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\ Preface

This book was written with a dual purpose, as a reference book for practicing
engineers and as a textbook for students of prestressed concrete. It represents
the fifth generation of books on this subject written by its author.

Significant additions and revisions have been made in this edition. Chapters
2 and 3 contain new material intended to assist the engineer in understanding
factors affecting the time-dependent properties of the reinforcement and concrete
used in prestressing concrete, as well as to facilitate the evaluation of their
effects on prestress loss and deflection. Flexural strength, shear strength, and
bond of prestressed concrete members were treated in a single chapter in the
third edition. Now, in the fourth edition, the treatment of flexural strength has
been expanded, with more emphasis on strain compatibility, and placed in
Chapter 5 which is devoted to this subject alone. Chapter 6 of this edition, on
flexural-shear strength, torsional strength, and bond of prestressed reinforce-
ment, was expanded to include discussions of Compression Field Theory and
torsion that were not treated in the earlier editions. In similar fashion, expanded
discussions of loss of prestress, deflection, and partial prestressing now are
presented separately, in Chapter 7. Minor additions and revisions have been
made to the material contained in the remaining chapters with the exception of

XV



xvi | PREFACE

Chapter 17. This chapter, which is devoted to construction considerations, has
important new material on constructibility and tolerances as related to prestressed
concrete.

Appendixes A, B, and C reproduce important documents on computation of
the loss of prestress, which have found wide use and acceptance among
practicing engineers. Appendix D, reproduced from Canadian National Standard
CAN3-A23.3-M84, contains portions of Section 11 and Appendix D of that
standard—information that is familiar to engineers in Canada but considerably
less familiar to U.S. engineers.

The material contained in the appendixes is copyrighted resource material
that has been reproduced with the permission of the publishers. This important
material was included in this book because many readers, particularly students,
may have difficulty accessing it. Readers are encouraged to acquire complete
copies of the documents from which the reproduced material was taken because
in some instances only excerpts of the original work were included here.

Frequent references are made to publications of the American Association of
State Highway and Transportation Officials, the American Concrete Institute,
the Canadian Standards Association, and the Prestressed Concrete Institute.
Engineers and contractors concerned with the design and construction of
prestressed concrete should be familiar with the publications of these organi-
zations. This book is intended to emphasize the requirements of the Building
Code Requirements for Reinforced Concrete (ACI 318-89), the 1989 edition of
the AASHTO Standard Specification for Highway Bridges, and the 1984 edition
of the Canadian National Standard Design of Concrete Structures for Buildings
(CAN3-A23.3-M84). These important documents should be included in the
libraries of engineers engaged in the design and construction of prestressed
concrete.

The author wishes to acknowledge, with sincere thanks, the help of Geoffrey
R. Cook, Victor Garcia Delgado, Donald R. Libby, and Dan Protopopescu, for
their suggestions, contributions, reviewing, and checking portions of the
manuscript for this book.

JAMEs R. LiBBY
San Diego, California



1 | Prestressing
Methods

1-1 Introduction

Prestressing can be defined as the application of a predetermined force or
moment to a structural member in such a manner that the combined internal
stresses in the member, resulting from this force or moment and from any antic-
ipated condition of external loading, will be confined within specific limits. The
prestressing of concrete, which is the subject of this book, is the result of
applying this principle to concrete structural members with a view toward elimi-
nating or materially reducing the tensile stresses in the concrete.

The prestressing principle is believed to have been well understood since
about 1910, although patent applications related to types of construction
involving the principle of prestress date back to 1888 (Abeles 1949). The early
attempts at prestressing were abortive, however, owing to the poor quality of
materials available in the early days as well as to a lack of understanding of the
action of creep in concrete. Eugene Freyssinet, the eminent French engineer,
generally is regarded as the first investigator to recognize the nature of creep in
concrete and to realize the necessity of using high-quality concrete and high-
tensile-strength steel to ensure that adequate prestress is retained. Freyssinet
applied prestressing in structural application during the early 1930s. The history

1



2 | MODERN PRESTRESSED CONCRETE

and the evolution of prestressing are controversial subjects and not well
documented; so they are not discussed further in this book. The interested reader
may find additional historical details in the references (Abeles 1949; Dobell
1950).

Many experiments have been conducted to demonstrate that prestressed
concrete has properties that differ from those of nonprestressed reinforced
concrete. Diving boards and fishing poles have been made of prestressed
concrete to demonstrate the ability of this material to withstand large deflections
without cracking. Of more significance, however, is the fact that prestressed
concrete has proved to be economical in buildings, bridges, and other structures
(under conditions of span and loading) that would not be practical or economical
in reinforced concrete.

Prestressed concrete was first used in the United States (except in tanks) in
the late 1940s. At that time, most U.S. engineers were completely unfamiliar
with this mode of construction. Design principles of prestressed concrete were
not taught in the universities, and the occasional structure that was constructed
with this new material received wide publicity.

The amount of construction utilizing prestressed concrete has become
tremendous and certainly will continue to increase. The contemporary structural
engineer must be well informed on all facets of prestressed concrete. It is indeed
unfortunate that the subject of prestressed concrete design and construction is
not included in the undergraduate curriculum of many U.S. universities at this
tume.

1-2 General Design Principles

Prestressing, in its simplest form, can be illustrated by considering a simple,
prismatic flexural member (rectangular in cross section) prestressed by a
concentric force, as shown in Fig. 1-1. The distribution of the stresses at
midspan is as indicated in Fig. 1-2. It is readily seen that if the flexural tensile
stresses in the bottom fiber, due to the dead and live service loads, are to be
eliminated, the uniform compressive stress due to prestressing must be equal in
magnitude to the sum of these tensile stresses.

TERIETY USSR eNn
_P P
L J

Fig. 1-1. Simple rectangular beam prestressed concentrically.
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Compression Compression Compression Compression

+ + =

Tension Tension

Fig. 1-2. Distribution of stresses at midspan of a simple beam concentrically
prestressed.

There is a time-dependent reduction in the prestressing force, due creep and
shrinkage of the concrete and relaxation of the prestressing steel (see Chapters
2, 3, and 7). If no tensile stresses are to be permitted in the concrete, it is
necessary to provide an initial prestressing force that is larger than would be
required to compensate for the flexural stresses resulting from the service loads
alone. The prestress loss, which is discussed in detail in Secs. 7-2 and 7-3,
generally results in a reduction of the initial prestressing force by 10 to 30
percent. Therefore, if the stress distributions shown in Fig. 1-2 are desired after
the loss of stress has taken place (under the effects of the final prestressing
force), the distribution of stresses under the initial prestressing force would have
to be as shown in Fig. 1-3.

Prestressing with the concentric force just illustrated has the disadvantage
that the top fiber is required to withstand the compressive stress due to
prestressing in addition to the compressive stresses resulting from the service
loads. Furthermore, because prestressing must be provided to compress the top
fibers, as well as the bottom fibers, if sufficient prestressing is to be supplied to
eliminate all of the service load flexural tensile stresses, the average stress due
to the prestressing force (the prestressing force divided by the area of the
concrete section) must be equal to the maximum flexural tensile stress resulting
from the service loads.

If this same rectangular member were prestressed by a force applied at a point
one-third of the depth of the beam from the bottom of the beam, the distribution
of the stresses due to prestressing would be as shown in Fig. 1-4. In this case,
as in the previous example, the final stress in the bottom fiber due to prestressing

Compression Compression Compression Compression

LT N

AN

Tension Tension

Fig. 1-3. Distribution of stresses at midspan of a simple beam under initial concentric
prestressing force.
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Final stress

Initial stress

Fig. 1-4. Distribution of stresses due to prestressing force applied at lower third point
of rectangular cross section.

should be equal in magnitude to the sum of the tensile stresses resulting from
the service loads. By inspection of the two stress diagrams for prestressing (Figs.
1-2b and 1-4), it is evident that the average stress in the beam, prestressed with
the force at the third point, is only one-half of that required to develop the
amount required in the first example. In addition, the top fiber is not required
to carry any compressive stress due to prestressing when the force is applied at
the third point.

The economy that results from applying the prestressing force eccentrically
is obvious. Further economy can be achieved when small tensile stresses are
permitted in the top fibers. The tensile stresses may be due to prestressing alone
or to the combined effects of prestressing and any service loads that may be
acting at the time of prestressing. This is so because the required bottom-fiber
prestress can be attained with a smaller prestressing force, which is applied at
a greater eccentricity under such conditions. This principle is treated in greater
detail in subsequent chapters.

In many contemporary applications of prestressing, the flexural tensile stresses
due to the applied service loads are not completely nullified by the prestressing;
nominal flexural tensile stresses are knowingly permitted under service load
conditions. Economy of construction is the motivation for this practice as well.
The use of flexural tensile stresses under service load conditions is considered
in detail in this book.

1-3 Prestressing with Jacks

The prestressing force in the above examples could be created by placing jacks
at the ends of the member, if there were abutments at each end sufficiently
strong to resist the prestressing force developed by the jacks. Prestressing with
jacks, which may or may not remain in the structure, depending upon the
circumstances, has been used abroad on dams, dry docks, pavements, and other
special structures. This method has been used to a very limited degree in North
America because extremely careful control of the design (including study of the
behavior under overloads), construction planning, and execution of the
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construction is required if the results obtained are to be satisfactory. Further-
more, the loss of prestress resulting from this method is much larger than when
other methods are used (see Sec. 3-15), unless frequent adjustments of the jacks
are made, because the concrete is basically subjected to constant strain in this
method of prestressing rather than to nearly constant stress as is the case in
other methods. For these reasons, and because the types of structure to which
this method of prestressing can be applied are very limited and beyond the scope
of usual generalities, subsequent consideration of this method is not given in
this book (Guyon 1953).

1-4 Prestressing with Pretensioned Tendons

Another method of creating the necessary prestressing force is referred to as
pretensioning. Pretensioning is accomplished by stressing steel wires or strands,
called tendons, to a predetermined stress, and then, while the stress is maintained
in the tendons, placing concrete around the tendons. After the concrete has
hardened, the tendons are released, and the concrete, which has become bonded
to the tendons, is prestressed as the tendons. attempt to regain the length they
had before they were stressed. In pretensioning, the tendons usually are stressed
by the use of hydraulic jacks. The stress is maintained during the placing and
curing of the concrete by anchoring the ends of the tendons to rigid, nonyielding
abutments that may be as much as 500 ft or more apart. The abutments and
appurtenances used in this procedure are referred to as a pretensioning bed or
bench. In some instances, rather than using pretensioning benches, the steel
molds or forms that are used to form the concrete members are designed in such
a manner that the tendons can be safely anchored to the mold after they have
been stressed. As the results obtained with each of these methods are identical,
the factors involved in determining which method should be used are of concern
to the fabricator of prestressed concrete, but do not usually affect the designer.

The tendons used in pretensioned construction must be relatively small in
diameter because the bond stress between the concrete and a tendon is relied
upon to transfer the force in the tendon to the concrete. If the bond stress exceeds
the bond strength of the concrete, the tendon will slip, and the prestress will be
lost. The ratio of the bond area (product of the circumference and length of the
wire) to the cross-sectional area of a circular wire or bar is equal to 4L/d, where
d is the diameter and L is the length over which the transfer is made; thus the
bond area available per unit length of tendon decreases as the diameter increases.
It follows that, for constant tendon stress, the bond stress increases as the tendon
diameter increases. This explains why several tendons of small diameter
normally area used in pretensioning concrete, rather than a few larger ones.
Small-diameter strands composed of several small wires twisted around a straight
center (core) wire are widely used in pretensioning concrete because of their
excellent bond characteristics (see Sec. 6-6).

Pretensioning is widely used in the manufacture of prestressing concrete in
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North America. The basic principles and some of the methods currently used
here were imported from Europe, but much has been done to develop and adapt
the procedures to the North American market. One of these developments was
the introduction of pretensioned tendons that do not pass straight through the
concrete member, but are deflected or draped into a path that approximates a
curve. This procedure was first used on light roof slabs, but subsequently has
been commonly used in the construction of large structural members. The use
of deflected, pretensioned tendons is common in the production of large bridge
girders.

Although many of the devices used in pretensioned construction are patented,
the basic principle is in the public domain and has been so for many years. A
detailed discussion of the construction procedures and equipment used in
pretensioned construction is given in Chapter 15.

1-5 Prestressing with Post-tensioned Tendons

When a member is fabricated in such a manner that the tendons are stressed,
and each end is anchored to the concrete section after the concrete has been
cast and has attained sufficient strength to safely withstand the prestressing force,
the member is said to be post-tensioned. Two types of tendons are used: bonded
and unbonded.

Fully bonded post-tensioned tendons consist of bars, strands, or wires, in
preformed holes, metallic ducts, or plastic tubes, that have been pressure-grouted
after stressing. The tube is used to prevent the tendon from becoming bonded
to the concrete at the time that the concrete is placed. After the concrete has
been sufficiently cured, the tendon is stressed, and the tube is injected with
grout. The cured grout effectively bonds the tendon to the tube and the concrete
itself (the outside surface of the tube becomes bonded to the concrete when the
concrete is placed). Rather than using metallic tubes, bonded tendons can be
constructed by using holes formed in the concrete with removable rubber tubes
or hoses; in this method the tendons are inserted into the preformed holes after
the rubber tubes have been removed, and they are subsequently stressed and
grouted. Another form of bonded tendons—which may or may not be partially
bonded to the concrete section, and are commonly known as external tendons—
is used in special applications, as discussed in Sec. 6-8.

Unbonded tendons normally consist of strands or wires that are wrapped or
encased in plastic after having been coated with a grease or a bituminous
material. The grease sometimes contains a rust inhibitor to help protect the
tendons from corrosion. Also, waterproof paper wrapping has been used rather
than plastic. Unbonded tendons normally are assembled in a factory, shipped
to the job site, and placed in the forms before the concrete is placed. They are
not grouted after they have been stressed, so they do not become bonded to the
concrete.
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Bonded tendons are generally used in bridge construction, but unbonded
tendons have been so used quite successfully. Unbonded tendons are most
frequently used in building construction, but bonded tendons are sometimes
used there also. The quantity of unbonded tendons used annually greatly exceeds
the amount of bonded tendons used.

Post-tensioning offers a means of prestressing on the job site, which may be
necessary in some instances. Very large building or bridge girders that cannot
be transported from a precasting plant to the job site (because of their weight,
size, or the distance between the plant and the job site) can be made by post-
tensioning on the job site. Post-tensioning is used in precast as well as in cast-
in-place construction. In addition, fabricators of pretensioned concrete will
frequently post-tension members for small projects on which the number of
units to be produced does not warrant the expenditures required to set up preten-
sioning facilities. There are other advantages inherent in post-tensioned
construction, which are discussed in subsequent chapters.

In post-tensioning, it is necessary to use some type of device to attach or
anchor the ends of the tendons to the concrete section. Such devices usually are
referred to as end anchorages or simply anchorages. The end anchorages,
tendons, special jacking, and grouting equipment, if used, in post-tensioning
concrete are collectively referred to as a post-tensioning system. There are
several different systems in use. Chapter 16 contains a more detailed discussion
of post-tensioning and post-tensioning systems.

1-6 Pretensioning vs. Post-tensioning

It is generally considered impractical to use post-tensioning on very short
members because the elongation of a short tendon (during stressing) is small
and requires very precise measurement. In addition, some post-tensioning
systems do not function well with very short tendons. A number of short
members can be made in series on a pre-tensioning bench without difficulty and
with no need for precise measurement of the tendon elongation during stressing;
relatively long tendon lengths result from making a number of short members
in series.

It has been pointed out that very large members may be more economical
when cast in place and post-tensioned, or when precast and post-tensioned near
the job site, compared to transporting and handling large pretensioned structural
members that are cast off-site.

Post-tensioning allows the tendons to be placed through structural elements
on smooth curves of any desired path. Pretensioned tendons can be employed
on other than straight paths, but not without expensive plant facilities and
somewhat complicated construction procedures.

Because post-tensioning tendons can be installed in holes preformed in precast
concrete elements or segments, they can be used to prestress a number of small
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precast elements together to form a single large structural member. This
technique, frequently referred to as segmental construction, is discussed in Sec.
8-3.

The cost of post-tensioned tendons, measured in either cost per pound of
prestressing steel or cost per pound of effective prestressing force, generally is
significantly greater than the cost of pretensioned tendons, because of the larger
amount of labor required in placing, stressing, and grouting (where applicable)
post-tensioned tendons, as well as the cost of special anchorage devices and
stressing equipment. On the other hand, a post-tensioned member may require
less total prestressing force than an equally strong pretensioned member. For
this reason, one must be careful when comparing the relative costs of these
modes of prestressing.

The basic shape of an efficient pretensioned flexural member may be different
from the most economical shape that can be found for a post-tensioned design.
This is particularly true of moderate- and long-span members and somewhat
complicates any generalization about which method is best under such condi-
tions.

Post-tensioning generally is regarded as a method of making prestressed
concrete at the job site, yet post-tensioned beams often are made in precasting
plants and transported to the job site. Pretensioning often is thought of as a
method of manufacturing that is limited to permanent precasting plants, yet on
very large projects where pretensioned elements are to be utilized, it is not
uncommon for the general contractor to set up a temporary pretensioning plant
at or near the job site. Each method of making prestressed concrete has partic-
ular theoretical and practical advantages and disadvantages, which will become
more apparent after the principles are well understood. A final determination of
the mode of prestressing that should be used on any particular project can be
made only after careful consideration of the structural requirements and the
economic factors that prevail for the particular project.

1-7 Linear vs. Circular Prestressing

The subject of prestressed concrete frequently is divided into linear prestressing,
which includes the prestressing of elongated structures or elements such as
beams, bridges, slabs, piles, and so, and circular prestressing, which includes
pipe, tanks, silos, pressure vessels, and domes. This book has been confined to
consideration of linearly prestressed structures. The reader interested in circular
prestressed concrete structures will find considerable information in the technical
literature of the American Concrete Institute, the American Society of Civil
Engineers, the American Water Works Association, and the Prestressed
Concrete Institute, as well as in civil engineering text and reference books.
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1-8 Application of Prestressed Concrete

Prestressed concrete, when properly designed and fabricated, can be virtually
crack-free under normal service loads as well as under moderate overload. This
is believed to be an advantage in structures exposed to corrosive atmospheres
in service. Prestressed concrete efficiently utilizes high-strength concretes and
steels and is economical even with long spans. Reinforced concrete flexural
members cannot be designed to be crack-free, cannot efficiently utilize high-
strength concrete (except in compression members), and are not economical for
long-span flexural members.

A number of other statements can be made in favor of prestressed concrete,
but there are bona fide objections to the use of this material under specific
conditions. An attempt is made to point out these criticisms in subsequent
chapters. Among the more significant advantages of this material are that in
many structural applications, prestressed concrete is lower in first cost than
other types of construction, and, in many cases, if the reduced maintenance
cost inherent in concrete construction is taken into account, prestressed concrete
offers the most economical solution. Its benefits have been well confirmed by
the very rapid increase in the use of linear prestressed concrete that has taken
place in the United States since its introduction in the late 1940s. It is well
known that the advantages of low first cost and maintenance (real economy)
outweigh intangible advantages that may be claimed except for very special
conditions.

The precautions that engineers must observe in designing and constructing
prestressed concrete structures differ from those required for reinforced concrete
structures. Some of these precautions are discussed in this book, but others,
such as those related to specific construction practices and the safety of workers,
are not. The prudent engineer will keep informed on such precautions and other
considerations through the trade and technical literature.

Illustrations of prestressed structures and structural elements are given in
Chapters 13 and 14, where the various types of building and bridge construction
are described and compared.

1-9 Evolution of U.S. Design Criteria

A document entitled Criteria for Prestressed Concrete Bridges (Bureau of Public
Roads 1955) presented the first criteria for the design of prestressed concrete
published in the United States. This brief treatment of the design, materials,
and construction of prestressed concrete, including a discussion of the provi-
sions contained therein, was successfully used in the design of many of the
early prestressed concrete bridges and buildings in the United States. A joint
committee of members of the American Concrete Institute and the American
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Society of Civil Engineers prepared a report containing tentative recommen-
dations for prestressed concrete that was published in 1958 (ACI-ASCE 1958).
This report served as the basis for the first provisions for prestressed concrete,
contained in Building Code Requirements for Reinforced Concrete (ACI 318
1963); and all subsequent editions of this document (ACI 318) have contained
provisions for prestressed concrete. Virtually all other U.S. specifications and
codes for the design of bridges and buildings are based upon ACI 318 although
many have individual differences in some of their provisions.
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2-1 Introduction

As noted in Sec. 1-2, the loss in prestress due to the effects of steel relaxation
and the shrinkage and creep of concrete generally is from 10 to 30 percent of
the initial prestress. Computation of prestress losses due to various causes is
discussed in detail in Sec. 7-2, but it is important here for the designer of
prestressed concrete to be aware that the greater portion of the loss of prestress
normally is attributed to the shrinkage and creep of the concrete. Therefore, it
is necessary to use a high-strength steel, with a relatively high initial stress, in
the construction of prestressed concrete.

The shrinkage and creep of concrete produce inelastic volume or length
changes. Because the tendons used in construction are anchored to the concrete,
either by bond or by end anchorages, length changes in the concrete result in a
length change in the tendons. Furthermore, because the steel used for
prestressing is fundamentally an elastic material at the stress levels employed
in normal designs, the reduction of stress in the tendons that results from length
changes in the concrete is equal to the product of the elastic modulus of the
steel and the unit length change in the concrete.

It is essential that the loss of prestress be a relatively small portion of the

11
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total prestress, in order to attain an economical and feasible design. The elastic
modulus of steel is a physical property that, for all practical purposes, cannot
be altered or adjusted by manufacturing processes. In a similar manner, the
inelastic volume changes of concrete of any particular quality are physical
properties that cannot be eliminated by using practical construction procedures.
Therefore, the product of these two factors is normally beyond the control of
the designer.

It can be shown that the normal loss of prestress is generally on the order of
15,000 to 50,000 psi. It is apparent that if the loss of prestress is to be a small
portion of the initial prestress, the initial stress in the steel must be very high,
on the order of 100,000 to 200,000 psi. If a steel having a yield point of 40,000
psi were used to prestress concrete, and if this steel were stressed initially to
30,000 psi, the entire prestress could be lost, as was the case, indeed, in early
attempts at prestressing with low-strength steel and poor-quality concrete.

Research has been conducted into the use of other materials, such as fiber-
glass and aluminum alloys, for prestressing concrete. Some of these materials
have elastic moduli that are about one-third that of steel. If such materials could
be safely and economically used, the loss of prestress would be reduced to
approximately one-third of the loss obtained with steel tendons; hence, the loss
of prestress possibly could be ignored in normal design practice if these materials
were employed as tendons. However, many problems must be studied and
overcome before these materials can be used safely and economically. The use
of tendons having a low elastic modulus and plastic deformations different from
those of steel would result in members having post-cracking deflection and
ultimate strength characteristics different from those obtained when steel tendons
are used. These problems will be apparent from this chapter’s discussion of the
desirable physical properties of the steel used in prestressing.

Several basic forms of high-strength steel currently are used in North
American prestressed work. In general, they can be divided into three groups:
uncoated stress-relieved wires, uncoated stress-relieved strand, and uncoated
high-strength steel bars. Each of these types of steel is described briefly in the
following sections. For a more detailed description of the method of manufac-
ture, chemical composition, and physical properties of these materials, the reader
should consult the applicable ASTM specifications and the references listed at
the end of this chapter.

Other types of wire, such as straightened ‘‘as-drawn”’ wire and oil-tempered
wire, are used for prestressing in other parts of the world. Experience in Europe
has shown that oil-tempered wire may, under certain circumstances, be more
susceptible to stress corrosion (see Sec. 2-11) than the types of steels commonly
employed in North America. In addition, ‘‘as-drawn’’ wire generally exhibits
greater relaxation than stress-relieved wire and strand of the types employed
domestically. Hence, caution should be exercised by the engineer who specifies
the use of materials that do not conform to usual ASTM standards; some adjust-
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ments in the design may be necessary. These materials are not considered here
because they are not normally used in North America.

2-2 Stress-Relieved Wire

Cold-drawn stress-relieved wire, which was commonly used in post-tensioned
construction in North America in the past but rarely used in pretensioned
members, is manufactured to conform to the ‘‘Standard Specification for
Uncoated Stress-Relieved Wire for Prestressed Concrete’” (ASTM A 421).
These specifications provide that the wire be made in two types (BA and WA),
depending upon whether it is to be used with button- or wedge-type anchorages
(see Chapter 16). Other major requirements in these specifications include the
minimum ultimate tensile strength, the minimum yield strength, and the
minimum elongation at rupture, as well as diameter tolerances. The principal
strength requirements of ASTM A 421 are summarized in Table 2-1. A supple-
ment to these specifications covers low-relaxation wire (see Sec. 2-10).

Typical stress—strain curves for uncoated, stress-relieved wires are shown in
Fig. 2-1. It should be noted that the stress—strain curves for the two wire diame-
ters shown are similar in shape, and that the ultimate tensile strength is higher
for a wire of smaller diameter. Also, ASTM A 421 requires a minimum elonga-
tion of 4.0 percent when measured in a gage length of 10 in., which means that
the steel is quite ductile and has a plastic range of considerable magnitude. (The
plastic range is not shown in Fig. 2-1.) The minimum yield strength for wire
conforming to ASTM A 421, as a percentage of the breaking strength, is 85
percent and 90 percent for stress-relieved wire and low-relaxation wire, respec-
tively.

The use of solid wire has diminished greatly while the use of strand (see Sec.
2-3) has increased substantially. This trend is expected to continue, for economic
reasons, in spite of the fact that stress-relieved wire has performed very well in
prestressed concrete.

TABLE 2-1 Properties of stress-relieved wire for prestressed concrete contained in
ASTM A 421.

Min. Tensile Strength Min. Stress at 1%
(psi) Extension (psi)*

Nominal Type Type

Diameter (in) Type BA WA Type BA WA
0.192 250,000 212,500
0.196 240,000 250,000 204,000 212,500
0.250 240,000 240,000 204,000 204,000
0.276 235,000 235,000 199,750 199,750

*Measured according to procedures specified in ASTM A 421.
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Fig. 2-1. Typical stress—strain curves for wires in elastic range. (Provided by and used
with the permission of C.F. & |. Steel Corp.)

2-3 Stress-Relieved Strand

Most stress-relieved strand used in prestressed concrete construction in the
United States is made to conform to the requirements of ‘‘Standard Specification
for Uncoated Seven-Wire Stress-Relieved Steel Strand for Prestressed Concrete’’
(ASTM A 416). Basic strength, area, and weight requirements for the two grades
of seven-wire strands included in ASTM A 416 are given in Table 2-2, and
pieces of several types of strand are shown in Fig. 2-2. The strands are made
by twisting six wires, on a pitch of between 12- and 16-strand diameters, around
a slightly larger, straight central wire. The strands are stress-relieved after being
stranded. Typical stress-strain curves for seven-wire strands commonly used in
pretensioning and in multistrand post-tensioning tendons are shown in Figs.
2-3 and 2-4. ASTM A 416 provides for seven-wire strands in Grade 250, which
has a nominal ultimate tensile strength of 250,000 psi, and in Grade 270, which
has slightly larger wires than Grade 250 strand and has a nominal ultimate
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TABLE 2-2 Properties of uncoated, seven-wire, stress-relieved strand for prestressed
concrete contained in ASTM A 416.

Nominal Breaking Strength Nominal Steel Nominal Weight ~ Minimum Load

Diameter of of Strand Area of Strand of Strands at 1% Extension
Strand (in.) (min. Ib) (sqin.) (Ib. per 1000 ft.) (Ib)
GRADE 250
1(0.250) 9,000 0.036 122 7,650
$5(0.313) 14,500 0.058 197 12,300
3(0.375) 20,000 0.080 272 17,000
%(0.438) 27,000 0.108 367 23,000
3(0.500) 36,000 0.144 490 30,600
2(0.600) 54,000 0.216 737 45,900
GRADE 270
3(0.375) 23,000 0.085 290 19,550
1%5(0.438) 31,000 0.115 390 26,350
$(0.500) 41,300 0.153 520 35,100
3(0.600) 58,600 0.217 740 49,800

tensile strength of 270,000 psi. A supplement to ASTM A 416 covers low-
relaxation strand, which is discussed in more detail in Sec. 2-10. The minimum
yield strength for strand conforming to ASTM A 416, as a percentage of the
breaking strength, is 85 percent and 90 percent for stress-relieved strand and
low-relaxation strand, respectively, and the minimum elongation at rupture is
3.5 percent for both grades of strand. The stress-strain curves of Fig. 2-3 clearly
show different shapes for stress-relieved and low-relaxation strand; the higher
yield stress is very apparent in the figure.

When the manuscript for this book was submitted to the publisher for publi-
cation, Subcommittee 1.05 of ASTM Committee AO1 was balloting on a major
revision to ASTM A 416. The revision would make low-relaxation strand the
standard material to be supplied under ASTM A 416 but provide for the supply
of stress-relieved strand as well, if specifically ordered by the purchaser. The
reader should consult the latest version of ASTM 416 for accurate details about
its contents.

Stress—strain curves are shown in Fig. 2-3 for a seven-wire strand that has a
nominal ultimate tensile strength of 300 ksi, as well as for a galvanized seven-
wire strand that has a nominal ultimate breaking strength of 230 ksi. Although
specialty materials such as these are not covered by the ASTM specifications,
there are instances where they offer benefits in either economy or serviceability,
or both, that cannot be obtained with strand that strictly conforms to ASTM
416. (A strand manufacturer may guarantee a special strand to meet or exceed
most of the minimum requirements of ASTM 416 and to have other physical
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Fig. 2-2. Uncoated, uncoated indented, epoxy-coated, and epoxy-coated with grit
seven-wire prestressing strand.

properties that exceed the minimum values in the ASTM specification.) Infor-
mation on special strands should be obtained directly from the strand manufac-
turers.

Strand having properties similar to, but not strictly conforming to the require-
ments of ASTM A 416 is available with a factory-applied coating of epoxy
(Dorsten, Hunt, and Preston 1984). The coating can be specified to be smooth
or to have a hard grit material embedded in the exposed surface of the epoxy
coating. The grit is used to improve bond characteristics in pretensioning appli-
cations. Special anchorage devices are available for use with the epoxy-coated
strand; these anchorages have teeth that are long enough to extend through the
coating and penetrate into the surface of the strand itself. The purpose of the
€poxy coating is to protect the strand from corrosion—an important considera-
tion for strands that may be exposed to corrosive environments in service. The
epoxy-coated strand is not covered by an ASTM standard, so the engineer
considering specifying the use of this type of material should investigate its
properties and performance record thoroughly before so doing. The relaxation
characteristics, fire resistance, bond stress, creep characteristics at temperatures
above 120°F, cost, and safety precautions to be followed in the use of all special
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Fig. 2-3. Typical load-elongation curves for %-in. diameter, low-relaxation and stress-
relieved seven-wire strands. (Provided by and used with the permission of
C.F. & I. Steel Corp.)

materials should be carefully investigated before any strand is used on a specific
project.

Strand having indentations in the outer wires, for the purpose of reducing the
longitudinal movement of pretensioned tendons within the concrete, is covered
by ASTM A 886. The propetties of the indented strand are identical to those
for strands conforming to ASTM 416 shown in Table 2-2 except that a 5/16-
in. nominal size strand, with a breaking strength of 16,500 Ib, is also available
in Grade 270.

Another type of uncoated, stress-relieved strand for prestressing concrete is
covered by ASTM A 779. This material is ‘‘compacted,’’ having been drawn
through a die after being stranded; hence, strands of this type have a cross-
sectional shape as shown in Fig. 2-5. The material is stress-relieved or processed
for low-relaxation properties after being stranded and compacted. The minimum
total elongation of compacted strand under maximum load is 3.5 percent in a
gage length of 24 in. or more. This type of strand has a greater cross-sectional
area, for any nominal diameter, compared to strand that has not been compacted.
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Fig. 2-4. Partial stress—-strain curves for uncoated low-relaxation prestressing strand
of different grades compared to galvanized strand.

The result is a larger ultimate tensile strength for the compacted strand of a
particular diameter. Basic strength, area, and weight properties for compacted
strand are given in Table 2-3.

2-4 High-Tensile-Strength Bars

Both plain (Type I) and deformed (Type II) high-tensile-strength, alloy steel
bars are available in nominal diameters from 0.75 to 1.375 in. Bars of other
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Fig. 2-6. Comparison of cross sections of compacted and noncompacted seven-wire
strand.

sizes are available by special arrangement with some bar manufacturers. The
bars are made from an alloy steel and conform to the ‘‘Standard Specification
for Uncoated High-Strength Steel Bar for Prestressing Concrete,”” ASTM A
722.

The bars are generally cold-stretched in order to raise the yield point and to
render them more elastic at stress levels below the yield point. After cold-
stretching, they frequently are stress-relieved in order to improve the ductility
and stress-strain characteristics. Principal minimum requirements in ASTM A
722 include a minimum tensile strength of 150,000 psi, minimum yield strengths
for plain and deformed bars of 85 percent and 80 percent of the minimum
ultimate tensile strength, respectively, and a minimum elongation after rupture
of 4.0 percent in a gage length equal to 20 bar diameters, or of 7 percent in a
gage length equal to 10 bar diameters. Bars sometimes are produced with
properties exceeding the minimum requirements of ASTM A 722.

A typical stress—strain curve for a high-tensile-strength bar is given in Fig.
2-6. Deformed bars (Type II) are shown in Fig. 2-7.

TABLE 2-3 Properties of uncoated, seven-wire, stress-relieved, compacted, steel
strand for prestressed concrete contained in ASTM A 779.

Nominal Nominal Weight
Nominal Breaking Strength Steel Area of Strand
Diameter (in.) of Strand (min. |b) (in.2) (per 1000 ft Ib)
3 47,000 0.174 600
0.6 67,440 0.256 873

0.7 85,430 0.346 1176
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Fig. 2-6. Typical load-strain curves for Grade 150 and 178 prestressing bars. (Based
upon data obtained from and used with permission of Dywidag Systems

International USA, Inc.)

Fig. 2-7. ASTM A 722, Type Il (deformed) prestressing bars.
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2-5 Yield Strength

An examination of the stress-strain curves for the various types of prestressing
steels shows that these steels do not have definite yield points. Therefore, an
arbitrary stress must be specified in order to define the stress that is taken to be
the yield strength. Because there is no definite yield strength, the term does not
have the meaning that it would have for a steel with a yield point. Yield strengths
taken as the stress at a 0.20 percent offset often are used for materials that lack
a definite yield strength. (In this case the yield stress is the stress at the inter-
section of the stress-strain curve with a line parallel to the linear portion of the
curve that originates on the abscissa at a strain of 0.20 percent.) Minimum yield
strengths at 1 percent extension (an elongation of 1 percent of the gage length)
are specified in the standard ASTM specifications for wire and strand. Minimum
yield strengths at 0.7 percent extension and at 0.2 percent offset are specified
for high-strength bars. Some research work has been done using the stress at a
0.10 percent offset as the yield strength. Hence, the term yield strength as related
to prestressing materials is not precise, and the reader is cautioned to use the
term with care, being certain of its definition in any discussion or recommen-
dations where it is used.

Some engineers consider the minimum yield strength specified in ASTM A
416 or ASTM A 421—85 percent and 90 percent of the strength of the material
for stress-relieved and low-relaxation strand and wire, respectively—as equal
to the actual yield strength at 0.10 percent offset (see eq. 2-1, in Sec. 2-10) as
well as equal to the 1 percent extension. This practice is generally regarded as
conservative, as it will result in overestimating the loss due to relaxation. An
examination of several stress-strain curves revealed that the 0.10 percent offset
strength varied only +1.3 percent from the actual stress at 1 percent extension
for one manufacturer; for another, the strength at 0.10 percent offset was
consistently 2 to 3 percent lower than the stress at 1 percent extension.

The methods to be used in determining the yield strength of prestressing
steels are given in ‘“Test Methods and Definitions for Mechanical Testing of
Steel Products’” (ASTM A 370). Yield strength requirements for the various
types of steels used in prestressed concrete are specified in the ASTM specifi-
cations applicable to each type of steel.

2-6 Modulus of Elasticity

The elastic modulus of reinforcing steel that is not prestressed is generally taken
to be equal to 29,000,000 psi, as provided in Sec. 8.5.2 of ACI 318. The elastic
modulus of reinforcing steel that is to be prestressed generally is based upon
load-deformation data provided by the manufacturer of the specific material
used. The reason for this is that prestressing bars and strands frequently are
made to sizes that are different from their nominal diameter. By this means the
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bars or strands are intended to have breaking strengths that equal or slightly
exceed the minimum breaking strengths required by the applicable ASTM
specifications, but the ultimate unit tensile stresses actually may be less than the
nominal ultimate unit tensile strength. For this reason, the stress-strain charac-
teristics of prestressing materials used in stressing calculations (see Chapter 16)
and in flexural strength calculations (see Chapter 5) should be based on test data
provided by the manufacturer of the actual material to be used and not on
theoretical values computed by using nominal areas and unit stresses for
minimum yield strength requirements.

2-7 Ultimate Tensile Strength

Because prestressing bars and strands normally are marketed on the basis of
nominal areas or diameters that are frequently smaller than their actual cross-
sectional areas or diamters, the actual ultimate tensile strength of the materials
may be different from their guaranteed ultimate tensile strengths (GUTS). The
designer of prestressed concrete should be aware of this possibility.

2-8 Plasticity

Plasticity at very high stress levels is as essential in prestressing steel as it is in
ordinary reinforcing steel. It is needed to ensure that ultimate bending moments
will be reached only after large and very apparent plastic deformations have
taken place. The use of brittle steel could result in a sudden failure similar to
that which is characteristic of an overreinforced concrete flexural member. To
avoid this possibility, the normal practice is to specify that the prestressing steel
will have a minimum elongation at rupture of 3.5 to 4.0 percent, depending
upon the type of steel used and the method used to measure the elongation at
rupture (see ASTM A 416, ASTM A 421, ASTM A 722, ASMT A 779, and
ASTM A 886). The stress—-strain curves of Figs. 2-3, 2-4, and 2-6 clearly show
the significant plastic deformations that prestressing materials can withstand
when loaded to high stress levels.

2-9 Stress—-Strain Characteristics

The stress-strain characteristics of a prestressing steel, which can be shown as
a plot of either unit stress (units of force per unit area) or load (units of force)
versus strain, can be represented by a curve as shown in Fig. 2-8, where stress
has been used for the ordinate, and the abscissa represents unit strain. (This
type of plot often is used for prestressing wire, whereas load vs. unit strain is
more commonly used for strand.) Six points on the curve have been numbered
for the purpose of illustrating the principal load-deformation characteristics of
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prestressing materials. The first portion of the curve is a straight line extending
from the origin of the plot to point 1. The slope of this portion of the curve
(i.e., an increment of stress divided by the corresponding increment of strain)
normally is referred to as the elastic modulus of the material. The ordinates of
point 1 can be taken to be the stress and strain at the proportional limit. The
strain at point 2 defines the stress taken to be the yield stress. The material
standards for the various prestressing steels specify the strain at point 2 as well
as the minimum value of stress it must have in order to conform to the standard
(e.g., a minimum stress of 212,500 psi at an extension of 1 percent in ASTM
A 421 for a stress-relieved prestressing wire having a diameter of 0.192 in.).
Points 3 and 4 have ordinates that define a portion of the curve that can be taken
as a straight line, as a means of facilitating equilibrium and strain compatibility
computations for strength design of prestressed members (see Sec. 5-2), without
introducing significant error. Point 5 is defined by the greatest stress (load) that
the material is able to withstand, and point 6 defines the stress and strain at
failure of the material.

2-10 Relaxation and Creep

Relaxation is defined as the loss of stress in a material that is placed under stress
and held at a constant strain; creep is defined as the change in strain for a
member held at constant stress. Although tendons in prestressed concrete are
not subjected to constant strain or to constant stress, it generally is agreed that
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Fig. 2-8. Curve used to identify typical characteristics of stress-strain curves for
reinforcement used for prestressing concrete.
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the condition more closely approximates a condition of constant strain; hence,
relaxation studies are used to evaluate the loss of prestress that can be attributed
to the time-dependent inelastic behavior of the steel. A typical relaxation curve,
showing relaxation as a function of time for a wire specimen initially loaded to
70 percent of its ultimate tensile strength and held at constant strain and a
constant temperature of 85°F, is shown in Fig. 2-9. A comparison of the relax-
ations of cold-drawn (not post-treated), stress-relieved, and low-relaxation strand
after 1000 hours at constant strain and constant temperature of 68°F at various
levels of initial stress (expressed as a ratio to the guaranteed ultimate tensile
strength) is given in Fig. 2-10.

For stress-relieved wire or strand, the loss of stress due to relaxation at normal
temperatures can be estimated with sufficient accuracy for design purposes using
the following relationship:

Aﬂ,=fjlgg_t<

[
o 7 - o.55> (2-1)

5
where Af,, is the relaxation loss at time # hours after prestressing, f; is the jacking
stress, and f; is the 0.10 percent offset stress for the steel under consideration
(Magura, Sozen, and Siess 1962). The logarithm of time ¢ is to the base 10.
This relationship is applicable only when the ratio of f/f is equal to or greater
than 0.55. It should be noted that f; is used here rather than f,,, which is the
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Fig. 2-9. Stress loss versus time for a stress-relieved wire initially loaded at 70 percent
of the guaranteed ultimate tensile strength and held at constant length at
85°F (Provided by and used with the permission of C.F. & I. Steel Corp.)
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Fig. 2-10. Comparison of the relaxation of cold-drawn, stress-relieved, and low-relax-
ation strand initially loaded to 70 percent of the guaranteed ultimate tensile
strength after being under constant strain at 68°F for 1000 hours. (Based
upon data obtained from and used with permission of Florida Wire and Cable
Company.)

notation used for the specified yield strength of prestressing steel in ACI 318-
89, because of the difference in definitions of the two yield strengths.

ILLUSTRATIVE PROBLEM 2-1  Using eq. 2-1 with a 0.10 precent offset stress
of 256,000 psi and a jacking stress in the steel of 189,000 psi, the approximate
values for the 270 k grade strand illustrated in Fig. 2-3, compute the relaxation
loss after 100,000 hours (11.4 years) and 400,000 hours (45.6 years). Note that
the ratio of the jacking stress to the 0.10 precent offset stress is 0.738 > 0.55.
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soLUTION: For ¢t = 100,000 hours:

Af, = 189 X % (0.74 — 0.55) = 18 ksi
For ¢ = 400,000 hours:

5.60
Af,, = 189 X 10 (0.74 — 0.55) = 20.0 ksi

Using eq. 2-1, the efficiency of the steel at various levels of jacking stress
after 50 years of service can be studied with the aid of Fig. 2-11. From this
plot it will be seen that the increase in effective stress f;, is nearly equal to the
increase in jacking stress f; up to the point where f; equals 0.60f ;. Above this
stress, the efficiency is progressively reduced. For a jacking stress ratio of 0.90,
virtually no gain in effective stress is realized for increases in jacking stress.
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Fig. 2-11. Effect of jacking stress on the final stress of prestressing steel subjected to
constant strain (relaxation).
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In the fabrication of pretensioned concrete members, the tendons are stressed
to a jacking stress, held at constant elongation for a period of time, and then
released. At the time when the prestressing force is transferred to the concrete
(tendons released), the stress in the tendons, f;;, is less than the original jacking
stress, f;. This is due to the relaxation than has taken place in the interval
between stressing and transfer. In addition, elastic shortening of the concrete
takes place upon transfer of the prestressing force to the concrete, and this
reduces the stress in the prestressed reinforcement to the initial stress, f;, as
illustrated in Fig. 2-12a. The effect of relaxation of the steel can be estimated

@A
[
=
"
- f
sz Loss of prestress due to elastic shortening
= Time
T T
0 3 t,
(a) Pretensioned Reinforcement
2h
7]
2
n
/ . .
i Loss of prestress due to elastic shortening
St

T * Time
n

(b) Post-tensioned Reinforcement

<
T~

Fig. 2-12. Relationships between stress and time in reinforcement that is (a) preten-
sioned and (b) post-tensioned.
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at time #,, assuming the tendon was stressed at time zero and released at time
t., by using the following relationship:

fim _ : <J§' > log t, — log ¢,

< - 0.55
5 5 10

in which f] is the stress in the prestressed reinforcement at the time of release
of the tendons, and f,,, is the stress in the prestressed reinforcement at time z,
(Magura, Sozen, and Siess 1962). In eq. 2-2, the stresses are in ksi and time is
in hours. In using eq. 2-2, with pretensioned reinforcement, one must first
compute the relaxation loss from the time of initial jacking until the time of
release, using eq. 2-1. This relaxation loss should be subtracted from the original
jacking stress in the reinforcement to determine the value of f; for use in eq.
2-2. The computation of the loss due to elastic shortening is explained in Sec.
7-2 of this book.

As explained in Sec. 7-2 and illustrated in Fig. 2-12b, post-tensioned
reinforcement is not subjected to the same sequence of jacking stresses as
pretensioned reinforcement, and eq. 2-2 is not used with post-tensioned
reinforcement.

(2-2)

ILLUSTRATIVE PROBLEM 2-2  During the production of pretensioned members
for a large project, the normal production cycle provided for an 18-hour period
between the times when the tendons were stressed and were released. Occasion-
ally, because of weekends, holidays, or other events beyond the control of the
contractor, the time interval between stressing and releasing the tendons was as
great as 90 hours. Determine the stress in the stress-relieved prestressing steel
at transfer for time intervals between stressing and release of 18, 42, 66, and
90 hours for grade 270 k strand having a 0.10 percent offset stress of 240 ksi
if the initial stress of the strands is always 202.5 ksi.

SOLUTION: From eq. 2-1:

log ¢t (202.5
Af, = S—=—|—--0. = 3.
fir = 202.5 10 < 220 0 55> 5.948 log ¢

The computations are summarized in Table 2-4.

Ghali and Trevino have used the term intrinsic relaxation, L,, rather than
relaxation to define the loss of stress in a prestressing tendon held at constant
strain for a specific period of time (Ghali and Trevino 1985). The intrinsic
relaxation is assumed to reach its maximum value, L, , after being under
constant strain for 500,000 hours. In addition, the term reduced relaxation, L,,,
has been used for the loss of stress in a prestressing tendon. The reduced relax-
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TABLE 2-4 Summary of calculations for I.P.

2-2.
t AF,, f; at transfer
(hr) (ksi) (ksi)
18 7.5 195.0
42 9.7 192.8
66 10.8 191.7
90 11.6 190.9

ation includes the effects of concrete creep and shrinkage as well as the fact that
the steel is not subjected to constant strain, as it must be for intrinsic relaxation.
The relationship between the intrinsic and reduced relaxations is expressed as:

L, =L (2-3)

where x, is a dimensionless coefficient having a value less than unity.

The ultimate value of intrinsic relaxation has been found to be function of
the ratio, A, of the stress in the reinforcement immediately after elastic short-
ening (initial stress) to the strength of the steel (CEB-FIP 1978). The ratio can
be expressed as:

fi
fl"u

where f;; is the stress in the prestressed reinforcement immediately after stressing
of the concrete (i.e., the stress in post-tensioned reinforcement immediately
after anchoring [see Sec. 16-6] or the stress in pretensioned reinforcement
immediately after elastic shortening of the concrete [see Sec. 7-2]), and f,, is
the tensile strength of the prestressed reinforcement, either the actual or the
minimum specified.

Values of the ratio of intrinsic relaxation to initial steel stress for various
values of the ratio A are given in Table 2-5 and plotted in Fig. 2-13. These

N = (24)

TABLE 2-5 Values of the ratio of intrinsic relaxation to initial
steel stress for different steel types and different ratios of initial
steel stress to steel tensile strength (after CEB-FIP 1978).

Ratio of initial steel stress to steel
tensile strength

Type of prestressing

steel 0.60 0.70 0.80
Stress-relieved 0.25
group 1 0.06 0.12

Low-relaxation
group 2 0.03 0.06 0.10
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Fig. 2-13. Plot of the relationships between the ratio of intrinsic relaxation to initial
steel stress and the ratio of initial steel stress to steel tensile strength, for
stress-relieved and low-relaxation prestressing reinforcement (after CEB).

values are recommended by CEB for use when actual relationships between
intrinsic relaxation and initial steel stress are not known for the specific steel to
be used on a project. Ghali and Trevino have proposed equations for approxi-
mating the CEB recommendations for the relationship between the intrinsic
relaxation/initial steel stress and N. The relationship, which is intended for use
with values of A greater than 0.4, is:

% = — 9. (A — 0.40)° (2-5)

in which %, is equal to 1.5 and 0.67 for stress-relieved and low-relaxation
steels, respectively. The ultimate value of intrinsic relaxation, L,,, which is
very small and can be neglected for values of the ratio A less than 0.40, is
projected to reach its limiting value in 57 years (500,000 hours).

The value of the intrinsic relaxation at time ¢, for a tendon stressed at time
t;, can be computed for time increments, (¢ — f;), up to 1000 hours after
stressing, from:

Ly = Ly {0.0625 In [1 + 0.10(z — 1,)]} (2-6)
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For time increments greater than 1000 but less than 500,000 hours, the relax-
ation can be computed from:

Ly =L {2 x 107%(1 — 1) }** (2-7)

The value of L, should be taken to be equal to the limiting value for intrinsic
relaxation, L, , when (1 — ¢;) exceeds 500,000 hours.

As explained above, because of the effects of concrete creep and shrinkage
(see Sec. 3-10 through 3-13), prestressing tendons are not held at constant length
after they have been stressed. The creep and shrinkage cause the lengths of the
prestressed concrete member, and the tendons provided to prestress them, to
shorten. The shortening results in a reduction in the stress in the tendons.
Consequently, the relaxation in the tendon also is reduced from what it would
have been without the shortening (i.e., the reduced relaxation is less than the
intrinsic relaxation). Ghali and Trevino have proposed the use of a relaxation
coefficient, x,, to account for this phenomenon. The relaxation coefficient can
be computed from

X, = e67+530 (2-8)

in which:

L] = L
fi

where les(,)| is the absolute value of the change in stress in the prestressing
steel due to the combined effects of concrete creep and shrinkage together with
relaxation of the prestressing steel (total loss of stress in the steel) at time ¢,
and | L, | is the absolute value of the intrinsic relaxation at time ¢. This calcu-
lation must be done by trial and error because it involves computation of the
total loss of prestress in the steel as well as the intrinsic relaxation, where the
total loss of prestress includes the reduced relaxation loss of the prestressing
steel. Rather than using eq. 2-8, the value of x, can be obtained from tabulated
data or a plot, such as Table 2-6 and Fig. 2-13, both of which are from Ghali
and Trevino.

Elevated temperatures have an adverse effect on the relaxation of prestressing
steel. For applications where the prestressing tendons will be subjected to
temperatures in excess of 100°F for extended periods of time, larger allowances
should be made for the relaxation of the steel (de Strycker 1959; Papsdorf and
Schwier 1958).

Relaxation curves for low-relaxation strand stressed initially to 70 percent of
the guaranteed ultimate tensile strength and held at various temperatures are
shown in Fig. 2-14. The curves clearly demonstrate the adverse effect of elevated
temperatures on the long-term relaxation of prestressing steel. In Fig. 2-15,
values of the relaxation for stress-relieved strand and for low-relaxation strand,

Q (2-9)
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TABLE 2-6 Values of the relaxation reduction coeficient x, for various values of Q and
\ (after Ghali and Trevino 1985).

Values of A

Q 0.65 0.60 0.65 0.70 0.75 0.80
0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.1 0.6492 0.6978 0.7282 0.7490 0.7642 0.7757
0.2 0.4168 0.4820 0.5259 0.5573 0.5806 0.5987
0.3 0.2824 0.3393 0.3832 0.4166 0.4425 0.4630
0.4 0.2118 0.2546 0.2897 0.3188 0.3429 0.3627
0.5 0.1694 0.2037 0.2318 0.2551 0.2748 0.2917

stressed initially to 70 percent of the guaranteed ultimate tensile strength and
stored at different temperatures, are compared after 1000 hours; the effects of
temperature and level of initial stress are clearly evident. From these examples,
it is apparent that the relaxation of prestressing strand is temperature-sensitive
as well as sensitive to the level of stress to which it is initially stressed. The
designer of prestressed concrete must be cautious when designing prestressed
concrete structures that will be exposed to elevated temperatures during their
service life.

From the above, one can conclude that the relaxation of the low-relaxation
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Fig. 2-14. Relaxation versus time for low-relaxation strand stressed initially to 70
percent of the guaranteed ultimate tensile strength and held at various
temperatures. (Provided by and used with the permission of C.F. & I. Steel
Corp.)
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Fig. 2-15. Effect of temperature on the relaxation of stress-relieved and low-relaxation
seven-wire strand, stressed initially to 70 percent of the guaranteed ultimate

tensile strength, after 1000 hours at constant strain. (Based upon data
obtained from and used with permission of Florida Wire and Cable Company.)

strand could be taken as approximately 20 percent of that for stress-relieved
strand for applications at normal temperatures. For applications in which the
tendons may be exposed to temperatures above 100°F, only low-relaxation-type
strand should be used.

In order to determine if prestressing wire or strand is low-relaxation or stress-
relieved, one can perform a short-term constant-strain test on a sample of the
material. The strain should approximate the strain in the material under the
initial prestressing stress. For a test period of 30 minutes at constant or nearly
constant temperature, the relaxation of low-relaxation material should be less
than 0.50 percent, whereas that of stress-relieved material should be less than
2 percent. There is no ASTM standard for this test known to the author.

2-11 Corrosion

The strength of a prestressed-concrete flexural member is dependent upon the
condition of its tendons throughout their service life; so they must not experi-
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ence serious deterioration due to corrosion. Prestressing steels are subject to
normal oxidation in approximately the same degree as structural-grade steels.
Because wire and strand tendons are normally of small diameter, it is essential
that they be protected against significant oxidation. Bar tendons should be
protected too, but, because of their relatively large diameter, normal oxidation
is of somewhat less concern with them than with wire and strand tendons.

Protection against corrosion is effected in pretensioned construction by the
concrete that surrounds the tendons. In bonded post-tensioned construction, the
tendons are protected by grout injected into the ducts containing the tendons
after the tendons have been stressed. Unbonded tendons normally are coated
with grease, wax, or bituminous materials and covered with plastic tubing or
waterproof paper in a factory before being shipped to the construction site;
chemicals that inhibit oxidation of ferrous metals sometimes are included in the
coating applied to tendons used in unbonded construction. Hydrated portland
cement concrete provides an alkaline environment (pH on the order of 11-13)
that is very effective in preventing corrosion of steel tendons. Cracks or porosity
in the concrete however, can, cause this protection to be lost (FIP Comission
on Prestressing 1986). It must be emphasized that research has shown a light,
hard oxide on the tendons to be desirable in pretensioned members because its
existence improves the transfer and flexural bond characteristics of the tendons
(see Sec. 6-6). Light, hard oxides also should be desirable in bonded, post-
tensioned tendons, because of the improved flexural bond.

To protect prestressing steel against corrosion between the time when it leaves
the factory and the time when it is processed at a construction site for placement
in the work, it has become standard practice in some areas to require the steel
to be wrapped in waterproof paper, with a vapor-phase corrosion inhibitor
included within the packaging.*

A vapor-phase corrosion inhibitor is a white, fine-grained powder consisting
of an organic compound containing nitrogen. The material vaporizes (sublimes),
and, if the vapors are confined, it will recrystallize on the surface of the steel
and prevent oxidation. The action of vapor-phase inhibitors can be nullified by
the following:

Temperatures greater than 160°F.

. Free-running water over the surface of the steel.

. An acidic environment (pH less than 6.5).

. Free circulation of fresh air.

. Coatings or films on the steel that prevent the vapor from contacting the
steel.

*A convenient way to specify the protective packaging of prestressing materials is to use the provi-
sions of ‘‘Standard Recommended Practices for Packaging, Marking, and Loading Methods for
Steel Products for Domestic Shipment’’ (ASTM A 700).
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6. The powder’s not being in the immediate vicinity of the steel (farther than
12 in. away).
7. An environment containing a high concentration of chlorides.

The material will work in either air or water, provided that the above conditions
do not exist to nullify its action.

Post-tensioned construction occasionally is protected against the effects of
corrosion by the use of galvanized tendons. This procedure is not used frequently
because galvanized tendons are less strong than bright tendons of the same size,
as some of the diameter of galvanized tendons is composed of low-strength zinc
rather than high-strength steel. Moreover, galvanized tendons are more expen-
sive than bright tendons of equal strength. (For equal-diameter tendons, galva-
nized, seven-wire strands are approximately 15 percent lower in strength and
10 percent higher in cost.) Furthermore, the various types of anchorage devices
that have been used in post-tensioning with the older parallel-wire systems
(rarely used any longer in North America) either cannot anchor galvanized wire,
because of its low coefficient of friction, or cannot be used without damaging
its zinc coating. For these reasons, the use of galvanized wire generally is
considered to be impractical with parallel-wire systems. The use of galvanized,
large-diameter strand is feasible under some conditions, however. Galvanized,
seven-wire strand can be used in some of the more modern anchorage devices,
but rarely is, because of the cost. .

Galvanized wire and strand are not used in pretensioned concrete because the
concrete provides adequate protection of the steel against corrosion.

A type of corrosion referred to as pitting corrosion is the cause of some deteri-
oration (and even failures) of prestressed concrete structures. Calcium chloride
or sodium chloride in the concrete or grout generally is thought to be the cause
of this type of corrosion. For this reason, chlorides must never be permitted,
except in very small (trace) amounts, in the concrete or grout used in prestressed-
concrete construction (Szilard 1969).

Prestressing steels, particularly wires and strands, are susceptible to a type
of deterioration termed stress corrosion, which has occurred relatively infre-
quently. Stress corrosion is characterized by a breakdown of the cementitious
portion of the steel resulting in fine cracks, which can render the steel nearly
as brittle as glass. Because little is known about this type of corrosion, there is
no way to be certain that it will not occur during construction of a prestressed
member. It is true that nitrates (not to be confused with the rust-inhibiting
nitrites), chlorides, sulfides, and some other agents can result in stress corrosion
under certain conditions. It is also known that steel is more susceptible to this
type of corrosion when highly stressed—hence the name ‘‘stress corrosion.’’

Another cause of delayed failure, which can occur in high-strength steels, is
called hydrogen embrittlement. This phenomenon, which apparently results
when steel is exposed to hydrogen ions (atomic hydrogen) but does not occur
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when it is exposed to molecular hydrogen, is characterized by a decrease in
ductility and tensile strength. Hydrogen embrittlement may be promoted by
electroplating steel with cadmium or zinc, as well as by corrosion and electrical
currents. Confining the prestressing steel in an environment with a pH greater
than 8 is thought to be the best protection against the absorption of hydrogen.

It is interesting to note that aluminum powder, which causes the release of
hydrogen gas (molecular hydrogen), has been used for many years as an expan-
sion additive for the grouting of post-tensioned tendons. This practice appar-
ently has not been harmful because failures have not been reported in structures
so constructed. Additives that cause expansion by the release of nitrogen gas
also are used.

2-12 Effect of Elevated Temperatures

In estimating the effect of elevated temperatures on prestressed concrete
elements, such as temperatures due to uncontrolled fires in buildings, it is neces-
sary to know the effect of such temperatures on the types of steel used in
prestressing concrete. The report of ACI Committee 216 (ACI 216 1981)
contains a plot showing the ultimate strengths of two types of prestressing steel,
as compared to a steel commonly used in structural steel construction, as a
function of different temperatures. This plot is reproduced here as Fig. 2-16. In
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Fig. 2-16. Strength of prestressing wire and strand, high-strength alloy bars and struc-

tural steel conforming to ASTM A 36 at high temperatures. (Reproduced
with the permission of the American Concrete Institute.)
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Fig. 2-17. Stress-strain curves for uncoated wire used to prestress concrete,
conforming to ASTM A 421, at various high temperatures. (Reproduced
with the permission of the American Concrete Institute.)

addition the report contains a plot comparing the stress-strain curves for stress-
relieved wire conforming to ASTM A 421 at various elevated temperatures,
which is shown here as Fig. 2-17. The tensile strength of stress-relieved and
low-relaxation strand as a function of temperature is shown plotted in Fig.
2-18, and the effect of time and heat on the tensile strength of low-relaxation
prestressing strand is illustrated in Fig. 2-19. These plots clearly show the sensi-
tivity of prestressing steel to temperatures of the levels frequently encountered
in fires. The reader is referred to the latest edition of the report of ACI
Committee 216 and material-specific information from the manufacturers of
prestressing steels for more information on this subject.

2-13 Application of Steel Types

The same basic steel can be used in pretensioning and post-tensioning, but in
the former it is necessary that the individual tendons not be so large that they
cannot be adequately bonded to the concrete, as the bond is relied upon to
transfer the prestressing force from the steel to the concrete. In post-tensioning,
as has been explained, end anchorages are used to transfer the prestressing force
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at various temperatures. {Based upon data obtained from and used with
permission of Florida Wire and Cable Company.)

to the concrete, and the grout, when used, is relied upon to protect the steel
against corrosion as well as to develop flexural bond stress (i.e., bond stress
resulting from changes in the externally applied loads). Bond stresses are
discussed in detail in Secs. 6-6 and 6-7. It should be mentioned here that,
although in Europe it has been customary to use wires up to 0.276 in. in diameter
as pretensioning tendons, the usual practice in the United States has been to use
the uncoated, seven-wire strands described in Sec. 2-3. Little or no use of high-
tensile alloy bars has been made in pretensioning in North America, although
favorable results have been obtained experimentally in Europe with bars up to
2 in. in diameter (Base 1958).

2-14 Idealized Tendon Material

One may wish to consider the properties that an ideal material for prestressing
concrete would have. Some characteristics are desirable from one standpoint
and not from another. For example, high tensile strength coupled with a low
elastic modulus would permit a high strain under initial stress and minimize the
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loss of stress due to the inelastic properties of the concrete. On the other hand,
with a high tensile strength only a small area of tendon is required, which,
coupled with a low modulus of elasticity, could result in very high deflections
upon the application of an overload that caused cracking. In actuality, use of
the currently available steels generally results in designs that are efficiently
balanced in serviceability and strength characteristics. Perhaps steels with
somewhat higher strengths could be used efficiently. Steels without any relax-
ation loss obviously would be advantageous.

It is also possible that materials of very high strength and low elastic modulus
eventually will be used in combination with nonprestressed mild reinforcing to
achieve efficient and economical construction.

The major desirable physical characteristics of material used for prestressing
tendons can be summarized as follows:

High strength that allows high prestressing stresses.
Elasticity up to high stress levels.
. Plasticity at very high stress levels.
Low elastic modulus at time of stressing to minimize the loss of prestress.
. High elastic modulus after bonding to contribute to the stiffness of the
member.
6. Low creep and relaxation losses at the stress levels normally employed
in prestressing and at elevated temperatures.
7. Resistance to corrosion.
8. Small diameter or relatively large surface area for the individual tendons
to achieve good bond characteristics.
9. Absence of dirt and lubricants on the surface.
10. Straightness when uncoiled to facilitate handling and placing.

Do

No material known has all of these desirable qualities, but the high-strength
steels currently used possess most of them.

2-15 Allowable Prestressing Steel Stresses

The two most significant design criteria for prestressed concrete in the United
States are the Standard Specifications for Highway Bridges , which is published
by the American Association of State Highway and Transportation Officials
(AASHTO 1989), and the Building Code Requirements for Reinforced Concrete
(ACI 318 1989), published by the American Concrete Institute.

The following allowable stresses in prestressed reinforcement are those
permitted in Sec. 9.15.1 of the AASHTO Standard Specifications for Highway
Bridges, 14th Edition (Copyright 1989. The American Association of State
Highway and Transportation Officials, Washington, D.C. Used by permission).
The quantities f; and f¥ are the ultimate (tensile) strength and the yield point
stress of the prestressing steel, respectively. The specific provisions are:
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9.15.1 Prestressing steel

Stresses at anchorages after seating

Pretensioned members
.............................................. 0.70 f; for stress relieved strands
.............................................. 0.75 f. for low relaxation strands
Slight overstressing up to 0.85 f* for short periods of time may be
permitted to offset seating losses, provided the stress after seating does
not exceed the above values.

Post-tensioned membErs..............oeeeiiiiiiiniiiiiiii e, 0.70 f,
Overstressing up to 0.90 £ for short periods of time may be permitted
to offset seating and friction losses provided the stress at the anchorage
does not exceed the above value. The stress at the end of the seating
loss zone must not exceed 0.83 £} immediately after seating.

Stress at service load” after losses .................cccceevveen.n. 0.80 /¥

The stresses permitted by ACI 318-89 are as follows:

1. Due to tendon jacking force, 0.94f,, but not greater than 0.80f,,, or
maximum value recommended by manufacturer of prestressing tendons or
anchorages.

2. Pretensioning tendons immediately after prestress transfer, 0.82 J»y but not
greater than 0.74f,,.

3. Post-tensioning tendons, at anchorages and couplers, immediately after
tendon anchorage, 0.70f,, .

It can be seen that both sets of criteria permit higher stresses in the reinforce-
ment during the stressing operation than after seating of the anchorages. In
addition, both have more restrictive limitations on the initial stress in post-
tensioned reinforcement than in pretensioned reinforcement. Initial stress, in
pretensioned tendons, is defined as the stress immediately after transfer (release);
in post-tensioned tendons, it is the stress immediately after anchoring.
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PROBLEMS

1. A prestressed member requires an effective prestressing force of 980 kips.
Determine the area of steel required for stress-relieved strand, low-relaxa-
tion strand, and high-tensile-strength bars, if the strain change in the concrete
surrounding the prestressing steel in 700 X 107 in./in. owing to concrete
elastic shortening, shrinkage, and creep. Assume a 25-year useful life for
the structure, normal temperatures during service, and that the elastic
modulus of steel is 29,000 ksi; assume that ;' and f,, are equal to 256 and
270 ksi, respectively; and assume that the tendons are stressed to 0.70 f,,
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initially. Make the computations on the basis of (1) full relaxation of the
prestressing steel, and (2) reduced relaxation as expounded by Ghali and
Trevino.

SOLUTION:

Using eq. 2-1 with ¢’ = 25 X 365 X 24 = 219,000 hr, and taking f,; = 0.70
X 270 x 189 ksi for strands and f; = 0.70 X 150 = 105 ksi for bars, the
losses due to relaxation alone are:

Stress-relieved strand:

log 219,000 /18
Af"ﬂggLL_( 9

10 ﬁ - 0.55> = 19.0 ksi

Low-relaxation strand:
AF,, = 0.25 x 19.0 = 4.8 ksi
High-tensile-strength bars:
Af,, = 0.70 X 105 x 0.03 = 3.2 ksi

A summary of the calculations for full relaxation is found in Table 2-7, and a
summary for reduced relaxation in Table 2-8. For reduced relaxation, with the
value of A\ equal to 0.70, the values of © are computed as follows:

20.3

S.R. strand, Q@ = T80 = 0.107, x, = (787 +3:3x0700.107 — ¢ 726
20.3
L.R. strand, @ = —— = 0.107, x, = 0.726
189
203 (—6.7+5.3 X0.7)0.193
H.T. bars, 2 = E =0.193, x, = e ' e = 0.562

The reduced relaxations become: 0.762 X 19.0 = 14.5 ksi, 0.762 X 4.8 =

3.7 ksi, and 0.562 X 3.2 = 1.8 ksi, for stress-relieved strand, low-relaxation

strand, and high-tensile strength bars, respectively. (See Table 2-8.)

2. For a pretensioned stress-relieved strand that is released 24 hours after having
been stressed to 175 ksi, determine the stress remaining in the tendon after

TABLE 2-7 Summary of computations for full relaxation for Problem 1.

Initial Relax. Concrete Total A,

stress loss loss loss req’d
Steel type (ksi) (ksi) (ksi) (ksi) (ksi)
S.R. strand 189 19.0 20.3 39.3 6.55
L.R. strand 189 4.8 20.3 25.1 5.98

H.T. bars 105 3.2 20.3 23.5 12.02
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TABLE 2-8 Summary of computations for reduced relaxation for Problem 1.

Initial Relax. Concrete Total A

stress loss loss loss req’d
Steel type (ksi) (ksi) (ksi) (ksi) (ksi)
S.R. strand 189 14.5 20.3 34.8 6.36
L.R. strand 189 3.7 20.3 23.7 5.93
H.T. bars 105 1.8 20.3 22.1 11.82

50 hours, if f,, = 250 ksi and f' = 225 ksi. Assume that the elastic short-
ening is 170 X 107% in./in., and the deferred deformation of the concrete
(creep and shrinkage) is 825 X 107 in. /in. Use an elastic modulus for the
steel of 28,000 ksi.

SOLUTION: At 24 hours:

log 24 /175
Af, =175 28 <

—— — 0.55) = 5.5 ksi
10 \225 ) o
The loss due to elastic shortening is 28,000 x 170 X 1076 = 4.8 ksi, the initial
loss at the time of the stressing is 5.5 + 4.8 = 10.3 ksi, or approximately 10
ksi, and the stress remaining after release is 165 ksi. Using eq. 2-2 to determine
the stress remaining in the steel after 50 years (438,000 hr), one finds:

f 165 log 438,000 — log 24
=1-{(=—~055 = 0.922
165 10

and £, = 0.922 X 165 = 152 ksi. The loss due to the deferred concrete strain
is equal to 28,000 X 825 X 107% = 23.1 ksi; hence, the effective stress after

50 years (using full or intrinsic relaxation) is 129 ksi.
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3-1 Introduction

It is presumed that the reader is familiar with the basic physical properties of
portland-cement concrete, which is the principal constituent of prestressed
concrete. It is important that a proper concrete be employed in prestressed
concrete construction, but only the factors that are of particular interest in this
type of construction are considered here. General data pertaining to the factors
affecting the physical properties of concrete can be found in the many publi-
cations and standards of the American Concrete Institute.

Concretes with compressive strengths of 5000 to 6000 psi at the age of 28
days, as measured on standard cylindrical specimens, are rather easily obtained
in most localities today, but little, if any, economic advantage results from the
use of concretes in this strength range in nonprestressed reinforced concrete
flexural members. For this reason, concretes with compressive strengths on the
order of 3000 to 4000 psi are much more commonly used for nonprestressed
flexural members than are the higher-strength concretes. (The use of concrete
of moderate and high strength can be both functionally and economically advan-
tageous in columns and other compression members reinforced with nonpre-
stressed reinforcement, however.) This is not the case for prestressed flexural

45
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members, where the use of concretes of moderate to high strength is common
and efficient because of the reduction in weight and cost of the members that it
makes possible. Furthermore, as has been explained, the time-dependent volume
changes of concrete (creep and shrinkage) significantly affect the amount of
prestressing that is lost. Because the higher-strength concretes normally undergo
substantially smaller volume changes than the lower-strength ones, their use is
desirable, if not necessary, in many applications.

Strength and volume changes in concrete are affected by many variables, but
in practice the engineer’s control of these variables normally is limited to the
writing of specifications intended to govern the amount of water, the types and
proportions of the aggregates, and the type and amount of cement, as well as
the types and amounts of admixtures that can be used in the concrete mixture.
On many projects the engineer is not at liberty to specify particular materials
available from a single source (producer), but must write specifications relying
upon nonproprietary standard specifications to obtain the desired results. The
water content of the concrete mixture should be kept to the minimum required
for proper placing; by this means its strength is increased and its shrinkage
reduced. On the other hand, care must be exercised to ensure that sufficient
water will be present in the plastic concrete mixture so that it can be placed and
consolidated with conventional methods and equipment and with a reasonable
amount of labor. The engineer also should specify the method and duration of
curing the concrete after it has been placed and finished.

3-2 Cement Type

The cement used in most prestressed concrete construction is portland cement
that conforms to ‘‘Standard Specification for Portland Cement’’ (ASTM C 150).
Blended cements, conforming to ‘‘Standard Specifications for Blended Hydraulic
Cements’’ (ASTM C 595), also are used.

The most common types of cement used in prestressed concrete vary from
one locality to another. Types I (normal), II (modified), and III (high early
strength) cements, conforming to ASTM C150, all are used extensively, as are
the air-entraining blends, Types IA, IIA, and IIIA. All give satisfactory results
under specific local conditions if properly used.

Type III cement is intended for use when high early strength is desired.
Because high early strength can permit prestressing at an earlier than usual age,
the time required to produce prestressed concrete members, especially under
plant conditions, sometimes is reduced through its use. Type III cement has a
higher heat of hydration (heat evolved as a result of chemical reactions with
water during mixing and hardening) than Types I and II cements, and this is
sometimes found to be objectionable; on the other hand, the heat generated by
the hydration process, if properly controlled, can be used to accelerate the curing
of the concrete. Concrete admixtures, which are discussed in the following
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section, in combination with Types I and II cements and accelerated curing
methods, also can be used to produce concrete having high early strength, but
with a more moderate heat of hydration than that of Type III cement. The use
of Type II cement is required by some agencies because of its greater sulfate
resistance and a lower heat of hydration than is encountered with cement Types
I and III. Because the various cements perform in different ways with the variety
of aggregates and admixtures that are available, concrete mixture designs
normally are determined by using a number of trial batches made with the
different materials available in a locality.

A technical report published by the Prestressed Concrete Institute (Pfeifer
and Marusin 1981) contains specific recommendations regarding cement
chemistry for optimum results in the manufacture of precast concrete products.

Calcium-aluminate cement, also known as high-alumina cement and alumi-
nous cement, has been used to some extent in prestressed concrete in Europe
but not extensively in North America. Because some of these cements are
reported to contain significant quantities of sulfides that can undergo chemical
change and form atomic hydrogen embrittlement of prestressing steel, this
cement is not recommended for use in prestressed concrete (Szilard 1969).

3-3 Admixtures

An admixture is defined as a material other than water, aggregates, hydraulic
cement, and fiber reinforcement, which is used as an ingredient of concrete or
mortar, and is added to the batch immediately before or during its mixing (ACI
116 1985). The use of admixtures has increased dramatically in the past 30
years with the development of many new types. Admixtures are used in
prestressed concrete to make the plastic concrete more plastic, retard the initial
set, accelerate the final set, reduce the amount of water required in the mixture,
and entrain air in the concrete in order to enhance the durability of the hardened
product. Admixtures frequently are used to facilitate the placing and handling
of concrete, as well as to obtain high strength at an early age.

The admixtures used in concrete for entraining air normally must conform to
the requirements of ASTM C 260, ‘‘Specification for Air-Entraining Admix-
tures for Concrete.”’ Technical specifications for admixtures that reduce the
amount of water required in the plastic concrete, or retard or accelerate the
setting of the concrete, as well as those that cause combinations of these effects,
are contained in ‘‘Specification for Chemical Admixtures for Concrete’’ (ASTM
C 494).

The use of concrete admixtures has become very sophisticated, in many
instances involving combinations of admixtures, some added to the concrete
during the original batching and others added at the job site after the concrete
has been mixed for a period of time. Experimentation generally is needed to
determine the best combination of admixtures to use with the other specific
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ingredients that will go into a concrete for a particular application. The engineer
generally relies on the advice of concrete suppliers, consultants, suppliers of
admixtures, and past experience in initiating a testing program to determine
what admixtures will perform best on a specific project.

The adverse effect of chloride ion on reinforcing steel has been recognized
for many years. It can be particularly serious in prestressing steels, where it can
cause pitting and stress corrosion. It is for this reason that ‘‘Building Code
Requirements for Reinforced Concrete’” (ACI 318-89) limits the amount of
water-soluble chloride ion in prestressed concrete, at the age of 28 days, to 0.06
percent of the weight of the cement. Materials containing significant amounts
of chlorides should not be used in prestressed concrete, but trace amounts,
whether in the mixing water, the aggregates, or admixtures, are unavoidable
and should not be of concem.

The engineer always should be careful to check the chloride ion content of
chemical admixtures proposed for use in a concrete mixture. This often requires
more investigation than simply reading the sales literature provided for the
product.

3-4 Slump

In the European technical literature on prestressed concrete of the 1940s and
1950s, there was a strong emphasis on using no-slump or very low-slump
concrete in prestressed concrete. The purpose behind the recommendation was
to obtain high concrete strength together with relatively low creep and shrinkage.
Experience in the United States indicates that the use of no-slump and very low-
slump concrete generally should be confined to products made on vibrating
tables or vibrating pallets, and perhaps to shallow members that are of such
configuration that all areas of the member are readily accessible to internal
vibrators. For example in North America low-slump concrete commonly is used
in precast hollow core slabs, which are sometimes made by an extrusion process
and sometimes with a slip form. However, for average prestressed members
that are too large to be produced on a vibrating table, or that have large bottom
flanges that cannot be readily vibrated with internal vibrators, it has been found
that good results are obtained when the slump of the plastic concrete is about 4
in. With modern high-range water-reducing admixtures, low water-cement
ratios can be maintained with slumps in the 4 to 6 in. range; hence, the need
for the use of low-slump concrete no longer exists if modern admixtures are
used in the concrete.

3-5 Curing

After concrete has been placed and consolidated, the cement used as one of the
constituents combines (hydrates) with some of the mixing water. This process
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is essential for the concrete to gain strength and other desirable properties. To
ensure that sufficient water is available for the hydration process, the concrete
must be kept from drying; and it is this prevention of drying during hydration
that is called curing. It is generally recognized that the best method of curing
concrete is to keep its surfaces wet by the application of water or by sealing the
surfaces through the application of a coating or moisture barrier. The manufac-
turer can accelerate the hydration process by heating the concrete while
preventing it from drying. Methods of heating concrete to accelerate hydration
include the use of steam at high pressure; the use of hot, moist air at atmospheric
pressure (see Sec. 3-16); and the use of radiant heat from circulating hot water
or hot oil, electric heating pads, and so on. Covering the concrete surfaces with
carpets, burlap, or other absorbent material that is kept wet by the application
of hot water also is an effective means of accelerating the hydration process
during the curing period.

Accelerating the hydration process is more important in the manufacture of
plant-produced prestressed concrete than it is in prestressed concrete products
produced on site. This is so because of the need to achieve frequent reuse of
plant facilities through reduction in production time; the cost of products
produced is reduced if the time required to produce them is reduced.

The reader should consult ‘‘Standard Practice for Curing Concrete’” (ACI
308-81) for a comprehensive treatment of concrete curing.

3-6 Concrete Aggregates

The aggregates used in the manufacture of normal concrete members usually
are satisfactory for prestressed concrete. However, because of the higher
strengths required for prestressed concrete, it has been difficult, in some local-
ities, to find suitable natural aggregates for prestressed construction. Where a
choice of aggregates is available, one should make the selection after consid-
ering the ease of obtaining the necessary strength, as well as the magnitude of
the elastic and inelastic volume changes that might be expected with the different
types available. Lightweight aggregates of the expanded shale or clay type have
been used with good results in North America. When lightweight aggregates
are used in prestressed concrete, one must be careful to make a reasonable
assessment of anticipated volume changes when estimating the loss of prestress.

Normal concrete aggregates should conform to the requirements of *‘Standard
Specifications for Concrete Aggregates’” (ASTM C 33). Aggregates for light-
weight prestressed concrete should conform to ‘‘Standard Specifications for
Lightweight Aggregates for Structural Concrete’” (ASTM C 330).

3-7 Strength

A principal reason why concrete with a minimum 28-day cylinder compressive
strength of the order of 4000 to 6000 psi is used in prestressed concrete members
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is that concrete of higher strength generally will exhibit lower volume changes
than concretes of lower strength. In addition, concrete in this strength range is
relatively easy to produce with contemporary materials and production facili-
ties. Another reason for using higher-strength concretes is that efficient use
generally can be made of them in prestressed concrete flexural members; this
is not the case in nonprestressed reinforced concrete members.

In some localities it is difficult to consistently produce concrete of high quality
with locally produced concrete materials. The designer of prestressed-concrete
structures should carefully investigate this problem on each project undertaken.
It is generally possible to prepare reasonably economical designs with concretes
of moderately high strength, and thereby avoid the need for strengths that may
be difficult to obtain under job-site conditions. It is better to anticipate this
problem and provide for it in the design stage than to struggle with what may
be an almost impossible situation during construction.

Whenever possible, and always on major jobs, the concrete mixtures used
should be trial-patched and laboratory-tested before use on the job. The mixtures
employed in the work should be proportioned on the basis of field experience
and/or trial mixtures as provided in Sec. 4.3 of ACI 318. The strength test
results obtained during the work should be evaluated by using ‘‘Recommended
Practice for Evaluation of Strength Test Results of Concrete’” (ACI 214-77).

A general equation for predicting the compressive strength of concrete at any
age has been proposed (Branson and Christianson 1971; ACI 209 1982). This
relationship is:

r — t ’ -

fct_a_l_Btfc (31)

where f'., is the compressive strength at age ¢ in days, a and 8 are constants,

and f*. is the compressive strength at the age of 28 days. The average values of

constants a and 8 have been found to be as shown in Table 3-1. Variations in

compressive strength as a function of time, using eq. 3-1 and the values of the
constants a and 3 given in Table 3-1, are shown in Fig. 3-1.

The compressive strength that eventually will be achieved by moist-cured

TABLE 3-1 Values of concrete strength coefficients a and 3 for use in eq. 3-1 and
ratios of eventual strength to 28-day strength (after ACl Committee 209 1982).

Curve
Concrete Cement in Fig. Eventual str.
curing type a B 3-1 28-day str.
Moist I 4.00 0.85 1 1.18
Moist 11 2.30 0.92 2 1.09
Steam I 1.00 0.95 3 1.05
Steam 111 0.70 0.98 4 1.02




CONCRETE FOR PRESTRESSING | 51

10 Loed——t=cad
4 L= -::7
] A
,// /4
3\4' /]
0.8 ‘, 2
/ ~2
w I/
3| II
olg
- 1
518 o8-
[=2d[ee] [
<N Il
®(®
2ty
gE I
5|5 0.4
Hhld
T
[
0.2
0.0
0 5 10 15 20 25 30

Age Days

Fig. 3-1. Strength-time curves for concrete as predicted by eq. 3-1 for the concretes
listed in Table 3-1.

concrete, expressed as a ratio of eventual strength to strength at the age of 28
days, can be estimated to be as shown in Table 3-1 (ACI 209 1986).

On important projects, and in precasting plants, strength-time curves should
be developed for the particular concrete mixtures being used. This approach
permits the work to be accurately planned in advance and monitored during
construction, and it facilitates the identification of low-strength concrete at an
early age.

The 28-day compressive strength of concrete as a function of the water-
cement ratio for air-entrained and non-air-entrained concrete is illustrated in
Fig. 3-2; and in Fig. 3-3, the 28-day compressive strength of concrete is shown
as a function of the voids-cement ratio. These curves are useful in estimating
the quantities of cement and water that must be used to achieve a desired concrete
strength with and without entrained air.

The tensile strength of concrete, sometimes called the direct tensile strength,
can be estimated from:

fi =g [w(f)]" (3-2)
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Fig. 3-2. Concrete compressive strength in relation to water-cement ratio for air-
entrained and non-air-entrained concrete. The strength decreases with an
increase in the water-cement ratio; or with the water—cement ratio held
constant, the use of air entrainment decreases the strength by about 20
percent (Bureau of Reclamation 1966).

in which w is the unit weight of the concrete in pounds per cubic foot, f, is the
comrpessive strength at time 7 in days, and g, is equal to 0.33 (ACI 209 1982).
For g, taken to be equal to 0.33 and a concrete having a unit weight, w, equal
to 144 pcf, eq. 3-2 becomes:

fi=4ap (3-22)
The modulus of rupture can be taken as follows:
12

fr=8 [W(fét)] (3'3)

in which g, is a constant that normally varies between 0.60 and 0.70. For
concrete having a unit weight, w, of 144 pcf, the values of the modulus of
rupture using eq. 3-3 would become:

f=124F (3-3a)
and:

f,=84+p, (3-3b)
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Fig. 3-3. Compressive strength of concrete in relation to voids—cement ratio (Bureau
of Reclamation 1966).

for values of g, of 0.60 and 0.70, respectively. Because of the variation that is
found in the modulus of rupture, the upper or lower limit of eq. 3-3 should be
used in computations in such a manner that the result will be conservative
(Branson and Christianson 1971; ACI 209 1982). (It should be noted that the
values specified for the modulus of rupture in Building Code Requirements for
Reinforced Concrete , ACI 318, are as low as 6\/76’ and as high as 7.5~/7; 2)

The strength of lightweight concrete should always be determined by tests.
The curves of Figs. 3-1, 3-2, and 3-3 should not be expected to apply to light-
weight concrete.

3-8 Elastic Modulus

The value of the elastic modulus of concrete is important to the designer of
prestressed concrete because it must be used in computing deflections and losses
of prestress. Unfortunately, the elastic modulus of concrete is a function of
many variables, including the types and amounts of ingredients used in making
the concrete (cement, aggregates, admixtures, and water), as well as the manner
and duration of curing the concrete, age at the time of loading, rate of loading,
and other factors (Troxell, Davis, and Kelley 1956). When possible, it is recom-
mended that the elastic modulus be determined by tests for the concrete to be
used in a specific application; especially in applications where deflections and
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loss of prestress are particularly important. When the elastic modulus of the
concrete is not determined by tests, it may be assumed to be:

E, = 33w Jf, (34)

in psi, for values of w, the unit weight of the concrete, between 90 and 155 pcf
(ACI 209 1982). For normal-weight concrete, eq. 3-4 can be taken as:

E, = 57,000 V!, (3-5)

Based upon test data, eq. 3-4 may give a good representation of the elastic
modulus for a particular concrete if a value other than 33, as given in eq. 3-4,
is used. This should be an acceptable procedure if the test data are available.
ACI Committee 363, High Strength Concrete, has recommended the following
relationship for the elastic modulus for use in lieu of eq. 3-5 (ACI 363):

15

E, = [40,000 (F)'? + 1 x 106} [L] (3-6)

145

Equations 3-5 and 3-6 are compared graphically in Fig. 3-4. It should be noted
that eq. 3-5 was based upon test data for concrete having 28-day compressive
strengths of 6000 psi and less, and eq. 3-6 is intended to better predict the elastic
modulus for concretes having strengths as high as 14,000 psi. It should also be
noted that f), in egs. 3-5 and 3-6 is the compressive strength of concrete, as
determined by tests of standard 6 X 12 in. cylinders made in accordance with
ASTM C 192 and tested in accordance with ASTM C 39, at the age of ¢ days.

Klink reported experimental work that led him to conclude that the procedure
for determining the elastic modulus of concrete in ASTM C 469 produces results
that are approximately 55 percent lower than those found by measurements
made with internal strain gages (Klink 1985). The accuracy of Klink’s conclu-
sions have been questioned by others; hence, the reader is advised to carefully
review the technical literature on this subject when designing structures that
could be adversely affected by differences as great as those reported by Klink
(Baidar, Jaeger, and Mufti 1989).

