promote the accumulation 
of AA into the TG pool may provide important information on the mechanisms reg­
ulating AA processing in inflammatory cells. 

Previous works have consistently shown that little or no store of AA in TG is 
found in immature and/or actively proliferating cell lines. For example, in contrast 
with mature tissue mast cells, bone marrow-derived mast cells (BMMC) have little 
or no AA esterified in TG [14]. This observation led to the hypothesis that cellular 
differentiation and/or inhibition of cell proliferation may induce AA accumulation 
into the TG pool. We have tested this hypothesis in the human promonocytic cell 
line U937, an experimental model used to explore the biochemical modifications 
associated with cell differentiation. U937 can be differentiated into macrophage-like 
cells upon exposure to such diverse agents as IFN-y, phorbol esters, retinoic acid 
(RetAc) and dimethylsulfoxide [55-57]. Differentiation of U937 is associated with 
inhibition of cell proliferation and with the acquisition of morphological and sur­
face markers typical of mature macrophages [58]. 

In our experiments, differentiation of U937 into macrophages was achieved by 
incubation with RetAc, PMA, or both, either in the presence or in the absence of 
exogenous AA supplementation. 

Incubation of AA with PMA or with PMA plus RetAc, but not with the AA sup­
plement alone, blocked U937 proliferation and induced the expression of CD23, a 
marker of mature macrophages [59]. 

In addition, differentiation of U937 with PMA induced a significant increase in 
the total cellular content of AA from 0.9 ± 0.2 to 1.4 ± 0.4 nmoles/l06 cells. This 
accumulation of AA was further enhanced in U937 incubated with PMA plus RetAc 
(to 1.7 ± 0.6 nmoles/l06 cells). When differentiation of U937 with PMA plus RetAc 
occurred in the presence of the AA supplement, the total cellular content of AA 
reached 2.4 ± 0.9 nmoles/106 cells. Figure 1 shows the effect of U937 differentiation 
on the amount of AA into the major glycerolipid classes. Undifferentiated U937 
contain AA esterified mostly in PE and to a lesser extent in PC and PIIPS. An aver­
age of 3.3 ± 1.8% of the total AA is associated with neutral lipids, 95% of which is 
esterified into TG. Exposure of U937 to PMA results in a significant increase in the 
percentage of AA associated with TG (8.1 ± 2.8% of total cellular AA). When U937 
are incubated with RetAc plus PMA, accumulation of AA into TG is higher than in 
U937 exposed to PMA alone (11.0 ± 4.6%). Finally, differentiation of U937 with 
RetAc plus PMA in the presence of AA supplement results in the esterification of 
18.8 ± 6.9% of cellular AA into TG. 

While the changes in the percentage of AA esterified into TG are the most strik­
ing, a significant increase in the percentage of AA esterified in PC is also observed 
in cells differentiated in the presence of exogenous AA (Fig. 1) 

The increase in the TG pool of AA in differentiated U937 is due to an increase 
in the mass size of TG rather then to the substitution of other fatty acids stored in 
TG with AA. In fact, the mass amount of TG, expressed as 1--lg/106 cells, increased 
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Figure 1 

PE TG 

Distribution of AA in the glycerolipid classes of undifferentiated and differentiated U937 

U937 were incubated for 96 hrs in medium alone, in the presence of PMA, RetAc and PMA 

or RetAc and PMA, with an AA supplement (10 ,uM). At the end of incubation, the lipids 

were extracted and AA was determined in each pool by NIC/-Gc/MS. The data are expressed 

as nmoles of AAl106 cells and are the mean ± Sf of five experiments. 

*p < 0.05 versus medium 

from 0.78 ± 0.26 to 1.82 ± 0.56 and to 2.35 ± 0.68, respectively, in undifferentiated, 
PMA and RetAc plus PMA differentiated cells. These findings suggest that the accu­
mulation of AA into TG during differentiation of U937 is mostly due to the mass 
expansion of the TG pool. 

Previous findings in the human neutrophil suggested that an increase in the total 
cellular content of AA is a major factor leading to AA accumulation in the TG pool 
[36]. The observation that AA supplement enhances the remodeling into the TG 
pool induced by cell differentiation further supports this hypothesis. To confirm the 
relationship between the total cellular content of AA and the amount of AA esteri­
fied in TG, we used mass spectrometry to determine the amount of endogenous AA 
(total and TG-associated) in U937 at various stages of differentiation induced by 
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Figure 2 

Correlation between the total cellular AA content and the percentage of AA esterified in TG 

in U937 at different stages of differentiation 

U937 were incubated for 48-96 hrs in the presence of RetAc + PMA. At different time points 

the cells were harvested and the lipids were extracted. TG were isolated by TLC and endoge­

nous AA was liberated by alkaline hydrolysis. Total cellular AA and AA associated with TG 

were determined by NICI-Gc/MS. The data are obtained with three different preparations 

of U937. 

RetAc plus PMA. A significant correlation can be found between the total cellular 
content of AA and the percentage of AA associated with TG in U937 at different 
stages of differentiation (Fig. 2). 

This result suggested that accumulation of AA in the TG pool could be related 
to an increase in the capacity of differentiated U937 cells to incorporate exogenous 
AA. To test this, control and U937 exposed to RetAc, PMA or RetAc plus PMA for 
96 hrs were incubated with radiolabeled AA (10-9 M) for another 12 hrs. Differen­
tiation with PMA significantly increased the capacity of U93 7 to take up exogenous 
AA and this effect was increased up to 2.S-fold in U937 differentiated in the pres­
ence of the AA supplement. 
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Lipid bodies are non-membrane-bound cytoplasmic organelles detectable in 
most mammalian cells [49] by fluorescent staining with Nile red [60]. Indirect evi­
dence suggests that these organelles may be the subcellular location of the TG pool 
of AA in human inflammatory cells [61]. Figure 3 shows the flow cytometry scan of 
Nile red-stained U937 after 96 hrs incubation with PMA or RetAc plus PMA. Incu­
bation with PMA, but not with RetAc alone, increases the fluorescence intensity of 
U937 compared to control cells. Incubation with RetAc plus PMA further increas­
es cell fluorescence compared to cells incubated with PMA alone. Direct microscope 
counting [62] and flow cytometry gave comparable results both indicating that dif­
ferentiation of U937 with PMA or with RetAc plus PMA increased the number of 
cytoplasmic lipid bodies. This observation further supports the hypothesis that lipid 
bodies may be the cellular repository for the de novo formed TG pool. 

Arachidonic acid pools in different populations of human lung 
macrophages 

The above mentioned observations indicated that activation of inflammatory cells, 
e.g., by recruitment into an inflammatory area, or their differentiation and matura­
tion may lead to significant changes in AA distribution within intracellular pools. 
The recent identification of different populations of macrophages in the human lung 
has been a timely occasion to confirm this hypothesis. 

Centrifugation over density gradients of cells obtained by mechanical or enzy­
matic dispersion of the human lung tissue has been largely used to enrich the 
macrophage population. This procedure consistently yields two fractions of 
macrophages clearly distinct by their cell density. High density macrophages (HDM) 
have density comprised between 1.065 and 1.078 and account for two-thirds of the 
total macrophages in the human lung. Low density macrophages (LDM) have den­
sity between 1.039 and 1.052 and constitute the remaining one-third of the total 
lung macrophages [63]. LDM also have a larger area and diameter and appear high­
ly vacuolated as compared to HDM. The two macrophage populations differ sig­
nificantly in their expression of surface markers and in the production of cytokines 

Figure 3 

FACS scan of lipid bodies-associated fluorescence in undifferentiated and differentiated 

U937 

U937 were incubated for 96 hrs in medium alone or in the presence of RetAc (10 nM), PMA 

(10 ng/ml) or both. At the end of the incubation, the cells were washed and incubated with 

Nile red. The cells were then washed and fluorescence was measured by flow cytometry. Flu­

orescence intensity units are indicated as a log scale on the abscissa. Each panel reports the 

peak fluorescence of undifferentiated cells for comparison. 
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in response to physiologic stimuli. HDM predominantly express co-stimulatory 
molecules (CD40 and CD86) whereas LDM express predominantly activation 
markers (CD63 and CD64). In addition, HDM are highly responsive to lipopolysac­
charide and histamine, producing large quantities of IL-10 and IL-12. In contrast, 
LDM are stimulated more effectively than HDM by secretory PLA2 (group lA, IB, 
II and X) [64] and by opsonized zymosan and they release mostly IL-6 and TNF-a. 

We have recently initiated to explore the AA distribution into the lipid pools of 
HDM and LDM. HDM and LDM do not differ significantly in their total AA cel­
lular content. However, LDM contain significantly higher percentage of AA esteri­
fied into TG (22% versus 10%) and a larger proportion of AA esterified into 1-acyl­
PC and 1-acyl-PE as compared to HDM. The HDM population contains the major­
ity of AA into 1-alk-1 'enyl-PE and 1-alkyl-PC. LDM also show a significantly higher 
number of cytoplasmatic lipid bodies per cell as compared to HDM (12 ± 5 versus 
5 ± 3) (Triggiani et al., unpublished observations). 

The mechanisms underlying the development of two subpopulations of macro­
phages in the human lung are presently unclear. Preliminary evidence suggests that 
the hypodense (LDM) cells may represent more mature macrophages in a pre-acti­
vated state, whereas HDM may be less mature cells more recently entered into the 
lung. This hypothesis is supported by the observation that HDM display several 
morphological, functional and biochemical features, including the AA distribution, 
similar to those of blood monocytes, the circulating precursor of tissue 
macrophages. These observations lend further support to the concept that matura­
tion of the cells and/or their activation induced in the lung by local micro-environ­
mental factors induces a profound remodeling of intracellular AA pools and the 
accumulation of AA into TG. 

Biochemical functions of the triglyceride pool of arachidonic acid in 
inflammatory cells 

While the role of the phospholipid pools as a source of AA for eicosanoid synthesis 
has been extensively studied, very little is known on the function of the TG pool, 
either constitutively present or induced by cell activation or differentiation. It has 
been clearly shown that TG are not substrates for PLA2s [37, 39]. To address the 
role of TG as a source of AA in stimulated cells we have performed experiments in 
lung macrophages stimulated with the PMA or with the Ca2+ ionophore A23187. 
AA is released primarily from PC and PI in macrophages stimulated with PMA and 
from PC and PE in macrophages stimulated with A23187 [40]. In contrast to phos­
pholipids, the amount of AA in the TG pool significantly increased at the early time 
points during cell activation induced by either PMA or A2318 7. These results sug­
gest that TG do not act as a source of AA but rather as a pool to reincorporate AA 
released from phospholipids. 
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The rapid reacylation of free AA into TG in stimulated macrophages suggests at 
least two hypotheses. First, TG may act as a reacylation pool during the early phase 
of cell activation and thus contribute to maintain low intracellular concentrations 
of free AA. As mentioned before, free AA is a second messenger involved in the reg­
ulation of several cell functions and its intracellular concentrations must be closely 
regulated at any time during cell activation. A second hypothesis is that enzymes 
responsible for the transfer of AA into TG [54] are activated in stimulated cells as a 
mechanism to prevent excessive AA mobilization and depletion of this fatty acid. 
Should this be the case, the rapid reacylation of free AA into TG may be an impor­
tant factor to limit the amount of AA available for the biosynthesis of eicosanoids. 
The hypothesis that TG are not an immediate source of AA for eicosanoid synthe­
sis is confirmed by the data of Johnson et a1. in the human neutrophils [37]. These 
cells supplemented in culture with exogenous AA to induce the accumulation of AA 
into TG produce the same amount of leukotrienes as the un-supplemented cells [37]. 
In addition, differential labeling of the endogenous pools of AA indicate that, even 
in neutrophils with a large TG pool of AA, the vast majority of AA converted to 
eicosanoids derives from the phospholipid pools. 

Even though the TG may not be a direct source of AA during cell activation, this 
pool may still be important in the long-term regulation of cellular levels of AA. 
Experiments performed with human macrophages in which the cells were allowed 
to recover after stimulation, clearly demonstrate that, when the stimulus is removed, 
AA is progressively transferred from TG to phospholipids [39]. Therefore, among 
several possibilities, TG may be a late source of AA required to support eicosanoid 
biosynthesis once the phospholipid pools have been partially depleted. Alternative­
ly, cell activation may in the delayed phase accelerate the transfer of AA from TG 
to phospholipids, a process normally occurring in resting cells [11]. The latter may 
be an important mechanism by which the cells may refill the early releasable phos­
pholipid pools with AA. 

Although these observations do not conclusively define the function of the TG 
pool, they indicate that phospholipid and TG pools have distinct biochemical roles 
in the release of AA in stimulated inflammatory cells. While phospholipid pools 
appear to be the major source of AA for immediate eicosanoid biosynthesis, the TG 
pool may playa crucial role to regulate intracellular levels of free AA and to main­
tain an adequate supply of AA to the phospholipid pools during the delayed phase 
of cell activation. 

Closing remarks 

Remodeling of AA within intracellular pools of inflammatory cells is gammg 
increasing attention as an important regulatory mechanism of several cell functions. 
The dynamic distribution of this fatty acid into long-term storage or rapidly-releas-
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ing pools has been shown to modulate profoundly not only the pro-inflammatory 
potential of the cell but also its life cycle and differentiation programs. 

An interesting observation that is emerged in the last decade is that human 
inflammatory cells may constitutively contain or build-up, under certain circum­
stances, a large pool of AA associated with TG. This is an expandable, high-capac­
ity pool presumably located into cytoplasmic lipid bodies. Exposure of the cells to 
high concentrations of exogenous AA or to certain cytokines and growth factors as 
well as their activation by pro-inflammatory stimuli can induce the mass expansion 
of and the accumulation of AA into the TG pool. Formation of the TG pool may be 
also associated with the acquisition of a differentiated or hypodense cell phenotype. 

The biochemical functions of the TG pool of AA in inflammatory cells are not 
yet defined. This pool is not an immediate source of AA in stimulated cells and it 
may rather function as a recapture pool for AA mobilized from phospholipids. 
Understanding the mechanisms involved in the TG pool formation and the defini­
tion of its role in the AA remodeling may open new perspectives in the modulation 
of eicosanoid synthesis and in the biochemical regulation of inflammatory respons­
es in human diseases. 
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Introduction 

Arachidonate remodeling is a very prevalent process in cells of the central nervous 
system. As in other organs, there are a wide variety of phospholipid molecular 
species that display active arachidonate remodeling. In neurons, these events con­
tribute to the maintenance of excitable membrane properties by providing a fluid 
environment for proteins to perform their functions. In addition, arachidonate 
remodeling allows the controlled release of free arachidonic acid. This fatty acid is 
a messenger in itself, and also serves as a precursor to a wide variety of biological­
ly-active messengers, the eicosanoids. Recently, several novel messengers derived 
from arachidonic acid have been identified in addition to the well known 
prostaglandins. These new messengers include the endocannabinoids, which elicit 
potent modulatory actions in the nervous system. Overall, arachidonate remodeling 
in the nervous system is clearly engaged in cell function. 

In the nervous system there is a very close relationship between arachidonate 
remodeling and inflammation. Ischemia promotes the rapid and selective release of 
brain free arachidonic acid [1]. This effect results in a major imbalance in arachi­
donate-remodeling pathways by enhancing the free arachidonic acid pool. This tells 
us that injury is critical in setting into motion this imbalance. Seizures and neu­
rodegenerative diseases including Alzheimer's disease involve profound alterations 
in arachidonate remodeling [2, 3]. 

Platelet-activating factor 

Although platelet-activating factor (PAF, 1-0-alkyl-2-acetyl-sn-glycero-3-phospho­
choline) was originally described as an inducer of platelet aggregation, it is now rec­
ognized as a physiologic mediator in synaptic plasticity. In addition, PAF is accu­
mulated in neuronal degeneration that results from the activation of the injury 
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!inflammatory response. The synthesis and turnover of PAF are components of the 
"remodeling" of arachidonic acid-containing choline plasmalogens [4] (Fig. 1). 

There are three routes for the synthesis of PAE The nervous system contains 
alkyl-arachidonoyl-GPC, the PAF precursor, a very minor component of membrane 
phospholipids. This pool of choline-containing phospholipids is characterized by a 
high concentration of arachidonate (or docosahexaenoate) in the sn-2 position. 
Most of our current knowledge is on the arachidonate-containing PAF precursor. 
Arachidonate is hydrolyzed from the sn-2 position of alkyl-acyl GPC by phospholi­
pase A2, and then replaced with an acetyl group by an acetyltransferase. Other major 
routes of PAF synthesis in the brain may be a de novo pathway by the transfer of 
choline to alkylacetylglycerol via cholinephosphotransferase or by a coenzyme-A­
independent route [5]. There is an additional pathway for PAF formation that is par­
ticularly important during central nervous system (CNS) injury. After oxidative 
injury, fragmentation of sn-2 PUFA (mainly arachidonate and docosahexaenoate) of 
some species of phosphatidylcholine phospholipids can result in the formation of 
molecules with PAF-like activity. The presence of a shorter-chain peroxidated fatty 
acid at the C-2 position is recognized by the PAF receptor. The release of PUFA from 
the PAF precursor also generates bioactive molecules, such as leukotrienes, which 
may act as neuronal second messengers or as pro-inflammatory mediators. 

PAF is an important modulator of neural function, but its over-production plays 
a role in neural dysfunction. Although PAF at relatively high concentrations may 
disrupt neural function by perturbing membrane function [6, 7], it is also a highly 
bioactive molecule. 

Cellular responses to PAF 

Phospholipase A2 (PLA2) releases arachidonic acid or docosahexaenoic acid [8]. 
These PUFA may be metabolized by one of several cyclooxygenase (COX) enzymes 
into other bioactive lipids (see below). The remaining lyso-lipid (1-0-alkyl-2-lyso­
sn-glycero-3-phosphocholine or lyso-PAF) is acetylated, producing the bioactive 
PAE 

PAF binds to high- and low-affinity receptors in several cell types, including 
platelets, basophils, and lung tissue [9]. PAF attains high concentrations in the hip­
pocampus in response to injury [10]. In addition to seven transmembrane domain 
receptor on the cell surface (including the synapse), high-affinity intracellular bind­
ing sites are present [11]. Moreover, a diversity of Km parameters for PAF-receptor 
binding suggests heterogeneity of PAF-binding sites in the nervous system. 

The synthesis of PAF results in physiologic responses in cells, including Ca2+ 

mobilization [12], activation of protein kinase [13], accumulation of arachidonic 
acid [14], and modulation of gene expression [15, 16]. This multiplicity of cellular 
responses to PAF is not surprising, considering that the PAF receptor belongs to the 
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Platelet-adivating factor (PAF) synthesis and degradation 

The remodeling pathway or U PAF cycle" leads from the membrane phospholipid PAF pre­

cursor, alkyl-acyl (usually arachidonoyl)-glycerophosphorylcholine (GPc, on the left) to the 

biologically adive PAF (at right), and includes the production of Iyso-PAF, which is generat­

ed from the PAF precursor alkyl-acyl-GPC either diredly by the action of phospholipase A2, 

or by the transfer of the sn-2 acyl moiety to a Iyso-plasmalogen (top), which is itself mobi­

lized from membrane plasmalogen by phospholipase adion. The de novo route of PAF syn­

thesis (upper right) involves the direct transfer of a choline moiety to alkyl-acetylglycerol. 

Note that PAF acetylhydrolase (bottom) inactivates all PAF molecules, regardless of their 

biosynthetic route, and additionally inactivates oxidatively damaged phospholipids (shorter 

peroxidated acyl group at C2) that possess biological adivity at the PAF receptor. 

family of receptors linked to the G-protein [17]. PAF may elicit cellular responses by 
activating phospholipase C (PLC), with the resultant hydrolyzing of PIP2. In an in 
vitro model using [3H]-inositol-labeled platelets, a four- to five-fold increase in IP3 

and IP2 was observed within five seconds of treatment with PAF [18]. The response 
was independent of extracellular [Ca2+] and was inhibited by the PAF antagonist CV 
3988, indicating direct activation of PLC by the binding of PAF to its receptor. 

As a consequence of PLC activation, the increase in intracellular [Ca2+] may acti­
vate PLA2• PLA2 is also activated during the same time course that PAF synthesis 
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occurs via the remodeling pathway. Several studies indicate that PAF antagonists 
effectively block the rise in intracellular [Ca2+]. For example, in platelets a PAF 
antagonist decreases the PAF-induced rise in intracellular Ca2+ [9]. 

When the plasma membrane-bound PLC is activated, a series of intracellular 
events occur, which are involved in the pathologic changes during brain ischemia 
and seizures [19]. Triazolobenzodiazepines (alprazolam and trizolam) and some 
benzodiazepines antagonize PAF effects [20]. Because PLC and PLA2 activities are 
elevated in brain undergoing ischemia [4, 19], investigators have targeted the PAF 
receptor as a potential site for the reduction of the progression of damage after CNS 

lllJury. 
The PAF antagonist BN 50739 prevents postischemic hyporeperfusion and 

edema formation in rabbit spinal cord [21]. PAF antagonists restore cerebral blood 
flow and also enhance survival during the post-ischemic phase [22, 23]. The mech­
anisms of protection by PAF antagonists have been studied in several models. Post­
treatment with BN 52021 reduced free fatty acid (FFA) and diacylglycerol accumu­
lation after ischemic injury, and pre-treatment with BN 52021 reduced FFA release 
following ischemic injury in mouse brain, although minuscule effect on PIP2 hydrol­
ysis was observed [24]. However, in this study the investigators reported no signifi­
cant reduction in FFA accumulation and PLC activation after electroconvulsive 
shock (ECS). 

