
http://www.cambridge.org/9780521877527

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

This page intentionally left blank

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

Computability and Logic, Fifth Edition

Computability and Logic has become a classic because of its accessibility to students with-

out a mathematical background and because it covers not simply the staple topics of an

intermediate logic course, such as Gödel’s incompleteness theorems, but also a large num-

ber of optional topics, from Turing’s theory of computability to Ramsey’s theorem. This fifth

edition has been thoroughly revised by John P. Burgess. Including a selection of exercises,

adjusted for this edition, at the end of each chapter, it offers a new and simpler treatment

of the representability of recursive functions, a traditional stumbling block for students on

the way to the Gödel incompleteness theorems. This new edition is also accompanied by a

Web site as well as an instructor’s manual.

“[This book] gives an excellent coverage of the fundamental theoretical results about logic

involving computability, undecidability, axiomatization, definability, incompleteness, and

so on.”

– American Math Monthly

“The writing style is excellent: Although many explanations are formal, they are perfectly

clear. Modern, elegant proofs help the reader understand the classic theorems and keep the

book to a reasonable length.”

– Computing Reviews

“A valuable asset to those who want to enhance their knowledge and strengthen their ideas

in the areas of artificial intelligence, philosophy, theory of computing, discrete structures,

and mathematical logic. It is also useful to teachers for improving their teaching style in

these subjects.”

– Computer Engineering

i

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

ii

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

Computability and Logic

Fifth Edition

GEORGE S. BOOLOS

JOHN P. BURGESS

Princeton University

RICHARD C. JEFFREY

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87752-7

ISBN-13 978-0-521-70146-4

ISBN-13 978-0-511-36668-0

© George S. Boolos, John P. Burgess, Richard C. Jeffrey 1974, 1980, 1990, 2002, 2007

2007

Information on this title: www.cambridge.org/9780521877527

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-36668-X

ISBN-10 0-521-87752-0

ISBN-10 0-521-70146-5

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521877527

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

For
SALLY

and
AIGLI

and
EDITH

v

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

vi

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

Contents

Preface to the Fifth Edition page xi

COMPUTABILITY THEORY

1 Enumerability 3

1.1 Enumerability 3

1.2 Enumerable Sets 7

2 Diagonalization 16

3 Turing Computability 23

4 Uncomputability 35

4.1 The Halting Problem 35

4.2 The Productivity Function 40

5 Abacus Computability 45

5.1 Abacus Machines 45

5.2 Simulating Abacus Machines by Turing Machines 51

5.3 The Scope of Abacus Computability 57

6 Recursive Functions 63

6.1 Primitive Recursive Functions 63

6.2 Minimization 70

7 Recursive Sets and Relations 73

7.1 Recursive Relations 73

7.2 Semirecursive Relations 80

7.3 Further Examples 83

8 Equivalent Definitions of Computability 88

8.1 Coding Turing Computations 88

8.2 Universal Turing Machines 94

8.3 Recursively Enumerable Sets 96

vii

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

viii CONTENTS

BASIC METALOGIC

9 A Précis of First-Order Logic: Syntax 101

9.1 First-Order Logic 101

9.2 Syntax 106

10 A Précis of First-Order Logic: Semantics 114

10.1 Semantics 114

10.2 Metalogical Notions 119

11 The Undecidability of First-Order Logic 126

11.1 Logic and Turing Machines 126

11.2 Logic and Primitive Recursive Functions 132

12 Models 137

12.1 The Size and Number of Models 137

12.2 Equivalence Relations 142

12.3 The Löwenheim–Skolem and Compactness Theorems 146

13 The Existence of Models 153

13.1 Outline of the Proof 153

13.2 The First Stage of the Proof 156

13.3 The Second Stage of the Proof 157

13.4 The Third Stage of the Proof 160

13.5 Nonenumerable Languages 162

14 Proofs and Completeness 166

14.1 Sequent Calculus 166

14.2 Soundness and Completeness 174

14.3 Other Proof Procedures and Hilbert’s Thesis 179

15 Arithmetization 187

15.1 Arithmetization of Syntax 187

15.2 Gödel Numbers 192

15.3 More Gödel Numbers 196

16 Representability of Recursive Functions 199

16.1 Arithmetical Definability 199

16.2 Minimal Arithmetic and Representability 207

16.3 Mathematical Induction 212

16.4 Robinson Arithmetic 216

17 Indefinability, Undecidability, Incompleteness 220

17.1 The Diagonal Lemma and the Limitative Theorems 220

17.2 Undecidable Sentences 224

17.3 Undecidable Sentences without the Diagonal Lemma 226

18 The Unprovability of Consistency 232

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

CONTENTS ix

FURTHER TOPICS

19 Normal Forms 243

19.1 Disjunctive and Prenex Normal Forms 243

19.2 Skolem Normal Form 247

19.3 Herbrand’s Theorem 253

19.4 Eliminating Function Symbols and Identity 255

20 The Craig Interpolation Theorem 260

20.1 Craig’s Theorem and Its Proof 260

20.2 Robinson’s Joint Consistency Theorem 264

20.3 Beth’s Definability Theorem 265

21 Monadic and Dyadic Logic 270

21.1 Solvable and Unsolvable Decision Problems 270

21.2 Monadic Logic 273

21.3 Dyadic Logic 275

22 Second-Order Logic 279

23 Arithmetical Definability 286

23.1 Arithmetical Definability and Truth 286

23.2 Arithmetical Definability and Forcing 289

24 Decidability of Arithmetic without Multiplication 295

25 Nonstandard Models 302

25.1 Order in Nonstandard Models 302

25.2 Operations in Nonstandard Models 306

25.3 Nonstandard Models of Analysis 312

26 Ramsey’s Theorem 319

26.1 Ramsey’s Theorem: Finitary and Infinitary 319

26.2 König’s Lemma 322

27 Modal Logic and Provability 327

27.1 Modal Logic 327

27.2 The Logic of Provability 334

27.3 The Fixed Point and Normal Form Theorems 337

Annotated Bibliography 341

Index 343

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

x

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

Preface to the Fifth Edition

The original authors of this work, the late George Boolos and Richard Jeffrey, stated in the

preface to the first edition that the work was intended for students of philosophy, mathe-

matics, or other fields who desired a more advanced knowledge of logic than is supplied by

an introductory course or textbook on the subject, and added the following:

The aim has been to present the principal fundamental theoretical results about logic, and to

cover certain other meta-logical results whose proofs are not easily obtainable elsewhere. We

have tried to make the exposition as readable as was compatible with the presentation of complete

proofs, to use the most elegant proofs we knew of, to employ standard notation, and to reduce

hair (as it is technically known).

Such have remained the aims of all subsequent editions.

The “principal fundamental theoretical results about logic” are primarily the theorems of

Gödel, the completeness theorem, and especially the incompleteness theorems, with their

attendant lemmas and corollaries. The “other meta-logical results” included have been of

two kinds. On the one hand, filling roughly the first third of the book, there is an extended

exposition by Richard Jeffrey of the theory of Turing machines, a topic frequently alluded

to in the literature of philosophy, computer science, and cognitive studies but often omitted

in textbooks on the level of this one. On the other hand, there is a varied selection of

theorems on (in-)definability, (un-)decidability, (in-)completeness, and related topics, to

which George Boolos added a few more items with each successive edition, until by the

third, the last to which he directly contributed, it came to fill about the last third of the book.

When I undertook a revised edition, my special aim was to increase the pedagogical

usefulness of the book by adding a selection of problems at the end of each chapter and by

making more chapters independent of one another, so as to increase the range of options

available to the instructor or reader as to what to cover and what to defer. Pursuit of the latter

aim involved substantial rewriting, especially in the middle third of the book. A number of

the new problems and one new section on undecidability were taken from Boolos’s Nach-
lass, while the rewriting of the précis of first-order logic – summarizing the material typically

covered in a more leisurely way in an introductory text or course and introducing the more

abstract modes of reasoning that distinguish intermediate- from introductory-level logic –

was undertaken in consultation with Jeffrey. Otherwise, the changes have been my respon-

sibility alone.

The book runs now in outline as follows. The basic course in intermediate logic culmi-

nating in the first incompleteness theorem is contained in Chapters 1, 2, 6, 7, 9, 10, 12, 15,

16, and 17, minus any sections of these chapters starred as optional. Necessary background

xi

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

xii PREFACE TO THE FIFTH EDITION

on enumerable and nonenumerable sets is supplied in Chapters 1 and 2. All the material

on computability (recursion theory) that is strictly needed for the incompletness theorems

has now been collected in Chapters 6 and 7, which may, if desired, be postponed until after

the needed background material in logic. That material is presented in Chapters 9, 10, and

12 (for readers who have not had an introductory course in logic including a proof of the

completeness theorem, Chapters 13 and 14 will also be needed). The machinery needed

for the proof of the incompleteness theorems is contained in Chapter 15 on the arithme-

tization of syntax (though the instructor or reader willing to rely on Church’s thesis may

omit all but the first section of this chapter) and in Chapter 16 on the representability of

recursive functions. The first completeness theorem itself is proved in Chapter 17. (The

second incompleteness theorem is discussed in Chapter 18.)

A semester course should allow time to take up several supplementary topics in addition

to this core material. The topic given the fullest exposition is the theory of Turing machines

and their relation to recursive functions, which is treated in Chapters 3 through 5 and 8 (with

an application to logic in Chapter 11). This now includes an account of Turing’s theorem

on the existence of a universal Turing machine, one of the intellectual landmarks of the last

century. If this material is to be included, Chapters 3 through 8 would best be taken in that

order, either after Chapter 2 or after Chapter 12 (or 14).

Chapters 19 through 21 deal with topics in general logic, and any or all of them might

be taken up as early as immediately after Chapter 12 (or 14). Chapter 19 is presupposed by

Chapters 20 and 21, but the latter are independent of each other. Chapters 22 through 26, all

independent of one another, deal with topics related to formal arithmetic, and any of them

could most naturally be taken up after Chapter 17. Only Chapter 27 presupposes Chapter 18.

Users of the previous edition of this work will find essentially all the material in it still here,

though not always in the same place, apart from some material in the former version of

Chapter 27 that has, since the last edition of this book, gone into The Logic of Provablity.

All these changes were made in the fourth edition. In the present fifth edition, the main

change to the body of the text (apart from correction of errata) is a further revision and

simplification of the treatment of the representability of recursive functions, traditionally one

of the greatest difficulties for students. The version now to be found in section 16.2 represents

the distillation of more than twenty years’ teaching experience trying to find ever easier ways

over this hump. Section 16.4 on Robinson arithmetic has also been rewritten. In response

to a suggestion from Warren Goldfarb, an explicit discussion of the distinction between

two different kinds of appeal to Church’s thesis, avoidable and unavoidable, has been

inserted at the end of section 7.2. The avoidable appeals are those that consist of omitting

the verification that certain obviously effectively computable functions are recursive; the

unavoidable appeals are those involved whenever a theorem about recursiveness is converted

into a conclusion about effective computability in the intuitive sense.

On the one hand, it should go without saying that in a textbook on a classical subject,

only a small number of the results presented will be original to the authors. On the other

hand, a textbook is perhaps not the best place to go into the minutiæ of the history of a field.

Apart from a section of remarks at the end of Chapter 18, we have indicated the history of

the field for the student or reader mainly by the names attached to various theorems. See

also the annotated bibliography at the end of the book.

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

PREFACE TO THE FIFTH EDITION xiii

There remains the pleasant task of expressing gratitude to those (beyond the dedicatees)

to whom the authors have owed personal debts. By the third edition of this work the

original authors already cited Paul Benacerraf, Burton Dreben, Hartry Field, Clark Glymour,

Warren Goldfarb, Simon Kochen, Paul Kripke, David Lewis, Paul Mellema, Hilary Putnam,

W. V. Quine, T. M. Scanlon, James Thomson, and Peter Tovey, with special thanks to Michael

J. Pendlebury for drawing the “mop-up” diagram in what is now section 5.2.

In connection with the fourth edition, my thanks were due collectively to the students

who served as a trial audience for intermediate drafts, and especially to my very able

assistants in instruction, Mike Fara, Nick Smith, and Caspar Hare, with special thanks to

the last-named for the “scoring function” example in section 4.2. In connection with the

present fifth edition, Curtis Brown, Mark Budolfson, John Corcoran, Sinan Dogramaci,

Hannes Eder, Warren Goldfarb, Hannes Hutzelmeyer, David Keyt, Brad Monton, Jacob

Rosen, Jada Strabbing, Dustin Tucker, Joel Velasco, Evan Williams, and Richard Zach are

to be thanked for errata to the fourth edition, as well as for other helpful suggestions.

Perhaps the most important change connected with this fifth edition is one not visible

in the book itself: It now comes supported by an instructor’s manual. The manual contains

(besides any errata that may come to light) suggested hints to students for odd-numbered

problems and solutions to all problems. Resources are available to students and instructors

at www.cambridge.org/us/9780521877527.

January 2007 JOHN P. BURGESS

P1: FhN

CY186-FM CB421-Boolos July 15, 2007 3:5 Char Count= 0

xiv

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

Computability Theory

1

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

2

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

1

Enumerability

Our ultimate goal will be to present some celebrated theorems about inherent limits on
what can be computed and on what can be proved. Before such results can be established,
we need to undertake an analysis of computability and an analysis of provability. Com-
putations involve positive integers 1, 2, 3, . . . in the first instance, while proofs consist of
sequences of symbols from the usual alphabet A, B, C, . . . or some other. It will turn out
to be important for the analysis both of computability and of provability to understand
the relationship between positive integers and sequences of symbols, and background
on that relationship is provided in the present chapter. The main topic is a distinction
between two different kinds of infinite sets, the enumerable and the nonenumerable. This
material is just a part of a larger theory of the infinite developed in works on set theory:
the part most relevant to computation and proof. In section 1.1 we introduce the concept
of enumerability. In section 1.2 we illustrate it by examples of enumerable sets. In the
next chapter we give examples of nonenumerable sets.

1.1 Enumerability

An enumerable, or countable, set is one whose members can be enumerated: arranged

in a single list with a first entry, a second entry, and so on, so that every member of

the set appears sooner or later on the list. Examples: the set P of positive integers is

enumerated by the list

1, 2, 3, 4, . . .

and the set N of natural numbers is enumerated by the list

0, 1, 2, 3, . . .

while the set P− of negative integers is enumerated by the list

−1, −2, −3, −4,

Note that the entries in these lists are not numbers but numerals, or names of

numbers. In general, in listing the members of a set you manipulate names, not the

things named. For instance, in enumerating the members of the United States Senate,

you don’t have the senators form a queue; rather, you arrange their names in a list,

perhaps alphabetically. (An arguable exception occurs in the case where the members

3

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

4 ENUMERABILITY

of the set being enumerated are themselves linguistic expressions. In this case we can

plausibly speak of arranging the members themselves in a list. But we might also speak

of the entries in the list as names of themselves so as to be able to continue to insist

that in enumerating a set, it is names of members of the set that are arranged in a list.)

By courtesy, we regard as enumerable the empty set, ∅, which has no members.

(The empty set; there is only one. The terminology is a bit misleading: It suggests

comparison of empty sets with empty containers. But sets are more aptly compared

with contents, and it should be considered that all empty containers have the same,

null content.)

A list that enumerates a set may be finite or unending. An infinite set that is

enumerable is said to be enumerably infinite or denumerable. Let us get clear about

what things count as infinite lists, and what things do not. The positive integers can be

arranged in a single infinite list as indicated above, but the following is not acceptable

as a list of the positive integers:

1, 3, 5, 7, . . . , 2, 4, 6, . . .

Here, all the odd positive integers are listed, and then all the even ones. This will not

do. In an acceptable list, each item must appear sooner or later as the nth entry, for

some finite n. But in the unacceptable arrangement above, none of the even positive

integers are represented in this way. Rather, they appear (so to speak) as entries

number ∞ + 1, ∞ + 2, and so on.

To make this point perfectly clear we might define an enumeration of a set not as a

listing, but as an arrangement in which each member of the set is associated with one

of the positive integers 1, 2, 3, Actually, a list is such an arrangement. The thing

named by the first entry in the list is associated with the positive integer 1, the thing

named by the second entry is associated with the positive integer 2, and in general,

the thing named by the nth entry is associated with the positive integer n.

In mathematical parlance, an infinite list determines a function (call it f) that takes

positive integers as arguments and takes members of the set as values. [Should we have

written: ‘call it “ f ”,’ rather than ‘call it f ’? The common practice in mathematical

writing is to use special symbols, including even italicized letters of the ordinary

alphabet when being used as special symbols, as names for themselves. In case the

special symbol happens also to be a name for something else, for instance, a function

(as in the present case), we have to rely on context to determine when the symbol is

being used one way and when the other. In practice this presents no difficulties.] The

value of the function f for the argument n is denoted f (n). This value is simply the

thing denoted by the nth entry in the list. Thus the list

2, 4, 6, 8, . . .

which enumerates the set E of even positive integers determines the function f for

which we have

f (1) = 2, f (2) = 4, f (3) = 6, f (4) = 8, f (5) = 10,

And conversely, the function f determines the list, except for notation. (The same list

would look like this, in Roman numerals: II, IV, VI, VIII, X, . . . , for instance.) Thus,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

1.1. ENUMERABILITY 5

we might have defined the function f first, by saying that for any positive integer n,

the value of f is f (n) = 2n; and then we could have described the list by saying that

for each positive integer n, its nth entry is the decimal representation of the number

f (n), that is, of the number 2n.

Then we may speak of sets as being enumerated by functions, as well as by lists.

Instead of enumerating the odd positive integers by the list 1, 3, 5, 7, . . . , we may

enumerate them by the function that assigns to each positive integer n the value

2n − 1. And instead of enumerating the set P of all positive integers by the list 1, 2,

3, 4, . . . , we may enumerate P by the function that assigns to each positive integer n
the value n itself. This is the identity function. If we call it id, we have id(n) = n for

each positive integer n.

If one function enumerates a nonempty set, so does some other; and so, in fact,

do infinitely many others. Thus the set of positive integers is enumerated not only

by the function id, but also by the function (call it g) determined by the following

list:

2, 1, 4, 3, 6, 5,

This list is obtained from the list 1, 2, 3, 4, 5, 6, . . . by interchanging entries in pairs:

1 with 2, 3 with 4, 5 with 6, and so on. This list is a strange but perfectly acceptable

enumeration of the set P: every positive integer shows up in it, sooner or later. The

corresponding function, g, can be defined as follows:

g(n) =
{

n + 1 if n is odd

n − 1 if n is even.

This definition is not as neat as the definitions f (n) = 2n and id(n) = n of the functions

f and id, but it does the job: It does indeed associate one and only one member of P
with each positive integer n. And the function g so defined does indeed enumerate

P: For each member m of P there is a positive integer n for which we have g(n) = m.

In enumerating a set by listing its members, it is perfectly all right if a member

of the set shows up more than once on the list. The requirement is rather that each

member show up at least once. It does not matter if the list is redundant: All we

require is that it be complete. Indeed, a redundant list can always be thinned out to

get an irredundant list, since one could go through and erase the entries that repeat

earlier entries. It is also perfectly all right if a list has gaps in it, since one could

go through and close up the gaps. The requirement is that every element of the set

being enumerated be associated with some positive integer, not that every positive

integer have an element of the set associated with it. Thus flawless enumerations of

the positive integers are given by the following repetitive list:

1, 1, 2, 2, 3, 3, 4, 4, . . .

and by the following gappy list:

1, −, 2, −, 3, −, 4, −,

The function corresponding to this last list (call it h) assigns values corresponding

to the first, third, fifth, . . . entries, but assigns no values corresponding to the gaps

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

6 ENUMERABILITY

(second, fourth, sixth, . . . entries). Thus we have h(1) = 1, but h(2) is nothing at all,

for the function h is undefined for the argument 2; h(3) = 2, but h(4) is undefined;

h(5) = 3, but h(6) is undefined. And so on: h is a partial function of positive integers;

that is, it is defined only for positive integer arguments, but not for all such arguments.

Explicitly, we might define the partial function h as follows:

h(n) = (n + 1)/2 if n is odd.

Or, to make it clear we haven’t simply forgotten to say what values h assigns to even

positive integers, we might put the definition as follows:

h(n) =
{

(n + 1)/2 if n is odd

undefined otherwise.

Now the partial function h is a strange but perfectly acceptable enumeration of the

set P of positive integers.

It would be perverse to choose h instead of the simple function id as an enumeration

of P; but other sets are most naturally enumerated by partial functions. Thus, the set

E of even integers is conveniently enumerated by the partial function (call it j) that

agrees with id for even arguments, and is undefined for odd arguments:

j(n) =
{

n if n is even

undefined otherwise.

The corresponding gappy list (in decimal notation) is

−, 2, −, 4, −, 6, −, 8,

Of course the function f considered earlier, defined by f (n) = 2n for all positive

integers n, was an equally acceptable enumeration of E , corresponding to the gapless

list 2, 4, 6, 8, and so on.

Any set S of positive integers is enumerated quite simply by a partial function s,

which is defined as follows:

s(n) =
{

n if n is in the set S
undefined otherwise.

It will be seen in the next chapter that although every set of positive integers is

enumerable, there are sets of others sorts that are not enumerable. To say that a set

A is enumerable is to say that there is a function all of whose arguments are positive

integers and all of whose values are members of A, and that each member of A is a

value of this function: For each member a of A there is at least one positive integer

n to which the function assigns a as its value.

Notice that nothing in this definition requires A to be a set of positive integers

or of numbers of any sort. Instead, A might be a set of people; or a set of linguistic

expressions; or a set of sets, as when A is the set {P, E,∅}. Here A is a set with

three members, each of which is itself a set. One member of A is the infinite set

P of all positive integers; another member of A is the infinite set E of all even

positive integers; and the third is the empty set ∅. The set A is certainly enumerable,

for example, by the following finite list:P, E, ∅. Each entry in this list names a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

1.2. ENUMERABLE SETS 7

member of A, and every member of A is named sooner or later on this list. This

list determines a function (call it f), which can be defined by the three statements:

f (1) = P, f (2) = E, f (3) = ∅. To be precise, f is a partial function of positive

integers, being undefined for arguments greater than 3.

In conclusion, let us straighten out our terminology. A function is an assignment

of values to arguments. The set of all those arguments to which the function assigns

values is called the domain of the function. The set of all those values that the function

assigns to its arguments is called the range of the function. In the case of functions

whose arguments are positive integers, we distinguish between total functions and

partial functions. A total function of positive integers is one whose domain is the

whole set P of positive integers. A partial function of positive integers is one whose

domain is something less than the whole set P . From now on, when we speak simply

of a function of positive integers, we should be understood as leaving it open whether

the function is total or partial. (This is a departure from the usual terminology, in

which function of positive integers always means total function.) A set is enumerable
if and only if it is the range of some function of positive integers. We said earlier

we wanted to count the empty set ∅ as enumerable. We therefore have to count as

a partial function the empty function e of positive integers that is undefined for all

arguments. Its domain and its range are both ∅.

It will also be important to consider functions with two, three, or more positive

integers as arguments, notably the addition function sum(m, n) = m + n and the

multiplication function prod(m, n) = m · n. It is often convenient to think of a two-

argument or two-place function on positive integers as a one-argument function on

ordered pairs of positive integers, and similarly for many-argument functions. A few

more notions pertaining to functions are defined in the first few problems at the end

of this chapter. In general, the problems at the end should be read as part of each
chapter, even if not all are going to be worked.

1.2 Enumerable Sets

We next illustrate the definition of the preceding section by some important examples.

The following sets are enumerable.

1.1 Example (The set of integers). The simplest list is 0, 1, −1, 2, −2, 3, −3, Then if

the corresponding function is called f , we have f (1) = 0, f (2) = 1, f (3) = −1, f (4) =
2, f (5) = −2, and so on.

1.2 Example (The set of ordered pairs of positive integers). The enumeration of pairs

will be important enough in our later work that it may be well to indicate two different

ways of accomplishing it. The first way is this. As a preliminary to enumerating them,

we organize them into a rectangular array. We then traverse the array in Cantor’s zig-zag
manner indicated in Figure 1.1. This gives us the list

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), (3, 2), (4, 1),

If we call the function involved here G, then we have G(1) = (1, 1), G(2) = (1, 2), G(3) =
(2, 1), and so on. The pattern is: First comes the pair the sum of whose entries is 2, then

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

8 ENUMERABILITY

(1, 1) —(1, 2) (1, 3) (1, 4) (1, 5) …

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) …

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) …

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) …

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) …

Figure 1-1. Enumerating pairs of positive integers.

come the pairs the sum of whose entries is 3, then come the pairs the sum of whose entries

is 4, and so on. Within each block of pairs whose entries have the same sum, pairs appear

in order of increasing first entry.

As for the second way, we begin with the thought that while an ordinary hotel may have

to turn away a prospective guest because all rooms are full, a hotel with an enumerable

infinity of rooms would always have room for one more: The new guest could be placed

in room 1, and every other guest asked to move over one room. But actually, a little more

thought shows that with foresight the hotelier can be prepared to accommodate a busload

with an enumerable infinity of new guests each day, without inconveniencing any old guests

by making them change rooms. Those who arrive on the first day are placed in every other
room, those who arrive on the second day are placed in every other room among those
remaining vacant, and so on. To apply this thought to enumerating pairs, let us use up every

other place in listing the pairs (1, n), every other place then remaining in listing the pairs

(2, n), every other place then remaining in listing the pairs (3, n), and so on. The result will

look like this:

(1, 1), (2, 1), (1, 2), (3, 1), (1, 3), (2, 2), (1, 4), (4, 1), (1, 5), (2, 3),

If we call the function involved here g, then g(1) = (1, 1), g(2) = (2, 1), g(3) = (1, 2), and

so on.

Given a function f enumerating the pairs of positive integers, such as G or g
above, an a such that f (a) = (m, n) may be called a code number for the pair (m, n).

Applying the function f may be called decoding, while going the opposite way, from

the pair to a code for it, may be called encoding. It is actually possible to derive

mathematical formulas for the encoding functions J and j that go with the decoding

functions G and g above. (Possible, but not necessary: What we have said so far more

than suffices as a proof that the set of pairs is enumerable.)

Let us take first J . We want J (m, n) to be the number p such that G(p) = (m, n),

which is to say the place p where the pair (m, n) comes in the enumeration corre-

sponding to G. Before we arrive at the pair (m, n), we will have to pass the pair whose

entries sum to 2, the two pairs whose entries sum to 3, the three pairs whose entries

sum to 4, and so on, up through the m + n − 2 pairs whose entries sum to m + n − 1.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

1.2. ENUMERABLE SETS 9

The pair (m, n) will appear in the mth place after all of these pairs. So the position

of the pair (m, n) will be given by

[1 + 2 + · · · + (m + n − 2)] + m.

At this point we recall the formula for the sum of the first k positive integers:

1 + 2 + · · · + k = k(k + 1)/2.

(Never mind, for the moment, where this formula comes from. Its derivation will be

recalled in a later chapter.) So the position of the pair (m, n) will be given by

(m + n − 2)(m + n − 1)/2 + m.

This simplifies to

J (m, n) = (m2 + 2mn + n2 − m − 3n + 2)/2.

For instance, the pair (3, 2) should come in the place

(32 + 2 · 3 · 2 + 22 − 3 − 3 · 2 + 2)/2 = (9 + 12 + 4 − 3 − 6 + 2)/2 = 18/2 = 9

as indeed it can be seen (looking back at the enumeration as displayed above) that it

does: G(9) = (3, 2).

Turning now to j , we find matters a bit simpler. The pairs with first entry 1 will

appear in the places whose numbers are odd, with (1, n) in place 2n − 1. The pairs

with first entry 2 will appear in the places whose numbers are twice an odd number,

with (2, n) in place 2(2n − 1). The pairs with first entry 3 will appear in the places

whose numbers are four times an odd number, with (3, n) in place 4(2n − 1). In

general, in terms of the powers of two (20 = 1, 21 = 2, 22 = 4, and so on), (m, n)

will appear in place j(m, n) = 2m−1(2n − 1). Thus (3, 2) should come in the place

23−1(2 · 2 − 1) = 22(4 − 1) = 4 · 3 = 12, as indeed it does: g(12) = (3, 2).

The series of examples to follow shows how more and more complicated objects

can be coded by positive integers. Readers may wish to try to find proofs of their own

before reading ours; and for this reason we give the statements of all the examples

first, and collect all the proofs afterwards. As we saw already with Example 1.2,

several equally good codings may be possible.

1.3 Example. The set of positive rational numbers

1.4 Example. The set of rational numbers

1.5 Example. The set of ordered triples of positive integers

1.6 Example. The set of ordered k-tuples of positive integers, for any fixed k

1.7 Example. The set of finite sequences of positive integers less than 10

1.8 Example. The set of finite sequences of positive integers less than b, for any fixed b

1.9 Example. The set of finite sequences of positive integers

1.10 Example. The set of finite sets of positive integers

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

10 ENUMERABILITY

1.11 Example. Any subset of an enumerable set

1.12 Example. The union of any two enumerable sets

1.13 Example. The set of finite strings from a finite or enumerable alphabet of symbols

Proofs

Example 1.3. A positive rational number is a number that can be expressed as a

ratio of positive integers, that is, in the form m/n where m and n are positive integers.

Therefore we can get an enumeration of all positive rational numbers by starting with

our enumeration of all pairs of positive integers and replacing the pair (m, n) by the

rational number m/n. This gives us the list

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, 1/6, . . .

or, simplified,

1, 1/2, 2, 1/3, 1, 3, 1/4, 2/3, 3/2, 4, 1/5, 1/2, 1, 2, 5/1, 1/6,

Every positive rational number in fact appears infinitely often, since for instance

1/1 = 2/2 = 3/3 = · · · and 1/2 = 2/4 = · · · and 2/1 = 4/2 = · · · and similarly for

every other rational number. But that is all right: our definition of enumerability

permits repetitions.

Example 1.4. We combine the ideas of Examples 1.1 and 1.3. You know from

Example 1.3 how to arrange the positive rationals in a single infinite list. Write a zero

in front of this list, and then write the positive rationals, backwards and with minus

signs in front of them, in front of that. You now have

. . . ,−1/3, −2, −1/2, −1, 0, 1, 1/2, 2, 1/3, . . .

Finally, use the method of Example 1.1 to turn this into a proper list:

0, 1, −1, 1/2, −1/2, 2, −2, 1/3, −1/3, . . .

Example 1.5. In Example 1.2 we have given two ways of listing all pairs of positive

integers. For definiteness, let us work here with the first of these:

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1),

Now go through this list, and in each pair replace the second entry or component n
with the pair that appears in the nth place on this very list. In other words, replace

each 1 that appears in the second place of a pair by (1, 1), each 2 by (1, 2), and so on.

This gives the list

(1, (1, 1)), (1, (1, 2)), (2, (1, 1)), (1, (2, 1)), (2, (1, 2)), (3, (1, 1)), . . .

and that gives a list of triples

(1, 1, 1), (1, 1, 2), (2, 1, 1), (1, 2, 1), (2, 1, 2), (3, 1, 1),

In terms of functions, this enumeration may be described as follows. The original

enumeration of pairs corresponds to a function associating to each positive integer n

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

1.2. ENUMERABLE SETS 11

a pair G(n) = (K (n), L(n)) of positive integers. The enumeration of triples we have

just defined corresponds to assigning to each positive integer n instead the triple

(K (n), K (L(n)), L(L(n))).

We do not miss any triples (p, q, r) in this way, because there will always be an

m = J (q, r) such that (K (m), L(m)) = (q, r), and then there will be an n = J (p, m)

such that (K (n), L(n)) = (p, m), and the triple associated with this n will be precisely

(p, q, r).

Example 1.6. The method by which we have just obtained an enumeration of

triples from an enumeration of pairs will give us an enumeration of quadruples from

an enumeration of triples. Go back to the original enumeration pairs, and replace

each second entry n by the triple that appears in the nth place in the enumeration of

triples, to get a quadruple. The first few quadruples on the list will be

(1, 1, 1, 1), (1, 1, 1, 2), (2, 1, 1, 1), (1, 2, 1, 1), (2, 1, 1, 2),

Obviously we can go on from here to quintuples, sextuples, or k-tuples for any fixed

k.

Example 1.7. A finite sequence whose entries are all positive integers less than 10,

such as (1, 2, 3), can be read as an ordinary decimal or base-10 numeral 123. The

number this numeral denotes, one hundred twenty-three, could then be taken as a

code number for the given sequence. Actually, for later purposes it proves convenient

to modify this procedure slightly and write the sequence in reverse before reading it

as a numeral. Thus (1, 2, 3) would be coded by 321, and 123 would code (3, 2, 1). In

general, a sequence

s = (a0, a1, a2, . . . , ak)

would be coded by

a0 + 10a1 + 100a2 + · · · + 10kak

which is the number that the decimal numeral ak · · · a2a1a0 represents. Also, it will

be convenient henceforth to call the initial entry of a finite sequence the 0th entry, the

next entry the 1st, and so on. To decode and obtain the i th entry of the sequence coded

by n, we take the quotient on dividing by 10i , and then the remainder on dividing by

10. For instance, to find the 5th entry of the sequence coded by 123 456 789, we divide

by 105 to obtain the quotient 1234, and then divide by 10 to obtain the remainder 4.

Example 1.8. We use a decimal, or base-10, system ultimately because human

beings typically have 10 fingers, and counting began with counting on fingers. A

similar base-b system is possible for any b > 1. For a binary, or base-2, system only

the ciphers 0 and 1 would be used, with ak . . . a2a1a0 representing

a0 + 2a1 + 4a2 + · · · + 2kak .

So, for instance, 1001 would represent 1 + 23 = 1 + 8 = 9. For a duodecimal, or

base-12, system, two additional ciphers, perhaps * and # as on a telephone, would be

needed for ten and eleven. Then, for instance, 1*# would represent 11 + 12 · 10 +
144 · 1 = 275. If we applied the idea of the previous problem using base 12 instead

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

12 ENUMERABILITY

of base 10, we could code finite sequences of positive integers less than 12, and not

just finite sequences of positive integers less than 10. More generally, we can code a

finite sequence

s = (a0, a1, a2, . . . , ak)

of positive integers less than b by

a0 + ba1 + b2a2 + · · · + bkak .

To obtain the i th entry of the sequence coded by n, we take the quotient on dividing

by bi and then the remainder on dividing by b. For example, when working with

base 12, to obtain the 5th entry of the sequence coded by 123 456 789, we divide

123 456 789 by 125 to get the quotient 496. Now divide by 12 to get remainder 4. In

general, working with base b, the i th entry—counting the initial one as the 0th—of

the sequence coded by (b, n) will be

entry(i, n) = rem(quo(n, bi), b)

where quo(x , y) and rem(x , y) are the quotient and remainder on dividing x by y.

Example 1.9. Coding finite sequences will be important enough in our later work

that it will be appropriate to consider several different ways of accomplishing this

task. Example 1.6 showed that we can code sequences whose entries may be of

any size but that are of fixed length. What we now want is an enumeration of all
finite sequences—pairs, triples, quadruples, and so on—in a single list; and for good

measure, let us include the 1-tuples or 1-term sequences (1), (2), (3), . . . as well. A

first method, based on Example 1.6, is as follows. Let G1(n) be the 1-term sequence

(n). Let G2 = G, the function enumerating all 2-tuples or pairs from Example 1.2.

Let G3 be the function enumerating all triples as in Example 1.5. Let G4, G5, . . . ,

be the enumerations of triples, quadruples, and so on, from Example 1.6. We can get

a coding of all finite sequences by pairs of positive integers by letting any sequence

s of length k be coded by the pair (k, a) where Gk(a) = s. Since pairs of positive

integers can be coded by single numbers, we indirectly get a coding of sequences of

numbers. Another way to describe what is going on here is as follows. We go back

to our original listing of pairs, and replace the pair (k, a) by the ath item on the list

of k-tuples. Thus (1, 1) would be replaced by the first item (1) on the list of 1-tuples

(1), (2), (3), . . . ; while (1, 2) would be replaced by the second item (2) on the same

list; whereas (2, 1) would be replaced by the first item (1, 1) on the list of all 2-tuples

or pairs; and so on. This gives us the list

(1), (2), (1, 1), (3), (1, 2), (1, 1, 1), (4), (2, 1), (1, 1, 2), (1, 1, 1, 1),

(If we wish to include also the 0-tuple or empty sequence (), which we may take to

be simply the empty set ∅, we can stick it in at the head of the list, in what we may

think of as the 0th place.)

Example 1.8 showed that we can code sequences of any length whose entries

are less than some fixed bound, but what we now want to do is show how to code

sequences of any length whose entries may be of any size. A second method, based

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

1.2. ENUMERABLE SETS 13

on Example 1.8, is to begin by coding sequences by pairs of positive integers. We

take a sequence

s = (a0, a1, a2, . . . , ak)

to be coded by any pair (b, n) such that all ai are less than b, and n codes s in the

sense that

n = a0 + b · a1 + b2a2 + · · · + bkak .

Thus (10, 275) would code (5, 7, 2), since 275 = 5 + 7 · 10 + 2 · 102, while (12, 275)

would code (11, 10, 1), since 275 = 11 + 10 · 12 + 1 · 122. Each sequence would

have many codes, since for instance (10, 234) and (12, 328) would equally code (4,

3, 2), because 4 + 3 · 10 + 2 · 102 = 234 and 4 + 3 · 12 + 2 · 122 = 328. As with the

previous method, since pairs of positive integers can be coded by single numbers, we

indirectly get a coding of sequences of numbers.

A third, and totally different, approach is possible, based on the fact that every

integer greater than 1 can be written in one and only one way as a product of powers

of larger and larger primes, a representation called its prime decomposition. This fact

enables us to code a sequence s = (i , j , k, m, n, . . .) by the number 2i 3 j 5k7m11n . . .

. Thus the code number for the sequence (3, 1, 2) is 233152 = 8 · 3 · 25 = 600.

Example 1.10. It is easy to get an enumeration of finite sets from an enumeration

of finite sequences. Using the first method in Example 1.9, for instance, we get the

following enumeration of sets:

{1}, {2}, {1, 1}, {3}, {1, 2}, {1, 1, 1}, {4}, {2, 1}, {1, 1, 2}, {1, 1, 1, 1},
The set {1, 1} whose only elements are 1 and 1 is just the set {1} whose only element

is 1, and similarly in other cases, so this list can be simplified to look like this:

{1}, {2}, {1}, {3}, {1, 2}, {1}, {4}, {1, 2}, {1, 2}, {1}, {5},
The repetitions do not matter.

Example 1.11. Given any enumerable set A and a listing of the elements of A:

a1, a2, a3, . . .

we easily obtain a gappy listing of the elements of any subset B of A simply by

erasing any entry in the list that does not belong to B, leaving a gap.

Example 1.12. Let A and B be enumerable sets, and consider listings of their

elements:

a1, a2, a3, . . . b1, b2, b3,

Imitating the shuffling idea of Example 1.1, we obtain the following listing of the

elements of the union A ∪ B (the set whose elements are all and only those items that

are elements either of A or of B or of both):

a1, b1, a2, b2, a3, b3,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

14 ENUMERABILITY

If the intersection A ∩ B (the set whose elements of both A and B) is not empty, then

there will be redundancies on this list: If am = bn , then that element will appear both

at place 2m − 1 and at place 2n, but this does not matter.

Example 1.13. Given an ‘alphabet’ of any finite number, or even an enumerable

infinity, of symbols S1, S2, S3, . . . we can take as a code number for any finite string

Sa0
Sa1

Sa2
· · · Sak

the code number for the finite sequence of positive integers

(a1, a2, a3, . . ., ak)

under any of the methods of coding considered in Example 1.9. (We are usually going

to use the third method.) For instance, with the ordinary alphabet of 26 symbols letters

S1 = ‘A’, S2 = ‘B’, and so on, the string or word ‘CAB’ would be coded by the code

for (3, 1, 2), which (on the third method of Example 1.9) would be 23 · 3 · 52 = 600.

Problems

1.1 A (total or partial) function f from a set A to a set B is an assignment for (some

or all) elements a of A of an associated element f (a) of B. If f (a) is defined for

every element a of A, then the function f is called total. If every element b of B
is assigned to some element a of A, then the function f is said to be onto. If no

element b of B is assigned to more than one element a of A, then the function

f is said to be one-to-one. The inverse function f −1 from B to A is defined by

letting f −1(b) be the one and only a such that f (a) = b, if any such a exists;

f −1(b) is undefined if there is no a with f (a) = b or more than one such a. Show

that if f is a one-to-one function and f −1its inverse function, then f −1 is total

if and only if f is onto, and conversely, f −1 is onto if and only if f is total.

1.2 Let f be a function from a set A to a set B, and g a function from the set B to a

set C . The composite function h = gf from A to C is defined by h(a) = g(f (a)).

Show that:

(a) If f and g are both total, then so is gf.
(b) If f and g are both onto, then so is gf.
(c) If f and g are both one-to-one, then so is gf.

1.3 A correspondence between sets A and B is a one-to-one total function from A
onto B. Two sets A and B are said to be equinumerous if and only if there is a

correspondence between A and B. Show that equinumerosity has the following

properties:

(a) Any set A is equinumerous with itself.

(b) If A is equinumerous with B, then B is equinumerous with A.

(c) If A is equinumerous with B and B is equinumerous with C , then A is

equinumerous with C .

1.4 A set A has n elements, where n is a positive integer, if it is equinumerous

with the set of positive integers up to n, so that its elements can be listed as

a1, a2, . . . , an . A nonempty set A is finite if it has n elements for some positive

integer n. Show that any enumerable set is either finite or equinumerous with

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-01 CB421-Boolos July 27, 2007 16:20 Char Count= 0

PROBLEMS 15

the set of all positive integers. (In other words, given an enumeration, which is

to say a function from the set of positive integers onto a set A, show that if A
is not finite, then there is a correspondence, which is to say a one-to-one, total
function, from the set of positive integers onto A.)

1.5 Show that the following sets are equinumerous:

(a) The set of rational numbers with denominator a power of two (when written

in lowest terms), that is, the set of rational numbers ±m/n where n = 1 or 2

or 4 or 8 or some higher power of 2.

(b) The set of those sets of positive integers that are either finite or cofinite,

where a set S of positive integers is cofinite if the set of all positive integers

n that are not elements of S is finite.

1.6 Show that the set of all finite subsets of an enumerable set is enumerable.

1.7 Let A = {A1, A2, A3, . . .} be an enumerable family of sets, and suppose that each

Ai for i = 1, 2, 3, and so on, is enumerable. Let ∪A be the union of the family

A, that is, the set whose elements are precisely the elements of the elements of

A. Is ∪A enumerable?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-02 CB421-Boolos March 19, 2007 16:58 Char Count= 0

2

Diagonalization

In the preceding chapter we introduced the distinction between enumerable and nonenu-
merable sets, and gave many examples of enumerable sets. In this short chapter we give
examples of nonenumerable sets. We first prove the existence of such sets, and then look
a little more closely at the method, called diagonalization, used in this proof.

Not all sets are enumerable: some are too big. For example, consider the set of all sets
of positive integers. This set (call it P*) contains, as a member, each finite and each

infinite set of positive integers: the empty set ∅, the set P of all positive integers, and

every set between these two extremes. Then we have the following celebrated result.

2.1 Theorem (Cantor’s Theorem). The set of all sets of positive integers is not enu-

merable.

Proof: We give a method that can be applied to any list L of sets of positive integers

in order to discover a set �(L) of positive integers which is not named in the list. If

you then try to repair the defect by adding �(L) to the list as a new first member, the

same method, applied to the augmented list L* will yield a different set �(L*) that

is likewise not on the augmented list.

The method is this. Confronted with any infinite list L

S1, S2, S3. . . .

of sets of positive integers, we define a set �(L) as follows:

For each positive integer n, n is in �(L) if and only if n is not in Sn.(∗)

It should be clear that this genuinely defines a set �(L); for, given any positive inte-

ger n, we can tell whether n is in �(L) if we can tell whether n is in the nth set in the

list L . Thus, if S3 happens to be the set E of even positive integers, the number 3 is

not in S3 and therefore it is in �(L). As the notation �(L) indicates, the composition

of the set �(L) depends on the composition of the list L , so that different lists L may

yield different sets �(L).

To show that the set �(L) that this method yields is never in the given list L ,

we argue by reductio ad absurdum: we suppose that �(L) does appear somewhere

in list L , say as entry number m, and deduce a contradiction, thus showing that the

16

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-02 CB421-Boolos March 19, 2007 16:58 Char Count= 0

DIAGONALIZATION 17

supposition must be false. Here we go. Supposition: For some positive integer m,

Sm = �(L).

[Thus, if 127 is such an m, we are supposing that �(L) and S127 are the same set

under different names: we are supposing that a positive integer belongs to �(L) if

and only if it belongs to the 127th set in list L .] To deduce a contradiction from this

assumption we apply definition (*) to the particular positive integer m: with n = m,

(*) tells us that

m is in �(L) if and only if m is not in Sm .

Now a contradiction follows from our supposition: if Sm and �(L) are one and the

same set we have

m is in �(L) if and only if m is in Sm .

Since this is a flat self-contradiction, our supposition must be false. For no positive

integer m do we have Sm = �(L). In other words, the set �(L) is named nowhere in

list L .

So the method works. Applied to any list of sets of positive integers it yields a

set of positive integers which was not in the list. Then no list enumerates all sets of

positive integers: the set P* of all such sets is not enumerable. This completes the

proof.

Note that results to which we might wish to refer back later are given reference

numbers 1.1, 1.2, . . . consecutively through the chapter, to make them easy to locate.

Different words, however, are used for different kinds of results. The most important

general results are dignified with the title of ‘theorem’. Lesser results are called

‘lemmas’ if they are steps on the way to a theorem, ‘corollaries’ if they follow

directly upon some theorem, and ‘propositions’ if they are free-standing. In contrast

to all these, ‘examples’ are particular rather than general. The most celebrated of the

theorems have more or less traditional names, given in parentheses. The fact that 2.1

has been labelled ‘Cantor’s theorem’ is an indication that it is a famous result. The

reason is not—we hope the reader will agree!—that its proof is especially difficult,

but that the method of the proof (diagonalization) was an important innovation. In

fact, it is so important that it will be well to look at the proof again from a slightly

different point of view, which allows the entries in the list L to be more readily

visualized.

Accordingly, we think of the sets S1, S2, . . . as represented by functions s1,

s2, . . . of positive integers that take the numbers 0 and 1 as values. The relationship

between the set Sn and the corresponding function sn is simply this: for each positive

integer p we have

sn(p) =
{

1 if p is in Sn

0 if p is not in Sn.

Then the list can be visualized as an infinite rectangular array of zeros and ones, in

which the nth row represents the function sn and thus represents the set Sn . That is,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-02 CB421-Boolos March 19, 2007 16:58 Char Count= 0

18 DIAGONALIZATION

1 2 3 4

s1 s1(1) s1(2) s1(3) s1(4)

s2 s2(1) s2(2) s2(3) s2(4)

s3 s3(1) s3(2) s3(3) s3(4)

s4 s4(1) s4(2) s4(3) s4(4)

Figure 2-1. A list as a rectangular array.

the nth row

sn(1)sn(2)sn(3)sn(4) . . .

is a sequence of zeros and ones in which the pth entry, sn(p), is 1 or 0 according as

the number p is or is not in the set Sn . This array is shown in Figure 2-1.

The entries in the diagonal of the array (upper left to lower right) form a sequence

of zeros and ones:

s1(1) s2(2) s3(3) s4(4) . . .

This sequence of zeros and ones (the diagonal sequence) determines a set of positive

integers (the diagonal set). The diagonal set may well be among those listed in L. In

other words, there may well be a positive integer d such that the set Sd is none other

than our diagonal set. The sequence of zeros and ones in the dth row of Figure 2-1

would then agree with the diagonal sequence entry by entry:

sd (1) = s1(1), sd (2) = s2(2), sd (3) = s3(3),

That is as may be: the diagonal set may or may not appear in the list L , depending

on the detailed makeup of the list. What we want is a set we can rely upon not to appear

in L , no matter how L is composed. Such a set lies near to hand: it is the antidiagonal
set, which consists of the positive integers not in the diagonal set. The corresponding

antidiagonal sequence is obtained by changing zeros to ones and ones to zeros in the

diagonal sequence. We may think of this transformation as a matter of subtracting

each member of the diagonal sequence from 1: we write the antidiagonal sequence as

1 − s1(1), 1 − s2(2), 1 − s3(3), 1 − s4(4),

This sequence can be relied upon not to appear as a row in Figure 2-1, for if it did

appear—say, as the mth row—we should have

sm(1) = 1 − s1(1), sm(2) = 1 − s2(2), . . . , sm(m) = 1 − sm(m),

But the mth of these equations cannot hold. [Proof: sm(m) must be zero or one. If zero,

the mth equation says that 0 = 1. If one, the mth equation says that 1 = 0.] Then the

antidiagonal sequence differs from every row of our array, and so the antidiagonal set

differs from every set in our list L . This is no news, for the antidiagonal set is simply

the set �(L). We have merely repeated with a diagram—Figure 2-1—our proof that

�(L) appears nowhere in the list L .

Of course, it is rather strange to say that the members of an infinite set ‘can be

arranged’ in a single list. By whom? Certainly not by any human being, for nobody

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-02 CB421-Boolos March 19, 2007 16:58 Char Count= 0

DIAGONALIZATION 19

has that much time or paper; and similar restrictions apply to machines. In fact, to

call a set enumerable is simply to say that it is the range of some total or partial

function of positive integers. Thus, the set E of even positive integers is enumerable

because there are functions of positive integers that have E as their range. (We had

two examples of such functions earlier.) Any such function can then be thought of as

a program that a superhuman enumerator can follow in order to arrange the members

of the set in a single list. More explicitly, the program (the set of instructions) is:

‘Start counting from 1, and never stop. As you reach each number n, write a name of

f (n) in your list. [Where f (n) is undefined, leave the nth position blank.]’ But there

is no need to refer to the list, or to a superhuman enumerator: anything we need to say

about enumerability can be said in terms of the functions themselves; for example, to

say that the set P* is not enumerable is simply to deny the existence of any function

of positive integers which has P* as its range.

Vivid talk of lists and superhuman enumerators may still aid the imagination, but

in such terms the theory of enumerability and diagonalization appears as a chapter

in mathematical theology. To avoid treading on any living toes we might put the

whole thing in a classical Greek setting: Cantor proved that there are sets which even

Zeus cannot enumerate, no matter how fast he works, or how long (even, infinitely

long).

If a set is enumerable, Zeus can enumerate it in one second by writing out an

infinite list faster and faster. He spends 1/2 second writing the first entry in the list;

1/4 second writing the second entry; 1/8 second writing the third; and in general, he

writes each entry in half the time he spent on its predecessor. At no point during the

one-second interval has he written out the whole list, but when one second has passed,

the list is complete. On a time scale in which the marked divisions are sixteenths of

a second, the process can be represented as in Figure 2-2.

0 1/16 2/16 3/16 4/16 5/16 6/16 7/16
8/16

9/16
10/16

11/16
12/16

13/16
14/16

15/16 1

Zeus makes 1st entry 2nd entry 3rd entry &c.

Figure 2-2. Completing an infinite process in finite time.

To speak of writing out an infinite list (for example, of all the positive integers, in

decimal notation) is to speak of such an enumerator either working faster and faster

as above, or taking all of infinite time to complete the list (making one entry per

second, perhaps). Indeed, Zeus could write out an infinite sequence of infinite lists

if he chose to, taking only one second to complete the job. He could simply allocate

the first half second to the business of writing out the first infinite list (1/4 second for

the first entry, 1/8 second for the next, and so on); he could then write out the whole

second list in the following quarter second (1/8 for the first entry, 1/16 second for the

next, and so on); and in general, he could write out each subsequent list in just half

the time he spent on its predecessor, so that after one second had passed he would

have written out every entry in every list, in order. But the result does not count as a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-02 CB421-Boolos March 19, 2007 16:58 Char Count= 0

20 DIAGONALIZATION

single infinite list, in our sense of the term. In our sort of list, each entry must come

some finite number of places after the first.

As we use the term ‘list’, Zeus has not produced a list by writing infinitely many

infinite lists one after another. But he could perfectly well produce a genuine list

which exhausts the entries in all the lists, by using some such device as we used

in the preceeding chapter to enumerate the positive rational numbers. Nevertheless,

Cantor’s diagonal argument shows that neither this nor any more ingenious device

is available, even to a god, for arranging all the sets of positive integers into a sin-

gle infinite list. Such a list would be as much an impossibility as a round square:

the impossibility of enumerating all the sets of positive integers is as absolute as the

impossibility of drawing a round square, even for Zeus.

Once we have one example of a nonenumerable set, we get others.

2.2 Corollary. The set of real numbers is not enumerable.

Proof: If ξ is a real number and 0 < ξ < 1, then ξ has a decimal expansion

.x1x2x3. . . where each xi is one of the cyphers 0–9. Some numbers have two decimal

expansions, since for instance .2999. . . = .3000. . . ; so if there is a choice, choose

the one with the 0s rather than the one with the 9s. Then associate to ξ the set of all

positive integers n such that a 1 appears in the nth place in this expansion. Every set

of positive integers is associated to some real number (the sum of 10−n for all n in

the set), and so an enumeration of the real numbers would immediately give rise to

an enumeration of the sets of positive integers, which cannot exist, by the preceding

theorem.

Problems

2.1 Show that the set of all subsets of an infinite enumerable set is nonenumerable.

2.2 Show that if for some or all of the finite strings from a given finite or enumerable

alphabet we associate to the string a total or partial function from positive

integers to positive integers, then there is some total function on positive integers

taking only the values 1 and 2 that is not associated with any string.

2.3 In mathematics, the real numbers are often identified with the points on a line.

Show that the set of real numbers, or equivalently, the set of points on the line,

is equinumerous with the set of points on the semicircle indicated in Figure 2-3.

0 1

Figure 2-3. Interval, semicircle, and line.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-02 CB421-Boolos March 19, 2007 16:58 Char Count= 0

PROBLEMS 21

2.4 Show that the set of real numbers ξ with 0 < ξ < 1, or equivalently, the set

of points on the interval shown in Figure 2-3, is equinumerous with the set of

points on the semicircle.

2.5 Show that the set of real numbers ξ with 0 < ξ < 1 is equinumerous with the

set of all real numbers.

2.6 A real number x is called algebraic if it is a solution to some equation of the

form

cd xd + cd−1xd−1 + cd−2xd−2 + · · · + c2x2 + c1x + c0 = 0

where the ci are rational numbers and cd �= 0. For instance, for any rational

number r , the number r itself is algebraic, since it is the solution to x − r = 0;

and the square root
√

r of r is algebraic, since it is a solution to x2 − r = 0.

(a) Use the fact from algebra that an equation like the one displayed has at

most d solutions to show that every algebraic number can be described by

a finite string of symbols from an ordinary keyboard.

(b) A real number that is not algebraic is called transcendental. Prove that

transcendental numbers exist.

2.7 Each real number ξ with 0 < ξ < 1 has a binary representation 0 · x1x2x3 . . .

where each xi is a digit 0 or 1, and the successive places represent halves,

quarters, eighths, and so on. Show that the set of real numbers, ξ with 0 < ξ < 1

and ξ not a rational number with denominator a power of two, is equinumerous

with the set of those sets of positive integers that are neither finite nor cofinite.

2.8 Show that if A is equinumerous with C and B is equinumerous with D, and the

intersections A ∩ B and C ∩ D are empty, then the unions A ∪ B and C ∪ D
are equinumerous.

2.9 Show that the set of real numbers ξ with 0 < ξ< 1 (and hence by an earlier

problem the set of all real numbers) is equinumerous with the set of all sets of

positive integers.

2.10 Show that the following sets are equinumerous:

(a) the set of all pairs of sets of positive integers

(b) the set of all sets of pairs of positive integers

(c) the set of all sets of positive integers.

2.11 Show that the set of points on a line is equinumerous with the set of points on

a plane.

2.12 Show that the set of points on a line is equinumerous with the set of points in

space.

2.13 (Richard’s paradox) What (if anything) is wrong with the following argument?

The set of all finite strings of symbols from the alphabet, including the space,
capital letters, and punctuation marks, is enumerable; and for definiteness let us use
the specific enumeration of finite strings based on prime decomposition. Some strings
amount to definitions in English of sets of positive integers and others do not. Strike
out the ones that do not, and we are left with an enumeration of all definitions in
English of sets of positive integers, or, replacing each definition by the set it defines,
an enumeration of all sets of positive integers that have definitions in English. Since
some sets have more than one definition, there will be redundancies in this enumeration

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-02 CB421-Boolos March 19, 2007 16:58 Char Count= 0

22 DIAGONALIZATION

of sets. Strike them out to obtain an irredundant enumeration of all sets of positive
integers that have definitions in English. Now consider the set of positive integers
defined by the condition that a positive integer n is to belong to the set if and only if
it does not belong to the nth set in the irredundant enumeration just described.

This set does not appear in that enumeration. For it cannot appear at the nth place
for any n, since there is a positive integer, namely n itself, that belongs to this set if
and only if it does not belong to the nth set in the enumeration. Since this set does
not appear in our enumeration, it cannot have a definition in English. And yet it does
have a definition in English, and in fact we have just given such a definition in the
preceding paragraph.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

3

Turing Computability

A function is effectively computable if there are definite, explicit rules by following which
one could in principle compute its value for any given arguments. This notion will be
further explained below, but even after further explanation it remains an intuitive notion.
In this chapter we pursue the analysis of computability by introducing a rigorously
defined notion of a Turing-computable function. It will be obvious from the definition that
Turing-computable functions are effectively computable. The hypothesis that, conversely,
every effectively computable function is Turing computable is known as Turing’s thesis.
This thesis is not obvious, nor can it be rigorously proved (since the notion of effective
computability is an intuitive and not a rigorously defined one), but an enormous amount
of evidence has been accumulated for it. A small part of that evidence will be presented
in this chapter, with more in chapters to come. We first introduce the notion of Turing
machine, give examples, and then present the official definition of what it is for a function
to be computable by a Turing machine, or Turing computable.

A superhuman being, like Zeus of the preceding chapter, could perhaps write out the

whole table of values of a one-place function on positive integers, by writing each

entry twice as fast as the one before; but for a human being, completing an infinite

process of this kind is impossible in principle. Fortunately, for human purposes we

generally do not need the whole table of values of a function f , but only need the

values one at a time, so to speak: given some argument n, we need the value f (n). If

it is possible to produce the value f (n) of the function f for argument n whenever

such a value is needed, then that is almost as good as having the whole table of values

written out in advance.

A function f from positive integers to positive integers is called effectively com-
putable if a list of instructions can be given that in principle make it possible to

determine the value f (n) for any argument n. (This notion extends in an obvious

way to two-place and many-place functions.) The instructions must be completely

definite and explicit. They should tell you at each step what to do, not tell you to go

ask someone else what to do, or to figure out for yourself what to do: the instructions

should require no external sources of information, and should require no ingenuity

to execute, so that one might hope to automate the process of applying the rules, and

have it performed by some mechanical device.

There remains the fact that for all but a finite number of values of n, it will be

infeasible in practice for any human being, or any mechanical device, actually to carry

23

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

24 TURING COMPUTABILITY

out the computation: in principle it could be completed in a finite amount of time if we

stayed in good health so long, or the machine stayed in working order so long; but in

practice we will die, or the machine will collapse, long before the process is complete.

(There is also a worry about finding enough space to store the intermediate results

of the computation, and even a worry about finding enough matter to use in writing

down those results: there’s only a finite amount of paper in the world, so you’d have to

writer smaller and smaller without limit; to get an infinite number of symbols down on

paper, eventually you’d be trying to write on molecules, on atoms, on electrons.) But

our present study will ignore these practical limitations, and work with an idealized

notion of computability that goes beyond what actual people or actual machines can

be sure of doing. Our eventual goal will be to prove that certain functions are not
computable, even if practical limitations on time, speed, and amount of material could

somehow be overcome, and for this purpose the essential requirement is that our

notion of computability not be too narrow.

So far we have been sliding over a significant point. When we are given as argument

a number n or pair of numbers (m, n), what we in fact are directly given is a numeral for

n or an ordered pair of numerals for m and n. Likewise, if the value of the function

we are trying to compute is a number, what our computations in fact end with is a

numeral for that number. Now in the course of human history a great many systems

of numeration have been developed, from the primitive monadic or tally notation,

in which the number n is represented by a sequence of n strokes, through systems

like Roman numerals, in which bunches of five, ten, fifty, one-hundred, and so forth

strokes are abbreviated by special symbols, to the Hindu–Arabic or decimal notation

in common use today. Does it make a difference in a definition of computability

which of these many systems we adopt?

Certainly computations can be harder in practice with some notations than with

others. For instance, multiplying numbers given in decimal numerals (expressing the

product in the same form) is easier in practice than multiplying numbers given in

something like Roman numerals. Suppose we are given two numbers, expressed in

Roman numerals, say XXXIX and XLVIII, and are asked to obtain the product, also

expressed in Roman numerals. Probably for most us the easiest way to do this would

be first to translate from Roman to Hindu–Arabic—the rules for doing this are, or at

least used to be, taught in primary school, and in any case can be looked up in reference

works—obtaining 39 and 48. Next one would carry out the multiplication in our own

more convenient numeral system, obtaining 1872. Finally, one would translate the

result back into the inconvenient system, obtaining MDCCCLXXII. Doing all this

is, of course, harder than simply performing a multiplication on numbers given by

decimal numerals to begin with.

But the example shows that when a computation can be done in one notation, it

is possible in principle to do in any other notation, simply by translating the data

from the difficult notation into an easier one, performing the operation using the

easier notation, and then translating the result back from the easier to the difficult

notation. If a function is effectively computable when numbers are represented in

one system of numerals, it will also be so when numbers are represented in any other

system of numerals, provided only that translation between the systems can itself be

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

TURING COMPUTABILITY 25

carried out according to explicit rules, which is the case for any historical system of

numeration that we have been able to decipher. (To say we have been able to decipher

it amounts to saying that there are rules for translating back and forth between it and

the system now in common use.) For purposes of framing a rigorously defined notion

of computability, it is convenient to use monadic or tally notation.

A Turing machine is a specific kind of idealized machine for carrying out computa-

tions, especially computations on positive integers represented in monadic notation.

We suppose that the computation takes place on a tape, marked into squares, which

is unending in both directions—either because it is actually infinite or because there

is someone stationed at each end to add extra blank squares as needed. Each square

either is blank, or has a stroke printed on it. (We represent the blank by S0 or 0 or

most often B, and the stroke by S1 or | or most often 1, depending on the context.)

And with at most a finite number of exceptions, all squares are blank, both initially

and at each subsequent stage of the computation.

At each stage of the computation, the computer (that is, the human or mechanical

agent doing the computation) is scanning some one square of the tape. The computer

is capable of erasing a stroke in the scanned square if there is one there, or of printing

a stroke if the scanned square is blank. And he, she, or it is capable of movement:

one square to the right or one square to the left at a time. If you like, think of the

machine quite crudely, as a box on wheels which, at any stage of the computation,

is over some square of the tape. The tape is like a railroad track; the ties mark the

boundaries of the squares; and the machine is like a very short car, capable of moving

along the track in either direction, as in Figure 3-1.

Figure 3-1. A Turing machine.

At the bottom of the car there is a device that can read what’s written between

the ties, and erase or print a stroke. The machine is designed in such a way that

at each stage of the computation it is in one of a finite number of internal states,

q1, . . . , qm . Being in one state or another might be a matter of having one or another

cog of a certain gear uppermost, or of having the voltage at a certain terminal inside

the machine at one or another of m different levels, or what have you: we are not

concerned with the mechanics or the electronics of the matter. Perhaps the simplest

way to picture the thing is quite crudely: inside the box there is a little man, who

does all the reading and writing and erasing and moving. (The box has no bottom:

the poor mug just walks along between the ties, pulling the box along.) This operator

inside the machine has a list of m instructions written down on a piece of paper and

is in state qi when carrying out instruction number i.
Each of the instructions has conditional form: it tells what to do, depending on

whether the symbol being scanned (the symbol in the scanned square) is the blank or

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

26 TURING COMPUTABILITY

stroke, S0 or S1. Namely, there are five things that can be done:

(1) Erase: write S0 in place of whatever is in the scanned square.

(2) Print: write S1 in place of whatever is in the scanned square.

(3) Move one square to the right.

(4) Move one square to the left.

(5) Halt the computation.

[In case the square is already blank, (1) amounts to doing nothing; in case the

square already has a stroke in it, (2) amounts to doing nothing.] So depending on

what instruction is being carried out (= what state the machine, or its operator, is

in) and on what symbol is being scanned, the machine or its operator will perform

one or another of these five overt acts. Unless the computation has halted (overt act

number 5), the machine or its operator will perform also a covert act, in the privacy

of box, namely, the act of determining what the next instruction (next state) is to be.

Thus the present state and the presently scanned symbol determine what overt act is

to be performed, and what the next state is to be.

The overall program of instructions can be specified in various ways, for example,

by a machine table, or by a flow chart (also called a flow graph), or by a set of
quadruples. For the case of a machine that writes three symbols S1 on a blank tape

and then halts, scanning the leftmost of the three, the three sorts of description are

illustrated in Figure 3-2.

Figure 3-2. A Turing machine program.

3.1 Example (Writing a specified number of strokes). We indicate in Figure 3-2 a ma-

chine that will write the symbol S1 three times. A similar construction works for any

specified symbol and any specified number of times. The machine will write an S1 on the

square it’s initially scanning, move left one square, write an S1 there, move left one more

square, write an S1 there, and halt. (It halts when it has no further instructions.) There

will be three states—one for each of the symbols S1 that are to be written. In Figure 3-2,

the entries in the top row of the machine table (under the horizontal line) tell the ma-

chine or its operator, when following instruction q1, that (1) an S1 is to be written and

instruction q1 is to be repeated, if the scanned symbol is S0, but that (2) the machine is

to move left and follow instruction q2 next, if the scanned symbol is S1. The same infor-

mation is given in the flow chart by the two arrows that emerge from the node marked

q1; and the same information is also given by the first two quadruples. The significance

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

TURING COMPUTABILITY 27

in general of a table entry, of an arrow in a flow chart, and of a quadruple is shown in

Figure 3-3.

Figure 3-3. A Turing machine instruction.

Unless otherwise stated, it is to be understood that a machine starts in its lowest-numbered

state. The machine we have been considering halts when it is in state q3 scanning S1, for

there is no table entry or arrow or quadruple telling it what to do in such a case. A virtue

of the flow chart as a way of representing the machine program is that if the starting state

is indicated somehow (for example, if it is understood that the leftmost node represents

the starting state unless there is an indication to the contrary), then we can dispense with

the names of the states: It doesn’t matter what you call them. Then the flow chart could be

redrawn as in Figure 3-4.

Figure 3-4. Writing three strokes.

We can indicate how such a Turing machine operates by writing down its sequence

of configurations. There is one configuration for each stage of the computation, showing

what’s on the tape at that stage, what state the machine is in at that stage, and which square

is being scanned. We can show this by writing out what’s on the tape and writing the name

of the present state under the symbol in the scanned square; for instance,

1100111
2

shows a string or block of two strokes followed by two blanks followed by a string or block

of three strokes, with the machine scanning the leftmost stroke and in state 2. Here we have

written the symbols S0 and S1 simply as 0 and 1, and similarly the state q2 simply as 2,

to save needless fuss. A slightly more compact representation writes the state number as a

subscript on the symbol scanned: 12100111.

This same configuration could be written 012100111 or 121001110 or 0121001110 or

0012100111 or . . . —a block of 0s can be written at the beginning or end of the tape, and can

be shorted or lengthened ad lib. without changing the significance: the tape is understood

to have as many blanks as you please at each end.

We can begin to get a sense of the power of Turing machines by considering some

more complex examples.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

28 TURING COMPUTABILITY

3.2 Example (Doubling the number of strokes). The machine starts off scanning the left-

most of a block of strokes on an otherwise blank tape, and winds up scanning the leftmost

of a block of twice that many strokes on an otherwise blank tape. The flow chart is shown

in Figure 3-5.

Figure 3-5. Doubling the number of strokes.

How does it work? In general, by writing double strokes at the left and erasing single

strokes at the right. In particular, suppose the initial configuration is 1111, so that we start

in state 1, scanning the leftmost of a block of three strokes on an otherwise blank tape. The

next few configurations are as follows:

02111 030111 130111 0410111 1410111.

So we have written our first double stroke at the left—separated from the original block

111 by a blank. Next we go right, past the blank to the right-hand end of the original block,

and erase the rightmost stroke. Here is how that works, in two phases. Phase 1:

1150111 1105111 1101611 1101161 1101116 11011106.

Now we know that we have passed the last of the original block of strokes, so (phase 2) we

back up, erase one of them, and move one more square left:

1101117 1101107 1101180.

Now we hop back left, over what is left of the original block of strokes, over the blank

separating the original block from the additional strokes we have printed, and over those

additional strokes, until we find the blank beyond the leftmost stroke:

110191 110911 1110011 1101011 01011011.

Now we will print another two new strokes, much as before:

0121011 0311011 1311011 04111011 14111011.

We are now back on the leftmost of the block of newly printed strokes, and the process

that led to finding and erasing the rightmost stroke will be repeated, until we arrive at the

following:

11110117 11110107 11110180.

Another round of this will lead first to writing another pair of strokes:

141111101.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

TURING COMPUTABILITY 29

It will then lead to erasing the last of the original block of strokes:

111111017 111111007 111111080.

And now the endgame begins, for we have what we want on the tape, and need only move

back to halt on the leftmost stroke:

11111111 11111111 11111111 11111111 11111111 11111111

011111111 11211111.

Now we are in state 12, scanning a stroke. Since there is no arrow from that node telling us

what to do in such a case, we halt. The machine performs as advertised.

(Note: The fact that the machine doubles the number of strokes when the original number

is three is not a proof that the machine performs as advertised. But our examination of the

special case in which there are three strokes initially made no essential use of the fact that

the initial number was three: it is readily converted into a proof that the machine doubles

the number of strokes no matter how long the original block may be.)

Readers may wish, in the remaining examples, to try to design their own machines

before reading our designs; and for this reason we give the statements of all the

examples first, and collect all the proofs afterward.

3.3 Example (Determining the parity of the length of a block of strokes). There is a Turing

machine that, started scanning the leftmost of an unbroken block of strokes on an otherwise

blank tape, eventually halts, scanning a square on an otherwise blank tape, where the square

contains a blank or a stroke depending on whether there were an even or an odd number of

strokes in the original block.

3.4 Example (Adding in monadic (tally) notation). There is a Turing machine that does

the following. Initially, the tape is blank except for two solid blocks of strokes, say a left

block of p strokes and a right block of q strokes, separated by a single blank. Started on the

leftmost blank of the left block, the machine eventually halts, scanning the leftmost stroke

in a solid block of p + q stokes on an otherwise blank tape.

3.5 Example (Multiplying in monadic (tally) notation). There is a Turing machine that

does the same thing as the one in the preceding example, but with p · q in place of p + q.

Proofs

Example 3.3. A flow chart for such a machine is shown in Figure 3-6.

Figure 3-6. Parity machine.

If there were 0 or 2 or 4 or . . . strokes to begin with, this machine halts in state 1,

scanning a blank on a blank tape; if there were 1 or 3 or 5 or . . . , it halts in state 5,

scanning a stroke on an otherwise blank tape.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

30 TURING COMPUTABILITY

Example 3.4. The object is to erase the leftmost stroke, fill the gap between the

two blocks of strokes, and halt scanning the leftmost stroke that remains on the tape.

Here is one way of doing it, in quadruple notation: q1S1S0q1; q1S0Rq2; q2S1Rq2;

q2S0S1q3; q3S1Lq3; q3S0Rq4.

Example 3.5. A flow chart for a machine is shown in Figure 3-7.

Figure 3-7. Multiplication machine.

Here is how the machine works. The first block, of p strokes, is used as a counter,

to keep track of how many times the machine has added q strokes to the group at the

right. To start, the machine erases the leftmost of the p strokes and sees if there are

any strokes left in the counter group. If not, pq = q, and all the machine has to do is

position itself over the leftmost stroke on the tape, and halt.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

TURING COMPUTABILITY 31

But if there are any strokes left in the counter, the machine goes into a leapfrog
routine: in effect, it moves the block of q strokes (the leapfrog group) q places to

the right along the tape. For example, with p = 2 and q = 3 the tape looks like this

initially:

11B111

and looks like this after going through the leapfrog routine:

B1B B B B111.

The machine will then note that there is only one 1 left in the counter, and will finish

up by erasing that 1, moving right two squares, and changing all Bs to strokes until

it comes to a stroke, at which point it continues to the leftmost 1 and halts.

The general picture of how the leapfrog routine works is shown in Figure 3-8.

Figure 3-8. Leapfrog.

In general, the leapfrog group consists of a block of 0 or 1 or . . . or q strokes,

followed by a blank, followed by the remainder of the q strokes. The blank is there

to tell the machine when the leapfrog game is over: without it the group of q strokes

would keep moving right along the tape forever. (In playing leapfrog, the portion of

the q strokes to the left of the blank in the leapfrog group functions as a counter:

it controls the process of adding strokes to the portion of the leapfrog group to the

right of the blank. That is why there are two big loops in the flow chart: one for each

counter-controlled subroutine.)

We have not yet given an official definition of what it is for a numerical function

to be computable by a Turing machine, specifying how inputs or arguments are to be

represented on the machine, and how outputs or values represented. Our specifications

for a k-place function from positive integers to positive integers are as follows:

(a) The arguments m1, . . . , mk of the function will be represented in monadic notation

by blocks of those numbers of strokes, each block separated from the next by a

single blank, on an otherwise blank tape. Thus, at the beginning of the

computation of, say, 3 + 2, the tape will look like this: 111B11.