It should be pointed out that eqs. 3-5 and 3-6 are intended to predict the
values of the elastic modulus that would be obtained if the concrete were tested
in accordance with ASTM C 469. Because the value of the elastic modulus thus
obtained is the chord modulus at a stress of 40 percent of the ultimate compres-
sive strength of the cylinder, a value as much as 10 percent higher could be
anticipated in applications where the concrete is not stressed to such high a
level. The differences between the tangent moduli at different stress levels and
the secant modulus are illustrated in Fig. 3-5.

In prestressing concrete, the prestressing force often is transferred to the
concrete at a relatively early age (1 to 14 days, depending upon the materials
and method of curing used). Hence, at the time of stressing the concrete
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Fig. 3-4. Comparison of relationships for the modulus of elasticity of concrete as
contained in Sec. 8.5.1 of ACI 318 and as recommended by ACI Committee
363 (ACI 318 1989; ACI 363 1984).

frequently has a strength that is somewhat less than the minimum specified at
the age of 28 days. Equations 3-5 and 3-6 give a means of approximating the
modulus of elasticity of the concrete at a given age by relating it to the cylinder
strength, which varies with age.

ILLUSTRATIVE PROBLEM 3-1 A post-tensioned beam is to be stressed when
the concrete strength is 4000 psi. The specifications also provide that the
minimum cylinder compressive strength at the age of 28 days shall be not less
than 5000 psi. Compute the elatic modulus that should be used in determining
instantaneous deflections and stress losses at the time of stressing and at the age
of 28 days if (1) the concrete is normal concrete, and (2) the concrete is light-
weight concrete having a unit weight of 100 pcf.

SOLUTION:
(1) E, = 57,000 (f

At the time of stressing:

172
)
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E, = 57,000 X /4000 = 3,600,000 psi
At 28 days:
E., = 57,000 x /5000 = 4,030,000 psi
(2) E, = 100"° x 33(f.)"
At the time of stressing:
E. = 33,000 x /4000 = 2,090,000 psi
At 28 days:

E, = 33,000 x 5000 = 2,330,000 psi

Creep of concrete, which is discussed in detail in Sec. 3-13, is defined as the
increase in strain that occurs when a concrete member or specimen is subjected
to constant stress. Because the elastic modulus of concrete is the quotient of the

1.00
38 Stress—strain
5 curve, loading
5
<= 0.60
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©
[72]
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0.20—¢& A
@
QQ
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Fig. 3-5. Stress—strain curve for a concrete cylinder loaded in compression, illustrating
the secant and tangent moduli at a stress of 40 percent of the compressive
strength and the tangent modulus at zero stress.
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stress per unit of ‘‘elastic’’ strain or strain that occurs *‘instantaneously’’ upon
the application of stress, an increase in the amount of strain under a sustained
stress level has the effect of decreasing the modulus of elasticity. Hence, one
should be aware of the two moduli of elasticity commonly used in the analysis
of concrete. These are the instantaneous modulus, normally referred to simply
as the elastic modulus and the effective modulus, which is sometimes called the
reduced or sustained modulus as well. The instantaneous elastic modulus, £,
can be expressed by:

_ Stress

E, (3-7)

" Strain
The effective modulus is time-dependent and includes the creep strain that has
occurred during a period of time in which the concrete is subjected to a sustained
load. The effective modulus, E,,, can be expressed by:

Stres
ce = » . > . (3"8)
Elastic strain + Creep strain
The effective modulus, at time ¢, also can be written:
E.
E, = —— 39
=Ty (39)

where v, is the creep ratio at time ¢. The creep ratio at time ¢ can be defined
mathematically as:

_ Creep strain at time ¢

(3-10)

v : ;

! Elastic strain
in which v, is the creep ratio at the age of 7 days. The value of the effective
modulus that eventually will be achieved for concrete held under a sustained
load for a long period of time can be written as:

E
E, =—— 3-11
=Ty (3-11)
where v, is the creep ratio for the ultimate creep strain, or:
), = Ultimate creep strain (3-12)

Elastic strain

The values of v, and v, are functions of many variables, but principally of the
relative humidity, concrete quality, and age of the concrete when loaded.
Additional information on creep of concrete is given in Secs. 3-13 and 3-14.
The effecitve modulus frequently is used in computing deflections of
reinforced and prestressed concrete, as well as the losses of prestress in
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prestressed-concrete members. These subjects are discussed in greater detail in
Secs. 7-3 and 7-4.

The use of an age-adjusted concrete modulus, originally proposed by Trost
and subsequently supported by Banzant and ACI Committee 209, has become
accepted practice in recent years (Trost 1967; Banzant 1972; ACI 209 1982).
The age-adjusted concrete modulus, which compensates for time-dependent
effects on the properties of concrete including concrete age at loading and
duration of the load, is determined with the use of an aging coefficient. The
expression for the age-adjusted modulus at time ¢, E_,, is:

E,

Epy = ———
“ 1+ x,

(3-13)
in which y is an aging coefficient normally on the order of 0.6 to 0.9, and the
other terms are as defined above. Values of the aging coefficient, as computed
by Bazant, are given in Table 3-2.

3-9 Poisson Ratio

When concrete is subjected to a uniaxial stress, a transverse deformation takes
place simultaneously with the axial (longitudinal) deformation. The ratio of the
transverse deformation to the axial deformation is known as the Poisson ratio,
or as Poisson’s ratio. Structural engineers must include the effects of transverse

TABLE 3-2 Concrete aging coefficients, x (after Bazant 1972).

t,c in days

t— T
days v, 10 102 10° 10*
10 0.5 0.525 0.804 0.811 0.809
1.5 0.720 0.826 0.825 0.820
2.5 0.774 0.842 0.837 0.830
35 0.806 0.856 0.848 0.389
107 0.5 0.506 0.888 0916 0.915
1.5 0.739 0.919 0.932 0.928
2.5 0.804 0.935 0.943 0.938
35 0.839 0.946 0.951 0.946
10° 0.5 0.511 0.912 0.973 0.981
1.5 0.732 0.943 0.981 0.985
2.5 0.795 0.956 0.985 0.988
35 0.830 0.964 0.987 0.990
10* 0.5 0.501 0.899 0.976 0.994
1.5 0.717 0.934 0.983 0.995
2.5 0.781 0.949 0.986 0.996

3.5 0:818 0.958 0.989 0.997
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deformations in sophisticated structural analysis of prestressed and reinforced
concrete plates, shells, and other three-dimensional structures.

Neville, in Nomograph No. 6, has reported the value of the Poisson ratio to
vary between 0.11 and 0.21, with the ratio being lower for concrete of high
strength (Neville 1971).

Based upon experimental work involving the measurement of transverse and
longitudinal strains near the center of concrete specimens, Klink found the value
of the Poisson ratio to be about 55 percent greater than when measured on the
surface of the specimen, as done using the standard method in ASTM C 469.
(Klink 1985; ASTM 1987). Based upon his research, Klink has proposed the
following relationship for predicting the value of the Poisson ratio, »., for
concretes of different weights and strengths:

v = (67 x 107 (W) (f2) " (3-14)
For a concrete having a unit weight of 144 pcf, eq. 3-14 becomes:
v = 0.0040VF, (3-15)

In eq. 3-14, v, is the Poisson ratio, as measured internally in a specimen, and
the other terms are as previously defined. It should be pointed out that Klink’s
experimental work was done on concrete having unit weights that varied from
95 to 152 pcf and strengths that varied from 1350 to 7322 psi, and predicts
values of the Poisson ratio about 55 percent greater than those determined
following the procedures in ASTM C 469.

The results reported by Klink have been disputed, and the reader is cautioned
to review contemporary technical literature on the subject of the Poisson ratio
when designing structures where differences in this value on the order of 55
percent could be significant (Baider, Jaeger, and Mufti 1989).

3-10 Shrinkage

Shrinkage from three different sources is recognized in concrete: autogenous
shrinkage, carbonation shrinkage, and drying shrinkage. Autogenous shrinkage,
which results from the hydration of the cement, normally is small in comparison
to drying shrinkage and is not considered in this book. Carbonation shrinkage
results from atmospheric carbon dioxide combining with lime (calcium oxide)
in the concrete to form calcium carbonate. This type of shrinkage can be signif-
icant under certain conditions of environment, but it normally is not important
and is not considered in the design of concrete structural elements. Drying
shrinkage results from the loss of water from concrete, and is the type of
shrinkage normally referred to by structural engineers simply as shrinkage. In
this book, the term shrinkage is intended to mean drying shrinkage.
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3-11 Drying Shrinkage

The shrinkage of concrete is an important factor to the designer of prestressed
concrete for several reasons. As has been stated, the shrinkage of the concrete
contributes to the loss of prestress. The magnitude of the shrinkage, also must
be known with reasonable accuracy when the deflection of prestressed members
is being computed by sophisticated methods. One cannot compute the deflection
of composite prestressed-concrete members without knowing the shrinkage
characteristics of each of the concrete in each of the components involved. In
addition, the magnitude of the concrete shrinkage must be estimated in order to
evaluate secondry stresses (due to volume changes) that may result.

The effects of concrete shrinkage in prestressed-concrete structures are
considerably different from those in reinforced-concrete structures. In reinforced
concrete the shrinkage strains are resisted by compressive stresses in the
reinforcing steel, whereas in prestressed concrete the prestressing steel is always
in tension and causes compressive strains in the concrete that add to the
shrinkage deformation. In addition, reinforced-concrete flexural members
normally are cracked, with many closely spaced minute cracks that tend to
relieve the effect of shrinkage stresses. The designer of prestressed-concrete
structures must give particular attention to the effects of shrinkage, creep, and
temperature variations. If these movements are restrained, forces of very high
magnitude can result, with the very real possibility of serious structural and
nonstructural damage. This subject is discussed in greater detail in Chapters 12
and 17.

The drying shrinkage of concrete is known to result from loss of moisture.
It also has been shown that concrete will expand if, after having dried or partially
dried, it is subjected to very high humidity, or if it is submerged in water.
Shrinkage is known to be affected by the following variables:

A. Composition of the cement.

Physical properties of the aggregate.

Method and duration of curing.

Relative humidity of the service environment.
Volume to surface ratio/average thickness of the member.
Water content (related to slump).
Admixtures.

Slump of the plastic concrete.

Relative amount of fine aggregate.

Cement content.

Air content.

ARErEZQEEUO®

A considerable amount of data is available in the literature concerning the
effect of each of these variables. The discussion that follows is of a general
nature but is considered sufficiently accurate for most design purposes, as the
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designer of prestressed concrete often can control shrinkage to some degree
through careful consideration of the materials and methods specified for each
project. The effects of the above variables can be summarized as follows, with
items H, I, J, and K being included in the discussion of items A through G:

A. Cement. High early strength portland cement (type III) normally would
be expected to have a shrinkage 10 percent higher than that of normal portland
cement (type I) or modified portland cement (type II) (Troxell, Davis, and Kelley
1956). In addition, a cement exhibiting a large amount of shrinkage may have
a total shrinkage that is 100 percent greater than that of a cement which, because
of its chemical composition, exhibits a small amount of shrinkage. This is an
extreme range, however, and it may be beneficial to investigate the cements
available in any locality, in order to determine if any of the normally used
cements have exceptionally high or low shrinkage characteristics. There is some
evidence that the use of a high early strength cement of good quality may result
in a concrete that exhibits somewhat lower total volume changes (creep and
shrinkage combined) in prestressed concrete than would be obtained with normal
cement (type I) (Troxell, Davis, and Kelley 1956; Hanson 1964).

B. Aggregates. The physical properties of the larger aggregate particles have
a considerable influence on the shrinkage of concrete because the concrete
aggregate reinforces the cement paste and resists its contraction. Aggregates
with higher elastic moduli are stiffer and hence restrict the contraction of the
paste to a greater degree than those with lower elastic moduli. Aggregates that
have a low volume change in themselves, due to drying, generally lower
concrete shrinkage. Concretes containing aggregates of quartz, limestone,
dolomite, granite, or feldspar are generally low in shrinkage, whereas those
containing standstone, slate, trap rock, or basalt may be relatively high in
shrinkage. Therefore, if aggregates of the latter type, or gravels containing a
large portion of such minerals, are used, an allowance should be made for a
relatively high shrinkage value. Concretes made with soft, porous sandstone
may shrink 50 percent more than concretes made with hard dense aggregates
(Troxell, Davis, and Kelley 1956).

Aggregate size also has a marked effect on the amount of concrete shrinkage,
due to the greater restraint on the shrinkage of the mortar by larger particles.
In addition, increasing the maximum aggregate size results in a reduction of the
amount of water needed to obtain a given slump.

Lightweight concrete aggregates manufactured by expanding clay or shale
have been used to a significant extent in prestressed-concrete structures. High-
quality expanded shale or clay aggregates that are not crushed after burning,
and hence are coated and less absorbent than crushed materials, have been
reported to have drying shrinkage characteristics that are approximately of the
same magnitude and rate as those found with normal aggregates (HHFA 1949).
Other research has indicated that lightweight aggregates may have shrinkages
as much as 50 percent greater than those of normal aggregates (HHFA 1949).
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When the use of lightweight aggregates is contemplated, the designer should
investigate the shrinkage characteristics of the actual concrete mixture proposed
for use.

C. Curing. There is little if any concrete shrinkage during curing, if the
concrete is kept moist and the loss of moisture is prevented. Some investigators
report that ultimate shrinkage is unaffected by an increase in the duration of
curing time (Carlson 1938), but others report a reduction in shrinkage with
longer curing periods (ACI 209 1982). There is evidence that curing concrete
at an elevated temperature (atmospheric pressure steam curing) will result in a
reduction in shrinkage of as much as 30 percent (Klieger 1960; ACI 517 1969).
The acceleration in curing that is obtained from steam curing apparently leads
to a more complete hydration of the cement; hence, less free water remains
available for evaporation, and shrinkage is reduced. Atmospheric pressure steam
curing has resulted in shrinkage reductions of 10 to 30 percent for type I cement
and 25 to 40 percent for type III cement, when compared to specimens that
were moist-cured for 6 days (Hanson 1964).

D. Humidity. The relative humidity during service has a marked effect on
shrinkage, with lower humidities resulting in greater shrinkages. Relationships
for estimating concrete shrinkage as a function of relative humidity were
proposed by Branson and Christianson (1971), and were incorporated in the
report of ACI 209 (ACI 209 1982). Variations in temperature and humidity
during service result in higher shrinkage (and creep) than is obtained under
constant conditions; so estimates of shrinkage made in laboratory tests may be
low (Fintel and Khan 1969).

E. Volume-to-Surface Ratio or Average Thickness of Member. The size of
the member affects the amount and rate of shrinkage. Because shrinkage is
caused by evaporation of moisture from the surface, members that have low
volume-to-surface ratios or small average thicknesses will be expected to shrink
more, as well as more rapidly, than members having high volume-to-surface
ratios or greater average thickness.

F. Water Content. For many years the amount of water in a concrete mixture
has been considered a very important factor, if not the single most important
factor, affecting the shrinkage of concrete. The shrinkage of concrete made with
a particular aggregate has been reported to vary almost directly with the unit
water content of concrete (Bureau of Reclamation 1966). Recent research has
shown that this is not correct, and that the reduction of water in a concrete
mixture through the introduction of a water-reducing admixture does not neces-
sarily result in a reduction of the concrete shrinkage. It still is considered impor-
tant to restrict the amount of water used in concrete, whether prestressed or not,
to the minimum required for the consistency needed for proper placing and
compaction. It is recognized that most of the properties considered desirable in
concrete are improved by reducing the water content in a concrete mixture. The
water required to obtain the necessary plasticity in a concrete mixture is a
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function, among other things, of the amount of mortar (cement and sand) in the
mixture, and for this reason it is desirable to keep the quantity of mortar as low
as possible. Using the maximum size of coarse aggregate available is one way
of reducing the mortar content of concrete.

G. Admixtures. Admixtures may increase, decrease, or have practically no
effect on the amount of concrete shrinkage. The more commonly used admix-
tures in prestressed work are of the water-reducing and the water-reducing and
retarding types (classified in ASTM C 494 as types A and D, respectively).
Admixtures of these types can be further classified according to their general
chemical composition and, as such, are categorized as lignosulfonates, organic
acids, or polymers. Unpublished test data indicate that the lignosulfonates tend
to increase shrinkage (from 5 to 50 percent) when compared with the control
concrete (a concrete without admixture but having the same slump). In the same
tests, organic acid types of admixtures showed shrinkages from 89 to 117 percent
of the control concrete, and the polymer-type admixtures produced shrinkages
of from 98 to 112 percent of the control concrete.

3-12 Estimating Shrinkage

The best method of estimating the amount of concrete shrinkage, which should
be used in any structural design, is to use shrinkage tests. Established precasting
plants and firms engaged in supplying ready mixed concrete, cement, or aggre-
gates should have shrinkage test results available for typical concrete mixtures
obtainable in the localities they serve. If such data are not available, designers
must either make tests or use their own judgment in estimating the unrestrained
shrinkage of concrete for particular conditions. A conservative estimate is
recommended if tests are not made.

Long-term shrinkage can be estimated from short-term tests using relation-
ships developed by Brooks and Neville (1975). The relationships for predicting
the shrinkage strain at the age of one year, €355, based upon the shrinkage
measured at 28 days, ¢,,5, for moist-cured concrete are:

For moist-cured concrete:

€5365 — 347 + 1.086528 (3'16)
or, for values of ¢, less than 100 X 107:
€5365 = 526058 (3-17)

For steam-cured concrete:
€5365 — 243 + 1‘516.?28 (3-18)
or, for values of ¢,,g less than 100 x 107:

€s365 — 275?'2587 (3-19)
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The ultimate shrinkage, ¢,,, can be estimated from the shrinkage at the age of
one year from:
€5365(1.06€,365 — 192)

= 320
Esu 1.085¢, 565 — 265 (3-20)

In egs. 3-16 through 3-20 the shrinkages are expressed in millionth inches per
in. (10~%in. /in.).

In the absence of experimental data, Branson and Christianson suggest using
ultimate shrinkage strains of 800 and 730 millionths inches per inch for moist-
cured and steam-cured concrete at relative humidity of 40 percent, respectively
(Branson and Christianson 1971).

A relationship for concrete shrinkage at a time of ¢ days after drying
commences, ¢, as a ratio of the eventual (ultimate) concrete shrinkage, e, is
contained in the report of Subcommittee II of ACI Committee 209:

€ _ _1°
esu f+ta

(3-21)

in which « and f are parameters best determined experimentally for a particular
concrete, and ¢ is the time in days after drying has commenced. Values of o
and f and the ultimate drying shrinkage strain, ¢,,, reported by Subcommittee
IT are given in Table 3-3. If not determined experimentally, the value of o can
be taken as unity for both moist- and steam-cured concrete. The value of f can
be assumed to be 35 for concrete that has been moist-cured for seven days or
more. For concrete steam-cured for 1 to 3 days before drying commences, the
value of fcan be taken as 55. The ultimate shrinkage of concrete is reported to
vary between 415 X 107%and 1070 x 107°in. /in., and an intermediate value
of 780 x 107° is recommended for use in the absence of experimental data for
a specific concrete.

The shrinkages of moist-cured and steam-cured concrete as a function of
time, as predicted by eq. 3-21, are shown plotted in Figs. 3-6 and 3-7, respec-
tively. The parameter o was taken to be equal to one, and the parameter f was
taken to be 35 and 55 in Figs. 3-6 and 3-7, respectively.

TABLE 3-3 Values of concrete shrinkage coefficients for use with eq. 3-21 (after ACI
Committee 209 1982).

Low Average High
Constant value value value Comment
o 0.90 1.00 1.10
f 20.00 35.00 130.00 After seven days of moist curing
f 55.00 After one to three days of steam

curing
415 780 1070

m
=
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Fig. 3-6. Shrinkage of concrete after being moist-cured for seven days as predicted by
eq. 3-21, using unity and 35 for the parameters « and f, respectively.

The Subcommittee II report provides guidance for adjusting the estimated
ultimate shrinkage of concrete for several factors. One of these is to account
for moist-curing periods other than seven days. Values of the curing period
correction coefficient, v,,,, are given in Table 3-4 and plotted in Fig. 3-8. It
should be noted that Fig. 3-8 consists of the data from Table 3-4 connected by
straight lines; Subcommittee II recommends the use of straight-line interpola-
tion between the values given in Table 3-4. The factor for adjusting the estimated
ultimate shrinkage for ambient humidities greater than 40 percent, v,,, is given
in Fig. 3-9. An adjustment of the estimated ultimate shrinkage for size of the
concrete member can be made either on the basis of the ratio of the volume to
surface area of the member, v,,,, or on the basis of the average thickness of the
member, v,,; values for these factors are given in Table 3-5 and Figs. 3-10 and
3-11.

Additional correction factors for concrete composition (i.e., slump of concrete
7ss» Tatio of fine aggregate to total aggregate content v, cement content .,
and air content vy,,) given in the Subcommittee II report are intended for use
only with the average value of ultimate shrinkage (780 X 10~%in. /in.). These
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Fig. 3-7. Shrinkage of concrete after one to three days of steam curing as predicted by
eq. 3-21, using unity and 55 for the parameters « and f, respectively.

coefficients, presented herein in Figs. 3-12 through 3-15, should not be used
when shrinkage data have been determined experimentally for a specific concrete
in accordance with ASTM C 157, ‘‘Standard Test Method for Length Change
of Hardened Cement Mortar and Concrete.’’

TABLE 3-4 Concrete shrinkage correction
coefficients for moist curing periods less
than and more than seven days (after ACI
Committee 209 1982).

No. of days of Shrinkage factor
moist curing Yeps
1 1.20
3 1.10
7 1.00
14 0.93
28 0.86

90 0.75
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Fig. 3-8. Variation of shrinkage coefficient v, for moist curing period as a function of
the curing period in days.
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Fig. 3-9. Variation of shrinkage coefficient v, as a function of relative humidity.
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TABLE 3-5 Shrinkage correction factors v,
for average thickness of members from 2
through 5 in. (after ACl Committee 209

1982).
Average thickness Shrinkage factor
(in.) Yhs
2 1.35
3 1.25
4 1.17
5 1.08

The correction factors provided in the ACI 209 Committee report are used
by multiplying the product of the several factors with the average value of the
ultimate shrinkage to obtain the adjusted estimated value. It must be emphasized
that only one of the two correction factors for member size—that is, the one for
the average thickness or the one for volume to surface area should be used. This
is illustrated in the examples given on the next page.

1.1
\(-—’szs =12 e_o.IZSX
0.9 \
\\
=2 0.7 AN

N

0.5 N
N

0.3

0] 2 4 6 8 10

Volume —Surface Ratio, %, in.

Fig. 3-10. Variation of shrinkage coefficient v, as a function of the volume to surface
ratio.
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Fig. 3-11. Variation of shrinkage coefficient vy, as a function of average thickness.

ILLUSTRATIVE PROBLEM 3-2  Estimate the one-year and ultimate shrinkages
of a moist-cured concrete if the shrinkage at 28 days is 300 millionths in. /in.
and the concrete is stored at a constant humidity.

SOLUTION: From eq. 3-16:

€s36s = 347 + 1.08 x 300 = 671 millionths in. /in.

1.4
1.2 //
?l? &/
= 0.89 + 0.041s
1.0 // Vss
0.8
0 2 4 6 8 10
Slump, s, in.

Fig. 3-12. Variation of shrinkage coefficient vy, as a function of concrete slump.
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Fig. 3-13. Variation of shrinkage coefficient v, as a function of percentage of fine
aggregate in total aggregate by weight.

and from eq. 3-20:

_ 671(1.06 x 671 — 192)
s« = 71085 x 671 — 265

= 752 millionths in. /in.

Note that in using eq. 3-17 rather than eq. 3-16 (even though the shrinkage at
28 days is greater than 100 X 107°), the one-year shrinkage is:

€365 = 25 X 300°* = 677 millionths in. /in.

ILLUSTRATIVE PROBLEM 3-3 Estimate the ultimate shrinkage for an
unrestrained cast-in-place concrete slab using the procedure recommended by
ACI 209 and summarized in Table 3-3 and Figs. 3-8 through 3-15, assuming
the following:

Concrete is moist-cured for seven days.

Ambient relative humidity in service is 50 percent.
Average thickness of the slab is 6 in.

Concrete slump is 5 in.

Fine aggregate content is 60 percent of the total aggregate.
Cement content is 650 pcy.

Air content is 2 percent.

Nouvs LN
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Fig. 3-14. Variation of shrinkage coefficient vy, as a function of cement content of
the concrete.

The computations are summarized in the Table 3-6. The computation for
ultimate shrinkage is:

€, = 780 X 0.96 = 749 millionths in. /in.

1.2
1.1
3
& /- Yos = 0.95 + 0.008a, percent
0.9
0 2 4 6 8 10

Air Content, «, percent

Fig. 3-15. Variation of shrinkage coefficient v, as a function of air content of the
concrete. :
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TABLE 3-6 Computations for I.P. 3-3.

Item Shrinkage factor
Yeps 1.00
Vs 0.90
Yhs 1.00
Vs 1.10
Yys 1.02
Yees 0.98
Yas 0.97
Product of factors 0.96

3-13 Creep

Creep of concrete is defined as the time-dependent strain that takes place in
concrete subjected to constant stress. Under laboratory conditions, creep tests
are made with all conditions of the environment, such as temperature and
humidity in which the test specimens are stored, being kept as constant as
possible. Two types of creep are recognized: basic creep and drying creep.
Basic creep is not dependent upon the loss of moisture from the concrete and
will occur with concrete protected from drying; however, drying creep, like
drying shrinkage, is dependent upon the loss of moisture from the concrete to
its environment. Unlike shrinkage, creep is affected by stress in the concrete as
well as the maturity of the concrete. Maturity refers to the degree of hydration
of the cement in the concrete and is a function of time and temperature history
of the concrete; as an approximation, it often is taken as the age of the concrete.
For a discussion of maturity as it relates to concrete technology, see ‘‘Standard
Practice for Curing Concrete’’ (ACI 308-81). In normal structural engineering
applications, one does not distinguish between basic and drying creep; and creep
normally is considered to vary directly with the applied stress. The term specific
creep is also found in the literature, where specific creep is defined as creep per
unit of stress and has the units of inches per inch per pound per square inch.

When concrete is placed under stress, it undergoes an elastic or instantaneous
deformation. If the stress is maintained, the deformation increases with the
passage of time. If the load is removed after the passage of a period of time,
as instantaneous recovery of strain occurs, immediately after which a time-
dependent recovery of strain occurs. A permanent strain deformation will
remain, however, after the removal of the load and after the creep recovery has
reached its maximum value. This is illustrated in Fig. 3-16. In normal
engineering practice, creep recovery, because it is relatively small, is ignored
in evaluating the effects of creep strain remaining after the load has been
removed.

Relaxation of concrete is defined as the loss of stress in concrete that is
subjected to constant strain. It is discussed in Sec. 3-15.
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Fig. 3-16. Deformation of concrete as a function of time, illustrating instantaneous
deformation, creep deformation, instantaneous recovery, creep recovery,
and permanent deformation.

Prestressed concrete normally is not subjected to constant stress or to constant
strain. It is subjected to time-dependent changes in stress and strain due to
variations in external loads, together with changes in the prestressing forces
that result from relaxation of prestressing steel and the shrinkage and creep of
the concrete. However, for purposes of computing the loss of prestress and
other computations, the loss due to the plasticity of concrete is more commonly
based upon creep than on relaxation data for the concrete.

Determination of the creep characteristics of concrete to be used in the design
of a concrete structure is best done by performing tests on the specific concrete
to be used in the project under conditions that approximate the service condi-
tions to which the actual structure will be exposed. (Neville and Liska 1973).

Progressive producers of prestressed concrete products should have test data
available on the concrete normally used in their products for the information
and guidance of engineers contemplating the use of those products. Unfortu-
nately, specific test data rarely are available from suppliers of concrete and
concrete products; so engineers must have methods for estimating creep at
various concrete ages and under various conditions of service.

3-14 Estimating Creep

Creep at the age of one year can be estimated from the amount determined
experimentally at the age of 28 days (Brooks and Neville 1975). The relation-
ship for this calculation proposed by Brooks and Neville, in terms of specific
creep in order to facilitate the computation, is:

€oenes = 0.127 + 1.70¢,.55 (3-22)
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in which € 365 and €., are the values of specific creep at the ages of one year
and 28 days, respectively. Ultimate specific creep, ¢,.,, can be estimated from
known or estimated values of specific creep at one year by one of the following
equations:

1. 15t€sc365

- 323
Cseu = 0396 + ¢ (3-23)

0.6
_ 1 45[ €5c365

€seu = 0.107 + t0'6 (3'24)

ILLUSTRATIVE PROBLEM 3-4 A concrete having an elastic modulus of 4 x 10°
psi is subjected to a constant stress of 1000 psi at a constant temperature and
humidity. The creep strain measured after 28 days of loading was found to be
235 x 10 %in. /in. Using egs. 3-22 and 3-34, estimate the ultimate creep strain
and that at the age of one year.

SOLUTION: The specific creep at 28 days is:

235 X 1076 . . .
€e2s = — oo = 0.235 millionths in. /in. /psi
and at 365 days, the specific creep is:

€sc36s = 0.127 + 1.70 x 0.235 = 0.527 millionths in. /in. /psi

Assuming ultimate specific creep is obtained at 1500 days:

0.6
1.45(1500
€scu = ( ) o€ = 0.763 millionths in. /in. /psi

©0.107 + (1500)

Therefore, the creep strains at one year and at 1500 days (ultimate) are estimated
to be as follows:

€365 = 1000€,.36s = 527 X 1078 in. /in. /psi
and:

€q = 1000€,c1500 = 763 X 107 % in. /in.

Subcommittee II of ACI Committee 209 has proposed methods to be used in
estimating creep for the cases where specific test data are not available. The
time-dependent relationship proposed by Subcommittee II is:

Creep strain at time ¢

v ]
Ultimate creep strain v, d + % (3-25)



CONCRETE FOR PRESTRESSING | 75

TABLE 3-7 Concrete creep coefficients for use in eq. 3-25
(after ACl Committee 209 1982).

Low Average High
Constant value value value
¥ 0.40 0.60 0.80
d 6 10 30
v, 1.30 2.35 4.15

in which ¢ is the time in days, measured from the time stress is applied (age at
loading), ¥ and d are parameters that can be determined experimentally for each
particular concrete, and v, and v, are the ultimate creep ratio and the creep ratio
at time ¢, respectively. The ranges of the parameters ¥, d, and v, reported by

Subcommittee II, as well as their average values, are given in Table 3-7.

Using the average recommended values for ¥ and d, 0.60 and 10, respec-
tively, one can solve eq. 3-25 and plot the values of the ratio of creep at time
t to the ultimate creep as a function of time. The results of such a calculation
are shown in Fig. 3-17. As in the case of shrinkage, Subcommittee II recom-

1.0
——(""—_’d
L ~{Time in years
0.8 / ' T |
=S //ﬂme in months
a /
o
o /
Q 0.6 7
2 1L/
°
o
5 0all |
O 0.4 m—
©
° ~Time in days
o
0.2
/
0.0
0 3 6 9 12 15 18 21 24 27 30
Time
Fig. 3-17. Creep strain of concrete as a function of time using eq. 3-25, with the

parameters y and d being taken as 0.60 and 10, respectively.
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mends the use of the average values of the parameters given in Table 3-7 in the
absence of data for the specific concrete to be used. In addition, correction
factors are provided for several different items that influence the amount of
creep, as follows:

1. Loading age of the concrete, v,,.. Different recommendations are given
for moist-cured and steam-cured concrete in Figs. 3-18 and 3-19, respec-
tively. (Table 3-8 is to be used with Figs. 3-18 and 3-19.)

2. Ambient humidity, v,.. See Fig. 3-20.

Member size, 7, OF Y. Figs. 3-21 and 3-22 are for use with the volume

to surface ratio and average thickness methods, respectively. Table 3-9

contains values for v, for average thicknesses from 2 through 5 inches.

Concrete slump, v,.. See Fig. 3-23.

Fine aggregate to total aggregate ratio, v,.. See Fig. 3-24.

Air content, v,.. See Fig. 3-25.

(98]

s

The correction factors are to be used in adjusting the average value of the
ultimate creep ratio in the same way as for shrinkage; that is, the product of the
several factors is multiplied by the average value of the ultimate creep ratio
(2.35) to obtain the adjusted ultimate creep ratio. It should be noted that the
engineer may select either member size correction factor (average thickness or
volume—surface ratio), but only one of them should be used. As in the case of
the computations for shrinkage, the correction factors for concrete slump, fine
aggregate ratio, and air content should be used only when the average value of
the ultimate creep ratio is being used to estimate the ultimate creep; if experi-
mental data are being used as a basis for the computation, only the factors for
loading age, humidity during service, and member size should be used.

TABLE 3-8 Table for ordinates of Figs. 3-18 and 3-19 (after
ACI Committee 209 1982).

" Age at loading 1.13
days 1 25 t,ac—-OJ‘IS tlacfoA094

1 N/A 1.13

2 N/A 1.059

3 N/A 1.019

4 N/A 0.992

5 N/A 0.971

6 N/A 0.955

7 0.994 0.941

10 0.953 0.910

20 0.878 0.853

28 0.844 0.826

60 0.771 0.769

90 0.735 0.740

100 0.726 0.733
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Fig. 3-18. Variation of creep coefficient v, for concrete moist-cured for seven days,
as a function of time in days.

ILLUSTRATIVE PROBLEM 3-5 Using the data of I.P. 3-3 and assuming the
concrete to be 10 days old at the time of loading, compute the estimated ultimate
shrinkage strain and ultimate creep ratio, using the average parameters given in
Tables 3-3 and 3-7.

SOLUTION: The computations for the creep factors are summarized in Table
3-10. Using the average values for ultimate shrinkage strain and ultimate creep
ratio recommended by Subcommittee II of ACI Committee 209, the computa-
tions for the ultimate creep ratio and ultimate shrinkage strain are:

Ultimate creep ratio = 2.35 X 1.06 = 2.49
Ultimate shrinkage strain = 7.80 X 0.96 = 740 millionths in. /in.

1.2
1.1 \~\
10 \_‘\ For one to ten days
K| P
> e
0.9 ==
\l‘
0.8 S~
0.7 F_or one to 100 days—;i T
0 1 2 3 4 5 6 7 8 9 10
0o 10 20 30 40 50 60 70 80 90 100

Age at Loading, days, after one
to three days of steam curing

Fig. 3-19. Variation of creep coefficient v, for concrete steam-cured for one to three
days, as a function of time in days.



78 | MODERN PRESTRESSED CONCRETE

1.00
0.90 AN
N T = 1.27 — 0.0067\
< 0.80

N
0.70 <

0. 6040 60 80 100

Relative Humidity, percent

Fig. 3-20. Variation of creep coefficient v,. as a function of relative humidity.

The amount of creep is significantly affected by the age of the concrete at the
time of loading. Hence, this factor requires careful consideration when one is
computing the long-term deflections and stresses in some forms of prestressed
concrete construction, as well as when writing specifications for their construc-
tion (see Secs. 7-2, 7-3, 7-4, and 10-9). This is illustrated in Fig. 3-26, in which
concrete strains, due to both elastic deformation and creep, are plotted as a
function of time (Mathivat 1979). In the figure, the strains shown are relative
to the elastic deformation of the concrete when stressed at the age of 28 days.
The curve that slopes downward and to the right indicates the elastic deforma-

1.1
1-0 \\
0.9 0547

\<—ym = 067 (1 + 1137°°%)
0.8 \

N

0.7 ——

‘YVSC

0.6
0 1 2 3 4 5 6 7 8 9 10

Volume - Surface Ratio :— in.

Fig. 3-21. Variation of creep coefficient Yvsc as a function of volume to surface ratio.
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Fig. 3-22. Variation of creep coefficient v,. as a function of average thickness.
TABLE 3-9 Creep correction factors v, for
average thickness of members from 2 through 5 in.
(after ACI Committee 209 1982).
Average thickness Creep factor
(|n) Yhe
2 1.30
3 1.17
4 1.11
5 1.04
1.4 7
//
1.2 //
A'/
1.0 “ 7. = 0.82 + 0.067
// Ysc §
>
0.8
0 2 4 6 8 10
Slump, s, in.

Fig. 3-23. Variation of creep coefficient v, as a function of concrete slump.
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Fig. 3-24. Variation of creep coefficient vy, as a function of fine aggregate percentage
of total aggregate by weight.
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Fig. 3-25. Variation of creep coefficient v, as a function of air content of the concrete.

TABLE 3-10 Computations for I.P. 3-5.

Creep
Item factor
Viac 0.95
Tae 0.94
Yhe 1.00
Yse 1.16
Yye 1.02
Yeae 1.00

Product 1.06




CONCRETE FOR PRESTRESSING | 81

4.0 ——
I Ultimate relative
¥ total strain —|
b“'b/ otal strain ~=1 30
3.5 7
Concrete age at loading / /
2 %' /] //
3 30 BN L 2.99
[+0] 7
~
: /
§= 2.5 7 2.50
5| d
E $ / 2.1
El= 20 %
S| E 2 l| / — 1.96
o O
@ / W _1.54
o o / vd _—1.36
s /
€ =g /
2 1.0 HES
£ =8| 9% N =
=l 9 o o o ©
o o 1S 2 2
0.5 Locus of elastic deformations
for various ages at loading
0.0
037142856 3 6 1 2 3 510
N VAN )\ J
Y Y Y
days months years

Instantaneous and Creep Strains for Concrete Loaded at Different Ages

Fig. 3-26. Instantaneous and long-term concrete strains for different concrete ages at
the time of loading (after Mathivat 1979).

tion at different ages of loading. The curves that originate at the curve indicating
elastic deformation and slope upward and to the right illustrate the strain due
to creep. The numbers on the creep strain curves indicate the age of the concrete
at the time of loading, and the numbers at the ends of the creep strain curves
indicate the ultimate total strain (elastic plus creep strain) relative to the elastic
strain for loading at the age of 28 days.
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3-15 Relaxation of Concrete

It has been explained that when concrete is placed under stress and held at
constant strain, the stress in the concrete will decrease with the passage of time.
This phenomenon, known as relaxation, can have beneficial results in some
cases and adverse effects in others.

If a concrete pavement slab supported on a frictionless subgrade, for example,
were to be prestressed by the use of screw jacks reacting against the ends of the
slab and immovable abutments, as shown in Fig. 3-27, the slab would be
subjected to constant strain if the jack screws remained stationary after their
installation and initial stressing (jacking) of the slab. As a result of the relax-
ation of the concrete, the stress in the slab would decrease with the passage of
time, as illustrated in Fig. 3-28, and would eventually approach a stress of
approximately one-third of the initial stress (Guyon 1953). If the prestress of
the slab were being relied upon to control flexural tensile stresses in the slab,
one would have to apply three times the amount of prestress needed at the time
of prestressing to have sufficient stress remaining in the slab after the passage
of one or two years.

In other situations, the reduction of the stress in the concrete of a reinforced
or prestressed member due to relaxation can be beneficial. It is important to
understand this property, and the interested reader will find additional infor-
mation on this subject in Chapter 5 of the ACI Committee 209 report.

3-16 Accelerating Concrete Curing

In the manufacture of structural concrete products, it is often desirable or neces-
sary to accelerate the early hydration of the cement in the products so that a
rapid reuse can be made of the mnufacturing facilities. In the case of precast
reinforced concrete, it may be necessary to obtain a concrete strength of 1000
to 2000 psi at the age of 24 hours or less so that the products can be safely
(without cracking) stripped and moved to storage for further curing, and the
forms or molds used to make the products can be reused. Concrete strengths
from 3000 to 4500 psi are required in the manufacture of pretensioned concrete

Immovable
Immovable Concrete pavement slab abutment
\yabutment /_ \y §
7 \
4 ARZANSZANS7ANC ANS/ANV/ANCAAN g
. Frictionless subgrade
Screw jack Screw jack

Fig. 3-27. Concrete pavement slab prestressed with screw jacks.
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Fig. 3-28. Relaxation of concrete stress as a function of time after concrete is placed
under constant strain.

before the pretensioning tendons can be released, the products removed from
the prestressing bench, and the facilities reused. The forms for structural
concrete and pretensioning benches represent significant capital investments that
are tied up while the concrete gains the strength required to complete the
production cycle and permit reuse of the facilities; so it is apparent that a nominal
expenditure can be justified for accelerating the hydration of the cement if the
time required for the concrete to attain the adequate strength can be sufficiently
reduced.

Low-pressure or atmospheric-pressure steam curing, which is referred to
simply as steam curing in this book, often has been employed to accelerate the
curing of concrete. Well-executed steam curing can result in 24-hour strengths
equal to or greater than 60 percent of the 28-day strength of concrete specimens
cured under standard conditions. This method consists of confining the concrete
products in hot, nearly saturated air at atmospheric pressure by isolating them
from the normal atmosphere in an enclosure into which steam is injected at low
pressure.

A process that employs steam at elevated pressure, which is referred to as
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high-pressure steam curing (or autoclaving), is more effective than low-pressure
steam curing and has been used in concrete-block-manufacturing plants. High-
pressure steam curing requires that the concrete products be placed in a steel
pressure vessel in which the pressure can be increased above atmospheric.
Consequently, this method is not considered to be feasible for large, structural
concrete products, particularly those that are made on pretensioning benches.

Hot water and hot oil are used in some applications, in which case the heated
fluid is pumped through longitudinal cavities in the forms or through pipes in
or on the casting beds, thus heating the concrete products by radiant heat. This
method can give results similar to those obtained by steaming, if the products
are kept from drying during heating.

Electric blankets also are used, to provide external heat and to confine the
concrete in an insulated enclosure that prevents it from drying.

Chemical admixtures designed to accelerate the hydration of the cement in
concrete are available, but some of them contain chloride ions. Chloride ions,
except in small amounts, cannot be safely used in prestressed concrete because
of the danger of chloride-induced corrosion of the prestressing steel. Further-
more, admixtures that do not contain chloride ions generally do not accelerate
the hydration of normal portland cement sufficiently to achieve the strengths
required for stressing at an early age. Therefore, in the manufacture of
prestressed concrete, the concrete frequently is made with high-early-strength
cement, an admixture that accelerates the set, and it is cured with low-pressure
steam or some other source of heat.

It is generally agreed that the optimum curing cycle used when heat is
employed to increase the early strength of concrete is influenced by the following
considerations (Troxell, Davis, and Kelley, 1956; ACI 517 1980; Pfeifer and
Marusin, 1981):

1. Delay period: After it is placed and vibrated, the concrete must be allowed
to attain its initial set before steam is applied.

2. Rate of increasing the concrete temperature: The temperature of the
concrete, and hence the temperature of the atmosphere surrounding it,
must be raised at a specific rate to a maximum temperature.

3. Duration of maintaining the maximum temperature: The maximum
temperature generally is maintained for a specific period of time.

4. Rate of cooling: The temperature of the concrete must be reduced slowly.

The normal North American procedure is to employ a delay period of two to
six hours, depending upon the type of cement being used. The longer delay
periods are used when slower-setting cements, retarding admixtures, and higher
maximum temperatures are used. Specifications for steam curing usually provide
for the temperature in the enclosure in which the concrete is located to be
increased at a rate less than 1°F per minute to a maximum temperature that
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does not exceed 165°F. In sophisticated plants the temperature of the concrete
itself is monitored during the heating process. The concrete temperature
frequently exceeds that of the surrounding atmosphere after a period of time,
because of the heat released from the hydration of the cement in the concrete
being cured. At a rate of 1°F per minute, the maximum concrete temperature
will be reached after one or two hours once steaming is commenced, depending
upon the starting temperature. The facilities used for steam curing in most
prestressing plants do not permit the temperature to be increased at a precise
rate; so, the temperature usually is raised in a few small increments over a
period of time. The maximum temperature is maintained between 140°F and
165°F for a period that varies from 10 to 20 hours. The products are then
allowed to cool more or less slowly, depending upon the practice at the partic-
ular plant. Exposing hot concrete products to cold air, particularly under windy
conditions, without a controlled cooling period can result in surface cracking
and, in extreme cases, complete fracturing of the concrete.

Tests should be performed to determine the optimum curing cycle for use
under specific conditions. Through trial and error, one can determine the delay
period, maximum temperature, and time required at maximum temperature that
will yield optimum results. The optimum cycle will give the strength required
at an acceptable time period and cost.

3-17 Cold Weather Concrete

Frequently, in fabricating precast, prestressed concrete members for govern-
mental agencies during winter months, manufacturers are required to conform
to standard specifications originally written for job-site winter concrete. The
specifications often stipulate that concrete cannot be placed when the tempera-
ture of the ambient air reaches a particular minimum value, and that the aggre-
gates and mixing water must be heated to temperature that will keep the
temperature of the plastic concrete from falling below a specific minimum value.

These specifications may be necessary for job-site cast concrete that will be
placed and allowed to cure without having the surrounding air artificially heated,
but imposing them on concrete used in plant-produced products that are steam-
cured frequently has detrimental effects on the eventual concrete strength. There
is no question that the aggregates used in precasting plants should be kept suffi-
ciently warm to prevent ice or frost formation in the plastic concrete, and that
the plastic concrete should not be allowed to freeze. However, higher concrete
strengths are obtained for concrete mixed and placed at lower temperatures than
for concrete mixed and placed at higher temperatures—a phenomenon attributed
to the fact that cool plastic concrete mixtures require less water for workability
than do warmer concretes.

The use of very hot mixing water, if done improperly, can have a very serious
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detrimental effect on the strength of concrete, and, in particular, on the early
strength. If very hot water must be used as the mixing water, it should be added
to the aggregates before the cement is introduced to the concrete mixer.

3-18 Fire Endurance of Concrete Elements

One very important property of concrete and concrete structural elements is
their ability to resist the effects of heat generated by fire without serious loss of
strength or complete collapse. Concrete construction generally is considered to
be among the more fire-resistant types of construction. In the past, the fire
resistance of many types of prestressed concrete structural elements was deter-
mined by testing the elements, following standards and procedures contained
in ASTM E 119. Alternative methods for the determination of the fire resistance
of concrete structural elements, including prestressed concrete elements, are
given in the ‘‘Guide for Determining the Fire Endurance of Concrete Elements”’
(ACI 216R-81). The interested reader is referred to ACI 216R for further infor-
mation on the alternate methods.

3-19 Allowable Concrete Flexural Stresses

The two most significant design criteria for prestressed concrete in the United
States are the Standard Specifications for Highway Bridges, 14th Edition,
published by the American Association of State Highway and Transportation
Officials (AASHTO 1989), and the Building Code Requirements for Reinforced
Concrete (ACI 318 1989), published by the American Concrete Institute.

The concrete stresses permitted in the AASHTO specifications (Copyright
1989. The American Association of State Highway and Transportation Officials,
Washington, D.C. Used by permission) are:

9.15.2.1 Temporary Stresses before losses due to creep and shrinkage

Compression
Pretensioned members ............c.coiiiiiiiiiiiiiiii 0.60 f/;
Post-tensioned members ...........cccoeviiiiiiiiiiiiiiii, 0.55 f;
Tension
Precompressed tensile zone..............ccoeviviiiiiiininininnn.. No temporary

allowable stresses are specified. See Article 9.15.2.2 for allowable stresses
after losses.
Other areas
In tension areas with

no bonded reinforcement .................cooieienennen.. 200 psi or 3 «/f_;,
Where the calculated tensile stress exceeds this value, bonded reinforce-
ment shall be provided to resist the total tension force in the concrete
computed on the assumption of an uncracked section.
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The maximum tensile stress shall not exceed

9.15.2.2 Stresses at service load after losses have occurred

(60) 1) 1) (0] | PO PO TP P TP PPN 0.40 f,
Tension in the precompressed tensile zone

(a) For members with bonded reinforcement® .......................... 6 \/f_é

For severe corrosive exposure conditions, such as coastal areas 3 «/f—;

(b) For members without bonded reinforcement ................c...coeeuenens 0

Tension in other areas is limited by the allowable temporary stresses
specified in Article 9.15.2.1.

*Includes bonded prestressed strands.

9.15.2.3 Cracking Stresses*
Modulus of rupture from tests or if not available,

For normal weight concrete ............cceeviiiiiiiiiiiiiiniiiniininn, 7.5 \/f.é

For sand-lightweight concrete ............cooveveiiiniiiinininnnn.n. 6.3 \/f_;

For all other lightweight concrete.............coooviiiiiviniiiinin.. 5.5 «/f_;
9.15.2.4 Anchorage and bearing stress:

Post-tensioned anchorage at service load 3000 psi

(but not to exceed 0.9 f).

*The total amount of prestressed and non-prestressed reinforcement shall be adequate to develop
an ultimate load in flexure at the critical section at least 1.2 times the cracking load calculated
on the basis of the modulus of rupture.

The concrete stresses permitted in ACI 318 are:

18.4 Permissible stresses in concrete—Flexural members
18.4.1 Stresses in concrete immediately after prestress transfer (before time-
dependent prestress losses) shall not exceed the following:

(a) Extreme fiber stress in compression 0.60 f;

(b) Extreme fiber stress in tension except as permitted in (c) 3 \/f_;,
(c) Extreme fiber stress in tension at ends of simply supported
members 6 \/E

Where computed tensile stresses exceed these values, bonded auxiliary
reinforcement (non-prestressed or prestressed) shall be provided in the tensile
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zone to resist the total tensile force in concrete computed with the assumption
of an uncracked section.

18.4.2 Stresses in concrete at service loads (after allowance for all prestress
losses) shall not exceed the following:

(a) Extreme fiber stress in compression 0.45f,
(b) Extreme fiber stress in tension in precompressed tensile
zone 6 «/f_g

(c) Extreme fiber stress in tension in precompressed tensile zone of members
(except two-way slab systems) where analysis based on transformed cracked
sections and on bilinear moment-deflection relationships show that immediate
and long-time deflection comply with requirements of Section 9.5.4, and
where cover requirements comply with Section 7.7.3.2. 12 «/fg
18.4.3 Permissible stresses in concrete of Section 18.4.1 and 18.4.2 may be
exceeded if shown by test or analysis that performance will not be impaired.

In the above, f, is defined as the specified compressive strength of the concrete
in psi and f; is the compressive strength of the concrete at the time of initial
prestress.

The reader’s attention is called to the Commentary on Building Code
Requirements for Reinforced Concrete (ACI 318-89), Secs. 18.4.2(b) and
18.4.2(c), in which it is pointed out that the concrete covers specified in Secs.
7.7.3.1 and 7.7.3.2 are closely related to the allowable tensile stresses permitted
by ACI 318.

Comparison of these allowable stresses will show that the requirements of
AASHTO are more conservative than those of ACI 318. This is understandable
and reasonable because bridge structures are exposed to more severe conditions
of service (i.e., fatigue, temporary overloads, etc.) than are buildings.
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PROBLEMS

1. Prepare a plot showing the variations in concrete tensile strength and modulus
of rupture as predicted by eqgs. 3-2 and 3-3. Use the product of concrete
compressive strength and unit weight as the ordinate with values of the
compressive strength from 2000 psi to 10,000 psi and unit weights from 100
to 160 pcf. Use values of the tensile strength and modulus of rupture as the
abscissa.

SOLUTION: The computations required for the plot are shown in Table 3-11,
and the results are plotted in Fig. 3-29.

TABLE 3-11 Summary of computations for Problem 1.

wf! Jwr 0.33Vwr? 0.60Vwr . 0.70Vwr?

200,000 447 149 268 313

600,000 775 258 465 542
1,000,000 1000 333 600 700
1,400,000 1183 394 710 828

1,800,000 1342 447 805 939
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2. Prepare a plot of f,, versus E,, for values of the variable w (unit weight of

concrete) of 100, 120, 140, and 160 pcf. Use £, as the ordinate with values
from 2000 to 10,000 psi.

SOLUTION: The computations are summarized in Table 3-12 and plotted in Fig.
3-30.

1,800,000

Modulus of
Tensile Strengthj Rupture
1,400,000 |

1,000,000

wi
Product of Concrete Unit Weight (pcf)
and Compressive Strength (psi)

600,000

200,000 /

0 200 400 600 800 1000
Tensile Strength or Modulus of Rupture (psi}

Fig. 3-29. Plot of the results of Problem 1.

TABLE 3-12 Computations for Problem 2: Values of the elastic modulus in millions of
psi for unit weights of concrete from 100 to 160 pcf.

Unit Weight of Concrete (pcf)

fo 100 120 140 160
2,000 1.48 1.94 2.44 2.99
4,000 2.09 2.74 3.46 422
6,000 2.56 3.36 4.23 5.17
8,000 2.95 3.88 4.89 5.97

10,000 3.30 4.38 5.47 6.68
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Fig. 3-30. Plot of the results of Problem 2.

3. A piece of concrete 10 ft long is stressed in compression to 500 psi. The
initial (elastic) shortening is 0.020 in. After two years the total shortening
is 0.065 in. Determine the creep ratio at the age of two years.

SOLUTION:

. 0.065 — 0.020
Creep ratio = 0.020 = 2.25

4. A particular concrete is believed to have a creep ratio of 3.10. At the time
it is stressed, it undergoes a strain of 230 millionths inches per in. Determine
the estimated eventual total strain if the concrete is kept under constant stress
in a uniform environment.

SOLUTION:
Creep strain = 3.10 X 230 = 713 x 10~ in./in.
Total strain = 943 x 107° in. /in.

5. For the concrete in Problem 4, if the modulus of elasticity is 4000 ksi at the
time of stressing, determine the effective modulus that eventually will be
attained.

SOLUTION: Using eq. 3-9:

4000
E = - = 1
= T+310 ook

6. Determine the ratio of creep strain, at the age of five years, that one might
expect for a particular normal-weight concrete made with Type I cement, if
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TABLE 3-13 Summary of computations for Problem 6.

Age of concrete Relative Relative Relative
at loading Relative elastic elastic creep
(days) strength modulus deform. deform.
7 0.70 0.84 1.19 2.38
28 1.00 1.00 1.00 2.00
90 1.12 1.06 0.94 1.76
A
£3.57
3.54-
3.0+ 3.00
2.70
2.5
nES
ol ®
£l
i=|00
=N 2.0
2 ©
c
2o
O+
(]
ElE L
osle 1.5
5|
Q|8
1.19
L 1.00
1.0 0.94
0.5
| | | 5
o 7 28 3 5
Days Months Years

Time
Fig. 3-31. Plot of the results of Problem 6.
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TABLE 3-14 Summary of results for Problem 7.

Time (months) Stress remaining (psi)
1 160
3 132
6 119
3 100

the concrete were placed under constant stress at the ages of 7, 28, and 90
days. Prepare a plot of the results that is similar to Fig. 3-26, assuming that
the creep ratio for loading at the age of 28 days is 2.00.

soLUTION: The computations are made using eqs. 3-1 for strength and 3-5 for
elastic modulus and Fig. 3-18 for the effect of age at loading on creep strain.
The results of the computations are summarized in Table 3-13 and plotted in
Fig. 3-31. It should be noted that the relative total deformations are 3.57, 3.00,
and 2.70 for loading at the ages of 7, 28, and 90 days, respectively.

7. A concrete pavement for an airfield is to be prestressed by placing jacks at
the ends of the pavement. The jacks are to be supported by stiff, nonyielding
abutments at each end of the pavement. If the pavement is to be stressed
initially to a uniform prestress of 300 psi, and assuming there is no friction
between the slab and the subgrade (friction does exist in actual applications
of this type), determine the stress one would expect to remain in the pavement
after one, three, and six months, as well as at an infinite number of months.

SOLUTION: The jacks would cause the pavement to be placed in a condition of
constant strain. Hence, the stress in the pavement would decrease with the
passage of time because of relaxation of the concrete. From Fig. 3-28, one
would expect the results shown in Table 3-14.



4 | Basic Principles
for Flexural
Design

4-1 Introduction

The basic principles and mathematical relationships used in the design and
analysis of prestressed-concrete flexural members are not unique to this type of
construction. Virtually all of the fundamental relationships are based upon the
normal, basic assumptions of elastic design, which form the basis of the study
of the strength of materials. Although the form in which the relationships appear
in a discussion of prestressed concrete may be somewhat modified to facilitate
their application, the student of engineering should have little difficulty in
understanding these modified relationships.

Two major forms of design problems are encountered by the engineer engaged
in the design of prestressed concrete flexural members. Such problems frequently
are referred to as the review of a member or as the design of a member.

The review of a member consists of determination of the concrete flexural
stresses and deflections under various conditions of service load and prestressing
in order to confirm their compliance with the applicable design criteria. In
addition, the strength of the member in bending, shear, and bond must be deter-
mined to equal or exceed the minimum strength requirements of the design
criteria. To review a member as described here, the dimensions of the concrete

95
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section, the properties of the materials, the amount and eccentricity of the
prestressing steel, the amount of the nonprestressed reinforcement, and the
amount of the web reinforcement must be known.

The design of a member consists of selecting and proportioning a concrete
section in which the stresses in the concrete do not exceed the permissible values
under any combination of service loads and prestressing. Design also includes
determination of the amount and eccentricity of the prestressing force required
for the specific section. An important aspect of the design of a member under
service load conditions is calculation of deflection and confirmation that the
predicted deflections will not exceed the maximum values permitted by appli-
cable design criteria and are within limits deemed acceptable to the designer.
The design of a member must include a study of the flexural strength that the
section can develop under design load, and a determination of the amount of
nonprestressed flexural reinforcing that may be required. Additionally, a study
of the shear stresses must be made, and the amount of web reinforcing required
for adequate shear strength under design loads must be determined. Consider-
ation of tendon development lengths, both for flexural strength and, in the case
of pretensioned tendons, for transfer length, is included in the design of a
member. It must be emphasized that the design of a flexural member normally
is done by trial. The designer must assume a concrete section and compute the
prestressing force and eccentricity required to confine the concrete stresses
within the allowable limits under all conditions of service loads. In addition to
confirming compliance with service loading criteria, the designer must make a
complete strength analysis in order to confirm compliance with the strength
requirements of the applicable design criteria. In the design process, several
adjustments of the trial section normally are required before a satisfactory
solution is found.

This chapter is devoted to a consideration of fundamental principles pertaining
to determination of the concrete stresses due to prestressing, determination of
the prestressing force and eccentricity required for a specific distribution of
stresses due to prestressing, consideration of the pressure line in simple flexural
members loaded in the elastic range, and other topics related to flexural analysis
and design. The problems given in this chapter are confined to the review type.
The procedures used in preparing preliminary designs by trial are treated in Sec.
9-8.

The elastic analysis and design of prestressed flexural members can be done
rapidly and accurately only after the fundamental theorems and axioms have
been thoroughly mastered. Many of the operations discussed in this chapter can
be done more rapidly by the use of the simple expedients treated in Chapter 7.
These classical methods should be well understood, however, before one
attempts to use the expedients. The design and analysis of continuous prestressed
members, which are treated in Chapter 10, also require complete familiarity
with the principles presented in this chapter.
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4-2 Mathematical Relationships for Prestressing Stresses

Although prestressing forces sometimes are applied to a prismatic member
concentrically, it is far more common for them to be applied eccentrically, as
was explained in Sec. 1-2 and is illustrated in Fig. 4-1. The stresses in a
prismatic concrete section prestressed with an eccentric force are analyzed as
combined stresses, that is, the stresses due to an axial force combined with the
stresses due to a moment. The familiar expression for the combined stresses at
a section subject to an axial force and a moment is:

=—4— (4-1)

in which f is the fiber stress at a distance y from the centroidal axis, F is the
axial prestressing force, M is the moment acting on the section, and 4 and / are
the area and moment of inertia of the cross section, respectively.

Because the moment due to the prestressing is equal to the prestressing force
multiplied by the eccentricity of this force (i.e., M = Pe), and because the
quotient of the moment of inertia and the area of the cross section is equal to
the square of the radius of gyration of the cross section (i.e., r* = (I/A)), the
general eq. 4-1 be written:

f=§<1 J_re%) (4-2)

r

The sign convention used in the following discussion, as well as in the
remainder of this book, is based upon tensile stresses, forces, strains, and
elongations being positive; moments causing tensile stresses at the bottom fibers
being positive; curvatures and slopes of stress diagrams for positive bending
moments being positive; and incremental changes in values that are increases
(i.e., increases in stress, strain, etc.) being positive. The positive and negative
signs are included in the symbols for a parameter; concrete shrinkage at time ¢
(days), which is represented by ¢, is always negative, but a change in stress,

Tension

e ) ' | é
F -4—> C

Compression
(a) (b)

Fig. 4-1. (a) Freebody diagram of the end of a prism of concrete prestressed with an
eccentrically applied force. (b) Diagram of concrete stresses.
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such as Af,, could be positive or negative, depending upon whether it is an
increase or a decrease in the stress. Furthermore, the values of the ordinates,
¥, such as eccentricity e and the distances to the extreme fibers of a cross section,
are taken as positive when measured downward from the centroidal axis of the
cross section in the computation of fiber stresses. In special cases in this book,
the values of the ordinates, y, are measured from an arbitrarily selected refer-
ence point; the reader’s attention will be called to this difference when it is
applied to a particular computation. Using this sign convention, eq. 4-2 can be
rewritten for the top and bottom fibers of a beam as:

C )

f,=2<1 +er—y2> (4-3)
c

ﬁ,=;<1 +%> (4-4)

where f; and f;, are the stresses in the top and bottom fibers due to the prestressing
alone, respectively. As noted above, the positive and negative signs are included
in the notation used in eqs. 4-3 and 4-4 (i.e., C, the resultant compressive force
acting on the section under consideration, and y, are negative, and y, is positive,
as is e when it is below the centroidal axis).

These relationships are the same for the stresses resulting from the initial and
the final prestressing forces (see Sec. 1-2). In computing these stresses, one
would, of course, use the value of C for the initial prestressing force when
computing the initial stresses due to prestressing and the value of C for the final
prestressing force when computing the final stresses. Frequently, particularly
in preliminary design, the designer assumes a ratio between the final and the
initial prestressing forces for design purposes because the reduction of the
prestressing force (loss of initial prestress) cannot be estimated accurately until
the design is nearly complete (see Secs. 7-2 and 7-3). Therefore, if the designer
bases his or her computations on the final prestressing force and has assumed
that the total loss will be 15 percent of the initial force, for example, the stresses
resulting from the initial prestressing force can be determined by dividing the
final stresses by 0.85.

The experienced designer generally prefers to design with the final
prestressing force assumed to be from 75 to 90 percent of the initial force. A
comprehensive study of the losses of prestress cannot be made until the basic
design is finalized. If, when the loss of prestress study is made, it is found that
the loss will be greater than assumed, the initial prestressing force can be
increased so that the final force will be satisfactory. In addition, strength
requirements of design criteria frequently control the amount of prestressed
flexural reinforcement required; serviceability requirements may or may not
control the amount of prestressing required. The advantage of this procedure
will be apparent after consideration of the data presented in Chapter 9.
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Nonprestressed reinforcement

€ps ' < C €ps
P—" -
x - Fn 5 Resultant

Nonprestressed reinforcement

P = —(C + F,; + FJ) = Resultant

Fig. 4-2. Freebody diagram of the end of a prism of reinforced concrete prestressed
with an eccentrically applied force.

It should be recognized that most prestressed concrete members contain
nonprestressed bonded reinforcement in addition to the prestressed reinforce-
ment. The nonprestressed reinforcement may be provided in the member simply
to facilitate construction, or it may be included for strength or serviceability
considerations. In any case, if reinforcement of this type is provided in a
member, it too will become prestressed by the prestressing force. This is illus-
trated in Fig. 4-2. For the purposes of this discussion on the basic principles of
designing prestressed concrete members, it is assumed the concrete does not
contain embedded nonprestressed reinforcement, and the prestressing force P
is equal and opposite to the resultant compressive force in the concrete, C. The
effect of nonprestressed reinforcement, which can be significant in certain situa-
tions, is discussed in Secs. 7-2, 7-3, and 9-2.

ILLUSTRATIVE PROBLEM 4-1 Compute the stresses due to prestressing alone
in a beam with a rectangular cross section 10 in. wide and 12 in. high that is
prestressed by a final force of 120 k at an eccentricity of —2.5 in. (above the
centroidal axis). State whether the stresses are compressive or tensile. Compute
the stresses due to the initial prestressing force if the ratio between the final
force and the initial force is 0.85.
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SOLUTION:

F=120k, C= —120k, A = 120 sq. in.

10 x 12° 1440
= ——— =1440in*, r* = — = 12 in.%,
12 120
2 2
12 12
L 2 200in, - =-==200in.
y —16 » 6

Final stresses:

—120< —-2.5 % —
= 1+

6 _ ‘
f = 120 12 > = —2250 psi (compression)

—120 -2.5 %6 . '
f = 120 <1 + 12 > = 4250 psi (tension)

Initial stresses:

—2250

f= o8 " —2650 psi (compression)
—250

f, = o8 - +294 psi (tension)

ILLUSTRATIVE PROBLEM 4-2  Compute the prestressing force and eccentricity
that would be necessary in the beam of I.P. 4-1, in order to obtain a bottom-
fiber compression of 2400 psi and a top-fiber tension of 350 psi, by equating
the relationships for stresses due to prestressing in the top and bottom fibers.

SOUTION:
C ey .
f =Z<1 +r—2'> = +350 psi
C ey
fb=z<1 +r—2” = —2400 psi
350  —2400
—6e 6e
L+ 12 12
1025¢ = 2750
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Using eq. 4-4:
120 x —2400
=—-— = — 1
2.68 X 6 123,000 Ib
1+ ——
12

The familiar principle of superposition is used to determine the combined effect
of the prestressing and the other loads that may be acting simultaneously on a
prestressed beam. Although it is possible to write a single equation that will
accurately define the stress at any particular point in a beam, for normal manual
calculations it frequently is less confusing if the effect of each load (or
prestressing) is computed separately, and the net effect is determined by
algebraically adding the effects of the several loads.

ILLUSTRATIVE PROBLEM 4-3  Compute the net initial and final concrete stresses
in the extreme top and bottom fibers at the midspan of a beam that is 10 in.
wide 12 in. deep and on a span of 25 ft. The beam is to support an intermittent,
uniformly distributed live load of 0.45 k /ft and is to be prestressed with a final
force of 120 k positioned with an eccentricity of 2.5 in. The ratio between the
final and initial prestressing forces is assumed to be 0.85. The unit weight of
the concrete is 150 pcf.

SOLUTION:  The initial and final stresses due to prestressing in the top and
bottom fibers are opposite to those in I.P. 4-1 because the eccentricity of the
prestressing force is positive; these stresses are as shown in Table 4-1, a tabula-
tion of the combined stresses.

The section modulus of the section is equal to 7/y or —240 in.? for the top
fiber and +240 in.? for the bottom fiber. The stresses due to the dead load of
the beam alone are:

120
Wa = 133 % 0.150 = 0.125 Kif

252
M, = 0.125 x - = 9.77 k-ft

_9.77 x 12,000

! —240 = —488 psi (compression)

_9.77 x 12,000

fo 240

= +488 psi
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TABLE 4-1 Summary of Stresses for |.P. 4-3.

Top fiber Bottom fiber
(psi) (psi)
Initial prestress +294 —2650
Beam dead load —488 +488
Initial prestress plus dead load —194 -2162
Live load -1760 +1760
Initial prestress plus total load —1954 —402
Final prestress +250 —2250
Dead load of beam —488 +488
Final prestress plus dead load —238 -1762
Live load -1760 +1760
Final prestress plus total load —1998 +2

The stresses due to the live load alone are:

2 2
M, =045 x % = 35.2 k-ft

35.2 X 12,000 . .
= = —1760 psi (compression)

35.2 x 12,000 . .
Y +1760 psi (tension)

The stresses are summarized in Table 4-1.

4-3 Pressure Line with Straight Tendon

At any section of an uncracked beam, the combined effect of the prestressing
force and the externally applied load will result in a distribution of internal
concrete stresses that can be resolved into a single resultant force that is equal
to, but opposite in sign to, the prestressing force. The locus of the points of
application of this force in any beam, beam-column, or frame is called the
pressure line.

The pressure line can be illustrated by considering a rectangular beam
prestressed by an eccentric, straight tendon, as shown in Fig. 4-3. Under the
condition of prestressing alone, the beam would have a distribution of internal
compressive stresses at every cross section as shown in Fig. 4-4a. The resultant
compressive force in the beam, C, is equal in magnitude to the prestressing
force, P. The prestressing force and the resultant force in the beam are applied
at the same location, d /6 below the centroidal axis of the beam, at every section
of the beam as long as other loads are not applied to the beam.
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L

Fig. 4-3. Simple rectangular beam prestressed by an eccentric straight tendon.

If a uniformly distributed load that is of such magnitude that it results in the
bottom-fiber prestress being nullified at midspan is applied to the beam, the
resulting stress distribution at midspan would be as indicated in Fig. 4-4b, and
the pressure line at this point would be applied at a point —d/6 above the
centroidal axis of the beam. At the quarter points of the beam, under the effects
of the uniformly distributed load alone, the stresses due to the external load
alone are only 75 percent as great as those at midspan. The distribution of
compressive stresses in the beam from the combination of the prestressing and
the external load would be a shown in Fig. 4-4c, and the pressure line at this
point would be located at a distance of —d /12 above the centroidal axis of the
beam. At the support, because there are no flexural stresses resulting from the
external load, the pressure line remains at the level of the steel. Plotting the
location of the pressure line for this loading reveals that it is a parabola with its
vertex at the center of the beam, as shown in Fig. 4-5.

In a similar manner, it can be shown that a larger uniformly distributed load
would result in the pressure line’s being moved up even higher, and for a uniform
load applied upward rather than downward, the result would be a downward
movement of the pressure line. Therefore, it is apparent that the location of the
pressure line in simple prestressed beams is dependent upon the magnitude and

/e‘I €3 y
T N\ ?

(a) (b) {c)

Fig. 4-4. Stress distributions and pressure-line locations for a simple rectangular beam
prestressed with a straight eccentric tendon: (a) due to prestressing alone,
(b) at midspan under full service load, and (c) at quarter point under full service
load.
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Fig. 4-6. Location of pressure line in a simple beam of rectangular cross section,
prestressed by a force at e = d/6, together with a uniformly distributed load
resulting in zero bottom-fiber stress at midspan.

direction of the moments applied at any cross section and the magnitude and
distribution of stress due to prestressing: A change in the external moments in
the elastic range of a prestressed beam results in a movement of the pressure
line in the beam. :

Because of the change in the strain in the concrete at the level of the steel
(assuming the flexural bond strength between the steel and concrete is adequate,
as it is in pretensioned and bonded post-tensioned beams), there is an increase
in the stress in the prestressing steel when an external load is applied. This
occasionally is of importance, but the effect normally is disregarded (see Sec.
4-11).

ILLUSTRATIVE PROBLEM 4-4 Compute and draw to scale the location of the
pressure line for a rectangular beam 10 in. wide and 12 in. deep that is
prestressed with a force of 120 k at a constant eccentricity of 2.5 in. and is
supporting a 15 k concentrated force at midspan of a span of 10 ft. Use an
exaggerated vertical scale in the sketch, and dimension the location of the
pressure line at the midspan, quarter point, and end of the beam. Neglect the
dead weight of the beam.

SOLUTION:  From I.P. 4-3 the stresses due to final prestressing of 120 k are
known to be +250 psi and —2250 psi, and the section moduli are known to be
240 in.? for both the top and the bottom fibers. At the end of the beam, there
is no moment due to the concentrated load; hence, the pressure line is located
e = +2.50 in. below the centroidal axis.

At the midspan:



BASIC PRINCIPLES FOR FLEXURAL DESIGN | 105

_37.5 x 12,000

=220 = ¥ 1875 psi (compression in top fiber)

The stress distribution at midspan is:

-1875 + 250 = - 1625 psi—\

ol
\1 e’

- 2250 + 1875 = - 375 psi

The distance from the top fiber to the resultant force in the section is computed
by taking moments about the top fiber as:

6 X —375 x 120 + (—1250/2) x 120 x 4
d'= = 4.75 in.
—375 x 120 + (—1250/2) x 120

The resultant force is located at e/ = 6.00 — 4.75 = 1.25 in. above the centroid
axis (e = —1.25in.).

At the quarter point, the moment due to the external load is only one-half
that at the midspan. Therefore, the flexural stresses due to the applied load are
only one-half of those at midspan, or F938 psi.

The stress distribution at the quarter point is:

- 938 + 250 = — 688 psi

C—f—n
el
~ 2250 + 938 = — 1312 psi'7

6 x —688 X 120 + (—624/2) X 120 x 8
T 688 X 120 + (—624/2) x 120

!

= 6.625 in.

The resultant is located at e’ = 6.625 — 6.00 = +0.625 in. below the centroi-
dal axis.
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Fig. 4-6. Location of pressure line, |.P. 4-4.

The results are shown plotted in Fig. 4-6.

4-4 Variation in Pressure Line Location

If the stress in the bottom fiber of a beam is to be equal to zero, or to be under
a compressive stress under the effects of the final prestressing force and service
dead and live loads, as is the case for a fully prestressed member, the distri-
bution of stresses will be as shown in Fig. 4-7a (see Sec. 7-5). A beam cross
section is shown in Fig. 4-7b together with certain dimensions of importance
in the design of prestressed corncrete flexural members. The force C shown in
Fig. 4-7a is the resultant of the unit compressive stresses in the concrete section
and hence defines the location of the pressure line under the particular condi-
tions of prestressing and service loads that cause the stress distribution illus-
trated. For the forces P, the prestressing force, and C, the resultant compressive
force, to be in equilibrium, they must be equal in magnitude and opposite in

€ Centroidal
axis
C
) -
e+
Yo
P

Fig. 4-7. Relationship between prestressing force, pressure line, and section properties
of a beam having zero stress in bottom fiber under design load. (a) Stress
distribution. (b) Beam cross section.
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direction. In addition, from eq. 4-4 developed in Sec. 4-2, we can write the
relationship for the stress in the bottom fiber as follows:

_C e'y, _
5=S(12) w0

from which, for C not equal to zero, one can obtain:

b

The eccentricity e’ of the resultant C in this example, which is negative because
it is above the centroidal axis, should not be confused with the eccentricity of
the prestressing force P.

Another requirement of equilibrium is that the internal and external moments
be equal in magnitude and opposite in direction at every section. Hence, it
follows that the total external moment that the beam is resisting at this section,
and with this distribution of stresses in the concrete, is equal to:

r2 2
M =M, + M, = C<e + —> = —P<e + ——> (4-5)
b Yo
in which e is the eccentricity of the prestressing force.

The above example further illustrates that prestressed beams, functioning in
the elastic range, resist the moment due to externally applied loads by the
movement of the resultant of the stresses in the concrete, rather than by an
increase in the prestressing stress, as was brought out in Sec. 4-3. From eq.
4-5, it is apparent that if M, is equal to zero, the product of C multiplied by the
quantity (e + r2/y,) also must be equal to zero, and the concrete stresses
would be distributed as shown in Fig. 4-8. If the external moment (M,) were
some value less than that which nullifies the precompression of the bottom fibers,
the force C would be applied above the location of the prestressing steel at a
distance d equal to:

(4-6)

SYES

[Centroidm axis

e

C > P

Fig. 4-8. Distribution of stress and location of C when external moment equals zero
(prestress alone).
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Centroidal axis

P

Fig. 4-9. Distribution of stress and location of resultant C when external moment is of
nominal magnitude.

This condition is illustrated in Fig. 4-9. It should be noted that in using the sign
convention that has been adopted for this book, positive moments due to exter-
nally applied loads cause tensile stresses in the bottom fibers of beams and thus
cause upward (negative) movements of the location of the pressure line C.
Conversely, a negative moment resulting from externally applied loads will
cause a downward (positive) movement of the pressure line.

The relationship given by eq. 4-5 is extremely useful in the preliminary design
of beams as well as in checking final designs. Because the value of (e + r? /)
normally is on the order of 65 percent of the depth of the beam section (it varies
between the approximate limits of 33 to 80 percent for different cross sections)
for a given superimposed moment, the designer can assume a dead weight for
the beam and estimate the prestressing force required for different depths of
construction. The use of this relationship is demonstrated in Illustrative Problem
4-5 and treated further in Sec. 9-8, in the discussion of preliminary design.

It should also be pointed out that if the point of application of the resultant
compressive force in a prestressed concrete member is restricted to an area that
does not exceed r*/y, above the centroidal axis and r2 /. below the centroidal
axis, tensile stresses will not exist in the concrete section. This zone in which
the prestressing force can be applied without tensile stresses is called the kern
zone.

ILLUSTRATIVE PROBLEM 4-5 Compute the maximum concentrated load that
can be applied at the midspan of a beam that is 10 in. wide, 12 in. deep,
prestressed with 120 k at an eccentricity of +2.5 in., and is to be used on a
span of 10.0 ft center to center of bearings, without tensile stresses resulting in
the bottom fibers.

SOLUTION:  Using the basic relationships for flexural design and the section
properties and stresses due to prestressing known from I.P. 4-3, the moment
that can be applied to the beam without tensile stresses being created in the
bottom fibers is:

2250 X 240

M =f X8 = 15.000 = 45.0 k-ft



BASIC PRINCIPLES FOR FLEXURAL DESIGN | 109

The moment due to the dead load of the beam itself is:

Wul* 120 10°
=——=—"-x0.15 x — = 1.56 k-ft
8 144 8

My
The moment that can be permitted from the application of the concentrated load

is equal to 45.0 — 1.56 = 43.4 k-ft, and the concentrated load can be computed
by:

434 x 4
p=—"""

=174k
10

Using eq. 4-5 for computing the moment at which the stress in the bottom fiber
is equal to zero yields:

25+2.0

M= 120< 7

> = 45.0 k-ft

4-5 Pressure Line Location with Curved Tendon

It was shown in Sec. 4-3 that the pressure line for prestressing alone in a
prismatic beam is coincident with the prestressing force when the beam is
prestressed with a straight tendon. This can also be demonstrated for a beam
prestressed with a tendon that changes slope, as shown in Fig. 4-10. By inspec-
tion, the forces acting on the concrete at the point where the tendon changes
slope are determined to be as indicated in Fig. 4-11. The forces acting on the
concrete are shown at their respective points of application in the freebody
diagram of Fig. 4-12. In order to determine where the pressure line is acting at
the center of the beam, the conditions of statics at point A4 are investigated. The
sum of the vertical forces is equal to zero because P sin « is acting downward

p
o o .
_H\L 4 /Fent oidal ?XIS s
*Tendon
L L - L L
4 4 | 14 4
"L

Fig. 4-10. Beam prestressed with tendon that slopes between quarter points and ends.
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P~-Pcosx

Psina
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o

—» P
Fig. 4-11. Freebody diagram of tendon in Fig. 4-10 at quarter point.

at the end of the beam and upward at the quarter point. The sum of the horizontal
forces indicates that the force R must be equal to P because:

2H=Pcosa+(P—Pcosa)—-R=0 " R=P

to determine the distance from the centroidal axis to the point of application of
the force R (and hence the location of the pressure line at the center of the
beam), moments are taken about point 4 as follows:

L L
2M, =(Psinoz)E+(P—Pcosa)e—(Psina)Z—Px=O

and:
PL sin «
—4———- Pe — Pecosa — Px =0
but:
4e sina
tana = — =
L Cos o
Center
of span
3
£
(2]
ll
Pcosa i _ ) _A
e
X

&t~
&t~

L/2

Fig. 4-12. Freebody diagram for half of the beam shown in Fig. 4-10.
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¢

{k ?

Fig. 4-13. Simple beam with curved tendon.

and:

. 4e cos o
sina = ———

Therefore:
Pecosoa + Pe — Pecosa — Px =0

Hence, x = e, and the pressure line is coincident with the location of the tendon.

If a beam with a curved tendon, as shown in Fig. 4-13, is considered, it is
readily seen that in the stressing of the tendon, the natural tendency for the
tendon to straighten is resisted by the concrete. If a short segment of the tendon
is studied as a free body, as shown in Fig. 4-14, forces must be present normal
to the tendon (neglecting friction) in order to prevent straightening. If friction
is neglected, the force acting throughout the tendon is uniform in magnitude,
and because the tendon is flexible, it cannot support any bending moments.
Therefore, at every point such as point A, the force in the tendon is equal to P
and is located at the tendon. If the force were not coincident with the tendon at
A, but were located at some distance from A (as shown by the dashed vector),
the tendon would have to withstand the moment Pe caused by this eccentricity.

From this analysis, then, it can be concluded that the pressure line for
prestressing alone in a simple beam, prestressed with a curved tendon, is coinci-
dent with the path of the tendon because the forces in the concrete must be

P
P
\ ) /

P e
- —— Ll

Fig. 4-14. Freebody diagram of portion of curved prestressing tendon.
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equal and opposite to those in the steel to maintain equilibrium. Furthermore,
it can be shown that the pressure line moves when an external load is applied
to a beam with a curved tendon, just as it does in a beam with a straight tendon.

ILLUSTRATIVE PROBLEM 4-6  Compute and plot to scale the location of the
pressure line for a rectangular beam that is 10 in. wide and 12 in. deep, if the
beam is prestressed with a force of 120 k and placed on a second-degree
parabolic path having eccentricities of +2.5 in. below the centroidal axis at
midspan and zero at the supports. The beam has a span of 10 ft and supports a
uniformly distributed dead and live load of 3.5 kif, including the dead load of
the beam itself.

SOLUTION: At midspan:

10?
M=35Xx 5 - 43.8 k-ft

. 43.8 X 12 i
Pressure line movement = ———— = 4.38 in.
120
Hence, the pressure line moved up 4.38 in. from its original position 2.5 in.
below, to 1.88 in. above the centroidal axis.

At the quarter point:
M = 0.75 x 43.8 = 32.8 k-ft*

3.28in.

Pressure line movement = 0.75 X 4.38

and the pressure line is located at 1.40 in. above the centroidal axis.

1.40” 1.887
1.88" 2507 ¢

I \ 1
P li
__’___\‘ __-_.___k\\.._____fs—sruie ITZ\

TN - —

TN Prestressing force

2.5 2.5 2.5 2.5
10’

Fig. 4-15. Location of pressure line for |.P. 4-6.

*Note that the ordinate of a second degree parabola at the quarter point of the span is 0.75 times
the ordinate at midspan.
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At the end: M = 0; pressure line movement = 0.

The locations of the pressure lines for the prestressing force alone as well as
for the beam under the full uniformly distributed load of 3.5 kif are shown in
Fig. 4-15.

ILLUSTRATIVE PROBLEM 4-7  Calculate the maximum, uniformly distributed
load that can be applied to the beam of I.P. 4-6 if the bottom fiber stress is to
be zero at midspan.

SOLUTION:  Under the loaded condition, the pressure line will be at r? =2.00
in. above the centroidal axis. Hence:

2.50 + 2.00
Mr =120 X —12_ = 45.0 k-ft
and:
45 X 8
Wiax = = 3.60 kif
‘max 10 3.60

4-6 Advantages of Curved or Draped Tendons

When a simple beam, such as is shown in Fig. 4-16, is prestressed by a straight
tendon, it deflects upward. From this observation, it is apparent that the dead
weight of the beam itself is acting at the time of prestressing because, as the
beam deflects upward, the soffit of the beam no longer is in contact with the
soffit form, except at the ends of the beam. From this consideration, it can be
concluded that the actual stress existing in the beam at any point along its length,
at the time of prestressing, is equal to the algebraic sum of the stresses caused
by the prestressing and the dead weight of the beam itself.

The variation in the stresses along the length of the beam in the extreme top
and bottom fibers, for a beam prestressed with straight tendons, also is illus-
trated in Fig. 4-16. Ignoring loss of prestress, for the purpose of this discussion,
and assuming, for the concrete in the beam under consideration, that the
maximum permissible bottom-fiber compressive stress is 2000 psi and the
maximum permissible top-fiber tensile stress is 200 psi, the beam as illustrated
is prestressed as highly as possible. Assuming that tensile stresses are not to be
permitted in the bottom fiber under the total load, it will be seen that 1500 psi,
or 75 percent of the permissible compressive stress in the concrete at the midspan
of the beam, is available for the superimposed loads, and 25 percent is counter-
acted by the dead load of the beam itself. Furthermore it is observed that the
maximum concrete stresses occur at the ends of the beam, where dead-load
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L Top-fiber stress due to beam dead load
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Fig. 4-16. Stress distribution of top and bottom fibers of simple prismatic beam
prestressed with a straight tendon.

flexural stresses do not exist, rather than near the midspan, where the flexural
stresses under the maximum service loads are the greatest.

If the tendon were placed in the member on a second-degree parabolic curve
such that the eccentricity were maximum at midspan of the beam and minimum
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Fig. 4-17. Stress distribution in the top and bottom fibers of a simple prismatic beam
prestressed with a curved tendon.

at the ends of the beam, the stresses in the top and bottom fibers would vary
along the length of the beam, as illustrated in Fig. 4-17. It will be seen, from
an examination of these stress distributions, that the maximum stresses resulting
from prestress in both the top and bottom fibers occur at midspan of the beam.
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Furthermore, it is apparent that, by careful selection of the amount and eccen-
tricity of the prestressing, it is possible to eliminate the reduction in the capacity
of the beam to withstand a superimposed load due to the dead weight of the
beam itself, as was the case in the previous example. This can be explained in
terms of the pressure line as follows: the prestressing force can be applied lower
at midspan of the beam than at the ends, without exceeding the permissible
stresses, because the dead-load moment of the beam is acting in a direction
opposite to the moment due to prestressing. The increase in eccentricity that
can be used is equal to M, /P.

The advantage to be gained from curving the tendons obviously is more
important in members in which the external moment existing at the time of
prestressing is a large percentage of the total moment. Conversely, if the dead-
load moment acting at the time of prestressing is very small, there is little or
no advantage (from the standpoint of flexural stresses) in having the prestressing
force at a greater eccentricity at midspan than it is near the ends.

It is axiomatic in structural engineering that the dead loads of structures
become progressively more important and greater, in respect to the total load,
as the span lengths are increased. This is one of the important considerations
influencing the normal practice of using straight tendons for short members and
using tendons having variable eccentricity, either pretensioned or post-tensioned,
for longer members. As is discussed in Sec. 4-9, this fact is also important in
determining the proper cross-sectional shape of a flexural member.

It should be recognized that deflected or draped pretensioned tendons cannot
be placed on smooth curves (see Sec. 15-6). They are often placed on a path
consisting of a series of straight lines that approximate a second-degree parabola
or other curve form. When the term curved tendon is used in this book, it is
not meant to infer that the tendon must be post-tensioned, or that the path of
the tendon is a smooth curve.