PAF receptor antagonists also have proved beneficial in neuronal recovery as 
measured by electrophysiologic parameters [25]. In this study, a PAF receptor antag­
onist of the neolignan family, kadsurenone, enhanced neuronal recovery as mea­
sured by cortical somatosensory evoked potential. The protective effect appeared to 
be independent of effects on platelet aggregation, as evidenced by 111I-labeled 
platelet distribution, which was the same in control and kadsurenone-treated brain. 
Thus, PAF antagonists may improve post-ischemic recovery by mechanisms separate 
from prevention of platelet aggregation. Histologic examination showed that CAl 
hippocampal neurons in rats are protected from ischemic damage by the PAF antag­
onist ginkgolide B [26]. 

PAF receptor antagonists elicit neuroprotection in a rodent model of brain ische­
mia-reperfusion [27], suggesting that PAF may work at the synapse. In this study, 
the accumulation of free polyunsaturated fatty acids following ischemia was de­
creased by the PAF antagonists, which also restored cerebral blood flow [27]. Poly­
unsaturated fatty acid release accompanying ischemia probably results from synap­
tic phospholipase(s) A2 activity [28]. The same PAF antagonist that was neuropro­
tective in ischemia-reperfusion also selectively displaced radiolabeled PAF binding in 
synaptic membranes [11]. For this reason, the synaptic membrane binding site was 
proposed to modulate glutamate neurotransmitter release [29]. Moreover, intracel­
lular PAF-binding sites isolated from a microsomal fraction were distinct from 
synaptic membrane sites with regard to their responses to several antagonists [11]. 
At the time of those studies, PAF was already known to activate early-response 
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genes [15, 30, 31]; therefore the intracellular receptor was proposed to be the sig­
naling linkage to gene expression. Cloning of the seven transmembrane domain PAF 
receptor [17, 32, 33] and the discovery of specific PAF receptor-mediated Ca2+ 

influx into neurons [34] has shed more light on neural PAF signaling. In studies of 
long-term potentiation in hippocampal neurons isolated from PAF-receptor-defi­
cient mice, both incidence and size of LTP, defined as increased excitatory postsy­
naptic potentials, were decreased in the knockout mice, as compared to wild-type 
mice, and PAF-receptor antagonists reduced LTP in wild-type mice, but not in PAF­
receptor knockout mice. These results lend additional support to the hypothesis that 
PAF is involved in hippocampal synaptic plasticity [35]. The intracellular PAF recep­
tors have been more extensively characterized in subsequent studies that have iden­
tified one form in endosomes [36] and another in the nuclear membrane [37]. Both 
intracellular forms of the receptor may actually be components of the intracellular 
microsomal form that was previously described [11]. We now know that the PAF 
seven transmembrane domain receptor is expressed in neurons, astrocytes, and 
microglia, as well as endothelial cells. It is still unclear whether the intracellular PAF 
receptor(s) differ in molecular structure from, or instead are an intracellular state of, 
the cell-surface PAF seven transmembrane domain receptor. We do not yet know 
whether the cell-surface PAF receptor internalizes, or whether a cell-surface PAF 
receptor destined to insertion in the membrane is already active. If that is the case, 
does PAF itself internalize to access either of these intracellular PAF-receptor forms? 
Two possible mechanisms might explain the role of PAF in gene transcription: 

1. The cell-surface receptor triggers the signaling cascade, or; 
2. The intracellular form establishes interactions with specific kinases/phosphatases 

or transcription factors with or without specific scaffolding proteins. 

In pathologic conditions involving oxidative stress such as ischemia or seizures, the 
rates of PAF synthesis and degradation that maintain a modulated PAF pool size 
become mismatched and PAF concentration increases to where it becomes a pro­
inflammatory messenger and mediator of neurotoxicity. In this capacity PAF acti­
vates COX-2 expression [38], expression of several early-response genes that encode 
transcription factors [15, 30], apoptosis, and polymorphonuclear leukocyte (PMN) 
adhesion to microvessels [39], which has critical consequences for cell survival. 
Leukocyte infiltration mediates neural injury in head trauma, stroke, spinal cord 
injury, and other diseases and enhances the synthesis and release of IL-6, IL-8, IL-
10, TNF-a, and of other mediators of the inflammatory response. PAF binding to 
its receptor activates phospholipases and results in additional PAF synthesis, along 
with that of prostaglandins and leukotrienes. While overall, PAF is a potent neu­
ronal injury messenger, it also plays a prominent role in astrocytes and in microglial 
cells. Although many of these actions have been studied in non-neural cells they are 
assumed to occur in the nervous system as well. 
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In summary, excessive PAF promotes neuronal damage, and PAF-receptor antag­
onists elicit neuroprotection in various models of neural injury [21,23,25-27,40]. 

Phospholipase A2, arachidonate metabolism, and gene expression 

Synaptic membrane-bound phospholipases playa key role in neuronal plasticity in 
long-term potentiation, which is a model of learning and memory [41,42]. Howev­
er, during seizures, ischemia, trauma, and neurodegeneration, these signaling mech­
anisms are overstimulated and lead to excitotoxic brain damage [1,43]. Thus, dur­
ing acute neuronal stimulation by excitatory glutamatergic neurotransmission, the 
balance of levels of mediators of neuronal plasticity and injury determines whether 
the neurons recover or become damaged. 

PLA2 enzymes are classified into three types: calcium-dependent PLA2 (cPLA2 or 
type IV), calcium-independent (iPLA2 or type VI), and low-molecular-weight secre­
tory PLA2 (sPLA2) [44]. cPLA2 displays a high selectivity for phospholipids con­
taining PUFA in the sn-2 position. The regulation of cPLA2 activity by agonists that 
increase cytosolic Ca2+ involves translocation of the enzyme from the cytosolic com­
partment to the nuclear membrane or the endoplasmic reticulum, where phospho­
lipids are hydrolyzed, thus releasing PUFA, mainly arachidonic and docosa­
hexaenoic acids [45]. Two important enzymes, the inducible cyclooxygenase-2 
(COX-2) and lipoxygenase (LOX), are located in the nuclear membrane and metab­
olize the PUFA into prostaglandins (PGs) and leukotrienes (LTs). 

Several observations indicate that PGs, synthesized through the COX-2 pathway, 
play a pivotal role in neuropathology. In the brain, COX-2 is constitutively 
expressed, mainly in the cortex and hippocampus [46,47]. Not only has the COX-
2 pathway been implicated in neuronal plasticity, but expression of the enzyme is 
also induced during cerebral ischemia and seizures [19, 48]. Inhibition of COX-2 
activity prevents ischemia and NMDA-induced cell death [49, 50]. 

Arachidonate and COX-2 gene expression 

Because COX-2 activity is involved in neuronal death after CNS injury, the regula­
tion of expression of the COX-2 gene is an important event in the utilization of free 
arachidonic acid during the activation of the remodeling pathway. Nuclear factor 
(NF)-KB is a DNA-binding protein that controls the transcription of the COX-2 
gene. NF-KB binds to at least two sites in the mouse, rat, and human COX-2 gene 
proximal promoter [51, 52]. The human gene encoding for expression of COX-2 
may be involved in the pathology of slower-onset neurodegeneration, such as in 
Alzheimer's disease (AD) [53]. Examination of nuclear protein extracts taken from 
aging control and AD-affected brain neocortical nuclei revealed a significant corre-
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lation between the levels of NF-KB-DNA binding and the production of COX-2 
RNA. This study provided evidence linking NF-KB-DNA binding to up-regulation 
of transcription of the gene coding for COX-2. In addition, oxidative stress due to 
exposure of reactive oxygen species (ROS) contributes to neuronal death during 
aging, disease, and injury [54], and there is a link between exposure of neurons to 
ROS and NF-KB activation [55, 56]. 

Glutamate receptor signaling, sPLA2, arachidonate, and COX-2 expression 

Brain ischemia and seizures promote PAF accumulation that contributes to further 
glutamate release and COX-2 transcription, both of which increase neuronal cell 
damage and death. The interplay between PAF accumulation, EAA receptor activa­
tion, and a secretory PLA2 are an additional factor. For example in hippocampal 
neurons, stimulation of the NMDA receptor by PAF activates several mitogen-acti­
vated protein (MAP) kinases, including c-JUN NH2-terminal kinase (JNK), p38, 
and extracellular signal-regulated kinase (ERK). The hetrazepine BN50730 (an 
intracellular PAF receptor antagonist) inhibits both NMDA-stimulated MAP kinas­
es and neuronal cell death [57]. 

When sPLA2 or glutamate was injected into the right striatum of male Wistar 
rats, there was a dose-dependent response in terms of neurologic abnormalities and 
tissue damage. When low levels (10-20 pmol) of sPLA2 or glutamate (2.5 !-tmol) 
were injected into the striatum, no neurologic abnormalities or tissue damage 
occurred. However, when 20 pmol sPLA2 and 2.5 !-tmol glutamate were co-injected, 
the animals became apathetic for several hours after injection and then displayed 
circling toward the side of injection in the following days [58]. The animals that 
were co-injected displayed extensive histologic damage in the right hemisphere, and 
in several rats the damage extended into the contralateral hemisphere. Thus, the 
investigators demonstrated a synergistic excitotoxic action in vivo exerted by sPLA2 

and glutamate. 
Although the synergism of neuronal damage between sPLA2 and glutamate is 

dramatic, it is noteworthy that the two may act by different but overlapping mech­
anisms. In primary cortical neuron cultures, sPLA2 and glutamate display the same 
synergy in eliciting neuronal cell death as demonstrated in vivo [59]. In this study, 
3H-arachidonic acid (AA)-labeled cultures were treated with mildly toxic doses of 
sPLA2 and glutamate. Glutamate treatment resulted in the release of AA predomi­
nately from phosphatidylethanolamine (PE), whereas sPLA2 treatment resulted in 
AA release from phosphatidylcholine (PC). Co-treatment with sPLA2 and glutamate 
resulted in a greater degradation in both PE and PC, although the NMDA antago­
nist MK-801 blocked only the glutamate effects. Therefore, the neurotoxicity 
induced by glutamate and sPLA2, although synergistic, involves the hydrolysis of 
different phospholipid pools. In addition, both sPLA2 and glutamate induce COX-
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2 expression, although during different time intervals [60]. In this study, the expres­
sion of COX-2 in rat striatum was examined using in situ hybridization and 
immunohistochemistry. Injection of sPLA2 induced COX-2 expression (4 hrs after 
injection), whereas glutamate induced COX-2 expression within 2 hrs after injec­
tion. This time differential suggests separate signaling mechanisms for sPLA2 and 
glutamate. In addition, recent observations [61] indicate that sPLA2 affects neu­
ronal responses to glutamate through the opening of Ca2+ channels, which provides 
more evidence that sPLA2, by releasing AA, is central in CNS pathology following 
mJury. 

Conclusions 

PAF is a potent inducer of platelet aggregation, but the specific PAF receptors pre­
sent on neurons may cause neuronal cell damage when over-activated by excessive 
PAF production. Because there are multiple pathways for PAF synthesis in the brain, 
the PAF receptor has been targeted for intervention in conditions of CNS degenera­
tion, including traumatic injury and slower-onset degeneration such as Alzheimer's 
disease. In fact, the synthesis of PAF initiates several mechanisms leading to neu­
ronal damage including: 

1. The release of arachidonic acid that is metabolized via specific enzymes into the 
inflammatory compounds prostaglandins and leukotrienes. PGs and LTs also 
contribute to circulatory abnormalities and infiltration of blood cells that exac­
erbate CNS injury. Eicosanoids can also counteract the inflammatory response, 
such as lipoxins [62]. We have relatively scarce information regarding anti­
inflammatory regulation by eicosanoids in brain. 

2. The synthesis of PAF results in Ca2+ mobilization within neurons resulting in the 
activation of enzymes (particularly phospholipases A2) leading to further action 
on arachidonate remodeling. 

3. The release of PAF during CNS injury increases glutamate release and expression 
of the COX-2 gene. This in turn activates synthesis of eicosanoids. 

4. PAF accumulation is related to excitatory amino acid receptor activation as well 
as the activation of sPLA2• Glutamate and sPLA2 are synergistic in causing neu­
ronal cell damage [58]. These studies provide evidence that PAF can potentiate 
damage through more than one pathway, and that arachidonate remodeling is 
involved [63]. 

One of the conclusions from these studies is that therapeutic interventions may be 
possible to prevent PAF damage to neurons. In particular, novel PAF antagonists 
enhance neuronal survival after CNS injury. There is widespread signaling disrup­
tion during CNS injury that contributes to neuronal damage. PAF antagonism, how-
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ever, provides an effective target to modulate multiple pro-inflammatory pathways, 
and as a consequence, neuroprotection. 
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Overview of AD 

AD is the most common dementia, afflicting millions in developed countries [1]. AD 
is a neurodegenerative process characterized by irreversible destruction of the neo­
cortex leading to impairment of memory and cognitive function, language deterio­
ration, poor judgment, indifferent attitude, but preserved motor function. An esti­
mated 7% of people above 65 years old have AD and its prevalence is expected to 
increase as better medical science increase life expectancy [1]. Although AD is the 
most characterized dementia, no effective treatments are available for controlling 
this debilitating disease. Definitive diagnosis of AD is made at autopsy. The patho­
genic characteristics of AD include the cleavage of ~-amyloid precursor protein 
(~APP) to form neurotoxic ~-amyloid (~A) peptides that are two amino acids longer 
than normal, and an aggregated insoluble polymer of ~A that forms senile plaques 
[2, 3]. Enzymes known as secretases mediate processing of ~APP. In addition to 
plaques, the formation of intraneuronal tau pathology yielding widespread deposits 
of argyrophilic neurofibrillary tangles (NFT) is typical in AD. In addition to plaque 
formation, enhancement of inflammatory responses in the brain mediated by neu­
rotoxic peptides is characteristic of AD. These peptides and inflammatory cytokines 
(IL-l, IL-6, and TNF-a) are implicated in the activation of glial cells and astrocytes 
[4]. 

The major risk factors associated with AD include genes, head trauma, environ­
mental and demographic factors [5-8]. Four major genetic loci are associated with 
AD. These include APP, two presenilins and apolipoprotein E (apoE) [9, 10]. Muta­
tions of APP are linked to early onset AD mainly as a result of increased formation 
of the plaque component of ~A peptides. Various studies have shown that ~A addi­
tion to cultures result in cell death [11-13]. Additionally, ~A peptides can also 
induce activation of glial cells [14-16]. Induction of neuronal cell death and abnor­
mal activation of cells are plausible mechanisms of action of ~A. Mutations in the 
presenilin genes PSI and PS2, implicated in early onset familial AD, cause abnormal 
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~APP processing with resultant overproduction of neurotoxic ~Al-42 and related 
peptides [17, 18]. Various apoE alleles are found in humans, however, individuals 
homozygous for apoE4 are 3-4 times more likely to have AD [19, 20]. ApoE is 
linked to high-density lipoprotein (HDL) in plasma and cerebrospinal fluid (CSF) 
and functions mainly to provide lipids to cells. Unfortunately at this time, much less 
is known of the unique distribution, transport and biochemistry of CSF and brain 
apolipoproteins compared to the plasma. ApoE affects lipid transport, neurite 
growth via low density lipoprotein (LDL) receptors and processes critical to neu­
rodegeneration [19]. ApoE forms are extensively O-glycosylated and glycation 
changes to apoE alter LDL and VLDL binding that can change specific receptor 
binding of these complexes [21,22]. Furthermore, the increase in advanced glyca­
tion end products that occur in AD co-localize with ApoE4, linking this phenotype 
with the plaque deposition in AD [23-26]. 

In addition to genetic predisposition, repeated head trauma may contribute to 
early onset of AD, perhaps by creating a dysfunctional blood brain barrier (BBB) 
[6]. Changes in BBB may allow environmental agents (organic solvent, heavy ciga­
rette smoking, industrial toxins, transition metals, AI, Fe) more access to the brain 
leading to higher incidences of AD [6, 7, 27-36]. Finally, demographic factors (age, 
gender, race, co-morbid conditions, especially cerebrovascular insults) may play 
important roles in AD [8,35,37]. While AD has been shown to be age-dependent, 
only small gender differences have been documented [38]. Overall, biochemical 
knowledge on the interplay of these contributing factors in AD pathogenesis is still 
limited. 

Brain lipids 

Lipids comprise approximately 50 percent of the dry matter of the brain and play 
important roles in brain function (signaling molecules, inducers of chemotaxis, pro­
and anti-inflammatory mediator formation, ion channel, receptor and membrane 
functions and an energy source). Major cerebral lipids (also found in lesser quanti­
ties in other organs) include cholesterol and cholesterol esters, glycerolipids, sphin­
golipids and ceramide. Apart from water, cholesterol is greater than any other sin­
gle constituent in the brain comprising 4-5% by mass. The most abundant form is 
free cholesterol that may be linked to other lipids or proteins. The fatty acid con­
stituents of cholesterol esters are oleic, palmitic, palmitoleic, and arachidonic acids. 
Levels of these esters are altered in autopsied AD brain with a significant decrease 
in unsaturated fatty acids [39,40]. Cholesterol levels are controlled by its synthesis, 
transport and metabolism. For example, higher activities of cholesterol ester hydro­
lase increase cholesterol levels, while lecithin cholesterol acyl transferase (LCAT) 
controls the reverse transport of cholesterol [41-43]. Conversion of cholesterol to 

esters or hydroxylation are critical events in AD pathology. Not surprisingly, levels 
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of 24 hydroxy cholesterol in CSF or plasma are very good correlates of AD pathol­
ogy [44,45]. Only trace amounts of free fatty acids are found in the brain and CSF, 
while most fatty acids are acylated into glycerides and their levels and distribution 
within glycerolipids and brain regions are altered in diseased conditions [46-51]. 
The brain is rich in very long chain polyunsaturated fatty acids (PUFA) obtained 
from dietary sources or synthesized from precursors by brain cells. Our data show 
that CSF contains various enzymes involved in PUFA binding, transport and degra­
dation [52]. Significant levels of the prostanoid metabolites, PGF2a (100-500 pg/ml) 
and 6-keto PGF1a (100 pg/ml) are found in CSF and these levels are increased many­
fold in pAD and other head traumas [53-56]. Compared to plasma, the CSF con­
tains less total lipid (400-800 mg/100 ml compared to 1-2 mg/100 ml) [57]. The 
distribution of lipids varies in brain regions or within cells. Certain membrane frac­
tions are enriched with unsaturated fatty acids or with plasmalogen-linked phos­
pholipids. Unsaturated fatty acids acylated onto phospholipids in myelin are main­
ly oleic acid while nerve endings contain mainly arachidonic acid (AA, 20:4, n-6) 
and docosahexaenoic acid (22:6, n-3) [57]. 

In the brain, turnover in lipids varies according to their precursor. The fastest 
phospholipid turnover occurs in phosphatidic acid (PA) and phosphatidylinositol 
(PI). In addition to the biosynthesis of phospholipids, there is rapid turnover of fatty 
acyl constituents. Changes in acyl constituents likely reflect function of fatty acids 
in the brain. Defects in lipid metabolism are enhanced in neurological disorders 
including AD. Various catabolic enzymes including phospholipases A2 (PLA2) and 
anabolic enzymes such as lysophospholipid acyltransferase that recycles lysophos­
pholipids into intact glycerophospholipids and glycerophosphocholine phosphodi­
esterase are decreased in AD brain regions. Enzymes involved in de novo synthesis 
(ethanolamine kinase, choline kinase) are normal or just slightly altered in AD [57]. 

Biosynthesis and sources of AA and other PUFAs 

Fatty acids are important in mammalian systems, being the structural elements of 
cell membranes, a source of energy and they provide signaling molecules that con­
trol cell growth, development, ion channel function and cell death. Most saturated 
and monounsaturated fatty acids are obtained from dietary sources or can be syn­
thesized by fatty acid synthetic machinery. However, precursors of PUFAs that are 
needed for regular functioning of cells can only be derived from dietary sources. 
These fatty acids are known as essential fatty acids (EFA). The two major classes of 
essential fatty acids are the n-6, derived from linoleic acid (LA) and the n-3 derived 
from a-linolenic acid (ALNA). A series of desaturation (~6- and ~5-desaturase) and 
elongase enzymes convert LA and ALNA to longer chain PUFAs (Fig. 1) [58]. The 
major PUFAs found in brain are arachidonic acid (AA, 20:4, n-6), docosahexaenoic 
acid (DHA, 22:6, n-3) and eicosapentaenoic acid (EPA, 20:5, n-3). DHA and EPA 
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can also be derived from fish oils [59]. AA is the major substrate for the production 
of lipid mediators of inflammation. Evidence for a major role of PUFAs in brain 
physiology are provided by studies showing their enhanced elongation and desatu­
ration during myelination. In vitro studies show that cerebral microvascular 
endothelium and astrocytes can produce DHA and AA via elongase and desaturase 
activities [60]. In contrast, neurons cannot produce PUFAs but get enriched with 
PUFAs if they are co-cultured with astrocytes and endothelial cells. In addition to 
synthetic pathways for PUFA, the brain may also obtain dietary PUFA via fatty acid 
binding proteins. Little is known of the plasmalCSFlbrain differences in sources of 
PUFA. For example, does the brain obtain all PUFAs from the plasma or is there 
substantial de novo synthesis of PUFAs by the brain? Do PUFAs from the plasma 
diffuse into the brain or is there active transport through receptor-mediated process­
es? Is the PUFA transport mechanism similar to that of cholesterol utilizing lipopro­
teins (HDL and LDL) and their receptors? Is there a preference for n-6 or n-3 fatty 
acid biosynthesis by astrocytes? Are all apolipoprotein species found in the brain 
involved in PUFA transport? These important questions are being addressed as our 
knowledge about apolipoproteins is increased. For example, it is now known that 
various apolipoproteins present in CSF are composed of phospholipids that contain 
PUFA [19] and brain DHA is suggested to be important in brain development, plas­
ma membrane composition, neuroplasticity, aging, neuronal ion channels and in 
signal transduction [61]. 