(b) Initially, the machine will be scanning the leftmost 1 on the tape, and will be in its

initial state, state 1. Thus in the computation of 3 + 2, the initial configuration will

be 1111B11. A configuration as described by (a) and (b) is called a standard initial
configuration (or position).

(c) If the function that is to be computed assigns a value n to the arguments that are

represented initially on the tape, then the machine will eventually halt on a tape

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

32 TURING COMPUTABILITY

containing a block of that number of strokes, and otherwise blank. Thus in the

computation of 3 + 2, the tape will look like this: 11111.

(d) In this case, the machine will halt scanning the leftmost 1 on the tape. Thus in the

computation of 3 + 2, the final configuration will be 1n1111, where nth state is one

for which there is no instruction what to do if scanning a stroke, so that in this

configuration the machine will be halted. A configuration as described by (c) and

(d) is called a standard final configuration (or position).

(e) If the function that is to be computed assigns no value to the arguments that are

represented initially on the tape, then the machine either will never halt, or will

halt in some nonstandard configuration such as Bn11111 or B11n111 or B11111n .

The restriction above to the standard position (scanning the leftmost 1) for starting

and halting is inessential, but some specifications or other have to be made about

initial and final positions of the machine, and the above assumptions seem especially

simple.

With these specifications, any Turing machine can be seen to compute a function of

one argument, a function of two arguments, and, in general, a function of k arguments

for each positive integer k. Thus consider the machine specified by the single quadru-

ple q111q2. Started in a standard initial configuration, it immediately halts, leaving the

tape unaltered. If there was only a single block of strokes on the tape initially, its final

configuration will be standard, and thus this machine computes the identity function id

of one argument: id(m) = m for each positive integer m. Thus the machine computes

a certain total function of one argument. But if there were two or more blocks of

strokes on the tape initially, the final configuration will not be standard. Accordingly,

the machine computes the extreme partial function of two arguments that is undefined

for all pairs of arguments: the empty function e2 of two arguments. And in general,

for k arguments, this machine computes the empty function ek of k arguments.

Figure 3-9. A machine computing the value 1 for all arguments.

By contrast, consider the machine whose flow chart is shown in Figure 3-9. This

machine computes for each k the total function that assigns the same value, namely 1,

to each k-tuple. Started in initial state 1 in a standard initial configuration, this machine

erases the first block of strokes (cycling between states 1 and 2 to do so) and goes to

state 3, scanning the second square to the right of the first block. If it sees a blank there,

it knows it has erased the whole tape, and so prints a single 1 and halts in state 4, in

a standard configuration. If it sees a stroke there, it re-enters the cycle between states

1 and 2, erasing the second block of strokes and inquiring again, in state 3, whether

the whole tape is blank, or whether there are still more blocks to be dealt with.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

TURING COMPUTABILITY 33

A numerical function of k arguments is Turing computable if there is some Turing

machine that computes it in the sense we have just been specifying. Now computation

in the Turing-machine sense is certainly one kind of computation in the intuitive

sense, so all Turing-computable functions are effectively computable. Turing’s thesis
is that, conversely, any effectively computable function is Turing computable, so that

computation in the precise technical sense we have been developing coincides with

effective computability in the intuitive sense.

It is easy to imagine liberalizations of the notion of the Turing machine. One could

allow machines using more symbols than just the blank and the stroke. One could

allow machines operating on a rectangular grid, able to move up or down a square as

well as left or right. Turing’s thesis implies that no liberalization of the notion of Turing

machine will enlarge the class of functions computable, because all functions that are

effectively computable in any way at all are already computable by a Turing machine

of the restricted kind we have been considering. Turing’s thesis is thus a bold claim.

It is possible to give a heuristic argument for it. After all, effective computation

consists of moving around and writing and perhaps erasing symbols, according to

definite, explicit rules; and surely writing and erasing symbols can be done stroke by

stroke, and moving from one place to another can be done step by step. But the main

argument will be the accumulation of examples of effectively computable functions

that we succeed in showing are Turing computable. So far, however, we have had

just a few examples of Turing machines computing numerical functions, that is,

of effectively computable functions that we have proved to be Turing computable:

addition and multiplication in the preceding section, and just now the identity function,

the empty function, and the function with constant value 1.

Now addition and multiplication are just the first two of a series of arithmetic

operations all of which are effectively computable. The next item in the series is ex-

ponentiation. Just as multiplication is repeated addition, so exponentiation is repeated

multiplication. (Then repeated exponentiation gives a kind of super-exponentiation,

and so on. We will investigate this general process of defining new functions from

old in a later chapter.) If Turing’s thesis is correct, there must be a Turing machine

for each of these functions, computing it. Designing a multiplier was already difficult

enough to suggest that designing an exponentiator would be quite a challenge, and

in any case, the direct approach of designing a machine for each operation would

take us forever, since there are infinitely many operations in the series. Moreover,

there are many other effectively computable numerical functions besides the ones in

this series. When we return, in the chapter after next, to the task of showing vari-

ous effectively computable numerical functions to be Turing computable, and thus

accumulating evidence for Turing’s thesis, a less direct approach will be adopted,

and all the operations in the series that begins with addition and multiplication will

be shown to be Turing computable in one go.

For the moment, we set aside the positive task of showing functions to be Turing

computable and instead turn to examples of numerical functions of one argument

that are Turing uncomputable (and so, if Turing’s thesis is correct, effectively uncom-

putable).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-03 CB421-Boolos July 27, 2007 21:12 Char Count= 0

34 TURING COMPUTABILITY

Problems

3.1 Consider a tape containing a block of n strokes, followed by a space, followed

by a block of m strokes, followed by a space, followed by a block of k strokes,

and otherwise blank. Design a Turing machine that when started on the leftmost

stroke will eventually halt, having neither printed nor erased anything . . .

(a) . . . on the leftmost stroke of the second block.

(b) . . . on the leftmost stroke of the third block.

3.2 Continuing the preceding problem, design a Turing machine that when started

on the leftmost stroke will eventually halt, having neither printed nor erased

anything . . .

(a) . . . on the rightmost stroke of the second block.

(b) . . . on the rightmost stroke of the third block.

3.3 Design a Turing machine that, starting with the tape as in the preceding problems,

will eventually halt on the leftmost stroke on the tape, which is now to contain a

block of n strokes, followed by a blank, followed by a block of m + 1 strokes,

followed by a blank, followed by a block of k strokes.

3.4 Design a Turing machine that, starting with the tape as in the preceding problems,

will eventually halt on the leftmost stroke on the tape, which is now to contain a

block of n strokes, followed by a blank, followed by a block of m − 1 strokes,

followed by a blank, followed by a block of k strokes.

3.5 Design a Turing machine to compute the function min(x , y) = the smaller of x
and y.

3.6 Design a Turing machine to compute the function max(x , y) = the larger of

x and y.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

4

Uncomputability

In the preceding chapter we introduced the notion of Turing computability. In the present
short chapter we give examples of Turing-uncomputable functions: the halting function

in section 4.1, and the productivity function in the optional section 4.2. If Turing’s thesis
is correct, these are actually examples of effectively uncomputable functions.

4.1 The Halting Problem

There are too many functions from positive integers to positive integers for them all

to be Turing computable. For on the one hand, as we have seen in problem 2.2, the

set of all such functions is nonenumerable. And on the other hand, the set of Turing

machines, and therefore of Turing-computable functions, is enumerable, since the re-

presentation of a Turing machine in the form of quadruples amounts to a representation

of it by a finite string of symbols from a finite alphabet; and we have seen in Chapter 1

that the set of such strings is enumerable. These considerations show us that there must

exist functions that are not Turing computable, but they do not provide an explicit

example of such a function. To provide explicit examples is the task of this chapter.

We begin simply by examining the argument just given in slow motion, with careful

attention to details, so as to extract a specific example of a Turing-uncomputable

function from it.

To begin with, we have suggested that we can enumerate the Turing-computable

functions of one argument by enumerating the Turing machines, and that we can enu-

merate the Turing machines using their quadruple representations. As we turn to de-

tails, it will be convenient to modify the quadruple representation used so far some-

what. To indicate the nature of the modifications, consider the machine in Figure 3-9

in the preceding chapter. Its quadruple representation would be

q1S0 Rq3, q1S1S0q2, q2S0 Rq1, q3S0S1q4, q3S1S0q2.

We have already been taking the lowest-numbered state q1 to be the initial state.

We now want to assume that the highest-numbered state is a halted state, for which

there are no instructions and no quadruples. This is already the case in our example,

and if it were not already so in some other example, we could make it so by adding

one additional state.

35

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

36 UNCOMPUTABILITY

We now also want to assume that for every state qi except this highest-numbered

halted state, and for each of the two symbols S j we are allowing ourselves to use,

namely S0 = B and S1 = 1, there is a quadruple beginning qi S j . This is not so in our

example as it stands, where there is no instruction for q2S1. We have been interpreting

the absence of an instruction for qi S j as an instruction to halt, but the same effect

could be achieved by giving an explicit instruction to keep the same symbol and then

go to the highest-numbered state. When we modify the representation by adding this

instruction, the representation becomes

q1S0 Rq3, q1S1S0q2, q2S0 Rq1, q2S1S1q4, q3S0S1q4, q3S1S0q2.

Now taking the quadruples beginning q1S0, q1S1, q2S0, . . . in that order, as we

have done, the first two symbols of each quadruple are predictable and therefore do

not need to be written. So we may simply write

Rq3, S0q2, Rq1, S1q4, S1q4, S0q2.

Representing qi by i , and S j by j + 1 (so as to avoid 0), and L and R by 3 and 4, we

can write still more simply

4, 3, 1, 2, 4, 1, 2, 4, 2, 4, 1, 2.

Thus the Turing machine can be completely represented by a finite sequence of

positive integers—and even, if desired, by a single positive integer, say using the

method of coding based on prime decomposition:

24 · 33 · 5 · 72 · 114 · 13 · 172 · 194 · 232 · 294 · 31 · 372.

Not every positive integer will represent a Turing machine: whether a given posi-

tive integer does so or not depends on what the sequence of exponents in its prime

decomposition is, and not every finite sequence represents a Turing machine. Those

that do must have length some multiple 4n of 4, and have among their odd-numbered

entries only numbers 1 to 4 (representing B, 1, L , R) and among their even-numbered

entries only numbers 1 to n + 1 (representing the initial state q1, various other states

qi , and the halted state qn+1). But no matter: from the above representation we at least

get a gappy listing of all Turing machines, in which each Turing machine is listed

at least once, and on filling in the gaps we get a gapless list of all Turing machines,

M1, M2, M3, . . . , and from this a similar list of all Turing-computable functions of

one argument, f1, f2, f3, . . . , where fi is the total or partial function computed by Mi .

To give a trivial example, consider the machine represented by (1, 1, 1, 1), or

2 · 3 · 5 · 7 = 210. Started scanning a stroke, it erases it, then leaves the resulting

blank alone and remains in the same initial state, never going to the halted state,

which would be state 2. Or consider the machine represented by (2, 1, 1, 1) or

22 · 3 · 5 · 7 = 420. Started scanning a stroke, it erases it, then prints it back again,

then erases it, then prints it back again, and so on, again never halting. Or consider

the machine represented by (1, 2, 1, 1), or 2 · 32 · 5 · 7 = 630. Started scanning a

stroke, it erases it, then goes to the halted state 2 when it scans the resulting blank,

which means halting in a nonstandard final configuration. A little thought shows that

210, 420, 630 are the smallest numbers that represent Turing machines, so the three

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

4.1. THE HALTING PROBLEM 37

machines just described will be M1, M2, M3, and we have f1 = f2 = f3 = the empty

function.

We have now indicated an explicit enumeration of the Turing-computable functions

of one argument, obtained by enumerating the machines that compute them. The fact

that such an enumeration is possible shows, as we remarked at the outset, that there

must exist Turing-uncomputable functions of a single argument. The point of actually

specifying one such enumeration is to be able to exhibit a particular such function.

To do so, we define a diagonal function d as follows:

d(n) =
{

2 if fn(n) is defined and = 1

1 otherwise.
(1)

Now d is a perfectly genuine total function of one argument, but it is not Turing

computable, that is, d is neither f1 nor f2 nor f3, and so on. Proof: Suppose that d is

one of the Turing computable functions—the mth, let us say. Then for each positive

integer n, either d(n) and fm(n) are both defined and equal, or neither of them is

defined. But consider the case n = m:

fm(m) = d(m) =
{

2 if fm(m) is defined and = 1

1 otherwise.
(2)

Then whether fm(m) is or is not defined, we have a contradiction: Either fm(m) is

undefined, in which case (2) tells us that it is defined and has value 1; or fm(m)

is defined and has a value �=1, in which case (2) tells us it has value 1; or fm(m)

is defined and has value 1, in which case (2) tells us it has value 2. Since we

have derived a contradiction from the assumption that d appears somewhere in the

list f1, f2, . . . , fm, . . . , we may conclude that the supposition is false. We have

proved:

4.1 Theorem. The diagonal function d is not Turing computable.

According to Turing’s thesis, since d is not Turing computable, d cannot be

effectively computable. Why not? After all, although no Turing machine computes

the function d , we were able compute at least its first few values. For since, as we

have noted, f1 = f2 = f3 = the empty function we have d(1) = d(2) = d(3) = 1.

And it may seem that we can actually compute d(n) for any positive integer n—if we

don’t run out of time.

Certainly it is straightforward to discover which quadruples determine Mn for n =
1, 2, 3, and so on. (This is straightforward in principle, though eventually humanly

infeasible in practice because the duration of the trivial calculations, for large n,

exceeds the lifetime of a human being and, in all probability, the lifetime of the

human race. But in our idealized notion of computability, we ignore the fact that

human life is limited.)

And certainly it is perfectly routine to follow the operations of Mn , once the initial

configuration has been specified; and if Mn does eventually halt, we must eventually

get that information by following its operations. Thus if we start Mnwith input n and

it does halt with that input, then by following its operations until it halts, we can see

whether it halts in nonstandard position, leaving fn(n) undefined, or halts in standard

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

38 UNCOMPUTABILITY

position with output fn(n) = 1, or halts in standard position with output fn(n) �= 1.

In the first or last cases, d(n) = 1, and in the middle case, d(n) = 2.

But there is yet another case where d(n) = 1; namely, the case where Mn never

halts at all. If Mn is destined never to halt, given the initial configuration, can we

find that out in a finite amount of time? This is the essential question: determining

whether machine Mn , started scanning the leftmost of an unbroken block of n strokes

on an otherwise blank tape, does or does not eventually halt.

Is this perfectly routine? Must there be some point in the routine process of fol-

lowing its operations at which it becomes clear that it will never halt? In simple cases

this is so, as we saw in the cases of M1, M2, and M3 above. But for the function d to

be effectively computable, there would have to be a uniform mechanical procedure,

applicable not just in these simple cases but also in more complicated cases, for dis-

covering whether or not a given machine, started in a given configuration, will ever

halt.

Thus consider the multiplier in Example 3.5. Its sequential representation would

be a sequence of 68 numbers, each ≤18. It is routine to verify that it represents

a Turing machine, and one can easily enough derive from it a flow chart like the

one shown in Figure 3-7, but without the annotations, and of course without the
accompanying text. Suppose one came upon such a sequence. It would be routine

to check whether it represented a Turing machine and, if so, again to derive a flow

chart without annotations and accompanying text. But is there a uniform method

or mechanical routine that, in this and much more complicated cases, allows one to

determine from inspecting the flow chart, without any annotations or accompanying
text, whether the machine eventually halts, once the initial configuration has been

specified?

If there is such a routine, Turing’s thesis is erroneous: if Turing’s thesis is correct,

there can be no such routine. At present, several generations after the problem was

first posed, no one has yet succeeded in describing any such routine—a fact that must

be considered some kind of evidence in favor of the thesis.

Let us put the matter another way. A function closely related to d is the halting
function h of two arguments. Here h(m, n) = 1 or 2 according as machine m, started

with input n, eventually halts or not. If h were effectively computable, d would

be effectively computable. For given n, we could first compute h(n, n). If we got

h(n, n) = 2, we would know that d(n) = 1. If we got h(n, n) = 1, we would know

that we could safely start machine Mn in stardard initial configuration for input n, and

that it would eventually halt. If it halted in nonstandard configuration, we would again

have d(n) = 1. If it halted in standard final configuration giving an output fn(n), it

would have d(n) = 1 or 2 according as fn(n) �= 1 or = 1.

This is an informal argument showing that if h were effectively computable, then d
would be effectively computable. Since we have shown that d is not Turing com-

putable, assuming Turing’s thesis it follows that d is not effectively computable, and

hence that h is not effectively computable, and so not Turing computable. It is also

possible to prove rigorously, though we do not at this point have the apparatus needed

to do so, that if h were Turing computable, then d would be Turing computable, and

since we have shown that d is not Turing computable, this would show that h is not

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

4.1. THE HALTING PROBLEM 39

Turing computable. Finally, it is possible to prove rigorously in another way, not

involving d , that h is not Turing computable, and this we now do.

4.2 Theorem. The halting function h is not Turing computable.

Proof: By way of background we need two special Turing machines. The first is

a copying machine C, which works as follows. Given a tape containing a block of n
strokes, and otherwise blank, if the machine is started scanning the leftmost stroke

on the tape, it will eventually halt with the tape containing two blocks of n strokes

separated by a blank, and otherwise blank, with the machine scanning the leftmost

stroke on the tape. Thus if the machine is started with

. . . B B B1111B B B . . .

it will halt with

. . . B B B1111B1111B B B . . .

eventually. We ask you to design such a machine in the problems at the end of this

chapter (and give you a pretty broad hint how to do it at the end of the book).

The second is a dithering machine D. Started on the leftmost of a block of n strokes

on an otherwise blank tape, D eventually halts if n > 1, but never halts if n = 1. Such

a machine is described by the sequence

1, 3, 4, 2, 3, 1, 3, 3.

Started on a stroke in state 1, it moves right and goes into state 2. If it finds itself on a

stroke, it moves back left and halts, but if it finds itself on a blank, it moves back left

and goes into state 1, starting an endless back-and-forth cycle.

Now suppose we had a machine H that computed the function h. We could combine
the machines C and H as follows: if the states of C are numbered 1 through p,

and the states of H are numbered 1 through q, renumber the latter states p + 1

through r = p + q , and write these renumbered instructions after the instructions

for C . Originally, C tells us to halt by telling us to go into state p + 1, but in the

new combined instructions, going into state p + 1 means not halting, but beginning

the operations of machine H . So the new combined instructions will have us first

go through the operations of C , and then, when C would have halted, go through

the operations of H . The result is thus a machine G that computes the function

g(n) = h(n, n).

We now combine this machine G with the dithering machine D, renumbering the

states of the latter as r + 1 and r + 2, and writing its instructions after those for G.

The result will be a machine M that goes through the operations of G and then the

operations of D. Thus if machine number n halts when started on its own number,

that is, if h(n, n) = g(n) = 1, then the machine M does not halt when started on

that number n, whereas if machine number n does not halt when started on its own

number, that is, if h(n, n) = g(n) = 2, then machine M does halt when started on n.

But of course there can be no such machine as M . For what would it do if started

with input its own number m? It would halt if and only if machine number m, which is

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

40 UNCOMPUTABILITY

to say itself, does not halt when started with input the number m. This contradiction

shows there can be no such machine as H .

The halting problem is to find an effective procedure that, given any Turing machine

M , say represented by its number m, and given any number n, will enable us to

determine whether or not that machine, given that number as input, ever halts. For

the problem to be solvable by a Turing machine would require there to be a Turing

machine that, given m and n as inputs, produces as its output the answer to the question

whether machine number m with input n ever halts. Of course, a Turing machine of

the kind we have been considering could not produce the output by printing the word

‘yes’ or ‘no’ on its tape, since we are considering machines that operate with just

two symbols, the blank and the stroke. Rather, we take the affirmative answer to be

presented by an output of 1 and the negative by an output of 2. With this understanding,

the question whether the halting problem can be solved by a Turing machine amounts

to the question whether the halting function h is Turing computable, and we have just

seen in Theorem 4.2 that it is not. That theorem, accordingly, is often quoted in the

form: ‘The halting problem is not solvable by a Turing machine.’ Assuming Turing’s

thesis, it follows that it is not solvable at all.

Thus far we have two examples of functions that are not Turing computable—

or problems that are not solvable by any Turing machine—and if Turing’s thesis is

correct, these functions are not effectively computable. A further example is given

in the next section. Though working through the example will provide increased

familiarity with the potential of Turing machines that will be desirable when we

come to the next chapter, and in any case the example is a beautiful one, still none of

the material connected with this example is strictly speaking indispensable for any

of our further work; and therefore we have starred the section in which it appears as

optional.

4.2* The Productivity Function

Consider a k-state Turing machine, that is, a machine with k states (not counting the

halted state). Start it with input k, that is, start it in its initial state on the leftmost

of a block of k strokes on an otherwise blank tape. If the machine never halts, or

halts in nonstandard position, give it a score of zero. If it halts in standard position

with output n, that is, on the leftmost of a block of n strokes on an otherwise blank

tape, give it a score of n. Now define s(k) = the highest score achieved by any k-state

Turing machine. This function can be shown to be Turing uncomputable.

We first show that if the function s were Turing computable, then so would be the

function t given by t(k) = s(k) + 1. For supposing we have a machine that computes

s, we can modify it as follows to get a machine, having one more state than the original

machine, that computes t . Where the instructions for the original machine would have

it halt, the instructions for the new machine will have it go into the new, additional

state. In this new state, if the machine is scanning a stroke, it is to move one square

to the left, remaining in the new state; while if it is scanning a blank, it is to print a

stroke and halt. A little thought shows that a computation of the new machine will

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

4.2. THE PRODUCTIVITY FUNCTION 41

go through all the same steps as the old machine, except that, when the old machine

would halt on the leftmost of a block of n strokes, the new machine will go through

two more steps of computation (moving left and printing a stroke), leaving it halted

on the leftmost of a block of n + 1 strokes. Thus its output will be one more than

the output of the original machine, and if the original machine, for a given argument,

computes the value of s, the new machine will compute the value of t .
Thus, to show that no Turing machine can compute s, it will now be enough to show

that no Turing machine can compute t . And this is not hard to do. For suppose there

were a machine computing t . It would have some number k of states (not counting the

halted state). Started on the leftmost of a block of k strokes on an otherwise blank

tape, it would halt on the leftmost of a block of t(k) strokes on an otherwise blank

tape. But then t(k) would be the score of this particular k-state machine, and that is

impossible, since t(k) > s(k) = the highest score achieved by any k-state machine.

Thus we have proved:

4.3 Proposition. The scoring function s is not Turing computable.

Let us have another look at the function s in the light of Turing’s thesis. Accord-

ing to Turing’s thesis, since s is not Turing computable, s cannot be effectively

computable. Why not? After all there are (ignoring labelling) only finitely many

quadruple representations or flow charts of k-place Turing machines for a given k. We

could in principle start them all going in state 1 with input k and await developments.

Some machines will halt at once, with score 0. As time passes, one or another of the

other machines may halt; then we can check whether or not it has halted in standard

position. If not, its score is 0; if so, its score can be determined simply by counting

the number of strokes in a row on the tape. If this number is less than or equal

to the score of some k-state machine that stopped earlier, we can ignore it. If it is

greater than the score of any such machine, then it is the new record-holder. Some

machines will run on forever, but since there are only finitely many machines, there

will come a time when any machine that is ever going to halt has halted, and the

record-holding machine at that time is a k-state machine of maximum score, and

its score is equal to s(k). Why doesn’t this amount to an effective way of comput-

ing s(k)?

It would, if we had some method of effectively determining which machines are

eventually going to halt. Without such a method, we cannot determine which of the

machines that haven’t halted yet at a given time are destined to halt at some later

time, and which are destined never to halt at all, and so we cannot determine whether

or not we have reached a time when all machines that are ever going to halt have

halted. The procedure outlined in the preceding paragraph gives us a solution to the

scoring problem, the problem of computing s(n), only if we already have a solution

to the halting problem, the problem of determining whether or not a given machine

will, for given input, eventually halt. This is the flaw in the procedure.

There is a related Turing-uncomputable function that is even simpler to describe

than s, called the Rado or busy-beaver function, which may be defined as follows.

Consider a Turing machine started with the tape blank (rather than with input equal

to the number of states of the machine, as in the scoring-function example). If the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

42 UNCOMPUTABILITY

machine eventually halts, scanning the leftmost of an unbroken block of strokes on

an otherwise blank tape, its productivity is said to be the length of that block. But if

the machine never halts, or halts in some other configuration, its productivity is said

to be 0. Now define p(n) = the productivity of the most productive Turing machine

having no more than n states (not counting the halted state).

This function also can be shown to be Turing uncomputable.

The facts needed about the function p can be conveniently set down in a series of

examples. We state all the examples first, and then give our proofs, in case the reader

wishes to look for a proof before consulting ours.

4.4 Example. p(1) = 1

4.5 Example. p(n + 1) > p(n) for all n

4.6 Example. There is an i such that p(n + i) ≥ 2p(n) for all n

Proofs

Example 4.4. There are just 25 Turing machines with a single state q1. Each may

be represented by a flow chart in which there is just one node, and 0 or 1 or 2 arrows

(from that node back to itself). Let us enumerate these flow charts.

Consider first the flow chart with no arrows at all. (There is just one.) The

corresponding machine halts immediately with the tape still blank, and thus has

productivity 0.

Consider next flow charts with two arrows, labelled ‘B:—’ and ‘1 : . . . ,’ where

each of ‘—’ and ‘. . .’ may be filled in with R or L or B or 1. There are 4 · 4 = 16

such flow charts, corresponding to the 4 ways of filling in ‘—’ and the 4 ways of

filling in ‘. . .’. Each such flow chart corresponds to a machine that never halts, and

thus has productivity 0. The machine never halts because no matter what symbol it is

scanning, there is always an instruction for it to follow, even if it is an instruction like

‘print a blank on the (already blank) square you are scanning, and stay in the state

you are in’.

Consider flow charts with one arrow. There are four of them where the arrow is

labelled ‘1: . . . ’. These all halt immediately, since the machine is started on a blank,

and there is no instruction what to do when scanning a blank. So again the productivity

is 0.

Finally, consider flow charts with one arrow labelled ‘B:—’. Again there are four

of them. Three of them have productivity 0: the one ‘B:B’, which stays put, and the

two labelled ‘B:R’ and ‘B:L’, which move endlessly down the tape in one direction

or the other (touring machines). The one labelled ‘B:1’ prints a stroke and then halts,

and thus has productivity 1. Since there is thus a 1-state machine whose productivity

is 1, and every other 1-state machine has productivity 0, the most productive 1-state

machine has productivity 1.

Example 4.5. Choose any of the most productive n-state machines, and add one

more state, as in Figure 4-1.

The result is an (n + 1)-state machine of productivity n + 1. There may be (n + 1)-

state machines of even greater productivity than this, but we have established that

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

4.2. THE PRODUCTIVITY FUNCTION 43

Figure 4-1. Increasing productivity by 1.

the productivity of the most productive (n + 1)-state machines is at least greater by

1 than the productivity of the most productive n-state machine.

Example 4.6. We can take i = 11. To see this, plug together an n-state machine for

writing a block of n strokes (Example 3.1) with a 12-state machine for doubling the

length of a row of strokes (Example 3.2). Here ‘plugging together’ means superim-

posing the starting node of one machine on the halting node of the other: identifying
the two nodes. [Number the states of the first machine 1 through n, and those of the

second machine (n − 1) + 1 through (n − 1) + 12, which is to say n through n + 11.

This is the same process we described in terms of lists of instructions rather than flow

charts in our proof of Theorem 4.2.] The result is shown in Figure 4-2.

Figure 4-2. Doubling productivity.

The result is an (n + 11)-state machine with productivity 2n. Since there may

well be (n + 11)-state machines with even greater productivity, we are not entitled

to conclude that the most productive (n + 11)-state machine has productivity exactly

2n, but we are entitled to conclude that the most productive (n + 11)-state machine

has productivity at least 2n.

So much for the pieces. Now let us put them together into a proof that the function

p is not Turing computable. The proof will be by reductio ad absurdum: we deduce an

absurd conclusion from the supposition that there is a Turing machine computing p.

The first thing we note is that if there is such a machine, call it BB, and the number

of its states is j , then we have

p(n + 2 j) ≥ p(p(n))(1)

for any n. For given a j-state machine BB computing p, we can plug together an

n-state machine writing a row of n strokes with two replicas of BB as in Figure 4-3.

Figure 4-3. Boosting productivity using the hypothetical machine BB.

The result is an (n + 2 j)-state machine of productivity p(p(n)). Now from

Example 4.5 above it follows that if a < b, then p(a) < p(b). Turning this around,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-04 CB421-Boolos March 19, 2007 17:17 Char Count= 0

44 UNCOMPUTABILITY

if p(b) ≤ p(a), we must have b ≤ a. Applying this observation to (1), we have

n + 2 j ≥ p(n)(2)

for any n. Letting i be as in Example 4.6 above, we have

p(m + i) ≥ 2m(3)

for any m. But applying (2) with n = m + i , we have

m + i + 2 j ≥ p(m + i)(4)

for any m. Combining (3) and (4), we have

m + i + 2 j ≥ 2m(5)

for any m. Setting k = i + 2 j , we have

m + k ≥ 2m(6)

for any m. But this is absurd, since clearly (6) fails for any m > k. We have proved:

4.7 Theorem. The productivity function p is Turing uncomputable.

Problems

4.1 Is there a Turing machine that, started anywhere on the tape, will eventually halt

if and only if the tape originally was not completely blank? If so, sketch the

design of such a machine; if not, briefly explain why not.

4.2 Is there a Turing machine that, started anywhere on the tape, will eventually halt

if and only if the tape originally was completely blank? If so, sketch the design

of such a machine; if not, briefly explain why not.

4.3 Design a copying machine of the kind described at the beginning of the proof of

theorem 4.2.

4.4 Show that if a two-place function g is Turing computable, then so is the one-

place function f given by f (x) = g(x, x). For instance, since the multiplication

function g(x, y) = xy is Turing computable, so is the square function f (x) = x2.

4.5 A universal Turing machine is a Turing machine U such that for any other Turing

machine Mn and any x , the value of the two-place function computed by U for

arguments n and x is the same as the value of the one-place function computed

by Mn for argument x . Show that if Turing’s thesis is correct, then a universal

Turing machine must exist.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5

Abacus Computability

Showing that a function is Turing computable directly, by giving a table or flow chart
for a Turing machine computing the function, is rather laborious, and in the preceding
chapters we did not get beyond showing that addition and multiplication and a few
other functions are Turing computable. In this chapter we provide a less direct way of
showing functions to be Turing computable. In section 5.1 we introduce an ostensibly
more flexible kind of idealized machine, an abacus machine, or simply an abacus. In
section 5.2 we show that despite the ostensible greater flexibility of these machines, in
fact anything that can be computed on an abacus can be computed on a Turing machine.
In section 5.3 we use the flexibility of these machines to show that a large class of
functions, including not only addition and multiplication, but exponentiation and many
other functions, are computable on a abacus. In the next chapter functions of this class
will be called recursive, so what will have been proved by the end of this chapter is that
all recursive functions are Turing computable.

5.1 Abacus Machines

We have shown addition and multiplication to be Turing-computable functions, but

not much beyond that. Actually, the situation is even a bit worse. It seemed appropriate,

when considering Turing machines, to define Turing computability for functions

on positive integers (excluding zero), but in fact it is customary in work on other

approaches to computability to consider functions on natural numbers (including

zero). If we are to compare the Turing approach with others, we must adapt our

definition of Turing computability to apply to natural numbers, as can be accomp-

lished (at the cost of some slight artificiality) by the expedient of letting the number n
be represented by a string of n + 1 strokes, so that a single stroke now represents zero,

two strokes represent one, and so on. But with this change, the adder we presented in

the last chapter actually computes m + n + 1, rather than m + n, and would need to be

modified to compute the standard addition function; and similarly for the multiplier.

The modifications are not terribly difficult to carry out, but they still leave us with

only a very few examples of interesting effectively computable functions that have

been shown to be Turing computable. In this chapter we greatly enlarge the number of

examples, but we do not do so directly, by giving tables or flow charts for the relevant

Turing machines. Instead, we do so indirectly, by way of another kind of idealized

machine.

45

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

46 ABACUS COMPUTABILITY

Historically, the notion of Turing computability was developed before the age of

high-speed digital computers, and in fact, the theory of Turing computability formed

a not insignificant part of the theoretical background for the development of such

computers. The kinds of computers that are ordinary today are in one respect more

flexible than Turing machines in that they have random-access storage. A Lambek or

abacus machine or simply abacus will be an idealized version of computer with this

‘ordinary’ feature. In contrast to a Turing machine, which stores information symbol

by symbol on squares of a one-dimensional tape along which it can move a single

step at a time, a machine of the seemingly more powerful ‘ordinary’ sort has access

to an unlimited number of registers R0, R1, R2, . . . , in each of which can be written

numbers of arbitrary size. Moreover, this sort of machine can go directly to register

Rn without inching its way, square by square, along the tape. That is, each register

has its own address (for register Rn it might be just the number n) which allows the

machine to carry out such instructions as

put the sum of the numbers in registers Rm and Rn into register Rp

which we abbreviate

[m] + [n] → p.

In general, [n] is the number in register Rn , and the number at the right of an arrow

identifies the register in which the result of the operation at the left of the arrow is

to be stored. When working with such machines, it is natural to consider functions

on the natural numbers (including zero), and not just the positive integers (excluding

zero). Thus, the number [n] in register Rn at a given time may well be zero: the

register may be empty.

It should be noted that our ‘ordinary’ sort of computing machine is really quite

extraordinary in one respect: although real digital computing machines often have

random-access storage, there is always a finite upper limit on the size of the numbers

that can be stored; for example, a real machine might have the ability to store any

of the numbers 0, 1, . . . , 10 000 000 in each of its registers, but no number greater

than ten million. Thus, it is entirely possible that a function that is computable in

principle by one of our idealized machines is not computable in practice by any real

machine, simply because, for certain arguments, the computation would require more

capacious registers than any real machine possesses. (Indeed, addition is a case in

point: there is no finite bound on the sizes of the numbers one might think of adding,

and hence no finite bound on the size of the registers needed for the arguments and

the sum.) But this is in line with our objective of abstracting from technological

limitations so as to arrive at a notion of computability that is not too narrow. We seek

to show that certain functions are uncomputable in an absolute sense: uncomputable

even by our idealized machines, and therefore uncomputable by any past, present, or

future real machine.

In order to avoid discussion of electronic or mechanical details, we may imagine

the abacus machine in crude, Stone Age terms. Each register may be thought of as a

roomy, numbered box capable of holding any number of stones: none or one or two

or . . . , so that [n] will be the number of stones in box number n. The ‘machine’ can

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5.1. ABACUS MACHINES 47

be thought of as operated by a little man who is capable of carrying out two sorts of

operations: adding a stone to the box of a specified number, and removing a stone

from the box of a specified number, if there are any stones there to be removed.

The table for a Turing machine is in effect a list of numbered instructions, where

‘attending to instruction q’ is called ‘being in state q’. The instructions all have the

following form:

(q)

{
if you are scanning a blank then perform action a and go to r
if you are scanning a stroke then perform action b and go to s.

Here each of the actions is one of the following four options: erase (put a blank in the

scanned square), print (put a stroke in the scanned square), move left, move right. It

is permitted that one or both of r or s should be q , so ‘go to r ’ or ‘go to s’ amounts

to ‘remain with q’.

Turing machines can also be represented by flow charts, in which the states or

instructions do not have to be numbered. An abacus machine program could also be

represented in a table of numbered instructions. These would each be of one or the

other of the following two forms:

(q) add one to box m and go to r

(q)

{
if box m is not empty then subtract one from box m and go to r
if box m is empty then go to s.

But in practice we are going to be working throughout with a flow-chart represen-

tation. In this representation, the elementary operations will be symbolized as in

Figure 5-1.

Figure 5-1. Elementary operations in abacus machines.

Flow charts can be built up as in the following examples.

5.1 Example (Emptying box n). Emptying the box of a specified number n can be accom-

plished with a single instruction as follows:{
if box n is not empty then subtract 1 from box n and stay with 1

if box n is empty then halt.
(1)

The corresponding flow chart is indicated in Figure 5-2.

In the figure, halting is indicated by an arrow leading nowhere. The block diagram also

shown in Figure 5-2 summarizes what the program shown in the flow chart accomplishes,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

48 ABACUS COMPUTABILITY

Figure 5-2. Emptying a box.

without indicating how it is accomplished. Such summaries are useful in showing how more

complicated programs can be put together out of simpler ones.

5.2 Example (Emptying box m into box n). The program is indicated in Figure 5-3.

Figure 5-3. Emptying one box into another.

The figure is intended for the case m �= n. (If m = n, the program halts—exits on the e
arrow—either at once or never, according as the box is empty or not originally.) In future we

assume, unless the contrary possibility is explicitly allowed, that when we write of boxes

m, n, p, and so on, distinct letters represent distinct boxes.

When as intended m �= n, the effect of the program is the same as that of carrying stones

from box m to box n until box m is empty, but there is no way of instructing the machine

or its operator to do exactly that. What the operator can do is (m−) take stones out of

box m, one at a time, and throw them on the ground (or take them to wherever unused

stones are stored), and then (n+) pick stones up off the ground (or take them from wherever

unused stones are stored) and put them, one at a time, into box n. There is no assurance that

the stones put into box n are the very same stones that were taken out of box m, but we

need no such assurance in order to be assured of the desired effect as described in the block

diagram, namely,

[m] + [n] → n: the number of stones in box n after this move equals

the sum of the numbers in m and in n before the move

and then

0 → m: the number of stones in box m after this move is 0.

5.3 Example (Adding box m to box n, without loss from m). To accomplish this we must

make use of an auxiliary register p, which must be empty to begin with (and will be empty

again at the end as well). Then the program is as indicated in Figure 5-4.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5.1. ABACUS MACHINES 49

Figure 5-4. Addition.

In case no assumption is made about the contents of register p at the beginning, the

operation accomplished by this program is the following:

[m] + [n] → n

[m] + [p] → m

0 → p.

Here, as always, the vertical order represents a sequence of moves, from top to bottom.

Thus, p is emptied after the other two moves are made. (The order of the first two moves

is arbitrary: The effect would be the same if their order were reversed.)

5.4 Example (Multiplication). The numbers to be multiplied are in distinct boxes m1 and

m2; two other boxes, n and p, are empty to begin with. The product appears in box n. The

program is indicated in Figure 5-5.

Figure 5-5. Multiplication.

Instead of constructing a flow chart de novo, we use the block diagram of the preceding

example a shorthand for the flow chart of that example. It is then straightforward to draw

the full flow chart, as in Figure 5-5(b), where the m of the preceding example is changed to

m2. The procedure is to dump [m2] stones repeatedly into box n, using box m1 as a counter:

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

50 ABACUS COMPUTABILITY

We remove a stone from box m1 before each dumping operation, so that when box m1 is

empty we have

[m2] + [m2] + · · · + [m2] ([m1] summands)

stones in box n.

5.5 Example (Exponentiation). Just as multiplication is repeated addition, so exponentia-

tion is repeated multiplication. The program is perfectly straightforward, once we arrange

the multiplication program of the preceding example to have [m2] · [n] → n. How that is to

be accomplished is shown in Figure 5-6.

Figure 5-6. Exponentiation.

The cumulative multiplication indicated in this abbreviated flow chart is carried out in

two steps. First, use a program like Example 5.4 with a new auxiliary:

[n] · [m2] → q

0 → n.

Second, use a program like Example 5.2:

[q] + [n] → n

0 → q.

The result gives [n] · [m2] → n. Provided the boxes n, p, and q are empty initially, the

program for exponentiation has the effect

[m2][m1] → n

0 → m1

in strict analogy to the program for multiplication. (Compare the diagrams in the preceding

example and in this one.)

Structurally, the abbreviated flow charts for multiplication and exponentiation

differ only in that for exponentiation we need to put a single stone in box n at the

beginning. If [m1] = 0 we have n = 1 when the program terminates (as it will

at once, without going through the multiplication routine). This corresponds to the

convention that x0 = 1 for any natural number x . But if [m1] is positive, [n] will

finally be a product of [m1] factors [m2], corresponding to repeated application of

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5.2. SIMULATING ABACUS MACHINES BY TURING MACHINES 51

the rule x y+1 = x · x y , which is implemented by means of cumulative multiplication,

using box m1 as a counter.

It should now be clear that the initial restriction to two elementary sorts of acts,

n+ and n−, does not prevent us from computing fairly complex functions, including

all the functions in the series that begins sum, product, power, . . . , and where the

n + 1st member is obtained by iterating the nth member. This is considerably further

than we got with Turing machines in the preceding chapters.

5.2 Simulating Abacus Machines by Turing Machines

We now show that, despite the ostensible greater flexibility of abacus machines,

all abacus-computable functions are Turing computable. Before we can describe a

method for transforming abacus flow charts into equivalent Turing-machine flow

charts, we need to standardize certain features of abacus computations, as we did

earlier for Turing computations with our official definition of Turing computability.

We must know where to place the arguments, initially, and where to look, finally,

for values. The following conventions will do as well as any, for a function f of r
arguments x1, . . . , xr :

(a) Initially, the arguments are the numbers of stones in the first r boxes, and all other

boxes to be used in the computation are empty. Thus, x1 = [1], . . . , xr = [r],

0 = [r + 1] = [r + 2] = · · · .

(b) Finally, the value of the function is the number of stones is some previously

specified box n (which may but need not be one of the first r). Thus,

f (x1, . . . , xr) = [n] when the computation halts, that is, when we come to an

arrow in the flow chart that terminates in no node.

(c) If the computation never halts, f (x1, . . . , xr) is undefined.

The computation routines for addition, multiplication, and exponentiation in the

preceding section were essentially in this form, with r = 2 in each case. They were

formulated in a general way, so as to leave open the question of just which boxes

are to contain the arguments and value. For example, in the adder we only specified

that the arguments are to be stored in distinct boxes numbered m and n, that the sum

will be found in box x , and that a third box, numbered p and initially empty, will

be used as an auxiliary in the course of the computation. But now we must specify

m, n, and p subject to the restriction that m and n must be 1 and 2, and p must be

some number greater than 2. Then we might settle on n = 1, m = 2, p = 3, to get a

particular program for addition in the standard format, as in Figure 5-7.

The standard format associates a definite function from natural numbers to nat-

ural numbers with each abacus, once we specify the number r of arguments and

the number n of the box in which the values will appear. Similarly, the standard

format for Turing-machine computations associates a definite function from natural

numbers to natural numbers (originally, from positive integers to positive integers,

but we have modified that above) with each Turing machine, once we specify the

number r of arguments. Observe that once we have specified the chart of an abacus

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

52 ABACUS COMPUTABILITY

Figure 5-7. Addition in standard format.

machine A in standard form, then for each register n that we might specify as hold-

ing the result of the computation there are infinitely many functions Ar
n that we have

specified as computed by the abacus: one function for each possible number r of argu-

ments. Thus if A is determined by the simplest chart for addition, as in Example 5.2,

with n = 1 and m = 2, we have

A2
1(x, y) = x + y

for all natural numbers x and y, but we also have the identity function A1
1(x) = x

of one argument, and for three or more arguments we have A1
r (x1, . . . , xr) = x1 + x2.

Indeed, for r = 0 arguments we may think of A as computing a ‘function’ of a sort,

namely, the number A0
1 = 0 of strokes in box 1 when the computation halts, having

been started with all boxes (‘except the first r ’) empty. Of course, the case is entirely

parallel for Turing machines, each of which computes a function of r arguments in

standard format for each r = 0, 1, 2, . . . , the value for 0 being what we called the

productivity of the machine in the preceding chapter.

Having settled on standard formats for the two kinds of computation, we can turn

to the problem of designing a method for converting the flow chart of an abacus An ,

with n designated as the box in which the values will appear, into the chart of a

Turing machine that computes the same functions: for each r , the Turing machine

will compute the same function Ar
n of r arguments that the abacus computes. Our

method will specify a Turing-machine flow chart that is to replace each node of type

n+ with its exiting arrow (as on the left in Figure 5-1, but without the entering arrow)

in the abacus flow chart; a Turing-machine flow chart that is to replace each node

of type n− with its two exiting arrows (as on the right in Figure 5-1, again without

the entering arrow); and a mop-up Turing-machine flow chart that, at the end, makes

the machine erase all but the nth block of strokes on the tape and halt, scanning the

leftmost of the remaining strokes.

It is important to be clear about the relationship between boxes of the abacus and

corresponding parts of the Turing machine’s tape. For example, in computing A4
n(0,

2, 1, 0), the initial tape and box configurations would be as shown in Figure 5-8.

Boxes containing one or two or . . . stones are represented by blocks of two or three

or . . . strokes on the tape. Single blanks separate portions of the tape corresponding to

successive boxes. Empty boxes are always represented by single squares, which may

be blank (as with R5, R6, R7, . . . in the figure) or contain a single 1 (as with R1 and

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5.2. SIMULATING ABACUS MACHINES BY TURING MACHINES 53

Figure 5-8. Correspondence between boxes and tape.

R4 in the figure). The 1 is mandatory if there are any strokes further to the right on the

tape, and is mandatory initially for empty argument boxes. The blank is mandatory

initially for Rr+1, Rr+2, Then at any stage of the computation we can be sure

that when in moving to the right or left we encounter two successive blanks, there

are no further strokes to be found anywhere to the right or left (as the case may be)

on the tape. The exact portion of the tape that represents a box will wax and wane with

the contents of that box as the execution of the program progresses, and will shift to

the right or left on the tape as stones are added to or removed from lower-numbered

boxes.

The first step in our method for converting abacus flow charts into equivalent

Turing-machine flow charts can now be specified: replace each s+ node (consisting

of a node marked s+ and the arrow leading from it) by a copy of the s+ flow chart

shown in Figure 5-9.

Figure 5-9. The s+ flow chart.

The first 2(s − 1) nodes of the s+ chart simply take the Turing machine across the

first s − 1 blocks of strokes. In the course of seeking the sth block, the machine sub-

stitutes the 1-representation for the B-representation of any empty boxes encountered

along the way.

When it enters the node sa, the Turing machine has arrived at the sth block. Then

again substitutes the 1-representation for the B-representation of that box, if that box

is empty. On leaving node sb, the machine writes a stroke, moves 1 square right, and

does one thing or another (node x) depending on whether it is then scanning a blank

or a stroke.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

54 ABACUS COMPUTABILITY

If it is scanning a blank, there can be no more strokes to the right, and it therefore

returns to standard position. But if it is scanning a stroke at that point, it has more

work to do before returning to standard position, for there are more blocks of strokes

to be dealt with, to the right on the tape. These must be shifted one square rightwards,

by erasing the first 1 in each block and filling the blank to the block’s right with a

stroke—continuing this routine until it finds a blank to the right of the last blank it

has replaced by a stroke. At that point there can be no further strokes to the right, and

the machine returns to standard position.

Note that node 1a is needed in case the number r of arguments is 0: in case the

‘function’ that the abacus computes is a number A0
n . Note, too, that the first s − 1

pairs of nodes (with their efferent arrows) are identical, while the last pair is different

only in that the arrow from node sb to the right is labelled B:1 instead of B:R. What

the general s+ flow chart looks like in the case s = 1 is shown in Figure 5-10.

Figure 5-10. The special case s = 1.

The second step in our method of converting abacus flow charts into equivalent

Turing machine flow charts can now be specified: replace each s− node (with the

two arrows leading from it) by a copy of an s− flow chart having the general pattern

shown in Figure 5-11.

Readers may wish to try to fill in the details of the design for themselves, as an

exercise. (Our design will be given later.) When the first and second steps of the

method have been carried out, the abacus flow chart will have been converted into

something that is not quite the flow chart of a Turing machine that computes the same

function that the abacus does. The chart will (probably) fall short in two respects,

one major and one minor. The minor respect is that if the abacus ever halts, there

must be one or more ‘loose’ arrows in the chart: arrows that terminate in no node.

This is simply because that is how halting is represented in abacus flow charts: by an

arrow leading nowhere. But in Turing-machine flow charts, halting is represented in

a different way, by a node with no arrows leading from it. The major respect is that

in computing Ar
n(x1, . . . , xr) the Turing machine would halt scanning the leftmost 1

on the tape, but the value of the function would be represented by the nth block of
strokes on the tape. Even if n = 1, we cannot depend on there being no strokes on the

tape after the first block, so our method requires one more step.

The third step: after completing the first two steps, redraw all loose arrows so they

terminate in the input node of a mop-up chart, which makes the machine (which will

be scanning the leftmost 1 on the tape at the beginning of this routine) erase all but

the first block of strokes if n = 1, and halt scanning the leftmost of the remaining

strokes. But if n �= 1, it erases everything on the tape except for both the leftmost

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5.2. SIMULATING ABACUS MACHINES BY TURING MACHINES 55

Figure 5-11. Abbreviated s− flow chart.

1 on the tape and the nth block, repositions all strokes but the rightmost in the nth

block immediately to the right of the leftmost 1, erases the rightmost 1, and then halts

scanning the leftmost 1. In both cases, the effect is to place the leftmost 1 in the block

representing the value just where the leftmost 1 was initially. Again readers may wish

to try to fill in the details of the design for themselves, as an exercise. (Our design

will be given shortly.)

The proof that all abacus-computable functions are Turing computable is now

finished, except for the two steps that we have invited readers to try as exercises. For

the sake of completeness, we now present our own solutions to these exercises: our

own designs for the second and third stages of the construction reducing an abacus

computation to a Turing computation.

For the second stage, we describe what goes into the boxes in Figure 5-11. The

top block of the diagram contains a chart identical with the material from node 1a to

sa (inclusive) of the s+ flow chart. The arrow labelled 1:R from the bottom of this

block corresponds to the one that goes right from node sa in the s+ flow chart.

The ‘Is [s] = 0?’ box contains nothing but the shafts of the two emergent arrows:

They originate in the node shown at the top of that block.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

56 ABACUS COMPUTABILITY

Figure 5-12. Detail of the s− flow chart.

The ‘Return to standard position’ blocks contain replicas of the material to the

right of node x in the s+ chart: The B:L arrows entering those boxes correspond to

the B:L arrow from node x .

The only novelty is in the remaining block: ‘Find and erase the . . . ’ That block

contains the chart shown in Figure 5-12.

For the third stage, the mop-up chart, for n �= 1, is shown in Figure 5-13.

Figure 5-13. Mop-up chart.

We have proved:

5.6 Theorem. Every abacus-computable function is Turing computable.

We know from the preceding chapter some examples of functions that are not
Turing computable. By the foregoing theorem, these functions are also not abacus

computable. It is also possible to prove directly the existence of functions that are not

abacus computable, by arguments parallel to those used for Turing computability in

the preceding chapter.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5.3. THE SCOPE OF ABACUS COMPUTABILITY 57

5.3 The Scope of Abacus Computability

We now turn from showing that particular functions are abacus computable to showing

that certain processes for defining new functions from old, when applied to old abacus-

computable functions, produce new abacus-computable functions. (These processes

will be explained and examined in more detail in the next chapter, and readers may

wish to defer reading this section until after that chapter.)

Now we initially indicated that to compute a function of r arguments on an abacus,

we must specify r registers or boxes in which the arguments are to be stored initially

(represented by piles of rocks) and we must specify a register or box in which the

value of the function is to appear (represented by a pile of rocks) at the end of

the computation. To facilitate comparison with computations by Turing machines in

standard form, we then insisted that the input or arguments were to be placed in the

first r registers, but left it open in which register n the output or value would appear:

it was not necessary to be more specific, because the simulation of the operations

of an abacus by a Turing machine could be carried out wherever we let the output

appear. For the purposes of this section, we are therefore free now to insist that the

output register n, which we have heretofore left unspecified, be specifically register

r + 1. We also wish to insist that at the end of the computation the original arguments

should be back in registers 1 through r . In the examples considered earlier this last

condition was not met, but those examples are easily modified to meet it. We give

some further, trivial examples here, where all our specifications are exactly met.

5.7 Example (Zero, successor, identity). First consider the zero function z, the one-place

function that takes the value 0 for all arguments. It is computed by the vacuous program:

box 2 is empty anyway.

Next consider the successor function s, the one-place function that takes any natural

number x to the next larger natural number x + 1. It is computed by modifying the program

in Example 5.3, as shown in Figure 5-14.

Figure 5-14. Three basic functions.

Initially and finally, [1] = x ; initially [2] = 0; finally, [2] = s(x). Finally consider identity

function idm
n , the n-place function whose value for n arguments x1, . . . , xn is the mth one

among them, xm . It is computed by the program of the same Example 5.3. Initially and

finally, [1] = x1, . . . , [n] = xn; initially, [n + 1] = 0; finally [n + 1] = xm .

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

58 ABACUS COMPUTABILITY

Three different processes for defining new functions from old can be used to expand

our initial list of examples. A first process is composition, also called substitution.

Suppose we have two 3-place functions g1 and g2, and a 2-place function f . The

function h obtained from them by composition is the 3-place function given by

h(x1, x2, x3) = f (g1(x1, x2, x3), g2(x1, x2, x3)).

Suppose g1 and g2 and f are abacus computable according to our specifications, and

we are given programs for them.

↓ ↓ ↓
f ([1], [2]) → 3 g1([1], [2], [3]) → 4 g2([1], [2], [3]) → 4

↓ ↓ ↓
We want to find a program for h, to show it is abacus computable:

↓
h([1], [2], [3]) → 4 .

↓
The thing is perfectly straightforward: It is a matter of shuttling the results of

subcomputations around so as to be in the right boxes at the right times.

First, we identify five registers, none of which are used in any of the given programs.

Let us call these registers p1, p2, q1, q2, and q3. They will be used for temporary

storage. In the single program which we want to construct, the 3 arguments are stored

initially in boxes 1, 2, and 3; all other boxes are empty initially; and at the end, we

want the n arguments back in boxes 1, 2, 3, and want the value f (g1([1], [2], [3]),

g2([1], [2], [3])) in box number 4. To arrange that, all we need are the three given

programs, plus the program of Example 5.2 for emptying one box into another.

We simply compute g1([1], [2], [3]) and store the result in box p1 (which figures

in none of the given programs, remember); then compute g2([1], [2], [3]) and store

the result in box p2; then store the arguments in boxes 1, 2, and 3 in boxes q1, q2,

and q3, emptying boxes 1 through 4; then get the results of the computations of g1

and g2 out of boxes p1 and p2 where they have been stored, emptying them into

boxes 1 and 2; then compute f ([1], [2]) = f [g1(original arguments), g2(original

arguments)], getting the result in box 3; and finally, tidy up, moving the overall result

of the computation from box 3 to box 4, emptying box 3 in the process, and refilling

boxes 1 through 3 with the original arguments of the overall computation, which were

stored in boxes q1, q2, and q3. Now everything is as it should be. The structure of the

flow chart is shown in Figure 5-15.

Another process, called (primitive) recursion, is what is involved in defining mul-

tiplication as repeated addition, exponentiation as repeated multiplication, and so on.

Suppose we have a 1-place functions f and a 3-place function g. The function h
obtained from them by (primitive) recursion is the 2-place function h given by

h(x, 0) = f (x)

h(x, y + 1) = g(x, y, h(x, y)).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

5.3. THE SCOPE OF ABACUS COMPUTABILITY 59

Figure 5-15. Composition.

For instance, if f (x) = x and g(x, y, z) = z + 1, then

h(x, 0) = f (x) = x = x + 0

h(x, 1) = g(x, 0, x) = x + 1

h(x, 2) = g(x, 1, x + 1) = (x + 1) + 1 = x + 2

and in general h(x, y) = x + y. Suppose f and g are abacus computable according

to our specifications, and we are given programs for them:

↓ ↓
f ([1]) → 2 g1([1], [2], [3]) → 4 .

↓ ↓

We want to find a program for h, to show it is abacus computable

↓
h([1], [2]) → 3 .

↓

The thing is easily done, as in Figure 5-16.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

60 ABACUS COMPUTABILITY

Figure 5-16. Recursion.

Initially, [1] = x , [2] = y, and [3] = [4] = · · · = 0. We use a register number p that

is not used in the f and g programs as a counter. We put y into it at the beginning, and

after each stage of the computation we see whether [p] = 0. If so, the computation

is essentially finished; if not, we subtract 1 from [p] and go through another stage.

In the first three steps we calculate f (x) and see whether entry y was 0. If so, the

first of the pair of equations for h is operative: h(x, y) = h(x, 0) = f (x), and the

computation is finished, with the result in box 3, as required. If not, the second of

the pair of equations for h is operative, and we successively compute h(x , 1),

h(x , 2), . . . (see the cyle in Figure 5-16) until the counter (box p) is empty. At that

point the computation is finished, with h(x , y) in box 3, as required.

A final process is minimization. Suppose we have a 2-place function f ; then we

can define a 1-place function h as follows. If f (x, 0), . . . , f (x, i − 1) are all defined

and �= 0, and f (x , i) = 0, then h(x) = i . If there is no i with these properties, either

because for some i the values f (x , 0), . . . , f (x, j − 1) are all defined and �= 0 but

f (x , j) is not defined, or because for all i the value f (x , i) is defined and �= 0,

then h(x) is undefined. The function h is called the function obtained from f by

minimization. If f is abacus computable, so is h, with a flow chart as in Figure 5-17.

Initially, box 2 is empty, so that if f (x , 1) = 0, the program will halt with the

correct answer, h(x) = 0, in box 2. (Box 3 will be empty.) Otherwise, box 3 will be

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

PROBLEMS 61

Figure 5-17. Minimization.

emptied and a single rock place in box 2, preparatory to the computation of f (x , 1).

If this value is 0, the program halts, with the correct value, h(x) = 1, in box 2.

Otherwise, another rock is placed in box 2, and the procedure continues until such time

(if any) as we have a number y of rocks in box 2 that is enough to make f (x , y) = 0.

The extensive class of functions obtainable from the trivial functions considered

in the example at the beginning of this section by the kinds of processes considered

in the rest of this section will be studied in the next chapter, where they will be given

the name recursive functions. At this point we know the following:

5.8 Theorem. All recursive functions are abacus computable (and hence Turing

computable).

So as we produce more examples of such functions, we are going to be producing

more evidence for Turing’s thesis.

Problems

5.1 Design an abacus machine for computing the difference function .− defined by

letting x .−y = x − y if y < x , and = 0 otherwise.

5.2 The signum function sg is defined by letting sg(x) = 1 if x > 0, and = 0

otherwise. Give a direct proof that sg is abacus computable by designing an

abacus machine to compute it.

5.3 Give an indirect proof that sg is abacus computable by showing that sg is

obtainable by composition from functions known to be abacus computable.

5.4 Show (directly by designing an appropriate abacus machine, or indirectly) that

the function f defined by letting f (x , y) = 1 if x < y, and = 0 otherwise, is

abacus computable.

5.5 The quotient and the remainder when the positive integer x is divided by the

positive integer y are the unique natural numbers q and r such that x = qy + r
and 0 ≤ r < y. Let the functions quo and rem be defined as follows: rem(x, y) =
the remainder on dividing x by y if y �= 0, and = x if y = 0; quo(x , y) = the

quotient on dividing x by y if y �= 0, and = 0 if y = 0. Design an abacus machine

for computing the remainder function rem.

5.6 Write an abacus-machine flow chart for computing the quotient function quo

of the preceding problem.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-05 CB421-Boolos March 19, 2007 17:21 Char Count= 0

62 ABACUS COMPUTABILITY

5.7 Show that for any k there is a Turing machine that, when started on the leftmost

1 on a tape containing k blocks of 1s separated by single blanks, halts on the

leftmost 1 on a tape that is exactly the same as the starting tape, except that

everything has been moved one square to the right, without the machine in the

course of its operations ever having moved left of the square on which it was

started.

5.8 Review the operations of a Turing machine simulating some give abacus ma-

chine according to the method of this chapter. What is the furthest to the left of

the square on which it is started that such a machine can ever go in the course

of its operations?

5.9 Show that any abacus-computable function is computable by a Turing machine

that never moves left of the square on which it is started.

5.10 Describe a reasonable way of coding abacus machines by natural numbers.

5.11 Given a reasonable way of coding abacus machines by natural numbers, let

d(x) = 1 if the one-place function computed by abacus number x is defined and

has value 0 for argument x , and d(x) = 0 otherwise. Show that this function is

not abacus computable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6

Recursive Functions

The intuitive notion of an effectively computable function is the notion of a function for
which there are definite, explicit rules, following which one could in principle compute its
value for any given arguments. This chapter studies an extensive class of effectively com-
putable functions, the recursively computable, or simply recursive, functions. According
to Church’s thesis, these are in fact all the effectively computable functions. Evidence
for Church’s thesis will be developed in this chapter by accumulating examples of ef-
fectively computable functions that turn out to be recursive. The subclass of primitive

recursive functions is introduced in section 6.1, and the full class of recursive functions
in section 6.2. The next chapter contains further examples. The discussion of recursive
computability in this chapter and the next is entirely independent of the discussion of
Turing and abacus computability in the preceding three chapters, but in the chapter
after next the three notions of computability will be proved equivalent to each other.

6.1 Primitive Recursive Functions

Intuitively, the notion of an effectively computable function f from natural numbers

to natural numbers is the notion of a function for which there is a finite list of

instructions that in principle make it possible to determine the value f (x1, . . . , xn)

for any arguments x1, . . . , xn . The instructions must be so definite and explicit that

they require no external sources of information and no ingenuity to execute. But the

determination of the value given the arguments need only be possible in principle,

disregarding practical considerations of time, expense, and the like: the notion of

effective computability is an idealized one.

For purposes of computation, the natural numbers that are the arguments and values

of the function must be presented in some system of numerals or other, though the

class of functions that is effectively computable will not be affected by the choice

of system of numerals. (This is because conversion from one system of numerals

to another is itself an effective process that can be carried out according to definite,

explicit rules.) Of course, in practice some systems of numerals are easier to work with

than others, but that is irrelevant to the idealized notion of effective computability.

For present purposes we adopt a variant of the primeval monadic or tally notation, in

which a positive integer n is represented by n strokes. The variation is needed because

we want to consider not just positive integers (excluding zero) but the natural numbers

63

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

64 RECURSIVE FUNCTIONS

(including zero). We adopt the system in which the number zero is represented by

the cipher 0, and a natural number n > 0 is represented by the cipher 0 followed by

a sequence of n little raised strokes or accents. Thus the numeral for one is 0′, the

numeral for two is 0′′, and so on.

Two functions that are extremely easy to compute in this notation are the zero
function, whose value z(x) is the same, namely zero, for any argument x , and the

successor function s(x), whose value for any number x is the next larger number. In

our special notation we write:

z(0) = 0 z(0′) = 0 z(0′′) = 0 · · ·
s(0) = 0′ s(0′) = 0′′ s(0′′) = 0′′′ · · · ·

To compute the zero function, given any any argument, we simply ignore the argument

and write down the symbol 0. To compute the successor function in our special

notation, given a number written in that notation, we just add one more accent at the

right.

Some other functions it is easy to compute (in any notation) are the identity
functions. We have earlier encountered also the identity function of one argument,

id or more fully id1
1, which assigns to each natural number as argument that same

number as value:

id1
1(x) = x .

There are two identity functions of two arguments: id2
1 and id2

2. For any pair of

natural numbers as arguments, these pick out the first and second, respectively, as

values:

id2
1(x, y) = x id2

2(x, y) = y.

In general, for each positive integer n, there are n identity functions of n arguments,

which pick out the first, second, . . . , and nth of the arguments:

idn
i (x1, . . . , xi , . . . , xn) = xi .

Identity functions are also called projection functions. [In terms of analytic geometry,

id2
1(x, y) and id2

2(x, y) are the projections x and y of the point (x, y) to the X-axis

and to the Y-axis respectively.]

The foregoing functions—zero, successor, and the various identity functions—are

together called the basic functions. They can be, so to speak, computed in one step,

at least on one way of counting steps.

The stock of effectively computable functions can be enlarged by applying certain

processes for defining new functions from old. A first sort of operation, composi-

tion, is familiar and straightforward. If f is a function of m arguments and each of

g1, . . . , gm is a function of n arguments, then the function obtained by composition
from f , g1, . . . , gm is the function h where we have

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) (Cn)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6.1. PRIMITIVE RECURSIVE FUNCTIONS 65

One might indicate this in shorthand:

h = Cn[f, g1, . . . , gm].

Composition is also called substitution.

Clearly, if the functions gi are all effectively computable and the function f is

effectively computable, then so is the function h. The number of steps needed to

compute h(x1, . . . , xn) will be the sum of the number of steps needed to compute

y1 = g1(x1, . . . , xn), the number needed to compute y2 = g2(x1, . . . , xn), and so on,

plus at the end the number of steps needed to compute f (y1, . . . , ym).

6.1 Example (Constant functions). For any natural number n, let the constant function

constn be defined by constn(x) = n for all x . Then for each n, constn can be obtained from

the basic functions by finitely many applications of composition. For, const0 is just the zero

function z, and Cn[s, z] is the function h with h(x) = s(z(x)) = s(0) = 0′ = 1 = const1(x)

for all x , so const1 = Cn[s, z]. (Actually, such notations as Cn[s, z] are genuine function

symbols, belonging to the same grammatical category as h, and we could have simply

written Cn[s, z](x) = s(z(x)) here rather than the more longwinded ‘if h = Cn[s, z], then

h(x) = z(x)′’.) Similarly const2 = Cn[s, const1], and generally constn+1 = Cn[s, constn].

The examples of effectively computable functions we have had so far are admittedly

not very exciting. More interesting examples are obtainable using a different process

for defining new functions from old, a process that can be used to define addition

in terms of successor, multiplication in terms of addition, exponentiation in terms of

multiplication, and so on. By way of introduction, consider addition. The rules for

computing this function in our special notation can be stated very concisely in two

equations as follows:

x + 0 = x x + y′ = (x + y)′.

To see how these equations enable us to compute sums consider adding 2 = 0′′
and 3 = 0′′′. The equations tell us:

0′′ + 0′′′ = (0′′ + 0′′)′ by 2nd equation with x = 0′′ and y = 0′′

0′′ + 0′′ = (0′′ + 0′)′ by 2nd equation with x = 0′′ and y = 0′

0′′ + 0′ = (0′′ + 0)′ by 2nd equation with x = 0′′ and y = 0

0′′ + 0 = 0′′ by 1st equation with x = 0′′.

Combining, we have the following:

0′′ + 0′′′ = (0′′ + 0′′)′

= (0′′ + 0′)′′

= (0′′ + 0)′′′

= 0′′′′′.

So the sum is 0′′′′′ = 5. Thus we use the second equation to reduce the problem of

computing x + y to that of computing x + z for smaller and smaller z, until we arrive

at z = 0, when the first equation tells us directly how to compute x + 0.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

66 RECURSIVE FUNCTIONS

Similarly, for multiplication we have the rules or equations

x · 0 = 0 x · y′ = x + (x · y)

which enable us to reduce the computation of a product to the computation of sums,

which we know how to compute:

0′′ · 0′′′ = 0′′ + (0′′ · 0′′)

= 0′′ + (0′′ + (0′′ · 0′))

= 0′′ + (0′′ + (0′′ + (0′′ · 0)))

= 0′′ + (0′′ + (0′′ + 0))

= 0′′ + (0′′ + 0′′)

after which we would carry out the computation of the sum in the last line in the way

indicated above, and obtain 0′′′′′′.
Now addition and multiplication are just the first two of a series of arithmetic

operations, all of which are effectively computable. The next item in the series is ex-

ponentiation. Just as multiplication is repeated addition, so exponentiation is repeated

multiplication. To compute x y , that is, to raise x to the power y, multiply together

y xs as follows:

x · x · x· · · · ·x (a row of y xs).

Conventionally, a product of no factors is taken to be 1, so we have the equation

x0 = 0′.

For higher powers we have

x1 = x

x2 = x · x
...

x y = x · x· · · · ·x (a row of y xs)

x y+1 = x · x· · · · ·x · x = x · x y (a row of y + 1 xs).

So we have the equation

x y′ = x · x y .

Again we have two equations, and these enable us to reduce the computation of a

power to the computation of products, which we know how to do.

Evidently the next item in the series, super-exponentiation, would be defined as

follows:

x x xx
..

.

(a stack of y xs).

The alternative notation x ↑ y may be used for exponentiation to avoid piling up of

superscripts. In this notation the definition would be written as follows:

x ↑ x ↑ x ↑ . . . ↑ x (a row of y xs).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6.1. PRIMITIVE RECURSIVE FUNCTIONS 67

Actually, we need to indicate the grouping here. It is to the right, like this:

x ↑ (x ↑ (x ↑ . . . ↑ x . . .))

and not to the left, like this:

(. . . ((x ↑ x) ↑ x) ↑ . . .) ↑ x .

For it makes a difference: 3 ↑ (3 ↑ 3) = 3 ↑ (27) = 7 625 597 484 987; while (3 ↑ 3) ↑
3 = 27 ↑ 3 =19 683. Writing x ⇑ y for the super-exponential, the equations would be

x ⇑ 0 = 0′ x ⇑ y′ = x ↑ (x ⇑ y).

The next item in the series, super-duper-exponentiation, is analogously defined, and

so on.

The process for defining new functions from old at work in these cases is called

(primitive) recursion. As our official format for this process we take the following:

h(x, 0) = f (x), h(x, y′) = g(x, y, h(x, y)) (Pr).

Where the boxed equations—called the recursion equations for the function h—

hold, h is said to be definable by (primitive) recursion from the functions f and g. In

shorthand,

h = Pr[f, g].

Functions obtainable from the basic functions by composition and recursion are called

primitive recursive.
All such functions are effectively computable. For if f and g are effectively com-

putable functions, then h is an effectively computable function. The number of steps

needed to compute h(x, y) will be the sum of the number of steps needed to com-

pute z0 = f (x) = h(x, 0), the number needed to compute z1 = g(x, 0, z0) = h(x, 1),

the number needed to compute z2 = g(x, 1, z1) = h(x, 2), and so on up to zy =
g(x, y − 1, zy−1) = h(x, y).

The definitions of sum, product, and power we gave above are approximately in

our official boxed format. [The main difference is that the boxed format allows one,

in computing h(x , y′), to apply a function taking x , y, and h(x , y) as arguments. In the

examples of sum, product, and power, we never needed to use y as an argument.] By

fussing over the definitions we gave above, we can put them exactly into the format

(Pr), thus showing addition and multiplication to be primitive recursive.

6.2 Example (The addition or sum function). We start with the definition given by the

equations we had above,

x + 0 = x x + y′ = (x + y)′.

As a step toward reducing this to the boxed format (Pr) for recursion, we replace the ordinary

plus sign, written between the arguments, by a sign written out front:

sum(x, 0) = x sum(x, y′) = sum(x, y)′.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

68 RECURSIVE FUNCTIONS

To put these equations in the boxed format (Pr), we must find functions f and g for which

we have

f (x) = x g(x, y, —) = s(—)

for all natural numbers x , y, and —. Such functions lie ready to hand: f = id1
1, g = Cn

[s, id3
3]. In the boxed format we have

sum(x, 0) = id1
1(x) sum(x, s(y)) = Cn

[
s, id3

3

]
(x, y, sum(x, y))

and in shorthand we have

sum = Pr
[
id1

1, Cn
[
s, id3

3

]]
.

6.3 Example (The multiplication or product function). We claim prod = Pr[z, Cn[sum,

id3
1, id3

3]]. To verify this claim we relate it to the boxed formats (Cn) and (Pr). In terms of

(Pr) the claim is that the equations

prod(x, 0) = z(x) prod(x, s(y)) = g(x, y, prod(x, y))

hold for all natural numbers x and y, where [setting h = g, f = sum, g1 = id3
1, g2 = id3

3 in

the boxed (Cn) format] we have

g(x1, x2, x3) = Cn
[
sum, id3

1, id3
3

]
(x1, x2, x3)

= sum
(
id3

1(x1, x2, x3), id3
3(x1, x2, x3)

)
= x1 + x3

for all natural numbers x1, x2, x3. Overall, then, the claim is that the equations

prod(x, 0) = z(x) prod(x, s(y)) = x + prod(x, y)

hold for all natural numbers x and y, which is true:

x · 0 = 0 x · y′ = x + x · y.

Our rigid format for recursion serves for functions of two arguments such as sum

and product, but we are sometimes going to wish to use such a scheme to define

functions of a single argument, and functions of more than two arguments. Where

there are three or more arguments x1, . . . , xn , y instead of just the two x , y that appear

in (Pr), the modification is achieved by viewing each of the five occurrences of x in

the boxed format as shorthand for x1, . . . , xn . Thus with n = 2 the format is

h(x1, x2, 0) = f (x1, x2)

h(x1, x2, s(y)) = g(x1, x2, y, h(x1, x2, y)).

6.4 Example (The factorial function). The factorial x! for positive x is the product

1 · 2 · 3· · · · ·x of all the positive integers up to and including x , and by convention 0! = 1.

Thus we have

0! = 1

y′! = y! · y′.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

6.1. PRIMITIVE RECURSIVE FUNCTIONS 69

To show this function is recursive we would seem to need a version of the format for

recursion with n = 0. Actually, however, we can simply define a two-argument function

with a dummy argument, and then get rid of the dummy argument afterwards by composing

with an identity function. For example, in the case of the factorial function we can define

dummyfac(x, 0) = const1(x)

dummyfac(x, y′) = dummyfac(x, y) · y′

so that dummyfac(x , y) = y! regardless of the value of x , and then define fac(y)=dummyfac

(y, y). More formally,

fac = Cn
[
Pr

[
const1, Cn

[
prod, id3

3, Cn
[
s, id3

2

]]]
, id, id

]
.