Another beneficial effect of curving prestressing tendons is reduction of the
shear force that must be carried by the concrete section (see Sec. 6-3). This can
be explained by considering a simple beam prestressed by a tendon placed on
a second-degree parabolic path, as illustrated in Fig. 4-18 (freebody diagrams
showing the forces on the tendon and the concrete are shown in Fig. 4-19). If
the friction between the tendon and the concrete is assumed to not exist, the
forces exerted by the concrete on the tendon, between midspan and the ends of
the beam, will be normal to the tendon. If the tendon is inclined at angle « at
its end, the vertical and horizontal components of the prestressing force at the
end will be P sin o and P cos a, respectively. Because the inclination of the
forces the concrete applies to the tendon normally is small, it can be ignored
for the purpose of this discussion, and the force the tendon applies to the concrete
can be assumed to be equal to P sin « applied vertically upward and uniformly
distributed between midspan and the end of the beam, as shown in Fig. 4-19.
If the total shear force at the end of the beam due to the design loads is taken
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Fig. 4-18. Half-elevation of a simple beam with curved tendon.

to be V, acting vertically upward at the end of the beam, the force the concrete
must resist in shear is equal to V — P sin «. From this example it is apparent
that the curvature of the tendon has the effect of reducing the vertical shear
force the concrete section must be able to resist, and, if the tendon were not
curved, the concrete section would be subjected to the total shear force V.

A ¢
éf: P |
Q = '
Pcosa
l
iy,
A P
Free-body of Forces on the Tendon
A
Psinal{ i
_—>_———- -
Pcosa l
<—P——
I L I O O O L
A

Free-body of Forces on the Concrete

Fig. 4-19. Freebody diagrams for curved tendon and concrete section. (a) Freebody of
forces on the tendon. (b) Freebody of forces on the concrete.
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ILLUSTRATIVE PROBLEM 4-8  Determine the prestressing force and eccentricity
required to prestress a slab, 4 ft wide, 8 in. deep, that is to be simply supported
on a span of 30 ft. Maximum final compression in the bottom fibers is 2000
psi, and maximum allowable, final, top-fiber tensile stress is 300 psi. The slab
is to made of normal-weight concrete and is to support a superimposed load of
45 psf. The minimum concrete cover for the prestressing tendons is 15 in.
Assume the tendons have a diameter of% in. and have a final prestress of 11 k
each. If the tendons are straight and in one layer, determine how many tendons
are required and how thick the concrete cover would be. Determine how many
tendons would be required if they could be placed on a parabolic path with a
concrete cover of 13 in. at midspan.

SOLUTION:
Slab dead load = 100 psf X 4 ft = 400 plf

Superimposed load = 45 psf X 4 ft = 180 plf
580 pif

30?
M, = 0.58 X e 65.3 k-ft

bd®> 48 x 8 _
S = o - & = F512 in.? (top fiber negative)
65.3 x 12,000 _
= ad =F
f S12 1530 psi
r? d r?
—=—=-=133in.,, — =-=1.33in
6 Y» 6

The distribution of stress desired for the minimum amount of prestressing with
straight tendons will have a tensile stress of 300 psi in the top fiber and 1530
psi compression in the bottom fiber. Therefore:

Cll+e .
+300 psi fi=7 <—_1.33> = +300 psi
C e
b y < 1'33> 1530 psi
300 _—1530
e e
1+ —
-1.33 b+ 1.33
300 + 225¢ = —1530 + 1150e
925¢ = 1830
- 1530 psi
e = +1.98 in.
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From eq. 4-4 with e = 1.98 in.:

_ ~1530 X 48 X 8 _

C = - 1
249 236,000 Ib

This would require 22 tendons (P = 242 k), and the concrete cover would be
4.00 - 1.98 — 0.375/2 = 1.83 in.

If the tendons are placed on a curved path, the top fiber stress would not limit
the eccentricity of the prestressing. The eccentricity could be 4.00 — 1.50 —
0.375/2 = 2.31 in., and the prestressing force can be computed from eq. 4-4

as follows:
¢ <1 gﬂ) = —1530 psi

—(1+
384 1.33

From which the resultant compressive force of —214.7 k is obtained. This
solution requires 20 tendons, which will provide a force of 220 k.

ILLUSTRATIVE PROBLEM 4-9  If the maximum final, allowable top-and bottom-
fiber stresses are 170 psi tension and 2000 psi compression, respectively, deter-
mine the maximum superimposed load that can be carried by a 12 in. wide
beam that is 18 in. deep if flexural tensile stresses are not permitted in the
bottom fiber under service load, and the beam is to be used on a span of 30 ft.
Determine the minimum prestressing force and the corresponding eccentricity
of the force if the beam is prestressed with straight tendons. Determine the
minimum curved-tendon prestressing force that could be used to carry the same
superimposed load if the maximum eccentricity is 6 in. (i.e., the center of gravity
of the tendon is 3 in. above the soffit of the beam). Compute the ratio of the
two forces.

SOLUTION:  The area of the beam is 216 in.?, the section moduli for the top
and bottom fibers are ¥648 in.?, and the upper and lower limits of the kern
zone are —3.00 in. above and +3.00 in. below the centroidal axis of the section.
The desired distribution of stress using straight tendons is controlled by the
stresses at the ends of the beam; these are final top- and bottom-fiber stresses
of +170 psi and —2000 psi, respectively. Solving eqs. 4-3 and 4-4 simulta-
neously, the eccentricity and prestressing force that will result in the desired
stress distribution can be determined by:

C
f,=—<1+ >=170psi

A —3.00

C e .
fb—A <1 + 3.00> = —2000 psi
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170  —2000
+170 psi e e
1-= 1+=-
3 3
170 + 56.7¢ = —2000 + 667¢
610e = 2170
e = 3.56 in.
—2000 X 216
C=—"—""7""—
|4 258
3.00
~2000 st = 198,000 Ib

.". The straight tendon requires an eccentricity of 3.56 in. and a prestressing
force of 198,000 Ib.

For the curved tendon, the top-fiber stress due to prestressing at midspan can
be made equal to the arithmetical sum of 170 psi, the allowable tensile stress
in the top fiber, plus the top-fiber stress due to dead load alone. The bottom-
fiber stress due to prestressing should be 2000 psi compression in order for the
beam to be able to support the same superimposed load. The moment the beam
can withstand to nullify the —2000 psi in the bottom fiber is:

3.00 + 3.5
M, = 198 x -——T—6 = 108 k-ft

The total dead plus superimposed load that results in a moment of 108 k-ft is:

108 x 8
w, = 30 = 0.960 kiIf
The dead load of the beam is:
216
= — X 0.150 = 0.225 kIf
Ya = 144

and the superimposed dead load is 0.960 — 0.225 = 0.735 kiIf. The fiexural
stresses due to the dead and superimposed loads will be found to be +469 psi
and +1531 psi, respectively. Therefore, the top-fiber tensile stress due to
prestressing can equal the arithmetic sum of 170 and 469, which is 639 psi, and
the bottom-fiber compressive stress due to prestressing, as explained above,
should equal —2000 psi. Using these values and solving eqs. 4-3 and 4-4, one
obtains:

C e
=—1{1+ = i
f A< 3 > 639 psi
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+170 + 470 = +640 psi

— 2000 psi

ﬁ,=—<1+ﬁ>=—2000psi

Equating the above, one obtains:

639 _—2000
e e
1+ 1 +—
-3.00 3.00
from which:
1361
361e _ 2639
3
and:
3 x 2639 .
= —1—3?1— = 5.82 in.
and the prestressing force is:
2000 x 216
= ————————— 1
. 582 47 k
3.00

and, finally, the ratio of the prestressing force required for straight and curved
tendons is 1.35.

ILLUSTRATIVE PROBLEM 4-10 Compute the shear force carried by the
prestressing tendon of 120 k and by the concrete section at the ends of the beam
for the loading and dimensions shown in Fig. 4-20.

SOLUTION:  The sine of the angle at the end of a second-degree parabolic curve
is equal to the quotient of two times its height (ordinate) and its base (abscissa).
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¢
« Uniform load : w, = 0.90 k/ft
£ parabolic curve N3
30

Fig. 4-20. Beam of I.P. 4-10.

For the beam in Fig. 4-20:

tana = sing = — = —— = 0.0667

120 x 0.0667 = 8.00 k
0.90 x 15 =135k

Psina

Total shear force V,

Shear on concrete V. = 13.5 — 8.00 = 5.5k

4-7 Limiting Eccentricities

It was explained in Sec. 4-6 that the designer frequently can allow a greater
eccentricity of the prestressing force at the midspan of a beam without exceeding
the allowable stresses at other locations along the span, because of the dead
weight of the beam itself, which is acting at the time of prestressing. The design
and analysis of prestressed concrete is further complicated, however, because
normally two different criteria for permissible stresses must be satisfied: those
that apply at the time of prestressing and those that apply in the completed
structure after the losses of prestress have taken place. At the time of stressing,
the strength of the concrete normally is less than it will be in the completed
structure, and, because it is recognized the initial stresses in the concrete at the
time of prestressing will decrease with the passage of time, relatively high
stresses are permitted. The conditions of loading that cause maximum condi-
tions of stress in the completed structure are different and less predictable than
those at the time of prestressing; so the stresses permitted in the completed
structure normally are more conservative (in terms of the ratio of allowable
stress to ultimate stress) than those permitted at the time of prestressing. Both
criteria normally permit a maximum tensile stress and a maximum compressive
stress in the concrete, with the former being much smaller than the latter. In
the case of precast, prestressed members, the allowable tensile stress is most
apt to be a limiting criterion in the top fibers at the time of prestressing and in
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Prestressing force ¢
must be confined Centroidal axis
to this area /—
Iy »
L

Fig. 4-21. Schematic diagram showing area in which prestress force must be confined
to satisfy initial and final stress requirements.

the bottom fibers in the complete structure when subjected to full service load.
The opposite is the case with the allowable compressive stresses: at the time of
prestressing the compressive stress in the bottom fibers are more likely to control
a design than are compressive stresses in the top fibers, and top-fiber compres-
sive stresses are more likely to control under full service load. In most beams,
a number of combinations of prestressing force and eccentricity can be found
that will satisfy the conditions of allowable stress. In the interest of economy,
however, the minimum prestressing force that satisfies the permissible combi-
nations of stress at all locations along the length of the member normally is
selected. Experienced designers sometimes use prestressing forces somewhat
greater than the minimum size that could be used, and still comply with the
minimum requirements of the applicable code, in the interest in facilitating
construction.

For a force selected for a particular design, one can compute maximum and
minimum eccentricities that can be used at various locations along the length
of the beam without exceeding the permissible stresses enumerated above.
Plotting the eccentricities in a schematic elevation of the beam, generally with
an exaggerated vertical scale, reveals the limiting dimensions in which the center
of gravity of the prestressing force must remain in order to satisfy the conditions
of allowable stress. An example of this type of is shown in Fig. 4-21, where
the area in which the center of gravity of the prestressing tendons must be
confined is crosshatched. It generally is not necessary to make a diagram of this
type for simple span beams designed for uniformly distributed loads, because
by placing the center of gravity of the prestressing tendons on a curve approx-
imating a second-degree parabola, the stress conditions normally can be satis-
fied without difficulty. The design of nonprismatic beams, continuous beams,
and beams that have acute or unusual conditions of stress often is facilitated by
the use of a diagram of this type.

ILLUSTRATIVE EXAMPLE 4-11  Compute the limits of the eccentricity of the
prestressing force of 550 k at the midspan, quarter point, and end for a simple
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TABLE 4-2 Top- and Bottom-Fiber Stresses, |.P. 4-11.

Max. top Min. top Max. bottom Min. bottom
Location {psi) (psi) (psi) (psi)
End 0 0 0 0
Quarter point -1350 —453 +1530 +328
Midspan —1800 —605 +2038 +438

beam if the maximum allowable stresses are: (1) when the minimum condition
of loading exists (beam dead load alone), 200 psi tension in the top fibers and
2000 psi compression in the bottom fibers; and (2) when the maximum loading
condition exists (service dead and live loads), zero tension in the bottom fibers
and 2200 psi compression in the bottom fibers. The stresses in the top and
bottom fibers under maximum and minimum conditions of loading are as
summarized in Table 4-2. The area of the cross section of the beam is 445 in.>
and the limits of the kern zone, r*/y, and r?/y,, are equal to 8.99 and 6.50
in., respectively.

SOLUTION:  The average compressive stress in the concrete due to the
prestressing force of 550 k is 550,000/445 = —1236 psi. At midspan, under
minimum loading, compressive stress in the bottom fiber can equal —2000
— 438 = 2438 psi. Rearranging eq. 4-4 solve for the eccentricity, one obtains:

| L r_z_[—2438 } _ ‘
°T [C/A l} v L —1236 1(8.99) = 8.74 in.

With this value of e, the top-fiber stress due to prestressing alone is:

4
= —1236[1 + } = 426 psi

—6.50
and the net top-fiber stress is:
426 — 605 = —179 psi < 200 psi ok.

Under the maximum loading, tensile stress is not permitted in the bottom fibers,
and the prestress must be equal to —2038 psi or more. Hence:

_| S }r_z_{—zms ] .
e_{C/A 13, = [ Tiaze ~ 1| (899) =383

and the top-fiber stress with this eccentricity is:

5.83 )
fi= —1236[1 + —6.50] = —127 psi

and the net top-fiber stress is:
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—127 — 1800 = —1927 psi < —2200 psi ok.
Summary for midspan:
emax = 8.74 in., e, = 5.83 in.

At the quarter point, under minimum loading, the prestressing in the bottom
fiber can equal —2000 — —328 = —2328 psi. The eccentricity for this bottom
fiber stress is:

_ﬁ__]r_z_[—2328_} B )
e_|:C/A 1 W T2 1{(8.99) = 7.94 in.

With this value of e, the top fiber stress due to prestressing alone is:

4
fi = —1236[1 + } = 274 psi

—6.50

and the net top fiber stress is 274 — 453 = —179 psi > 200 psi ok.
Under the maximum loading, tensile stress is not permitted in the bottom
fibers, and the prestress must be equal to —1530 psi or more. Hence:

fo }rj_{—mo_ J ~ ‘
e_|:C/A 1 yb_ _1236 1 (899)—21411‘1

and the top-fiber stress with this eccentricity is:

- —1236[1 b 2M } = —829 psi
o= 650 pst

and the net top-fiber stress is:
—829 — 1350 = —2179 psi < —2200 psi ok.
Summary for midspan:
€max = 2.14in., €, = 7.94 in.

At the end, the compressive stress in the bottom fiber can equal —2000 psi,
and:

- fb_}rj_{—zooo_} L
e_{C/A 13, = | T2z ! (8.99) = 5.56 in.

For an eccentricity of 5.56 in., the stress in the top fiber is:

6
f= —1236[1 + } = —179 psi < 200 psi ok.

-6.50

Tensile stress is not permitted in the bottom fiber. For this condition of stress,
the pressure line will be at the upper limit of the kem zone, and the eccentricity
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¢ Svm. abt.

L L
4 4

Fig. 4-22. Piot of the limits of the prestressing force for I.P. 4-11.

will be —8.99 in. This eccentricity will produce a stress in the top fiber equal
to

—8.99
—6.50

f = —1236[1 + ] = —2945 psi

This stress exceeds the allowable value of —2200 psi. The eccentricity for a
top fiber compressive stress of —2200 psi is:

2200

e = <1—2—3_6. - 1> (6.50) = —5.07 in.

For an eccentricity of —5.07 in., the bottom fiber stress is:

8.99

Summary for the end of the beam:

~5.0
f, = 1236<1 + 7) = —539 psi > 2000 psi, ok.

emin = —5.07 in., €., = 5.56 in.

The limits in which the center of gravity of the prestressing tendons must be
located are shown in Fig. 4-22.

4-8 Cross-Section Efficiency

In a rectangular beam the distribution of the unit flexural stresses in the concrete
under prestress alone and under total load at the midspan may be as is illustrated
in Fig. 4-23. The distribution of the forces in this beam will be identical in
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for prestress alone and prestress alone and for
prestress plus full load prestress plus full load

Fig. 4-23. Distribution of unit stresses and forces in a rectangular beam under prestress
alone and under prestress plus full load.

shape to the distribution of the unit stresses, and the conversion of the unit
stresses to forces can be made by multiplying the unit stresses by the width of
the cross section. As has been explained, the total moment to which this member
is subjected can be computed by determining the distance between the points
of application of the resultant forces in the concrete, under the conditions of
prestressing alone and when under full load, and multiplying this distance by
the prestressing force.

Analysis of a beam with an I-shaped cross section, such as that illustrated in
Fig. 4-24, will reveal that the distribution of unit stresses varies linearly, as in
the case of the rectangular cross section; however, because of the variable width
of the cross section, the distribution of forces is variable, as illustrated. It is
apparent that the resultants of the force diagrams for the I-shaped member will
be nearer the extreme fibers of the cross section. For this reason, the resultant
force in the I-shaped concrete section moves through a greater vertical distance

b

'69‘
ey AN/
/1N £~

b

Force P Unit stress distribution Force distribution for
Cross section for prestress alone and prestress alone and for
prestress plus full load prestress plus full load

Fig. 4-24. Distribution of unit stresses and forces in a beam with I-shaped cross section,
under prestress alone and under prestress plus full load.
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when the external load that nullifies the bottom-fiber prestress is applied, than
is the case with the rectangular cross section of equal depth. From this analysis,
it is obvious that an I-shaped section will be more efficient and is capable of
withstanding a greater load than a rectangular section of equal depth, provided
that the sections are prestressed with forces of equal magnitude and that tensile
stresses are not allowed in the sections.

This consideration is the primary reason for using I, T, and hollow shapes in
prestressed flexural members where major tensile stresses must be avoided, and
where construction depth is important and must be minimized. Solid slabs and
rectangular beams are economical under some conditions of span, loading, and
design criteria; but use of the more complicated shapes generally results in
minimum quantities of prestressing steel and concrete being required to support
a particular load condition, so that they frequently are the more economical
choice.

The effect of allowing tensile stresses in the top and bottom fibers is discussed
in Secs. 8-6 and 8-7. Selection of an efficient beam cross section for various
loading conditions is discussed in Sec. 4-9.

ILLUSTRATIVE PROBLEM 4-12  Determine the maximum total moments that can
be imposed upon the I-shaped and rectangular cross sections in Fig. 4-25 if
each is prestressed with a straight tendon having an effective force of 200 k,
and if tensile stresses are not allowed under any condition of loading.

SOLUTION: Because tensile stresses are not allowed under any conditions of

loading, the prestressing force cannot be applied outside of the kern zone. The

lower limit of the kern zone is located > /¥, below the centroidal axis, and the

upper limit is located 7 /y, above the centroidal axis (see Sec. 4-4). Therefore:
For the I shape:

1 8!!

422 +4.22
M, =200k [ ———) = 140 k-ft
12

<

A =204 in.24 A=216in.2
3 »  I=17748in. : I= in4
S 6 2 ! in B 5?1232 in.
= — — = - = -4.22" — = -— = - 3.00"
- yt yb wyt yb
& 18" ] 12"]

Fig. 4-25. Cross sections compared in |.P. 4-12.
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For the rectangular shape:

3.00 + 3.00

M, = 200 k
! < 12

> = 100 k-ft

4-9 Selection of Beam Cross Section

It has been shown that the location of the pressure line in a prestressed-concrete
flexural member changes upon the application of external load. At the end of a
member where no moment exists, the pressure line in a simple prestressed-
concrete beam is always coincident with the location of the center of gravity of
the prestressing force. At the center of the beam, the distance from the center
of gravity of the prestressing to the pressure line is equal to the total moment
acting at that point divided by the prestressing force (from eq. 4-6).

To illustrate the effect of this action on the shape of the optimum concrete
section, one can consider a simple pretensioned beam that is prismatic, has
straight tendons, and is subjected to a load of such magnitude that the bottom-
fiber stress is zero at the midspan. At the end of the beam, the pressure line is
coincident with the center of gravity of the prestressing, a condition that remains
unchanged despite variations in the external load. Therefore, the optimium
section at the end will be a shape that is concentric about the prestressing force
because this shape will result in minimum concrete stresses. At midspan, the
pressure line acts above the center of gravity of the section; so a top flange is
necessary to resist this force. Because the stress in the bottom fibers is zero, no
bottom flange is required to resist stress under this condition of loading.

The above discussion shows that, as would be expected, the optimum concrete
section is materially influenced by the prestressing force and the loading. If, in
the above example, the prestressing tendons were draped in such a manner that
there was little or no eccentricity at the ends of the beam, there would be no
need for any shape other than a rectangular section, which is easy to construct
and is efficient in resisting large, concentric, compressive forces. If the load
causing zero stress in the bottom fibers at the midspan of the beam were always
present, there would be no need for a large bottom flange near midspan because
the pressure line would always be acting near the top of the section, and the
concrete in the bottom flange would serve only to protect the prestressing steel
from the effects of fire and corrosion; therefore, a T-shaped section would be
efficient. On the other hand, if the load that causes zero stress in the bottom
fibers at midspan is an intermittent load, and if this intermittent load is very
large in comparison to the dead load of the beam itself, a large bottom flange
would be required at midspan of the beam to resist or ‘‘store’’ the prestressing
force until the beam was again required to carry the intermittent load. An I
shape is better for this purpose than a rectangular shape, for with an I shape the
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distance the pressure line can move without tensile stresses resulting in the
section is greater than with a rectangular shape of equal depth.

There are basic principles the designer of prestressed-concrete simple beams
must keep in mind: bottom flanges are primarily for resisting and retaining the
prestressing force until it is needed to resist the external load, at which time the
pressure line moves upward; top flanges are needed for fully loaded, flexural
members because the pressure line is in the vicinity of the top flange when the
beam is fully loaded (in addition, amply proportional top flanges ensure that
flexural failures of the brittle type cannot occur, as is discussed in Chapter 5);
flanged shapes permit greater distance between the pressure line and the center
of gravity of the prestressing force than is allowed by rectangular shapes, so
that smaller prestressing forces are required; and, finally, the webs are effective
primarily in resisting shear stresses. A complete understanding and appreciation
of these functions will assist the designer in the rapid preliminary design of
beams, as well as in obtaining economical and efficient designs.

Because the dead load of a prestressed member constitutes a small portion of
the total load to which it is subjected for short spans and a large portion of the
total load for long spans, the use of I-shaped, hollow-rectangular, and solid-
rectangular beams is more common for short-span members, whereas T-shaped
beams are more often used on long spans. (An exception to this is cast-in-place
box girder bridge sections, which are often used in long-span bridges, both
simply supported and continuous; see Chapter 14.

When straight pretensioned tendons are used in applications in which the
dead load of the member is large in comparison with the total moment, it often
is necessary to supply a large bottom flange to resist the prestressing stresses at
the end. In addition, the large bottom flange may be required to ensure that the
concrete cover for the tendons will be adequate to protect the tendons against
corrosion throughout the length of the beam. In such applications, the stress
level in the bottom flange at the center of the beam, due to the combined effects
of prestressing and dead load, may be relatively low. Because of the smaller
area required for post-tensioned tendons, as well as the ease of placing post-
tensioned tendons on curved paths, the size of the bottom flange of post-
tensioned beams is not frequently dictated by the stresses due to prestressing at
the end or by the amount of concrete required to provide adequate concrete
cover.

The designer experienced in field supervision as well as the theoretical aspects
of prestressed concrete will bear in mind that thin webs of 4 or 5 in. width may
be theoretically satisfactory with minimum web reinforcement, but their use
often is problematic, resulting in a member in which it is difficult to place and
consolidate the concrete. Honeycomb then becomes a real danger. Under normal
conditions, 6 in. should be regarded as the minimum web width for a precast
I-shaped beam, and 7 in. is the preferred minimum web width if post-tensioning
is used. The minimum web width some agencies permit in cast-in-place post-
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tensioned box girder bridge superstructure is 12 in.; experience has shown this
width is needed in order to provide sufficient space for shear reinforcement,
post-tensioning tendons, and consolidating the concrete with internal vibrators.

Extremely narrow top flanges are dangerous in prestressed concrete, just as
they are in structural steel. The top flange of a beam can buckle like a column
if it is of narrow dimensions, unsupported laterally, and too highly stressed.
Field experience has shown the desirability of using reasonably wide flanges to
reduce the transverse flexibility of girders during handling. This subject is treated
further in Sec. 17-8.

The usual ratio for depth of beam to span for simple prestressed-concrete
beam varies from 1 in 16 to 1 in 22, depending upon the conditions of loading,
allowable vertical clearance, and type of construction. In lightly loaded, simple
T-shaped roof members, the depth-to-span ratio may be as great as 1 in 30.
Simply supported cored slabs of prestressed concrete have been successfully
used with depth-to-span ratios as great as 1 in 40. Solid, continuous, post-
tensioned roof slabs with depth-to-span ratios as great as 1 in 45 have given
satisfactory performance. Excessive deflection and vibration under transient live
loads are more likely to be problems in slender members than in deeper, stiffer
ones.

4-10 Effective Beam Cross Section

The most commonly used procedure in prestressed-concrete design is to base
the flexural computations in the elastic range upon the section properties of the
gross concrete section, defined as the concrete section from which the area of
the reinforcement, the ducts in the case of post-tensioning, has not been
deducted, and to which the transformed area of the reinforcement has not been
added. This procedure is considered to render sufficiently accurate results in the
usual application of prestressed concrete. The accuracy in the computation of
stressses that would result by basing the computation on the net and transformed
section properties is not normally justified or significant. One must keep in mind
that the dimensions of sections are never constructed exactly as specified, and
the elastic properties of the concrete and reinforcement are not known precisely;
so assumed values must be used in computing transformed section properties.
It is important, however, that the designer of prestressed concrete be aware of
the nature of the actual section involved in the various types of construction,
and that the use of net section and transformed section properties can be impor-
tant under special conditions. Furthermore, Sec. 18.2.6 of ACI 318 requires
the consideration of the net section in computing the section properties in post-
tensioned members.

When the prestressing force is applied (at transfer) to pretension a concrete
member that does not contain nonprestressed flexural reinforcement, the defor-
mation of the concrete is a function of its net section properties because the
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concrete alone is compressed by the tensile force in prestressing steel. In this
case, at the time of applying the prestressing force, the prestressing reinforce-
ment shortens and does not assist the concrete in resisting the prestressing force.
The net section is defined as the section that results when the area occupied by
the pretensioned reinforcement (or ducts in the case of post-tensioning) is
deducted from the gross section. Because the pretensioned reinforcement is
bonded to the concrete, when there is a change of strain in the concrete at the
level of the prestressed reinforcement after the transfer of the prestressing force
to the concrete, there must be a corresponding and equal change of strain in the
presetressing reinforcement. Therefore, when external loads, other than the dead
load of the beam, which is acting at the time of prestressing, are applied, the
deformation of a member is a function of the transformed net section, which
can be defined as the section that results when the area of bonded reinforcement
(prestressed and nonprestressed) is transformed into an elastically equivalent
area of concrete, with the area of concrete displaced by the reinforcement taken
into account. This accomplished by multiplying the areas of the reinforcement
by the appropriate modular ratios and adding these transformed areas to the net
concrete section at the proper locations. If the transformed areas are added to
the gross concete section, the result is the gross-transformed section; if added
to the net section, the result is the net-transformed section. In normal preten-
sioning practice, the effect of the transformed section is small, and little normally
is gained by taking these effects into account. The effect of the transformed
section normally will be greater in large members with bundled pretensioned
tendons (see Sec. 8-8). However, little can be gained under normal conditions
by including these refinements in the computations. (See Sec. 9-2 for methods
of computing section properties.)

In the case of post-tensioned construction, the deformation of a member that
does not contain bonded nonprestressed reinforcement is a function of the net
section under all conditions of prestressing and external load, until such time
as grout is injected into the ducts and allowed to harden and thereby bond the
tendons to the concrete section. After bond is established, the deformation of
the member is a function of the net-transformed section. As in the case of
pretensioning, under normal conditions little is gained by including these effects
in the computations.

The use of the net section properties for the computation of stresses that occur
before the bonding of post-tensioned reinforcement is required by ACI 318, but
the use of the transformed section is optional for stresses that occur after
bonding.

The net section and net-transformed section properties should be used in
computing stresses in long-span, post-tensioned girders that have large concen-
trations of ducts in relatively small bottom flanges. In such cases, the areas of
the ducts can have a significant influence on the compressive stresses in the
bottom flange resulting from the prestressing, because the area occupied by the
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ducts may be a large portion of the total bottom flange area. In addition, the
area of the prestressing reinforcement generally is large and can have a signif-
icant effect upon the stresses due to superimposed loads.

In transforming an area of nonprestressed reinforcement (tension or compres-
sion), or an area of pretensioned reinforcement, the area of the reinforcement
should be multiplied by the quantity (n — 1), or in the case of pretensioned
reinforcement by the quantity (n, — 1), to account for the concrete area
occupied by the reinforcement (4, A4;, or 4,,). In the case of post-tensioned
reinforcement that is bonded by grouting after stressing, it is appropriate to use
n, A, as the area of the transformed reinforcement that is added to the net section
or net-transformed section. The values of n and n,,, the modular ratios for nonpre-
stressed and prestressed reinforcement, respectively, used in the computations
of transformed section properties should be computed by using the value of the
elastic modulus of the concrete appropriate for the age of the concrete at the
time when the change in loading is being considered. The details of the different
types of sections are illustrated in Fig. 4-26, and computations of section
properties for the various types of sections are discussed in Sect. 9-2.

ILLUSTRATIVE PROBLEM 4-13  For the pretensioned girder illustrated in Fig.
4-27, compute the stresses in the concrete due to prestressing, based upon the
gross and net section properties. In addition, compute the combined concrete
stresses, based upon the gross, net, and transformed-net sections at the center
of a span of 40 ft, when the externally applied load is 3.13 klf, the dead load
of the beam is 0.44 KIf, the area of the prestressing steel is 3.20 in.2, the eccen-
tricity of the prestressing is 9.40 in., the effective prestressing force is 440 k
and the modular ratio is 6.
The section properties of the gross section are:

A = 418.5 in.? I = 44,700 in.*
y, = —15.39 in. ¥, = 14.61 in,
r2 . r2 .

— = —6.94 in. — = 7.311in.

Y Y

S, = —2904 in.> S, = 3060 in.}

The area of the net section is 415.3 in.?, the eccentricity of the prestressing
is 9.48 in. (note the slight increase in the eccentricity due to the larger value
of y, for the net section), and other section properties for the net section are:

¥, = —15.32 in. y, = 14.68 in.

2 2

—6.98in.
Y yb

—2899 in.> S, = 3025 in.?

7.29 in.

g
Il
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Fig. 4-26. Cross sections of a beam illustrating: (a) gross concrete section; (b) net
concrete section having void for either pretensioned reinforcement or duct,
or preformed hole for post-tensioned reinforcement; (c) gross section
{containing nonprestressed tension and compression reinforcement as well
as a void for prestressed reinforcement); (d) transformed net section
{containing transformed nonprestressed reinforcement and void for post-
tensioning reinforcement, duct, or pretensioned reinforcement); (e) gross
transformed section (containing prestressed and nonprestressed reinforce-
ment).
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Fig. 4-27. Cross section used to demonstrate the effect of the transformed and net
beam cross sections as compared to gross cross section in I.P. 4-13.

The section moduli for the transformed-net section are S, = —2926 in.” and
S, = 3230 in.?

SOLUTION:
The stresses due prestressing based upon the gross section are:

o THM0000 (L 9k
‘4185 —694) = 0P

440,000 9.40\ _ ,
%= "4185 <1 7.31> = ~2403 psi

The stresses due to prestressing based upon the net section are:

~440,000 9.48 \ _ ,

f= 4153 ( * —6.98> =370 psi
—440,000 9.48

= () 4 25) = 2437 psi

fo= "33 < 7.29) pst

The moments due to dead and superimposed load are:

407

M, =04 ? = 88 k-ft
442

M, = 3.13 — = 626 k-ft

8
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The stresses due to the dead and superimposed load based upon the gross section
are:
12,000

f= (88 + 626) = = —364 — 2587 = 2951 psi

12,000
3060

The combined stresses, based upon the selection properties for the gross section,
are:

f, = (88 + 626) = 345 + 2455 = 2800 psi

f =373 — 364 — 2587 = —2578 psi
f, = —2403 + 345 + 2455 = 397 psi

The combined stresses in the top and bottom fibers due to prestressing and dead
load on the net section combined with those due to the superimposed load on
the transformed-net section are:

fi =379 — 364 — 2567 = —2552 psi
= —2437 + 349 + 2326 = +238 psi

ILLUSTRATIVE PROBLEM 4-14  Using the section properties for the gross, net
and transformed sections listed below, compute the stresses due to prestressing
in the top and bottom fibers for the post-tensioned girder of Fig. 4-28 based
upon an effective prestressing force of 2380 k located 5.3 in. above the soffit
based upon:

1. The gross section properties.

2. The net section properties if the area of the post-tensioning ducts is 39.0
a2
in.”.

In addition, determine the allowable uniformly distributed superimposed live
load on the girder, if the design span is 200 ft based upon:

1. The gross section properties.
2. The transformed section properties if nd,; = 8.35 in.%. Finally, compute
the ratio between the computed allowable superimposed live loads.

Gross Section Properties
2051in2 1= 3,735,950 in.*
y,= —53.7in. y,= 693in.

n
il

S, = —69,700 in.> S, = 54,000 in.?

2 r2
— = —=34.0 in. — = 26.3 in.
Y Yo
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lﬁ 30" 30" jj
=)
V3,,
3/[
11”
o 3
B %
i
ey |
/N
N
L
e .
12" | 127

Fig. 4-28. Girder cross section for Problem 4-14.

Net section properties
A = 2012 in.? I = 3,572,900 in.*

¥, = —52.5in. ¥y = 70.5 in.

S, = —68,000in.> S, = 50,750 in.?

r r
— = —33.8in. — =252 in.
Ve b
Transformed section properties
A = 2096 in.” I = 3,915,500 in.*
¥, = —55.0in. y, = 68.0 in.

S, = —71,300in> S, = 57,600 in.’
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SOLUTION:

(1) Stresses due to prestressing using the gross section:

-0 1+ ) - e
f = _232?0 <1 + ;:g) = —3984 psi
(2) Stresses due to prestressing using the net section:
=21+ 52) - oo
fr= —_220—3;2—0 <1 + %) = —4243 psi

The dead load of the beam is 2.14 kIf, and M, = 10,700 k-ft. Therefore, the
allowable superimposed live loads for the gross and net sections are computed
as:

(1) For the gross section:

10,700 x 12,000
= = 4 1
Ja ~69.700 1842 psi
10,700 x 12,000 _ .
f = 54,000 = 2378 psi

Final top-fiber stress = —1842 + 1024 = —818 psi
Final bottom-fiber stress = 2378 — 3984 = —1606 psi

w _ 1606 x 54,000 _ .\, e
712,000 x 5,000

(2) For the net and transformed sections:

10,700 X 12,000 _ o0
= = — S
b —68.000 psi
10,700 X 12,000
_ ’ ’ = 30 .
Jon 50,750 2530 psi

Final top-fiber stress = —1888 + 1099 = —789 psi

Final bottom-fiber stress = 2530 — 4243 = —1713 psi
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1713 X 57,600
= L2 2D e kif
st = 72,000 x 5,000

Ratio

1.14 (less for gross section)

4-11 Variation in Steel Stress

Because the prestressing steel never is located at the extreme fiber of a
prestressed beam but is at some distance from the surface of the concrete, the
maximum change in concrete stress that normally can be expected to occur at
the level of the center of gravity of the steel is approximately 70 to 80 percent
of the bottom-fiber stress that results from superimposed loads. With concrete
that has a cylinder strength of 5000 psi, the stress change in the concrete at the
level of the steel could be expected to be on the order of 1500 psi. The modular
ratio between the prestressing steel and the concrete can be assumed to be 6 for
loads of short duration. As a result, the application of the short-duration, super-
imposed load would cause an increase in steel of approximately 9000 psi,
provided that the steel and the concrete were adequately bonded. If the steel is
not bonded to the concrete but is anchored at the ends of the member only, the
increase in steel stress resulting from the application of the superimposed load
will be less than 9000 psi because the steel can slip in the ducts. The increase
in steel stress in unbonded tendons tends to be proportional to the average change
in the concrete stress at the level of the steel, and thus is affected by the tendon
shape and the depth of the concrete section.

It should be noted that the increase in stress of 9000 psi due to the application
of the superimposed load is only about 7 percent of the final stress normally
employed in wire or strand tendons, and about 11 percent of the final stress
normally employed in bar tendons. The reduction in stress in the prestressing
steel due to relaxation of the steel, shrinkage of the concrete, and creep of the
concrete is on the order of 10 to 30 percent under average conditions (see Sec.
7-2). Hence, the stress that exists in the tendon under the superimposed load
after all of the losses of prestress have taken place is not so high as the initial
stress in the steel.

The small variation in steel stress that occurs in a normal prestressed member
subjected to frequent application of the design load is responsible for the high
resistance to fatigue failure that is associated with this material (see Sec. 11-6).

ILLUSTRATIVE PROBLEM 4-15 Compute the increase in the stress in the steel
at the midspan of the beam in I.P. 4-13 by using the transformed section proper-
ties. The distances from the centroidal axis of the section to the top and bottom
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fibers are —15.74 in. and +14.26 in., respectively, and the section moduli for
the top and bottom fibers are —2926 in.? and +3230 in.?, respectively.

SOLUTION: The concrete stress at the level of the steel due to the external
load of 3.13 kif is:

Vees = 14.26 — 5.20 = 9.06.

626 x 12,000 x 9.06
3230 X 14.26

Jegs = = 1478 psi

The increase in steel stress due to the superimposed load is:

Af, = nf. = 6 X 1478 = 8868 psi (tension)

PROBLEMS
1. The double-tee slab shown in Fig. 4-29 has an area of 180 sq. in., and a
moment of inertia of 2860 in.*, with the distance from the top fiber to the
centroid of the cross section 4.00 in. Assume that the concrete weighs 150
pef and the member is to be used on a simple span of 24.0 ft. If it is preten-
. sioned with one tendon in each stem with an initial force of 16,100 Ib each,
located 2 in. above the bottom fiber, determine the initial stresses due to
prestressing and dead load at the support and at midspan. If the loss of
prestress is 20 percent of the initial force, determine the maximum super-
imposed service load that can be imposed on the member if the allowable
bottom fiber tensile stress under service load is zero, 200, 400, and 800 psi.

SOLUTION:
2860 r2  15.89 2 15.89
P="-=1589in% —=——"=~-397in, — = —— =159
r= g0 IS T 00 T 0. "

>
Fig. 4-29. Double-tee slab used in Problem 1.
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Stresses due to initial prestressing:

~2 X 16,100 8.00
f,=————=<1 +—>= 182 psi

180 —-3.97
-2 % 16,100 8.00
iz 180 < 1.59) 1079 psi
Load and moment due to dead load:
180
= — X 150 = 187.5 plf
Ya = 144 P
187.5 x 247
M, = 8T = 13,500 Ib-ft

Stresses due to dead load:

13,500 x 12 X —4

= = —227 psi
u 2860 7pst
13,500 x 12 x 10 .
= 2860 = 566 psi
Initial stresses at support:
[, = 182 psi
fo = —1079 psi

Initial stresses at midspan:

fi = 182 — 227 = —45 psi

= —1079 + 566 = —513 psi
Final stresses at support:

f, = 0.80 x 182 = 146 psi

J» = 0.80 X —1079 = —863 psi
Final stresses at midspan:

f, = 146 — 227 = —81 psi

fo = —863 + 566 = —297 psi

The allowable superimposed service load will be limited by the bottom-fiber is
2.5 times that of the section modulus for the bottom fiber. The results of the
allowable superimposed service load computations are summarized in Table

4-3.
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TABLE 4-3 Summary of Computations for Problem 1.

Allowable Bottom fiber
bottom stress due to Top fiber stress

fiber stress superimposed Superimposed due to total
at service service load service load service load

load (psi) (psi) (plf) (psf) (psi)

0 297 98 24 -200

200 497 165 41 -280

400 697 231 58 -360

800 1097 363 91 -520

Note: Flexural strength requirements, rather than service loads, can be shown
to govern the allowable loading on this member when the greater tensile stresses
are permitted (see Chapter 5).

2. For the condition of prestressing alone, as well as for the four allowable
bottom-fiber stresses investigated in Problem 1, construct the locations of
the pressure lines. Use a horizontal scale of 1.0 in. = 4.0 ft and a vertical
scale of 1.0 in. = 6.0 ft.

SOLUTION:

Taking f, to be the bottom-fiber stress due to the total service load, one can
write:

M
g M_ B 28607, = —0.000925f, ft

The computations are summarized in Table 4-4 and Fig. 4-30.

3. For the beam of Problem 1 loaded as shown in Fig. 4-31, compute and plot
the location of the pressure line if the effective prestressing force is 24,000
Ib. Include the dead load of the beam.

TABLE 4-4 Summary of Computations for Problem 2.

Allowable bottom
fiber stress due to

total service load fy Midspan
(psi) (psi) d (ft)
0 863 0.798
200 1063 0.983
400 1263 1.169

800 1663 1.539




BASIC PRINCIPLES FOR FLEXURAL DESIGN | 143

fy = —800 psi
f, = —400 psi
fb = —200 psi
fb =0
¢0.17' \
€ Tendons
24.00

Fig. 4-30. Pressure line locations for Problem 2.

SOLUTION:

For the concentrated load:

4 X 24
M.« = —m— = 24,000 ft-1b
4.5
For the beam dead load:
187.5 x 242
max — 87 58 24 = 13,500 ft-1b

The locations of the pressure line are summarized in Table 4-5. The results are
plotted in Fig. 4-32.
4. Solve Problem 3 as if the effective prestress were equal to 48,000 Ib.

4,500 Ib

187.5 plf
| I

8.0'

24.0'

Fig. 4-31. Beam used in Problem 3.
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TABLE 4-5 Summary of Pressure Line Locations for Problem 3. Values ofd = M/C
(ft).

Dist. from left end: 0 6 8 12 18 24
For conc. load: 0 —0.750 —1.000 -0.750 -0.375 0
For unif. load 0 —0.422 -0.500 —0.563 -0.422 0
Total 0 -1.172 —1.500 -1.313 -0.797 0
SOLUTION:

The total movement of the pressure line will be half as much with an effective

prestressing force of 48,000 1b. The pressure line locations are summarized in

Table 4-6.

5. For the beam shown in Fig. 4-33a, and the total service loads shown in Fig.
4-33b, plot the location of the pressure line at midspan and the quarter points.

SOLUTION:

The solution is shown plotted in Fig. 4-34.

6. For the beam in Fig. 4-35, plot the location of the pressure line for a
prestressing force of 100,000 1b if the beam is subjected to a uniform service
load of 3000 plf. Use scales of 1 in. = 5.00 ft and 1 in. = 1.00 ft horizon-
tally and vertically, respectively.

SOLUTION:

The negative moment at the right support due to the load on the overhanging
end of the beam is:

_ —3000 x 10°

M, = = —150,000 ft-Ib

1.500’ \
(3]
1.313'

1.172'
0.797'

\ Center of gravity of tendons
24'-0"

Fig. 4-32. Pressure line for Problem 3.
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TABLE 4-6 Summary of Pressure Line Locations for Problem 4. Values ofd = M/C
(ft).

Dist. from left end: 0 6 8 12 18 24
Total 0 —0.586 —0.750 —0.657 -0.399 0

M
5 | e 2;_ 0//

= [\

4 1\50“

48'-¢"

21_ 0"’9'

(a) Elevation of beam

200 plf

|

1500 pif

(b) Distribution of loads

Fig. 4-33. Beam for Problem 5.

©
™

© i ©
o

a A

o ~

l\ Center of gravity
48'-0" of tendons

Fig. 4-34. Pressure line for beam of Problem 5.
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12.00' 3.00’ 15.00'

Yy

16"
N,
o
S
°
e | 4n

30.00' 10.00'

Fig. 4-35. Beam for Problem 6.

The simple-span moment for the load on the 30 ft span only is:
3000 x 30°
M - —

o = = 337,000 ft-1b

The moments for various distances from the left support are summarized in

Table 4-7. The solution is completed by dividing the total of the moments by

the prestressing force, 100 k, and plotting the results as shown in Fig. 4-36.

7. For the beam shown in Fig. 4-37a, plot the location of the pressure line
when the uniformly distributed load is acting alone as well as the location
when the uniformly distributed load and the concentrated loads both are
acting.

SOLUTION:
The moment diagrams for the uniformly distributed load alone, the concentrated

loads alone, and the combination of the uniform and concentrated loads are

TABLE 4-7 Summary of Computation of Moments for Problem

6.
Dist. M., M., M,
{ft) (ft-k) (ft-k) {ft-k)
0 0.0 0.0 0.0
3 121.5 -15.0 106.5
6 216.0 -30.0 186.0
9 283.5 —45.0 238.5
12 324.0 ~60.0 264.0
15 337.5 -75.0 262.5
18 324.0 -90.0 234.0
21 283.5 ~105.0 178.5
24 216.0 -120.0 96.0
27 121.5 —135.0 -13.5
30 0.0 -150.0 -150.0
35 0.0 -375 -375

40 0.0 0.0 0.0
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| o T\ Center of gravity of prestressing steel

1 .00(L|
>

g ¢ 8 3 § 8 g o
\ -— - N N N N - /
2 (. A
2 >~ o
250'

0.960’ /

—\ L

Fig. 4-36. Pressure line for Problem 6.

in
N
P = 75* o 1000 plif

1) =

0.75’'

10.0

T "7‘—%
[]
]

r
L 20.0'

10.0'

(a) Elevation
50 Ft - k

X ..L._u;lr

(b) Moment due to Uniformly
f»/_'50 Ft-k Distributed Load Alone

(c) Moment due to Concentrated
Loads Alone

Fig. 4-37.

(d) Moment due to Total Loads

Beam and moment diagrams for Problem 7.
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TABLE 4-8 Summary of Pressure Line Locations for Problem 7.

Prestress Prestress and Prestress and
Point only uniform load total load
Left end 0.00 0.00 0.00
Midcant. span —4.50 -2.50 +1.50
Left support —6.00 +2.00 +10.00
0.10L —-6.00 —0.88 +7.12
0.20L —6.00 -3.12 +4.88
0.30L —6.00 —-4.72 +3.28
0.40L -6.00 -5.68 +2.32
0.50L -6.00 -6.00 +2.00

shown plotted in Fig. 4-37a-c. The locations of the pressure line at various

points along the span for the conditions of prestressing alone, prestressing plus

the uniformly distributed load, and prestressing plus the combined effects of the

loads are summarized in Table 4-8 and plotted in Fig. 4-38.

8. The two-span continuous beam in Fig. 4-39 has variable depth and
prestressing force. The location of the pressure line and the magnitude of
the prestressing force are given in Table 4-9. Also given in the table are the

Tendon
/

2

+6.00"

— =

\

Tendo!
/

Pressure Line

(a) Prestress Plus Uniformly Distributed Load

n

/-

—-1.50"

[}
/(—:oo"

=

Pressure Line

(b) Prestress Plus Total Load

Fig. 4-38. Plots of computations for Problem 7.
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Pressure line of prestressing force
20 30

— e —
A e —— e h

'} Symmetrical about

/center support

100’ 100’

Fig. 4-39. Beam for Problem 8.

dead load moment and the maximum and minimum live load moments.
Tabulate the location of the pressure line for the beam when under dead load
alone as well as when under dead load plus maximum and dead load plus
minimum live loads.

SOLUTION:

The eccentricities of the pressure line in inches, resulting from the computations
are summarized in Table 4-10.

9.

If f,;, = 4000 psi and f. = 5000 psi, compute the maximum uniformly
distributed load that the beam in Fig. 4-40 can withstand on a span of 70 ft.
Make the determination for the tendons being straight as well as curved. Use
the stresses permitted by ACI 318 (see Sec. 3-19). Assume that the loss of
prestress is 20 percent, and the curved tendons can be placed with their
center of gravity as low as 3.25 in. from the soffit of the beam. The beam
has a weight of 488 plf, an area of 468 sq. in., and moment of inertia of
94,184 in.*. The distance from the top fiber to the centroidal axis is 22.54
in.

TABLE 4-9 Given Information for Problem 8.

e P Md Mmax Mmin

Pt. (in.) (k) (k-ft) (k-ft) (k-ft)
0 0.00 1012 0 0 0
1 2.52 1047 203 416 146
2 4.68 1088 330 697 216
3 6.48 1122 379 839 209
4 7.56 1157 352 846 126
5 8.16 1198 247 715 =35
6 4.56 1164 65 446 -274
7 -0.24 1115 —200 34 -596
8 —6.96 1074 —555 ~527 —1007
9 —14.76 1026 —1005 —1244 -1753
10 —21.24 916 —1558 -2123 —2689
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TABLE 4-10 Summary of Results for Problem 8.

P plus P plus P plus

Pt. P only My My + M, . My + Mo
0 0.00 0.00 0.00 0.00
1 2.52 0.19 —4.57 —1.48
2 4.68 1.03 —6.67 -1.35
3 6.48 2.43 —6.55 0.19
4 7.56 391 —4.87 2.60
5 8.16 5.69 —1.48 6.04
6 4.56 3.89 -0.71 6.71
7 -0.24 1.91 1.55 8.33
8 -6.96 -0.76 5.13 10.49
9 -14.76 -3.01 11.54 17.50
10 -21.24 -0.83 26.98 34.40

SOLUTION:

The limits of the kern zone and the section moduli are computed as follows:

94,184

=42 —22.45 = 19.46 in., r> = ——— = 201 in.2
Y, =4 in., r 468 in
rr_ 201 r2 201
— = = —8.92 in 10.3 i
y, | —22.54 'y, 1946 o

94,184 94,184

= - = = 4840 i -3

S, _22 54 4178 in.> , Sy 19.46 in

The allowable initial stresses are 2400 psi in compression and 190 psi in tension.
The allowable final stresses are 2250 psi in compression and 848 psi in tension.

Bk
5”

+ 190 psi + 152 psi
6”}4— . ™ ~
]
18" . - 2400 psi - 1920 psi
o
(a) Cross section. (b) Initial stress (c) Final stress
straight tendon. straight tendon.

Fig. 4-40. Beam and stress distribution for Problem 9.
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(a) Straight tendons: The average prestress for the initial prestressing force
is computed as follows (see Fig. 4-40b):

C 22.54 .
<= -[190 - (-2400)] )t 190 = —1200 psi

Solving for e using eq. 4-4:

e= <_2400 1> (10.34)

1200 10.34 in. < y, — 3.25 in.

19.46 — 3.25 = 16.21 in. ok
C = —-1200 X 468 = —561.6 k

The moment capacity, as limited by the service load stresses in the top and
bottom fibers (see Fig. 4-40c), is computed as follows:

By top fiber:
(2250 + 152)
M= -~/ = -
2, (4178) = 836 k-ft
By bottom fiber:
(1920 + 848)
M = ———=(4840) = 1116 k-ft
(12,000) ( )
_ 8 X836

TP = 1365 plf

(b) Curved tendons: The dead load moment due to the weight of the beam
is:
488 707

My = —— X — = 298.9 k-ft
471000~ 8 98.9

The stresses due to dead load at midspan are:
fi = —858 psi, f, = 741 psi
The shift in the location of the pressure line due to the dead load moment would
be:
My 298.0

= — x
d C 561.6

12 = —6.39 in.

The eccentricity of the prestressing force can be greater with the curved tendon
than with the straight tendon by the amount of 6.39 in., for a total of 6.39 +
10.34 = 16.73 in. The maximum eccentricity, as limited by the minimum
distance from the soffit to the centroid of the prestressing steel (3.35 in.), is:
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emax = 19.34 — 3.25 = 16.21 in. < 16.73 in.

Using 16.21 in. and solving for the prestress needed to produce an initial bottom-
fiber stress that is equal to the arithmetical sum of the bottom-fiber stress due
to beam dead load, 741 psi, and the allowable initial stress, —2400 psi, which

is 3141 psi, one obtains:
C 16.21
3= <1 * 10.34>

C=-572k

The top and bottom fiber stresses due to the initial prestressing force of —572
k are:

—572,000 16.21
f=—1—= <1

468 —8.93> = 9% psi

—572,000 16.21
=———=({14——)=-31 i
fo 468 < * 10.34> 3138 psi

Net initial top-fiber stress = 996 — 858 = 138 psi

Net initial bottom-fiber stress = —3138 + 741 = —2397 psi

The 20 percent loss of prestress results in final top and bottom fiber stresses due
to prestressing alone of 797 psi and —2510 psi, respectively.
Moment capacity limitations of service loads are:

36”
©
3” x 3” t .
P ~ 1800 psi
/
R l<6" |4 |0
< 6”7 - N ™
+200 psi
A .
ps ©
(a) (b)

Fig. 4-41. Cross section of beam and stresses for Problem 10. (a) Cross section. (b)
Distribution of stresses.
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TABLE 4-11 Summary of Computations for Problem 10.

y f b b’ P P’
36 —1800 36 — —64.8 —
30 —1467 36 18 -52.8 —-26.4
27 —1300 12 — -15.6 —_
9 -30 12 — -3.6 —
6 -133 36 18 —-4.79 2.39
0 +200 36 — +7.20 —
By top fiber:
(2250 + 797) 4178
M= = 1061 k-ft
12,000
By bottom fiber:
(2510 + 848) 4840
12,000 ft
8 x 1061
=———— = 1732 pIf
w 702 p
1732
Ratio = —— = 1.27
0 T 1365

10. For the hollow-box girder shown in Fig. 4-41a, plot the distribution of
force in the section for the stress distribution indicated in Fig. 4-41b.
SOLUTION:

The computations required for preparing the plot are summarized in Table 4-11.
The plot of the distribution of the forces is shown in Fig. 4-42.

+7.20

Fig. 4-42. Distribution of forces in kips per inch for Problem 10.
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Strength

5-1 Beams under Overloads

It has been shown that a variation in the external load acting on a prestressed
concrete beam results in a change in the location of the pressure line, for beams
in the elastic range. This is a fundamental principle of prestressed construction.
In a normal prestressed concrete beam, this shift in the location of the pressure
line continues at a relatively uniform rate as the external load is increased, to
the point where cracks develop in the tension fiber. After the cracking load has
been exceeded, the rate of movement in the pressure line decreases as additional
load is applied, and a significant increase in the stress in the prestressing tendon
and the resultant concrete force begins to take place. This change in the action
of the internal moment continues until all movement of the pressure line virtually
ceases. The moment caused by loads that are applied thereafter is offset entirely
by a corresponding and proportional change in the internal forces, just as in
nonprestressed reinforced concrete construction. The range of loading that is
characterized by these different actions is illustrated in the load deflection curve
of Fig. 5-1. The fact that the load is carried by actions that are fundamentally
different in the elastic range and in the plastic range is very significant, making
strength computation essential for all designs of prestressed concrete flexural

154
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A Ultimate load for
under-reinforced
beam

>
Ultimate load for |~ Plastic range

over-reinforced Steel stress reaches
beam \ the yield point

\

In plastic range load changes are
offset by stress changes.

Load
Transition
range

In transition range load changes
are offset by stress changes and
shift of pressure line.

Cracking load

In elastic range load changes are
offset by shift of pressure line.

Elastic
range

[
>

Deflection

Fig. 5-1. Load-deflection curve for a prestressed-concrete beam.

members, to ensure that adequate safety exists. This is true even though the
stresses in the elastic range may conform to a recognized elastic design crite-
rion.

It should be noted that the load deflection curve in Fig. 5-1 is very close to
a straight line up to the cracking load, and that the curve becomes progressively
more curved as the load is increased above the cracking load. The presence of
nonprestressed reinforcing steel in the tensile flange will tend to make the
cracking load more difficult to detect from a load-deflection curve, as well as
from observations of a beam during loading. The curvature of the load-deflec-
tion curve for loads exceeding the cracking load is due to the change in the
basic internal resisting moment action that counteracts the applied loads, as
described above, as well as to inelastic strains that begin to take place in the
steel and the concrete when stressed to high levels.

It may be essential for some flexural members to remain crack-free even
under significant overloads, perhaps because of their being exposed to excep-
tionally corrosive environments during their useful life. In designing prestressed
concrete members for use in special applications such as this, it may be neces-
sary to compute the load that causes cracking of the tensile flange to ensure that
adequate safety against cracking is provided. Computation of the moment that
will cause cracking also is necessary, to ensure compliance with some design
criteria (see last paragraph of Sec. 5-4).

Many tests have démonstrated that the load-deflection curves of prestressed
beams are approximately linear up to and slightly in excess of the load that
causes the first cracks in the tensile flange. (This linearity is a function of the
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rate at which the load is applied.) For this reason, normal elastic-design
relationships can be used in computing the cracking load by simply determining
the load that results in a net tensile stress in the tensile flange (prestress and the
effects of the applied loads) that is equal to the tensile strength of the concrete.
It is customary to assume that the flexural tensile strength of the concrete is
equal to its modulus of rupture in computing the cracking load. The modulus
of rupture can be estimated from eq. 3-3.

It should be recognized that the performance of bonded prestressed members
is actually a function of the transformed section rather than the gross concrete
section (see Sec. 4-10), as well as of concrete creep and shrinkage (see Sec.
7-2). If it is desirable to make a precise estimate of the cracking load, as is
required in some research work, these effects must be considered.

ILLUSTRATIVE PROBLEM 5-1  Compute the total uniformly distributed load
required to cause cracking in a beam that is 10 in. wide, 12 in. deep, and
supported on a simple span of 25 ft, if the final prestressing force is 120,000 Ib
applied at an eccentricity of 2.50 in. Assume f, = 5000 psi and f, =

7.2/5000 = 509 psi.
SOLUTION:
A=120in> I = 1440 in.*
r?/y = ¥2.00 in. (top/bottom fibers, respectively)
1440

S = el F240 in.? (top/bottom fibers, respectively)
—120,000 2.50 .
Jo 120 < 2.00) 50 psi

Therefore, the moment that causes cracking must result in a bottom-fiber tensile
stress equal to 509 psi + 2250 psi = 2759 psi.

wl>  £S, 2759 X 240

M = — = - . -
v =g TT000 1200 - o>i8kd
55.18 X 8
W= oo = 0.706 KIf

5-2 Principles of Flexural Capacity for Members with Bonded
Tendons

When prestressed flexural members that are stronger in shear and bond than in
bending are loaded to failure, they fail in one of the following modes:
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1. Failure at Cracking Load. In very lightly prestressed members, the
cracking moment may be greater than the moment the member can withstand
in the cracked condition so that the cracking moment is the ultimate moment.
This condition is rare and is most likely to occur in members that are prestressed
concentrically, or with small eccentricities and with relatively small amounts
of prestressing steel. It also can occur in hollow or solid prestressed concrete
members that have relatively low levels of reinforcement. Determination of the
possibility that this type of failure will occur is accomplished by comparing the
estimated moment that would cause cracking to the estimated flexural strength
of the member. If the estimated cracking load is larger than the computed
ultimate load, this type of failure would be expected to take place if the member
were subjected to the required load. Because this type of failure is brittle, it
occurs without warning. Members that would fail in this fashion should be
avoided.

2. Failure Due to Rupture of Steel. In lightly reinforced members subject
to externally applied load that results in flexural failure, the strength of the steel
may be attained before the concrete is subjected to high stresses and has reached
a significantly inelastic state. This type of behavior is likely to be encountered
in structures that have very large compression flanges and relatively low
percentages of flexural reinforcement, such as composite bridge stringers.
Computation of the flexural strength of members subject to this type of failure
can be done with a high degree of precision. The method of computation, as
well as the determination of which members are subject to this mode of failure,
is described below.

3. Failure Due to Concrete Strain. The usual underreinforced, prestressed
flexural members encountered in practice are of such proportions that if they
are loaded to their flexural strength, the steel would be stressed well above its
yield strength, and the members would attain large deflections before failure.
Failure of an underreinforced member occurs when the concrete attains the
maximum strain that it is capable of withstanding. Research has shown that the
flexural strength of underreinforced flexural members, made with concrete of
the normal quality used in prestressed concrete work, is attained when the
concrete reaches a strain on the order of 0.003. The flexural strengths of
members of this type are limited by concrete strain, load-deformation charac-
teristics, and the amount of the flexural reinforcement. The flexural strength of
underreinforced concrete can be predicted with relatively high precision.

4. Failure Due to Crushing of the Concrete. Flexural members that have
relatively large amounts of prestressing steel or relatively small compressive
flanges are said to be overreinforced. Overreinforced members, when loaded to
their flexural capacities, do not attain the large deflections associated with
underreinforced members, and at failure the stress in the steel does not exceed
the yield strength by a significant amount if at all. The failure of the member
is limited by the compressive strength (crushing of the concrete compression
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flange) and not by the strain in the concrete, as is the case with underreinforced
members. The flexural strength of overreinforced concrete flexural members is
computed by a trial-and-error procedure, involving assumed strain patterns, as
well as by empirical relationships. Both methods are discussed below (Muller
1956).

It must be emphasized that there are no precise definitions of the boundaries
between the different classifications of failures listed above. Provisions are
included in the Building Code Requirements for Reinforced Concrete, ACI 318,
to alert the structural designer to the special problems associated with lightly
reinforced, underreinforced, and overreinforced members (see Sec. 5-4).
Important parameters used in the analysis of the flexural strength of prestressed
concrete members include the percentage of reinforcement, p,, which is defined
as follows:

A

y 23

Pp = b_dp (5_1)

where A, is the area of the prestressed reinforcement in the tension zone, b is
the width of the compression flange of the member, and d,, is the distance from
the extreme compression fiber to the centroid of the prestressing reinforcing.
Another factor is the reinforcement index, w,. This dimensionless parameter,
which is used in contemporary building codes, is defined as follows:

Aps fps
@,

p=m=t’pﬁ (5-2)

where f,; represents the stress in the prestressing steel under the load resulting
in the ultimate moment, and f is the specified concrete compressive strength.

It should be noted that f! used in eq. 5-2, is defined as the specified compres-
sive strength of concrete, psi, in Chapter 4 of ACI 318 (ACI 318 1989). The
value of f. normally is specified by an engineer who has designed reinforced
concrete members that are included in contract plans and specifications for a
unique project. It is, of course, normal and appropriate that the provisions of
building codes refer to specified concrete strengths rather than actual concrete
strengths. It also should be recognized that actual concrete strengths, which
normally but not always will exceed the specified concrete strengths, are appro-
priately used in the analysis of experimental data and for explaining the basic
behavior of reinforced concrete members. For this reason, the term f, is used
henceforth in this discussion to refer to the concrete cylinder compressive
strength, in psi.

In order to simplify the explanation of strain compatibility theory as it relates
to the computation of ultimate flexural strength, a rectangular beam cross section
will be assumed throughout the following discussion. This is done to eliminate
the variable of flange width, which is frequently encountered with I or T cross
sections. In addition, the following assumptions are made:



FLEXURAL STRENGTH | 159

1. Plane sections are assumed to remain plane.

2. The stress—strain properties of the steel can be represented by a smooth

curve without a definite yield point.

3. The limiting strain of the concrete is equal to 0.003 regardless of the

strength of the concrete.

4. The steel and concrete are completely bonded.

. The stress diagram of the concrete at failure is such that the average
concrete stress is 0.85f,,, the depth of the stress block is 0.85k,d,, and
the resultant of the stress in the concrete acts at a distance of 0.42k, from
the top of the compression block, as is illustrated in Fig. 5-2.

6. The strain in the top fiber of the concrete section under prestressing alone

is equal to zero.

7. The section is subject to pure bending.

8. The analysis is made for the condition of static loads of short duration.

W

The strains illustrated in Fig. 5-2 and used in the derivation are defined as
follows:

€. concrete strain at extreme fiber due to prestressing (assumed = 0).
€,. maximum concrete strain at ultimate moment (assumed = 0.003).
€. concrete strain at the level of the steel due to prestressing.

€., concrete strain at the level of the steel at ultimate moment.

€ steel strain due to the effective prestress.

€ps: steel strain at ultimate moment.

b € =0 €4 Av. = 0.85f;

— T ar

a, o .__— . a,
] ’“! :: -ax
-~ ~ -
<
o
|
"ﬁh'

Aps _—/ r=— >

(a) (b) (c) {d)

Fig. 5-2. Cross section, strain distributions, and stress distribution used in flexural
strength computations. (a) Cross section of beam. (b) Strains due to
prestress. {(c) Strains at ultimate flexural capacity. (d) Stresses at ultimate
flexural capacjty.
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Because equilibrium of the section requires that the tensile force in the
prestressing steel and the compressive force in the concrete be equal, one can
write:

T=C
or:
Ap, fps = 0.85f,bk,d,
and:
0.85f,,dk,d,
Jos = a4,
or:
o = e (53)
Expressed in terms of force, eq. 5-3 is written:
F,s = 0.85f,bk,d, (5-3a)

By comparing the similar triangles of the concrete strains at ultimate shown
in Fig. 5-2, the following relationship is seen:

ecu _— eu
4, — kd, k.,
or:
1 -k
—e (LK 5.4
= (F12) (54)

The strain in the prestressing steel at ultimate moment, e,,, which consists of
the sum of the strains due to the effective prestress, ¢,,, the strain in the concrete
at the level of the steel resulting from prestressing, €., and the strain in the
concrete at the level of the steel at ultimate moment, €, can be expressed by:

€ps = €se + €ce + €cu (5_5)
Substituting eq. 5-4 into eq. 5-5, one obtains:
1 -k
€ps = Ese t e T & < k u> (5'6)

which can be rearranged to:

k= e (57)
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Substituting the value of k, given in eq. 5-7 into the relationship of eq. 5-3,
the general equation for the stress in the prestressing steel and the strains in the
concrete and steel under ultimate flexural loading is obtained:
_ 0.85f.., » €,

Pp € t+ €ps T €se — €ce

Jos (5-8)
All of the terms in this relationship are known or assumed except the strain,
€,,, and the stress, ﬁ,s, in the prestressing steel at failure. The stress—strain curve
for the prestressing steel actually used in the construction of the flexural member
represents the second relationship needed to solve eq. 5-8.

A solution using the strain compatibility procedure described above is illus-
trated in Fig. 5-3, in which the basic assumptions used in the analysis are given
in the figure itself, and the values of the steel index ¢” are shown plotted on
the stress-strain curve for the particular steel that was studied. The steel index
is defined as:

" Aps fI‘zu ﬂu
= =p, —
bdyfor 7 fuu

The steel index was used by some of the early proponents of strain compatibility
analysis, rather than the reinforcement index (eq. 5-2) that is commonly used
today. In addition, some of the early analyses were based upon a maximum
concrete stress of 0.80f7 rather than 0.85, and the maximum concrete strain at
failure was assumed to be 0.0034 rather than 0.003 in. /in. (Muller 1956). The
results obtained by using these slightly different values are almost identical to
those obtained using the contemporary assumptions, which were listed above

(5-9)

300 T T T 1
] ¢"=030 |¢"=020 ¢'=0.10
250 q"=040 \\ ~
"= 0.60 \
3 200 q"= 0.80y Note: Curves for g"are based on the actual, _|
X =100 ¥ ultimate tensile strength = 275,000 psi
8 1s0l-a"=1.20 | 1 1 1 1 |1 |
P Assumed Values: [, pu =275,000 psi ¢, = 0.0051
3 100 Eps =267Xx10%psi | € =0.0004 _|
& fye =1317.000 psi ¢, = 0.0034
50 _0.80fpu LT
fp.t = ) X +
q €y T Egy ~ €ge = €ce
1 1 1 1 L 1

1
0 0.004 0008 0012 0016 0020 0024 0.028
Strain (in/in)

Fig. 5-3. Stress—strain diagram with curves for various values of ¢” superimposed.
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and are discussed further in Sec. 5-4. The following discussion, which is based
upon the paper presented in 1956 by Muller, is used as a means of further
illustrating the basic principles of using strain compatibility in the flexural
strength analysis of reinforced concrete beams; it is not intended to imply that
the limiting stresses and strains used therein are recommended for use today.

The intersections of the curves for ¢” with the stress-strain curve in Fig. 5-3
define the values of steel stress and steel strain that are compatible for different
values of q”. Stress—strain curves are a function of the physical properties of
the prestressing steel and can be obtained experimentally for each heat of steel
manufactured; they are not derived mathematically. A trial-and-error procedure
must be followed if these curves for g” are used in solving strain compatibility
relationships with a stress-strain curve that cannot be expressed mathemati-
cally. However, it sometimes is feasible to mathematically approximate an
actual stress—strain curve, or at least the portions of the curves for stresses that
are greater than the yield strength of the steel, and thereby avoid the use of the
trial-and-error procedure.

Values of f,, as a function of the steel index, resulting from the analysis
summarized in Fig. 5-3 are compared graphically in Fig. 54 with values
obtained from the approximate relationship:

Jos = fu(1 — 0.50,) (5-10)

This approximate relationship, which was included in the ACI-ASCE Joint
Committee 323 report ‘‘Tentative Recommendations for Prestressed Concrete’’

g

\\{s‘ Based on data from Fig. 5-3

fps=fpu(1-054") \\
N

S~
B =fpu(1-0.5pp% T —
||

0] 0.20 0.40 060 0.80 1.00 1.20
A psf pu _ if pu

T =Pp
bdpfe ° fe

Fig. 5-4. Variation of £, with the steel index. The actual values of f,; shown are based
on the stress—strain curve of Fig. 5-3, and the approximate values are from
eq. 5-10.

g

Average Stress in Prestressing Steel
at Ultimate, f,,s (Ksi)
)
[N]
(=]

5

Steel Index, ¢" =
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g~ T
< 060
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@ " Ap-!fpu

Steel Index, q" = ———-

bd, f,

Fig. 5-6. Variation of lever-arm—depth ratio, j, with steel index.

(ACI-ASCE Committee 323 1958), has been included in the major U.S.
building codes since 1963. In recent years it has been modified to better reflect
the effects of concrete strength and type of prestressing steel (see Sec. 5-4). As
can be seen from Fig. 5-4, the values predicted by the approximate relationship
are conservative for this particular steel, as would be expected. The variation
of j, the ratio of the resisting moment lever arm to the effective depth of the
section, is shown as a function of the steel index in Fig. 5-5, and the ratio of
the ultimate moment capacity to f,, 4,,d, is shown as a function of the steel
index in Fig. 5-6.

Tests have shown that for lightly reinforced members, arbitrarily defined as

1.00
"h.ﬂ 0.90
Y, R
vq& ‘:R 0.80 \\
&
Ry
5 § 0.70 AN
T3 060
5 R
2 % 050
LR
T = 040 ™~
0.30
0 0.20 0.40 0.60 0.80 1.00 1.20
A
Steel Index, q”' Apslou
bdpfz

Fig. 5-6. Variation in the factor M, /f,,A,.d, with the steel index.
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those with steel indices less than 0.08, the flexural capacity can be calculated
with sufficient accuracy by the relationship:

M, = 0.95f,,4,.d, (5-11)

The lightly reinforced members fail as a result of the failure of the prestressing
steel, and before the concrete has become highly stressed.

The results summarized in Figs. 5-3 and 5-4 indicate that for the particular
steel studied, the moment capacity is very nearly linear for the lower values of
the steel index. Members made with this steel, and having relatively low
amounts of reinforcement (as measured by the steel index), would be expected
to experience large deformations of the flexural reinforcement before collapse.
This behavior has previously been described as characteristic of underreinforced
members. Figures 5-3 and 5-4 also indicate that if this steel were to be used in
relatively large quantities, the steel stress would be relatively low, and the
members would perform as described above for overreinforced concrete
members.

As was stated above, the relationships that have been developed in this section
are applicable to flexural members having rectangular cross sections. These
relationships are equally applicable for flanged sections, provided that the neutral
axis of the section when loaded to its flexural capacity is within the limits of
the compression flange. If, when subjected to the ultimate loading, the neutral
axis is located outside of the flange area, the same strain distribution applies as
in the case of rectangular sections, but because of the variable width of the
section that is subjected to compressive stresses, the distance from the extreme
compressive fiber to the neutral axis is no longer equal to 0.42k,d,, and its
location must be calculated. To facilitate calculation of the location of the
resultant of the compressive stresses, the compression block can be assumed to
be rectangular rather than curved, as shown in Fig. 5-2, without the introduction
of significant error.

When complete strain compatibility analyses are not made, and small
quantities of nonprestressed flexural reinforcement are used in combination with
small quantities of prestressed reinforcement in underreinforced members, the
additional flexural strength due to provision of the nonprestressed reinforcement
can be approximated by:

M, = 0.904,f,d (5-12)

where d is the distance from the extreme compression fiber to the centroid of
the nonprestressed reinforcement, and A, and f, are the area and yield strength
(60,000 psi maximum ) of the nonprestressed reinforcement, respectively. When
significant amounts of nonprestressed reinforcement are used in combination
with prestressed reinforcement, strain compatibility analyses should be
performed.
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Fig. 6-7. Effect of effective prestressing stress, f,., on the ratio M, /A,,s £, d for various
values of steel index, ¢” (after J. Muller).

The effect that unintended variations in the effective stress in prestressed
reinforcement have on the flexural capacity of prestressed concrete members is
shown in Fig. 5-7. This figure illustrates the fact that small variations in the
effective prestress have no significant effect on the flexural strength of
prestressed members having bonded tendons. It is important to note that even
if errors are made in estimating the losses of prestress, or in estimating the
friction during prestressing, or even if the stressing is not carried out with
reasonably high precision in the field, the effect on the flexural strength is gener-
ally small for flexural members having bonded tendons.

An obvious difficulty with applying strain compatibility in the design of
prestressed concrete flexural members is related to determining the stress—strain
curve for the prestressed reinforcement that will be used. At the time when
prestressed members are designed, the designer rarely knows the source of the
prestressing steel to be used in construction, and thus cannot have access to the
stress-strain characteristics of the prestressing steel that will be used in the
actual construction. More often than not, the steel that will be used has not yet
been produced when the structure is being designed. Consequently, it has been
customary for designers to use mathematical relationships that conservatively
approximate the stress in the prestressing steel in strength calculations; the
provisions of virtually all U.S. codes and standards for the design of prestressed
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concrete permit the use of relationships of this type. It should be recognized,
however, that designs based upon strain compatibility analysis, which utilize
less conservative stress—strain relationships, frequently will be more econom-
ical that those based upon these approximate relationships. For this reason,
there is considerable interest in avoiding the commonly used approximate
relationships and instead performing strain compatibility analyses based upon
stress-strain curves intended to reasonably approximate the stress-strain
characteristics of prestressing steel obtained from any of several sources. Curves
of this type, which have been included in the publications of the Precast
Prestressed Concrete Institute since 1978, are reproduced herein as Fig. 5-8
(PCI 1978, 1985). It is well known that the shapes of the stress—strain curves
are not the same for prestressing strand produced by different manufacturers,
and this probably is the case for prestressing wire and high-tensile-strength bars
as well. The designer of prestressed concrete should exercise care in selecting
a stress—strain curve for use in a strain-compatibility analysis, and should provide
a means of confirming that the curve used is reasonably representative of all of
the prestressing steel used in the actual construction.

The manufacturers of prestressing steel normally do not provide stress-strain
curves for their products. Upon request, however, they will provide load-strain
curves that are either typical of their products or are prepared for a particular
heat or production lot of the products. Load-strain curves are preferred by
manufacturers, and should be by designers, because they illustrate the actual
measurements made on test specimens and have not been converted from force
to unit stress—a process that can result in erroneous results if theoretical areas
of the test specimens are used. It should be recognized that the diameters, and
hence the areas, of individual prestressing wires and bars vary from their
theoretical dimensions. Because strands are made from seven individual wires,
their dimensions must be expected to vary from the theoretical dimensions as
well. The variations should be within certain tolerances, set either by the appli-
cable ASTM standard or, in the absence of an ASTM standard, by the manufac-
turer’s specifications. The load—strain curves are easily employed in performing
strain-compatibility analyses using the principles and relationships explained
herein, by simply rearranging the relationships from expressions of stress to
those of force.

To facilitate strain-compatibility computations, the stress-strain curve for
nonprestressed reinforcement normally is taken to be bilinear, as shown in Fig.
5-9. The curve is based upon the premise that the slope of the first portion of
the curve is equal to the elastic modulus of the nonprestressed reinforcement
for stresses up to and including its yield strength, and for stresses above the
yield strength, the strain increases without an increase in stress. For prestressed
reinforcement, the stress-strain curve can simplistically be assumed to consist
of three straight lines, as shown for Grades 250 and 270 strand in Figs. 5-10a
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These curves can be approximated by the following equations:
€, <0008: f,, =28,000e¢,, (ksi)

EDI > 0.008:
. 0.058 .
250 ksi strand: €, = 248 - _—e,, - 0.006 < 0.98 f;,, (ksi)
0.075

270 ksi strand: f,, = 268 - &, - 0.0065 < 0.981,, (ksi)

Fig. 5-8. Typical stress—strain curves for seven-wire stress-relieved and low-relaxation

prestressing strand. (Reproduced with the permission of the Precast/
Prestressed Concrete Institute.)

and 5-10b, respectively. The first of these lines, which extends from zero stress
up to an arbitrary stress (point 1) that is somewhat less than the yield strength,
as in the case of nonprestressed reinforcement, can be assumed to have a slope
equal to the elastic modulus of the steel. The second line connects the first and
third lines (points 1 and 2). The coordinates of point 2, the intersection of the
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Elastic Yield Yield
Reinf. modulus strength strain
grade (ksi) (psi) (in. /in.)
40 29,000 40,000 0.00138
60 29,000 60,000 0.00207
40 30,000 40,000 0.00133
60 30,000 60,000 0.00200
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Fig. 5-9. Idealized stress—-strain diagram for nonprestressed reinforcement of Grades
40 and 60.

second and third lines, can be taken to have coordinates of one percent exten-
sion (strain) and the stress equal to the minimum strength at the one percent
extension required by the applicable ASTM specification. Alternatively, the
coordinates of point 2 can be taken from points approximating the stress-strain
curve of a particular prestressing steel as shown in Fig. 5-10c.

The slopes of the third lines in Fig. 5-10a-c, which are the parameters of the
“‘curves’’ that are of the greatest importance in most designs, present the greatest
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Fig. 5-10. Simplistic stress—strain curves for Grades 250 and 270 stress-relieved and
low-relaxation seven-wire strand for prestressing concrete. (a) Grade 250
seven-wire strand.

challenge in determining reasonable values. The ASTM specifications provide
minimum elongations at rupture (normally 3.5 percent for seven-wire strand
and 4.0 percent for prestressing wire) and a minimum ultimate tensile strength,
but these elongations may not and most frequently will not occur simulta-
neously: the elongation at rupture is normally significantly greater than the
minimum elongation required by the ASTM specifications, and the ultimate
tensile strength may or may not exceed the minimum guaranteed strength by a
significant margin. For this reason a conservative end point for the slope of the
third line might be taken as the point identified by the specified minimum
ultimate tensile strength and an elongation equal to 5 to 7 percent, as is the case
for the curve in Fig. 5-10c. An idealized stress—strain curve for 270 grade strand,
proportioned as shown in Fig. 5-10c and consisting of two straight lines
connected by a curved transition section, could be more representative of the
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(b)
Fig. 5-10. (Continued) (b) Grade 270 seven-wire strand.

actual prestressing steel than the curves in Figs. 5-10a and 5-10b. One should
not use an idealized curve for design without prior confirmation that it reason-
ably represents the stress—strain characteristics of the actual steel to be used in
construction.

It is hoped that the ASTM standards eventually will be modified to include
stress—strain or load—deformation curves that:

1. Are acceptable to the prestressing steel manufacturers.

2. Structural designers can use in approximating the load-elongation curves
of the various prestressing materials without having to assume that the
material is capable of attaining ultimate strains greater than the minimum
values required by the applicable ASTM standard.

3. Reasonably approximate the load-elongation curves of the various
prestressing materials.



FLEXURAL STRENGTH | 171

300
e Tensile strength
250 / of 270 ksi at
/ strain of 0.070
a /
X
g 200
2
‘(I-), /
150 //
100 / —
0.010 0.020 0.030
Strain

(c)

Fig. 5-10. (Continued) (c) Curve approximating a portion of an actual stress—strain
curve for Grade 270 low-relaxation prestressing strand.

The stress—strain characteristics of prestressing steels are discussed in detail in
Sec. 2-9.

An iterative procedure for determining the relationship between the stress and
strain in prestressed reinforcement for use in computing the flexural strength of
prestressed concrete members utilizing a computer program written in BASIC,
and an approximate, noniterative procedure suitable for hand calculations, have
been described by Skogman, Tadros, and Grasmick (1988). This work, which
is based upon previous work by Mattock (1979), Naaman (1977), and by
Menegotto and Pinto (1973), depends upon the assumption that plane sections
remain plane and the equation:

1-0

+ W} =< fpu (5-13)

f;’ = eiEps|:Q
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in which:
eiEps
ef = (5-14)
Koy
and:

f; = Stress in prestressed reinforcement corresponding to strain ¢;
Jfpy = Specified yield strength of prestressed reinforcement

¢; = Strain in the prestressed reinforcement in layer i;
E,,; = Elastic modulus of the prestressed reinforcement

and the dimensionless constants K, Q, and R are specific values for the stress—-
strain curve for a particular steel. (Note: If eq. 5-13 is used for nonprestressed
reinforcement, then E;, the elastic modulus of nonprestressed reinforcement,
should be substituted for E,;. Abort values for E, K, Q, and R, proposed by the
authors for use when values are not determined for a specific prestressed
reinforcement, are given in Table 5-1. Two curves, adapted from the work of
Skogman, Tadros, and Grasmick, included herein as Figs. 5-11 and 5-12,
compare the stress ratio for the prestressed reinforcement (ratio of the stress in

TABLE 5-1 Reinforcement stress—strain constants and
dimensionless constants for egs. 5-13 and 5-12. (From
Skogman, Tadros, and Grasmick 1988.)

ks |foy/ fou| € (oS K a R
0.90 1.04 | 0.0151 | 8.449
270 28,000,000
strand | g5 | 28,000,000 1.04 | 0.0270 | 6.598
0.90 1.04 | 0.0137 | 6.430
250 28,000,000
trand
stran 0.85 |28,000,000| 1.04 | 0.0246| 5.305
0.90 1.03 | 0.0150 | 6.351
250 29,000,000
ire
wir 0.85 | 29,000,000 1.03 | 0.0253 | 5.256
0.90 ,000, 1.03 | 0.0139 | 5.463
»as 29,000,000
Wi 1 o085 |29,000000| 1.03 | 0.0235| 4612
1so | 085 |29.000.000| 101 | 0.0161 f 4.991
bar
0.80 |29,000,000] 1.01 | 0.0217 | 4.224

*Q is based upon the strain in the prestressed reinforcement, €,,, being
equal to 0.05.
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fou = 270 ksi, 4, = O, f; = 5ksi, f, If,

= 0.85

1

.25

Jos
2 9
Jou
STRAIN COMPATIBILITY \
85 —————— PROPOSED
— +—.— ACI 318-83
—— —— —— HARAJLI & NAAMAN
8 1 1 1 ] I ]
0 .85 A 15 2 .25 3

(Apsj;m + Am'f;’ - Aé"f;’)/f ébdps

Fig. 5-11. Stress in prestressed tendon at ultimate flexure as a function of the total
steel index (after Skogman, Tadros, and Grasmick 1988). (Reproduced with
the permission of the Precast/Prestressed Concrete Institute.)

the prestressed reinforcement at ultimate flexural strength to its specified
strength) to the reinforcement index. The figures show the results obtained by:

1. A strain compatibility analysis.

2. The hand-calculation method proposed by the authors.

3. The equation contained in ACI 318 (eq. 5-34 in this book; eq. 18-3 in
ACI 318).

4. The method-proposed by Harajli and Naaman (1985).

The curves clearly show the proposed noniterative method to give excellent
agreement with the results obtained with the computer program based upon
strain compatibility, when the constants E, K, Q, and R have been determined
for the stress-strain curve for a particular steel.

The hand-calculation method includes six steps:

1. The stresses in the tension reinforcements, both prestressed and nonpre-
stressed, are assumed to be equal to their respective yield strengths, and the
stress in the compression reinforcement is assumed to be equal to zero. Based
upon these assumptions, the total compressive stress in the concrete is computed
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fou = 270 ksi, A, JA, = 2,f! =5 ksi, f, = 60 ksi, f, [f,, = 0.85

1

.25

—————— STRAIN COMPATIBILITY
——————— PROPOSED
——+—.— ACI 318-83

—— —— — HARAJLI & NAAMAN

8 1 1 1 1 1
8 .85 1 .15 2 .25 .3

(Apsfpu * Ansfy - A;-f;:)/fc’bdps
Fig. 5-12. Stress in prestressed tendon at ultimate flexure as a function of the total

steel index (after Skogman, Tadros, and Grasmick 1988). (Reproduced with
the permission of the Precast/Prestressed Concrete Institute.)

-

under ultimate bending moment based upon equilibrium of the forces in the
concrete and reinforcement. This is expressed mathematically as:

F.= Ay fy + Ak (5-15)

2. Using the value of F, computed in step 1, the depth of the compression
block is then computed by:

F,
a=o——— 5-16
2. 0.85 (f.bB,) (5-16)
3. Compute the depth to the neutral axis from:
a
c=— 5-17
B (5-17)

For composite sections, the average values of 3,, based upon the strengths of
the different concretes in the compression block, is to be used. This is computed
as:

2.0.85(fcAB1),

61ave = FC (5'18)
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4. The concrete strains at the levels of the reinforcement are computed as
follows:

d.
€ = e:‘u<?’ - 1> + €dec (5'19)

in which e, is normally taken to be 0.003, d; is the depth from the extreme
compression fiber to the reinforcement layer under consideration, c is the depth
of the neutral axis, and ¢;,,, is the decompression strain at the level of the layer
under consideration (the decompression strain being the strain that takes place
as a result of loading the member in such a way that the compressive strain in
the concrete due to the effective prestressing force is nullified). The decompres-
sion strain can be computed by:

€idec = f;e/Ei (5'20)

or:
Cidec = (fpi - 25’000)/Ei (5'21)

at the designer’s option. The terms f;, and f,; are the effective and initial stresses
in the prestressed reinforcement, respectively (see Sec. 7-2), and E; is the elastic
modulus for the layer of reinforcement at the level under consideration. The
25,000 psi used in eq. 5-21 for the computation of ¢;,,. is a commonly used,
but not necessarily accurate, value for loss of prestress. Equation 5-20, which
requires computation of the loss of prestress, is the preferred relationship because
the computed loss of prestress is frequently a value other than 25,000 psi.