The major biochemical processes involved in AA metabolism and their potential 
to influence AD are summarized in Figure 1. Very low levels of free PUFA are main­
tained in mammalian cells. Free PUFAs in plasma are closely associated with 
lipoproteins, albumin or fatty acid binding proteins. Once presented to mammalian 
cells, PUFAs are rapidly converted to acyl CoAs by synthetases [62]. PUFA acyl 
CoAs are rapidly incorporated into glycerolipids by CoA dependent enzymes [63, 
64]. This initial incorporation is accompanied by remodeling of PUFA into ether­
linked plasmalogen lipid pools that comprise the major repository of PUFA in the 
brain. The remodeling and release of PUFA from glycerolipids is important in main­
taining homeostasis and in regulating cell function [65-69]. 

Uptake and transport of PUFAs 

PUFAs and other major brain lipids such as cholesterol are transported in plasma 
bound to lipoproteins (presumably also in CSF, but this is not confirmed). PUFAs 
are activated by synthetases and then incorporated into glycerolipids or cholesterol 
esters by CoA dependent acyl transferases. Once obtained from the diet, fatty acids 
are presented to cellular tissues as complexes associated with binding proteins, albu­
min or apolipoproteins. Upon contact with cells, proteins with high affinity for 
PUFAs (fatty acid translocase or fatty acid binding protein (FABP) mediate dissoci-
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AA metabolism 

AA is obtained from the diet or from elongationldesaturation of LA (18:2, n-6) or retro con­

version of other longer chain PUFAs. AA is converted to AA-CoA by acyl CoA synthetase and 

is rapidly incorporated into cellular lipids by acyl transferase activity. AA in phospholipids is 

remodeled from 1-acyl-linked to 1-alkyl- or 1-alk-1-enyl-linked phospholipid classes by 

transacylases. Cholesterol esters are also formed by LCAT that is associated with apo-A1 

from HDL. Various fatty acid binding proteins (FABP), phospholipid transport proteins (PLTP) 

and cholesterol ester transfer proteins are coupled with cells or lipoproteins and albumin to 

deliver lipids to tissues. 

ation of these complexes. Flip-flop of fatty acids across the lipid bilayer is associat­
ed with cytosolic FABP or with caveolin-l containing vesicles known as caveolae. 
Caveolae deliver lipids to subcellular organelles. The transport of fatty acids may be 
accompanied by activation by acyl CoA synthetase and targeting to specific mem­
branes controlled by anchoring to phospholipid bilayers. 

Edmond has suggested that there is selective uptake of essential PUFA by the 
brain based on studies showing that linoleic acid (18 :2, n-6) enters the brain while 
oleic acid (18:1, n-9), cholesterol and other non-essential fatty acids do not enter the 
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brain [70]. Capillary networks composed of endothelial cells have receptors for 
lipoproteins but do not use LDL-cholesterol. The recent discovery of a transmem­
brane monocaboxylic acid transporter (MCT) and fatty acid transport proteins 
(FATPs) that are positioned at the inner luminal membrane allow essential PUFAs 
to be transported into the brain [70]. 

In addition to esterification to glycerolipids, PUFAs are also acylated into cho­
lesterol and are similarly transported bound to lipoproteins. Low-density lipopro­
tein (LDL) transports cholesterol from the liver to peripheral tissues while HDL 
transports cholesterol from the periphery to the liver for excretion as bile salts 
[71-74]. HDL is a macromolecule made up mainly of phospholipids, cholesterol 
and little triglycerides complexed to apolipoproteins. The major apolipoprotein in 
HDL is apoA-l which is synthesized and secreted by the liver. Nascent HDL con­
taining apoA-l interacts with cells to acquire cholesterol and phospholipids. Prop­
erties and functions of HDL include promotion of cellular cholesterol efflux, reverse 
cholesterol transport, anti oxidation (protects LDL from oxidation), anti-inflamma­
tion (induces nitric oxide) and anti-coagulation properties. HDL also transports 
cholesterol to steroidogenic tissues where it is used as the major precursor for the 
synthesis of steroid hormones. Cholesterol esters are also transferred to apoB-l con­
taining lipoproteins in exchange for triglycerides through the action of cholesterol 
ester transfer protein (CETP). The transport of cholesterol from tissues to the liver 
is commonly referred to as "reverse transport" and is linked to an enzyme known 
as lecithin cholesterol acyl transferase (LCAT) [42]. 

LCAT catalyzes the transfer of a fatty acid from lecithin (phosphatidylcholine) 
to cholesterol to form cholesterol esters and lysophosphatidylcholine (LPC) (Fig. 1). 
The reaction takes place on the surface of high-density lipoprotein (HDL) in sever­
al steps including interfacial binding to HDL and activation of LCAT by apo-Al, 
PC binding, acyl enzyme formation, release of LPC, cholesterol binding and is ter­
minated by the release of cholesterol ester and LCAT. In addition to cholesterol, 
LCAT can also esterify steroid hormones such as pregnenolone and dehy­
droepiandrosterone and has been shown to convert 25-hydroxycholesterol, an AD 
marker, to diester by acylating carbon 3 and carbon 27 [75-77]. LCAT can also use 
phosphatidylethanolamine as a fatty acyl donor but has no reactivity towards phos­
phatidylserine or diacylglycerol. LCAT also transesterifies and hydrolyzes platelet­
activating factor and oxidized PC molecules containing short chain fatty acids at the 
sn-2 position. LCAT is a 49-60 kDa glycoprotein consisting of ~ sheets and a-heli­
cal elements that was first identified in the late 1960s by Glomset [78]. The human 
LCAT gene located on chromosome 16 was first cloned by McLean and colleagues 
[79, 80] and subsequently chemically sequenced in 1987 [81, 82]. The 416 amino 
acids sequence has four heterogeneous N-glycosylation sites and six cysteine 
residues with two disulfide bonds that are implicated in lipoprotein binding but not 
in enzyme activation. An Asp-His-Ser catalytic triad catalyzes the transesterification 
reaction. Conversion of cholesterol to esters results in the removal of cholesterol 
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from the surface of HOL concomitant with the accumulation cholesterol esters in 
the core of HOL. This process promotes the flux of more cholesterol from cell mem­
branes into HOL and the HOL particle grows in size as more esters are transported 
to the HOL core. LCAT is synthesized mainly by liver cells and circulates in associ­
ation with lipoproteins. The brain also produces LCAT and low levels of LCAT have 
also been found in CSF amounting to 2.2 % of the activity in plasma. However, the 
function of LCAT in the brain has not been determined. In animals with LCAT defi­
ciency, cholesterol and cholesterol esters accumulate in tissues and blood cells. This 
accumulation alters cell and lipoprotein structure and function resulting in familial 
LCAT deficiency or Fish eye disease [42, 83, 84]. 

Several studies have implicated cholesterol homeostasis with AO pathology. 
Cholesterol reducing drugs have no effect or very modest effect on LCAT expres­
sion. However, various substrates and fatty acids can influence LCAT expression or 
activity. For example, supplementation with LA increases LCAT activity while OHA 
reduces LCAT activity. Other evidence that LCAT is involved in cholesterol metab­
olism is derived mainly from transgenic animal studies. Transgenic mice over­
expressing LCAT and fed with cholesterol increased apoE-containing cholesterol 
esters in HOL1 particles [85]. Over-expression of LCAT also delays the catabolism 
of apoA-l while deficiency results in reduction in HOL-c and apoA-1. Positive cor­
relation between LCAT activity or mass and HOL-c has been established [86]. 
Together, these studies show that LCAT is an important enzyme in regulating cho­
lesterol and fatty acid levels as well as in controlling the biosynthesis of steroid hor­
mones. 

Degradation of brain lipids 

Once AA and other PUFAs are acylated into glycerolipids of the brain, they can be 
degraded by enzyme-catalyzed processes or by auto-catalyzed oxidative processes. 
These processes generate potent mediators of inflammation and cytotoxic lipid rad­
icals that are implicated in AO pathology. 

Release of PUFA from lipids 

Pro-inflammatory microglia, reactive astrocytes and their associated cytokines and 
chemokines are linked to the mobilization of PUFAs as an integral part of the 
inflammatory process [87]. The release of PUFAs is mediated by cellular and secre­
tory lipases. Secretory phospholipase A2 (sPLA2) has the ability to hydrolyze HOL 
phospholipids. Inducible oxidoreductase enzymes and cytosolic phospholipase A2 
(cPLA2) are strongly activated during brain trauma, epilepsy and AO [88]. Proper­
ties of secretory PLA2 and intracellular PLA2 are reviewed in the chapters by Bar-
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bour et al., Marion and Fonteh, and Balsinde et al., in this volume. Lipoprotein 
lipase (LPL) hydrolyzes triglycerides resulting in enhanced transfer of lipids from 
apolipoproteins to HDL. LPL is an extracellular enzyme that enables tissues to 
import fatty acids from triacylglyceride-rich lipoproteins. LPL occurs in all tissues 
induding the brain where its function is not known. LPL activity is high in newborn 
brain and this activity increases during postnatal development. The hippocampus 
shows the highest LPL activity where levels are 5-11-fold higher than other sections 
of the brain. 

Generation of lipid mediators 

Cydo-oxygenase (COX) also known as prostaglandin H synthase (PGHS) catalyzes 
the conversion of arachidonic acid (AA) to prostaglandin Hz (PGHz), an interme­
diate in the synthesis of prostaglandins (PGEz, PGFzu, PGDz, PGIz), and throm­
boxane Az (TXBz) [89]. mRNA and protein levels of one COX isoform (COX-2) 
have been shown to be induced by endotoxin and inflammatory cytokines in brain 
astrocytes and glial cells [90]. COX can also convert other PUFAs into oxidized 
lipids; however, AA is the best substrate. COX has two different enzymatic activi­
ties: the formation of PGGz from oxygen and AA by a cydo-oxygenase; the reduc­
tion of PGGz to PGH2 catalyzed by hydroperoxidase. The COX intermediate PGH2 

is the substrate for terminal synthases that convert it to PGD2 (PGDS), PGE2 

(PGES), TXB2 (TBXS) and PGIz (PGIS) [91] (Fig. 2). Induction of COX-2 plays an 
important role in inflammatory disease by increasing the formation of these lipid 
mediators. NSAIDs prevent the formation of lipid mediators of inflammation by 
inhibiting COX activity [92]. Our data show an increase of PGDS in CSF of AD 
subjects [93] and studies by Bazan's group show the induction of COX-2 mRNA in 
the brain of AD subjects [87]. Likewise Morrow and colleagues have shown an 
increase in PGE2 levels in CSF from pAD subjects compared to controls [54]. Post­
mortem brain studies also show neuronal COX-2 content to be an indicator of early 
AD dementia [94]. Together with data showing the induction of cPLA2 that releas­
es AA from membrane lipids, these data suggest that pro-inflammatory lipid medi­
ator pathways may playa role in the pathogenesis of AD. In addition to COX­
derived products, PUFAs may also be converted to leukotrienes by the lipoxygenase 
(LO) pathways [95, 96]. Very little is known about LO pathways in the brain. 
However, various studies have shown that brain cells express LO [97, 98]. Any 
changes in levels of these products in AD compared with "controls" will suggest a 
role of LO-derived products in disease. Finally, PUFAs are also substrates of 
cytochrome P450 (CYP) enzymes [99]. These enzymes convert PUFAs such as AA 
to conjugated dienols, co-terminal hydroxylated alcohols and cis-epoxye­
icosatrienoic acids (EETs) [100]. These compounds have been shown to regulate 
cellular proliferation, inflammation and to be involved in many signaling pathways. 
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Remodeling of arachidonate and other polyunsaturated fatty acids in Alzheimer's disease 
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Formation of mediators of inflammation and membrane perturbation in AD 

AA in phospholipid membranes or in lipoproteins is mobilized by PLA2 or lipoprotein lipase 

activity, respectively. Release of fatty acid from cellular membranes or from lipoproteins dis­

turbs their structure and function . In addition to lipases, autoxidation of PUFAs generates 

reactive phospholipid species that also destroy membrane integrity. Free AA is converted to 

lipid mediators of inflammation by various oxygenases and the perturbed cellular membrane 

exposes amyloid precursor proteins (A) to secretases (8 and C), making them more suscep­

tible to the amyloidogenic processing. Generation of lipid mediators of inflammation cou­

pled with the destruction of cellular membranes may result in apoptosis of brain cells and 

the propagation of AD pathology that is typified by increased amyloid peptide cleavage and 

deposition of plaques in the brain. 

Similar to LO products, little is known about the production of CYP products in 
the brain. However, oxidized EETs have been shown conjugated to phospholipids 
and these could potentially alter lipoprotein and cell membrane structure and func­
tion (Fig. 2), but this is not established for plasma or brain. HDL lipoproteins in 
patients with dementia showed reduced AA (20:4, n-6) compared to normal con­
trols, likely due to enhanced degradation by enzymes or increased auto peroxida­
tion [101] . 
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Auto-oxidation of PUFAs 

Since PUFAs are important in cell membrane structure and function, they can play 
a role in AD in one of three ways. First, PUFA are essential in brain physiology. 
Therefore any change in their composition or their distribution in the brain or in 
the blood cells is likely to have pathophysiological ramifications. A second role of 
PUFAs in AD reflects their inflammatory properties. In the context of an inflam­
matory process, PUFAs may be mobilized from cells by lipases [102]. Free PUFAs 
can be reduced and oxidized by enzymes to form inflammatory products. This 
inflammatory process is enhanced in AD compared to normal subjects. Thirdly, a 
decrease in the antioxidant defense system will result in the autoxidation of PUFAs. 
This auto oxidative process is catalyzed by free radicals and results in the forma­
tion of cytotoxic aldehyde products, isoprostanes and oxidized lipoproteins. Mon­
tine and colleagues have done extensive studies, which suggest that there is 
increased oxidative damage, and enhanced lipid peroxidation of PUFA rich lipids 
in AD brain tissues [54, 104-106]. The following pieces of evidence are cited as evi­
dence: 

1) Lipoproteins from AD extracellular fluid are more vulnerable to oxidation than 
controls. 

2) ApoE is a major apolipoprotein in the eNS that is implicated in lipid transport 
and receptor-mediated regulation of lipid metabolism. Inheritance of the apoE4 
allele is the strongest known genetic risk factor for sporadic AD. 

3) ApoE isoforms may influence cellular distribution of peroxidation products in 
the brain by influencing lipoprotein trafficking and lipid oxidation and the con­
vergence of these processes contributes to neurodegeneration in AD brain. 

4) Mass spectrometric data show that there is enhanced formation of reactive prod­
ucts of auto-oxidized PUFAs known as isoprostanes [54, 104-106]. 

Similar to the enzyme-catalyzed breakdown of PUFA-containing lipids, auto-oxi­
dized lipids perturb the cellular structure of cell membranes and lipoproteins lead­
ing to dysfunction of these entities and thence AD pathology. Oxidation of PUFAs 
that are components of lipids that make up lipoproteins may alter lipoprotein func­
tion and increase its reactivity towards brain cells (Fig. 2). Autopsy studies and 
analyses of spinal fluids show that AA and DHA are oxidized to F2 and F3 series iso­
prostanes, respectively in the brain of AD subjects [107-111]. Theoretically, lipid 
changes would enormously influence many of the hallmarks of Alzheimer's disease 
(AD). Most prominently, a lipid-depleted plasma membrane would ease production 
of deadly f3Al - 42 , since a secretase would more easily access a longer stretch of the 
peptide chain as it protrudes from a shrunken lipid bilayer [101, 103]. Amyloido­
genic processing of proteins will generate cytotoxic peptides and result in the for­
mation of protein plaques. Likewise, the exposure of nerve cells to oxidative break-
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down products of PUFA or peptide fragment may induce neurodegeneration via 
apoptosis. 

Other oxidative processes and AD 

The loss of an electron by a compound is known as oxidation. Chemical species 
known as free radicals initiate oxidation of macromolecules in biological systems. 
Free radicals contain an unpaired electron and are thus very reactive because they 
can gain electrons from other molecules. Molecules that donate their electrons are 
known as oxidizing agents. In cells, cellular metabolism and exposure to environ­
mental factors result in free radical generation. The most common free radicals are 
superoxide (Or), hydroxyl (OH2·) and nitric oxide (NO) [112-114]. Molecules 
such as hydrogen peroxide (H20 2) and peroxynitrate (ONOO-) readily generate 
free radicals through various chemical reactions. Reactive oxygen species (ROS) is 
a general term for all free radicals and related molecules. Regular metabolic process 
such as the formation of excitatory amino acids and neurotransmitters produce 
ROS. For example, activation of glial cells results in enhanced production of NO via 
five-electron oxidation of L-arginine [115, 116]. NO synthase (NOS) mediates NO 
production. Because these compounds can cause oxidative damage to lipids, pro­
teins and DNA, cells tightly control production of ROS. An imbalance in ROS pro­
duction and inability to defend against them is known as oxidative stress. 

Because of the ability of ROS to cause cell injury, oxidative stress is now con­
sidered to playa major role in the pathogenesis of AD [117]. Cells control ROS 
using an antioxidant defense system. The major components of this system are 
enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase) that 
destroy ROS, low molecular weight antioxidants (glutathione, tocopherol, ascorbic 
acid, retinoic acid, melatonin, uric acid, and lipoic acid), cofactors such as co­
enzyme QlO, precursors of antioxidants (acetylcysteine, caretenoids) and natural 
plant compounds such as flavonoids [118-120]. Recent studies have shown that 
amyloid peptides may also have anti-oxidative properties leading to speculations 
that their occurrence in AD may be the result of the body mounting a defense 
against ROS produced by activated microglial cells [121]. However, most links 
between oxidative stress and AD have not been biochemically proven in human sub­
jects. Since their double bonds make them more susceptible to oxidation, a decrease 
in oxidant defense will destroy PUFAs. Such destruction of PUFA in the brain will 
result in altered membrane structure and nerve function. One implication of such a 
membrane change is to contribute to the abnormal cleavage of ~A: a lipid-damaged 
cell membrane might enable greater access by secretases, to a more proximal region 
of ~APP and this mechanism may participate in the increased production of amy­
loid fragments. Oxidized PUFA are also cytotoxic and can induce nerve cell death 
[122]. Various studies showing an increase in lipid peroxidation in AD suggest that 
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the destruction of PUFA may be one mechanism by which oxidative stress is linked 
to the pathogenesis of AD. 

Role of metals and trace elements in the oxidation of PUFAs 

Metals and trace elements play important roles in PUFA metabolism. Metals and 
elements enter the body through food and diet or from respiration. Metals are 
important cofactors or components involved in antioxidant defense mechanisms. 
For example, activation of SOD requires copper and zinc [123-125]. Zinc plays an 
essential biochemical role in participating in the synthesis/degradation of macro­
molecules including lipids. Copper is widely distributed in metalloproteins/enzymes 
and is a major component of respiration. It is an essential component of erythro­
cytes and plasma where it is mostly bound to caeruloplasmin and closely linked to 
iron metabolism. Selenium is a constituent of glutathione peroxidase that is a com­
ponent of the antioxidant defense system of the body [126, 127]. Molybdenum, 
manganese and vanadium are also activators of several enzymes while vanadium 
plays a role in lipid metabolism [128]. Other metals are known to be neurotoxic 
(aluminum, lead, cadmium, mercury) and are implicated in AD etiopathogenesis 
through mechanisms that are not well defined [31, 129-133]. While no biological 
function has been attributed to aluminum, it is known to interact and reduce the 
absorption of calcium, iron, manganese and phosphorus [134]. Therefore, any neu­
rological or neurobehavioral effects of aluminum may be due to the alteration of the 
metabolism of other metals. In addition to being components of enzymes, metals 
can also serve as scavengers that prevent free radical formation. While trace 
amounts of elements can be protective, higher levels or alterations in homeostatic 
control of metals may induce the formation of free radicals that would destroy 
PUFA. 

Clinical trials 

There is presently no cure for AD and no treatment to prevent the gradual progres­
sion of the disease. However, remedial medication may help symptoms and make 
patients more comfortable by controlling sleeplessness, agitation, wandering, anxi­
ety, and depression. For example, in the early or middle stages of AD, tacrine may 
alleviate some cognitive symptoms and acetylcholinesterase inhibitors (donepezil) 
and rivastigmine) are prescribed for the treatment of mild to moderate dementia 
related to AD. Various clinical trials have examined the effects of NSAIDs, antioxi­
dants, and metal chelators on AD development [135-138]. Most of these studies are 
based on circumstantial evidence or on mouse studies that cannot be duplicated in 
human subjects. Epidemiological and longitudinal studies have identified a reduced 
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risk for AD in patients « 70 yrs) previously treated with NSAIDs for non-CNS 
afflictions such as arthritis [139]. Prospective clinical studies targeting COX-2 are 
now using more specific inhibitors to avoid gastrointestinal side effects that limited 
initial trials [140]. However, this new generation of COX-2 inhibitors may also have 
detrimental side effects because they inhibit a whole spectrum of prostanoids need­
ed for normal physiologic actions of organs (heart, kidney) [141-143]. In addition 
to COX inhibition, mouse studies have shown that NSAIDs also inhibit secretases, 
thus preventing ~A formation [144]. In vitro studies also suggest that NSAIDs may 
directly scavenge superoxide [145]. The overall effects are to prevent inflammation 
and oxidative damage. Our studies also show that preventing the conversion of 
PUFAs to lipid mediators by NSAIDs results in the increase of free PUFA levels in 
cells and a shift in their distribution in glycerolipids subclasses [146]. An under­
standing of specific pathways and mechanisms will enable us to design interventions 
that may lessen AD progression and reduce the side effects of current therapy. 