(We leave to the reader the verification of this fact, as well as the conversions of informal-

style definitions into formal-style definitions in subsequent examples.)

The example of the factorial function can be generalized.

6.5 Proposition. Let f be a primitive recursive function. Then the functions

g(x, y) = f (x, 0) + f (x, 1) + · · · + f (x, y) =
y∑

i=0

f (x, i)

h(x, y) = f (x, 0) · f (x, 1)· · · · · f (x, y) =
y∏

i=0

f (x, i)

are primitive recursive.

Proof: We have for the g the recursion equations

g(x, 0) = f (x, 0)

g(x, y′) = g(x, y) + f (x, y′)

and similarly for h.

Readers may wish, in the further examples to follow, to try to find definitions of

their own before reading ours; and for this reason we give the description of the

functions first, and our definitions of them (in informal style) afterwards.

6.6 Example. The exponential or power function.

6.7 Example (The (modified) predecessor function). Define pred (x) to be the predecessor

x − 1 of x for x > 0, and let pred(0) = 0 by convention. Then the function pred is primitive

recursive.

6.8 Example (The (modified) difference function). Define x .−y to be the difference x − y
if x ≥ y, and let x .−y = 0 by convention otherwise. Then the function .− is primitive

recursive.

6.9 Example (The signum functions). Define sg(0) = 0, and sg(x) = 1 if x > 0, and define

sg(0) = 1 and sg(x) = 0 if x > 0. Then sg and sg are primitive recursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

70 RECURSIVE FUNCTIONS

Proofs

Example 6.6. x ↑ 0 = 1, x ↑ s(y) = x · (x ↑ y), or more formally,

exp = Pr
[
Cn[s, z], Cn

[
prod, id3

1, id3
3

]]
.

Example 6.7. pred(0) = 0, pred(y′) = y.

Example 6.8. x .− 0 = x, x .− y′ = pred(x .− y).

Example 6.9. sg(y) = 1 .− (1 .− y), sg(y) = 1 .− y.

6.2 Minimization

We now introduce one further process for defining new functions from old, which

can take us beyond primitive recursive functions, and indeed can take us beyond

total functions to partial functions. Intuitively, we consider a partial function f to be

effectively computable if a list of definite, explicit instructions can be given, following

which one will, in the case they are applied to any x in the domain of f , arrive after

a finite number of steps at the value f (x), but following which one will, in the case

they are applied to any x not in the domain of f , go on forever without arriving at

any result. This notion applies also to two- and many-place functions.

Now the new process we want to consider is this. Given a function f of n + 1

arguments, the operation of minimization yields a total or partial function h of n
arguments as follows:

Mn[f](x1, . . . , xn) =
⎧⎨⎩

y if f (x1, . . . , xn, y) = 0, and for all t < y
f (x1, . . . , xn, t) is defined and �= 0

undefined if there is no such y.

If h = Mn[f] and f is an effectively computable total or partial function, then

h also will be such a function. For writing x for x1, . . . , xn , we compute h(x) by

successively computing f (x, 0), f (x, 1), f (x, 2), and so on, stopping if and when

we reach a y with f (x, y) = 0. If x is in the domain of h, there will be such a y, and

the number of steps needed to compute h(x) will be the sum of the number of steps

needed to compute f (x , 0), the number of steps needed to compute f (x, 1), and so

on, up through the number of steps needed to compute f (x, y) = 0. If x is not in the

domain of h, this may be for either of two reasons. On the one hand, it may be that

all of f (x, 0), f (x , 1), f (x, 2), . . . are defined, but they are all nonzero. On the other

hand, it may be that for some i , all of f (x, 0), f (x, 1), . . . , f (x, i − 1) are defined

and nonzero, but f (x, i) is undefined. In either case, the attempt to compute h(x) will

involve one in a process that goes on forever without producing a result.

In case f is a total function, we do not have to worry about the second of the two

ways in which Mn[f] may fail to be defined, and the above definition boils down to

the following simpler form.

Mn[f](x1, . . . , xn) =
⎧⎨⎩

the smallest y for which

f (x1, . . . , xn, y) = 0 if such a y exists

undefined otherwise.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

PROBLEMS 71

The total function f is called regular if for every x1, . . . , xn there is a y such that

f (x1, . . . , xn , y) = 0. In case f is a regular function, Mn[f] will be a total function.

In fact, if f is a total function, Mn[f] will be total if and only if f is regular.

For example, the product function is regular, since for every x , x · 0 = 0; and

Mn[prod] is simply the zero function. But the sum function is not regular, since

x + y = 0 only in case x = y = 0; and Mn[sum] is the function that is defined only

for 0, for which it takes the value 0, and undefined for all x > 0.

The functions that can be obtained from the basic functions z, s, idn
i by the pro-

cesses Cn, Pr, and Mn are called the recursive (total or partial) functions. (In the

literature, ‘recursive function’ is often used to mean more specifically ‘recursive

total function’, and ‘partial recursive function’ is then used to mean ‘recursive total

or partial function’.) As we have observed along the way, recursive functions are all

effectively computable.

The hypothesis that, conversely, all effectively computable total functions are re-

cursive is known as Church’s thesis (the hypothesis that all effectively computable

partial functions are recursive being known as the extended version of Church’s the-

sis). The interest of Church’s thesis derives largely from the following fact. Later

chapters will show that some particular functions of great interest in logic and mathe-

matics are nonrecursive. In order to infer from such a theoretical result the conclusion

that such functions are not effectively computable (from which may be inferred the

practical advice that logicians and mathematicians would be wasting their time look-

ing for a set of instructions to compute the function), we need assurance that Church’s

thesis is correct.

At present Church’s thesis is, for us, simply an hypothesis. It has been made some-

what plausible to the extent that we have shown a significant number of effectively

computable functions to be recursive, but one can hardly on the basis of just these

few examples be assured of its correctness. More evidence of the correctness of the

thesis will accumulate as we consider more examples in the next two chapters.

Before turning to examples, it may be well to mention that the thesis that every ef-

fectively computable total function is primitive recursive would simply be erroneous.

Examples of recursive total functions that are not primitive recursive are described

in the next chapter.

Problems

6.1 Let f be a two-place recursive total function. Show that the following functions

are also recursive:

(a) g(x, y) = f (y, x)

(b) h(x) = f (x, x)

(c) k17(x) = f (17, x) and k17(x) = f (x, 17).

6.2 Let J0(a, b) be the function coding pairs of positive integers by positive integers

that was called J in Example 1.2, and from now on use the name J for the

corresponding function coding pairs of natural numbers by natural numbers, so

that J (a, b) = J0(a + 1, b + 1) − 1. Show that J is primitive recursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-06 CB421-Boolos July 27, 2007 16:32 Char Count= 0

72 RECURSIVE FUNCTIONS

6.3 Show that the following functions are primitive recursive:

(a) the absolute difference |x − y|, defined to be x − y if y < x , and y − x
otherwise.

(b) the order characteristic, χ≤(x, y), defined to be 1 if x ≤ y, and 0 otherwise.

(c) the maximum max(x, y), defined to be the larger of x and y.

6.4 Show that the following functions are primitive recursive:

(a) c(x, y, z) = 1 if yz = x , and 0 otherwise.

(b) d(x, y, z) = 1 if J (y, z) = x , and 0 otherwise.

6.5 Define K (n) and L(n) as the first and second entries of the pair coded (under the

coding J of the preceding problems) by the number n, so that J (K (n), L(n)) = n.

Show that the functions K and L are primitive recursive.

6.6 An alternative coding of pairs of numbers by numbers was considered in

Example 1.2, based on the fact that every natural number n can be written

in one and only one way as 1 less than a power of 2 times an odd number,

n = 2k(n)(2l(n) .− 1) .− 1. Show that the functions k and l are primitive recursive.

6.7 Devise some reasonable way of assigning code numbers to recursive functions.

6.8 Given a reasonable way of coding recursive functions by natural numbers, let

d(x) = 1 if the one-place recursive function with code number x is defined and

has value 0 for argument x , and d(x) = 0 otherwise. Show that this function is

not recursive.

6.9 Let h(x, y) = 1 if the one-place recursive function with code number x is defined

for argument y, and h(x, y) = 0 otherwise. Show that this function is not recursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7

Recursive Sets and Relations

In the preceding chapter we introduced the classes of primitive recursive and recursive
functions. In this chapter we introduce the related notions of primitive recursive and
recursive sets and relations, which help provide many more examples of primitive recur-
sive and recursive functions. The basic notions are developed in section 7.1. Section 7.2
introduces the related notion of a semirecursive set or relation. The optional section 7.3
presents examples of recursive total functions that are not primitive recursive.

7.1 Recursive Relations

A set of, say, natural numbers is effectively decidable if there is an effective procedure

that, applied to a natural number, in a finite amount of time gives the correct answer

to the question whether it belongs to the set. Thus, representing the answer ‘yes’ by 1

and the answer ‘no’ by 0, a set is effectively decidable if and only if its characteristic
function is effectively computable, where the characteristic function is the function

that takes the value 1 for numbers in the set, and the value 0 for numbers not in the

set. A set is called recursively decidable, or simply recursive for short, if its char-

acteristic function is recursive, and is called primitive recursive if its characteristic

function is primitive recursive. Since recursive functions are effectively computable,

recursive sets are effectively decidable. Church’s thesis, according to which all

effectively computable functions are recursive, implies that all effectively decidable

sets are recursive.

These notions can be generalized to relations. Officially, a two-place relation R
among natural numbers will be simply a set of ordered pairs of natural numbers, and

we write Rxy—or R(x, y) if punctuation seems needed for the sake of readability—

interchangeably with (x , y) ∈ R to indicate that the relation R holds of x and y,

which is to say, that the pair (x , y) belongs to R. Similarly, a k-place relation is a set

of ordered k-tuples. [In case k = 1, a one-place relation on natural numbers ought to

be a set of 1-tuples (sequences of length one) of numbers, but we will take it simply

to be a set of numbers, not distinguishing in this context between n and (n). We

thus write Sx or S(x) interchangeably with x ∈ S.] The characteristic function of a

k-place relation is the k-argument function that takes the value 1 for a k-tuple if the

relation holds of that k-tuple, and the value 0 if it does not; and a relation is effectively

73

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

74 RECURSIVE SETS AND RELATIONS

decidable if its characteristic function is effectively computable, and is (primitive)

recursive if its characteristic function is (primitive) recursive.

7.1 Example (Identity and order). The identity relation, which holds if and only if x =
y, is primitive recursive, since a little thought shows its characteristic function is 1 −
(sg(x .− y) + sg(y .− x)). The strict less-than order relation, which holds if and only if x < y,

is primitive recursive, since its characteristic function is sg(y .− x).

We are now ready to indicate an important process for obtaining new recursive

functions from old. What follows is actually a pair of propositions, one about primitive

recursive functions, the other about recursive functions (according as one reads the

proposition with or without the bracketed word ‘primitive’). The same proof works

for both propositions.

7.2 Proposition (Definition by cases). Suppose that f is the function defined in the

following form:

f (x, y) =

⎧⎪⎨⎪⎩
g1(x, y) if C1(x, y)
...

...

gn(x, y) if Cn(x, y)

where C1, . . . , Cn are (primitive) recursive relations that are mutually exclusive, meaning

that for no x , y do more than one of them hold, and collectively exhaustive, meaning that for

any x , y at least one of them holds, and where g1, . . . , gn are (primitive) recursive total

functions. Then f is (primitive) recursive.

Proof: Let ci be the characteristic function of Ci . By recursion, define hi (x , y, 0)

= 0, hi (x , y, z′) = gi (x , y). Let ki (x , y) = hi (x , y, ci (x , y)), so ki (x , y) = 0 un-

less Ci (x , y) holds, in which case ki (x , y) = gi (x , y). It follows that f (x , y) =
k1(x, y) + . . . + kn(x , y), and f is (primitive) recursive since it is obtainable by

primitive recursion and composition from the gi and the ci , which are (primitive)

recursive by assumption, together with the addition (and identity) functions.

7.3 Example (The maximum and minimum functions). As an example of definition by

cases, consider max(x , y) = the larger of the numbers x , y. This can be defined as follows:

max(x, y) =
{

x if x ≥ y
y if x < y

or in the official format of the proposition above with g1 = id2
1 and g2 = id2

2. Similarly,

function min(x , y) = the smaller of x , y is also primitive recursive.

These particular functions, max and min, can also be shown to be primitive re-

cursive in a more direct way (as you were asked to do in the problems at the end of

the preceding chapter), but in more complicated examples, definition by cases makes

it far easier to establish the (primitive) recursiveness of important functions. This is

mainly because there are a variety of processes for defining new relations from old

that can be shown to produce new (primitive) recursive relations when applied to

(primitive) recursive relations. Let us list the most important of these.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.1. RECURSIVE RELATIONS 75

Given a relation R(y1, . . . , ym) and total functions f1(x1, . . . , xn), . . . , fm(x1, . . . ,

xn), the relation defined by substitution of the fi in R is the relation R∗(x1, . . . , xn)

that holds of x1, . . . , xn if and only if R holds of f1(x1, . . . , xn), . . . , fm(x1, . . . , xn),

or in symbols,

R∗(x1, . . . , xn) ↔ R(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

If the relation R∗ is thus obtained by substituting functions fi in the relation R, then

the characteristic function c∗ of R∗ is obtainable by composition from the fi and the

characteristic function c of R:

c∗(x1, . . . , xn) = c(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

Therefore, the result of substituting recursive total functions in a recursive relation is
itself a recursive relation. (Note that it is important here that the functions be total.)

An illustration may make this important notion of substitution clearer. For a given

function f , the graph relation of f is the relation defined by

G(x1, . . . , xn, y) ↔ f (x1, . . . , xn) = y.

Let f ∗(x1, . . . , xn, y) = f (x1, . . . , xn). Then f ∗ is recursive if f is, since

f ∗ = Cn
[

f, idn+1
1 , . . . , idn+1

n

]
.

Now f (x1, . . . , xn) = y if and only if

f ∗(x1, . . . , xn, y) = idn+1
n+1(x1, . . . , xn, y).

Indeed, the latter condition is essentially just a long-winded way of writing the former

condition. But this shows that if f is a recursive total function, then the graph relation

f (x1, . . . , xn) = y is obtainable from the identity relation u = v by substituting the

recursive total functions f ∗ and idn+1
n+1. Thus the graph relation of a recursive total

function is a recursive relation. More compactly, if less strictly accurately, we can

summarize by saying that the graph relation f (x) = y is obtained by substituting the

recursive total function f in the identity relation. (This compact, slightly inaccurate

manner of speaking, which will be used in future, suppresses mention of the role of

the identity functions in the foregoing argument.)

Besides substitution, there are several logical operations for defining new relations

from old. To begin with the most basic of these, given a relation R, its negation or

denial is the relation S that holds if and only if R does not:

S(x1, . . . , xn) ↔ ∼R(x1, . . . , xn).

Given two relations R1 and R2, their conjunction is the relation S that holds if and

only if R1 holds and R2 holds:

S(x1, . . . , xn) ↔ R1(x1, . . . , xn) & R2(x1, . . . , xn)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

76 RECURSIVE SETS AND RELATIONS

while their disjunction is the relation S that holds if and only if R1 holds or R2 holds

(or both do):

S(x1, . . . , xn) ↔ R1(x1, . . . , xn) ∨ R2(x1, . . . , xn).

Conjunction and disjunctions of more than two relations are similarly defined. Note

that when, in accord with our official definition, relations are considered as sets of

k-tuples, the negation is simply the complement, the conjunction the intersection, and

the disjunction the union.

Given a relation R(x1, . . . , xn , u), by the relation obtained from R through bounded
universal quantification we mean the relation S that holds of x1, . . . , xn , u if and only

if for all v < u, the relation R holds of x1, . . . , xn , v . We write

S(x1, . . . , xn, u) ↔ ∀v < u R(x1, . . . , xn, v)

or more fully:

S(x1, . . . , xn, u) ↔ ∀v(v < u → R(x1, . . . , xn, v)).

By the relation obtained from R through bounded existential quantification we mean

the relation S that holds of x1, . . . , xn , u if and only if for some v < u, the relation

R holds of x1, . . . , xn , v . We write

S(x1, . . . , xn, u) ↔ ∃v < u R(x1, . . . , xn, v)

or more fully:

S(x1, . . . , xn, u) ↔ ∃v(v < u & R(x1, . . . , xn, v)).

The bounded quantifiers ∀v ≤ u and ∃v ≤ u are similarly defined.

The following theorem and its corollary are stated for recursive relations (and recur-

sive total functions), but hold equally for primitive recursive relations (and primitive

recursive functions), by the same proofs, though it would be tedious for writers and

readers alike to include a bracketed ‘(primitive)’ everywhere in the statement and

proof of the result.

7.4 Theorem (Closure properties of recursive relations).

(a) A relation obtained by substituting recursive total functions in a recursive relation

is recursive.

(b) The graph relation of any recursive total function is recursive.

(c) If a relation is recursive, so is its negation.

(d) If two relations are recursive, then so is their conjunction.

(e) If two relations are recursive, then so is their disjunction.

(f) If a relation is recursive, then so is the relation obtained from it by bounded

universal quantification.

(g) If a relation is recursive, then so is the relation obtained from it by bounded

existential quantification.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.1. RECURSIVE RELATIONS 77

Proof:
(a), (b): These have already been proved.

(c): In the remaining items, we write simply x for x1, . . . , xn . The characteristic

function c∗ of the negation or complement of R is obtainable from the characteristic

function c of R by c∗(x) = 1 .− c(x).

(d), (e): The characteristic function c∗ of the conjunction or intersection of R1

and R2 is obtainable from the characteristic functions c1 and c2 of R1 and R2 by

c∗(x) = min(c1(x), c2(x)), and the characteristic function c† of the disjunction or

union is similarly obtainable using max in place of min.

(f), (g): From the characteristic function c(x , y) of the relation R(x , y) the charac-

teristic functions u and e of the relations ∀v ≤ y R(x1, . . . , xn , v) and ∃v ≤ y R(x1,

. . . , xn , v) are obtainable as follows:

u(x, y) =
y∏

i=0

c(x, i) e(x, y) = sg

(
y∑

i=0

c(x, i)

)

where the summation
(∑)

and product
(∏)

notation is as in Proposition 6.5. For the

product will be 0 if any factor is 0, and will be 1 if and only if all factors are 1; while

the sum will be positive if any summand is positive. For the strict bounds ∀v < y and

∃v < y we need only replace y by y .− 1.

7.5 Example (Primality). Recall that a natural number x is prime if x > 1 and there do

not exist any u, v both <x such that x = u · v . The set P of primes is primitive recursive,

since we have

P(x) ↔ 1 < x & ∀u < x ∀v < x(u · v
= x).

Here the relation 1 < x is the result of substituting const1 and id into the relation y < x ,

which we know to be primitive recursive from Example 7.1, and so this relation is primitive

recursive by clause (a) of the theorem. The relation u · v = x is the graph of a primitive

recursive function, namely, the product function; hence this relation is primitive recursive by

clause (b) of the theorem. So P is obtained by negation, bounded universal quantification,

and conjunction from primitive recursive relations, and is primitive recursive by clauses (c),

(d), and (f) of the theorem.

7.6 Corollary (Bounded minimization and maximization). Given a (primitive) recur-

sive relation R, let

Min[R](x1, . . . , xn, w) =
⎧⎨⎩

the smallest y ≤ w for which

R(x1, . . . , xn, y) if such a y exists

w + 1 otherwise

and

Max[R](x1, . . . , xn, w) =
⎧⎨⎩

the largest y ≤ w for which

R(x1, . . . , xn, y) if such a y exists

0 otherwise.

Then Min[R] and Max[R] are (primitive) recursive total functions.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

78 RECURSIVE SETS AND RELATIONS

Proof: We give the proof for Min. Write x for x1, . . . , xn . Consider the (primitive)

recursive relation ∀t ≤ y ∼R(x, t), and let c be its characteristic function. If there is

a smallest y ≤ w such that R(x, y), then abbreviating c(x, i) to c(i) we have

c(0) = c(1) = · · · = c(y − 1) = 1 c(y) = c(y + 1) = · · · = c(w) = 0.

So c takes the value 1 for the y numbers i < y, and the value 0 thereafter. If there is

no such y, then

c(0) = c(1) = · · · = c(w) = 1.

So c takes the value 1 for all w + 1 numbers i ≤ w . In either case

Min[R](x, w) =
w∑

i=0

c(x, i)

and is therefore (primitive) recursive. The proof for Max is similar, and is left to the

reader.

7.7 Example (Quotients and remainders). Given natural numbers x and y with y > 0, there

are unique natural numbers q and r such that x = q · y + r and r < y. They are called the

quotient and remainder on division of x by y. Let quo(x, y) be the quotient on dividing x by

y if y > 0, and set quo(x, 0) = 0 by convention. Let rem(x, y) be the remainder on dividing

x by y if y > 0, and set rem(x, 0) = x by convention. Then quo is primitive recursive, as

an application of bounded maximization, since q ≤ x and q is the largest number such

that q · y ≤ x .

quo(x, y) =
{

the largest z ≤ x such that y · z ≤ x if y
= 0

0 otherwise.

We apply the preceding corollary (in its version for primitive recursive functions and re-

lations). If we let Rxyz be the relation y · z ≤ x , then quo(x, y) = Max[R](x, y, x), and

therefore quo is primitive recursive. Also rem is primitive recursive, since rem(x, y) = x−̇
(quo(x, y) · y). Another notation for rem(x, y) is x mod y.

7.8 Corollary. Suppose that f is a regular primitive function and that there is a primitive

recursive function g such that the least y with f (x1, . . . , xn, y) = 0 is always less than

g(x1, . . . , xn). Then Mn[f] is not merely recursive but primitive recursive.

Proof: Let R(x1, . . . , xn, y) hold if and only if f (x1, . . . , xn, y) = 0. Then

Mn[f](x1, . . . , xn) = Min[R](x1, . . . , xn, g(x1, . . . , xn)).

7.9 Proposition. Let R be an (n + 1)-place recursive relation. Define a total or partial

function r by

r (x1, . . . , xn) = the least y such that R(x1, . . . , xn, y).

Then r is recursive.

Proof: The function r is just Mn[c], where c is the characteristic function of ∼R.

Note that if r is a function and R its graph relation, then r (x) is the only y such

that R(x , y), and therefore a fortiori the least such y (as well as the greatest such y).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.1. RECURSIVE RELATIONS 79

So the foregoing proposition tells us that if the graph relation of a function is recur-

sive, the function is recursive. We have not set this down as a numbered corollary

because we are going to be getting a stronger result at the beginning of the next

section.

7.10 Example (The next prime). Let f (x) = the least y such that x < y and y is prime.

The relation

x < y & y is prime

is primitive recursive, using Example 7.5. Hence the function f is recursive by the preceding

proposition. There is a theorem in Euclid’s Elements that tells us that for any given number

x there exists a prime y > x , from which we know that our function f is total. But actually,

the proof in Euclid shows that there is a prime y > x with y ≤ x! + 1. Since the factorial

function is primitive recursive, the Corollary 7.8 applies to show that f is actually primitive
recursive.

7.11 Example (Logarithms). Subtraction, the inverse operation to addition, can take us

beyond the natural numbers to negative integers; but we have seen there is a reasonable

modified version −̇ that stays within the natural numbers, and that it is primitive recursive.

Division, the inverse operation to multiplication, can take us beyond the integers to fractional

rational numbers; but again we have seen there is a reasonable modified version quo that

is primitive recursive. Because the power or exponential function is not commutative, that

is, because in general x y
= yx , there are two inverse operations: the yth root of x is the z
such that zy = x , while the base-x logarithm of y is the z such that xz = y. Both can take

us beyond the rational numbers to irrational real numbers or even imaginary and complex

numbers. But again there is a reasonable modified version, or several reasonable modified

versions. Here is one for the logarithms

lo(x, y) =
{

the greatest z ≤ x such that yz divides x if x, y > 1

0 otherwise

where ‘divides x’ means ‘divides x without remainder’. Clearly if x , y > 1 and yz divides

x, z must be (quite a bit) less than x . So we can agrue as in the proof of 7.7 to show that lo

is a primitive recursive function. Here is another reasonable modified logarithm function:

lg(x, y) =
{

the greatest z such that yz ≤ x if x, y > 1

0 otherwise.

The proof that lg is primitive recursive is left to the reader.

The next series of examples pertain to the coding of finite sequences of natural

numbers by single natural numbers. The coding we adopt is based on the fact that

each positive integer can be written in one and only one way as a product of powers

of larger and larger primes. Specifically:

(a0, a1, . . . , an−1) is coded by 2n3a0 5a1 · · · π (n)an−1

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

80 RECURSIVE SETS AND RELATIONS

where π (n) is the nth prime (counting 2 as the 0th). (When we first broached the

topic of coding finite sequences by single numbers in section 1.2, we used a slightly

different coding. That was because we were then coding finite sequences of positive

integers, but now want to code finite sequences of natural numbers.) We state the

examples first and invite the reader to try them before we give our own proofs.

7.12 Example (The nth prime). Let π (n) be the nth prime, counting 2 as the 0th, so π (0) =
2, π (1) = 3, π (2) = 5, π (3) = 7, and so on. This function is primitive recursive.

7.13 Example (Length). There is a primitive recursive function lh such that if s codes a

sequence (a0, a1, . . . , an−1), then the value lh(s) is the length of that sequence.

7.14 Example (Entries). There is a primitive recursive function ent such that if s codes a

sequence (a0, a1, . . . , an−1), then for each i < n the value of ent(s, i) is the i th entry in that

sequence (counting a0 as the 0th).

Proofs

Example 7.12. π (0) = 2, π (x ′) = f (π (x)), where f is the next prime function of

Example 7.10. The form of the definition is similar to that of the factorial function:

see Example 6.4 for how to reduce definitions of this form to the official format for

recursion.

Example 7.13. lh(s) = lo(s, 2) will do, where lo is as in Example 7.11. Applied to

2n3a0 5a1 · · · π (n)an−1

this function yields n.

Example 7.14. ent(s, i) = lo(s, π (i + 1)) will do. Applied to

2n3a0 5a1 · · · π (n)an−1

and i , this function yields ai .

There are some further examples pertaining to coding, but these will not be needed

till a much later chapter, and even then only in a section that is optional reading, so

we defer them to the optional final section of this chapter. Instead we turn to another

auxiliary notion.

7.2 Semirecursive Relations

Intuitively, a set is (positively) effectively semidecidable if there is an effective pro-

cedure that, applied to any number, will if the number is in the set in a finite amount

of time give the answer ‘yes’, but will if the number is not in the set never give an

answer. For instance, the domain of an effectively computable partial function f is

always effectively semidecidable: the procedure for determining whether n is in the

domain of f is simply to try to compute the value f (n); if and when we succeed, we

know that n is in the domain; but if n is not in the domain, we never succeed.

The notion of effective semidecidability extends in the obvious way to relations.

When applying the procedure, after any number t of steps of computation, we can

tell whether we have obtained the answer ‘yes’ already, or have so far obtained no

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.2. SEMIRECURSIVE RELATIONS 81

answer. Thus if S is a semidecidable set we have

S(x) ↔ ∃t R(x, t)

where R is the effectively decidable relation ‘by t steps of computation we obtain the

answer “yes”’. Conversely, if R is an effectively decidable relation of any kind, and

S is the relation obtained from R by (unbounded) existential quantification, then S is

effectively semidecidable: we can attempt to determine whether n is in S by checking

whether R(n, 0) holds, and if not, whether R(n, 1) holds, and if not, whether R(n, 2)

holds, and so on. If n is in S, we must eventually find a t such that R(n, t), and will

thus obtain the answer ‘yes’; but if n is not in S, we go on forever without obtaining

an answer.

Thus we may characterize the effectively semidecidable sets as those obtained

from two-place effectively decidable relations by existential quantification, and more

generally, the n-place effectively semidecidable relations as those obtained from

(n + 1)-place effectively decidable relations by existential quantification. We define

an n-place relation S on natural numbers to be (positively) recursively semidecidable,

or simply semirecursive, if it is obtainable from an (n + 1)-place recursive relation

R by existential quantification, thus:

S(x1, . . . , xn) ↔ ∃y R(x1, . . . , xn, y).

A y such that R holds of the xi and y may be called a ‘witness’ to the relation S hold-

ing of the xi (provided we understand that when the witness is a number rather than

a person, a witness only testifies to what is true). Semirecursive relations are effec-

tively semidecidable, and Church’s thesis would imply that, conversely, effectively

semidecidable relations are semirecursive.

These notions should become clearer as we work out their most basic properties,

an exercise that provides an opportunity to review the basic properties of recursive

relations. The closure properties of recursive relations established in Theorem 7.4

can be used to establish a similar but not identical list of properties of semirecursive

relations.

7.15 Corollary (Closure properties of semirecursive relations).

(a) Any recursive relation is semirecursive.

(b) A relation obtained by substituting recursive total functions in a semirecursive

relation is semirecursive.

(c) If two relations are semirecursive, then so is their conjunction.

(d) If two relations are semirecursive, then so is their disjunction.

(e) If a relation is semirecursive, then so is the relation obtained from it by bounded

universal quantification.

(f) If a relation is semirecursive, then so is the relation obtained from it by existential

quantification.

Proof: We write simply x for x1, . . . , xn .

(a): If Rx is a recursive relation, then the relation S given by Sxy ↔ (Rx & y = y)

is also recursive, and we have R(x) ↔ ∃y Sxy.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

82 RECURSIVE SETS AND RELATIONS

(b): If Rx is a semirecursive relation, say Rx ↔ ∃ySxy where S is recursive, and

if R∗x ↔ R f (x), where f is a recursive total function, then the relation S∗ given

by S∗xy ↔ S f (x)y is also recursive, and we have R∗x ↔ ∃y S∗xy and R∗ is semi-

recursive.

(c): If R1x and R2x are semirecursive relations, say Ri x ↔ ∃y Si xy where S1 and

S2 are recursive, then the relation S given by Sxw ↔ ∃y1 < w ∃y2 < w(S1xy1 &

S2xy2) is also recursive, and we have (R1x & R2 y) ↔ ∃w Sxw . We are using here

the fact that for any two numbers y1 and y2, there is a number w greater than both of

them.

(d): If Ri and Si are as in (c), then the relation S given by Sxy ↔ (S1xy ∨ S2xy) is

also recursive, and we have (R1 y ∨ R2x) ↔ ∃y Sxy.

(e): If Rx is a semirecursive relation, say Rx ↔ ∃y Sxy where S is recursive, and

if R∗x ↔ ∀u < x Ru, then the relation S∗ given by S∗xw ↔ ∀u < x ∃y < w Suy
is also recursive, and we have R∗x ↔ ∃w S∗xw . We are using here the fact that for

any finite number of numbers y0, y1, . . . , yx there is a number w greater than all of

them.

(f): If Rxy is a semirecursive relation, say Rxy ↔ ∃z Sxyz where S is recursive, and

if R∗x ↔ ∃y Rxy, then the relation S∗ given by S∗xw ↔ ∃y < w ∃z < w Sxyz is

also recursive, and we have R∗x ↔ ∃w S∗xw .

The potential for semirecursive relations to yield new recursive relations and func-

tions is suggested by the following propositions. Intuitively, if we have a procedure

that will eventually tell us when a number is in a set (but will tell us nothing if it is

not), and also have a procedure that will eventually tell us when a number is not in a

set (but will tell us nothing if it is), then by combining them we can get a procedure

that will tell us whether or not a number is in the set: apply both given procedures

(say by doing a step of the one, then a step of the other, alternately), and eventually

one or the other must give us an answer. In jargon, if a set and its complement are

both effectively semidecidable, the set is decidable. The next proposition is the formal

counterpart of this observation.

7.16 Proposition (Complementation principle, or Kleene’s theorem). If a set and

its complement are both semirecursive, then the set (and hence also its complement) is

recursive.

Proof: If Rx and ∼Rx are both semirecursive, say Rx ↔ ∃y S+xy and ∼Rx ↔
∃y S−xy, then the relation S∗ given by S∗xy ↔ (S+xy ∨ S−xy) is recursive, and

if f is the function defined by letting f (x) be the least y such that S∗xy, then f
is a recursive total function. But then we have Rx ↔ S+x f (x), showing that R is

obtainable by substituting a recursive total function in a recursive relation, and is

therefore recursive.

7.17 Proposition (First graph principle). If the graph relation of a total or partial func-

tion f is semirecursive, then f is a recursive total or partial function.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.3. FURTHER EXAMPLES 83

Proof: Suppose f (x) = y ↔ ∃z Sxyz, where S is recursive. We first introduce

two auxiliary functions:

g(x) =
⎧⎨⎩

the least w such that

∃y < w ∃z < w Sxyz if such a w exists

undefined otherwise

h(x, w) =
⎧⎨⎩

the least y < w such that

∃z < w Sxyz if such a y exists

undefined otherwise.

Here the relations involved are recursive, and not just semirecursive, since they are

obtained from S by bounded, not unbounded, existential quantification. So g and h
are recursive. And a little thought shows that f (x) = h(x , g(x)), so f is recursive also.

The converse of the foregoing proposition is also true—the graph relation of a

recursive partial function is semirecursive, and hence a total or partial function is

recursive if and only if its graph relation is recursive or semirecursive—but we are

not at this point in a position to prove it.

An unavoidable appeal to Church’s thesis is made whenever one passes from a

theorem about what is or isn’t recursively computable to a conclusion about what

is or isn’t effectively computable. On the other hand, an avoidable or lazy appeal

to Church’s thesis is made whenever, in the proof of a technical theorem, we skip

the verification that certain obviously effectively computable functions are recur-

sively computable. Church’s thesis is mentioned in connection with omissions of

verifications only when writing for comparatively inexperienced readers, who cannot

reasonably be expected to be able to fill in the gap for themselves; when writing for

the more experienced reader one simply says “proof left to reader” as in similar cases

elsewhere in mathematics. The reader who works through the following optional

section and/or the optional Chapter 8 and/or the optional sections of Chapter 15 will

be well on the way to becoming “experienced” enough to fill in virtually any such

gap.

7.3* Further Examples

The list of recursive functions is capable of indefinite extension using the machinery

developed so far. We begin with the examples pertaining to coding that were alluded

to earlier.

7.18 Example (First and last). There are primitive recursive functions fst and lst such that

if s codes a sequence (a0, a1, . . . , an−1), then fst(s) and lst(s) are the first and last entries in

that sequence.

7.19 Example (Extension). There is a primitive recursive function ext such that if s
codes a sequence (a0, a1, . . . , an−1), then for any b, ext(s, b) codes the extended sequence

(a0, a1, . . . , an−1, b).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

84 RECURSIVE SETS AND RELATIONS

7.20 Example (Concatenation). There is a primitive recursive function conc such that if

s codes a sequence (a0, a1, . . . , an−1) and t codes a sequence (b0, b1, . . . , bm−1), then

conc (s, t) codes the concatenation (a0, a1, . . . , an−1, b0, b1, . . . , bm−1) of the two sequences.

Proofs

Example 7.18. fst(s) = ent(s, 0) and lst(s) = ent(s, lh(s) .−1) will do.

Example 7.19. ext(s, b) = 2 · s · π (lh(s) + 1)b will do. Applied to

2n3a0 5a1 · · · π (n)an−1

this function yields

2n+13a0 5a1 · · · π (n)an−1π (n + 1)b.

Example 7.20. A head-on approach here does not work, and we must proceed a

little indirectly, first introducing an auxiliary function such that

g(s, t, i) = the code for (a0, a1, . . . , an−1, b0, b1, . . . , bi−1).

We can then obtain the function we really want as conc(s, t) = g(s, t , lh(t)). The

auxiliary g is obtained by recursion as follows:

g(s, t, 0) = s

g(s, t, i ′) = ext(g(s, t, i), ent(t, i)).

Two more we leave entirely to the reader.

7.21 Example (Truncation). There is a primitive recursive function tr such that if s codes

a sequence (a0, a1, . . . , an−1) and m ≤ n, then tr(s, m) codes the truncated sequence (a0,

a1, . . . , am−1).

7.22 Example (Substitution). There is a primitive recursive function sub such that if

s codes a sequence (a1, . . . , ak), and c and d are any natural numbers, then sub(s, c, d)

codes the sequence that results upon taking s and substituting for any entry that is equal to

c the number d instead.

We now turn to examples, promised in the preceding chapter, of recursive total

functions that are not primitive recursive.

7.23 Example (The Ackermann function). Let �0� be the operation of addition, �1�
the operation of multiplication, �2� the operation of exponentiation, �3� the operation

of super-exponentiation, and so on, and let α(x , y, z) = x � y � z and γ (x) = α(x, x, x).

Thus

γ (0) = 0 + 0 = 0

γ (1) = 1 · 1 = 1

γ (2) = 22 = 4

γ (3) = 333 = 7 625 597 484 987

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

7.3. FURTHER EXAMPLES 85

after which the values of γ (x) begin to grow very rapidly. A related function δ is determined

as follows:

β0(0) = 2 β0(y′) = (β0(y))′

βx ′ (0) = 2 βx ′ (y′) = βx (βx ′ (y))

β(x, y) = βx (y)

δ(x) = β(x, x).

Clearly each of β0, β1, β2, . . . is recursive. The proof that β and hence δ are also recursive

is outlined in a problem at the end of the chapter. (The proof for α and γ would be similar.)

The proof that γ and hence α is not primitive recursive in effect proceeds by showing that

one needs to apply recursion at least once to get a function that grows as fast as the addition

function, at least twice to get one that grows as fast as the multiplication function, and so

on; so that no finite number of applications of recursion (and composition, starting with the

zero, successor, and identity functions) can give a function that grows as fast as γ . (The

proof for β and δ would be similar.) While it would take us too far afield to give the whole

proof here, working through the first couple of cases can give insight into the nature of

recursion. We present the first case next and outline the second in the problems at the end

of the chapter.

7.24 Proposition. It is impossible to obtain the sum or addition function from the basic

functions (zero, successor, and identity) by composition, without using recursion.

Proof: To prove this negative result we claim something positive, that if f belongs

to the class of functions that can be obtained from the basic functions using only

composition, then there is a positive integer a such that for all x1, . . . , xn we have

f (x1, . . . , xn) < x + a, where x is the largest of x1, . . . , xn . No such a can exist for

the addition function, since (a + 1) + (a + 1) > (a + 1) + a, so it will follow that

the addition function is not in the class in question—provided we can prove our claim.

The claim is certainly true for the zero function (with a = 1), and for the successor

function (with a = 2), and for each identity function (with a = 1 again). Since every

function in the class we are interested in is built up step by step from these functions

using composition, it will be enough to show if the claim holds for given functions,

it holds for the function obtained from them by composition.

So consider a composition

h(x1, . . . , xn) = f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

Suppose we know

gi (x1, . . . , xn) < x + a j where x is the largest of the x j

and suppose we know

f (y1, . . . , ym) < y + b where y is the largest of the yi .

We want to show there is a c such that

h(x1, . . . , xn) < x + c where x is the largest of the x j .

Let a be the largest of a1, . . . , am . Then where x is the largest of the x j , we have

gi (x1, . . . , xn) < x + a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

86 RECURSIVE SETS AND RELATIONS

so if yi = gi (x1, . . . , xn), then where y is the largest of the yi , we have y < x + a.

And so

h(x1, . . . , xn) = f (y1, . . . , ym) < (x + a) + b = x + (a + b)

and we may take c = a + b.

Problems

7.1 Let R be a two-place primitive recursive, recursive, or semirecursive relation.

Show that the following relations are also primitive recursive, recursive, or

semirecursive, accordingly:

(a) the converse of R, given by S(x, y) ↔ R(y, x)

(b) the diagonal of R, given by D(x) ↔ R(x, x)

(c) for any natural number m, the vertical and horizontal sections of R at m,

given by

Rm(y) ↔ R(m, y) and Rm(x) ↔ R(x, m).

7.2 Prove that the function lg of Example 7.11 is, as there asserted, primitive

recursive.

7.3 For natural numbers, write u | v to mean that u divides v without remainder,

that is, there is a w such that u · w = v . [Thus u | 0 holds for all u, but 0 | v
holds only for v = 0.] We say z is the greatest common divisor of x and y, and

write z = gcd(x, y), if z | x and z | y and whenever w | x and w | y, then w ≤ z
[except that, by convention, we let gcd(0, 0) = 0]. We say z is the least common
multiple of x and y, and write z = lcm(x, y), if x | z and y | z and whenever

x |w and y |w , then z ≤ w . Show that the functions gcd and lcm are primitive

recursive.

7.4 For natural numbers, we say x and y are relatively prime if gcd(x, y) = 1, where

gcd is as in the preceding problem. The Euler φ-function φ(n) is defined as the

number of m < n such that gcd(m, n) = 1. Show that φ is primitive recursive.

More generally, let Rxy be a (primitive) recursive relation, and let r (x) = the

number of y < x such that Rxy. Show that r is (primitive) recursive.

7.5 Let A be an infinite recursive set, and for each n, let a(n) be the nth element

of A in increasing order (counting the least element as the 0th). Show that the

function a is recursive.

7.6 Let f be a (primitive) recursive total function, and let A be the set of all n such

that the value f (n) is ‘new’ in the sense of being different from f (m) for all

m < n. Show that A is (primitive) recursive.

7.7 Let f be a recursive total function whose range is infinite. Show that there is a

one-to-one recursive total function g whose range is the same as that of f .

7.8 Let us define a real number ξ to be primitive recursive if the function f (x) = the

digit in the (x + 1)st place in the decimal expansion of ξ is primitive recursive.

[Thus if ξ = √
2 = 1.4142 . . . , then f (0) = 4, f (1) = 1, f (2) = 4, f (3) = 2,

and so on.] Show that
√

2 is a primitive recursive real number.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-07 CB421-Boolos July 27, 2007 16:35 Char Count= 0

PROBLEMS 87

7.9 Let f (n) be the nth entry in the infinite sequence 1, 1, 2, 3, 5, 8, 13, 21,

. . . of Fibonacci numbers. Then f is determined by the conditions f (0) = f (1)

= 1, and f (n+ 2) = f (n) + f (n + 1). Show that f is a primitive recursive

function.

7.10 Show that the truncation function of Example 7.21 is primitive recursive.

7.11 Show that the substitution function of Example 7.22 is primitive recursive.

The remaining problems pertain to Example 7.23 in the optional section 7.3. If
you are not at home with the method of proof by mathematical induction, you
should probably defer these problems until after that method has been discussed
in a later chapter.

7.12 If f and g are n- (and n + 2)-place primitive recursive functions obtainable

from the initial functions (zero, successor, identity) by composition, without

use of recursion, we have shown in Proposition 7.24 that there are numbers a
and b such that for all x1, . . . , xn , y, and z we have

f (x1, . . . , xn) < x + a, where x is the largest of x1, . . . , xn

g(x1, . . . , xn, y, z) < x + b, where x is the largest of x1, . . . , xn, y, and z.

Show now that if h = Pr[f , g], then there is a number c such that for all x1, . . . ,

xn and y we have

h(x1, . . . , xn, y) < cx + c, where x is the largest of x1, . . . , xn and y.

7.13 Show that if f and g1, . . . , gm are functions with the property ascribed to the

function h in the preceding problem, and if j = Cn[f , g1, . . . , gm], then j also

has that property.

7.14 Show that the multiplication or product function is not obtainable from the

initial functions by composition without using recursion at least twice.

7.15 Let β be the function considered in Example 7.23. Consider a natural number s
that codes a sequence (s0, . . . , sm) whose every entry si is itself a code for a

sequence (bi,0, . . . , bi,ni). Call such an s a β-code if the following conditions

are met:

if i < m, then bi,0 = 2

if j < n0, then b0, j+1 = b0, j

if i < m and j < ni+1, then c = bi+1, j ≤ ni and bi+1, j+1 = bi,c.

Call such an s a β-code covering (p, q) if p ≤ m and q ≤ n p.

(a) Show that if s is a β-code covering (p, q), then bp,q = β(p, q).

(b) Show that for every p it is the case that for every q there exists a β-code

covering (p, q).

7.16 Continuing the preceding problem, show that the relation Rspqx, which we

define to hold if and only if s is a β-code covering (p, q) and bp,q = x , is a

primitive recursive relation.

7.17 Continuing the preceding problem, show that β is a recursive (total) function.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

8

Equivalent Definitions of Computability

In the preceding several chapters we have introduced the intuitive notion of effective
computability, and studied three rigorously defined technical notions of computability:
Turing computability, abacus computability, and recursive computability, noting along
the way that any function that is computable in any of these technical senses is com-
putable in the intuitive sense. We have also proved that all recursive functions are abacus
computable and that all abacus-computable functions are Turing computable. In this
chapter we close the circle by showing that all Turing-computable functions are recur-
sive, so that all three notions of computability are equivalent. It immediately follows that
Turing’s thesis, claiming that all effectively computable functions are Turing computable,
is equivalent to Church’s thesis, claiming that all effectively computable functions are
recursive. The equivalence of these two theses, originally advanced independently of
each other, does not amount to a rigorous proof of either, but is surely important evi-
dence in favor of both. The proof of the recursiveness of Turing-computable functions
occupies section 8.1. Some consequences of the proof of equivalence of the three notions
of computability are pointed out in section 8.2, the most important being the existence
of a universal Turing machine, a Turing machine capable of simulating the behavior of
any other Turing machine desired. The optional section 8.3 rounds out the theory of
computability by collecting basic facts about recursively enumerable sets, sets of natu-
ral numbers that can be enumerated by a recursive function. Perhaps the most basic fact
about them is that they coincide with the semirecursive sets introduced in the preceding
chapter, and hence, if Church’s (or equivalently, Turing’s) thesis is correct, coincide
with the (positively) effectively semidecidable sets.

8.1 Coding Turing Computations

At the end of Chapter 5 we proved that all abacus-computable functions are Turing

computable, and that all recursive functions are abacus computable. (To be quite

accurate, the proofs given for Theorem 5.8 did not consider the three processes in

their most general form. For instance, we considered only the composition of a two-

place function f with two three-place functions g1 and g2. But the methods of proof

used were perfectly general, and do suffice to show that any recursive function can

be computed by some Turing machine.) Now we wish to close the circle by proving,

conversely, that every function that can be computed by a Turing machine is recursive.

We will concentrate on the case of a one-place Turing-computable function, though

our argument readily generalizes. Let us suppose, then, that f is a one-place function

88

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

8.1. CODING TURING COMPUTATIONS 89

computed by a Turing machine M. Let x be an arbitrary natural number. At the

beginning of its computation of f (x), M’s tape will be completely blank except

for a block of x + 1 strokes, representing the argument or input x. At the outset

M is scanning the leftmost stroke in the block. When it halts, it is scanning the

leftmost stroke in a block of f (x) + 1 strokes on an otherwise completely blank

tape, representing the value or output f (x). And throughout the computation there

are finitely many strokes to the left of the scanned square, finitely many strokes to

the right, and at most one stroke in the scanned square. Thus at any time during the

computation, if there is a stroke to the left of the scanned square, there is a leftmost

stroke to the left, and similarly for the right. We wish to use numbers to code a

description of the contents of the tape. A particularly elegant way to do so is through

the Wang coding. We use binary notation to represent the contents of the tape and

the scanned square by means of a pair of natural numbers, in the following manner:

If we think of the blanks as zeros and the strokes as ones, then the infinite portion of

the tape to the left of the scanned square can be thought of as containing a binary nu-

meral (for example, 1011, or 1, or 0) prefixed by an infinite sequence of superfluous 0s.

We call this numeral the left numeral, and the number it denotes in binary notation

the left number. The rest of the tape, consisting of the scanned square and the portion

to its right, can be thought of as containing a binary numeral written backwards, to

which an infinite sequence of superfluous 0s is attached. We call this numeral, which

appears backwards on the tape, the right numeral, and the number it denotes the right
number. Thus the scanned square contains the digit in the unit’s place of the right

numeral. We take the right numeral to be written backwards to insure that changes

on the tape will always take place in the vicinity of the unit’s place of both numerals.

If the tape is completely blank, then the left numeral = the right numeral = 0, and

the left number = the right number = 0.

8.1 Example (The Wang coding). Suppose the tape looks as in Figure 8-1. Then the left

numeral is 11101, the right numeral is 10111, the left number is 29, and the right number

is 23. M now moves left, then the new left numeral is 1110, and the new left number is 14,

while the new right numeral is 101111, and the new right number is 47.

Figure 8-1. A Turing machine tape to be coded.

What are the left and right numbers when M begins the computation? The tape is

then completely blank to the left of the scanned square, and so the left numeral is

0 and the left number is 0. The right numeral is 11 . . . 1, a block of x + 1 digits 1.

A sequence of m strokes represents in binary notation

2m−1 + · · · + 22 + 2 + 1 = 2m − 1.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

90 EQUIVALENT DEFINITIONS OF COMPUTABILITY

Thus the right number at the start of M’s computation of f (x) will be

strt(x) = 2(x+1) .− 1.

Note that strt is a primitive recursive function.

How do the left and right numbers change when M performs one step in the

computation? That depends, of course, on what symbol is being scanned, as well as

on what act is performed. How can we determine the symbol scanned? It will be a

blank, or 0, if the binary representation of the right number ends in a 0, as is the case

when the number is even, and a stroke, or 1, if the binary representation of the right

number ends in a 1, as is the case when the number is odd. Thus in either case it will

be the remainder on dividing the right number by two, or in other words, if the right

number is r , then the symbol scanned will be

scan(r) = rem(r, 2).

Note that scan is a primitive recursive function.

Suppose the act is to erase, or put a 0 on, the scanned square. If there was already

a 0 present, that is, if scan(r) = 0, there will be no change in the left or right number.

If there was a 1 present, that is, if scan(r) = 1, the left number will be unchanged, but

the right number will be decreased by 1. Thus if the original left and right numbers

were p and r respectively, then the new left and new right numbers will be given by

newleft0(p, r) = p

newrght0(p, r) = r .− scan(r).

If instead the act is to print, or put a 1 on, the scanned square, there will again be

no change in the left number, and there will be no change in the right number either

if there was a 1 present. But if there was a 0 present, then the right number will be

increased by 1. Thus the new left and new right number will be given by

newleft1(p, r) = p

newrght1(p, r) = r + 1 .− scan(r).

Note that all the functions here are primitive recursive.

What happens when M moves left or right? Let p and r be the old (pre-move) left

and right numbers, and let p* and r* be the new (post-move) left and right numbers.

We want to see how p* and r* depend upon p, r , and the direction of the move. We

consider the case where the machine moves left.

If p is odd, the old numeral ends in a one. If r = 0, then the new right numeral is

1, and r* = 1 = 2r + 1. And if r > 0, then the new right numeral is obtained from

the old by appending a 1 to it at its one’s-place end (thus lengthening the numeral);

again r* = 2r + 1. As for p*, if p = 1, then the old left numeral is just 1, the

new left numeral is 0, and p* = 0 = (p −̇ 1)/2 = quo(p, 2). And if p is any odd

number greater than 1, then the new left numeral is obtained from the old by deleting

the 1 in its one’s place (thus shortening the numeral), and again p* = (p .− 1)/2 =
quo(p, 2). [In Example 8.1, for instance, we had p = 29, p* = (29 − 1)/2 = 14,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

8.1. CODING TURING COMPUTATIONS 91

r = 23, r* = 2 · 23 + 1 = 47.] Thus we have established the first of the following

two claims:

If M moves left and p is odd then p* = quo(p, 2) and r* = 2r + 1

If M moves left and p is even then p* = quo(p, 2) and r* = 2r.

The second claim is established in exactly the same way, and the two claims may be

subsumed under the single statement that when M moves left, the new left and right

numbers are given by

newleft2(p, r) = quo(p, 2)

newrght2(p, r) = 2r + rem(p, 2).

A similar analysis shows that if M moves right, then the new left and right numbers

are given by

newleft3(p, r) = 2p + rem(r, 2)

newrght3(p, r) = quo(r, 2).

Again all the functions involved are primitive recursive. If we call printing 0, print-

ing 1, moving left, and moving right acts numbers 0, 1, 2, and 3, then the new left

number when the old left and right numbers are p and r and the act number is a will

be given by

newleft(p, r, a) =
⎧⎨⎩

p if a = 0 or a = 1

quo(p, 2) if a = 2

2p + rem(r, 2) if a = 3.

This again is a primitive recursive function, and there is a similar primitive recursive

function newrght(p, r, a) giving the new right number in terms of the old left and

right numbers and the act number.

And what are the left and right numbers when M halts? If M halts in standard
position (or configuration), then the left number must be 0, and the right number must

be r = 2 f (x)+1 .− 1, which is the number denoted in binary notation by a string of

f (x) + 1 digits 1. Then f (x) will be given by

valu(r) = lg(r, 2).

Here lg is the primitive recursive function of Example 7.11, so valu is also primitive

recursive. If we let nstd be the characteristic function of the relation

p �= 0 ∨ r �= 2lg(r,2)+1 .− 1

then the machine will be in standard position if and only if nstd(p, r) = 0. Again,

since the relation indicated is primitive recursive, so is the function nstd.

So much, for the moment, for the topic of coding the contents of a Turing tape.

Let us turn to the coding of Turing machines and their operations. We discussed the

coding of Turing machines in section 4.1, but there we were working with positive

integers and here we are working with natural numbers, so a couple of changes

will be in order. One of these has already been indicated: we now number the acts

0 through 3 (rather than 1 through 4). The other is equally simple: let us now use

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

92 EQUIVALENT DEFINITIONS OF COMPUTABILITY

0 for the halted state. A Turing machine will then be coded by a finite sequence

whose length is a multiple of four, namely 4k, where k is the number of states of

the machine (not counting the halted state), and with the even-numbered entries

(starting with the initial entry, which we count as entry number 0) being numbers

≤3 to represent possible acts, while the odd-numbered entries are numbers ≤k,

representing possible states. Or rather, a machine will be coded by a number coding

such a finite sequence.

The instruction as to what act to perform when in state q and scanning symbol i
will be given by entry number 4(q .− 1) + 2i , and the instruction as to what state to

go into will be given by entry number 4(q .− 1) + 2i + 1. For example, the 0th entry

tells what act to perform if in the initial state 1 and scanning a blank 0, and the 1st

entry what state then to go into; while the 2nd entry tells what act to perform if in

initial state 1 and scanning a stroke 1, and the 3rd entry what state then to go into. If

the machine with code number m is in state q and the right number is r , so that the

symbol being scanned is, as we have seen, given by scan(r), then the next action to

be performed and new state to go into will be given by

actn(m, q, r) = ent(m, 4(q .− 1) + 2 · scan(r))

newstat(m, q, r) = ent(m, (4(q .− 1) + 2 · scan(r)) + 1).

These are primitive recursive functions.

We have discussed representing the tape contents at a given stage of computation by

two numbers p and r . To represent the configuration at a given stage of computation,

we need also to mention the state q the machine is in. The configuration is then

represented by a triple (p, q, r), or by a single number coding such a triple. For

definiteness let us use the coding

trpl(p, q, r) = 2p3q5r .

Then given a code c for the configuration of the machine, we can recover the left,

state, and right numbers by

left(c) = lo(c, 2) stat(c) = lo(c, 3) rght(c) = lo(c, 5)

where lo is the primitive recursive function of Example 7.11. Again all the functions

here are primitive recursive.

Our next main goal will be to define a primitive recursive function conf(m, x, t)
that will give the code for the configuration after t stages of computation when the

machine with code number m is started with input x , that is, is started in its initial

state 1 on the leftmost of a block of x + 1 strokes on an otherwise blank tape. It

should be clear already what the code for the configuration will be at the beginning,

that is, after 0 stages of computation. It will be given by

inpt(m, x) = trpl(0, 1, strt(x)).

What we need to analyse is how to get from a code for the configuration at time t to

the configuration at time t ′ = t + 1.

Given the code number m for a machine and the code number c for the configuration

at time t , to obtain the code number c* for the configuration at time t + 1, we may

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

8.1. CODING TURING COMPUTATIONS 93

proceed as follows. First, apply left, stat, and rght to c to obtain the left number, state

number, and right number p, q, and r . Then apply actn and newstat to m and r to

obtain the number a of the action to be performed, and the number q* of the state

then to enter. Then apply newleft and newrght to p, r , and a to obtain the new left and

right numbers p* and r*. Finally, apply trpl to p*, q*, and r* to obtain the desired

c*, which is thus given by

c* = newconf(m, c)

where newconf is a composition of the functions left, stat, rght, actn, newstat, newleft,

newrght, and trpl, and is therefore a primitive recursive function.

The function conf(m, x, t), giving the code for the configuration after t stages of

computation, can then be defined by primitive recursion as follows:

conf (m, x, 0) = inpt(m, x)

conf (m, x, t ′) = newconf (m, conf(m, x, t)).

It follows that conf is itself a primitive recursive function.

The machine will be halted when stat(conf(m, x, t)) = 0, and will then be halted

in standard position if and only if nstd(conf(m, x, t)) = 0. Thus the machine will be

halted in standard position if and only if stdh(m, x, t) = 0, where

stdh(m, x, t) = stat(conf(m, x, t)) + nstd(conf(m, x, t)).

If the machine halts in standard configuration at time t , then the output of the machine

will be given by

otpt(m, x, t) = valu(rght(conf(m, x, t))).

Note that stdh and otpt are both primitive recursive functions.

The time (if any) when the machine halts in standard configuration will be given by

halt(m, x) =
{

the least t such that stdh(m, x, t) = 0 if such a t exists

undefined otherwise.

This function, being obtained by minimization from a primitive recursive function,

is a recursive partial or total function.

Putting everything together, let F(m, x) = otpt(m, x , halt(m, x)), a recursive func-

tion. Then F(m, x) will be the value of the function computed by the Turing machine

with code number m for argument x , if that function is defined for that argument,

and will be undefined otherwise. If f is a Turing-computable function, then for some

m—namely, for the code number of any Turing machine computing f—we have

f (x) = F(m, x) for all x . Since F is recursive, it follows that f is recursive. We have

proved:

8.2 Theorem. A function is recursive if and only if it is Turing computable.

The circle is closed.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

94 EQUIVALENT DEFINITIONS OF COMPUTABILITY

8.2 Universal Turing Machines

The connection we have established between Turing computability and recursiveness

enables us to establish properties of each notion that it would have been more difficult

to establish working with that notion in isolation. We begin with one example of this

phenomenon pertaining to Turing machines, and one to recursive functions.

8.3 Theorem. The same class of functions are Turing computable whether one defines

Turing machines to have a tape infinite in both directions or infinite in only one direction,

and whether one requires Turing machines to operate with only one symbol in addition to

the blank, or allows them to operate with any finite number.

Proof: Suppose we have a Turing machine M of the kind we have been working

with, with a two-way infinite tape. In this chapter we have seen that the total or

partial function f computed by M is recursive. In earlier chapters we have seen how

a recursive function f can be computed by an abacus machine and hence by a Turing

machine simulating an abacus machine. But the Turing machines simulating abacus

machines are rather special: according to the problems at the end of Chapter 5, any

abacus-computable function can be computed by a Turing machine that never moves
left of the square on which it is started. Thus we have now shown that for any Turing

machine there is another Turing machine computing the same function that uses only

the right half of its tape. In other words, if we had begun with a more restrictive notion

of Turing machine, where the tape is infinite in one direction only, we would have

obtained the same class of Turing-computable functions as with our official, more

liberal definition.

Inversely, suppose we allowed Turing machines to operate not only with the blank

0 and the stroke 1, but also with another symbol 2. Then in the proof of the preceding

sections we would need to work with ternary rather than binary numerals, to code

Turing machines by sequences of length a multiple of six rather than of four, and

make similar minor changes. But with such changes, the proof would still go through,

and show that any function computable by a Turing machine of this liberalized kind

is still recursive—and therefore was computable by a Turing machine of the original

kind already. The result generalizes to more than two symbols in an obvious way:

for n symbols counting the blank, we need n-ary numerals and sequences of length a

multiple of 2n.

Similar, somewhat more complicated arguments show that allowing a Turing ma-

chine to work on a two-dimensional grid rather than a one-dimensional tape would

not enlarge the class of functions that are computable. Likewise the class of functions

computable would not be changed if we allowed the use of blank, 0, and 1, and re-

defined computations so that inputs and outputs are to be given in binary rather than

stroke notation. That class is, as is said, stable under perturbations of definition, one

mark of a natural class of objects.

8.4 Theorem (Kleene normal form theorem). Every recursive total or partial function

can be obtained from the basic functions (zero, successor, identity) by composition, primitive

recursion, and minimization, using this last process no more than once.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

8.2. UNIVERSAL TURING MACHINES 95

Proof: Suppose we have a recursive function f . We have seen in earlier chapters

that f is computable by an abacus machine and hence by some Turing machine

M . We have seen in this chapter that if m is the code number of M , then f (x) =
F(m, x) for all x , from which it follows that f can be obtained by composition from

the constant function constm , the identity function id, and the function F [namely,

f (x) = F(constm(x), id(x)), and therefore f = Cn[F, constm , id].] Now constm and

id are primitive recursive, and so obtainable from basic functions by composition and

primitive recursion, without use of minimization. As for F , reviewing its definition,

we see that minimization was used just once (namely, in defining halt(m, x)). Thus

any recursive function f can be obtained using minimization only once.

An (n + 1)-place recursive function F with the property that for every n-place

recursive function f there is an m such that

f (x1, . . . , xn) = F(m, x1, . . . , xn)

is called a universal function. We have proved the existence of a two-place universal

function, and remarked at the outset that our arguments would apply also to functions

with more places. A significant property of our two-place universal function, shared

by the analogous many-place universal functions, is that its graph is a semirecursive

relation. For F(m, x) = y if and only if the machine with code number m, given input

x , eventually halts in standard position, giving output y, which is to say, if and only if

∃t(stdh(m, x, t) = 0 & otpt(m, x, t) = y).

Since what follows the existential quantifier here is a primitive recursive relation, the

graph relation F(m, x) = y is obtainable by existential quantification from a primi-

tive recursive relation, and therefore is semirecursive, as asserted. Thus we have the

following.

8.5 Theorem. For every k there exists a universal k-place recursive function (whose

graph relation is semirecursive).

This theorem has several substantial corollaries in the theory of recursive func-

tions, but as these will not be essential in our later work, we have relegated them to

an optional final section—in effect, an appendix—to this chapter. In the closing para-

graphs of the present section, we wish to point out the implications of Theorem 8.5

for the theory of Turing machines. Of course, in the definition of universal function

and the statement of the foregoing theorem we could have said ‘Turing-computable

function’ in place of ‘recursive function’, since we now know these come to the same

thing.

A Turing machine for computing a universal function is called a universal Turing
machine. If U is such a machine (for, say, k = 1), then for any Turing machine M
we like, the value computed by M for a given argument x will also be computed

by U given a code m for M as a further argument in addition to x . Historically,

as we have already mentioned, the theory of Turing computability (including the

proof of the existence of a universal Turing machine) was established before (indeed,

a decade or more before) the age of general-purpose, programmable computers, and

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

96 EQUIVALENT DEFINITIONS OF COMPUTABILITY

in fact formed a significant part of the theoretical background for the development of

such computers. We can now say more specifically that the theorem that there exists a

universal Turing machine, together with Turing’s thesis that all effectively computable

functions are Turing computable, heralded the arrival of the computer age by giving

the first theoretical assurance that in principle a general-purpose computer could be
designed that could be made to mimic any special-purpose computer desired, simply
by giving it coded instructions as to what machine it is to mimic as an additional
input along with the arguments of the function we want computed.

8.3∗ Recursively Enumerable Sets

An immediate consequence of Theorem 8.5 is the following converse to Proposition

7.17.

8.6 Corollary (Second graph principle). The graph relation of a recursive function is

semirecursive.

Proof: If f is a recursive (total or partial) function, then there is an m such that

f (x) = F(m, x), where F is the universal function of the preceding section. For the

graph relation of f we have

f (x) = y ↔ F(m, x) = y.

Hence, the graph relation of f is a section, in the sense of Problem 7.1, of the graph

relation of F , which is semirecursive, and is therefore itself semirecursive.

At the beginning of this book we defined a set to be enumerable if it is the range

of a total or partial function on the positive integers; and clearly we could have said

‘natural numbers’ in place of ‘positive integers’. We now define a set of natural

numbers to be recursively enumerable if it is the range of a total or partial recursive
function on natural numbers. It turns out that we could say ‘domain’ here instead

of ‘range’ without changing the class of sets involved, and that this class is one we

have already met with under another name: the semirecursive sets. In the literature

the name ‘recursively enumerable’ or ‘r.e.’ is more often used than ‘semirecursive’,

though the two come to the same thing.

8.7 Corollary. Let A be a set of natural numbers. Then the following conditions are

equivalent:

(a) A is the range of some recursive total or partial function.

(b) A is the domain of some recursive total or partial function.

(c) A is semirecursive.

Proof: First suppose A is semirecursive. Then the relation

Rxy ↔ Ax & x = y

is semirecursive, since A is semirecursive, the identity relation is semirecursive, and

semirecursive relations are closed under conjunction. But the relation R is the graph

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

PROBLEMS 97

relation of the restriction of the identity function to A, that is, of the function

idA(x) =
{

x if Ax
undefined otherwise.

Since the graph relation is semirecursive, the function is recursive by Proposition

7.17. And A is both the range and the domain of idA. Hence A is both the range of a

recursive partial function and the domain of such a function.

Now suppose f is a recursive partial or total function. Then by Corollary 8.6 the

graph relation f (x) = y is semirecursive. Since semirecursive relations are closed

under existential quantification, the following sets are also semirecursive:

Ry ↔ ∃x(f (x) = y)

Dx ↔ ∃y(f (x) = y).

But these sets are precisely the range and the domain of f . Thus the range and domain

of any recursive function are semirecursive.

We have said quite a bit about recursively enumerable (or equivalently, semirecur-

sive) sets without giving any examples of such sets. Of course, in a sense we have
given many examples, since every recursive set is recursively enumerable. But are

there any other examples? We are at last in a position to prove that there are.

8.8 Corollary. There exists a recursively enumerable set that is not recursive.

Proof: Let F be the universal function of Theorem 8.5, and let A be the set of

x such that F(x, x) = 0. Since the graph relation of F is semirecursive, this set is

also semirecursive (or equivalently, recursively enumerable). If it were recursive,

its complement would also be recursive, which is to say, the characteristic function

c of its complement would be a recursive function. But then, since F is a universal

function, there would be an m such that c(x) = F(m, x) for all x , and in particular,

c (m) = F(m, m). But since c is the characteristic function of the complement of A,

we have c (m) = 0 if and only if m is not in A, which, by the definition of A, means

if and only if F(m, m) is not = 0 (is either undefined, or defined and > 0). This is a

contradiction, showing that A cannot be recursive.

When we come to apply computability theory to logic, we are going to find that

there are many more natural examples than this of recursively enumerable sets that

are not recursive.

Problems

8.1 We proved Theorem 8.2 for one-place functions. For two-place (or many-place)

functions, the only difference in the proof would occur right at the beginning,

in defining the function strt. What is the right number at the beginning of a

computation with arguments x1 and x2?

8.2 Suppose we liberalized our definition of Turing machine to allow the machine to

operate on a two-dimensional grid, like graph paper, with vertical up and down

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-08 CB421-Boolos July 27, 2007 16:36 Char Count= 0

98 EQUIVALENT DEFINITIONS OF COMPUTABILITY

actions as well as horizontal left and right actions. Describe some reasonable

way of coding a configuration of such a machine.

The remaining problems pertain to the optional section 8.3.

8.3 The (positive) semicharacteristic function of a set A is the function c such

that c(a) = 1 if a is in A, and c(a) is undefined otherwise. Show that a set A is

recursively enumerable if and only if its semicharacteristic function is recursive.

8.4 A two-place relation S is called recursively enumerable if there are two recur-

sive total or partial functions f and g with the same domain such that for all

x and y we have Sxy ↔ ∃t(f (t) = x & g(t) = y). Show that S is recursively

enumerable if and only if the set of all J (x , y) such that Sxy is recursively

enumerable, where J is the usual primitive recursive pairing function.

8.5 Show that any recursively enumerable set A can be defined in the form Ay ↔ ∃w
Ryw for some primitive recursive relation R.

8.6 Show that any nonempty recursively enumerable set A is the range of some

primitive recursive function.

8.7 Show that any infinite recursively enumerable set A is the range of some one-
to-one recursive total function.

8.8 A one-place total function f on the natural numbers is monotone if and only if

whenever x < y we have f (x) < f (y). Show that if A is the range of a monotone

recursive function, then A is recursive.

8.9 A pair of recursively enumerable sets A and B are called recursively inseparable
if they are disjoint, but there is no recursive set C that contains A and is disjoint

from B. Show that a recursively inseparable pair of recursively enumerable sets

exists.

8.10 Give an example of a recursive partial function f such that f cannot be extended

to a recursive total function, or in other words, such that there is no recursive

total function g such that g(x) = f (x) for all x in the domain of f .

8.11 Let R be a recursive relation, and A the recursively enumerable set given by

Ax ↔ ∃w Rxw . Show that if A is not recursive, then for any recursive total

function f there is an x in A such that the least ‘witness’ that x is in A (that is,

the least w such that Rxw) is greater than f (x).

8.12 Show that if f is a recursive total function, then there is a sequence of functions

f1, . . . , fn with last item fn = f , such that each either is a basic function

(zero, successor, identity) or is obtainable from earlier functions in the sequence

by composition, primitive recursion, or minimization, and all functions in the
sequence are total.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

Basic Metalogic

99

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

100

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9

A Précis of First-Order Logic: Syntax

This chapter and the next contain a summary of material, mainly definitions, needed for
later chapters, of a kind that can be found expounded more fully and at a more relaxed
pace in introductory-level logic textbooks. Section 9.1 gives an overview of the two
groups of notions from logical theory that will be of most concern: notions pertaining
to formulas and sentences, and notions pertaining to truth under an interpretation. The
former group of notions, called syntactic, will be further studied in section 9.2, and the
latter group, called semantic, in the next chapter.

9.1 First-Order Logic

Logic has traditionally been concerned with relations among statements, and with

properties of statements, that hold by virtue of ‘form’ alone, regardless of ‘content’.

For instance, consider the following argument:

(1) A mother or father of a person is an ancestor of that person.

(2) An ancestor of an ancestor of a person is an ancestor of that person.

(3) Sarah is the mother of Isaac, and Isaac is the father of Jacob.

(4) Therefore, Sarah is an ancestor of Jacob.

Logic teaches that the premisses (1)–(3) (logically) imply or have as a (logical)
consequence the conclusion (4), because in any argument of the same form, if the

premisses are true, then the conclusion is true. An example of another argument of

the same form would be the following:

(5) A square or cube of a number is a power of that number.

(6) A power of a power of a number is a power of that number.

(7) Sixty-four is the cube of four and four is the square of two.

(8) Therefore, sixty-four is a power of two.

Modern logic represents the forms of statements by certain algebraic-looking sym-

bolic expressions called formulas, involving special signs. The special signs we are

going to be using are shown in Table 9-1.

101

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

102 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

Table 9-1. Logical symbols

∼ Negation ‘not . . . ’

& Conjunction ‘. . . and . . . ’

∨ Disjunction ‘. . . or . . . ’

→ Conditional ‘if . . . then . . . ’

↔ Biconditional ‘. . . if and only if . . . ’

∀x, ∀y, ∀z, . . . Universal quantification ‘for every x’, ‘for every y’, ‘for every z’, . . .

∃x, ∃y, ∃z, . . . Existential quantification ‘for some x’, ‘for some y’, ‘for some z’, . . .

In this symbolism, the form shared by the arguments (1)–(4) and (5)–(8) above

might be represented as follows:

(9) ∀x∀y((Pyx ∨ Qyx) → Ryx)

(10) ∀x∀y(∃z(Ryz & Rzx) → Ryx)

(11) Pab & Qbc

(12) Rac

Content is put back into the forms by providing an interpretation. Specifying

an interpretation involves specifying what sorts of things the xs and ys and zs are

supposed to stand for, which of these things a and b and c are supposed to stand for,

and which relations among these things P and Q and R are supposed to stand for. One

interpretation would let the xs and ys and zs stand for (human) persons, a and b and c

for the persons Sarah and Isaac and Jacob, and P and Q and R for the relations among

persons of mother to child, father to child, and ancestor to descendent, respectively.

With this interpretation, (9) and (10) would amount to the following more stilted

versions of (1) and (2):

(13) For any person x and any person y, if either y is the mother of x or y is the father

of x , then y is an ancestor of x .

(14) For any person x and any person y, if there is a person z such that y is an ancestor

of z and z is an ancestor of x , then y is an ancestor of x .

(11) and (12) would amount to (3) and (4).

A different interpretation would let the xs and ys and zs stand for (natural) numbers,

a and b and c for the numbers sixty-four and four and two, and P and Q and R for the

relations of the cube or the square or a power of a number to that number, respectively.

With this interpretation, (9)–(12) would amount to (5)–(8). We say that (9)–(11) imply

(12) because in any interpretation in which (9)–(11) come out true, (12) comes out

true.