5. Computations now are made for the values of f; for the various layers of
reinforcement, using eq. 5-13. Normally it will be found that the strains at the
levels of the nonprestressed reinforcements exceed their strains at yield; hence,
the stresses in the nonprestressed reinforcements are taken to be equal to their
yield strengths.

6. The computations are completed by first computing new values of F.. and
a, based upon the stresses in the tension and compressive reinforcements deter-
mined in steps 4 and 5. The depth to the resultant of the compressive force in
the compression reinforcement and the concrete section, d,, is found next, after
which the flexural strength of the member can be determined by using:

M, = A, f,(d, + d.) + A f,(d — d.) (5-22)

ILLUSTRATIVE PROBLEM 5-2  Compute the flexural capacity of the composite
section of Fig. 5-13, which consists of the AASHTO-PCI type III bridge stringer
with a 6.50 in. cast-in-place slab. The area of the prestressing steel, which is
Grade 270, is 4.00 sq. in., and it is located with its centroid 5.85 in. above the
bottom of the beam. The prestressing steel has the stress-strain characteristics
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30" 30"
8 . 8 |
O (e}
f,= 3000 psi7 ~
. '/
f, = 5000 psi %
¢ ~
& 7 Z
(‘y) -
Aps =4.005q. in. i
™~
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T o ~
[te]

Fig. 5-13. AASHTO-PCI type lll bridge stringer with a composite deck.

given in Fig. 5-10c. The concrete cylinder compressive strengths are 5000 psi
and 3000 psi for the stringer and the cast-in-place deck, respectively. Use the
principle of strain compatibility, assuming the following strains: ¢, = 0.003;
€. = 0.0004; e, = 0.0058. Assume the stress-strain curve for the prestressed
reinforcement to be a straight line for values of f,, greater than 248 ksi. Assume
that the equation of the line is:

Jos = 242 + 400e,, ksi
SOLUTION: The steel index is:

n____j_i—()llz
T = <4565 x3

The relationship for strain compatibility, eq. 5-8, is written as follows:

_ 085, €
Pp € + €ps — €se — €ce

Jos
By substituting the appropriate values for the terms that are known, this

becomes:

_085x3x72x4565 0003 _ 6286
4.00 €ps — 0.0032 ¢, — 0.0032

Jos
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Solving the equation for the slope of the stress-strain curve simultaneously with
eq. 5-8 gives a value of f,; equal to 253.21 ksi and a value for ¢,; of 0.0280
in. /in. The force in the prestressing steel is 1013 kips, and k,, the ratio of the
depth of the neutral axis to the effective depth, is computed as follows:

0.003

“ = 0.0280 — 0.0032 ~ 012!

The depth of the compression block is:
a =0.85 X 0.121 x 45.65 = 4.70 in.
For a compression block having a depth of 4.70 in., the concrete stress is:

1013

fe= %470

= 3.00 ksi > 0.85f,, = 2.55 ksi
To prevent the concrete stress from exceeding the maximum permissible value
of 0.85f,,, the strength of the concrete would have to be increased to a value
not less than 3530 psi.

The moment capacity of the section is computed as follows:

M, = % X <45.65 - %> = 3655 k-ft

ILLUSTRATIVE PROBLEM 5-3  Compute the flexural strength of the stringer of
I.LP. 5-2 using the noniterative hand-calculation procedure proposed by
Skogman, Tadros, and Grasmick, assuming the prestressing steel to be low-
relaxation, Grade 270.

SOLUTION:  The value of the compressive stress in the concrete is computed
as:

F, =4.00 x 0.90 x 270 = 972 kips
The depth of the compression block is computed as:

972

= ———=1529in.
T 7% 085 x 3 "
The depth to the neutral axis is computed as:
5.29
= —— = 6.22 in.
‘7085 "
The strain for decompression is computed as:
162 = 0.00578

Cidec = 58 000
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and the ultimate strain is computed to be:

45.65
g = 0.003 [—6 - 1} + 0.00578 = 0.0248
6.22
The stress in the prestressed reinforcement, based upon the strain o = 2.748,

is computed to be:

1 —0.0151
Jos = 0.0248 x 28,000 |:0.0151 + 0 }

(1 + 2.7488449) /54
= 247 ksi

and the new value of F, is 988 kips, a = 5.38 in., and the nominal flexural
strength is computed to be:

45.65 — 2.69

M, = 988
- (R

> = 3537 k-ft

ILLUSTRATIVE PROBLEM 5-4  Compute the flexural capacity of the stringer of
LP. 5-2, neglecting the composite action of the deck and assuming that the
prestressing steel has stress—strain characteristics as shown in Fig. 5-3.

SOLUTION:  Assume the compressive stress block to be rectangular in shape
with the average concrete stress equal to 0.85f,,. Assume the concrete strain at
the level of the prestressing steel due to prestressing, e, to be 0.0004, the steel
strain due to the effective prestress, e,,, to be 0.0050, and the maximum concrete
compressive strain at the time of flexural failure, e,, to be 0.003. The effective
depth of the prestressing steel is 45.00 — 5.85 = 39.15 in. and the steel index
is:
4.00 x 275
T lexo5 x5 0

A review of the stress—strain curve in Fig. 5-3 will show that this value of the
reinforcement index (the reinforcement index and the steel index are of a similar
order) may cause the beam to be overreinforced in flexure; hence it will be
analyzed as such. The strain in the steel at flexural capacity will be computed
using eq. 5-6 and a trial-and-error procedure to determine the depth of the
compression block. The compression block will be assumed to extend from the
top of the compression fiber to 0.85k,d,,.

Try:
k,d, = 15 in.

C=08x5[7x15%x08+9%x7+9x45/2] =733k

39.15 - 15.00

= 0. + 0.
€s = 0.0054 0003< 00

> = 0.102
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From Fig. 5-3:
fos = 240 ksi, T = 960 k
C < T; try a larger value of k,d
Try:
k.,d, = 21.5 in.

C=085x5[7x21.5x085+9.<7+9x4.5/2] =897k

39.15 — 18.50
18.50

Jos =225ksi, T=900k = C = 897 k

€y = 0.0054 + 0.003< > = 0.0087

Compute the distance from the top fiber to the centroid of the compression
block:

0.85 X 7 x21.5 =127.9 X 9.14 = 1169.3
9x7= 630x350= 2205
05X9x45= 203x85 = 172.1
Totals = 211.2 1561.9
d, = 740 in.
M, = 900[19%&] = 2381 k-ft

As will be shown subsequently, the principle of strain compatibility is easily
applied to cross sections other than rectangular, in the cases of underreinforced
and overreinforced sections alike, as well as in members that are provided with
nonprestressed reinforcement in both the compression and tensile zones.

5-3 Principles of Flexural Capacity for Members with Unbonded
Tendons

The flexural strength relationships developed in Sec. 5-2 for members having
bonded tendons do not apply to members not having bonded tendons because,
without bonding, the prestressing tendons can slip (with respect to the concrete)
during the application of a load. The reader will recall that one of the basic
assumptions made prior to the derivation of the relationships of Sec. 5-2 was
that the concrete and steel are completely bonded. Because the tendons can slip
with respect to the concrete, other variables affect the ultimate moment capacity
of unbonded prestressed concrete members. After the ‘‘Tentative Recommen-
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dations for prestressed Concrete’’ appeared, the normal U.S. practice was to
consider the stress in unbonded prestressing steel loaded to flexural failure to
be as follows:

fos = fie + 15,000 (5-23)

(in psi) with the requirements that the effective stress in the prestressing steel
be between 0.50f,, and 0.60f,, and that the reinforcement index not exceed
0.30 (ACI-ASCE Joint Committee 323 1958).

Variables that affect the ultimate moment capacity of an unbonded beam, but
affect bonded beams in a different manner or not at all, include the following:

Magnitude of the effective stress in the tendons.

Span-to-depth ratio.

Characteristics of the materials used in the members.

Form of loading (shape of the bending moment diagram).
Profile of the prestressing tendon.

Friction coefficient between the prestressing steel and the sheath.
7. Amount of bonded nonprestressed reinforcing.

SNk W

Another relationship has been suggested for the value of f,; in members with
unbonded tendons (to be used in lieu of eq. 5-23), as follows:

Jos = fee * <30,000 - ;ﬁ X 10‘°> (5-24)

(o

in which f, is limited to 0.60f,,,, p, is the percentage of prestressing steel, and
Jos» fse» and f are in psi. Still another relationship has been more recently
proposed:

1.4f,
100p,

Jos = fie + + 10,000 psi (5-25)
Equations 5-24 and 5-25 contain the notation for the specified concrete
compressive strength, f., because they were suggested for use in building codes.

The results of tests of members with unbonded tendons as well as egs. 5-23,
5-24, and 5-25 are shown in Fig. 5-14 (Yamazaki, Kattula, and Mattock 1969).
Equations 5-24 and 5-25 have not been widely used because they have not been
included in any of the U.S. codes or standards.

A method of computing the ultimate strength of prestressed members (with
unbonded tendons) that takes into account the variables listed above has been
proposed (Pannell 1969). This method, which is based upon experimental data
and is considered slightly conservative, provides the following relationship for
the ultimate moment:
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100
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fpszf:ge + fc + 10,000 psi
o A 100p,
7 o o/ [Eq.5-25] |
= gom o |« * fps = fse +(30,000-10" p, /£.) psi|
W= 8, .T x 0 (Eq.5-24]
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0 (Eq. 5-23]|
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O Warwaruk et al., ® With additional bonded reinforcements
A Mattock, A With additional bonded reinforcements
O Janney et al., & With additional bonded reinforcements
x Gifford

+ Imperial College D.S.I.R. Group

Fig. 6-14. Comparison of values of f,; — f,, for unbonded beams. Test data and
suggested mathematical relationships are shown (after Yamazaki, Kattula,
and Mattock 1969). (Reproduced with the permission of the Precast/
Prestressed Concrete Institute.)

in which:
gl (527)
with:
g = p]’if " (5-28)
A= 1% (5-29)

In eqs. 5-26 through 5-29 the notation is standard, and it should be recog-
nized that the depth of the member, d,, and the span length, L, must be in the
same units.

A plot showing the accuracy of eq. 5-26 is given in Fig. 5-15, where the
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Fig. 5-15. Plot showing the ratio of the computed ultimate moment to that found by
tests for various effective steel indices (after Pannell 1969).

ordinate is the ratio of the calculated flexural capacity to the flexural capacity
measured in tests conducted by various investigators.

Readers interested in the development in the U.S. practice with unbonded
tendons will find the 1983 and 1989 reports of ACI-ASCE Committee 423 to
be sources of valuable information.

It should be recognized that the flexural capacity of a member prestressed
with unbonded tendons, unlike members with bonded tendons (see Fig. 5-7),
may be adversely affected by unintentional variations in the effective prestress.
Hence, it is considered prudent to exert more care in estimating the losses of
prestress and in supervising the stressing of unbonded members than would be
considered necessary for bonded members, to ensure that the desired results are
obtained.

5-4 Flexural Strength Code Requirements for Members with Bonded
Tendons

The building code requirements for reinforced concrete contained in virtually
all model building codes, building codes, building codes written for specific
political jurisdictions and government agencies, and standards used in the United
States are based upon the ACI standard Building Code Requirements for
Reinforced Concrete (ACI Committee 318 1989). References in this book to
ACI 318 or ‘“‘the code’” are intended to mean this particular standard of the
American Concrete institute.

The basic design assumptions for the computation of flexural strengths, or
flexural capacities, of members are contained in Sec. 10.2 of ACI 318. The
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reader should consult the original document for the actual wording of the basic
design assumptions, but the following summary is presented to facilitate this
discussion:

1. The principles of strain compatibility and equilibrium are to be satisfied.

2. Plane sections remain plane (except for deep flexural members).

3. The maximum strain at extreme compression fibers in the concrete section
is equal to 0.003.

4. Stress in nonprestressed reinforcement is equal to the product of the strain
in the concrete at the level of the steel (assuming bond between the steel and
the concrete is perfect) and the elastic modulus of the steel, with the maximum
(tensile) and minimum (compressive) values being numerically equal to the
minimum guaranteed yield strength, f,, of the steel; see Fig. 5-9 for the assumed
stress-strain curve for nonprestressed reinforcement. Compression reinforce-
ment in members having prestressed tensile reinforcement, as is the case for
reinforced concrete members having nonprestressed tensile reinforcement, must
be tied to guard against buckling, as provided in Sec. 7.10.5 of ACI 318.

5. The tensile strength of concrete is to be neglected in flexural strength
computations (except for investigating the possibility of failure at the cracking
load, as described in Sec. 5-2 and subsequently in this section).

6. The concrete compressive stress distribution may be assumed to be of
parabolic shape (as shown in Fig. 5-2), trapezoidal, or rectangular (as shown
in Fig. 5-16), or of other shapes that can be substantiated with the results of
comprehensive tests.

7. For simplicity, a rectangular distribution of concrete compressive stress,
as shown in Fig. 5-16, may be assumed, with the following limitations:

a. The concrete stress shall be taken as being equal to 0.85f).

b. The depth of the compression block shall be taken as being equal to a
distance of a = 3, c, in which c is the distance from the extreme compres-
sion fiber to the neutral axis (¢ = k,d, in Sec. 5-2).

c. The factor 3, shall be taken to be equal to 0.85 for concrete compressive
strengths up to and including 4000 psi; for strengths greater than 4000 but
less than 8000 psi:

0.05( f, — 4000)
1000

B, =0.85 - (5-30)
For concrete strengths equal to or greater than 8000 psi, 3, shall be taken
to be equal to 0.65.

It should be emphasized that the assumptions from ACI 318 listed above
differ from those assumed by some of the early proponents of the use of strain
compatibility methods of analysis as described in Section 5-2, in that the limiting
concrete strain is taken to be 0.003, rather than 0.0034, and the compression
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e, = —0.003 0.85f;

a=B1C

(a) (b)

Fig. 5-16. Concrete strain and stress distribution assumed by ACI 318 at limit of flexural
strength. (a) Strain. (b) Concrete stress.

stress block may be assumed to be rectangular with a uniform distribution of
stress equal to 0.85f. to a depth of B8, c, rather than a parabolic distribution
having an average stress of 0.80f, acting to a depth of k,d,. It should be noted
that the term B, is included in ACI 318 to account for the effect of concrete
strength on the depth of the compressive stress block; experimental studies
confirmed the need for its inclusion. Note that the term 3, is equal to 0.85 for
concrete strengths of 4000 psi and less, is equal to 0.65 for concrete strengths
of 8000 psi or more, and varies linearly between 4000 psi and 8000 psi (at the
rate of 0.05 per 1000 psi). This is illustrated in Fig. 5-17.

Using the ACI 318 assumptions listed above, one can rewrite eq. 5-8 for
strain compatibility as follows:

0.858, f,s €
= X

@p

-31
i €t €ps — €se — €ce (5 > )
It should be noted that the difference between this equation and eq. 5-8 is only
the (3, in the numerator.
The principles of strain compatibility explained above can be applied to
flexural members reinforced with a combination of bonded prestressed and
nonprestressed reinforcement. In this case, the equations of equilibrium for a

rectangular section, as shown in Fig. 5-18, become:
T=2C
Aps fos + A f; = 0.85f ba + A{ fs (5-32)
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Concrete Strength, psi

Fig. 5-17. Variation of 8, and f..

in which the terms not previously defined are as follows:

A, = Area of nonprestressed tension reinforcement
A; = Area of nonprestressed compression reinforcement

sL_____’_

A ps

Fig. 5-18. Cross section of a rectangular flexural member having bonded nonpre-
stressed tension and compression reinforcement in addition to bonded
prestressed tension reinforcement.
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d = Distance from extreme compression fiber to centroid of nonprestressed
tension reinforcement

d, = Distance from extreme compression fiber to centroid of compression
reinforcement

d, = Distance from extreme compression fiber to centroid of prestressed
tension reinforcement

Jf; = Stress in the nonprestressed tensile reinforcement ( < f))

fs = Stress in the nonprestressed compressive reinforcement ( < f,)

Jf, = Specified minimum yield strength of nonprestressed reinforcement

Equilibrium relationships based upon the conditions of strain in the concrete
and the prestressed and nonprestressed steels, similar to those in egs. 5-3 through
5-8, can be written for the stresses in the prestressed and nonprestressed
reinforcements as well as the nonprestressed compression reinforcement. Once
the stresses in all the different steels are known, the nominal moment capacity
of the section can be calculated as in I.P. 5-5 and I.P. 5-6.

In a similar manner, equations for conditions of equilibrium and compati-
bility of strains can be written for members having other than rectangular cross
sections. For a T-shaped member, as shown in Fig. 5-19, the basic equation
for equilibrium is:

Ay fos + A f, = 0.85f1[ (b — b,)h; + b,al + A f (5-33)

in which b,, = web width.

_\ -
b A

w

Fig. 5-19. Cross section of a T-shaped flexural member having bonded nonprestressed
tension and compression reinforcement in addition to bonded prestressed
reinforcement.
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In using eqs. 5-32 and 5-33, the stress in the nonprestressed tension reinforce-
ment normally will be found to be equal to its yield strength. As shown in Fig.
5-9, the strain required in the nonprestressed reinforcement to stress it to the
yield strength, based upon an elastic modulus of 29,000 ksi, is 0.00138 and
0.00207 for Grades 40 and 60, respectively. Because prestressed steels, when
stressed from the effective stress level to the yield stress, normally will increase
in stress from 45 to 80 ksi, the stress in the nonprestressed tensile steel normally
will go through a similar stress increase. As will be seen below, the stress in
the nonprestressed compression reinforcement may, depending upon its location
with respect to the extreme compression fiber, be significantly below its yield
strength at ultimate flexural strength.

In lieu of requiring the designer to perform a strain compatibility analysis in
computing the flexural strength of prestressed concrete members, ACI 318
permits f,, to be taken as follows for bonded tendons, provided that f;, is not
less than 0.50f,,:

o= g1 - 202+ Lo - 0] (5:34)

in which:

d = Distance in inches from extreme compression fiber to centroid of
nonprestressed tension reinforcement
d, = Distance from extreme compression fiber to centroid of prestressed
reinforcement
B, = Factor defined above in this section
¥, = Factor for type of prestressing tendon
= 0.53 for f,,/f,, not less than 0.80 (high-tensile-strength prestressing
bars)
= 0.40 for f,,/f,, not less than 0.85 (stress-relieved wire and strand)
= 0.28 for f,,, / fou DOt less than 0.90 (low-relaxation wire and strand)
p, = Ratio of prestressed reinforcement, A4, /bd,

4, f,

w = Nonprestressed tension reinforcement index = —_b;ff
Aty
bdf.

' = Nonprestressed compression reinforcement index =

The use of eq. 5-34 is further restricted by ACI 318 in that if compression
reinforcement is included (i.e., ' > 0), the term:

Jou d
+ —_— — ’
o o a (w —w")
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shall be taken not less than 0.17, and d' shall be no greater than 0.15d,. Equation
5-34 also includes factors intended to compensate for the effects of nonpre-
stressed tension reinforcement, concrete strengths greater than 4000 psi (8, =
0.85 for f; of 4000 psi or less), and minimum yield strength (at 1% extension)
of the prestressing steel, as well as the presence of nonprestressed compression
reinforcement (if any).

The value of f,; computed with eq. 5-34 can be used for the computation of
the nominal design flexural strength of rectangular sections with tension
reinforcement alone by:

M, = Apsfps<dp - g) + Asfy<d - g) (5-35)

where:

_ Aphy Ay
0.857.b

Equation 5-35 also can be used in flanged sections if the thickness of the flange
hs is not less than the depth of the compression block a as given in eq. 5-36.
When the depth of the compression block exceeds the flange thickness, the
nominal design flexural strength of a section can be computed by:

(5-36)

a , hf
M, = prﬁ,s<dp - §> + Asfy(d - dp) + 0.85f.(b - b,) hf<dp - 5)
(5-37)
in which:
Apfos = Apsfps + Af, — 0.85f0(b — b))y (5-38)
and:
Ayt
pwJ ps
= PP 5-
@ = 0.85(1b, (5-39)

The tensile force represented by A,,f,, (eq. 5-38) is the force the web must
develop; that is, it is the tensile force not developed by the flange.

The effect of compressive reinforcement is taken into account by basic princi-
ples. For compression reinforcement to be most effective in rectangular beams,
it must be positioned in such a way that it will be stressed to its yield strength
under design load. For this to be the case, using the notation defined in Fig.
5-20, the following relationships must be satisfied:




FLEXURAL STRENGTH | 189

. b _)eu 0.85f;
b 45 €
7 a
c 3
~ . C = 0.85f/ab + As’fy
% =
Aps + A € T = Apsfps + Asf)',
{a) Cross section. {b) Strain (c) Force distribution.
distribution.

Fig. 5-20. Rectangular beam with compression reinforcement.

For yielding of the compression reinforcement, the strain in the concrete at the
level of the compressive reinforcement e; must equal to exceed its yield strain
€, and:

Because T F, = 0, one can write:
Apfps + Afy, = 0.85flab + ALf,
By taking a = ;¢ and rearranging, the expression can be written:

0.858,c _ d’ €,
g = OBB X G x

— L—
w, + w w

Using €, = f,/E, and taking ¢, to be equal to 0.003, one obtains:

d’ 87,000
+w—w =0 =X -4
w, tw—w 0.858, x d 87.000 - 1. (5-40)

One can conclude that the term on the left side of eq. 5-40 must be equal to or
greater than the term on the right side of the equation if the compression
reinforcement is to be stressed to its yield strength. If not stressed to its yield
strength, the compression reinforcement should either be ignored or its effect
determined from a study of the strain in the compression reinforcement. If the
compression reinforcement is stressed to its yield strength as predicted from eq.
5-40, the nominal flexural strength of a rectangular section with compression
reinforcement can be computed from:

M, = A,,:fps<dp - g> + Asf‘.<d . ;—’> + A\;f.\,<g _ d’) (5-41)
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where:

_ Aply + ASy ~ A,
0.85f.b

Equations 5-35, 5-37, and 5-41 are intended for use in computing the nominal
flexural strength of members that are underreinforced. Underreinforced members
are proportioned in such a way that the stress in the tension reinforcement will
reach the yield strength of the reinforcement before the compressive strain in
the concrete reaches its limiting value of 0.003. The ACE 318 provisions
covering this point are contained in Sect. 18.8.1, in which the reinforcement
index is limited to 0.3683,. This can be expressed mathematically by:

@, < 0.368, (5-42)
or:

d
w, + 7 (0 — w') = 0.368, (5-43)

P
for rectangular sections, and by:

g(wp - w,) = 0.368, (5-44)

P

Wpw +

for flanged sections. The ratio d/d,, is used to account for the difference in the
effective depths of the prestressed and nonprestressed reinforcement, and the
term 3, accounts for the effect of concrete strength as previously described.
Combining the reinforcement index limit of 0.3683, with eq. 5-30 and solving
for d' gives the following:
000 — £,

87,
d =0424d ————

4
87,000 (5-45)

which can be reduced to d’ = 0.229d and 0.1324 for Grades 40 and 60
reinforcement, respectively. The compression reinforcement will not be stressed
to its yield strength if it is placed farther from the extreme compression fiber
than the value of d' given by eq. 5-45. Using these values, the structural designer
can rapidly check to determine the feasibility of using compression reinforce-
ment to enhance the strength of a particular member. In so doing, the structural
engineer should not overlook the normal tolerances in concrete construction and
should determine if, in view of the normal tolerances, compression reinforce-
ment should be used, and if special inspection should be required to ensure that
the work is performed in an acceptable way.

Rectangular sections, or flanged sections having their neutral axes located
within the depth of their flanges, having reinforcement indices exceeding 0.3683,
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are considered to be overreinforced, and their nominal capacity may be
computed from basic principles (see I.P. 5-4) or from:

M, = fibd;(0.368, — 0.086}) (5-46)

For flange sections having reinforcement indices equal to or greater than 0.358,
and their neutral axes not located within the flange depth, the following approx-
imate relationship is permitted for computing the nominal moment capacity:

M, = f1bd%(0.368, — 0.0862) + 0.85f.(b — b,,) h;(d, — 0.5k)
(5-47)

Another important requirement in ACI 318 (Sec. 18.8.3), which is equally
applicable to bonded and unbonded tendons, provides that the minimum factored
load a section is capable of developing must be at least 1.2 times the cracking
load, based upon a modulus of rupture equal to 7.5\/]72 for normal-weight
concrete (additional provisions are provided in Sec. 9.5.2.3 of ACI 318 for
concretes other than normal-weight concrete). An exception contained in Sec.
18.8.3 provides that members having shear and flexural strengths not less than
twice the minimum required in Sec. 9.2 of ACI 318 are exempt from this
requirement. This provision is to guard against failure at the cracking load,
which was described in Sec. 5-2.

ILLUSTRATIVE PROBLEM 5-5  For the beam cross section shown in Fig. 5-21,
compute the nominal flexural capacity as well as the stress in the prestressing
steel at flexural capacity if the span of the beam is 40 ft, the weight of the beam
is 0.44 kpf, and the dead load moment at midspan is 88.0 k-ft. Use the stress-
strain properties as given in Fig. 5-8 in a strain-compatibility analysis. Compare
the stress in the prestressing steel computed with the strain-compatibility analysis
with that computed with the approximate relationship in ACI 318. Assume the
following materials properties:

Concrete:
fe = 7500 psi
E, = 5000 ksi
. — 4000)0.05
B,=0.85 — (fe 1000 ) = 0.675
Prestressing steel:
Jos = 270 ksi

fy = 243 ksi
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]

E,; = 28,000 ksi
7, = 0.28
A, = 2.75 sq. in.

P,, = 440 kips

The section properties and other dimensional data are:

A. = 4158 in.%, I = 44,386 in.*

i

y, = —15.3in., S, = —2900 in.?, r*/y, = —6.97 in.

y, = 14.7 in., §, = 3020 in.3, r*/y, = 6.25 in.

d, = 30.00 — 5.20 = 24.8 in.

i

e =14.7 - 5.20 = 9.50 in.

r*/e = 11.24 in.

sOLUTION:  The percentage of prestressing reinforcement is computed as:

Pr= o4 x 248

This moderate value of the steel index indicates that the strain in the prestressing
steel will be greater than 0.008 in. /in. Hence, the equation for the Grade 270

11‘0II 1 ’-0”
|-‘<
- =m L
™ _
0 | /‘_71_
i o : =
~ \ﬁ =‘-|°
- <™
W |Ap=275sqin.|
<t
R \ ]
< °
0
10%" 10%"
Fig. 5-21.

Beam cross section for I.P. 5-5.
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prestressing steel in Fig. 5-9 would be expected to be applicable. This relation-
ship, which is one of the two required for the strain compatibility solution, is:

0.075

=268 — —————
Jos €ps — 0.0065

< 0.98f,; = 264.6 ksi

The stress in the concrete at the level of the prestressing steel due to effects
of dead load and the prestress in the steel is:

7= —440,000 9.50 88.0 X 12000 X 9.50 —1727 osi
©T 4158 11.24 44,386 - psl
The strains required for the analysis are:

e =0

€, = 0.003 in. /in.

v
fee = 5,000,000
440,000
€e = 28 x 105 x 2.75

= 0.00034 in. /in.

= 0.0057 in. /in.

Substituting these values into the basic relationship for strain compatibility
(eq. 5-8) gives:

_ 085 X065 X7.5 0.003

P 0.00462 0.003 + ¢,, — 0.0057 — 0.00034
£ o 26907

P e, — 0.00304

Solving the two equations gives ¢,, = 0.013498 and f,, = 257.28 ksi, from

which one calculates the tensile force, k,, and a as follows:

T =1257.28 x 2.75 =707.52 k

P = 0.003
“0.003 + 0.013498 — 0.0057 — 0.00034

a =0.675 X 0.287 X 24.8 = 4.80in. < h, = 5.00 in.

= 0.287

Hence, the section should be analyzed as a rectangular beam. The maximum
compressive force that the concrete section is capable of resisting is:

C=-085X75x%X24Xx480="7344k >T=70752k
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and the nominal moment capacity is:

707.52 4.80
M, = —"(248 - == = 1321 k-ft
"1 < 2 )

By using eq. 5-24 rather than strain compatibility, the calculations become:

028 2.75 X 270
0.67524 X 24.8 X 7.5

Jos = 270<1 > = 251.4 ksi

o o 275 x 2514
7724 x 248 X 1.5

= 0.155 < 0.368, = 0.243, not overreinforced

2.75 X 251.4 _ .
a= 085 X 75X 24 4.52 in. < 5.00 in.
: : .52
M, = 2—2% <24.8 - 4—25—> = 1298.6 k-ft.

The basic principle of strain compatibility can be developed for a rectangular
beam having both prestressed and nonprestressed tensile reinforcement with the
same methods used in developing the relationship for beams having only
prestressed tensile reinforcement. Equilibrium requires that the tensile and
compressive forces at a section to be equal in magnitude and opposite in direc-
tion, or T = C, which can be expanded to:

d
;1; (A,f,) + Apsfys = 0.85f.8,bk,d,

in which A; and f, are the area and stress at yield for the nonprestressed
reinforcement located below the neutral axis at a depth d from the compression
flange. It should be noted that the above relationship is valid only if the strain
in the nonprestressed reinforcement equals or exceeds 0.0014 and 0.0021 for
Grades 40 and 60 reinforcement, respectively. Note that multiplying the term
A,f, by the ratio of the effective depths of the nonprestressed and prestressed
reinforcements, d / dp, converts the effect of the nonprestressed reinforcement
into an equivalent amount of nonprestressed reinforcement acting at a distance
d,, from the extreme compression fiber. The above relationship can be rearranged
to: '

d
0.85f:B1bk,d, — — (A,)
P

A

23

Jos =
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or the equivalent relationship:

_0.85fiBk, d(ASf)
Pp d,A

peps

Jos

By substituting eq. 5-7 for k,, one obtains the general equation for a rectangular
beam having both prestressed and nonprestressed reinforcement in the tensile
flange:

0.85f. d(4,
f;‘;s — chl X €y _ ( f;’) (5-48)
Pp € T €ps ~ € T €Ece dpAps

The strain-compatibility principle can be extended to include sections with
compression reinforcement by adding the compressive force carried by the
compression reinforcement to the equilibrium equation. The result is:

d
7 (Af,) + A,f,s = 0.85f.B,bk,d, + A.f,
P
By rearranging this relationship in a manner similar to what was done above in

developing the relationship for nonprestressed tensile reinforcement, one
obtains:

0.85f; A fr d(A,
fs = febr u o AL (45) (5-49)
op €+ € — € — € Aps d,Ap,

ILLUSTRATIVE PROBLEM 5-6  For the beam of 1.P. 5-5, compute the nominal
moment capacity of the beam if the area of the Grade 270 prestressed reinforce-
ment is 2.00 sq. in., and, in addition to the prestressed reinforcement, the beam
is provided with nonprestressed reinforcement having a yield strength of 60.0
ksi and an area of 3.00 sq. in., located with its center of gravity 4.50 in. from
the soffit.

SoLuTION: The values needed for eq. 5-48 are:

2.00
CRETETE B
~320,000 9.5\  88.0 x 12,000 x 9.50 .
fe= 4158 ( 11.24> 44,386 1194 psi
e, = 0.003
320,000 0.0057
€ = = L.
= 28,000,000 X 2.00
~1194
= —0.00024

€ee = 5,000,000
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Using eq. 5-48:

_0.85(0.65)(7.5) y 0.003
T 0.00336 0.003 + ¢, — 0.0057 — 0.00024

Jos

_25.5(3.0)(60)
24.8x 2.00

3.700
= 9254
Jos e,s — 0.00294

Solving the above relationship with that for the Grade 270 prestressing strand
from Fig. 5-8 gives €,, = 0.013904 and f,, = 257.87, from which the tensile
force, T, k,, and a are determined to be:

T =3.0 x 60 + 257.87 x 2.00 = 695.74 k

- 0.003
“ " 0.013904 — 0.00294

a = 0.675 x 0.274 x 24.8 = 4.59 in.

= 0.274

The concrete compressive stress is:

695.74

fe=1soxm

= 6.32 ksi < 0.85f.

The nominal moment capacity of the section is:

180 4.59 516 4.59
M, = E <25.5 — —2—> + 2 <24.8 - —2_> = 1316 k-ft

Using eq. 5-34:
3.00 x 60

@ w255 x 75 00372
w =0
p, = 0.00336
0.28 [0.0336 x 270  25.5 X 0.0392
Jos = 27O<1 0.675 { 7.5 * 24.8 D
= 251.9 ksi

The tensile forces carried by the nonprestressed and prestressed steel areas are
180 and 504 kips, respectively, the depth of the compression block is computed
as:
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180 + 504
T 0.85 X 7.5 x 24

a = 4.47 in.

and the nominal moment capacity is:

=— (255 - — ) +— (248 — — ] = 1296 k-ft

ILLUSTRATIVE PROBLEM 5-7 Compute the nominal moment capacity of the
T-shaped beam having nonprestressed tension and compression reinforcement
in addition to prestressed reinforcement, as shown in Fig. 5-22. Use the approx-
imation given in ACI 318 for the stress in the prestressing steel when loaded to
its moment capacity. The dimensions of the section are given in the figure. The
properties of the materials are given in the following summary:

fe = 4000 psi
Jou = 270 ksi
Joy = 229.5 ksi
f, = 60 ksi
fy = 60 ksi

The parameters needed are computed as follows:

35
=22 _ _0.00210
= g0 x 2775 °
4.0 x 60
== 2 0.03333
© = %30 x40 00
, 1.0 X 60
© = 60 x 30 x 4.0 200833
fy 295 _ o
fu 2700
B, = 0.85

Note that from eq. 5-45 for f, = 60 ksi, 0.132 X 27.75 = 3.66 in. > d' =
1.50 in.; hence, compression reinforcement will be effective.
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b =60.0 in. (flange width) fe=40ksi
b,, = 16.0 in. (web width) Jou =270 ksi

h =325 in. (overall height)  f,,, =229.5 ksi
dp=21.75in. (depth to Aps)  f, =60ksi

d =30.0 in. (depth to Ay) Ag=4.00in.?
d'=1.5 in. (depth to Ay) Ay =1.00in.?
hg = 4.5 in. (flange thickness)

| 60" o R
< o
2 2
M 1.00 sq. in.
/
] >4 i s
) Rl o 3
Ap; =3.505q. in. N 2
[~ ™
A; = 4.00sq. in.
16"

Fig. 5-22. Cross section of T-beam having compression reinforcement.
Using eq. 5-34:

0.40 270 30 ,
fos = 270<1 - 08 {(0.00210) ot s (o.ozs)D = 248.6 ksi

d
@, + = (0 = ') = 0.158 < 0.366, = 0.306

P
T =35 X248.6 + 4.0 x 60 = 870.1 + 240 = 1110.1 k

Considering the section to be rectangular—that is, the compression block cannot

extend below the thickness of the flange (4.50 in. )—the maximum compressive
force is:

C=0.85%x4.0x600x450+1.0x60=918.0 + 60.0=978.0k

Because T > C,,, the member must be analyzed as a flanged section. The
compressive force that must be resisted by the web of the beam is determined
by subtracting the maximum allowable compressive force that can be imposed
on the overhanging flanges of the member from the tensile force, T, that can be
developed by the tensile reinforcement. This computation is done as follows:

Apufps = 1110.1 — 0.85 X 4.0(60.0 — 16.0)4.5 — 1.0 x 60
= 1110.1 — 673.2 — 60 = 376.9 k
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and:

_ 376.9
Cow = 16 x 27.75 X 4.0

= 0.2122

d !
7 (0 = ') = 0.239 < 0.368, = 0.306

P

Wpy +

Using eq. 5-37, modified to include compression reinforcement (see eq. 5-41):

376.9 -
=085 x40x 160 0P
376.9 240
M, = =2 (2175 - 6.93/2) +—(3oo - 27.75)
673.2
+ 255 (275 - 2.25) +-—(2775 ~ 1.50)

= 762.3 + 45.0 + 1430.6 + 131.3 = 2369.2 k-ft

5-5 Design Moment Strength Code Provisions for Members with
Unbonded Tendons

The design moment strength provisions in ACI 318 that may be used for
members prestressed with unbonded tendons if an analysis based upon strain
compatibility is not performed, as is the case for members with bonded tendons,
are restricted to use in members where f,, is not less than 0.5f,,.

For members prestressed with unbonded prestressing tendons that have span-
to-depth ratios of 35 or less, the value of f,; permitted is:

fe
100p,
but f,; in eq. 5-50 may not be taken greater than f,, or ( f,, + 60,000). For
span-to-depth ratios greater than 35, the value of f,; permitted is:

fe
300p,

with the value not to exceed f,, or ( f,, + 30,000). In egs. 5-50 and 5-51, f,,,
fe» and f are in psi. When information is available for determining a more
accurate value of f,, it may be used. Similarly to eq. 5-34, egs. 5-50 and 5-51
are limited for use in applications where f,, is not less than 0.5f,,,.

The relationships given in eqs. 5-42 through 5-44 for determining if members
are to be analyzed as under- or overreinforced are also applicable to members
with unbonded tendons. Members with unbonded tendons, in general, must be

Jos = fie + 10,000 +

(5-50)

Jos = fie + 10,000 + == (5-51)
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able to develop factored loads equal to or greater than 1.2 times the cracking
load with the modulus of rupture equal to 7.5 \/f_;, as with bonded members.
Flexural members having flexural and shear strengths at least twice the minimum
values required by Sec. 9.2 of ACI 318 are exempt from the minimum cracking
load requirements.

Unbonded members lacking bonded, nonprestressed reinforcement could be
subject to sudden brittle failure. For this reason, except as provided in Sec.
18.9.3.2 of the UBC, which applies to the positive moment areas of two-way
flat plates having tensile stresses less than 2 \/f_;, the code requires a minimum
amount of nonprestressed reinforcement in the tensile zone of members stressed
with unbonded tendons. The minimum amount of bonded reinforcing, A4;, except
for two-way flat plates (solid slabs of uniform thickness), is specified to be:

A, = 0.0044 (5-52)

in which A is the area of the concrete section between the flexural tension face
and the center of gravity of the gross section. The reinforcing must be placed
as close as possible to the extreme tension fiber and uniformly distributed. It is
required regardless of the stresses existing in the member under service loads.

It is interesting to note that Sec. 2618(j)B of the Uniform Building Code
requires that one-way post-tensioned beams and slabs having unbonded
reinforcement be designed to carry the dead load plus 25 percent of the unre-
duced superimposed live load tributary to the member by some method other
than the unbonded post-tensioned reinforcement. (See the UBC for the complete
requirements.) This provision applies to the design moment strength based upon
load and strength reduction factors of unity (see Sec. 5-6). Compliance with
this requirement normally is achieved through the provision of nonprestressed
reinforcement detailed to comply with all requirements of the UBC (i.e., devel-
opment lengths, minimum embedments, etc.). This provision is not included in
the ACI 318 requirements.

In the case of flat plates, no bonded reinforcement is required in areas of
positive moment when the concrete tensile stresses do not exceed 2 s/ﬁ after all
losses. If the tensile stress does exceed 2 Jﬁ, the minimum area of bonded steel
is:

N,
0.5f,
in which f, cannot exceed 60,000 psi, and N, is the tensile force in the concrete
under the sum of the service dead and live loads. Again, the steel must be
uniformly distributed over the section and as close as practicable to the tension

fiber. In areas of negative moment, the minimum amount of bonded reinforce-
ment required in each direction is:

A, = 0.00075hl (5-54)

A, =

(5-53)
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in which [ is the length of the span in the direction parallel to the reinforcement
being considered, and 4 is thickness of the member. The bonded reinforcing is
to be placed in a width not exceeding the width of the supporting column plus
3h, the maximum spacing of the bars is 12 in., and there must be at least four
bars or wires in each direction. The code contains other provisions for deter-
mining the minimum lengths of the reinforcement (UBC 1988).

ILLUSTRATIVE PROBLEM 5-8  Compute the nominal moment capacity for the
member shown in Fig. 5-23. The member is stressed with an unbonded tendon,
fie = 144 ksi, f,, = 240 ksi, f,, = 192 ksi, f. = 6.0 ksi, and the span is 40.0
ft. Use the provisions of ACI 318 for f,; and the method proposed by Pannell.

SOLUTION:
L 400
Span-depth ratio = -~ = — = 16
pan—depth rati Y
and the ratio of the effective stress to the ultimate tensile strength is:
144
fee =—=0.60 > 0.50
Jou 240
L o 1-0” ,
<
| 0
g =
:) \/
I ! X
£ 6
X
- - S o
| — f\l
§| Aps=320in2
s i
I .
I S o
N
[T} |
10%" | 10%2”

I1=44670in.4 E.=4 X 106 psi

Fig. 5-23. Cross section of beam used in |.P. 5-8.
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Hence, the use of eq. 5-50 is appropriate for the analysis in conformance with
ACI 318. The steel ratio is:
3.20

=24 x 248 000538

Pp

and:

6.0
=144 + 10 + —2)  — 165 ksi
Jos 100 x 0.00538 St

This value of f,; < f,, = 192 ksi < f,, + 60 = 204 ksi.
Apsfps = 3.20 X 165 = 528 kips

e 528
0.85 X 6 x 24

" = 528(24.2142— 2.16) _ oo 1a

= 4.31 in.

Using Pannell’s method:

p, = 0.00538

0.00538 x 144
g =————— =0.129

6

10% x 0.00538 x 2.5

A= = 0.
6000 x 40.0 0.056
. + 0.
_ 0.129 +0.056 _ 0.170

= 71 1 0.0895

_0.170(1 — 0.80 x 0.170)6 X 24 x 24.8°
12

M, = 1084 k-ft

5-6 Strength Reduction and Load Factors

The relationships given in Secs. 5-2 through 5-5 were provided for use in
computing the nominal design moment in prestressed concrete flexural members.
The nominal design moment is the flexural strength one would expect if the
equations used in the calculations were accurate, the materials used in the
construction had the stress and strain properties assumed in the calculations,
and the members were constructed with dimensions equal to those assumed in
the calculations. These conditions do not exist consistently in practice; so a
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strength reduction factor, ¢, is used to reduce the nominal strengths calculated
with the equations given previously in this chapter. The product of the strength
reduction factor and the nominal strength is referred to as the reduced nominal
strength. The reduced nominal strength must equal or exceed the required
strengths (sometimes referred to as the factored strengths or minimum strengths)
mandated by the applicable code or standard being used as the design criterion.
The six different relationships for required strengths are specified in Chapter 9
of ACI 318. The basic relationship is:

U=14D + 1.7L (5-55)

in which U is the required strength needed to resist the factored loads or related
internal moments and forces, D is the dead loads or related internal moments
and forces, and L is the live loads or related external moments and forces. The
numerical factors, 1.4 and 1.7, are commonly referred to as load factors. The
other relations for the required strength contained in Chapter 9 of ACI 318 are
applicable to members subject to loads from wind, earthquake, earth pressure,
fluids, impact, differential settlement of supports, concrete creep, concrete
shrinkage, and temperature change.

The strength reduction factors given in ACI 318 for flexure and shear are
0.90 and 0.85, respectively. The factor for shear is lower than that for flexure
in view of the more brittle (less ductile) nature of shear failures as compared to
flexural failures of underreinforced members.

Hence, when one is applying the flexural strength relationships given in this
chapter in actual design, the nominal moment capacity, M,, is to be multiplied
by the strength reduction factor, ¢, and the product (i.e. the reduced nominal
flexural strength) is to be compared to the required flexural strength, M, (i.e.,
the minimum factored flexural strength permitted by the criteria being used).
This relation can be expressed as:

oM, = M, = 1.4M, + 1.7M, (5-56)

where M, is the service load moment due to dead load and M, is the service
load moment due to live load. If M, is less than the required strength, M,
adjustments must be made in the design in order to increase the reduced nominal
flexural strength to equal or exceed the minimum required.

The codes and standards of some countries use an approach somewhat
different from the one used in ACI 318 to ensure that adequate strength is
provided. For example, the Canadian Standards Association building standard
provides for the use of various strength reduction factors for the different
materials commonly used in reinforced concrete construction (CSA 1984). The
strength reductions factors for concrete, prestressed reinforcement, nonpre-
stressed reinforcement, and structural steel are 0.60, 0.90, 0.85, and 0.90,
respectively. These strength reduction factors (referred to as ‘‘resistance
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factors’’ in the CSA document), are used with load factors that are different and
somewhat lower than those required by ACI 318. For example, the basic load-
combination equation for strength contained in the CSA document is:

aDD + ’y¢((¥LL + aQQ + otTT) (5'57)

in which ap, a;, op, and a7 are load factors for dead load, live load, wind or
earthquake, and the cumulative effects of temperature, creep, shrinkage, and
differential settlement, respectively; v is an importance factor; and v is a load-
combination factor. The values of the load factors for dead, live, wind/earth-
quake, and ‘“T-loads’” are 1.25 (except that when dead load is resisting
overturning, uplift, or stress reversal, the dead load factor is 0.85), 1.50, 1.50,
and 1.25, respectively. The importance factor normally is not to be taken to be
less than 1.0, and has a minimum value of 0.8 for unimportant structures not
likely to cause injury or other serious consequences in the event of collapse.
The load combination factor, y, is to be taken as 1.0 when only one of the loads
L, Q, or T is included in eq. 5-57. If two of the loads L, Q, or T are included
in eq. 5-57, the load combination factor is 0.70, and if all three loads are
included, the factor becomes 0.60. The load combination for service load checks
(i.e., cracking and deflection) is:

D+y(L+Q+T) (5-58)

in which the terms are as defined above.

The above discussion of the provisions of the Canadian standard is not
complete and is given here only to illustrate the difference between the ACI 318
approach to safety and those used in other countries. The reader should consult
and use the complete CSA document if any of its provisions are to be used; it
normally is considered risky to use only portions of a code or a standard.

REFERENCES

ACI Committee 318. 1989. Building Code Requirements for Reinforced Concrete. Detroit.
American Concrete Institute.

ACI Committee 318. 1989. Commentary on Building Code Requirements for Reinforced Concrete.
Detroit. American Concrete Institute.

ACI-ASCE Joint Committee 323. 1958. Tentative Recommendations for Prestressed Concrete.
Journal of the American Concrete Institute 29(7):545-78.

ACI-ASCE Committee 423.3R. 1983. Recommendations for Concrete Members Prestressed with
Unbonded Tendons. Journal of the American Concrete Institute 5(7):61-76.

ACI-ASCE Committee 423.3R. 1989. Recommendations for Concrete Members Prestressed with
Unbonded Tendons. Journal of the American Concrete Institute 86(3):301-18.

Canadian Standards Association. 1984. Design of Concrete Structures for Buildings. Rexdale
(Toronto). Canadian Standards Association.



FLEXURAL STRENGTH | 205

Harajli, M. H. and Naaman, A. E. 1985. Evaluation of the Ultimate Steel Stress in Partially
Prestressed Flexural Members. PCI Journal 30(5):54-81.

Mattock, A. H. 1979. Flexural Strength of Prestressed Concrete Sections by Programmable Calcu-
lator. PCI Journal 24(1):32-54.

Menegotto, M. and Pinto, P. E. 1973. Method of Analysis for Cyclically Loaded R.C. Plane
Frames, Including Changes in Geometry and Non-Elastic Behavior of Elements Under Combined
Normal Force and Bending. In Preliminary Report for Symposium on Resistance and Ultimate
Deformability of Structures Acted on by Well-Defined Repeated Loads. Lisbon. International
Association for Bridge and Structural Engineering. 15-32.

Muller, J. 1956. Flexural Strength of Prestressed Concrete Continuous Structures. Paper read at
the Knoxville Convention of the American Society of Civil Engineers. 9-19.

Naaman, A. E. 1977. Ultimate Analysis of Prestressed and Partially Prestressed Sections by Strain
Compatibility. PCI Journal 22(1):32-51.

Pannell, F. N. 1969. The Ultimate Moment Resistance of Unbonded Prestressed Concrete Beam.
Magazine of Concrete Research 21(66):43-54.

PCI Design Handbook. 1978. Chicago. Prestressed Concrete Institute.
PCI Design Handbook. 1985. Chicago. Prestressed Concrete Institute.

Skogman, B. C., Tadros, M. K., and Grasmick, R. 1988. Flexural Strength of Prestressed Concrete
Members. PCI Journal (33)5:96-123.

Uniform Building Code. 1988. Whittier, California. International Conference of Building Officials.

Yamazaki, J., Kattula, B. T., and Mattock, A. H. 1969. A Comparison of the Behavior of Post-
Tensioned Prestressed Concrete Beams with and without Bond. Structures Mechanics Report
SM69-3. Seattle. Department of Civil Engineering, University of Washington.

PROBLEMS
1. Determine ultimate moment capacity for the double-tee slab of Problem 1

of Chapter 4 using eq. 5-34 for f,,. Assume that 4,, = 0.171 in.2, f,, = 270
ksi, the strand is low-relaxation, and f} = 5000 psi.

SOLUTION:
0.171
= —— =0.000297, v, = 0.28, 8, = 0.80
=g x12 00 » A
0.35 X 0.000279 X 270
Jos = 270<1 - s > = 268.5 ksi
W, = ppff—f = 0.0159 < 0.80 X 0.36 = 0.288

_ 0.171 X 268.5

= —— = (. in. 2.00 in.
a 0.85 X 48 X 3 0.225in. < in

and the member can be analyzed as a rectangular section.
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0.90 X 0.171 X 268.5 0.225
oM, = [12.00 -

T > } = 40.93 k-ft

The design load (factored) for the simple span of 24 ft that will result in the
moment of 40.93 k-ft is 568.5 plf. Assuming all the superimposed service load
to be live load, its maximum permitted value would be:

568.5 — 1.4 X 187.5
Wy = 1.7

= 180 plf

This should be compared to the allowable loads as controlled by stresses at
service load, computed in Problem 1, Chapter 4. If the modulus of rupture of
the concrete is 7.5v5000 = +530 psi and the bottom fiber compressive stress
due to the final prestressing force is —863 psi as calculated in Problem 1 of
Chapter 4, the cracking moment for the slab is:

(530 + 863)2860
R 12000 x 10

= 33.20 k-ft

and the full reduced moment capacity of the section can be utilized because:
oM, = 40.83 > 1.20 X 33.20 = 39.84 k-ft

2. If the double-tee slab analyzed in Problem 1 had a concrete strength of 6500
psi, determine what steps would be necessary to fully utilize the flexural
capacity of the member.

SOLUTION:
8, = 0.725
0.386 X 0.000297 X 270
Jos = 270[1 - } = 268.7 ksi
6.5
268.7 X 0.171 .
? =085 x48 x 65 lB3in
0.90 X 0.171 X 268.7 0.173
oM, = > [12 - } = 41.06 k-ft

By using a modulus of rupture of 605 psi, the minimum reduced flexural strength
computation becomes:

1.2(605 + 863)2860

1.2M_, =
R 12000 x 10

= 41.98 k-ft > 41.06 k-ft

The flexural strength is 2.2 % less than the minimum required to conform to the
cracking moment limitation of the code. One option is to increase the flexural
strength by adding nonprestressed flexural reinforcement. Another would be to
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increase the quantity of prestressed reinforcement. With Grade 40 nonpre-
stressed reinforcement, the amount required would be approximately:

4 = 0.022 x 268.7 x 0.171

s 20 = 0.25 in.2

The provision of a number 3 bar in each leg in addition to the prestressing would
result in the following (using d = 12.5 in. for the nonprestressed reinforce-
ment):;

.0002 2.5 )
£ = 270<1 N 0.386[0000 97 x 270 1 < 0.22 >D

6.5 * 12

48 X 12.5 X 6.5
= 268.7 ksi
and:
0.171 x 268.7 x 0.22 X 40 .
T 085 x65x48 = 0206 in.
and:
0.171 x 268.7 0.206 .22 X 40 .206
ot - 030 ST (1,020 03 x40y, 021

= 49.18 k-ft > 1.2Mz = 41.98 k-ft

3. Analyze the double-tee beam of Problem 1 for ultimate moment capacity
under conditions of f, = 5000 psi and the tendon being unbonded. Assume

that the effective prestress is equal to 80 percent of the initial prestress of
16,100 Ib per tendon.

_0.80 X 2 X 16,100
se 0.171

= 150.6 ksi -

0471
T 48 X 12

oy = 0.000297

The span-to-depth ratio is:

L 24 x 12
- = = 20.
d 14 6

Hence, eq. 5-50 should be used to determine f,.

5000
100 x 0.000297

Jos = 150,600 + 10,000 +

329,000 psi > f,,
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Use f,, = 150,600 + 60,000 = 210,600 psi < f,,, a = 0.176 in., and:

.90 X 0.171 x 210. :
0.90 X 0 11;1 210.6 [12 _ 0;__76] = 3217 ket

oM, =

The cracking moment (from Problem 1) was shown to be 33.20 k-ft. Hence,
nonprestressed reinforcement must be provided, or some other means must be
used, to increase the moment capacity of the section to not less than 1.20 X
33.20 = 39.84 k-ft. The flexural strength of the member must be increased
approximately 24 percent, or the permissible service loads must be restricted to
a level that provides twice the load factors permitted in Sec. 9.2 of ACI 318.
4. The double-tee beam shown in Fig. 5-24 is to be used on a span of 40 ft

with an overhang of 8 ft at one end. If the member is prestressed with bonded
stress-relieved strand tendons having an area of 0.58 sq in., an effective
prestress of 90,000 Ib, and f£,, = 270.0 ksi, determine the adequacy of the
member from the standpoint of negative moment flexural strength. The
tendons are located 2.50 in. from the top of the member and f. = 5000 psi.
For the double-tee section, 4 = 187.5 in.2, I = 4256 in.*, ¥y, = 5.17 in.,
and y, = 10.83 in.

SOLUTION:

For negative moment the ratio of the prestressed reinforcement is:

0.58
Pr =525 x 135 OO08I8
The stress in the prestressed reinforcement at design strength is:
0.5 x 0.00818 x 270

Jos = 270<1 - 5 > = 210.34 ksi

| 48" §

I_ 1¥%2

|

L

S

M» 2%" Typ.

51"
Typ.

Fig. 5-24. Double-tee slab.
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The index of the prestressed reinforcement is:

210.34 x 0.00818
w, = 5

= 0.344 > 0.368, = 0.288

and the section is overreinforced. The flexural strength is computed, using eq.
5-46, as:

~0.90 X 5 x 5.25 x 13.5
12

oM, (0.288 — 0.08 X 0.80%) = 85.0 k-ft

The compressive stress in the top fiber due to the effective prestress of 90,000
Ib is computed as follows:

—90,000 -2.67
= ——— 1 — —_ 1
f =87 < —4.39> 772 pst
and the cracking moment is:
772 + 530)823
Mcg = L—) = 89.3 k-ft

12,000

and 1.2Mcp = 107.2 k-ft. In this case the cracking moment is greater than
reduced nominal flexural capacity, and if flexural failure were to occur, it would
be expected to be sudden and complete. The flexural strength is limited by the
compressive strength of the section, as is the case in overreinforced concrete
sections; and because of the narrow width of the bottoms of the stems of the
double-tee beam, providing tied compression reinforcement in the stems to
increase the compressive strength is not a feasible alternative.

The reduced flexural strength of 85.0 k-ft amounts to a uniformly distributed
loading, over the 8 ft length of the overhanging ends, of 2.66 kif or 0.66 ksf.
Assuming that the superimposed load is primarily live load, for which the load
factor is 1.7, by using two times the normal load factor the total load that could
be applied if the cracking moment were controlling rather than the flexural
strength would be approximately 0.66/2 X 1.7 = 194 psf. The only feasible
way of increasing the flexural capacity of the section if used as a prestressed
member with the dimensions given in this analysis is to increase the compres-
sive strength of the concrete so that the cracking moment will control. Alter-
natively, either the eccentricity or the amount of the prestressing reinforcement
could be reduced and thereby cause the cracking moment to control, or the
prestressing in the overhanging section could be eliminated and the negative
moment areas could be designed as nonprestressed reinforced concrete.

5. Investigate the double-tee beam of Problem 4, under the identical conditions
given there, if the tendons are unbonded rather than bonded.
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SOLUTION:

The span-depth ratio for the cantilever is equal to 12 if the actual length of
the overhanging end is used as the span length, and 24 if two times the span
length is used (because it is not a simple span). In either case, eq. 5-50 should
be used in determining the stress in the prestressed reinforcement for the strength
analysis. The value found from eq. 5-50 is 171 ksi, which is less than the
effective prestressing stress plus 60 ksi (215 ksi) and less than the minimum
specified yield stress (243 ksi). The value of the prestressed reinforcement index
is 0.28; hence, the member is underreinforced. The reduced nominal moment
capacity is:

0.90 x 171 x 0.58 4.44
oM, = > [13.5 - —2—} = 83.89 k-ft

The moment capacity is less than 120% of the cracking moment (107.2 k-ft),
and the member does not conform to the code requirements. Addition of flexural
tensile reinforcement will not correct the situation because additional reinforce-
ment will result in the member becoming overreinforced.

6. Two identical one-story buildings, having the dimensions shown in Fig.
5-25, are composed of a continuous post-tensioned roof slab that is 6 in.
thick supported on concrete bearing walls. One building has bonded tendons;
the other does not. The roof slab is prestressed with stress-relieved strand
tendons placed on parabolic paths, as shown in Fig. 5-26. The effective
stress in the tendons is 15.0 kips per foot of width. The tendons have an
area of 0.11 sq. in. /ft, and f,, = 270 ksi. If a catastrophic accident caused
a downward load of 950 psf to act along the full length and width of one of
the 4-ft-wide overhangs of the structure, determine its effect on each of the
buildings. If the catastrophic accident caused a downward load of 1200 psf
on the overhang, determine its effect on the structures with each type of
tendons. Assume f. = 4500 psi.

777717%/////// 7777 4
[]
)
gl 4 at 20' = 80' | "
| 1

Fig. 5-25. Elevation of single-story building having a 6 in. one-way slab roof supported
by bearing walls, used in Problem 6.
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Center of gravity of
prestressing steel
|

——t _/\-4 ¢

1%" Typical all spans

Fig. 5-26. Tendon layout for 6 in. slab roof for building in Problem 6.

1%" Typical all supports

SOLUTION:

Bonded tendons:

0.11 .
0p = 2 xas - 0.00204  f,, = 253.3 ksi
w =0.115

&M, = 8.78 k-ft/ft

—15,000 -1.5
= : + = —521 psi
f 7 <1 _1.0> 521 psi

503 + 521)72
Mcg = (—

12,000 = 6.14 k-ft /ft
1.2Mcg = 7.37 k-ft /ft < 8.78 k-ft/ft ok.
Unbonded tendons:
;:;?h = 20 >6< 12 =40 .. Use eq. 5-51.
Jos = 136 + 10 + ___ 45 = 153.4 ksi
300 x 0.00204
Use f,, = 153.4 < 136 + 60 = 166 < f,,

oM, = 5.46 k-ft /ft

1.2M¢p = 7.37 k-ft /ft > 5.46 k-ft/ft NG.

Nonprestressed reinforcing must be added to the slab with unbonded tendons to
increase the moment to 7.37 k-ft /ft.

12(7.37 — 5.46) .
A, = ——= = (. .
5 60 X 45 0.085 in.”/ft
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Use No. 4 bars at 28 in. on centers, A, = 0.086 in.?/ft. For 950 plf, M = 7.60
k-ft/ft, and for 1200 plf, M = 9.60 k-ft /ft.

CONCLUSIONS:  For the load of 950 pif the moment in the overhang due to the
applied load, exceeds the moment capacity of the slab having unbonded tendons
(7.37 k-ft/ft). The slab overhang would be expected to break off and release
the prestress in the tendons. Without the prestress in the tendons, the slab in
the interior spans would be expected to collapse because of its own dead load.
The moment due to the load of 950 plf would not cause the overhang to fail in
the slab with bonded tendons.

For the load of 1200 psf, the overhang on the building with bonded tendons
would fail. The roof would not collapse, however, because the stress in the
bonded tendons would not be released by the failure of the overhang.



6 | Flexural-Shear
Strength, Torsional
Strength, and
Bond of
Prestressed
Reinforcement

6-1 Introduction

The topics of flexural-shear strength and bond of prestressed reinforcement are
closely associated with flexural strength design. For a flexural member to
perform as intended, it must not fail in bending, flexural shear, or torsional
shear, or because of inadequate bond of the reinforcement. Torsion is not neces-
sarily related to flexure, but it is included in this chapter because it frequently
occurs in flexural members, and reinforcement for torsional strength frequently
is closely associated with reinforcement for flexural shear strength.

6-2 Shear Consideration for Flexural Members

Reinforced concrete members, when subjected to loads that cause significant
flexural stresses, often develop cracks that originate in the extreme tensile fibers
of the members in the vicinity of the larger bending moments. Cracks of this
type normally are nearly vertical, are caused by flexural tensile stresses, and
are considered to be relatively unimportant at relatively low loads or bending
moments. As flexural cracking progresses with the application of load, the area
over which the cracking occurs extends, and cracks farther away from the areas

213
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of highest bending moments tend to become flatter (i.e., less vertical). At higher
loads (moments), the cracks extend in length, their ends nearest the compres-
sion flange assume a more horizontal path, and they become what are known
as flexural-shear cracks (as opposed to simple flexural cracks). Flexural-shear
cracks are potentially dangerous from the standpoint of complete collapse. In
addition, members having prestressed reinforcement will, on occasion, develop
web cracks that do not extend to the extreme fibers (tensile or compressive) in
areas of low bending moment. The latter type of cracking, which is more likely
to occur in flexural members having T-or I-shaped cross sections, (i.e., cross
sections with thin webs), is caused by principal tensile stresses that exceed the
tensile strength of the concrete; they normally originate near the centroidal axis
of the cross section of the member.

The existence of shear cracks of these two types may or may not be precur-
sors of catastrophic collapse of a flexural member; but, because ‘shear failures’’
that originate from these types of cracking can occur suddenly and with little
warning, prudent engineers generally provide reinforcement (shear reinforce-
ment) when the conditions of a design indicate reinforcement may be needed
to ensure that the flexural shear strength of a member equals or exceeds its
flexural bending strength.

The two types of flexural shear cracking currently are recognized in one way
or another in all contemporary design standards for concrete flexural members
having prestressed and nonprestressed reinforcement. Illustrated in Fig. 6-1,
they are further described as follows:

Type I Cracking. This is the type of cracking associated with flexural
cracking. Some authorities believe that for this type of crack to adversely affect
the capacity of a member, it must extend in such a manner that the horizontal
projection of the crack has a length approximately equal to the depth of the

p P
Type I crack Typelcrack
/( Flexural cracks >\
J N0 VAN
A Typellcrack Typellcrack A
L
—

Fig. 6-1. [lllustration of flexural cracks and Types | and li shear cracks.
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member. For this reason, some researchers believe that a Type I crack located
at a distance equal to the depth of the member away (in the direction of lesser
moment) from a section being investigated for flexural shear strength can be the
source of a critical flexural shear crack (PCA 1963). In addition, principal tensile
stresses along a potential Type I crack may be aggravated by flexural cracks
that occur in the vicinity of the potential Type I crack; and, because principal
tensile stresses normally are maximum at the centroidal axis of a beam (can be
taken to be approximately at the middepth of the beam), a flexural crack at one-
half the beam depth from a section under consideration can be considered a
potential cause for a Type I crack. Shear cracking in members having nonpre-
stressed and prestressed reinforcement most commonly results in Type I cracks.
The cracks begin as flexural cracks extending approximately vertically into the
beam. When a critical combination of flexural and shear stresses develops near
the top of a flexural crack, the crack becomes more inclined, and the potential
for failure is enhanced.

Type Il Cracking. This type of cracking, which is associated with principal
tensile stresses in areas where there are no flexural cracks, originates in the web
of the member near the centroidal axis, where shear and thus principal tensile
stresses are the greatest. With an increase in loading, they extend towards the
flanges (PCA 1963). Type II cracking is fairly unusual. It may appear near the
supports of highly prestressed simple beams that have thin webs, and it also
may occur near the inflection points and bar cutoff points of continuous,
reinforced-concrete members subjected to axial tension (MacGregor and Hanson
1969).

In view of the above distinctions, it should be apparent that in designing
flexural members for the effects of shear stresses, one must consider each type
of cracking and determine the amount of reinforcing that is required to negate
the adverse effects of each type. Some members must be designed for movable
live loads, variable spacings between the live loads, and variable conditions of
loading (as functions of span lengths, continuity, etc.); so designing for the
different types of ‘‘shear cracking’’ can be confusing. A good understanding of
the fundamental differences between the types of cracking can help one to gain
confidence and proficiency in flexural shear design. The reader will find inter-
esting discussions of the classical theories related to the shear strength of
reinforced and prestressed concrete members in the references listed at the end
of this chapter.

In some parts of the world, it has been customary to assume that once a crack
has formed in a reinforced concrete flexural member, whether reinforced for
flexure with prestressed or with nonprestressed reinforcement, the total shear
force must be carried by shear-reinforcing steel without any of the shear force
being resisted by the uncracked portion of the concrete section. On the other
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hand, it has been traditional in U.S. practice to assume that a portion of the
shear force is carried by the concrete section, with shear reinforcing needed
only for the shear forces that are in excess of those the concrete can safely resist
itself. Hence, shear design criteria commonly used in the United States have
been formed with two purposes: to establish the amount of shear force the
concrete can carry alone and to determine the amount of shear reinforcing
required to carry the shear force, if any, in excess of that which the concrete
can sustain itself.

In recent years a new approach to the design for shear in reinforced concrete
members has emerged from research work done in Canada (Mitchell and Collins
1974). This theory was originally presented as the Compression Field Theory.
More recently it has been modified to include the effects of tension stiffening,
and the updated version is known as the Modified Compression Field Theory
(Vecchio and Collins 1986). This theory is an extension of the truss analogy
approach to the design of reinforced concrete flexural members originally
proposed by Ritter and subsequently enhanced by Moersch (Ritter 1899;
Moersch 1902). It recognizes the importance of reinforcement placed in each
of the two orthogonal directions on the shear strength of reinforced concrete
flexural members, as well as its effect on the inclination of shear cracks. The
method has been used to explain the strength behavior of reinforced concrete
flexural members, with and without prestressing, without relying upon the
assumption that web cracks must occur at an angle of 45° from the centroidal
axis of the member regardless of the amounts of longitudinal and transverse
reinforcement. In its complete form, the method is relatively difficult to apply,
especially to members that must be designed for many, variable combinations
of loading; so it is probably most useful in research and the investigation of
failures. It is interesting to note that simplified code provisions based upon the
Compression Field Theory are included in the Canadian Standards Association
publication Design of Concrete Structures for Buildings (CSA 1984).

Another area in which U.S. practice in shear design differs from the practice
in other parts of the world concerns the design in the support regions of beams,
areas of beams subjected to concentrated loads, and portions of members having
abrupt changes in cross section (corbels, haunches, daps, etc.) and discontin-
uities. A comprehensive treatment of this subject will be found in the paper
““Toward a Consistent Design of Structural Concrete’” (Schlaich, Schaefer, and
Jennewein 1987), and a brief but enlightening treatment will be found in the
Design of Concrete Structures for Buildings (CSA 1984). The areas in question
are referred to as disturbed areas, and these areas are modeled as trusses for the
purpose of determining the concrete compressive stresses in the diagonal struts,
the tensile forces in the ties, and the stresses in the connections—the latter being
termed nodal zones. Figure 6-2, which is based upon Fig. D13 in CSA 1984
(see Appendix D), illustrates the components of the truss model and is used
here to facilitate this discussion of the basic concept. Threaded ends of ties with
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Note: Threaded ends of rods and nuts used to emphasize the need
for anchoring the ends of tension elements in the nodal areas.

Fig. 6-2. Model employed to illustrate the trusslike action of a reinforced concrete beam
using the truss analogy (after CSA 1984).

nuts are used to emphasize the need for anchoring the ends of tension elements
in the nodal areas. The provisions contained Sec. 11.4.7, ‘‘Design of Regions
Adjacent to Supports, Concentrated Loads, or Abrupt Changes in Cross
Section,’” in CSA 1984 are discussed in detail in Sec. 6-5 of this chapter.

6-3 Flexural Shear Design Provisions of ACI 318

The flexural shear provisions for prestressed concrete members contained in
ACI 318 include an approximate method that may used to determine the shear
force that a concrete section can resist without transverse (shear) reinforcement.
This relationship is:

V.d
v, = <0.6\/f_; + 700 -4 >bwd (6-1)

u

The use of the approximate method is limited to members with an effective
prestress equal to at least 40 percent of the strength of the tensile flexural
reinforcement. In eq. 6-1, V, and M, are the total required (factored) design
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shear force and moment applied at a section, respectively. When the approxi-
mate relationship is used, the limitations on V, are:

2Vfib,d < V, < 5Vfib,d

In addition, V,,d /M, < 1. The term d in eq. 6-1 is the distance from the extreme
compression fiber to the centroid of the longitudinal tension reinforcement, and
b,, is the width of the web.

When applied to simply supported spans subjected to uniformly applied loads
alone, eq. 6-1 becomes:

V.= <0.6~/ﬁ + 700 ‘i(—(ll__ij))>bwd (62)

where [ is the span length, and x is the distance from the support to the point
under consideration. Equation 6-2 can be represented graphically in terms of
unit stress, as shown in Fig. 6-3 (from ACI 318R 1983).

The designer may elect to make a more detailed analysis for the shear design
of prestressed concrete flexural members by determining the amount of shear
reinforcing required to guard against failure as a result of Types I and II
cracking. If this is done, two separate analyses are required because Type I
cracking is a function of both moment and shear, whereas Type II cracking is
not a function of moment. In the case of moving loads, maximum moment and

500

YC 300

200

100 - 1

]
2 3 2
4 8 2

Distance from Simple Support, x

Fig. 6-3. Diagram showing the relationship of unit shear stress v, as a function of the
span length for a simple prestressed concrete beam supporting a uniformly
distributed load. Reproduced with the permission of the American Concrete
Institute.
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maximum shear do not usually occur at any one section under the same condi-
tion of loading; so more effort is required to make a complete analysis for
members designed for moving loads than is needed in the case of a member
subjected to nonmoving live loads.

The shear force that can safely be carried by the concrete in areas subject to
flexural cracking (Type I shear cracks) is computed by:

V.M,
V. = 0.6vfib,d + V, + T (6-3)

in which:

V, = The shear force due to service dead load (unfactored). The service
dead load includes the self-weight of the member, cast-in-place slabs,
cast-in-place toppings, and superimposed dead loads, whether acting
compositely or noncompositely with the member

V, =V, minus ¥,

M_.. = M, less the moment due to service dead load (unfactored) from the
self-weight of the member and all superimposed dead load moments
(M., and V; are concomitant)
b,, = the width of the web
d = the effective depth
M_, = the cracking moment

In applying eq. 6-3, one must use the loading combination resulting in the
greatest value of M,,,, not V,. It is worth repeating that V; is the shear force
concomitant with M, .. and not necessarily the greatest design shear force at the
section under consideration. (This fact has caused considerable difficulty among
structural designers who have become accustomed to using the loading that
causes the greatest shear force, rather than the loading that causes the greatest
moment, when designing for shear.)

The cracking moment is defined as:

M, = yi (6372 + fro = £2) (6-4)

The equation for M., is given as it appears in ACI 318; f,, and f; are both taken
to be positive. In eq. 6-4, the terms are defined as follows:

f1 = Stress due to total service dead load, at the extreme fiber of a section
at which tensile stresses are caused by applied load, psi
Joe = Compressive stress in concrete due to prestress only after all losses, at
the extreme fiber of a section at which tensile stresses are caused by
applied loads, psi
I = Moment of inertia of section resisting externally applied design loads,

III.4
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y, = Distance from the centroidal axis of the gross section, neglecting the
reinforcement, to the extreme fiber in tension, in.

The limits for V,; are:
1L.INfbd < V,; < V.,

Equation 6-5, which is discussed below, is used to compute V.,

The shear force that can be carried by the concrete in areas where Type II
(principal tensile stress) cracking controls, rather than flexural-shear cracking,
is given in ACI 318 to be as follows:

Voo = (3.5Vf% + 03£,)b,d + V, (6-5)

In lieu of using eq. 6-5, V,,, can be taken as the shear corresponding to a multiple
of dead load plus live load, which results in a computed principal tensile stress
of 4 \/ﬁ at the centroidal axis of the member, or at the intersection of the flange
and the web when the centroidal axis is located in the flange.

The definitions of the terms in eq. 6-5 not previously defined are:

b,, = Web width, or diameter of circular section, in.

d = Distance from extreme compression fiber to centroid of tension
reinforcement, in.

Joc = Compressive stress in the concrete, after all prestress losses have
occurred, at the centroid of the cross section resisting the applied loads,
or at the junction of the web and flange when the centroid lies in the
flange, psi (In a composite member, f,. will be the resultant compres-
sive stress at the centroid of the composite section, or at the junction
of the web and flange when the centroid lies within the flange, due to
both prestress and to the bending moments resisted by the precast
member acting alone. The reduction in the effective prestressing force
at a section, due to the length required to transfer the prestress to the
concrete, must be taken into account when computing V,,, in preten-
sioned members.) (See Sec. 6-6.)

¥, = Vertical component of the effective prestress force at the section consid-
ered, Ib

At the option of the designer, in members that are prestressed in one direction
only, eq. 6-6, which follows, may be used to determine the shear force or unit
shear stress that will cause a principal tensile stress of 4\/f_;:

Vo = [NA£L(ANFL + £0)]bud + V, (6-6)

If the member is provided with prestressing in two orthogonal directions, such
as in a beam prestressed with vertical stirrups in addition to longitudinal
prestressed reinforcement, the relationship for V,, becomes:
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Vcw = [\/(\/4_é+f;)cv)(4\/ﬁ +.f;)c)]bwd + Vp (6'7)

in which f,,, is the prestressing stress acting at 90° from f,..

It should be noted that in the relationships given above in egs. 6-1, 6-2,
6-3, 6-4, and 6-5, it is assumed that the concrete is made of normal sand and
gravel and does not contain lightweight concrete aggregates. ACI 318 provides
that in lieu of v/f., 0.75Vf. be used if the concrete is made with lightweight

sand and coarse aggregate (‘‘all-lightweight concrete’’), and 0.85«/ﬁ be used
if the concrete made with normal sand and lightweight coarse aggregates (‘‘sand-
lightweight concrete’’). In egs. 6-6 and 6-7, the actual tensile strength of the
concrete should be used in lieu of 4\/ﬁ if it is known.

In applying the above equations for V,, V,, and V,,, d is to be taken as the
depth from the extreme compression fiber to the centroid of the longitudinal
tension reinforcement, or 0.8 times the overall thickness of the member, which-
ever is greater.

The shear design at each section is to be based upon:

V, < ¢V, (6-8)
and:
V,=V, +V, (6-9)
Terms in eqgs. 6-8 and 6-9 are:

V. = Nominal shear strength provided by the concrete; either that obtained
from eq. 6-1 or the lesser of that obtained from eq. 6-3 or eq. 6-5.

¥, = Nominal shear strength

¥, = Nominal shear strength provided by shear (transverse) reinforcement

¥, = Total design (factored) shear force at a section (Note that for use in
computing ¥V, and V,, from egs. 6-1 and 6-5, the value of V, to be used
in eq. 6-8 is the greatest value that occurs at the section. For use with
V,; from eq. 6-3, the value of V, to be used in eq. 6-8 is a function of
the shear force occurring from the load distribution causing maximum
moment; this may not be the greatest shear force that can occur at the
section.)

¢ = Capacity reduction factor, which for shear design is 0.85

b,, = Web width

d = Depth from extreme compression fiber to the centroid of the longitu-
dinal tension reinforcement, but not less than 0.8 times the thickness
of the member

When the value of V,, is greater than ¢V, shear reinforcement must be provided
for the shear force in excess of the amount that the concrete can carry. For the
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usual case of shear reinforcement placed perpendicular to the longitudinal
reinforcement, the amount of shear force the reinforcement can sustain is:
B A f,d

Vv, = (6-10)
s

in which A, is the area of the shear reinforcement perpendicular to the flexural
tension reinforcement within a distance s, and the other terms have been defined
previously. Note that eq. 6-10 can be rewritten as:

v, Af,
bd v, = bs (6-11)
or.
V.b,s
A, = —F (6-12)
5

in which v, is the unit shear stress.

Other provisions are contained in ACI 318 for the case of shear reinforcing
that is not placed perpendicular to the longitudinal reinforcing. Reinforcing of
this type rarely is used in prestressed concrete construction, and it is not
discussed in this book.

It should be noted that vertical stirrups normally are placed at a maximum
spacing of 0.75 times the thickness of prestressed members, but when V, exceeds
4 «/f_g b,,d, the maximum spacing permitted by ACI 318 is 0.375 times the thick-
ness. To guard against principal compression failures; the value of V is limited
to 8vf.b,d.

It is interesting to note that the reduction of the shear force acting upon the
section due to the vertical component of the prestressing is included in eq. 6-5
but not in eq. 6-3. Tests of prestressed concrete members with and without
inclined tendons have shown this to be appropriate. In designing for shear in
prestressed member it also is appropriate to include the effects of variation of
depth of the section (see below) and shear forces resulting from prestress-induced
deformations in continuous members (see Chapter 10).

Beams of variable depth and normal configuration have less shear force on
their webs in areas where the compression flange is inclined to the gravity axis
than would be revealed from a usual analysis of the flexural shear forces. The
principle, known as the Résal effect, is illustrated in Fig. 6-4, in which a
freebody diagram of a portion of a variable-depth continuous beam is shown.
The portion of the beam shown is near the support, where both the shear force
and the negative moment are large. If the angle of inclination of the bottom
flange with respect to the gravity axis of the member is taken as «, and the
force in the compression flange is designated as Cy, there is a vertical component
of the force Cyequal to Cysin «. This vertical component of the force acts in a
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G Pier

Fig. 6-4. Freebody diagram of a portion of a bridge superstructure having variable
depth.

direction that reduces the shear force applied to the webs of the member. When
this effect is applied in an analysis under design loads, the force should be
determined on the basis of the design moment that is concomitant with the
design shear force being considered.

Minimum shear reinforcing provisions are contained in ACI 318 for
prestressed concrete, as they are for reinforced concrete. Slabs, footings, and
concrete joist construction are exempt from these requirements. The minimum
amount of shear reinforcing is:

_ 50b,s
Iy

for reinforced or prestressed members not subject to significant torsional
moments (see ACI 318). For prestressed members, the relationship:

Aps f[‘ms d
4, = /— 6-14
* "~ 80f,d \b, (6-14)

may be used if the effective prestress is at least 40 percent of the tensile strength
of the flexural reinforcement. (As is discussed in Sec. 6-4, ACI 318 does not
include specific requirements for prestressed concrete members subject to signif-
icant torsional moment.)

For prestressed concrete flexural members having reactions that induce

A, (6-13)
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compression into their end regions, ACI 318 permits the maximum shear force
to be taken to be the shear force at a distance equal to one-half the thickness of
the member, 4 /2, from the support. This recognizes the arch or truss action of
the concrete in the vicinity of the support. For flexural members reinforced with
nonprestressed reinforcement that have reactions that induce compression into
their end regions, ACI 318 permits the maximum shear force to be taken as
equal to the shear force at a distance of d (the effective depth of the reinforce-
ment) from the support.

The end regions of flexural members having prestressed or nonprestressed
reinforcement and reactions that do not induce compression in the end regions
must be designed for the maximum calculated shear force.

Punching shear stresses, as might be caused by a concentrated wheel load on
a prestressed slab or by the supporting column on a flat plate structure, are a
source of concemn to the prestressed-concrete designer. Provisions are made for
punching shear in concrete slabs and footings, reinforced with prestressed or
nonprestressed reinforcement, in Sec. 11.11 of ACI 318. The design for shear
stresses in the vicinity of the columns in flat plates and flat slabs involves a
determination of shear stresses resulting from the vertical concentric load as
well as from the moment that must be transferred between the column and the
slab. The method used in that type of analysis is described in Sec. 13-13 of this
book.

The basic prestressed concrete shear provisions of the AASHTO specification
(AASHTO 1989) are similar to those contained in ACI 318. It is interesting to
note, however, that the AASHTO specifications permit the use of the shear
design provisions of the 1979 Interim AASHTO Standard Specifications for
Highway Bridges as an alternative to those contained in AASHTO 1989.

It should be noted that the shear provisions for prestressed concrete described
herein, and found in the commonly used U.S. design criteria and codes, are
written in terms of force rather than unit stress. Before the publication of the
1977 edition of ACI 318, U.S. design criteria and codes contained shear design
provisions for reinforced and prestressed concrete members expressed in unit
stress. The change to expressions of force made in the 1977 edition of ACI 318
was done in the interest of having consistency of units throughout the code—
that is, having all of the code provisions (except those for the development of
reinforcing) in terms of force. Unit stress relationships are more desirable than
force terms for the designer because it is possible to memorize certain limiting
unit stresses. It is not possible to memorize limiting forces because they are the
product of unit stresses and dimensions of the cross section, and thus vary from
member to member. For this reason, it is recommended the structural designer
consider the use of unit shear stresses rather than shear forces in routine design
work. The forces can be computed and shown at the completion of the calcu-
lations if necessary to demonstrate specific compliance with the applicable
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building code. This approach is particularly useful in the evaluation of Type II
shear cracking in prestressed concrete flexural members, as the maximum unit
stress is the limiting factor for Type II cracking. (This is occasionally overlooked
by designers who are not familiar with the basis for the force relationships
contained in the codes for V_,,.)

The limiting stresses that the designer should keep in mind are as follows:

1. Minimum value for shear stress in eq. 6-3 for V; is v, = 1.7 \/ﬁ

2. The minimum value for shear stress V, in eq. 6-1 is v, = 2.0 \/f—g

3. The maximum value of shear stress for shear reinforcement used at normal
spacing is v, = 4.0 Jﬁ

4. The maximum value of shear stress V. ineq. 6-1isv, = 5.0 \/ﬁ

5. The maximum value for shear stress to be carried by shear reinforcement,
to guard against a failure due to diagonal compression stresses, is v, =

8.0f..

ILLUSTRATIVE PROBLEM 6-1  Using the provisions of ACI 318, investigate
the double-tee slab shown in Fig. 6-5 for web reinforcing using the simplified
analysis. The dead load of the double-tee slab is 200 plf, the superimposed live
load is 240 plf, the design span is 40 ft, f. is 5000 psi, and the prestressing
consists of straight tendons with 4,; = 0.58 sq. in., P;, = 90.0 Kips, and f,,
= 270 ksi. The tendons are located 2 in. above the soffit. Plot the results. Use
b, = 8.00 in.

48”

114"

1§
pee—

14"
16"

1_4» 2%" Typ.

5Y2"
Typ.

Fig. 6-5. Double-tee slab.
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SOLUTION:
Service Design
load load
Dead load = 0.200 kIf X 20ft =4.00k X 1.4 = 5.60 k
Liveload = 0.240kIf X 20 ft = 4.80k X 1.7 = 8.16 k
Total reactions = 8.80 k = 13.76 k

Vimax = 13.76 k

13,760
Vymax = S x 14 123 psi
Vw1376 _
o= s = 1619k
Uy 16,190
085 8x14 P

Vemin = 25000 = 141 psi
Uemax = IV5000 = 353 psi

Using eq. 6-2, the relationship for the approximate method with simple spans
having uniformly distributed loads, expressed in unit stress rather than force,

gives:
700 X 14(40 — 2x)
=10.6V +
v, <06 5000 122(40 — x) >

Solving for v, gives values of v, of 429, 223, and 154 psi for values of x of 2,
4, and 6 ft, respectively.

The computations of the minimum shear reinforcement according to egs.
6-13 and 6-14, respectively, are as follows:

50 x 8 x 12
’ 40,000

0.58 270 12 /14
A =— — — - = . . i .
v=780 40 14§ 0% sdin

The ratio of f;, to f,, is 0.57 = 0.40; hence, the use of eq. 6-14 is appropriate,
and the minimum area of shear reinforcement of 0.055 sq. in. per foot may be
used.

The results are plotted in Fig. 6-6. It should be noted that v, is greater than
v,/o throughout the length of the member; so shear reinforcement is not

= 0.12 sq. in.
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>
290 psi Min. web reinforcement required

141 psi
¥

145 psi—1

Support—]

L/2

Fig. 6-6. Plot of the results of a shear stress analysis for a double-tee slab.

required for strength considerations. For a small distance, v, is less than 2v, / ¢;
so minimum reinforcement is required in this area.

ILLUSTRATIVE PROBLEM 6-2  For the double-tee slab of Problem 6-1, deter-
mine the web reinforcing required using both simplified and detailed analyses
if the design span is 30 ft, the supports are simple, and the superimposed live
load is 650 plf. The section properties of the slab are:

A =189.55q.in., I = 4256 in.*, y, = —5.17 in.

SOLUTION:  Simplified analysis:

V,= (14 %02 + 1.7 x 0.65)15 = 20.78 kips
v, 20,780

6 085 x8x 14
Vemax = 5V5000 = 353 psi
Vemin = 245000 = 141 psi
At 6 feet from the support, x = 6.00 in eq. 6-2,
(700)(14)(18)
(12)(6)(24)

The computations are plotted in Fig. 6-7a.

Detailed analysis: The computations are summarized in Table 6-1 and plotted
in Fig. 6-7b.

= 218 psi

v, =42 + = 144 psi

Vemin = 1.74/5000 = 120.2 psi
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436 psi
353 psi\<

N -/Midspan

vul$ \

Min. web reinf. req’d

L/2

(a)

Vul®

120 psi
cw V. v, min.
SUppOl’t\ ’%‘ ci \c\i/MidSpan

L/2

(b)

Fig. 6-7. Plots of the results of simplified and detailed shear analyses for a double-tee
slab. (a) Simplified analysis. (b) Detailed analysis.

The transmission length for the tendons (see Sec. 6-6) has been taken as
18.75 in.

The area of the shear reinforcement provided is based upon the use of Grade

40 reinforcement and eq. 6-14. Note that with an area of reinforcement of 0.0554
sq. in. per foot:

[ _ 00554 x 40,000 x 14
s 12

= 2585 1b
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TABLE 6-1 Summary of Computations for I.P. 6-2.

Length Vg v, 7 v, A

cw u v
Pt. {ft) (psi) (psi) (psi) {psi) (in.2 /ft)
.00 .000 infin 247.4 247.4 218.2 .0554
.05 1.500 563.4 384.2 384.2 196.4 .0554
.10 3.000 295.5 389.9 295.5 174.5 .0554
.15 4.500 198.7 389.9 198.7 152.7 .0554
.20 6.000 149.2 389.9 149.2 130.9 .0554
.25 7.500 118.3 389.9 120.2 109.1 0554
.30 9.000 96.6 389.9 120.2 87.2 .0554
.35 10.500 79.9 389.9 120.2 65.4 .0554
.40 12.000 66.1 389.9 120.2 43.6 .0554
45 13.500 53.9 389.9 120.2 21.8 .0554
.50 15.000 42.4 389.9 120.2 000.0 .0554
and

v, = 23.1 psi

COMMENTS: In this example the simplified analysis is only slightly conser-
vative when compared to the detailed analysis. In the detailed analysis, the
value of v, increases rapidly between the end of the member and 1.50 ft from
the end because of the transmission length (transfer distance) required for the
pretensioned tendons (see Sec. 6-6).