Similar to the NSAID studies, vitamins Bl, B12, C, E, folate, choline, magne­
sium, DHA, phosphatidylserine, DHEA, NADH, acetyl-L-carnitine, melatonin and 
Ginkgo Biloba extract supplements have been administered to AD patients without 
clear biochemical rationales [147-149]. Thus, while minor beneficial outcomes have 
been reported in some of these studies, it is difficult to scientifically evaluate these 
approaches without mechanism-based data. Lipids and their products are associat­
ed with nearly all of these agents and baseline lipid biochemistry will allow predic­
tions of lipid altering substances. Furthermore, baseline studies will then enable 
appropriate monitoring of any treatments. 

Conclusions and implications 

A biochemical baseline for lipid composition and metabolism in the brain, CSF and 
plasma, including post-translational modifications, will likely predict candidate 
lipid markers for early diagnosis of AD, determine which patients might respond to 
specific treatments and lead to a better understanding of the underlying pathophys­
iology of AD. There may be a need to replenish PUFA in adult brain using dietary 
manipulations or identify enzymes that destroy PUFAs in AD in order to direct 
effort to selectively inhibit specific pathways. Determining whether a decrease in 
PUFA biosynthesis and transport or whether enhanced oxidation accounts for the 
decrease in PUFA in the adult brain will better define the use of antioxidants as 
remedies for AD progression and provide assays to monitor their efficacy. It might 
turn out that agents that cross the blood brain barrier are needed to control PUFA 
levels in brain. Alternatively, agents that control PUFA levels in plasma may be suf­
ficient in maintaining physiologic levels of PUFA or preventing their destruction. A 
combination of dietary manipulation with enzyme inhibitors or antioxidants may be 
required for effective control of PUFA levels in the adult brain. Future studies are 
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needed to validate all enzyme inhibitors and nutraceuticals approaches that are 
presently used for AD management. 
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Introduction 

Since the early concepts on the importance of the phagocyte in the host defense and 
inflammation as introduced by Metnivos more than 100 years ago (for which he 
was awarded the Nobel prize) the focus of research in inflammation was maintained 
with the credo - elucidate the chemical mediators that could cause/mediate the car­
dinal signs of inflammation - heat, redness, swelling, pain and loss of function. 
Inflammation initially involves the recognition of self and non-self by leukocytes. It 
is now clear that a diverse range of endogenous chemical mediators control these 
events and orchestrate the host response [1]. These small chemical signals regulate 
leukocyte traffic as well as the cardinal signs of inflammation. It is well established 
that the classic eicosanoids such as prostaglandins (PG) and leukotrienes (LT) play 
important roles and exert a wide range of actions in responses of interest in inflam­
mation [2]. In recent years, the scope and range of chemical mediators identified has 
expanded considerably [1] to include novel lipid mediators, many new cytokines 
and chemokines, gases (i.e., nitric oxide and carbon monoxide), and reactive oxy­
gen species as well as new roles for nucleotides as mediators such as adenosine [3-S] 
and the most recently uncovered of this class, namely inosine monophosphate 
(IMP), that also regulates neutrophil (PMN) trafficking [6]. 

A body of evidence demonstrated that endogenous mediators are generated to 
dampen the host response and orchestrate resolution [1, 7, 8]. In this regard, the 
lipoxins (LX) were the first to be identified and recognized as endogenous anti­
inflammatory lipid mediators relevant in resolution in that they can function as 
"braking signals" or chalones in inflammation (Fig. 1) [9]. It is of particular inter­
est that aspirin (ASA), a widely used non-steroidal anti-inflammatory drug with 
many beneficial properties [10] in addition to its well-appreciated ability to inhibit 
PG [11], also triggers the endogenous generation of IS-epimeric LX, termed aspirin­
triggered LX (ATL). This occurs via acetylation of cyclooxygenase (COX)-2 at sites 
of inflammation in vivo [12] (vide infra) that carry anti-inflammatory and anti-pro-
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Resolution circuits in inflammation: Novel lipid mediators 

During cell-cell interadions, lipid-derived mediators can be amplified (e.g., PG and LT) to 

enhance the adions of signal molecules, or braking signals (e.g., LX, ATL and resolvins) that 

can be generated via cell-cell interactions to limit further PMN recruitment and promote res­

olution. 

liferative actions [13, 14]. This is a previously unappreciated and novel mechanism 
of drug action that has intriguing implications for targeted drug design. But more 
importantly, they help to further illustrate the importance of endogenous generation 
of lipid mediators with anti-inflammatory properties. 

As a class, LX, ATL and their analogs possess physiologic, pathophysiologic and 
pharmacological actions in several target tissues. Each action of lipoxins is stereo­
selective in that changes in potencies accompany double bond isomerization and 
change in alcohol chirality (R or S) at key positions, as well as selective dehydro­
genation of alcohols and reduction of double bonds. The self-limited impact of LX 
in the local micro-environment suggests that they contribute to resolution of injury 
sites and/or resolve inflammatory loci by regulating further recruitment of PMN and 
stimulating monocyte migration to promote healing and remodeling. LXA4 stimu-
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lates rapid lipid remodeling within seconds and releases arachidonic acid within 
PMN but without oxygenation, which is sensitive to pertussis toxin (PTX) treat­
ment [15, 16]; findings that pointed to the involvement of a G protein-coupled 
receptor (GPCR) in the actions of LX on human leukocytes. This specific GPCR was 
identified and cloned in human and mouse, and denoted LXA4 receptor (ALX). 
Together, they were identified as the first cloned lipoxygenase (LO)-derived eico­
sanoid receptors. 

The traditional approach to develop anti-inflammatory drugs, as in other human 
conditions amenable to pharmacologic interventions, is the use of biosynthesis 
inhibitors and receptor antagonists of pro-inflammatory mediators, which indeed 
have enjoyed both considerable clinical and commercial successes [1, 17], but are 
not without significant unwanted side effects [18-20]. Hence, the emergence of 
endogenous pathways and cellular mechanisms involved in counter-regulation of 
responses that can lead to tissue injury and acute inflammation not only charts rel­
atively unappreciated sides of human biology [21, 22], but also provides an oppor­
tunity to explore new therapeutic approaches based on these novel endogenous 
mechanisms that may reduce the possibilities for unwanted toxic side effects and 
help control inflammation with a high degree of precision. 

Biosynthesis of lipoxins and aspirin-triggered lipoxins 

Transcellular biosynthesis of LXs: The role of cell-cell interactions 

Formation of LXs are promoted during platelet-leukocyte interactions and/or 
platelet-leukocyte micro-aggregates [23] by transcellular conversion of the leukocyte 
5-lipoxygenase (LO) epoxide product LTA4 (Fig. 2, right side). Once thought to be 
solely an intracellular intermediate in LT production, it is now clear that LTA4 
released by activated leukocytes is available for enzymatic conversion by neighbor­
ing cell types [5, 24]. When platelets are adherent, their 12-LO converts LTA4 to 
lipoxin A4 and B4. For a review and mechanistic details with recombinant 12-LO, 
see [22]. Hence it is important to note that human platelets, which do not produce 
LX on their own, become a major source of LX, given their abundance in vivo and 
their highly active 12-LO. 

The second classical pathway for LX production is initiated by 15-LO (Fig. 2, 
left side) in airway epithelial cells, monocytes or eosinophils, which up-regulate their 
15-LO when exposed to cytokines such as IL-4 or IL-13 [25, 26]. The 15-LO, by 
definition, inserts molecular oxygen at the carbon 15 position of, for example, 
arachidonic acid, in the "5" configuration. When these cell types are activated, they 
generate and release 155-HETE, which is rapidly taken up and converted by PMN 
to LX via the action of their 5-LO. This event not only leads to LX biosynthesis, but 
also "turns off" LT formation. 
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Transcellular Iipoxin biosynthesis 

During cell-cell interactions, Iipoxins can be amplified by transcellular biosynthesis via the 

interactions of two or more cell types. Two main pathways appear to be used in human cells 

and tissues to generate LX. This event also blocks LT formation and therefore regulates 

leukocytes. 

Biosynthesis of aspirin-triggered Jipoxins via aspirin-acetylated COX-2 

We sought evidence for alternate explanations for ASNs therapeutic actions because 
many beneficial new actions have been documented in recent clinical studies. These 
new potential therapeutic indicators for ASA include decreasing incidence of lung, 
colon, and breast cancer (reviewed by Levy [27]), and prevention of cardiovascular 
diseases [28]. Inhibition of cyclo-oxygenase and biosynthesis of prostaglandins can 
account for many of ASNs therapeutic properties [29]; however, its ability to regu­
late neutrophil-mediated inflammation or cell proliferation remains of interest. 
Along these lines, we uncovered a new action of aspirin that involves COX-2-bear-
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ing cells such as vascular endothelial cells or epithelial cells and their co-activation 
with PMN (Fig. 3). Hence, inflammatory stimuli (i.e., TNF-a, LPS, etc.) induce 
COX-2 to generate 15R-HETE when ASA is administered [13]. This intermediate 
carries a carbon-15 alcohol in the R configuration that is rapidly converted by 5-LO 
in activated PMN to 15 epimeric-LX, or LX that carry their 15 position alcohol in 
the R configuration [22] rather than 15S native LX, which in humans can result 
from LO:LO interaction. 5-LO conversion of 15R-HETE also results in inhibition 
of LT biosynthesis [14]. 15R-HETE is a major product of arachidonic acid in sev­
eral cell types when COX-2 is up-regulated after acetylation by ASA. Thus, it is pos­
sible that aspirin can regulate the in vivo production of LT by 15R-HETE conver­
sion to 15-epi-LX, and 15-epi-LX can in turn also regulate the cellular actions of LT. 

LXB4 is a positional isomer of LXA4, carrying alcohol groups at carbon 5S, 14R, 
and 15S positions, instead of the C-5S, 6R, and 15S positions present in LXA4. 
Aspirin-triggered LXB4 carries a 15R alcohol, hence 15-epi-LXB4. Although LXA4 
and LXB4 show similar activities in some biologic systems [30], in many others each 
shows distinct actions ([31] and reviewed in [22]). 15-epi-LXB4, for example, is a 
more potent inhibitor of cell proliferation than LXA4 or 15-epi-LXA4 [22]. 

Generation of lXA4 and 15-epi-lXA4 in animal models and in 
human diseases 

LXA4 is produced in vivo during the course of inflammation such as in an experi­
mental immune complex glomerulonephritis model [32, 33] and in pleural exudate 
upon allergen challenge in rats [34]. Also, endogenous LXA4 was also produced in 
ischemic lungs and elevated by reperfusion in a hind limb ischemia reperfusion 
model [35]. A recent report demonstrated that LXA4 is generated during microbial 
infection reported in a T. gondii-exposed murine model [36, 37] as well as in a 
murine model of asthma [38]. In addition, LXA4 is formed in rat brain and elevat­
ed in focal cerebral ischemia [39]. In human subjects, a reduction and alteration in 
LX generation was found in patients with chronic liver disease [40] and chronic 
myelogenous leukemia [41-45]. These diseases contrast with recent findings that 
LXA4 production is up-regulated in localized juvenile periodontitis [46] and mild 
asthma [47], as well as following atherosclerotic plaque rupture [48], and with nasal 
polyps [49]. 

Recently, using a newly developed specific enzyme-linked immunosorbent assay 
(ELISA) method and liquid chromatography tandem mass spectrometry (LC-MS­
MS) system [12], 15-epi-LXA4 could be detected in vivo. For examples, 15-epi­
LXA4 was generated in murine peritonitis [12] and murine dorsal air-pouches [50], 
and also was detected in rat kidney [33] and liver [51] in an aspirin-dependent man­
ner. Along these lines, it was reported that ASA rapidly up-regulates COX-2 expres­
sion in the stomach and causes a significant increase in gastric 15-epi-LXA4 pro-
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Table 1 - Lipoxin A4 and human diseases 

Organ/System Impact in vivo Refs. 

Hematologic Defect in LX production with cells from chronic myeloid [42] 

leukemia patients in blast crisis 

LX stimulate nuclear form of PKC in erythroleukemia cells [121] 

Formation of LX by granulocytes from eosinophilic donors [122] 

Cardiovascular Angioplasty-induced plaque rupture triggers LX formation [48] 

Dermatologic LXA4 regulates delayed hypersensitive reactions in skin [123] 

Pulmonary LXA4 detected in bronchoalveolar lavage fluids from [124] 

patients with pulmonary disease and asthma 

Production of LX by nasal polyps and bronchial tissue [49] 

LXA4 inhalation shifts and reduces LTC4-induced [125] 

contraction is asthmatic patients 

Aspirin-intolerant asthmatics display a lower biosynthetic [53] 

capacity than aspirin-tolerant patients 

LXA4 inhibits IL-8 release by monocytes from asthma [47] 

patients 

Hepatic LX generation decreased in cirrhotic patients [40] 

Rheumatoid arthritis LX levels increase with recovery [126] 

Oral LXA4 production is up-regulated in localized juvenile [46] 

periodontitis 

duction in rats [52]. These methods (e.g., LC/MS/MS and ELISA) were used to eval­
uate ATL and LXA4 formation in ASA-tolerant and ASA-intolerant asthmatics and 
their relation to leukotriene C4• Of interest, the ASA-tolerant subjects generated 
both LX and ATL, but the ASA-intolerant patients proved to have a diminished 
capacity to generate ATL and LX upon ASA challenge [53]. The lower levels of these 
potentially protective mediators could contribute to the pathobiology of this chron­
ic disorder in that the disease state is not only characterized by the overproduction 
of pro-inflammatory mediators but the loss or reduction in LX and ATL that may 
keep inflammation in check. Together, this result indicates that alterations in LX 
and ATL levels may be linked to the pathophysiology of several human diseases and 
may display local organ-specific functions that stand apart from their roles in 
inflammation and within local inflammatory lesions (Tab. 1). 

175 



Charles N. Serhan and Nan Chiang 

Stable analogs of LXA4 and 15-epi-LXA4 resist rapid metabolic inactivation 

Enzymatic inactivation of LXs: Structure requirements for LXA4 
anti-inflammatory actions 

As other autacoids, lipoxins are rapidly generated in response to stimuli, act locally 
and then are rapidly enzymatically inactivated. The major route of LX inactivation 
is through dehydrogenation by monocytes that convert LXA4 to 15-oxo-LXA4, fol­
lowed by specific reduction of the double bond adjacent to the ketone [21]. 15-
hydroxy/oxo-eicosanoid oxidoreductase (15-PGDH) catalyzes the oxidation of 
LXA4 to 15-oxo-LXA4 (Fig. 4). This compound is biologically inactive and is fur­
ther converted to 13,14-dihydro-15-oxo-LXA4 by the action of LXAiPGE 13,14-
reductaseILTB4 12-hydroxydehydrogenase (PGRlLTB4DH). Moreover, reduction of 
the 15-oxo-group by 15-PGDH yields 13,14-dihydro-LXA4, revealing an addition­
al catalytic activity for this enzyme [54]. LXB4 can also be dehydrogenated by 15-
PGDH at carbon-5 to produce 5-oxo-LXB4, therefore sharing a common route of 
inactivation [55]. It has recently been shown that 15-oxo-LXA4 is also produced 
from LXA4 in mouse whole blood [56] suggesting that the mouse shares with the 
human a common pathway for LXA4 inactivation. 

Each action of lipoxins is stereo-selective in that changes in potencies accompa­
ny double bond isomerization and change in alcohol chirality (R or S) at key posi­
tions as well as selective dehydrogenation of alcohols and reduction of double 
bonds. For example, the 15-hydroxyl group is important for anti-inflammatory 
properties since aspirin-triggered LXA4 (15R-LXA4) with the IS-hydroxyl group in 
the R-configuration as well as 15(RlS)-methyl-LXA4 have been established in sever­
al experimental settings to be more potent than native LXA4 (15S-LXA4) in vitro 
and in vivo [57, 58]. Also, both 15-oxo-LXA4 [54] and 15-deoxy-LXA4 [21] are 
biologically inactive in inhibiting superoxide anion generation and transmigration 
in PMN, respectively. The 13,14-double bond is important since 13,14-dihydro­
LXA4 proved to be inactive in inhibiting superoxide anion generation [54]. These 
pharmacophores for LX's anti-inflammatory action are also required for their inter­
action with ALX since these biologically inactive isomers (e.g., 15-oxo-LXA4, 15-
deoxy-LXA4 and 13,14-dihydro-LXA4) did not bind to ALX, whereas the active 
ones (e.g., 15R-LXA4 and 15(RlS)-methyl-LXA4) give specific binding to ALX, as 
demonstrated by specific [3H]-LXA4 binding (see Fig. 5). 

Design of stable analogs of LXA4 and 15-epi-LXA4 

Since LXs are rapidly transformed and inactivated by monocytes, and, potentially, 
other cells in vivo, it was highly desirable to design LX analogs that could resist this 
form of metabolism, maintain their structural integrity, and potentially enhance 
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The initial step in LXA4 inactivation is dehydrogenation of the 15-hydroxyl group, catalyzed 

by 15-hydroxy prostaglandin dehydrogenase (15-PGDH). Metabolic stable analogs of both 

LXA4 and 15-epi-LXA4 were designed to resist rapid inactivation at carbon 15 as well as the 

w-end of the molecule. 

beneficial bioactions. LX analogs were constructed with specific modifications of 
the native structures of LXA4 and LXB4, such as the addition of methyl groups on 
carbon-1S and carbon-S of LXA4 and LXB4 structures, respectively, to block dehy­
drogenation by 1S-PGDH. For example, 1S(RlS)-methyl-LXA4 is a racemic stable 
analog of both LXA4 and 1S-epi-LXA4. Additional analogs of LXA4 were synthe­
sized with a phenoxy group bonded to carbon-16 and replacing the w-end of the 
molecule. This design permits 16-phenoxy-LXA4 to resist potential w-oxidation 
and to be protected from dehydrogenation in vivo. Fluoride was added to the para­
position of the phenoxy ring to make 16-(para-fluoro)-phenoxy-LXA4 to hinder 
degradation of the phenoxy ring. The aspirin-triggered 1S-epi counterpart of 16-
(para-fluoro)-phenoxy-LXA4, namely 15-epi-16-(para-fluoro )-phenoxy-LXA4, was 
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also synthesized. These modifications not only prolong the half-life of the com­
pounds in blood but also enhance their bioavailabilities as well as bioactivities (Fig. 
4) [56]. 

When compared to the native LXs, the ATLs are less effectively converted in 
vitro to their 15-oxo-metabolite [21]. This indicates that the dehydrogenation step 
is highly stereo-specific and suggests that, when ATLs are generated in vivo, their 
biologic half-life is increased by about two-fold greater than that of native LXA4, 
thereby enhancing their ability to evoke bioactions. Hence, biologically stable 
analogs of LX and ATL can be engineered to enhance their bioactions, which sug­
gests that they are useful tools, and offers leads for developing novel therapeutic 
modalities. These analogs proved to be active and also interact directly with ALX 
(Fig. 5). 

Biological properties of LX and ATL 

Actions of LX and ATL in vitro 

LXA4 and ATL display counter-regulatory roles in various cell types in vitro (Fig. 6, 
Tabs. 2 and 3). With human peripheral blood leukocytes (Tab. 2), LXA4 inhibits 
both isolated PMN and eosinophil chemotaxis in vitro in the nanomolar range [59, 
60] and blocks human natural killer (NK) cell cytotoxicity in a stereo-selective fash­
ion [22] as well as stimulate myeloid bone marrow-derived progenitors [45]. In cell­
cell interaction systems, LXA4 inhibits PMN transmigration across both endothelial 
and epithelial monolayers [30, 61] via actions on both cell types (i.e., PMN and 
endothelial cells, PMN and epithelial cells). LXA4 stimulates chemotaxis and adher­
ence in monocytes but no apparent "pro-inflammatory" responses of these cells in 
vitro or in vivo, findings that may relate to the recruitment of monocytes to sites of 

Figure 5 

Ligand binding specificity of human ALX 

LXA4 interaction with ALX is highly stereo-specific, that is the 55, 6R-orientation of the two 

hydroxyl groups as well as 11-cis double bond conformation are essential for bioactions. 15-

epi-LXA4 (an aspirin-triggered lipoxin, ATL) carries a (-15 alcohol at the R configuration, 

opposite to the 5 configuration in native LXA", and was shown to have higher potency than 

native LXA4 in certain bioassays. In 15(RI5)-methyl-LXA", hydrogen at (-15 was replaced 

by a methyl group as a racemate at (-15. 16-phenoxy-LXA4 has a phenoxyl group at (-16. 