Our goal in this chapter will be to make the notions of formula and interpretation

rigorous and precise. In seeking the degree of clarity and explicitness that will be

needed for our later work, the first notion we need is a division of the symbols that

may occur in formulas into two sorts: logical and nonlogical. The logical symbols

are the logical operators we listed above, the connective symbols (the tilde ∼, the

ampersand &, the wedge ∨, the arrow →, the double arrow ↔), the quantifier symbols
(the inverted ay ∀, the reversed ee ∃), plus the variables x , y, z, . . . that go with the

quantifiers, plus left and right parentheses and commas for punctuation.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.1. FIRST-ORDER LOGIC 103

The nonlogical symbols are to begin with of two sorts: constants or individual
symbols, and predicates or relation symbols. Each predicate comes with a fixed

positive number of places. (It is possible to consider zero-place predicates, called

sentence letters, but we have no need for them here.) As we were using them above,

a and b and c were constants, and P and Q and R were two-place predicates.

Especially though not exclusively when dealing with mathematical material, some

further apparatus is often necessary or useful. Hence we often include one more

logical symbol, a special two-place predicate, the identity symbol or equals sign =,

for ‘. . . is (the very same thing as) . . . ’. To repeat, the equals sign, though a two-

place predicate, is counted as a logical symbol, but it is the only exception: all other

predicates count as nonlogical symbols. Also, we often include one more category

of nonlogical symbols, called function symbols. Each function symbol comes with a

fixed number of places. (Occasionally, constants are regarded as zero-place function

symbols, though usually we don’t so regard them.)

We conscript the word ‘language’ to mean an enumerable set of nonlogical sym-

bols. A special case is the empty language L∅, which is just the empty set under

another name, with no nonlogical symbols. Here is another important case.

9.1 Example (The language of arithmetic). One language that will be of especial interest

to us in later chapters is called the language of arithmetic, L*. Its nonlogical symbols are

the constant zero 0, the two-place predicate less-than <, the one-place function symbol

successor ′, and the two-place function symbols addition + and multiplication · .

Intuitively, formulas are just the sequences of symbols that correspond to grammat-

ically well-formed sentences of English. Those that, like (9)–(12) above, correspond

to English sentences that make a complete statement capable of being true or false

are called closed formulas. Those that, like (Pyz ∨ Qyx), correspond to English

sentences involving unidentified xs and ys and zs that would have to be identified

before the sentences could be said to be true or false, are called open formulas.

The terms are sequences of symbols, such as 0 or 0 + 0 or x or x ′′, that correspond

to grammatically well-formed phrases of English of the kind that grammarians call

‘singular noun phrases’. The closed terms are the ones that involve no variables, and

the open terms are the ones that involve variables whose values would have to be

specified before the term as a whole could be said to have a denotation. When no

function symbols are present, the only closed terms are constants, and the only open

terms are variables. When function symbols are present, the closed terms also include

such expressions as 0 + 0, and the open terms such expressions as x ′′.
The formulas and terms of a given language are simply the ones all of whose

nonlogical symbols belong to that language. Since languages are enumerable and

each formula of a language is a finite string of symbols from the language plus

variables and logical symbols, the set of formulas is enumerable, too. (One might at

first guess that the empty language would have no formulas, but at least when identity

is present, in fact it has infinitely many, among them ∀x x = x , ∀y y = y, ∀z z = z,

and so on.)

An interpretation M for a language L consists of two components. On the one

hand, there is a nonempty set |M| called the domain or universe of discourse of the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

104 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

interpretation, the set of things M interprets the language to be talking about. When

we say ‘for every x’ or ‘for some x’, what we mean, according to interpretation M,

is ‘for every x in |M|’ or ‘there exists an x in |M|’. On the other hand, there is for

each nonlogical symbol a denotation assigned to it. For a constant c, the denotation

cM is to be some individual in the domain |M|. For an n-place nonlogical predicate

R, the denotation RM is to be some n-place relation on |M| (which is officially

just a set of n-tuples of elements of |M|, a one-place relation being simply a subset

of |M|).
For example, for the language LG with constants a and b and c and two-place

predicates P and Q and R, the genealogical interpretation G of LG indicated above

would now be described by saying that the domain |G| is the set of all persons, aG is

Sarah, bG is Isaac, cG is Jacob, PG is set of ordered pairs of persons where the first is

the mother of the second, and analogously for QG and RG. Under this interpretation,

the open formula ∃z(Pyz & Qzx) amounts to ‘y is the paternal grandmother of x’,

while ∃z(Qyz & Pzx) amounts to ‘y is the maternal grandfather of x’. The closed

formula ∼∃x Pxx amounts to ‘no one is her own mother’, which is true, while

∃x Qxx amounts to ‘someone is his own father’, which is false.

When the identity symbol is present, it is not treated like the other, nonlogical

predicates: one is not free to assign it an arbitrary two-place relation on the domain

as its denotation; rather, its denotation must be the genuine identity relation on that

domain, the relation each thing bears to itself and to nothing else. When function

symbols are present, for an n-place function symbol f , the denotation f M is an

n-argument function from |M| to |M|.

9.2 Example (The standard interpretation of the language of arithmetic). One interpreta-

tion that will be of especial interest to us in later chapters is called the standard interpretation
N ∗ of the language of the language of arithmetic L∗. Its domain |N ∗| is the set of natural

numbers; the denotation 0N ∗
of the cipher 0 is the number zero; the denotation < N ∗

of the

less-than sign is the usual strict less-than order relation; the denotation ′N ∗
of the accent is

the successor function, which takes each number to the next larger number; and the denota-

tions +N ∗
and ·N ∗

of the plus sign and times sign are the usual addition and multiplication

functions. Then such an open term as x · y would stand for the product of x and y, whatever

they are; while such a closed term as 0′′ would stand for the successor of the successor of

zero, which is to say the successor of one, which is to say two. And such a closed formula as

(15) ∀x∀y(x · y = 0 ′′ → (x = 0 ′′ ∨ y = 0 ′′))

would stand for ‘for every x and every y, if the product of x and y is two, then either x
is two or y is two’ or ‘a product is two only if one of the factors is two’. This happens to

be true (given that our domain consists of natural numbers, with no negatives or fractions).

Other closed formulas that come out true on this interpretation include the following:

(16) ∀x∃y(x < y&∼∃z(x < z&z < y))

(17) ∀x(x < x ′ & ∼∃z(x < z&z < x ′)).

Here (16) says that for any number x there is a next larger number, and (17) that

x ′ is precisely this next larger number.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.1. FIRST-ORDER LOGIC 105

(For the empty language L∅, there are no nonlogical symbols to be assigned

denotations, but an interpretation must still specify a domain, and that specification

makes a difference as to truth for closed formulas involving =. For instance, ∃x∃y ∼
x = y will be true if the domain has at least two distinct elements, but false if it has

only one.)

Closed formulas, which are also called sentences, have truth values, true or false,

when supplied with an interpretation. But they may have different truth values un-

der different interpretations. For our original example (9)–(12), on the genealogical

interpretation we have since named G (and equally on the alternative arithmetical

interpretation that we have left nameless) all four sentences came out true. But alter-

native interpretations are possible. For instance, if we kept everything else the same

as in the genealogical interpretation, but took R to denote the relation of descendant

to ancestor rather than vice versa, (10) and (11) would remain true, but (9) and (12)

would become false: descendants of descendants are descendants, but parents and

grandparents are not descendants. Various other combinations are possible. What

one will not find is any interpretation that makes (9)–(11) all true, but (12) false.

Precisely that, to repeat, is what is meant by saying that (9)–(11) imply (12).

9.3 Example (Alternative interpretations of the language of arithmetic). For the language

of arithmetic, there is an alternative interpretation Q in which the domain is the nonnegative

rational numbers, but the denotation of 0 is still zero, the denotation of ′ is still the function

that adds one to a number, the denotations of + and · are the usual addition and multiplication

operations, and the denotation of < is still the less-than relation among the numbers in

question. On this interpretation, (16) and (17) above are both false (because there are lots

of rational numbers between x and any larger y in general, and lots of rational numbers

between x and x plus one in particular). There is another alternative interpretation P in

which the domain consists of the nonnegative half integers 0, 1/2, 1, 11/2 , 2, 21/2, 3, and so

on, but the denotation of 0 is still zero, the denotation of ′ is still the function that adds one

to a number, the denotation of + is still the usual addition operation, and the denotation

of < is still the less-than relation among the numbers in question. (Multiplication cannot

be interpreted in the usual way, since a product of two half integers is not in general a half

integer, but for purposes of this example it does not matter how multiplication is interpreted.)

On this interpretation, (16) would be true (because there is no half integer between x and

y = x plus one-half), but (17) would be false (because there is a half integer between x and

x plus one, namely x plus one-half). What you won’t find is an interpretation that makes

(17) true but (16) false. And again, that is what it means to say that (16) is a consequence

of (17).

The explanations given so far provide part of the precision and rigor that will be

needed in our later work, but only part. For they still rely on an intuitive understanding

of what it is to be a sentence of a language, and what it is for a sentence be true in an

interpretation. There are two reasons why we want to avoid this reliance on intuition.

The first is that when we come to apply our work on computability to logic, we

are going to want the notion of sentence to be so precisely defined that a machine
could tell whether or not a given string of symbols is a sentence. The second is that

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

106 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

the notion of truth was historically under a certain cloud of suspicion, owing to the

occurrence of certain contradictions, euphemistically called ‘paradoxes’, such as the

ancient Epimenides or liar paradox: If I say, ‘what I am now saying is not true’, is

what I am saying true? We are therefore going to want to give, for sentences of the

kind of formal language we are considering, a definition of truth just as rigorous

as the definition of any other notion in mathematics, making the notion of truth, as

applied to the kind of formal language we are considering, as respectable as any other

mathematical notion.

The next section will be devoted to giving precise and rigorous definitions of the

notions of formula and sentence, and more generally to giving definitions of notions

pertaining to syntax, that is, pertaining to the internal structure of formulas. The

next chapter will be devoted to giving the definition of truth, and more generally to

giving definitions of notions pertaining to semantics, that is, pertaining to the external

interpretation of formulas.

9.2 Syntax

Officially we think of ourselves as working for each k > 0 with a fixed denumerable

stock of k-place predicates:

A1
0 A1

1 A1
2 · · ·

A2
0 A2

1 A2
2 · · ·

A3
0 A3

1 A3
2 · · ·

...
...

...

and with a fixed denumerable stock of constants:

f 0
0 f 0

1 f 0
2

When function symbols are being used, we are also going to want for each k > 0 a fixed

denumerable stock of k-place function symbols:

f 1
0 f 1

1 f 1
2 . . .

f 2
0 f 2

1 f 2
2 . . .

f 3
0 f 3

1 f 3
2 . . .

...
...

... .

Any language will be a subset of this fixed stock. (In some contexts in later chapters

where we are working with a language L we will want to be able to assume that there

are infinitely many constants available that have not been used in L . This is no real

difficulty, even if L itself needs to contain infinitely many constants, since we can

either add the new constants to our basic stock, or assume that L used only every

other constant of our original stock to begin with.)

We also work with a fixed denumerable stock of variables:

v0 v1 v2

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.2. SYNTAX 107

Thus the more or less traditional 0 and < and ′ and + and · we have been writing—

and in practice, are going to continue to write—are in principle to be thought of as

merely nicknames for f 0
0 and A2

0 and f 1
0 and f 2

0 and f 2
1 ; while even writing x and y

and z rather than vi and v j and vk , we are using nicknames, too.

The official definition of the notion of formula begins by defining the notion of

an atomic formula, which will be given first for the case where identity and function

symbols are absent, then for the case where they are present. (If sentence letters were

admitted, they would count as atomic formulas, too; but, as we have said, we generally

are not going to admit them.) If identity and function symbols are absent, then an

atomic formula is simply a string of symbols R(t1 , . . . , tn) consisting of a predicate,

followed by a left parenthesis, followed by n constants or variables, where n is the

number of places of the predicate, with commas separating the successive terms, all

followed by a right parenthesis. Further, if F is a formula, then so is its negation
∼F , consisting of a tilde followed by F . Also, if F and G are formulas, then so is

their conjunction (F & G), consisting of a left parenthesis, followed by F , which is

called the left or first conjunct, followed by the ampersand, followed by G, which

is called the right or second conjunct, followed by a right parenthesis. Similarly for

disjunction. Also, if F is a formula and x is a variable, the universal quantification
∀xF is a formula, consisting of an inverted ay, followed by x , followed by F . Similarly

for existential quantification.

And that is all: the definition of (first-order) formula is completed by saying

that anything that is a (first-order) formula can be built up from atomic formulas in a

sequence of finitely many steps—called a formation sequence—by applying negation,

junctions, and quantifications to simpler formulas. (Until a much later chapter, where

we consider what are called second-order formulas, ‘first-order’ will generally be

omitted.)

Where identity is present, the atomic formulas will include ones of the kind

=(t1, t2). Where function symbols are present, we require a preliminary definition of

terms. Variables and constants are atomic terms. If f is an n-place function symbol

and t1 , . . . , tn are terms, then f (t1 , . . . , tn) is a term. And that is all: the definition

of term is completed by stipulating that anything that is a term can be built up from

atomic terms in a sequence of finitely many steps—called a formation sequence—by

applying function symbols to simpler terms. Terms that contain variables are said to

be open, while terms that do not are said to be closed. An atomic formula is now

something of the type R(t1 , . . . , tn) where the ti may be any terms, not just constants

or variables; but otherwise the definition of formula is unchanged.

Note that officially predicates are supposed to be written in front of the terms to

which they apply, so writing x < y rather than < (x, y) is an unofficial colloquial-

ism. We make use of several more such colloquialisms below. Thus we sometimes

omit the parentheses around and commas separating terms in atomic formulas, and

we generally write multiple conjunctions like (A & (B & (C & D))) simply as

(A & B & C & D), and similarly for disjunctions, as well as sometimes omitting

the outer parentheses on conjunctions and disjunctions (F & G) and (F ∨ G) when

these stand alone rather than as parts of more complicated formulas. All this is slang,

from the official point of view. Note that → and ↔ have been left out of the official

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

108 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

Table 9-2. Some terms of the language of
arithmetic

v0 x
f 0
0 0

f 1
0(f 0

0) 1

f 1
0(f 1

0 (f 0
0)) 2

f 2
1(f 1

0 (f 1
0 (f 0

0)), v0) 2 · x

f 2
0(f 2

1 (f 1
0 (f 1

0 (f 0
0)), v0), f 2

1 (f 1
0 (f 1

0 (f 0
0)), v0)) 2 · x + 2 · x

language entirely: (F → G) and (F ↔ G) are to be considered unofficial abbrevia-

tions for (∼F ∨ G) and ((∼F ∨ G) & (∼G ∨ F)). In connection with the language of

arithmetic we allow ourselves two further such abbreviations, the bounded quantifiers

∀y < x for ∀y(y < x → . . .) and ∃y < x for ∃y(y < x & . . .).

Where identity is present, we also write x = y and x
= y rather than =(x, y) and

∼==(x, y). Where function symbols are present, they also are supposed to be written

in front of the terms to which they apply. So our writing x ′ rather than ′(x) and x + y
and x · y rather than +(x, y) and ·(x , y) is a colloquial departure from officialese.

And if we adopt—as we do—the usual conventions of algebra that allow us to omit

certain parenthesis, so that x + y · z is conventionally understood to mean x + (y · z)

rather than (x + y) · z without our having to write the parentheses in explicitly, that

is another such departure. And if we go further—as we do—and abbreviate 0′, 0 ′′,
0 ′′′, . . . , as 1, 2, 3, . . . , that is yet another departure.

Some terms of L* in official and unofficial notation are shown in Table 9-2. The

left column is a formation sequence for a fairly complex term.

Some formulas of L∗ in official (or rather, semiofficial, since the the terms have

been written colloquially) notation are shown in Table 9-3. The left column is a

formation sequence for a fairly complex formula.

No one writing about anything, whether about family trees or natural numbers,

will write in the official notation illustrated above (any more than anyone filling out

a scholarship application or a tax return is going to do the necessary calculations in

the rigid format established in our chapters on computability). The reader may well

wonder why, if the official notation is so awkward, we don’t just take the abbreviated

Table 9-3. Some formulas of the language of arithmetic

A2
0(x, 0) x < 0

A2
0(x, 1) x < 1

A2
0(x, 2) x < 2

A2
0(x, 3) x < 3

∼A2
0(x, 3)) ∼x < 3

(= (x, 1)∨ = (x, 2)) x == 1 ∨ x == 2

(= (x, 0) ∨ (= (x, 1)∨ = (x, 2))) x == 0 ∨ x == 1 ∨ x == 2

(∼A2
0(x, 3) ∨ (= (x, 0) ∨ (= (x, 1)∨ = (x, 2)))) x < 3 → (x == 0 ∨ x == 1 ∨ x == 2)

∀x((∼A2
0(x, 3) ∨ (= (x, 0) ∨ (= (x, 1)∨ = (x, 2))))) ∀x < 3(x == 0 ∨ x == 1 ∨ x == 2)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.2. SYNTAX 109

notation as the official one. The reason is that in proving things about the terms and

formulas of a language, it is easiest if the language has a very rigid format (just as,

in proving things about computability, it is easiest if the computations take place in

a very rigid format). In writing examples of terms and formulas in the language, it

is on the contrary easiest if the language has a very flexible format. The traditional

strategy of logicians is to make the official language about which one proves theorems

a very austere and rigid one, and to make the unofficial language in which one writes

examples a very generous and flexible one. Of course, for the theorems proved about

the austere idiom to be applicable to the generous idiom, one has to have confidence

that all the abbreviations permitted by the latter but not the former could in principle
be undone. But there is no need actually to undo them in practice.

The main method of proving theorems about terms and formulas in a language is

called induction on complexity. We can prove that all formulas have a property by

proving

Base Step: Atomic formulas have the property.

Induction Step: If a more complex formula is formed by applying a logical operator

to a simpler formula or formulas, then, assuming (as induction hypothesis) that the

simpler formula or formulas have the property, so does the more complex formula.

The induction step will usually be divided into cases, according as the operator is ∼
or & or ∨ or ∀ or ∃.

Typically the proof will first be given for the situation where identity and func-

tion symbols are absent, then for the situation with identity present but function

symbols absent, and then for the case with both identity and function symbols present.

Identity typically requires very little extra work if any, but where function symbols

are present, we generally need to prove some preliminary result about terms, which is

also done by induction on complexity: we can prove that all terms have some property

by proving that atomic terms have the property, and that if a more complex term is

formed by applying a function symbol to simpler terms, then, assuming the simpler

terms have the property, so does the more complex term.

The method of proof by induction on complexity is so important that we want to

illustrate it now by very simple examples. The following lemma may tell us more

than we want to know about punctuation, but is good practice.

9.4 Lemma (Parenthesis lemma). When formulas are written in official notation the

following hold:

(a) Every formula ends in a right parenthesis.

(b) Every formula has equally many left and right parentheses.

(c) If a formula is divided into a left part and a right part, both nonempty, then there

are at least as many left as right parentheses in the left part, and more if that part

contains at least one parenthesis.

Proof: We give first the proof for (a). Base step: An atomic formula R(t1 , . . . , tn)

or =(t1, t2) of course ends in a right parenthesis. Induction step, negation case: If

F ends in a right parenthesis, then so does ∼F , since the only new symbol is at

the beginning. Induction step, junction case: A conjunction (F & G) or disjunction

(F ∨ G) of course ends in a right parenthesis. Induction step, quantification case: If

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

110 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

F ends in a right parenthesis, then so do ∀xF or ∃xF, for the same reason as in the

case of negation, namely, that the only new symbols are at the beginning.

In giving the proof for (b), we allow ourselves to be a little less rigid about the

format. We consider first the case where function symbols are absent. First note

that an atomic formula R(t1 , . . . , tn) or =(t1, t2) has equal numbers of left and right

parentheses, namely, one of each. Then note that F has equal numbers of left and

right parentheses, then so does ∼F , since there are no new parentheses. Then note

that if F has m of each kind of parenthesis, and G has n of each, then (F & G) has

m + n + 1 of each, the only new ones being the outer ones. The proof for disjunction

is the same as for conjunction, and the proofs for quantifications essentially the same

as for negation.

If function symbols are present, we need the preliminary result that every term

has equally many left and right parentheses. This is established by induction on

complexity. An atomic term has equal numbers of left and right parentheses, namely

zero of each. The nonatomic case resembles the conjunction case above: if s has m
each of left and right parentheses, and t has n each, then f (s, t) has m + n + 1 each;

and similarly for f (t1 , . . . , tk) for values of k other than two. Having this preliminary

result, we must go back and reconsider the atomic case in the proof of (b). The

argument now runs as follows: if s has m each of left and right parentheses, and t has

n each, then R(s, t) has m + n + 1 each, and similarly for R(t1 , . . . , tk) for values of

k other than two. No change is needed in the nonatomic cases of the proof of (b).

In giving the proof for (c), we also first consider the case where function symbols

are absent. First suppose an atomic formula R(t1, . . . , tn) or =(t1, t2) is divided into

a left part λ and a right part ρ, both nonempty. If λ is just R or =, it contains zero

parentheses of each kind. Otherwise, λ contains the one and only left parenthesis and

not the one and only right parenthesis. In either case, (c) holds. Next assume (c) holds

for F , and suppose ∼F is divided. If λ consists just of ∼, and ρ of all of F , then λ

contains zero parentheses of each kind. Otherwise, λ is of the form ∼λ0, where λ0

is a left part of F , and ρ is the right part of F . By assumption, then λ0 and hence λ

has at least as many left as right parentheses, and more if it contains any parentheses

at all. Thus in all cases, (c) holds for ∼F . Next assume (c) holds for F and G, and

suppose (F & G) is divided. The possible cases for the left part λ are:

Case1 Case 2 Case 3 Case 4 Case 5 Case 6

((λ0 (F (F & (F & λ1 (F & G

where in case 2, λ0 is a left part of F , and in case 5, λ1 is a left part of G. In every

case, the part of λ after the initial left parenthesis has at least as many left as right

parentheses: obviously in case 1, by the assumption of (c) for F in case (2), by part

(b) in case (3), and so on. So the whole left part λ has at least one more left than right

parenthesis, and (c) holds for (F & G). The proof for disjunction is the same as for

conjunction, and the proofs for quantifications essentially the same as for negation.

We leave the case where function symbols are present to the reader.

We conclude this section with the official definitions of four more important

syntactic notions. First, we officially define a string of consecutive symbols within a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

9.2. SYNTAX 111

given formula to be a subformula of the given formula if it is itself a formula. Where

function symbols are present, we can similarly define a notion of subterm. We stop

to note one result about subformulas.

9.5 Lemma (Unique readability lemma).

(a) The only subformula of an atomic formula R(t1 , . . . , tn) or =(t1, t2) is itself.

(b) The only subformulas of ∼F are itself and the subformulas of F .

(c) The only subformulas of (F & G) or (F ∨ G) are itself and the subformulas of F
and G.

(d) The only subformulas of ∀xF or ∃xF are itself and the subformulas of F .

These assertions may seem obvious, but they only hold because we use enough

parentheses. If we used none at all, the disjunction of F & G with H , that is, F &

G ∨ H , would have the subformula G ∨ H , which is neither the whole conjunction

nor a subformula of either conjunct. Indeed, the whole formula would be the same

as the conjunction of F with G ∨ H , and we would have a serious ambiguity. A

rigorous proof of the unique readability lemma requires the parenthesis lemma.

Proof: For (a), a subformula of R(t1, . . . , tn) or =(t1, t2) must contain the initial

predicate R or =, and so, if it is not the whole formula, it will be a left part of it.

Being a formula, it must contain (and in fact end in) a parenthesis by 9.4(a), and so,

if it is not the whole formula but only a left part, must contain an excess of left over

right parentheses by 9.4(c), which is impossible for a formula by 9.4(b).

For (b), a subformula of ∼F that is not a subformula of F must contain the

initial negation sign ∼, and so, if it is not the whole formula ∼F , it will be a left

part of it, and from this point the argument is essentially the same as in the atomic

case (a).

For (c), we relegate the proof to the problems at the end of the chapter.

For (d), the argument is essentially the same as for (b).

Resuming our series of definitions, second, using the notion of subformula, we

state the official definition of which occurrences of a variable x in a formula F are free
and which are bound: an occurrence of variable x is bound if it is part of a subformula

beginning ∀x . . . or ∃x . . . , in which case the quantifier ∀ or ∃ in question is said to

bind that occurrence of the variable x , and otherwise the occurrence of the variable

x is free. As an example, in

x < y & ∼∃ z(x < z & z < y)

all the occurrences of x and y are free, and all the occurrences of z are bound; while

in

Fx → ∀xFx

the first occurrence of x is free, and the other two occurrences of x are bound. [The

difference between the role of a free variable x and the role of a bound variable u in

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

112 A PR ÉCIS OF FIRST-ORDER LOGIC: SYNTAX

a formula like ∀u R(x, u) or ∃u R(x, u) is not unlike the difference between the roles

of x and of u in mathematical expressions like∫ x

1

du

u

x∑
u=1

1

u

For some readers this analogy may be helpful, and those readers who do not find it

so may ignore it.]

In general, any and all occurrences of variables in an atomic formula R(t1 , . . . , tn)

are free, since there are no quantifiers in the formula; the free occurrences of a variable

in a negation ∼F are just the free occurrences in F , since any subformula of ∼F
beginning ∀x or ∃x is a proper subformula of ∼F and so a subformula of F ; and

similarly, the free occurrences of a variable in a junction (F & G) or (F ∨ G) are just

those in F and G; and similarly, the free occurrences of a variable other than x in a

quantification ∀xF or ∃xF are just those in F , while of course none of the occurrences

of x in ∀xF or ∃xF is free.

Third, using the notion of free and bound occurrence of variables, we state the

official definition of the notion of an instance of a formula. But before giving that

definition, let us mention a convenient notational convention. When we write some-

thing like ‘Let F(x) be a formula’, we are to be understood as meaning ‘Let F be a

formula in which no variables occur free except x’. That is, we indicate which vari-

ables occur free in the formula we are calling F by displaying them immediately after

the name F we are using for that formula. Similarly, if we go on to write something

like ‘Let c be a constant, and consider F(c)’, we are to be understood as meaning,

‘Let c be a constant, and consider the result of substituting c for all free occurrences

of x in the formula F’. That is, we indicate what substitution is to be made in the

formula we are calling F(x) by making that very substitution in the expression F(x).

Thus if F(x) is ∀y ∼ y < x , then F(0) is ∀y ∼ y < 0. Then the official definition of

instance is just this: an instance of a formula F(x) is any formula of form F(t) for

t a closed term. Similar notations apply where there is more than one free variable,

and to terms as well as formulas.

Fourth and finally, again using the notion of free and bound occurrence of variables,

we state the official definition of sentence: a formula is a sentence if no occurrence

of any variable in it is free. A subsentence is a subformula that is a sentence.

Problems

9.1 Indicate the form of the following argument—traditionally called ‘syllogism in

Felapton’—using formulas:

(a) No centaurs are allowed to vote.

(b) All centaurs are intelligent beings.

(c) Therefore, some intelligent beings are not allowed to vote.

Do the premisses (a) and (b) in the preceding argument imply the conclusion (c)?

9.2 Consider (9)–(12) of at the beginning of the chapter, and give an alternative to

the genealogical interpretation that makes (9) true, (10) false, (11) true, and (12)

false.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-09 CB421-Boolos July 27, 2007 16:42 Char Count= 0

PROBLEMS 113

9.3 Consider a language with a two-place predicate P and a one-place predicate F,

and an interpretation in which the domain is the set of persons, the denotation

of P is the relation of parent to child, and the denotation of F is the set of all

female persons. What do the following amount to, in colloquial terms, under that

interpretation?

(a) ∃z∃u∃v(u
= v & Puy & Pvy & Puz & Pvz & Pzx & ∼F y)

(b) ∃z∃u∃v(u
= v & Pux & Pvx & Puz & Pvz & Pzy & F y)

9.4 Officially, a formation sequence is a sequence of formulas in which each either

is atomic, or is obtained by some earlier formula(s) in the sequence by negation,

conjunction, disjunction, or universal or existential quantification. A formation

sequence for a formula F is just a formation sequence whose last formula is F .

Prove that in a formation sequence for a formula F , every subformula of F must

appear.

9.5 Prove that every formula F has a formation sequence in which the only formulas

that appear are subformulas of F , and the number of formulas that appear is no

greater than the number of symbols in F .

9.6 Here is an outline of a proof that the only subformulas of (F & G) are itself and

the subformulas of F and of G. Suppose H is some other kind of subformula. If

H does not contain the displayed ampersand, then H must be of one of the two

forms:

(a) (λ where λ is a left part of F , or

(b) ρ) where ρ is a right part of G.

If H does contain the displayed ampersand, then some subformula of H (possibly

H itself) is a conjunction (A & B) where A and B are formulas and either

(c) A = F and B is a left part λ of G,

(d) A is a right part ρ of F and B = G, or

(e) A is a right part ρ of F and B is a left part λ of G.

Show that (a) and (b) are impossible.

9.7 Continuing the preceding problem, show that (c)–(e) are all impossible.

9.8 Our definition allows the same variable to occur both bound and free in a formula,

as in P(x) & ∀xQ(x). How could we change the definition to prevent this?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10

A Précis of First-Order Logic: Semantics

This chapter continues the summary of background material on logic needed for later
chapters. Section 10.1 studies the notions of truth and satisfaction, and section 10.2 the
so-called metalogical notions of validity, implication or consequence, and (un)satisfia-
bility.

10.1 Semantics

Let us now turn from the official definitions of syntactical notions in the preceding

chapter to the official definitions of semantic notions. The task must be to introduce

the same level of precision and rigor into the definition of truth of a sentence in or

on or under an interpretation as we have introduced into the notion of sentence itself.

The definition we present is a version or variant of the Tarski definition of what it

is for a sentence F to be true in an interpretation M, written M |= F . (The double

turnstile |= may be pronounced ‘makes true’.)

The first step is to define truth for atomic sentences. The official definition will

be given first for the case where identity and function symbols are absent, then for

the case where they are present. (If sentence letters were admitted, they would be

atomic sentences, and specifying which of them are true and which not would be part

of specifying an interpretation; but, as we have said, we generally are not going to

admit them.) Where identity and function symbols are absent, so that every atomic

sentence has the form R(t1, . . . , tn) for some nonlogical predicate R and constants

ti , the definition is straightforward:

M |= R(t1, . . . , tn) if and only if RM(
tM1 , . . . , tMn

)
.(1a)

The atomic sentence is true in the interpretation just in case the relation that the

predicate is interpreted as denoting holds of the individuals that the constants are

interpreted as denoting.

When identity is present, there is another kind of atomic sentence for which a

definition of truth must be given:

M |= =(t1, t2) if and only if tM1 = tM2 .(1b)

114

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.1. SEMANTICS 115

The atomic sentence is true in the interpretation just in case the individuals the

constants are interpreted as denoting are the same.

When function symbols are present, we need a preliminary definition of the de-

notation tM of a closed term t of a language L under an interpretation M. Clauses

(1a) and (1b) then apply, where the ti may be any closed terms, and not just constants.

For an atomic closed term, that is, for a constant c, specifying the denotation cM of c
is part of what is meant by specifying an interpretation. For more complex terms, we

proceed as follows. If f is an n-place function symbol, then specifying the denota-

tion f M is again part of what is meant by specifying an interpretation. Suppose the

denotations tM1 , . . . , tMn of terms t1, . . . , tn have been defined. Then we define the

denotation of the complex term f (t1, . . . , tn) to be the value of the function f M that

is the denotation of f applied to the individuals tM1 , . . . , tMn that are the denotations

of t1, . . . , tn as arguments:

(f (t1, . . . , tn))M = f M
(
tM1 , . . . , tMn

)
.(1c)

Since every term is built up from constants by applying function symbols a finite

number of times, these specifications determine the denotation of every term.

So, for example, in the standard interpretation of the language of arithmetic, since

0 denotes the number zero and ′ denotes the successor function, according to (1c) 0′

denotes the value obtained on applying the successor function to zero as argument,

which is to say the number one, a fact we have anticipated in abbreviating 0′ as 1.

Likewise, the denotation of 0′′ is the value obtained on applying the successor func-

tion to the denotation of 0′, namely one, as argument, and this value is of course the

number two, again a fact we have been anticipating in abbreviating 0′′ as 2. Simi-

larly, the denotation of 0′′′ is three, as is, for instance, the denotation of 0′ + 0′′. No

surprises here.

According to (1b), continuing the example, since the denotations of 0′′′ or 3 and of

0′ + 0′′ or 1 + 2 are the same, 0′′′ = 0′ + 0′′ or 3 = 1 + 2 is true, while by contrast

0′′ = 0′ + 0′′ or 2 = 1 + 2 is false. Again no surprises. According to (1a), further

continuing the example, since the denotation of < is the strict less-than relation, and

the denotations of 0′′′ or 3 and of 0′ + 0′′ or 1 + 2 are both three, the atomic

sentence 0′′′ < 0′ + 0′′ or 3 < 1 + 2 is false, while by contrast 0′′ < 0′ + 0′′ is

true. Yet again, no surprises.

There is only one candidate for what the definition should be in each of the cases

of negation and of the two junctions:

M |= ∼F if and only if not M |= F(2a)

M |= (F & G) if and only if M |= F and M |= G(2b)

M |= (F ∨ G) if and only if M |= F or M |= G.(2c)

So, for example, in the standard interpretation of the language of arithmetic, since

0 = 0 and 0 < 0′ are true while 0 < 0 is false, we have that (0 = 0 ∨ 0 < 0′) is true,

(0 < 0 & 0 = 0) is false, (0 < 0 & (0 = 0 ∨ 0 < 0′)) is false, and ((0 < 0 & 0 = 0) ∨
0 < 0′) is true. Still no surprises.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

116 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

One consequence of (2a)–(2c) worth mentioning is that (F & G) is true if and only

if ∼(∼F ∨ ∼G) is true, and (F ∨ G) is true if and only if ∼(∼F & ∼G) is true. We

could therefore if we wished drop one of the pair &, ∨ from the official language,

and treat it as an unofficial abbreviation (for an expression involving ∼ and the other

of the pair) on a par with → and ↔.

The only slight subtlety in the business arises at the level of quantification. Here is a

simple, tempting, and wrong approach to defining truth for the case of quantification,

called the substitutional approach:

M |= ∀x F(x) if and only if for every closed term t, M |= F(t)
M |= ∃x F(x) if and only if for some closed term t, M |= F(t).

In other words, under this definition a universal quantification is true if and only if

every substitution instance is true, and an existential quantification is true if and only

if some substitution instance is true. This definition in general produces results not

in agreement with intuition, unless it happens that every individual in the domain of

the interpretation is denoted by some term of the language. If the domain of the inter-

pretation is enumerable, we could always expand the language to add more constants

and extend the interpretation so that each individual in the domain is the denotation

of one of them. But we cannot do this when the domain is nonenumerable. (At least

we cannot do so while continuing to insist that a language is supposed to involve

only a finite or enumerable set of symbols. Of course, to allow a ‘language’ with a

nonenumerable set of symbols would involve a considerable stretching of the con-

cept. We will briefly consider this extended concept of ‘language’ in a later chapter,

but for the moment we set it aside.)

10.1 Example. Consider the language L* of arithmetic and three different inter-

pretations of it: first, the standard interpretation N*; second, the alternative interpretation

Q we considered earlier, with domain the nonnegative rational numbers; third, the similar

alternative interpretation R with domain the nonnegative real numbers. Now in fact the

substitutional approach gives the intuitively correct results for N* in all cases. Not so, how-

ever, for the other two interpretations. For, all closed terms in the language have the same

denotation in all three interpretations, and from this it follows that all closed terms denote

natural numbers. And from this it follows that t + t = 1 is false for all closed terms t ,
since there is no natural number that, added to itself, yields one. So on the substitutional

approach, ∃x(x + x = 1) would come out false on all three interpretations. But intuitively

‘there is something (in the domain) that added to itself yields one’ is false only on the

standard interpretation N*, and true on the rational and real interpretations Q and R.

We could try to fix this by adding more constants to the language, so that there is one

denoting each nonnegative rational number. If this were done, then on the rational and

real interpretations, 1/2 + 1/2 = 1 would come out true, and hence ∃x(x + x = 1) would

come out true using the substitutional approach, and this particular example of a problem

with the substitutional approach would be fixed. Indeed, the substitutional approach would

then give the intuitively correct results for Q in all cases. Not so, however, for R. For, all

terms in the language would denote rational numbers, and from this it would follow that

t · t = 2 is false for all terms t , since there is no rational number that, multiplied by itself,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.1. SEMANTICS 117

yields two. So on the substitutional approach, ∃x(x · x = 2) would come out false. But

intuitively, though ‘there is something (in the domain) that multiplied by itself yields two’

is false on the rational interpretation, it is true on the real interpretation. We could try to fix

this by adding yet more terms to the language, but by Cantor’s theorem there are too many

real numbers to add a term for each of them while keeping the language enumerable.

The right definition for the case of quantification has to be a little more indirect.

In defining when M |= ∀x F(x) we do not attempt to extend the given language L
so as to provide constants for every individual in the domain of the interpretation at

once. In general, that cannot be done without making the language nonenumerable.

However, if we consider any particular individual in the domain, we could extend the

language and interpretation to give just it a name, and what we do in defining when

M |= ∀xF(x) is to consider all possible extensions of the language and interpretation

by adding just one new constant and assigning it a denotation.

Let us say that in the interpretation M the individual m satisfies F(x), and write

M |= F[m], to mean ‘if we considered the extended language L ∪ {c} obtained by

adding a new constant c in to our given language L , and if among all the extensions

of our given interpretation M to an interpretation of this extended language we

considered the one Mc
m that assigns c the denotation m, then F(c) would be true’:

M |= F[m] if and only if Mc
m |= F(c).(3*)

(For definiteness, let us say the constant to be added should be the first constant not

in L in our fixed enumeration of the stock of constants.)

For example, if F(x) is x · x = 2, then on the real interpretation of the language

of arithmetic
√

2 satisfies F(x), because if we extended the language by adding a

constant c and extended the interpretation by taking c to denote
√

2, then c · c = 2

would be true, because the real number denoted by c would be one that, multiplied

by itself, yields two. This definition of satisfaction can be extended to formulas with

more than one free variable. For instance, if F(x, y, z) is x · y = z, then
√

2,
√

3,
√

6

satisfy F(x, y, z), because if we added c, d, e denoting them, c · d = e would be true.

Here, then, is the right definition, called the objectual approach:

M |= ∀xF(x) if and only if for every m in the domain, M |= F[m](3a)

M |= ∃xF(x) if and only if for some m in the domain, M |= F[m].(3b)

SoR |= ∃xF(x) under the above definitions, in agreement with intuition, even though

there is no term t in the actual language such that R |= F(t), because R |= F[
√

2].

One immediate implication of the above definitions worth mentioning is that ∀xF
turns out to be true just in case ∼∃x ∼ F is true, and ∃x F turns out to be true just

in case ∼∀x ∼F is true, so it would be possible to drop one of the pair ∀, ∃ from the

official language, and treat it as an unofficial abbreviation.

The method of proof by induction on complexity can be used to prove semantic

as well as syntactic results. The following result can serve as a warm-up for more

substantial proofs later, and provides an occasion to review the definition of truth

clause by clause.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

118 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

10.2 Proposition (Extensionality lemma).

(a) Whether a sentence A is true depends only on the domain and denotations of the

nonlogical symbols in A.

(b) Whether a formula F(x) is satisfied by an element m of the domain depends only

on the domain, the denotations of the nonlogical symbols in F , and the element m.

(c) Whether a sentence F(t) is true depends only on the domain, the denotations of

the nonlogical symbols in F(x), and the denotation of the closed term t .

Here (a), for instance, means that the truth value of A does not depend on what

the nonlogical symbols in A themselves are, but only on what their denotations are,

and does not depend on the denotations of nonlogical symbols not in A. (So a more

formal statement would be: If we start with a sentence A and interpretation I , and

change A to B by changing zero or more nonlogical symbols to others of the same

kind, and change I to J , then the truth value of B in J will be the same as the truth

value of A in I provided J has the same domain as I , J assigns each unchanged

nonlogical symbol the same denotation I did, and whenever a nonlogical symbol S
is changed to T , then J assigns to T the same denotation I assigned to S. The proof,

as will be seen, is hardly longer than this formal statement!)

Proof: In proving (a) we consider first the case where function symbols are absent,

so the only closed terms are constants, and proceed by induction on complexity. By

the atomic clause in the definition of truth, the truth value of an atomic sentence

depends only on the denotation of the predicate in it (which in the case of the identity

predicate cannot be changed) and the denotations of the constants in it. For a negation

∼B, assuming as induction hypothesis that (a) holds for B, then (a) holds for ∼B
as well, since by the negation clause in the definition of truth, the truth value of ∼B
depends only on the truth value of B. The cases of disjunction and conjunction are

similar.

For a universal quantification ∀x B(x), assuming as induction hypothesis that

(a) holds for sentences of form B(c), then (b) holds for B(x), for the following

reason. By the definition of satisfaction, whether m satisfies B(x) depends on the

truth value of B(c) where c is a constant not in B(x) that is assigned denotation m.

[For definiteness, we specified which constant was to be used, but the assumption of

(a) for sentences of form B(c) implies that it does not matter what constant is used,

so long as it is assigned denotation m.] By the induction hypothesis, the truth value

of B(c) depends only on the domain and the denotations of the nonlogical symbols

in B(c), which is to say, the denotations of the nonlogical symbols in B(x) and the

element m that is the denotation of the nonlogical symbol c, just as asserted by (b) for

B(x). This preliminary observation made, (a) for ∀x B(x) follows at once, since by

the universal quantification clause in the definition of truth, the truth value of ∀x B(x)

depends only on the domain and which of its elements satisfy B(x). The case of

existential quantification is the same.

If function symbols are present, we must as a preliminary establish by induction

on complexity of terms that the denotation of a term depends only on the denotations

of the nonlogical symbols occurring in it. This is trivial in the case of a constant. If it

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.2. METALOGICAL NOTIONS 119

is true for terms t1, . . . , tn , then it is true for the term f (t1, . . . , tn), since the definition

of denotation of term mentions only the denotation of the nonlogical symbol f and

the denotations of the terms t1, . . . , tn . This preliminary observation made, (a) for

atomic sentences follows, since by the atomic clause in the definition of truth, the

truth value of an atomic sentence depends only on the denotation of its predicate and

the denotations of its terms. The nonatomic cases in the proof require no change.

We have proved (b) in the course of proving (a). Having (b), the proof of (c) reduces

to showing that whether a sentence F(t) is true depends only on whether the element

m denoted by t satisfies F(x), which by the definition of satisfaction is to say, on

whether F(c) is true, where c is a constant having the same denotation m as t . The

proof that F(c) and F(t) have the same truth value if c and t have the same denotation

is relegated to the problems at the end of the chapter.

It is also extensionality (specifically, part (c) of Proposition 10.2) that justifies

our earlier passing remarks to the effect that the substitutional approach to defining

quantification does work when every element of the domain is the denotation of some
closed term. If for some closed term t the sentence B(t) is true, then letting m be the

denotation of t , it follows by extensionality that m satisfies B(x), and hence ∃x B(x) is

true; and conversely, if ∃x B(x) is true, then some m satisfies B(x), and assuming that
every element of the domain is the denotation of some closed term, then some term

t denotes m, and by extensionality, B(t) is true. Thus under the indicated assumption,

∃xB(x) is true if and only if for some term t , B(t) is true, and similarly ∀x B(x) is

true if and only if for every term t, B(t) is true.

Similarly, if every element of the domain is the denotation of a closed term of
some special kind then ∃x B(x) is true if and only if B(t) is true for some closed term

t that is of that special kind. In particular, for the standard interpretation N* of the

language of arithmetic L*, where every element of the domain is the denotation of

one of the terms 0, 1, 2, . . . , we have

N* |= ∀x F(x) if and only if for every natural number m,N* |= F(m)

N* |= ∃x F(x) if and only if for some natural number m,N* |= F(m)

where m is the numeral for the number m (that is, the term consisting of the cipher

0 followed by m copies of the accent ′).

10.2 Metalogical Notions

Now that rigorous definitions of formula and sentence, and of satisfaction and truth,

have been given, we can proceed to the definitions of the main notions of logical

theory. A set of sentences � implies or has as a consequence the sentence D if there

is no interpretation that makes every sentence in � true, but makes D false. This

is the same as saying that every interpretation that makes every sentence in � true

makes D true. (Or almost the same. Actually, if D contains a nonlogical symbol not

in �, an interpretation might make � true but assign no denotation to this symbol and

therefore no truth value to D. But in such a case, however the denotation is extended

to assign a denotation to any such symbols and therewith a truth value to D, � will

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

120 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

still be true by the extensionality lemma, so D cannot be false and must be true. To

avoid fuss over such points, in future we tacitly understand ‘every interpretation’ to

mean ‘every interpretation that assigns denotations to all the nonlogical symbols in

whatever sentences we are considering’.) We use ‘makes every sentence in � true’

and ‘makes � true’ interchangeably, and likewise ‘the sentences in the set � imply

D’ and ‘� implies D’. When � contains but a single sentence C (in symbols, when

� = {C}), we use ‘� implies D’ and ‘C implies D’ interchangeably. Let us give a

few examples. There are more in the problems at the end of the chapter (and many,

many, many more in introductory textbooks).

10.3 Example. Some implication principles

(a) ∼∼B implies B.

(b) B implies (B ∨ C) and C implies (B ∨ C).

(c) ∼(B ∨ C) implies ∼B and ∼C .

(d) B(t) implies ∃x B(x).

(e) ∼∃x B(x) implies ∼B(t).

(f) s = t and B(s) imply B(t).

Proofs: For (a), by the negation clause in the definition of truth, in any interpre-

tation, if ∼∼B is true, then ∼B must be false, and B must be true. For (b), by the

disjunction clause in the definition of truth, in any interpretation, if B is true, then

(B ∨ C) is true; similarly for C . For (c), by what we have just shown, any interpre-

tation that does not make (B ∨ C) true cannot make B true; hence any intepretation

that makes ∼(B ∨ C) true makes ∼B true; and similarly for ∼C . For (d), in any

interpretation, by the extensionality lemma B(t) is true if and only if the element m
of the domain that is denoted by t satisfies B(x), in which case ∃x B(x) is true. As

for (e), it follows from what we have just shown much as (c) follows from (b). For

(f), by the identity clause in the definition of truth, in any interpretation, if s = t is

true, then s and t denote the same element of the domain. Then by the extensionality

lemma B(s) is true if and only if B(t) is true.

There are two more important notions to go with implication or consequence.

A sentence D is valid if no interpretation makes D false. In this case, a fortiori
no interpretation makes � true and D false; � implies D for any �. Conversely, if

every � implies D, then since for every interpretation there is a set of sentences � it

makes true, no interpretation can make D false, and D is valid. A set of sentences � is

unsatisfiable if no interpretation makes � true (and is satisfiable if some interpretation

does). In this case, a fortiori no interpretation makes � true and D false, so � implies

D for any D. Conversely, if � implies every D, then since for every interpretation

there is a sentence it makes false, there can be no interpretation making � true, and

� is unsatisfiable.

Notions such as consequence, unsatisfiability, and validity are often called ‘meta-

logical’ in contrast to the notions of negation, conjunction, disjunction, and univer-

sal and existential quantification, which are simply called ‘logical’. Terminology

aside, the difference is that there are symbols ∼, &, ∨, ∀, ∃ in our formal language

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

10.2. METALOGICAL NOTIONS 121

(the ‘object language’) for negation and the rest, whereas words like ‘consequence’

only appear in the unformalized prose, the mathematical English, in which we talk

about the formal language (the ‘metalanguage’).

Just as for implication or consequence, so for validity and for unsatisfiability

and satisfiability, there are innumerable little principles that follow directly from

the definitions. For instance: if a set is satisfiable, then so is every subset (since an

interpretation making every sentence in the set true will make every sentence in the

subset true); no set containing both a sentence and its negation is satisfiable (since no

interpretation makes them both true); and so on. The plain assertions of Example 10.3

can each be elaborated into fancier versions about validity and (un)satisfiability, as

we next illustrate in the case of 10.3(a).

10.4 Example. Variations on a theme

(a) ∼∼B implies B.

(b) If � implies ∼∼B, then � implies B.

(c) If B implies D, then ∼∼B implies D.

(d) If � ∪ {B} implies D, then � ∪ {∼∼B} implies D.

(e) If ∼∼B is valid, then B is valid.

(f) If � ∪ {B} is unsatisfiable, then � ∪ {∼∼B} is unsatisfiable.

(g) If � ∪ {∼∼B} is satisfiable, then � ∪ {B} is satisfiable.

Proof: (a) is a restatement of 10.3(a). For (b), we are given that every interpretation

that makes � true makes ∼∼B true, and want to show that any interpretation that

makes � true makes B true. But this is immediate from (a), which says that any

interpretation that makes ∼∼B true makes B true. For (c), we are given that any

interpretation that makes B true makes D true, and want to show that any interpretation

that makes ∼∼B true makes D true. But again, this is immediate from the fact that

any interpretation that makes ∼∼B true makes B true. In (d), � ∪ {B} denotes the

result of adding B to �. The proof in this case is a combination of the proofs of (b)

and (c). For (e), we are given that every interpretation makes ∼∼B true, and want

to show that every interpretation makes B true, while for (f), we are given that no

interpretation makes � and B true, and want to show that no interpretation makes �

and ∼∼B true. But again both are immediate from (a), that is, from the fact that every

interpretation that makes ∼∼B true makes B true. Finally, (g) is immediate from (f).

We could play the same game with any of 10.3(b)–10.3(f). Some results exist only

in the fancy versions, so to speak.

10.5 Example. Some satisfiability principles

(a) If � ∪ {(A ∨ B)} is satisfiable, then either � ∪ {A} is satisfiable, or � ∪ {B} is

satisfiable.

(b) If � ∪ {∃xB(x)} is satisfiable, then for any constant c not occurring in � or ∃xB(x),

� ∪ {B(c)} is satisfiable.

(c) If � is satisfiable, then � ∪ {t = t} is satisfiable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

122 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

Proof: For (a), we are given that some interpretation makes � and A ∨ B true,

and want to show that some interpretation makes � and A true, or some makes �

and B true. In fact, the same interpretation that makes � and A ∨ B true either

makes A true or makes B true, by the disjunction clause in the definition of truth. For

(b), we are given that some interpretation makes � and ∃x B(x) true, and want to show

that some interpretation makes � and B(c) true, assuming c does not occur in � or

∃x B(x). Well, since ∃x B(x) is true, some element m of the domain satisfies B(x).

And since c does not occur in � or ∃x B(x), we can change the interpretation to make

m the denotation of c, without changing the denotations of any nonlogical symbols in

� or ∃x B(x), and so by extensionality not changing their truth values. But then � is

still true, and since m satisfies B(x), B(c) is also true. For (c), we are given that some

interpretation makes � true and want to show that some interpretation makes � and

t = t true. But any interpretation makes t = t true, so long as it assigns a denotation

to each nonlogical symbol in t , and if our given interpretation does not, it at least

assigns a denotation to every nonlogical symbol in t that occurs in �, and if we extend

it to assign denotations to any other nonlogical symbols in t , by extensionality � will

still be true, and now t = t will be true also.

There is one more important metalogical notion: two sentences are equivalent over
an interpretation M if they have the same truth value. Two formulas F(x) and G(x)

are equivalent over M if, taking a constant c occurring in neither, the sentences F(c)

and G(c) are equivalent over every interpretation Mc
mobtained by extending M to

provide some denotation m for c. Two sentences are (logically) equivalent if they

are equivalent over all interpretations. Two formulas F(x) and G(x) are (logically)

equivalent if, taking a constant c occurring in neither, the sentences F(c) and G(c) are

(logically) equivalent. A little thought shows that formulas are (logically) equivalent

if they are equivalent over every interpretation. The definitions may be extended to

formulas with more than one free variable. We leave the development of the basic

properties of equivalence entirely to the problems.

Before closing this chapter and bringing on those problems, a remark will be in

order. The method of induction on complexity we have used in this chapter and

the preceding to prove such unexciting results as the parenthesis and extensionality

lemmas will eventually be used to prove some less obvious and more interesting

results. Much of the interest of such results about formal languages depends on their

being applicable to ordinary language. We have been concerned here mainly with

how to read sentences of our formal language in ordinary language, and much less

with writing sentences of ordinary language in our formal language, so we need to

say a word about the latter topic.

In later chapters of this book there will be many examples of writing assertions

from number theory, the branch of mathematics concerned with the natural numbers,

as first-order sentences in the language of arithmetic. But the full scope of what can

be done with first-order languages will not be apparent from these examples, or this

book, alone. Works on set theory give examples of writing assertions from other

branches of mathematics as first-order sentences in a language of set theory, and

make it plausible that in virtually all branches of mathematics, what we want to say

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

PROBLEMS 123

can be said in a first-order language. Works on logic at the introductory level contain

a wealth of examples of how to say what we want to say in a first-order language

from outside mathematics (as in our genealogical examples).

But this cannot always be done outside of mathematics, and some of our results do
not apply unrestrictedly to ordinary language. A case in point is unique readability.

In ordinary language, ambiguous sentences of the type ‘A and B or C’ are perfectly

possible. Of course, though possible, they are not desirable: the sentence ought to

be rewritten to indicate whether ‘A, and either B or C’ or ‘Either A and B, or C’

is meant. A more serious case in point is extensionality. In ordinary language it is

not always the case that one expression can be changed to another denoting the same

thing without altering truth values. To give the classic example, Sir Walter Scott was

the author of the historical novel Waverley, but there was a time when this fact was

unknown, since the work was originally published anonymously. At that time, ‘It is

known that Scott is Scott’ was as always true, but ‘It is known that the author of

Waverley is Scott’ was false, even though ‘Scott’ and ‘the author of Waverly’ had the

same denotation.

To put the matter another way, writing s for ‘Scott’ and t for ‘the author of

Waverley’, and writing A(x) for ‘x is Scott’ and � for ‘it is known that’, what we have

just said is that s = t and �A(s) may be true without �A(t) being true, in contrast to

one of our examples above, according to which, in our formal languages, s = t and

B(s) always imply B(t). There is no contradiction with our example, of course, since

our formal languages do not contain any operator like �; but for precisely this reason,

not everything that can be expressed in ordinary language can be expressed in our

formal languages. There is a separate branch of logic, called modal logic, devoted to

operators like �, and we are eventually going to get a peek at a corner of this branch

of logic, though only in the last chapter of the book.

Problems

10.1 Complete the proof of the extensionality lemma (Proposition 10.2) by show-

ing that if c is a constant and t a closed term having the same denotation,

then substituting t for c in a sentence does not change the truth value of the

sentence.

10.2 Show that ∃y∀x R(x, y) implies ∀x∃y R(x, y).

10.3 Show that ∀x∃yF(x, y) does not imply ∃y∀x F(x, y) .

10.4 Show that:

(a) If the sentence E is implied by the set of sentences � and every sentence

D in � is implied by the set of sentences �, then E is implied by �.

(b) If the sentence E is implied by the set of sentences � ∪ � and every

sentence D in � is implied by the set of sentences �, then E is implied

by �.

10.5 Let ∅ be the empty set of sentences, and let ⊥ be any sentence that is not true

on any interpretation. Show that:

(a) A sentence D is valid if and only if D is a consequence of ∅.

(b) A set of sentences � is unsatisfiable if and only if ⊥ is a consequence of �.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

124 A PR ÉCIS OF FIRST-ORDER LOGIC: SEMANTICS

10.6 Show that:

(a) {C1, . . . , Cm} is unsatisfiable if and only if ∼C1 ∨ · · · ∨ ∼Cm is valid.

(b) D is a consequence of {C1, . . . , Cm} if and only if ∼C1 ∨ · · · ∨ ∼Cm∨ D
is valid.

(c) D is a consequence of {C1, . . . , Cm} if and only if {C1, . . . , Cm, ∼D} is

unsatisfiable.

(d) D is valid if and only if ∼D is unsatisfiable.

10.7 Show that B(t) and ∃x(x = t & B(x)) are logically equivalent.

10.8 Show that:

(a) (B & C) implies B and implies C .

(b) ∼B implies ∼(B & C), and ∼C implies ∼(B & C).

(c) ∀x B(x) implies B(t).
(d) ∼B(t) implies ∼∀x B(x).

10.9 Show that:

(a) If � ∪ {∼(B & C)} is satisfiable, then either � ∪ {∼B} is satisfiable or

� ∪ {∼C} is satisfiable.

(b) If � ∪ {∼∀x B(x)} is satisfiable, then for any constant c not occurring in

� or ∀x B(x), � ∪ {∼B(c)} is satisfiable.

10.10 Show that the following hold for equivalence over any interpretation (and hence

for logical equivalence), for any sentences (and hence for any formulas):

(a) F is equivalent to F .

(b) If F is equivalent to G, then G is equivalent to F .

(c) If F is equivalent to G and G is equivalent to H , then F is equivalent to H .

(d) If F and G are equivalent, then ∼F and ∼G are equivalent.

(e) If F1 and G1 are equivalent, and F2 and G2 are equivalent, then F1 & F2

and G1 & G2 are equivalent, and similarly for ∨.

(f) If c does not occur in F(x) or G(x), and F(c) and G(c) are equivalent,

then ∀x F(x) and ∀xG(x) are equivalent, and similarly for ∃.

10.11 (Substitution of equivalents.) Show that the following hold for equivalence

over any interpretation (and hence for logical equivalence):

(a) If sentence G results from sentence F on replacing each occurrence of an

atomic sentence A by an equivalent sentence B, then F and G are

equivalent.

(b) Show that the same holds for an atomic formula A and an equivalent

formula B (provided, to avoid complications, that no variable occurring

in A occurs bound in B or F).

(c) Show that the same holds even when A is not atomic.

10.12 Show that F(x) is (logically) equivalent to G(x) if and only if∀x(F(x) ↔ G(x))

is valid.

10.13 (Relettering bound variables.) Show that:

(a) If F is a formula and y a variable not occurring free in F , then F is

(logically) equivalent to a formula in which y does not occur at all. The

same applies to any number of variables y1, . . . , yn .

(b) Every formula is logically equivalent to a formula having no subformulas

in which the same variable occurs both free and bound.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-10 CB421-Boolos July 27, 2007 16:43 Char Count= 0

PROBLEMS 125

10.14 Show that the following pairs are equivalent:

(a) ∀x F(x) & ∀yG(y) and ∀u(F(u) & G(u)).

(b) ∀x F(x) ∨ ∀yG(y) and ∀u∀v(F(u) ∨ G(v)).

(c) ∃x F(x) & ∃yG(y) and ∃u∃v(F(u) & G(v)).

(d) ∃x F(x) ∨ ∃yG(y) and ∃u(F(u) ∨ G(u)).

[In (a), it is to be understood that u may be a variable not occurring free in

∀x F(x) or ∀yG(y); in particular, if x and y are the same variable, u may be

that same variable. In (b) it is to be understood that u and v may be any distinct

variables not occurring free in ∀x F(x) ∨ ∀yG(y); in particular, if x does not

occur in free in ∀yG(y) and y does not occur free in ∀x F(x), then u may be

x and y may be v . Analogously for (d) and (c).]

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

11

The Undecidability of First-Order Logic

This chapter connects our work on computability with questions of logic. Section 11.1
presupposes familiarity with the notions of logic from Chapter 9 and 10 and of Turing
computability from Chapters 3–4, including the fact that the halting problem is not
solvable by any Turing machine, and describes an effective procedure for producing,
given any Turing machine M and input n, a set of sentences � and a sentence D such
that M given input n will eventually halt if and only if � implies D. It follows that if there
were an effective procedure for deciding when a finite set of sentences implies another
sentence, then the halting problem would be solvable; whereas, by Turing’s thesis, the
latter problem is not solvable, since it is not solvable by a Turing machine. The upshot
is, one gets an argument, based on Turing’s thesis for (the Turing–Büchi proof of)
Church’s theorem, that the decision problem for implication is not effectively solvable.
Section 11.2 presents a similar argument—the Gödel-style proof of Church’s theorem—
this time using not Turing machines and Turing’s thesis, but primitive recursive and
recursive functions and Church’s thesis, as in Chapters 6–7. The constructions of the
two sections, which are independent of each other, are both instructive; but an entirely
different proof, not dependent on Turing’s or Church’s thesis, will be given in a later
chapter, and in that sense the present chapter is optional. (After the present chapter we
return to pure logic for the space of several chapters, to resume to the application of
computability theory to logic with Chapter 15.)

11.1 Logic and Turing Machines

We are going to show how, given the machine table or flow chart or other suitable

presentation of a Turing machine, and any n, we can effectively write down a finite
set of sentences � and a sentence D such that � implies D if and only if the machine

in question does eventually halt when started with input n, that is, when started in its

initial state scanning the leftmost of a block of n strokes on an otherwise blank tape.

It follows that if the decision problem for logical implication could be solved, that is,

if an effective method could be devised that, applied to any finite set of sentences �

and sentence D, would in a finite amount of time tell us whether or not � implies D,

then the halting problem for Turing machines could be solved, or in other words, an

effective method would exist that, applied to any suitably presented Turing machine

and number n, would in a finite amount of time tell us whether or not that machine halts

when started with input n. Since we have seen in Chapter 4 that, assuming Turing’s

126

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

11.1. LOGIC AND TURING MACHINES 127

thesis, the halting problem is not solvable, it follows that, again assuming Turing’s

thesis, the decision problem is unsolvable, or, as is said, that logic is undecidable.

In principle this section requires only the material of Chapters 3–4 and 9–10. In

practice some facility at recognizing simple logical implications will be required:

we are going to appeal freely to various facts about one sentence implying another,

leaving the verification of these facts largely to the reader.

We begin by introducing simultaneously the language in which the sentences in �

and the sentence D will be written, and its standard interpretation M. The language

interpretation will depend on what machine and what input n we are considering. The

domain of M will in all cases be the integers, positive and zero and negative. The

nonnegative integers will be used to number the times when the machine is operating:

the machine starts at time 0. The integers will also be used to number the squares

on the tape: the machine starts at square 0, and the squares to the left and right are

numbered as in Figure 11-1.

… -4 -3 -2 -1 0 1 2 3 4 …

Figure 11-1. Numbering the squares of a Turing tape.

There will be a constant 0, whose denotation in the standard interpretation will

be zero, and two-place predicates S and <, whose denotations will be the successor

relation (the relation an integer n bears to n + 1 and nothing else) and the usual order

relation, respectively. To save space, we write Suv rather than S(u, v), and similarly

for other predicates. As to such other predicates, there will further be, for each of the

(nonhalted) states of the machine, numbered let us say from 1 (the initial state) to k,

a one-place predicate. In the standard interpretation, Qi will denote the set of t ≥ 0

such that at the time numbered t the machine is in the state numbered i . Besides this

we need two more two-place predicates @ and M. The denotation of the former will

be the set of pairs of integers t ≥ 0 and x such that at the time number t , the machine

is at the square numbered x . The denotation of the latter will be the set of t ≥ 0 and

x such that at time t , square x is ‘marked’, that is, contains a stroke rather than a

blank. (We use t as the variable when a time is intended, and x and y when squares

are intended, as a reminder of the standard interpretation. Formally, the function of

a variable is signalled by its position in the first or the second place of the predicate

@ or M.) It would be easy to adapt our construction to the case where more symbols

than just the stroke and the blank are allowed, but for present purposes there is no

reason to do so.

We must next describe the sentences that are to go into � and the sentence D.

The sentences in � will fall into three groups. The first contains some ‘background

information’ about S and < that would be the same for any machine and any input. The

second consists of a single sentence specific to the input n we are considering. The

third consists of one sentence for each ‘normal’ instruction of the specific machine

we are considering, that is, for each instruction except for those telling us to halt.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

128 THE UNDECIDABILITY OF FIRST-ORDER LOGIC

The ‘background information’ is provided by the following:

∀u∀v∀w(((Suv & Suw) → v = w) & ((Svu & Swu) → v = w))(1)

∀u∀v(Suv → u < v) & ∀u∀v∀w((u < v & v < w) → u < w)(2)

∀u∀v(u < v → u �= v).(3)

These say that a number has only one successor and only one predecessor, that a

number is less than its predecessor, and so on, and are all equally true in the standard

interpretation.

It will be convenient to introduce abbreviations for the mth-successor relation,

writing

S0uv for u = v

S1uv for Suv

S2uv for ∃y(Suy & Syv)

S3uv for ∃y1∃y2(Suy1 & Sy1 y2 & Sy2v)

and so on. (In S2, y may be any convenient variable distinct from u and v; for

definiteness let us say the first on our official list of variables. Similarly for S3.) The

following are then true in the standard interpretation.

∀u∀v∀w(((Smuv & Smuw) → v = w) & ((Smvu & Smwu) → v = w))(4)

∀u∀v(Smuv → u < v) if m �= 0(5)

∀u∀v(Smuv → u �= v) if m �= 0(6)

∀u∀v∀w((Smwu & Suv) → Skwv) if k = m + 1(7)

∀u∀v∀w((Skwv & Suv) → Smwu) if m = k − 1.(8)

Indeed, these are logical consequences of (1)–(3) and hence of �, true in any in-

terpretation where � is true: (4) follows on repeated application of (1); (5) follows

on repeated application of (2); (6) follows from (3) and (5); (7) is immediate from

the definitions; and (8) follows from (7) and (1). If we also write S−muv for Smvu,

(4)–(8) still hold.

We need some further notational conventions before writing down the remaining

sentences of �. Though officially our language contains only the numeral 0 and

not numerals 1, 2, 3, or −1, −2, −3, it will be suggestive to write y = 1, y = 2,

y = −1, and the like for S1(0, y), S2(0, y), S−1(0, y), and so on, and to understand

the application of a predicate to a numeral in the natural way, so that, for instance,

Qi 2 and S2u abbreviate ∃y(y = 2 & Qi y) and ∃y(y = 2 & Syu). A little thought

shows that with these conventions (6)–(8) above (applied with 0 for w) give us the

following wherein p, q, and so on, are the numerals for the numbers p, q , and so

on:

p �= q if p �= q(9)

∀v(Smv → v = k) where k = m + 1(10)

∀u(Suk → u = m) where m = k − 1.(11)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

11.1. LOGIC AND TURING MACHINES 129

These abbreviatory conventions enable us to write down the remaining sentences of

� comparatively compactly.

The one member of � pertaining to the input n is a description of (the configuration

at) time 0, as follows:

Q00 & @00 & M00 & M01 & . . . & M0n &(12)

∀x((x �= 0 & x �= 1 & . . . & x �= n − 1) → ∼M0x).

This is true in the standard interpretation, since at time 0 the machine is in state 1,

at square 0, with squares 0 through n marked to represent the input n, and all other

squares blank.

To complete the specification of �, there will be one sentence for each nonhalting

instruction, that is, for each instruction of the following form, wherein j is not the

halted state:

If you are in state i and are scanning symbol e,(∗)

then —— and go into state j .

In writing down the corresponding sentence of �, we use one further notational

convention, sometimes writing M as M1 and ∼M as M0. Thus Metx says, in the

standard interpretation, that at time t , square x contains symbol e (where e = 0

means the blank, and e = 1 means the stroke). Then the sentence corresponding to

(*) will have the form

∀t∀x((Qi t &@t x & Met x) →(13)

∃u(Stu & —— & Q j u &

∀y((y �= x & M1t y) → M1uy) & ∀y((y �= x & M0t y) → M0uy))).

The last two clauses just say that the marking of squares other than x remains un-

changed from one time t to the next time u.

What goes into the space ‘——’ in (13) depends on what goes into the corresponding

space in (*). If the instruction is to (remain at the same square x but) print the symbol

d , the missing conjunct in (9) will be

@ux & Mdux .

If the instruction is to move one square to the right or left (leaving the marking of the

square x as it was), it will instead be

∃y(S±1xy & @uy & (Mux ↔ Mt x))

(with the minus sign for left and the plus sign for right). A little thought shows that

when filled in after this fashion, (13) exactly corresponds to the instruction (*), and

will be true in the standard interpretation.

This completes the specification of the set �. The next task is to describe the

sentence D. To obtain D, consider a halting instruction, that is, an instruction of the

type

If you are in state i and are scanning symbol e, then halt.(†)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

130 THE UNDECIDABILITY OF FIRST-ORDER LOGIC

For each such instruction write down the sentence

∃t∃x(Qi t & @t x & Met x).(14)

This will be true in the standard interpretation if and only if in the course of its

operations the machine eventually comes to a configuration where the applicable

instruction is (†), and halts for this reason. We let D be the disjunction of all sentences

of form (14) for all halting instructions (†). Since the machine will eventually halt if

and only if it eventually comes to a configuration where the applicable instruction is

some halting instruction or other, the machine will eventually halt if and only if D is

true in the standard interpretation.

We want to show that � implies D if and only if the given machine, started with the

given input, eventually halts. The ‘only if’ part is easy. All sentences in � are true in

the standard interpretation, whereas D is true only if the given machine started with

the given input eventually halts. If the machine does not halt, we have an interpretation

where all sentences in � are true and D isn’t, so � does not imply D.

For the ‘if’ part we need one more notion. If a ≥ 0 is a time at which the machine

has not (yet) halted, we mean by the description of time a the sentence that does for

a what (12) does for 0, telling us what state the machine is in, where it is, and which

squares are marked at time a. In other words, if at time a the machine is in state i , at

square p, and the marked squares are q1, q2 , . . . , qm , then the description of time a
is the following sentence:

Qi a & @ap & Maq1 & Maq2 & . . . & Maqm &(15)

∀x((x �= q1 & x �= q2 & . . . & x �= qm) → ∼Max).

It is important to note that (15) provides, directly or indirectly, the information

whether the machine is scanning a blank or a stroke at time a. If the machine is

scanning a stroke, then p is one of the qr for 1 ≤ r ≤ m, and M1ap, which is to

say Map, is actually a conjunct of (15). If the machine is scanning a blank, then p
is different from each of the various numbers q . In this case M0ap, which is to say

∼Map, is implied by (15) and �. Briefly put, the reason is that (9) gives p �= qr for

each qr , and then the last conjuct of (15) gives ∼Map.

[Less briefly but more accurately put, what the last conjunct of (15) abbreviates
amounts to

∀x((∼Sq 1
0x & . . . ∼Sqm 0x) → ∼∃t(Sa0t & Mt x)).

What (9) applied to p and qr abbreviates is

∼∃x((Spx & Sqr x).

These together imply

∼∃t∃x(S0t & S0x & Mt x)

which amounts to what ∼Map abbreviates.]

If the machine halts at time b = a + 1, that means that at time a we had configura-

tion for which the applicable instruction as to what to do next was a halting instruction

of form (†). In that case, Qi a and @ap will be conjuncts of the description of time

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

11.1. LOGIC AND TURING MACHINES 131

a, and Meap will be either a conjunct of the description also (if e = 1) or a logical

implication of the description and � (if e = 0). Hence (14) and therefore D will be a

logical implication of � together with the description of time a. What if the machine

does not halt at time b = a + 1?

11.1 Lemma. If a ≥ 0, and b = a +1 is a time at which the machine has not (yet)

halted, then � together with the description of time a implies the description of time b.

Proof: The proof is slightly different for each of the four types of instructions

(print a blank, print a stroke, move left, move right). We do the case of printing a

stroke, and leave the other cases to the reader. Actually, this case subdivides into

the unusual case where there is already a stroke on the scanned square, so that the

instruction is just to change state, and the more usual case where the scanned square

is blank. We consider only the latter subcase.

So the description of time a looks like this:

Qi a & @ap & Maq1 & Maq2 & . . . & Maqm &(16)

∀x((x �= q1 & x �= q2 & . . . & x �= qm) → ∼Max)

where p �= qr for any r , so � implies p �= qr by (9), and, by the argument given earlier,

� and (16) together imply ∼Map. The sentence in � corresponding to the applicable

instruction looks like this:

∀t∀x((Qi t & @t x & ∼Mt x) →(17)

∃u(Stu & @ux & Mux & Q j u & ∀y((y �= x & Mt y) → Muy)

& ∀y((y �= x & ∼Mt y) → ∼Muy))).

The description of time b looks like this:

Q j b & @bp & Mbp & Mbq1 & Mbq2 & . . . & Mbqm &(18)

∀x((x �= p & x �= q1 & x �= q2 & . . . & x �= qm) → ∼Mbx).

And, we submit, (18) is a consequence of (16), (17), and �.

[Briefly put, the reason is this. Putting a for t and p for x in (17), we get

(Qi a & @ap & ∼Map) →
∃u(Sau & @up & Mup & Q j u &

∀y((y �= p & May) → Muy) & ∀y((y �= p & ∼May) → ∼Muy)).

Since (16) and � imply Qi a & @ap & ∼Map, we get

∃u(Sau & @up & Mup & Q j u &

∀y((y �= p & May) → Muy) & ∀y((y �= p & ∼May) → ∼Muy)).

By (10), Sau gives u = b, where b = a + 1, and we get

@bp & Mbp & Q j b &

∀y((y �= p & May) → Mby) & ∀y((y �= p & ∼May) → ∼Mby).

The first three conjuncts of this last are the same, except for order, as the first three

conjuncts of (18). The fourth conjunct, together with p �= qk from (9) and the conjunct

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

132 THE UNDECIDABILITY OF FIRST-ORDER LOGIC

Maqk of (16), gives the conjunct Mbqk of (18). Finally, the fifth conjunct together

with the last conjunct of (16) gives the last conjunct of (18). The reader will see

now what we meant when we said at the outset, ‘Some facility at recognizing simple

logical implications will be required.’]