ILLUSTRATIVE PROBLEM 6-3  Investigate the post-tensioned beam shown in
Fig. 6-8 for shear reinforcing if the beam has the following section properties:

A =876in.%, I = 433,350 in.%, y, = —25.0 in.

The design dead loads are as follows:

Girder dead load = 0.911 kIf
Superimposed dead load = 0.500 kif
Total dead load = 1.411 kiIf

The design span is 80.0 ft, and the design live load is 2.00 kif. The beam is
stressed with an effective force of 670 kips and:

fi = 5000 psi
f, = 40,000 psi
Jou = 270,000 psi
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24" 24"

39"
63"

) 5]
B—
B

I‘gu gu

Fig. 6-8. Cross section of a beam analyzed for shear stresses.

The tendon is on a parabolic curve with e = 0 at the support and e = 32.1
in. at midspan. Use load factors of 1.4D + 1.7L, and analyze the beam by the
detailed analysis. The area of the prestressed reinforcement is 4.00 in.2. Neglect
the nonprestressed longitudinal reinforcement.

SOLUTION:  See Table 6-2 for a summary of the computed values of v
v, v,, and 4,. The data in Table 6-2 are shown plotted in Fig. 6-9.

cis Uews

ILLUSTRATIVE PROBLEM 6-4  Investigate the beam of I.P. 6-3 for shear
reinforcement if the live load consists of one concentrated load of 100 kips
applied 20 ft from the left support.

TABLE 6-2 Summary of Computations for I.P. 6-3.

Length Vei Vew Ve vu/¢ Av
Pt. (ft) (psi) (psi) (psi) (psi) (in.2/f1)
.00 .000 infin 730.9 730.9 717.0 0.1050
.05 4.000 1029.6 705.5 705.5 645.3 0.1050
.10 8.000 601.5 680.1 601.5 573.6 0.1050
15 12.000 440.0 654.7 440.0 501.9 0.1299
.20 16.000 344.9 629.3 344.9 430.2 0.1790
.25 20.000 276.1 603.9 276.1 358.5 0.1727
.30 24.000 2149 575.8 214.9 278.1 0.1360
.35 28.000 162.3 547.7 162.3 199.9 0.1050
.40 32.000 118.4 522.8 120.2 129.4 0.1050
45 36.000 79.3 499.4 120.2 63.6 0.1050

.50 40.000 42.4 476.9 120.2 000.0 0.1050
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ci
cw
v, /o
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Fig. 6-9. Piot of the results of a shear analysis of the beam shown in Fig. 6-8.

SOLUTION:  The computations are summarized in Table 6-3, and the results
are shown plotted in Fig. 6-10.

6-4 Torsion Considerations for Flexural Members

Flexural members frequently are subjected to the effects of torsion. The torsional
moments often are small and frequently can be neglected without serious conse-
quences. On the other hand, in some instances torsional stresses can be signif-
icant and lead to failure if not addressed in the designing and detailing of
reinforced concrete members. Spandrel or facia beams probably are the most
commonly encountered members in building construction for which torsion
design can be important.

The torsional moment acting upon a beam cross section is measured from the
shear center of the section. The locations of the shear centers for commonly
encountered cross sections are illustrated in Fig. 6-11 (Oden 1967). The princi-
ples involved in determining the torsional moments on L-shaped spandrel beams
and a box-girder bridge are illustrated in Figs. 6-12 and 6-13, respectively.

It is important to recognize the fact that the torsional stiffness and torsional
strength of ‘‘open’’ sections, such as I-shaped or T-shaped beams, are low in
comparison to those for a “‘closed’’ section such as the cross section of a box-
girder bridge. (See Chapter 14 for illustrations of open and closed bridge
members.) The torsional strength and stiffness are an important consideration
in the design of bridges because these structures are frequently subjected to
significant torsional moments due to eccentrically applied live loads or due to
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Fig. 6-10. Plot of the results of the analysis of a prestressed concrete beam supporting
a concentrated live load of 100 k.

the configuration of the bridge itself. The superstructures as well as the
substructures of curved bridges can be subjected to significant torsional moments
from dead as well as from live loads simply because of their shape.

Uncracked concrete box girder sections can be analyzed for the effects of
torsion using the membrane analogy (Timoshenko 1956) or by solving the
equations of equilibrium (Oden 1967). For the section shown in Fig. 6-14a),
shear flows, ¢, exist as shown in Fig. 6-15 due to the torsional moment M,.
The equations for the web shear flows at sections B-B’ through E-E’ are:

b6 = & — &, (6-15)
67 = ¢35 — ¢, (6-16)
$s = &3 — ¢4 (6-17)
b9 = b4 — &s (6-18)

Shear flow is equal to the product of the torsional shear stress and the wall
thickness of the element at the location under consideration.
The relationship for the torsional couple is:

2¢1A1 + 2¢2A2 + 2¢3A3 + 2¢4A4 + 2¢5A5 = Mr (6'19)

in which the notation is as defined in Fig. 6-14a, the areas are as defined in
Fig. 6-14b, and M, is the torsional moment applied to the member.
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Shear center lies on
the axis of symmetry

)

e—— Vertical axis of symmetry

[Horizontal axis
of symmetry

Shear center

(b)

Fig. 6-11. Beam cross section illustrating the locations of shear centers. (a) Member
with a single axis of symmetry. {(b) Member having biaxial symmetry.

The relationships between the shear flows and the rate of twist #, using the

same notation from Fig. 6-14a, are:
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Fig. 6.11. (Continued) (c) Member not having symmetry. (d) Channel-shaped member
having a single axis of symmetry.

It should be recognized that the terms representing the areas of the components
of the section, such as B, /1, in egs. 6-20 through 6-24, must include the effect
of variations in thickness for slabs and webs not having uniform thicknesses.
The relationship between the rate of twist and the applied moment is:

6 = (6-25)

SIx
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Fig. 6-12. L-shaped spandrel beam illustrating torsional moment due to vertical and
horizontal forces. (a) L-shaped beam supporting a double-tee beam. (b)
Freebody diagram of elastomeric bearing pad. (c) Freebody diagram of
L-shaped spandrel beam.

In egs. 6-20 through 6-25, G is the shear modulus of the concrete, J is the
torsional constant for the box-girder cross section, and the other notation has
been defined above. Solving these equations, one can determine the values of
the shear flows and the torsional stresses in the components (v, = ¢ /1), as well
as the value of the torsional constant. (The solution is facilitated by using a unit
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Fig. 6-13. Cross section of box-girder bridge illustrating loading conditions for
maximum bending moment and maximum torsion. (a) Box-girder bridge with
four lanes of concentric truck live load {no torsional moment). (b) Box-girder
bridge with three lanes of eccentric truck live load (with torsional moment).
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=~

Hy3 + Hy,

(b) Dimensions of cell 3.

Fig. 6-14. Cross section of a closed section and a detail of a panel of the member
illustrating the terminology used in the analysis of shear flow. (a) Cross
section of the member. (b) Definition of panel element dimensions.

torsional moment, i.e., substituting unity for M, in eq. 6-25 and substituting
1/J for G9 in eqs. 6-20 through 6-24.) With these parameters known, one can
determine the torsional moment that would be expected to cause cracking in a
box-girder cross section.

In reinforced concrete members, relatively small torsional moments can be
resisted by the uncracked concrete section. Larger torsional moments may cause
the concrete section to crack. After cracking has occurred, the torsion must be
resisted by a combination of transverse and longitudinal reinforcement, both of
which are stressed in tension, and portions of the uncracked concrete section
that act as compression struts. The cracked concrete member can be thought of
as a three-dimensional, trusslike system, as illustrated in Fig. 6-16, that resists
the torsion by axial tension and compression forces.
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Fig. 6-15. Shear flows due to a torsional moment for the cross section shown in Fig.
6-14.

Under a torsional moment approaching the capacity of the member, the
concrete cover over the reinforcement nearest the outer surface tends to spall
off and can no longer be counted upon to anchor the transverse reinforcement
or to serve as a part of the compression struts. Ducts for post-tensioned tendons
located near the external surfaces of members subjected to high torsional
moments can further decrease the thickness in the areas of the concrete section
and adversely affect the compressive strength of the concrete struts. The hooks
of the transverse reinforcement must extend around the longitudinal reinforce-
ment and be anchored in the interior core of the member to be effective after
the spalling (Collins and Mitchell 1980). Because of the loss of concrete cover
and the reduction in area caused by post-tensioning ducts, the Canadian Standard
requires the use of a reduced thickness of the concrete section in computing the
torsional strength of concrete members subject to torsional moments that are
greater than 25 percent of the torsional moment that would be expected to cause
torsional cracking (CSA 1984).

Although ACI 318 (Secs. 11.3.1.4 and 11.6) contains provisions for the
torsion design of concrete members with nonprestressed reinforcement, it does
not contain similar provisions for members having prestressed reinforcement.
Code provisions for the design of members with prestressed reinforcement are,
however, contained in the standards of other countries, such as the Canadian
building standard (CSA 1984). In addition, publications of trade associations,
such as the Prestressed Concrete Institute (PCI 1985), contain guidance for the
design of prestressed concrete members for torsion.

The reader’s attention is called to the fact that in statically indeterminate
structures redistribution of torsional moment can take place after concrete
cracking has occurred. In statically determinate structures, however, and partic-
ularly those composed of precast members with connections that do not develop
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continuity, redistribution cannot take place (ACI 318 1983; ACI 318R 1983;
CSA 1984).

6-5 Flexural Shear and Torsion Provisions of CAN-A23.3-M84

The Canadian standard Design of Concrete Structures for Buildings, unlike ACI
318, contains minimum design requirements for flexural shear and torsional
moment for members with prestressed reinforcement as well as with nonpre-
stressed reinforcement. The shear and torsion provisions in CSA 1984 are
contained in the 11 sections of Clause 11. Five of these sections (11.0 Notation;
11.1 Scope; 11.2 General Requirements; 11.3 Shear and Torsion Design—
Simplified Method; 11.4 Shear and Torsion Design—General Method) are
reproduced herein, with the permission of the publisher, in Appendix D. The
subclauses not reproduced herein include: 11.5 Special Provisions for Deep
Shear Spans; 11.6 Special Provisions for Walls; 11.7 Shear Friction; 11.8
Special Provisions for Brackets and Corbels; 11.9 Transfer of Moments to
Columns in Frames; and 11.10 Special Provisions for Slab and Footings. Also
reproduced herein in Appendix D, with the permission of the publisher, are
excerpts from Explanatory Comments to Clause 11, Shear and Torsion,
(excluding those pertaining to Secs. 11-5 through 11.10) of CSA 1984.

The simplified method of shear design contained in Section 11.3 of CSA 1984
is based upon the provisions of ACI 318. It differs from ACI 318 in several
respects, however, as it is intended for use with the Systeme International (SI)
units of measure, it contains provisions for torsion, and so on. The general
method of Section 11.4 is based upon the Compression Field Theory. The design
professional using CSA 1984 may use either of the two methods.

(The reader is cautioned that the materials in Appendix D are written for use
with S units and are only a portion of the original document. Persons who wish
to use the provisions of CAN3-A23.3-M84 in actual design should become
Sfamiliar with all of its provisions and not rely solely upon the contents of
Appendix D contained herein.)

The main provisions of the general method, converted to customary units,
are presented in the following paragraphs of this section for the purpose of
acquainting the reader with the code procedures that are being used in applying
the Compression Field Theory in Canada. To simplify the following discussion,
reference to the Canadian Standard will be indicated by CSA 1984 for the
document as a whole, CSA eq. 11-2 for an equation from it, and CSA Sec.
11.2 for a subclause from the Canadian Standard.

The expression given in CSA 11.2.4.1 for the torsional moment resistance
at cracking (CSA eq. 11-2), T,,, for a prestressed concrete member is

Joc

A2
T, = = (4.8 AVFL) |1 + —F——= 6-26
pc( OANT) 4.8 AT (6-26)



242 | MODERN PRESTRESSED CONCRETE

in which A, is the area within the outside perimeter of the concrete section
without deducting the areas of holes or voids (sq. in.), p, is the outside perim-
eter of the concrete section (in.), ¢, is the dimensionless strength reduction
factor for concrete (see Sec. 5-6), A is the factor to account for density of the
concrete, and the remaining terms have been defined previously. The torsional
cracking moment is expressed in inch-pounds. Torsional effects must be consid-
ered in the design if:

T, > 0.25T,, (6-27)

where T, is the design (factored) torsional moment.

It should be noted that the last term in eq. 6-26 contains the term f, ., the
compressive stress in the concrete at the centroid of the section due to the effec-
tive prestress, a term that is equal to zero for members that only have nonpre-
stressed reinforcement. Hence, the last term in the eq. 6-26 is equal to one for
members without prestressed reinforcement.

CSA Sec. 11.4.2 covers the requirements for the diagonal compressive stress
in the concrete ‘‘struts.’’ The diagonal compressive stress, f;, must not exceed
the maximum permissible value, f; ... This is expressed mathematically (CSA
eq. 11-17) as:

f2 = f2max (6'28)
where (CSA eq. 11-19):
- _Mfe ,
f2max - 0.8 + 170el = ¢cfc (6 29)

in which ¢, is the principal tensile strain in the cracked concrete due to design
(factored) loads. If the concrete is triaxially confined, f, .4 iS permitted to exceed

¢ fe.
In eq. 6-29 (CSA eq. 11-19), the terms ¢, may be taken to be:

e, + 0.002

6-30
tan’ 0 ( )

€ = &

The relationships given above in egs. 6-29, and 6-30 can better be understood
by considering the free body of a portion of a beam that is subject to nearly
uniform shear stress over the effective shear depth (d,) as illustrated in Fig.
6-17. The angle 0 is the angle of inclination of the compression struts measured
from the longitudinal axis of the member. The strains in the concrete web of
the beam in Fig. 6-17 are illustrated in Fig. 6-18 and, from the Mohr’s circle
for strain given in Fig. 6-19, it will be seen that the following relationships for
tan 6 can be written:
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€, ™ €

tan § =
y
y

€ — &

tan § =

Equating these relationships and eliminating the term y, the following is
obtained:

& T 6

o=t tan’ 6

Setting the limiting compressive strain, e,, to —0.002, the relationship given
above as eq. 6-30 is obtained. The relationship given above as eq. 6-29, which
was determined experimentally, relates the principal compressive stress in a
strut, f max, to the principal tensile strain, ¢,.

The relationship for f,, the compressive stress in the concrete strut is:

— < 0+ L) L (6 31)
= |tan tan 6/ \ b,d, -

in which @ is the angle of inclination of the concrete compressive stress (struts)
measured in degrees from the longitudinal axis of the member (see discussion
of § below), and V, is the design (factored) shear force with d, the minimum
effective shear depth and b,, the minimum effective web width within the depth
d,. The effective shear depth, d,,, can be taken as the distance, measured perpen-
dicular to the neutral axis, between the resultants to the tensile and compressive

Tension tie] Kcra"k
C——> > 7z 4 -—C
/ 7 X A
ya / q // q A 9 , N
s/
7 / /
// // Y v d,
N——>» // 4 4 4 - N
vl |7 / s L7
Y / /
Y Y / 7
Y / p e
/A Y d pat d/ d /‘ _ Y
L s 8\ 7 % / /
T < Z pa i pa =T

Compression strut

Fig. 6-17. Freebody diagram of beam web subjected to uniform shear stress.



244 | MODERN PRESTRESSED CONCRETE

Fig. 6-18. Freebody diagram illustrating the stress in the compression strut, f,, the
angle of inclination of the compression strut, 6, and the strains eq, €y,
and e,.

S~

Fig. 6-19. Mohr’s circle for strain at the middepth of a beam web.
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forces due to flexure (inches), but does not need to be taken less than 0.9d. The
symbol d represents the distance from the extreme compression fiber to the
centroid of the longitudinal tension reinforcement, but not less than 0.8 times
the overall height of the member (inches). (Therefore, the minimum value of
d, is 0.72d.) The last term in eq. 6-31, V,/b,d,, should be replaced with:

V. — ¢,V,
b.d,

for members that have variable depth or inclined prestressed reinforcement; or
with:
V, - ¢,4,:d cos a/s
blldl}

for members with inclined stirrups used as shear reinforcement, but the term
may not be taken to be less than 0.66V, or:

Vu Tuph
bod, 4,

if torsional reinforcement is required. In these expressions A4,, is the concrete
area section enclosed by the centerline of exterior closed transverse torsion
reinforcement including areas of holes, if any, A4,, is the cross sectional area of
inclined shear reinforcement within the distance s, « is the angle, in degrees,
between the inclined stirrups or bent-up bars and the longitudinal axis of the
member, and p,, is the perimeter of the centerline of the closed transverse torsion
reinforcement.

In using the Compression Field Theory, the designer selects a value of 6, the
angle of the inclination of the concrete compressive stresses. The value selected
affects the amount of transverse (shear) reinforcement needed as well as the
amount of the longitudinal reinforcement required. Small values of 6 (less than
45°) will result in less transverse reinforcement but more longitudinal
reinforcement than would be required if § were taken to be 45°. Values of §
greater than 45° will result in greater amounts of transverse reinforcement being
required.

The minimum value of 6 that can be used is controlled by eq. 6-28. Values
of # less than the minimum value will result in diagonal compression stresses
greater than the maximum value permitted by eq. 6-28. Figure 6-20, which is
based upon Fig. D7 (see Appendix D herein) of CSA 1984, is useful in assisting
the designer in selecting the minimum value of 6 that can be used in a particular
design. Figure 6-20 illustrates the relationship between the shear stress ratio
and the angle 0, for limiting values of longitudinal strain at mid-depth, e, of
zero and 0.002 (tension). In addition, the limiting values of tensile strain in the
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Fig. 6-20. Diagram showing the relationship between the angle 0, at which f; = 5./
and the shear stress ratio. (Based upon Fig. D7 of CSA 1984.)

transverse reinforcement, ¢,, for Grades 40 and 60 reinforcement, are shown as
upper limits. The ordinate of Fig. D7 in Appendix D, the shear ratio, should
include the effects of stresses from the vertical component of prestressing,
variable depth (see Sec. 6-3), and torsion, if applicable, rather than the design
(factored) shear force alone.

Whatever value of 6 is selected, it must be used throughout the analysis. CSA
Sec. 11.4.2.6 provides that the value of 6 must not be less than 15° or more
than 75°. The designer may elect to select a low value of 0 because it causes a
reduction in the amount of transverse reinforcement, coupled with an increase
in the longitudinal reinforcement, and thereby obtain an economical design.

Spalling of the concrete from the centerline of the outermost layer of
reinforcement to the exterior surface of the concrete must be assumed in the
design computations of b,, by CSA Sec. 11.4.2.7, if:

V, = N Vf. b,d (6-32)

in which b,, is the width of the web, or if torsional reinforcement is required.
In addition, in computing b,,, one-half the diameter of grouted ducts for post-
tensioned tendons and the full diameter of the ducts for unbonded post tensioned
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tendons must be deducted from the web thickness to determine the value of b,,.
The purpose of this provision is, of course, to obtain the minimum width of the
concrete section of the compressive struts for use in computing f,. In hollow
sections subjected to torsion, according to CSA Sec. 11.4.2.12, the wall thick-
ness is considered adequate if the distance from the centerline of the outermost
layer of transverse torsional reinforcement to the inside face of the wall exceeds
1.5a,. The thickness of the torsional depth, a,, in inches, is determined from:

AOh Tuph 1
Y IR PR - +— 6-33
o Dh [ \/ 0.7, f.A2, <tan ? tan 0>} ( )

CSA Sec. 11.4.3 addresses concerns regarding the yielding of the transverse
(shear and torsional) reinforcement. The transverse reinforcement must yield
before the concrete crushes in order to assure a more ductile behavior. Yielding
can be considered to occur before crushing of the concrete if the strain in the
transverse reinforcement, ¢,, is greater than the strain at the yield strength of
the reinforcement. This is expressed as:

Iy
> 6-34
€ E, ( )
(The yield strains, ¢,, are 0.0014 and 0.0021 for Grades 40 and 60 reinforce-
ments are based upon the guaranteed minimum yield strengths and an elastic
modulus of 29,000 ksi, respectively.) For transverse reinforcement perpendic-

ular to the axis of the member, ¢, can be computed from (CSA eq. 11-22):
€ = ¢ — ¢ — 0.002 (6-35)

Equation 6-35 can be derived using the notation in Fig. 6-21 and the Mohr’s
circle for strain in Fig. 6-22. Using a value of ¢, = 0.002, as provided in CSA
Sec. 11.4.2.5, results in ¢, = ¢, —0.004. For inclined transverse reinforcement:

€ = 0.5(¢; — 0.002) — 0.5(e; + 0.002) cos 2(6 + a)  (6-36)

The CSA provisions for the design of transverse (shear and torsion) reinforce-
ment are given in CSA 11.4.4. The basic requirement is that the amount of
transverse reinforcement provided will equal or be greater than the sum of the
amounts required for coexisting shear and torsion. This can be expressed as:

Ay = A, + 4, (6-37)

where A, is the sum of the areas of the transverse reinforcement required for
flexural shear, 4,, and torsion, 4,, both of which are defined in the following
discussions. The factored shear resistance (strength) of the member, V,, must
equal or exceed the minimum required strength, V,, or:

V.=V, (6-38)
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Fig. 6-21. Freebody diagram illustrating the stress in the compression strut, f,, and the
strains ¢,, €5, and ¢,.

The factored shear resistance for members not having transverse reinforcement
inclined to the axis of the member is:

_¢Ay 4,
" s tanf

+ ¢,V, (6-39)

r

in which A, is the area of the transverse reinforcement perpendicular to the axis
of the member within a length s, in inches, along the axis of the member.

For members with nonprestressed reinforcement and having inclined trans-
verse reinforcement (see CSA Secs. 11.4.4.4 and 11.4.4.5), eq. 6-39 becomes:

¢3Ayf;z dv ¢5Auif;)
V, = +
s tané s

sin o
d +cosa |+ oV, 6-40
v (tan ] A )
The factored torsional resistance of members with prestressed and nonpre-
stressed reinforcement must be designed in such a way that the torsional resis-
tance equals or exceeds the minimum required torsional moment. This relation-
ship is expressed as:
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Fig. 6-22. Mohr’s circle for strain.

T, = T, (6-41)

in which the factored torsional resistance, T,, is equal to:

¢4, f, 24
= —2 6-42
r s tan@ ( )
where
A, = A, — % (6-43)

a, is as defined in eq. 6-33 and 4, is the area of one leg of a closed transverse
reinforcement (stirrup or tie) within a distance s.

The spacing limitations for shear and torsional reinforcement, which are found
in CSA Sec. 11.4.5, provide that the spacing, s, for shear reinforcement placed
perpendicular to the axis of the member shall not exceed the least of d,,, 24 in.,
ord,/3 tan 6, and, the spacing, s, for torsional reinforcement placed perpen-
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dicular to the axis of the member shall not exceed p,/8 tan 8. See CSA Sec.
11.5.2 for the spacing provisions when inclined transverse reinforcement is used.

The longitudinal reinforcement is to be designed to provide flexural and axial
load resistances that equal or exceed the minimum required flexural strength
and axial load using classical methods (the strength reduction factors are
included in the resistance computations using the CSA procedures). Reduced
nominal strengths, $M,, and ¢P,, as are commonly used with ACI procedures,
are not used with the CSA procedures. In addition, the design must include a
tensile load, N,, acting at mid-depth of the member, to account for the additional
axial force that results from the use of values for the angle, 8, of diagonal
cracking other than 45°. For members not subjected to significant torsional
moment, the value of the axial force is computed from:

Vv
. -44
tan 6 (6-44)

N, =

and for members for which torsion must be considered, the axial force is
computed from:

2
1 T.p
N,=— [V:+ |22 6-45
Y tanfy “ <2A0 > (6-45)
The value of V, can be reduced by the amount ¢V, in eqs. 6-44 and 6-45 for
members having variable depth or inclined prestressing tendons. The term p,,
in eq. 645 is equal to p, — 4a,. For members having inclined shear reinforce-

ment for use as shear reinforcement, the term V, in eqs. 6-44 and 6-45 can be
reduced by the amount:

&sA,:f,d, cos a
s

but the reduced term must not be taken to be less than 0.66V,.

Because the values of the design shear force and the design torsion normally
vary along the length of a flexural member, the values of N, computed with
eqs. 6-44 and 6-45 also will vary along the length of the member. (See Fig.
D11 in Appendix D.)

For members having axial compressive forces, P, that exceed the design load
causing balanced strain conditions (ACI 318, Sec. 10.3.2 and CSA Sec. 10.3.2),
the flexural strength of the section must equal or exceed M, with a concomitant
axial load equal to the sum of P, and N, from eqs. 6-44 and 6-45.

The provisions in Section 11.4.7 of CSA 1984 apply to the evaluation of
disturbed areas when the Compression Field theory is being used. Disturbed
areas are defined as regions having abrupt changes in cross-sectional dimensions
or forces such as concentrated loads and reactions. Examples of disturbed areas
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are given in Figs. 6-2, 6-28, 6-29, as well as in Figs. D12, D13, D15, and D17
in Appendix D. Disturbed areas also are defined as regions where it is inappro-
priate to assume that shear stresses are uniformly distributed over the effective
shear depth.

The analysis of disturbed areas can involve the investigation of the stresses
in the concrete struts, the reinforced concrete ties, and the nodal zones of an
imaginary two- or three-dimensional truss or truss-like system. The compres-
sive stress in the concrete struts must not exceed f; ..« (€q. 6-29) with the value
of ¢, (eq. 6-30) reflecting the conditions of strain of the concrete and reinforce-
ment in the vicinity of the strut. As is the case in investigating the value of
Jrmax i struts in undisturbed areas, a value of —0.002 can conservatively be
used for the maximum compressive strain, €,, in computing the value of ¢;. The
maximum stress in the tension ties must not exceed the yield strength of the
reinforcement used in the ties, and, of course, as is the case with all trusses,
the struts and ties must be connected to the nodal zones (connections of the
truss) by bond, hooks, bearing plates, or other types of connection devices.

Four conditions of confinement of the concrete in the nodal zones are possible.
One of these is the case where a nodal zone is bounded by two compressive
struts and bearing areas (i.e., the nodal zone concrete is subjected to biaxial
compressive stresses). Another is the case where a single tension tie is anchored
in a nodal zone. A third is the case where more than one tension tie is anchored
in the nodal zone. The allowable concrete stresses in the nodal zones for these
three conditions of stress in the nodal zones are 0.85¢, f., 0.75¢. f., and
0.60¢. f, respectively (see Fig. 6-2). The fourth possible condition of confine-
ment at a nodal zone can exist in a three-dimensional structure where a node is
triaxially confined by struts or reinforcement. A specific value is not given in
CSA 1984 for the maximum permissible stress for the fourth condition and,
owing to the complexity of establishing such a value, it is believed the only
reliable way to do so would be by experimentation. Compliance with the stress
limits in the nodal zones is considered to exist if: the compressive stresses in
the struts bearing against a nodal zone do not exceed the maximum values for
nodal zone compressive stresses listed above; the bearing stresses due to supports
or concentrated loads at a nodal zone do not exceed the maximum values for
nodal zone compressive stresses listed above; and the effective stress due to
tension tie loads at a nodal zone does not exceed the allowable nodal zone
compressive stresses listed above. The effective stress due to a tension tie is
computed by using the concrete area within an imaginary line surrounding the
tension tie reinforcement, with the further requirement that the centroidal axes
of the tension tie reinforcement and the effective concrete area must be coinci-
dent.

CSA 11.4.8 contains provisions intended to control diagonal cracking in
flexural members. The provisions are applicable in members in which the shear
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force due to service loads exceed the force, V., that will cause diagonal
cracking. For members not required to be designed for torsion, that is 7, <
0.25T,,, one may assume that diagonal cracking is adequately controlled if the
spacing of the transverse reinforcement does not exceed 12 in. and the required
(factored) shear force does not exceed 7.2¢, \/f_;bwd. Alternatively, diagonal
cracking may be assumed to be adequately controlled if: the spacing of the
transverse reinforcement does not exceed 12 in.; the spacing of the longitudinal
reinforcement along the sides of the member does not exceed 12 in.; and either
the calculated strain in the transverse reinforcement under service loads does
not exceed 0.0010 for interior exposure or 0.0008 for exterior exposure, or the
value of f; used in calculating the required amount of transverse reinforcement
is taken to be equal to or less than 43.5 ksi. The strain in the transverse
reinforcement under service loads can be computed from:

V 1 f f ? V ’
siS siS y Jpc cr

= — ——— 0 —

o [A,,Esd,, 1.6A,ESA(,,,M<1 200 f;> an } 8 {1 <Vs,> ]

(6:46)

in which V; and Ty, are the shear force and torsion due to service loads, respec-
tively, and A, and 4, are the areas of the transverse reinforcement provided for
shear and torsion, respectively. The shear force at cracking for members not
subject to torsion or axial tension, V,,, can be determined from:

Joe
V, =24\ | 1 + ———=|bd + 8,V 6-47
i < 4. 8\VFf. per (6-47)

If the member is subjected to torsion, eq. 6-47 should be divided by:

2
p('bwd Tsl
fl + e (6-48)
<2Ai Vsl

and if the member is subject to a service load axial tension, N, the term f,. in
eq. 6-47 should be replaced with the term ( f,. — (N / A,)), in which 4, is the
gross area of the concrete section. The second term in eq. 6-46 is provided to
estimate the direction of the principal compressive stress at service load, and
the third term in the equation is intended to make an allowance for the influence
of the tensile stresses in the cracked concrete (tension stiffening).

This summary of the provisions of the CSA provisions for the design for
shear and torsion is incomplete. The excerpts from the CSA standard in
Appendix D should be consulted for exact wording and more details. Before
one uses the provisions of the CSA standard, the complete document should be
consulted.
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ILLUSTRATIVE PROBLEM 6-5  Investigate the single-tee beam shown in Fig.
6-23 for transverse and longitudinal reinforcement requirements using the
general method in Chapter 11 of CSA 1984. The service dead and live loads
are 594 and 600 plf, respectively, and the member is not subject to torsion. Use
the load and strength reduction factors contained in Chapter 9 of CSA 1984 as
described in Sec. 5-6 herein. Assume that the concrete cover to the transverse
reinforcement is 1.5 in., the specified concrete strength is 3000 psi, and the
concrete is normal weight (i.e., A = 1). The gross area of the concrete section
is 570 sq. in., the moment of inertia of the section is 68,917 in.*, and, the
centroid of the concrete section is 9.99 in. measured from the top of the section.
Assume that the member is prestressed with an effective prestressing force (after
losses) of 173.5 kips, the beam has a simple span of 60 ft, and the effective
depth, d,, which varies linearly between midspan and the ends of the member,
is 32.86 in. and 30.93 in., at midspan and at the supports, respectively.

SOLUTION: The loads are:

Service Design
Dead Load 594 plf X 1.25 = 743 pif
Live Load 600 pIf X 1.5 = 900 pif
Total 1194 pif 1643 plf

The design shear force at the ends of the member equal
V., = 1643 x 30 = 49,290 plf
and because, with d = 30.93 in. ( >0.80h) at the supports,
A Nfib,d = 1 x 0.60+/3000 x 8 x 33 = 8676 Ib < V,

k 96” ]
1.5”
l\ /—JL
3//
36”
o
8”

Fig. 6-23. T-shaped beam used in |.P. 6-5.
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spalling must be considered. The vertical component of the prestressing force
is:

_ (32.86 —30.93) x 173.5 .
v, = 30 X 12 = 0.93 kips

and
¢,V, = 0.90 X 0.93 = 0.84 kips

Assuming the transverse reinforcement to have a diameter of 0.5 in. and a
concrete cover of 1.5 in., the effective shear width, b, = 8.00 — (2 X 1.50 +
0.50) = 4.50 in. The minimum value of the effective shear depth, d,,, permitted
to be used in the calculations can be calculated as 0.72 & which is equal to 25.92
in. At midspan, assuming A,,f,, is equal to 173.5 kips /0.58 or approximately
300 kips, the distance between the resultants of the tensile and compressive
forces can be taken as 32.86 — 300,/0.85 x 3 X 96 = 32.25 in. and, at the
support, the effective shear depth can be taken as 0.90 x 30.93 = 27.84 in.
Hence, d, could be assumed to vary linearly from 27.84 in at the support to
32.25 in at midspan. To facilitate the computations, d is conservatively taken
to be 27.84 in. throughout the length of the member. Therefore, the shear stress,
including the effect of the prestressing, is computed to be:

Vi— ¢V, 49,290 — 840
b,d, 4.5 x 27.84

= 387 psi

and the shear stress ratio, for use in Fig. D7 in the CSA Appendix D, is found
to be:

387

— = (.
0.60 x 3000 215

The shear stress ratio should be used to determine the value of the angle of the
principal compressive stress, 6, that results in f, = f,.,, using Fig. D7 of
Appendix D of CSA 1984. As explained by Collins and Mitchell, diagonal
crushing is avoided because the diagonal compressive stress is less than the
diagonal compressive strength if the angle selected is greater than those defined
by the appropriate curve in Fig. D7 (Collins and Mitchell 1987). Using 0.215
for the shear stress ratio, the minimum value of 0 that should be used is estimated
to be 38°. Adopting a value of 40° for 6, the computations for the compressive
stress in the concrete struts becomes:

H =387 <tan 40° + > = 783 psi

1
tan 40°
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e; = 0.002 + 0. = (0.00768
tan 40°
1 X 0.60 x 3000
meax = = 855 pSl

0.80 + 170 X 0.00768

Forty degrees will be used for 6 in the subsequent calculations because f, <
Somax- The factored shear resistance provided by the transverse reinforcement
and the vertical component of the prestressing force, using Grade 60 transverse
reinforcement spaced at 12 in. on centers, is computed as:

_0.85 x 604, » 22.84
- 12 tan 40°

v, +0.90 X 0.93 = 1414, + 0.84 Kips

and the maximum amount of transverse reinforcement is needed at a distance
of d,/tan 6 (27.84 /tan 40° = 33.2 in.) from the support. The shear force at
this location is equal to

(49.29)(360 — 33.2)
360

= 44.74 Kips

and the maximum area of shear reinforcement needed is 44.74 /141 = 0.32 sq.
in. per foot of length or No. 3 stirrups spaced 8.5 in. on centers. The amounts
of reinforcement needed at various distances from the supports are summarized
in Table 6-4.

The minimum area of shear reinforcement computed with CSA eq. 11-3 is
0.045 sq. in. per foot and the maximum spacing is 0.75 X 36 = 27 in. The
area of No. 3 U-shaped stirrups at the maximum spacing is 0.098 sq. in. per
foot. The spacing adopted for No. 3 stirrups is shown in Fig. 6-24.

The design is completed by determining the axial force for which longitudinal

TABLE 6-4 Amounts of Shear Reinforcement
Required at Various Locations in the Beam
Analyzed in |.P. 6-5.

Distance from Support Area required
(in.) (sq. in.)
0.00 0.32
332 0.32
168.0 0.19
276.0 0.08

360.0 0.00
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Fig. 6-24. Spacing of no. 3 U-shaped stirrups for I.P. 6-5.
reinforcement, in addition to that required for flexure, must be provided. This
force is computed as follows:

Vi — &V 4929 — 0.84
tanf  0.839

N, = = 57.7 kips

This axial tensile force can be resisted by the prestressed reinforcement, if the
amount provided is sufficient for both the flexural requirements and the axial
force, by supplementing the amount of prestressed reinforcement, or by

providing Grade 60, nonprestressed reinforcement in the amount of 57.7 /60 =
0.96 sq. in.

ILLUSTRATIVE PROBLEM 6-6  Determine the shear, torsional, and axial longi-
tudinal reinforcements required for a spandrel beam having the cross section
shown in Fig. 6-25 if the span of the beam is 36 ft, the applied service dead
and live loads, Pp; and P;;, are 6.0 and 5.0 kips, respectively, and the loads
are applied with an eccentricity of 10 in. and with a spacing of 4 ft on centers
commencing 2 ft from the supports. The specified concrete compressive strength
is 4000 psi and the yield strength of the nonprestressed reinforcement is 60 ksi.
The flexural reinforcement consists of four straight (V, = 0) seven-wire
prestressed strands having an effective prestress of 24.78 kips per strand with
their centroid located 2.75 in. above the soffit of the beam. The gross area of
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Fig. 6-25. Cross section of the spandrel beam for |.P. 6-6.
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the concrete section (A, in CSA) is equal to 1122 in.2, the moment of inertia
is 797,000 in.*, and the centroid of the concrete section is located 46.26 in.
from the top fiber. The concrete is normal weight, and the beam service dead
load is 1.17 kiIf. Use the strength reduction and load factors contained in CSA
1984 as described in Sec. 5-6 herein. Use a concrete cover of 1.5 in. and use
No. 4 bars for the transverse reinforcement.

SOLUTION:  The design dead load of the beam is 1.17 X 1.25 = 1.46 kIf. The
design concentrated dead and live loads, of which there is a total of 9, are equal
to 1.25 X 6 = 7.5 and 1.50 X 5 = 7.5 kips, respectively. Other dimensions
and parameters needed in the analysis include the following:

d, = 88.00 — 2.75 = 85.25 in.
d, = 0.90 x 85.25 = 76.7 in.

b, = 12 in.

b, = 12.00 — 2(1.5 + 0.25) = 8.5 inches.
Pe=2X8 + 12 + 6 + 18 = 212 in.

pr = 2[(88.00 — 2 x 1.75) + (12.00 — 2 x 1.75)] = 198 in.
A, = 8.5(88.00 — 3.5) + 6(7.5) = 763.25 sq. in.

4 X 24,780
Joe = —-———1122 = 88 psi

The end reactions due to the design loads are:
R, =146 x 18 + 4.5 X 15.00 = 93.78 kips

and the shear diagram is as shown in Fig. 6-26. The torsional moments at the
supports are equal to:

T, = 4.5 x 15.00 x 10 = 675 kip-in.

and the torsion diagram is as shown in Fig. 6-27. The design moment at midspan
is:

M,

2 4.
1.46 <%> +4x15 [—25 +35+25+15+ 0.5]

851.5 k-ft

and the service load moment is equal to 640.5 k-ft.
The need for torsional reinforcement is determined by comparing the
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Fig. 6-26. Shear diagram for one-half span of beam analyzed in I.P. 6-6.

computed torsional cracking moment to the maximum torsional moment. The
torsional moment at which cracking would be expected is computed as:

T, = 11222 4.8 x 1 x 0.85v4000 \/1+ 88
« 212 4.8 X 1 x 0.60v4000

1860 k-in.

and the maximum value of 7,, 675 k-in. is equal to 0.367,, and torsional
reinforcement is required.

Using the maximum values of design shear force and torsional moment,
computation of the shear and torsional unit stresses give:

V. Tpn 9378 675 x 198

U

= +
b,d, A% 8.5 x 767  763.24

= 144 + 229 = 373 psi
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Fig. 6-27. Torsion diagram for one-half span of beam analyzed in |.P. 6-6.

and the ratio of the sum of the shear and torsional stress to A¢_f is:

373

—— =01
1 X .60 X 4000 0155

From Fig. D7 from (SA 1984, the angle 6 at which fis equal to f; ., is approx-
imately 32°. By adopting a value of 0 equal to 35°, the diagonal compressive
stress computations are:

fHh= <tan 35° + X >(373) = 794 psi

an 35°
=0.002 + —5—— = 0.
€ = 0.002 an? 35° 0.01016
1 X 0.60 X 4000
DFrmax = = 950 psi > f,

0.80 + 170 x 0.01016
The strain in the transverse reinforcement is computed as:
¢, = 0.01016 — 0.002 — 0.002 = 0.00616 > 0.002

Hence, the use of Grade 60 reinforcement is acceptable. The relationship for
the amount of transverse reinforcement required for the factored shear resistance
within the length s placed perpendicular to the axis of the member is:
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Vo= 0.854,60 76.7

= 4654,
" 12 tan 35° 4634,

To determine the relationship for the computation of the amount of torsional
reinforcement, one must compute the values of d, and A, f,,

675,000 x 198 1
a,=|1-_[1 - 5 | tan 35° + -
0.7 X 1 x 0.60 X 4000(763.25) tan 35

763.25
X —— = 1.771i
198 77 in

1.77 x 198
A, = 763.35 — = 588 in.2

The relationship for the torsional resistance developed by reinforcement having
an area of A, in one leg of a closed stirrup spaced at intervals of s is:

- 0.854,60 2 x 588
"7 12 tan35°

= 71404,

The amounts of reinforcement, in the form of U-shaped stirrups (two legs),
required for shear and torsion are summarized in Table 6-5. In Table 6-5, the

areas listed in the third column are for one leg of the reinforcement required
for torsion.

The spacing of stirrups required for shear stresses cannot exceed:

v _ .
3 tan 35° 36.5 in.

d, = 76.7 in.

or 24 in. whichever is the least. For torsion the spacing is limited to:

|
Toee = 3530

TABLE 6-5 Summary of Shear Reinforcement Requirements for

I.P. 6-6.
Shear Torsion Total Spacing
Distance, Reinf. Reinf. Reinf. No. 4
(1) (in.2) (in.?) (in.?) (in.)
2 0.195 0.095 0.385 12
6 0.150 0.074 0.298 16
10 0.106 0.053 0.212 22
14 0.061 0.032 0.125 38

18 0.016 0.010 0.036 133
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The maximum spacing of No. 4 stirrups (two legs, Grade 60) is:

A, 2 x0.20 x 60,000 )
s = = = 40.0 in.
50b,, 50 x 12

if the flexural tensile reinforcement is not prestressed with an effective force
equal to or greater than 40 percent of its tensile strength. If the tensile flexural
reinforcement is prestressed with a force equal to or greater than 40 percent of
the tensile strength of the flexural reinforcement, the maximum spacing of the
transverse reinforcement can be determined by using eq. 6-14.

The additional axial load, resulting from the effects of shear and torsion and
the angle of 35° selected for the slope of the compression struts, is computed

tan 35 2(588)
205 kips

where p, = 198 — 4 X 1.77 = 190.0 in. Nonprestressed reinforcement in the
amount of 3.43 sq. in. or additional prestressing in the amount of 205 kips could
be provided to resist the axial load.

To investigate the need for diagonal cracking control, the value of the shear
cracking load must be determined. Based upon the assumption that the axial
load computed immediately above will be resisted by nonprestressed reinforce-
ment, an average prestress of 88 psi is used in determining the shear cracking
load as follows:

88
2.4 X 1 X ~4000 (1 + 12 X 85.25
[ \f 48 X 1 X \/4000}
176 ksi > V,, = 1.17 X 18 + 4.5 x 11 = 70.56 kips

VC"

Hence, if torsion were not present, diagonal cracking would not require further
study. In view of the fact that torsion does exist, the effect can be taken into
account by adjusting the value of V., computed above by dividing it by the
following term and comparing the result with the value of V,:

|+ pb,d T,
247 V,,

. 212><12><85.25>< 495 17
B 2 x 11222 70.56 '
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Fig. 6-28. lllustration of orientation of tensile and compressive forces in the web of an
L-shaped spandrel beam having the superimposed loads applied to a ledger
near the bottom of the beam.

Dividing the value of the shear cracking load computed above by this factor
results in an adjusted value of 138 kips > V,,; hence control of diagonal cracking
does not need further consideration.

An elevation of a portion of the beam at the support is shown in Fig. 6-28.
The approximate locations and shapes of the local compression forces at the
support of the beam are shown by light-weight solid lines and the approximate
locations and shapes of local tensile forces due to the effect of the applied loads
are shown by light-weight broken lines. Because of the number of applied loads
(nine loads applied at a spacing of 4 ft on centers), their effect is not much
different from the effects one would anticipate for the same amount of load
uniformly distributed along the length of the beam. Because the loads are applied
near the bottom of the beam, they will create tensile forces for which added
reinforcement should be provided. In this example the design loads are relatively
small (15 kips) and the amount of added reinforcement to transfer the effect of
the loads upward into the beam is small (0.25 sq. in. of Grade 60 reinforcement
would be sufficient for each load). The end reaction of the beam is 93.78 kips,
and the nodal zone at the support has only one tension tie. Hence, the concrete
compressive stress must be limited to 0.75¢, f;, which, for a concrete having
a specified strength of 4000 psi is equal to 1800 psi, is easily accommodated
with commonly used bearing details. Anchorage of the tensile tie reinforcement
must be provided in order to preserve the integrity of the nodal zone. The
anchorage could be accomplished by providing sufficient development length
in combination with hooks, or with special anchorage devices. If the loads were
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Fig. 6-29. lllustration of the orientation of compressive forces in the webof an L-shaped

beam having the superimposed loads applied to the top surface of the beam.

applied to the top of the beam, rather than near the bottom, the locations and
shapes of the local compressive forces would be approximately as shown in
Fig. 6-29, and the added tensile reinforcement would not be needed to transfer
the effect of the applied loads up into the beam.

6-6 Bond of Prestressed Reinforcement

Two types of bond stress must be considered in the case of prestressed concrete.
The first of these, referred to as transfer bond stress, has the function of trans-
ferring the force in a pretensioned tendon to the concrete. Two different basic
forms of transfer bond stresses are recognized: elastic and plastic transfer bond
stresses. Transfer bond stresses come into existence when the forces in preten-
sioned tendons are transferred from the prestressing beds to the concrete section
after the concrete has cured. The second type of bond stress, referred to as
flexural bond stress and as development bond stress, comes into existence in
pretensioned and in bonded, post-tensioned members when the members are
subjected to external loads. Flexural bond stresses do not exist in unbonded,
post-tensioned construction, which accounts for the term ‘‘unbonded post-
tensioned tendon.”’

When a prestressing tendon is stressed, the elongation of the tendon is accom-
panied by a reduction in the diameter due to the Poisson effect. When the tendon
is released, the diameter increases to its original diameter at the ends of the
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prestressed member where the tendon is not encased in concrete and, hence,
not restrained. This phenomenon has generally been regarded as an important
factor in effecting the transfer of stress from pretensioned tendons, generally
wires or strands, to the concrete. The stress in the tendon is zero at its extreme
end, where it is not encased in concrete, and is at a maximum value at some
distance from the end of the member. Within the length of the tendon from its
extreme end to the point where it attains maximum stress, called the transmis-
sion length, there is a gradual decrease in the diameter of the tendon, which
results in the tendon having a slight wedge shape over the length. This phenom-
enon is often referred to as the Hoyer effect after the German engineer E. Hoyer,
who was one of the early engineers to develop this theory. Hoyer, and others
more recently, derived elastic theory to compute the transmission length as a
function of Poisson’s ratio for steel and concrete, the moduli of elasticity of
steel and concrete, the diameter of the tendon, the coefficient of friction between
the tendon and the concrete, and the initial and effective stresses in the steel
(Janney 1954). Laboratory studies of transmission lengths have indicated a
relative close agreement between theoretical and actual values. There can be
wide variation in bond lengths and stress, however, due to differing dimensions
and physical properties between concretes and steels, as well as the several
different surface conditions of prestressing tendons that can exist. All of these
factors can affect the bond stresses and transfer lengths.

There is reason to believe that the configuration of a seven-wire strand (i.e.,
six small wires twisted about a slightly larger center wire) results in very good
bond characteristics. The transfer lengths of strands have been assumed to be
half as long as those for solid wires of the same nominal diameter for many
years. It is believed the relatively large surface area and twisted configuration
of strands effect a significant mechanical stress transfer.

Although these theoretical relationships are of academic interest, the profes-
sion has relied heavily upon experimental data for the transmission and devel-
opment lengths required for different types and sizes of pretensioning tendons.
Over the years there has been considerable research concerning development
and transfer lengths, under both laboratory and actual production conditions
(Base 1958; Hanson 1969; Cousins, Johnston, and Zia 1990). This research has
led to the following significant conclusions:

1. The bond characteristics of clean three- and seven-wire prestressing
strands and concrete are adequate for the majority of pretensioned
concrete elements.

2. Members that are of such a nature that high moments may occur near
their ends, such as short simple spans and short cantilevers, require
special consideration with respect to transfer and development lengths.

3. Clean smooth wires of small diameter are adequate for use in preten-
sioning, but the transmission and development lengths for tendons of this
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type are known to be greater than those for seven-wire strands (expressed
as a multiple of the diameter).

. For many years, based upon a provision in ACI 318, the transmission

length for clean seven-wire strands has been assumed to be equal to 50
times the nominal diameter of the strand, and a very large number of
structures that have been constructed under this assumption have given
excellent service. Recent research, however, has shown that actual
transfer lengths may be significantly longer than 50 diameters (Cousins,
Johnston, and Zia 1990).

. The transmission length of tendons can be expected to increase from 5

to 20 percent between the time of release and one year after release.

. The transmission length of tendons released by flame cutting or with an

abrasive wheel can be expected to be as much as 20 percent greater than
the transmission length of tendons that are released gradually.

. Hard, nonflaky surface rust and surface indentations effectively reduce

the transmission lengths required for strand and some forms of wire
tendons.

. Concrete compressive strengths between 1500 and 5000 psi at the time

of release result in transmission lengths of the same order, except for
strand tendons larger than 1/2 in.

. Because of relaxation and concrete shrinkage, a small length of tendon

(3 in. +) at the end of a member can be expected to become completely
unstressed.

The degree of compaction of the concrete at the ends of pretensioned
members is very important if good bond and short transmission lengths
are to be obtained. Honeycombing must be avoided at the ends of preten-
sioned beams.

There is little if any reason to believe that the use of end blocks improves
the transfer bond of pretensioned tendons, other than that gained by facil-
itating the placing and compacting of the concrete. Hence, the use of
end blocks is considered unnecessary in pretensioned beams if sufficient
care is given to consolidation of the concrete.

Tensile stresses and strains develop in the ends of pretensioned members
along the transmission length as a result of the wedge effect of the
tendons. Little if any benefit can be gained in attempting to reduce these
stresses and strains by providing mild reinforcing steel around the ends
of the tendons, because the concrete must undergo large deformations
and probably would crack before such reinforcing steel could be stressed
enough to become effective. The seriousness of the effect increases with
tendon size.

Lubricants and dirt on the surface of tendons have a detrimental effect
on their bond characteristics.
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Fig. 6-30. Variation in stress in pretensioned wire tendon near end of beam after relax-
ation. :

A curve showing typical variation of stress along the length of a pretensioned
tendon near the end of a beam is given in Fig. 6-30. It will be seen that this
curve is approximately hyperbolic. The stress is zero at the extreme end and
for a distance of approximately 3 to 4 in., as is assumed to be the case in most
applications. This should be considered in the design of pretensioned members
and their connections.

Flexural bond stresses occur between the tendons and the concrete in both
pretensioned and bonded, post-tensioned members, as a result of changes in the
external load. There are, of course, no transfer bond stresses in post-tensioned
members because the end anchorage devices transfer the stress from the tendons
to the concrete. Although it is known that flexural-bond stresses are relatively
low in prestressed members for loads less than the cracking load, there is an
abrupt and significant increase in these bond stresses after the cracking load is
exceeded. Because of the indeterminacy that results from the plasticity of the
concrete for loads exceeding the cracking load, accurate computation of the
flexural-bond stresses cannot be made under such conditions. Tests are relied
upon as a guide for design (Hanson and Kaar 1959; Cousins, Johnston, and Zia
1990).

The effect of flexural bond is most evident when two identical post-tensioned
members, one with bonded and one with unbonded tendons, are tested to
destruction and the results are compared. The load-deflection curves for such
tests, when plotted together, would appear as in Fig. 6-31. From these curves,
it will be seen that the beam with bonded tendons does not deflect as much
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Fig. 6-31. Comparison of load-deflection curves for bonded and unbonded post-
tensioned construction.

under a specific load as the one with unbonded tendons. The explanation for
this behavior is that the tendon in the bonded beam must undergo changes in
strain equal to the strain changes in the concrete to which it is bonded, whereas
the unbonded tendon can slip in the duct and the strain changes are averaged.
Hence, the beam with bonded tendons deforms and deflects as a function of a
transformed section. This difference can result in the cracking load of the beam
with bonded tendons being from 10 to 15 percent greater than that of the
unbonded beam, and the ultimate load may be as much as 50 percent higher.
The presence of flexural bond results in many very fine cracks in a bonded
member in which the cracking load is exceeded, whereas in an identical
unbonded member subjected to the same load, only a few wide cracks occur.
This is a significant difference because removal of the load from the bonded
member will result in the fine cracks closing completely, but in the unbonded
member the wider cracks are less likely to completely close.*

It is generally believed that once a member with bonded tendons is cracked,
a significant increase in flexural-bond stress occurs at the point of cracking. As
load on the beam is increased, the flexural bond stresses at the crack increase
until slip occurs at the cracked section. Further increase in the external loads
will be accompanied by additional slip in the tendon. This action will continue
until the member fails, either by rupture of the steel, by excessive compressive
strain in the concrete, or, in the case of a pretensioned member, by lack of
anchorage, when the flexural bond stress is destroyed over a length of a tendon
that reaches the zone in which the pretension is developed by transfer bond

*The provision of nonprestressed reinforcement, if in sufficient quantity, will result in a nonbonded
beam having deflection and cracking characteristics similar to those of a bonded beam.
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(Nordby 1958; Hanson and Kaar 1959). Research has shown that the embed-
ment length, the length from the free end of the beam to the point at which a
specific steel stress can be developed, for stands having nominal diameters of
1,3 and 3 in., is of the order given in Table 6-6 (Hanson and Kaar 1959). The
data in the table are applicable to concrete with a cylinder compressive strength
of 5500 psi and steel stresses of the order of 150,000 psi. If the distance from
the section at which the critical stress in the steel occurs is less than the embed-
ment length required to develop the required stress in the steel, the flexural
strength of the member may be controlled by bond rather than by flexure. In
such instances, the design should be revised because it is more desirable for the
controlling mode of failure to be flexural rather than bond.

Bond considerations for prestressed concrete members are treated in several
different parts of ACI 318. The first of these is in Sec. 11.4.3, where the effect
of transfer bond on shear strength near the ends of pretensioned beams is consid-
ered. It is in this section that it is said to be permissible to consider the trans-
mission length of strand and wire tendons to be 50 and 100 diameters,
respectively. As stated above, these provisions are not considered conservative.
Section 11.4.4 contains provisions related to shear strength computations near
the ends of pretensioned members that have some tendons not bonded to the
concrete for all of the distance to the end of the member. (See Sec. 6-3 and I.P.
6-2.) The development length for prestressed three- and seven-wire strand is
treated in Sec. 12.9 of ACI 318, where it is provided that strands of these types
be extended a distance beyond the critical section (for moment) equal to:

(o -35)d (649)

TABLE 6-6 Maximum Stresses (psi) That Can be Developed at the Section of
Maximum Moment for Various Sizes of Seven-Wire Strands and Embedment Lengths
(Hanson and Kaar 1959).

Embedment 3in. Lin. 3-in.
Length (in.) Strand Strand Strand
20 194,000 160,000 —
30 218,000 187,000 166,000
40 234,000 201,000 180,000
50 250,000 211,000 192,000
60 264,000 220,000 200,000
70 — 229,000 206,000
80 — 238,000 213,000
90 — 247,000 219,000
100 — 257,000 226,000
120 — — 244,000

140 — — 272,000
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Here d,, is the nominal diameter of the strand, and f,, and f,, are as defined
elsewhere in this chapter and have the units of ksi, although the quantity within
the parenthesis is considered to be dimensionless. If the bonding of the tendons
does not extend to the end of the member, the length given in eq. 6-49 must be
doubled if the design allows tensile stresses in the precompressed tensile zone.
(See Sec. 12.9.3 of ACI 318.) It should be noted that some designers think that
the development length specified by eq. 6-49 is nonconservative, and that the
embedment lengths given in Table 6-6 more accurately reflect what is needed.

Bond is also discussed in Secs. 18.7 and 18.9 of ACI 318, in which flexural
strength and minimum amounts of bonded reinforcement are treated; these topics
already have been discussed in detail in this book.

ILLUSTRATIVE PROBLEM 6-7  The 4-ft-wide double-tee beam in Fig. 6-32a is
supported by an inverted-tee beam, as shown in Fig. 6-32b. The span of the
double-tee beam is 40 ft, the dead load is 46 psf, the area of the concrete is
180 in.2, the superimposed dead load is 10 psf, and the live load is 30 psf. The
member is prestressed with two harped pretensioned strands in each leg. 4,; =
0.4668 in.? (total for both legs), Jou = 270 ksi, and P,, = 72.0 kips. The center
of gravity of the prestressed reinforcement is 5.50 in. above the soffit at the
supports, is 2.07 in. above the soffit of the member for a length of 4 ft at
midspan, and varies linearly in between. Assume that the coefficient of friction
between the double-tee beam and the elastomeric pad is 0.20. The effects of
shrinkage and creep will cause slippage in the joint. Investigate the member for
shear with the assumption that the transfer length is 22 in. and the stress in the
tendon varies linearly in the transfer zone. Design reinforcement for shear and
support stresses, taking into account the fact that the stress in the tendon is null
for the first 3 to 4 in. Use load factors of 1.4 and 1.7 for dead and live loads,
respectively, and f; = 4000 psi and f, = 400 ksi.

SOLUTION: From eq. 6-13:

50 x 8 x 12

— 1o 2
v = T a0000 0.120 in.” per foot

and from eq. 6-14:

_ 0466827012 /d _0.167 .
=780 40 d\8 va "

The latter controls.

The computation for v,;, v, ¥,, v,/ ¢, and A4, are shown in Table 6-7. Note
that 2v, /¢ < v, in the centermost 14 ft +; hence stirrups could be omitted over
this length.



PRESTRESSED REINFORCEMENT | 271

4
H
e

14"

/14" Double-Tee Beam

2%" X 2%" X 3/8" Elastomeric
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——T 4"
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Fig. 6-32. Double-tee beam and inverted-tee beam used in |.P. 6-7. (a) Cross section
dimensions of double-tee beam. (b) Cross section of inverted-tee beam.

The effect of the transfer length shows in the computation of v, at the
support. Because 0.3f,. = 0 at the support, eq. 6-5 yields a value of v,,, equal
to 234 psi at this location (including the last term of eq. 6-5). Note that the
value v,,, is constant from 2.0 ft to 14.0 ft (points 0.05 to 0.35) from the left
support. This is explained by the fact that V,/b,dis a constant 12.8 psi between
these limits, d being taken equal to 0.80A from the support to 14.0 ft from the
support and its actual value at points 16 ft and farther from the supports.

At the supports, the design (factored) reaction can be computed as follows:

R, = [1.4(46 + 10) + 1.7(30)]4 x 20 = 10,352 Ib
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TABLE 6-7 Summary of the Shear Stress Computations for |.P. 6-7.

Length Vi

Vew

Ve

vu/$

A

Pt. (ft) {psi) {psi) (psi) (psi) (in.2 / ft)
.00 .000 infin 234.1 234.1 135.9 0573
.05 2.000 290.9 354.1 290.9 122.3 .0560
.10 4.000 162.3 354.1 162.3 108.7 .0549
15 6.000 118.2 354.1 118.2 95.1 10538
.20 8.000 95.2 354.1 107.5 81.5 0527
25 10.000 80.3 354.1 107.5 67.9 0518
.30 12.000 69.4 354.1 107.5 54.3 .0508
35 14.000 60.6 354.1 107.5 40.7 .0500
.40 16.000 52.3 353.7 107.5 26.3 .0491
45 18.000 44.9 353.3 107.5 12.7 .0483
.50 20.000 37.9 341.3 107.5 000.0 .0483
<

Potential Crack

/
Plate 2%" X 2%" X 3/8"

Fig. 6-33. Detail of inverted-tee beam supporting a double-tee beam.

A\

No. 3 Bar 1'-0" Long

and the maximum horizontal force at each of the four stem supports is equal to
10,352 x 0.2 / 2 = 1035 Ib. Hence, to control cracking, steel reinforcement
must be provided across and anchored on each side of the potential crack. In
order to control crack width, the stress in the steel should be confined to 10,000
to 20,000 psi. Using one No. 3 bar in each leg, the stress would be 9400 psi,
which is adequate. A good means of anchoring the bar is shown in Fig. 6-33.

ILLUSTRATIVE PROBLEM 6-8

For the double-tee beam in I.P. 6-7, assuming

the flexural bond characteristics of the strand to be the same as given for the
3-in.-diameter strand in Table 6-6, determine the ultimate moment capacity of
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Fig. 6-34. Curve showing the stress that can be developed by the strand as a function
of embedment length.

TABLE 6-8 Table for I.P. 6-8.

By Flexure By Bond
Pt d fos a/2 M, fos a/2 M,
0 8.50 in. 260 0.372 74 0 0
1 8.88 260 0.372 77 0 0
2 9.26 260 0.372 81 189 0.270 59
3 9.64 261 0.373 85 207 0.296 68
4 10.02 261 0.373 88 223 0.319 76
5 10.40 261 0.374 92 244 0.349 86
6 10.78 262 0.374 95 270
7 11.17 262 0.374 99 270
8 11.55 262 0.375 103 270
9 11.93 in. 263 0.376 106 270
10 11.93 in. 263 0.376 106 270
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Moment Capacity

| |
100 I~ Capacity Controlled
by Flexure

L~

80 /)" "1 / / Design Moment
/Capacity Limited >//
by Bond

60 |- //
40 /

Moment, Ft-Kips

0 1 2 3 4 5 6 7 8 9 10

Fig. 6-35. Diagram showing the design moment, the moment capacity limited by
flexure, and the moment capacity limited by embedment length (bond).

the member at the 20th points as controlled by bond and flexural strength
considerations. Determine which controls.

SOLUTION:  The stress versus embedment length curve based upon the data in
Table 6-6 is given in Fig. 6-34. The computations for the moment capacity are
summarized in Table 6-8, and the design moment and moment capacities, as
limited by flexure and bond, are plotted in Fig. 6-35. The curve would indicate
that the flexural capacity is adequate with a possible exception very near the
ends of the beam where flexural strength, as a function of embedment length,
is uncertain because of lack of data in Table 6-6. This uncertainty is the reason
why many engineers provide nominal amounts of nonprestressed reinforcement
near the end of simply supported members.

6-7 Bonded vs. Unbonded Post-tensioned Construction

The structural advantages gained by bonding post-tensioned tendons should be
apparent from the preceding section. Yet, in spite of these advantages, unbonded
tendons are widely used; literally millions of square feet of post-tensioned
construction with unbonded tendons are reported to be constructed each year in
the United States alone.
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Suppliers of post-tensioning materials, as well as post-tensioning contractors
and prestressed-concrete fabricators, have reported that the cost of using tendons
coated with a rust inhibitor and wrapped with plastic or paper is lower than the
cost of using tendons placed in performed or steel ducts that are grouted in place
after stressing. The proponents of unbonded tendons point out that lower
cracking and ultimate moments that are characteristic of unbonded construction,
as well as the few widely spaced cracks that would appear in the tensile flange
at loads that exceed the cracking load, can be controlled by providing nonpre-
stressed reinforcing steel in the tensile flanges to supplement the prestressing
tendons. It is claimed the supplementary reinforcing steel can be provided at
less cost than would be required to bond the tendons.

The difference in spacing of the cracks that appear at overloads in unbonded
and bonded construction is clearly illustrated in Figs. 6-36 and 6-37. In Fig.
6-36 an overloaded, unbonded beam is shown; wide cracks, spaced 2 to 3 ft
apart, are clearly visible. The portion of bonded beam shown in Fig. 6-37 is
immediately adjacent to a section of the beam that was demolished when the

Fig. 6-36. Beam with unbonded post-tensioned tendons under a load exceeding the
cracking load. Note wide spacing and relatively great width of the flexural
cracks in the bottom flange. (Courtesy U.S. Naval Civil Engineering Research
and Evaluation Laboratory, Port Hueneme, California.)
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Fig. 6-37. A portion of a beam with bonded post-tensioned tendons after having been
tested to destruction. Note the close spacing of cracks located between the
pencil lines. The effectiveness of the grouting is confirmed by the fact the
cracks are closed and virtually invisible to the unaided eye. (Courtesy U.S.
Naval Civil Engineering Research and Evaluation Laboratory, Port Hueneme,
California.)

beam collapsed during testing. The cracks that were open in the bottom flange
and web of the beam immediately before collapse lie between the easily seen
pencil lines. The cracks in the bonded beam were only faintly visible to the
unaided eye after the failure of the beam. The effectiveness of the grouting in
the beam of Fig. 6-38 is demonstrated by the fact that the cracks closed so
completely after flexural failure of the beam.

During the testing of the beam shown in Fig. 6-37, the effectiveness of the
grouting also was clearly evidenced by the location of the neutral axis of the
beam. The location of the neutral axis, determined by measuring flexural strains,
was found where it would be expected for the transformed concrete section, and
lower than would be expected for the net or gross concrete section.

The sections of the grouted post-tensioning tendons shown in Fig. 6-38 were
taken from the beam shown in Fig. 6-37. Notice that the metal sheath is very
well filled with grout and virtually without voids. In addition, friction tape,
which was used to seize the wires when they were being inserted in the metal
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Fig. 6-38. Section of grouted post-tensioned tendons removed from the portion of the
test beam shown in Fig. 6-37. (Courtesy U.S. Naval Civil Engineering
Research and Evaluation Laboratory, Port Hueneme, California.)

sheath, is clearly seen in two sections of the tendon. The friction tape did not
seriously -restrict the flow of grout.

These comments are not intended to imply that grouting is always done
perfectly. It often is not. (See Chapter 15.)

The use of unbonded tendons will certainly result in satisfactory construction
if they are properly designed and fabricated. This has been demonstrated by the
large amount of building construction done successfully with this method in the
United States and elsewhere. Structural elements designed to be constructed
with unbonded tendons should be made to conform to, or exceed, the minimum
provisions of ACI 318 Building Code Requirements for Reinforced Concrete,
as well as the ‘‘Recommendations for Concrete Members Prestressed with
Unbonded Tendons’’ (ACI 423.3R 1989).

6-8 Internal vs. External Post-tensioned Reinforcement

In recent years there has been an increase in use of post-tensioned tendons that
are not embedded within the primary concrete structural section throughout their
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length. Tendons of this type are referred to as external tendons to differentiate
them from internal tendons that are encased in the structural concrete section
throughout their length. External tendons normally are positioned within the
concrete section near their ends, at which points they are anchored to the
concrete, and at intermediate points where the slopes of their paths change.
Members with internal and external tendons are illustrated in Figs. 6-39 and
6-40.

A -» B -»C
[}
A > B C
Elevation
[ ] L]
L] [ ]
[ ] L]

End Elevation A-A

'y

Section B-B at Midspan

Section C-C at support

Fig. 6-39. Elevation of a three-span continuous beam illustrating typical paths of
internal post-tensioned tendons.
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End Elevation A-A

./

Section B-B at Midspan

Section C-C at Support

Fig. 6-40. Elevation of a three-span continuous beam illustrating the paths commonly
used with external tendons.

In the early days of prestressing (late 1940s and early 1950s), the use of
external tendons was most often done with zinc-coated prestressed reinforce-
ment placed within the voids of hollow-box-girder bridge superstructures.
Saddles or rockers fabricated from steel commonly were provided at the points
where the slopes of the tendons were changed in order to optimize the effect of
the tendons. In contemporary practice, external tendons most often are placed
within the interior of a hollow box girder where they are not exposed to view
or weather. In order to take advantages gained through the use of tendon paths
that are not straight, the tendons frequently are anchored fairly high in the section
at the ends and follow a path approximating a curve between the ends. When
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this is done, the tendons are held down at the intermediate points where they
pass through reinforced concrete blocks or beams especially provided for this
purpose.

External tendons generally are enclosed within a metallic or plastic duct (or
a combination of the two), and are protected against corrosion by portland
cement grout. On occasion, materials especially compounded for corrosion
protection are used rather than grout.

When the tendons are physically connected to the primary concrete structural
section at the hold-down locations, where the slopes of the tendons change,
they are not able to slip with respect to the primary concrete member. This
restraint results in the tendons’ performing structurally very nearly the same as
they would if they were placed within the concrete section (i.e., internal tendons)
and bonded to the concrete section after stressing (Figg and Muller 1987).

External tendons that are not structurally connected to the primary structural
concrete member between the ends of the tendons must be expected to be able
to slip with respect to the concrete member and thus perform as one would
expect for unbonded tendons.
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PROBLEMS

1. The girder shown in Fig. 4-27 is designed to support precast rectangular
beams and a cast-in-place slab. The girder, which had a dead load of 440
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plf, is to be used on a span of 40 ft and support a superimposed dead load
of 2.00 kips /ft and a superimposed live load of 1.13 kips /ft. Assuming that
the compressive strength of the all-lightweight aggregate concrete is 5000
psi, the lightweight concrete shear strength coefficient is 0.75, the effective
prestressing force is 440 kips, the area of the prestressed reinforcement is
3.20 in.?, and the ultimate tensile strength of the prestressed reinforcement
is 250 ksi, design the member for shear reinforcing using Grade 40 nonpre-
stressed reinforcement for the stirrups and the criteria contained in ACI 318.
Assume that the bonded reinforcing is post-tensioned on a parabolic path
having distances between the center of gravity of the steel and the soffit of
5.20 in. at midspan and 12.76 in. at the supports. The girder is simply
supported. Use load factors of 1.5 and 1.8 for deal load and live load,
respectively (these load factors were commonly used in U.S. design practice
some years ago). Plot the results. Confirm that the design conforms to all of
the shear requirements of Chapter 11 of ACI 318.

SOLUTION:

The properties of the beam cross section needed for the analysis are:

yp = 14.61 in., I = 44,700 in.*, h = 30.0 in.
A, = 418.5in.%, ¢t = 6.50 in., b, = 6.00 in.

The computations are summarized in Table 6-9. The asterisk in the 4, column
at the support (point .00) indicates:

%> 0.75 x 8Vf.

TABLE 6-9 Table for Problem 1.

Length Vi Vew v, v,/ ¢ A,
Pt. (ft) (psi) (psi) (psi) (psi) (in.2/ft)
.00 .000 infin 378.1 378.1 930.3 *
.05 2.000 1574.6 673.9 673.9 837.3 2942
.10 4.000 828.3 654.6 654.6 7443 .1613
.15 6.000 563.4 635.4 563.4 651.2 .1581
.20 8.000 418.3 616.1 418.3 558.2 2517
25 10.000 320.8 596.9 320.8 465.1 .2598
.30 12.000 246.4 577.6 246.4 372.1 2261
.35 14.000 184.1 558.1 184.1 277.7 .1684
.40 16.000 128.5 538.3 128.5 182.2 .0967
45 18.000 78.8 519.3 90.1 90.3 .0900
.50 20.000 31.8 500.6 90.1 000.0 .0900
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Fig. 6-41. Shear stress diagram for Problem 1.

in which 0.75 is_the concrete shear strength coefficient for all-lightweight
concrete, and 8\/]_’2 is the greatest shear stress permitted by ACI 318 to be
carried by the shear reinforcement. This illustrates one of the constraints of ACI
318, but it should be pointed out that it does not apply in this example because
the maximum shear stress for which it is necessary to design is located at a
distance equal to one-half of the effective depth of the girder (d/2) or 8.63 in.
from the support. Furthermore, in the case of this post-tensioned beam, the
transfer distance, which is an important consideration in the design of members
with pretensioned tendons, is not a consideration. The value of 378.1 psi for
V., shown in the summary was computed on the basis of zero compressive stress
due to prestressing at the centroidal axis—normally a conservative assumption
for post-tensioned concrete but not for pretensioned concrete. The results are
shown plotted in Fig. 6-41.

2. For the girder cross section and conditions specified in Problem 1, design
the central span of the girder for shear, using the detailed analysis of ACI
318, if the girder has a central span of 40 ft and overhangs of 8 ft at each
end. The tendon path is composed of compounded second-degree parabolas
passing through the points indicated in Fig. 6-42. The service loads are
shown in Fig. 6-43. The concrete is all-lightweight, and the load factors are
1.5 and 1.8 for dead and live loads, respectively. Plot the results.

SOLUTION:

The loads shown in Fig. 6-43 cause the service load and design load end
moments summarized as follows:
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Fig. 6-42. Elevation of the beam used in Problem 2.

Service loads  Design loads

(k-f1) (k-ft)
Girder dead load —56.32 —84.48
Superimposed dead load —256.00 —384.00
Live load —435.20 —783.36

The computations are summarized in Table 6-10, where the data are given at
the 20th points. The girder and loading are symmetrical. It should be noted, as
indicated by the asterisks in the tabulated data at points .00, .05, .95, and 1.00,
that:

v,

;—vc>0.75x8~/fg
To conform to the shear provisions of ACI 318, the web thickness needs to be
increased in the vicinity of the supports as a means of reducing the shear stresses

below the maximum acceptable level. The results are shown plotted in Fig.
6-44.

P girder = 5.28 kips . _ P girder = 5.28 kips
- w girder = 440 plf |
ggm, — iggg kips WS?)L = 2000 &f Pepr, = 24.00 kips
L =40.80 kips /WLL = 3400 plf By = 40.80 kips
i

Fig. 6-43. Service loads for beam in Problem 2.
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Web reinforcing required by stress

Midspan

Support —->
2501+

| ] J |
0 0.10 0.20 0.30 0.40 0.50

Fig. 6-44. Shear stress diagram for Problem 2.

3. The double-tee beam shown in Fig. 6-45 is pretensioned with nine 3-in.
strands in each leg. Each strand has an area of 0.153 in.” and a minimum
guaranteed ultimate tensile strength of 270,000 psi. The strands are
positioned in three rows of three strands in each leg. The rows are at 2 in.
on center with the center of the lowest strands being 2 in. above the soffit.
The lower three strands in each leg are not bonded to the concrete for 12 ft
at each end. The member is designed for the following loads:

Double-tee beam 671 plf
Concrete topping 375 plf
Roofing and insulation 156 plf
Live load 192 plf
™ «
i
z
u -
8.75" 8.75"
1 "> " 1 5 n
1 1
30.63" 61.25" 30.63"
144"

Fig. 6-45. Double-tee beam used in Problem 3.
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The load factors to be used in the design are 1.5 and 1.8 for dead and live
loads alone. Plot the design load moment diagram and the flexural capacity
for the member, taking into account the development length requirements of
ACI 318 (eq. 6-49). Assume concrete compressive strengths of 5000 and
3500 psi for the double-tee beam and the cast-in-place topping, respectively.
The effective prestress in the strands is taken to be 154 ksi. The beam is to
be used on a simple span of 64.3 ft.

SOLUTION:

For 18 strands, the center of gravity of the prestressed reinforcement is located
4 in. above the soffit. The effective depth of the composite section is 22.50 in.
(26.50 — 4.00) and:

18 x 0.153
% = 144 x 22.50 00008
fos = 261.1 ksi, w, = 0.0634, a = 1.67 in.
0.90 x 18 x 0.153 x 261.1 1.67
oM, = 0 [22.50 - Tj’ = 1168 k-ft

®Mn capacity 1168 k-Ft.
O e

e /— -t

~

760 k-Ft.\>//

~
M, req’d = 1110 k-Ft.

1, for 12 | 21, for 6 strands = 13.20’

>
32.15'

strands = 6.58'

Fig. 6-46. Diagram showing the reduced moment capacity from the support to midspan
for the beam in Problem 3.
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For 12 strands, the effective depth of the composite section is 26.50 — 5.00 =
21.50 in. and:

12 x 0.152
Jps = 263.8,a = 1.12 in.
0.90 x 12 x 0.153 x 263.8 112
oM, = 5 [21.50 - T} = 760 k-ft

For the 12 strands, the development length for an effective prestressing stress
of 154 ksi is:

<261,1 - % X 154> 0.50 = 79 in.

For the six strands that are not bonded for 12 ft at each end of the member, the
development length is:

2
2 <261.l ~3 X 154> 0.50 = 158 in.

The results are shown plotted in Fig. 6-46.



7 | Loss of Prestress,
Deflection, and
Partial Prestress

7-1 Introduction

This chapter includes discussions of several important, frequently encountered
subjects that pertain to the elastic design of simple prestressed concrete flexural
members. An engineer who frequently is engaged in the design of prestressed
structures will become familiar with these relationships through design experi-
ence. An engineer who is only occasionally involved in the design or review of
prestressed members will find that this chapter contains valuable, concise refer-
ence material, presented in a manner that facilitates its use.

7-2 Factors Affecting Loss of Prestress

The final stress required in the prestressing steel at each of the critical sections
in a prestressed member should be specified by the designer. If specific details
of the method of prestressing are specified, complete stressing schedules and
sequences, including jacking, initial, and final stresses required in the
prestressing tendons should be determined and indicated on the construction
drawings or in the specifications. To do this, it is necessary either to compute
or assume a value for the loss of stress in the prestressing tendons that results

289
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from the several contributing phenomena. The losses of prestress, including
those due to friction, must be included in the computation of gage pressures
and elongations for post-tensioned tendons, as is explained in Chapter 16.

The various phenomena that contribute to the loss of prestress as well as the
method of calculation are discussed below.

Elastic Shortening of Concrete

When the prestressing force is applied to a concrete section, a deformation of
the concrete takes place simultaneously with the application of the prestress.
Because the prestressing reinforcement normally is located in the portion of the
concrete member that is compressed by the prestressing, the deformation
normally is a shortening; and because the deformation normally is relatively
small and takes place over a very short period of time, it commonly is referred
to as an elastic shortening.

If the entire prestressing force is applied to the concrete in a single operation,
as is normally the case in pretensioned construction, a single change in strain
takes place in the prestressed and nonprestressed reinforcement embedded within
the concrete member as a result of prestressing. The application of the preten-
sioning force to the concrete frequently is referred to as the transfer of the
prestressing force, because immediately before the prestressing force is applied
to the concrete, the force is being resisted by the prestressing bed to which the
tendons are anchored during the placing and curing of the concrete. In a sense,
the force is transferred from the prestressing bed to the concrete member. The
loss in stress in bonded reinforcement resulting from the elastic shortening is
equal to the product of the stress in the concrete at the level of the reinforcement
and the modular ratio of the reinforcement to the concrete. In a simple beam,
the critical section for flexural stress, and hence the section at which the losses
of prestress should be considered, normally will be at or near the midspan of
the beam. The critical section for flexural stresses is defined as the section
subject to the greatest flexural tensile stress, or the minimum compressive stress,
under service load. When pretensioning is used, the concrete stress that should
be used in computing the reduction in prestress due to elastic shortening is equal
to the net, initial concrete stress that results from the algebraic sum of the stresses
due to initial prestressing and the dead load of the beam at the level of the steel
at the critical section.

In the case of post-tensioning, the prestressing normally is done by stressing
a number of tendons one at a time. Hence, the first tendon stressed is shortened
by the subsequent stressing of all other tendons, and the last tendon is not short-
ened by subsequent stressing. Therefore, in post-tensioning, an average value
of stress change can be computed and assumed to affect all tendons equally.

For the case of all prestressing being applied simultaneously (as in preten-
sioning), the stress in the concrete at the level of the center of gravity of the
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prestressed reinforcement (after elastic shortening), f,,,,, resulting from an
initial prestressing force (before elastic shortening) P/, can be computed from:

P ; + npsf;.‘cgpsAp: eps epl Mdeps
fccgps = — 1 1+ 2 + 7

(7-1)

which can be written:

Pik, + AM,e,, /I

= - 72
Securs A+ ny Ak, (7:2)

in which:

e,
k=1 + ”rz”l (7-3)

In the above, e, is the eccentricity of the prestressing reinforcement, e, is the
eccentricity of the pressure line due to prestressing only (both e, and e, are
positive below the centroidal axis), n,, is the modular ratio of the prestressed
reinforcement to the concrete, and dead load moments causing tension in the
bottom fibers are positive. In the case of statically determinate members, the
term k, becomes:

kk=1+— (7-4)

because the eccentricities of the prestressed reinforcement and the pressure line
due to prestressing alone are one and the same. As will be seen in Chapter 10,
this may not always be true for statically indeterminate members.

In the case of simple, precast, pretensioned members, the value of f. ., can
be computed at the critical section and the design adjusted accordingly. The
critical section may be near the supports with members stressed with straight
tendons, or it may be between the supports near the point of maximum moment
due to total service load for members with draped tendons. If the critical section
is near midspan, a higher jacking force may be permissible without exceeding
0.70 f,, in the prestressed reinforcement immediately after transfer; in other
words, it may be possible to increase the jacking stress by the amount of n,,, f. ..
(see Sec. 2-15).

For pretensioned members, the value of the stress in the prestressed
reinforcement, f;;, immediately after elastic shortening is computed from:

fsi = f]' + npsfccgps (7'53)

in which f; is the stress in the prestressed reinforcement due to the force P;. In
post-tensioned members, as is explained below, the stress in the prestressed
reinforcement after elastic shortening is:
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nps fc cgps

fsisz‘*' 2

(7-5b)
The initial stress in the concrete at any fiber y from the centroidal axis of a
pretensioned or post-tensioned section can be computed from:

f:viAps eply
fcy = - 1 1+ —ri- (7-6)

Equation 7-1 is applicable to members having nonprestressed reinforcement in
addition to prestressed reinforcement except that the terms 4, e, e, and / are
for the transformed section rather than the gross concrete section.

As stated above, in the case of post-tensioned members having a number of
tendons that are stressed sequentially, the stress in the first tendon stressed is
reduced slightly by the elastic shortening of each of the tendons stressed subse-
quently. The stress in the last tendon stressed is not affected by the elastic
shortening caused by the other tendons. Hence, the effect of elastic shortening
is less than that which occurs when all tendons are stressed simultaneously. In
post-tensioned members with several tendons, the effect of elastic shortening
generally is taken to be 50 percent of the value of f..,,, computed with eq.
7-1.

It should be recognized that the effect of elastic shortening varies along the
length of the member. In simple spans where there may be one section in the
span that is most critical from the standpoint of flexural stresses under service
load, it is a simple matter to adjust the design for elastic shortening at the critical
section. In continuous spans there may be several critical sections along the
span, as frequently result from different conditions of loading. Hence, in contin-
uous members one may or may not be able to adjust the stress in the tendons
to eliminate reduction in the prestressing force due to elastic shortening to the
same degree that is possible in simple span members.

Creep of Concrete

The loss in stress in the prestressed reinforcement resulting from the creep of
the concrete also should be computed on the basis of stresses that occur at the
critical section for service load flexural stresses rather than for average values
of service load flexural stresses, because the greatest margin of safety against
cracking generally is needed at the section of maximum moment. In bonded
construction, because creep is time-dependent and does not take place to a signif-
icant degree until after bond has been established between the prestressed
reinforcement and the concrete, the effect of creep on the loss of prestress is
not averaged along the tendon length. In the case of post-tensioned construction
in which the tendons are not bonded to the concrete after stressing, the effect
of creep becomes averaged along the tendon length because the tendon can slip
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in the member; and, for this reason, the concrete stress at the average centroid
prestressed reinforcement can be used in the computation of this stress loss.
Concrete creep is discussed in Secs. 3-13 and 3-14.

Shrinkage of the Concrete

The rate at which concrete shrinks as well as the magnitude of the ultimate
shrinkage can be estimated using the data of Secs. 3-11 and 3-12. The entire
shrinkage strain is effective in reducing the steel stress in pretensioned construc-
tion, but only the amount of shrinkage that occurs after stressing is of signifi-
cance in post-tensioned members.

Relaxation of Prestressing Reinforcement

The relaxation of prestressing reinforcement is discussed in Sec. 2-10. Three
basic methods for estimating the effect of relaxation are available to the struc-
tural designer. The first of these is to estimate the effect through the use of
information published by the manufacturers of prestressing steel (see Figs. 2-9
and 2-10). The second is to use eqs. 2-1 and 2-2 for estimating the relationship
between relaxation, stress levels, and time. The third procedure is to use the
methods suggested by Ghali and Trevino, which are discussed in Sec. 2-10.

Friction Loss

Although some authors include the loss of stress due to friction between post-
tensioned tendons and their ducts or sheaths with the losses due to the defor-
mation of the materials incorporated in a post-tensioned beam, this is not done
in this book. Post-tensioning friction losses are treated in Chapter 16, rather
than in this chapter. The accurate evaluation of friction loss requires knowledge
of the details given in the post-tensioning placement documents, including the
placing plans, the details to be used in the placing, the calculations made for
the stressing procedure, and the anchorage set characteristics of the end anchor-
ages that are to be used. In the case of continuous post-tensioned members,
however, prudent engineers evaluate friction losses during the design phase. In
addition, they specify, in the contract documents, the friction coefficients used
in their evaluation, together with the minimum jacking forces at the ends of the
tendons that will be accepted during prestressing. This preliminary work,
however, does not eliminate the need for the calculations to be redone by the
post-tensioning contractor at the time of construction when the actual details of
the post-tensioning materials, tendon paths, and equipment are known.

7-3 Computation of Prestress Loss

The computations .of the losses of prestress due to the shrinkage and elastic
deformation of the concrete, are straightforward, provided that the parameters
governing these phenomena are known. The losses due to concrete creep and
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relaxation of the prestressing reinforcement are more difficult to determine
accurately because they are functions of both time and level of stress. The
amount of concrete creep in prestressed concrete varies with the age of the
concrete at the time of loading, the stress levels in the concrete, and other
factors, as explained in Chapter 3. The amount of relaxation of the prestressing
steel is affected by the time-dependent changes in length of the concrete to
which the tendons are anchored. In other words, these actions are interdepen-
dent.

Numerous methods of providing for the loss of prestress have been used over
the years. These have included the use of lump sums (e.g., 35,000 and 25,000
psi, for pretensioned and post-tensioned reinforcement, respectively); methods
based upon average values of the several parameters; and, step-function methods
based upon basic relationships for concrete creep, shrinkage, and elastic
modulus, prestressed reinforcement relaxation, and the effects of time. The
prestressed concrete designer must select and use a method that, based upon his
or her own knowledge and experience, is applicable for the type of design work
at hand (ACI-ASCE Joint Committee 323 1958; AASHTO 1989; PCI
Committee on Prestress Losses 1975; Zia, Preston, Scott, and Workman 1979;
Branson 1974; Ghali 1986; and Subcommittee 5, ACI Committee 435 1963).

Prestress loss recommendations of the PCI Committee on Prestress Losses,
the American Association of State Highway and Transportation Officials, and
the method recommended by Zia et al. are included herein in Appendixes A,
B, and C. Readers should become familiar with these methods and use them in
their design work as they deem appropriate.