These compounds, which are more resistant to rapid dehydrogenation by 15-PGDH than 

native LXA", compete with [3H]-LXA4 specific binding on PMN as well as recombinant ALX 

and are potent inhibitors for PMN functions in vitro and in vivo. 
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wound healing and clearance. Indeed, LX and ATL stimulate the uptake of apop­
totic PMN by macrophages in a non-phlogistic fashion [62]. 

With human enterocytes and fibroblast, LXA4 regulates pro-inflammatory 
cytokine release as well as gene expression (see below). These counter-regulatory 
actions are initiated via unique cell surface receptors on leukocytes and enterocytes 
as well as fibroblasts. In hepatocytes, ATL significantly reduces PPARa and cyto­
kine-induced neutrophil chemo-attractant (CINC)-l [63]. With other cell types such 
as endothelium and mesangial cells, LXA4 evokes bioactions and interacts with a 
subclass of peptido-LT receptors (CysLT1) [reviewed recently in Ref. 22]. The 
leukocyte receptors are physiologically and pharmacologically distinct and evoke 
selective actions on each type of leukocyte tested to date. 

Actions of LX and ATL in vivo 

The metabolically stable analogs of LX and ATL have been examined in various 
experimental animal models and summarized in Table 4. 

Acute inflammation 

In dermal inflammation, these LX stable analogues when applied topically to mouse 
ears inhibit both PMN infiltration and vascular permeability changes in a concen­
tration-dependent fashion [57, 58]. Also, the fluorinated analog of ATL, denoted 
ATLa, at levels as low as -24 nmoUmouse, potently inhibited TNF-a-induced leuko­
cyte recruitment into the dorsal air-pouch [56]. Inhibition was evident by either 
local intra-air-pouch delivery (-77% inhibition) or via systemic delivery by intra­
venous injection (-85% inhibition) and proved more potent than local delivery of 
ASA. Recently, using a thioglycollate-induced peritonitis, ATL analogs were shown 
to rapidly promote macrophage phagocytosis of apoptotic PMN, supporting a role 
for LXs as pro-resolution signals in inflammation [64]. 

Figure 6 

LXA4 actions via ALX in leukocytes and enterocytes 

Actions of LXA4 in leukocytes (reviewed in [22]) and human epithelial cells [74, 1021. 
(Upper left panel) Ear biopsies: Inhibition of LTB4-induced PMN infiltration into mouse ear 

by topical application of LXA4 analogs in acute skin inflammation [58]. PMN is indicated by 

an arrow. (Upper right panel) Photomicrograph: Internalization of Salmonella typhimurium 

(shown in green) by intestinal epithelium (indicated by an arrow). In response to this gas­

trointestinal pathogen, intestinal epithelium secretes chemokines, which promote neutrophil 

infiltration. This chemokine (JL-8) secretion can be down-regulated by LXA4 analogs. 
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Table 2 - Lipoxin A4 and A TL on myeloid cells 

Cell type/tissue 

Whole blood 

Neutrophils 

Monocytes 

Macrophages 

Dendritic cells 

Eosinophils 

NK cells 

Myeloid progenitors 

Action 

Down-regulate CD11 /CD18, prevent shedding of 

L-selectin and reduce peroxynitrite generation on PMN, 

monocytes and lymphocytes 

Inhibit chemotaxis, adherence and transmigration 

Inhibit PMN-epithelial and endothelial cell interactions 

Block superoxide anion generation 

Inhibit CD11 b/CD18 expression and IP3 formation 

Inhibit peroxynitrite generation 

Attenuate AP-1 and NF-KB accumulation and inhibit 

IL-8 gene expression 

Stimulate chemotaxis and adhesion to laminin without 

increase in cytotoxicity 

Inhibit peroxynitrite generation 

Inhibit IL-8 release by cells obtained from asthma patients 

Stimulate non-phlogistic phagocytosis of apoptotic PMN 

Inhibit IL-12 production 

Inhibit migration/chemotaxis 

Block cytotoxicity 

Stimulate myeloid bone marrow-derived progenitors 

Table 3 - Actions of /ipoxin A4 and ATL on resident cell types 

Cell type/tissue Action 

Enterocytes Inhibit TNF-a-induced IL-8 expression and release 

Inhibit Salmonella typhimurium-induced IL-8 

Fibroblasts Inhibit IL-1~-induced IL-6, IL-8 and MMP-3 production 

Endothelia (HUVEC) Stimulate protein kinase C-dependent prostacyclin 

formation 

Block P-selectin expression 

Mesangial cells Inhibit LTD4-induced proliferation 

Pulmonary artery Induce relaxation and reverses pre-contraction by 

PGF2 or endothelin-1 

Hepatocytes Reduce PPARa and ClNC-1 levels 

Bronchi Relaxation after pre-contraction by blocking 

peptido-Ieukotrienes in human airway 
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Table 4 - Actions of lipoxin A4 and ATL in vivo in disease models 

System Model Action Refs. 

Acute Peritonitis Promote macrophage phagocytosis [64] 

inflammation of PMN 

(mouse) Dorsal air pouch Inhibit TNF-a-induced PMN infiltration [56] 

Dermal inflammation Inhibit LTB4 induced PMN infiltration [58] 

into ear skin 

Lung Asthma Inhibit airway hyper-responsiveness [38] 

(mouse) and pulmonary inflammation 

Ischemia and Inhibit PMN infiltration into lungs [35] 

reperfusion 

Kidney Glomerulonephritis Antagonize the effects of LTC4 [139] 

(rat) and LTD4 

Ischemia and Reduce PMN infiltration and is [69] 

reperfusion protective against acute renal failure 

Microbial infection T gondii infection Stun and block dendritic cell [36,37] 

(mouse) migration and IL-12 production 

A. costaricenssis Shorten the duration of pleural [34] 

infection (rat) exudation 

Endothelium Granuloma Reduce angiogenic phenotype [71] 

(mouse) 

Eye (rabbit) Lower intraocular pressure [72,73] 

Gastrointestinal tract Colitis Attenuate induction of pro-inflam- [70] 

(mouse) matory gene expression and reduce 

severity of DSS-induced colitis 

Aspirin-induced Reduce the severity of gastric damage [52] 

gastric damage and suppress aspirin-induced leukocyte 

(rat) adherence 

Lung (endogenous versus exogenous stimuli) 

Since LXA4 and ATL selectively regulate leukocyte responses, they were tested in 
BLTI transgenic mice that give dramatically increased PMN trafficking to lungs 
after hind limb ischemia-reperfusion. Despite excessive PMN recruitment in BLTI 
transgenic mice, intravenous injection of ATL sharply diminished reperfusion-initi­
ated PMN trafficking to lungs, revealing a novel protective role for LX and ATL in 
stress responses that have applications in perioperative medicine [35]. With exoge­
nous allergen challenge in a murine model of asthma, LXA4 biosynthesis and ALX 
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expression was increased. Transgenic expression of human ALX leads to significant 
inhibition of pulmonary inflammation and eicosanoid-initiated eosinophil infiltra­
tion. Administration of a stable analog of ATL blocks both airway hyper-respon­
siveness and pulmonary inflammation, highlighting a unique counter-regulatory 
role for LX in airway responses [38]. Along these lines, LXA4/ATL analogues dra­
matically blocked allergic pleural eosinophil influx on allergen-induced eosinophilic 
pleurisy in sensitized rats [65]. 

Kidney 

LXA4 and ATL display physiological and pathophysiological roles in kidney includ­
ing regulation of renal functions by increasing glomerular filtration rate and renal 
plasma flow rate [66, 67]. LXA4 also antagonizes the effects of LTC4 and LTD4 on 
the glomerular microcirculation [139]. In ischemic acute renal failure, ATL stable 
analog shows functional and morphologic protection and reduces PMN infiltration. 
In addition, ATL-treated mice also display increased renal mRNA levels for sup­
pressors of cytokine signaling (SOCS)-l and SOCS-2 [69]. 

Gastrointestinal tract 

During aspirin-induced gastric damage in rats, LXA4 exhibits potent protective 
action on gastric mucosa by reducing the severity of gastric damage and sup­
pressing aspirin-induced leukocyte adherence [52]. Also, ATL is protective in 
intestinal inflammation in a mouse model of dextran sodium sulfate-induced col­
itis. Oral administration of ATL analog (10 !lg/day) significantly reduced the 
weight loss, hematochezia and mortality that characterize DSS-induced colitis 
[70]. 

Microbial infection 

In Angiostrongylus costaricensis infected rats, two stable LXA4 analogues did 
not alter the magnitude of pleural exudation response, but clearly shortened its 
duration. These results indicate that the early resolution of allergic pleural edema 
observed during A. costaricensis infection coincided with a selective local eosino­
philia and seemed to be mediated by COX-2-derived PGE2 and LXA4 [34]. 
Along these lines, ATL stable analog shows reduced splenic dendritic cell mobi­
lization and IL-12 response in T. gondii-infected mice, demonstrating a novel role 
for LXs in regulating pro-inflammatory responses during microbial infection [36, 
37]. 
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Endothelium 

ATL analog inhibits endothelial cell proliferation and VEGF-induced endothelial 
cell chemotaxis. In a granuloma in vivo model of inflammatory angiogenesis, ATL 
treatment (10 ~g/mouse) reduces the angiogenic phenotype, as assessed by both vas­
cular casting and fluorescence. Together, these results identify a novel and potent 
previously unappreciated action of ATL in angiogenesis [71]. 

Eye 

Both LXA4 and LXB4 and their stable analogs lower intraocular pressure in rabbits 
and that may underlie their role in the physiology of ocular pressure regulation 
within the eye [72, 73]. In human eye tissues, the receptor ALX is indeed present 
and appears to be associated with corneal epithelial cells [74]. 

Cell surface receptors for LXA4 and ATL 

Human and mouse ALX: Molecular cloning, receptor expression 
and up-regulation 

The specific LXA4 binding sites were first characterized on human PMN that are 
likely to mediate many of its selective actions on these cells [75]. Intact PMN 
demonstrate specific and reversible [11, 12-3H]-LXA4 [described in 76] binding (Kd 
-0.5 nM and Bmax -1,830 sitesIPMN), which is modulated by guanosine stable 
analogs. These LXA4 binding sites are inducible in promyelocytic lineage (HL-60) 
cells exposed to differentiating agents (e.g., retinoic acid, DMSO and PMA) and 
confer LXA4-stimulated phospholipase activation [77]. Together, these findings pro­
vided further evidence that LXA4 interacts with specific membrane-associated recep­
tors on human leukocytes that belong to the classical GPCR. Based on our finding 
that functional LXA4 receptors are inducible in HL-60 cells, several putative recep­
tor cDNAs that are also induced within this temporal frame, cloned earlier from 
myeloid lineages and designated orphans [78, 79], were systematically examined for 
their ability to specifically bind and signal with LXA4. 

One of the orphans (denoted previously as pINFI14, also known as FPRLl and 
FPR2) when transfected into Chinese hamster ovary (CHO) cells displays specific 
[3H]-LXA4 binding with high affinity (Kd =1.7 nM) and demonstrated selectivity 
when compared to LXB4, LTB4, LTD4 and PGE2 (Fig. 5) [80]. These transfected 
CHO cells transmit signal with LXA4, activating both GTPase and the release of 
arachidonic acid (C20:4) from membrane phospholipid, indicating that this cDNA 
encodes a functional receptor for LXA4 in myeloid cells (Tab. 5). The mouse LXA4 
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Table 5 - Lipoxin A4 and ATL signal transduction with human ALX 

Cell type LXA4 and AlL- Kinase associated Gene 
evoked signal expression 
transduction 

HL-60 PLD activation protein kinase ( 
(differentiated) (lipid remodeling) (staurosporine sensitive) 
PMN PLD activation tyrosine kinase Inhibit IL-8 mRNA 

GTPase activity (genistein sensitive) expression 
(20:4 release Up-regulate NAB1 
PIPP signal 
(t PSDP accumulation) 
(with second signal) 

No increase of cAMP 
and proton efflux 

Weak [(a2+]i 

Monocyte Increase of [(a2+]i 

(PTX sensitive) 
No increase of cAMP 
and proton efflux 

Enterocyte No proton efflux Reduce IL-8 mRNA level 

Reduce NF-KB 
mediated transcription 
activation 
Regulate bactericidal/ 
permeability-increasing 
protein (BPI) 

Synovial PLD activation Stimulate tissue inhib-
fibroblast Inhibit NF-KB binding itor of metalioprotein-

ase (TIMP)-1 and 
TIMP-2 transcription 

receptor cDNA was cloned from a spleen cDNA library and displays specific [3H]_ 
LXA4 binding and LXA4-initiated GTPase activity when transfected into CHO cells 
[58]. The human and mouse LXA4 receptors represented the first cloned LO-derived 
eicosanoid receptors. 

Both human [80] and mouse [58] ALX cDNA contain an open reading frame of 
1051 nucleotides, which encode a protein of 351 amino acids. Northern blot analy­
sis demonstrated that ALX mRNA is -1.4 Kb in both human and mouse [58]. 
Chromosome mapping revealed that the gene encoding ALX [80] is located on chro-
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mosome 19q [81], denoted as FPRHI in this early report of the orphan receptor. 
Northern blot analysis of multiple murine tissues demonstrated that ALX mRNA is 
most abundant in PMN, spleen and lung with lesser amounts in heart and liver [58]. 
In the absence of disease, the pattern is similar in human tissues. In humans, ALX 
mRNA is also abundant in PMN, followed by spleen, lung, placenta and liver [58, 
80]. 

To date, ALX is identified by function and direct actions, and cloned in both 
human and mouse PMN [58, 80], human monocytes [82] and human enterocytes 
[74], as well as synovial fibroblasts [83]. In human PMN, results of subcellular frac­
tionation experiments revealed that [3H]-LXA4 binding sites are associated with 
plasma membrane and endoplasmic reticulum (42.1 %) and granule (34.5%) as well 
as nuclear-enriched fractions (23.3%), a distribution distinct from [3H]-LTB4 bind­
ing [75]. The finding that LXA4 blocks both PAF and fMLP-stimulated eosinophil 
chemotaxis [60] suggests that functional ALX is also present on eosinophils. In 
human enterocytes, ALX is present in crypt and brush border colonic epithelial cells 
[74]. 

Retinoic acid, PMA and DMSO, which lead to granulocytic phenotypes in HL-
60 cells, induce a - 3-5-fold increase in the expression of ALX as monitored by spe­
cific [3H]-LXA4 binding [77] (see Tab. 5). Also, ALX transcription is dramatically 
up-regulated by cytokines in human enterocytes, with lymphocyte-derived IL-13 
and interferon (IFN)-y being most potent, followed by IL-4 and IL-6. IL-l~ and LPS 
also showed moderate induction of ALX mRNA [74]. In view of the cytokine reg­
ulation of ALX, it is likely that the expression of these receptors will change dra­
matically in disease states, which in turn, might attenuate mucosal inflammatory 
and allergic responses. 

Structure-function relationships of ALX 

ALX belongs to the GPCR superfamily characterized by seven putative transmem­
brane segments (TMS) with N-terminus on the extracellular side of the membrane 
and C-terminus on the intracellular side [84]. The overall homology between human 
and mouse ALXs is 76% in nucleotide sequence and 73% in deduced amino acid 
[58]. An especially high homology is evident for their second intracellular loop 
(100%) and between their sixth TMS (97%) followed by the second, third and sev­
enth TMS as well as the first extracellular loop (87-89%), suggesting essential roles 
for these regions in ligand recognition and G protein coupling. Molecular evolution 
analysis (Fig. 7) suggests that ALX is only distantly related to prostanoid receptors 
and belongs to the cluster of chemoattractic peptide receptors exemplified by fMLP, 
C5a and IL-8 receptors [85] and now known to also include BLTs as well as the 
recently cloned cysteinyl-Ieukotriene receptors (CysLTs). BLTI was obtained from 
human HL-60 cells [86] and mouse eosinophils [87] and found to share an overall 
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Cb1R 

PAFR 

• LO products 
BlT2 

C5aR 

Figure 7 

EDG3 

AlX 
(mouse) 

",:-;;~,,==;:69~CXCR1 
CXCR2 

CCR1 

Phylogenetic tree of GPCRs for chemokines and lipid mediators 

0> COX products 

EP2 

o Chemokines 

This tree is constructed with deduced amino acid sequences of human eicosanoid and 

chemokine receptors using the "AI/-AI/ Program" at the Computational Biochemistry Serv­

er at ETHZ (http://cbrg.inf.ethz.chIServerl AI/AI/.htm/). 

Abbreviations: Tf, thromboxane A2 receptor; Of, prostaglandin O2 receptor; EP1, EP2, EP3, 

EP4, subtypes of prostaglandin E2 receptor; Ff, prostaglandin F2 receptor; If, prostacyclin 

receptor; Cb1 R, Cb2R, cannabinoid receptors; ALXR, lipoxin A4 receptor and BL T, leukotriene 

B4 receptor. BLT, CXCR-4 and CCR-5 were identified as co-receptors for HIV-1 entry. 

-30% homology with ALX in deduced amino acid sequences. High homologous 
region (-46%) is present within the second transmembrane segments in both ALX 
and BLTl with the amino acid sequence LNLALAD. Prostanoids interact with their 
receptors via carboxyl group interacting with an arginine residue within the seventh 
transmembrane segment [88]. Neither ALX nor BLTl share this Arg (in 7th trans­
membrane segment) requirement [80, 86], yet both ligands contain COOH, which 
at physiological pH could present as a counter-anion. Together, these findings fur-
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ther provide evidence that the origin of receptors for LT and LX is distinct from that 
of receptors for prostanoids. 

Several conserved motifs and amino acid residues important for post-transla­
tional modification are found in ALX. For example, conserved N-glycosylation sites 
are present on Asn-4 and Asn-179 of human ALX and N-glycosylation was shown 
to be important for ligand specificity of this receptor [S9]. Site-directed mutagene­
sis study demonstrates that Ser-236, Ser-237 and Tyr-302 are essential for human 
ALX phosphorylation and signaling [90]. In addition, the NPXXY motif in the 
TMS-7, which plays a role in receptor desensitization and/or resensitization [91], 
and DRY motif in the TMS-3 that is essential for ~-arrestin binding and G protein 
activation [92] are also present in ALX, suggesting a conserved mechanism in regu­
lation of ALX signaling. 

Ligand binding specificity: peptide and lipid ligands 

ALX is stereo-selective for its eicosanoid-based ligands. Intact human PMN and 
retinoic acid-differentiated HL-60 cells demonstrate specific and reversible eH]­
LXA4 binding with Kds -0.5 and -0.6 nM, respectively [75, 77]. Several isomers of 
LXA4 tested, namely 11-trans-LXA4, 6S-LXA4 and LXB4, did not compete for these 
recognition sites, consistent with their functional responses in these systems. Results 
from Scatchard analyses indicate that [3H]-LXA4 binds PMN granule membrane­
enriched fractions with comparable Kd (O.S nM) but with a larger Bmax (4.1 X 

10-11 M) than plasma membrane fractions (Kd = 0.7 nM, Bmax = 2.1 X 10-11 M) [SO]. 
Hence, it appears that additional receptors can be mobilized by granule fusion to 
the plasma membrane of PMN. [3H]-LXA4 specific binding is stereo-selective, since 
LTB4, LXB4, 6S-LXA4, ll-trans-LXA4 or SKF104353 (a CysLT1 antagonist) does 
not compete for [3H]-LXA4 in human PMN. Human and mouse ALX cDNA, each 
transfected into CHO cells, display specific binding with [3H]-LXA4' with Kd val­
ues of 1.7 nM [SO] and 1.5 nM [5S], respectively. Human ALX-transfected CHO 
cells were also tested for binding with other eicosanoids, including LXB4, LTD4, 

LTB4 and PGE2• Only LTD4 shows competition with [3H]-LXA4 binding, giving a 
Ki of SO nM [SO]. 

It is of interest to note that, although ALX shares - 70% homology with FPR, 
ALX binds [3H]-fMLP with only low affinity (Kd - 5 ~M) and proves to be selec­
tive for LXA4 by three log orders of magnitude [93]. More recently, it was reported 
that certain peptides/proteins can also interact with ALX in in vitro and in vivo set­
tings (Tab. 6). For examples, MHC binding peptide (a potent necrotactic peptide 
derived from NADH dehydrogenase subunit 1 from mitochondria) directly binds to 
human ALX and evokes PMN chemotaxis that is inhibited by ATL analog [S9]; it 
also stimulates macrophage phagocytosis of PMN [64]. In addition, naturally pro­
duced cleaved form (i.e., D2D3(SS-274)) of urokinase-type plasminogen activator 
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Table 6 - Comparison of LXs versus potential peptide ligands for human ALX 

Ligand Binding and signaling Bioaction EC50 

LXA4 and AT La See Table 5 for details Inhibit PMN - 1 nM 

See Table 2, 3 and 4 for details 

MHC peptide Displace [3H]-LXA4 binding Induce PMN chemotaxis -1 nM 

[64,89] Induce phagocytosis of 

apoptotic PMN 
SAA [131] Partially displace [3H]-LXA4 Induce PMN and monocyte -100 nM 

binding chemotaxis 

Ca2+ mobilization Induce IL-8 and TNF-a secretion 

Activate ERK-1/2 and P38 Induce NF-KB and IL-8 gene 

expression 

uPAR (aa 88-274) Direct [1251]-peptide binding Induce PMN and monocyte -5pM 
fragment [94] Activate Hck tyrosine kinase chemotaxis 

Annexin 1 and Direct [1251]-peptide binding Inhibit PMN infiltration into -1 lAM 
derived peptides murine dorsal air pouches 
[50] 

HIV-1 gp120 Ca2+ mobilization Induce chemotaxis - 1-10 lAM 
peptides (F and V3 Down-regulate CCR5 and 

peptides) [132] CXCR4 
HIV-1 gp41 Ca2+ mobilization Induces chemotaxis - 0.1-10 lAM 
peptides (T21 and 
N36 peptides) 
[133] 

Amyloid ~42 [134] Ca2+ mobilization Induces chemotaxis -1 lAM 
LL-37 [135] Ca2+ mobilization Induces chemotaxis - 1 lAM 
Hp (2-20) Induce PMN chemotaxis -0.3 lAM 
H. pylori peptide Up-regulate integrins (Mac-1) 
[136] Activate NADPH oxidase 
Prion (aa 106-126) Induces chemotaxis in - 25 lAM 
[137] monocytes 
MMK-1 Evoke proton efflux Induce PMN chemotaxis -1 nM 
[64,89] Displace [3H]-LXA4 binding Evoke PMN infiltration into 

murine dorsal air pouches 

Induces phagocytosis of 

apoptotic PMN 
WKYMVm [138] Ca2+ mobilization Induces chemotaxis -1 pM 

phosphoinositide hydrolysis Down-regulates CCR5 and CXCR4 

Stimulates superoxide generation 

Enhances monocyte survival by 
inhibiting caspase-3 activity 
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(uPAR) directly binds to ALX and is a unique endogenous chemotactic agonist for 
ALX providing the first direct link between the fibrinolytic machinery and the 
inflammatory response [94]. These endogenously generated peptides evoke their 
bioaction via ALX in the subnanomolar range. 