Now the description of time 0 is one of the sentences in �. By the foregoing lemma,

if the machine does not stop at time 1, the description of time 1 will be a consequence

of �, and if the machine then does not stop at time 2, the description of time 2 will

be a consequence of � together with the description of time 1 (or, as we can more

simply say, since the description of time 1 is a consequence of �, the description of

time 2 will be a consequence of �), and so on until the last time a before the machine

halts, if it ever does. If it does halt at time a + 1, we have seen that the description

of time a, which we now know to be a consequence of �, implies D. Hence if the

machine ever halts, � implies D.

Hence we have established that if the decision problem for logical implication were

solvable, the halting problem would be solvable, which (assuming Turing’s thesis)

we know it is not. Hence we have established the following result, assuming Turing’s

thesis.

11.2 Theorem (Church’s theorem). The decision problem for logical implication is

unsolvable.

11.2 Logic and Primitive Recursive Functions

By the nullity problem for a two-place primitive recursive function f we mean the

problem of devising an effective procedure that, given any m, would in a finite amount

of time tell us whether or not there is an n such that f (m, n) = 0. We are going to show

how, given f , to write down a certain finite set of sentences � and a certain formula

D(x) in a language that contains the constants 0 and the successor symbol ′ from

the language of arithmetic, and therefore contains the numerals 0′, 0′′, 0′′′, . . . or

1, 2, 3, . . . as we usually write them. And then we are going to show that for any m,

� implies D(m) if and only if there is an n such that f (m, n) = 0. It follows that if the

decision problem for logical implication could be solved, and an effective method

devised to tell whether or not a given finite set of sentences � implies a sentence D,

then the nullity problem for any f could be solved. Since it is known that, assuming

Church’s thesis, there is an f for which the nullity problem is not solvable, it follows,

again assuming Church’s thesis, that the decision problem for logical implication is

unsolvable, or, as is said, that logic is undecidable. The proof of the fact just cited

about the unsolvability of the nullity problem requires the apparatus of Chapter 8,

but for the reader who is willing to take this fact on faith, this section otherwise

presupposes only the material of Chapters 6–7 and 9–10.

To begin the construction, the function f , being primitive recursive, is built up from

the basic functions (successor, zero, the identity functions) by the two processes of

composition and primitive recursion. We can therefore make a finite list of primitive

recursive functions f0, f1, f2, . . . , fr , such that for each i from 1 to r , fi is either the

zero function or the successor function or one of the identity functions, or is obtained

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

11.2. LOGIC AND PRIMITIVE RECURSIVE FUNCTIONS 133

from earlier functions in the list by composition or primitive recursion, with the last

function fr being the function f . We introduce a language with the symbol 0, the

successor symbol ′, and a function symbol fi of the appropriate number of places for

each of the functions fi . In the standard interpretation of the language, the domain

will be the natural numbers, 0 will denote zero, ′ will denote the successor function,

and each fi will denote fi , so that in particular fr will denote f .

The set of sentences � will consist of one or two sentence for each fi for i > 0. In

case fi is the zero function, the sentence will be

∀x fi (x) = 0.(1)

In case fi is the successor function, the sentence will be

∀x fi (x) = x ′.(2)

(In this case fi will be another symbol besides ′ for the successor function; but it does

not matter if we happen to have two symbols for the same function.) In case fi is the

identity function id n
k , the sentence will be

∀x1 · · · ∀xn fi (x1, . . . , xn) = xk .(3)

If case fi is obtained from fk and f j1
, . . . f jp

, where j1 , . . . , jp and k are all < i , by

composition, the sentence will be

∀x fi (x) = fk(f j1 (x), . . . f jp (x)).(4)

In case fi is obtained from f j and fk , where j and k are < i , by primitive recursion,

there will be two sentences, as follows.

∀x fi (x, 0) = f j (x).(5a)

∀x∀y fi (x, y′) = fk(x, y, fi (x, y)).(5b)

[In (4) and (5) we have written x and ∀x for x1 , . . . , xn and ∀x1 · · · ∀xn .] Clearly all

these sentences are true in the intended interpretation. The formula D(x) will simply

be ∃y fr (x , y) = 0. For given m, the sentence D(m) will be true in the standard

interpretation if and only if there is an n with f (m, n) = 0.

We want to show that for any m, D(m) will be implied by � if and only if there is

an n with f (m, n) = 0. The ‘only if’ part is easy. All sentences in � are true in the

standard interpretation, whereas D(m) is true only if there is an n with f (m, n) = 0.

If there is no such n, we have an interpretation where also sentences in � are true and

D(m) isn’t, so � does not imply D(m).

For the ‘if’ part we need one more notion. Call � adequate for the function fi if

whenever fi (a) = b, then fi (a) = b is implied by �. (We have written a for a1 , . . . , an

and a for a1 , . . . , an.) The presence of (1)–(3) in � guarantees that it is adequate for

any fi that is a basic function (zero, successor, or an identity function). What about

more complicated functions?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

134 THE UNDECIDABILITY OF FIRST-ORDER LOGIC

11.3 Lemma

(a) If fi is obtained by composition from functions fk and f j1, . . . f jp for which � is

adequate, then � is adequate also for fi .

(b) If fi is obtained by primitive recursion from functions f j and fk for which � is

adequate, then � is adequate also for fi .

Proof: We leave (a) to the reader and do (b). Given a, b, and c with fi (a, b) = c, for

each p ≤ b let cp = fi (a, p), so that cb = c. Note that since fi is obtained by primitive

recursion from f j and fk , we have

c0 = fi (a, 0) = f j (a)

and for all p < b we have

cp′ = fi (a, p′) = fk(a, p, fi (a, p)) = fk(a, p, cp).

Since � is adequate for f j and fk ,

f j (a, 0) = c0(6a)

fk(a, p, cp) = cp′(6b)

are consequences of �. But (6a) and (5a) imply

fi (a, 0) = c0(7a)

while (6b) and (5b) imply

fi(a, p) = cp → fi (a, p′) = cp′ .(7b)

But (7a) and (7b) for p = 0 imply fi (a, 1) = c1, which with (7b) for p = 1 im-

plies fi (a, 2) = c2, which with (7b) for p = 2 implies fi (a, 3) = c3, and so on up

to fi (a, b) = cb = c, which is what needed to be proved to show � adequate for fi.

Since every fi is either a basic function or obtained from earlier functions on our

list by the processes covered by Lemma 11.3, the lemma implies that � is adequate

for all the functions on our list, including fr = f . In particular, if f (m, n) = 0, then

fr (m, n) = 0 is implied by �, and hence so is ∀y fr (m, y) = 0, which is D(m).

Thus we have reduced the problem of determining whether for some n we have

f (m, n) = 0 to the problem of determining whether � implies D(m). That is, we

have established that if the decision problem for logical implication were solvable,

the nullity problem for f would be solvable, which it is known, as we have said, that

it is not, assuming Church’s thesis. Hence we have established the following result,

assuming Church’s thesis.

11.4 Theorem (Church’s theorem). The decision problem for logical implication is

unsolvable.

Problems

11.1 The decision problem for validity is the problem of devising an effective pro-

cedure that, applied to any sentence, would in a finite amount of time enable

one to determine whether or not it is valid. Show that the unsolvability of

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

PROBLEMS 135

the decision problem for implication (Theorem 11.2, or equivalently Theorem

11.4) implies the unsolvability of the decision problem for validity.

11.2 The decision problem for satisfiability is the problem of devising an effective

procedure that, applied to any finite set of sentences, would in a finite amount

of time enable one to determine whether or not it is satisfiable. Show that

the unsolvability of the decision problem for implication (Theorem 11.2, or

equivalently Theorem 11.4) implies the unsolvability of the decision problem

for satisfiability.

The next several problems pertain specifically to section 11.1.

11.3 Show that

∀w∀v(T wv ↔ ∃y(Rwy & Syv))

and

∀u∀v∀y((Suv & Syv) → u = y)

together imply

∀u∀v∀w((T wv & Suv) → Rwu).

11.4 Show that

∀x(∼Ax → ∼∃t(Bt & Rtx))

and

∼∃x(Cx & Ax)

together imply

∼∃t∃x(Bt & Cx & Rtx).

11.5 The foregoing two problems state (in slightly simplified form in the case of

the second one) two facts about implication that were used in the proof of

Theorem 11.2. Where?

11.6 The operating interval for a Turing machine’s computation beginning with

input n consists of the numbers 0 through n together with the number of any

time at which the machine has not (yet) halted, and of any square the machine

visits during the course of its computations. Show that if the machine eventually

halts, then the operating interval is the set of numbers between some a ≤ 0

and some b ≥ 0, and that if the machine never halts, then the operating interval

consists either of all integers, or of all integers ≥a for some a ≤ 0.

11.7 A set of sentences � finitely implies a sentence D if D is true in every interpre-

tation with a finite domain in which every sentence in � is true. Trakhtenbrot’s
theorem states that the decision problem for finite logical implication is un-

solvable. Prove this theorem, assuming Turing’s thesis.

The remaining problems pertain specifically to section 11.2.

11.8 Add to the theory � in the proof of Theorem 11.4 the sentence

∀x 0 �= x ′ & ∀x∀y(x ′ = y′ → x = y).

Show that m �= n is then implied by � for all natural numbers m �= n, where

m is the usual numeral for m.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-11 CB421-Boolos July 27, 2007 16:44 Char Count= 0

136 THE UNDECIDABILITY OF FIRST-ORDER LOGIC

11.9 Add to the language of the theory � of the proof of Theorem 11.4 the symbol

<, and add to � itself the sentence indicated in the preceding problem as well

as the sentence

∀x ∼ 0 < x & ∀x∀y(y < x ′ ↔ (y < x ∨ y = x)).

Show that m < n is implied by � whenever m < n and ∼m < n is implied by

� whenever m ≥ n, and that

∀y (y < n → y = 0 ∨ y = 1 ∨ . . . ∨ y = m)

is implied by � whenever n = m′.
11.10 Let f be a recursive total function, and f1 , . . . , fr a sequence of functions

with last item fn = f , such that each is either a basic function or is obtain-

able by earlier functions in the sequence by composition, primitive recursion,

or minimization, and all functions in the sequence are total. (According to

Problem 8.13, such a sequence exists for any recursive total function f.) Con-

struct � and D as in the proof of Theorem 11.6, with the following modifi-

cations. Include the symbol < in the language, and the sentences indicated in

the preceding two problems, and besides this, whenever fi is obtained from

f j by minimization, include the sentence

∀x∀y((f j (x, y) = 0 & ∀z(z < y → f j (x, z) �= 0)) → fi (x) = y).

Show that the modified � is adequate for fr = f .

11.11 (Requires the material of Chapter 8.) Show that there is a two-place primitive

recursive function f such that the nullity problem for f is recursively unsolv-

able, or in other words, such that the set of x such that ∃y(f (x , y) = 0) is not

recursive.

A distinction between unavoidable and lazy appeals to Church’s thesis was
made at the end of section 7.2; though phrased there for recursive computabil-
ity, it applies also to Turing computability.

11.12 Distinguish the unavoidable from the lazy appeals to Turing’s thesis in section

11.1.

11.13 Distinguish the unavoidable from the lazy appeals to Church’s thesis in section

11.2.

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

12

Models

A model of a set of sentences is any interpretation in which all sentences in the set are
true. Section 12.1 discusses the sizes of the models a set of sentences may have (where
by the size of a model is meant the size of its domain) and the number of models of a
given size a set of sentences may have, introducing in the latter connection the impor-
tant notion of isomorphism. Section 12.2 is devoted to examples illustrating the theory,
with most pertaining to the important notion of an equivalence relation. Section 12.3
includes the statement of two major theorems about models, the Löwenheim–Skolem

(transfer) theorem and the (Tarski–Maltsev) compactness theorem, and begins to illus-
trate some of their implications. The proof of the compactness theorem will be postponed
until the next chapter. The Löwenheim–Skolem theorem is a corollary of compactness
(though it also admits of an independent proof, to be presented in a later chapter, along
with some remarks on implications of the theorem that have sometimes been thought
‘paradoxical’).

12.1 The Size and Number of Models

By a model of a sentence or set of sentences we mean an interpretation in which the

sentence, or every sentence in the set, comes out true. Thus � implies D if every

model of � is a model of D, D is valid if every interpretation is a model of D, and �

is unsatisfiable if no interpretation is a model of �.

By the size of a model we mean the size of its domain. Thus a model is called

finite, denumerable, or whatever, if its domain is finite, denumerable, or whatever.

A set of sentences is said to have arbitrarily large finite models if for every positive

integer m there is a positive integer n ≥ m such that the set has a model of size n.

Already in the empty language, with identity but no nonlogical symbols, where an

interpretation is just a domain, one can write down sentences that have models only

of some fixed finite size.

12.1 Example (A sentence with models only of a specified finite size). For each positive

integer n there is a sentence In involving identity but no nonlogical symbols such that In

will be true in an interpretation if and only if there are at least n distinct individuals in

the domain of the interpretation. Then Jn = ∼In+1 will be true if and only if there are

at most n individuals, and Kn = In & Jn will be true if and only if there are exactly n
individuals.

137

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

138 MODELS

There are actually several different sentences that could be used for In . A comparatively

short one is the following:

∀x1∀x2 · · · ∀xn−1∃xn(xn �= x1 & xn �= x2 & . . . & xn �= xn−1).

Thus, for instance, I3 may be written ∀x∀y∃z(z �= x & z �= y). For this to be true in an

interpretation M, it must be the case that for every p in the domain, if we added a con-

stant c denoting p, then ∀y∃z(z �= c & z �= y) would be true. For that to be true, it must

be the case that for every q in the domain, if we added a constant d denoting q, then

∃z(z �= c & z �= d) would be true. For that to be true, it must be the case that for some r
in the domain, if we added a constant e denoting r, then e �= c & e �= d would be true. For

that, e �= c and e �= d would both have to be true, and for that, e = c and e = d would both

have to be untrue. For that, the denotation r of e must be different from the denotations p
and q of c and d. So for every p and q in the domain, there is an r in the domain different

from both of them. Starting from any m1 in the domain, and applying this last conclusion

with p = q = m1, there must be an r, which we call m2, different from m1. Applying the

conclusion again with p = m1 and q = m2, there must be an r, which we call m3, dif-

ferent from m1 and m2. So there are at least three distinct individuals m1, m2, m3 in the

domain.

The set � of all sentences In has only infinite models, since the number of elements

in any model must be ≥ n for each finite n. On the other hand, any finite subset �0

of � has a finite model, and indeed a model of size n, where n is the largest number

for which In is in �. Can we find an example of a finite set of sentences that has

only infinite models? If so, then we can in fact find a single sentence that has only

infinite models, namely, the conjunction of all the sentences in the finite set. In fact,

examples of single sentences that have only infinite models are known.

12.2 Example (A sentence with only infinite models). Let R be a two-place predicate.

Then the following sentence A has a denumerable model but no finite models:

∀x∃y Rxy & ∀x∀y ∼ (Rxy & Ryx) & ∀x∀y∀z((Rxy & Ryz) → Rxz).

A has a denumerable model in which the domain is the natural numbers and the interpretation

of the predicate is the usual strict less-than order relation on natural numbers. For every

number there is one it is less than; no two numbers are less than each other; and if one

number is less than a second and the second less than a third, then the first is less than the

third. So all three conjuncts of A are true in this interpretation.

Now suppose there were a finite model M of A. List the elements of |M| as m0,

m1, . . . , mk−1, where k is the number of elements in |M|. Let n0 = m0. By the first conjunct

of A (that is, by the fact that this conjunct is true in the interpretation) there must be some

n in |M| such that RM(n0, n). Let n1 be the first element on the list for which this is

the case. So we have RM(n0, n1). But by the second conjunct of A we do not have both

RM(n0, n1) and RM(n1, n0), and so we do not have RM(n1, n0). It follows that n1 �= n0.

By the first conjunct of A again there must be some n in |M| such that RM(n1, n). Let n2

be the first element on the list for which this is the case, so we have RM(n1, n2). By the

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

12.1. THE SIZE AND NUMBER OF MODELS 139

third conjunct of A either RM(n0, n1) fails or RM(n1, n2) fails or RM(n0, n2) holds, and

since we do not have either of the first two disjuncts, we must have RM(n0, n2). But by the

second conjunct of A, RM(n0, n2) and RM(n2, n0) don’t both hold, nor do both RM(n1, n2)

and RM(n2, n1), so we have neither RM(n2, n0) nor RM(n2, n1). It follows that n2 �= n0

and n2 �= n1. Continuing in this way, we obtain n3 different from all of n0, n1, n2, then n4

different from all of n0, n1, n2, n3, and so on. But by the time we get to nk we will have

exceeded the number of elements of |M|. This shows that our supposition that |M| is finite

leads to a contradiction. Thus A has a denumerable but no finite models.

When we ask how many different models a sentence or set of sentences may have

of a given size, the answer is disappointing: there are always an unlimited number

(a nonenumerable infinity) of models if there are any at all. To give a completely trivial

example, consider the empty language, with identity but no nonlogical predicates,

for which an interpretation is just a nonempty set to serve as domain. And consider

the sentence ∃x∀y(y = x), which says there is just one thing in the domain. For any

object a you wish, the interpretation whose domain is {a}, the set whose only element

is a, is a model of this sentence. So for each real number, or each point on the line,

we get a model.

Of course, these models all ‘look alike’: each consists of just one thing, sitting

there doing nothing, so to speak. The notion of isomorphism, which we are about

to define, is a technically precise way of saying what is meant by ‘looking alike’ in

the case of nontrivial languages. Two interpretations P and Q of the same language

L are isomorphic if and only if there is a correspondence j between individuals p
in the domain |P| and individuals q in the domain |Q| subject to certain conditions.

(The definition of correspondence, or total, one-to-one, onto function, has been given

in the problems at the end of Chapter 1.) The further conditions are that for every

n-place predicate R and all p1, . . . , pn in |P| we have

RP (p1, . . . , pn) if and only if RQ(j(p1), . . . , j(pn))(I1)

and for every constant c we have

j(cP) = cQ.(I2)

If function symbols are present, it is further required that for every n-place function

symbol f and all p1, . . . , pn in |P| we have

j(f P (p1, . . . , pn)) = f Q(j(p1), . . . , j(pn)).(I3)

12.3 Example (Inverse order and mirror arithmetic). Consider the language with a single

two-place predicate <, the interpretation with domain the natural numbers {0, 1, 2, 3, . . .}
and with < denoting the usual strict less-than order relation, and by contrast the inter-

pretation with domain the nonpositive integers {0, −1, −2, −3, . . .} and with < denot-

ing the usual strict greater-than relation. The correspondence associating n with −n is an

isomorphism, since m is less than n if and only if −m is greater than −n, as required

by (I1).

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

140 MODELS

If we also let 0 denote zero, let ′ denote the predecessor function, which takes x to

x − 1, let + denote the addition function, and let · denote the function taking x and y
to the negative of their product, −xy, then we obtain an interpretation isomorphic to the

standard interpretation of the language of arithmetic. For the following equations show (I3)

to be fulfilled:

−x − 1 = −(x + 1)

(−x) + (−y) = −(x + y)

−(−x)(−y) = −xy.

Generalizing our completely trivial example, in the case of the empty language,

where an interpretation is just a domain, two interpretations are isomorphic if and

only if there is a correspondence between their domains (that is, if and only if they

are equinumerous, as defined in the problems at the end of Chapter 1). The analogous

property for nonempty languages is stated in the next result.

12.4 Proposition. Let X and Y be sets, and suppose there is a correspondence j from

X to Y . Then if Y is any interpretation with domain Y , there is an interpretation X with

domain X such that X is isomorphic to Y . In particular, for any interpretation with a

finite domain having n elements, there is an isomorphic interpretation with domain the set

{0, 1, 2, . . . , n − 1}, while for any interpretation with a denumerable domain there is an

isomorphic interpretation with domain the set {0, 1, 2, . . .} of natural numbers.

Proof: For each relation symbol R, let RX be the relation that holds for p1, . . . , pn

in X if and only if RY holds for j(p1), . . . , j(pn). This makes (I1) hold automatically.

For each constant c, let cX be the unique p in X such that j(p) = cY . (There will be

such a p because j is onto, and it will be unique because j is one-to-one.) This makes

(I2) hold automatically. If function symbols are present, for each function symbol f ,

let f X be the function on X whose value for p1, . . . , pn in X is the unique p such

that j(p) = f Y (j(p1), . . . , j(pn)). This makes (I3) hold automatically.

The next result is a little more work. Together with the preceding, it implies what we

hinted earlier, that a sentence or set of sentences has an unlimited number of models if

it has any models at all: given one model, by the preceding proposition there will be an

unlimited number of interpretations isomorphic to it, one for each set equinumerous

with its domain. By the following result, these isomorphic interpretations will all be

models of the given sentence or set of sentences.

12.5 Proposition (Isomorphism lemma). If there is an isomorphism between two in-

terpretations P and Q of the same language L , then for every sentence A of L we have

P |= A if and only if Q |= A.(1)

Proof: We first consider the case where identity and function symbols are absent,

and proceed by induction on complexity. First, for an atomic sentence involving a

nonlogical predicate R and constants t1, . . . , tn , the atomic clause in the definition of

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

12.1. THE SIZE AND NUMBER OF MODELS 141

truth gives

P |= R(t1, . . . , tn) if and only if RP(
tP1 , . . . , tPn

)
Q |= R(t1, . . . , tn) if and only if RQ(

tQ1 , . . . , tQn
)

while the clause (I1) in the definition of isomorphism gives

RP(
tP1 , . . . , tPn

)
if and only if RQ(

j
(
tP1

)
, . . . , j

(
tPn

))
and the clause (I2) in the definition of isomorphism gives

RQ(
j
(
tP1

)
, . . . , j

(
tPn

))
if and only if RQ(

tQ1 , . . . , tQn
)
.

Together the four displayed equivalences give (1) for R(t1, . . . , tn).

Second, suppose (1) holds for less complex sentences than ∼F, including the

sentence F . Then (1) for ∼F is immediate from this assumption together with the

negation clause in the definition of truth, by which we have

P |= ∼F if and only if not P |= F
Q |= ∼F if and only if not Q |= F.

The case of junctions is similar.

Third, suppose (1) holds for less complex sentences than ∀x F(x), including sen-

tences of the form F(c). For any element p of |P|, if we extend the language by

adding a new constant c and extend the interpretation P so that c denotes p, then

there is one and only one way to extend the interpretation Q so that j remains an

isomorphism of the extended interpretations; namely, we extend the interpretation Q
so that c denotes j(p), and therefore clause (I2) in the definition of isomorphism still

holds for the extended language. By our assumption that (1) holds for F(c) it follows

on the one hand that

P |= F[p] if and only if Q |= F[j(p)].(2)

By the universal quantifier clause in the definition of truth

P |= ∀x F(x) if and only if P |= F[p] for all p in |P|.
Hence

P |= ∀x F(x) if and only if Q |= F[j(p)] for all p in |P|.
On the other hand, again by the universal quantifier clause in the definition of truth

we have

Q |= ∀x F(x) if and only if Q |= F[q] for all q in |Q|.
But since j is a correspondence, and therefore is onto, every q in |Q| is of the form

j(p), and (1) follows for ∀x F(x). The existential-quantifier case is similar.

If identity is present, we have to prove (1) also for atomic sentences involving =.

That is, we have to prove

p1 = p2 if and only if j(p1) = j(p2).

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

142 MODELS

But this is simply the condition that j is one-to-one, which is part of the definition of

being a correspondence, which in turn is part of the definition of being an isomorphism.

If function symbols are present, we must first prove as a preliminary that for any

closed term t we have

j(tP) = tQ.(3)

This is proved by induction on complexity of terms. For constants we have (3) by

clause (I2) in the definition of isomorphism. And supposing (3) holds for t1, . . . , tn ,

then it holds for f (t1, . . . , tn) since by clause (I3) in the definition of isomorphism

we have

j((f (t1, . . . , tn))P) = j
(

f P
(
tP1 , . . . , tPn

))
= f Q

(
j
(
tP1

)
, . . . , j

(
tPn

)) = f Q
(
tQ1 , . . . , tQn

) = (f (t1, . . . , tn))Q.

The proof given above for the atomic case of (1) now goes through even when the

ti are complex closed terms rather than constants, and no further changes are required

in the proof.

12.6 Corollary (Canonical-domains lemma).

(a) Any set of sentences that has a finite model has a model whose domain is the set

{0, 1, 2, . . . , n} for some natural number n.

(b) Any set of sentences having a denumerable model has a model whose domain is

the set {0, 1, 2, . . .} of natural numbers.

Proof: Immediate from Propositions 12.4 and 12.5.

Two models that are isomorphic are said to be of the same isomorphism type. The

intelligent way to count the models of a given size that a sentence has is to count

not literally the number of models (which is always a nonenumerable infinity if it is

nonzero), but the number of isomorphism types of models. The import of the rather

abstract results of this section should become clearer as they are illustrated concretely

in the next section.

12.2 Equivalence Relations

Throughout this section we will work with a language whose only nonlogical symbol

is a single two-place predicate ≡. We will write x ≡ y for what officially ought to be

≡(x, y). Our interest will be in models—and especially in denumerable models—of

the following sentence Eq of the language:

∀xx ≡ x &

∀x∀y(x ≡ y → y ≡ x) &

∀x∀y∀z((x ≡ y & y ≡ z) → x ≡ z).

Such a modelX will consist of a nonempty set X and a two-place relation ≡X or E on

X . In order to make the three clauses of Eq true, E will have to have three properties.

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

12.2. EQUIVALENCE RELATIONS 143

Namely, for all a, b, c in X we must have the following:

(E1) Reflexivity: a E a.

(E2) Symmetry: If a E b then b E a.

(E3) Transitivity: If a E b and b E c then a E c.

A relation with these properties is called an equivalence relation on X.

One way to get an equivalence relation on X is to start with what is called a

partition of X . This is a set � of nonempty subsets of X such that the following hold:

(P1) Disjointness: If A and B are in �, then either A = B or A and B have no

elements in common.

(P2) Exhaustiveness: Every a in X belongs to some A in �.

The sets in � are called the pieces of the partition.

Given a partition, define a E b to hold if a and b are in the same piece of the

partition, that is, if, for some A in �, a and b are both in A. Now by (P2), a is in

some A in �. To say a and a are ‘both’ in A is simply to say a is in A twice, and

since it was true the first time, it will be true the second time also, showing that

a E a, and that (E1) holds. If a E b, then a and b are both in some A in �, and to say

that b and a are both in A is to say the same thing in a different order, and is equally

true, showing that b E a, and that (E2) holds. Finally, if a E b and b E c, then a and

b are both in some A in � and b and c are both in some B in �. But by (P1), since

A and B have the common element b, they are in fact the same, so a and c are both

in A = B, and a E c, showing that (E3) holds. So E is an equivalence relation, called

the equivalence relation induced by the partition.

Actually, this is in a sense the only way to get an equivalence relation: every

equivalence relation is induced by a partition. For suppose E is any such relation;

for any a in X let [a] be the equivalence class of a, the set of all b in X such that

a E b; and let � be the set of all these equivalence classes. We claim � is a partition.

Certainly any element a of X is in some A in �, namely, a is in [a], by (E1). So (P2)

holds. As for (P1), if [a] and [b] have a common element c, we have a E c and b E c,

and having b E c, by (E2) we have also c E b, and then, having a E c and c E b, by

(E3) we have also a E b, and by (E2) again we have also b E a. But then if d is any

element of [a], having a E d and b E a, by (E3) again we have b E d, and d is in [b]. In

exactly the same way, any element of [b] is in [a], and [a] = [b]. So � is a partition,

as claimed. We also claim the original E is just the equivalence relation induced by

this partition �. For along the way we have shown that if a E b then a and b belong

to the same piece [a] = [b] of the partition, while of course if b belongs to the same

piece [a] of the partition that a does, then we have a E b, so E is the equivalence

relation induced by this partition.

We can draw a picture of a denumerable model of Eq, by drawing dots to represent

elements of X with boxes around those that are in the same equivalence class. We

can also describe such a model by describing its signature, the infinite sequence of

numbers whose 0th entry is the number (which may be 0, 1, 2, . . . , or infinite) of

equivalence classes having infinitely many elements and whose nth entry for n > 0 is

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

144 MODELS

the number of equivalence classes with exactly n elements. The examples to follow

are illustrated by pictures for equivalence relations of a variety of different signatures

in Figure 12-1.

(a) Signature (1, 0, 0, 0, 0, …)

…

(b) Signature (0, ∞, 0, 0, 0, …)

…

(c) Signature (0, 0, ∞, 0, 0, …)

…

(d)(i) Signatures (1, 1, 0, 0, 0, …), (1, 2, 0, 0, 0, …), (1, 3, 0, 0, 0, …), and so on

…

…

…

(d)(ii) Signatures (0, ∞, 1, 0, 0, …), (0, ∞, 0, 1, 0, …), (0, ∞, 0, 0, 1, …) and so on

…

…

…

(d)(iii) Signature (1, ∞, 0, 0, 0, …)

…

…

(e) Signature (0, 0, 1, 0, 1, 0, 1, 0, …)

…

Figure 12-1. Equivalence relations.

12.7 Example (A promiscuous model). Let �a be the set containing Eq and the following

sentence Ea :

∀x∀y x ≡ y.

A denumerable model of �a consists of a denumerable set X with an equivalence relation

E in which all elements are in the same equivalence class, as in Figure 12-1(a). We claim

all such models are isomorphic. Indeed, if

X = {a1, a2, a3, . . .} and Y = {b1, b2, b3, . . .}
are any two denumerable sets, if X is the model with domain X and ≡X the relation that

holds among all pairs ai , a j of elements of X , and if Y is the model with domain Y and ≡Y

the relation that holds among all pairs bi , b j of elements of Y , then the function sending ai to

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

12.2. EQUIVALENCE RELATIONS 145

bi is an isomorphism between X and Y . Condition (I1) in the definition of isomorphism—

the only applicable condition—says that we must in all cases have ai ≡X a j if and only if

f (ai) ≡Y f (a j); and of course we do, since we always have both ai ≡X a j and bi ≡Yb j .

Thus �a has only one isomorphism type of denumerable model.

12.8 Example (An eremitic model). Let �b be the set containing Eq and the following

sentence Eb:

∀x∀y (x ≡ y ↔ x = y).

A denumerable model of �b consists of a denumerable set X with an equivalence relation

E in which each element is equivalent only to itself, so each equivalence class consists

of but a single element, as in Figure 12-1(b). Again any two such models are isomorphic.

With the notation as in the preceding example, this time we have ai ≡X a j if and only if

f (ai) ≡Y f (a j), because we only have ai ≡X a j when i = j , which is precisely when we

have bi ≡Y b j .

12.9 Example (Two isomorphism types). Let �ab be the set containing Eq and the dis-

junction Ea ∨ Eb. Any model of �ab must be either a model of �a or one of �b, and all

models of either are models of �ab. Now all denumerable models of �a are isomorphic to

each other, and all denumerable models of �b are isomorphic to each other. But a model of

�a cannot be isomorphic to a model of �b, by the isomorphism lemma, since Ea is true in

the former and false in the latter, and inversely for Eb. So �ab has exactly two isomorphism

types of denumerable model.

12.10 Example (An uxorious model). Let �c be the set containing Eq and the following

sentence Ec:

∀x∃y(x �= y & x ≡ y & ∀z(z ≡ x → (z = x ∨ z = y))).

A denumerable model of �c consists of a denumerable set X with an equivalence relation

E in which each element is equivalent to just one other element than itself, so each equiva-

lence class consists of exactly two elements, as in Figure 12-1(c). Again there is only one

isomorphism type of denumerable model. If we renumber the elements of X so that a2 is

the equivalent of a1, a4 of a3, and so on, and if we similarly renumber the elements of Y ,

again the function f (ai) = bi will be an isomorphism.

12.11 Example (Three isomorphism types). Let �abc be the set containing Eq and the

disjunction Ea ∨ Eb ∨ Ec. Then �abc has three isomorphism types of denumerable models.

The reader will see the pattern emerging: we can get an example with n isomorphism types

of denumerable models for any positive integer n.

12.12 Example (Denumerably many isomorphism types). Let �d be the set containing Eq
and the following sentence Ed :

∀x∀y((∃u(u �= x & u ≡ x) & ∃v(v �= y & v ≡ y)) → x ≡ y).

A denumerable model of �d will consist of a denumerable set X with an equivalence

relation in which any two elements a and b that are not isolated, that is, that are such that

each is equivalent to something other than itself, are equivalent to each other. Here there

are a number of possible pictures. It could be that all elements are equivalent, or that all

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

146 MODELS

elements are isolated, as in Figure 12-1(a) or (b). It could also be the case that there is

one isolated element with all the other elements being equivalent. Or there could be two

isolated elements with all the other elements being equivalent. Or three, and so on, as in

Figure 12-1(d)(i).

There are further possibilities. For, supposing there are infinitely many isolated ele-

ments, the remaining equivalence class, consisting of all nonisolated elements, may contain

two or three or . . . elements, as in Figure 12-1(d)(ii)—or it could contain zero, but that is

Figure 12-1(b) again. Finally there is the possibility (whose picture takes two lines to draw)

of infinitely many isolated elements plus an infinite class of other elements, all equivalent

to each other, as in Figure 12-1(d)(iii).

Any two models corresponding to the same picture (or, what comes to the same thing,

the same signature) are isomorphic. If there are only n isolated elements, renumber so that

these are a1 through an . If there are only n nonisolated elements, renumber so that these

are a1 through an instead. And if there are infinitely many of each, renumber so that a1, a3,

a5, . . . are the isolated ones, and a2, a4, a6, . . . the nonisolated ones. Renumber the bi

similarly, and then, as always, the function f (ai) = bi can be checked to be an isomorphism.

No two models corresponding to different pictures are isomorphic, for if a is nonisolated,

a satisfies the formula

∃y(y �= x & y ≡ x).

So by the isomorphism lemma, if f is an isomorphism, f (a) must also satisfy this formula,

and so must be nonisolated. And for the same reason, applied to the negation of this

formula, if a is isolated, f (a) must be isolated. So an isomorphism must carry nonisolated

to nonisolated and isolated to isolated elements, and the numbers of nonisolated and of

isolated elements must be the same in both models. Here, then, is an example where there

are denumerably many of isomorphism types of denumerable models.

12.13 Example (Nonenumerably many isomorphism types). The sentence Eq all by itself

has nonenumerably many isomorphism types of denumerable models. For any infinite set

of positive integers S there is a model in which there is exactly one equivalence class with

exactly n elements for each n in S, and no equivalence class with exactly n elements for any n
not in S. For instance, if S is the set of even numbers, the model will look like Figure 12-1(e).

We leave it to the reader to show how the isomorphism lemma can be used to show that no

two models corresponding to different sets S are isomorphic. Since there are nonenumerably

many such sets, there are nonenumerably many isomorphism types of models.

12.3 The Löwenheim–Skolem and Compactness Theorems

We have seen that there are sentences that have only infinite models. One might

wonder whether there are sentences that have only nonenumerable models. We have

also seen that there are enumerable sets of sentences that have only infinite models,

though every finite subset has a finite model. One might wonder whether there are

sets of sentences that have no models at all, though every finite subset has a model.

The answer to both these questions is negative, according to the following pair of

theorems. They are basic results in the theory of models, with many implications

about the existence, size, and number of models.

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

12.3. THE L ÖWENHEIM–SKOLEM AND COMPACTNESS THEOREMS 147

12.14 Theorem (Löwenheim–Skolem theorem). If a set of sentences has a model, then

it has an enumerable model.

12.15 Theorem (Compactness theorem). If every finite subset of a set of sentences has

a model, then the whole set has a model.

We explore a few of the implications of these theorems in the problems at the end

this chapter. We stop here just to note three immediate implications.

12.16 Corollary (Overspill principle). If a set of sentences has arbitrarily large finite

models, then it has a denumerable model.

Proof: Let � be a set of sentences having arbitrarily large finite models, and for

each m let Im be the sentence with identity but no nonlogical symbols considered in

Example 12.1, which is true in a model if and only if the model has size ≥ m. Let

�* = � ∪ {I1, I2, I3, . . . }
be the result of adding all the Im to �. Any finite subset of �* is a subset of � ∪
{I1, I2, . . . , Im} for some m, and since � has a model of size ≥ m, such a set has

a model. By the compactness theorem, therefore, �* has a model. Such a model is

of course a model of �, and being also a model of each Im , it has size ≥ m for all

finite m, and so is infinite. By the Löwenheim–Skolem theorem, we could take it to

be enumerable.

A set � of sentences is (implicationally) complete if for every sentence A in its

language, either A or ∼A is a consequence of �, and denumerably categorical if any

two denumerable models of � are isomorphic.

12.17 Corollary (Vaught’s test). If � is a denumerably categorical set of sentences

having no finite models, then � is complete.

Proof: Suppose � is not complete, and let A be some sentence in its language such

that neither A nor∼A is a consequence of�. Then both� ∪ {∼A} and� ∪ {A} are satis-

fiable, and by the Löwenheim–Skolem theorem they have enumerable modelsP− and

P+. Since � has no finite models, P− and P+ must be denumerable. Since � is denu-

merably categorical, they must be isomorphic. But by the isomorphism lemma, since

A is untrue in one and true in the other, they cannot be isomorphic. So the assumption

that � is not complete leads to a contradiction, and � must be complete after all.

Thus if � is any of the examples of the preceding section in which we found there

was only one isomorphism type of denumerable model, then adding the sentences

I1, I2, I3, . . . to � (in order to eliminate the possibility of finite models) produces an

example that is complete.

The Löwenheim–Skolem theorem also permits a sharpening of the statement of

the canonical-domains lemma (Lemma 12.6).

12.18 Corollary (Canonical-domains theorem).

(a) Any set of sentences that has a model, has a model whose domain is either the set

of natural numbers <n for some positive n, or else the set of all natural numbers.

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

148 MODELS

(b) Any set of sentences not involving function symbols or identity that has a model,

has a model whose domain is the set of all natural numbers.

Proof: (a) is immediate from the Löwenheim–Skolem theorem and Corollary 12.6.

For (b), given a set of sentences � not involving function symbols or identity, if

� has a model, apply part (a) to get, at worst, a model Y with domain the finite set

{0, 1, . . . , n − 1} for some n. Let f be the function from the set of all natural numbers

to this finite set given by f (m) = min(m, n − 1). Define an interpretation X with

domain the set of all natural numbers by assigning to each k-place relation symbol

R as denotation the relation RX that holds for p1, . . . , pk if and only if RY holds for

f (p1), . . . , f (pk). Then f has all the properties of an isomorphism except for not

being one-to-one. Examining the proof of the isomorphism lemma (Proposition 12.5),

which tells us the same sentences are true in isomorphic interpretations, we see that

the property of being one-to-one was used only in connection with sentences involving

identity. Since the sentences in � do not involve identity, they will be true inX because

they are true in Y .

The remainder of this section is devoted to an advance description of what will be

done in the following two chapters, which contain proofs of the Löwenheim–Skolem

and compactness theorems and a related result. Our preview is intended to enable

the readers who are familiar with the contents of an introductory textbook to decide

how much of this material they need or want to read. The next chapter, Chapter 13,

is devoted to a proof of the compactness theorem. Actually, the proof shows that if

every finite subset of a set � has a model, then � has an enumerable model. This

version of the compactness theorem implies the Löwenheim–Skolem theorem, since

if a set has a model, so does every subset, and in particular every finite subset. An

optional final section 13.5 considers what happens if we admit nonenumerable lan-

guages. (It turns out that the compactness theorem still holds, but the ‘downward’

Löwenheim–Skolem theorem fails, and one gets instead an ‘upward’ theorem to the

effect that any set of sentences having an infinite model has a nonenumerable model.)

Every introductory textbook introduces some notion of a deduction of a sentence

D from a finite set of sentences �. The sentence D is defined to be deducible from

a finite set � if and only if there is a deduction of the sentence from the set. A

deduction from a subset of a set always counts as a deduction from that set itself,

and a sentence D is defined to be deducible from an infinite set � if and only if it

is deducible from some finite subset. A sentence D is defined to be demonstrable
if it is deducible from the empty set of sentences ∅, and a set of sentences � is

defined to be inconsistent if the constant false sentence ⊥ is deducible from it. The

better introductory textbooks include proofs of the soundness theorem, according

to which if D is deducible from �, then D is a consequence of � (from which it

follows that if D is demonstrable, then D is valid, and that if � is inconsistent,

then � is unsatisfiable), and of the Gödel completeness theorem, according to which,

conversely, if D is a consequence of �, then D is deducible from � (from which it

follows that if D is valid, then D is demonstrable, and that if � is unsatisfiable, then �

is inconsistent). Since by definition a set is consistent if and only if every finite subset

is, it follows that a set is satisfiable if and only if every finite subset is: the compactness

theorem follows from the soundness and completeness theorems. Actually, the proof

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

PROBLEMS 149

of completeness shows that if � is consistent, then � has an enumerable model,

so the form of the compactness theorem implying the Löwenheim–Skolem theorem

follows.

In Chapter 14 we introduce a notion of deduction of the kind used in advanced,

rather than introductory, works on logic, and prove soundness and completeness for

it. However, rather than derive the compactness theorem (and thence the Löwenheim–

Skolem theorem) from soundness and completeness, we obtain completeness in

Chapter 14 from the main lemma used to obtain compactness in Chapter 13. Thus our

proof of the compactness theorem (and similarly the Löwenheim–Skolem theorem)

does not mention the notion of deduction any more than does the statement of the theo-

rem itself. For the reader who is familiar with a proof of the soundness and complete-

ness theorems, however, Chapter 14 is optional and Chapter 13 (containing the main

lemma) with it, since the compactness theorem (and thence the Löwenheim–Skolem

theorem) does follow. It does not matter if the notion of deduction with which such

a reader is familiar is different from ours, since no reference to the details of any
particular deduction procedure is made outside Chapter 14 (except in one optional

section at the end of the chapter after that, Chapter 15). All that matters for our later

work is that there is some procedure or other of deduction that is sound and complete,

and—for purposes of later application of our work on computability to logic—is

such that one can effectively decide whether or not a given finite object is or is not a

deduction of a given sentence D from a given finite set of sentences �. And this last

feature is shared by all deduction procedures in all works on logic, introductory or

advanced, ours included.

Problems

12.1 By the spectrum of a sentence C (or set of sentences �) is meant the set of all

positive integers n such that C (or �) has a finite model with a domain having

exactly n elements. Consider a language with just two nonlogical symbols,

a one-place predicate P and a one-place function symbol f . Let A be the

following sentence:

∀x1∀x2(f (x1) = f (x2) → x1 = x2) &

∀y∃x(f (x) = y) &

∀x∀y(f (x) = y → (Px ↔ ∼Py)).

Show that the spectrum of A is the set of all even positive integers.

12.2 Give an example of a sentence whose spectrum is the set of all odd positive

integers.

12.3 Give an example of a sentence whose spectrum is the set of all positive integers

that are perfect squares.

12.4 Give an example of a sentence whose spectrum is the set of all positive integers

divisible by three.

12.5 Consider a language with just one nonlogical symbol, a two-place predicate

Q. Let U be the interpretation in which the domain consists of the four sides

of a square, and the denotation of Q is the relation between sides of being

parallel. Let V be the interpretation in which the domain consists of the four

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

150 MODELS

vertices of a square, and the denotation of Q is the relation between vertices

of being diagonally opposite. Show that U and V are isomorphic.

12.6 Consider a language with just one nonlogical symbol, a two-place predicate<.

Let Q be the interpretation in which the domain is the set of real numbers

strictly greater than zero and strictly less than one and the denotation of <
is the usual order relation. Let R be the interpretation in which the domain is

the set of all real numbers and the denotation of < is the usual order relation.

Show that Q and R are isomorphic.

12.7 Let L be a language whose only nonlogical symbols are a two-place function

symbol § and a two-place predicate <. Let P be the interpretation of this

language in which the domain is the set of positive real numbers, the denotation

of § is the usual multiplication operation, and the denotation of < is the usual

order relation. LetQ be the interpretation of this language in which the domain

is the set of all real numbers, the denotation of § is the usual addition operation,

and the denotation of < is the usual order relation. Show that P and Q are

isomorphic.

12.8 Write A ∼= B to indicate that A is isomorphic to B. Show that for all interpre-

tations A, B, C of the same language the following hold:

(a) A ∼= A;

(b) if A ∼= B, then B ∼= A;

(c) if A ∼= B and B ∼= C, then A ∼= C.

12.9 By true arithmetic we mean the set � of all sentences of the language of arith-

metic that are true in the standard interpretation. By a nonstandard model of
arithmetic we mean a model of this � that (unlike the model in Example 12.3)

is not isomorphic to the standard interpretation. Let � be the set of sentences

obtained by adding a constant c to the language and adding the sentences

c �= 0, c �= 1, c �= 2, and so on, to �. Show that any model of � would give us

a nonstandard model of arithmetic.

12.10 Consider the language with just the one nonlogical symbol ≡ and the sentence

Eq whose models are precisely the sets with equivalence relations, as in the

examples in section 12.2.

(a) For each n, indicate how to write down a sentence Bn such that the

models of Eq & Bn will be sets with equivalence relations having at least
n equivalence classes.

(b) For each n, indicate how to write down a formula Fn(x) such that in a

model of Eq, an element a of the domain will satisfy Fn(x) if and only if

there are at least n elements in the equivalence class of a.

(c) For each n, indicate how to write down a sentence Cn that is true in a

model of Eq if and only if there are exactly n equivalence classes.

(d) For each n, indicate how to write down a formula Gn(x) that is satisfied

by an element of the domain if and only if its equivalence class has

exactly n elements.

12.11 For each m and n indicate how to write down a sentence Dmn that is true in a

model of Eq if and only if there are at least m equivalence classes with exactly

n elements.

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

PROBLEMS 151

12.12 Show that if two models of Eq are isomorphic, then the equivalence relations

of the models have the same signature.

12.13 Suppose E1 and E2 are equivalence relations on denumerable sets X1 and

X2 both having the signature σ (n) = 0 for n ≥ 1 and σ (0) = ∞, that is, both

having infinitely many equivalence classes, all infinite. Show that the models

involved are isomorphic.

12.14 Show that two denumerable models of Eq are isomorphic if and only if they

have the same signature.

In the remaining problems you may, when relevant, use the Löwenheim–Skolem
and compactness theorems, even though the proofs have been deferred to the
next chapter.

12.15 Show that:

(a) � is unsatisfiable if and only if ∼C1 ∨ · · · ∨ ∼Cm is valid for some

C1, . . . , Cm in �.

(b) D is a consequence of � if and only if D is a consequence of some finite

subset of �.

(c) D is a consequence of � if and only if ∼C1 ∨ · · · ∨ ∼Cm ∨ D is valid

for some C1, . . . , Cm in �.

12.16 For any prime p = 2, 3, 5, . . . , let Dp(x) be the formula ∃y p · y = x of the

language of arithmetic, so that for any natural number n, Dp(n) is true if

and only if p divides n without remainder. Let S be any set of primes. Say

that a nonstandard model M of arithmetic encrypts S if there is an indi-

vidual m in the domain |M| such that M |= Dp[m] for all p belonging

to S, and M |= ∼Dp[m] for all p not belonging to S. Show that for any

set S of primes there is a denumerable nonstandard model of arithmetic that

encrypts S.

12.17 Show that there are nonenumerably many isomorphism types of denumerable

nonstandard models of arithmetic.

12.18 Show that if two sentences have the same enumerable models, then they are

logically equivalent.

12.19 Work with a language whose only nonlogical symbol is a single two-place

predicate <. Consider the set of sentences of this language that are true in the

interpretation where the domain is the set of real numbers and the denotation of

the predicate is the usual order on real numbers. According to the Löwenheim–

Skolem theorem, there must be an enumerable model of this set of sentences.

Can you guess what one is?

The next several problems provide a significant example of a denumerably
categorical set of sentences.

12.20 Work with a language whose only nonlogical symbol is a single two-place

predicate <. The models of the following sentence LO of the language are

called linear orders:

∀x ∼ x < x &

∀x∀y∀z((x < y & y < z) → x < z) &

∀x∀y(x < y ∨ x = y ∨ y < x).

P1: GEM

CY504-12 CB421-Boolos July 27, 2007 16:45 Char Count= 0

152 MODELS

Such a model A will consist of a nonempty set |A| or A and a two-place

relation <A or <A on it. Show that the above sentence implies

∀x∀y ∼ (x < y & y < x).

12.21 Continuing the preceding problem, a finite partial isomorphism between linear

orders (A, <A) and (B, <B) is a function j from a finite subset of A onto a

finite subset of B such that for all a1 and a2 in the domain of j , a1 <A a2 if

and only if j(a1) <A j(a1). Show that if j is a finite partial isomorphism from

a linear order (A, <A) to the rational numbers with their usual order, and a is

any element of A not in the domain of j , then j can be extended to a finite

partial isomorphism whose domain is the domain of j together with a. (Here

extended means that the new isomorphism assigns the same rational numbers

as the old to elements of A there were already in the domain of the old.)

12.22 Continuing the preceding problem, if j0, j1, j2, . . . are finite partial isomor-

phisms from an enumerable linear order to the rational numbers with their

usual order, and if each ji+1 is an extension of the preceding ji , and if every

element of A is in the domain of one of the ji (and hence of all jk for k ≥ i),
then (A, <A) is isomorphic to some suborder of the rational numbers with their

usual order. (Here suborder means a linear order (B, <B) where B is some

subset of the rational numbers, and <B the usual order on rational numbers as

it applies to elements of this subset.)

12.23 Continuing the preceding problem, show that every enumerable linear order

(A, <A) is isomorphic to a suborder of the rational numbers with their usual

order.

12.24 Continuing the preceding problem, a linear order is said to be dense if it is a

model of

∀x∀y(x < y → ∃z(x < z & z < y)).

It is said to have no endpoints if it is a model of

∼∃x∀y(x < y ∨ x = y) & ∼∃x∀y(x = y ∨ y < x).

Which of the following is dense: the natural numbers, the integers, the rational

numbers, the real numbers, in each case with their usual order? Which have

no endpoints?

12.25 Continuing the preceding problem, show that the set of sentences whose mod-

els are the dense linear orders without endpoints is denumerably categorical.

12.26 A linear order is said to have endpoints if it is a model of

∃x∀y(x < y ∨ x = y) & ∃x∀y(x = y ∨ y < x).

Show that the set of sentences whose models are the dense linear orders with

endpoints is denumerably categorical.

12.27 How many isomorphism types of denumerable dense linear orders are there?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

13

The Existence of Models

This chapter is entirely devoted to the proof of the compactness theorem. Section 13.1
outlines the proof, which reduces to establishing two main lemmas. These are then taken
up in sections 13.2 through 13.4 to complete the proof, from which the Löwenheim–
Skolem theorem also emerges as a corollary. The optional section 13.5 discusses what
happens if nonenumerable languages are admitted: compactness still holds, but the
Löwenheim–Skolem theorem in its usual ‘downward’ form fails, while an alternative
‘upward’ theorem holds.

13.1 Outline of the Proof

Our goal is to prove the compactness theorem, which has already been stated in the

preceding chapter (in section 12.3). For convenience, we work with a version of first-

order logic in which the only logical operators are ∼, ∨, and ∃, that is, in which &

and ∀ are treated as unofficial abbreviations. The hypothesis of the theorem, it will

be recalled, is that every finite subset of a given set of sentences is satisfiable, and

the conclusion we want to prove is that the set itself is satisfiable, or, as we more

elaborately put it, belongs to the set S of all satisfiable sets of sentences. As a first

step towards the proof, we set down some properties enjoyed by this target set S.

The reason for not including & and ∀ officially in the language is simply that in this

and subsequent lemmas we would need four more clauses, two for & and two for ∀.

These would not be difficult to prove, but they would be tedious.

13.1 Lemma (Satisfaction properties lemma). Let S be the set of all sets � of sentences

of a given language such that � is satisfiable. Then S has the following properties:

(S0) If � is in S and �0 is a subset of �, then �0 is in S.

(S1) If � is in S, then for no sentence A are both A and ∼A in �.

(S2) If � is in S and ∼∼B is in �, then � ∪ {B} is in S.

(S3) If � is in S and (B ∨ C) is in �, then either � ∪ {B} is in S or � ∪ {C} is in S.

(S4) If � is in S and ∼(B ∨ C) is in �, then � ∪ {∼B} is in S and � ∪ {∼C} is in S.

(S5) If � is in S and {∃x B(x)} is in �, and the constant c does not occur in � or

∃xB(x), then � ∪ {B(c)} is in S.

(S6) If � is in S and ∼∃x B(x) is in �, then for every closed term t , � ∪ {∼B(t)} is in S.

153

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

154 THE EXISTENCE OF MODELS

(S7) If � is in S, then � ∪ {t = t} is in S for any closed term t of the language of �.

(S8) If � is in S and B(s) and s = t are in �, then � ∪ {B(t)} is in S.

Proof: These have been established in Chapter 10. (S0) and (S1) were men-

tioned just before Example 10.4. (S2) appeared as Example 10.4(g), where it was

derived from Example10.3(a). (S4), (S6), and (S8) can be derived in exactly the

same way from Example 10.3(c), 10.3(e), and 10.3(f), as remarked after the proof of

Example 10.4. (S3), (S5), and (S7) were established in Example 10.5.

We call (S0)–(S8) the satisfaction properties. Of course, at the outset we do not

know that the set we are interested in belongs to S. Rather, what we are given is that

it belongs to the set S* of all sets of sentences whose every finite subset belongs to S.

(Of course, once we succeed in proving the compactness theorem, S and S* will turn

out to be the same set.) It will be useful to note that S* shares the above properties of S.

13.2 Lemma (Finite character lemma). If S is a set of sets of sentences having the

satisfaction properties, then the set S* of all sets of formulas whose every finite subset is in

S also has properties (S0)–(S8).

Proof: To prove (S0) for S*, note that if every finite subset of � is in S, and �0 is

subset of �, then every finite subset of �0 is in S, since any finite subset of �0 is a

finite subset of �. To prove (S1) for S*, note that if every finite subset of � is in S,

then � cannot contain both A and ∼A, else {A, ∼A} would be a finite subset of �,

though {A, ∼A} is not in S by property (S1) of S. To prove (S2) for S*, note that if

every finite subset of � ∪ {∼∼B} is in S, then any finite subset of � ∪ {B} is either

a finite subset of � and hence of � ∪ {∼∼B} and therefore is in S, or else is of form

�0 ∪ {B} where �0 is a finite subset of �. In the latter case, �0 ∪ {∼∼B} is a finite

subset of � ∪ {∼∼B} and therefore in S, so � ∪ {B} is in S by property (S2) of S.

Thus the finite subset �0 ∪ {B} is in S*. (S4)–(S8) for S* follow from (S4)–(S8) for

S exactly as in the case of (S2). It remains only to prove (S3) for S*.

So suppose every finite subset of � ∪ {(B ∨ C)} is in S, but that it is not the case

that every finite subset of � ∪ {B} is in S, or in other words that there is some finite

subset of � ∪ {B} that is not in S. This cannot just be a subset of �, since then it

would be a finite subset of � ∪ {(B ∨ C)} and would be in S. So it must be of the

form �0 ∪ {B} for some finite subset �0 of �. We now claim that every finite subset of

� ∪ {C} is in S. For any such set is either a finite subset of � and therefore in S, or is of

form �1 ∪ {C} for some finite subset �1 of �. In the latter case, �0 ∪ �1 ∪ {(B ∨ C)}
is a finite subset of � ∪ {(B ∨ C)} and so is in S. It follows that either �0 ∪ �1 ∪ {B}
or �0 ∪ �1 ∪ {C} is in S by property (S3) of S. But if �0 ∪ �1 ∪ {B} were in S, then

by property (S1) of S, �0 ∪ {B} would be in S, which it is not. So it must be that

�0 ∪ �1 ∪ {C} is in S and hence �1 ∪ {C} is in S by property (S0) of S.

By these preliminary manoeuvres, we have reduced proving the compactness the-

orem to proving the following lemma, which is a kind of converse to Lemma 13.1. In

stating it we suppose we have available an infinite set of constants not occurring in

the set of sentences we are interested in.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

13.1. OUTLINE OF THE PROOF 155

13.3 Lemma (Model existence lemma). Let L be a language, and L+ a language ob-

tained by adding infinitely many new constants to L . If S* is a set of sets of sentences of

L+ having the satisfaction properties, then every set of sentences of L in S* has a model in

which each element of the domain is the denotation of some closed term of L+.

Note that the condition that every element of the domain is the denotation of some

closed term guarantees that, since we are working in an enumerable language, the do-

main will be enumerable, which means that we get not only the compactness but also

the Löwenheim–Skolem theorem, as remarked in the preceding chapter (following

the statement of the two theorems in section 12.3).

So it ‘only’ remains to prove Lemma 13.3. The conclusion of Lemma 13.3 asserts

the existence of an interpretation in which every element of the domain is the deno-

tation of some closed term of the relevant language, and we begin by listing some

properties that the set of all sentences true in such an interpretation would have to

have.

13.4 Proposition (Closure properties lemma). Let L+ be a language and M an inter-

pretation thereof in which every element of the domain is the denotation of some closed

term. Then the set �* of sentences true in M has the following properties:

(C1) For no sentence A are both A and ∼A in �*.

(C2) If ∼∼B is in �*, then B is in �*.

(C3) If B ∨ C is in �*, then either B is in �* or C is in �*.

(C4) If ∼(B ∨ C) is in �*, then both ∼B and ∼C are in �*.

(C5) If ∃xB(x) is in �*, then for some closed term t of L+, B(t) is in �*.

(C6) If ∼∃x B(x) is in �*, then for every closed term t of L+, ∼B(t) is in �*.

(C7) For every closed term t of L+, t = t is in �*.

(C8) If B(s) and s = t are in �*, then B(t) is in �*.

Proof: For (C1), for no A are both A and ∼A true in the same interpretation. For

(C2), anything implied by anything true in a given interpretation is itself true in that

interpretation, and B is implied by ∼∼B. Similarly for (C4) and (C6)–(C8).

For (C3), any interpretation that makes a disjunct true must make at least one of

its disjuncts true.

For (C5), if ∃x B(x) is true in a given interpretation, then B(x) is satisfied by some

element m of the domain, and if that element m is the denotation of some closed term t ,
then B(t) is true.

We call the properties (C1)–(C8) the closure properties. Actually, it is not

Proposition 13.4 itself that will be useful to us here, but the following converse.

13.5 Lemma (Term models lemma). Let �* be a set of sentences with the closure

properties. Then there is an interpretation M in which every element of the domain is the

denotation of some closed term, such that every sentence in �* is true in M.

To prove Lemma 13.3, it would suffice to prove the foregoing lemma plus the

following one.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

156 THE EXISTENCE OF MODELS

13.6 Lemma (Closure lemma). Let L be a language, and L+ a language obtained by

adding infinitely many new constants to L . If S* is a set of sets of sentences of L+ having

the satisfaction properties, then every set � of sentences of L in S* can be extended to a set

�* of sentences of L+ having the closure properties.

Sections 13.2 and 13.3 will be devoted to the proof of the term models lemma,

Lemma 13.5. As in so many other proofs, we consider first, in section 13.2, the

case where identity and function symbols are absent, so that (C7) and (C8) may be

ignored, and the only closed terms are constants, and then, in section 13.3, consider the

additional complications that arise when identity is present, as well as those created by

the presence of function symbols. The proof of the closure lemma, Lemma 13.6, will

be given in section 13.4, with an alternative proof, avoiding any dependence on the

assumption that the language is enumerable, to be outlined in the optional section 13.5.

13.2 The First Stage of the Proof

In this section we are going to prove the term models lemma, Lemma 13.5, in the case

where identity and function symbols are absent. So let there be given a set �* with

the closure properties (C1)–(C6), as in the hypothesis of the lemma to be proved. We

want to show that, as in the conclusion of that lemma, there is an interpretation in

which every element of the domain is the denotation of some constant of the language

of �*, in which every sentence in �* will be true.

To specify an interpretation M in this case, we need to do a number of things. To

begin with, we must specify the domain |M|. Also, we must specify for each constant

c of the language which element cM of the domain is to serve as its denotation.

Moreover, we must do all this in such a way that every element of the domain is the

denotation of some constant. This much is easily accomplished: simply pick for each

constant c some object cM, picking a distinct object for each distinct constant, and

let the domain consist of these objects.

To complete the specification of the interpretation, we must specify for each pred-

icate R of the language what relation RM on elements of the domain is to serve as

its denotation. Moreover, we must do so in such a way that it will turn out that for

every sentence B in the language we have

if B is in �* then M |= B.(1)

What we do is to specify RM in such a way that (1) automatically becomes true for

atomic B. We define RM by the following condition:

RM(
cM1 , . . . , cMn

)
if and only if R(c1, . . . , cn) is in �*.

Now the definition of truth for atomic sentences reads as follows:

M |= R(c1, . . . , cn) if and only if RM(
cM1 , . . . , cMn

)
.

We therefore have the following:

M |= R(c1, . . . , cn) if and only if R(c1, . . . , cn) is in �*(2)

and this implies (1) for atomic B.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

13.3. THE SECOND STAGE OF THE PROOF 157

We also have (1) for negated atomic sentences. For if ∼R(c1, . . . , cn) is in �*, then

by property (C1) of �*, R(c1, . . . , cn) is not in �*, and therefore by (2), R(c1, . . . , cn)

is not true in M, and so ∼R(c1, . . . , cn) is true in M, as required.

To prove (1) for other formulas, we proceed by induction on complexity. There are

three cases, according as A is a negation, a disjunction, or an existential quantification.

However, we divide the negation case into subcases. Apart from the subcase of the

negation of an atomic sentence, which we have already handled, there are three of

these: the negation of a negation, the negation of a disjunction, and the negation of

an existential quantification. So there are five cases in all:

to prove (1) for ∼∼B assuming (1) for B
to prove (1) for B1 ∨ B2 assuming (1) for each Bi

to prove (1) for ∼(B1 ∨ B2) assuming (1) for each ∼Bi

to prove (1) for ∃x B(x) assuming (1) for each B(c)

to prove (1) for ∼∃x B(x) assuming (1) for each ∼B(c).

The five cases correspond to the five properties (C2)–(C6), which are just what is

needed to prove them.

If ∼∼B is in �*, then B is in �* by property (C2). Assuming that (1) holds for B,

it follows that B is true in M. But then ∼B is untrue, and ∼∼B is true as required.

If B1 ∨ B2 is in �*, then Bi is in �* for at least one of i = 1 or 2 by property (C3) of

�*. Assuming (1) holds for this Bi , it follows that Bi is true in M. But then B1 ∨ B2

is true as required. If ∼(B1 ∨ B2) is in �*, then each ∼Bi is in �* for i = 1 or 2 by

property (C4) of �*. Assuming (1) holds for the ∼Bi , it follows that each ∼Bi is

true in M. But then each Bi is untrue, so B1 ∨ B2 is untrue, so ∼(B1 ∨ B2) is true as

required.

In connection with existential quantification, note that since every individual in the

domain is the denotation of some constant, ∃ x B(x) will be true if and only if B(c) is

true for some constant c. If ∃ x B(x) is in �*, then B(c) is in �* for some constant c
by property (C5) of �*. Assuming (1) holds for this B(c), it follows that B(c) is true

in M. But then ∃x B(x) is true as required. If ∼∃ x B(x) is in �*, then ∼B(c) is in �*

for every constant c by property (C6) of �*. Assuming (1) holds for each ∼B(c), it

follows that ∼B(c) is true in M. But then B(c) is untrue for each c, and so ∃ x B(x) is

untrue, and ∼∃ x B(x) is true as required. We are done with the case without identity

or function symbols.

13.3 The Second Stage of the Proof

In this section we want to extend the result of the preceding section to the case where

identity is present, and then to the case where function symbols are also present.

Before describing the modifications of the construction of the preceding section

needed to accomplish this, we pause for a lemma.

13.7 Lemma. Let �* be a set of sentences with properties (C1)–(C8). For closed terms

t and s write t ≡ s to mean that the sentence t = s is in �*. Then the following hold:

(E1) t ≡ t .
(E2) If s ≡ t , then t ≡ s.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

158 THE EXISTENCE OF MODELS

(E3) If t ≡ s and s ≡ r , then t ≡ r .

(E4) If t1 ≡ s1, . . . , tn ≡ sn , then for any predicate R, R(t1, . . . , tn) is in �* if and only

if R(s1, . . . , sn) is in �*.

(E5) If t1 ≡ s1, . . . , tn ≡ sn , then for any function symbol f, f (t1, . . . , tn) = f (s1, . . . ,

sn) is in �*.

Proof: (E1) is simply a restatement of (C7). For (E2), let B(x) be the formula

x = s. We now know that the sentence B(s), which is to say the sentence s = s, is in

�*, so if s = t is in �*, it follows by (C8) that the sentence B(t), which is to say the

sentence t = s, is in �*. For (E3), let B(x) be the formula x = r . If t = s is in �*, then

we now know s = t is in �*, and if B(s), which is s = r , is in �*, it follows by (C8)

that B(t), which is t = r , is in �*. For (E4), if all ti = si are in �* and R(s1, . . . , sn) is

in �*, then repeated application of (C8) tells us that R(t1, s2, s3, . . . , sn) is in �*, that

R(t1, t2, s3, . . . , sn) is in �*, and so on, and finally that R(t1, . . . , tn) is in �*. This

gives the ‘only if’ direction of (E4). For the ‘if’ direction, if all ti = si are in �*, then

so are all si = ti , so if R(t1, . . . , tn) is in �*, then by the direction we have already

proved, R(s1, . . . , sn) is in �*. For (E5), the proof just given for (E4) applies not only

to atomic formulas R(x1, . . . , xn) but to arbitrary formulas F(x1, . . . , xn). Applying

this fact where F is the formula f (t1, . . . , tn) = f (x1, . . . , xn) gives (E5).

Note that (E1)–(E3) say that ≡ is an equivalence relation. If we write [t] for the

equivalence class of t , then (E4) and (E5) may be rewritten as follows:

(E4′) If [t1] = [s1] , . . . , [tn] = [sn], then for any predicate R, R(t1, . . . , tn) is in �* if

and only if R(s1, . . . , sn) is in �*

(E5′) If [t1] = [s1], . . . , [tn] = [sn], then for any function symbol f, [f (t1, . . . , tn)] =
[f (s1, . . . , sn)].

We now return to the proof of the term models lemma, taking up the case where

identity is present but function symbols are absent, so the only closed terms are con-

stants. To specify the domain for our interpretation, instead of picking a distinct object

for each distinct constant, we pick a distinct object C* for each distinct equivalence
class C of constants. We let the domain of the interpretation consist of these objects,

and for the denotations of constants we specify the following:

cM = [c]*.(3)

Since [c] = [d] if and only if c = d is in �*, we then have:

cM = dM if and only if c = d is in �*.

This is (the analogue of) (2) of the preceding section for atomic sentences involving

the logical predicate =, and gives us (1) of the preceding section for such sentences

and their negations.

What remains to be done is to define the denotation RM for a nonlogical predicate

R, in such a way that (2) of the preceding section will hold for atomic sentences

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

13.3. THE SECOND STAGE OF THE PROOF 159

involving nonlogical predicates. From that point, the rest of the proof will be exactly
the same as where identity was not present. Towards framing the definition of RM,

note that (E4′) allows us to give the following definition:

RM(C1*, . . . , Cn*) if and only if R(c1, . . . , cn) is in �*

for some or equivalently any
ci with Ci = [ci].

Thus

RM([c1], . . . , [cn]) if and only if R(c1, . . . , cn) is in �*.

Together with (3), this gives (2) of the preceding section. Since as already indicated

the proof is the same from this point on, we are done with the case with identity but

without function symbols.

For the case with function symbols, we pick a distinct object T * for each equiva-

lence class of closed terms, and let the domain of the interpretation consist of these

objects. Note that (3) above still holds for constants. We must now specify for each

function symbol f what function f M on this domain is to serve as its denotation,

and in such a way that (3) will hold for all closed terms. From that point, the rest of

the proof will be exactly the same as in the preceding case where function symbols

were not present.

(E5′) allows us to give the following definition:

f M(T1*, . . . , Tn*) = T * where T = [f (t1, . . . , tn)]

for some or equivalently any
ti with Ti = [ti].

Thus

f M([t1]*, . . . , [tn]*) = [f (t1, . . . , tn)]*.(4)

We can now prove by induction on complexity that (3) above, which holds by

definition for constants, in fact holds for any closed term t . For suppose (3) holds for

t1, . . . , tn , and consider f (t1, . . . , tn). By the general definition of the denotation of

a term we have

(f (t1, . . . , tn))M = f M
(
tM1 , . . . , tMn

)
.

By our induction hypothesis about the ti we have

tMi = [ti]*.

Putting these together, we get

(f (t1, . . . , tn))M = f M([t1]*, . . . , [tn]*).

And this together with the definition (4) above gives

(f (t1, . . . , tn))M = [f (t1, . . . , tn)]*.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

160 THE EXISTENCE OF MODELS

which is precisely (3) above for the closed term f (t1, . . . , tn). Since, as already

indicated, the proof is the same from this point on, we are done.

13.4 The Third Stage of the Proof

What remains to be proved is the closure lemma, Lemma 13.6. So let there be given

a language L , a language L+ obtained by adding infinitely many new constants to

L , a set S* of sets of sentences of L+ having the satisfaction properties (S0)–(S8),

and a set � of sentences of L in S*, as in the hypotheses of the lemma to be proved.

We want to show that, as in the conclusion of that lemma, � can be extended to a set

�* of sentences of L+ with closure properties (C1)–(C8).

The idea of the proof will be to obtain �* as the union of a sequence of sets

�0, �1, �2, . . . , where each �n belongs to S* and each contains all earlier sets �m for

m < n, and where �0 is just �. (C1) will easily follow, because if A and ∼A were

both in �*, A would be in some �m and ∼A would be in some �n , and then both

would be in �k , where k is whichever of m and n is the larger. But since �k is in S*,

this is impossible, since (S0) says precisely that no element of S* contains both A
and ∼A for any A.

What need to be worried about are (C2)–(C8). We have said that each �k+1 will

be a set in S* containing �k . In fact, each �k+1 be obtained by adding to �k a single
sentence Bk , so that �k+1 = �k ∪ {Bk}. (It follows that each �n will be obtained by

adding only finitely many sentences to �, and therefore will involve only finitely

many of the constants of L+ that are not in the language L of �, leaving at each

stage infinitely many as yet unused constants.) At each stage, having �k in S*, we

are free to choose as Bk any sentence such that �k ∪ {Bk} is still in S*. But we must

make the choices in such a way that in the end (C2)–(C8) hold.

Now how can we arrange that �* fulfills condition (C2), for example? Well, if

∼∼B is in �*, it is in some �m . If we can so arrange matters that whenever m and

B are such that ∼∼B is in �m , then B is in �k+1 for some k ≥ m, then it will follow

that B is in �*, as required by (C2). To achieve this, it will be more than enough if

we can so arrange matters that the following holds:

If ∼∼B is in �m, then for some k ≥ m, �k+1 = �k ∪ {B}.
But can we so arrange matters that this holds? Well, what does (S2) tell us? If ∼∼B
is in �m , then ∼∼B will still be in �k for any k ≥ m, since the sets get larger. Since

each �k is to be in S*, (S2) promises that �k ∪ {B} will be in S*. That is:

If ∼∼B is in �m, then for any k ≥ m, �k ∪ {B} is in S*.

So we could take �k+1 = �k ∪ {B} if we chose to do so.

To understand better what is going on here, let us introduce some suggestive

terminology. If ∼∼B is in �m , let us say that the demand for admission of B is raised
at stage m; and if �k+1 = �k ∪ {B}, let us say that the demand is granted at stage k.

What is required by (C2) is that any demand that is raised at any stage m should be

granted at some later stage k. And what is promised by (S2) is that at any stage k, any

one demand raised at any one earlier stage m could be granted. There is a gap here

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

13.4. THE THIRD STAGE OF THE PROOF 161

between what is demanded and what is promised, since it may well be that there are

infinitely many demands raised at stage m, which is to say, infinitely many sentences

of form ∼∼B in �m , and in any case, there are infinitely many stages m at which new

demands may arise—and all this only considering demands of the type associated

with condition (C2), whereas there are several other conditions, also raising demands,

that we also wish to fulfill.

Let us look at these. The relationship between (C3)–(C8) and (S3)–(S8) is exactly

the same as between (C2) and (S2). Each of (C2)–(C8) corresponds to a demand of

a certain type:

(C2) If ∼∼B is in �m , then for some k ≥ m, �k+1 = �k ∪ {B}.
(C3) If B ∨ C is in �m , then for some k ≥ m, �k+1 = �k ∪ {B} or �k ∪ {C}.
(C4) If ∼(B ∨ C) or ∼(C ∨ B) is in �m , then for some k ≥ m, �k+1 = �k ∪ {∼B}.
(C5) If ∃x B(x) is in �m , then for some k ≥ m, for some constant c,

�k+1 = �k ∪ {B(c)}.
(C6) If ∼∃x B(x) is in �m and t is a closed term in the language of �m , then for some

k ≥ m, �k+1 = �k ∪ {∼B(t)}.
(C7) If t is a closed term in the language of �m , then for some

k ≥ m, �k+1 = �k ∪ {t = t}.
(C8) If B(s) and s = t are in �m , where s and t are closed terms B(x) a formula, then

for some k ≥ m, �k+1 = �k ∪ {B(t)}.

Each of (S2)–(S8) promises that any one demand of the relevant type can be granted:

(S2) If ∼∼B is in �m , then for any k ≥ m, �k ∪ {B} is in S*.

(S3) If B ∨ C is in �m , then for any k ≥ m, �k ∪ {B} or �k ∪ {C} is in S*.