In the more sophisticated methods of analysis, the creep and recovery defor-
mations of the concrete have been modeled by using the rate-of-creep principle
or the superposition principle, as described in ACI 435.1R, or the principles
described by Neville, Dilger, and Brooks (1983). These methods are illustrated
in Figs. 7-1, 7-2, and 7-3, respectively. The rate-of-creep method assumes that

[

Creep Strain

b - ——————

Time
Fig. 7-1. Creep strain by the rate-of-creep method.
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Fig. 7-2. Creep strain by the superposition method.

the creep deformation at time ¢ is equal to the product of the stress and the
ordinate of the specific creep curve corresponding to time ¢. Once the stress is
removed, there is no further change in the creep deformation. The superposition
method predicts the same initial deformations as the rate-of-creep method, but
assumes that the member is subjected to a tensile stress that is equal in magni-
tude, but of opposite sign, upon removal of the original stress. Furthermore,
the superposition method assumes that the concrete sustains further creep defor-
mation under the original load and additional time-dependent creep recovery
under the fictitious tensile stress applied to counteract the original compressive
stress. The creep-recovery model described by Neville et al. includes an instan-
taneous deformation and time-dependent recoveries after removal of a load. The
creep-time deformation characteristics of concrete normally are assumed to be
identical, but of opposite sign, in tension and in compression.

Load removed

-
>

Elastic or
instantaneous
strain recovery

Strain

Creep recovery

Permanent
strain

~—
>

Time after loading

Elastic or instantaneous strain

Fig. 7-3. Deformation of concrete as a function of time, illustrating instantaneous
deformation, creep deformation, instantaneous recovery, creep recovery, and
permanent deformation.
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The Neville model is believed to be the most accurate method, but its use,
which is more laborious than the rate-of-creep and superposition methods, is
considered to be worthwhile only when the creep and other properties of the
materials are carefully selected, high precision is desired, and the computations
can be performed by computer or programmable calculator.

A method of computing the stress loss that is considered to be among the
more accurate procedures uses a numerical integration procedure that treats the
several variables as interdependent time functions. This method utilizes mathe-
matical relationships that define the creep-time function of the concrete creep
phenomenon, the concrete shrinkage-time function, and the prestressing
reinforcement relaxation-time function for the materials that are to be used.
With this procedure, the incremental changes in stress in the concrete and
reinforcement (both prestressed and nonprestressed) are computed for short time
intervals and the effects integrated over a specific period of time. The individual
phenomena are treated as time-dependent step functions to facilitate the compu-
tations (ACI Committee 435 1963). The effect of cracking can be included in
this type of analysis, following the procedures described below in Sec. 7-5.

The following basic assumptions are made in employing the numerical
integration method for predicting prestress losses, as well as in computing
deflections (see Sec. 7-4).

1. The initial stresses in the member under consideration are known.

2. The specific creep versus time relationship for the concrete under constant
stress is known and can be approximated with sufficient accuracy with a
step function.

3. Creep deformations of the concrete are proportional to the concrete stress
at up to 50 percent of the concrete strength.

4. The shrinkage versus time relationship is known for the concrete under
consideration and can be treated as a step function.

5. The shrinkage characteristics of the concrete are uniform over the section.

6. The stress-strain relationship for the concrete is linear at up to 50 percent
of the flexural strength for loads of short duration.

7. Strains vary linearly over the depth of the section; that is, plane sections
remain plane.

8. The relaxation versus time relationship for the prestressed reinforcement
is known and can be treated as a step function.

9. The stress-strain relationships for prestressed and nonprestressed
reinforcement are linear under short-duration loads.

This method lends itself to solution by programmable calculator or computer.
The accuracy of the computations should be enhanced through the use of many
short time increments (one day, for example) rather than fewer and longer time
increments.



LOSS OF PRESTRESS, DEFLECTION, AND PARTIAL PRESTRESS | 297

The numerical integration procedure described above is not widely used in
computing the loss of prestress, for several reasons. If done without the assist-
ance of an electronic device, the computations are tedious and time-consuming,
and mathematical errors are easily made. In addition, the designer frequently
does not have specific data for the creep, shrinkage, and elastic properties for
the concrete or relaxation information for the reinforcement that actually will
be used in a project. Consequently, the use of the more sophisticated method
frequently cannot be justified. On important projects, however, the designer can
use this method to study losses of prestress (and deflections) for several combi-
nations of concrete and reinforcement properties, and to determine upper and
lower bounds for the loss of prestress (and deflection). This method is recom-
mended for the analysis of concrete structures constructed segmentally (See
Secs. 8-3, 10-9 and 14-5).

ILLUSTRATIVE PROBLEM 7-1  Compute the loss of prestress for the composite

bridge girder shown in Fig. 7-4. Use the numerical integration method of
analysis.

e 100" ,
34"
r = 75
©
™~
8” gll
©
8"
s 6"
w
~
™
K
j—
20" A

Fig. 7-4. Cross section of beam used in I.P. 7-1.
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The concrete parameters are:

Concrete type Precast CIP

Compressive strength at 28 days (ksi) 5,500 5,000
Unit weight (pcf) 115 114
Concrete elastic modulus coefficient (eq. 3-4) 26 26
Ultimate concrete shrinkage, millionths of in. /in. 350 300
Creep ratio 1.5 —

Time-dependency parameters for the concrete are:

Strength (eq. 3-1) a 224 224
g 092 092
Shrinkage (eq. 3-21) o« 1.00 1.00
f 35.00 35.00
Creep (eq. 3-25) v 0.60 —
d 1000 —
The properties of the prestressed reinforcement are as follows:
Jou = 270 ksi
Joy = 247 ksi
fii = 189.5 ksi (after elastic shortening of concrete)

E

‘PSS

27,800 ksi
A, = 5.52 sq. in.

ps
ADUCTS = 1623 8q. in.

Assume that the relaxation of the prestressing steel can be predicted by eq.
2-1.
The construction time sequence is as follows:

End precast cure: 7 days after girder cast—shrinkage begins
Prestress: 12 days after girder cast—creep begins

Cast slab: 197 days after girder cast

End slab cure: 204 days after girder cast

Apply SDL: 206 days after girder cast

End analysis: 600 days after girder cast

Midspan section propetties are as follows:

Area I ¥ Yp
(in.?) (in.*) (in.) (in.)
Net precast 949 625158 —30.87 44.12

Transformed, net precast 1013 710047 -—33.23 41.76
Transformed, composite 1637 1226561 —19.32 55.67
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TABLE 7-1 Summary of the Loss of Prestress Computations for I.P. 7-1.

Concrete Fiber Stresses (ksi)

Steel Beam Slab

Time stress Rotation
(days) (ksi) Bottom CGS Top Bottom Top x 108

12 +189.5 —2.588 -2.373 —0.062 14.67
197 +144.5 —1.825 —1.689 —0.228 21.26
197’ +152.9 —0.923 -0.925 —0.946 12.62
206 +152.7 -0.919 -0.922 —0.949 +0.020 -0.010 11.41
206’ +154.3 —0.756 —0.777 —1.006 —0.035 —0.086 11.41
600 +149.4 -0.670 —0.701 —1.038 +0.159 —0.184 10.24

The midspan moments are as follows:

Due to precast D.L.: 1535 k-ft
Due to slab D.L.: 1278 k-ft
Due to superimposed D.L.: 300 k-ft

SOLUTION:  The numerical integration method, as described in Sec. 7-2, was
used to solve this problem, with a programmable calculator used to facilitate
the computations. The computed values are shown in Table 7-1, from which it
will be seen that the computed loss of stress is 40.1 ksi at 600 days. Note that
values are given for the stress remaining in the steel, the concrete stresses in
the top and bottom fibers of the precast section, and of the slab, as well as for
rotation of the section. (The rotation is used in deflection calculations, as
described in Sec. 7-4.) Two sets of data are given for day 197 and 206—for
before and after the application of the cast-in-place slab and the superimposed
dead load, respectively. In this example, the limiting value for loss of prestress
was taken to be reached at 600 days; a more realistic time would be 1200 or
1600 days.

Another approach to the computation of the loss of prestress has been proposed
by Ghali and others (Ghali and Trevino 1985; Ghali and Tadros 1985; Ghali
1986). The method is relatively simple to apply, but the use of a small special-
purpose computer with programs dedicated to this calculation facilitates the
computations (Ghali and Elbadry 1985). The method can be applied to fully
prestressed members and partially prestressed members (see Sec. 7-5), as well
as nonprestressed members. It relies upon ordinary computation procedures that
are somewhat complicated by the need to use the net, net-transformed, trans-
formed, and age-adjusted transformed section properties at different steps of the
process. Prestress loss can be determined for prestressed members that contain
prestressed and nonprestressed reinforcement, whether fully prestressed or not.
The method relies upon basic strain compatibility and equilibrium principles,
without the use of empirical relationships.
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The procedure is based upon computing the strains and stresses at the section
under consideration, beginning at the time of first loading and ending after a
specific time interval. Also, the computations sometimes are made at specific
points in time that mark notable events in the loading history of the member
under study. The most simple of the loading histories consists of a single time
interval that begins with the application of the member’s dead load simulta-
neously with its prestressing and ends, after a long period of time, when the
effects of creep and shrinkage are considered to have reached their ultimate
values. A more complicated history, which must be divided into two separate
analyses, includes the application of a second increment of dead load at some
point in time after prestressing and the application of the dead load of the
member itself.

The fundamental process involves an evaluation of the effects of concrete
creep, concrete shrinkage, and relaxation of the prestressing steel over the time
increment by the following steps:

1. Determine the stress and strain, with respect to a reference axis, due to
the effects of dead load and the initial prestressing force using the net-trans-
formed section properties (i.e., prestressed reinforcement not bonded to the
section). The reference axis may be located at the centroidal axis of the net-
transformed section or at some other convenient location. Because different
section properties are used at various points in the analysis, the location of the
centroidal axis, with respect to the top and bottom extreme fibers, varies as the
analysis progresses. For this reason the computations may be facilitated by using
the sections properties computed with respect to the reference axis located at
the top of the member (top of the composite member if a slab or other element
is to be added to the original section at another point in the analysis).

2. Determine the amount of concrete creep and shrinkage deformation that
would occur if not restrained between the time of prestressing (beginning of the
analysis time period) and the end of the time interval under consideration. In
addition, determine the amount of the relaxation of the prestressed reinforce-
ment during the time interval under consideration. The end of the time period
considered may or may not coincide with the application of another increment
of load.

3. The time-dependent deformations due to concrete creep and shrinkage are
assumed to take place at a slow rate during the time interval under study. It is
further assumed that these deformations are artificially restrained by stresses in
the net concrete section alone and are a function of the age-adjusted elastic
modulus for the concrete (for the period of time under consideration). The
restraining stresses have resultant forces and moments (taken with respect to
the reference axis) due to concrete creep and shrinkage that can be computed
as follows:
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ANeregy = —Ee80 [Ayery + A3 (7-7)
AM, ooy = —Eeodv [Apyery + 1Y) (7-8)
ANprinkage = —Ecqb€g,A, (7-9)
AMshrinkage = —E.0¢4,4,y (7'10)

in which A4,, A,y, and I, are the net area, first moment of the net area, and
moment of inertia of the net area of the concrete section (exclusive of prestressed
and nonprestressed reinforcements), respectively, with respect to the reference
axis. E_, is the age-adjusted elastic modulus of the concrete, év is the increment
of the creep ratio for this time period under consideration, €, is the strain at
the reference axis at the beginning of the time period under consideration, de,,
is the unrestrained or free shrinkage deformation of the concrete for the time
period under consideration, and ¥, is the curvature (slope of the strain diagram)
at the beginning of the time period under consideration. The concrete shrinkage
deformation is assumed to be uniform over the depth of the section. The concrete
strain due to the relaxation of the prestressed reinforcement, during the time
period under consideration, can be taken into account with the following force
and moment:

ANreIaxarion = Z (ApsAfpsr) (7'11)

AMrelaxazion = Z (ApsypsAf[‘Jsr) (7'12)

in which 4,;, Af,,, and y,, are the area, relaxation loss of stress, and distance
from the reference axis to the individual layers of the prestressed reinforcement,
respectively.

The total force, EN, and moment, £ M, required to prevent the deformations
due to creep and shrinkage, including the effect of relaxation of the force in the
prestressed reinforcement, are equal to the sums of the above equations for
change in force and change in moment (eqs. 7-7 through 7-12).

4. The effect the artificial restraining force and moment, as described in step
3, on the actual reinforced concrete member is taken into account by applying
them in the reverse direction (i.e., —LN and — L M) to the age-adjusted trans-
formed section of the member. The use of the age-adjusted transformed section
accounts for the presence of the prestressed and nonprestressed reinforcements
as well as the fact that the concrete creep and shrinkage and the relaxation of
the prestressed reinforcement take place slowly over a period of time.

5. The strain at the reference point and the curvature at the section under
consideration, at the end of the time period under consideration, are determined
by summing the strains and curvatures determined in the first and fourth steps
of the above analysis. The stress at the reference point and the slope of the
stress diagram, v, are determined by summing the stresses obtained in the first,
third, and fourth steps of the analysis.
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The use of this procedure is illustrated in illustrative problems at the end of
this section.

Ghali has shown that the computations of stresses and strains in reinforced
concrete members containing prestressed and nonprestressed reinforcements are
facilitated, when the effects of time on concrete properties (i.e., creep,
shrinkage, instantaneous elastic modulus, and age-adjusted modulus of concrete)
are taken into account, by computing the section properties of the cross sections
under consideration with respect to an axis that does not pass through the
centroid of one of the cross sections used in the analysis (see Sec. 9-2) (Ghali
1986). When this is done, the concrete strain at the location of the reference
axis, €., is computed as:

I,N — (4y) M

€cra = (7'13)
E[AL, — (4y), ]
and the curvature at the section, , can be determined from:
—(4y) + AM
"’ (7-14)

T E[alL, - (4y),]

in which 7., is the moment of inertia of the section with respect to the reference
axis, (Ay),, is the first moment of the area with respect to the reference axis,
A is the area of the section, N is the axial force applied at the reference axis,
and M is the moment of the resultant force acting on the section with respect to
the reference axis.

It should be noted that the term for the first moment of the area with respect
to the reference axis in egs. 7-13 and 7-14, (Ay),,, is equal to zero if the refer-
ence axis passes through the centroid of the area, and, noting that v = E_y,
egs. 7-13 and 7-14 can be written:

N = AecraEc = f;‘mA (7'15)
M= yEI=~l (7-16)

in which I is the moment of inertia of the section about its centroid.

ILLUSTRATIVE PROBLEM 7-2  Using the general method proposed by Ghali et
al., compute the loss in prestress for the pretensioned, T-shaped beam having
the dimensions and reinforcements at midspan shown in Fig. 7-5. Assume, at
the time of prestressing, that the concrete strength is 3000 psi, and the elastic
modulus is 3122 ksi. Assume that the ultimate concrete shrinkage is 800 x 10°
in. /in., and the ultimate creep ratio is 2.00. The areas of the nonprestressed
reinforcements are 1.00 in.2 for the upper layer and 4.00 in.” for the lower
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b = 60.0 in. (flange width) fo=4.0ksi
b,, = 16.0 in. (web width) fou =270 ksi
h = 32.5 in. (overall height) Joy =229.5 ksi
dp =27.75 in. (depth to A4 ) fy =60 ksi
d = 30.0 in. (depth to 4y) A;=4.00in.?
d'=1.5 in. (depth to Ay) Ay =1.00in.2
hg = 4.5 in. (flange thickness)

| 60" o X
E 2
< 1.00 sq. in.
/
p 4 ]
L M — wl o .
A, = 3.50 sq. in. Rl =1 )
ps ~ o :
i Sy o 8
A; =4.00sq. in.
16”

Fig. 7-5. Cross section of T-beam having compression reinforcement.

layer. The area of the prestressed reinforcement is 2.00 in.%. The initial stress
in the prestressed reinforcement, after elastic shortening, is 189 ksi, and the
ultimate reduced relaxation of the prestressed reinforcement is taken to be 9.1
ksi. The beam, which has a self weight of 748 plf, is to be used on a span of
40 ft, and will not support superimposed dead loads but will be subjected to
occasional uniformly distributed live loads of 750 pif applied for short durations.
The section properties of the net, net-transformed, transformed, and age-
adjusted transformed sections, with respect to the top fibers of the sections (the
reference axis), using elastic moduli of 28 and 29 X 10° psi for the prestressed
and nonprestressed reinforcement, respectively, and an age-adjusted elastic
modulus for the concrete of 1200 ksi, are given in Table 7-2.

SOLUTION:  The first step in the procedure requires the determination of the
stresses in the concrete under the effects of initial prestressing and beam dead
load. The initial force in the prestressed reinforcement (after elastic shortening
of the concrete) is 189 ksi X 2.00 in.> = 378 kips, and the midspan moment

due to initial prestressing and the dead load of the beam, with respect to the
reference axis, is:
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TABLE 7-2 Section Properties for 1.P. 7-2.

First Moment Second Moment

Area of the Area of the Area
Section (in.2) (in.3) (in.%)
Net 711.0 8718.5 179,277.5
Net-transformed 757.5 9847.1 212,738.5
Transformed 775.4 10,3449 226,551.3
Age-adjusted
transformed 878.6 12,949.8 302,268.2

378 x 27.75 = —10,489.5 kip-in.

0.748 x 40° x 12
8

= +1,795.2 kip-in.

Total = —8,694.3 kip-in.

The initial stresses in the top and bottom fibers of the concrete due to prestressing
and the dead load of the beam, using the net-transformed section, are +81 and
—1369 psi, respectively, and the slope of the stress diagram, vy, is —44.6 psi/in.
Note that the net-transformed section was used in determining the initial stresses
(i.e., prestressed reinforcement not bonded and the nonprestressed reinforce-
ment bonded to the concrete) because the stress of 189 ksi in the prestressed
reinforcement is specified to be the stress after elastic shortening of the concrete.
The initial strain in the top fiber is +25.9 X 107°in. /in., and the initial curva-
ture, ¥, is —14.3 X 107% in.~!. The initial stress and strain diagrams deter-
mined in step 1 are shown in Fig.7-6.

+25.9 x 10~ %inin.
7

v = —44.6 psifin. > +81 psi

Y= -143 x 107 8in."?

>

— 1369 psi
(a) (b)

Fig. 7-6. Initial stress and strain diagrams for |.P. 7-2. (a) Stress distribution. (b) Strain
distribution.
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Yy = —286 x 10 6in. "

51.88 x 106 -800 x 1076 -7481 x 1078
3 ‘

Yy = -286 x 1078in. 7"
(a) (b) (c)

Fig. 7-7. Unrestrained creep, shrinkage, and total deformation for |.P. 7-2. (a) Creep
deformation. (b) Shrinkage deformation. (c) Total deformation.

The concrete shrinkage that could occur over the time interval, if free to do
so without restraint, is 800 millionths in. / in., and it would be the same (uniform
distribution) over the full depth of the cross section. The unrestrained creep
deformation, which varies over the depth of the member, is equal to the product
of the initial strain in the concrete and the increment of the ultimate creep ratio
that occurs during the time period under consideration. These deformations are
illustrated in Fig. 7-7. By using these values for concrete shrinkage and creep,
the resultant forces and moments required to restrain the free concrete shrinkage
and creep can be determined from eqgs. 7-7 through 7-10. In a similar manner,
the resultant force and moment required to compensate for the effect of the
relaxation of the prestressing steel that takes place over the time interval are
computed by using eqs. 7-11 and 7-12. The forces and moments required for
the restraints are found to be as follows:

AN, = 2549kips  AM,,,, = 5610 in.-kips
AN, = 683.0kips AM,, = 8375 in.-kips
AN, = —18.2kips  AM,,,,. = —505.0 in.-kips

2N

By using these values for LN and £ M, the time-dependent changes in strain
and stress are found to be as shown in Fig. 7-8, and the strain and stress diagrams
after the time-dependent change are as illustrated in Fig. 7-9. (Note: The strain

919.7kips 2 M = 13480 in.-kips
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- 880 x 107 %in.fin. —158.9 psi

\

\|] ¥ = +35.0 psifin.

+978.9 psi
Y = +0.57 x 107 %in.”"

(a) Strain (b) Stress

Fig. 7-8. Time-dependent changes in stress and strain in I.P. 7-2. (a) Strain. (b) Stress.

at the reference axis and the curvature in Fig. 7-9 are the sums of those values
shown in Figs. 7-6 and 7-8. Also, the stresses and the slope of the stress diagram
shown in Fig. 7-9 are the sums of the values shown in Figs. 7-6 and 7-8.)

The live load of 750 plf that is applied to the beam causes a midspan moment
of 1800 in.-kips. When it is applied to the beam after the concrete creep and
shrinkage, as well as the relaxation of the prestressed reinforcement, have
reached their maximum values, the strains and stress diagrams at midspan are
as shown in Fig. 7-10.

-854 x 10 Sin.jin. —77.8 psi
vy = —9.61 psi/in.(
-1299 x 10~ 8in./in. —390.2 psi
¢y = —13.7 x 10 %in. 7"
(a) Strain (b) Stress

Fig. 7-9. Strain and stress distributions after time-dependent change for 1.P. 7-2. (a)
Strain. (b) Stress.
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-930.8 x 10 "% in.in. —-352.7 psi

vy = +1.2 psi/in.L

\

-933.4 x 107 +11.3 psi

Y = -0.794 x 1078 in. !
(a) Strain (b) Stress

Fig. 7-10. Strain and stress distributions at midspan after all losses of prestress for |.P.
7-2. (a) Strain. (b) Stress.

The loss-of-prestress computations are completed by determining the stresses
and forces in the reinforcements and the concrete under different states—in this
case, (1) the first or initial state (i.e., at the time of prestressing when the beam
dead load alone is acting with the prestressing force); (2) the second or ultimate
state (i.e., at the time when the creep and shrinkage deformations in the concrete
and the relaxation in the prestressed reinforcement have reached their maximum
values, and live load is not present); and (3) the third state, a transient state
consisting of the second state but including the short-term effects of the live
load. The computations for the stresses and forces in the reinforcements are
summarized in Table 7-3. The force in the concrete is equal to and opposite the
sums of the forces in the reinforcements. The forces in the concrete for the
three states can be summarized as follows:

State 1 —331.41 kips
State 2 —139.16 kips
State 3 —153.16 kips

A review of the forces in the prestressed reinforcement will show that the
force in the prestressed reinforcement is on the order of 82 to 84 percent of its
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TABLE 7-3 Summary of Stresses and Forces in the Nonprestressed and Prestressed
Reinforcements in the Beam Analyzed in L.P. 7-2.

Reinf. Stress and Force (KSI and KIPS)

Nonprestressed Prestressed
Upper Layer Lower Layer
State Stress Force Stress Force Stress Force
Initial (1) +0.13 +0.13 —11.68 —-46.72 +189.00 +378.00
Ultimate (2) —25.38 —-25.38 -36.71 —146.84 +155.69 +311.38
Transient (3) -27.34 -27.34 —33.90 —135.60 +158.02 +316.10

initial value in this particular case. A review of the forces in the concrete
summarized above will show that under States 2 and 3 the force in the concrete
is on the order of 42 to 46 percent of the initial force in the concrete in this
case.

The general method proposed by Ghali and his colleagues can be used to
calculate the loss of prestress in members that are constructed sequentially, such
as precast elements having composite toppings, as well as members constructed
in a single monolith. The major difference in the analysis of a simple beam that
has a composite topping, when compared to a member that does not, involves
the treatment of the differences in the creep and shrinkage timetables of the two
different concretes. This is illustrated in I.P. 7-3, in which the computer program
Crack was used to facilitate the computations (Ghali and Elbadry 1985).

ILLUSTRATIVE PROBLEM 7-3  For the beam used in I.P. 7-2, assume that a
composite concrete topping 4 in. thick is placed upon the top of the beam 28
days after the prestressing of the beam. Assume that the ultimate shrinkage of
the concrete topping is 800 X 107 in. /in., and its ultimate creep ratio is 2.5.
Assume that 40 percent of the shrinkage and 40 percent of the creep have
occurred in the beam at the age of 28 days, and the remainder of each occurs
before the application of a short-term transient live load that results in a midspan
moment of 4000 in.-kips. Determine the stresses and forces in the reinforce-
ments at the time of stressing, at the age of 28 days, and after concrete creep
and shrinkage have reached their ultimate values.

SOLUTION: The problem is solved by following the basic procedures used in
I.P. 7-2. The single major difference is that an additional step must be added
to the analysis at the age of 28 days after the time of prestressing, in order to
take the effect of the weight of the cast-in-place slab into account, as well as to
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Reference axis
Reference axis
-6
-256.6 x 10 \/ / Top of beam

-320.7 x 1078 -9.33 psi

Yy = —-26 psi/in.r

t-8416 x 107¢ {_859 psi g\ottom
¥y = —16.03 x 1078 jn.7? of beam
Strain Stress

Fig. 7-11. Strain and stress distributions at midspan of the beam of |.P. 7-3 at State 1
(time = 28 days, prestress plus beam dead load).

initiate the effect of composite action and shrinkage of the concrete in the
concrete topping. To facilitate the computations, the concrete is assumed to be
cured, and shrinkage is presumed to commence, at the same instant that the
topping is placed (at the age of 28 days after prestressing of the beam). It should
be noted that the creep of the concrete topping will not have an influence on
the computations unless an additional step is introduced between the time of

Reference axis .
Reference axis

-289.7 x 107° ~100 psi

32.5”
-6
-804.7 x 10 \—726 pSI
Yy = —1411 x 107 %in.7"
(a) Strain (b) Stress

Fig. 7-12. Strain and stress distributions at midspan of the beam of |.P. 7-3 at State 2
(time = 28 days, prestress plus beam dead load plus slab dead load).
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_ -6 _ -6 _ .
974 x 0% [-684 x 10 376psin | /
. i 7
~989 x 1075 - i
-643 x 107° =299 psi” 461 psi
325"
I,’\—nos x 107! _505 psi/ !

| I
Y = —3.66 x 10 %in."!

Strain Stress

Fig. 7-13. Strain and stress distributions at midspan of the beam of |.P. 7-3 at State 2
(time = oo, prestress plus beam and slab dead loads).

placing the topping and the time when the effects of creep and shrinkage of the
two concretes reach their ultimate values. The strain and stress diagrams for the
section at midspan for the various steps in the analysis are illustrated in Figs.
7-11 through 7-14. The stresses and forces in the reinforcement layers are
summarized in Table 7-4. The forces resisted by the concrete are summarized
for the various steps as follows:

-1091 x 10°©
\ -1015 x 1076 -797 psiy
v = +19.0 x 1076 in." "=/ B
—-596 psi—”
-1071 x 1078
—135 psi
Yy = +4.94 x 1078 in.“»[
f_911 x 10°6
+ 205 psi
Strain Stress

Fig. 7-14. Strain and stress distributions at midspan of the beam of I.P. 7-3 at State 3
(time = o, prestress plus beam, slab, and live loads).



LOSS OF PRESTRESS, DEFLECTION, AND PARTIAL PRESTRESS | 311

TABLE 7-4 Summary of Stresses and Forces in the Nonprestressed and Prestressed
Reinforcements in the Beam Analyzed in I.P. 7-3.

Reinf. Stress and Force (KSI and KIPS)

Nonprestressed Prestressed
Upper Layer Lower Layer
State Stress Force Stress Force Stress Force
Initial (1) 28-Day +0.13 +0.13 —11.68 —46.72 +189.00 +378.00
W/O Slab (1) —-10.00 -10.00 -23.25 -93.00 +168.84 +337.68
W/Slab (2) -10.65 -10.65 —22.31 —89.24 +169.63 +339.26
Ultimate
W/OL. Load (2) —28.84 —-28.84 -31.86 -—127.44 +150.65 +301.30
W/L. Load (3) -30.85 -30.85 -26.77 -107.08 +155.02 +310.04
Initial —331.31 kips
28 days
W /O Slab —234.68 kips
W /Slab —239.37 kips
Ultimate
W /O L. load —145.02 kips
W /L. load —172.11 kips

The force in the prestressed reinforcement in the ultimate state is on the order
of 80 percent of the initial force. The force resisted by the concrete in the
ultimate state is from 44 to 52 percent of the initial force, depending upon
whether the live load is acting or not.

Ghali, Tadros and Trevino derived a method of determining the loss of
prestress for members that have all of the reinforcement, both prestressed and
nonprestressed, either in one layer or concentric with the concrete section (Ghali
and Tadros 1985; Ghali and Trevino 1985). The method is more easily applied
that the general method described above and gives the same results as the general
method when the conditions described above exist. This method is based upon
the recognition that the loss of prestress can be expressed as:

AC + AP,  + AP, =0 (7-17)

in which the three terms represent changes in the forces in the concrete, the
prestressed reinforcement, and the nonprestressed reinforcement during an
increment of time. It should be recognized that the loss of prestress normally
results in a reduction in the compressive force in the concrete, a reduction in
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the tensile force in the prestressed steel, and an increase in the compression (or
reduction in the tension) in the nonprestressed reinforcement. With the sign
convention used in this book, as explained in Sec. 4-2, an incremental change
in a tensile force that increases the tensile force is positive, and one that
decreases the tensile force is negative. In a similar manner, an incremental
change that decreases a compressive force is positive, and one that increases a
compressive force is negative. Therefore, in the normal case, AC in eq. 7-17
is positive, and the other two terms are negative. In this method the change in
the compressive force resisted by the concrete can be expressed as:

AC = —B[duf, ndy, + de,(E,Ay) + L, A, ] (7-18)
in which:
1
k.nA
[1 + —S—n—”(l + xév)}
A
and:

ov = Incremental creep coefficient for the time period commencing at
prestressing, #,, and ending at the time, f,, selected for terminating
the analysis.

[.s: = Initial stress in the concrete, at the location of the center of gravity of
the combined areas of the prestressed and nonprestressed steels, due
to prestressing and the dead load acting at the time of prestressing,
based upon the properties of the transformed, net concrete section.

n = The ratio of the modulus of elasticity of the steel, using a single value
for the prestressed and nonprestressed steel, and the elastic modulus
of the concrete at the time of prestressing.

A, = The sum of the areas of the prestressed and nonprestressed (tension
and compression) reinforcements; that is, 4, = 4,; + 4, + A;.

6¢; = Increment of concrete shrinkage occurring from the time of
prestressing, ¢, until the time selected for terminating the analysis, z,.

E,, = The elastic modulus selected to represent the elastic properties of the
prestressed and nonprestressed reinforcement; namely, a single value
between 28 X 10° and 30 X 10° psi.

L, = The reduced relaxation of the prestressing steel (see eq. 2-3, in Sec.
2-10).
2

e . .
k; =1 + —; for use in computing 3.
r

r = Radius of gyration of the net or transformed, net concrete section with
respect to its centroid as appropriate.
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x = Concrete aging coeflicient (see Sec. 3-8) for the concrete for the time
increment between ¢, and ¢,.
A, = The net or transformed, net area of the concrete section as appropriate
(see Sec. 4-10).
t, = Time of prestressing.
t, = Time at the end of the analysis.

The three terms within the brackets of eq. 7-18 are factors that determine the
effect of concrete creep, concrete shrinkage, and relaxation of the prestressing
steel, respectively, on the loss of prestress. The dimensionless coefficient (3 is
intended to reduce the full effects of the three terms within the brackets in order
to correct for the effects of concrete creep and the areas and locations of the
prestressed and nonprestressed reinforcement in the section.

In applying the method proposed by Ghali and Trevino, a value of x, the
concrete aging coefficient, must be assumed at the outset of the computations
and checked when they are completed. If the assumed value differs significantly
from the value computed upon completion of the computations, a new value of
x should be assumed and the computation repeated. Normally, only one itera-
tion is needed to obtain acceptable accuracy.

After the value of AC has been determined, the combined effect of creep,
shrinkage, and the change in AC on the distribution of strain on the section as
well as on the curvature can be determined. The effect of the compressive force,
AC, on the strain at the centroid of the section can be computed from:

AC
E caeAm

Ae,; = dve,; + be; + (7-20)
in which the first term on the right is used for the effect of concrete creep, and
€. is the initial strain in the concrete; the second term represents the effect of
concrete shrinkage; and the third term gives the effect of the change in the force
on the section, during the time increment. The term E_,, represents the age-
adjusted elastic modulus of the concrete. The effect on the initial curvature, v;,
can be determined from:

ACe,
Ecae Int

where e, is the eccentricity of AC with respect to the centroid of the section.

It will be noted that in eq. 7-21 concrete shrinkage is not included. This is
so because concrete shrinkage does not affect the curvature of the section. The
incremental change in concrete stress at any point in the section, located at a
distance y from the centroid axis of the net, transformed concrete section, can
be determined from:

Ay, = dvy; + (7-21)

AC  ACe.y
=— 4+ —=
Ay I

nt

Af. (7-22)
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in which I, is the moment of inertia of the net, transformed concrete section.
Finally, the change in stress in the prestressing steel can be determined by:

Af;zs = Eps(Aei + ypsA¢i) + er (7'23)

In eq. 7-23, y,, is measured from the centroid of the net, transformed concrete
section to the centroid of the prestressed reinforcement; the first term in paren-
theses accounts for concrete shrinkage; the second term in parentheses accounts
for the effects of creep and change in force on the concrete section; and the last
term in the equation represents the relaxation of the prestressed reinforcement.

ILLUSTRATIVE PROBLEM 7-4  Using the method of Ghali and Trevino, compute
the loss of prestress for a 12-in.-high segment of a 12-in.-thick concentrically
post-tensioned wall of a concrete water tank (a) if the wall does not have any
nonprestressed reinforcement, and (b) if the wall has concentric nonprestressed
reinforcement with a ratio, p, of 0.0050 in addition to the prestressed reinforce-
ment in (a). The area of the post-tensioning duct is 4.90 in.?; A, = 1.53 in.%;
the initial stress in the prestressed reinforcement (after anchorage set and elastic
shortening), f,;, is 189 ksi; the elastic modulus of the concrete at the time of
prestressing is a 4000 ksi; assume the elastic modulus is 29,000 ksi for both the
prestressed and nonprestressed reinforcement; the ultimate creep ratio, v, is
2.60; the ultimate concrete shrinkage, €., is —300 millionths in./in.; the
concrete aging coefficient, x, is 0.80; the reduced relaxation of the prestressing
steel is 7.0 ksi; and the maximum service load on the section of the wall is 209
kips. Determine the residual stress in the section if the service load is not applied
to the concrete section until after all losses of prestress have occurred.

SOLUTION:  (a) With no nonprestressed reinforcement in the section.

P; = 1.53 x 189 = 289 ksi
A, =144 — 4.9 = 139.1 in.?

A, =139.1 + 4395 x 1.53 = 150.2 in.?
—289
fc, = W = —2.08 ksi

1 [W][Tﬁ(l + 0.80 x 2.6)]

AP, = —0.803 {[2.6(-2.08)(1.53)(7.25)]
+ [—300 x 10°(29000)(1.53)] + [-7.0 x 1.53]}
+67.4 kips

—289 + 67.4 = —221.6 kips
P,, = +221.6 kips

oY
]
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The axial force due to applied load = +209 kips. The stress in the concrete
due to axial load = (209/150.2) = +1.39 ksi. The effective concrete stress
before the application of the axial load = (—221.6/139.1) = —1.59 ksi and
the concrete stress under service load = —0.20 ksi.

(b) With 0.005 X 144 in.2 = 0.72 in.? of Grade 60 nonprestressed reinforce-
ment:

A, = 144 — (0.72 + 4.90) = 138.4in.2

A, = 138.4 + 7.25(0.72) = 143.6 in.?

Ay = 138.4 +7.25(0.72 + 1.53) = 154.7 in.?
=2 0l ki

fa 143.6 '

P, = —2.01 X 7.25 x 0.72 = —10.5 kips
= —2.01 x 138.4 = —278.2 kips
1

-
I

B =
1.53 + 0.72
{1 + [ 358 ][7.25(1 + 0.80 x 2.6)]}
=0.734
~0.734{[(2.60)(~2.01)(2.25)(7.25)]
+ [~300 X 107° X 29000 X 2.25] + [—7.0 X 1.53]
= —0.734[ —85.25 — 19.58 — 10.71] = +84.9 kips

P.= —278.2 + 84.9 = —193.3 kips

AP,

0.734 x 0.72
AP, = —2-—-25—(—85.25 — 19.58) = —24.66 kips
0.734 x 1.53
AP, = —2—25—(—85.25 — 19.58) + (0.734 x —10.71)
= —60.18 kips

The total force change in the reinforcement is equal in magnitude, but of
opposite sign, to the force change in the concrete. This relationship is expressed
mathematically as:

AP, = —AP,
and numerically as:

AP, —60.18 — 24.66 = —84.8 kips
AP. +84.9 kips.

The total stress in the nonprestressed reinforcement due to elastic shortening,
creep, and shrinkage is:
24.66

= —2.01 X 7.25 — =/ = —48.82 ksi
Af, 2.01 x 7.25 0.72 48.82 ksi
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The stress on the composite section due to the application of the service load
equals (+209/154.7) = +1.351 ksi and the residual stress in the concrete
after the application of service load equals —(193.3/138.4) + 1.351 =
—0.046 ksi.

The computation of the loss of prestress, using the Step Function Method
(Branson 1974), incorporates the creep and shrinkage recommendations of ACI
Committee 209 as described in Chapter 3. The method includes the effect of
nonprestressed reinforcement and the effect of loads applied at times after
prestressing. The relationships presented here can be used for the computation
of the ultimate loss of prestress (at a long time after prestressing) or the loss at
a lesser time. As presented, the relationships are for the ultimate values but by
using values of the creep ratio and shrinkage deformation for a time less than
infinity, the relationships can be used for computing prestress loss at any time.
The original Branson paper is detailed and not limited to the information
presented herein; hence, the reader is encouraged to consult the original work
for additional information about the underlying assumptions on which the loss
of prestress computations are based, as well as their extension for use in the
computation of deflections.

Equations for the loss of prestress and for stress in the prestressed reinforce-
ment, based upon Branson’s work, are presented here for two types of members.
The first is a prestressed concrete flexural member that is constructed at one
time and has no structural, composite concrete topping or slab placed on it at
some period of time after the prestressing of the member. The second is for a
prestressed concrete flexural member that is provided with a structural,
composite concrete slab or topping, put into place some time after the original
member has been prestressed. The procedure presented herein consists of
consideration of the effects of several different factors that contribute to the loss
of prestress, which can be represented by several different terms, some using
notation unique to this discussion. To facilitate understanding Branson’s
methods, the notation used is listed as follows:

A, = Gross area of the section.

* 1 e,) (e,
+(,2,)( )(

b12 = (np) 1+ nvu)

e
by=npl 1 +P (1 + nv,)

Jfecgps = Initial stress in the concrete at the level of the center if gravity of
the prestressed reinforcement under consideration, immediately
after prestressing.

Jeacgps = Concrete stress at the level of the center of gravity of the
prestressed reinforcement due to differential shrinkage and creep
of the concretes in composite construction.
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€ps =
€ =
€pscomp =

fccgs =

fcd cgs T

DS

Eccentricity of the prestressed reinforcement in the noncomposite
section.

Eccentricity of the nonprestressed reinforcement in the noncom-
posite section.

Eccentricity of the prestressed reinforcement in the composite
section.

Stress in the concrete at the level of the center of gravity of the
reinforcement under consideration.

Stress in the concrete at the level of the center of gravity of the
reinforcement under consideration due to the effects of differential
concrete creep and shrinkage.

Stress in the prestressed reinforcement immediately after transfer
(after elastic shortening).

= Elastic modulus of the prestressed reinforcement.

Elastic modulus of the nonprestressed reinforcement.
Moment of inertia for the noncomposite section.

= Moment of inertia for the composite section.

1

reinforcement in resisting creep and shrinkage deformations. For
ratios of area of nonprestressed reinforcement to prestressed
reinforcement equal to or less than 2, the value of k, can be taken
as:

= Factor accounting for the effects of nonprestressed

1
ko= —
1 + A /A,

and for very low values of A;, k, can be taken equal to unity.
2

e, + e, €
1+%,0r1 + r—’;(see Sec. 7-2).

Ratio of the modulii of elasticity for the nonprestressed reinforce-
ment and the concrete at the time of application of sustained
superimposed load.

Ratio of the modulii of elasticity for the prestressed reinforcement
and the concrete at the time of application of sustained superim-
posed load.

Ratio of the modulii of elasticity of the nonprestressed reinforce-
ment and the concrete.

Ratio of the modulii of elasticity of the prestressed reinforcement
and the concrete.

Initial prestressing force (after elastic shortening).

= Force generated by the differential deformation due to creep and

shrinkage in composite construction.
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TABLE 7-5 Values of «, and v,,. for Different
Ages of Loading (see Chapter 3) (after Branson).

Time interval between
prestressing and load

application, in days o Yiac
21 0.38 0.85
30 0.44 0.83
60 0.54 0.78
90 0.60 0.75

y,s = Distance from the centroidal axis of the composite section to the
centroidal axis of the slab.
o, =1*/(d + t¥) = Factor used to proportion creep deformation
between noncomposite and composite sections (see Table 7-5).
Afeacps = Change in concrete stress at the level of the center of gravity of
the prestressed reinforcement due to the effects of differential
shrinkage and creep.
Af; = Change in the initial stress in the prestressed remforcement
Af,, = Change in stress in the prestressed reinforcement due to relaxa-
tion.
¢,, = Concrete shrinkage deformation.
Y = Factor to correct for the effect of concrete age at time of loading
(see Figs. 3-18 and 3-19 and Table 7-5).
AP, = Loss of prestressing force at time of applying superimposed dead
load or composite slab.
AP, = Total loss of prestressing force.
n = Concrete relaxation coefficient, ranging from 0.75 to 0.90 with
an average value of 0.88, intended to account for the effect of
reducing prestressing force on concrete creep.

> P" = Factor that is a function of the ultimate loss of
i

prestress and the initial prestressing force (see Table 7-6).

AP
AN=1- 2_PS = Factor that is a function of the loss of prestress at the

{
time a superimposed load or a composite slab is placed (see Table
7-6).

v, = Ultimate concrete creep ratio.

p = Nonprestressed reinforcement ratio (4,/bd).

Ay
§=1+ (nks)A_ (1 + qv,)

8

The terms to be considered in an analysis are described as follows:
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TABLE 7-6 Typical Values for the Ratio of Loss of Initial Prestressing Force to the
Total Initial Prestressing Force AP;/ P, for Different Time Intervals and Different
Concrete Types. Note that P, = P; after the Passage of a Long Time (after Branson
1974).

Type of Concrete

Time interval
(days) Normal weight Sand-lightweight Lightweight
20 to 30 0.10 0.12 0.14
60 to 90 0.14 0.16 0.18
1000 0.18 0.21 0.23

1. Elastic shortening of the concrete at the level of the prestressed reinforce-
ment: This is an important factor that contributes to the loss of prestress in the
case of pretensioned members because the tendons are normally all released at
the same time (for all practical purposes). It does not contribute to the loss of
prestress in post-tensioned members if the procedure used in stressing of post-
tensioned reinforcement provides for the loss. This term is n,,f; ., and consists
of the product of n,, the modular ratio of the moduli of the prestressed
reinforcement and the concrete, and f, ,,, the stress in the concrete at the level
of the center of gravity of the prestressed reinforcement immediately after
prestressing.

2. Concrete creep: Creep is especially important in members having concrete
stressed to relatively high levels of compression at the location of the prestressed
reinforcement. The creep terms are: (a) for noncomposite members:

kr A npsfc cgs Vu

in which k, is a factor that accounts for the effect of the nonprestressed
reinforcement in resisting creep and shrinkage deformations, \ is a factor that
is a function of the ratio of the ultimate loss of prestress and the initial
prestressing force, and v, is the ultimate creep ratio. The factor k, is defined as
follows:

A

where:

1+ (e)(e)
by, = (np) —r—;’“—nvu)

in which % is defined as the concrete relaxation coefficient (similar to y, in
Ghali’s work described in Sec. 2-10), which ranges from 0.75 to 0.90 and,
according to Branson, has an average value of 0.88. For ratios of the area of
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nonprestressed reinforcement to the area of prestressed reinforcement equal to
or less than 2, the value of &, can be taken to be:

1
k,=———
1 + A /Aps
The factor A is defined as:
AP
A=1- .
2P,

in which AP, is the total loss of prestress (excluding the loss due to elastic
shortening ), and P; is the initial prestressing force. (See Table 7-6 for typical
values of AP, /P;.)

(b) for composite members: The computation of the effect of concrete creep
involves two computational steps. The first for the portion that occurs before
composite action is established, and the second for that which occurs after.
Composite action is established: (a) For before the composite action is estab-
lished:

!
o kr A nfc cgsVu

and (b) for the Section after composite action is established:
1
krnf;‘cgs Uy [)‘ - as)\' ] ;

In these expressions ¢ is the ratio of the concrete creep ratio at time t to the
ultimate creep ratio (from eq. 3-25, o, = ¥ /d + t¥), and \’ is a function of
the loss of prestress at the time when the slab is cast, A P, excluding the initial
elastic shortening loss, and of the initial prestressing force (after elastic short-
ening loss), P;, and is equal to

AP

S

2P,

(See Table 7-6 for typical values of AP, /P;.)

3. Concrete shrinkage. All of the concrete shrinkage has an influence on the
loss of prestress in a pretensioned member, but only the concrete shrinkage that
occurs after prestressing has an influence in the case of post-tensioned members.
The term:

No=1-

kr €su Eps / g-

where:

Ay
¢ =1+ (nk)—=(1 +n,)
AS



LOSS OF PRESTRESS, DEFLECTION, AND PARTIAL PRESTRESS | 321

is used to account for the effect of concrete shrinkage on the loss of prestress,
and ¢, is the ultimate concrete shrinkage.

4. Relaxation of the prestressed reinforcement. This factor, Af,,, is equally
important for members made with both methods of prestressing. The compu-
tation of the relaxation of prestressed reinforcement is discussed in Sec. 2-10.

5. The elastic effect of superimposed loads. Superimposed dead and live
loads have an elastic effect on the loss of prestress. The term used for this effect
18 My,gf, cgs» in Which my, is the modular ratio of the prestressed reinforcement
and concrete at the time when the loads are applied, and Jecgs 1 the stress in the
concrete at the center of gravity of the prestressed tensile reinforcement due to
the application of the load(s).

6. The creep effect of permanent superimposed dead loads. This effect is a
multiple of the elastic effect of superimposed loads discussed in item 5. The
term used is:

mfc cgps Yiac kr Uy / g-

in which v, is the correction factor for beam concrete age when loaded (See
Figs. 3-18 and 3-19) and the other terms have been defined.

7. Deferential deformation of beam and slab. The change in stress in the
reinforcement as a result of the differential deformations of the concretes in a
composite beam is an important consideration in composite construction. The
term for this effect is Af g, in Which £, ., is the concrete stress at the level
of the center of gravity of the prestressed reinforcement due to the effects of
differential shrinkage and creep and is computed by:

chs epscomp
Afcdcgps = mps #
where Q is the force generated by the differential shrinkage and creep, y,, is the
distance from the centroidal axis of the composite section to the centroidal axis
of the slab, e,;,, is the eccentricity of the prestressed reinforcement in the
composite section, and I’ is the moment of inertia of the composite section.

The loss of prestress is determined as the algebraic sum of the several items
discussed above. The factor k, accounts for the effect of nonprestressed
reinforcement; if there is none, or if the amount present is not significant, k,
can be taken to be equal to unity and eliminated from the computation.

Summing the terms described above for prestressed reinforcement, the
equation for noncomposite members is:

kr ESM EPS

Af;i = npsfccgs + kr)\npsfccgs Uy + g_

+ Af,,

m &f;‘c S’Yﬂckrvu
+ Myfigs + ——— fl (7-24)
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For composite members that are not shored at the time when the composite
topping or slab is placed, the equation becomes:

1
Af;i = npsfccgs + aser,npsf;'cgsvu + npsf;:cgskrvu[)‘ - Ols)\'] ;

kr Esu EpS

+ Af;r + mpsf;'cgs

" |: mpsf;' cgs Yiac kr Uy

¢ r

Relationships for the stress in the nonprestressed reinforcement, similar to
egs. 7-24 and 7-25, also have been included to Branson’s work. These relation-
ships can be used to determine the stress in nonprestressed reinforcement at any
location within a member because they are based upon the stresses and strains
in the concrete at the level of the nonprestressed reinforcement under consid-
eration. The relationship for noncomposite members is

1
} =+ Af;'dcgps (7'25)

npsf;: cgs Uy €su Es
1 + by 1 + by

Af.; = npsfccgs +

mpsfc cgs YiacVu

7-2

+ mp&fccgs +

and, for composite members that are not shored at the time when the composite
topping or slab is placed, the relationship is:

asnpsf;:cgsvu A — as)\’ 1
fs npsf;:cgs 1 + b22 ”psfcchvu |: 1+ b22 }I’
€su ES mpsf;: cgs YiacVu | 1
sy + S+ 7-27
1+ b22 mpsf;'ch [ 1 + b22 ] I fcdcpgs ( )

ILLUSTRATIVE PROBLEM 7-5  For the composite post-tensioned girder shown
in Fig. 7-4 and the data given in I.P. 7-1, estimate the loss of prestress at
midspan at the age of 600 days using the Branson method. Assume the concrete
cylinder compressive strength is 4000 psi at the time of prestressing.

E. = (115)"°26/4000 = 2.03 x 10° psi

27800
=——=137
"rs = 2030
soLUTION: The initial stress in the prestressed reinforcement, after the elastic
shortening of the concrete, f;;, is given as 189.5 psi in L.P. 7-1. With ¢,, =
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44.12 — 6.37 = 37.75 in., r? = (625158/949) = 659 in%, and k, = 1 +
(37.752 /659) = 3.16 in. (eq. 7-4), the average initial stress in the prestressed
reinforcement of 189.5 ksi would result in a stress in the concrete at midspan,
at the level of the center of gravity of the prestressed reinforcement, that is
equal to:

_(189.5)(5.52)(3.16)  (1535)(12)(37.75)

fa = 949 625158

= —2.371 ksi

If the beam were pretensioned rather than post-tensioned, the average stress in
the prestressed reinforcement immediately before transfer, f, using eq. 7-5,
would be:

fi =fai + npof
f} =189.5 + 13.7 x 2.374 = 222.0 ksi

If post-tensioned, the average initial stress in the tendons at the time of stressing
would be:

, npsfci
fi=rfat )
13.7 x 2.374
fy = 189.5 + === = 205 8 ksi

After elastic shortening of the concrete, the initial prestressing force, P;, is
189.5 X 5.52 = 1046 kips. The concrete slab is placed at 197 days (girder age)
at which times the concrete strength (eq. 3-1), elastic modulus, and modular
ratio for beam concrete and the prestressed reinforcement are

_ 197

224 +0.92 X 197
= 5900 psi

E. = 2.46 X 10° psi

Jor (5500)

27800
m.. =

=—=113
PE 2460

The concrete stress at the level of the center of gravity of the prestressed
reinforcement due to the application of the slab and superimposed dead load is

P 1278 X 12 X 35.39 L 300 X 12 X 49.30
cogps 710,047 1,226,561

= 0.764 + 0.145 = 0.909 ksi

The relaxation loss of the prestressing reinforcement at 600 days is:
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Af, = — 189.5

(log 24 X 600) (189.5
10 247

- 0.55> = —17.11 ksi

The value of «; at 197 days, from eq. 3-25, is

1970.6

=———— =0.70
10 + 197°¢

Qg

and the creep ratio at the age of 600 days, from eq. 3-25, veo iS (vjs)

6000.60
Veoo = 10 + 60005 1.50 = 1.23

and v,,., from Fig. 3-18 is

Yiee = 1.25(197) %"

= 0.67

The effect of differential shrinkage and creep strain can be estimated as follows:
For slab concrete shrinkage from 204 days (end of curing) to 600 days using
eq. 3-21:

396

35 + 396 396> = —276 millionths in. /in.

€ = —300<

For beam concrete shrinkage between 197 and 600 days:

600 197 >

- — _33 millionths in. /in.
35+ 600 35 + 197 3 millionths in. /in

e, = —350 <
The initial top fiber stress in the beam is computed to be:

1046 (- (3737)(=30.87) | (1535)(12)(~30.87)
949 659 625158

= + 0.827 — 0.910 = —-0.083 ksi

fi =

At the time when the concrete slab and superimposed dead loads are applied,
197-206 days, the estimated value of A’ is:

AP, 0.20P,
=1-—-=090

N=1- =
2P, 2P;

and the stress in the top fiber of the precast beam is:

(1278)(12)(—33.23)  (300)(12)(—19.32)
710047 * 1226561

= — 0.075 — 0.718 — 0.057 = —0.850 ksi

(0.90)( —0.083) +

f:

and the creep deformation of the top fiber between 197 and 600 days for a stress
of —0.850 ksi is:
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-850 [ 600°¢ 197%°
2.46 \ 10 + 600> 10 + 197°°

> 1.50 = —61 millionths in. /in.

in which 2.46 X 10° psi is the elastic modulus of the concrete at the age of 600
days. Therefore, the differential strain between the top fiber of the beam and
the slab is:

de, = =276 — (—33 — 61) = —182 millionths in. /in.

Elastic deformation and relaxation of the slab concrete would slightly reduce
the effect of the differential strain. For the purposes of this analysis, it will be
assumed that the effective differential strain is —180 millionths in. /in., and the
elastic modulus of the slab concrete is 2.2 X 10° psi. Hence, the computation
of the force resulting from the differential strain is:

022X I8 XBIBx12x6S o
- 1000 - ps

and the change in the stress in the prestressing reinforcement as a result of the
differential strain is:

(11.3)(—257)(49.30)(22.57) ,
= = +2.
Jedeaps 1226561 63 ki

Assuming that k, = 1.0, because nonprestressed reinforcement is not present
in a significant amount and:

+ 11.8 X 5.52 x 3.16
949

in which k; = 3.16, 7 = 0.88, v, = 1.5, A = 0.88, A’ =0.90, I/I' = 0.579,
n=29/246 = 11.8, A,, = 5.52 in.%, and A, = 949 in.>. The computation
for the loss of prestress using eq. 7-25 is:

Af; = 0 + (0.70)(1.0)(0.90)(13.7)(=2.371)(1.5)
+ (13.7)(~2.371)(1.0)(1.5)[0.88 — (0.70)(0.90)]0.579
(1.0)(—350)(27.8)

=1 (1 +0.88 x 1.5) = 1.50

+ (—17.11) + (11.3)(+0.909)

(1.50)(1000)
L [ A13)(+099) QN (1) | (201, 5 63
1.50
=0-307-71-65-17.1+103+40+ 2.6
= —44.5 ksi

f. = 189.5 — 44.5 = 145.0 ksi
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AP,

—44.5 X 5.52 = 245.6 kips

AP,/P; = 0.235 (not including elastic shortening).

ILLUSTRATIVE PROBLEM 7-6  For the double-tee beam shown in Fig. 7-15,
estimate the ultimate loss of prestress using the Branson method. The dead load
of the double-tee beam is 200 plf, the superimposed dead load is 40 plf, and
the design span is 40 ft. Assume that the transfer of prestress occurs 24 hours
after the jacking (stressing) of the pretensioned tendons, and that the stress in
the prestressed reinforcement immediately before transfer is 200 ksi. Assume
that 4,; = 0.58 in.2, Jou = 270 ksi, and f,, = 250 ksi. The gross area of the
section is 189.5 in.Z and the moment of inertia is 4256 in.* Assume ny, = 1.3,
m,; = 6.0, v, = 0.83, v, = 2.00, ¢, = —400 millionths in. /in., and the
elastic modulus for the prestressed reinforcement is equal to 28,000 ksi.

SOLUTION:
P! =200 x 0.58 = 116 kips, C; = —116 kips
4256
e, = 8.33in., r* = 105 = 2246 in.
k, =1+ 8.83° = 4.47
s 246
200 X 40°
My = 2 Too0 = 40.0 k-ft

(189.5)(40)(12)(8.83)
(—116)(4.47) + 56

- = —1.582 ksi
Je caps 189.5 + (7.3)(0.58)(4.47) 582 ksi

and:

Mosfocgps = 7.3 X —1.582 = 11.55 ksi

—
-
n

-
)
5

10.83"

Fig. 7-15. Cross section of double-tee beam used in I.P. 7-6.
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fi =200 — 11.55 = 188.45 ksi
P; = (200)(0.58) + (7.3)(—1.582)(0.58) = +109.3 kips
Use P; = 109 kips, f;; = 188.5 ksi, and n,f, .,; = —11.5 ksi.
Because A =0,k = 0.
A

PSS

The moment due to the superimposed dead load is:

_0.04 x 40°

My = = 8.0 k-
sdi 8 ft

The concrete stress at the level of the center of gravity of the prestressed
reinforcement due to the superimposed dead load is

8 X 12 x —8.83 .
1046 = —0.200 ksi

f;'sdi =

Using eq. 2-2 for computing the relaxation of the prestressed reinforcement
at time ¢, = 100,000 hours:

188.5 log 10° — log 24
Jon _ oy (1885 55) log 10" — log 24
f 250 10

= 0.926
and:

fun = 0.926 X 188.5 = 174.6 ksi

and the relaxation loss, after 100,000 hours have passed after elastic shortening
of the concrete is:

188.5 — 174.6 = 13.9 ksi
Assuming A = 0.91 and { = 1.25:

Aff = —11.5 + (0.91)(~11.5)(2.00) + ____1‘2“5°°x><1000_2“
£ (~13.9) + (6.0 X ~0.20) + (6.0)(—0.2:))2(50.83)(2.00)

=-11.5-209-90-139+ 12 + 1.6 = —52.5 ksi

fie =200 — 52.5 = 147.5 ksi
The ratio of the loss of prestressing force, AP, (—52.5 x 0.58 = —30.45 k),

to the initial prestressing force, P;, (109 k), is —0.28. This is greater than the
0.18 assumed (A = 0.91) hence, a second iteration is performed. The use of



328 | MODERN PRESTRESSED CONCRETE

A = 0.86 rather than 0.91 in the second term in the above computation, changes
the loss due to concrete creep from —20.9 ksi to —19.8 ksi, the total loss of
prestress becomes —51.4 ksi, and the ratio of the total loss of prestressing force
to the initial force becomes —0.27. This is acceptably close to the assumed
value of —0.28, and further iterations are not needed.

In many applications of prestressed concrete, especially in pretensioned
members and post-tensioned flat slab and flat plate structures, little if any
nonprestressed reinforcement is included in the prestressed concrete, and the
average prestressing stresses are relatively low. In cases such as these, the less
sophisticated methods of determining the loss of prestress have proved to give
satisfactory results. The method of Zia et al. (Zia 1979) is easy to apply and
intended for use in making a reasonable estimate of loss of prestress for usual
design conditions (i.e., ordinary structures, simple beams, short-to-moderate
spans, moderate loads, etc.). The method is not intended for use in special
structures, such as water tanks. Zia and his colleagues suggest that the methods
recommended by the PCI Committee on Prestress Losses (Appendix A) be used
for unusual design conditions. With the PCI Committee method, the total loss
of prestress is computed as the sum of the effect of elastic shortening, concrete
creep, concrete shrinkage, and relaxation of the prestressed reinforcement. A
negative criticism of this method, which can be important in some special
instances, is that it does not account for the effects of cracking or the provision
of nonprestressed reinforcement.

7-4 Deflection

Computations of short-term deflections in prestressed concrete flexural members
are made with the assumption that the concrete section acts as an elastic and
homogeneous material. This assumption is only approximately correct, as the
elastic modulus for concrete is not a constant value for all stress levels; in
addition, the elastic modulus varies with the age of the concrete and is influ-
enced by other factors. Furthermore, differences between assumed and actual
dimensions of the concrete cross section and prestressed and nonprestressed
reinforcements often exist, as do differences between assumed and actual initial
stresses in the prestressed reinforcement. As a result, deflection computations
for prestressed concrete are approximations and should not be considered to
have high precision.

The deflections for dead and live loads are calculated by using the funda-
mental principles of the mechanics of materials. Normally, the moment of inertia
of the gross section is used in the computations, but in members that have
significant amounts of reinforcing steel, the moment of inertia of the trans-
formed section should be used. The deflection resulting from the prestressing
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Prismatic Center of gravity
beam - /—
— _\____{________._
‘# e . Straight tendon, P Ibs. ‘#
L
Elevation

fMoment = Pe

Moment Diagram

. Pel?
Deflectionat ¢ = §, = -
¢ 4 8EI
Fig. 7-16. Layout and prestressing-moment diagram for a beam having a straight

tendon.

can be readily calculated for prismatic members with known prestressing force
and eccentricity by use of the area-moment principle. The results of a calcula-
tion of this type for a simple, prismatic member with straight tendons (see Fig.
7-16) is:

5 = _PeL2

7-2

where P is the prestressing force in pounds, e is the eccentricity in inches, L is
the span in inches, E is the modulus of elasticity of the concrete in psi, and I
is the moment of inertia of the gross section in inches to the fourth power.
Positive eccentricities in the above relationship result in upward deflections. *

In Fig. 7-17, the moment diagram and corresponding deflection due to
prestressing are shown for a simple, prismatic beam prestressed with a tendon
having a second-degree parabolic path with no eccentricity at the ends and
maximum eccentricity at midspan; and in Fig. 7-18, the moment diagram and
corresponding deflection are indicated for a simple, prismatic member
prestressed with a tendon that has a path composed of three straight lines,
symmetry about the midspan, and no eccentricity at the ends.

It is assumed that the deflections due to the various loads that will be applied
to a beam can be algebraically superimposed in order to determine the resultant

*In this book, upward deflections are negative, and downward deflections are positive. The word
“‘camber’’ is reserved for out-of-planeness or flatness built into a member, other than by prestressing,
for the purpose of achieving a desired shape.
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Fig. 7-17. Layout and prestressing-moment diagram for a beam having a tendon on a
parabolic path and no eccentricity at the ends.
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Fig. 7-18. Layout and prestressing-moment diagram for a beam having a tendon path
with constant eccentricity in the midspan area and no eccentricity at the
ends.
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deflection of the member. In this manner, the deflection of a beam under the
effects of its dead load and prestressing is computed as the algebraic sum of the
deflections due to dead load of the beam and due to prestressing. In a similar
manner, if a beam is prestressed with a tendon that follows a parabolic path that
has equal eccentricity at the ends, the deflection of the beam due to prestressing
could be determined by computing the algebraic sum of the deflections due to
dead load plus the effects of prestressing with a straight tendon and with a
parabolic tendon, as illustrated in Fig. 7-16 and 7-17, respectively. In applying
the principle of superposition as described above, it is necessary to divide the
moment due to prestressing into two portions that can be substituted into the
appropriate relationships for the terms P,. For unusual conditions of
prestressing-moment diagrams, or if the designer questions the results obtained
through the use of the superposition principle, the deflection can be easily calcu-
lated from the basic, arca-moment principle. When members with variable
moments of inertia are used, it is necessary to compute the deflections by use
of basic principles. Basic principles should be used when the prestressing force
varies along the length of the tendon, or when the tendon does not follow a
mathematical curve, as is frequently the case in cast-in-place post-tensioned
bridges.

The deflections at the ends of beams that overhang the ends of adjacent spans
differ from those at the ends of cantilever beams. The difference is due to the
rotation that occurs at the support where the overhanging portion of the beam
adjoins the supported span. Cantilever beams have no slope at the supported
end, and hence have deflections due to the deformations that occur within the
length of the cantilever span alone. This is illustrated in Fig. 7-19. It frequently
is found that the deflection at the end of an overhanging beam resulting from
the deformation of the overhand itself is considerably smaller than that due to
the deformation of the span to which it is attached. For this reason, deflection
calculations should always be made for beams having overhanging ends.

It is well known that in beams having only nonprestressed reinforced concrete,
the tendency is for the deflection to increase with time as a result of creep. In
addition, the amount of flexural cracking in a nonprestressed reinforced concrete
member has a significant influence on the deflection of the member. In a fully
prestressed concrete beam, the change in deflection is a function of time as well
as of the distribution of stress in the member under the normal condition of
loading. For example, if the effects of the prestressing and the dead and live
loads at the average section of a member were such that the distribution of stress
was a uniform compression over the thickness of the member, the effect of creep
would be to shorten the member (deform it axially) without changing its shape
vertically. If, under the same conditions, the stress in the bottom flange were
greater than the average compression, the tendency would be for the member
to increase in upward deflection with the passage of time. If the top-fiber
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Fig. 7-19. Deflections of (a) the end of a cantilevered beam and (b) two overhanging
beams.

compressive stresses under the normal loading were greater than the average
compression, the tendency would be for the deflection to increase downward as
a result of the creep.

It is interesting to note that for the deflection due to prestressing alone, the
effects of concrete shrinkage and steel relaxation are to reduce the deflection
due to prestressing, because these two effects tend to reduce the prestressing
force. The effect of creep is to alter the deflection for cases where the resultant
force in the concrete is significantly eccentric, because the rotational changes
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due to creep normally are greater than the shortening effect is on reducing the
prestress.

It should be recognized that the curvature at any section of a beam is equal
to:

M

Y = = (7-29)

This relationship is useful in computing the theoretical deflections, including
time-dependent deformations, in concrete members having prestressed
reinforcement, nonprestressed reinforcement, or a combination of both.
Computations of this type must be made with the more sophisticated methods,
such as the Ghali or numerical integration methods, because these methods
include the computation of the curvatures at the sections of the members
analyzed. The mathematical relationships for the deflection of beams due to
prestressing of different types, such as those illustrated in Figs. 7-16, 7-17, and
7-18, can be rewritten in the form:

5 == (7-30)

which X is a constant depending upon the path of the tendon. From Fig.7-20 it
will be seen that the curvature at any section can be computed if the strain
distribution is known. The curvature is equal to:

+6t —€

n - -

vi-)

€b + eb - eb

(a) (b}) (c)

Fig. 7-20. Strain distributions due to (a) prestressing, (b) transverse loads, and (c) the
combination of both.
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=" (7-31)

in which compressive strains are negative, tensile strains are positive, curva-
tures that cause downward deflections are positive, and curvatures that cause
upward deflection are negative. The relationship applies equally to short- and
long-term rotations.

In computing long-term deflections, using the numerical integration method,
the loss-of-prestress computations are made as a part of the deflection compu-
tations. The effects of variations in strains and stresses in the nonprestressed
and prestressed reinforcements must be taken into account, and the curvature
must be computed at each time increment. The accuracy of the deflection
computations is improved if the strain, stress, and curvature computations are
made at several sections along the length of the beam rather than at the location
of the maximum moment alone. After the curvatures have been determined at
the desired locations along the beam length, the deflection can be determined
by classical methods.

The step-by-step procedure for computing the deflection of a precast beam
with a composite cast-in-place slab (such as that shown in Fig. 7-4), using the
numerical integration method, is as follows:

1. Determine shrinkage and creep characteristics of the concrete, as a
function of time, for use in the analysis. In addition, determine the relax-
ation characteristics of the prestressing steel as a function of time.

2. Divide the beam into a number of incremental lengths for use in the
analysis. The computations described in the following steps must be
performed for each section between the various increments. (Beam
symmetry, use of incremental lengths, and loading conditions reduce the
calculations required.) Determine the time increments to be used. Small
time increments are desirable from the standpoint of improving accuracy
in the numerical integration procedure, but the amount of computation
required is affected by the number of time increments considered (this is
not an important consideration when a programmable calculator or
computer is used.)

3. Compute the stresses in the concrete at the top and bottom fibers as well
as at the center of gravity of the prestressed steel. The stresses should
include the effects of the initial prestressing force and all transverse loads.
(The effect of transverse loads or restraints that are applied at later ages
must be taken into account at the appropriate time, as is explained below
in step 10.)

4. Compute the initial strains in the top and bottom fibers and the curvature
at the section due to the initial loading condition.

5. For the duration of the first time increment, compute the changes in
strains at the top and bottom fibers and at the centroid of the prestressed
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reinforcement due to creep and to shrinkage. In addition, compute the
relaxation of the steel during the first time increment.

. Compute the total incremental change in stress in the prestressing steel

due to creep, shrinkage, and relaxation, and, applying this force as a
tensile force on the concrete section at the location of the centroid of the
prestressed reinforcement, compute the stresses in the top and bottom
fibers as well as at the level of the prestressed reinforcement.

. Add the stresses from step 6 to those of step 3 in order to find the stresses

at the end of the time increment.

. Compute the strains in the top and bottom fibers as well as the curvature

at the end of the time interval.

. Using the stresses from step 7, repeat the procedure (steps 5 through 8).

The procedure is repeated until the total time has been considered.

At the appropriate times, the effects of superimposed loads are taken into
account by computing the changes in stress at the top and bottom fibers
and at the centroid of the prestressed reinforcement due to the loads. The
stress at the centroid of the prestressed reinforcement should be multi-
plied by the modular ratio that is appropriate for the time increments
under study, and the force resulting from the change in stress then applied
as an incremental change in the prestressing force. The effect of the
incremental change in the prestressing force on the stresses in the top
and bottom fibers and at the centroid of the prestressed reinforcement
should be computed. From these computations, the resulting strains and
curvature in the concrete can be determined.

The procedure continues (steps S through 8) until the total time has been
considered.

The effect of the differential strains in the cast-in-place concrete and the
precast concrete is taken into account by first computing the difference
in the unrestrained changes in strain in the cast-in-place concrete and the
precast concrete at the interface between the two concretes. Strain
compatibility is then forced by applying equal and opposite forces to the
cast-in-place concrete and the beam at their interface.

The stresses from the forces computed in step 12 are to be computed in
each subsequent time-interval computation and taken into account in the
routine of steps 5 through 8.

The deflections at various points along the span of the beam, at the end
of any time interval, can be computed by using the Area-Moment, the
Conjugate Beam, or another method of analyzing statically indeterminate
beams. The calculation involves the integration of the curvature diagram
for the beam.

It should be apparent that a large amount of tedious computation is needed
to apply this method. Consequently, the method can best be applied with the
aid of a programmable calculator or computer.
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Special structures, such as prestressed concrete bridges that are constructed
segmentally in cantilever fashion (see Fig. 10-20), may require many time-
dependent steps in their construction. Each time that increments of load or
prestressing are added to the structure, new stresses, strains, rotations, and
changes in the forces in the concrete and steel must be determined for each
segment joint. The numerical integration method of estimating losses of prestress
and deflection is a logical method to be used in such a case. This method permits
the effect of time to be computed independently for each of the components.

The general method of analysis derived by Ghali et al. which is described in
Sec. 7-3, can be used for the computation of deflections in licu of the numerical
integration method. The procedure involves performing all of the steps required
for the determination of loss of prestress at several locations along the length
of a member, after which the deflections are computed by using the computed
curvatures and one of the classical methods of analyzing statically indeterminate
beams, such as the Conjugate Beam Method.

When use of the numerical integration or Ghali methods of computing the
deflection of prestressed reinforced concrete members is not considered
warranted because of the computational effort involved, one can use the modified
step function method recommended by Branson. In this method, the deflection
is computed as the algebraic sum of the effects of dead and live loads combined
with the effects of creep and loss of prestress. The effects of concrete elastic
shortening, creep, and shrinkage, as well as relaxation of the prestressed
reinforcement, on the prestressing force are, of course, included in the loss of
prestress used in the analysis. Two basic relationships are used: one is for the
analysis of prestressed concrete beams that do not have composite slabs and
may or may not have superimposed dead loads, and the second is for prestressed
concrete beams having composite slabs constructed without or with shoring
supporting the beam at the time when the composite slab is placed. The
following notation and definitions, which differ in some respects from those
used in Branson’s paper and supplement the notation given in Sec. 7-3, are used
in these relationships:

8, = Deflection due to beam dead load
8,4, = Deflection due to differential shrinkage between beam and slab
concretes (see eq. 7-34)

8, = Deflection due to beam live load

6, = Deflection due to prestressing

8, = Deflection due to slab dead load

8,4 = Deflection due to superimposed dead load
8, = Ultimate deflection

For a noncomposite fully prestressed concrete beam (i.e., free of cracking
under maximum loading), the ultimate total load deflection is computed by:
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AP,
6, =8, {1 + T" + )\(k,vu)] + 8,[1 + k,v,]

+ 6sdl[l + ’Ylackrvu] + 61 (7'32)

For a composite beam that is not shored at the time when the composite topping
or slab is placed, the ultimate total load deflection is:

AP I (AP, — AP
6u=6p|:l + Ps+askrvu)\’ +F<—L—}>—s+krvu()\—asx,)>}

1
+ 6, |:1 + ok, + (l - as)(krvu) ;7:|

1
+ 4 I:l + o,k v, F:I

+ 8y + 8 (7-33)

For a precast beam that is shored at the time the composite topping or slab
is placed, the deflections due to the composite topping or slab load is computed
using eq. 7-33 with the ratio moments of inertia of the beam to the composite
section deleted from the term for slab deflection.

For a simple beam, the deflection due to differential shrinkage and creep
between the slab and beam concretes is computed from

_ Oy L

bas 8E.I

(7-34)
in which Q is the force resulting from the differential shrinkage and creep, y,,
is the distance from the centroid of the composite time based upon the initial
and final values computed as described above, or employ the more detailed
procedures suggested by Branson (1974).

In using eqs. 7-32 and 7-33, the losses of prestress should be estimated by
using the methods described in Sec.7-3.

Allowable tensile stresses as high as 12 «/j_z are permitted in flexural members
by Sec. 18.4.2 of ACI-318 (ACI Committee 318 1989), provided that compu-
tations are made to confirm that the immediate and long-term deflections comply
with the requirements of Sec. 9.5 of ACI 318. The latter computation requires
that the effects of creep, shrinkage, relaxation, and cracking be accounted for
in the deflection computations. The load-deflection curve of a prestressed
concrete beam loaded past the cracking load can be represented simplistically
as shown in Fig. 7-21. It must be pointed out that this curve does not accurately
depict the deflection characteristics of prestressed concrete beams because, in
reality, the components of the figure should be curved lines rather than straight
ones.



338 | MODERN PRESTRESSED CONCRETE

+

\Qg |0ad\*l
> |_oad

Dead load 'hl\ |

Fig. 7-21. Simplistic representation of a load-deflection curve for a prestressed
concrete flexural member.
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For loads below the cracking loads, the deflections can be computed by using
any of the methods described above. For loadings that cause flexural cracking,
ACI 318 further provides that the “‘effective moment of inertia’’ be used in the
computations. This term is defined in Sec. 9.5.2.3 as follows:

MCI‘ Mcr 3
L= <—M—> I, + [1 - <X4"> }Ic, (7-35)

The terms in the above are defined as follows:

1., = Moment of inertia of the cracked transformed section with respect to

the centroidal axis.
I, = Moment of inertia of the gross concrete section about the centroidal

axis, neglecting the reinforcement.

M, = Maximum moment in member at stage for which deflection is being
computed.

M_, = Cracking moment based upon the modulus of rupture of 7.5\/f_2 for
normal weight concrete. See ACI 318, Sec. 9.5.2.3 for lightweight

concrete.

The deflections of members subject to cracking can also be made using Ghali’s
method, as is described in the Section 7-5, Partially Prestressed Concrete.
Because Ghali’s method includes the effects of inelastic deformations of the
concrete, the presence of nonprestressed reinforcement, as well as cracking, the
author recommends its use.

The methods currently available to the structural designer for making deflec-
tion computations for fully-prestressed concrete members are considerably better
than those that were available past. If done manually, as opposed to using
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programmable calculators or computers, the effort required to use the contem-
porary methods is considerably greater than that required for nonprestressed
reinforced concrete or for the methods used in the past for fully prestressed
members. The trend towards the use of partially prestressed concrete, which is
discussed in the next section, further complicates the computations for deflec-
tions. As stated previously, the more sophisticated methods are needed only for
the more sophisticated structures, such as those with long spans or uncommon
loadings, or those utilizing unusual construction methods or procedures.

ILLUSTRATIVE PROBLEM 7-7  Using the numerical integration method, deter-
mine the midspan deflections of the composite beam having the cross section
shown in Fig. 7-4 if the span is 126.3 ft. The beam is the end span of a three-

TABLE 7-7 Section Properties for |.P. 7-7.

Net Precast Section

Area Moment of Yb

Point (in.2) inertia (in.*) (in.)
0& 10 949 650,070 43.41
1&9 949 647,179 43.67
2&8 949 640,206 43.87
3&9 949 632,685 44.01
4&6 949 627,168 44.10
5 949 625,158 44.12

Precast Transformed Section

Area Moment of ¥b

Point (in.2) inertia (in.*) (in.)
0& 10 1013 650,140 43.48
1&9 1013 675,091 42.86
2&8 1013 673,860 42.37
3&7 1013 691,947 42.03
4&6 1013 705,214 41.82
5 1013 710,047 41.76

Composite Transformed Section

Area Moment of Y

Point (in.%) inertia (in.*) (in.)
0& 10 1637 1,119,276 56.74
1&9 1637 1,143,025 56.35
2&8 1637 1,173,053 56.06
3&9 1637 1,200,732 55.84
4&6 1637 1,219,788 55.72

5 1637 1,226,561 55.67
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TABLE 7-8 Dead Load Moments, Initial Stress in the Prestressed Reinforcement, and
Distance from the Beam Soffit to the Center of Gravity of the Prestressed
Reinforcement at the Tenth Points of the Beam in |.P. 7-7.

Precast DLM CIP Slab DLM SDL Moment fy Soffit

Pt. (ft-k) (ft-k) (ft-k) (ksi) Dist. (in.)
0 0 0 0 189.5 44.50
1 553 460 125 189.5 30.77
2 982 818 200 189.5 20.10
3 1289 1074 250 189.5 12.47
4 1473 1227 300 189.5 7.90
5 1535 1278 300 189.5 6.38
6 1473 1227 250 189.5 7.90
7 1289 1074 150 189.5 12.47
8 982 818 0 189.5 20.10
9 553 460 -175 189.5 30.77
10 0 0 —-445 189.5 44.50

span beam that is continuous for superimposed dead load and live load but
simply supported for other dead loads. The 10th point section properties are as
shown in Table 7-7. Plot a curve illustrating the variation of deflection at
midspan as a function of time. The dead load moments, initial stress in the
prestressed reinforcement, and distance from the centroid of the prestressed
reinforcement to the beam soffit (soffit distance) are shown in Table 7-8. The
properties of the materials of construction and the time sequence are as given
in LP. 7-1.

SOLUTION:  The curvatures at the 10th points, based upon the use of the
numerical integration method of analysis, made with the aid of a programmable
calculator, are found to be as shown in Table 7-9. The deflections at the 10th

TABLE 7-9 Curvatures at the Tenth Points for the Beam in I.P. 7-7.

Curvature: x 10°

Pt. 12 Days 197 Days 197’ Days 206 Days 206’ Days 600 Days
0 +0.76 +1.33 +1.33 +1.37 +1.37 +2.06
1 —4.61 -6.93 -3.58 -3.54 -3.01 -2.23
2 —8.90 -13.29 -7.46 -7.42 -6.61 -5.72
3 -12.06 -17.75 —10.30 —10.26 -9.26 -8.13
4 —14.02 —20.40 —12.05 -12.01 —10.83 -9.66
5 —14.67 —-21.26 —12.62 —12.58 —11.41 —10.24
6 —14.02 -20.40 —12.05 —12.01 —-11.03 -9.90
7 -12.06 -17.75 -10.30 —10.26 —9.66 —8.63
8 —8.90 —-13.29 -7.46 -7.42 ~7.42 —-6.57
9 —4.61 -6.93 —3.58 —3.54 —4.27 —-3.69

10 +0.76 +1.33 +1.33 —1.37 -0.53 -0.42
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TABLE 7-10 Deflections at the Tenth Points of the Beam in I.P. 7-7.

Deflections (in.)

Pt. 12 Days 197 Days 197’ Days 206 Days 206’ Days 600 Days

0 0 0 0 0 0 0

1 -1.05 -1.54 ~-0.88 —-0.88 —0.80 -0.70
2 -1.99 -2.93 -1.69 —1.68 -1.54 —1.35
3 -2.74 —4.02 -2.33 -2.32 -2.13 —1.88
4 -3.22 -4.72 —2.74 -2.73 -2.51 -2.22
5 -3.39 -4.96 —2.89 —2.88 -2.65 —2.35
6 -3.22 —4.72 -2.74 -2.73 -2.53 -2.25
7 -2.74 —4.02 -2.33 -2.32 -2.17 -1.93
8 -1.99 -2.93 —1.69 —1.68 —1.59 —1.41
9 —1.05 —1.54 -0.88 —0.88 -0.84 -0.75
10 0 0 0 0 0 0

points for the significant points in the history of the beam are summarized in

Table 7-10, and the plot of midspan deflection versus time is given in Fig.
7-22.

ILLUSTRATIVE PROBLEM 7-8  For the composite post-tensioned beam shown
in Fig. 7-4 and the loss of prestress computations of I.P. 7-5, compute the dead
load midspan deflection at 600 days using the Branson method. Assume the

+5
Place cast-in-place slab
/ .~

@ +4 /
L
g
": +3 Apply superimposed
o dead load
2 +2

+1

0 200 400 600

Time, days

Fig. 7-22. Midspan deflections as a function of time for the beam in I.P. 7-7.
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tendon to be on a second-degree parabolic path with no eccentricity at the
supports and an eccentricity at midspan of 37.75 in. The span length is 126.3
ft. The superimposed dead load of 263 pif results in a moment of —445 k-ft at
one end of the beam only. Use P; = 1046 kips and AP, /P; = —0.235.

SOLUTION: The elastic deflections are computed to be:
5 = _(5)(1046)(37.75)(126.3)° x 144 _
P 48 x 2030 x 625158 a

_ (5)(1535)(126.3)" x 1728
© 48 X 2030 x 625158
_(5)(126.3)°(1728) x 1278 _

_ = +2.10in.
% = 748 x 2460 x 710,047 +2.101m

With Q = —257 kips, y,, = —19.32 — 3.25 = —22.57 in.,

_ —257(-22.57)(126.3%)(144) _ .
S = T (g)(2460)(1226561)  _ T0>> i

—7.44 in.

84

= +3.47 in.

The midspan deflection due to the superimposed dead load, computed with basic
principles is:

8y = +0.25 in.

From I.P. 7-5:
AP, = —44.5 x 5.52 = —245.6 kips (at 600 days)
AP
P * = —0.236 (at 600 days)
Assume:
AP,
—P— = —0.18 at 200 days, A = 0.88, A' = 0.91, o, = 0.70, v, = 0.67,

1
k, = 1.0, v, = 1.23 (at 200 days), and;—, = 0.51.

Using eq. 7-33:
0, = —7.44[1 + (—0.18) + (0.70)(1.00)(1.50)(0.91)
+ 0.51(0.055 + (1.00)(1.50)(0.88 — 0.70(0.91))]
= —7.44(2.255) = —16.77 in.
85 = +3.47[1 + (0.70)(1.00)(1.50) + (1 — 0.70)(1.00)(1.50)(0.51)]
= +7.77 in.
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8, = +2.31[1 + (0.70)(1.00)(1.50)(0.51)]
= +3.55in.

845 = +0.55[1 + (0.67)(1.00)(1.50)]
= +1.10 in.

b = +0.25 in.
8, = —16.77 + 7.77 + 3.55 + 1.10 + 0.25 = —4.10 in.

ILLUSTRATIVE PROBLEM 7-9  For the double-tee beam of I.P. 7-6, compute
the ultimate dead load deflection using the modified step function method.

SOLUTION:

28
E = — = . X 6 1
<= 73 3.83 x 10° psi

For the total loss of prestress of 63.60 ksi, and an elastic shortening loss of

11.5 ksi,
AP, = —52.1 x 0.58 = —30.2 kips, P,/P; = —0.28

_(109)(—8.83)(40)*(144) _

% = (8)(3830)(4256) Lo
_(5)(0.20)(40)'(1728) .

% = " (384)(3830) (4256) _ 011
_ (90090 (1728) _

Bsat = (384)(3830)(4256)
—1.70[1 — 0.27 + (0.865)(2.00)]

>
t
Il

+0.71[1 + 2.00] + 0.14[1 + (0.83)(2.00)]
—4.18 + 2.13 + 0.37 = —1.68 in.

7-5 Partially Prestressed Concrete

Partial prestressing was first suggested as a means of permitting the use of higher
stresses in nonprestressed reinforcement, together with supplementary preten-
sioned tendons, as a means of reducing the cracking of the concrete. Later,
Abeles suggested the use of high-tensile steel for the entire tensile reinforcement
but with only a portion of the steel being prestressed (Abeles 1949). In this
manner, economy would result from the reduction in labor required to stress
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and grout the tendons. In addition, the use of high-tensile steel for all of the
tensile reinforcement was determined to be the most economical alternative
because the unit cost per unit of ultimate tensile strength is less for high-tensile-
strength steel than for steel having lower tensile strengths.

Currently there are three motivations for the use of partial prestressing. The
first is economy of labor and steel costs (i.e., not prestressing and grouting all
of the flexural reinforcement). Partially prestressed beams of this type will
normally have somewhat lower flexural strengths than fully prestressed members
because the average stress in the reinforcement will be lower than it would be
if all of the flexural reinforcement in the member were prestressed. Therefore,
the nominal flexural strength of members of this type is best determined by
using strain compatibility computations. The fundamental principles of flexural
strength analysis developed in Sec. 5-2 are appropriate for the analysis of
partially prestressed members of this type.

If partial prestressing is used in a member because the concrete cross section
to be used is inefficient, but all of the flexural reinforcement is stressed to normal
levels, the ultimate moment will not be affected as a result of the use of partial
prestressing. This can be better understood if the basic reason for using I- and
T-shaped members (Secs. 4-8 and 4-9) is analyzed and compared to using a
rectangular section. The preference for the use of I and T shapes normally is
based upon service load and not strength considerations. If a rectangular section,
which is easier to manufacture and more resistant to large shear stresses, can
be found that will work satisfactorily at service loads with moderate tensile
stresses in the tensile flange, the flexural strength may very well be as high as
would be found for an I or T beam that had been designed for the same loads,
but without tensile stresses in the bottom flange under full load. This is partic-
ularly true for short-span members, in which the dead weight itself is not impor-
tant in comparison to the total moment. The motivations for using partial
prestressing of this second type are the reductions of form and labor costs that
can be derived through the use of simple rectangular or tapered sections.

Deflections due to prestressing and differential deflections between members,
under member dead load and prestress, have been significant problems in the
manufacture of prestressed-concrete members. The total deflection due to
prestressing as well as the variation of deflection between individual members,
which is assumed to be a function of the total deflection, can be reduced by not
fully prestressing the members in some cases. Assuming that the flexural strength
is still adequate, this procedure will result in satisfactory construction for many
types of applications. Hence, the third motivation, which is the principal one,
is the desire to achieve better performance at service loads without sacrificing
the minimum safety requirements of the codes.