We recently reported that glucocorticoid-induced annexin 1 (ANXA1)-derived 
peptides (e.g., Ac2-26) are generated in vivo and act at the ALX to halt PMN dia­
pedesis. These peptides specifically interact directly with recombinant human ALX, 
demonstrated by radio ligand binding and function as well as immunoprecipitation 
of PMN receptors. In addition, the combination of both ATL and ANXA1-derived 
peptides limited PMN infiltration and reduced production of inflammatory media­
tors in murine dorsal air pouches [50]. These results demonstrate spatial and tem­
poral separation in endogenous lipid and peptide anti-inflammatory circuits where 
both ATL and specific ANXA1-derived peptides act at ALX to down-regulate PMN 
recruitment to inflammatory loci. 

Along these lines, additional peptides in the micromolar range can also interact 
with ALX in some in vitro model systems [95] including HIV envelope peptides 
(e.g., T21, N36, V3 and F peptides) and bacterial-derived peptides (e.g., Hp2-20 
from H. pylori), as well as host-derived peptides (e.g., SAA, PrP106-126 and A~). 
These findings are summarized in Table 6. The functional role(s) of these peptides 
in human biology, pertaining to their ability to activate FPRL-lI ALX, albeit at !AM 
levels, remains of interest. 

These new findings suggest that small peptides as well as bioactive lipids can 
function as ligands for the same receptor, however with different affinity and/or dis­
tinct interaction sites within the receptor and separate intracellular signaling 
depending on the cell type and model system. Hence, it appears likely that the intra­
cellular protein interactions following ligand-receptor binding are different for pep­
tide versus lipid ligands of this receptor because different conformations of the lig­
and-receptors are likely to be formed. Taken together, the finding that specific 
LXA4-related structures and certain peptides interact with this receptor may reflect 
the need for multi-recognition and receptor redundancies in the immune system. 

Signal transduction of ALX 

PMN versus monocytes 

The intracellular signaling cascade of ALX appears to be highly cell type-specific. For 
example, in human PMN, LXA4 stimulates rapid lipid remodeling (within seconds) 
with release of arachidonic acid that is evoked via PTX-sensitive G proteins [16] with­
out formation of either LT or PG. Only a modest Ca2+ mobilization was observed. 
Also, LXA4 was reported to block intracellular generation of IP3 [15] as well as Ca2+ 

mobilization in response to other stimuli [59]. In human peripheral blood monocytes 
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and cultured THP-1 cells, LXA4 triggers intracellular Ca2+ release and adherence to 
laminin [82, 96]. Thus, different intracellular signaling pathways are present in PMN 
versus monocytes despite identical receptor sequences (see Tab. 5). It is of interest that 
Ca2+ is not the second messenger for LX actions in monocytes, since LXA4-stimulat­
ed monocyte adherence to laminin is not dependent on a LX-stimulated increase in 
[Ca2+]i. The ECso value for LXA4-stimulated increase in [Ca2+ 1i is > 100 nM in mono­
cytes, which is more than two log orders of magnitude higher than that required for 
LXA4-stimulated adherence (ECso < 1 nM). In view of G-protein coupling events in 
monocytes, both Ca2+ mobilization and adherence are PTX-sensitive. This indicates 
that receptor coupling in monocytes and PMN is similar to this point, although there 
could be different PTX-sensitive G-protein subtypes that couple to the intracellular 
domains of the receptors and diverge downstream in the signal transduction pathways 
leading to chemotaxis of monocytes and inhibition of PMN. 

Novel anti-inflammatory signaling (not just desensitization) 

Recently, additional results from this laboratory indicated that, with PMN, ALX 
interaction with LX and ATL analogs regulates a newly described polyisoprenyl 
phosphate (PIPP) signaling pathway [97]. ALX activation reverses LTB4-initiated 
polyisoprenyl phosphate remodeling, leading to accumulation of presqualene 
diphosphate (PSDP), a potent negative intracellular signal in PMN which inhibits 
recombinant PLD and superoxide anion generation. Along these lines, LXA4 
reduces peroxynitrite formation and thus can oppose peroxynitrite signaling in 
leukocytes [98]. Recently findings by Maderna et al. [99] demonstrated that LXs 
induces cytoskeleton reorganization and an increase in membrane-associated Rho A 
GTPase as well as RhoA activity in monocytes and macrophages via inhibition of 
cAMP, revealing a potential mechanism of LXs in promoting resolution. 

In retinoic acid-differentiated HL-60 cells, LXA4 stimulated PLD activation that 
is staurosporine sensitive, suggesting the involvement of PKC in signal transduction 
in these cells [77]. It was also demonstrated that LXA4 blocks LTB4 or fMLP-stim­
ulated PMN transmigration or adhesion by regulation of P2 integrin-dependent 
PMN adhesion [93]. This modulatory action is partially reversed by prior exposure 
to genistein, a tyrosine kinase inhibitor [30]. 

ALX regulate pro-inflammatory gene expression 

Leukocytes 

Using differential display RT-PCR, a subset of genes was identified that was selec­
tively up-regulated upon short exposure of PMN to ATLa. Among them, a tran-
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scriptional co-repressor NABl identified previously as a glucocorticoid-responsive 
gene in hamster smooth muscle cells was further investigated and also found to be 
up-regulated by ATLa in murine lung vascular smooth muscle in vivo [100]. These 
findings provide evidence for rapid transcriptional induction of a cassette of genes 
via an ATLa-stimulated G protein-coupled receptor pathway. 

In addition, ATLa attenuates nuclear accumulation of activator protein-a and 
NF-KB in both PMN and monocytes and inhibits IL-8 mRNA expression [98]. 

Epithelial cells 

Microarray analysis reveals that epithelial cells of wide origin (oral, pulmonary, and 
gastrointestinal mucosa) express bactericidal/permeability-increasing protein (BPI), 
an antibacterial and endotoxin-neutralizing molecule and that is transcriptionally 
regulated by ATL. A BPI-neutralizing anti-serum revealed that surface BPI blocks 
endotoxin-mediated signaling in epithelia and kills Salmonella typhimurium [101]. 
These studies identify a previously unappreciated "molecular shield" for protection 
of mucosal surfaces against Gram-negative bacteria and their endotoxin. Along 
these lines, in human enterocytes, ALX activation by LXA4 and LX analogs dimin­
ishes Salmonella typhimurium-induced IL-8 transcription [102]. The reduction of 
IL-8 mRNA level parallels decrements in IL-8 secretion, indicating that in these cells 
ALX's mechanism of action for blocking this chemokine is at the gene transcrip­
tionallevel. In an effort to elucidate the mechanism by which these lipid mediators 
modulate cellular pro-inflammatory programs, global epithelial gene expression was 
surveyed using microarray analysis. ATL analog pretreatment attenuates induction 
of approximately 50% of Salmonella typhimurium-induced gene expression [70]. A 
major subset of genes whose induction was reduced by ATL analog pretreatment is 
regulated by NF-KB, suggesting that ATL analog was influencing the activity of this 
transcription factor. Nanomolar concentrations of ATL analog reduced NF-KB­
mediated transcriptional activation in an ALX dependent manner and inhibited 
induced degradation of IKBa. 

Resident cell types 

In human synovial fibroblasts, LXA4 inhibits IL-l ~ responses with reduction of IL-
6 and IL-8 synthesis and prevented IL-l~-induced MMP-3 synthesis at nanomolar 
concentrations [83]. Also, LXA4 induces a two-fold increase of tissue inhibitor of 
metalloproteinase (TIMP)-l and an approximately three-fold increase of TIMP-2 
protein levels that is abrogated by pretreatment with LXA4 receptor antiserum. 
LXA4-induced changes of IL-6 and TIMP were accompanied by parallel changes in 
mRNA levels. These findings suggest that LXA4 may be involved in a negative feed-
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back loop opposing inflammatory cytokine-induced activation of synovial fibrob­
lasts. In addition, LXA4 induces tissue factor activity by increasing its mRNA level 
in EC304 cells (non-endothelial parenchymal cells) via a PTX-sensitive and PKC­
dependent mechanism [103]. The ability of LXA4 to induce tissue factor is an 
intriguing result. Its physiological role remains to be established in relation to LX 
generation and proximity to tissue factor releasing cells in vivo. 

Additional sites of action for LX and ATL - CysLTs 

In several tissues and cell types other than leukocytes, results from pharmacological 
experiments indicate that LXA4 acts via interacting with a subclass of peptido-LT 
receptors (CysLTl ) as a partial agonist to mediate its actions [75, 104]. Along these 
lines, both LTC4 and LXA4, albeit at high concentrations (> 1 !-lM), induce contrac­
tions of guinea pig lung parenchyma and release of thromboxane A2 that is sensi­
tive to CysLTrreceptor antagonists [105], which is not likely to be a physiologic 
action of LXA4. In certain cell types, LXA4 (in the nanomolar range) blocks LTD4 
actions, and in this regard blocks specific [3H]-LTD4 binding to mesanglial cells 
[104] and human umbilical vein endothelial cells (HUVEC) [58, 77]. HUVEC 
specifically bind [3H]-LXA4 at a Kd of 11 nM, which can be inhibited by LTD4 and 
SKF104353 [77]. Therefore, it appears that LXA4 interacts with at least two class­
es of cell surface receptors, one specific for LXA4, which is present on leukocytes 
and enterocytes (ALX), the other shared by LTD4, which is present on HUVEC and 
mesanglial cells (CysLTl ). Along these lines, an inducible CysLTl was recently iden­
tified and cloned from HUVEC [106]. 

Recombinant CysLTl receptor gave stereo-specific binding with both [3H]-LTD4 
and a novel labeled mimetic of ATL ([3H]-ATLa) that was displaced with LTD4 and 
ATLa (- ICso 0.2-0.9 nM), and not with a biologically inactive ATULX isomer. In 
sharp contrast, LTD4 was an ineffective competitive ligand for recombinant ALX 
with [3H]-ATLa. Endogenous murine CysLTl receptors also gave specific [3H]-ATLa 
binding that was displaced with essentially equal affinity by LTD4 or ATLa. Sys­
temic ATLa proved to be a potent inhibitor (> 50%) of CysLTrmediated vascular 
leakage in murine skin (200 !-lglkg) in addition to its ability to block PMN recruit­
ment to dorsal air-pouch (4 !-lg/kg). These results indicate that ATL and LTD4 bind 
and compete with equal affinity at CysLTl' providing a molecular basis for ATL 
serving as a local damper of both vascular CysLTl signals as well as ALX-regulated 
PMN traffic [106]. 

In human renal mesangial cells, LXA4 inhibits PDGF and LTD4-stimulated pro­
liferation via regulation of PDGFRf3 [1071. Also, LXA4 stimulates MAP kinase 
superfamily via two distinct receptors: one via a PTX-sensitive G protein, leading to 
p38 activation, and the other via a PTX-insensitive G protein, leading to ERK acti­
vation [108]. Also, LXA4 modulates MAP kinase activities on mesangial cells in a 
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PTX-insensitive manner [109], suggesting the presence of additional novel LXA4 
receptor subtypes and/or signaling pathways in these cells. 

LXs and ATL exhibit unique molecular mechanism in anti-inflammation 

LXA4, ATL and their stable analogs activate ALX, which then modulates PMN 
responses in vitro, such as chemotaxis, transmigration, adhesion, degranulation, 
cytokine release and functions, as well as inhibit PMN recruitment in several murine 
models. For example, ATL analog inhibits TNF-a-initiated PMN infiltration in 
murine dorsal air-pouch [56] and LTB4-induced PMN influx during dermal inflam­
mation [58] as well as PMN-mediated second organ injury [35]. When compared to 
other eicosanoids of COX, LO and p450 products reported in the literature to dis­
play potential anti-inflammatory properties, LXs and ATL stand apart both in 
mechanism and amount range for action. For example, PGE2 reduced the antigen 
response [110] and inhibited macrophage phagocytosis [111], presumably via 
increasing intracellular cAMP levels, which in turn inhibits MAPK activation by 
stimulating PKA-dependent phosphorylation of Raf-l [112]. In contrast, LXA4 does 
not give significant increase of cAMP levels in PMN [96]. In addition, cyclopen­
tenone prostaglandins such as 15-deoxy-f112,14-PGh, in relatively high amounts, 
give anti-inflammatory action in adjuvant-induced arthritis in rats [113]. However, 
it appears that 15-deoxy-f112,14_PGh acts via mechanisms that are independent of 
cell surface GPCRs [114, 115]. To date, LXA4 and ATL are the only lipid mediators 
that possess anti-inflammatory and pro-resolution properties acting in the nanomo­
lar range, since they regulate leukocyte trafficking and contribute to the early reso­
lution. 

Resolvins: The novel omega-3 PUFA derived endogenous local autacoids 
in anti-inflammation and pro-resolution 

A recent report demonstrates that inflammatory exudates from mice treated with 
omega-3 polyunsaturated fatty acid (PUFA) and aspirin (ASA) generate a novel 
array of bioactive lipid signals (Fig. 8) [116]. Human endothelial cells with up-reg­
ulated COX-2 treated with ASA converted C20:5 omega-3 PUFA, namely eicos­
apentaenoic acid (EPA), to 18R-hydroxyeicosapentaenoic acid (HEPE) and 15R­
HEPE. Each was used by PMN to generate separate classes of novel trihydroxy­
containing mediators, including 5-series 15R-LX(5) and 5,12,18R-triHEPE. These 
new compounds proved to be potent inhibitors of human PMN transendothelial 
migration and infiltration in vivo (ATL analogue> 5,12,18R-triHEPE > 18R­
HEPE) (Fig. 9). Acetaminophen and indomethacin also permitted 18R-HEPE and 
15R-HEPE generation with recombinant COX-2 as well as omega-5 and omega-
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Interactions of omega-3 polyunsaturated fatty acids (w-3 PUFA) with aspirin (ASA)-acety­

lated COX-2 generate novel arrays of bioactive compounds, which inhibits PMN transmi­

gration in vitro and inflammation in vivo. A prototypic oxygenation with DHA (panel A) and 

EPA (panel B) is depicted as an omega-3-containing fatty acid. 

9 oxygenations of other fatty acids that act on hematologic cells. These findings 
establish new transcellular routes for producing arrays of bioactive lipid mediators 
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via COX-2-non-steroidal anti-inflammatory drug-dependent oxygenations and 
cell-cell interactions that impact micro-inflammation. The generation of these and 
related compounds provides a novel mechanism(s) for the therapeutic benefits of 
omega-3 dietary supplementation, which may be important in inflammation, neo­
plasia, and vascular diseases. 

Along these lines, lipidomic analysis of exudates obtained in the resolution phase 
from mice treated with ASA and docosahexaenoic acid (DHA) (C22:6) produced a 
novel family of bioactive 17R-hydroxy-containing di- and tri-hydroxy-docosanoids 
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The 6-day murine dorsal air-pouch is characterized by the presence of a nascent lining that 

encloses the air cavity. TNF-a induces leukocyte infiltration, predominantly PMN, which is 

inhibited by iv injection of aspirin and w-3 PUFA (25-60%). 

[117]. Murine brain treated with aspirin produced endogenous 17R-hydroxydo­
cosahexaenoic acid, as did human microglial cells. Human COX-2 converted DHA 
to 13-hydroxy-DHA that switched with ASA to 17R-HDHA, which also proved a 
major route in hypoxic endothelial cells. Human neutrophils transformed COX-2-
ASA-derived 17R-hydroxy-DHA into two sets of novel di- and tri-hydroxy prod­
ucts; one initiated via oxygenation at carbon 7 and the other at carbon 4. These 
compounds inhibited (ICso approximately 50 pM) microglial cell cytokine expres­
sion and in vivo dermal inflammation and peritonitis at nanogram doses, reducing 
leukocytic exudates by 40-80%. These results indicate that exudates, vascular cells, 
leukocytes and neural cells treated with aspirin convert DHA to a novel 17R­
hydroxy series of docosanoids that are potent regulators. Together, these biosyn­
the tic pathways utilize omega-3 DHA and EPA during multicellular events in reso­
lution to produce a family of protective compounds, i.e., resolvins, which enhance 
pro-resolution status. 
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Summary 

Lipoxins are the trihydroxy-tetraene-containing eicosanoids that are primarily gen­
erated by cell-cell interactions via transcellular biosynthesis that serve as local 
endogenous anti-inflammatory mediators. These "stop signals" in inflammation and 
other related processes may be involved in switching the cellular response from addi­
tional PMN recruitment toward monocytes (in a non-phlogistic fashion) that could 
lead to resolution of the inflammatory response and/or promotion of repair and heal­
ing. Aspirin impinges on this homeostatic system and evokes the endogenous biosyn­
thesis of the carbon 15 epimers of lipoxins, namely aspirin-triggered-lipoxins, which 
mimic the bioactions of native LX in several biological systems and can thus modu­
late in part the beneficial actions of ASA in humans. The activation of a LX biosyn­
thetic circuit in vivo requires up-regulation of key enzymes by cytokines such as IL-
4 and IL-13 that also control the expression of the receptor ALX [74]. Moreover, 
both the temporal and spatial components in LX formation and actions are impor­
tant determinants in their bio-impact during an acute inflammatory reaction [118]. 
In this regard, generation of lipid (i.e., ATL) versus protein (i.e., ANXA1) mediators 
during the host inflammatory response displays different time courses. This tempo­
ral difference suggests that ALXIFPRLl could regulate PMN by interacting with 
each class of ligands within specific phases of the inflammatory response. 

LXA4 elicits biological actions via at least two main classes of receptor systems 
known to date: (1) ALX on leukocytes and enterocytes, and (2) a shared CysLT1 
subtype on endothelial and mesangial cells. 

ALX belongs to the classical G-protein-coupled receptors (GPCR) and was iden­
tified in mammalian tissues and characterized using direct evidence obtained with 
specific [3H]-LXA4 binding and activation of functional responses with LXA4. ALX 
is the first cloned lipoxygenase-derived eicosanoid receptor. ALX and BLT are more 
akin to chemokine receptors in their deduced amino acid sequences than the cur­
rently known prostanoid receptors. The signaling pathways and bioactions of ALX 
are cell type-specific. In agreement with in vitro results, ALX agonists, namely LXA4 
and 15-epi-LXA4 as well as their stable analogs, are topically active in inhibiting 
PMN infiltration and vascular permeability during murine dermal inflammation. In 
addition, it appears that LX also display organ-specific actions in addition to host 
defense and immune roles such as in the eye, kidney, lung, oral and GI tract and 
within bone marrow progenitors, possibly involving stem cells. The development of 
these relatively few synthetic stable analogs has already provided valuable tools to 
evaluate the biological roles, significance and pharmacological actions of ALX as 
well as provided a novel means to selective therapies for inflammatory diseases. 

The relationship between LX generation and current NSAID therapies is more 
intertwined than currently appreciated [119] in that aspirin inhibits COX-1 and 
converts COX-2 into an AS A-triggered lipid mediator-generating system that pro­
duces an array of novel endogenous local autacoids from dietary omega-3 PUFA; 
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some of which display potent anti-inflammatory or anti-neutrophil recruitment 
activity [116, 117] as well as impinge on the role of these compounds in resolution 
and thus termed resolvins. Hence, it is not surprising that others have recently found 
a protective action for COX-2 in cardiovascular disease [120]. Together with the 
LXs and 15-epi-LXs, the identification of these novel endogenous anti-inflammato­
ry lipid mediators [116] gives us new avenues of approach in considering therapeu­
tics for inflammation, cardiovascular diseases and cancer. 
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Introduction 

Arachidonic acid is known to be metabolized into a number of bioactive eicosanoids 
such as prostaglandins, thromboxanes, leukotrienes, lipoxins and mono- and di­
hydroxyeicosatetraenoic acids. It is well known that these bioactive eicosanoids are 
involved in diverse physiological and pathophysiological processes in mammalian 
tissues. In the last decade of the 20th century, two remarkable derivatives of arachi­
donic acid, i.e., N-arachidonoylethanolamine (anandamide) and 2-arachidonoyl­
glycerol (2-AG) (Fig. 1) were reported to be new members of the bioactive lipids. 
Anandamide and 2-AG have unique structural characteristic in that they contain an 
intact arachidonoyl moiety in their molecules, thus differing from other eicosanoids. 
Both anandamide and 2-AG have been shown to act as endogenous cannabinoid 
receptor ligands. In this review, we focused on anandamide and 2-AG and described 
the metabolism and possible physiological significance of these molecules in mam­
malian tissues and cells including inflammatory cells and immune competent cells. 