(S4) If ∼(B ∨ C) or ∼(C ∨ B) is in �m , then for any k ≥ m, �k ∪ {∼B} is in S*.

(S5) If ∃x B(x) is in �m , then for any k ≥ m, for any as yet unused constant c,

�k ∪ {B(c)} is in S*.

(S6) If ∼∃x B(x) is in �m and t is a closed term in the language of �m , then for any

k ≥ m, �k ∪ {∼B(t)} is in S*.

(S7) If t is a closed term in the language of �m , then for any k ≥ m, �k ∪ {t = t} is in

S*.

(S8) If B(s) and s = t are in �m , where s and t are closed terms B(x) a formula, then

for any k ≥ m, �k ∪ {B(t)} is in S*.

At any stage k of the construction, we can grant any one demand we choose
from among those that have been raised at earlier stages, but for the construction

to succeed, we must make our successive choices so that in the end any demand
that is ever raised at any stage is granted at some later stage. Our difficulty is that

at each stage many different demands may be raised. Our situation is like that of

Herakles fighting the hydra: every time we chop off one head (grant one demand),

multiple new heads appear (multiple new demands are raised). At least in one re-

spect, however, we have made progress: we have succeeded in redescribing our prob-

lem in abstract terms, eliminating all details about which particular formulas are of

concern.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

162 THE EXISTENCE OF MODELS

And indeed, with this redescription of the problem we are now not far from a

solution. We need only recall two facts. First, our languages are enumerable, so that at

each stage, though an infinity of demands may be raised, it is still only an enumerable
infinity. Each demand may be worded ‘admit such-and-such a sentence’ (or ‘admit one

or the other of two such-and-such sentences’), and an enumeration of the sentences

of our language therefore gives rise to an enumeration of all the demands raised at

any given stage. Thus each demand that is ever raised may be described as the i th
demand raised at stage m, for some numbers i and m, and so may be described by a

pair of numbers (i , m). Second, we have seen in Chapter 1 that there is a way—in fact,

there are many ways—of coding any pair of numbers by a single number j(i, m), and

if one looks closely at this coding, one easily sees that j(i, m) is greater than m (and

greater than i). We can solve our problem, then, by proceeding as follows. At stage k,

see what pair (i , m) is coded by k, and grant the i th demand that was raised at stage

m < k. In this way, though we grant only one demand at a time, all the demands that

are ever raised will eventually be granted.

The proof of the compactness theorem is now complete.

13.5* Nonenumerable Languages

In Chapter 12 we mentioned in passing the possibility of allowing nonenumerable

languages. The Löwenheim–Skolem theorem would then fail.

13.8 Example (The failure of the downward Löwenheim–Skolem theorem for a non-

enumerable language). Take one constant cξ for each real number ξ , and let � be the

set of all sentences cξ
= cη for ξ
= η. Clearly � has a model with domain the real numbers,

in which cξ denotes ξ . Equally clearly, any model of � will be nondenumerable.

However, it can be shown that the compactness theorem still holds. The proof

we have given does not work for a nonenumerable language: no essential use of the

enumerability of the language was made in the proof of the term models lemma, but

the proof given in the preceding section for the closure lemma did make heavy use at

the end of the enumerability assumption. In this section we outline a different proof

of the closure lemma, which can be generalized to cover nonenumerable languages,

and note one consequence of the generalized version of the compactness theorem.

Many verifications are relegated to the problems.

It is not hard to show that if � is a satisfiable set of sentences, ∃ x F(x) a sentence

of the language of �, and c a constant not in the language of �, then � ∪ {∃ x F(x) →
F(c)} is satisfiable [imitating the proof of Example 10.5(b), which gave us (S5) in

Lemma 13.1]. Now let L be a language. Let L0 = L , and given Ln , let Ln+1 be the

result of adding to Ln a new constant cF for each formula ∃x F(x) of Ln . Let L+
be the union of all the Ln . The set of Henkin axioms is the set H of all sentences

∃x F(x) → F(cF) of L+. It is not hard to show that if � is a set of sentences of L and

every finite subset of � has a model then every finite subset of � ∪ H has a model

(using the observation with which we began this paragraph). Let S* be the set of all

sets of sentences � of L+ such that every finite subset of � ∪ H has a model. What

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

13.5. NONENUMERABLE LANGUAGES 163

we have just remarked is that if � is a set of sentences of L and every finite subset

of � has a model, then � is in S*. It is not hard to show that S* has the satisfiability

properties (S1)–(S4) and (S6)–(S8) (imitating the proof of Lemma 13.2).

We now introduce some set-theoretic terminology. Let I be a nonempty set. A

family P of subsets of I is said to be of finite character provided that for each subset

� of I , � is in P if and only if each finite subset of � is in P . A subset �* of I is

said to be maximal with respect to P if �* is in P , but no subset � of I properly

including �* is in P .

To apply this terminology to the situation we are considering, it is not hard to show

that S* is of finite character (essentially by definition). Nor is it hard to show that

any maximal element �* of S* will contain H (by showing that adding a Henkin

axiom to a given set in S* produces a set still in S*, so that if the given set was

maximal, the Henkin axiom must already have belonged to it). Nor is it hard to

show that any maximal element �* of S* will have closure properties (C1)–(C4) and

(C6)–(C8) [since, for instance, if ∼∼B is in �*, then adding B to �* produces a set

still in S* by (S2)]. Nor, for that matter, is it hard to show that such a �* will also

have closure property (C5) [using the fact that whether or not ∃x F(x) is in �*, �*

contains the Henkin axioms ∼∃x F(x) ∨ F(cF), and applying (C1) and (C3)]. Thus by

Lemma 13.5, whose proof made no essential use of enumerability, �* will have a

model.

Putting everything together from the preceding several paragraphs, if � is a set of

sentences of L such that every finite subset of � has a model, then � itself will have

a model, provided we can prove that for every set � in S* there is a maximal element

�* in S* that contains �.

And this does follow using a general set-theoretic fact, the maximal principle,

according to which for any nonempty set I and any set P of subsets of I that has

finite character, and any � in P , there is a maximal element �* of P that contains �. It

is not hard to prove this principle in the case where I is enumerable (by enumerating

its elements i0, i1, i2, . . . , and building �* as the union of sets �n in P , where �0 = �,

and �n+1 = �n ∪ {in} if �n ∪ {in} is in P , and = �n otherwise). In fact, the maximal

principle is known to hold even for nonenumerable I , though the proof in this case

requires a formerly controversial axiom of set theory, the axiom of choice—indeed,

given the other, less controversial axioms of set theory, the maximal principle is

equivalent to the axiom of choice, a fact whose proof is given in any textbook on set

theory, but will not be given here.

Reviewing our work, one sees that using the maximal principle for a nonenumer-

able set, we get a proof of the compactness theorem for nonenumerable languages.

This general version of the compactness theorem has one notable consequence.

13.9 Theorem (The upward Löwenheim–Skolem theorem). Any set of sentences that

has an infinite model has a nonenumerable model.

The proof is not hard (combining the ideas of Corollary 12.16 and Example 13.8).

But like the proofs of several of our assertions above, we relegate this one to the

problems.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

164 THE EXISTENCE OF MODELS

Problems

The first several problems pertain to the optional section 13.5.

13.1 Prove the maximal principle for the case where I is enumerable.

13.2 Show that if � is a satisfiable set of sentences, ∃x F(x) a sentence of the lan-

guage of�, and c a constant not in the language of�, then� ∪ {∃x F(x)→F(c)}
is satisfiable.

13.3 Let L be a language, and construct the language L+ and the set H of Henkin

axioms as in section 13.5. Let S* be the set of all sets of sentences � of L+
such that every finite subset of � ∪ H has a model. Show that:

(a) Any set � of sentences of L whose every finite subset is satisfiable is

in S*.

(b) S* has satisfiability properties (S1)–(S4) and (S6)–(S8).

13.4 Continuing the notation of the preceding problem, show that:

(a) S* is of finite character.

(b) Any maximal set �* in S* contains H .

13.5 Continuing the notation of the preceding problem, let �* be a maximal set in

S*. Show that �* has closure properties (C1)–(C4) and (C6)–(C8).

13.6 Continuing the notation of the preceding problem, let �* be a set of sentences

of L+ containing H and having closure properties (C1)–(C4) and (C6)–(C8).

Show that �* also has property (C5).

13.7 Use the compactness theorem for nonenumerable languages to prove the up-

ward Löwenheim–Skolem theorem, Theorem 13.9.

In the remaining problems, for simplicity assume that function symbols are
absent, though the results indicated extend to the case where they are
present.

13.8 An embedding of one interpretation P in another interpretation Q is a function

j fulfilling all the conditions in the definition of isomorphism in section 13.1,

except that j need not be onto. Given an interpretation P , let LP be the result

of adding to the language a constant cp for each element p of the domain

|P|, and and let P* be the extension of P to an interpretation of LP in which

each cp denotes the corresponding p. The set �(P) of all atomic and negated

atomic sentences of LP , whether involving a nonlogical predicate R or the

logical predicate =, that are true in P*, is called the diagram of P . Show that

if Q is any interpretation of the language of P that can be extended to a model

Q∗ of �(P), then there is an embedding of P into Q.

13.9 A sentence is called existential if and only if it is of the form ∃ x1 . . . ∃ xn F
where F contains no further quantifiers (universal or existential). A sentence

is said to be preserved upwards if and only if, whenever it is true in an

interpretation P , and there is an embedding of P in another interpretation

Q, then it is true in Q. Show that every existential sentence is preserved

upwards.

13.10 Let A be a sentence that is preserved upwards, P a model of A, and �(P)

the diagram of P . Show that � ∪ {∼A} is unsatisfiable, and that some finite

subset of � ∪ {∼A} is unsatisfiable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-13 CB421-Boolos July 27, 2007 16:47 Char Count= 46233

PROBLEMS 165

13.11 Let A be a sentence of a language L that is preserved upwards. Show that:

(a) P is a model of A if and only if there is a quantifier-free sentence B of

the language LP such that B implies A and P∗ is a model of B.

(b) P is a model of A if and only if there is an existential sentence B of the

language L such that B implies A and P is a model of B.

13.12 Let A be a sentence that is preserved upwards, and � the set of existential

sentences of the language of A that imply A. Writing ∼� for the set of negations

of elements of �, show that:

(a) {A} ∪ ∼� is unsatisfiable.

(b) {A} ∪ ∼�0 is unsatisfiable for some finite subset �0 of �.

(c) {A} ∪ {∼B} is unsatisfiable for some single element of �.

13.13 Let A be a sentence that is preserved upwards. Show that A is logically equiva-

lent to an existential sentence (in the same language).

13.14 A sentence is called universal if and only if it is of the form ∀x1 . . .∀xn F
where F contains no further quantifiers (universal or existential). A sentence

is said to be preserved downwards if and only if, whenever it is true in an

interpretation Q, and there is an embedding of P in another interpretation Q,

then it is true in P . Prove that a sentence is preserved downwards if and only

if it is logically equivalent to a universal sentence (in the same language).

13.15 The proof in the preceding several problems involves (at the step of Problem

13.10) applying the compactness theorem to a language that may be nonenu-

merable. How could this feature be avoided?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14

Proofs and Completeness

Introductory textbooks in logic devote much space to developing one or another kind
of proof procedure, enabling one to recognize that a sentence D is implied by a set of
sentences �, with different textbooks favoring different procedures. In this chapter we
introduce the kind of proof procedure, called a Gentzen system or sequent calculus, that
is used in more advanced work, where in contrast to introductory textbooks the emphasis
is on general theoretical results about the existence of proofs, rather than practice in
constructing specific proofs. The details of any particular procedure, ours included,
are less important than some features shared by all procedures, notably the features
that whenever there is a proof of D from �, D is a consequence of �, and conversely,
whenever D is a consequence of �, there is a proof of D from �. These features are called
soundness and completeness, respectively. (Another feature is that definite, explicit rules
can be given for determining in any given case whether a purported proof or deduction
really is one or not; but we defer detailed consideration of this feature to the next chapter.)
Section 14.1 introduces our version or variant of sequent calculus. Section 14.2 presents
proofs of soundness and completeness. The former is easy; the latter is not so easy, but
all the hard work for it has been done in the previous chapter. Section 14.3, which is
optional, comments briefly on the relationship of our formal notion to other such formal
notions, as might be found in introductory textbooks or elsewhere, and of any formal
notion to the unformalized notion of a deduction of a conclusion from a set of premisses,
or proof of a theorem from a set of axioms.

14.1 Sequent Calculus

The idea in setting up a proof procedure is that even when it is not obvious that

� implies D, we may hope to break the route from � to D down into a series of small

steps that are obvious, and thus render the implication relationship recognizable.

Every introductory textbook develops some kind of formal notion of proof or deduc-

tion. Though these take different shapes in different books, in every case a formal

deduction is some kind of finite array of symbols, and there are definite, explicit rules

for determining whether a given finite array of symbols is or is not a formal deduc-

tion. The notion of deduction is ‘syntactic’ in the sense that these rules mention the

internal structure of formulas, but do not mention interpretations. In the end, though,

the condition that there exists a deduction of D from � turns out to be equivalent
to the condition that every interpretation making all sentences in � true makes the

sentence D true, which was the original ‘semantic’ definition of consequence. This

166

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.1. SEQUENT CALCULUS 167

equivalence has two directions. The result that whenever D is deducible from �, D
is a consequence of �, is the soundness theorem. The result that whenever D is a

consequence of �, then D is deducible from �, is the Gödel completeness theorem.

Our goal in this chapter will be to present a particular system of deduction for which

soundness and completeness can be established. The proof of completeness uses the

main lemma from the preceding chapter. Our system, which is of the general sort used

in more advanced, theoretical studies, will be different from that used in virtually any

introductory textbook—or to put a positive spin on it, virtually no reader will have an

advantage over any other reader of previous acquaintance with the particular kind of

system we are going to be using. Largely for the benefit of readers who have been or

will be looking at other books, in the final section of the chapter we briefly indicate the

kinds of variations that are possible and are actually to be met with in the literature.

But as a matter of fact, it is not the details of any particular system that really matter,

but rather the common features shared by all such systems, and except for a brief

mention at the end of the next chapter (in a section that itself is optional reading), we

will when this chapter is over never again have occasion to mention the details of our

particular system or any other. The existence of some proof procedure or other with

the properties of soundness and completeness will be the result that will matter.

[Let us indicate one consequence of the existence of such a procedure that will be

looked at more closely in the next chapter. It is known that the consequence relation

is not effectively decidable: that there cannot be a procedure, governed by definite

and explicit rules, whose application would, in every case, in principle enable one to

determine in a finite amount of time whether or not a given finite set � of sentences

implies a given sentence D. Two proofs of this fact appear in sections 11.1 and

11.2, with another to come in chapter 17. But the existence of a sound and complete

proof procedure shows that the consequence relation is at least (positively) effectively
semidecidable. There is a procedure whose application would, in case � does imply

D, in principle enable one to determine in a finite amount of time that it does so.

The procedure is simply to search systematically through all finite objects of the

appropriate kind, determining for each whether or not it constitutes a deduction of

D from �. For it is part of the notion of a proof procedure that there are definite and

explicit rules for determining whether a given finite object of the appropriate sort does

or does not constitute such a deduction. If � does imply D, then checking through all

possible deductions one by one, one would by completeness eventually find one that

is a deduction of D from �, thus by soundness showing that � does imply D; but if

� does not imply D, checking through all possible deductions would go on forever

without result. As we said, these matters will be further discussed in the next chapter.]

At the same time one looks for a syntactic notion of deduction to capture and

make recognizable the semantic notion of consequence, one would like to have also

a syntactic notion of refutation to capture the semantic notion of unsatisfiability,

and a syntactic notion of demonstration to capture the semantic notion of valid-

ity. At the cost of some very slight artificiality, the three notions of consequence,

unsatisfiability, and validity can be subsumed as special cases under a single, more

general notion. We say that one set of sentences � secures another set of sentences

� if every interpretation that makes all sentences in � true makes some sentence in

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

168 PROOFS AND COMPLETENESS

� true. (Note that when the sets are finite, � = {C1, . . . , Cm} and � = {D1, . . . , Dn},
this amounts to saying that every interpretation that makes C1 & . . . & Cm true makes

D1 ∨ · · · ∨ Dn true: the elements of � are being taken jointly as premisses, but the

elements of � are being taken alternatively as conclusions, so to speak.) When a set

contains but a single sentence, then of course making some sentence in the set true

and making every sentence in the set true come to the same thing, namely, making the
sentence in the set true; and in this case we naturally speak of the sentence as doing

the securing or as being secured. When the set is empty, then of course the condition

that some sentence in it is made true is not fulfilled, since there is no sentence in

it to be made true; and we count the condition that every sentence in the set is made

true as being ‘vacuously’ fulfilled. (After all, there is no sentence in the set that is not
made true.) With this understanding, consequence, unsatisfiability, and validity can

be seen to be special cases of security in the way listed in Table 14-1.

Table 14-1. Metalogical notions

D is a consequence of � if and only if � secures {D}
� is unsatisfiable if and only if � secures ∅
D is valid if and only if ∅ secures {D}

Correspondingly, our approach to deductions will subsume them along with refu-

tations and demonstrations under a more general notion of derivation. Thus for us the

soundness and completeness theorems will be theorems relating a syntactic notion of

derivability to a semantic notion of security, from which relationship various other

relationships between syntactic and semantic notions will follow as special cases.

The objects with which we are going to work in this chapter—the objects of which

derivations will be composed—are called sequents. A sequent � ⇒ � consists of

a finite set of sentences � on the left, the symbol ⇒ in the middle, and a finite set

of sentences � on the right. We call the sequent secure if its left side � secures its

right side �. The goal will be to define a notion of derivation so that there will be a

derivation of a sequent if and only if it is secure.

Deliberately postponing the details of the definition, we just for the moment say

that a derivation will be a kind of finite sequence of sequents, called the steps
(or lines) of the derivation, subject to certain syntactic conditions or rules that re-

main to be stated. A derivation will be a derivation of a sequent � ⇒ � if and only if

that sequent is its last step (or bottom line). A sequent will be derivable if and only

if there is some derivation of it. It is in terms of this notion of derivation that we will

define other syntactic notions of interest, as in Table 14-2.

Table 14-2. Metalogical notions

A deduction of D from � is a derivation of � ⇒ {D}
A refutation of � is a derivation of � ⇒ ∅
A demonstration of D is a derivation of ∅ ⇒ {D}

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.1. SEQUENT CALCULUS 169

We naturally say that D is deducible from � if there is a deduction of D from �,

that � is refutable if there is a refutation of �, and that D is demonstrable if there

is a demonstration of D, where deduction, refutation, and demonstration are defined

in terms of derivation as in Table 14-2. An irrefutable set of sentences is also called

consistent, and a refutable one inconsistent. Our main goal will be so to define the

notion of derivation that we can prove the following two theorems.

14.1 Theorem (Soundness theorem). Every derivable sequent is secure.

14.2 Theorem (Gödel completeness theorem). Every secure sequent is derivable.

It will then immediately follow (on comparing Tables 14-1 and 14-2) that there is

an exact coincidence between two parallel sets of metalogical notions, the semantic

and the syntactic, as shown in Table 14-3.

Table 14-3. Correspondences between metalogical notions

D is deducible from � if and only if D is a consequence of �

� is inconsistent if and only if � is unsatisfiable

D is demonstrable if and only if D is valid

To generalize to the case of infinite sets of sentences, we simply define � to be

derivable from � if and only if some finite subset �0 of � is derivable from some

finite subset �0 of �, and define deducibility and inconsistency in the infinite case

similarly. As an easy corollary of the compactness theorem, � secures � if and only

if some finite subset �0 of � secures some finite subset �0 of �. Thus Theorems 14.1

and 14.2 will extend to the infinite case: � will be derivable from � if and only if �

is secured by �, even when � and � are infinite.

So much by way of preamble. It remains, then, to specify what conditions a

sequence of sequents must fulfill in order to count as a derivation. In order for a

sequence of steps to qualify as a derivation, each step must either be of the form

{A} ⇒ {A} or must follow from earlier steps according to one of another of several

rules of inference permitting passage from one or more sequents taken as premisses
to some other sequent taken as conclusion. The usual way of displaying rules is to

write the premiss or premisses of the rule, a line below them, and the conclusion

of the rule. The provision that a step may be of the form {A} ⇒ {A} may itself be

regarded as a special case of a rule of inference with zero premisses; and in listing the

rules of inference, we in fact list this one first. In general, in the case of any rule, any

sentence that appears in a premiss but not the conclusion of a rule is said to be exiting,

any that appears in the conclusion but not the premisses is said to be entering, and

any that appears in both a premiss and the conclusion is said to be standing. In the

special case of the zero-premiss rule and steps of the form {A} ⇒ {A}, the sentence

A counts as entering. It will be convenient in this chapter to work as in the preceding

chapter with a version of first-order logic in which the only logical symbols are ∼,

∨, ∃, =, that is, in which & and ∀ are treated as unofficial abbreviations. (If we

admitted & and ∀, there would be a need for four more rules, two for each. Nothing

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

170 PROOFS AND COMPLETENESS

Table 14-4. Rules of sequent calculus

(R0) {A} ⇒ {A}
(R1) � ⇒ �

�′ ⇒ �′ � subset of �′, � subset of �′

(R2a) � ∪ {A} ⇒ �

� ⇒ {∼A} ∪ �

(R2b) � ⇒ {A} ∪ �

� ∪ {∼A} ⇒ �

(R3) � ⇒ {A, B} ∪ �

� ⇒ {(A ∨ B)} ∪ �

(R4) � ∪ {A} ⇒ �

� ∪ {B} ⇒ �

� ∪ {A ∨ B} ⇒ �

(R5) � ⇒ {A(s)} ∪ �

� ⇒ {∃x A(x)} ∪ �

(R6) � ∪ {A(c)} ⇒ �

� ∪ {∃x A(x)} ⇒ � c not in � or � or A(x)

(R7) � ∪ {s = s} ⇒ �

� ⇒ �

(R8a) � ⇒ {A(t)} ∪ �

� ∪ {s = t} ⇒ {A(s)} ∪ �

(R8b) � ∪ {A(t)} ⇒ �

� ∪ {s = t, A(s)} ⇒ �

(R9a) � ∪ {∼A} ⇒ �

� ⇒ {A} ∪ �

(R9b) � ⇒ {∼A} ∪ �

� ∪ {A} ⇒ �

would be harder, but everything would be more tedious.) With this understanding,

the rules are those give in Table 14-4.

These rules roughly correspond to patterns of inference used in unformalized

deductive argument, and especially mathematical proof. (R2a) or right negation in-
troduction corresponds to ‘proof by contradiction’, where an assumption A is shown

to be inconsistent with background assumptions � and it is concluded that those

background assumptions imply its negation. (R2b) or left negation introduction cor-

responds to the inverse form of inference. (R3) or right disjunction introduction,

together with (R1), allows us to pass from � ⇒ {A} ∪ � or � ⇒ {B} ∪ � by way of

� ⇒ {A, B} ∪ � to � ⇒ {(A ∨ B)} ∪ �, which corresponds to inferring a disjunc-

tion from one disjunct. (R4) or left disjunction introduction corresponds to ‘proof by

cases’, where something that has been shown to follow from each disjunct is con-

cluded to follow from a disjunction. (R5) or right existential quantifier introduction
corresponds to inferring an existential generalization from a particular instance. (R6)

or left existential-quantifier introduction is a bit subtler: it corresponds to a common

procedure in mathematical proof where, assuming there is something for which a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.1. SEQUENT CALCULUS 171

condition A holds, we ‘give it a name’ and say ‘let c be something for which the

condition A holds’, where c is some previously unused name, and thereafter proceed

to count whatever statements not mentioning c that can be shown to follow from the

assumption that condition A holds for c as following from the original assumption

that there is something for which condition A holds. (R8a, b) correspond to two forms

of ‘substituting equals for equals’.

A couple of trivial examples will serve show how derivations are written.

14.3 Example. The deduction of a disjunction from a disjunct.

(1) A ⇒ A (R0)

(2) A ⇒ A, B (R1), (1)

(3) A ⇒ A ∨ B (R3), (2)

The first thing to note here is that though officially what occur on the left and

right sides of the double arrow in a sequent are sets, and sets have no intrinsic order

among their elements, in writing a sequent, we do have to write those elements in

some order or other. {A, B} and {B, A} and for that matter {A, A, B} are the same set,
and therefore {A} ⇒ {A, B} and {A} ⇒ {B, A} and for that matter {A} ⇒ {A, A, B}
are the same sequent, but we have chosen to write the sequent the first way. Actually,

we have not written the braces at all, nor will they be written in future when writing

out derivations. [For that matter, have also been writing A ∨ B for (A ∨ B), and will

be writing Fx for F(x) below.] An alternative approach would be to have sequences
rather than sets of formulas on both sides of a sequent, and introduce additional

‘structural’ rules allowing one to reorder the sentences in a sequences, and for that

matter, to introduce or eliminate repetitions.

The second thing to note here is that the numbering of the lines on the left, and

the annotations on the right, are not officially part of the derivation. In practice, their

presence makes it easier to check that a purported derivation really is one; but in

principle it can be checked whether a string symbols constituties a derivation even

without such annotation. For there are, after all, at each step only finitely many

rules that could possibly have been applied to get that step from earlier steps, and

only finitely many earlier steps any rule could possibly have been applied to, and in

principle we need only check through these finitely many possibilities to find whether

there is a justification for the given step.

14.4 Example. The deduction of a conjunct from a conjunction

(1) A ⇒ A (R0)

(2) A, B ⇒ A (R1), (1)

(3) B ⇒ A, ∼A (R2a), (2)

(4) ⇒ A, ∼A, ∼B (R2a), (3)

(5) ⇒ A, ∼A ∨ ∼B (R3), (4)

(6) ∼(∼A ∨ ∼B) ⇒ A (R2b), (5)

(7) A & B ⇒ A abbreviation, (6)

Here the last step, reminding us that ∼(∼A ∨ ∼B) is what A & B abbreviates, is

unofficial, so to speak. We omit the word ‘abbreviation’ in such cases in the future. It

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

172 PROOFS AND COMPLETENESS

is because & is not in the official notation, and we do not directly have rules for it, that

the derivation in this example needs more steps than that in the preceding example.

Since the two examples so far have both been of derivations constituting deduc-

tions, let us give two equally short examples of derivations constituting refutations

and demonstrations.

14.5 Example. Demonstration of a tautology

(1) A ⇒ A (R0)

(2) ⇒ A, ∼A (R2b), (1)

(3) ⇒ A ∨ ∼A (R3), (2)

14.6 Example. Refutation of a contradiction

(1) ∼A ⇒ ∼A (R0)

(2) ⇒ ∼A, ∼∼A (R2b), (1)

(3) ⇒ ∼A ∨ ∼∼A (R3), (2)

(4) ∼(∼A ∨ ∼∼A) ⇒ (R2a), (3)

(5) A & ∼A ⇒ (4)

The remarks above about the immateriality of the order in which sentences are

written are especially pertinent to the next example.

14.7 Example. Commutativity of disjunction

(1) A ⇒ A (R0)

(2) A ⇒ B, A (R1), (1)

(3) A ⇒ B ∨ A (R3), (2)

(4) B ⇒ B (R0)

(5) B ⇒ B, A (R1), (4)

(6) B ⇒ B ∨ A (R3), (5)

(7) A ∨ B ⇒ B ∨ A (R4), (3), (6)

The commutativity of conjunction would be obtained similarly, though there would

be more steps, for the same reason that there are more steps in Examples 14.4 and

14.6 than in Examples 14.3 and 14.5. Next we give a couple of somewhat more

substantial examples, illustrating how the quantifier rules are to be used, and a couple

of counter-examples to show how they are not to be used.

14.8 Example. Use of the first quantifier rule

(1) Fc ⇒ Fc (R0)

(2) ⇒ Fc, ∼Fc (R2b), (1)

(3) ⇒ ∃x Fx, ∼Fc (R5), (2)

(4) ⇒ ∃x Fx, ∃x ∼Fx (R5), (3)

(5) ∼∃x ∼Fx ⇒ ∃x Fx (R2a), (4)

(6) ∀x Fx ⇒ ∃x Fx (5)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.1. SEQUENT CALCULUS 173

14.9 Example. Proper use of the two quantifier rules

(1) Fc ⇒ Fc (R0)

(2) Fc ⇒ Fc,Gc (R1), (1)

(3) Gc ⇒ Gc (R0)

(4) Gc ⇒ Fc,Gc (R1), (3)

(5) Fc ∨ Gc ⇒ Fc,Gc (R4), (2), (4)

(6) Fc ∨ Gc ⇒ ∃xF x,Gc (R5), (5)

(7) Fc ∨ Gc ⇒ ∃xF x, ∃xGx (R5), (6)

(8) Fc ∨ Gc ⇒ ∃xF x ∨ ∃xGx (R3), (7)

(9) ∃x(F x ∨ Gx) ⇒ ∃xF x ∨ ∃xGx (R6), (8)

14.10 Example. Improper use of the second quantifier rule

(1) Fc ⇒ Fc (R0)

(2) Fc, ∼Fc ⇒ (R2b), (1)

(3) ∃xF x, ∼Fc ⇒ (R6), (2)

(4) ∃xF x, ∃x ∼F x ⇒ (R6), (3)

(5) ∃xF x ⇒ ∼∃x ∼F x (R2b), (4)

(6) ∃xF x ⇒ ∀xF x (5)

Since ∃xFx does not imply ∀xFx, there must be something wrong in this last

example, either with our rules, or with the way they have been deployed in the

example. In fact, it is the deployment of (R6) at line (3) that is illegitimate. Specifically,

the side condition ‘c not in �’ in the official statement of the rule is not met, since

the relevant � in this case would be {∼Fc}, which contains c. Contrast this with a

legitimate application of (R6) as at the last line in the preceding example. Ignoring

the side condition ‘c not in �’ can equally lead to trouble, as in the next example.

(Trouble can equally arise from ignoring the side condition ‘c not in A(x)’, but we

leave it to the reader to provide an example.)

14.11 Example. Improper use of the second quantifier rule

(1) Fc ⇒ Fc (R0)

(2) ∃xF x ⇒ Fc (R6), (1)

(3) ∃xF x, ∼Fc ⇒ (R2b), (2)

(4) ∃xF x, ∃x ∼F x ⇒ (R6), (3)

(5) ∃xF x ⇒ ∼∃x ∼F x (R2a), (4)

(6) ∃xF x ⇒ ∀xF x (5)

Finally, let us illustrate the use of the identity rules.

14.12 Example. Reflexivity of identity

(1) c = c ⇒ c = c (R0)

(2) ⇒ c = c (R7), (1)

(3) ∼c = c ⇒ (R2b), (2)

(4) ∃x ∼x = x ⇒ (R6), (3)

(5) ⇒ ∼∃x ∼x = x (R2a), (4)

(6) ⇒ ∀x x = x (5)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

174 PROOFS AND COMPLETENESS

14.13 Example. Symmetry of identity

(1) d = d ⇒ d = d (R0)

(2) d = d, c = d ⇒ d = c (R8a), (1)

(3) c = d ⇒ d = c (R7), (2)

(4) ⇒ ∼c = d, d = c (R2a), (3)

(5) ⇒ ∼c = d ∨ d = c (R3), (4)

(6) ⇒ c = d → d = c (5)

(7) ∼(c = d → d = c) ⇒ (R2b), (6)

(8) ∃y ∼(c = y → y = c) ⇒ (R6), (7)

(9) ⇒ ∼∃y ∼(c = y → y = c) (R2a), (8)

(10) ⇒ ∀y(c = y → y = c) (9)

(11) ∼∀y(c = y → y = c) ⇒ (R2b), (10)

(12) ∃x ∼∀y(x = y → y = x) ⇒ (R6), (11)

(13) ⇒ ∼∃x ∼∀y(x = y → y = x) (R2a), (12)

(14) ⇒ ∀x∀y(x = y → y = x) (13)

The formula A(x) to which (R8a) has been applied at line (2) is d = x .

14.2 Soundness and Completeness

Let us now begin the proof of soundness, Theorem 14.1, according to which every

derivable sequent is secure. We start with the observation that every (R0) sequent

{A} ⇒ {A} is clearly secure. It will then suffice to show that each rule (R1)–(R9) is

sound in the sense that when applied to secure premisses it yields secure conclusions.

Consider, for instance, an application of (R1). Suppose � ⇒ � is secure, where �

is a subset of �′ and � is a subset of �′, and consider any interpretation that makes

all the sentences in �′ true. What (R1) requires is that it should make some sentence

in �′ true, and we show that it does as follows. Since � is a subset of �′, it makes all

the sentences in � true, and so by the security of � ⇒ � it makes some sentence in

� true and, since � is a subset of �′, thereby makes some sentence of �′ true.

Each of the rules (R2)–(R9) must now be checked in a similar way. Since this proof

is perhaps the most tedious in our whole subject, it may be well to remark in advance

that it does have one interesting feature. The feature is this: that as we argue for the

soundness of the formal rules, we are going to find ourselves using something like the

unformalized counterparts of those very rules in our argumentation. This means that

a mathematical heretic who rejected one of another of the usual patterns of argument

as employed in unformalized proofs in orthodox mathematics—and there have been

benighted souls who have rejected the informal counterpart of (R9), for example—

would not accept our proof of the soundness theorem. The point of the proof is not to

convince such dissenters, but merely to check that, in putting everything into symbols,

we have not made some slip and allowed some inference that, stated in unformalized

terms, we ourselves would recognize as fallacious. (This is a kind of mistake that it

is not hard to make, especially over the side conditions in the quantifier rule, and it is

one that has been made in the past in some textbooks.) This noted, let us now return

to the proof.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.2. SOUNDNESS AND COMPLETENESS 175

Consider (R2a). We suppose � ∪ {A} ⇒ � is secure, and consider any interpre-

tation that makes all the sentences in � true. What (R2a) requires is that it should

make some sentence in {∼A} ∪ � true, and we show it does as follows. On the one

hand, if the given interpretation also makes A true, then it makes all the sentences in

� ∪ {A} true, and therefore by the security of � ∪ {A} ⇒ � makes some sentence in

� true, and therefore makes some sentence in {∼A} ∪ � true. On the other hand, if

the interpretation does not make A true, then it makes ∼A true, and therefore it again

makes some sentence in {∼A} ∪ � true.

Consider (R2b). We suppose � ⇒ {A} ∪ � is secure, and consider any interpre-

tation making all sentences in � ∪ {∼A} true. What (R2b) requires is that it should

make some sentence in � true, and we show it does as follows. The given interpre-

tation makes all sentences in � true, and so by the security of � ⇒ {A} ∪ � makes

some sentence in {A} ∪ � true. But since the interpretation makes ∼A true, it does

not make A true, so it must be that it makes some sentence in � true.

For (R3), we suppose that � ⇒ {A, B} ∪ � is secure, and consider any interpreta-

tion making all sentences in � true. By the security of � ⇒ {A, B} ∪ � the interpreta-

tion makes some sentence in {A, B} ∪ � true. This sentence must be either A or B or

some sentence in �. If the sentence is A or B, then the interpretation makes (A ∨ B)

true, and so makes a sentence in {(A ∨ B)} ∪ � true. If the sentence is one of those

in �, then clearly the interpretation makes a sentence in {(A ∨ B)} ∪ � true. So in

any case, some sentence in {(A ∨ B)} ∪ � is made true, which is what (R3) requires.

For (R4), we suppose that � ∪ {A} ⇒ � and � ∪ {B} ⇒ � are secure, and consider

any interpretation that makes all sentences in � ∪ {(A ∨ B)} true. The interpretation

in particular makes (A ∨ B) true, and so it must either make A true or make B true.

In the former case it makes all sentences in � ∪ {A} true, and by the security of

� ∪ {A} ⇒ � it makes some sentence in � true. Similarly in the latter case. So in

either case it makes some sentence in � true, which is what (R4) requires.

For (R5), we suppose that � ⇒ {A(s)} ∪ � is secure and consider any interpreta-

tion that makes all sentences in � true. By the security of � ⇒ {A(s)} ∪ � it makes

some sentence in {A(s)} ∪ � true. If the sentence is one in �, then clearly the inter-

pretation makes some sentence in {∃x A(x)} ∪ � true. If the sentence is A(s), then the

interpretation makes ∃x A(x) true, and so again the interpretation makes some sen-

tence in {∃x A(x)} ∪ � true. This suffices to show that � ⇒ {∃x A(x)} ∪ � is secure,

which is what (R5) requires.

For (R6), we suppose that� ∪ {A(c)} ⇒ � is secure and consider any interpretation

making all sentences in � ∪ {∃x A(x)} true. Since the interpretation makes ∃x A(x)

true, there is some element i in the domain of the interpretation that satisfies A(x). If

c does not occur in � or � or A(x), then while leaving the denotations of all symbols

that occur in � and � and A(x) unaltered, we can alter the interpretation so that the

denotation of c becomes i . By extensionality, in the new interpretation every sentence

in � will still be true, i will still satisfy A(x) in the new interpretation, and every

sentence in � will have the same truth value as in the old interpretation. But since i
is now the denotation of c, and i satisfies A(x), it follows that A(c) will be true in

the new interpretation. And since the sentences in � are still true and A(c) is now

true, by the security of � ∪ {A(c)} ⇒ �, some sentence in � true will be true in the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

176 PROOFS AND COMPLETENESS

new interpretation and hence will have been true in old interpretation. This suffices

to show that � ∪ {∃x A(x)} ⇒ � is secure.

For (R7), we suppose � ∪ {s = s} ⇒ � is secure, and consider any interpretation

of a language containing all symbols in � and � that makes all sentences in � true.

If there is some symbol in s not occurring in � or � to which this interpretation fails

to assign a denotation, alter it so that it does. The new interpretation will still make

every sentence in � true by extensionality, and will make s = s true. By the security

of � ∪ {s = s} ⇒ �, the new interpretation will make some sentence in � true, and

extensionality implies that the original interpretation already made this same sentence

in � true. This suffices to show that � ⇒ � is secure.

For (R8a), we suppose � ⇒ {A(t)} ∪ � is secure and consider any interpretation

making all sentences in � ∪ {s = t} true. Since it makes every sentence in � true, by

the security of � ⇒ {A(t)} ∪ � it must make some sentence in {A(t)} ∪ � true. If

this sentence is one of those in �, then clearly the interpretation makes a sentence

in {A(s)} ∪ � true. If the sentence is A(t), then note that since the interpretation

makes s = t true, it must assign the same denotation to s and to t , and therefore by

the must also make A(s) true by extensionality. Thus again it makes some sentence

in {A(s)} ∪ � true. This suffices to show that � ∪ {s = t} ⇒ {A(s)} ∪ � is secure.

(R8b) is entirely similar.

(R9) is just like (R2), to finish the proof of soundness.

Now, for completeness, Theorem 14.2, according to which every secure sequent

is derivable. We begin with a quick reduction of the problem. Write ∼� for the set

of negations of sentences in �.

14.14 Lemma. � ⇒ � is derivable if and only if � ∪ ∼� is inconsistent.

Proof: If

{C1, . . . , Cm} ⇒ {D1, . . . , Dn}
is derivable, then

{C1, . . . , Cm, ∼D1} ⇒ {D2, . . . , Dn}
{C1, . . . , Cm, ∼D1, ∼D2} ⇒ {D3, . . . , Dn}

...

{C1, . . . , Cm, ∼D1, . . . , ∼Dn} ⇒ ∅

are derivable by repeated application of (R2b). If the last of these is derivable, then

{C1, . . . , Cm, ∼D2, . . . , ∼Dn} ⇒ {D1}
{C1, . . . , Cm, ∼D3, . . . , ∼Dn} ⇒ {D1, D2}

...

{C1, . . . , Cm} ⇒ {D1, . . . , Dn}
are derivable by repeated application of (R9a).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.2. SOUNDNESS AND COMPLETENESS 177

Since it is easily seen that � secures � if and only if � ∪ ∼� is unsatisfiable,

proving that if � secures �, then � ⇒ � is derivable, which is what we want to do,

reduces to showing that any consistent set is satisfiable. (For if � secures �, then

� ∪ ∼� is unsatisfiable, and supposing we have succeeded in showing that it would

be satisfiable if it were consistent, it follows � ∪ ∼� is inconsistent, and so by the

preceding lemma � ⇒ � is derivable.) By the main lemma of the preceding chapter,

in order to show every consistent set is satisfiable, it will suffice to show that the set S
of all consistent sets has the satisfiability properties (S0)–(S8). (For any consistent

set � will by definition belong to S, and what Lemma 13.3 tells us is that if S has the

satisfaction properties, then any element of S is satisfiable.) This we now proceed to

verify, recalling the statements of properties (S0)–(S8) one by one as we prove S has

them.

Consider (S0). This says that if � is in S and �0 is a subset of �, then �0 is in S.

So what we need to prove is that if � ⇒ ∅ is not derivable, and �0 is a subset of �,

then �0 ⇒∅ is not derivable. Contraposing, this is equivalent to proving:

(S0) If �0 ⇒∅ is derivable, and �0 is a subset of �, then � ⇒∅ is derivable.

We show this by indicating how to extend any given derivation of �0 ⇒∅ to a

derivation of � ⇒∅. In fact, only one more step need be added, as follows:

...

�0 ⇒ ∅ Given

� ⇒ ∅. (R1)

(Here the three dots represent the earlier steps of the hypothetical derivation of

�0 ⇒∅.)

For each of (S1)–(S8) we are going to give a restatement, in contraposed form, of

what is to be proved, and then show how to prove it by extending a given derivation

to a derivation of the sequent required. First (S1)

(S1) If A and ∼A are both in �, then � ⇒∅ is derivable.

The hypothesis may be restated as saying that {A, ∼A} is a subset of �. We then have

{A} ⇒ {A} (R0)

{A, ∼A} ⇒ ∅ (R2a)

� ⇒ ∅. (R1)

As for (S2), literally, this says that:

(S2) If � ⇒∅ is not derivable and ∼∼B is in �, then � ∪ {B} ⇒∅ is not derivable.

Contraposing, this says that if � ∪ {B} ⇒∅ is derivable and ∼∼B is in �, then

� ⇒∅ is derivable. What we actually show is that if � ∪ {B} ⇒∅ is derivable, then

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

178 PROOFS AND COMPLETENESS

whether or not ∼∼B is in �, � ∪ {∼∼B} ⇒ ∅ is derivable. In case ∼∼B is in �, we

have � ∪ {∼∼B} = �, so what we actually show is something a little more general

than what we need:

...

� ∪ {B} ⇒ ∅ Given

� ⇒ {∼B} (R2b)

� ∪ {∼∼B} ⇒ ∅. (R2a)

Analogous remarks apply to (S3)–(S8) below.

(S3) If � ∪ {B} ⇒ ∅ and � ∪ {C} ⇒ ∅ are both derivable, then � ∪ {B ∨ C} ⇒ ∅
is derivable.

Here we concatenate the two given derivations, writing one after the other:

...

� ∪ {B} ⇒ ∅ Given
...

� ∪ {C} ⇒ ∅ Given

� ∪ {B ∨ C} ⇒ ∅. (R4)

(S4) If either � ∪ {∼B} ⇒∅ or � ∪ {∼C} ⇒∅ is derivable, then

� ∪ {∼(B ∨ C)} ⇒∅ is derivable.

The two cases are exactly alike, and we do only the first:

...

� ∪ {∼B} ⇒ ∅ Given

� ⇒ {B} (R9a)

� ⇒ {B, C} (R1)

� ⇒ {B ∨ C} (R3)

� ∪ {∼(B ∨ C)} ⇒ ∅. (R2a)

(S5) If � ∪ {B(c)} ⇒∅ is derivable, where c does not occur in � ∪ {∃x B(x)}, then

� ∪ {∃x B(x)} ⇒∅ is derivable:

...

� ∪ {B(c)} ⇒ ∅ Given

� ∪ {∃x B(x)} ⇒ ∅. (R6)

Note that the hypothesis that c does not occur in � or ∃x B(x) (nor of course in ∅)

means that the side conditions for the proper application of (R6) are met.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.3. OTHER PROOF PROCEDURES AND HILBERT’S THESIS 179

(S6) If � ∪ {∼B(t)} ⇒ ∅ is derivable for some closed term t , then

� ∪ {∼∃x B(x)} ⇒∅ is derivable:

...

� ∪ {∼B(t)} ⇒ ∅ Given

� ⇒ {B(t)} (R9a)

� ⇒ {∃x B(x)} (R5)

� ∪ {∼∃x B(x)} ⇒ ∅. (R2a)

(S7) � ∪ {t = t} ⇒∅ derivable for some closed term t , then � ⇒∅ is derivable:

...

� ∪ {t = t} ⇒ ∅ Given

� ⇒ ∅. (R7)

(S8) If � ∪ {B(t)} ⇒∅ is derivable, then � ∪ {B(s), s = t} ⇒∅ is derivable:

...

� ∪ {B(t)} ⇒ ∅ Given

� ⇒ {∼B(t)} (R2b)

� ∪ {s = t} ⇒ {∼B(s)} (R8a)

� ∪ {s = t, B(s)} ⇒ ∅. (R9b)

This verification finishes the proof of completeness.

14.3* Other Proof Procedures and Hilbert’s Thesis

A great many other sound and complete proof procedures are known. We begin by

considering modifications of our own procedure that involve only adding or dropping

a rule or two, and first of all consider the result of dropping (R9). The following

lemma says that it will not be missed. Its proof gives just a taste of the methods of

proof theory, a branch of logical studies that otherwise will be not much explored in

this book.

14.15 Lemma (Inversion lemma). Using (R0)–(R8):

(a) If there is a derivation of � ∪ {∼A} ⇒ �, then there is a derivation of

� ⇒ {A} ∪ �.

(b) If there is a derivation of � ⇒ {∼A} ∪ �, then there is a derivation of

� ∪ {A} ⇒ �.

Proof: The two parts are similarly proved, and we do only (a). A counterexample to

the lemma would be a derivation of a sequent � ∪ {∼A} ⇒ � for which no derivation

of � ⇒ {A} ∪ � is possible. We want to show there can be no counterexample by

showing that a contradiction follows from the supposition that there is one. Now if

there are any counterexamples, among them there must be one that is as short as

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

180 PROOFS AND COMPLETENESS

possible, so that no strictly shorter derivation would be a counterexample. So suppose

that � ∪ {∼A} ⇒ � is the sequent derived in such a shortest possible counterexample.

We ask by what rule the last step � ∪ {∼A} ⇒ � could have been justified.

Could it have been (R0)? If that were so, the counterexample would simply be

the one-step derivation of {∼A} ⇒ {∼A}, and we would have � = ∅, � = {∼A}.
The sequent � ⇒ {A} ∪ � for which supposedly no derivation exists would then just

be ⇒ {A, ∼A}. But there is a derivation of this sequent, in two steps, starting with

{A} ⇒ {A} by (R0) and proceeding to ⇒ {A, ∼A} by (R2a). So (R0) is excluded,

and � ∪ {∼A} ⇒ � must have been inferred from some earlier step or steps by one

of the other rules.

Could it have been (R3)? If that were so, the counterexample would be a derivation

of

� ∪ {∼A} ⇒ {(B ∨ C)} ∪ �′

where the last step was obtained from

� ∪ {∼A} ⇒ {B, C} ∪ �′.

But then, since the derivation down to this last-displayed sequent is too short to be a

counterexample, there will be a derivation of

� ⇒ {A} ∪ {B, C} ∪ �′,

and by applying (R3) we can then get

� ⇒ {A} ∪ {(B ∨ C)} ∪ �′,

which is precisely what we are supposed not to be able to get in the case of a

counterexample to the lemma. Thus (R3) is excluded. Moreover, every case where

∼A is not an entering sentence is excluded for entirely similar reasons.

There remain to be considered three cases where ∼A is an entering sentence. One

case where ∼A enters arises when � ∪ {∼A} ⇒ � is obtained by (R1) from �′ ⇒ �′,
where �′ is a subset of � not containing ∼A and �′ is a subset of �. But in this case

� ⇒ {A} ∪ � equally follows by (R1) from �′ ⇒ �′, and we have no counterexample.

If ∼A enters when � ∪ {∼A} ⇒ � is obtained by (R2b), the premiss must be

� ⇒ {A} ∪ � itself or � ∪ {∼A} ⇒ {A} ∪ �, and in the latter case, since the deriva-

tion of the premiss is too short to be a counterexample, there must exist a derivation

of � ⇒ {A} ∪ {A} ∪ � or � ⇒ {A} ∪ �; so we have no counterexample.

The other case where ∼A enters arises when ∼A is of the form ∼B(s) and the last

lines of the derivation are

� ∪ {∼B(t)} ⇒ �

� ∪ {s = t, ∼B(s)} ⇒ �

using (R8b).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.3. OTHER PROOF PROCEDURES AND HILBERT’S THESIS 181

to which may be added the step

� ∪ {s = t} ⇒ {B(s)} ∪ �

which follows by (R8a), and again we have no counterexample.

14.16 Corollary. Any sequent derivable using (R0)–(R9) is in fact derivable using only

(R0)–(R8).

Proof: Suppose there were a counterexample, that is, a derivation using (R0)–(R9)

the last step � ⇒ � of which was not derivable using just (R0)–(R8). Among all such

derivations, consider a derivation � that is as short as possible for a counterexample.

� ⇒ � is not of the form {A} ⇒ {A}, since any sequent of that form can be derived

in one step by (R0). So in � the sequent � ⇒ � is inferred by from one or more

premisses appearing as earlier steps. Since the derivation down to any earlier step is

too short to be a counterexample, for each premiss there is a derivation of it using

just (R0)–(R8). If there is only one premiss, let �0 be such a derivation of it. If there

are more than one premiss, let �0 be the result of concatenating such a derivation

for each premiss, writing one after the other. In either case, �0 is a derivation using

only (R0)–(R8) that includes any and all premisses among its steps. Let �′ be the

derivation that results on adding � ⇒ � as one last step, inferred by the same rule as

in �. If that rule was one of (R0)–(R8), we have a derivation of � ⇒ � using only

(R0)–(R8). If the rule was (R9a), then � is of the form {A} ∪ �′, where we have a

derivation of � ∪ {∼A} ⇒ �′ using only (R0)–(R8). In that case, the inversion lemma

tells us we have a derivation of � ⇒ �, that is, of � ⇒ {A} ∪ �′, using only (R0)–

(R8). Likewise if the rule was (R9b). So in any case, we have a derivation of � ⇒ �

using only (R0)–(R8), and our original supposition that we had a counterexample has

led to a contradiction, completing the proof.

14.17 Corollary. The proof procedure consisting of rules (R0)–(R8) is sound and

complete.

Proof: Soundness is immediate from the soundness theorem for (R0)–(R9), since

taking away rules cannot make a sound system unsound. Completeness follows from

completeness for (R0)–(R9) together with the preceding corollary.

Instead of dropping (R9), one might consider adding the following.

� ⇒ {(A → B)} ∪ �(R10)

� ⇒ {A} ∪ �

� ⇒ {B} ∪ �
.

14.18 Lemma (Cut elimination theorem). Using (R0)–(R9), if there are derivations of

� ⇒ {(A → B)} ∪ � and of � ⇒ {A} ∪ �, then there is a derivation of � ⇒ {B} ∪ �.

14.19 Corollary. Any sequent derivable using (R0)–(R10) is in fact derivable using

only (R0)–(R9).

14.20 Corollary. The proof procedure consisting of rules (R0)–(R10) is sound and

complete.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

182 PROOFS AND COMPLETENESS

Proofs: We begin with Corollary14.20. It is easily seen that rule (R10) is sound,

so soundness for (R0)–(R10) follows from the soundness theorem for (R0)–(R9).

Completeness for (R0)–(R10) follows from the completeness theorem for (R0)–(R9),

since adding rules cannot make a complete system incomplete.

Now Corollary14.19 follows, since the same sequents are derivable in any two

sound and complete proof procedures: by Corollary14.17 a sequent will be derivable

using (R0)–(R10) if and only if it is secure, and by Theorems 14.1 and 14.2 it will be

secure if and only if it is derivable using (R0)–(R9).

And now Lemma 14.18 follows also, since if there are derivations of� ⇒ {(A → B)}
∪ � and of � ⇒ {A} ∪ � using (R0)–(R9), then there is certainly a derivation of

� ⇒ {B} ∪ � using (R0)–(R10) [namely, the one consisting simply of concatenating

the two given derivations and adding a last line inferring � ⇒ {B} ∪ � by (R10)],

and by Corollary 14.19, this implies there must be a derivation of � ⇒ {B} ∪ � using

only (R0)–(R9).

Note the contrast between the immediately foregoing proof of the cut elimina-

tion lemma, Lemma 14.18, and the earlier proof of the inversion lemma, Lemma

14.15. The inversion proof is constructive: it actually contains implicit instructions

for converting a derivation of � ∪ {∼A} ⇒ � into a derivation of � ⇒ {A} ∪ �.

The cut elimination proof we have given is nonconstructive: it gives no hint how

to find a derivation of � ⇒ {B} ∪ � given derivations of � ⇒ {A} ∪ � and � ⇒
{(A → B)} ∪ �, though it promises us that such a derivation exists.

A constructive proof of the corollary is known, Gentzen’s proof, but it is very

much more complicated than the proof of the inversion lemma, and the result is that

while the derivation of � ⇒ {A} ∪ � obtained from the proof of the inversion lemma

is about the same length as the given derivation of � ∪ {∼A} ⇒ �, the derivation

of � ⇒ {B} ∪ � obtained from the constructive proof of the foregoing corollary

may be astronomically longer than the given derivations of � ⇒ {(A → B)} ∪ � and

� ⇒ {A} ∪ � combined.

So much for dropping (R9) or adding (R10). A great deal more adding and dropping

of rules could be done. If enough new rules are added, some of our original rules

(R0)–(R8) could then be dropped, since the effect of them could be achieved using

the new rules. If we allowed & and ∀ officially, we would want rules for them, and the

addition of these rules might make it possible to drop some of the rules for ∨ and ∃,

if indeed we did not choose to drop ∨ and ∃ altogether from our official language,

treating them as abbreviations. Similarly for → and ↔.

In all the possible variations mentioned in the preceding paragraph, we were

assuming that the basic objects would still be sequents � ⇒ �. But variation is

possible in this respect as well. It is possible, with the right selection of rules, to get

by working only with sequents of form � ⇒ {D} (in which case one would simply

write � ⇒ D), making deduction the central notion. It is even possible to get by work-

ing only with sequents of form � ⇒ ∅ (in which case one would simply write �),

making refutation the central notion. Indeed, it is even possible to get by working

only with sequents of form ∅⇒ {D} (which in one would simply write D), making

demonstration the central notion.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

14.3. OTHER PROOF PROCEDURES AND HILBERT’S THESIS 183

Just by way of illustration, the rules for a variant approach in which ∼ and → and

∀ and = are the official logical operators, and in which one works only with sequents

of form � ⇒ D, are listed in Table 14-5.

Table 14-5. Rules of a variant sequent calculus

(Q0) � ⇒ A A in �

(Q1) � ⇒ A → B
� ⇒ A

� ⇒ B

(Q2) �, A ⇒ B

� ⇒ A → B

(Q3) � ⇒ ∼∼A

� ⇒ A

(Q4) �, A ⇒ B
�, A ⇒ ∼B

� ⇒ ∼A

(Q5) � ⇒ ∀x A(x)

� ⇒ A(t)

(Q6) � ⇒ A(c)

� ⇒ ∀x A(x) c not in � or A(x)

(Q7) � ⇒ s = t
� ⇒ A(s)

� ⇒ A(t)

(Q8) � ⇒ t = t

This variation can be proved sound and complete in the sense that a sequent � ⇒ D
will be obtainable by these rules if and only if D is a consequence of �. We give one

sample deduction to give some idea how the rules work.

14.21 Example. A deduction.

(1) ∼A → ∼B, B, ∼A ⇒ ∼A → ∼B (Q0), (i)

(2) ∼A → ∼B, B, ∼A ⇒ ∼A (Q0), (iii)

(3) ∼A → ∼B, B, ∼A ⇒ ∼B (Q1), (1), (2)

(4) ∼A → ∼B, B, ∼A ⇒ B (Q0), (ii)

(5) ∼A → ∼B, B ⇒ ∼∼A (Q4), (3), (4)

(6) ∼A → ∼B, B ⇒ A (Q3), (5)

(7) ∼A → ∼B ⇒ B → A (Q2), (6)

The lowercase Roman numerals (i)–(iii) associated with (Q0) indicate whether it is the

first, second, or third sentence in �= {∼A → ∼B, B, ∼A} that is playing the role of A in

the rule (Q0).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

184 PROOFS AND COMPLETENESS

In addition to such substantive variations as we have been discussing, considerable

variations in style are possible, and in particular in typographical layout. For instance,

if one opens an introductory textbook, one may well encounter something like what

appears in Figure 14-1.

(i) ~A → ~B

(ii) B

(iii) ~A

(1) ~A → ~B (Q0), (i)

(2) ~A (Q0), (iii)

(3) ~B (Q1), (1), (2)

(4) B (Q0), (ii)

(5) ~~A (Q4), (3), (4)

(6) A (Q3), (5)

(7) B → A (Q2), (6)

Figure 14-1. A ‘natural deduction’.

What appears in Figure 14-1 is really the same as what appears in Example 14.21,

differently displayed. The form of display adopted in this book, as illustrated in

Example 14.21, is designed for convenience when engaged in theoretical writing

about deductions. But when engaged in the practical writing of deductions, as in

introductory texts, the form of display in Figure 14-1 is more convenient, because it

involves less rewriting of the same formula over and over again. In lines (1)–(7) in

Figure 14-1, one only writes the sentence D on the right of the sequent � ⇒ D that

occurs at the corresponding line in Example 14.21. Which of the sentences (i), (ii),

(iii) occur in the set � on the left of that sequent is indicated by the spatial position
where D is written: if it is written in the third column, all of (i)–(iii) appear; if in the

second, only (i) and (ii) appear; if in the first, only (i). Colloquially one sometimes

speaks of deducing a conclusion D ‘under’ certain hypotheses �, but in the form of

display illustrated in Figure 14-1, the spatial metaphor is taken quite literally.

It would take us too far afield to enter into a detailed description of the conventions

of this form of display, which in any case can be found expounded in many introduc-

tory texts. The pair of examples given should suffice to make our only real point here:

that what is substantively the same kind of procedure can be set forth in very different

styles, and indeed appropriately so, given the different purposes of introductory texts

and of more theoretical books like this one. Despite the diversity of approaches pos-

sible, the aim of any approach is to set up a system of rules with the properties that if

D is deducible from �, then D is a consequence of � (soundness), and that if D is a

consequence of �, then D is formally deducible from � (completeness). Clearly, all
systems of rules that achieve these aims will be equivalent to each other in the sense

that D will be deducible from � in the one system if and only if D is deducible from

� in the other system. Except for one optional section at the end of the next chapter,

there will be no further mention of the details of our particular proof procedure in the

rest of this book.

A word may now be said about the relationship between any formal notion, whether

ours or a variant, of deduction of a sentence from a set of sentences, and the notion in

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

PROBLEMS 185

unformalized mathematics of a proof of a theorem from a set of axioms. For in later

chapters we are going to be establishing results about the scope and limits of formal

deducibility whose interest largely depends on their having something to do with proof

in a more ordinary sense (just as results about the scope and limits of computability

in one or another formal sense discussed in other chapters depend for their interest

on their having something to do with computation in a more ordinary sense).

We have already mentioned towards the end of Chapter 10 that theorems and

axioms in ordinary mathematics can virtually always be expressed as sentences of

a formal first-order language. Suppose they are so expressed. Then if there is a

deduction in the logician’s formal sense of the theorem from the axioms, there will

be a proof in the mathematician’s ordinary sense, because, as indicated earlier, each

formal rule of inference in the definition of deduction corresponds to some ordinary

mode of argument as used in mathematics and elsewhere. It is the converse assertion,

that if there is a proof in the ordinary sense, then there will be a deduction in our very

restrictive format, that may well seem more problematic. This converse assertion is

sometimes called Hilbert’s thesis.

As the notion of ‘proof in the ordinary sense’ is an intuitive, not a rigorously defined

one, there cannot be a rigorous proof of Hilbert’s thesis. Before the completeness

theorem was discovered, a good deal of evidence of two kinds had already been

obtained for the thesis. On the one hand, logicians produced vast compendia of

formalizations of ordinary proofs. On the other hand, various independently proposed

systems of formal deducibility, each intended to capture formally the ordinary notion

of provability, had been proved equivalent to each other by directly showing how to

convert formal deductions in one format into formal deductions in another format;

and such equivalence of proposals originally advanced independently of each other,

while it does not amount to a rigorous proof that either has succeeded in capturing

the ordinary notion of provability, is surely important evidence in favor of both.

The completeness theorem, however, makes possible a much more decisive argu-

ment in favor of Hilbert’s thesis. The argument runs as follows. Suppose there is a

proof in the ordinary mathematical sense of some theorem from some axioms. As

part-time orthodox mathematicians ourselves, we presume ordinary mathematical

methods of proof are sound, and if so, then the existence of an ordinary mathematical

proof means that the theorem really is a consequence of the axioms. But if the theo-

rem is a consequence of the axioms, then the completeness theorem tells us that, in

agreement with Hilbert’s thesis, there will be a formal deduction of the theorem from

the axioms. And when in later chapters we show that there can be no formal deduction

in certain circumstances, it will follow that there can be no ordinary proof, either.

Problems

14.1 Show that:

(a) � secures � if and only if � ∪ ∼� is unsatisfiable.

(b) � secures � if and only if some finite subset of � secures some finite

subset of �.

14.2 Explain why the problems following this one become more or less trivial if

one is allowed to appeal to the soundness and completeness theorems.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-14 CB421-Boolos July 27, 2007 17:7 Char Count= 0

186 PROOFS AND COMPLETENESS

Unless otherwise specified, ‘derivable’ is to mean ‘derivable using (R0)–

(R8)’. All proofs should be constructive, not appealing to the soundness and
completeness theorems.

14.3 Show that if �, A, B ⇒ � is derivable, then �, A & B ⇒ � is derivable.

14.4 Show that if � ⇒ A, � and � ⇒ B, � are derivable, then � ⇒ A & B, � is

derivable.

14.5 Show that if � ⇒ A(c), � is derivable, then � ⇒ ∀x A(x), � is derivable,

provided c does not appear in �, �, or A(x).

14.6 Show that if �, A(t) ⇒ � is derivable, then �, ∀x A(x) ⇒ � is derivable.

14.7 Show that ∀x Fx & ∀ xGx is deducible from ∀x(Fx & Gx).

14.8 Show that ∀x (Fx & Gx) is deducible from ∀xFx & ∀xGx.

14.9 Show that the transitivity of identity, ∀x∀y∀z(x = y & y = z → x = z) is

demonstrable.

14.10 Show that if �, A(s) ⇒ � is derivable, then �, s = t , A(t) ⇒ � is derivable.

14.11 Prove the following (left) inversion lemma for disjunction: if there is a deriva-

tion of � ⇒ {(A ∨ B)} ∪ � using rules (R0)–(R8), then there is such a deriva-

tion of � ⇒ {A, B} ∪ �.

14.12 Prove the following (right) inversion lemma for disjunction: if there is a deriva-

tion of � ∪ {(A ∨ B)} ⇒ �, then there is a derivation of � ∪ {A} ⇒ �, and

there is a derivation of � ∪ {B} ⇒ �.

14.13 Consider adding one or the other of the following rules to (R0)–(R8):

(R11) � ∪ {A} ⇒ �

� ⇒ {A} ∪ �

� ⇒ �
.

(R12) � ∪ {(A ∨ ∼A)} ⇒ �

� ⇒ �
.

Show that a sequent is derivable on adding (R11) if and only if it is derivable

on adding (R12).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

15

Arithmetization

In this chapter we begin to bring together our work on logic from the past few chapters
with our work on computability from earlier chapters (specifically, our work on recursive
functions from Chapters 6 and 7). In section 15.1 we show how we can ‘talk about’ such
syntactic notions as those of sentence and deduction in terms of recursive functions, and
draw among others the conclusion that, once code numbers are assigned to sentences in
a reasonable way, the set of valid sentences is semirecursive. Some proofs are deferred
to sections 15.2 and 15.3. The proofs consist entirely of showing that certain effectively
computable functions are recursive. Thus what is being done in the two sections men-
tioned is to present still more evidence, beyond that accumulated in earlier chapters, in
favor of Church’s thesis that all effectively computable functions are recursive. Readers
who feel they have seen enough evidence for Church’s thesis for the moment may regard
these sections as optional.

15.1 Arithmetization of Syntax

A necessary preliminary to applying our work on computability, which pertained to

functions on natural numbers, to logic, where the objects of study are expressions of a

formal language, is to code expressions by numbers. Such a coding of expressions is

called a Gödel numbering. One can then go on to code finite sequences of expressions

and still more complicated objects.

A set of symbols, or expressions, or more complicated objects may be called

recursive in a transferred or derivative sense if and only if the set of code numbers

of elements of the set in question is recursive. Similarly for functions. Officially, a

language is just a set of nonlogical symbols, so a language may be called recursive

if and only if the set of code numbers of symbols in the language is recursive. In

what follows we tacitly assume throughout that the languages we are dealing with

are recursive: in practice we are going to be almost exclusively concerned with finite
languages, which are trivially so.

There are many reasonable ways to code finite sequences, and it does not really

matter which one we choose. Almost all that matters is that, for any reasonable choice,

the following concatenation function will be recursive: s ∗ t = the code number for

the sequence consisting of the sequence with code number s followed by the sequence

with code number t . This is all that is needed for the proof of the next proposition,

187

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

188 ARITHMETIZATION

in which, as elsewhere in this section, ‘recursive’ could actually be strengthened to

‘primitive recursive’.

So that the reader may have something definite in mind, let us offer one example

of a coding scheme. It begins by assigning code numbers to symbols as in Table 15-1.

Table 15-1. Gödel numbers of symbols (first scheme)

Symbol (∼ ∃ = v0 A0
0 A1

0 A2
0 . . . f 0

0 f 1
0 f 2

0 . . .

) ∨ v1 A0
1 A1

1 A2
1 . . . f 0

1 f 1
1 f 2

1 . . .

, v2 A0
2 A1

2 A2
2 . . . f 0

2 f 1
2 f 2

2 . . .

...
...

...
...

...
...

...

Code 1 2 3 4 5 6 68 688 . . . 7 78 788 . . .

19 29 59 69 689 6889 . . . 79 789 7889 . . .

199 599 699 6899 68899 . . . 799 7899 78899 . . .

...
...

...
...

...
...

...

Thus for the language of arithmetic < or A2
0 has code number 688, 0 or f 0

0 has

code number 7′, or f 1
0 has code number 78, + or f 2

0 has code number 788, and · or

f 2
1 has code number 7889. We then extend the code numbering to all finite sequences

of symbols. The principle is that if the expression E has code number e and the

expression D has code number d , then the expression ED obtained by concatenating

them is to have the code number whose decimal numeral is obtained by concatenating

the decimal numeral for e and the decimal numeral for d . Thus (0 = 0 ∨ ∼0 = 0), the

sequence of symbols with code numbers

1, 7, 4, 7, 29, 2, 7, 4, 7, 19

has code number 174 729 274 719.

In general the code number for the concatenation of the expressions with code

numbers e and d can be obtained from e and d as e ∗ d = e · 10lg(d,10)+1 + d, where

lg is the logarithm function of Example 7.11. For lg(d, 10) + 1 will be the least

power z such that d < 10z , or in other words, the number of digits in the decimal

numeral for d , and thus the decimal numeral for e · 10lg(d,10)+1 will be that for e
followed by as many 0 s as there are digits in that for d, and the decimal numeral for

e · 10lg(d,10)+1 + d will be that for e followed by that for d.

15.1 Proposition. The logical operations of negation, disjunction, existential quantifi-

cation, substitution of a term for free occurrences of a variable, and so on, are recursive.

Proof: Let n be the code number for the tilde, and let neg be the recursive func-

tion defined by letting neg(x) = n ∗ x . Then if x is the code number for a formula,

neg(x) will be the code number for its negation. (We do not care what the function

does with numbers that are not code numbers of formulas.) This is what is meant by

saying that the operation of negation is recursive. Similarly, if l and d and r are the

code numbers for the left parenthesis and wedge and right parenthesis, disj(x, y) =
l ∗ x ∗ d ∗ y ∗ r will be the code number for the disjunction of the formulas coded by

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

15.1. ARITHMETIZATION OF SYNTAX 189

x and y. If e is the code number for the backwards E, then exquant(v, x) = e ∗ v ∗ x
will be the code number for the existential quantification with respect to the variable

with code number v of the formula with code number x . And similarly for as many

other logical operations as one cares to consider. For instance, if officially the con-

junction (X & Y) is an abbreviation for ∼(∼X ∨ ∼Y), the conjunction function is then

the composition conj (x, y) = neg(disj(neg (x), neg(y))). The case of substitution is

more complicated, but as we have no immediate need for this operation, we defer the

proof.

Among sets of expressions, the most important for us will be simply the sets of

formulas and of sentences. Among more complicated objects, the only important

ones for us will be deductions, on whatever reasonable proof procedure one prefers,

whether ours from the preceding chapter, or some other from some introductory

textbook. Now intuitively, one can effectively decide whether or not a given sequence

of symbols is a formula, and if so, whether it is a sentence. Likewise, as we mentioned

when introducing our own proof procedure, one can effectively decide whether a

given object D is a deduction of a given sentence from a given finite set of sentences

�0. If � is an infinite set of sentences, then a deduction of D from � is simply a

deduction of D from some finite subset of �0, and therefore, so long as one can
effectively decide whether a given sentence C belongs to �, and hence can effectively

decide whether a given finite set �0 is a subset of �, one can also effectively decide

whether a given object is a deduction of D from �. Church’s thesis then implies the

following.

15.2 Proposition. The sets of formulas and of sentences are recursive.

15.3 Proposition. If � is a recursive set of sentences, then the relation ‘� is a deduction

of sentence D from �’ is recursive.

Collectively, Propositions 15.1–15.3 (and their various attendant lemmas and

corollaries) are referred to by the imposing title at the head of this section.

Before concerning ourselves with the proofs of these propositions, let us note a

couple of implications.

15.4 Corollary. The set of sentences deducible from a given recursive set of sentences

is semirecursive.

Proof: What is meant is that the set of code numbers of sentences deducible from

a given recursive set is semirecursive. To prove this we apply Proposition 15.3. What

is meant by the statement of that proposition is that if � is recursive, then the relation

Rsd ↔ d is the code number of a sentence and

s is the code number of a deduction of it from �

is recursive. And then the set S of code numbers of sentences deducible from �, being

given by Sd ↔ ∃s Rsd , will be semirecursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

190 ARITHMETIZATION

15.5 Corollary (Gödel completeness theorem, abstract form). The set of valid sen-

tences is semirecursive.

Proof: By the Gödel completeness theorem, the set of valid sentences is the same

as the set of demonstrable sentences, that is, as the set of sentences deducible from

� =∅. Since the empty set ∅ is certainly recursive, it follows from the preceding

corollary that the set of valid sentences is semirecursive.

The preceding corollary states as much of the content of the Gödel completeness

theorem as it is possible to state without mentioning any particular proof procedure.

The next corollary is more technical, but will be useful later.

15.6 Corollary. Let � be a recursive set of sentences in the language of arithmetic, and

D(x) a formula of that language. Then:

(a) The set of natural numbers n such that D(n) is deducible from � is semirecursive.

(b) The set of natural numbers n such that ∼D(n) is deducible from � is semirecursive.

(c) If for every n either D(n) or ∼D(n) is deducible from �, then the set of n such that

D(n) is deducible from � is recursive.

Proof: For (a), we actually show that the set R of pairs (d, n) such that d is the

code number for a formula D(x) and D(n) is deducible from � is semirecursive. It

immediately follows that for any one fixed D(x), with code number d, the set of n such

that D(n) is deducible from � will be semirecursive, since it will simply be the set of n
such that Rdn. To avoid the need to consider substituting a term for the free occurrences

of a variable (the one operation mentioned in Proposition 15.1 the proof of whose

recursiveness we deferred), first note that for any n, D(n) and ∃x(x = n & D(x)) are

logically equivalent, and one will be a consequence of, or equivalently, deducible

from, � if and only if the other is. Now note that the function taking a number

n to the code number num(n) for the numeral n is (primitive) recursive, for recalling

that officially s′ is ′(s) we have

num(0) = z num(n′) = a ∗ b ∗ num(n) ∗ c

where z is the code number for the cipher 0 and a, b, and c are the code numbers for

the accent and the left and right parentheses. The function f taking the code number

d for a formula D(x) and a number n to the code number for ∃x(x = n & D(x)) is

recursive in consequence of Proposition 15.1, since we have

f (d, n) = exquant(ν, conj(i ∗ b ∗ ν ∗ k ∗ num(n) ∗ c), d)

where v is the code number for the variable, i for the equals sign, k for the comma.

The set S of code numbers of sentences that are deducible from � is semirecursive

by Corollary 15.4. The set R of pairs is then given by

R(d, n) ↔ S(f (d, n)).

In other words, R is obtained from the semirecursive set S by substituting the recursive

total function f , which implies that R is itself semirecursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

15.1. ARITHMETIZATION OF SYNTAX 191

As for (b), we actually show that the set Q of pairs (d, n) such that d is the code

number for a formula D(x) and ∼D(n) is deducible from � is semirecursive. Indeed,

with R as in part (a) we have

Q(d, n) ↔ R(neg(d), n).

So Q is obtained from the semirecursive R by substitution of the recursive total

function neg, which implies that Q is itself semirecursive.