Some engineers look forward to the time when the building code provisions
for reinforced concrete will be applicable for reinforced concrete flexural
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members regardless of their degree of prestressing. Defining partial prestressed
concrete is a problem in itself. The degree of prestressing can be thought of in
terms of the level of prestressing in the flexural tensile reinforcement, or in
terms of the amount of tension in the concrete under service loads. There is no
universally accepted definition of partially prestressed concrete at this time. For
example, a member in which all of the flexural tensile reinforcement is high-
strength steel prestressed to the maximum permissible level permitted by the
building code might be considered to be fully prestressed by some persons.
Others may consider fully prestressed concrete to be the condition of no tensile
stresses in the concrete under service loads. Others may think of partial
prestressing as a condition that is between these two states of stress. Even though
not all engineers can agree upon a definition, the use of partially prestressed
concrete is common.

Partially prestressed members, designed in conformance with the require-
ments of ACI 318 (i.e., limited flexural tensile stresses in the concrete under
service loads, designed on the basis of a noncracked section), normally can be
used without significant risk in building floor and roof members because the
applied loads normally are predictable with reasonable accuracy, and fatigue is
not a design consideration.

Up to now, the principles of prestressing concrete discussed in this book
basically have been limited to members that are fully prestressed, or that for all
practical purposes are fully prestressed. The exceptions to this are members that
take advantage of the provision in ACI 318 permitting the use of flexural tensile
stresses as great as 12\/ﬁ when the design is made to conform with special
requirements for deflection and corrosion protection. (It should be recognized,
however, that this level of allowable tensile stress anticipates flexural cracking.)
The code requires that members using the higher allowable tensile stress must
be shown to meet the deflection criteria of Sec. 9.5.4 for short- and long-term
deflections, using bilinear moment-deflection relationships, as well as to meet
the special concrete cover requirements of Sec. 7.7.3.2. Considerations for
designing members to conform with the deflection criteria were discussed briefly
in the preceding section (Sec. 7-4).

The principle of prestressing concrete, as defined by the originators of the
method, was stated in the first paragraph of Chapter 1. This definition has, in
recent years, become the definition of fully prestressed concrete. Thus, fully
prestressed concrete members are defined, for the purposes of this book, as
concrete members that do not contain a significant amount of nonprestressed
reinforcement, and are prestressed to a level of compression that either prevents
flexural tensile stresses under service loads or restricts them to levels equal to
or less than the lower-bound flexural tensile strength of the concrete, when
analyzed with due regard to: strain compatibility, the principles of equilibrium,
the effects of prestressed and nonprestressed reinforcement, concrete shrinkage,
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concrete creep, and elastic deformations. In general, the lower-bound concrete
tensile strength should be taken to be on the order of:

= 0.50Vwf! (7-36)
which, for concrete having a unit weight of 144 pcf, is:
£ =6f (7-37)

This is the lowest value for the modulus of rupture for normal-weight concrete
contained in ACI 318 and is intended to be a conservative value (see Sec. 3-7).

Partially prestressed concrete members are defined, for the purposes of this
book, as concrete members that: are prestressed to a level of compression that
will permit cracking under the maximum service loads; may contain significant
amounts of nonprestressed reinforcement in addition to prestressed reinforce-
ment; contain prestressed reinforcement that may or may not be stressed to the
maximum levels permitted by the applicable building code; but will have suffi-
cient flexural strength to resist the minimum design loads required by the appli-
cable code. This definition presumes that the analysis of members of this type
includes consideration of: strain compatibility; the principles of equilibrium;
the effects of prestressed and nonprestressed reinforcements; concrete shrinkage,
creep, and elastic deformations; the concrete’s being incapable of supporting
tensile stresses after decompression of the section; and the assumption that a
change in mechanical behavior in flexure occurs as a result of decompression
(i.e., a change from behavior based upon the properties of the transformed gross
section to behavior based upon a cracked, transformed section).

The concept of partially prestressed concrete, as defined herein, requires a
determination of the combination of axial force and moment that defines the
transition point between behavior that can be considered to be that of an
uncracked member and the behavior of a cracked member. The loading that
defines this transition is called the decompression loading.

In the determination of the combination of force and moment that causes
decompression in a member, the amount of axial force and moment remaining
after decompression has taken place also is determined.

Decompression for a partially prestressed member is said to exist when the
stress across the thickness of a section (from top to bottom) equals zero at the
section under consideration. This is best understood by considering the states
of stress illustrated in Fig. 7-23. The condition of stress in Fig. 7-23a is that
existing under final prestress and dead load. The application of a significant
amount of additional load, as shown in Fig. 7-23b, results in combined stresses
(prestress plus applied loads), based upon an uncracked section analysis, as
shown in Fig. 7-23c. Because the concrete section is presumed to be unable to
withstand tensile stresses, and indeed cannot withstand tensile stresses greater
than its modulus of rupture, the section cracks and the stress distribution take
the shape shown in Fig. 7-23d. To evaluate the stresses in the cracked section,
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Fig. 7-23. Distribution of stresses considered in the determination of the state of
decompression. (a) Distribution of stress in an uncracked flexural member
under final prestress plus service dead load. (b) Distribution of stresses on
the uncracked section due to the service live load. (c) Distribution of stresses
resulting from the combination of final prestress, service dead, and service
live loads. (d) Distribution of stresses on a cracked section. (e} Distribution
of stress, equal to zero over the full thickness of the member, when the
section is decompressed.

one must first determine the decompression force and moment. The decompres-
sion force and moment are those required to nullify the condition of stress shown
in Fig. 7-23a and create a state of zero stress across the full thickness of the
section, as shown in Fig. 7-23e. By deducting the decompression force and
moment from the total force and moment producing the combined service live
load stresses shown in Fig. 7-23c, the axial force and moment to be used in the
determination of the stresses on the cracked section, as illustrated in Fig.
7-23d, are obtained.

By employing Ghali’s methods, as explained in Sec. 7-3, the normal force
and concomitant moment (or eccentricity of the normal force), required for
decompression loading can be computed from a known concrete stress at a
reference axis, f,,,, and the known slope of the stress diagram, vy, using the
following two equations:

AI\Idecom = A(_f;:ra) + Ay(_‘Y) (7'38)

AMdecam = Ay(—f;‘ra) + Ira(_’Y) (7'39)

in which f_,,, y, and I, are with respect to a reference axis that may or may not
pass through the centroidal axis of the cross section of the member. The negative
signs for the values of f,,, and v in eqs. 7-38 and 7-39 are provided because
the purpose of the computations is to determine the force and moment that will
nullify the condition of stress shown in Fig. 7-23a.

If the reference axis passes through the centroidal axis of the cross section of
the member, eqs. 7-38 and 7-39 become:

AIvdecom = A( —fcra) (7'40)
AMdecom = Ira( _7) (7'41)
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The changes in the strain at the reference axis and the curvature due to the
decompression force and moment are computed from:

_f;‘ ra
€cra decom Ec ( )
Y
=-r 7-43
¢decom E ( )

c

The axial force and moment to be applied to the cracked section (Fig. 7-23d)
are computed from:

N - N, decom = N, cracked-sec (7M)

M - Mdecom = Mcracked-sec (7_45 )

in which N and M are the axial force and bending moment applied to the section
as a result of prestressing and all applied dead and live loads (Ghali 1986).

Ghali and his colleagues have written computer programs that facilitate the
implementation of the methods and procedures they have derived (Elbadry and
Ghali 1989; Ghali and Elbadry 1985). Although these methods are not needed
for the more common applications of prestressed concrete, the informed engineer
must know of their existence, their intended use, and where detailed informa-
tion on them can be obtained. It is hoped that this discussion will help one to
accomplish these objectives.

ILLUSTRATIVE PROBLEM 7-10  Using the general method proposed by Ghali
et al., compute the stresses, strains, and deflections of the T-beam analyzed in
1.P. 7-2 if the intermittently applied live load is 1667 plf rather 750 plf. Compute
the decompression force and bending moment as well as the force and moment
applied to the cracked section.

—688 psi —820 psi
Js4g

11.86 in.
32.5in.

=
fsAg
+5602 psi > f, = 379 psi

(a) (b)

Fig. 7-24. Distribution of stresses under final prestress, dead load, and live load based
on the uncracked and cracked sections. (a) Stresses on the uncracked
section. (b) Stresses and forces on the cracked section.
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—77.8 psi +77.8 psi O psi

-390 psi +390 psi O psi
(a) (b) (c)
Fig. 7-25. lllustration of the effect of the decompression load and moment on the beam
analyzed in I.P. 7-10. (a) Stress distribution under full pressure plus dead

load at t = . (b) Stress distribution required to decompress the section. (c)
Stress distribution with the section decompressed.

SOLUTION:  The stresses, strains, curvatures, rotations, and deflections of the
beam are identical to those computed in I.P. 7-2 under the effects of prestressing
and dead load. The higher intermittent live load that is applied to the beam in
this problem, however, causes a moment at midspan of 4000 k-in. and flexural
tensile stresses, based upon an uncracked section, that exceed the tensile
strength. For this reason, the condition of stress under the full live load must
be evaluated by using a cracked section. The distributions of stress under dead
and live loads for the uncracked and cracked sections are shown in Fig. 7-24.
The effect of the decompression load is shown in Fig. 7-25. By using the

TABLE 7-11 Summary of Stresses and Forces for Reinforcement and Concrete
Section for I.P. 7-10.

State of Loading and Deformations

State 1 State 2 State 3 State 4

Area Stress Force  Stress Force  Stress Force Stress Force
Item (in.2)  (ksi) (k) (ksi) (k) (ksi) (k) (ksi) (k)

A 1.00 +13.1  +13.1 254 -254 —245 245 —304 —304
A, 400 —11.7 —469 —367 -1468 —33.8 —1352 -237 —048
A, 2.00 +189.0 +378.0 +155.7 +311.4 +158.4 +316.8 +166.9 +333.8
A ~344.2 -139.2 ~157.0 ~208.6

State 1. After initial prestressing, elastic deformation, and under beam dead load.
State 2. After time-dependent deformation under prestressing and beam dead load.
State 3. After application of the decompression load and bending moment.
State 4. After cracking under final prestressing and full dead and live load.
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computer program called Crack, the stresses and forces in the reinforcements
and the concrete section were found to be as shown in Table 7-11 for the different
states in the history of the member (Ghali and Elbadry 1985).
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PROBLEMS

1. For the double-tee beam shown in Fig. 7-26, compute the ultimate loss of
prestress based upon the concrete’s being heat-cured normal-weight concrete
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Fig. 7-26. Double-tee beam used in Problem 1. (a) Cross section. (b) Elevation.

having a compressive strength of 4000 psi at transfer and a specified
minimum strength of 5000 psi at the age of 28 days, using Branson’s
modified step function method. Consider slab dead load alone. The
prestressed reinforcement is Grade 270 stress-relieved seven-wire strand.
The section properties, areas, and loadings are:

. =615in? y, = +21.98in. I, = 59,720 in.*

The dead load of the slab is 641 plf, the area of the prestressed reinforcement
is 2.14 in.?, the initial stress in the prestressed reinforcement immediately
before transfer is 189 ksi, the beam is to be used on a simple span of 76 ft,
and the eccentricities of the prestressed reinforcement are +18.48 in. and
+11.12 in. at the midspan and ends, respectively. Assume the ambient
relative humidity to be 70 percent, the modular ratio to be 7.3, the creep
ratio for ultimate creep to be 1.88, the ultimate concrete shrinkage to be
—546 x 10° in. /in., the elastic modulus of the reinforcement to be 28,000
ksi, AP,/P, = — 0.18, 1 + b,; = 1, and the ultimate relaxation loss of
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the prestressed reinforcement to be 0.075f,;. Compare the results with the
general and simplified methods recommended by the Prestressed Concrete
Institute (Appendix A) and the AASHTO requirements (Appendix B).

SOLUTION:
From eq.7-4:

_ ., (1848)°(615) _

4.
59720 %2

k

From eq. 7-2:

(189)(2.14)(4.52) + (615)(462.8)(12)(—18.48)/59720
B 615 + (7.3)(2.14)(4.52)

.ﬂ'cgs =

—1.125 ksi
(189)(2.14) + (—1.125)(7.3)(2.14) = 386.9 kips

P;
f. = 180,8 ksi, f,, = —0.075 X 180.8 = —13.6 ksi

Assuming { = 1 + (7.3)(4.52)2.14/615(1 + 0.88 x 1.88) = 1.30, E, =
3.83 x 107¢ psi, n = 0.88, k, = 1, A = 0.91, and using the modified step
function method with only the first four terms of eq. 7-32, because there is no
superimposed sustained dead load, the loss of stress in the prestressed reinforce-
ment becomes:

Af; = (7.3)(—1.125) + (0.91)(7.3)(~1.125)(1.88)
(—546)(28)
(1307(1000) " 0.075(180.8)

—8.20 — 14.04 — 11.76 — 13.56 = —47.57 ksi

Using the PCI General Method:
Elastic shortening:

Jor = fecgs = —1.125 ksi
ES = nf,, = 7.3 X —1.125 = —8.21 ksi
Creep loss:
UCR = 63 — (20) (3.83) = —13.6 .". Use 11
Volume to surface ratio = 1.70 in.
SCF = 1.05 — 0.70(1.05 — 0.09) = 0.99
MCF = 1.0
CR = (11)(0.99)(1.0)(—1.124) = ~12.25 ksi

il
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Shrinkage loss:

27,000 — (3000)(3.83) _
1000 B

SSF = 1.04 — 0.70(1.04 — 0.96) = 0.98
SH = (—15.51)(0.98) = —15.20 ksi
Relaxation loss (at ¢ = 10° hours and with f y = 0.90 X 270 = 243 ksi):

USH =

—15.51 ksi

log 10° /189
RET = (189) 0g10 <% - 0.55> = —21.52 ksi

Summation:
Af;, = —8.21 — 12.24 — 15.20 — 21.52 = —57.17 kg
Using PCI simplified method:
Af; = —33.0 + (—13.8)(1.125) = —48.5 ksi
Using the AASHTO methods:

_ 17,000 — (150)(70) _
1000 -

ES = (7.3)(—1.125) = —8.21 ksi
CR = (12)(~1.125) = —13.5 ksi
Relaxation = —20 + 0.4(8.21) + 0.2(6.5 + 13.5) = —12.72 ksi

SH =

—6.50 ksi

Summation:

Af; = —6.50 — 8.21 ~ 13.50 —12.72 = —40.93 ksi

Comparison of results:

Total Loss
Method (ksi)
Branson’s -47.57
PCI General —57.18
PCI Simplified -48.50
AASHTO —40.93

2. A concrete has an elastic modulus of 3000 ksi and is under an initial axial
compressive stress of 600 psi. The stress is induced by a tendon prestressed
to 200 ksi. The tendon has an elastic modulus of 30,000 ksi and is perfectly
elastic (not subject to relaxation). The concrete is free of shrinkage. If the
creep characteristics of the concrete are defined by eq. 3-25 with ¢y = 0.60
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and d = 10.0, and if the creep ratio is 3.00, determine the stress remaining
in the concrete and in the tendon after a period of ten days using the numer-
ical integration procedure with time intervals of one and ten days.

SOLUTION:

The initial strain in the concrete is equal to —600 psi/3 X 10° psi or —200 X
107¢ in. /in. The computations with a time interval of one day involve the
following:

Creep deformation at time ¢ 260
Ultimate creep deformation 10 + 20

Increment of creep deformation between times ¢ and ¢ — 1 if subject to

constant stress:
(0-60 (1 — 1)0.60
- Yu
10+ 10+ (r = 1"

Because the stress on the concrete varies over the time period, the increment
of creep must be reduced by the ratio of the stress in the prestressed reinforce-
ment at the beginning of the time period, ¢ — 1, to the stress in the prestressed
reinforcement at the end of the time period, ¢. This can be expressed as:

A _ £ (- 1)0.60 foimn
ecreep 10 + t0,60 10 + (I _ 1)0060 Yu f:vt

The stress in the prestressed reinforcement at time 7 is:

f:vt =f:tt—l - Aecreep X Eps

The strain in the concrete at time ¢ is:

€t = €cr—1 — Aecreep
and the stress in the concrete at time ¢ is:
S
f:v t—1

The computations for the ten-day period using time increments of one day are
summarized in Table 7-12.
For a time interval of ten days, the computation becomes:

100.60 p
70 + 100 ) ~ 800 x 10

—170.8 x 10%in. /in.

Joo=Ffero1 X

Creep deformation
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—171 x 30
= —————— = +194.9 ksi
fi = +200 + 1000 +194.9 ksi
+194.
fe= T 600 = —584.7 psi

+200.0

3. For the conditions of Problems 2, compute the steel stress and concrete stress
remaining at the age of ten days if, in addition to the creep strain, the concrete
shrinks as described by eq. 3-17 with ¢ = 1 and f = 35. Use time intervals
of one day and ten days. Ultimate shrinkage, which is to commence at day
0, can be assumed to be —400 millionths in. /in.

SOLUTION:
The computations for a time interval of one day are summarized in Table
7-13.

For 10-day interval, Ae = —170.8 — 88.9 = —259.7 x 106 in. /in.
Af, = =719 ksi, f, = 192.21 ksi, f. = —576.62 psi

4. For the double-tee beam shown in Fig. 7-26, determine the deflection
assuming E,; = 3.89 x 10° psi, E, = 4.03 x 10° psi, AP,/P; = —0.22
and the remaining data is as given in Problem 1.

TABLE 7-12 Summary of Computations for Effects of Concrete Creep after Ten Days
Using an Integration Interval of One Day.

Day  v:/vu AY/Vu Decree, (107%0nL0iN)  f(ksi) & (107 %in.jin.)  F. (psi)

0 0 200 -200 —-600
0.0909 —54.54

1 0.0909 198.36 —254.54 —595.08
0.0407 ~24.22

2 0.1316 197.64 —278.76 —592.92
0.0304 —18.03

3 0.1620 197.09 —296.79 —-591.27
0.0248 ~14.66

4 0.1868 196.66 —311.45 —589.97
0.0212 -12.507

5 0.2080 196.28 —323.96 —588.84
0.0186 —10.952

6  0.2266 195.95 —334.91 —587.86
0.0166 —9.758

7 0.2432 195.66 —344.67 —586.98
0.0151 —8.863

8 0.2583 195.39 —353.53 —586.18
0.0137 -8.03

9 02720 195.15 —361.56 —585.46
0.0127 —7.435

10 0.2847 194.93 —368.99 —584.79
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TABLE 7-13 Summary of Effects of Concrete Creep and Shrinkage after a Period of Ten Days
Using an Integration Interval of One Day.

6shn‘n/(age Afshrinkage AEr:re-tap €concrete
Day (10~%in./in.) (10~%in.fin.)  (10~%in./in.) £, (ksi) (10~ ®in.fin.) f. {psi)
0 0 200.00 —200.00 —600
—11.11 —54.54
1 —11.11 198.03 —265.65 —594.09
-10.51 —24.18
2 -21.62 196.99 —300.34 —590.97
-9.96 —17.97
3 —31.58 196.15 —328.27 —588.46
-9.45 -14.59
4 —41.03 195.43 —352.31 —586.29
-8.97 -12.43
5 —50.00 194.79 -373.71 —584.36
-8.54 —10.87
6 —58.54 194.20 —393.12 —582.61
-8.12 -9.67
7 —66.66 193.67 —410.91 —581.01
=17.76 -8.77
8 —74.42 193.17 —427.44 —579.52
~7.40 -7.93
9 —81.82 192.71 —442.78 —578.14
-7.07 -7.34
10 —88.89 192.28 —457.19 —576.85
SOLUTION:
[ = —1.125 ksi, f;; = 180.8 ksi, and P; = 387 kips
5 - _(387)(112)(76)(144) _ (387)(7.36)[3(76”) — 4(38%)](144)
P~ T (8)(3890)(59,720) (24)(3890)(59,720)
= —1.93 — 0.85 = —2.78 in.
5)(0.641)(76*)(1728
6, =+ G J(76)( ) = +2.07 in.
(384)(3890)(59,720)
8, = —2.78[1 + (=0.22) + (1.00)(0.91)(1.88)]

+2.07 [1 + (1.00)1.88] = —6.92 + 5.96 = —0.96 in.

Note: E,; of 4.03 X 10° psi should be used in the computations of deflections
for loads applied after the concrete has attained its specified minimum strength.

5. A rectangular beam 12 in. wide and 42 in. deep is to be prestressed with a
single bonded tendon having a steel area of 0.918 sq. in. The beam is to be
used on a span of 60.0 ft. The stress in the prestressed reinforcement after
elastic shortening will be 189 ksi. Immediately after prestressing, a super-



LOSS OF PRESTRESS, DEFLECTION, AND PARTIAL PRESTRESS | 357

imposed load of 825 plf is to be applied to the beam. The parabolic tendon

path is located 3 in. above the soffit at midspan and 21 in. above the soffit

at each end. Compute the deflection of the beams using a bilinear deflection
analysis. Use E. = 4000 ksi, E,; = 28,000 ksi, and f = 5000 psi.
SOLUTION:

The parameters for the gross section needed in the analysis are: A, = 504
in.%, I, = 74,088 in.%, and r* = 147 in.?, and the section weights 525 plf. The
stresses in the concrete section due to prestressing and the applied loads are
summarized in Table 7-14.

The bottom-fiber stress under full load exceeds 6\/f_; but is less than
12 \/f_; Hence, a bilinear analysis is required. The cracking moment and total
uniformly distributed load that will result in cracking are:

74088 1230 + 7.5v5000

= = 517 k-ft
ck 21 12000
8 X 517
Weg = ———— = 1.14
R 0 9 kif

The superimposed load required to crack the section is 1149 — 525 = 624 plf.
The transformed area of the reinforcement, nA,, equals 6.426 in.2, and the
depth to the neutral axis is computed as follows:

12y?

=5 = 6.426(39 ~ y)

y = 5.95 in.

The moment of inertia of the cracked section and the effective moment of inertia,
as provided in ACI 318 (see eq. 7-35) are computed as follows:

12 X 5.95°
I = =5 + 6.426(39.0 ~ 5.95)" = 7862 in.*
1149\ 1149\
I,=—=—) +(74088) + | 1 — | ——= ) | 7862 = 48693 in.*
‘ <1350> (74088) [ <1350> } n
TABLE 7-14 Summary of Concrete Stresses for
Problem 5.
Top fiber Bottom fiber
(psi) (psi)
Initial prestressing +540 —1230
Beam dead load -804 +804
Superimposed load —1263 +1263

Total —1527 +837
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Fig. 7-27. Results of the computations for Problem 5.

The instantaneous deflections are computed as follows:

_(5)(0.918)(189)(18)(60%)(144) _ _
% = (48)(4000)(74,088) = ~036in.
_ (5)(1.149)(60%)(1728)

Oyr1 = (384)(4000)(74,088)

5 _ (5)(1.201)(60%)(1728)
sL2 7 (384)(4000)(48,693)

= 1.131 in.

= 0.301 in.

The results are plotted in Fig. 7-27.

6. Compute the initial deflection of the simply supported box girder bridge of
Example IV in Appendix B using the initial stress distribution given in the
example. Assume the loss of prestress due to elastic shortening is accounted
for in the stressing procedure (i.e., slight overstressing to offset the loss due
to elastic shortening). Use 4,, = 44.37 in.? and w, = 8.36 Kif.

SOLUTION:
The computations are summarized in Table 7-15.

7. For the double-tee beam in Fig. 7-26, determine the prestressing force, P;,
at the 20th points immediately after transfer, using eq. 7-2. Note that the
eccentricity varies from 11.12 in. at each end to 18.48 in. at midspan. Use
n =13, 4, =214in% I = 59,720 in*, 4, = 615 in.?, P} = 404.46
kips, and M,,,,, = 462.8 k-ft.

SOLUTION:

(615)(12)M e

_ 59,720 _ 404.46k, + 0.12357M,e

fa="%615 + (7.3)(2.14)k, 615 + 15.622k,

(404.46)k, +




LOSS OF PRESTRESS, DEFLECTION, AND PARTIAL PRESTRESS | 359

TABLE 7-15 Summary of Computations for Problem 6.

20th Dist. Prestress e Moment Defl.

Pt. (ft) Force (k) (in.) (k-ft) {in.)
0 .000 8129.000 .000 .000 .000
1 8.100 8154.000 5.950 1167.721 —.167
2 16.200 8180.000 11.280 2183.792 -.330
3 24.300 8206.000 15.970 3065.921 —.483
4 32.400 8232.000 20.040 3804.547 —.623
5 40.500 8257.000 23.490 4405.657 —.746
6 48.600 8283.000 26.310 4876.505 —.849
7 56.700 8309.000 28.500 5222.856 -.931
8 64.800 8334.000 30.070 5444.365 —.991
9 72.900 8360.000 31.000 5554.063 —1.026
10 81.000 8386.000 31.320 5537.520 -1.037
11 89.100 8412.000 31.000 5419.730 —1.024
12 97.200 8392.000 30.070 5299.027 —.986
13 105.300 8366.000 28.500 5087.481 -.926
14 113.400 8341.000 26.310 4749.340 —.843
15 121.500 8315.000 23.490 4292.122 —.740
16 129.600 8289.000 20.040 3709.357 -.617
17 137.700 8263.000 15.970 2990.063 —.479
18 145.800 8238.000 11.280 2129.272 -.327
19 153.900 8212.000 5.950 1138.962 —.166
20 162.000 8186.000 .000 .000 .000

P; = 404.46 — nf,A,, = 404.46 — 15.622f,
The computations are summarized in Table 7-16.

8. For the double-tee of Problem 7, determine the instantaneous deflection due
to prestressing alone, using the values of P; computed in Problem 7 as well
as with P; being a constant value of 386.91 kips. E. = E,;/n = 3836 ksi.

TABLE 7-16 Summary of Computations for Probiem 7.

e M, Tei Po

Pt. (in.) ks (k-ft) (ksi) (kips)
0 11.12 2.273 0 —1.489 381.21
1 11.86 2.449 87.9 -1.319 383.85
2 12.59 2.632 166.6 -1.227 385.29
3 13.33 2.830 236.0 —1.147 386.55
4 14.06 3.036 296.2 -1.077 387.64
5 14.80 3.256 347.1 -1.024 388.46
6 15.54 3.487 388.8 -0.991 388.97
7 16.27 3.726 421.1 —0.981 389.14
8 17.01 3.980 444.3 -0.998 388.87
9 17.74 4.241 458.2 —1.043 388.16
10 18.48 4.517 462.8 -1.123 386.91
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TABLE 7-17 Summary of Computations for Problem 8 with Variable P;.

20th Dist. Prestress e Moment Defl.
Pt. (ft) Force (k) (in.) (k-ft) (in.)

0 .000 381.210 11.120 —353.254 .000

1 3.800 383.850 11.860 -379.371 —.501

2 7.600 385.290 12.590 —404.233 —-.960

3 11.400 386.550 13.330 —429.392 —1.376

4 15.200 387.640 14.060 —454.184 —1.745

5 19.000 388.460 14.800 —479.100 —2.064

6 22.800 388.970 15.540 —503.716 —-2.332

7 26.600 389.140 16.270 —527.608 —2.544

8 30.400 388.870 17.010 —551.223 -2.699

9 34.200 388.160 17.740 —573.829 -2.794

10 38.000 386.160 18.480 —594.686 —2.826

SOLUTION;

The deflections at the 20th points are summarized in Tables 7-17 and 7-18—the
first for a variable P; and the second for a constant P;. As will be seen from a
review of the tables, the variation in the initial prestressing force does not have
a significant effect on the deflections in this instance.

TABLE 7-18 Summary of Computations for Problem 8 with Constant P,.

20th Dist. Prestress e Moment Defl.

Pt. (ft) Force (k) {in.) (k-ft) (in.)
0 .000 386.910 11.120 —358.536 .000
1 3.800 386.910 11.860 —382.396 —.500
2 7.600 386.910 12.590 —405.933 —.958
3 11.400 386.910 13.330 —429.792 -1.373
4 15.200 386.910 14.060 —453.329 —1.740
5 19.000 386.910 14.800 —477.189 —2.058
6 22.800 386.910 15.540 —501.048 -2.325
7 26.600 386.910 16.270 —524.585 —2.536
8 30.400 386.910 17.010 —548.444 —2.691
9 34.200 386.910 17.740 —571.981 —2.785
10 38.000 386.910 18.480 —595.841 -2.818




8 | Additional
Design
Considerations

8-1 Composite Beams

Flexural members formed of two concrete components made at different times,
such as precast and cast-in-place elements, frequently are employed in construc-
tion. Beams so constructed are referred to as composite beams. An illustration
of a typical composite bridge beam is given in Fig. 8-1.

Composite construction permits the precasting of portions of concrete
members that: (a) may be difficult to form because of their shape, (b) are diffi-
cult from the standpoint of placing and consolidating the concrete, and (c)
contain relatively large amounts of reinforcement. Precasting allows the
members to be made under working conditions more favorable than those
normally found on construction sites. The need for falsework frequently is
avoided with composite construction because the precast elements often can be
designed to support the dead load of the precast concrete elements as well as
the cast-in-place elements without supplementary temporary support. Dead and
live loads, applied after the cast-in-place deck has hardened, are supported by
the composite beam. Composite cast-in-place concrete toppings frequently are
used as a means of providing flat or level surfaces and to connect precast
elements together to form horizontal diaphragms for resisting lateral loads.

361
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Fig. 8-1. Cross section of a composite beam.

The use of large, composite top flanges contributes to flexural strength at
both service and design loads, but does not significantly improve the shear
strength of prestressed beams. For this reason, there is little structural advan-
tage, if any, to be gained in using composite construction for short-span
members, in which shear strength generally is more critical than is flexural
strength.

In designing composite beams, it is necessary to know the section properties
of the various sections involved in the analysis, which may include the gross,
net, net-transformed, transformed, and age-adjusted section properties of the
precast and composite sections (see Sec. 4-10). The flexural stresses and strains
resulting from the various loading effects can be computed only after the section
properties have been determined.

In addition, to achieve composite action, the designer must provide a means
of transferring shear stresses from the concrete that is cast first (hardened
concrete) to that which is cast subsequently. Nominal shear stresses can be
transferred by bond alone if the surface of the hardened concrete is clean,
saturated, and rough, the stress transfer being made by frictional forces at the
joint between the two concretes. Larger shear stresses can be transferred between
the two components if, in addition to the above, reinforcement is extended from
one component into the other and anchored on each side of the joint. The
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reinforcement develops tensile stresses as a result of small in-plane displace-
ments of the joint between the two components adding to the shear strength of
the joint. Shear keys normally are not used for transferring shear stresses
between the elements of a composite member.

Using the provisions of Sec. 17.5 of ACI 318-89, composite sections must
be designed for shear based upon

< ¢V, (8-1)

in which V, is the design (factored) shear force at the section under considera-
tion, ¢ is equal to 0.85 and V,,, is the nominal horizontal shear strength of the
joint (contact surface or surfaces) between the two concrete members intended
to act as a single composite member. The nominal horizontal shear stress, v,;,
is computed as

_ Vnh
vnh - b d
v

(8-2)

in which b, is the width of the cross section at the contact surface, in inches
and d is the distance from the extreme compression fiber to the centroid of the
tension reinforcement for the entire composite section, in inches. The permis-
sible values for v,,, are:

1. 80 psi when ties, in the form of nonprestressed reinforcement, are not
provided, but the contact surfaces are clean, free of laitance, and inten-
tionally roughened to a full amplitude of approximately 0.25 in.

2. 80 psi when vertical nonprestressed reinforcement is provided, and the
contact surfaces are clean but not intentionally roughened. The reinforce-
ment can be in the form of ties or extended stirrups, proportioned to equal
to or exceed the requirements of eq. 6-13 (minimum shear reinforcement
required in Sec. 11.5.5.3 of ACI 381), provided at spacings that do not
exceed four times the least dimension of the supported element or 24 in.
It is essential the strength of the reinforcement be developed on each side
of the contact surface.

3. 350 psi when the conditions of both (1) and (2) are met.

4. 0.20f. < 800 psi when the code provisions for shear friction are met
(ACI 318 Sec. 11.7).

The reader should review the complete requirements of ACI 318 regarding
composite concrete flexural members. Only the more important points have
been presented here.

Differential-shrinkage stresses in composite construction can result in the
development of tensile stresses being developed in the cast-in-place concrete
and a reduction in the precompression of the tensile flange of the precast element.
The differential shrinkage has no effect on the flexural strength of the composite
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beam, but it does slightly reduce the load required to crack the tensile flange of
the precast element. This effect should be considered in structures in which the
cracking load is believed to be critical, but it normally is ignored.

When one is computing the properties of transformed sections, the difference
in the elastic properties of the cast-in-place concrete and the concrete and the
concrete in the precast element must be taken into account by adjusting the
width of the composite flange in proportion to the modular ratio of the two
concretes. An example of this type of calculation is given in I.P. 8-1.

ILLUSTRATIVE PROBLEM 8-1  Using the gross section properties, compute the
flexural stresses in the precast and cast-in-place concrete for the composite bridge
beam section shown in Fig. 8-1 when the sum of the moments due to the dead
load of the beam, slab, and diaphragms is 673 k-ft, and the sum of the moments
due to the future wearing surface, live load, and impact is 830 k-ft. The section
properties for the gross precast and composite sections are as follows:

Precast section:

y, = —24.0in. S, = —4450in.> y, = 18.0in. S, = 5950 in.?

Composite section: 1t is assumed that the ratio of the elastic moduli of the
concretes in the slab and girder is 0.60, and the width of the top flange of the
transformed section is 0.60 X 56 = 33.6 in. The section propertics are:

y, = —23.0in., S, = —9400in.>, I = 216,000 in.*

y = —17.0in., §, = —12,700 in.’
y, = 25.0 in., S, = 8650 in.?
SOLUTION:
Stress in Extreme Fibers (psi)
CIP slab  Precasttop  Precast bottom

Dead load —1810 +1360
Live load

plus impact —-1060 —1785 +1150
Totals —1060 —2595 +2510

ILLUSTRATIVE PROBLEM 8-2 Compute the gross section properties of the
precast and composite sections for the cross section shown in Fig. 8-1 when
the precast beam is made of sand-lightweight concrete having a unit weight of
112 pef, and the cast-in-place deck slab is normal-weight concrete (145 pcf).
Assume the 28-day compressive strengths to be 4500 and 3500 psi for the beam
and deck concretes, respectively. Assume that eq. 3-4 is accurate for both
concretes.
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TABLE 8-1
I-Section Shown in Fig. 8-1.

Computations for the Centroid of the Precast

Area computation Distance First moment
Part b x h= A y Ay

1 T7x 42=129% 21 6174
2 10 x 6= 60 3 180
3 0.5 x 10 x 3= 15 7 105
4 05x16x 45= 36 30 1080
5 16 X 10.5 = 168 36.75 6174

573 13,713

SOLUTION:

The elastic moduli for the concretes in the precast beam and the

cast-in-place slab, using eq. 3-4, are 2620 ksi and 3400 ksi, respectively. The
ratio of the moduli for the concretes is 1.30.

The section properties are calculated by first determining the centroid of the
section under consideration by taking moments about the top of the section, and
subsequently computing the moment of inertia of the section with respect to a
horizontal axis passing through the centroid. The computation of the moment
of inertia is done by summing the moments of inertia, with respect to the refer-
ence axis, of the individual components or parts of the section. For a section
having n components, this can be expressed mathematically as:

I1=2[1, + 4]
1

TABLE 8-2 Computations for the Moment of Inertia for the
Precast |-Section Shown in Fig. 8-1 with Respect to its
Centroidal Axis.

L

L

(-23.9 +21.0) +

(-23.9 + 7.0)° + —} 15

42.0?
294
12 :I

2
(=239 + 3.0 + ﬂj| 60

12

3.0°
18

4.5
(-23.9 + 30.0)° + F] 36

10.5?
(-23.9 + 36.75) + n j| 168

45,690

26,389

= 4292

1380

29,284

107,035 in.*

I
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TABLE 8-3 Computations of the Transformed Composite
Section Properties.

13056 x6= 437x 3 = 1310 234+3 103,569
573 x 29.9 = 17,132 135+ 0 77,355
1,010 18,442 107,031
IRLE 287,955
Y= 1010 :

Computations for the centroid of the section, computed by taking moments
about the top fiber, are shown in Table 8-1. The distance from the top fiber to
the centroid is equal to:

_ 13,713

¥, 573 = —23.9 in.

Computations for the moment of inertia about the reference axis that passes
through the centroid of the precast section are given in Table 8-2. The distance
from the top of the cast-in-place slab to the centroid of the composite section,
¥p» and the moment of inertia of the transformed composite section can be
computed in an abbreviated form, as shown in Table 8-3; and the distance from
the top fiber to the centroidal axis, b, is equal to 18,442 /1010 = 18.3 in., and
the moment of inertia of the transformed composite section is 287,955 in4.

8-2 Beams with Variable Moments of Inertia

The moment due to prestressing with straight tendons can be made to vary along
the length of a simple beam by varying the depth of the member. Members
having a variable depth can, of course, be prestressed with curved tendons to
optimize the effectiveness of the prestressing if that is desired.

A sloped beam, shown in Fig. 8-2, has variable depth and moment of inertia.
This type of beam is adaptable to roof construction where the slope of the top
flange can be used to provide roof drainage. Although beams of this shape have
been produced, they are not used extensively, as they have several disadvan-
tages that limit their use:

1. The design of variable-depth beams must be done with care, because the
maximum moment and maximum flexural stresses may not (probably do not)

— ([ ———

Fig. 8-2. Elevation of a beam with a sloping top flange.
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Fig. 8-3. Vector diagram of forces at ridge of beam with sloping top flange.

occur at the same section. Therefore, in order to be certain that the critical
sections are considered, the service load stresses and flexural strength must be
investigated at several points along the span. This refinement normally is not
required in the design of simple beams; so the need for it is not always recog-
nized.

2. The sloping top flanges intersect at the center of the beam, and the large
inclined compressive forces resisted by the top flanges intersect at an angle, as
shown in the vector diagram of Fig. 8-3. Provision must be made for the vertical
components of the forces if upward buckling of the top flanges is to be avoided.
This danger is enhanced when penetrations are provided in the webs of the
beams at midspan for utilities.

3. Forms for members with sloping flanges are relatively expensive and not
easily converted for manufacturing the many different span lengths encountered
in modern commercial and industrial building construction.

Another type of beam with a variable moment of inertia and depth, which
can be used to advantage in roof as well as bridge construction, is illustrated in
Fig. 8-4. This beam can be stressed with straight tendons, and, because the
depth of the section is greater at the ends, the eccentricity of the prestressing
force at the ends will be relatively less than at midspan. As a result, the stresses
in the concrete due to prestressing will not be as great at the ends as they are
at midspan. In this manner, an effect similar to curving the tendons in a prismatic
beam can be obtained.

Another economical method of forming a beam with a variable moment of
inertia is to use a box section, as illustrated in Fig. 8-5. In a beam of this type,
the hollow core frequently is made with inexpensive plywood or paper forms
that can be placed lower near midspan than at the ends. In this manner, the
thicker concrete flanges are placed where needed to resist the larger compressive
stresses due to pretensioning at the ends and those due to applied loads at
midspan.

Beams with variable moments of inertia and depth frequently are used in

Fig. 8-4. Elevation of beam with variable bottom-flange thickness.
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Fig. 8-5. Longitudinal cross section of a hollow box beam showing a method of varying
the moment of inertia.

continuous prestressed-concrete structures, for the same reasons that variable
depths are employed in continuous members made of other materials. Conti-
nuity in prestressed-concrete construction is discussed in Chapter 10.

8-3 Segmental Beams

Post-tensioned beams consisting of two or more elements or components held
together by prestressing sometimes are used to facilitate fabrication, transpor-
tation, or erection, or for other considerations. An example of a multielement
beam formed of three precast units is shown in Fig. 8-6.

Post-tensioned tendon 960

_ (final) on parabolic trajectory ¢ Bearing .

. l,/¢_Bear|ng ¢

N Joint i
N ' _, / A . / Joint

h—%_— 1 __5—-
] ‘l 4 Lea
' 263 450" 263
> T
976"
ELEVATION
3.6 :
© i ¢
- —+0 Parabola :
Varies | 0
parabolically %
from 4" to 2"-4~ St ¢ Bre. Y
Y &
—t ¥
w g
[} 2.0 :9 ' 22.5
960* (final) 48.8'
SECTION A-A Sketch showing variation in

tendon eccentricity

Fig. 8-6. Segmental post-tensioned beam. Adapted from bridge over Naugatuck River,
Route 68, Connecticut.
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Fig. 8-7. A precast segment of the Downstream Bridge at Auteuil Boulogne Saint-Cloud,
Paris. (Provided by and reproduced with the permission of the Freyssinet
Company, Inc., Charlotte, N.C.)

In beams on which this method is employed, the prestressing force generally
is very large in comparison to the shear force that must be developed between
the elements. This is true in part because this method is used most often on
large, long beams, in which shear forces are not as important as in short beams.
As a result, the friction that can be developed between the elements due to the
prestressing force normally is sufficiently large to provide high factors of safety
against slipping. Keys frequently are provided to facilitate assembly of the units,
but they normally are not needed for the transfer of shear forces.

A precast segment of the Downstream Bridge at Autevil in Paris during its
erection is shown in Fig. 8-7. The long-span girders of this bridge are composed
of many precast segments held together by longitudinal prestressing.

ILLUSTRATIVE PROBLEM 8-3  For the beam shown in Fig. 8-6, compute the
factor of safety against slipping at the joint if the maximum shear load at the
joint is 70 k. Include the effect of the inclination of the tendons resulting from
their parabolic path. Assume that the coefficient of friction between the concrete
units is 1.0

SOLUTION:  The vertical displacement through which the tendon moves
between midspan and the joint is:
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2.5\’ X 24 = 5in
48.8 - m

Taking « as the angle of inclination of the tendons at the joint:

2 X5
tana—m—o.OM

P sin a = 0.037 X 960 = 35.5 kips
Veoncrae = V — P sin a = 34.5 kips

pP = 1.0 X 960 = 960 kips

Hence, the factor of safety against slipping is calculated as:

960
factor = —— = 27.
Safety factor 345 7.8

8-4 Tendon Anchorage Zones

In post-tensioned beams it is customary, and often necessary, to curve the
tendons vertically and horizontally at the ends of the beams as a means of
reducing the eccentricity of the prestressing force and providing space in which
to embed the tendon anchorages in an acceptable configuration. To accomplish
this objective, as well as to provide sufficient space for nonprestressed secondary
reinforcement in the anchorage zones, a short section at the end of the beam
often is enlarged and made rectangular in cross section. This rectangular section,
commonly called an end block, is illustrated in Fig. 8-8. End blocks occasion-
ally are used with pretensioned members as well, but experience has shown that
they usually are not needed. The provision of end blocks greatly facilitates the
placing and compacting of the concrete at the ends of the beams—an important
consideration in pretensioned as well as post-tensioned members.

¢ Bearing Sym. abt. ¢
'\
Q e —— [
F—— -
’\- —— ?: ——
7
End anchorages L Post-tensioned tendons

Conc. protective cover

Fig. 8-8. Half elevation of a post-tensioned beam.
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Fig. 8-9. Idealized stress paths in end block with a single load.

The distribution of the principal tensile and compressive stress paths at the
ends of prismatic members can be visualized by considering the schematic
diagram, as shown in Fig. 8-9. From this diagram, it will be seen that the stress
paths are closely spaced near the loaded surface of the member, and that they
spread to a more uniform distribution some distance from the end of the member.
The distance from the point of bearing to the section at which the distribution
of stress can be considered to be without the effects of the concentration of the
load is approximately equal to one times the thickness of the beam.

If a prestressing force is applied to the beam, either by a number of smaller
tendons distributed over the end of the beam or by a single tendon having a
large bearing plate that has a flexural stiffness similar to that of the concrete on
which it bears, the condition of stress can be approximated by the diagram of
Fig. 8-10. In this figure, the load is represented as several small forces acting
on a common bearing plate. Under this condition of loading, the stress paths
are seen to be farther apart near the point where the loads are applied, but the
stresses at one times the depth of the beam from the end of the beam are similar
to those in Fig. 8-9.

The above illustrations are oversimplifications of the problem because:

1. The bearing plates or end anchorages for post-tensioned tendons normally
do not extend across the full width of a beam; hence, the stress field is
three-dimensional rather than two-dimensional.

2. Bearing plates are not provided for pretensioned tendons, but pretensioned
members do, on occasion, experience each of the types of cracking.

3. Highly stressed concrete is a nonlinear material at high stress levels and
does not deform in the manner of an elastic material. Hence, elastic
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Fig. 8-10. Idealized stress paths in end block with several small loads.

mathematical models cannot accurately predict the behavior of concrete
that is subject to high stresses.

These factors result in the actual stresses in the ends of many post-tensioned
beams being indeterminate by elastic methods of analysis, and, for this reason,
the results of elastic analyses of anchorage zone stresses should be considered
to be approximations and not exact solutions of the problem. The design of end
blocks and end-block reinforcing is best done by using empirical data if avail-
able. This is especially true for anchorages that cannot logically be modeled as
elastic plates on elastic supports (i.e., embedded post-tensioning anchorages
having shapes that do not approximate the shape of a bearing plate).

Cracking along the paths of tendons near the ends of prestressed beams, as
illustrated in Fig. 8-11, is not uncommon. One type of cracks is commonly
called splitting-tensile or bursting cracks, and the other frequently is referred to
as spalling cracks. Both types of cracks are caused by tensile stresses resulting
from the distribution of the highly concentrated compressive bearing stresses at
the ends of the members.

The term ‘‘bursting’’ has been used to describe a type of failure that
sometimes occurs in post-tensioned members during the prestressing operation
or, in some instances, shortly thereafter. More often than not, when this type
of failure occurs, the highly stressed concrete in the immediate vicinity of the
post-tensioned anchorage, or anchorages, explodes or bursts. The failures
normally occur suddenly, without warning, and are somewhat similar to the
mode of failure associated with the compression testing of high-strength concrete
cylinders. Because the failures do happen suddenly and result in almost complete
fragmentation of the concrete, the tensile cracks identified as splitting-tensile
cracks in Fig. 8-11 normally cannot be observed before, during, or after the
failure. Investigation of such failures frequently reveals that they are due to the
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Fig. 8-11. Elevation of an end block showing cracks due to tensile stresses.

concrete in the highly stressed area being of poor quality (low strength, poorly
compacted, etc.), rather than due to a lack of anchorage zone reinforcement. If
the concrete fails frequently under a specific set of conditions, either explosively
or by the appearance of wide splitting-tensile cracks, it is most likely that the
problem could be corrected by the provision of additional nonprestressed
reinforcement in the anchorage zone regions. On the other hand, if the concrete
fails explosively on only a few occasions under a given set of conditions, the
failure is most likely due to concrete of low quality having been provided at the
location(s) of the failure(s). It should be pointed out, however, that the provi-
sion of anchorage zone reinforcement in amounts greater than *‘nominal
amounts’’—even though the designer’s experience, the history of the tendons
and anchorage devices being used, and structural calculations indicate that it is
not needed if the concrete is of the specified quality—normally would be
expected to cause an anchorage zone to fail less explosively if the concrete is
of inadequate quality.

Although the major building codes in use in North America recognize the
existence of splitting-tensile and spalling stresses in anchorage zones (see Sec.
18.13.1 of ACI 318), they do not provide specific criteria for determining when
reinforcement is required to control them (i.e., maximum tensile stresses).
Hence, the designer must make this determination based upon his or her own
knowledge and experience, guidance found in the technical literature, and data
provided by the suppliers of prestressing materials.

The studies of anchorage zone stresses performed by Guyon, both photo-
elastic and mathematic, confirmed the locations and nature of spalling and split-
ting-tensile stresses in prisms loaded with concentrated loads (Guyon 1953). In
his book, Guyon included relationships, in the form of plots, for the following:
distribution of the splitting-tensile stresses; the location of the maximum tensile
stress, X, position of zero stress,, Xy; and values of the maximum splitting-
tensile stress, fi;;max. and of the resultant splitting-tensile force, Fgeyr—all as
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functions of the ratio a/d, the height of the loaded area a (assumed to extend
across the width of the prism) to the depth of the concrete prism d. (See Figs.
8-12, 8-13, and 8-14.) Guyon’s nonlinear relationship for the resultant splitting-
tensile force predicts a maximum force of 0.3 P;, for the condition of the load
being applied on a very narrow loaded area (a/d = 0) and a resultant splitting-
tensile force of null for a/d = 1 (see Fig. 8-15).

+y

/—Origin

f, = Total Force
b~ axb

-y
(a) Side Elevation

Area on which

S // post-tensioning
= /é force is uniformly

applied.

b

(b} End Elevation

Fig. 8-12. End and side elevations of end-block models used by Guyon in the analysis
of end-block stresses.
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Fig. 8-13. Definition of terms Guyon used in end-block analysis.

The linear relationship of eq. 8-3 for the resultant splitting-tensile force, Frer,
appears to be a conservative approximation of Guyon’s curve:

Frsrr = 0.3F,.<1 - g) (8-3)

This curve has been recommended by Leonhardt and is included in the CEB-
FIP Model Code (MC78) for use in determining the resultant splitting tensile
force (Leonhardt 1964; CEB-FIP 1978). The CEB-FIP model code provides
that the reinforcement used to resist the splitting-tensile stresses should be
uniformly spaced over a length extending from 0.1d to 1.0d measured from the
loaded area, as shown in Fig. 8-16.

A unique relationship for the resultant splitting-tensile force, which predicts
forces greater than those described above, is found in the Onrario Highway
Bridge Design Code (1983). This relationship is:

in which the parameter y is computed from:
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The ratios in Fig. 8- 14 are defined as follows:

f;
“"}—-—;"—-ax = ratio of maximum splitting tensile
stress to uniformly distributed bearing stress at end of prism.
4 = ratio of distance location of
maximum splitting tensile stress to depth of section.
XO
7 = distance to point of zero splitting
tensile stress.
fstsd . s .
—f— = ratio of splitting tensile stress at
b

distance of d from origin to uniformly distributed bearing

stress at end of prism.

Fig. 8-14. Plot of maximum splitting-tensile stress, splitting-tensile stress at a distance
of d from the loaded face, and the location of X, and X, as functions of
x /d and a /d based upon Guyon’s work.
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Fig. 8-15. Comparison of splitting-tensile forces predicted by methods proposed by

Guyon, Leonhardt, the Ontario Highway Bridge Design Code, and a finite-
element analysis.

Y =e@/d (8-5)

In eq. 8-5, e is the base of the Napierian logarithms, and the other terms are as
previously defined. According to the provisions in the Ontario Code, the distance
from the loaded face to the maximum splitting tensile stress, X,,, can be
computed from:

X, = 0.54(1 — y)d (8-6)

and the reinforcement provided to resist the splitting tensile force should be
distributed uniformly from 0.52X,, to d measured from the loaded face.
Because the provisions from the Ontario Code described herein are brief
excerpts, and thus possibly subject to misinterpretation by the reader as well as
the author, the reader is advised to consult the complete document for a compre-
hensive understanding of all of the provisions and official updates before using
the information presented herein for actual design.
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Fig. 8-16. Area over which placing of splitting tensile reinforcement is recommended

by the CEB-FIP Model Code.

When a number of prestressed tendons, pretensioned or post-tensioned, are
concentrated at one or more locations at the end of a beam, vertical and
horizontal reinforcing sometimes may be provided to resist spalling-tensile
cracks and to restrict the widths of the cracks produced. The amount of
reinforcing required can be estimated by computing the area of reinforcing steel
required to control the tensile stresses, based upon the following assumptions:

1.

As in Fig. 8-17, the end of the beam can be represented by a free body
subjected to the components of a force, as shown. To simplify the analysis,
the vertical forces can be ignored.

. With the vertical components of the forces neglected, and with the variable

width of the cross section taken into account, one obtains the free body
shown in Fig. 8-18.

. Moments acting on horizontal planes between the top and bottom flanges

can be computed at various locations and the results plotted, as shown in
Fig. 8-19a.
Assuming a resisting couple, as shown in Fig. 8-19b, one can compute a
tensile force for which nonprestressed reinforcement can be supplied from:
M
h—z

T = (8-7)

. To restrict the crack width resulting from the tensile force to approxi-

mately 0.005 in., the stress in the reinforcing steel should be restricted to
a stress on the order of:
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V=-R+Psina

|
Psinai ‘L

P cos a —— «<«—_Pcosa

(a) Free body (b) Stress

Fig. 8-17. Free body of model used in the analysis of spalling stresses at the ends of

beams.
12
f, =175 <\/f_c> (8-8)

4y

in which f; and f, are in psi and A, is the area of the size of the bars used
in the reinforcing.

6. It should be recognized that the tensile stresses usually occur on horizontal

y

|

>

P cos « | et
e _
> X
Resultant = — P cos «
(a) Elevation (b) Distribution of force

Fig. 8-18. Forces on the end of the model used in the analysis of spalling stresses.
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Fig. 8-19. Distribution of moments and dimensions used in end-block analysis.

as well as vertical planes; so horizontal as well as vertical reinforcing
should be provided.

ILLUSTRATIVE PROBLEM 8-4  For the pretensioned beam shown in Fig. 8-20
compute the vertical reinforcing steel required to confine the tensile-crack width
to 0.005 in. Assume f. = 4000 psi and that No. 3 bars are to be used.

SOLUTION:  The distribution of force is plotted in Fig. 8-21a. The unit stress
and force for various locations between the top and bottom flanges of the section
are shown in Table 8-4. The distribution of moments shown in Fig. 8-21b is
computed from the forces given in Fig. 8-21a.

The allowable steel stress is:

1/2
|, =155 < 011 > 18,100 psi

Assuming z = 6 in. and 4, = 4 X 0.11 = 0.44 sq. in.:

165

=19 56k =< 18.1 ksi
(30 — 6)(0.44) . .

s
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Fig. 8-20. Beam analyzed in I.P. 8-4.
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(a) Distribution of force, Ib/in. (b) Distribution of moment

Fig. 8-21. Results of analysis of I.P. 8-4.

TABLE 8-4 Unit Stresses, Widths, and Forces for Various
Locations Used in the Analysis of I.P. 8-4.

y f Width Force
(in.) (psi) (in.) (Ib/in.)

0 1518.0 18 27,324

6 1134.4 18 20,419
12 750.8 6 4505
24 -16.4 6 -98
27 —208.2 12 —2498

30 -400.0 12 —4800
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Use two No. 3 U-shaped stirrups 4 in. on center, with the first stirrup located
2 in. from the end of the beam.

8-5 Spacing of Pretensioned Tendons

The bond between the tendons and the concrete section at the ends of preten-
sioned members is relied upon to transfer the prestressing force from the tendons
to the concrete section. Flexural bond stresses are necessary to provide resis-
tance to cracking, minimize crack width, and ensure the development of flexural
strength under design loads. To achieve the needed bond strength, it is essential
that the concrete be placed and well compacted around the tendons. To facilitate
concrete compaction, the dimensioning of embedded materials (i.e., tendons,
bearings, nonprestressed reinforcement, etc). must be done with care.

In the manufacture of pretensioned concrete, internal vibration is relied upon
to a high degree to ensure that the concrete is well consolidated. For this reason,
particularly in deep beams, it is important that the pretensioning tendons be
spaced in positions that facilitate extending the head of an internal concrete
vibrator to the extreme bottom of forms. In addition, the tendons should not be
placed in a configuration that unduly restricts the flow and consolidation of the
plastic concrete in spaces not directly accessible to the vibrator head.

In the interest of lower production costs, through saving labor in handling
and stressing the prestressed reinforcement in the manufacture of pretensioned
concrete, the trend has been toward the use of fewer, large seven-wire strands
in lieu of many small strands or solid wires. As progress has been made in
prestressed-concrete manufacturing techniques, and as more has been learned
about the action of transfer bond and fatigue on flexural bond stresses, the size
of tendons commonly used has been increased from jto 3 in. Strands as large
as 0.60 in. in diameter also have been used in pretensioned construction in
recent years. It should be recognized that the head of the internal vibrator used
in compacting the concrete in beams with 0.50 in. tendons spaced at 2 in. on
centers, which is a common spacing with tendons of this size, is restricted to a
space less than 13 in. in diameter. Because internal vibrators with large heads
are much more effective than those with smaller heads, the placing of the
concrete often is materially facilitated if at least one, relatively wide, vertical
opening (through which a large internal vibrator head can be inserted) is provided
at the center of deep members. This is illustrated in Fig. 8-22, in which it will
be seen that omission of strands in the center row allows the use of a vibrator
head having a diameter of 3 in. or more.

Concentrating groups of tendons at the ends of pretensioned members, as is
often done when deflected pretensioned tendons are used, can result in a
tendency for spalling-tensile cracks at the ends of the members, just as large
concentrations of prestressing forces may cause cracking in the ends of post-
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Fig. 8-22. Cross section of a pretensioned beam showing tendon spacing to facilitate
placing and vibrating concrete.

tensioned members. Designers should be aware of this possibility and adjust
their design accordingly.

The clear concrete cover (i.e., the distance from the edge of tendons to the
surface of the concrete and the clear space between tendons within a member,
in the area in which transfer bond must be developed, also must be chosen with
care. Placing the tendons too close to the surface of a member can cause split-
ting along the tendons. Smaller tendons have been placed as close as 1 in. to
the surface without adverse effects, but experience has shown that larger tendons
should not be closer than 2 in. to the surface. The model building codes (see
Sec. 7.6.7 of ACI 318-89) generally restrict the center-to-center spacing of
seven-wire strands to four times the nominal diameter of the strand. Strands
larger than § in. in nominal diameter, especially those having strengths greater
than 41.3 kips (the minimum required for 270 grade strand by ASTM 416; see
Chapter 2), may require greater spacings to achieve acceptable results.

8-6 Stresses at Ends of Pretensioned Beams

In simple prismatic beams of normal configuration, pretensioned with straight
tendons, the eccentric pretensioning force results in compressive stresses in the
bottom flange and a tendency for tensile stresses in the top flange. Furthermore,
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in well-proportioned beams, the service-load compressive stresses in the top
flange at midspan do not approach the maximum values permitted and, thus
normally do not present a problem. The amount of prestressing required, as a
rule, is controlled by the flexural tensile stress in the bottom flange caused by
the service loads, which the prestressing force must fully or partially nullify.
The usual design criteria permit some tensile stress in the top flange from the
combination of initial prestressing and service dead load without provision of
nonprestressed reinforcement, and higher tensile stresses if nonprestressed
reinforcement is provided in an amount proportioned to resist the entire tensile
force in the concrete.

To see the effect of top-flange tensile stresses on the quantities of materials
required for a given design, consider the beam shown in Fig. 8-23. Assume
that this beam will be used on a span of 70 ft, no tensile stress is to be allowed
in the bottom fibers under full service load, and the flexural stresses due to the
dead load of the girder and the superimposed load are as summarized in Table
8-5. Under these conditions, the minimum prestressing force needed to produce
the required 2000 psi compression in the bottom fibers with various amount of
tensile stress in the top fibers is as summarized in Table 8-6. From Table 8-6,
it can be seen that a reduction of 12% can be made in the amount of prestressing
steel required if a tensile stress of 160 psi is permitted in the top fibers, and
23.7% if a tensile stress of 320 psi is permitted.

Another consideration is that, as was explained in Sec. 6-6, the stress in a
pretensioned tendon is null at its end but increases to a maximum value at a
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Fig. 8-23. Beam cross section used in illustrating the effect of top-fiber tensile stresses
on the prestressing force.
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TABLE 8-5 Summary of Stresses for Discussion in Sec. 8-6.

Top Bottom

fiber fiber

(psi) (psi)
Stress due to dead load of girder only —524 +780
Stress due to superimposed load only —826 +1220
Total stress —~1350 +2000

short distance, the transmission length, from the end of the beam. The size of
the transmission length is primarily a function of the type and size of the tendon.
Values of 50 and 100 diameters normally are used in estimating the transmission
length for strand or wire tendons, respectively. The initial stress in a strand
tendon having a diameter of % in. varies along the transmission length approx-
imately as shown in Fig. 8-24.

An additional consideration is that a force applied to an elastic body causes
stresses in the body that flow out along smooth curves or stress paths. A large
force applied to the end of a prism, such as shown in Fig. 8-25, results in
principal compressive stresses that follow a pattern similar to the soiled lines,
and principal tensile stresses that follow along lines similar to the dashed lines.
At a distance of about one times the depth of the block from the end, the stresses
are approximately equal to the values that would be computed from the usual
combined stress relationship used in structural design. In other words, the effect
of the concentration of the load is virtually eliminated at a distance of one times
the depth of the prism from the end of the member.

As a result of the combined effects of the transmission length required to
develop full bond and the distance required for the concentrated prestressing
force to fully distribute, the maximum tensile stress in the top fibers does not
occur at the immediate end of the beam. This is a significant phenomenon that
can affect the economy of a design.

Returning to the example used above, if the effects of transmission length
and distribution of the concentrated force are taken into account on the beam,
acting on a span of 70 ft, the tensile stress of 320 psi resulting from the 45
tendons in this example would not be acting at the immediate end of the beam,
but would be acting at a distance of from 4 to 8 ft from the end of the beam.
The actual tensile stress in the top fibers of the beam would be less than 320

TABLE 8-6 Summary of Stresses, Forces, and Tendons for
Discussion of Sec. 8-6.

Allowable top-fiber tensile stress (psi) Zero 160 320
Minimum prestressing force required (k) 644 570 491
No. of tendons (11 k) required 59 52 45
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Fig. 8-24. Variation in initial stress in a pretensioned tendon near the end of a beam.

psi, owing to the effect of the dead load of the beam. Table 8-7 summarizes the
effect of the stress in the top fiber of the beam resulting from the dead weight
of the beam on the net, final tensile stress in the top fibers, as well as the amount
of unstressed reinforcing that would be required to control tensile stresses
exceeding 160 psi.

From this study it is apparent that, in taking all of these factors into consid-
eration, the designer may be able to reduce the amount of prestressed reinforce-
ment required in a specific elastic service load design as much as 25 percent
without adding nonprestressed reinforcement in the top flange to resist tensile
stresses in the concrete.

8-7 Bond Prevention in Pretensioned Construction

In Sec. 4-6, it was shown that the concrete stresses at the ends of a member
prestressed with straight tendons may limit the service load capacity of the
member. Furthermore, it is shown that by varying the eccentricity of the
prestress, the stresses at the ends can be reduced, and the service load capacity
of the member can be increased. The moment caused by prestressing and the
stresses at the ends of members prestressed with straight pretensioned tendons
also can be reduced by varying the prestressing force. This can be accomplished
by varying the prestressing force. This can be accomplished by preventing a
portion of the tendons from bonding to the concrete at the immediate ends of
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Fig. 8-25. Approximate paths of principal tensile and compressive stresses in an
eccentrically loaded prism.

TABLE 8-7 Summary of Stresses and Areas of Nonprestressed Reinforcement for

Discussion of Sec. 8-6.

Distance from the end to the
point under consideration (ft)

Theoretical top-fiber stress (psi)

Top-fiber stress due to girder
dead load (psi)

Net tension under dead load of
girder plus prestress (psi)

Area of nonprestressed
reinforcement required (in.>2)

+320

+320

3.00

+320

-113

+207

1.42

+320

—164

+156

+320

-213

+107
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the member, and, in so doing, preventing the unbonded tendons from
prestressing the concrete at the ends.

This principle can best be explained by considering an example such as the
beam shown in Fig. 8-26. The pretensioning tendons, as located in the figure,
result in an initial, top-fiber tensile stress due to prestressing of 384 psi. It can
be shown that by preventing bond on five tendons in the bottom row and four
tendons in the second row, as indicated in the figure, the initial tensile stress in
the top fibers at the ends can be reduced to 270 psi.

The length over which the bond must be prevented is a function of the beam
dead load stresses. In most cases, they reduce the initial stresses to permissible
values only a few feet from the end of the beam. The transmission length
required for the tendons to develop full tension, as well as the distance required
for the pretensioning force to distribute, which are discussed in Sec. 8-6, also
should be taken into account when calculating the maximum tensile stresses at
the ends of members.

It is believed that bond prevention can be used to advantage with complete
safety if the tendons that will remain unbonded are sheathed with a split, plastic
tube, or a heavy paper or cloth tape having a waterproof adhesive. Grease and
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Fig. 8-26. Beam section indicating method of preventing bond on pretensioned
tendons.
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chemicals that retard the concrete set have been used in lieu of plastic tubes or
tape as a means of preventing bond. Because of the danger of a worker’s
inadvertently or carelessly applying the grease or retarder to incorrect tendons
or an incorrect number of tendons, this procedure should be permitted only
when strict, continuous supervision and inspection can be provided to prevent
erTorS.

As pointed out in Sec. 6-6, if bond is prevented at the end of a strand tendon,
and the design allows tension in the precompressed tensile zone, the length
required for flexural bond stresses to develop the strength of the tendon is taken
to be twice as great as that for a tendon that is bonded to the end of the member
(see Sec. 12.9.3, ACI 318).

ILLUSTRATIVE PROBLEM 8-5 Compute the stresses due to a prestressing force
of 11 k per tendon for the AASHTO-PCI bridge stringer, type III, pretensioned
as shown in Fig. 8-27, sections A-A and B-B. The plastic tubes indicated are
used to reduce the stresses due to prestressing. The section properties of the
concrete section are:

A =560in.? y, = —24.63 in., r,/y, = —9.06 in.
I = 125,400 in.%, y, = 20.27 in., r, /y, = 11.03 in.

The computations for the center of gravity of the prestressed reinforcement at
section A-A, by taking moments about the bottom (soffit) of the section, are
summarized in Tables 8-8 and 8-9. The top and bottom fiber stresses are
computed as follows:

At Section A4-A:
292.5 )
e = 20.27 — W = 14.43 in.
f=- 50><11000 14.43 _ 580 osi
' T 06) = %0
50 X 11 000 14.43 .
= < 11.03) = — 2270 psi
At Section B-B:
247

e =20.27 — § = 13.75 in.

38 x 11,000 1375 _
fi= "0 < —9.06> = 386 psi
38 x 11,000 13.75
h="""5 < 11.o3> = ~1680 psi
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on 12 tendons as shown

All dimensions and details as in
Section A-A except as noted

Section B-B

Fig. 8-27. AASHTO-PCI type Il bridge stringer pretensioned with 50 tendons. Section
A-A shows details in typical section. Section B-B shows details near end
where plastic tubes are used to prevent 12 tendons from bonding.

8-8 Deflected Pretensioned Tendons

For the reasons explained in Sec. 4-6, it frequently is desirable to have preten-
sioned tendons follow a path more eccentric near midspan than at the ends of a
beam. This method also is used as a means of reducing the deflection due to
prestressing. It generally is preferable to use this method of controlling the
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TABLE 8-8 Calculations for the Location of the
Center of Gravity of the Prestressed Reinforcement
with Respect to the Bottom of the Concrete Section
for Section A-A of Fig. 8-27.

Number of Distance Product
tendons (in.) (in.)

10 2.00 20.00

10 3.75 37.50

10 5.50 55.00

8 7.25 58.00

6 9.00 54.00

4 10.75 43.00

2 12.50 25.00

50 5.85 292.50

stresses in pretensioned members rather than to use bond prevention (see Sec.
8-7).

When applied to double-tee roof and floor slabs, the tendons commonly are
deflected at one or two points within the span and supported in a higher position
at the ends, in a configuration similar to that shown in Fig. 8-28. It should be
noted that the tendons are stacked, one on top of the other, in the low portion
of their paths near midspan and are spaced out at the ends. In this manner, the
tendons are spaced apart where they must develop the all-important transfer
bond and are stacked or bundled at midspan where flexural bond stresses must
be developed. This construction practice has been used a great deal with very
satisfactory results. The flexural bond strength at the center of such members
is considered as good as or better than that achieved in grouted, post-tensioned
construction.

Deflected tendons have been used extensively in the construction of bridge
beams. The theoretical principles involved in their use in bridge construction
are the same as in roof slabs. It can be shown that the same flexural strength
that is obtained with spaced, deflected tendons normally can be achieved by

TABLE 8-9 Computation of Center of Gravity of
Bonded Tendons for Section B-B of Fig. 8-27.

Number of Distance Product
tendons (in.) (in.)

50 292.50

-4 2.00 -8.00

—4 3.75 -15.00

—4 5.50 —22.00

38 6.51 7475
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¢ Span

1 Deflected tendon

(b) End elevation (c) Section at midspan

Fig. 8-28. Pretensioned double-tee roof slab with deflected tendons.

using bond prevention on selected tendons near the ends of the beams, but some
nonprestressed reinforcing may be required with the unbonded tendons.
Although the use of unbonded tendons avoids the need for the large capital
investment required for deflecting equipment, as well as the labor required in
the deflecting operation, the labor involved in bond prevention is significant in
itself. Details of both methods of pretensioning are illustrated in Fig. 8-29, with
AASHTO-PCI type III bridge stringers.

If the deflected, pretensioned tendons in the AASHTO-PCI type III stringer
were bundled at the center instead of being spaced out, the stress in the bottom
flange at the midspan due to prestressing alone, and therefore the capacity of
the stringer, could be increased 4 percent without additional materials or labor
being required. If the number of bundled, deflected tendons were increased to
20, and each tendon had an initial prestressing force of 13,000 Ib, the initial
net bottom-fiber compressive stress (prestress + dead load) at the center of the
girder would be on the order of 2425 psi if the girder had a span of 70 ft. This
latter tendon layout would develop the maximum practical capacity of this
concrete section for the span of 70 ft, which would not be possible with spaced
tendons of the same size.

8-9 Combined Pretensioned and Post-tensioned Tendons

The structural advantages of draped tendons can be obtained without materially
reducing the economy of pretensioned construction with straight tendons by
using a combination of pretensioned and post-tensioned tendons. This is illus-
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(a) Elevation AASHO-PCI, Type III, Bridge Stringer with Bond Prevention
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(b) Elevation AASHO-PCI, Type III, Bridge Stringer with a Portion of the
Tendons Deflected.

50 Tendons

50 Tendons 56
a 50 Tendons Tendons
14 Spaced 14 Bundled
deflected deflected 23 ?Iun;“gd
tendons tendons etlecte
tendons
Elevation C-C Alternate Sections D-D

Fig. 8-29. Elevations and sections of AASHTO-PCI type Ill bridge stringer shown (a)
prestressed with pretensioned tendons utilizing bond prevention, and (b)
pretensioned with a portion of the tendons deflected.
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trated in Fig. 8-30, in which the details of the AASHTO-PCI type III bridge
stringer are shown with two combinations of pretensioned and post-tensioned
tendons.

The use of 48 pretensioned tendons and one small post-tensioned tendon (59
k initial force) results in a distribution of prestressing stresses equivalent to that
obtained with 36 straight and 14 deflected tendons (50 tendons total) and with
bond prevention in combination with 50 tendons, as shown in Fig. 8-29. The
number of pretensioned tendons in this solution could be reduced to 42 tendons
if the post-tensioned tendons were stressed before the pretensioning force was
completely released on the concrete section. With this procedure, if steam curing
were to be used, it would be necessary to partially release the pretensioned
tendons and allow the girders to cool somewhat before post-tensioning and
completing the release of the pretensioning force; this is done to eliminate the

Center of gravity of
l¢_ Bearing post-tensioning7 Sym. abt. ¢_\*1

—+
L

t

=

35-0"

(a) Half Elevation AASHO-PCI, Type Ill, Bridge Stringer
with Combined Pre- and Post-tensioned tendons

48 Straight
pre-tensioned
tendons

Post-tensioned
tendon at
59,000 Ib.

2 Post-tensioned tendons
at 88,500 Ib. each
(b) Alternate Sections at Center Line

Fig. 8-30. Half-elevation and section of beam prestressed with pretensioned and post-
tensioned tendons.
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possibility of vertical cracks forming in the girder as a result of the strain changes
that take place in the concrete and in the pretensioning tendons during curing
and cooling (see Sec. 17-3). However, with 48 tendons, as shown, the preten-
sioning force could be released when the concrete attained a strength of 4000
psi, and the girders could be removed from the casting bed immediately and
post-tensioned subsequently.

If two larger post-tensioned tendons were used rather than one small tendon
(Fig. 8-30), the stresses due to prestressing would be nearly equivalent to those,
in the same beam section, that would result from 56 tendons with 20 of them
deflected, as shown in Fig. 8-29—which, as was explained previously, would
be the maximum stresses that normally could be imposed on this section if it
were to be used on a 70-ft span.

For combined pretensioning and post-tensioning, it is not necessary to use
end blocks if the post-tensioned tendons can be terminated at the top of the
member rather than at the end. Small post-tensioning tendons are readily adapt-
able to this detail.

8-10 Buckling Due to Prestressing

All structural engineers are aware of the danger of buckling of columns or other
long, slim compression members. The question of possible buckling of a
prestressed member as a result of the prestressing force, as differentiated from
an externally applied load, is raised frequently. Obviously, when prestressing
is done by the application of external load such as jacking against abutments,
the possibility exists that the member will buckle. In such a case, it is essential
that buckling be investigated in the conventional manner. Also, if tendons are
used to prestress the member, and the tendons are placed externally in such a
fashion that they are in contact with the member at its ends alone, there is some
possibility of buckling.

When the tendons are placed internally and are in contact with the member
at points between its ends, the tendency to buckle is reduced significantly. When
the tendons are in intimate contact with the member throughout its length, as is
the normal case, in post-tensioning and in pretensioning, there is no possibility
of buckling due to the prestressing force. This fact has been demonstrated
experimentally and mathematically and can be understood by considering the
difference between the action of prestressing and column action.

Column action is characterized by an increase in eccentricity of the load as
the load is increased above a critical value. This is illustrated in Fig. 8-31, in
which it is seen that the column load has an eccentricity of e at load P, and if
the load is increased to AP, the member deflects an additional amount, Ae. This
action continues until the critical value of P + AP is reached, and the column
buckles.
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Fig. 8-31. lllustration of column action.

Prestressing action results in a specific distribution of stresses in a member.
The eccentricity of the prestressing force remains constant, even if the member
is deflected laterally, provided that, as was mentioned above, the tendons and
concrete are in intimate contact with each other. If the concrete section were
cast slightly curved or crooked, as is often the case, the effect of the prestressing
alone would be to straighten the concrete member (opposite to column action)
because the tendon would attempt to assume a straight path.

Prestressed columns and piles, which are pretensioned or post-tensioned with
the tendons in ducts through the members in the normal manner, of course can
buckle under externally applied loads, and these members must be designed
with care. Prestressed columns and prestressed piles are treated in Sec. 11-3.

Consider a square, prismatic concrete member cast as a segment of a circular
arc and having a single post-tensioned tendon located at the center of gravity
of the member throughout its length. When the tendon is stressed, the concrete
is subjected to a compressive stress uniformly distributed over the square cross
section. In addition, a transverse force exists between the tendon and the
concrete; this force, which can be calculated by using the methods in the
following section, must exist because if it did not, the tendon would not retain
its curved shape. If one draws a free body of the concrete section alone, it will
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Transverse forces on the concrete section

P

(a) Elevation of a curved post-tensioned concrete member

Post-tensioned tendon located at the
center of gravity of the cross section

(b) Section A-A

Force from the tendon

(c) Distribution of forces in the concrete section

Fig. 8-32. Global and local force distributions on a curved, prismatic post-tensioned
member.

be apparent it is stressed in an archlike manner, as shown in Fig. 8-32a. If the
member were to have an I-shaped cross section, as shown in Fig. 8-32b, instead
of being solid and square, the global archlike action would remain for the
member as a whole, but secondary or local stresses would exist within the cross
section. The local stresses would include transverse shear and flexural stresses
because the radial force distribution in the concrete section and the tendon would
be as shown in Fig. 8-32c. This can be an important consideration in curved,
flanged sections such as box-girder bridges.
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The top flanges of flexural members that do not have adequate lateral support
also can fail as a result of buckling. For this reason, the designer should give
attention to the conditions of support and loading when selecting the dimensions
of the concrete section. This is subject is discussed in Secs. 4-9 and 17-8.

8-11 Secondary Stresses Due to Tendon Curvature

In considering a short segment of a curved post-tensioned tendon, such as that
shown in Fig. 8-33, neglecting friction between the tendon and the concrete, it
will be seen that the forces acting upon the tendon include the axial tension P,
which acts throughout the length of the tendon, and the radial forces c, applied
to the tendon by the concrete in keeping the tendon in the curved path. If the
segment under consideration is infinitesimal, the length of the segment can be
taken as ds, the angular change in length ds can be designated as da, and the
radius of curvature of the tendon is p. Because a very small angle is equal to
the tangent of the angle, one can write:

d
tan @ = da = “
P
and:
_ds
da

It is evident from the vector diagram, Fig. 8-34, that the unit stress exerted by
the steel on the concrete is:

cds = Pda

which can be rewritten:
P\

da

Fig. 8-33. Freebody diagram of an infinitesimal length of a curved tendon.
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‘ P

o= Pda
ds
and because:
_ds
P da
the expression becomes:
P
c=- (8-9)
p

This expression is useful in determining the secondary stresses that result when
a tendon is placed on a curve in thin webs or on a curved path in an end block.
Only on rare occasions are the unit stresses between the concrete and the tendon
intense enough to cause difficulty. The curvatures must be high, and the concrete
cover must be small to produce critically high stresses.

ILLUSTRATIVE PROBLEM 8-6 Compute the secondary stress between a curved
tendon and the duct if the radius of curvature is 25 ft, and the force in the tendon
is 500 k.

SOLUTION:  Using eq. 8-9;

8-12 Differential Tendon Stress

The question of the effect of differences in the stresses in the individual elements
in parallel-wire and parallel-strand post-tensioning, or in the individual tendons
in a pretensioned member, is sometimes raised. It can be stated that the normal
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variations in stress encountered in practice do not exceed the normal tolerances
expected in structural design.

Consider the case of a parallel-wire, post-tensioned tendon composed of n
wires stressed to a total force of P. The force P is measured during construction
by determining the elongation of the tendon during stressing as well as by
measuring the force required to stress the tendon. The value as P normally can
be controlled within the required tolerance without difficulty.

The average stress in the individual wires is P/n. There will be a variation
in the unit stresses between the individual wires for the following reasons:

1. The wires are not connected to the jack in such a manner that the length
of each wire is precisely equal, but all wires are elongated the same amount.
The effect is small in almost all instances because the wires are very stiff and
are confined in a relatively small duct or sheath that renders it physically impos-
sible for one wire to have significantly more curvature, hence length, than the
average wire.

2. The difference in the length between individual wires is important only
with respect to the amount of the elongation of the tendon that is obtained during
stressing. If, for example, the elongation of a tendon that is 100 ft long is 7 in.,
a difference in length of § in. between an individual wire and the average wire
length will result in a stress variation of only +3.5 percent from the average
stress in the tendon. The total force in the tendon will not be affected because
the average elongation is not affected.

3. Variation in the modulus of elasticity of prestressing wire, along the length
of one wire and from coil to coil, of as much as +4 percent is not uncommon.

4. Although the relaxation loss of a wire that is more highly stressed than
average will be greater than the average relaxation loss, this will be offset by
wires stressed less than the average.

5. The estimate of losses of stress in the tendons is generally not as precisely
known as the initial prestressing stresses in the tendon.

For relatively short, large, multi-wire or multi-strand tendons placed on small
radii and through considerable curvature (such as in nuclear reactor vessels),
the difference in length between individual wires or strands on the inside and
outside of the curvature can be significant and thus cannot be permitted. It
instances such as this, the tendons frequently are assembled twisted rather than
parallel to equalize the lengths of their individual wires or strands.

In general, the same factors that affect parallel-wire post-tensioned tendons
affect pretensioned tendons. The exception is that the pretensioned tendons are
not confined in a sheath or a duct; so the variation is length could be significant
if the tendons were not laid out approximately parallel, prior to stressing.
Although the wires usually are sufficiently parallel before stressing, a small
force normally is applied to each tendon before the tendons are stressed to their



ADDITIONAL DESIGN CONSIDERATIONS | 401

final value. This force straightens the tendons and equalizes the lengths. This
procedure is not necessary when the tendons are stressed individually, as is
discussed in Chapter 15.

8-13 Standard vs. Custom Prestressed Members

Prestressed-concrete manufactures tend to favor the production of selected types
of members that they are equipped to produce rather than members customized
for an individual project. The primary reason for this is that the manufacturers
of prestressed concrete prefer to use the same concrete forms many times to
reduce the amount of form cost that must be charged to each unit, and the labor
needed to produce the prestressed concrete can be reduced to a minimum if
workers perform the same duties each day and are not confronted with variable
duties and operations. Furthermore, when a standard products are made, load
tables and advertising literature can be prepared for distribution to purchasers
and specifiers of prestressed concrete products, and the manufacturers often can
operate with a smaller sales-engineering force than would be required if custom
products were used exclusively.

Standard prestressed-concrete members often have been used on small struc-
tures where the use of custom-made members would not have been cost-effec-
tive, because of the high cost of the special forms required. Because all structural
methods and framing schemes have their limitations, and because many large
structures have peculiar framing or loading requirements, the designer should
carefully consider the economy that could result from the use of custom-made
members on large projects.

8-14 Precision of Elastic Design Computations

Prestressed-concrete flexural members normally are designed with the assump-
tion that the concrete is an elastic material under the service loads, and the
stresses under such conditions of loading are made to conform to a standard or
to design criteria. In addition, as has been pointed out, the flexural strength
must be computed to ensure that the elastic design has resulted in adequate
safety factors.

It is well known that concrete is not as elastic material, however, and that
the stresses computed on the basis of elastic assumptions can be considered only
as approximations. Furthermore, in order to facilitate the design of prestressed
members, most engineers base their computations upon the gross concrete
section instead of using the net and transformed sections. Errors in the elastic
computations are introduced as a result of this simplification, as is apparent
from the discussions in Secs. 4-10 and 4-11. These considerations lead to the
conclusion that normal elastic-design computations can only be considered
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approximate, and that nothing is gained by using more than three significant
figures in such computations.

It is significant that strength computations of bonded prestressed concrete
construction can be made with good precision if the characteristics of the steel
are known. Flexural strength capacity computations are virtually independent
of the elastic properties of the concrete and are not materially influenced by
variations in the effective prestress. For these reasons, the flexural strength
computations usually are more important and precise than the elastic design
computations.

8-15 Load Balancing

Consider a tendon that is placed on a parabolic path in a simple beam in such
a fashion that the sag of the tendon at midspan, as measured vertically from a
straight line connecting the ends of the tendon, is equal to e, as shown in Fig.
8-35. If the total uniformly distributed dead load supported by the beam is equal
to w, the load will be exactly balanced by the upward force of the tendon:

Pe = — (8-10)

8
because, for the tendon to retain ‘its parabolic path, a uniformly distributed
upward force (neglecting friction) must be acting on it. In this particular case,
if there is no eccentricity of the tendon at the ends of the beam, the pressure
line acts along the centroidal axis of the member, and the compressive stress in
the concrete section will be equal to the force in the tendon divided by the area

L Centroidal axis

Tendon on parabolic path

£

Fig. 8-35. The principle of load balancing with prestressed tendons.
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of the concrete member at each section of the beam. This principle of load
balancing is a useful design aid in certain circumstances.

Some structural engineers use the load balancing principle in the design of
prestressed concrete flexural members, both simple beams and continuous
beams. In the 1950s and early 1960s, before tensile stresses were commonly
used in prestressed concrete flexural members, some designers used the load
balancing principle to determine the prestressing force for balancing the dead
load on a member and simply reviewed the design under total service load and
design load, using the selected prestressing force. If the stress in the tensile
flange was close to nil under the total service load, the prestressing force selected
by the load balancing principle was adopted and used.

In contemporary practice, significant flexural tensile stresses are permitted by
the major building codes, and some designers, who continue to employ the load
balancing concept in their preliminary designs, do so by selecting prestressing
forces and tendon paths that will balance a portion of the service dead load
rather than the full dead load. In this procedure, after the load balancing concept
is used to select a prestressing force for the preliminary design, a review is
made of the flexural and shear stresses, as well as deflection, under full service
load, and the flexural strength is checked under design loads. Modifications are
made on a trial basis until an acceptable solution is found (see I.P. 13-1 in Sec.
13-11).

The load balancing principle also can be used for determining the loads that
prestressed tendons impose upon concrete members. This is useful in the
analysis of members having continuous as well as simple spans (see Chapter
10).
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9 | Design Expedients
and Computation
Methods

9-1 Introduction

A deterrent to the use of prestressed concrete in the past has been the greater
amount of effort required to design prestressed structures in comparison to that
required to design reinforced-concrete or structural-steel structures. The
contemporary structural designer typically did not study prestressed concrete as
a part of his or her formal education and is not familiar with the basic design
principles. The fact that prestressed concrete design now is being taught at the
graduate level in most universities will help alleviate this situation.

This chapter is intended to bridge the gap between theoretical considerations
and practical design methods. The methods explained here can be applied in
many different ways, and can be modified by individual designers for special
conditions or to suit their preferences.

The discussions included in this chapter are intended to apply to concrete
members that can be classified as fully prestressed. Fully prestressed members
(see Sec. 7-5), for the purposes of the discussions contained herein, are defined
as members in which: (1) the amount of nonprestressed principal flexural
reinforcement is not significant and is limited to support bars for the web
reinforcement and other secondary reinforcements; (2) the service load tensile

404
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stresses are limited to values that do not exceed the assumed tensile strength of
the concrete (i.e., the members are not expected to suffer flexural cracking under
service loads); and (3) the stresses in the concrete are considered to be unaffected
by the effects of concrete creep and shrinkage except for their affect on the loss
of prestress. Section 7-3 discusses the important effects of significant amounts
of nonprestressed reinforcement, as well as the effects of concrete creep and
shrinkage and relaxation of prestressed reinforcement, on the stresses in the
concrete.

The design expedients discussed herein originally were developed to facilitate
design calculations made with a slide rule. Experience has shown slide rule
accuracy to be sufficient. The use of modern electronic calculators and
computers will render some of these methods unnecessary under usual condi-
tions, but they still can be very useful under some circumstances.

9-2 Computation of Section Properties

The computation of axial and flexural stresses in a concrete section due to
prestressing, and of external loads and moments, requires a determination of
the area, the first moment of the area, and the moment of inertia (second moment
of the area) of the section under study. The other properties frequently used to
facilitate the computation of stresses are determined from these basic properties.