Cannabinoid receptors 

Marijuana has been used as a traditional medicine and a pleasure-inducing drug for 
thousands of years around the world, especially in Asia. In the 1960s, Gaoni and 
Mechoulam [1] demonstrated that il9-tetrahydrocannabinol (il9-THC) (Fig. 1) is the 
major psychoactive ingredient of marijuana. il9-THC is known to exert a variety of 
pharmacological effects on experimental animals and humans. For example, the 
administration of il9-THC induces reduced spontaneous motor activity, immobility, 
analgesia, heightened sensory awareness, euphoria, hypothermia and impairment of 
short-term memory [2]. il9-THC is also known to exert profound effects in various 
biological systems other than in the nervous system such as the suppression of 
immune responses. The mechanisms of these actions of il9-THC, however, remained 
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unclear until recently. The occurrence of specific binding site(s) for cannabinoids has 
been postulated based on the observation that (-)-~9-THC exhibited potent phar­
macological activities whereas its stereoisomer (+)-~9-THC was far less potent. 
However, binding experiments of radiolabeled cannabinoids were unsuccessful until 
the late 1980s due to their highly lipophilic properties. 

In 1988, Devane et al. [3] succeeded in showing the occurrence of specific bind­
ing sites for cannabinoids in rat brain synaptosomes using a radiolabeled synthetic 
cannabinoid, eH]CP55940. The Kd was 133 pM and the Bmax was 1.85 pmol!mg 
protein. Finally, Matsuda et al. [4] cloned a cDNA encoding a cannabinoid receptor 
(CBl receptor) from a rat brain cDNA library in 1990. The CBl receptor is present 
in various mammalian tissues, especially in the nervous tissues, and is assumed to 
be involved in the attenuation of neurotransmission [5]. The CBl receptor is a 
seven-transmembrane, G protein-coupled receptor, and contains 472 (human) or 
473 (rat) amino acids. It is noteworthy that the whole-brain cannabinoid receptor 
density is similar to the whole-brain densities of receptors for glutamate and GABA 
[6]. Indeed, the CBl receptor is one of the most abundant G protein-coupled recep­
tors expressed in the brain. Among the various brain regions, the CBl receptor is 
especially abundant in the substantia nigra, globus pallid us, molecular layer of the 
cerebellum, hippocampus and cerebral cortex. The CBl receptor is assumed to be 
involved in the regulation of cognition, memory and motor activity [5]. 
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In 1993, Munro et al. [7] cloned a cDNA encoding another type of cannabinoid 
receptor (CB2 receptor) from an HL-60 cell cDNA library. The CB2 receptor is also 
a seven-transmembrane, G protein-coupled receptor, and consists of 360 amino acid 
residues. The CB1 receptor and the CB2 receptor share a 44% overall identity (68% 
identity for the transmembrane domains). The CB2 receptor is abundantly present 
in various lymphoid tissues such as the marginal zone of the spleen, the cortex of 
the lymph nodes and the nodular corona of Peyer's patches [6], and is expressed in 
various types of leukocytes with a rank order of B lymphocytes> natural killer cells 
> monocytes/macrophages > polymorphonuclear leukocytes> T8 lymphocytes> T4 
lymphocytes [8-10]. The CB2 receptor is assumed to participate in the regulation of 
inflammatory reactions and immune responses [6, 8-10], although the details of the 
physiological functions of the CB2 receptor still remain to be clarified. 

The mechanisms of the diverse actions of the natural and synthetic cannabinoids 
have not yet been fully elucidated. However, it has been assumed that various 
cannabinoids including ~9-THC exert their biological activities mainly by acting on 
these cannabinoid receptors (CB1 and CB2) although there remains the possibility 
that non-CB1 and non-CB2 binding sites for the cannabinoids exist in mammalian 
tissues. 

Identification of endogenous cannabinoid receptor ligands 

The discovery of the specific receptors for cannabinoids prompted the search for 
endogenous ligand(s). In 1992, Devane et al. [11] isolated anandamide from pig 
brain as the first endogenous cannabinoid receptor ligand. They demonstrated that 
anandamide binds to the brain cannabinoid receptor (Ki = 52 nM) and inhibits the 
mouse twitch response. Anandamide also induces the inhibition of the voltage-gated 
Ca2+ channels, the activation of an inwardly rectifying K+ current, the stimulation 
of [35S]GTPyS binding to G proteins, the activation of mitogen-activated protein 
kinase (MAP kinase) and the neural form of focal adhesion kinase, the inhibition of 
neurotransmitter release, the inhibition of long-term potentiation in hippocampal 
slices, the impairment of memory, reduced spontaneous motor activities, immobili­
ty, hypothermia, analgesia, vasodilation, hypotension, bradycardia, the growth inhi­
bition of human breast and prostate cancer cells and the inhibition of the sperm 
acrosome reaction [5, 12-16]. It should be noted, however, that anandamide acted 
as a partial agonist in some cases [16]. It is curious that an endogenous naturallig­
and acts as a partial agonist at its own receptor; natural ligands usually act as full 
agonists. Therefore, it seems unlikely that an and amide acts as an endogenous 
cannabinoid receptor agonist with significant physiological importance, although 
this still remains a controversial subject. 

In addition to acting as an endogenous cannabinoid receptor ligand, anan­
damide was shown to act as an endogenous ligand for an ion channel-type vanil-
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loid receptor (VRI receptor). Moreover, anandamide can also bind to several 
other types of ion channels. Therefore, it seems possible that some of the anan­
damide effects mentioned above are mediated through receptors or binding sites 
other than the cannabinoid receptors. It is necessary to keep this in mind when 
interpreting the experimental results concerning the biological activities of anan­
damide. 

On the other hand, in the mid-1990s, we isolated 2-AG, a unique molecular 
species of monoacylglycerol, from rat brain, and found that it acts as an endogenous 
cannabinoid receptor ligand [17, 18]. Independently and concurrently, Mechoulam 
et al. [19] also isolated 2-AG from the canine gut. It has been shown that 2-AG 
binds to the cannabinoid receptors (CBl and CB2), and exhibits several 
cannabimimetic activities in vitro and in vivo [5, 12-16, 18-21]. Despite its possi­
ble physiological significance, however, much less attention has been paid to 2-AG 
compared with anandamide until recently. Indeed, the physiological significance of 
2-AG has very often been overlooked. Unequivocally, 2-AG is a quite noticeable 
molecule from a variety of viewpoints. We have focused on 2-AG and intensively 
investigated the biological activities and physiological roles of 2-AG since 1995. 

In 1996, we found by chance that 2-AG induces a rapid transient increase in the 
intracellular free Ca2+ concentrations ([Ca2+l) in neuroblastoma x glioma hybrid 
NGI08-15 cells expressing the CBl receptor [22-24]. We confirmed that the 
response induced by 2-AG was blocked by pretreatment of the cells with 
SR141716A, a cannabinoid CB 1 receptor-specific antagonist, indicating that the 
response induced by 2-AG was mediated through the CBl receptor [22, 24]. 2-AG­
induced Ca2+ transients were also observed in promyelocytic HL-60 cells expressing 
the CB2 receptor [25]. We confirmed that the response was abolished by pretreat­
ment of the cells with SR144528, a cannabinoid CB2 receptor-specific antagonist, 
indicating that the response induced by 2-AG was mediated through the CB2 recep­
tor [25]. Free arachidonic acid failed to exhibit any agonistic activity in either case, 
indicating that arachidonic acid that may be generated from 2-AG during incuba­
tion is not involved in the response. We also confirmed that the pretreatment of the 
cells with indomethacin, a cydo-oxygenase inhibitor, or nordihydroguaiaretic acid, 
a lipoxygenase inhibitor, did not affect the response, suggesting that arachidonic 
acid metabolites are not involved. 

We then examined the mechanism underlying the rapid transient increase in 
[Ca2+]j induced by 2-AG. We found that pretreatment of the cells with pertussis 
toxin abolished the response induced by 2-AG, indicating that GilGo is involved in 
the response. We also found that pretreatment of the cells with U73122, a phos­
pholipase C inhibitor abrogated the response induced by 2-AG, whereas pretreat­
ment of the cells with U73343, an inactive analog of U73122, did not affect the 
response [23], suggesting that phospholipase C is involved in the response induced 
by 2-AG. We assumed that the 2-AG-induced rapid transient increase in [Ca2+]j 
involves: 

214 



Metabolism and physiological significance of anandamide and 2-arachidonoylglycerol 

1) 2-AG binding to the cannabinoid receptors (CBl and CB2) followed by 
2) activation of GilGo, and 
3) the liberated ~y subunit of GilGo then stimulates phospholipase C~ to enhance 

the production of inositoll,4,5-trisphosphate, thereby increasing [Ca2+]i. 

We next investigated in detail the structure-activity relationship of 2-AG and other 
cannabinoid receptor ligands using NGI08-15 cells (for the CBl receptor) and HL-
60 cells (for the CB2 receptor). We found that an ether-linked analog of 2-AG (2-
AG ether) possesses substantial biological activity, indicating that the structure of 2-
AG itself, but not its metabolite, is actually recognized by the receptor molecules 
(CBl and CB2) [24, 25]. In contrast to 2-AG, anandamide was found to act as a 
weak partial agonist toward either the CBl receptor or the CB2 receptor. The activ­
ity of A9-THC, a major psychoactive constituent of marijuana, was also low [23, 
25]. We further examined the activities of various 2-AG analogs as well as classical 
and synthetic cannabinoids. The activities of the monoacylglycerols containing var­
ious saturated, monoenoic and dienoic fatty acids were almost inactive. 1(3)-AG, 
the positional isomers of 2-AG, exhibited appreciable agonistic activities, yet their 
activities were much lower than those of 2-AG. Among the various naturally occur­
ring analogs, 2-AG acted as the most efficacious agonist toward both types of 
cannabinoid receptors (CBl and CB2) [22-25]. This has also been confirmed by sev­
eral investigators [26-28]. We proposed that 2-AG, but not anandamide, is the 
intrinsic natural ligand for the cannabinoid receptors (CBl and CB2) and both 
receptors are originally and primarily 2-AG receptors [20,21,23-25]. 

Recently, Hanus et al. [29] reported that 2-AG ether is present in pig brain. They 
described that 2-AG ether is the third endogenous cannabinoid receptor ligand (they 
called it "noladin ether"). Fezza et al. [30] also reported that a small amount of 2-
AG ether is present in rat brain. We examined in detail whether 2-AG ether is actu­
ally present in the brain. However, we did not detect any appreciable amounts of the 
2-AG ether in the brains of various mammalian species such as mouse, rat, hamster, 
guinea pig, and pig « 0.2 pmoVg tissue, if at all present) (S. Oka and T. Sugiura, 
unpublished results). The ether bond is known to be located exclusively at the 1-
position of the glycerol backbone in mammalian tissues [31-33]. It is questionable 
whether 2-AG ether is a naturally-occurring molecule and acts as an endogenous lig­
and for the cannabinoid receptors. 

Tissue levels of endogenous cannabinoid receptor ligands 

Previously, Schmid and co-workers [34] estimated the levels of the N­
acylethanolamines including anandamide by GC/MS. They detected an and amide in 
the brains of several animal species. The levels of anandamide in the sheep brain 
were negligible, whereas low levels were found in the pig and cow brain (17 and 
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10 pmollg tissue, respectively). These values were, however, significantly lower than 
the levels of anandamide in the pig brain (370 pmollg tissue) reported by Devane et 
al. [11]. The exact reason for this difference is uncertain. However, it is possible that 
a considerable amount of anandamide was generated during the postmortem peri­
od in the latter case. Schmid and co-workers [34] demonstrated that the levels of 
anandamide in isolated pig brain were dramatically augmented when kept at ambi­
ent temperature. The generation of anandamide in the brain during the postmortem 
period was also reported by Kempe et al. [35] and Felder et al. [36].We detected a 
small amount of anandamide in fresh rat brain (4.3 pmollg tissue), which accounts 
for only 0.7% of the total N-acylethanolamine [37]. The predominant species of N­
acylethanolamine detected in the rat brain were the N-16:0 and N-18:0 species. 

The levels of anandamide in the brains of various mammalian species have also 
been studied by a number of investigators (reviewed in [21]). The levels of anan­
damide in the rat brain were 3.37-15 pmollg tissue and those in mouse brain were 
10-15 pmollg tissue. The level of anandamide was variable depending on the phys­
iological and pathophysiological conditions of the brains. Di Marzo et al. [38] 
reported that the levels of anandamide in the hypothalamus markedly decreased fol­
lowing the administration of leptin. On the other hand, Giuffrida et al. [39] report­
ed that D2-like dopamine receptor activation evokes the release of anandamide in 
the dorsal striatum of freely moving rats. Recently, Baker et al. [40] reported that 
the levels of anandamide in the brain and spinal cord were elevated in spastic mice 
with chronic relapsing experimental allergic encephalomyelitis. 

Anandamide was detected in various peripheral tissues as well (reviewed in [21]), 
such as the bovine retina (64 pmollg tissue), the human heart (10 pmollg tissue), 
human spleen (15 pmollg tissue), rat heart (21.2-126 pmollg tissue), rat liver 
(19.7-77.1 pmollg tissue), rat kidney (8-164 pmol/g tissue, 0.32-0.35 pmol/!lmol 
lipid P), rat spleen (6 pmol/g tissue, 0.34 pmoll!lmol lipid P), rat thymus 
(40.6-137 pmollg tissue), rat testis (2.9-43.5 pmollg tissue, 0.25-0.31 pmoll!lmol 
P), mouse uterus (2215-20982 pmol/g tissue), rat skin (23 pmol/g tissue, 49 pmollg 
tissue), and rat paw skin (0.69 pmollmg of extracted lipids). Schmid et al. [41] 
reported that mouse peritoneal macrophages contain a small amount of anan­
damide (0.25 pmoll!lmollipid Pl. Anandamide was also detected in rat plasma col­
lected by decapitation (144 pmol/ml) or by cardiac puncture (3.1 pmollml) and in 
the sera from normal donors (4 pmollml) and patients with endotoxin shock (18 
pmollml) (reviewed in [21]). On the other hand, Yang et al. [42] described that the 
levels of anandamide in the rat brain, spleen, testis, liver, lung and heart were below 
the levels of quantification achievable « 0.1 pmol/mg protein). 

The available information as to the tissue levels of 2-AG is still limited. 
Mechoulam et al. [19] detected 2-AG in the canine gut, although they did not quan­
tify it. We detected 3.25 nmol/g tissue of arachidonoylglycerols (2-AG plus 1(3)-AG) 
[18] and 3.36 nmollg tissue of 2-AG in rat brain [43]. The level of 2-AG in the 
brains obtained from rats sacrificed in liquid nitrogen was 0.23 nmol/g tissue [44]. 
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Stella et al. [45] also detected 4.0 nmoVg tissue of 2-AG in the rat brain. Bisogno et 
al. [46] examined the levels of 2-AG in various brain regions. 2-AG was also detect­
ed in the peripheral nervous system. Huang et al. [47] reported that 2-AG is present 
in the rat sciatic nerve (0.052 nmoVg tissue), lumbar spinal cord (0.432 nmol/g tis­
sue) and lumbar dorsal root ganglion (0.370 nmoVg tissue). 2-AG was also detect­
ed in the rat retina (2.97 nmoVg tissue) and bovine retina (1.63 nmoVg tissue). We 
further estimated the levels of 2-AG in several rat tissues [43]. The levels of 2-AG in 
the rat liver, spleen, lung, kidney and plasma were 1.15 nmoVg tissue, 1.17 nmoVg 

tissue, 0.78 nmoVg tissue, 0.98 nmoVg tissue and 0.012 nmol/ml, respectively. The 
tissue levels of 2-AG in rats have also been reported by Schmid and co-workers [48]: 
13.04-6.19 pmoV!lmollipid P (kidney), 3.21-3.05 pmoV!lmollipid P (testis), 10.94 
pmoV!lmollipid P (heart), 29.03 pmoV!lmollipid P (spleen) and 5.05 pmoV!lmol 
lipid P (liver). 2-AG was also detected in the sera from normal donors (10 pmoVml) 
and patients with endotoxin shock (30 pmoVml) and in human milk (0.33 !lg/ml) 
and rat paw skin (51.1 pmoVmg of extracted lipids) (reviewed in [21]). 

Noticeably, the levels of 2-AG in the brain changed following several treatments 
of experimental animals. We found that the amount of 2-AG in rat brain was sig­
nificantly augmented following decapitation [49]. Di Marzo et al. [50] demonstrat­
ed that the levels of 2-AG in the globus pallidus were augmented in reserpine-treat­
ed rats. Baker et al. [40] demonstrated that the levels of 2-AG in the brain and spinal 
cord were elevated in spastic mice with chronic relapsing experimental allergic 
encephalomyelitis. Interestingly, the levels of 2-AG as well as anandamide in the rat 
hypothalamus were significantly reduced in mice injected with leptin compared with 
the control [38], suggesting that these endogenous cannabinoid receptor ligands are 
involved in the regulation of appetite. 

Biosynthesis and degradation of endogenous cannabinoid receptor ligands 

Evidence is gradually accumulating that anandamide is produced in relatively small 
amounts in a variety of tissues and cells upon stimulation. Di Marzo et al. [51] 
demonstrated that rat brain neurons generated anandamide when stimulated with 
ionomycin or several membrane-depolarizing agents such as kainate, high K + and 4-
aminopyridine. Di Marzo et al. also demonstrated that an and amide was produced 
in ionomycin-treated ]774 macrophages [52, 53], ionomycin-treated RBL-2H3 cells 
[53] and phospholipase D-treated N18TG2 neuroblastoma cells [52]. Hansen and 
co-workers [54] investigated whether N-acylethanolamine is produced in glutamate­
or A23187- stimulated mouse cortical neurons in culture. They showed that the gen­
eration of N-acylethanolamine takes place in stimulated cells prelabeled with [3H] 
ethanolamine, although they could not detect the generation of anandamide when 
the cells were prelabeled with [3H] arachidonic acid. Later, they detected the for­
mation of [14C] anandamide in NaN3-treated neurons [55]. The generation of anan-
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damide was also observed in ionomycin-stimulated rat macrophages [56], LPS-, 
platelet-activating factor- and ,-19-THC-stimulated RAW264.7 mouse macrophages 
[57], veratridine-, 4-aminopyridine- and A23187-stimulated SK-N-SH neuroblas­
toma cells [58] and in the periaqueductal gray region of the rat brain following elec­
trical stimulation and the subcutaneous injection of formalin [59]. On the other 
hand, we found that the level of anandamide was augmented in inflamed rat testis, 
although the augmentation of the levels of saturated and monoenoic species was 
much more prominent [60]. Kuwae et al. [61] also demonstrated the generation of 
anandamide as well as other molecular species of N-acylethanolamine in mouse 
peritoneal macrophages in culture supplemented with ethanolamine. 

Anandamide can be enzymatically formed via two independent synthetic path­
ways (Fig. 2) (reviewed in [21]). One is the direct N-acylation of ethanolamine and 
the other is transacylase-phosphodiesterase-mediated synthesis (Schmid's pathway). 
The first pathway is catalyzed by the reverse reaction of an anandamide amidohy­
drolaselfatty acid amide hydrolase [62-64], suggesting that the formation of anan­
damide via this pathway may not be physiologically relevant, yet there remains the 
possibility that a significant amount of anandamide can be formed via this pathway 
if high concentrations of arachidonic acid and ethanolamine are co-localized at 
some sites within the cell. The second pathway (Schmid's pathway) is the formation 
of anandamide from pre-existing N-arachidonoyl phosphatidylethanolamine (PE) 
through the action of a phosphodiesterase. This enzyme reaction has been assumed 
to be the major synthetic route for various N-acylethanolamines such as N-palmi­
toyl- and N-stearoyl-ethanolamine [65]. Several investigators have demonstrated 
that anandamide can be formed from N-arachidonoyl PE through the action of a 
phosphodiesterase [37,51]. This is probably the major synthetic pathway for anan­
damide in various mammalian tissues. Nevertheless, this pathway does not appear 
to be able to generate a large amount of anandamide, because the tissue level of N­
arachidonoyl PE is usually very low. The reason for this is that N-arachidonoyl PE 
is synthesized from PE and arachidonic acid, esterified at the I-position of the glyc­
erophospholipids through the action of a trans acylase [37, 66]. It should be noted 
that the level of arachidonic acid esterified at the I-position of glycerophospholipids 
is usually very low. The absence of efficient synthetic pathways for anandamide 
coincides with the observation that the tissue levels of anandamide are generally low 
(in the order of pmol/g tissue) except in a few cases [21]. 