Obviously there is nothing special about negation as opposed to other logical

constructions here. For instance, in the language of arithmetic, we could consider the

operation taking D(x) not to ∼D(x) but to, say,

D(x) & ∼∃y < x D(y)

and since the relevant function on code numbers would still, like neg, be recursive in

consequence of Proposition 15.1, so the set of pairs (d, n) such that

D(n) & ∼∃y < nD(y)

is deducible from � is also semirecursive. We are not going to stop, however, to try

to find the most general formulation of the corollary.

As for (c), if for any n both D(n) and ∼D(n) are deducible from �, then every
formula is deducible from �, and the set of n such that D(n) is deducible from �

is simply the set of all natural numbers, which is certainly recursive. Otherwise, on

the assumption that for every n either D(n) or ∼D(n) is deducible from �, the set

of n for which D(n) is deducible and the set of n for which ∼D(n) is deducible are

complements of each other. Then (c) follows from (a) and (b) by Kleene’s theorem

(Proposition 7.16).

There is one more corollary worth setting down, but before stating it we introduce

some traditional terminology. We use ‘� proves D’, written � � D or �� D, inter-

changeably with ‘D is deducible from �’. The sentences proved by � we call the

theorems of �. We conscript the word theory to mean a set of sentences that contains
all the sentences of its language that are provable from it. Thus the theorems of a

theory T are just the sentences in T , and �T B and B ∈ T are two ways of writing

the same thing.

Note that we do not require that any subset of a theory T be singled out as ‘axioms’.

If there is a recursive set � of sentences such that T consists of all and only the senten-

ces provable from �, we say T is axiomatizable. If the set � is finite, we say T is

finitely axiomatizable. We have already defined a set � of sentences to be complete
if for every sentence B of its language, either B or ∼B is a consequence of �, or

equivalently, is provable from �. Note that for a theory T , T is complete if and only

if for every sentence B of its language, either B or ∼B is in T . Similarly, a set � is

consistent if not every sentence is a consequence of �, so a theory T is consistent if

not every sentence of its language is in T. A set � of sentences is decidable if the set

of sentences of its language that are consequences of �, or equivalently, are proved by

�, is recursive. Note that for a theory T , T is decidable if and only if T is recursive.

This terminology is used in stating our next result.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

192 ARITHMETIZATION

15.7 Corollary. Let T be an axiomatizable theory. If T is complete, then T is decidable.

Proof: Throughout, ‘sentence’ will mean ‘sentence of the language of T ’. The

assumption that T is an axiomatizable theory means that T is the set of sentences

provable from some recursive set of sentences �. We write T* for the set of code
numbers of theorems of T . By Corollary 15.4, T* is semirecursive. To show that T is

decidable we need to show that T* is in fact recursive. By Proposition 15.2, T* will

be so if it is simply the set of all code numbers of sentences, so let us consider the case

where this is not so, that is, where not every sentence is a theorem of T . Since every

sentence would be a theorem of T if for any sentence D it happened that both D and

∼D were theorems of T , for no sentence D can this happen. On the other hand, the

hypothesis that T is complete means that for every sentence D, at least one of D and

∼D is a theorem of T . It follows that D is not a theorem of T if and only if ∼D is a

theorem of T . Hence the complement of T* is the union of the set X of those numbers

n that are not code numbers of sentences at all, and the set Y of code numbers of

sentences whose negations are theorems of T , or in other words, the set of n such

that neg(n) is in T*. X is recursive by Proposition 15.2. Y is semirecursive, since it is

obtainable by substituting the recursive function neg in the semirecursive set T*. So

the complement of T* is semirecursive, as was T* itself. That T* is recursive follows

by Kleene’s theorem (Proposition 7.16).

It ‘only’ remains to prove Propositions 15.2 and 15.3. In proving them we are once

again going to be presenting evidence for Church’s thesis: we are one more time going

to be showing that certain sets and functions that must be recursive if Church’s thesis

is correct are indeed recursive. Many readers may well feel that by this point they have

seen enough evidence, and such readers may be prepared simply to take Church’s

thesis on trust in future. There is much to be said for such an attitude, especially since

giving the proofs of these propositions requires going into details about the Gödel

numbering, the scheme of coding sequences, and the like, that we have so far largely

avoided; and it is very easy to get bogged down in such details and lose sight of

larger themes. (There is serious potential for a woods–trees problem, so to speak.)

Readers who share the attitude described are therefore welcome to postpone sine die
reading the proofs that fill the rest of this chapter. Section 15.2 concerns (the deferred

clause of Proposition 15.1 as well as) Proposition 15.2, while section 15.3 concerns

Proposition 15.3.

15.2* Gödel Numbers

We next want to indicate the proof of Proposition 15.2 (also indicating, less fully, the

proof of the one deferred clause of Proposition 15.1, on the operation of substituting

a term for the free occurrences of a variable in a formula). The Gödel numbering

we gave by way of illustration near the beginning of this chapter is not, in fact, an

especially convenient one to work with here, mainly because it is not so easy to show

that such functions as the one that gives the the length (that is, number of symbols)

in the expression with a given code number are primitive recursive. An alternative

way of assigning code numbers to expressions begins by assigning code numbers to

symbols as in Table 15-2.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

15.2. GÖDEL NUMBERS 193

Table 15-2. Gödel numbers of symbols (second scheme)

Symbol () , ∼ ∨ ∃ = vi An
i f n

i

Code 1 3 5 7 9 11 13 2 · 5i 22 · 3n · 5i 23 · 3n · 5i

Thus for the language of arithmetic< or A2
0 has code number 22 · 32 · 50 = 4 · 9 =

36, 0 or f 0
0 has code number 23 · 30 · 50 = 8, ′ or f 1

0 has code number 23 · 31 · 50 =
8 · 3 = 24,+ or f 2

0 has code number 23 · 32 · 50 = 8 · 9 = 72, and similarly · has

code number 360. We then extend the code numbering to all finite sequences of sym-

bols by assigning to an expression E consisting of a sequence of symbols S1S2 · · · Sn

the code number # (E) for the sequence (|S1|, |S2|, . . . , |Sn|) according to the scheme

for coding finite sequences of numbers by single numbers based on prime decompo-

sition. [In contrast to the earlier scheme, we need to distinguish, in the case of the

expression consisting of a single symbol S, the code number # (S) of S qua expression

from the code number |S| of S qua symbol. In general the code number for a single-

term sequence (n) is 2 · 3n , so we get #(S) = 2 · 3|S|.] Thus the code number for the

sentence we have been writing 0 = 0, which is officially =(0, 0), is that for (13, 1, 36,

5, 36, 3), which is 26 · 313 · 5 · 736 · 115 · 1336 · 173. This is a number of 89 digits. For-

tunately, our concern will only be with what kinds of calculations could in principle be

performed with such large numbers, not with performing such calculations in practice.

The calculation of the length lh(e) of the expression with code number e is espe-

cially simple on this scheme, since lh(e) = lo(e, 2), where lo is the logarithm function

in Example 7.11, or in other words, the exponent on the prime 2 in the prime de-

composition of e. What are not so easy to express as primitive recursive functions

on this coding scheme are such functions as the one that gives the code number for

the concatenation of the expressions with two given code numbers. But while such

functions may not have been so easy to prove primitive recursive, they have been

proved to be so in Chapter 7. We know from our work there that in addition to the

concatenation function ∗, several further cryptographic or code-related functions are

primitive recursive. Writing #(σ) for the code number of sequence σ , and §(s) for the

sequence with code number s, we list these functions in Table 15-3.

Table 15-3. Cryptographic functions

lh (s) = the length of §(s)

ent(s, i) = the i th entry of §(s)

last(s) = the last entry of §(s)

ext(s, a) = #(§(s) with a added at the end)

pre(a, s) = #(§(s) with a added at the beginning)

sub(s, c, d) = #(§(s) with c replaced by d throughout)

More complicated objects, such as finite sequences or finite sets of expressions, can

also be assigned code numbers. A code number for a finite sequence of expressions

is simply a code number for a finite sequence of natural numbers, whose entries are

themselves in turn code numbers for expressions. As a code number for a finite set of

expressions, we may take the code number for the finite sequence of expressions that

list the elements of the set (without repetitions) in order of increasing code number.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

194 ARITHMETIZATION

This means that a code number of a finite set of expressions will be a code number for

a finite sequence of expressions whose entries are increasing, with later entries larger

than earlier ones. A virtue of this coding is that such relations as ‘the expression with

code number i belongs to the set with code number s’ and ‘the set with code number

t is a subset of the set with code number s’ will all be simply definable in terms of

the cryptographic functions, and hence recursive. (The first amounts to ‘i is an entry

of the sequence coded by s’, and the second amounts to ‘every entry of the sequence

coded by t is an entry of the sequence coded by s’.) Similarly the coding can be

extended to finite sequences or finite sets of finite sequences or finite sets, and so on.

Towards proving Proposition 15.2, the first thing to note is that one- and two-place

relations like those given by ‘a is the code number of a predicate’ and ‘a is the code

number of an n-place predicate’ are primitive recursive. For the former is equivalent

to the existence of n and i such that a = 22 · 3n · 5i , and the latter is equivalent to the

existence of i such that a = 22 · 3n · 5i . The function f given by f (n, i) = 22 · 3n · 5i

is primitive recursive, being a composition of exponentiation, multiplication, and

the constant functions with values 22, 3, and 5. So the relation ‘a = 22 · 3n · 5i ’

is primitive recursive, being the graph relation ‘a = f (n, i)’. The two relations of

interest are obtained from the relation ‘a = 22 · 3n · 5i ’ by existential quantification,

and in each case the quantifiers can be taken to be bounded, since if a = 22 · 3n · 5i ,

then certainly n and i are less than a. So the first condition amounts to ∃n < a
∃i < a(a = 22 · 3n · 5i) and the second to ∃i < a(a = 22 · 3n · 5i).

Similar remarks apply to ‘a codes a variable’, ‘a codes a function symbol’, and ‘a
codes a constant (that is, a zero-place function symbol)’, ‘a codes an n-place function

symbol’, and ‘a codes an atomic term (that is, a variable or constant)’. These all give

primitive recursive relations. If we are interested only in formulas and sentences of

some language L less than the full language containing all nonlogical symbols, we

must add clauses ‘and a is in L’ to our various definitions of the items just listed.

So long as L is still primitive recursive, and in particular if L is finite, the relations

just listed will still be primitive recursive. (If L is only recursive and not primitive

recursive, we have to change ‘primitive recursive’ to ‘recursive’ both here and below.)

Considering only the case without identity and function symbols, the relation given

by ‘s codes an atomic formula’ is also primitive recursive, being obtainable by simple

operations (namely, substitution, conjunction, and bounded universal quantifications)

from the relations mentioned in the preceding paragraph and the graph relations of

the primitive recursive functions of some of the cryptographic functions listed earlier.

Specifically, s codes an atomic formula if and only if there is an n less than lh(s) such

that the following holds:

lh (s) = 2n + 2, and

ent (s, 0) is the code number for an n-place predicate, and

ent (s, 1) = 1 (the code number for a left parenthesis), and

for every i with 1 < i < lh (s) − 1:

if i is odd then ent(s, i) = 5 (the code number for a comma), and

if i is even then ent(s, i) is the code number for an atomic term, and

last (s) = 3 (the code number for a right parenthesis).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

15.2. GÖDEL NUMBERS 195

Now s is the code number of a formula S if and only if there is some r that is the

code number for a formation sequence for S. In general, the relation given by ‘r is the

code number of a formation sequence for a formula with code number s’ is primitive

recursive, since this relation holds if and only if the following does:

For all j < lh(r) either:

ent (r, j) is the code number for an atomic sentence, or

for some k < j,

ent (r, j) = neg(ent (r, k)), or

for some k1 < jand some k2 < j,

ent (r, j) = disj(ent (r, k1), ent (r, k2)), or

for some k < j and some i < ent (r, j),

ent (r, j) = exquant (2 · 5i , ent (r, k))

and last (r) = s.

Here neg, disj, and exquant are as in the proof of Proposition 15.1.

We can give a rough upper bound on the code number for a formation sequence,

since we know (from the problems at the end of Chapter 9) that if S is a formula—

that is, if S has any formation sequence at all—then S has a formation sequence in

which every line is a substring of S, and the number of lines is less than the length

of S. Thus, if there is any formation sequence at all for s, letting n = lh(s), there will

be a formation sequence for s of length no greater than n with each entry of size

no greater than s. The code number for such a formation sequence will therefore

be less than the code number for a sequence of length n all of whose entries are

s, which would be 2n · 3s· · · · ·π (n)s , where π (n) is the nth prime, and this is less

that π (n)s(n+1). So there is a primitive recursive function g, namely the one given by

g(x) = π (lh(x))x[lh(x)+1], such that if s is the code number for a formula at all, then

there will be an r < g(s) such that r is a code number for a formation sequence for that

formula. In other words, the relation given by ‘s is the code number for a formula’

is obtainable by bounded quantification from a relation we showed in the preceding

paragraph to be primitive recursive: ∃r < g(s) (r codes a formation sequence for s).

Thus the relation ‘s is the code number for a formula’ is itself primitive recursive.

In order to define sentencehood, we need to be able to check which occurrences of

variables in a formula are bound and which free. This is also what is needed in order

to define the one operation in Lemma 15.1 whose proof we deferred, substitution of a

term for the free occurrences of a variable in a formula. It is not the substitution itself

that is the problem here, so much as recognizing which occurrences of the variable

are to be substituted for and which not. The relation ‘s codes a formula and the eth

symbol therein is a free occurrence of the dth variable’ holds if and only if

s codes a formula and ent (s, e) = 2 · 5d and

for no t, u, v, w < s is it the case that

s = t ∗ v ∗ w and lh (t) < e and e < lh(t) + lh(v) and

u codes a formula and v = exquant (2 · 5d , u).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

196 ARITHMETIZATION

For the first clause says that s codes a formula and the eth symbol therein is the dth

variable, while the second clause says that the eth symbol does not fall within any

subsequence v of the formula that is itself a formula beginning with a quantification

of the dth variable. This relation is primitive recursive. Since the relation ‘s codes a

sentence’ is then simply

s codes a formula and

for no d, e < s is the eth symbol therein a free occurrence of the dth variable

it is primitive recursive, too, as asserted.

So much for the proof in the case where identity and function symbols are absent.

If identity is present, but not function symbols, the definition of atomic formula will

be the disjunction of the clause above covering atomic formulas involving a nonlog-

ical predicate with a second, similar but simpler, clause covering atomic formulas

involving the logical predicate of identity. If function symbols are present, it will be

necessary to give a preliminary definitions of term formation sequence and term. The

definition for term formation sequence will have much the same gross form as the

definition above of formation sequence; the definition for term will be obtained from

it by a bounded existential quantification. We suppress the details.

15.3* More Gödel Numbers

We indicate the proof of Proposition 15.3, for the proof procedure used in the preced-

ing chapter, only in gross outline. Something similar can be done for any reasonable

proof procedure, though the details will be different.

We have already indicated how sets of sentences are to be coded: s is a code for a

set of sentences if and only if s is a code for a sequence and for all i < lh(s), ent(s, i)

is a code for a sentence, and in addition for all j < i , ent (s, j) < ent(s, i). It follows

that the set of such codes is primitive recursive. A derivation, on the approach we took

in the last chapter, is a sequence of sequents �1 ⇒ �1, �2 ⇒ �2, and so on, subject

to certain conditions. Leaving aside the conditions for the moment, a sequence of

sequents is most conveniently coded by a code for (c1, d1, c2, d2, . . .), where ci codes

�i and di codes �i . The set of such codes is again primitive recursive. The sequence

of sequents coded by the code for (c1, d1, . . . , cn, dn) will be a deduction of sentence

D from set � if and only if: first, the sequence of sequents coded is a derivation; and

second, cn codes a sequences whose entries are all codes for sentences in �, and dn

codes the sequence of length 1 whose sole entry is the code for D. Assuming � is

recursive, the second condition here defines a recursive relation.

The first condition defines a primitive recursive set, and the whole matter boils

down to proving as much. Now the sequence of sequents coded by a code for

(c1, d1, . . . , cn, dn) will be derivation if for each i ≤ n, the presence of ci and di

is justified by the presence of zero, one, or more earlier pairs, such that the sequent

�i ⇒ �i coded by ci and di follows from the sequents � j ⇒ � j coded by these

earlier c j and d j according to one or another rule. In gross form, then, the definition

of coding a derivation will resemble the definition of coding a formation sequence,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

PROBLEMS 197

where the presence of any code for an expression must be justified by the presence

of zero, one, or more earlier codes for expressions from which the given expression

‘follows’ by or another ‘rule’ of formation. The rules of formation are just the rules

the zero-‘premiss’ rule allowing atomic formulas to appear, the one-‘premiss’ rule

allowing a negation to be ‘inferred’ from the expression it negates, the two-‘premiss’

rule allowing a disjunction to be ‘inferred’ from the two expressions it disjoins—and

so on. Definitions of this gross form define primitive recursive relations, provided the

individual rules in them do.

So, going back to derivations, let us look at a typical one-premiss rule. (The zero-

premiss rule would be a bit simpler, a two-premiss rule a bit more complicated.)

Take

(R2a)
� ∪ {A} ⇒ �

� ⇒ {∼A} ∪ �
.

The relation we need to show to be primitive recursive is the relation ‘e and f code

a sequent that follows from the sequent coded by c and d according to (R2a)’. But

this can be defined as follows:

c, d, e, f code sets of formulas, and ∃a < lh(c) ∃b < lh(f)

ent(f, b) = neg(ent(c, a)), and

∀i < lh(c) (i = a or ∃ j < lh(e) ent(c, i) = ent(e, j)), and

∀i < lh(e) ∃ j < lh(c) ent(e, i) = ent(c, j), and

∀i < lh(d) ∃ j < lh(f) ent(d, i) = ent(f, j), and

∀i < lh(f)(i = b or ∃ j < lh(d) ent(f, i) = ent(d, j)).

Here the last four clauses just say that the only difference between the sets coded by

c and e is the presence of the sentence A coded by ent(c, a) in the former, and the

only difference between the sets coded by d and f is the presence of the sentence

B coded by ent(f, b) in the latter. The second clause tells us that B = ∼A. This is a

primitive recursive relation, since we known neg is a primitive recursive function.

To supply a full proof, each of the rules would have to be analyzed in this way. In

general, the analyses would be very similar, the main difference being in the second

clauses, stating how the ‘exiting’ and ‘entering’ sentences are related. In the case we

just looked at, the relationship was very simple: one sentence was the negation of the

other. In the case of some other rules, we would need to know that the function taking

a formula B(x) and a closed term t to the result B(t) of substituting t for all the free

occurrences of x is recursive, or rather, that the corresponding function on codes is.

We suppress the details.

Problems

15.1 On the first scheme of coding considered in this chapter, show that the length
of, or number of symbols in, the expression with code number e is obtainable

by a primitive recursive function from e.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-15 CB421-Boolos July 27, 2007 16:47 Char Count= 0

198 ARITHMETIZATION

15.2 Let � be a set of sentences, and T the set of sentences in the language of �

that are deducible from �. Show that T is a theory.

15.3 Suppose an axiomatizable theory T has only infinite models. If T has only one

isomorphism type of denumerable models, we know that it will be complete

by Corollary 12.17, and decidable by Corollary 15.7. But suppose T is not
complete, though it has only two isomorphism types of denumerable models.

Show that T is still decidable.

15.4 Give examples of theories that are decidable though not complete.

15.5 Suppose A1, A2, A3, . . . are sentences such that no An is provable from the

conjunction of the Am for m < n. Let T be the theory consisting of all sentences

provable from the Ai . Show that T is not finitely axiomatizable, or in other

words, that there are not some other, finitely many, sentences B1, B2, . . . , Bm

such that T is the set of consequences of the B j .

15.6 For a language with, say, just two nonlogical symbols, both two-place relation

symbols, consider interpretations where the domain consists of the positive

integers from 1 to n. How many such interpretations are there?

15.7 A sentence D is finitely valid if every finite interpretation is a model of D.

Outline an argument assuming Church’s thesis for the conclusion that the

set of sentences that are not finitely valid is semirecursive. (It follows from

Trakhtenbrot’s theorem, as in the problems at the end of chapter 11, that the

set of such sentences is not recursive.)

15.8 Show that the function taking a pair consisting of a code number a of a

sentence A and a natural number n to the code number for the conjunction

A & A & · · · & A of n copies of A is recursive.

15.9 The Craig reaxiomatization lemma states that any theory T whose set of the-

orems is semirecursive is axiomatizable. Prove this result.

15.10 Let T be an axiomatizable theory in the language of arithmetic. Let f be a

one-place total or partial function f of natural numbers, and suppose there is

a formula φ(x, y) such that for any a and b, φ(a, b) is a theorem of T if and

only if f (a) = b. Show that f is a recursive total or partial function.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16

Representability of Recursive Functions

In the preceding chapter we connected our work on recursion with our work on formulas
and proofs in one way, by showing that various functions associated with formulas and
proofs are recursive. In this chapter we connect the two topics in the opposite way, by
showing how we can ‘talk about’ recursive functions using formulas, and prove things
about them in theories formulated in the language of arithmetic. In section 16.1 we show
that for any recursive function f, we can find a formula φ f such that for any natural
numbers a and b, if f (a) = b then ∀y(φ f (a, y) ↔ y = b) will be true in the standard
interpretation of the language of arithmetic. In section 16.2 we strengthen this result,
by introducing a theory Q of minimal arithmetic, and showing that for any recursive
function f, we can find a formula ψ f such that for any natural numbers a and b, if f (a) = b
then ∀y(ψ f (a, y) ↔ y = b) will be not merely true, but provable in Q. In section 16.3
we briefly introduce a stronger theory P of Peano arithmetic, which includes axioms
of mathematical induction, and explain how these axioms enable us to prove results not
obtainable in Q. The brief, optional section 16.4 is an appendix for readers interested in
comparing our treatment of these matters here with other treatments in the literature.

16.1 Arithmetical Definability

In Chapter 9, we introduced the language L* of arithmetic and its standard interpre-

tation N*. We now abbreviate ‘true in the standard interpretation’ to correct. Our

goal in this chapter is to show that we can ‘talk about’ recursive functions in the

language of arithmetic, and we begin by making talk about ‘talking about’ precise.

We say a formula F(x) of the language of arithmetic arithmetically defines a set

S of natural numbers if and only if for all natural numbers a we have Sa if and only if

F(a) is correct. We say the set S is arithmetically definable, or arithmetical for short,

if some formula arithmetically defines it. These notions naturally extend to two-place

or many-place relations. A formula F(x, y) arithmetically defines a relation R on

natural numbers if and only if for all natural numbers a and b we have Rab if and

only if F(a, b) is correct. The notions also naturally extend to functions, a function

being counted as arithmetical if and only if its graph relation is arithmetical. Thus

a one-place function f is arithmetical if and only if there is a formula F(x, y) of

the language of arithmetic such that for all a and b we have f (a) = b if and only if

F(a, b) is correct.

199

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

200 REPRESENTABILITY OF RECURSIVE FUNCTIONS

16.1 Examples (Basic functions). To give the most trivial example, the identity function

id = id1
1is arithmetically defined by the formula y = x , and more generally, idn

i is arithmeti-

cally defined by the formula y = xi , or if we want the other x j to be mentioned, by the

formula

x1 = x1 & . . . & xn = xn & y = xi .

The zero function const0(x) = 0 is also arithmetically definable, by the formula y = 0, or

if we want x to be mentioned, by the formula x = x & y = 0. The successor, addition, and

multiplication functions are arithmetically definable by the formulas y = x ′, y = x1 + x2,

and y = x1 · x2.

16.2 Examples (Other arithmetical functions). Of course, it is no surprise that the functions

we have just been considering are arithmetically definable, since they are ‘built in’: we have

included in the language special symbols expressly for them. But their inverses, for which we

have not built in symbols, are also arithmetical. The predecessor function is arithmetically

definable by the following formula Fpred(x1, y):

(x1 = 0 & y = 0) ∨ x1 = y′.

The difference function x1
.− x2 is arithmetically defined by the following formula

Fdif(x1, x2, y):

(x1 < x2 & y = 0) ∨ (x1 = x2 + y)

and the quotient and remainder functions quo(x1, x2) and rem(x1, x2) are arithmetically

defined by the following formulas Fquo(x1, x2, y) and Frem(x1, x2, y):

(x2 = 0 & y = 0) ∨ ∃u < x2x1 = y · x2 + u

(x2 = 0 & y = x1) ∨ (y < x2 & ∃u ≤≤ x1 x1 = u · x2 + y).

On the other hand, it is not obvious how to define exponentiation, and as a tem-

porary expedient we now expand the language of arithmetic by adding a symbol

↑, thus obtaining the language of exponential arithmetic. Its standard interpretation

is like that of the original language arithmetic, with the denotation of ↑↑↑ being the

usual exponentiation function. In terms of this expansion we define ↑-arithmetical
definability in the obvious way. (The expression ‘↑-arithmetical’ may be pronounced

‘exponential-arithmetical’ or ‘exp-arithmetical’ for short.)

16.3 Examples (↑-arithmetical functions). Examples of ↑-arithmetical functions include

the exponential function itself, its inverses the logarithm functions (lo and lg of Example

7.11), and, what will be more significant for our present purposes, any number of functions

pertaining to the coding of finite sequences of numbers by single numbers or pairs of

numbers. For instance, in section 1.2 we found one serviceable if not especially elegant

way of coding sequences by pairs for which the i th entry of the sequence coded by the pair

(s, t) could be recovered using the function

entry(i, s, t) = rem(quo(s, t i), t)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.1. ARITHMETICAL DEFINABILITY 201

This function is ↑-arithmetically definable by the following formula Fent(x1, x2, x3, y):

∃z ≤≤ x3 ↑↑↑ x1(Fquo (x2, x3 ↑↑↑ x1, z) & Frem (z, x2, y)).

For this just says that there is something that is the quotient on dividing x2 by x x1

3 , and

whose remainder on dividing by x2 is y, adding that it will be less than or equal to x2

(as any quotient on dividing x2 by anything must be).

Even after helping ourselves to exponentiation, it is still not obvious how to define

super-exponentiation, but though not obvious, it is possible—in fact any recursive

function can now be defined, as we next show.

16.4 Lemma. Every recursive function f is ↑-arithmetical.

Proof: Since we have already shown the basic functions to be definable, we need

only show that if any of the three processes of composition, primitive recursion, or

minimization is applied to ↑-arithmetical functions, the result is an ↑-arithmetical

function. We begin with composition, the idea for which was already encountered in

the last example. Suppose that f and g are one-place functions and that h is obtained

from them by composition. Then clearly c = h(a) if and only if

c = g(f (a))

which may be more long-windedly put as

there is something such that it is f (a) and g(it) is c.

It follows that if f and g are ↑-arithmetically defined by φ f and φg , then h is

↑-arithmetically defined by the following formula φh(x, z):

∃y (φ f (x, y) & φg(y, z)).

[To be a little more formal about it, given any a, let b = f (a) and let c = h(a) =
g(f (a)) = g(b). Since φ f and φg define f and g, φ f (a, b) and φg(b, c) are correct, so

φ f (a, b) & φg(b, c) is correct, so ∃y(φ f (a, y) & φg(y, c)) is correct, which is to say

φh(a, c) is correct. Conversely, if φh(a, c) is correct, φ f (a, b) & φg(b, c) and hence

φ f (a, b) and φg(b, c) must be correct for some b, and since φ f defines f , this b can

only be f (a), while since φg defines g, c then can only be g(b) = g(f (a)) = h(a).]

For the composition of a two-place function f with a one-place function g the

formula would be

∃y(φ f (x1, x2, y) & φg(y, z)).

For the composition of two one-place functions f1 and f2 with a two-place function

g, the formula would be

∃y1∃y2(φ f1
(x, y1) & φ f2

(x, y2) & φg(y1, y2, z))

and so on. The construction is similar for functions of more places.

Recursion is just a little more complicated. Suppose that f and g are one-place

and three-place functions, respectively, and that the two-place function h is obtained

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

202 REPRESENTABILITY OF RECURSIVE FUNCTIONS

from them by primitive recursion. Writing i ′ for the successor of i , clearly c = h(a, b)

if and only if there exists a sequence σ with the following three properties:

entry 0 of σ is h(a, 0)

for all i < b, if entry i of σ is h(a, i), then entry i ′ of σ is h(a, i ′)
entry b of σ is c.

These conditions may be restated equivalently thus:

entry 0 of σ is f (a)

for all i < b, entry i ′ of σ is g(a, i, entry i of σ)

entry b of σ is c.

These conditions may be restated more long-windedly thus:

there is something that is entry 0 of σ and is f (a)

for all i < b, there is something that is entry i of σ, and

there is something which is entry i ′ of σ, and

the latter is g(a, i, the former)

entry b of σ is c.

Moreover, instead of saying ‘there is a sequence’ we may say ‘there are two numbers

coding a sequence’. It follows that if f and g are ↑-arithmetically defined by φ f and

φg , then h is ↑-arithmetically defined by the formula φh(x, y, z) = ∃s∃tφ, where φ is

the conjunction of the following three formulas:

∃u(Fent(0, s, t, u) & φ f (x, u))

∀w < y ∃u∃v(Fent(w, s, t, u) & Fent(w
′, s, t, v) & φg(x, w, u, v))

Fent(y, s, t, z).

The construction is exactly the same for functions of more places.

Minimization is a little simpler. Suppose that f is a two-place function, and that

the one-place function g is obtained from it by minimization. Clearly g(a) = b if and

only if

f (a, b) = 0 and

for all c < b, f (a, c) is defined and is not 0.

These conditions may be restated more long-windedly thus:

f (a, b) = 0 and

for all c < b, there is something that is f (a, c), and it is not 0.

It follows that if f is ↑-arithmetically defined by φ f , then g is ↑-arithmetically defined

by the following formula φg(x, y):

φ f (x, y, 0) & ∀z < y ∃u(φ f (x, z, u) & u �= 0).

The construction is exactly the same for functions of more places.

On reviewing the above construction, it will be seen that the presence of the

exponential symbol ↑↑↑ in the language was required only for the formula Fent. If we

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.1. ARITHMETICAL DEFINABILITY 203

could find some other way to code sequences by pairs for which the entry function

could be defined without using exponentiation, then we could forget about ↑↑↑. And in

fact, a coding is possible for which

entry(i, s, t) = rem(s, t(i + 1) + 1)

so that for Fent we may take

Frem(x2, x3 · (x1 + 1) + 1, y).

That such a coding is possible is the content of the following lemma.

16.5 Lemma (β-function lemma). For every k and every a0, a1, . . . , ak there exist

s and t such that for all i with 0 ≤ i ≤ k we have ai = rem(s, t(i + 1) + 1).

Proof: This result follows directly from the proofs of two ancient and famous

theorems of number theory, to be found in a prominent place in any textbook on that

subject. Since this is not a textbook on number theory, we are not going to develop the

whole subject from the foundations, but we do give an indication of the proof. The first

ingredient is the Chinese remainder theorem, so called from the appearance (at least

of special cases) of the theorem in the ancient Mathematical Classic of Sun Zi and

the medieval Mathematical Treatise in Nine Sections of Qin Jiushao. This theorem

states that given any numbers t0, t1, . . . , tn no two of which have a common prime

factor, and given any numbers ai < ti , there is a number s such that rem(s, ti) = ai

for all i from 0 to n. The proof is sufficiently illustrated by the case of two numbers

t and u with no common prime factor, and two numbers a < t and b < u. Every one

of the tu numbers i with 0 ≤ i < tu produces one of the tu pairs (a, b) with a < t and

b < u on taking the remainders rem (s, t) and rem (s, u). To show that, as asserted by

the theorem, every pair (a, b) is produced by some number s, it suffices to show that

no two distinct numbers 0 ≤ s < r < tu produce the same pair. If s and r do produce

the same pair, then they leave the same remainder when divided by t , and leave the

same remainder when divided by u. In that case, their difference q = r − s leaves

remainder zero when divided by either t or u. In other words, t and u both divide q.

But when numbers with no common prime factor both divide a number, so does their

product. Hence tu divides q . But this is impossible, since 0 < q < tu.

The second ingredient comes from the proof in Euclid’s Elements of Geometry that

there exist infinitely many primes. Given any number n, we want to find a prime p > n.

Well, let N = n!, so that in particular N is divisible by every prime ≤n. Then N + 1,

like any number >1, has a prime factor p. (Possibly N is itself prime, in which case

we have p = N.) But we cannot have p ≤ n, since when N is divided by any number

≤n, there is a remainder of 1. A slight extension of the argument shows that any two

distinct numbers N · i + 1 and N · j + 1 with 0 < i < j ≤ n have no common prime

factor. For if a prime p divides both numbers, it divides their difference N (j − i).
This is a product of factors ≤n, and when a prime divides a product of several factors,

it must divide one of the factors; so p itself must be a number ≤n. But then p cannot
divide N · i + 1 or N · j + 1. Now given k and every a0, a1, . . . , ak , taking n larger

than all of them, and letting t be a number divisible by every prime ≤n, no two of the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

204 REPRESENTABILITY OF RECURSIVE FUNCTIONS

numbers ti = t(i + 1) + 1 will have a common prime factor, and we will of course

have ai < ti , so there will be an s such that rem(s, ti)= ai for all i with 0 ≤ i ≤ k.

Thus we have proved part (a) of the following.

16.6 Lemma

(a) Every recursive function f is arithmetical.

(b) Every recursive set is arithmetical.

Proof: As remarked just before the statement of the lemma, we already have (a).

For (b), if R is an n-place recursive relation and f its characteristic function, then

apply (a) to get a formula φ(x1, . . . , xn, y) arithmetically defining f . Then the formula

φ(x1, . . . , xn , 1) arithmetically defines R.

Further sharpening of the result depends on distinguishing different kinds of formu-

las. By a rudimentary formula of the language of arithmetic we mean a formula built

up from atomic formulas using only negation, conjunction, disjunction, and bounded

quantifications ∀x < t and ∃x < t , where t may be any term of the language (not in-

volving x). (Conditionals and biconditionals are allowed, too, since these officially

are just abbreviations for certain constructions involving negation, conjunction, and

disjunction. So are the bounded quantifiers ∀x ≤≤ t and ∃x ≤≤ t , since these are equi-

valent to ∀x < t ′ and ∃x < t ′). By an ∃-rudimentary formula we mean a formula of

form ∃xF where F is rudimentary, and similarly for an ∀-rudimentary formula. (The

negation of an ∃-rudimentary formula is equivalent to an ∀-rudimentary formula, and

conversely.) Many major theorems of number theory are naturally expressible by

∀-rudimentary formulas.

16.7 Examples (Theorems of number theory). Lagrange’s theorem that every natural num-

ber is the sum of four squares is naturally expressible by an ∀-rudimentary sentence as

follows:

∀x ∃y1 < x ∃y2 < x ∃y3 < x ∃y4 < x x = y1 · y1 + y2 · y2 + y3 · y3 + y4 · y4.

Bertrand’s postulate, or Chebyshev’s theorem, that there is a prime between any number

greater than one and its double, is naturally expressible by an ∀-rudimentary sentence as

follows:

∀x(1 < x → ∃y < 2 · x(x < y & ∼∃u < y ∃v < y y = u · v)).

Our present concern, however, will be with ∃-rudimentary formulas and with

generalized ∃-rudimentary formulas, which include all formulas obtainable from

rudimentary formulas by conjunction, disjunction, bounded universal quantification,

bounded existential quantification, and unbounded existential quantification. Review-

ing the proof of Lemma 16.6, one finds that the formulas defining the basic functions

and the formula Fent are rudimentary, and that the formula defining a composition of

functions is obtained by conjunction, bounded quantification, and existential quan-

tification from rudimentary formulas and the formulas defining the original functions,

and similarly for recursion and minimization. Hence we have proved:

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.1. ARITHMETICAL DEFINABILITY 205

16.8 Lemma. Every recursive function is arithmetically definable by a generalized

∃-rudimentary formula.

The next refinement will be to get rid of the word ‘generalized’ here. Two formulas

with, say, two free variables, φ(x, y) and ψ(x, y), are called arithmetically equivalent
if for all numbers a and b, φ(a, b) is correct if and only if ψ(a, b) is correct. Clearly

arithmetically equivalent formulas define the same relation or function. The condition

that φ and ψ are arithmetically equivalent is equivalent to the condition that the

biconditional

∀x∀y(φ(x, y) ↔ ψ(x, y))

is correct. In particular, if φ and ψ are logically equivalent—in which case the bicon-

ditional is true not just in the standard interpretation, but in any interpretation—then

they are arithmetically equivalent. The following lemma bears more than a passing

resemblance to Corollary 7.15.

16.9 Lemma (Closure properties of ∃-rudimentary formulas).

(a) Any rudimentary formula is arithmetically equivalent to an ∃-rudimentary formula.

(b) The conjunction of two ∃-rudimentary formulas is arithmetically equivalent to an

∃-rudimentary formula.

(c) The disjunction of two ∃-rudimentary formulas is arithmetically equivalent to an

∃-rudimentary formula.

(d) The result of applying bounded universal quantification to an ∃-rudimentary

formula is arithmetically equivalent to an ∃-rudimentary formula.

(e) The result of applying bounded existential quantification to an ∃-rudimentary

formula is arithmetically equivalent to an ∃-rudimentary formula.

(f) The result of applying (unbounded) existential quantification to an ∃-rudimentary

formula is arithmetically equivalent to an ∃-rudimentary formula.

Proof: For (a), φ is logically equivalent to ∃w(w = w & φ) (and if φ is rudimentary,

so is w = w & φ).

For (b), ∃uφ(u) & ∃vψ(v) is arithmetically equivalent to

∃w ∃u < w ∃v < w (φ(u) & ψ(v)).

[and if φ(u) and ψ(v) are rudimentary, so is ∃u < w ∃v < w (φ(u) & ψ(v))]. The

implication in one direction is logical, and in the other direction we use the fact that

for any two natural numbers u and v, there is always a natural number w greater than

both.

For (c), ∃uφ(u) ∨ ∃vψ(v) is logically equivalent to ∃w(φ(w) ∨ ψ(w)).

For (d), ∀z < y ∃uφ(u, z) is arithmetically equivalent to

∃w ∀z < y ∃u < w φ(u, z).

The implication in one direction is logical, and in the other direction we use the fact

that for any finitely many natural numbers u0, u1, . . . , uy−1 there is a number w that

is greater than all the uz .

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

206 REPRESENTABILITY OF RECURSIVE FUNCTIONS

For (e), ∃z < y ∃u φ(u, z) is logically equivalent to ∃u ∃z < y φ(u, z).

For (f), ∃u ∃v φ(u, v) is arithmetically equivalent to ∃w ∃u < w ∃v < w φ(u, v),

much as in part (b).

Repeated application of Lemma 16.9, followed by combination with Lemma 16.8

give the following:

16.10 Proposition. Every generalized ∃-rudimentary formula is arithmetically equiv-

alent to an ∃-rudimentary formula.

16.11 Lemma. Every recursive function is arithmetically definable by an∃-rudimentary

formula.

Call a function that is arithmetically definable by a rudimentary formula a rudimen-
tary function. Can we go further and show every recursive function to be rudimentary?

Not quite. The next lemma tells us how far we can go. It bears more than a passing

resemblance to Proposition 7.17.

16.12 Lemma. Every recursive function is obtainable by composition from rudimen-

tary functions.

Proof: Let f be a recursive function of, say, one place. (The proof for many-

place functions is exactly the same.) We know f is arithmetically definable by an

∃-rudimentary formula ∃zφ(x, y, z). Let S be the relation arithmetically defined by

φ, so that we have

Sabc ↔ φ(a, b, c) is correct.

We have

f (a) = b ↔ ∃c Sabc.

We now introduce two auxiliary functions:

g(a) =
⎧⎨⎩

the least d such that

∃b < d ∃c < d Sabc if such a d exists

undefined otherwise

h(a, d) =
⎧⎨⎩

the least b < d such that

∃c < d Sabc if such a b exists

0 otherwise.

(Note that if f is total, then g is total, while h is always total.) These functions are

rudimentary, being arithmetically definable by the following formulas φg(x, w) and

φh(x, w, y):

∃y < w ∃z < w φ(x, y, z) & ∀v < w ∀y < v ∀z < v ∼φ(x, y, z)

∃z < w φ(x, y, z) & ∀u < y ∀z < w ∼φ(x, u, z)

and a little thought shows that f (x) = h(x, g(x)) = h(id (x), g(x)), so f = Cn[h, id, g]

is a composition of rudimentary functions.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.2. MINIMAL ARITHMETIC AND REPRESENTABILITY 207

If T is a consistent theory in the language of arithmetic, we say a set S is defined
in T by D(x) if for all n, if n is in S, then D(n) is a theorem of T , and if n is not in S,

then ∼D(n) is a theorem of T . S is definable in T if S is defined by some formula.

Arithmetical definability is simply the special case where T is true arithmetic, the

set of all correct sentences. The general notion of definability in a theory extends to

relations, but definability of a function turns out to be less useful than a related notion.

For the remainder of this chapter, unless otherwise noted, ‘function’ will mean ‘total

function’. Let f be a one-place function. (The definition we are about to give extends

easily to many-place functions.) We say f is representable in T if there is a formula

F(x, y) such that whenever f (a) = b, the following is a theorem of T :

∀y(F(a, y) ↔ y = b).

This is logically equivalent to the conjunction of the positive assertion

F(a, b)

and the general negative assertion

∀y(y �= b → ∼F(a, y)).

By contrast, definability would only require that we have the positive assertion and for

each particular c �= b the relevant particular instance of the general negative assertion,

namely, ∼F(a, c).

Now in the special case where T is true arithmetic, of course if each particular

numerical instance is correct, then the universal generalization is correct as well, so

representability and definability come to the same thing. But for other theories, each

particular numerical instance may be a theorem without the universal generalization

being a theorem, and representability is in general a stronger requirement than de-

finability. Note that if T is a weaker theory than T * (that is, if the set of theorems of

T is a subset of the set of theorems of T *), then the requirement that a function be

representable in T is a stronger requirement than that it be representable in T * (that

is, representability in T implies representability in T *). Thus far we have proved all

recursive functions to be representable in true arithmetic. If we are to strengthen our

results, we must consider weaker theories than that.

16.2 Minimal Arithmetic and Representability

We now introduce a finite set of axioms of minimal arithmetic Q, which, though

not strong enough to prove major theorems of number theory, at least are correct

and strong enough to prove all correct ∃-rudimentary sentences. By themselves, the

axioms of Q would not be adequate for number theory, but any set of adequate axioms

would have to include them, or at least to prove them (in which case the set might

as well include them). Our main theorems (Theorems 16.13 and 16.15) apply to any

theory T that contains Q, and since Q is weak, the theorems are correspondingly

strong.

In displaying the list of axioms we make use of a traditional convention, according

to which when displaying sentences of the language of arithmetic that begin with a

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

208 REPRESENTABILITY OF RECURSIVE FUNCTIONS

string of one or more universal quantifiers, one may omit to write the quantifiers and

write only the open formula that comes after them.

0 �= x ′(Q1)

x ′ = y′ → x = y(Q2)

x + 0 = x(Q3)

x + y′ = (x + y)′(Q4)

x · 0 = 0(Q5)

x · y′ = (x · y) + x(Q6)

∼x < 0(Q7)

x < y′ ↔ (x < y ∨ x = y)(Q8)

0 < y ↔ y =/= 0(Q9)

x ′ < y ↔ (x < y & y =/= x ′)(Q10)

Thus axiom (Q1) is really ∀x 0 �= x ′, axiom (Q2) is really ∀x∀y (x ′ = y′ → x = y),

and so on. As is said, the real axioms are the universal closures of the formulas

displayed. The theory Q of minimal arithmetic is the set of all sentences of the

language of arithmetic that are provable from (or, equivalently, are true in all models

of) these axioms. The significance of the various axioms will become clear as we

work through the steps of the proof of the main theorem of this section.

16.13 Theorem. An ∃-rudimentary sentence is correct if and only if it is a theorem

of Q.

Proof: Since every axiom of Q is correct, so is every theorem of Q, and hence

any ∃-rudimentary sentence provable from the axioms of Q is correct. All the work

will go into proving the converse. To begin with zero and sucessor, for any natural

number m, of course m = m (where m is as always the numeral for m, that is, is the

term 0′...′ with m accents ′) is provable even without any axioms, by pure logic.

All of 0 �= 1, 0 �= 2, 0 �= 3, . . . , are provable by (Q1) (since the numerals 1, 2,

3, . . . all end in accents). Then 1 = 2 → 0 = 1, 1 = 3 → 0 = 2, . . . are provable using

(Q2), and since 0 �= 1, 0 �= 2, . . . are provable, it follows by pure logic that 1 �= 2,

1 �= 3, . . . , are provable. Then 2 = 3 → 1 = 2, 2 = 4 → 1 = 3, . . . are provable, again

using (Q2), and since 1 �= 2, 1 �= 3, . . . , are provable, it follows by pure logic that

2 �= 3, 2 �= 4, . . . are provable. Continuing in the same way, if m < n, then m �= n is

provable.

It follows by pure logic (the symmetry of identity) that if m < n, then n �= m is

provable also. Since in general if m �= n we have either m < n or n < m, it follows

that if m �= n then both m �= n and n �= m are provable.

Turning now to order, note that using (Q8), x < 1 ↔ (x < 0 ∨ x = 0) is prov-

able, and (Q7) is ∼x < 0. By pure logic x < 1 ↔ x = 0 is provable from these, so

that 0 < 1 is provable, and since we already know that 1 �= 0, 2 �= 0, . . . are provable,

it follows that ∼1 < 1, ∼2 < 1, . . . are provable. Then using (Q8) again, x < 2 ↔
(x < 1 ∨ x = 1) is provable, from which, given what we already know to be provable,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.2. MINIMAL ARITHMETIC AND REPRESENTABILITY 209

it follows that x < 2 ↔ (x = 0 ∨ x = 1) is provable, from which it follows that 0 < 2,

1 < 2, and also ∼2 < 2, ∼3 < 2, . . . are all provable. Continuing in the same way, for

any m the following is provable:

x < m ↔ (x = 0 ∨ x = 1 ∨ . . . ∨ x = m − 1).(1)

Moreover, whenever n < m, n < m is provable, and whenever m ≥ n, ∼m < n is

provable.

Turning now to addition and multiplication, let us show how (Q3) and (Q4), which

are of course just the formal versions of the recursion equations for addition, can be

used to prove, for instance, 2 + 3 = 5, or 0′′ + 0′′′ = 0′′′′′. Using (Q4), the following

are all provable:

0′′ + 0′′′ = (0′′ + 0′′)′

0′′ + 0′′ = (0′′ + 0′)′

0′′ + 0′ = (0′′ + 0)′.

Using (Q3), 0′′ + 0 = 0′′ is provable. Working backwards, by pure logic the following

are all provable from what we have so far:

0′′ + 0′ = 0′′′

0′′ + 0′′ = 0′′′′

0′′ + 0′′′ = 0′′′′′

This is, in fact, just the formal calculation exhibited in section 6.1. Obviously this

method is perfectly general, and whenever a + b = c we can prove a + b = c. Then

also, again as in section 6.1, the recursion equations (Q5) and (Q6) for multiplication

can be used to prove 2 · 3 = 6 and more generally, whenever a · b = c to prove a · b = c.

If we next consider more complex terms involving ′ and + and · , their correct

values are also provable. For example, consider (1 + 2) · (3 + 4). By what we have

already said, 1 + 2 = 3 and 3 + 4 = 7, as well as 3 · 7 = 21, are provable. From these it

is provable by pure logic that (1 + 2) · (3 + 4) = 21, and similarly for other complex

terms. Thus for any closed term t built up from 0 using ′, + , ·, it is provable what

is the correct value of the term. Suppose then we have two terms s, t that have the

same value m. Since by what we have just said s = m and t = m are provable, by pure

logic s = t is also provable. Suppose instead the two terms have different values m
and n. Then since s = m and t = n and m �= n are provable, again by pure logic s �= t
is also provable. A similar argument applies to order, so all correct formulas of types

s = t, s �= t, s < t, ∼s < t are provable. Thus all correct closed atomic and negated

atomic sentences are provable.

Now we move beyond atomic and negation-atomic sentences. First, by pure logic

the double negation of a sentence is provable if and only if the sentence itself is, and a

conjunction is provable if both its conjuncts are, a disjunction is provable if either of

its disjuncts is, a negated conjunction is provable if the negation of one of its conjuncts

is, and a negated disjunction is provable if the negations of both of its disjuncts are.

Since all correct atomic and negated atomic closed sentences are provable, so are

all correct sentences of types ∼S, ∼∼S, S1 & S2, ∼(S1 & S2), S1 ∨ S2, ∼(S1 ∨ S2),

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

210 REPRESENTABILITY OF RECURSIVE FUNCTIONS

where S, S1, S2 are atomic or negated atomic sentences. Continuing in this way, all

correct closed formulas built up from atomic formulas by negation, conjunction, and

disjunction are provable: All correct closed formulas without quantifiers are provable.

As for bounded quantifiers, using (1), for any formula A(x) and any m, the fol-

lowing are provable:

∀x < mA(x) ↔ (A(0) & A(1) & . . . & A(m − 1)),

∃x < mA(x) ↔ (A(0) ∨ A(1) ∨ . . . ∨ A(m − 1)).

More generally, if t is a closed term whose correct value is m, since t = m is provable,

so are the following:

∀x < t A(x) ↔ (A(0) & A(1) & . . . & A(m − 1)),

∃x < t A(x) ↔ (A(0) ∨ A(1) ∨ . . . ∨ A(m − 1)).

Thus any bounded universal or existential quantification of formulas without quan-

tifiers can be proved equivalent to a conjunction or disjunction of sentences without

quantifiers, which is of course itself then a sentence without quantifiers, so that we

already know it can be proved if it is correct. Thus any correct sentence obtained by

applying bounded universal or existential quantification to formulas without quanti-

fiers is provable, and repeating the argument, so is any correct sentence built up from

atomic formulas using negation, conjunction, disjunction, and bounded universal and

bounded existential quantification: Any correct rudimentary sentence is provable.

Finally, consider now a correct ∃-rudimentary sentence ∃x A(x). Since it is correct,

there is some a such that A(a) is correct. Being correct and rudimentary, A(a) is

provable, and hence so is ∃x A(x), completing the proof.

Note that for a correct ∀-rudimentary sentence ∀x A(x), we can conclude that each

numerical instance A(0), A(1), A(2), . . . is provable from the axioms of Q, but this

is not to say that ∀xA(x) itself is provable from the axioms of Q, and in general it

is not. There are nonstandard interpretations of the language of arithmetic on which

all the axioms of Q come out true, but some very simple ∀-universal sentences that

are correct or true on the standard interpretation come out false. Works on set theory

develop an extremely natural nonstandard model of Q, called the system of ordinal
numbers, for which, among others, laws as simple as 1 + x = x + 1 fail. It would take

us too far afield to stop to develop this model here, but some of its features are hinted

at by the nonstandard interpretations of Q indicated in the problems at the end of

the chapter. As we have already said, the fact that Q is a weak theory makes the

following theorem (which automatically applies to any theory T containing Q) a

strong theorem.

16.14 Lemma. Every rudimentary function is representable in Q (and by a rudimentary

formula).

Proof: Inspection of the proof of the preceding lemma shows that it actually did

not require any use of (Q9) and (Q10), but the proof of the present lemma does. An

argument exactly like that used in the earlier proof to derive

x < m ↔ (x = 0 ∨ x = 1 ∨ . . . ∨ x = m − 1)(1)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.2. MINIMAL ARITHMETIC AND REPRESENTABILITY 211

from (Q7) and (Q8) can be used to derive

m < y ↔ (y =/= 0 & y =/= 1 & . . . & y =/= m)(2)

from (Q9) and (Q10). An immediate consequence of (1) and (2) together is the

following:

z < m ∨ z = m ∨ m < z.(3)

Now let f be a one-place rudimentary function. (The proof for many-place func-

tions is exactly the same.) Let φ(x , y) be a rudimentary formula arithmetically

defining f. We do not claim that φ represents f in Q, but we do claim that φ can be

used to build another rudimentary formula ψ that does represent f in Q. The formula

ψ(x , y) is simply

φ(x, y) & ∀z < y ∼ φ(x, z).

To show this formula represents f we must do two things. First, we must show

that if f (a) = b, then ψ(a, b) is a theorem of Q. But indeed, since φ arithmetically

defines f , if f (a) = b, then φ(a, b) is correct, and ∼φ(a, c) is correct for every c �= b,

and in particular for every c < b. Therefore ∀z < b ∼φ(a, z) is correct and ψ(a, b) is

correct, and being rudimentary, it is a theorem of Q by Theorem 16.13.

Second, we must show that the following is a theorem of Q:

y �= b → ∼ψ(a, y),

which is to say

y �= b → ∼(φ(a, y) & ∀z < y ∼ φ(a, z))

or, what is logically equivalent,

φ(a, y) → (y = b ∨ ∃z < y φ(a, z)).(4)

It will be sufficent to show that the following is a theorem of Q, since together

with φ(a, b), which we know to be a theorem of Q, it logically implies (4):

φ(a, y) → (y = b ∨ b < y).(5)

But (3), together with ∀y < b ∼ φ(a, y), which we know to be a theorem of Q, logically

implies (5), to compete the proof.

16.15 Lemma. Any composition of rudimentary functions is representable in Q (and

by an ∃-rudimentary formula).

Proof: We consider the composition of two one-place functions, the proof for

many-place functions being similar. Suppose f and g are rudimentary functions, rep-

resented in Q by the rudimentary formulas φ f and φg respectively. Let h(x) = g(f (x)),

and consider the (∃-rudimentary) formula φhwe get from the proof of Lemma 16.4:

∃y(φ f (x, y) & φg(y, z)) .

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

212 REPRESENTABILITY OF RECURSIVE FUNCTIONS

We claim φh represents h in Q. For let a be any number, b = f (a), and c = h(a) =
g(f (a)) = g(b). Since φ f represents f and f (a) = b, the following is a theorem

of Q:

∀y(φ f (a, y) ↔ y = b) .(1)

Since φg represents g and g(b) = c, the following is a theorem of Q:

∀z(φg(b, z) ↔ z = c) .(2)

What we need to show in order to establish that φh represents h in Q is that the

following is a theorem of Q:

∀z(∃y(φ f (a, y) & φg(y, z)) ↔ z = c) .(3)

But (3) is logically implied by (1) and (2)!

16.16 Theorem

(a) Every recursive function is representable in Q (and by an ∃-rudimentary formula).

(b) Every recursive relation is definable in Q (and by an ∃-rudimentary formula).

Proof: (a) is immediate from Lemmas 16.12, 16.14, and 16.15. For (b), we consider

the case of a one-place relation or set, many-place relations being similar. Let P be

the recursive set, f its characteristic function, and ∃wφ(x, y, w) an ∃-rudimentary

formula representing f in Q. If n is in P , then f (n) = 1, and Q proves ∃wφ(n, 1, w).

If n is not in P , then f (n) = 0, and Q proves ∀y(y �= 0 → ∼∃wφ(n, y, w)) and in

particular ∼∃wφ(n, 0, w). So the formula ∃wφ(x, 1, w) defines P in Q.

Careful review of the proof of Theorem 16.16(a) shows that it actually applies to

any recursive total or partial function f and gives a formula that both arithmetically
defines and represents f in Q. This refinement will not be needed, however, for our

work in the next chapter.

We now have all the machinery we need for the proof of the first Gödel incom-
pleteness theorem, and readers impatient to see that famous result may skip ahead to

the next chapter. They should then return to the next brief section of this one before

going on to the second Gödel incompleteness theorem in the chapter after next.

16.3 Mathematical Induction

The most immediate reason for the inadequacy of the axioms of minimal arithmetic

to prove many correct ∀-universal sentences is that they make no provision for proof

by mathematical induction, a method ubiquitously used in number theory and mathe-

matics generally, according to which we can prove that every number has some

property by proving that zero has it (the zero or basis step), and proving that, assuming

a number x has it (an assumption called the induction hypothesis) then the successor

of x also has it (the successor or induction step).

16.17 Example (Dichotomy). As the most trivial example, we can prove by mathematical

induction that every x is either 0 or the successor of some number. Basis. 0 is 0. Induction.
x ′ is the successor of x .

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.3. MATHEMATICAL INDUCTION 213

Another example is the proof of the law

0 + 1 + 2 + · · · + x = x(x + 1)/2.

Basis. 0 = 0 · 1/2. Induction. Assuming the result for x , we have

0 + 1 + 2 + · · · + x + (x + 1) = x(x + 1)/2 + (x + 1)

= [x(x + 1) + 2(x + 1)]/2

= (x + 1)(x + 2)/2.

The algebraic manipulations in this proof depend on basic laws of arithmetic (asso-

ciative, commutative, distributive) which can be proved using mathematical induc-

tion.

16.18 Example (Additive identity). By mathematical induction one can prove (from the

recursion equations defining addition) 0 + x = x + 0. Zero or basis step: for x = 0 we have

0 + 0 = 0 + 0 by pure logic. Successor or induction step: assuming 0 + x = x + 0, we have

0 + x ′ = (0 + x)′ by the second recursion equation for addition

(0 + x)′ = (x + 0)′ by our assumption

(x + 0)′ = x ′ = x ′ + 0 by the first recursion equation for addition.

16.19 Example (First case of the commutativity of addition). Similarly, we can prove

1 + x = x + 1, or 0′ + x = x + 0′. Basis: 0′ + 0 = 0 + 0′ by the preceding example. Induc-
tion: assuming 0′ + x = x + 0′, we have

0′ + x ′ = (0′ + x)′ by the second recursion equation for addition

(0′ + x)′ = (x + 0′)′ by assumption

(x + 0′)′ = (x + 0)′′ by the second recursion equation for addition

(x + 0)′′ = x ′′ by the first recursion equation for addition

x ′′ = (x ′ + 0)′ by the first recursion equation for addition

(x ′ + 0)′ = x ′ + 0′ by the second recursion equation for addition.

We relegate further examples of this kind to the problems at the end of the chapter.

Once we have the basic laws of arithmetic, we can go on to prove various ele-

mentary lemmas of number theory such as the facts that a divisor of a divisor of

a number is a divisor of that number, that every number has a prime factor, that

if a prime divides a product it divides one of its factors, and that if two numbers

with no common prime factor both divide a number, then so does their product.

(The reader may recognize these as results we took for granted in the proof of

Lemma 16.5.) Once we have enough elementary lemmas, we can go on to prove

more substantial theorems of number theory, such as Lagrange’s theorem from

Example 16.7.

Closely related to the principle of mathematical induction as stated above is the

principle of complete induction, according to which we can prove that every number

has some property P by proving that zero has P , and proving that, assuming every

number ≤x has P , then the successor of x also has P . Indeed, complete induction

for a property P follows on applying mathematical induction to the related property

‘every number ≤x has P,’ using the facts (Q7) that 0 is the only number ≤0, and

(Q8) that the only numbers ≤x ′ are the numbers ≤x and x ′ itself.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

214 REPRESENTABILITY OF RECURSIVE FUNCTIONS

Another related principle is the least-number principle, according to which, if

there is some number that has a given property, then there is a least number having

the property, one such that no lesser number has it. This principle follows from the

principle of mathematical induction as follows. Consider some property P such that

there is no least number with the property P . Then we can use induction to show

that in fact no number has the property P . We do this a bit indirectly, showing first

by induction that for any number x , there is no number less than x with the property

P . Basis: there is no number less than zero with the property P , because by (Q7)

there is no number less than zero at all. Induction: supposing there is no number

less than x with the property P , there can be no number less than the successor of

x with the property P , since by (Q8) the only numbers less than the successor

of x are the numbers less than x , which by assumption do not have the property,

and x itself, which if it had the property would be the least number having the prop-

erty. Now that we know that for any number x there is no number y less than x
with the property, it follows that there is no number y with the property, since, tak-

ing x to be the successor of y, y is less than x and therefore cannot have the pro-

perty.

(Conversely, the least-number principle together with the dichotomy of Example

16.17 yields the principle of mathematical induction. For if zero has a property and

the successor of any number having the property has it also, then neither zero nor any

successor can be the least number failing to have the property.)

All our argumentation in this section so far has been informal. A more adequate

set of formal axioms for number theory is provided by the set of axioms of Peano
arithmetic—an infinite (but primitive recursive) set of axioms consisting of the axioms

of Q plus all sentences of the following form:

(A(0) & ∀x(A(x) → A(x ′))) → ∀x A(x).

[Here A(x) may contain other free variables y1, . . . , yn , and what is really meant is

∀y1 . . . ∀yn((A(0, y1, . . . , yn) & ∀x(A(x, y1, . . . , yn) → A(x ′, y1, . . . , yn))) →
∀x A(x, y1, . . . , yn))

in accordance with the traditional convention of suppressing initial universal quanti-

fiers in displayed formulas.]

The theory P of Peano arithmetic is the set of all sentences of the language of

arithmetic that are provable from (or equivalently, are consequences of) these axioms.

A rule to the effect that all sentences of a certain kind are to be taken as axioms is called

an axiom scheme. With this terminology it would be said that the axioms of Peano

arithmetic P consist of finitely many individual axioms (those of minimal arithmetic

Q) plus a single axiom scheme (the induction scheme as above). In practice, the

sets of axioms of most interest to logicians tend to consist of at most a dozen or so

individual axioms and at most a very few axiom schemes, and so in particular are

primitive recursive.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.3. MATHEMATICAL INDUCTION 215

Among the axioms of P are for instance the following:

(0 + 0 = 0 + 0 &

∀x(0 + x = x + 0 → 0 + x ′ = x ′ + 0)) →
∀x 0 + x = x + 0

and

(0′ + 0 = 0 + 0′ &

∀x(0′ + x = x + 0′ → 0′ + x ′ = x ′ + 0′)) →
∀x 0′ + x = x + 0′.

And using these axioms in addition to the axioms of Q, the laws 0 + x = x + 0

and 1 + x = x + 1 are provable from the axioms of P, by ‘formalizing’ the proof of

these laws given above as Examples 16.18 and 16.19. Also, for any formula F(x) the

least-number principle for F , namely

∃x F(x) → ∃x(F(x) & ∀y < x ∼F(y))

is provable from the axioms of P, again by ‘formalizing’ the proof given above;

and similarly for complete induction. Eventually the usual proofs of, say, Lagrange’s

theorem in textbooks on number theory can be ‘formalized’ to give proofs from the

axioms of P.

The method of proof by mathematical induction is indeed an ingredient in the

proofs of essentially all major theorems in mathematics, but it is perhaps especially

common in metamathematics, the branch of mathematics concerned with giving

proofs about what can be proved in mathematics—the branch to which the present

book belongs. We have been using this method of proof all along, often in disguise.

Consider, for instance, the proof by induction on complexity of formulas, of which we

have made considerable use. What one does with this method is, not to put too fine a

point on it, prove (as base step) that any atomic formula, which is to say, any formula

containing 0 occurrences of the logical symbols (negation, junctions, quantifiers), has

a certain property, and then prove (as inductive step) that if all formulas containing no

more than n occurrences of the logical symbols have the property, then so does any for-

mula containing n′ such occurrences. The proof of the latter assertion is broken down

into cases according as the one extra symbol is a negation, a junction, or a quantifier.

This method of proof is really a special form of proof by mathematical induction.

And in our proof of Theorem 16.13 in the preceding section, for instance, every

step involved some sort of induction, though we have expressed it very casually, using

such phrases as ‘continuing in the same way’. A less casual way of putting the second

paragraph of the proof, for instance, would be as follows:

It can be proved by mathematical induction that if m < n, then m �= n is provable from
the axioms of Q. Basis: if 0 < n then 0 �= n is provable by (Q0) (since the numeral n ends
in an accent). Induction: assuming m �= n is provable whenever m < n, if m ′ < n, then we
show m′ �= n is provable as follows. Let n = k ′. Then m < k, and by assumption m �= k
is provable. But m′ = k′ → m = k, which is to say m′ = n → m = k, is provable by (Q1).
It follows by pure logic that m �= n is provable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

216 REPRESENTABILITY OF RECURSIVE FUNCTIONS

In this example we are using induction (‘in the metalanguage’) to prove something

about a theory that does not have induction as an axiom (‘in the object language’):

we prove that something is a theorem of Q for every m by proving it is a theorem

for 0, and that if it is a theorem for m, then it is a theorem for m′. Again, this sort of

proof can be ‘formalized’ in P.

16.4* Robinson Arithmetic

This optional section is addressed to readers who wish to compare our treatment of

the matters with which we have been concerned in this chapter with other treatments

in the literature. In the literature, the label Q is often used to refer not to our minimal

arithmetic but to another system, called Robinson arithmetic, for which we use the

label R. To obtain the axioms of R from those of Q, add

x = 0 ∨ ∃y x = y′(Q0)

and replace (Q7)–(Q10) by

x < y ↔ ∃z(z′ + x = y).(Q11)

We have already mentioned an extremely natural nonstandard model for Q, called

the system of ordinal numbers, in which (Q0) fails. There is also an extremely nat-

ural nonstandard model for R, called the system of cardinal numbers, in which

(Q10) fails; though it would take us too far afield to develop this model here, a

simplified version suffices to show that some theorems of Q are not theorems of R.

Thus Q is in some respects weaker and in some respects stronger than R, and vice

versa.

By Theorem 16.16, every recursive function is representable in Q. Careful reread-

ing of the proof reveals that all the facts it required about order are these, that the

following are theorems:

a < b, whenever a< b(1)

∼ x < 0(2)

0 < y ↔ y �= 0(3)

and for any b the following:

x < b′ → x < b ∨ x = b(4)

b < y & y �= b′ → b′ < y.(5)

Clearly (1) is a theorem of R, since if a < b, then for some c, c′+ a = b, and

then c′ + a = b is a consequence of (Q1)–(Q4). Also (2), which is axiom (Q7), is a

theorem of R. For first z′ + 0 = z′ �= 0 by (Q3) and (Q1), which gives us ∼0 < 0,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

PROBLEMS 217

and then second z′ + y′ = (z′ + y′) �= 0 by (Q4) and (Q1), which gives us ∼ y′ < 0.

But these two, together with (Q0), give us (2). Also (3), which is axiom (Q9), is a

theorem of R. For 0 < y → y �= 0 follows from ∼0 < 0, and for the opposite direction,

(Q0) gives y �= 0→ ∃z(y = z′), while (Q3) gives y = z′ → z′ + 0 = y, and (Q11)

gives ∃z(z′ + 0 = y) → 0 < y, and (3) is a logical consequence of these three.

It turns out that (4) and (5) are also theorems of R, and hence every recursive

function is representable in R. Proofs have been relegated to the problems at the end

of the chapter because we do not need any results about R for our later work. All we

need for the purposes of proving the celebrated Gödel incompleteness theorems and

their attendant lemmas and corollaries in the next chapter is that there is some correct,

finitely axiomatizable theory in the language of arithmetic in which all recursive

functions are representable. We chose minimal arithmetic because it is easier to

prove representability for it; except in this regard Robinson arithmetic would really

have done no worse and no better.

Problems

16.1 Show that the class of arithmetical relations is closed under substitution of

recursive total functions. In other words, if P is an arithmetical set and f a

recursive total function, and if Q(x) ↔ P(f (x)), then Q is an arithmetical set,

and similarly for n-place relations and functions.

16.2 Show that the class of arithmetical relations is closed under negation, conjunc-

tion, disjunction, and universal and existential quantification, and in particular

that every semirecursive relation is arithmetical.

16.3 A theory T is inconsistent if for some sentence A, both A and ∼A are theorems

of T . A theory T in the language of arithmetic is called ω-inconsistent if

for some formula F(x), ∃x F(x) is a theorem of T , but so is ∼F(n) for each

natural number n. Let T be a theory in the language of arithmetic extending Q.

Show:

(a) If T proves any incorrect ∀-rudimentary sentence, then T is inconsistent.

(b) If T proves any incorrect ∃-rudimentary sentence, then T is

ω-inconsistent.

16.4 Extend Theorem 16.3 to generalized ∃-rudimentary sentences.

16.5 Let R be the set of triples (m, a, b) such that m codes a formula φ(x, y) and

Q proves

∀y(φ(a, y) ↔ y = b).

Show that R is semirecursive.

16.6 For R as in the preceding problem, show that R is the graph of a two-place

partial function.

16.7 A universal function is a two-place recursive partial function F such that for

any one-place recursive total or partial function f there is an m such that

f (a) = F(m, a) for all a. Show that a universal function exists.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

218 REPRESENTABILITY OF RECURSIVE FUNCTIONS

The result of the preceding problem was already proved in a completely
different way (using the theory of Turing machines) in Chapter 8 as Theorem
8.5. After completing the preceding problem, readers who skipped section 8.3

may turn to it, and to the related problems at the end of Chapter 8.

16.8 A set P is (positively) semidefinable in a theory T by a formula φ(x) if for every

n, φ(n) is a theorem of T if and only if n is in P . Show that every semirecursive

set is (positively) semidefinable in Q and any ω-consistent extension of Q.

16.9 Let T be a consistent, axiomatizable theory containing Q. Show that:

(a) Every set (positively) semi-definable in T is semirecursive.

(b) Every set definable in T is recursive.

(c) Every total function representable in T is recursive.

16.10 Using the recursion equations for addition, prove:

(a) x + (y + 0) = (x + y) + 0.

(b) x + (y + z) = (x + y) + z → x + (y + z′) = (x + y) + z′.
The associative law for addition,

x + (y + z) = (x + y) + z

then follows by mathematical induction (‘on z’). (You may argue informally,

as at the beginning of section 16.3. The proofs can be ‘formalized’ in P, but

we are not asking you to do so.)

16.11 Continuing the preceding problem, prove:

(c) x ′ + y = (x + y)′,
(d) x + y = y + x .

The latter is the commutative law for addition.

16.12 Continuing the preceding problems, prove the associative and distributive and

commutative laws for multiplication:

(e) x · (y + z) = x · y + x · z,

(f) x · (y · z) = (x · y) · z,

(g) x · y = y · x .

16.13 (a) Consider the following nonstandard order relation on the natural numbers:

m <1 n if and only if m is odd and n is even, or m and n have the same

parity (are both odd or both even) and m < n. Show that if there is a natural

number having a property P then there is a <1-least such natural number.

(b) Consider the following order on pairs of natural numbers: (a, b) <2 (c, d)

if and only if either a < c or both a = c and b < d . Show that if there is a

pair of natural numbers having a property P then there is a <2-least such

pair.

(c) Consider the following order on finite sequences of natural numbers:

(a0, . . . , am) <3 (b0, . . . , bn) if and only if either m < n or both m = n
and the following condition holds: that either am < bm or else for some

i < m, ai < bi while for j > i we have a j = b j . Show that if there is a

sequence of natural numbers having a property P then there is a <3-least

such sequence.

16.14 Consider a nonstandard interpretation of the language {0, ′, <} in which the

domain is the set of natural numbers, but the denotation of < is taken to be the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

PROBLEMS 219

relation <1 of Problem 16.13(a). Show that by giving suitable denotations to

0 and ′, axioms (Q1)–(Q2) and (Q7)–(Q10) of Q can be made true, while the

sentence ∀x(x = 0 ∨ ∃y x = y′) is made false.

16.15 Consider a nonstandard interpretation of the language {0, ′, <, +} in which

the domain is the set of pairs of natural numbers, and the denotation of < is

taken to be the relation <2 of Problem 16.13(b). Show that by giving suitable

denotations to 0 and ′ and +, axioms (Q1)–(Q4) and (Q7)–(Q10) of Q can be

made true, while both the sentence of the preceding problem and the sentence

∀y(1 + y = y + 1) are made false.

16.16 Consider an interpretation of the language {0, ′, +, ·, <} in which the domain

is the set of natural numbers plus one additional object called ∞, where the

relations and operations on natural numbers are as usual, ∞′ = ∞, x + ∞ =
∞ + x = ∞ for any x, 0 · ∞ = ∞ · 0 = 0 but x · ∞ = ∞ · x = ∞ for any

x �= 0, and x < ∞ for all x , but not ∞ < y for any y �= ∞. Show that axioms

(Q0)–(Q9) and (Q11) are true on this interpretation, but not axiom (Q10).

16.17 Show that, as asserted in the proof of Lemma 16.14, for each m the following

is a theorem of Q:

m < y ↔ (y �= 0 & y �= 1 & . . . & y �= m).

16.18 Show that if the induction axioms are added to (Q1)–(Q8), then (Q9) and (Q10)

become theorems. The following problems pertain to the optional section 16.4.
16.19 Show that the following are theorems of R for any b:

(a) x ′ + b = x + b′.
(b) b < x → b′ < x ′.
(c) x ′ < y′ → x < y.

16.20 Show that the following are theorems of R for any b:

(a) x < b′ → x < b ∨ x = b.

(b) b < y & y �= b′ → b′ < y.

16.21 Show that adding induction to R produces the same theory (Peano arithmetic

P) as adding induction to Q.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

17

Indefinability, Undecidability, Incompleteness

We are now in a position to give a unified treatment of some of the central negative
results of logic: Tarski’s theorem on the indefinability of truth, Church’s theorem on the
undecidability of logic, and Gödel’s first incompleteness theorem, according to which,
roughly speaking, any sufficiently strong formal system of arithmetic must be incomplete
(if it is consistent). These theorems can all be seen as more or less direct consequences
of a single exceedingly ingenious lemma, the Gödel diagonal lemma. This lemma, and
the various negative results on the limits of logic that follow from it, will be presented
in section 17.1. This presentation will be followed by a discussion in section 17.2 of
some classic particular examples of sentences that can be neither proved nor disproved
in theories of arithmetic like Q or P. Further such examples will be presented in the
optional section 17.3. According to Gödel’s second incompleteness theorem, the topic
of the next chapter, such examples also include the sentence stating that P is consistent.