The computation of the basic properties of a section can be done by several
methods, all producing the same results. These methods differ only in the
organization of the computations and in the reference axis used in computing
the first and second moments of the area. One convenient approach is to use an
axis parallel and tangent to the top of the section as the reference axis for
computing the area of the section, the first moment of the area, and the location
of the centroidal axis with respect to the reference axis. The moment of inertia
of the section then can be computed about the reference axis, the centroidal
axis, or another reference axis. Whichever procedure is used in a design office
or by an individual engineer, it should be used consistently in order to facilitate
the checking and reviewing of the computations.

Moment-of-inertia computations can be made by using one or more variations
of the basic relationship:

I, =1, + Ay* (9-1)

which can be expressed in words as follows: The moment of inertia of a section
about a reference axis (I,,) is equal to the sum of the moment of inertia of the
section with respect to the axis parallel to the reference axis that passes through
the centroid of the section () and the product of the area of the section (A)
and the square of the distance between the two axes ( y2). This relationship is
illustrated in Fig. 9-1.
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Area A
Center of gravity of A
o o
I,= moment of inertia
of A about axis 0-0
y
X . - _ x

I.=1,+ Ay2 = moment of
inertia of area A about axis x-x

Fig. 9-1. Notation for moment-of-inertia computations.

Figure 9-2 gives the location of the centroids, and the moments of inertia
about their centroids, of various shapes frequently encountered in prestressed-
concrete design. The locations of the centers of gravity and the moments of
inertia of other, less common sections that may be encountered can be found in
standard engineering references or calculated by using basic mathematical
relationships. It should be noted that the moments of inertia given in Fig. 9-2
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Fig. 9-2. Areas and moments of inertia for common geometric shapes.
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are expressed in terms of the dimensions of the section, and as a function of
the area of the section and the section height or diameter. The expressions giving
the moments of inertia in terms of the areas of the sections are used to facilitate
the computation of moments of inertia for complex shapes when done in tabular
form. This is illustrated in the following discussion.

The method of computation is best explained with an example. The area, the
first moment of the area with respect to a horizontal axis passing through the
top of the section, the location of the centroid of the area, and the moment of
inertia about a horizontal axis passing through the centroid of the area of the
AASHTO-PCI standard bridge beam, type IV, are computed, as an illustration
of a recommended procedure. Referring to Fig. 9-3 and Table 9-1, the proce-
dure is as follows:

<
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Fig. 9-3. AASHTO-PCI bridge beam, type IV, divided into rectangies and triangles to
facilitate the computation of section properties.
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TABLE 9-1 Computation of Section Properties of the AASHTO Type IV Bridge Beam,
in Tabular Form.

Area (A)
Computation y’ Ay’ y y? ¢ yi+eo Aly?+9)
Part (in. xin. =in.2) (in) (in.3) (in) (in.3) (in.3) (in.2) (in.%)
1 8 x 54 =432 27.0 11,700 2.30 53 243 248 107,000
2 12x8= 9 4.0 384 25.3 640 5.33 645 62,000
3 12%x6/2= 36 10.0 360 19.3 373 2.0 375 13,500
4 18x9/2= 81 430 3,480 13.7 188 4.5 193 15,600
5 18 x 8 =144 50.0 7,200 20.7 428 533 433 62,300
LA =789 Ay =23,124 1 = 260,400
y, = 23,124/789 = —29.3 in. S, = 260,400/ -29.3 = —8880 in.’
iy - 200
= Ig9x 203 0™
¥o = +54.0 — 293 = +24.7in. S, = 260,400/ +24.7 = +10,500 in.?
iy, = 2040 a4
Yo =789 x +24.7 A

1. Divide the cross section into shapes of known area, centroid locations,
and moments of inertia with respect to their centroids, such as the rectan-
gles and triangles numbered 1 through 5 in Fig. 9-3. To facilitate the
computations, the number of component areas that must be included in
the table was reduced: the rectangular areas listed as parts 2 and 5 in Table
9-1, as well as the triangular areas listed as parts 3 and 4, each consist of
two parts in the figure.

2. Prepare a table, such as Table 9-1, as follows: compute the areas of
component parts; determine and list the distances, y’, from the top of the
section to the centroids of the component areas; compute and list the
moments of the component areas with respect to the top of the section
(reference axis), 4,; and compute the area of the section (X4), as well
as the first moment of the section with respect to the top of the section
(ZAy').

3. Divide the first moment of the section (XAy') by the area of the section
(ZA), to obtain the distance from the top of the section to the centroid of
the section (y,). It should be noted that y, is negative because it is measured
upward from the centroidal axis.

4. Compute and tabulate the distances from the centroids of the component
areas tot he centroid of the section of the component areas, y, by using y,
pa— y' .

5. Tabulate the squares of y.

6. Compute and tabulate the factors ¢ by which the component areas are to
be multiplied to obtain their moments of inertia with respect to their
centroids (see Fig. 9-2).
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7. Tabulate the sums of ( y2 + ¢).

8. Multiply, tabulate, and sum the terms A (y* + ) for each of the compo-
nent areas. The summation of these terms is the moment of inertia of the
section.

9. The distance from the centroidal axis to the bottom fiber is computed as
vy, = h + y,, and the section moduli for the top and bottom fibers and the
distances to the upper and lower limits of the kern zone are computed as

follows:
I 7 I
S, =— — =
Y Y Ay,
1 2 1
Sb = — _——=
Vb Yo Ay

Bridge stringers, such as the AASHTO-PCI standard prestressed-concrete
beams for highway bridges, frequently are used with a cast-in-place deck slab
that acts compositely with the stringers, as a result of shear stresses that develop
between the slab and the top of the stringers (see Sec. 8-1). Computation of the
composite section properties for an AASHTO-PCI bridge beam, type IV, with
a 6 X 36 in. cast-in-place top flange, as illustrated in Fig. 9-4, can be done by
using the same fundamental procedure as described above. This is illustrated in
Table 9-2.

36”

o

Cast-in-place
slab

. 8
AASHTO-PCI 0
bridge beam,

type IV

Fig. 9-4. Composite section composed of AASHTO-PCI bridge beam, type IV, and 6 X
36 in. cast-in-place concrete slab.
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TABLE 9-2 Computation of the Section Properties of the Composite Beam lllustrated
in Fig. 9-4.

Area
Computation y' Ay y y? o yi+¢
Part (in. xin. =in.3) (in.) (in.%) (in) (in.3) (in.2) (in.3)  A(y + ¢?) (in.%
Slab 36 x6in. =216 3.0 648 253 640 3.0 643 139,000
Beam =789 353 27,800 7.0 49 * 49 38,600
260,400*
LA = 1005in.2 LAy = 28,448 in.> 1 ='438,000 in.*
y, = —28.3in. S, = —15,500 in.?
y, = -223in. §, = —19,600in.}
y» = +31.7in. = S, = +13,800 in.?

*The value of I, is known to equal 260,400 in.* for the precast section. Hence, the value of ¢
is not computed for this portion of the composite section and the value of I, for the precast section
is simply added in the A4(y? + ¢) column.

The concrete in the deck slab does not have the same elastic modulus as the
concrete in the precast, prestressed concrete stringers under usual conditions
because the quality of the concrete used in cast-in-place bridge decks normally
is not as high as that used in the stringers. In computing the properties of the
composite section, this effect is taken into consideration by using a transformed
cross section that consists of the gross section of the prestressed beam and a
slab section having a depth equal to that of the actual slab (less any allowance
for wearing surface) plus the elastically equivalent slab width. The width
normally assumed to be effective (as provided in the applicable design criteria)
is multiplied by the ratio of the elastic modulus of the slab concrete to the elastic
modulus of the concrete in the beam to give the elastically equivalent slab width.
If the slab and beam concretes are assumed to have moduli of 3.5 X 10° psi
and 5.0 x 10° psi, respectively, the elastically equivalent width of the slab that
should be used in the composite section would be 3.5/5.0 = 0.70 times the
effective width.

Note that y, and y, are used to denote the distances from the centroidal axis
of the composite section to the top fibers of the cast-in-place deck and the top
fibers of the precast stringer, respectively. This procedure is recommended to
avoid confusion, with the subscript ¢ being used to denote the top fibers of the
precast section in the computations of the section properties of the precast
section.

In Table 9-2, it will be noted that there is no entry for the beam in the ¢
column. The moment of inertia of the precast section about its center of gravity
is known, and so is simply added to the last column.

After the designer becomes accustomed to the use of this tabular form, the
computation of section properties becomes rapid and routine. The effects of
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minor adjustments in the concrete sections often are determined by subtracting
or adding areas to the section that is being modified, rather than by recomputing
the section properties of the modified section. In addition, the column headed
( y2 + ¢) often is eliminated in actual calculations, and the terms y2 and ¢ are
added mentally as their sum is multiplied by the area. When electronic calcu-
lators are used, the columns headed y, yz, ¢, and ( y2 + ¢) frequently can be
eliminated from the table, thereby reducing the amount of written work needed
for the computations.

As was explained in Sec. 7.3, in some methods of analysis used with
prestressed concrete, it is more convenient to use the section properties computed
about a reference axis other than the centroidal axis or axes of the member.
This is a result of the different locations of the centroidal axis of a member at
the different stages in an analysis. The computation of the first moments of the
area and the moments of inertia of the different sections that must be considered
actually is facilitated by using a single axis for all of the computations. In the
case of a member that is first put into service in one configuration but later
changed to another, such as a precast beam that eventually is modified to include
a composite slab, the computation of the section properties is facilitated by
performing all section-property calculations about a reference line coincident
with the top surface of the composite slab.

ILLUSTRATIVE PROBLEM 9-1 Compute the areas, first moments of the area,
and moments of inertia of the gross, net, net-transformed, and age-adjusted
transformed sections for the member analyzed in I.P. 7-2. The dimensions of
the concrete section and the prestressed and nonprestressed reinforcements are
shown in Fig. 7-5. The elastic modulus of the concrete at the time of prestressing
is 3122 ksi, the aging coefficient for the concrete is 0.80, and the ultimate creep
ratio is 2.00. The elastic moduli for the prestressed and nonprestressed
reinforcements are 28 X 10® and 29 x 10° ksi, respectively. The computations
are summarized in Table 9-3.

9-3 Allowable Concrete Stresses for Use in Design Computations

Most prestressed-concrete design criteria specify maximum allowable initial, or
temporary, compressive and tensile stresses, as well as maximum allowable
final, or permanent, compressive and tensile stresses. This approach generally
is considered necessary or justified for several reasons:

1. In order to obtain an economical and realistic production schedule under
many conditions, it is essential that the prestress be applied to the member
before the concrete attains the specified minimum 28-day cylinder strength.
Hence, it is normal practice to apply the prestress to the concrete when the



412 | MODERN PRESTRESSED CONCRETE

TABLE 9-3 Computation of the Areas, First Moments, and Moments of Inertia, as
Described in I.P. 9-1, for the Section in Fig. 7-5.

Gross Section:

{(n-1) b h A y’ Ay’ y'2+ h?/12 /
na 16 X 32.5 = 520 X 16.25 = 8450 352 183,083
na 4 x 45=198 x 2.25= 445 6.75 1,336

718 8895 184,419

Net Section:

{(n—1) b h A y’ Ay’ y'2+ h2 /12 /
na 718 8895 184,419
na 1x 1.50= -1.5 2.25 -2
na -2 X2775= =555 770 -1,540
na —4 x 30.00 = —120.0 900 —3,600

711 8718 179,277

Net-Transformed Section:

(n—1) b h A y’ Ay’ y'2+ h?/12 /
na 718 8895 184,419

8.29 83 x 1.50 = 12 2.25 19
na -2.0x 2775 = 55.5 770 —1,540
8.29 33.2 x 30.00 = 994.7 900 29,844

757.5 9847.1 212,742

Age-Adjusted Transformed Section:

(n-1) b h A y’ Ay’ y'2+ h?/12 /
na 718 8895 184,419

3.171 23.17 x 1.50 = 34.8 2.25 57

(22.33)2 —44.67 x 27.75 = 1239.5 770 34,396

23.17)4 92.67 x 30.00 = 2780.1 900 83,403

878.5 12,950 302,277

strength of the concrete is on the order of 4000 psi (or less) although the speci-
fied minimum cylinder strength of the concrete at the age of 28 days generally
is on the order of 5000 psi (or more). Therefore, the temporary, or initial,
allowable stresses are based upon a cylinder strength lower than that used in
determining the final, or permanent, allowable concrete stresses.

2. The initial prestressing force is the maximum prestressing force ever to
be imposed on the member. This force is subject to a reduction in the amount
of 10 to 30 percent. The reduction or relaxation of the prestressing force starts
to take place immediately after stressing and requires years to reach its practical
maximum value.

3. The stresses imposed on the member due to prestressing are of opposite
direction to those imposed by the service loads; that is, the prestressing normally
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causes small tensile stresses in the top fibers and large compressive stresses in
the bottom fibers of simple beams, whereas the superimposed loads that will be
carried by the beams cause tensile stresses in the bottom fibers and compressive
stresses in the top fibers.

4. The stresses resulting from prestressing can be controlled by the fabricator
with relatively high precision, but for normal applications neither the designer
nor the fabricator can control or predict very precisely the loads that will be
imposed on the structure while it is in service. For this reason, and in view of
the reasons listed in items (2) and (3), the safety factor required to guard against
failure of the concrete during stressing does not need to be as high as that
required for the design loads.

In a beam pretensioned with straight tendons, the highest initial stresses occur
near the ends where there is no dead load moment to counteract the effects of
the prestressing (see Sec. 4-6). Therefore, the restrictions on the temporary
allowable stresses at the ends of the beam, provided that the beam does not
contain significant amounts of nonprestressed reinforcement, can be expressed
mathematically as follows:

A

C
= <1 ¥ %> < 6Jf"; (92)
and:

G €y ,

" (1 + T2b> < 0.6f} (9-3)

where C; is the resultant compressive force in the concrete section, and is equal,
but of opposite sign, to the product of f;;, the initial stress in the prestressing
steel, and A,,,, the area of the prestressed reinforcement; A is the area of the
concrete; e is the eccentricity of the tendon; r is the radius of gyration; f; is
the concrete cylinder strength at the time of stressing; and y, and y, are the
distances from the centroidal axis to the top and bottom fibers, respectively.*

If C is the force in the concrete resultant to the product of f,,, the effective
stress in the tendons, and 4,, the area of the prestressed reinforcement, and
f. is the cylinder strength at 28 days, and f,, and f,, designate the total stresses
due to dead and live loads in the top and bottom fibers at the section of maximum
moment, respectively, the restrictions on the final allowable stresses can be
expressed mathematically as follows:

C

v <1 + e—y2'> + f, < 0.40f (9-4)
r

*Values of e and y are positive when below the centroidal axis, and negative above. The terms on
the right side of eqs. 9-2 through 9-5 are based upon the stresses allowed by the AASHTO Standard
Specifications for Highway Bridges (see Sec. 3-19).
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and:

j(l + %> + £, < 3VF. (9-5)

In egs. 9-2 through 9-5, the symbols for the forces and stresses include the
required signs.

For an assumed concrete section and an assumed ratio, m, of the effective
steel stress to the initial steel stress, one can write:

C _fe
G

and the values of f,, and f;, can be computed and substituted in eqgs. 9-2 through
9-5, in which case all of the terms that appear in the equations will be known
or assumed except for the values of C and e. Because a number of combinations
of these terms normally will satisfy each of the four equations, the combinations
that will satisfy all of the equations can be determined by plotting each of the
four relationships as shown in Fig. 9-5. The shaded area of Fig. 9-5 indicates
the combinations of C™! and e that satisfy the conditions of the allowable stresses
for the assumed section.

Although the procedure for plotting a figure similar to that shown in Fig.
9-5, first suggested by Magnel (1948), will yield accurate results and is useful
as an instructional aid, it is too cumbersome and time-consuming to be used as
a general design procedure. It illustrates the fact that there frequently are several
combinations of prestressing force and eccentricity that will result in compli-
ance with specific combinations of maximum and minimum allowable stresses.

m =

A fseA Jse ps

4 (1 +—) +fre £0.401,

f; ey ;
bl (43w

A
ftn (1,22 7, 20

1/fseAps

e
(1 + %’1) < 0.60f"

L.
>

Fig. 9-5. Graphical solution of four equations for the prestressing force and eccen-
tricity (after Magnel).



DESIGN EXPEDIENTS AND COMPUTATION METHODS | 415

9-4 Limitations of Sections Prestressed with Straight Tendons

It should be apparent that fully bonded, straight pretensioning tendons can be
used only in prismatic beams in which the maximum flexural stress in the bottom
fibers, due to the total load, does not exceed the arithmetic sum of either (a)
the allowable tensile stress and the final bottom-fiber stress due to prestressing
or (b) the allowable tensile stress and the allowable compressive stress. If, for
example, the maximum stress in the bottom fiber due to the total external load
were 2300 psi, and the allowable tensile stress and the final compressive stress
due to prestressing (assuming the final stress due to prestressing to be less than
the allowable final compressive stress) were +400 psi and —2000 psi, respec-
tively, the design would not be restricted by the bottom-fiber stress. The
maximum load that could be applied without exceeding the allowable stresses
would be one that resulted in a maximum bottom-fiber stress of +2400 psi.

In a similar manner, the top-fiber stress may limit the capacity of a prismatic
beam section if the maximum flexural stress in the top fiber, due to the total
load, is greater than the arithmetic sum of the allowable compressive stress in
the member, after loss of prestress, and the allowable permanent tensile stress.

As a result of these limitations, the designer normally can determine if a
specific concrete section can be used with straight tendons without calculating
the magnitude and eccentricity of the prestressing force. It is necessary only to
determine the stresses in the section due to the total load and compare these
values with the sum of the appropriate, allowable stresses.

ILLUSTRATIVE PROBLEM 9-2  Determine the maximum moment that the section

in Fig. 9-6 can withstand if pretensioned with straight tendons having initial

and final stresses of 180 and 154 ksi, respectively, if f,; and f_ are 4000 and

5000 psi, respectively, and the initial tensile stress cannot exceed the following:
Top fiber:

Initial tensile stress = 3v4000 = +190 psi
Final compressive stress = 0.40 X —5000 = —2000 psi
Bottom fiber:
Initial compressive stress = 0.60 X —4000 = —2400 psi
Final tensile stress = 3v/5000 = +212 psi
Final compressive stress = 0.40 X —5000 = —2000 psi

SOLUTION:  The stresses at the time of stressing will reduce to 135 = 0.856 of

their initial value as a result of the prestressing losses. Therefore, the maximum
stress due to all loads will be limited as follows:
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Fig. 9-6. Beam section and stress distribution for |.P. 9-2.

Top fiber = 2000 + 0.856 X 190 = 2163 psi
Bottom fiber = 212 + 0.856 X 2400 = 2266 psi
Bottom fiber = 212 + 2000 = 2212 psi

The allowable moments as controlled by the top and bottom fibers are:

—2163 X 63,300
M =189 x 12000 604 k-ft
X
_ 212X 63300 _ oo

7 17.1 x 12000

The stresses in the top fiber control the capacity of this section with these design
criteria.

9-5 Limitations of Sections Prestressed with Curved Tendons

In considering the stress in the bottom fiber at any specific section of a simple
beam prestressed with a curved tendon, it should be apparent that the maximum
stress due to external loads must not exceed the arithmetic sum of the stress due
to the effective prestressing force and the allowable tensile stress in the
completed structure. In addition, the algebraic sum of the stress due to the initial
prestressing force and the stress due to the minimum loading condition must
not exceed the allowable, initial compressive stress.
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ILLUSTRATIVE PROBLEM 9-3  Determine the maximum allowable total moment
on the beam section of Fig. 9-6 if a curved tendon is used, and the initial and
final stresses in the prestressed reinforcement are 187 and 162 ksi, respectively.
The design span is 50.0 ft. The allowable stresses are those used in I.P. 9-2.
The compressive strength at the time of prestressing is —4000 psi, and the
specified compressive strength at 28 days is —5000 psi.

SOLUTION: The beam dead load is equal to 0.450 kif, and the dead load
moment at midspan is equal to 141 k-ft. Dead load flexural stresses:

141 X 12

= ———— = —(.505 ksi

£ T 73350 .
141 x 12

T 3700 0.457 ksi

Maximum allowable stress and moment as limited by top fiber:

162

fi = ~0.40 x 5000 - 505 - L= (34/4000) = —2669 psi
—2669 X 3350
M=——"""""" — 745 k-
i > 745 k-ft

Maximum allowable stresses and moment as limited by bottom fiber:
162 .
f, = (0.60 x 4000) Ty + 457 + 344000 = 2726 psi

£, = (0.40 X 5000) + 457 + 3+/5000 = 2669 psi

2669 X —3700

M, = = k-
b 12000 823 kft

It should be recognized that the maximum allowable top and bottom fiber stresses
due to prestressing may not always be attainable (see Sec. 9-7).

The initial tensile stresses in the top fibers of beams prestressed with curved
tendons normally are not critical at the section of maximum moment in beams
of good proportions. If the top-fiber stresses do limit the design of beams with
curved tendons, the problem usually is due to excessive, compressive stress
under maximum loading conditions. Top-fiber stresses are much more apt to be
a concern in a beam with a thin, narrow top flange than in a beam with a thick,
wide top flange.
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9-6 Minimum Prestressing Force for Straight Tendons

In the design-by-trial procedure commonly used in designing prestressed flexural
members, a beam with known cross-sectional properties is tentatively adopted
and reviewed to determine the stresses due to the external loads. If the external
loads result in stresses within practical limits (see Sec. 9-4), then the prestressing
force and concomitant eccentricity required to develop the desired net concrete
stresses must be determined. When straight tendons are used in prismatic simple
beams subjected to usual loading conditions, the maximum stresses under
minimum loading conditions (dead load of the beam alone, usually) occur at
the ends of the beam where there is no moment due to external loads. The
maximum stresses under the maximum loading conditions occur near midspan.
The procedures recommended for determining the minimum prestressing force
and its required eccentricity for different specific conditions are illustrated with
explanations in I.P. 9-4 through I.P. 9-6.

ILLUSTRATIVE PROBLEM 9-4  Determine the prestressing force and eccentricity
required to prestress a slab, 4 ft wide and 8 in. deep, with straight tendons. The
slab is to be used, simply supported, on a span of 30 ft and is to be composed
of normal concrete (150 pcf) with f7; = 4000 psi and f. = 5000 psi. The super-
imposed load is 45 psf, and the member will be exposed to a corrosive
atmosphere in service.

SOLUTION:
Loads and moments:
Slab dead load = 4 X 100 = 400 pIf
Superimposed load = 4 X 45 = 180 plf
Total load = 580 pif

The bending moment due to the total load is:

30?
My = 0.580 = = 65.25 k-ft

The section modulus of the slab is:

X 2
s=BX% i
6
and the top and bottom fiber stresses due to the total load are:
65.25 x 12,000 )
fi=————— = —1530 psi

—512
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_65.25 x 12,000

iz 512

= +1530 psi

Assume that nonprestressed reinforcement is not to be used in the top flange
to resist tensile stresses in the concrete. The final stress in the bottom fiber due
to prestressing must be equal to + 1530 psi. (Because the slabs are to be exposed
to a corrosive atmosphere, to guard against cracking and to protect the
prestressed reinforcement against corrosion, the net bottom-fiber stress should
not be tensile under full load.) If nonprestressed reinforcement is not to be
provided at the ends, the top-fiber tensile stress at the ends, due to initial
prestress, should be equal to or less than 3v4000 = 190 psi. Assuming that
the ratio of the effective stress to the initial stress in the prestressed reinforce-
ment is 0.85, the tensile stress in the top fiber resulting from the effective
prestress must not exceed 0.85 X 190 = 160 psi. Therefore, the stress distri-
bution due to the final prestressing force should be as shown in Fig. 9-7.

The prestressing stress at the centroid of a section is equal to the average
compressive stress in the concrete due to the prestressing force (—P/A) because
the distance from the centroidal axis of the concrete section, y, is equal to zero
for the fiber at the centroidal axis, and the familiar equation for stress due to

prestressing:
p ey
=—|1+=

P
1=

becomes:

This fundamental principle is applicable for sections that are symmetrical or
asymmetrical about the centroidal axis. The average stress can be rapidly

+ 160 psi

L

<
A
4”
c.g.s.
N \—\_; : i} g

4”

—1530 psi

Fig. 9-7. Distribution of stresses due to final prestressing force for |.P. 9-4.



420 | MODERN PRESTRESSED CONCRETE

4//

8 ”

4 ”

— 1690 psi

Fig. 9-8. Distribution of stresses for |.P. 9-4.

computed by use of the relationships indicated in Fig. 9-8, from which it will
be seen that:

P =) 2+ = —1600 (22 — 685 psi
A—(fb ﬁ,)d+f,— 169O<8.0>+160_ 685 psi

Therefore, the final prestressing force can be computed by:

_ (=685 x 48 x 8)
1000

P =

= 263 kips

This force must develop —1530 psi in the bottom fiber, and the familiar
relationship for the bottom-fiber stress due to prestressing:

C ey
=—1|1+ =
fi, A < rz >
can be rewritten:

£ r —1530 8 .
= -1)—= - —) = 1.65in.
e <C/A " 635 1 6 1.65 in

Note that r>/y = d/6 for a rectangular section.

If it is decided to use nonprestressed reinforcement in the top fibers to resist
the tensile stresses in the concrete due to prestressing, the initial, top-fiber tensile
stress might be as great as GJE = 380 psi, and the top-fiber tensile stress due
to the effective prestressing force could be as great as 0.85 X 380 = 320 psi.
Assuming that it is desired to limit the top-fiber tensile stress to 300 psi, the
required distribution of prestress will be as shown in Fig. 9-9, and the compu-
tation of C and e will be:
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+ 300 psi

/
4"
c.g.s.L_ oy o

4"

— 1530 psi

Fig. 9-9. Required prestress distribution for |.P. 9-4.

‘NI Ko

4,

—1830 x 4.0 + 300 = —615 psi
8.0

P = 236 kips

= (222 1)(22) = 1ogin
¢~ \ 615 6 ) oM

Compare the simplicity of this computation to the effort required using the
classical relationship demonstrated in I.P. 4-8.

ILLUSTRATIVE PROBLEM 9-5  For the slab of [.P. 9-4, assume that the super-
imposed load will be 100 psf. Compute the required prestressing force and
eccentricity, assuming: (1) the final top-fiber tensile stress due to prestressing
must not exceed 300 psi, and no tension is to be allowed in the bottom fibers;
and (2) the final top-fiber stress due to prestressing must not exceed 300 psi,
and the net stress in the bottom fiber under full load must not exceed 400 psi.

SOLUTION: Loads and moments:
Slab dead load = 4 x 100 = 400 plf
Superimposed load = 4 X 100 = 400 plf
Total load = 800 plf

30°
Total moment = 0.80 X ? = 90.0 k-ft

.0 X 12,000
Top-fiber stress = 20.0 x 12,000 = —2110 psi
-512
90.0 x 12,000 .
Bottom-fiber stress = ———————— = 2110 psi

512
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Part (1): The bottom-fiber stress of —2110 psi is too high for f;; = —4000
psi because 0.85 X 0.60 X —4000 = —2040 psi. If this solution is to be used,
and if the design is to conform to the allowable stresses specified above, the
value of f.; must be equal to —2110/(0.85 X 0.60), which is equal to —4150
psi. It should be pointed out that the net compression in the top fiber will be
—2110 + 300 psi = —1810 psi. If the final net compressive stress is to be 0.40
[+ or less, the minimum value of £/, is 4500 psi. Assuming that these values of
initial and final concrete strength are to be used, the required values of C and
e are (see Fig. 9-10):

C 4.0
;— —2410X%+300
= —905 psi
P = 348 kips
—2110 8.0
= —1){—)=177in.
= () (5)

Part (2): The desired distribution of concrete compressive stresses due to
prestressing is as shown in Fig. 9-11, and the values of P and e become:

C 4.0
;——2010Xa}+300
= =705 psi
P = 271 kips
—1710 8.0 .
- (220 )(2) - 0
+ 300 psi
4”
8/[
4"

—2110 psi
Fig. 9-10. Distribution of stresses, part (1) of I.P. 9-5.
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+ 300 psi

4 ”

8//

4 ”

-2110 + 400 = —1710 psi
Fig. 9-11. Distribution of stresses, part (2) of |.P. 9-5.

This example illustrates a procedure that can be adopted if the initial concrete
stresses (or final stresses) are nominally higher than would be allowable for the
quality of concrete that was at first assumed; the designer can increase the value
of the concrete strength at the time of prestressing and at the age of 28 days
(within reasonable limits) in order to confine the stresses within the allowable
limits. Also illustrated is the procedure used in the calculation of the prestressing
required for members in which tensile stresses are permitted in the bottom fibers
of the members under full load.

ILLUSTRATIVE PROBLEM 9-6  Compute the prestressing force and eccentricity
required to produce a final stress of +300 psi in the top fibers and —2000 psi
in the bottom fibers of an AASHTO-PCI type III bridge beam, as shown in Fig.
9-12. The section properties required for the analysis are as follows: 4 = 560
in.2, y, = 24.7 in., and r? /y, = 11.03 in.

Y, = —/24.7 in. +300 psi
Centroidal axis
< —H —_ - —
y, = 20.3in. -2000 psi
(a) AASHTO-PCI Type llI (b) Distribution of effective
bridge beam. prestress

Fig. 9-12. Cross section of AASHTO-PCI type Il bridge beam and distribution of effec-
tive prestress required.
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soLuTION: The desired distribution of stresses is illustrated in Fig. 9-12, and
P and e are computed as follows:

SN

24.7 .
— — X —_— -— =
< 2300 X 30+ 300> 962 psi
P = 539 kips

—-2000 .
e = <m - 1) (11.03) = 11.90 in.

9-7 Minimum Prestressing Force for Curved Tendons

Because the dead load of a beam is acting at the time of prestressing, the eccen-
tricity of prestressed reinforcement can be greater near midspan of a simple
beam than at the ends, without the net concrete stresses exceeding the allowable
values, as was explained in Sec. 4-6. This is the reason for draping or curving
the tendons. This procedure results in a variable prestressing moment along the
length of the beam; hence, the stresses in the concrete due to curved prestressing
tendons should be investigated at several locations along the length of the beam.
For prismatic members having straight tendons, the amount of prestressing
needed is controlled by the conditions of stress at the position of maximum
moment; this remains true for members having curved tendons if the maximum
eccentricity of the prestressed reinforcement occurs at the location of the
maximum moment. For members having variable depth, the amount of
prestressing needed may be controlled by the conditions of stress at a section
other than the section at which maximum moment occurs.

In detailing a member, the prestressing force must be developed by a specific
number of whole tendons. Fractions of tendons cannot be used, and, to avoid
errors, all tendons in a pretensioned concrete member are normally of the same
size and grade. For reasons of economy, the number of tendons should be as
low as possible, and they should be stressed to their maximum allowable stress.

ILLUSTRATIVE PROBLEM 9-7  For the AASHTO-PCI bridge beam, type III,
which is to be used on a span of 70 ft, compute the minimum prestressing force
and eccentricity that can be used if the member must withstand a superimposed
moment of 800 k-ft at midspan. The superimposed moment varies parabolically
from a maximum value at midspan to zero at the support. Assume that the
minimum specified concrete strength and the minimum concrete strength at the
time of prestressing are 5000 psi and 4000 psi, respectively. The centroidal axis
measured from the top fiber, the area, and the moment of inertia of the
AASHTO-PCI bridge beam, type III, are 24.7 in., 560 in.2, and 125,400 in.*,
respectively. The dead load of the beam itself is 0.585 kif.



DESIGN EXPEDIENTS AND COMPUTATION METHODS | 425

TABLE 9-4 First Table for I.P. 9-7.

Top Fiber Bottom Fiber
Stresses due to total moment —2740 psi +2250 psi
Stresses due to dead load only —845 psi +695 psi

SOLUTION:

70?
Moment due to dead load of beam = 0.585 X ? = 358 k-ft

Moment due to the superimposed load = 800 k-ft

Total moment at midspan = 1158 k-ft

The stresses due to dead load and total load are summarized in Table 9-4.

The distribution of concrete stresses due to the effective prestress at midspan
must be as shown in Fig. 9-13a, if the net top-fiber stress due to total load plus
effective prestress is to be held to 0.40f. = 0.40 X 5000 = 2000 psi, and if
the tensile stresses in the bottom fiber due to the total load are to be exactly
nullified by the effective prestress, nonprestressed reinforcement is not to be
used, and the top-fiber concrete stress due to initial prestressing plus dead load
of the beam is to be limited to 190 psi. Assuming f,, /f,; = 0.85, the prestressing
distribution shown in Fig. 9-13b limits the top-fiber stress to the allowable value
and exactly nullifies the total load stress in the bottom fiber. The bottom-fiber
stress, due to the effective prestress, could be as high as 0.40 . + 695 = 2695
psi. The most economical design will result from a prestressing force that can
develop the required minimum effective prestress in the bottom fibers ( +2250
psi) without exceeding the allowable, initial tensile stress in the top fibers, such

+ 740 psi +845 + 160 = + 1005 psi

7 7

— 2250 psi ~ 2250 psi

(a) (b}
Fig. 9-13. Stress distributions for |.P. 9-7.
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as is shown in Fig. 9-13b, if such a stress distribution can be obtained with a
practical eccentricity.

For the distribution of stress shown in Fig. 9-13b, the values of C and e are:

C 24.7
= —3255 X == + 1005 = —782 psi

A 45.0
P = 438 kips

—2250 .
e = <W - 1>(11.03) = 20.70 in.

It is apparent that this is not a solution for this case because the required eccen-
tricity is greater than the distance from the centroidal axis of the section to the
bottom fibers (y,); hence, if this solution were used, the centroid of the
prestressed reinforcement would be below the bottom of the beam. Therefore,
the distribution of stress due to the effective prestress must be revised in such
a manner that the eccentricity is reduced.

Using the distribution of stress indicated in Fig. 9-13a, the values of C and
e are:

C 24.7 )
i —2990 X 5.0 + 740 = —900 psi
P = 504 kips
—2250
= - 1 )(11. = 16.5 in.
e (_900 >( 03) 6.5 in

This solution is reasonable for the conditions at midspan, and should be adopted,
because the stresses are allowable and the eccentricity of 16.5 in. results in the
centroid of the prestressed reinforcement being 3.8 in. from the bottom of the
beam, allowing adequate concrete cover.

Because the dead-load moment and the moment due to the superimposed
loads vary parabolically (from maximum at the center of the span to zero at the
supports), it can be specified that the eccentricity of the prestressing is zero at
the support. Nominal eccentricities above or below the center of gravity of the
section could be allowed at the supports without exceeding the allowable
stresses.

At the quarter point, the stresses due to the dead and superimposed loads are
only 75 percent of the stresses due to these loads at midspan, or —2060 and
+1690 psi in the top and bottom fibers, respectively. Assume that the effective
force in the prestressed reinforcement is 504 k, and the eccentricity is 16.5 in.
at midspan; if the eccentricity varies parabolically to zero at the supports, it
would be 75 percent of 16.5 in. at the quarter point, and the stresses due to the
effective prestress would be:
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TABLE 9-5 Second Table for I.P. 9-7.

Top Fiber Bottom Fiber
Stress due to dead load of beam —634 +521
Effective prestress +332 —1912
Net, minimum loading -302 —-1391
Stress due to superimposed —1420 +1165
load
Net, maximum loading -1722 -226

__Sk000( 124\ L
f=""560 —9.06) ~ T°P¥
504,000/ 12.4 .
S = 360 \l + 11.03) = —1912 psi

It can be shown that these stresses due to prestressing will result in net concrete
stresses, under minimum and maximum loading conditions at the quarter point
of the span, that are within the allowable values. The stresses are summarized
in the Table 9-5.

ILLUSTRATIVE PROBLEM 9-8  For the beam and the conditions specified in I.P.
9-7, determine the number of high-tensile-strength steel rods, in sheaths having
a diameter of 1.5 in., that could be used, if the rods were to be used with an
effective prestress of 82 k each, and f,, /f,; = 0.85.

SOLUTION: Assume six rods, so that:
P =6 X 82 = 492 kips
My = P(e + r?*/y,) = 1158 = 492(e + 11.03)

e = 17.3 in.

Check the computations:

492,000< 17.3
f=—-—"—1+—=

560 —9.06> = 800 psi

PR X W v A S
b 560 11.03) ~ pst

This solution is satisfactory. It should be noted the stress distribution is between
those of parts (a) and (b) of Fig. 9-13, and the distance from the soffit of the
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W

2%
4"

Om f\f\
\_&

I 4@3 =10 | \6—1%"¢high-tensile rods
in 112”® 0.D. sheath
Fig. 9-14. Position of post-tensioning tendons, I.P. 9-8.

beam to the centroid of the tendons is 3.0 in.—a distance that will allow a clear
concrete cover of 2 in. for sheaths if placed as shown in Fig. 9-14.

ILLUSTRATIVE PROBLEM 9-9  Assume that the beam for I.P. 9-7 is to be stressed
with a combination of pretensioned and post-tensioned reinforcement. Deter-
mine the amount and eccentricity of the prestressing required for each of these
methods, if it is assumed that the maximum, initial, tensile and compressive
concrete stresses are 350 psi and —2400 psi, respectively, and f,, /f;; = 0.85.
The amount of the post-tensioned reinforcement is to be kept as small as
possible. Assume that the post-tensioned reinforcement is not to be prestressed
until the beam has been pretensioned and removed from the casting bed.

SOLUTION: The maximum distribution of stress that can be allowed by the
effective prestress in the straight pretensioned tensions is as shown in Fig.
9-15, for which the values of P and e are:

C 24.7
x —_— —
—2340 5.0 + 300 = 985 psi
P = 551 kips
—2040 .
e = <-—_'§§>(+ 11.03) = +11.81 in.

Assuming that the supplementary prestressing is accomplished with one post-
tensioned tendon at an eccentricity of 17.5 in. (2.8 in. from the bottom of the
beam to the centroid the tendon), the prestressing force required to increase the



bottom-fiber stress,

follows:
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0.85 x 350 = 300 psi

4

0.85 x —0.60 x 4000 = —2040 psi

Fig. 9-15. Distribution of stresses, first solution, |.P. 9-9.

—210 psi, to a total value of —2250 psi, is calculated as

~210
Co_é0
A~ (15
11.03
P = +45.5 kips
45,500 17.5 .
fi= " 560 <1 —9.06> = +76psi
45,500 17.5
= 22 4 202 o 210 psi
b 560 < 11.03> pst

Summarizing, the net concrete stresses for this solution are as shown in Table

9-6.

If this combination of prestressing is adopted, the value of f, required for
conformance to the design criteria is —2364 /0.40 = —5900 psi. If this value
is too high, the member must be redesigned with a larger top flange, in order
to resist the compressive stresses, or the tensile stresses in the top flange due to

prestressing must be increased.

Because the top-fiber tensile stress resulting from the effective pretensioning
is confined to +300 psi, to revise the prestressing so that the value of f; does

TABLE 9-6 First Table for I.P. 9-9.

Top Fiber Bottom Fiber
Stress due to total moment —2740 psi +2250 psi
Effective prestress: pretension +300 psi —2040 psi
Effective prestress: post-tension +76 psi =210 psi
Net concrete stresses —2364 psi 0 psi
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+ 300 psi

/

—2250 + 1420 = —830 psi

Fig. 9-16.  Distribution of stresses, second solution, I.P. 9-9.

not have to exceed —5000 psi, the post-tensioning must develop +440 psi in
the top fiber. Thus, the top-fiber compressive stress will not exceed —2000 psi
under maximum loading conditions. Assuming that the centroid of the post-
tensioned reinforcement is 4.40 in. above the bottom of the beam (e = 15.9
in.), the force required to develop the required tensile stress of +440 psi in the
top fiber and the concomitant compressive stress in the bottom fiber are:

P 15.
f,=440=———<1+——9—)

560 -9.06
P = 326 kips
326,000 159\ _ .
== 560 <l + 11-03> = —1420 psi

Hence, the required stress distribution due to the supplementary effective
pretensioning is as shown in Fig. 9-16, and the P and e required are as follows:

Cc 24.7
—_= - —_— 00 = — 1
! 1130 X 5.0 + 3 320 psi
P = 179 kips
-830
=(——=—-1)(+ 11.03) = 17.6 in.
e (_320 >( 11.03) = 17.6 in

TABLE 9-7 Second Table for i.P. 9-9.

Top Fiber Bottom Fiber
Stresses due to M, —2740 psi +2250 psi
Stresses due to post-tensioning +440 psi —1420 psi
Stresses due to pretensioning +300 psi —830 psi

Net concrete stresses —2000 psi 0 psi
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The net concrete stresses resulting from this combination of prestress are
summarized in Table 9-7.

The above problem illustrates that the capacity and method of prestressing
used may be limited by compressive stresses in the top fiber of the beam. This
condition is particularly acute in beams having long spans and narrow top
flanges.

9-8 Preliminary Design of Flexural Members

The preliminary design of a prestressed concrete flexural member, from an
analytical point of view, involves proportioning of a concrete section, selection
of the strength of concrete to be used, selection of the types and grades of
reinforcements to be used, and determination of the quantities of prestressed
and nonprestressed reinforcements needed to conform to the applicable design
standards. In actual engineering practice, however, economic considerations are
very important, and preliminary design normally involves the study of several
preliminary design alternatives for the purpose of determining the relative cost
of the different designs considered acceptable from analytical considerations
alone.

In Sec. 4-4, it was shown that for a simple beam that has zero bottom-fiber
stress in the loaded state, the total moment that the beam can withstand is
expressed by: ‘

My = Mp + Mg = P(e + r*/y,) (9-6)

In a similar manner, if the stress in the top fiber due to the effects of prestressing
alone-is to be zero, it can be shown that the eccentricity of the prestressing force
must not be greater than r? /y, below the centroidal axis of the section (i.e., e
= —r?/y,). Therefore, if tensile stresses are not to be permitted in a section
under the conditions of no load and maximum loads, the relationship of eq.
9-6 can be written:

My = Mp + Mg = P(r,/y, + r*/y) (9-7)

The relationships are useful in making preliminary designs of fully prestressed
members because, by assuming values for My, and P, the required value of the
quantity (e + r2/y,) can be computed. In employing these relationships in
preliminary design, the engineer should keep the following fundamental factors
in mind:

1. Most economical designs of simple beams have values of C/A4 (the average
compressive stress in the concrete) between —500 and —900 psi. This gives a
means of making a rough check on the estimated dead weight of the beam
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without assuming a specific cross section. (Considerably lower values of average
prestress, C/A, generally are used in precast members with large top flanges,
such as T-shaped beams, as well as in solid slabs.)

2. The dead weight of the beam itself is a small portion of the total load for
short-span beams, whereas for long-span beams, the dead load of the beam
itself may be of great importance.

3. When straight tendons are used in short, simple-span members, the value
of the quantity (e + r?/y,) approaches the lower limit as given in eq. 9-7
(7 /y + 1 /).

4. When curved or draped tendons are used in beams of moderate to long
spans, the value of e frequently is limited by the dimensions of the concrete
section, rather than by top- or bottom-fiber stresses, and eq. 9-6 approaches:

My = P(y, + r*/%) (9-8)

5. When tensile stresses are allowed in the bottom fibers in the fully loaded
state, the pressure line goes higher than r?/y, above the center of gravity of
the section, and the relationship given by eq. 9-6 can be rewritten:

My = yP(e + r*/y,) (9-9)

The value of ¥ to be assumed in the above relationship must be estimated by
considering the absolute value of the allowable bottom-fiber tensile stress with
respect to the absolute value of the bottom-fiber stress resulting from prestressing
alone. For example, if the bottom-fiber stress due to the effective prestress must
be confined to —2000 psi, and the allowable tensile stress in the bottom fiber
is +400 psi, the value of (e + r?/y,) must be increased by the ratio ¢ =
2400 /2000 = 1.20 to give an accurate estimate of the movement of the pressure
line that will take place when the beam is loaded from the condition of zero
bottom-fiber stress (due to external loads) to the point where the stress in the
bottom fiber is +400 psi. If the bottom-fiber stress due to the effective prestress
alone is as high as —3000 psi, as it frequently is in long-span, post-tensioned
members, an allowable tensile stress of +400 psi in the bottom fiber would
result in a ratio for y of 3400/3000, which is equal to 1.13.

6. The value of the term (e + r?/y,) varies from 33 to 80 percent of the
depth of the beam, depending upon the efficiency of the cross section, the allow-
able stresses, and the dead-load moment. Average values of this factor for use
in estimating the preliminary design of roof and bridge girders are between 60
and 75 percent of the depth of the member, with the larger values being appli-
cable to the longer spans and to members with relatively large flanges.

7. The average value for the depth-to-span ratio for most simple beams can
be assumed to be 1/20. This ratio does vary between relatively wide limits,
but for simple beams it is rarely greater than 1/6 or less than 1/24, except for
solid and cored slabs.
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ILLUSTRATIVE PROBLEM 9-10  Estimate the depth of a beam required to carry
a superimposed moment of 800 k-ft on a span of 70 ft using curved tendons.

SOLUTION:  Assume the weight of the girder will be 400 plf.

2
Total moment = 0.40 X % + 800 = 1045 k-ft

If (e + r?/y,) = 0.70d, and P = 400 kips:

1045

4= 070 x a00 ~ 2731

This amounts to a depth-to-span ratio of 1 to 18.8. If the average compressive
stress due to prestressing is —1000 psi, P = 400 k, and 4 = 400 in.2, then the
weight of the girder will be 415 plf. The estimated dead weight of the beam is
reasonably close to the assumed value, but the depth is somewhat greater than
normal for this span. Therefore, try P = 450 k, A = 450 in.?, and w,; = 470
plf.
70

Total moment = 0.45 X 3 + 800 = 1088 k-ft

1088

=070 x 450~ 46t

The depth-to-span ratio for this prestressing force is 1 to 20.2, which is reason-
able and slightly more slender than average. It is apparent that a preliminary
estimate can be made with the data developed here, as the magnitude of the
prestressing force and the concrete quantity are known approximately.

ILLUSTRATIVE PROBLEM 9-11  For the conditions states for I.P. 9- 10, assume
that the depth of the beam cannot exceed 3.5 ft, owing to headroom restrictions.
Estimate the prestressing force required, and determine a preliminary cross-
sectional shape. Assume that the member is to be post-tensioned, f. = —5000
psi, and no tensile stresses are to be allowed in the bottom fibers. Check the
estimate.

SOLUTION:  Assume w, = 0.50 kif and (e + r?/y,) = 0.70d; then:

70?
M, = 0.50 x <+ 800 = 1106 k-ft

1106

=070 x 3.5~ 41 kps
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For a beam 42 in. deep, the web thickness normally is about 7 in. The average
stresses in the flanges can be estimated to be —2000 psi for the purpose of
selecting dimensions of the trial section. For the top flange, the total force that
must be resisted is 451 k because the pressure line will be quite high when the
beam is fully loaded. Furthermore, the top flange of a member that is 70 ft long
should be about 70/35 or 2 ft wide. Therefore, the thickness of the top flange
can be computed by:

451,000

t=2000x2459.40m.

The bottom flange must resist a smaller force than the top flange because the
dead load of the beam is acting at the time of stressing. The force that the
bottom flange must resist can be approximated by multiplying the estimated
prestressing force by the ratio of the moment due to the superimposed load and
the moment due to the total load, or:

800
451 kips X —— = i
ps 1106 330 kips

Assuming that the width of the bottom flange is to be 18 in., the thickness of
the bottom flange can be computed by:

330,000

t = m = 9.20 in.

The assumed trial section is shown in Fig. 9-17, where the estimated values of
the thicknesses for the top and bottom flanges calculated are shown superim-
posed.

To check the estimated prestressing force and concrete area, the section
properties of the trial section are computed as follows:

A=576.5in2 I = 115,680 in.*
—-19.7in. S, = —-5860in.> r%/y,= —10.2in.

Vi
y» = +22.3in. S, = +5180in.>  r?/y, = +9.00 in.

The moment due to dead load is computed as follows:

70°
Mp = 0.60 x ru 368 k-ft

and when combined with the moment due to superimposed load, 800 k-ft, the
moment due to total load is found to be 1168 k-ft. Assuming e = +22.3 — 4.5
= +17.8 in., the prestressing force is computed to be:
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Fig. 9-17. Cross section of a beam, |.P. 9-11.

1168 x 12

=18 x 00 o2 kips

and the stresses are summarized in Table 9-8.

Examination of the stresses will reveal that the net compressive stress in the
top fiber is —1713 psi when the beam is under full load. This value is substan-
tially below the value of —2000 psi, allowable for the assumed concrete
compressive strength of 5000 psi. In addition, if f; is to be —4000 psi because
the dead load of the beam is acting at the time of stressing, the —1850 psi
compression in the bottom fibers is below the allowable initial stress. Therefore,
the area of the flanges can be reduced.

TABLE 9-8 First Table for I.P. 9-11.

Top Fiber Bottom Fiber
Stress due to dead load —753 psi +853 psi
Stress due to superimposed load —1640 psi +1850 psi
Total —2393 psi +2703 psi
Stress due to prestressing +680 psi —2700 psi

Net stress —1713 psi +3 psi
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In addition to considerations of stress, the following factors must be evalu-
ated in selecting the final shape of the section:

L.

2.

Flanges must not be so thin that they might be broken during the handling
and transportation of the members.

The top flange should have sufficient width to protect against undue lateral
flexibility during transportation and erection, as well as to ensure that the
flange will not buckle under load if it is to be used in the completed struc-
ture without supplementary lateral support (see Secs. 4-9 and 17-8).

. The bottom flange must be of such shape that the prestressing tendons can

be positioned with adequate cover and spacing to protect them against
corrosion and to facilitate placing of the concrete, and, when post-
tensioning is used, the shape of the bottom flange must allow curving of
the tendons (without small radii of curvature) up into the web while the
minimum cover is maintained.

For reasons of economy, the shape should be simple as possible to facil-
itate the fabrication.

. The slopes provided as transitions between the flanges and the webs should

be of such size and shape that danger of honeycomb and the entrapment
of air bubbles in the bottom flange is minimized. In addition, stripping of
the form is facilitated by large slopes on the flanges.

| 24"
&
©
7" H §
I
o
o
18" |
= !

Fig. 9-18. Beam cross section, revised, I.P. 9-11.
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TABLE 9-9 Second Table for I.P. 9-11.

Top Fiber Bottom Fiber
Stress due to dead load —1735 psi +814 psi
Stresses due to superimposed load —1770 psi +1960 psi
Total —2505 psi +2774 psi
Stress due to prestressing +665 psi —2770 psi
Net stresses ~1840 psi +4 psi

In this example, it is assumed that the flanges can be reduced to 6 in. in
thickness at their extremities, as shown in Fig. 9-18, and the revised section
properties and stresses are computed as follows:

A =520.5in2 I= 108,090 in.*
~19.9in. §, = -5430in.> r?/y,= —~10.4in.

Y
yp = +22.1in. S, = +4900in.>  r?*/y, = +9.39 in.

The dead load of the member is found to be 0.542 kif, and the midspan moment
due to dead load is 332 k-ft. The superimposed dead load moment is 800 k-ft,
and the moment due to dead plus superimposed loads is equal to 1132 k-ft.
Assuming the eccentricity of the prestressed reinforcement to be equal to +22.1
— 4.5 = +17.6 in., the prestressing force is computed as:

1132 x 12

T30 x 176 2N
and the stresses are summarized in Table 9-9.

It should be noted that the prestressing force required in the final design is
about 11 percent higher than the preliminary estimate, and the concrete quantity
is about 4 percent higher in the final design. The errors result from assuming
(e + r*/y,) to be equal to 0.70d and its being only 0.644d in the final design.

The initial stress in the bottom fiber should be checked. Assuming f;,/f;; =
0.85, the initial bottom-fiber stress would be —2445 psi, and the value of f;
should be —4450 psi if the initial compression is restricted to 0.55f;;, and
—4100 psi if the initial compression is limited to 0.60f7;.

ILLUSTRATIVE PROBLEM 9-12  Design a pretensioned T-beam to be used in a
roof on a simple span of 60 ft. The superimposed dead load is 16 psf, and the
live load is 30 psf. Use a noncomposite section, f. = 4000 psi, f,, = 270 ksi,
loss of prestress = 40,000 psi, and f, = 60,000 psi. Allowable stresses and
load factors are to conform to ACI 318. Use normal-weight concrete and a
width of 8 ft.
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Fig. 9-19. Cross section and details of T-beam used in I.P. 9-12.

SOLUTION:  The depth-to-span ratio for simple prestressed beams is usually
between 1 in 16 and 1 in 22 but may be as shallow as 1 in 40. For a span of
60 ft, the depth would be expected to be between 3.75 ft and 2.75 ft. Because
the span is relatively long, a depth-to-span ratio of 1 in 40 probably is not
feasible. For a first try, assume a depth of 2.75 ft. The top flange can have a
variable depth to save dead load and to give greater depth at the face of the web
where the cantilever moment is greatest. Shear would not be expected to be a
problem on a span of 60 ft with roof loads. An 8-in.-wide web probably will
provide sufficient space for the tendons. In view of these considerations, adopt
the trial section shown in Fig. 9-19a. The properties of the section are summa-
rized as follows:

A=572in?2 I=54863in*
y, = —8.62 in. S, = —6365in.> r*/y,= —11.13in.

v = +24.38in. S, = +2250in.>  r?/y, = +3.93 in.
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TABLE 9-10 First Table for I.P. 9-12.

Load Moment
Total dead load 596 plf 268.2 k-ft
Superimposed dead load 128 pif 57.6 k-ft
Superimposed live load 240 pif 108.0 k-ft

The loads and maximum moments are summarized in Table 9-10, and the
stresses at midspan are summarized in Table 9-11.

The stresses are relatively low and it is apparent that a solution can be found
with this depth. Allowing a bottom-fiber tensile stress of 8«/]7; = 4506 psi,
the prestress must equal —1807 psi in the bottom fibers.

Assume that the centroid of the prestressed reinforcement is located 4.0 in.
from the soffit of the beam, and, hence, its eccentricity is —20.38 in. By using
this eccentricity, the prestressing force required for a bottom fiber stress of
—1807 psi is computed as follows:

C —1807 .
A |, ~2038 = ~2%2psi
+3.93

P = —(—292)(572) = 167 kips

Assuming that the strands have an initial stress of 0.70f,, = 189 ksi (after
transfer) and the loss of prestress is 40 ksi, each strand will have an effective

force of (0.153)(149) = 22.8 k, and 7.32 strands would be required to provide
a force of 167 kips. Using the eight-tendon layout shown in Fig. 9-19b, the
distance from the soffit to the centroid of the prestressed reinforcement is:

3X2+3X4+2x6
h 8

dl

= 3.75in.

and the eccentricity is +20.63 in. Using these values for the initial prestressing
force and the eccentricity, the top- and bottom-fiber stresses due to prestressing

TABLE 9-11 Second Table (midspan stresses) for

1.P. 9-12.
Top Fiber Bottom Fiber
(psi) (psi)
T.D.L. —506 +1430
S.D.L. -109 +307
S.L.L. —204 +576

Total —-819 +2313
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are:
8 x 22,800 20.63 .
T T s < —11.13> = t272psi
8 x 22,800 20.63 .
e < +3'93> = —1993 psi

This results in a satisfactory design from an elastic design viewpoint with an
average prestress of —319 psi. The stresses at the end of the member would
have to be controlled by preventing bond on two or three tendons or deflecting
the tendons upward at the ends to reduce the eccentricity.

For this solution, the midspan flexural strength is computed as follows:

A, = 8 X 0.153 = 1.224 in.%, b = 96 in., d = 29.25 in.

1.224
= 0.000436
Pr = 96 x 29.25
0.5 x 0.000436 x 270
fs = 270(1 - 0 > = 266.0 ksi
0.000436 X 266.0
“r = 4.0

= 0.0290 < 0.30 .. underreinforced
1.4 dw, = 1.19 in. < 2.00 in.

Therefore, analyze as a rectangular beam:

s Jr
_ pslps .
a 0.85bf" 1.00 in
090A j;,s a
M — =) =702 k-ft
oM, 12 <d 2>

M, = 1.4[268.2 + 57.6] + 1.7[108.0] = 639.7 k-ft
The flexural capacity is about 10 percent greater than the minimum required.
The design shear at each reaction is:

V, = [1.4(724) + 1.7(240)]? = 42,650 Ib

42,650

“ ke T 1B T 28



Therefore, with minimum reinforcement:
ov, = 0.85(126 + 34) = 136 psi

Using eq. 6-2 converted to unit stress:

performance standards that the designer may wish to adopt.
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L1224 X270 x 12 29.25
vmin T80 X 60 X 29.25 \ 8
= 0.054 in.% /ft
_ Aufy 0.054 x 60,000 34 o5
Y= bos gx12 ™

v, = 0.6+/4000 + 700 2

=379 +

x(60 — x)

The computations for v, are summarized in Table 9-12. Note that 5 s/ﬁ = 316
psi and 2 \/f_; = 126 psi, and stirrups are not required by stress considerations.

The design should be completed by making short-and long-term deflection
studies and comparing the results to the design criteria being used, or to other

9.25(60 — 2x)
12x(60 — x)

1706 (60 — 2x)

If the designer were to elect to use a depth-to-span ratio of 1 in 30, the depth
would be 24 in. rather than 33 in., and the section properties would become:

I =12,810in.*
S, = =3793in.> r?/y,

A=
=

Yo =

500 in.?
—5.75 in.
+18.25 in.

S, = +1195in.>  r?/y,

—7.59 in.
+2.39 in.

Loads and midspan moments are as summarized in Table 9-13, and the flexural
stresses at midspan are shown in Table 9-14. Using 8 \/ﬁ tension in the bottom

TABLE 9-12 Third Table for I.P. 9-12.

X Ve Usmin. ¢ ( Ve + vs) Uy
(ft) {psi) (psi) (psi) (psi)
0 316 34 298 182
6 316 34 298 146
9 194 34 194 127
12 145 34 152 109
15 126 34 136 91
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TABLE 9-13 Fourth Table for I.P. 9-12.

Load Moment
Beam dead load 521 plf 234.4 k-ft
Superimposed dead load 128 pif 57.6 k-t
Superimposed live load 240 plf 108.0 k-ft

fiber, the required bottom-fiber prestress is —3511 psi. Assuming e = 18.25
— 4.0 =14.25in.:

_500 x —3511

1+ 14.25
2.39

P = = 252 kips

This requires 11 strands, and the average prestress in the concrete is —504 psi.
Using 12 strands spaced 2 in. on center, as shown in Fig. 9-19¢c, e = 18.25 —
5.00 = +13.25in., and:

22,800 x 12 13.25 .
fi=- 500 <1 + _7.59> = +408 psi
22,800 x 12 13.25\ )
fr=- 500 ( 2.39> = —3581 psi

This, too, is a satisfactory solution for elastic flexural stresses. The average
prestress of —547 psi is greater than the —319 psi required with a depth of 33
in.; hence, more creep deformation must be accommodated in the structure if
the 24 in. depth is used. Bond prevention or tendon deflection must be used to
control the stresses. The latter would be preferred for the 24 in. depth because
of the high bottom-fiber prestress.

TABLE 9-14 Fifth Table for I.P. 9-12.

Top Bottom

{psi) (psi)
B.D.L. —-742 +2354
S.D.L. —-182 +578
S.L.L. —342 +1085

Total —1266 +4017
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TABLE 9-15 Sixth Table for I.P. 9-12.

X Ve Us ¢(vc + Us) Uy
(ft) (psi) (psi) (psi) (psi)
0 316 63 322 260
3 316 63 322 234
6 202 63 225 208
9 139 63 172 182
12 126 63 160 156
15 126 63 160 130
18 126 63 160 104

The flexural strength computations become:

12 X 0.153
pp = 6 x 19 0.00101
Jos = 260.8 ksi
w, = 0.0656 < 0.30

1.4 dw, = 1.75 in. < 2.00 in.

a = 1.47 in.
oM, = 656 k-ft
M, = 592.4 k-ft

The flexural strength is about 11 percent greater than the minimum required.
The design shear at each reaction is 39,500 1b, and:

39,500 .
“Tgx100 0P
1.836 X 270 X 12 ,19 2
Aumin = =03 60 X 19 g = 0100 in. /ft

Using eq. 6-2 converted to unit stress:

1108(60 — 2x)

=379 +
Ve x(60 — x)

and the computations for shear stresses are as summarized in Table 9-15. As
will be seen, shear reinforcing greater than the minimum permitted is required
by stress considerations between 6 and 12 ft from the ends of the beam.

To complete the design, a deflection study should be made.
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The above example demonstrates that there is a family of acceptable designs.
One designer may prefer the deeper T-beam over the more shallow one because
of the lower average prestress, and hence lower deferred strain, as well as
because of the smaller deflections associated with deeper members. Concrete
stresses are only one design parameter that must be considered; frequently, the
designer selects a design with concrete stresses lower than the maximum
permitted under service loads.

ILLUSTRATIVE PROBLEM 9-13  Prepare the preliminary design for a simple post-
tensioned beam that is to be used on a span of 32 ft. The beam is to have a
composite concrete slab that is 5 in. thick. Superimposed dead and live loads
are 20 psf and 125 psf, respectively. The width tributary to the beam is 30 ft.
Assume the beam and slab concrete has a specified compressive strength of
4000 psi at age 28 days, and that the beam and slab are cast in place monolith-
ically. Use the allowable stresses of ACI 318.

SOLUTION:  The relatively short span and high superimposed loads will render
shear stresses an important design consideration. The loads without the beam
stem are as follows:

Slab (tributary width of 30 ft): 1875 pIf
Superimposed dead load: 600 plf
Superimposed live load: 3750 plf

The live load is greater than the dead loads; hence, a bottom flange may be
required to resist the prestressing force when the live load is not applied.

The span-depth ratio for a heavily loaded beam is generally lower than for a
lightly loaded beam. In view of these considerations, for a first trial section,
adopt a beam that has an overall depth of 2 ft (span-depth ratio of 16) and a
width of 12 in. with no bottom flange. The trial section is shown in Fig. 9-20.
The top flange width is taken to be 16 times the flange thickness plus the width
of the web. For the assumed section, the area is 688 in.2, and the moment of
inertia is 29,768 in.*. The other section properties are as follows:

y,= —648in. S, = -4594in? r?/y, = —6.68 in.
y, = +16.52in. S, = +1600in.>  r?/y, = +2.47 in.
The weight of the beam stem is 238 plf, and the midspan moments are:

Beam /slab dead load (238 + 1875)(128) = 270.5 k-ft
Superimposed dead load (600)(128) = 76.8 k-ft
Superimposed live load (3750)(128) = 480.0 k-ft

Total moment = 827.3 k-ft
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Fig. 9-20. Beam cross sections used in I.P. 9-13.

Midspan flexural stresses are summarized in Table 9-16. A review of the flexural
stresses reveals that the section will not be satisfactory because the bottom-fiber
stresses are too high for concrete having a specified strength of 4000 psi. If the
bottom flange were increased in width to 24 in., the bottom-fiber stress due to
total load should be reduced to an acceptable value and result in an acceptable
solution.

TABLE 9-16 First Table for I.P. 9-13.

Top Bottom

(psi) (psi)
Beam/slab dead load -707 +1911
Superimposed dead load —201 +542
Superimposed live load —1254 +3390

Total load -2162 +5843




446 | MODERN PRESTRESSED CONCRETE

Adding a bottom flange to the section, as shown in Fig. 9-20b, is another
alternative. With the bottom flange, the area of the section is 778 in.?, the
moment of inertia is 44,985 in.*, and other section properties become:

y, = —8.05 in. S, = —5588in.3 r%/y, = -7.18in.

Yp = +1595in. S, = +2820in> r?/y, = +3.63 in.

The additional dead load due to the bottom flange is 94 plf, and the loads and
midspan moments are:

Beam /slab dead load: 2207 plf, 282.5 k-ft
Superimposed dead load: 600 plf, 76.8 k-ft
Superimposed live load: 3750 plf, 480.0 k-ft

and the midspan flexural stresses are as summarized in Table 9-17. If tensile
stresses were used, a solution would be possible with this section, provided that
the tendon could be sufficiently eccentric to nullify the effects of dead load. The
maximum tension necessary is +3571 + (—1202 — 327 — 1800) = +242
psi. (It should be noted that 1800 psi is equal to 0.45f". for a specified concrete
compressive strength of 4000 psi.) With a tension of +242 psi and an assumed
eccentricity of +12.00 in., the prestressing force required its:

3329 x 778

1+ 12.00
3.63

= 601.5 kips

and the average compressive stress in the concrete due to prestress is —773 psi.
This value of average prestress is not unrealistic but would cause significant
creep deformation.

A shear analysis for the member, based upon £, = 60,000 psi and a parabolic
path for the tendon (e = +12.00 in. at midspan), is summarized in Table
9-18. A review of this table will show that the 12-in.-thick web results in only
minimum shear reinforcement being required. Hence, the web thickness could
be reduced if the designer so desired.

TABLE 9-17 Second Table for I.P. 9-13.

Top Bottom

{psi) (psi)
Beam/slab dead load -607 +1202
Superimposed dead load ~165 +327
Superimposed live load —1031 +2042

Total load +1803 -3571
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TABLE 9-18 Summary of Shear Stresses, I.P. 9-13.

Length Ui Vew v v, A,
Pt. (ft) (psi) {psi) (psi) (psi) (in.2/ft)
.00 .000 infin 779.0 779.0 841.8 0.2419
.05 1.600 1303.7 747.0 747.0 757.7 .1200
.10 3.200 870.8 714.3 714.3 673.5 .1200
.15 4.800 682.6 681.7 681.7 589.3 .1200
.20 6.400 555.4 649.1 555.4 505.1 .1200
.25 8.000 452.3 616.4 452.3 420.9 .1200
.30 9.600 361.0 583.8 361.0 336.7 1200
.35 11.200 276.2 551.2 276.2 252.5 .1200
.40 12.800 192.1 517.3 192.1 165.1 1200
45 14,400 113.2 484.7 113.2 81.1 1200
.50 16.000 379 453.3 107.5 000.0 1200

The cost of forming the bottom flange, and the added costs of placing
reinforcing steel stirrups in a beam of this shape, are barriers to the adoption of
this section as a final one.

Rather than adding the bottom flange, another solution would be to increase
the depth of the beam.

Still another solution would be to increase the depth as well as the stem
width. Increasing the depth to 32 in. and increasing the stem width to 16 in.
will be the basis for another trial. Using a top flange width of 8 ft (L/4), the
area and moment of inertia of the section are 912 in.” and 85,450 in.*, respec-
tively, and the other properties needed for flexural stress computations are:

yo=—1008in. 5, = -8477in> r*/y, = -9.30 in.
o = +21.92in. S, = +3898in.>  rZ/y,

+4.27 in.

The midspan stresses become as shown in Table 9-19.

An examination of these stresses will show that the superimposed dead and
live loads cause a bottom-fiber stress of +1713 psi. Hence, tensile stresses can
be avoided with the solution, if so desired. It also should be apparent that the
height or thickness of the stem could be reduced if that is desired.

TABLE 9-19 Fourth Table for 1.P. 9-13.

Top Bottom

(psi) (psi)
Beam/slab dead load -421 +916
Superimposed dead load -109 +236
Superimposed live load -679 +1477

Total load -1209 +2629
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The prestressing force required can be determined for the case of zero tension
by:

M; 8544 X 12
e+r’)y, 17.92 +4.27

in whiche = +21.92 — 4.00 = +17.92 in.
This solution can be checked as follows

462,000 17.92 .
= - <1+ >=+47Ops1

P, = = 462.0 kips

912 -9.30
462,000 17.92 .
fro=- 12 <1 + 4.27> = —2633 psi

If one wished to permit tensile stresses under full load, the prestressing force
could be reduced.

For a tensile stress of 6~/f—g = 379 psi, the prestressing force can be deter-
mined from eq. 4-4 as follows:

912 x (—2629 + 379) )
P = 1792 = 394.9 kips

—-4.27

To complete the design, one must investigate short-and long-term deflec-
tions, design the shear reinforcement, and confirm the adequacy of the flexural
strength.

9-9 Shear Reduction Due to Parabolic Tendon Curvature

In Sec. 4-6, it was shown that the curvature of prestressing tendons results in a
reduction in the shear force that the concrete must withstand. Furthermore, it
was shown that this reduction is equal to the vertical component of the
prestressing force at the point under consideration. The vertical component of
the prestressing force is equal to P sin «, in which « is the angle of inclination
of the tangent to the prestressing tendon, with respect to the centroidal axis of
the member, at the point under consideration.

Because the angle is small in almost all instances, the sine and tangent are
practically equal. Hence, the tangent can be used in computing the vertical
component of the prestressing force without introducing significant error.

The computation of the tangent of the angle of inclination for tendons placed
on a series of chords is basic and requires no explanation. For tendons on second-
degree parabolic curves, the computation of the tangent of the angle of incli-
nation is equally simple if the properties of a parabola are understood.



DESIGN EXPEDIENTS AND COMPUTATION METHODS | 449

¢ of support .
L Midspan of beam

Nt~

\ Tendon path -

> LTangent to
Tangent to tendon at /\
the ¢ of support tendon at ¢

~_of beam

~
~

et

Fig. 9-21. Diagram of fundamental properties of a parabola.

A parabola is shown in Fig. 9-21 with the dimensions and tangents that are
most important in the analysis of prestressing shear forces. It will be seen from
the figure that the tangent to the parabola at the centerline of the support is
inclined at an angle of « to the reference line parallel to the centroidal axis of
the member, and that the tangent of the angle « is equal to:

2
tanaq = — = — (9-10)

The dimension E is the total displacement of the prestressing force and is equal
to the normal eccentricity of the force only when the eccentricity of the
prestressing force is zero at the ends. The units of E and L must be the same.

It is apparent from the freebody diagram of Fig. 9-22, in which the forces
that act on the concrete as a result of prestressing with a parabolic tendon are
shown, that the vertical component of the prestressing force results in a
uniformly distributed upward load on the beam. It also should be apparent that
the internal shear forces resulting from the vertical component of the prestressing
force vary uniformly from a maximum value at the support to zero at midspan.
Hence, the vertical component of the shear stress carried by the tendon at points
between the end and the midspan of the beam can be determined by the following
relationship:
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L/2 —x

Psina = Psin a X
sin o sin L2

(9-11)
in which x is the distance from the support to the point under consideration.

Although the relationships presented here are derived for tendons placed on
second-degree parabolic paths, they normally can be applied to tendons placed
on other curves without introducing significant error. If the displacement of a
tendon is very large in comparison to the span, as is sometimes the case in post-
tensioned folded plates or shells, it is advisable to compute the reduction in
shear using the sine of the angle at the point under consideration as determined
from the tendon layout.

An example of the computation of the shear component for a tendon on a
second-degree parabolic curve is given in I.P. 4-10.

9-10 Locating of Pretensioning Tendons

The selection of the location or pattern of the pretensioning tendons must be
made after the cross-section shape, the prestressing force, and the eccentricity
have been determined. This is done by trial, and generally can be accomplished
quickly if the computations are made according to a specific procedure. The
procedure consists of first determining the number of tendons required, by
dividing the required effective prestressing force by the maximum allowable
effective prestressing force for one tendon. Second, the positions of the required
number of tendons are determined by computing moments of the tendons at
assumed locations, which are adjusted and readjusted as required until the
centroid of the tendons is at the desired location. The procedure can be illus-
trated by the sketch of Fig. 9-23, which represents the cross section of a beam
that requires N tendons placed with their centroid at a distance d' from the
bottom of the beam. If n,, n,, ns, . . . n, represent the number of tendons in
the first, second, third, and nth rows from the bottom of the beam, and y,, y,,
Y3, . - . Y, represent the distances from these rows to the bottom of the beam,

Psina Uniformly distributed load acting upward; ¢ Beam

——
Pcos o J—

Le— ¢ Support

Nt~

?ig. 9-22. Freebody diagram of the forces exerted on a beam prestressed by a tendon
having a second-degree parabolic path.
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Fig. 9-23. End elevation of a pretensioned concrete beam.

it is apparent that in order to obtain the desired location, the following relation-
ship must be satisfied:

Nd =2 (yiny + yonp + y3n3 + .. . y,n,) (9-12)

Because the values of N and d’ are known, the majority of the tendons can be
located, and the value of the term to the right of the equals sign adjusted to the
desired value with the remaining tendons.

It is apparent that the majority of the tendons will be near the bottom of the
member in order to achieve the required eccentricity. It is desirable that some
tendons be supplied near the top of most members for the purpose of supporting
the reinforcing, inserts, and other embedded items. This frequently can be done
with the required number of tendons, without supplying additional tendons
specifically for this purpose.

In tendon patterns that have some tendons high in the section, the upper
tendons should be disregarded in computing the flexural strength of the section.
The distance to the centroid of the lower group of tendons, which would be
highly stressed at ultimate load, should be determined for use in calculating the
ultimate moment capacity.

ILLUSTRATIVE PROBLEM 9-14 Compute the location of the tendons required
to produce a prestressing force of 538 k at an eccentricity of +11.9. in. in the
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Fig. 9-24. End elevation of pretensioned concrete beam, showing tentative tendon
layout, I.P. 9-14.

AASHTO-PCI bridge beam, type III, if the tendons to be used have an effective
force of 11 k each, and y, = +20.3 in.

SOLUTION:  The number of tendons required is computed as 538 /11 = 49
each. The distance from the soffit of the beam to the center of gravity of the
steel is computed as d’ = 20.3 — 11.9 = 8.4 in., and Nd’' = 49 X 8.4 = 412.
The summation of the moments of the tendons in their final location should
equal 412. Forty-five of the tendons are tentatively positioned as shown in Fig.
9-24, and the moment of the tendons computed about the bottom of the section
is equal to 278. Therefore, the remaining four tendons must have an average
distance from the bottom of the beam equal to:

_ 412 - 278

Yaverage = 7 = 33.5in.
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This average distance is of the order of 75 percent of the depth of the beam,
and it appears that the tendon layout should be adjusted in order to include one
more tendon in the bottom group. Therefore, the pattern is revised by increasing
the number of tendons in the sixth row, from the bottom of the second, to 5
and reducing the number of tendons in the seventh row, to 2. The moment of
the 45 tendons in the revised tendon pattern is 287.25. The average distance
required for the three remaining tendons is computed as follows:

412 — 287.25
Yavermge = — 7 = 41.5 in.

3

The final tendon layout is illustrated in Fig. 9-25. The values of d' and 4,
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Fig. 9-25. End elevation of pretensioned concrete beam, showing final tendon layout,
I.P. 9-14.
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are computed as follows:

, 41175 .
d = 9 - 8.40 in.
5
d, = % = 6.25 in.

The flexural strength should be computed on the basis of the lowest 46 tendons
having their center of gravity located 6.25 in. from the soffit of the beam.

9-11 Stresses at Ends of Prismatic Beams

In employing bond prevention or in using nonprestressed reinforcing as a means
of controlling the stresses resulting from initial prestress at the end of a beam,
it is necessary to analyze the flexural stresses resulting from the dead weight of
the beam near its end. This is needed to determine the limits over which the
bond must be prevented or over which the special end reinforcement should be
provided. This can be done by using the fundamental principles of strength of
materials through the use of factors selected from unit parabolic curves, or by
computing the location of the required dead load stresses through the use of the
known properties of parabolas. These methods should yield identical results.
The use of the latter method is shown in the following problem.

ILLUSTRATIVE PROBLEM 9-15 Compute the length over which nonprestressed
reinforcing is required at the ends of a simple prismatic beam in which the top-
fiber stresses due to initial prestressing are equal to +360 psi, and the maximum,

¢ Beam
iy
I
1
¢ Support = -~
R
x L/Z - X
L

Fig. 9-26. Diagram used to compute stresses at different locations along the length of
a beam having a parabolic moment diagram, I.P. 9-15.
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allowable tensile stress without nonprestressed reinforcing is +190 psi. The
stress in the top fibers at midspan of the beam due to dead load alone is —730
psi. The beam has a span of 70 ft.

SOLUTION:  The stress due to dead load in the top fiber varies parabolically,
as shown in Fig. 9-26. It is necessary to determine the distance from the end
of the beam, where the top-fiber stress is 360 — 190 = 170 psi, because at this
location the net concrete stress will be +190 psi, which can be allowed without
nonprestressed reinforcement. The ordinates of the parabola vary according to

the relationship:
L/2 —x\
fmidspan - .f;c = <“‘_L—/_2—> fmidspan

y = E [1 _ fmidspan —ft szl
2 fmidspan

Using the values given in the example:

730 — 170 ‘/2}
x—35[1 —< 730 >

=35x0.125 =437 ft

which can be written:

9-12 Length of Bond Prevention

When the initial prestressing stresses at the ends of a simple pretensioned beam
exceed the allowable stresses, the effect of the prestressing can be reduced by
preventing bond on a specific number of tendons over a specific length, as is
explained in detail in Sec. 8-7. The length over which the bond must be
prevented can be computed according to the methods suggested in Sec. 9-11.
The number and location of tendons that should be prevented from bonding to
the concrete can be determined by computing the effect of one tendon in each
of the lower rows of the tendon pattern and then, by trial, determining the
number of tendons in each row that should be prevented from bonding to the
concrete.

ILLUSTRATIVE PROBLEM 9-16  The double-tee beam shown in Fig. 9-27 has a
simple span of 64.3 feet and is pretensioned with nine strands, each of which
has an area of 0.153 in.?, in each leg. The strands, which are placed in three
rows of three strands in each leg, have 2-in. center-to-center spacings, vertically
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Fig. 9-27. Cross section of double-tee beam used in |.P. 9-16.

and horizontally, with the centroid of the nine-strand groups being located 4 in.
above the soffits of the legs. The prestressed reinforcement has a minimum
guaranteed ultimate tensile strength of 270 ksi, a jacking stress of 189 ksi, and
an effective prestress of 154 ksi. The normal-weight concrete in the double-tee
beam and the sand-lightweight concrete in the topping (115 pcf) have specified
compressive strengths of 5000 and 3500 psi, respectively. Compute the distance
over which bond must be prevented if the double-tee beam has a dead load of
671 plf,, and the allowable initial compressive and tensile stresses in the concrete
are —2100 and +177 psi, respectively. Assume that the ratio of the elastic
moduli of the prestressed reinforcement and the concrete, n, at the time of
prestressing, is 14.0. The area of the double-tee beam is 840 in.%, and the
moment of inertia is 43,759 in.*. The section properties needed for the compu-
tation of flexural stresses are:

y, = —7.175 in. S, = —6098in> r?/y, = =7.26in.
+16.825in. S, = +2600in.>  r?/y, = +3.10 in.

b

soLuTION:  For 18 strands, 4,, = 2.754 in.2, e = +12.825 in., and from eq.
7-3:
(12.825)’(840)

3159 416

ko= 1+

Using eq. 7-2 with M, expressed in kip-ft:
£o= 2165 — 2.954M,
& 1000.4
and for 12 strands, 4,, = 1.836 in2, e = +11.825in., k, = 3.68, and:

1277 — 2.724M,

Joss = 934.6
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The stress in the prestressing steel after elastic shortening, f;, is:

f:vi = fsj - nfcgs

The initial concrete stresses in the top and bottom fibers, respectively, are:

f _ _f:viAps 1 + eplyt " 12Md
! A r? S,
and:
f:viAps eplyb 12Md
= - 1+ +
‘ﬁ) A r2 > Sb

The computations are summarized in Table 9-20. The results at the 20th
points (from the support to midspan) as well as at 6 and 7 ft from the support
are given for 18 strands; for 12 strands, the results are given at the support and
at 2 ft from the support. Because the transmission length for 3-in. strands is on
the order of 25 in., the 12 strands can be bonded full length without exceeding
the permissible stresses. All 18 strands can be fully bonded at 7 ft from the end
without the stresses being excessive; in consideration of the transmission length,

TABLE 9-20 Table for I.P. 9-15.

Distance
from End M, €ps €y fogs. f, f, fy P;
(f1) (k-ft) (in.) (in.) (ksi)  (ksi)  (ksi) (ksi) (k)
0.000 000 +12.825 +12.825 —2.163 +.398 —2.675 158713 437.097
3215  65.888 +12.825 +12.825 —1.968 +.276 —2.417 161.438 444.600
6,430  124.840 +12.825 +12.825 —1.794 +.166 —2.186 163.875 451313
2| 9645  176.857 +12.825 +12.825 —1.640 +.069 —1.983 166.026 457.236
_e | 12.860 221939 +12.825 +12.825 -1507 ~-.014 ~—1.806 167.890 462.370
€2 | 16075  260.085 +12.825 +12.825 ~-1.395 —.085 ~—1657 169.467 466.713
E3 | 19290 291205 +12.825 +12.825 -1302 —.144 —1.534 170758 470.267
B | 22505 315570 +12.825 +12.825 —1.231 —.189 —1439 171761 473.031
20| 25720 332.900 +12.825 +12.825 —1.180 —.221 —1.371 172.478 475.006
&| 28935 343312 +12.825 +12.825 -1.149 -241 -—1331 172908 476.191
32.150 346780 +12.825 +12.825 —1.139 —.247 ~—1.317 173.052 476.585
0.000 000 +12.825 +12.825 —2.163 +.398 —2.675 158.713 437.097
6.000 117.400 +12.825 +12.825 —1.816 +.180 —2215 163.567 450.465
7000  134.600 +12.825 +12.825 —1.765 +.147 —2.148 164279 452.424
£
.
o
£
v
o
=V 0.000 000 +11.825 +11.825 —1.367 +.233 —1.789 169.851 311.847
<] 2000 41800 +11.825 +11.825 -1245 +.153 —1.614 17155 314.978
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TABLE 9-21 Table for I.P. 9-16.

Bottom Slab Moment of
20th Thickness Area Inertia Yo Weight
Pt. (in.) (sq. in.}) (in.%) v, (in.) {in.) (plf)
0.00 12.000 9744.5 8847614 —40.7 373 10,150
0.05 10.438 9313.4 8543251 -39.5 38.5 9,700
0.10 8.875 8882.0 8169629 -38.1 39.9 9,250
0.15 7.313 8450.1 7714397 -36.5 41.5 8,800
0.20 5.750 8019.5 7161480 —34.6 43.4 8,350

the bottom 6 strands can be prevented from bonding to the concrete for 5 ft at
each end.

ILLUSTRATIVE PROBLEM 9-17 A continuous cast-in-place post-tensioned
bridge is to have the cross section shown in Example IV of Appendix B.
Assuming that the bottom slab thickness varies linearly from 5.75 in. to 12 in.
over a length equal to 0.20 times the span length, compute the gross section
properties for the cross section at the 20th points between 0 and 0.20L.

SOLUTION:  The results of the computations are summarized in Table 9-21.

REFERENCE
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10 | Flexural
Continuity

10-1 Introduction

Continuity is provided in the construction of prestressed concrete buildings,
bridges, and other structures for the same basic reasons that it is used with other
materials, including savings in construction materials and reductions in
construction costs. Of perhaps greater importance are the advantages of
improved performance under service and design loads as a result of smaller
deflections, increased redundancy, and, in some cases, improved performance
under dynamic loads. Because these benefits are approximately the same for
structural elements made with prestressed concrete and those made with other
materials used in comparable applications, they will not be discussed in detail
in this book.

Continuous prestressed members, whether made of concrete or of another
structural material, have a unique characteristic that the structural engineer must
not overlook, involving the moments, shear forces, and reactions that result
from the prestressing itself. A continuous prestressed flexural member, if free
to deform (i.e., unrestrained by its supports), deforms axially and most
frequently deflects transversely from its original shape. If the transverse deflec-
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tions due to prestressing are restrained by the supports, moments and shear
forces are created as a result of the restraint. The moments induced in the
continuous members by the restraint of the transverse deformations are often
referred to as the secondary moments (and secondary shear forces) due to
prestressing or, more simply, the secondary moments, and the reactions at the
supports that are created by restraining the deformations are often referred
to as secondary reactions due to prestressing or, more simply, the reactions
due to prestressing. Methods of determining the secondary effects, using the
classical methods of analysis for indeterminate structures, are illustrated in
this chapter.

The inelastic deformations of structural elements made from materials that
are subject to time-dependent deformations, such as concrete, can be an impor-
tant consideration in some prestressed-concrete continuous members. For stati-
cally indeterminate concrete flexural members constructed monolithically in a
topology (configuration) that remains unchanged throughout their useful lives,
the inelastic behavior of the concrete does not affect the internal moments and
shear forces, except for the effect of the loss of prestress. On the other hand, a
member initially constructed in a topology that is subsequently changed to
another can experience significant time-dependent changes in its internal
moments and shear forces. This change can be greater than those due to the
loss of prestress alone. The time-dependent changes result from inelastic defor-
mations of the concrete that tend to make the member behave as it would have
done if it had been originally constructed in the final topology. This consider-
ation is discussed in detail in Sec. 10-9.

There are many different ways of configuring continuous prestressed concrete
beams and frames. Cast-in-place and precast concrete construction both are used
effectively in the construction of continuous beams and frames. It is not possible
to discuss all of the possible configurations in a book such as this. The reader
should be aware that the structural configurations found to be economical in the
construction of continuous bridges vary greatly from one region of the country
to another, and the same is true for building construction. Some of the types of
continuous beams used in bridge and building construction are described in
Chapters 13 and 14. The reader can find much more information on these
subjects through publications of numerous local and national trade associations
related to the concrete construction industry.

Many engineers have the impression that continuous prestressed structures
are difficult to design and analyze because of the moments that result from the
deformation of the structure during prestressing. As will be seen in the following
discussion, except for structures constructed by using methods that involve
changes in the topology of the structure, the analysis of continuous prestressed
structures is not particularly complex and involves only familiar principles used
in the analysis of elastic statically indeterminate structures.
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10-2 Elastic Analysis with Straight Tendons

The moment due to dead and live loads in an indeterminate prestressed-concrete
structure are calculated by using the same classical methods employed in
analyzing statically indeterminate structures composed of other materials. The
one significant difference in a prestressed structure is that secondary moments
may or may not result from the prestressing. These moments, which are due to
deformation of the structure, also are calculated by the usual methods of indeter-
minate analysis. In most areas of structural design, the term secondary moments
denotes undesirable moments that must be avoided if possible. In prestressed
concrete design, the secondary moments are not always undesirable, and more
often than not they cannot be avoided. It is essential that the designer be aware
that such moments do exist and that they must be included in the design of
statically indeterminate prestressed structures.

In the design and analysis of continuous prestressed concrete beams, the
following assumptions generally are made:

1. The concrete acts as an elastic material within the range of stresses
permitted in the design.

2. Plane sections remain plane.

3. The effects of each cause of moments can be calculated independently and
superimposed to attain the result of the combined effect of the several
causes (the principle of superposition).

4. The effect of friction on the prestressing force is small and can be
neglected.

5. The eccentricity of the prestressing force is small in comparison to the
span, and, hence, the horizontal co