The degradation of anandamide is catalyzed by two separate types of anan­
damide amidohydrolaselfatty acid amide hydrolases; the optimal pH of one isoform 
is 8.5-10 [67] and the optimal pH of the other is 5 [68]. The gene encoding the first 
enzyme protein has already been cloned by Cravatt et al. [69]. The second enzyme 
identified and purified by Veda et al. [68] is less sensitive to several inhibitors than 
the first anandamide amide hydrolaselfatty acid amide hydrolase having the optimal 
pH of 8.5-9 and efficiently degraded N-palmitoylethanolamine. The role allotment 
of these two types of anandamide amidohydrolaselfatty acid amide hydrolase 
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Figure 2 

H.c-OH 

I 
Transacylase 

R3- C- O- CH 

8 I ~ 
H.c-O-P-O-X 

I o· 

If 
Ca2+ 

H.c-O-:::':::::; 

I A 
R3- C- O- CH 

8 I ~ 
H.c-O-P-O-X 

I o· 

PhosphOlipid (1-O-arachidonoyl) 

Lysophospholipid o 
II 

H.c-O-C-R, 

I 
R2-C-O-CH 

A I ~ ~ ~ 
H.c-O -~-o -CH2 - CH2 - N -c~ 

o· ~ 

N-Arachldonoyl PE 

o 
II 

H.c-O-C-R, 

Phosphodiesterase I 
R2-C-O-CH 

o 

~ I ~ 
H.c-O-P-OH 

I 

H 0 
I II 

HO-CH2 - CH2 - N -::::::::2J 
I N-Arachldonoylethanolamine I 

(Anandamide) J 

o· 
PA 

1 t Anandamide amidohydrolase I I Fatty acid amide hydrolase 

HO-~ + 
HO-CH2-CH2-NH2 

Arachidonic acid Ethanolamine 

Biosynthesis and degradation of anandamide 

219 



Takayuki Sugiura et al. 

remains to be clarified. The anandamide amidohydrolaselfatty acid amide hydrolase 
is capable of producing anandamide if the concentrations of arachidonic acid and 
ethanolamine are high enough as already described. 

In contrast to anandamide, 2-AG is present in relatively large amounts in vari­
ous mammalian tissues (the order of nmol/g tissue) [20,21]. Noticeably, the levels 
of 2-AG were rapidly elevated in tissues and cells following stimulation [20,21]. In 
addition, it is noteworthy that a significant portion of newly formed 2-AG can be 
released from stimulated cells [20,21]. These characteristics appear to be favorable 
in acting as an intercellular mediator derived from stimulated cells. 

The first description in the literature concerning the generation of arachidonoyl­
glycerols in stimulated tissues and cells was that in thrombin-stimulated platelets 
reported by Prescott and Majerus in 1983 [70]. Later, the generation of arachi­
donoylglycerols in platelet-derived growth factor-stimulated Swiss 3T3 cells [71] 
and in bradykinin-stimulated rat dorsal ganglion neurons [72] was also demon­
strated. However, at that time, the physiological significance of 2-AG as an endoge­
nous cannabinoid receptor ligand was unknown. The generation of 2-AG as an 
endogenous cannabinoid receptor ligand was first described in ionomycin-stimulat­
ed N18TG2 cells [73], and in electrically stimulated rat hippocampal slices and ion­
omycin-stimulated neurons [45]. We also investigated the generation of 2-AG and 
found that the rapid generation of 2-AG occurs in the rat brain homogenate during 
incubation in the presence of Ca2+ (T. Sugiura and S. Oka, unpublished results) and 
in thrombin- or A23187-stimulated human umbilical vein endothelial cells [74]. 
Furthermore, we recently found that the levels of 2-AG in the rat brain were dra­
matically elevated (six-fold) following the intraperitoneal injection of picrotoxinin, 
a central nervous system stimulant [44]. In this case, the generation of mono acyl­
glycerols other than arachidonoylglycerols was negligible or very small. The gener­
ation of 2-AG was also observed in the carbachol-treated rat aorta [75] and ethanol­
treated cerebellar granule neurons in culture [76]. Several types of blood cells or 
inflammatory cells produce 2-AG upon stimulation such as in LPS-stimulated rat 
platelets [77], LPS-stimulated rat macrophages and LPS- or ionomycin-stimulated 
]774 macrophage-like cells [78] and platelet-activating factor-stimulated human 
platelets and P388Dl macrophage-like cells [79]. 

There are several possible metabolic routes for the generation of 2-AG in mam­
malian tissues. Previously, we described that 2-AG can be formed from arachidonic 
acid-enriched membrane phospholipids, such as inositol phospholipids, through the 
combined actions of phospholipase C and diacylglycerol lipase or through the com­
bined actions of phospholipase Al and phospholipase C (Fig. 3) [18,20,21]. The 
first pathway, involving the rapid hydrolysis of inositol phospholipids by phospho­
lipase C and subsequent hydrolysis of the resultant diacylglycerol by diacylglycerol 
lipase, was described two decades ago by Prescott and Majerus as a degradation 
pathway for arachidonic acid-containing diacylglycerol in platelets [70]. Stella et al. 
[45] demonstrated that these enzyme activities are involved in the ionomycin-
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induced generation of 2-AG in cultured neurons using metabolic inhibitors. Recent­
ly, we confirmed that this pathway is important for the depolarization-induced gen­
eration of 2-AG in rat brain synaptosomes (T. Sugiura and S. Oka, unpublished 
results). 

The second pathway involves the hydrolysis of phosphatidylinositol (PI) by 
phospholipase At and the hydrolysis of the resultant lysoPI by a specific phospholi­
pase C. Noticeably, lysoPI-specific phospholipase C is distinct from the various 
types of phospholipase Cs which act on other inositol phospholipids, and is local­
ized in the synaptosomes [80]. Therefore, it is possible that this unique enzyme may 
also be involved in the generation of 2-AG in synapses. In addition to these two 
pathways, there are several possible routes for the generation of 2-AG, such as the 
generation from 2-arachidonoyl LPA [81] or 2-arachidonoyl PA [82]. We obtained 
evidence that a substantial amount of 2-arachidonoyl LPA is present in rat brain and 
that the formation of 2-AG from 2-arachidonoyl LPA takes place in the rat brain 
homogenate [81]. The biosynthetic pathways for 2-AG appear to differ, depending 
on the types of tissues and cells, and the types of stimuli. A full understanding of the 
mechanism and regulation of the biosynthesis of 2-AG awaits further investigations. 

As for the degradation of 2-AG, 2-AG is metabolized by monoacylglycerollipase 
similar to other monoacylglycerols [83]. In addition to this, several investigators 
have demonstrated that anandamide amidohydrolaselfatty acid amide hydrolase is 
also able to metabolize 2-AG [84, 85]. A part of 2-AG may be degraded by anan­
damide amidohydrolaselfatty acid amide hydrolase in some cases. 

Physiological roles of endogenous cannabinoid receptor ligands in the 
nervous system 

Anandamide was the first endogenous cannabinoid receptor ligand to be found. To 
date, it has been established that anandamide possesses strong binding activity 
toward the cannabinoid receptors and exhibits a variety of cannabimimetic activi­
ties in vitro and in vivo [5, 12-16]. However, evidence has gradually accumulated 
recently against the physiological significance of an and amide as the natural ligand 
for the cannabinoid receptors: 

1) The levels of anandamide in tissues are usually low except in a few cases. 
2) No selective and efficient synthetic pathway for anandamide has hitherto been 

found. 
3) Anandamide, as well as A9-THC, acted as a partial agonist at least in some cases. 

Among them, the final issue is particularly important, because it is unusual that an 
endogenous natural ligand acts as a partial agonist at its own receptor. Hence, it is 
questionable whether anandamide actually serves as an endogenous cannabinoid 
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receptor ligand of great physiological significance in living animals. Recently, Zyg­
munt et al. [86] demonstrated that anandamide is a potent agonist of the vanilloid 
receptor. Anandamide is also known to regulate the background K+ channel TASK-
1 and several other ion channels [21, 87, 88]. It is possible that the physiological sig­
nificance of anandamide may exist in its being an endogenous ligand of the recep­
tor(s) other than the cannabinoid receptors or as a modulator of ion channels. Alter­
natively, there may exist some other unknown physiological functions of 
anandamide. In any case, further studies are necessary to clarify the exact physio­
logical significance and functions of anandamide. 

2-AG was the second endogenous cannabinoid receptor ligand to be discovered 
and was found to act as a full agonist at the cannabinoid CB1 receptor abundantly 
expressed in the nervous system. Noticeably, 2-AG can be rapidly and selectively 
produced from a variety of cells upon stimulation. The tissue levels of 2-AG are usu­
ally markedly higher than those of anandamide. In contrast to anandamide, 2-AG 
does not bind to the vanilloid receptor. Based on these observations, we have pro­
posed that 2-AG is the intrinsic natural ligand for the cannabinoid CB1 receptor, 
and the cannabinoid CB1 receptor is originally and primarily a 2-AG receptor [20, 
21,23-25]. 

2-AG is present in relatively high amounts in mammalian brains; it seems unlike­
ly that 2-AG induces psychedelic reactions such as heightened sensory awareness, 
dissociation of ideas, errors in judgment of time and space and hallucinations in liv­
ing animals. Recently, we obtained evidence that a substantial amount of 2-AG was 
generated and released from depolarized rat brain synaptosomes (T. Sugiura and S. 
Oka, unpublished results). We also found that the treatment of the synaptosomes 
with SR141716A, a cannabinoid CB1 receptor-specific antagonist, enhanced the 
release of glutamate upon depolarization (T. Sugiura and S. Oka, unpublished 
results). These results strongly suggest that the endogenous ligand of the cannabi­
noid CB1 receptor, that is, 2-AG, plays an essential role in the attenuation of neu­
rotransmission. We proposed that the physiological role of 2-AG in the synapse is 
as follows: 2-AG is generated through increased phospholipid metabolism, espe­
cially inositol phospholipid breakdown, at the presynapses and/or postsynapses dur­
ing accelerated synaptic transmission. 2-AG is rapidly released from the neuronal 
cells to the synaptic cleft, because 2-AG is a membrane-permeable molecule. The 
released 2-AG then binds to the cannabinoid CB1 receptor mainly expressed in the 
presynapse, and suppresses neuronal excitation through inhibiting Ca2+ channels or 
activating K+ channels, thereby diminishing subsequent neurotransmitter release 
(Fig. 4) [20,21]. 

Such a negative feedback regulation mechanism should be effective in calming 
stimulated neurons after excitation. The 2-AG- and cannabinoid CB1 receptor­
dependent negative feedback regulation of neurotransmission would be of great 
physiological significance, because sustained activation of neuronal cells is known 
to cause cell exhaustion and may lead to neuronal cell death. 2-AG probably plays 
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Physiological significance of the cannabinoid CB1 receptor and 2-AG in the synapse 

such an important regulatory role in the neurotransmission in cooperation with 
other inhibitory neurotransmitters and neuromodulators such as GABA and adeno­
sine in vivo. As for 2-AG in the brain, Stella et al. [45] demonstrated that 2-AG sup­
presses long-term potentiation in rat hippocampal slices, and Ameri and Simmet 
[89] reported that 2-AG reduces neuronal excitability in rat hippocampal slices. 
Panikashvili et al. [90] also recently proposed the protective role of 2-AG in the 
brain. On the other hand, ~9-THC, the major psychoactive constituent of marijua­
na, is a partial agonist of the cannabinoid CB1 receptor. It is possible that ~9-THC 
interferes with the actions of the physiological ligand 2-AG, thereby inducing sev­
eral pharmacological effects such as altered perception and hallucination. 

Recently, several investigators have reported that the endogenous cannabinoid 
receptor ligand derived from the postsynapse is the effector molecule of the depo­
larization-induced suppression (DSE) [91-93]. Based on our previous experimental 
results on 2-AG in the nervous system as previously mentioned, we considered that 
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the cannabimimetic molecules involved in this response is 2-AG. Unlike anan­
damide, 2-AG has long been outside the limelight until recently. 2-AG is now in the 
spotlight. Details of the physiological functions and the regulation of the biosyn­
thesis, degradation, release and re-uptake of 2-AG in synapses will be clarified in the 
near future. 

Physiological roles of endogenous cannabinoid receptor ligands during 
inflammation and immune response 

The cannabinoid CB2 receptor is abundantly expressed in various types of inflam­
matory cells and immune cells such as natural killer cells, B lymphocytes and 
macrophages [6, 8-10], suggesting that its endogenous ligand plays an important 
role in the regulation of inflammation and immune response. Previously, we found 
that the structure of 2-AG is strictly recognized by the CB2 receptor [23-25]. 2-AG 
acted as the most efficacious agonist among the various structural analogs; 2-AG 
acted as a full agonist at the CB2 receptor whereas anandamide acted as a weak par­
tial agonist. Gonsiorek et al. [27] also demonstrated that 2-AG is a full agonist and 
anandamide is a partial agonist using the membrane fraction of the Sf9 cells trans­
fected with the human CB2 receptor eDNA. These observations strongly suggest 
that 2-AG, and not anandamide, is the true endogenous ligand for the cannabinoid 
CB2 receptor as in the case of the CB1 receptor [20,21]. 

Only limited information is thus far available concerning the biological activities 
of 2-AG toward inflammatory cells and immune cells. Previously, Lee et al. [94] 
reported that 2-AG affects lymphocyte proliferation. Ouyang et al. [95] also demon­
strated that 2-AG suppresses the IL-2 gene expression in murine T lymphocytes 
through down-regulation of the nuclear factor. Very recently, Chang et al. [96] 
demonstrated that 2-AG inhibited the production of IL-6 in ]774 macrophage-like 
cells. However, it remains unclear whether these effects of 2-AG are mediated 
through the cannabinoid receptor. On the other hand, we recently found that 2-AG 
induces the rapid phosphorylation and activation of the p42/44 MAP kinase in HL-
60 cells [97]. 2-AG-induced activation of the p42/44 MAP kinase was abolished 
when the cells were pretreated with either SR144528 or PTX, indicating that the 
response was mediated through the CB2 receptor and Gi/Go. CP55940, a synthetic 
cannabinoid, also induced the activation of the p42/44 MAP kinase, whereas only 
a slight activation of the p42/44 MAP kinase was observed with anandamide. In 
addition to the p42/44 MAP kinase, we found that rapid phosphorylation of the 
p38 MAP kinase and c-Jun N-terminal kinase takes place in 2-AG-stimulated HL-
60 cells (Fig. 5). A similar 2-AG-induced activation of the p38 MAP kinase and c­
Jun N-terminal kinase has also been reported by several investigators [98, 99]. 

Recently, we found that 2-AG induces the migration of HL-60 cells differentiat­
ed into macrophage-like cells (Fig. 6). The 2-AG-induced migration of HL-60 cells 
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2-AG-induced phosphorylation of p38 MAP kinase and c-Jun N-terminal kinase in HL-60 

cells 

HL-60 cells were incubated in the presence or absence of 1 !JM 2-AG for 30 min. The phos­

phorylation of p38 MAP kinase (A) and c-Jun N-terminal kinase (8) was determined by 

Western blotting. The data are the means of two determinations. 

was markedly reduced when the cells were pretreated with either SR144528 or PTX 
(S. Kishimoto, M. Gokoh and T. Sugiura, unpublished results), suggesting that the 
migration was mediated through the CB2 receptor and GilGo as in the cases of Ca2+ 

transients [25] and the activation of the p42/44 MAP kinase [97]. Arachidonic acid 
and its metabolites are not involved in the 2-AG-induced migration, because free 
arachidonic acid was not capable of inducing the migration. This was also con­
firmed by the fact that 2-AG ether, a metabolically stable analog of 2-AG, was able 
to induce the migration (S. Kishimoto, M. Gokoh and T. Sugiura, unpublished 
results), although its activity was significantly weak compared with that of 2-AG. 
The migration of HL-60 cells induced by 2-AG was assumed to mainly involve 
chemotaxis rather than chemokinesis. In contrast to 2-AG, anandamide did not 
exhibit appreciable activity to induce the migration. Recently, Jorda et al. [100] also 
demonstrated that 2-AG induces the migration of mouse splenocytes and several 
myeloid cells. 

Previously, Gallily et al. [101] reported that 2-AG suppresses the production of 
the tumor-necrosis factor a (TNF-a) in LPS-stimulated mouse macrophages in vitro 
and in LPS-administered mice in vivo, although whether these effects of 2-AG are 
mediated through the CB2 receptor is uncertain. On the other hand, we found that 
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Figure 6 

2-AG-induced migration of HL-60 cells differentiated into macrophage-like cells 

The migration of HL-60 cells differentiated into macrophage-like cells (in the upper com­

partment) in response to 1 .uM 2-AG (in the lower compartment) was examined using Costar 

Transwells (pore size, 5 wn) and 24-well culture plates. Cells were incubated in an atmos­

phere of 5% CO2 and 95% air for 4 h. (A), cells migrated from the upper compartment to 

the lower compartment in the presence of vehicle alone; (8), cells migrated from the upper 

compartment to the lower compartment in the presence of 1 .uM 2-AG. The magnification 

was x 200. 

the addition of 2-AG to HL-60 cells enhanced the production of chemokines such 
as IL-8 and MCP-1 through a CB2 receptor- and Gi/Go-dependent mechanism (5. 
Kishimoto and T. Sugiura, unpublished results). CP55940 also caused the accelerat­
ed production of IL-8 and MCP-I. Meanwhile, anandamide as well as the free 
arachidonic acid failed to induce the augmented production of chemokines. Based 
on the experimental results concerning cell migration and chemokine production, 
we propose that 2-AG has a positive rather than negative role during inflammatory 
reactions and immune responses (Fig. 7). 

It is well known that i19-THC affects inflammatory reactions and immune 
response in vivo [8-10, 102]. For example, orally administered i19-THC exhibited 
anti-inflammatory activity in rat paws injected with several stimulants such as car­
rageenan [103], although contradictory results have been reported as well [104] . 
The administration of i19-THC to experimental animals has also been shown to 
result in a decreased resistance to viral and bacterial infection [8-10, 102]. The 
impairment of cell-mediated immunity has been assumed to be involved in the 
decreased resistance to microorganisms. A number of investigators have already 
demonstrated that i19-THC suppresses several cellular functions of inflammatory 
cells and immune cells such as phagocytosis, antigen presentation, cytotoxicity, pro-
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Physiological significance of the cannabinoid CB2 receptor and 2-AG during inflammation 
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duction of nitric oxide and cytokines such as TNF-a and mitogen-induced blasto­
genesis in vitro [8-10, 102], although the required concentrations are relatively 
high. The mechanism by which [\9-THC suppresses inflammatory cell and immune 
cell functions has not been fully elucidated. It has been assumed that the effects of 
[\9-THC are partly mediated by the cannabinoid receptors (CB2 and CB1) and part­
ly by cannabinoid receptor-independent mechanisms. Previously, we demonstrated 
that A9_THC is a weak partial agonist of the cannabinoid CB2 receptor [25]. 
Bayewitch et al. [105] also reported that A9-THC acted as an antagonist toward the 
CB2 receptor. Therefore, it is possible that A9-THC interferes with the actions of the 
physiological ligand 2-AG thereby causing suppression or inhibition of several func­
tions of inflammatory cells and immune competent cells at least in some cases. 

Previously, it has been demonstrated that low concentrations of cannabinoids 
such as CP55940 induce the augmented production of chemokines such as IL-8 and 
MCP-l in HL-60 cells [106]. [\9-THC was also found to elicit the accelerated pro­
duction of several cytokines such as IL-4 and IL-l0 [107]. On the other hand, 
Berdyshev et al. [108] reported that micromolar concentrations of [\9-THC induce 
the increased production of TNF-a, IL-6 and IL-8 in LPS-stimulated human periph­
eral blood mononuclear cells. These results are generally consistent with our exper­
imental results on the stimulative effects of 2-AG on chemokine production as pre­
viously mentioned. Noticeably, low concentrations of CP55940 were shown to 
induce the proliferation [109] and differentiation [110] of B lymphocytes. This 
strongly suggests that the cannabinoid receptors are involved in the regulation of the 
functions of B lymphocytes and humoral immunity. Recently, Iwamura et al. [111] 
reported that JTE-907, a CB2 receptor antagonist/inverse agonist, inhibited inflam­
mation in the paw evoked by the injection of carrageenan in mice. A similar effect 
was observed with SR144528 [111], suggesting close involvement and mandatory 
roles of the cannabinoid receptors in inflammation reaction. It is thus clear that the 
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endogenous ligand of the cannabinoid receptors (we are assuming that it is 2-AG) 
plays important positive roles during the course of inflammation and immune 
response, although details still remain to be determined. Further studies are neces­
sary for a thorough elucidation of the physiological and pathophysiological signifi­
cances of the cannabinoid receptor and its endogenous ligand 2-AG in the immune 
system. Such studies would be quite helpful to better understand the precise regula­
tory mechanisms of inflammation and immune homeostasis. 

Concluding remarks 

The cannabinoid receptors (CBl and CB2) and their endogenous ligands, especially 
2-AG, are assumed to play essential roles in the nervous system and the immune sys­
tem as addressed in this review, although subsequent intensive studies are indis­
pensable for a comprehensive understanding. In addition to this, the cannabinoid 
receptor system is also suggested to play important roles in other biological systems 
such as the cardiovascular system [112, 113] and the reproductive system [114, 
115]. However, sufficient information has not yet been accumulated as to this issue 
and details still remain rather obscure. Apparently, the cannabinoid receptors and 
their endogenous ligands are attractive targets for new drug development such as 
anti-inflammation drugs, yet the research is just beginning. Thus, future studies on 
the cannabinoid receptors and their endogenous ligands will open promising new 
areas in the biological and biomedical sciences. 
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