17.1 The Diagonal Lemma and the Limitative Theorems

By the results in the preceding chapter on the representability of recursive functions,

we can ‘talk about’ such functions within a formal system of arithmetic. By the

results of the chapter before that on the arithmetization of syntax, we can ‘talk about’

sentences and proofs in a formal system of arithmetic in terms of recursive functions.

Putting the two together, we can ‘talk about’ sentences and proofs in a formal system

of arithmetic within the formal system of arithmetic itself. This is the key to the main

lemma of this section, the diagonal lemma.

Until further notice, all formulas, sentences, theories, and so on, will be formulas,

sentences, theories, or whatever in the language of arithmetic. Given any expression

A of the language of arithmetic, we have introduced in Chapter 15 a code number

for A, called the Gödel number of A. If a is this number, then the numeral a for a,

consisting of 0 followed by a accents ′, is naturally called the Gödel numeral for A.

We write A for this code numeral for A. In what follows, A will be seen to function

somewhat like a name for A.

We define the diagonalization of A to be the expression ∃x(x = A & A). While

this notion makes sense for arbitrary expressions, it is of most interest in the case of a

formula A(x) with just the one variable x free. Since in general F(t) is equivalent to

∃x(x = t & F(x)), in case A is such a formula, the diagonalization of A is a sentence

220

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

17.1. THE DIAGONAL LEMMA AND THE LIMITATIVE THEOREMS 221

equivalent to A(A), the result of substituting the code numeral for A itself for the

free variable in A. In this case the diagonalization ‘says that’ A is satisfied by its

own Gödel number, or more precisely, the diagonalization will be true in the standard

interpretation if and only if A is satisfied by its own Gödel number in the standard

interpretation.

17.1 Lemma (Diagonal lemma). Let T be a theory containing Q. Then for any formula

B(y) there is a sentence G such that �T G ↔ B(G).

Proof: There is a (primitive) recursive function, diag, such that if a is the Gödel

number of an expression A, then diag(a) is the Gödel number of the diagonalization

of A. Indeed, we have seen almost exactly the function we want before, in the proof

of Corollary 15.6. Recalling that officially x = y is supposed to be written =(x, y),

it can be seen to be

diag(y) = exquant(v, conj(i ∗ l ∗ v ∗ c ∗ num(y) ∗ r, y))

where v is the code number for the variable, i, l, r , and c for the equals sign, left and

right parentheses, and comma, and exquant, conj, and num are as in Proposition 15.1

and Corollary 15.6.

If T is a theory extending Q, then diag is representable in T by Theorem 16.16. Let

Diag(x, y) be a formula representing diag, so that for any m and n, if diag (m) = n,

then �T ∀y(Diag(m,y) ↔ y = n).

Let A(x) be the formula∃y(Diag(x, y) & B(y)). Let a be the Gödel number of A(x),

and a its Gödel numeral. Let G be the sentence ∃x(x = a & ∃y(Diag(x, y) & B(y))).

Thus G is ∃x(x = a & A(x)), and is logically equivalent to A(a) or ∃y(Diag(a, y) &

B(y)). The biconditional G ↔ ∃y(Diag(a, y) & B(y)) is therefore valid, and as such

provable in any theory, so we have

�T G ↔ ∃y(Diag(a, y) & B(y)).

Let g be the Gödel number of G, and g its Gödel numeral. Since G is the diagonal-

ization of A(x), diag(a) = g and so we have

�T ∀y(Diag(a, y) ↔ y = g).

It follows that

�T G ↔ ∃y(y = g & B(y)).

Since ∃y(y = g & B(y)) is logically equivalent to B(g), we have

�T ∃y(y = g & B(y)) ↔ B(g).

It follows that

�T G ↔ B(g)

or in other words, �T G ↔ B(G), as required.

17.2 Lemma. Let T be a consistent theory extending Q. Then the set of Gödel numbers

of theorems of T is not definable in T .

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

222 INDEFINABILITY, UNDECIDABILITY, INCOMPLETENESS

Proof: Let T be an extension of Q. Suppose θ (y) defines the set � of Gödel

numbers of sentences in T . By the diagonal lemma there is a sentence G such that

�T G ↔ ∼θ (G).

In other words, letting g be the Gödel number of G, and g its Gödel numeral, we have

�T G ↔ ∼θ (g).

Then G is a theorem of T . For if we assume G is not a theorem of T , then g is not

in �, and since θ (y) defines �, we have �T ∼θ (g); but then since �T G ↔ ∼θ (g), we

have �T G and G is a theorem of T after all. But since G is a theorem of T , g is in

�, and so we have �T θ (g); but then, since �T G ↔ ∼θ (g), we have �T ∼G, and T is

inconsistent.

Now the ‘limitative theorems’ come tumbling out in rapid succession.

17.3 Theorem (Tarski’s theorem). The set of Gödel numbers of sentences of the lan-

guage of arithmetic that are correct, or true in the standard interpretation, is not arithmetically

definable.

Proof: The set T in question is the theory we have been calling true arithmetic.

It is a consistent extension of Q, and arithmetic definability is simply definability in

this theory, so the theorem is immediate from Lemma 17.2.

17.4 Theorem (Undecidability of arithmetic). The set of Gödel numbers of sentences

of the language of arithmetic that are correct, or true in the standard interpretation, is not

recursive.

Proof: This follows from Theorem 17.3 and the fact that all recursive sets are

definable in arithmetic.

Assuming Church’s thesis, this means that the set in question is not effectively

decidable: there are no rules—of a kind requiring only diligence and persistence, not

ingenuity and insight, to execute—with the property that applied to any sentence of

the language of arithmetic they will eventually tell one whether or not it is correct.

17.5 Theorem (Essential undecidability theorem). No consistent extension of Q is

decidable (and in particular, Q itself is undecidable).

Proof: Suppose T is a consistent extension of Q (in particular, T could just be Q

itself). Then by Lemma 17.2, the set � of Gödel numbers of theorems of T is not

definable in T . Now, again as in the proof of Theorem 17.4, we invoke the fact that

every recursive set is definable in T . So the set � is not recursive, which is to say T
is not decidable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

17.1. THE DIAGONAL LEMMA AND THE LIMITATIVE THEOREMS 223

17.6 Theorem (Church’s theorem). The set of valid sentences is not decidable.

Proof: Let C be the conjunction of all the axioms of Q. Then a sentence A is a

theorem of Q if and only if A is a consequence of C , hence if and only if (∼C ∨ A) is

valid. The function f taking the Gödel number of A to that of (∼C ∨ A) is recursive [it

being simply f (y) = disj(neg(c), y), in the notation of the proof of Proposition 15.1].

If the set � of logically valid sentences were recursive, the set K of Gödel numbers of

theorems of Q would be obtainable from it by substitution of the recursive function

f , since a is in K if and only if f (n) is in �, and so would be recursive, which it is

not by Theorem 17.4.

The sets of valid sentences, and of theorems of any axiomatizable theory, are

semirecursive by Corollaries 15.4 and 15.5, and intuitively, of course, both are posi-
tively effectively decidable: in principle, if not in practice, just by searching through

all demonstrations (or all proofs from the axioms of the theory), if a sentence is valid

(or a theorem of the theory), one will eventually find that out. But Theorems 17.5 and

17.6 tell us these sets are not recursive, and so by Church’s thesis are not effectively

decidable.

17.7 Theorem (Gödel’s first incompleteness theorem). There is no consistent, com-

plete, axiomatizable extension of Q.

Proof: Any complete axiomatizable theory is decidable by Corollary 15.7, but no

consistent extension of Q is decidable by Theorem 17.5 above.

The import of Gödel’s first incompleteness theorem is sometimes expressed in

the words ‘any sufficiently strong formal system of arithmetic (or mathematics) is

incomplete, unless it is inconsistent’. Here by ‘formal system’ is meant a theory

whose theorems are derivable by the rules of logical derivation from a set of ax-

ioms that is effectively decidable, and hence (assuming Church’s thesis) recursive. So

‘formal system’ amounts to ‘axiomatizable theory’, and ‘formal system of arithmetic’

to ‘axiomatizable theory in the language of arithmetic’. Gödel’s first incompleteness

theorem in the version in which we have given it indicates a sufficient condition

for being ‘sufficiently strong’, namely, being an extension of Q. Since Q is a com-

paratively weak theory, this version of Gödel’s first incompleteness theorem is a

correspondingly strong result.

Now a formal system of mathematics might well be such that the domain of its

intended interpretation was a more inclusive set than the set of natural numbers, and

it might well be such that it did not have symbols specifically for ‘less than’ and the

other items for which there are symbols in the language of arithmetic. So the principle

that any two natural numbers are comparable as to ordering might not be expressed,

as it is in the axioms of Q, by the sentence

∀x∀y(x < y ∨ x = y ∨ y < x).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

224 INDEFINABILITY, UNDECIDABILITY, INCOMPLETENESS

Still, it is reasonable to understand ‘sufficiently strong’ as implying that this principle

can be somehow expressed in the language of the theory, perhaps by a sentence

∀x(N (x) → ∀y(N (y) → (L(x, y) ∨ x = y ∨ L(y, x))))

where N (x) appropriately expresses ‘x is a natural number’ and L(x, y) appropriately

expresses ‘x is less than y’. Moreover, the sentence that thus ‘translates’ this or any

axiom of Q should be a theorem of the theory. Such is the case, for instance, with the

formal systems considered in works on set theory, such as the one known as ZFC,

which are adequate for formalizing essentially all accepted mathematical proofs.

When the notion of ‘translation’ is made precise, it can be shown that any ‘sufficiently

strong’ formal system of mathematics in the sense we have been indicating is still

subject to the limitative theorems of this chapter. In particular, if consistent, it will be

incomplete.

Perhaps the most important implication of the incompleteness theorem is what is

says about the notions of truth (in the standard interpretation) and provability (in a

formal system): that they are in no sense the same.

17.2 Undecidable Sentences

A sentence in the language of a theory T is said to be disprovable in T if its negation

is provable in T , and is said to be undecidable in or by or for T if it is neither provable

nor disprovable in T . (Do not confuse the notion of an undecidable sentence with that

of an undecidable theory. True arithmetic, for example, is an undecidable theory with

no undecidable sentences: the sentences of its language that are true in the standard

interpretation all being provable, and those that are false all being disprovable.) If

T is a theory in the language of arithmetic that is consistent, axiomatizable, and an

extension of Q, then T is an undecidable theory by Theorem 17.4, and there exist

undecidable sentences for T by Theorem 17.7. Our proof of the latter theorem did

not, however, exhibit any explicit example of a sentence that is undecidable for T .

An immediate question is: can we find any such specific examples?

In order to do so, we use the fact that the set of sentences that are provable

and the set of sentences that are disprovable from any recursive set of axioms is

semirecursive, and that all recursive sets are definable by ∃-rudimentary formulas.

It follows that there are formulas PrvT (x) and DisprvT (x) of forms ∃y PrfT (x, y)

and ∃y DisprfT (x, y) respectively, with Prf and Disprf rudimentary, such that �T A
if and only if the sentence PrvT (A) is correct or true in the standard interpretation,

and hence if and only if for some b the sentence PrfT (A , b) is correct or—what

is equivalent for rudimentary sentences—provable in Q and in T ; and similarly for

disprovability. PrfT (x, y) could be read ‘y is a witness to the provability of x in T ’.

By the diagonalization lemma, there is a sentence GT such that

�T GT ↔ ∼∃y PrfT (GT , y)

and a sentence RT such that

�T RT ↔ ∀y(PrfT (RT , y) → ∃z < y Disprf(RT , z)).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

17.2. UNDECIDABLE SENTENCES 225

Such a GT is called a Gödel sentence for T , and such an RT a Rosser sentence for

T . Thus a Gödel sentence ‘says of itself that’ it is unprovable, and a Rosser sentence

‘says of itself that’ if there is a witness to its provability, then there is an earlier witness

to its disprovability.

17.8 Theorem. Let T be a consistent, axiomatizable extension of Q. Then a Rosser

sentence for T is undecidable for T .

Proof: Suppose the Rosser sentence RT is provable in T . Then there is some a
that witnesses the provability of RT . Since T is consistent, ∼RT is not also provable,

and so no m witnesses the disprovability of RT , and in particular, no m < n does so.

It follows that the rudimentary sentence

PrfT (RT , n) & ∼∃z < n DisprfT (RT , z)

is correct and as such is provable from the axioms of Q, and hence from T . In other

words, we have

�T PrfT (RT , n) & ∼∃z < n DisprfT (RT , z)

while, since RT is a Rosser sentence, we also have

�T RT ↔ ∀y(PrfT (RT , y) → ∃z < y Disprf(RT , z)).

By pure logic it follows that

�T ∼ RT .

But then T is inconsistent, both RT and ∼RT being provable, contrary to assumption.

This contradiction shows that RT cannot be provable.

Suppose the Rosser sentence RT is disprovable in T . Then there is some m that

witnesses the disprovability of RT . Since T is consistent, RT is not also provable,

and so no n witnesses the provability of RT , and in particular, no n ≤ m does so. It

follows that the rudimentary formulas

DisprfT (RT , m)

∀x((x < m ∨ x = m) → ∼PrfT (RT , x))

are correct and hence provable in T . In other words we have

�T DisprfT (RT , m),

�T ∀y((y < m ∨ y = m) → ∼PrfT (RT , y)).

By pure logic it follows from the former of these that

�T ∀y(m < y → ∃z < y DisprfT (RT , z)).

As a theorem of Q we also have

�T ∀y(y < m ∨ y = m ∨ m < y).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

226 INDEFINABILITY, UNDECIDABILITY, INCOMPLETENESS

It follows by pure logic that

�T ∀y(PrfT (RT , y) → ∃z < y Disprf(RT , z))

and hence �T RT , and T is inconsistent, a contradiction that shows that RT cannot be

disprovable in T .

A theory T is calledω-inconsistent if and only if for some formula F(x),�T ∃x F(x)

but �T ∼F(n) for every natural number n, and is called ω-consistent if and only if

it is not ω-inconsistent. Thus an ω-inconsistent theory ‘affirms’ there is some num-

ber with the property expressed by F , but then ‘denies’ that zero is such a number,

that one is such a number, than two is such a number, and so on. Since ∃x F(x) and

∼F(0), ∼F(1), ∼F(2), . . . cannot all be correct, any ω-inconsistent theory must have

some incorrect theorems. But an ω-inconsistent theory need not be inconsistent. (An

example of a consistent but ω-inconsistent theory will be given shortly.)

17.9 Theorem. Let T be a consistent, axiomatizable extension of Q. Then a Gödel

sentence for T is unprovable in T , and if T is ω-consistent, it is also undisprovable in T .

Proof: Suppose the Gödel sentence GT is provable in T . Then the ∃-rudimentary

sentence ∃y PrfT (GT , y) is correct, and so provable in T . But since GT is a Gödel

sentence, GT ↔ ∼∃y PrfT (GT , y) is also provable in T . By pure logic it follows

that ∼GT is provable in T , and T is inconsistent, a contradiction, which shows that

GT is not provable in T .

Suppose the sentence GT is disprovable in T . Then ∼∼∃y PrfT (GT , y) and hence

∃y PrfT (GT , y) is provable in T . But by consistency, GT is not provable in T , and so

for any n, n is not a witness to the provability of GT , and so the rudimentary sentence

∼PrfT (GT , n) is correct and hence provable in Q and hence in T . But this means

T is ω-inconsistent, a contradiction, which shows that GT is not disprovable in T .

For an example of a consistent but ω-inconsistent theory, consider the theory

T = Q + ∼GQ consisting of all consequences of the axioms of Q together with ∼GQ

or ∼∼∃y PrfQ(GQ, y). Since GQ is not a theorem of Q, this theory T is consistent. Of

course ∃y PrfQ(GQ, y) is a theorem of T . But for any particular n, the rudimentary

sentence ∼PrfQ(GQ, n) is correct, and therefore provable in any extension of Q,

including T .

Historically, Theorem 17.9 came first, and Theorem 17.8 was a subsequent re-

finement. Accordingly, the Rosser sentence is sometimes called the Gödel–Rosser
sentence. Subsequently, many other examples of undecidable sentences have been

brought forward. Several interesting examples will be discussed in the following,

optional section, and the most important example in the next chapter.

17.3* Undecidable Sentences without the Diagonal Lemma

The diagonal lemma, which was used to construct the Gödel and Rosser sentences,

is in some sense the cleverest idea in the proof of the first incompleteness theorem,

and is heavily emphasized in popularized accounts. However, the possibility of im-

plementing the idea of this lemma, of constructing a sentence that says of itself that

it is unprovable, depends on the apparatus of the arithmetization of syntax and the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

17.3*. UNDECIDABLE SENTENCES WITHOUT THE DIAGONAL LEMMA 227

representability of recursive functions. Once that apparatus is in place, a version of

the incompleteness theorem, showing the existence of a true but unprovable sentence,

can be established without the diagonal lemma. One way to do so is indicated in the

first problem at the end of this chapter. (This way uses the fact that there exist semire-

cursive sets that are not recursive, and though it does not use the diagonal lemma,

does involve a diagonal argument, buried in the proof of the fact just cited.) Some

other ways will be indicated in the present section.

Towards describing one such way, recall the Epimenides or liar paradox, involving

the sentence ‘This sentence is untrue’. A contradiction arises when we ask whether

this sentence is true: it seems that it is if and only if it isn’t. The Gödel sentence

in effect results from this paradoxical sentence on substituting ‘provable’ for ‘true’

(a substitution that is crucial for establishing that we can actually construct a Gödel

sentence in the language of arithmetic). Now there are other semantic paradoxes,

paradoxes in the same family as the liar paradox, involving other semantic notions

related to truth. One famous one is the Grelling or heterological paradox. Call an

adjective autological if it is true of itself, as ‘short’ is short, ‘polysyllabic’ is poly-

syllabic, and ‘English’ is English, and call it heterological if it is untrue of itself, as

‘long’ is not long, ‘monosyllabic’ is not monosyllabic, and ‘French’ is not French. A

contradiction arises when we ask whether ‘heterological’ is heterological: it seems

that it is if and only if it isn’t.

Let us modify the definition of heterologicality by substituting ‘provable’ for

‘true’. We then get the notion of self-applicability: a number m is self-applicable

in Q if it is the Gödel number of a formula μ(x) such that μ(m) is provable in Q.

Now the same apparatus that allowed us to construct the Gödel sentence allows us

to construct what may be called the Gödel–Grelling formula GG(x) expressing ‘x
is not self-applicable’. Let m be its Gödel number. If m were self-applicable, then

GG(m) would be provable, hence true, and since what it expresses is that m is not
self-applicable, this is impossible. So m is not self-applicable, and hence GG(m) is

true but unprovable.

Another semantic paradox, Berry’s paradox, concerns the least integer not namable

in fewer than nineteen syllables. The paradox, of course, is that the integer in question

appears to have been named just now in eighteen syllables. This paradox, too, can be

adapted to give an example of a sentence undecidable in Q. Let us say that a number

n is denominable in Q by a formula φ(x) if ∀x(φ(x) ↔ x = n) is (not just true but)

provable in Q.

Every number n is denominable in Q, since if worse comes to worst, it can always

be denominated by the formula x = n, a formula with n + 3 symbols. Some numbers

n are denominable in Q by formulas with far fewer than n symbols. For example, the

number 10 ⇑ 10 is denominable by the formula φ(10, 10, x), where φ is a formula

representing the super-exponential function ⇑. We have not actually written out this

formula, but instructions for doing so are implicit in the proof that all recursive func-

tions are representable, and review of that proof reveals that writing out the formula

would not take more time or more paper than an ordinary homework assignment. By

contrast, 10 ⇑ 10 is larger than the number of particles in the visible universe. But

while big numbers can thus be denominated by comparatively short formulas, for any

fixed k, only finitely many numbers can be denominated by formulas with fewer than

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

228 INDEFINABILITY, UNDECIDABILITY, INCOMPLETENESS

k symbols. For logically equivalent formulas denominate the same number (if they

denominate any number at all), and every formula with fewer than k symbols is log-

ically equivalent, by relettering bound variables, to one with only the first k variables

on our official list of variables, and there are only finitely many of those.

Thus, there will be numbers not denominable using fewer than 10 ⇑ 10 symbols.

The usual apparatus allows us to construct a Gödel–Berry formula GB(x, y), ex-

pressing ‘x is the least number not denominable by a formula with fewer than y ⇑ y
symbols’. Writing out this formula would involve writing out not just the formula

representing the super-exponential function ⇑, but also the formulas relating to prov-

ability in Q. Again we have not actually written out these formulas, but only given

an outline of how to do so in our proofs of the arithmetizability of syntax and the

representability of recursive functions in Q. Review of those proofs reveals that writ-

ing out the formula GB(x, y) or GB(x , 10), though it would require more time and

paper than any reasonable homework assignment, would not require more symbols

than appear in an ordinary encyclopedia, which is far fewer than the astronomical

figure 10 ⇑ 10. Now there is some number not denominable by a formula with fewer

symbols than that astronomical figure, and among such numbers there is one and

only one least, call it n. Then GB(n, 10) and ∀x(GB(x, 10) ↔ x = n) are true. But

if the latter were provable, the formula GB(x , 10) would denominate n, whereas n is

not denominable except by formulas much longer than that. Hence we have another

example of an unprovable truth.

This example is worth pressing a little further. The length of the shortest formula

denominating a number may be taken as a measure of the complexity of that number.

Just as we could construct the Gödel–Berry formula, we can construct a formula

C(x, y, z) expressing ‘the complexity of x is y and y is greater than z ⇑ z’, and

using it the Gödel–Chaitin formula GC(x) or ∃yC(x, y, 10), expressing that x has

complexity greater than 10 ⇑ 10. Now for all but finitely many n, GC(n) is true.

Chaitin’s theorem tells us that no sentence of form GC(n) is provable.

The reason may be sketched as follows. Just as ‘y is a witness to the provability

of x in Q’ can be expressed in the language of arithmetic by a formula PrfQ(x ,y), so

can ‘y is a witness to the provability of the result of subsituting the numeral for x for

the variable in GC’ be expressed by a formula PrfGCQ(x ,y). Now if any sentence of

form GC(n) can be proved, there is a least m such that m witnesses the provability of

GC(n) for some n. Let us call m the ‘lead witness’ for short. And of course, since any

one number witnesses the provability of at most one sentence, there will be a least

n—in fact, there will be one and only one n—such that the lead witness is a witness to

the provability of GC(n). Call n the number ‘identified by the lead witness’ for short.

If one is careful, one can arrange matters so that the sentences K (m) and L(n)

expressing ‘m is the lead witness’ and ‘n is the number identified by the lead witness’

will be ∃-rudimentary, so that, being true, K (m) and L(n) will be provable. Moreover,

since it can be proved in Q that there is at most one least number fulfilling the condition

expressed by any formula, ∀x(x �= m → ∼K (x)) and ∀x(x �= n → ∼L(x)) will also

be provable. But this means that n is denominated by the formula L(x), and hence

has complexity less than the number of symbols in that formula. And though it might

take an encyclopedia’s worth of paper and ink to write the formula down, the number

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

17.3*. UNDECIDABLE SENTENCES WITHOUT THE DIAGONAL LEMMA 229

of symbols in any encyclopedia remains far less than 10 ⇑ 10. So if n is denominated

by the formula L(x), its complexity is less than 10 ⇑ 10. Since this is impossible, it

follows that no sentence of form GC(n) can be proved: no specific number n can be

proved to have complexity greater than 10 ⇑ 10. This reasoning can be adapted to

any other reasonable measure of complexity.

(For example, suppose we take the complexity of a number to be the smallest

number of states needed for a Turing machine that will produce that number as output

given zero as input. To establish that ‘the complexity of x is y’ and related formulas

can be expressed in the language of arithmetic we now need the fact that Turing

machines can be coded by recursive functions in addition to the fact that recursive

functions are representable. And to show that if there is any proof that some number

has complexity greater than 10 ⇑ 10, then the number n identified by the lead witness

can be generated as the output for input zero by some Turing machine, we need in

addition to the arithmetizability of syntax the fact also of the Turing computability of

recursive functions. Almost the whole of this book up to this point is involved just in

outlining how one would go about writing down the relevant formula and designing

the relevant Turing machine. But while filling in the details of this outline might fill

an encyclopedia, still it would not require anything approaching 10 ⇑ 10 symbols,

and that is all that is essential to the argument. In the literature, the label Chaitin’s
theorem refers especially to this Turing-machine version, but as we have said, similar

reasoning applies to any reasonable notion of complexity.)

Thus on any reasonable measure of complexity, there is an upper bound b—we

have used 10 ⇑ 10, though a closer analysis would show that a much smaller number

would do, its exact value depending on the particular measure of complexity being

used—such that no specific number n can be proved in Q to have complexity greater

than b. Moreover, this applies not just to Q but to any stronger true theory, such as

P or the theories developed in works on set theory that are adequate for formalizing

essentially all ordinary mathematical proofs. Thus Chaitin’s theorem, whose proof we

have sketched, tells us that there is an upper bound such that no specific number can be
proved by ordinary mathematical means to have complexity greater than that bound.

Problems

17.1 Show that the existence of a semirecursive set that is not recursive implies

that any consistent, axiomatizable extension of Q fails to prove some correct

∀-rudimentary sentence.

17.2 Let T be a consistent, axiomatizable theory extending Q. Consider the set Pyes

of (code numbers of) formulas that are provable in T , and the set Pno of (code

numbers of) formulas that are disprovable in P. Show that there is no recursive

set R such that Pyes is a subset of R while no element of R is an element of Pno.

17.3 Let B1(y) and B2(y) be two formulas of the language of arithmetic. General-

izing the diagonal lemma, show that there are sentences G1 and G2 such that

�Q G1 ↔ B2(G2)

�Q G2 ↔ B1(G1).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

230 INDEFINABILITY, UNDECIDABILITY, INCOMPLETENESS

For instance, there are a pair of sentences such that the first says the second is

provable, while the second says the first is unprovable.

The set of (code numbers of) sentences of the language of arithmetic {<, 0, ′,
+, ·} that are correct, or true in the standard interpretation, is not recursive.
Actually, it can be shown that the set of (code numbers of) sentences of the
language {+, ·} that are true in the standard interpretation is not recursive.
The next few problems are pieces of the proof.

17.4 Explain why, to establish the stronger result just stated, it would suffice to as-

sociate in a recursive way to every sentence A of the language {<, 0, ′, +, ·}
a sentence A† of the language {+, ·} such that A is correct if and only if A† is

correct.

17.5 Continuing the preceding problem, show that there is a formula D0(x) of the

language {+, ·} such that the following is correct: ∀x(x = 0 ↔ D0(x)). Then

explain how to associate in an effective (and therefore, assuming Church’s

thesis, a recursive) way to every sentence A of the language {<, 0, ′, +, ·}
a sentence A† of the language {<, ′, +, ·} such that A is correct if and only

if A† is correct.

17.6 Continuing the preceding series of problems, exhibit a formula Ds(x, y) of the

language {+, ·} such that

∀x∀y(x ′ = y ↔ Ds(x, y))

is correct, and a formula D< (x, y) of the language {+, ·} such that

∀x∀y(x < y ↔ D< (x, y))

is correct. Then show how, say, the statements in Example 16.7 can be naturally

expressed in the language {+, ·}.
17.7 Let T = Q, let R be the Rosser sentence of T , let T0 be T + {R}, the set of

consequences of T ∪ {R}, and let T1 = T + {∼R}; then {T0, T1} is a set of two

consistent, axiomatizable extensions of Q that are inconsistent with each other

in the sense that their union is inconsistent. Show that for every n there is a set

of 2n consistent, axiomatizable extensions of Q that are pairwise inconsistent
in the sense that any two of them are inconsistent with each other.

17.8 Show that there is a nonenumerable set of consistent extensions of Q that are

pairwise inconsistent.

17.9 Let L1 and L2 be finite or recursive languages, and T a theory in L2. A trans-
lation of L1 into T is an assignment to each sentence S of L1 of a sentence S†

of L2 such that:

(T0) (∼A)† is logically equivalent to ∼ (A)†.
(T1) The function taking the code number of a sentence of L1 to the code

number of its translation is recursive.

(T2) Whenever A1, . . . , Ak , B are sentences of L1 and B is a consequence

of A1, . . . , Ak , then B† is a consequence of T ∪ {A†
1, . . . , A†

k}.
Show that if T is a consistent, axiomatizable theory in a language L , and if there

is a translation of the language of arithmetic into T such that the translation of

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-17 CB421-Boolos July 27, 2007 17:11 Char Count= 0

PROBLEMS 231

every axiom of Q is a theorem of T , then the set of sentences of the language of

arithmetic whose translations are theorems of T is a consistent, axiomatizable

extension of Q.

17.10 Show that under the hypotheses of the preceding problem, T is incomplete

and undecidable.

17.11 Let L be a language, N (u) a formula of L . For any sentence F of L , let the

relativization FN be the result of replacing each universal quantifier ∀x in F
by ∀x(N (x) → · · ·) and each existential quantifier ∃x by ∃x(N (x) & . . .). Let

T be a theory in L such that for every name c, N (c) is a theorem of T and for

every function symbol f the following is a theorem of T :

∀x1 . . . ∀xk((N (x1) & . . . & N (xk)) → N (f (x1, . . . , xk))).

Show that for any model M of T , the set of a in |M| that satisfies N (x) is the

domain of an interpretation N such that any sentence S of L is true in N if

and only if its relativization SN is true in M.

17.12 Continuing the preceding series of problem, show that the function assigning

each sentence S of L its relativization SN is a translation. (You may appeal to

Church’s thesis.)

17.13 Consider the interpretation Z of the language {<, 0, ′, +, ·} in which the

domain is the set of all integers (including the negative ones), and the deno-

tation of 0 is zero, of ′ is the function that adds one to a number, of + and ·
are the usual addition and multiplication functions, and of < is the usual order

relation. Show that the set of all sentences that are true in Z is undecidable,

and that this is still so if < is dropped.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

18

The Unprovability of Consistency

According to Gödel’s second incompleteness theorem, the sentence expressing that a
theory like P is consistent is undecidable by P, supposing P is consistent. The full proof
of this result is beyond the scope of a book on the level of the present one, but the overall
structure of the proof and main ingredients that go into the proof will be indicated in
this short chapter. In place of problems there are some historical notes at the end.

Officially we defined T to be inconsistent if every sentence is provable from T ,

though we know this is equivalent to various other conditions, notably that for some

sentence S, both S and ∼S are provable from T . If T is an extension of Q, then since

0 �= 1 is the simplest instance of the first axiom of Q, 0 �= 1 is provable from T , and

if 0 = 1 is also provable from T , then T is inconsistent; while if T is inconsistent,

then 0 = 1 is provable from T , since every sentence is. Thus T is consistent if

and only if 0 = 1 is not provable from T . We call ∼PrvT (0 = 1), which is to

say ∼∃y PrfT (0 = 1 , y), the consistency sentence for T . Historically, the original

paper of Gödel containing his original version of the first incompleteness theorem

(corresponding to our Theorem 17.9) included towards the end a statement of a

version of the following theorem.

18.1 Theorem* (Gödel’s second incompleteness theorem, concrete form). Let T be

a consistent, axiomatizable extension of P. Then the consistency sentence for T is not

provable in T .

We have starred this theorem because we are not going to give a full proof of it. In

gross outline, Gödel’s idea for the proof of this theorem was as follows. The proof of

Theorem 17.9 shows that if the absurdity 0 = 1 is not provable in T then the Gödel

sentence GT is not provable in T either, so the following is true: ∼PrvT (0 = 1) →
∼PrvT (GT). Now it turns out that the theory P of inductive arithmetic, and hence

any extension T thereof, is strong enough to ‘formalize’ the proof of Theorem 17.9,

so we have

�T ∼PrvT (0 = 1) → ∼PrvT (GT).

But GT was a Gödel sentence, so we have also

�T GT ↔ ∼PrvT (GT).

232

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

THE UNPROVABILITY OF CONSISTENCY 233

And so we have

�T ∼PrvT (0 = 1) → GT .

So if we had �T ∼PrvT (0 = 1), then we would have �T GT , which by Proposition

17.9 we do not.

Of course, the key step here, of which we have not given and are not going to

be giving the proof, is the claim that a theory like P is strong enough to ‘formalize’

the proof of a result like Theorem 17.9. Gödel’s successors, beginning with Paul

Bernays, have analyzed just what properties of PrvT are actually essential to get the

second incompleteness theorem, finding that one does not really have to ‘formalize’

the whole proof of Theorem 17.9, but only certain key facts that serve as lemmas in

that proof. We summarize the results of the analysis in the next two propositions.

18.2 Lemma*. Let T be a consistent, axiomatizable extension of P, and let B(x) be

the formula PrvT (x). Then the following hold for all sentences:

If �T A then �T B(A)(P1)

�T B(A1 → A2) → (B(A1) → B(A2))(P2)

�T B(A) → B(B(A)).(P3)

Again we have starred the lemma because we are not going to give a full proof.

First we note a property not on the above list:

If �T A1 → A2 and �T A1, then �T A2.(P0)

This is a consequence of the Gödel completeness theorem, according to which the

theorems of T are just the sentences implied by T , since if a conditional A1 → A2

and its antecedent A1 are both implied by a set of sentences, then so is its consequent

A2. Whatever notion of proof one starts with, so long as it is sound and complete, (P0)

will hold. One might therefore just as well build it into one’s notion of proof, adding

some appropriate version of it to the rules of one’s proof procedure. Of course, once it

is thus built in, the proof of (P0) no longer requires the completeness theorem, but be-

comes comparatively easy. [For the particular proof procedure we used in Chapter 14,

we discussed the possibility of doing this in section 14.3, where the version of (P0)

appropriate to our particular proof procedure was called rule (R10).]

(P1) holds for any extension of Q, since if �T A, then PrvT (A) is correct, and

being an ∃-rudimentary sentence, it is therefore provable in Q. (P2) is essentially the

assertion that the proof of (P0) (which we have just said can be made comparatively

easy) can be ‘formalized’ in P. (P3) is essentially the assertion that the (by no means

so easy) proof of (P1) can also be ‘formalized’ in P. The proofs of the assertions

(P2) and (P3) of ‘formalizability’ are omitted from virtually all books on the level

of this one, not because they involve any terribly difficult new ideas, but because the

innumerable routine verifications they—and especially the latter of them—require

would take up too much time and patience. What we can and do include is the proof

that the starred lemma implies the starred theorem. More generally, we have the

following:

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

234 THE UNPROVABILITY OF CONSISTENCY

18.3 Theorem (Gödel’s second incompleteness theorem, abstract form). Let T be a

consistent, axiomatizable extension of P, and let B(x) be a formula having properties

(P1)–(P3) above. Then not �T ∼B(0 = 1).

The proof will occupy the remainder of this chapter. Throughout, let T be an

extension (not necessarily consistent) of Q. A formula B(x) with properties (P1)–

(P3) of Lemma 18.2 we call a provability predicate for T . We begin with a few

words about this notion. The formula PrvT (x) considered so far we call the traditional
provability predicate for T , though, as we have indicated, we are not going to give the

proof of Lemma 18.2, and so are not going to be giving the proof that the ‘traditional

provability predicate’ is a ‘provability predicate’ in the sense of our official definition

of the latter term.

If T is ω-consistent, taking the traditional PrvT (x) for B(x), we have also the

following property, the converse of (P1):

If �T B(A) then �T A.(P4)

[For if we had �T PrvT (A), or in other words �T ∃y PrfT (A , y), but did not have

�T A, then for each b, ∼PrfT (A , b) would be correct and hence provable in Q and

hence in T , and we would have an ω-inconsistency in T .] We do not, however, include

ω-consistency in our assumptions on T , or (P4) in our definition of the technical

term ‘provability predicate’. Without the assumption of (P4), which is not part of our

official definition, a ‘provability predicate’ need not have much to do with provability.

In fact, the formula x = x is easily seen to be a ‘provability predicate’ in the sense

of our definition.

On the other hand, a formula may arithmetically define the set of Gödel numbers

of theorems of T without being a provability predicate for T . If T is consistent and

PrvT (x) is the traditional provability predicate for T , then not only does PrvT (x)

arithmetically define the set of Gödel numbers of theorems of T , but so does the

formula Prv*T (x), which is the conjunction of PrvT (x) with∼PrvT (0 = 1), since the

second conjunct is true. But notice that, in contrast to Theorem 18.1, ∼Prv*T (0 = 1)

is provable in T . For it is simply

∼(PrvT (0 = 1) & ∼PrvT (0 = 1))

which is a valid sentence and hence a theorem of any theory. The formula Prv*T (x),

however, lacks property (P1) in the definition of provability predicate. That is, it

is not the case that if �T A then �T Prv*T (A). Indeed, it is never the case that

�T Prv*T (A), since it is not the case that �T ∼PrvT (0 = 1), by Theorem 18.1.

The traditional provability predicate PrvT (x) has the further important, if nonmath-

ematical, property beyond (P0)–(P4), that intuitively speaking Prv(x) can plausibly

be regarded as meaning or saying (on the standard interpretation) that x is the Gödel

number of a sentence that is provable in T . This is conspicuously not the case for

Prv*T (x), which means or says that x the Gödel number of a sentence that is provable

in T and T is consistent.
The thought that whatever is provable had better be true might make it surprising

that a further condition was not included in the definition of provability predicate,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

THE UNPROVABILITY OF CONSISTENCY 235

namely, that for every sentence A we have

�T B(A) → A.(P5)

But in fact, as we also show below, no provability predicate fulfills condition (P5)

unless T is inconsistent.

Our next theorem will provide answers to three questions. First, just as the diagonal

lemma provides a sentence, the Gödel sentence, that ‘says of itself’ that it is unprov-

able, so also it provides a sentence, the Henkin sentence, that ‘says of itself’ that it

is provable. In other words, given a provability predicate B(x), there is a sentence

HT such that �T HT ↔ B(HT). Gödel’s theorem was that, if T is consistent, then

the Gödel sentence is indeed unprovable. Henkin’s question was whether the Henkin

sentence is indeed provable. This is the first question our next theorem will answer.

Second, call a formula Tr(x) a truth predicate for T if and only if for every sentence

A of the language of T we have �T A ↔ Tr (A). Another question is whether, if T
is consistent, there can exist a truth predicate for T . (The answer to this question is

going to be negative. Indeed, the negative answer can actually be obtained directly

from the diagonal lemma of the preceding chapter.) Third, if B(x) is a provability

predicate, call ∼B(0 = 1) the consistency sentence for T [relative to B(x)]. Yet

another question is whether, if T is consistent, the consistency sentence for T can be

provable in T . (We have already indicated in Theorem 18.3 that the answer to this

last question is going to be negative.)

The proof of the next theorem, though elementary, is somewhat convoluted, and

as warm-up we invite the reader to ponder the following paradoxical argument, by

which we seem to be able to prove from pure logic, with no special assumptions, the

existence of Santa Claus. (The argument would work equally well for Zeus.) Consider

the sentence ‘if this sentence is true, then Santa Claus exists’; or to put the matter

another way, let S be the sentence ‘if S is true, then Santa Claus exists’.

Assuming

S is true(1)

by the logic of identity it follows that

‘If S is true, then Santa Claus exists’ is true.(2)

From (2) we obtain

If S is true, then Santa Claus exists.(3)

From (1) and (3) we obtain

Santa Claus exists.(4)

Having derived (4) from the assumption (1) we infer that without the assumption (1),

indeed without any special assumption, that we at least have the conditional conclu-

sion that if (1), then (4), or in other words

If S is true, then Santa Claus exists.(5)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

236 THE UNPROVABILITY OF CONSISTENCY

From (5) we obtain

‘If S is true, then Santa Claus exists’ is true.(6)

By the logic of identity again it follows that

S is true.(7)

And from (5) and (7) we infer, without any special assumptions, the conclusion that

Santa Claus exists.(8)

18.4 Theorem (Löb’s theorem). If B(x) is a provability predicate for T , then for any

sentence A, if �T B(A) → A, then �T A.

Proof: Suppose that B is a provability predicate for T and that

�T B(A) → A.(1)

Let D(y) be the formula (B(y) → A), and apply the diagonal lemma to obtain a

sentence C such that

�T C ↔ (B(C) → A).(2)

So

�T C → (B(C) → A).(3)

By virtue of property (P1) of a provability predicate,

�T B(C → (B(C) → A)).(4)

By virture of (P2),

�T B(C → (B(C) → A)) → (B(C) → B(B(C) → A)).(5)

From (4) and (5) it follows that

�T B(C) → B(B(C) → A).(6)

By virtue of (P2) again,

�T B(B(C) → A) → (B(B(C)) → B(A)).(7)

From (6) and (7) it follows that

�T B(C) → (B(B(C)) → B(A)).(8)

By virtue of (P3),

�T B(C) → B(B(C)).(9)

From (8) and (9) it follows that

�T B(C) → B(A).(10)

From (1) and (10) it follows that

�T B(C) → A.(11)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

HISTORICAL REMARKS 237

From (2) and (11) it follows that

�T C.(12)

By virtue of (P1) again,

�T B(C).(13)

And so finally, from (11) and (13), we have

�T A.(14)

Since the converse of Löb’s theorem is trivial (if �T A, then �T F → A for any

sentence F), a necessary and sufficient condition for A to be a theorem of T is that

B(A) → A is a theorem of T . Now for the promised derivation of the three results

mentioned earlier.

18.5 Corollary. Suppose that B(x) is a provability predicate for T . Then if �T H ↔
B(H), then �T H .

Proof: Immediate from Löb’s theorem.

18.6 Corollary. If T is consistent, then T has no truth predicate.

Proof: Suppose that Tr(x) is a truth predicate for T . Then a moment’s thought

shows that Tr(x) is also a provability predicate for T . Moreover, since Tr(x) is a truth

predicate, for every A we have �T Tr(A) → A. But then by Löb’s theorem, for every

A we have �T A, and T is inconsistent.

And finally, here is the proof of Theorem 18.3.

Proof: Suppose �T ∼B(0 = 1). Then �T B(0 = 1) → F for any sentence F ,

and in particular �T B(0 = 1) → 0 = 1, and hence �T 0 = 1, and since T is an

extension of Q, T is inconsistent.

It is characteristic of important theorems to raise new questions even as they

answer old ones. Gödel’s theorems (as well as some of the major recursion-theoretic

and model-theoretic results we have passed on our way to Gödel’s theorems) are

a case in point. Several of the new directions of research they opened up will be

explored in the remaining chapters of this book. One such question is that of how

far one can go working just with the abstract properties (P1)–(P3), without getting

involved in the messy details about a particular predicate PrvT (x). That question will

be explored in the last chapter of this book.

Historical Remarks

We alluded in passing in an earlier chapter to the existence of heterodox mathemati-

cians who reject certain principles of logic. More specifically, in the late nineteenth

and early twentieth centuries there were a number of mathematicians who rejected

‘nonconstructive’ as opposed to ‘constructive’ existence proofs and were led by this

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

238 THE UNPROVABILITY OF CONSISTENCY

rejection to reject the method of proof by contradiction, which has been ubiqui-

tously used in orthodox mathematics since Euclid (and has been repeatedly used

in this book). The most extreme critics, the ‘finitists’, rejected the whole of estab-

lished ‘infinitistic’ mathematics, declaring not only that the proofs of its theorems

were fallacious, but that the very statements of those theorems were meaningless.

Any mathematical assertion going beyond generalizations whose every instance can

be checked by direct computation (essentially, anything beyond ∀-rudimentary sen-

tences) was rejected.

In the 1920s, David Hilbert, the leading mathematician of the period, devised a

program he hoped would provide a decisive answer to these critics. On the plane of

philosophical principle, he in effect conceded that sentences going beyond

∀-rudimentary sentences are ‘ideal’ additions to ‘contentful’ mathematics. He com-

pared this addition to the addition of ‘imaginary’ numbers to the system of real

numbers, which had also raised doubts and objections when it was first introduced.

On the plane of mathematical practice, Hilbert insisted, a detour through the ‘ideal’ is

often the shortest route to a ‘contentful’ result. (For example, Chebyshev’s theorem

that there is a prime between any number and its double was proved not in some

‘finitistic’, ‘constructive’, directly computational way, but by an argument involving

applying calculus to functions whose arguments and values are imaginary numbers.)

Needless to say, this reply wouldn’t satisfy a critic who doubted the correctness of

‘contentful’ results arrived at by such a detour. But Hilbert’s program was precisely

to prove that any ‘contentful’ result provable by orthodox, infinitistic mathematics is

indeed correct. Needless to say, such a proof wouldn’t satisfy a critic if the proof itself
used the methods whose legitimacy was under debate. But more precisely Hilbert’s

program was to prove by ‘finitistic’ means that every ∀-rudimentary sentence proved

by ‘infinitistic’ means is correct.

An important reduction of the problem was achieved. Suppose a mathematical

theory T proves some incorrect ∀-rudimentary sentence ∀xF(x). If this sentence is

incorrect, then some specific numerical instance F(n) for some specific number

n must be incorrect. Of course, if the theory proves ∀xF(x) it also proves each

instance F(n), since the instances follow from the generalization by pure logic.

But if F(n) is incorrect, then ∼F(n) is a correct rudimentary sentence, and as such

will be provable in T , for any ‘sufficiently strong’ T . Hence if such a T proves an

∀-rudimentary sentence ∀xF(x), it will prove an outright contradiction, proving both

F(n) and ∼F(n). So the problem of proving T yields only correct ∀-rudimentary

theorems reduces to the problem of showing T is consistent. Hilbert’s program was,

then, to prove finitistically the consistency of infinitistic mathematics.

It can now be appreciated how Gödel’s theorems derailed this program in its origi-

nal form just described. While it was never made completely explicit what ‘finitistic’

mathematics does and does not allow, its assumptions amounted to less than the as-

sumptions of inductive or Peano arithmetic P. On the other hand, the assumptions of

‘infinitistic’ mathematics amount to more than the assumptions of P. So what Hilbert

was trying to do was prove, using a theory weaker than P, the consistency of a theory

stronger than P, whereas what Gödel proved was that, even using the full strength of

P, one cannot prove the consistency of P itself, let alone anything stronger.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

HISTORICAL REMARKS 239

In the course of this essentially philosophically motivated work, Gödel introduced

the notion of primitive recursive function, and established the arithmetization of syn-

tax by primitive recursive functions and the representability in formal arithmetic of

primitive recursive functions. But though primitive recursive functions were thus orig-

inally introduced merely as a tool for the proof of the incompleteness theorems, it was

not long before logicians, Gödel himself included, began to wonder how far beyond

the class of primitive recursive functions one had to go before one arrived at a class

of functions that could plausibly be supposed to include all effectively computable
functions. Alonzo Church was the first to publish a definite proposal. A. M. Turing’s

proposal, involving his idealized machines, followed shortly thereafter, and with it

the proof of the existence of a universal machine, another intellectual landmark of

the last century almost on the level of the incompleteness theorems themselves.

Gödel and others went on to show that various other mathematically interesting

statements, besides the consistency statement, are undecidable by P, assuming it to

be consistent, and even by stronger theories, such as are introduced in works on set

theory. In particular, Gödel and Paul Cohen showed that the accepted formal set theory

of their day and ours could not decide an old conjecture of Georg Cantor, the creator of

the theory of enumerable and nonenumberable sets, which Hilbert in 1900 had placed

first on a list of problems for the coming century. The conjecture, called the continuum
hypothesis, was that any nonenumerable set of real numbers is equinumerous with

the whole set of real numbers. Mathematicians would be, according to the results of

Gödel and Cohen, wasting their time attempting to settle this conjecture on the basis

of currently accepted set-theoretic axioms, in the same way people who try to trisect

the angle or square the circle are wasting their time. They must either find some way

to justify adopting new set-theoretic axioms, or else give up on the problem. (Which

they should do is a philosophical question, and like other philosophical questions,

it has been very differently answered by different thinkers. Gödel and Cohen, in

particular, arrayed themselves on opposite sides of the question: Gödel favored the

search for new axioms, while Cohen was for giving up.)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-18 CB421-Boolos July 27, 2007 17:12 Char Count= 0

240

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

Further Topics

241

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

242

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19

Normal Forms

A normal form theorem of the most basic type tells us that for every formula A there is
a formula A* of some special syntactic form such that A and A* are logically equiva-
lent. A normal form theorem for satisfiability tells us that for every set � of sentences
there is a set �* of sentences of some special syntactic form such that � and �* are
equivalent for satisfiability, meaning that one will be satisfiable if and only if the other
is. In section 19.1 we establish the prenex normal form theorem, according to which
every formula is logically equivalent to one with all quantifiers at the beginning, along
with some related results. In section 19.2 we establish the Skolem normal form the-
orem, according to which every set of sentences is equivalent for satisfiability to a
set of sentences with all quantifiers at the beginning and all quantifiers universal. We
then use this result to give an alternative proof of the Löwenheim–Skolem theorem,
which we follow with some remarks on implications of the theorem that have sometimes
been thought ‘paradoxical’. In the optional section 19.3 we go on to sketch alternative
proofs of the compactness and Gödel completeness theorems, using the Skolem normal
form theorem and an auxiliary result known as Herbrand’s theorem. In section 19.4
we establish that every set of sentences is equivalent for satisfiability to a set of sen-
tences not containing identity, constants, or function symbols. Section 19.1 presupposes
only Chapters 9 and 10, while the rest of the chapter presupposes also Chapter 12.
Section 19.2 (with its pendant 19.3) on the one hand, and section 19.4 on the other
hand, are independent of each other. The results of section 19.4 will be used in the next
two chapters.

19.1 Disjunctive and Prenex Normal Forms

This chapter picks up where the problems at the end of Chapter 10 left off. There we

asked the reader to show that that every formula is logically equivalent to a formula

having no subformulas in which the same variable occurs both free and bound. This

result is a simple example of a normal form theorem, a result asserting that every

sentence is logically equivalent to one fulfilling some special syntactic requirement.

Our first result here is an almost equally simple example. We say a formula is negation-
normal if it is built up from atomic and negated atomic formulas using ∨, & , ∃, and

∀ alone, without further use of ∼.

19.1 Proposition (Negation-normal form). Every formula is logically equivalent to one

that is negation-normal.

243

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

244 NORMAL FORMS

Proof: The proof is by induction on complexity. The base step is trivial, since an

atomic formula is already negation-normal. Most cases of the induction step are trivial

as well. For instance, if A and B are equivalent respectively to negation-normal for-

mulas A* and B*, then A & B and A ∨ B are equivalent respectively to A* & B* and

A* ∨ B*, which are also negation-normal. The nontrivial case is to prove that if A is

equivalent to the negation-normal A* then ∼A is equivalent to some negation-normal

A†. This divides into six subcases according to the form of A*. The case where A* is

atomic is trivial, since we may simply let A† be ∼A*. In case A* is of form ∼B, so

that ∼A* is ∼∼B, we may let A† be B. In case A* is of form (B ∨ C), so that ∼A* is

∼(B ∨ C), which is logically equivalent to (∼B & ∼C), by the induction hypothesis

the simpler formulas ∼B and ∼C are equivalent to formulas B† and C† of the required

form, so we may let A† be (B† & C†). The case of conjunction is similar. In case A*

is of form ∃x B, so that ∼A* is ∼∃x B, which is logically equivalent to ∀x∼B, by the

induction hypothesis the simpler formula ∼B is equivalent to a formula B† of the re-

quired form, so we may let A† be ∀x B†. The case of universal quantification is similar.

In the foregoing proof we have used such equivalences as that of ∼(B ∨ C) to

∼B & ∼C , to show ‘from the bottom up’ that there exists a negation-normal equiv-

alent for any formula. What we show at the induction step is that if there exist

negation-normal equivalents for the simpler formulas ∼B and ∼C , then there ex-

ists a negation-normal equivalent for the more complex formula ∼(B ∨ C). If we

actually want to find a negation-normal equivalent for a given formula, we use the

same equivalences, but work ‘from the top down’. We reduce the problem of finding

a negation-normal equivalent for the more complex formula to that of finding such

equivalents for simpler formulas. Thus, for instance, if P , Q, and R are atomic, then

∼(P ∨ (∼Q & R))

can be successively converted to

∼P & ∼(∼Q & R)

∼P & (∼∼Q ∨ ∼R)

∼P & (Q ∨ ∼R)

the last of which is negation-normal. In this process use such equivalences as that

of ∼(B ∨ C) to ∼B & ∼C to ‘bring junctions out’ or ‘push negations in’ until we

get a formula equivalent to the original in which negation is applies only to atomic

subformulas.

The above result on negation-normal form can be elaborated in two different

directions. Let A1, A2, . . . , An be any formulas. A formula built up from them using

only ∼, ∨, and &, without quantifiers, is said to be a truth-functional compound of

the given formulas. A truth-functional compound is said to be in disjunctive normal
form if it is a disjunction of conjunctions of formulas from among the Ai and their

negations. (A notion of conjunctive normal form can be defined exactly analogously.)

19.2 Proposition (Disjunctive normal form). Every formula is logically equivalent to

one that is in disjunctive normal form.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19.1. DISJUNCTIVE AND PRENEX NORMAL FORMS 245

Proof: Given any formula, first replace it by a negation-normal equivalent. Then,

using the distributive laws, that is, the equivalence of (B & (C ∨ D)) to ((B & C) ∨
(B & D)) and of ((B ∨ C) & D) to ((B ∨ D) & (C ∨ D)), ‘push conjunction inside’

and ‘pull disjunction outside’ until a disjunctive normal equivalent is obtained.

(It would be a tedious but routine task to rewrite this ‘top down’ description of the

process of finding a disjunctive normal equivalent as a ‘bottom up’ proof the existence

of such an equivalent.)

If in a formula that is in disjunctive normal form each disjunction contains each

Ai exactly once, plain or negated, then the compound is said to be in full disjunctive

normal form. (A notion of full conjunctive normal form can be defined exactly anal-

ogously.) In connection with such forms it is often useful to introduce, in addition to

the two-place connectives ∨ and & , and the one-place connective ∼, the zero-place
connectives or constant truth � and constant falsehood ⊥, counting respectively as

true in every interpretation and false in every interpretation. The disjunction of zero

disjuncts may by convention be understood to be ⊥, and the conjunction of zero con-

juncts to be � (rather as, in mathematics, the sum of zero summands is understood

to be 0, and the product of zero factors to be 1).

In seeking a full disjunctive normal equivalent of a given disjunctive normal for-

mula, first note that conjunctions (and analogously, disjunctions) can be reordered

and regrouped at will using the commutative and associative laws, that is, the equiva-

lence of (B & C) to (C & B), and of (B & C & D), which officially is supposed to be

an abbreviation of (B & (C & D)), with grouping to the right, to ((B & C) & D), with

grouping to the left. Thus for instance (P & (Q & P)) is equivalent to (P & (P & Q))

and to ((P & P) & Q). Using the idempotent law, that is, the equivalence of B & B
to B, this last is equivalent to P & Q. This illustrates how repetitions of the same Ai

(or ∼Ai) within a conjunction can be eliminated. To eliminate the occurrence of the

same Ai twice, once plain and once negated, we can use the equivalence of B & ∼B to

⊥ and of ⊥ & C to ⊥, and of ⊥ ∨ D to D, so that, for instance, (B & ∼B & C) ∨ D is

equivalent simply to D: contradictory disjuncts can be dropped. These reductions will

convert a given formula to one that, like our earlier example (∼P & Q) ∨ (∼P & R),

is a disjunction of conjunctions in which each basic formula occurs at most once,

plain or negated, in each conjunct.

To ensure that each occurs at least once in each conjunction, we use the equivalence

of B to (B & C) ∨ (B & ∼C). Thus our example is equivalent to

(∼P & Q & R) ∨ (∼P & Q & ∼R) ∨ (∼P & ∼R)

and to

(∼P & Q & R) ∨ (∼P & Q & ∼R) ∨ (∼P&Q & ∼R) ∨ (∼P & ∼Q & ∼R)

and, eliminating repetition, to

(∼P & Q & R) ∨ (∼P & Q & ∼R) ∨ (∼P & ∼Q & ∼R)

which is in full disjunctive normal form. The foregoing informal description can be

converted into a formal proof of the following result.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

246 NORMAL FORMS

19.3 Theorem (Full disjunctive normal form). Every truth-functional compound of

given formulas is logically equivalent to one in full disjunctive normal form.

The theorem on negation-normal forms can be elaborated in another direction. A

formula A is said to be in prenex form if it is of the form

Q1x1Q2x2 . . . Qn xn B

where each Q is either ∃ or ∀, and where B contains no quantifiers. The sequence of

quantifiers and variables at the beginning is called the prefix, and the quantifier-free

formula that follows the matrix.

19.4 Example (Finding a prenex equivalent for a given formula). Consider (∀x Fx ↔ Ga),

where F and G are one-place predicates. This is officially an abbreviation for

(∼∀x Fx ∨ Ga) & (∼Ga ∨ ∀x Fx).

Let us first put this in negation-normal form

(∃x∼Fx ∨ Ga) & (∼Ga ∨ ∀x Fx).

The problem now is to ‘push junctions in’. This may be done by noting that the displayed

negation-normal form is equivalent successively to

∃x(∼Fx ∨ Ga) & (∼Ga ∨ ∀x Fx)

∃x(∼Fx ∨ Ga) & ∀x(∼Ga ∨ Fx)

∃y(∼Fy ∨ Ga) & ∀x(∼Ga ∨ Fx)

∀x(∃y(∼Fy ∨ Ga) & (∼Ga ∨ Fx))

∀x∃y((∼Fy ∨ Ga) & (∼Ga ∨ Fx)).

If we had ‘pulled quantifiers out’ in a different order, a different prenex equivalent would

have been obtained.

19.5 Theorem (Prenex normal form). Every formula is logically equivalent to one in

prenex normal form.

Proof: By induction on complexity. Atomic formulas are trivially prenex. The re-

sult of applying a quantifier to a prenex formula is prenex (and hence the result of

applying a quantifier to a formula equivalent to a prenex formula is equivalent to a

prenex formula). The equivalence of the negation of a prenex formula (or a formula

equivalent to one) to a prenex formula follows by repeated application of the equiva-

lence of ∼∀x and ∼∃x to ∃x∼ and ∀x∼, respectively. The equivalence of a conjunc-

tion (or disjunction) of prenex formulas to a prenex formula follows on first relettering

bound variables as in Problem 10.13, so the conjuncts or disjuncts have no variables

in common, and then repeatedly applying the equivalence of QxA(x) § B, where x
does not occur in B, to Qx(A(x) § B), where Q may be ∀ or ∃ and § may be & or ∨.

In the remainder of this chapter our concern is less with finding a logical equivalent

of a special kind for a given sentence or formula than with finding equivalents for

satisfiability of a special kind for a given sentence or set of sentences. Two sets of

sentences � and �* are equivalent for satisfiability if and only if they are either

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19.2. SKOLEM NORMAL FORM 247

both satisfiable or both unsatisfiable, though generally when we prove the existence

of such equivalents our proof will actually provide some additional information,

indicating a stronger relationship between the two sets. Two different results on the

existence of equivalents for satisfiability will be established in sections 19.2 and

19.4. In each case, � will be shown to have an equivalent for satisfiability �* whose

sentences will be of a simpler type syntactically, but which will involve new nonlogical

symbols.

In this connection some terminology will be useful. Let L be any language, and L+
any language containing it. LetM be an interpretation of L , andM+ an interpretation

of L+. If the interpretations have the same domain and assign the same denotations to

nonlogical symbols in L (so that the only difference is that the one assigns denotations

to symbols of L+ not in L , while the other does not), then M+ is said to be an

expansion of M to L+, and M to be the reduct of M+ to L . Note that the notions

of expansion and reduct pertain to changing the language while keeping the domain

fixed.

19.2 Skolem Normal Form

A formula in prenex form with all quantifies universal (respectively, existential) may

be called a universal or ∀-formula (respectively, an existential or ∃-formula). Consider

a language L and a sentence of that language in prenex form, say

∀x1∃y1∀x2∃y2 R(x1, y1, x2, y2).(1)

Now for each existential quantifier, let us introduce a new function symbol with

as many places as there are universal quantifiers to its left, to obtain an expanded

language L+. Thus in our example there would be two new function symbols, say

f1 and f2, corresponding to ∃y1 and ∃y2, the former having one place corresponding

to ∀x1, and the latter two places corresponding to ∀x1 and ∀x2. Let us replace each

existentially quantified variable by the term that results on applying the corresponding

function symbol to the universally quantified variable(s) to its left. The resulting

∀-formula, which in our example would be

∀x1∀x2 R(x1, f1(x1), x2, f2(x1, x2))(2)

is called the Skolem normal form of the original sentence, and the new function

symbols occurring in it the Skolem function symbols.

A little thought shows that (2) logically implies (1). In any interpretation of the

expanded language L+ with the new function symbols, it is the case that for every

element a1 of the domain there is an element b1, such that for every element a2 there

is an element b2, such that a1, b1, a2, b2 satify R(x1, y1, x2, y2): namely, take for

b1 the result of applying to a1 the function denoted by f1, and for b2 the result of

applying to a1 and a2 the function denoted by f2.

We cannot, of course, say that conversely (1) implies (2). What is true is that (2)

is implied by (1) together with the following:

∀x1(∃y1∀x2∃y2 R(x1, y1, x2, y2) → ∀x2∃y2 R(x1, f1(x1), x2, y2))(3.1)

∀x1∀x2(∃y2 R(x1, f1(x1), x2, y2) → R(x1, f1(x1), x2, f2(x1, x2))).(3.2)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

248 NORMAL FORMS

For (1) and (3.1) imply

∀x1∀x2∃y2 R(x1, f1(x1), x2, y2)

which with (3.2) implies (2). The sentences (3) are called the Skolem axioms.

For a prenex formula of a different kind, with different numbers of universal and

existential quantifiers, the number and number of places of the required Skolem func-

tions would be different, and the Skolem axioms correspondingly so. For instance, for

∃y0∀x1∀x2∃y1∃y2∀x3 Q(y0, x1, x2, y1, y2, x3)(1′)

we would need one zero-place function symbol (which is to say, one constant) f0 and

two two-place function symbols f1 and f2. The Skolem normal form would be

∀x1∀x2∀x3 Q(f0, x1, x2, f1(x1, x2), f2(x1, x2), x3)(2′)

and the Skolem axioms would be

∃y0∀x1∀x2∃y1∃y2∀x3 Q(y0, x1, x2, y1, y2, x3) →(3.0′)
∀x1∀x2∃y1∃y2∀x3 Q(f0, x1, x2, y1, y2, x3)

∀x1∀x2 (∃y1∃y2∀x3 Q(f0, x1, x2, y1, y2, x3) →(3.1′)
∃y2∀x3 Q(f0, x1, x2, f1(x1, x2), y2, x3))

∀x1∀x2 (∃y2∀x3 Q(f0, x1, x2, f1(x1, x2), y2, x3) →(3.2′)
∀x3 Q(f0, x1, x2, f1(x1, x2), f2(x1, x2), x3)).

But in exactly the same way in any example, the Skolem normal form will imply

the original formula, and the original formula together with the Skolem axioms will

imply the Skolem normal form.

If L is a language and L+ is the result of adding Skolem functions for some or all of

its sentences, then an expansion M+ of an interpretation M of L to an interpretation

of L+ is called a Skolem expansion if it is a model of the Skolem axioms.

19.6 Lemma (Skolemization). Every interpretation of L has a Skolem expansion.

Proof: The essential idea of the proof is sufficiently illustrated by the case of our

original example (1) above. The proof uses a set-theoretic principle known as the

axiom of choice. According to this principle, given any family of nonempty sets,

there is a function ε whose domain is that family of sets, and whose value ε(X) for

any set Y in the family is some element of Y . Thus ε ‘chooses’ an element out of each

Y in the family. We apply this assumption to the family of nonempty subsets of |M|
and use ε to define a Skolem expansion N = M+ of M.

We first want to assign a denotation f N1 that will make the Skolem axiom (3.1)

come out true. To this end, for any element a1 in |M| consider the set B1 of all b1in

|M| such that a1 and b1 satisfy ∀x2∃y2 R(x1, y1, x2, y2) in M. If B1 is empty, then no

matter what we take f N1 (a1) to be, a1 will satisfy the conditional

∃y1∀x2∃y2 R(x1, y1, x2, y2) → ∀x2∃y2 R(x1, f1(x1), x2, y2)

since it will not satisfy the antecedent. But for definiteness, let us say that if B1

is empty, then we are to take f N1 (a1) to be ε(|M|). If B1 is nonempty, then we

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19.2. SKOLEM NORMAL FORM 249

take f N1 (a1) to be ε(B1): we use ε to choose one particular element b1 such that

a1 and b1 satisfy ∀x2∃y2 R(x1, y1, x2, y2). Then since a1 and f N1 (a1) will satisfy

∀x2∃y2 R(x1, y1, x2, y2), it follows that a1 will satisfy the foregoing conditional, and

since this will be the case for any a1, it follows that (3.1) will be true.

We next want to assign a f N2 that will make the Skolem axiom (3.2) come out true.

We proceed in exactly the same way. For any a1 and a2, consider the set B2 of all b2

such that a1, a2, and b2 satisfy R(x1, f1(x1), x2, y2). If B1 is empty, we take f N2 (a1, a2)

to be ε(|M|), and otherwise take it to be ε(B2). The procedure would be the same no

matter how many Skolem function symbols we needed to assign denotations to, and

how many Skolem axioms we needed to make true.

Let � be any set of sentences of any language L , and for each sentence A in �, first

associate to it a logically equivalent prenex sentence A* as in the preceding section,

and then associate to A* its Skolem form A# as above, and let �# be the set of all these

sentences A# for A in �. Then �# is a set of ∀-sentences equivalent for satisfiability

to the original set �. For if �# is satisfiable, there is an interpretation N in which

each A# in �# comes out true, and since A# implies A* and A* is equivalent to A, we

thus have an interpretation in which each A in � comes out true, so � is satisfiable.

Conversely, if � is satisfiable, there is an interpretation M of the original language

in which each A in � and hence each A* comes out true. By the preceding lemma,

M has an expansion N to an interpretation in which each A* remains true and all

Skolem axioms come out true. Since A* together with the Skolem axioms implies

A#, each A# in �# comes out true in N , and �# is satisfiable. We have thus shown

how we can associate to any set of sentences a set of ∀-sentences equivalent to it for

satisfiability. This fact, however, does not exhaust the content of the Skolemization

lemma. For it can also be used to give a proof of the Löwenheim–Skolem theorem,

and in a stronger version than that stated in chapter 12 (and proved in chapter 13).

To state the strong Löwenheim–Skolem theorem we need the notion of what it is

for one interpretation B to be a subinterpretation of another interpretation A. Where

function symbols are absent, the definition is simply that (1) the domain |B| should be

a subset of the domain |A|, (2) for any b1, . . . , bn in |B| and any predicate R one has

RB(b1, . . . , bn) if and only if RA((b1), . . . , (bn))(S1)

and (3) for every constant c one has

(cB) = cA.(S2)

Thus, B is just like A, except that we ‘throw away’ the elements of |A| that are not

in |B|.
Where function symbols are present, we have also to require that for any b1, . . . ,

bn in |B| and any function symbol f the following should hold:

f B(b1, . . . , bn) = f A(b1, . . . , bn).(S3)

Note that this last implies that f A(b1, . . . , bn) must be in |B|: Where function

symbols are absent, any nonempty subset B of A can be the domain of a subinterpre-

tation of A, but where function symbols are present, only those nonempty subsets B

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

250 NORMAL FORMS

can be the domains of subinterpretations that are closed under the functions f A that

are the denotations of function symbols of the language, or in other words, that contain

the value of any of these functions for given arguments if they contain the arguments

themselves.

When B is a subinterpretation of A, we say that A is an extension of B. Note that

the notions of extension and subinterpretation pertain to enlarging or contracting the

domain, while keeping the language fixed.

Note that it follows from (S1) and (S3) by induction on complexity of terms that

every term has the same denotation in B as in A. It then follows by (S1) and (S2)

that any atomic sentence has the same truth value in B as in A. It then follows

by induction on complexity that every quantifier-free sentence has the same truth

value in B as in A. Essentially the same argument shows that, more generally, any

given elements of B satisfy the same quantifier-free formulas in B as in A. If an

∃-sentence ∃x1 . . . ∃xn R(x1, . . . , xn) is true in B, then there are elements b1, . . . , bn

of |B| that satisfy the quantifier-free formula R(x1, . . . , xn) in B and hence, by what

has just been said, in A as well, so that the ∃-sentence ∃x1. . . ∃xn R(x1, . . . , xn) is

also true in A. Using the logical equivalence of the negation of an ∀-sentence to an

∃-sentence, we have the following result.

19.7 Proposition. Let A be any interpretation and B any subinterpretation thereof.

Then any ∀-sentence true in A is true in B.

19.8 Example (Subinterpretations). Proposition 19.7 is in general as far as one can go. For

consider the language with just the two-place predicate <. Let P , Q, and R have domains

the integers, rational numbers, and real numbers, respectively, and let the denotation of< in

each case be the usual order relation < on the numbers in question. Since the order of integers

qua integers is the same as their order qua rational numbers, and the order of rational numbers

qua rational numbers is the same as their order qua real numbers, P is a subinterpretation

of Q and R, and Q is a subinterpretation of R. Consider, however, the sentence

∀x∀y(x < y → ∃z(x < z & z < y))

or its prenex equivalent

∀x∀y∃z(x < y → (x < z & z < y)).

R and Q are models of this sentence, since between any two real numbers a and b with

a < b there is some other real number c with a < c and c < b, such as (b − a)/2, and

similarly for rational numbers. But P is not a model of the sentence, since between the

integers 0 and 1 there is no other integer. (Of course, the sentence here is not an ∀-sentence,

but it is, so to speak, just one step beyond, an ∀∃-sentence.)

Thus a subinterpretation of a model of a sentence C (or set of sentences �) may,

but in general need not, also be a model of C (or �): if it is, it is called a submodel.
Without further ado, here is the strong version of the Löwenheim–Skolem theorem.

(The phrase ‘enumerable’ is redundant, given that we are restricting our attention

to enumerable languages, but we include it to emphasize that we are making this

restriction.)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19.2. SKOLEM NORMAL FORM 251

19.9 Theorem (Strong Löwenheim–Skolem theorem). Let A be a nonenumerable

model of an enumerable set of sentences �. Then A has an enumerable subinterpretation

that is also a model of �.

Proof: It will suffice to prove the theorem for the special case of sets of ∀-sentences.

For suppose we have proved the theorem in this special case, and consider the general

case where A is a model of some arbitrary set of sentences �. Then as in our earlier

discussion, A has an expansion A# to a model of �#, the set of Skolem forms of

the sentences in �. Since Skolem forms are ∀-sentences, by the special case of the

theorem there will an enumerable subinterpretation B# that is also a model of �#.

Then since the Skolem form of a sentence implies the original sentence, B# will also

be a model of �, and so will be its reduct B to the original language. But this B will

be an enumerable subinterpretation of A.

To prove the theorem in the special case where all sentences in � are ∀-sentences,

consider the set B of all denotations in A of closed terms of the language of �.

(We may assume there are some closed terms, since if not, we may add a constant

c to the language and the logically valid sentence c = c to �.) Since that language

is enumerable, so is the set of closed terms, and so is B. Since B is closed under

the functions that are denotations of the function symbols of the language, it is the

domain of an enumerable subinterpretation B of A. And by Proposition 19.7, every

∀-sentence true in A is true in B, so B is a model of �.

Two interpretations A and B for the same language are called elementarily equiv-
alent if every sentence true in the one is true in the other. Taking for � in the above

version of the Löwenheim–Skolem theorem the set of all sentences true in A, the

theorem tells us that any interpretation has an enumerable subinterpretation that is

elementarily equivalent to it. A subinterpretation B of an interpretation A is called

an elementary subinterpretation if for any formula F(x1, . . . , xn) and any elements

b1, . . . , bn of |B|, the elements satisfy the formula in A if and only if they satisfy

it in B. This implies elementary equivalence, but is in general a stronger condition.

By extending the notion of Skolem normal form to formulas with free variables,

the above strong version of the Löwenheim–Skolem theorem can be sharpened to

a still stronger one telling us that any interpretation has an enumerable elementary

subinterpretation.

Applications of Skolem normal form will be given in the next section. Since

we are not going to be needing the sharper result stated in the preceding para-

graph for these applications, we do not go into the (tedious but routine) details

of its proof. Instead, before turning to applications we wish to discuss another,

more philosophical issue. At one time the Löwenheim–Skolem theorem (especially

in the strong form in which we have proved it in this section) was considered

philosophically perplexing because some of its consequences were perceived

as anomalous. The apparent anomaly, sometime called ‘Skolem’s paradox’, is that

there exist certain interpretations in which a certain sentence, which seems to say

that nonenumerably many sets of natural numbers exist, is true, even though the

domains of these interpretations contain only enumerably many sets of natural num-

bers, and the predicate in the sentence that we would be inclined to translate

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

252 NORMAL FORMS

as ‘set (of natural numbers)’ is true just of the sets (of natural numbers) in the

domains.

19.10 Example (The ‘Skolem paradox’). There is no denying that the state of affairs

thought to be paradoxical does obtain. In order to see how it arises, we first need an

alternative account of what it is for a set E of sets of natural numbers to be enumerable,

and for this we need to use the coding of an ordered pair (m, n) of natural numbers by a

single number J (m, n), as described in section 1.2. We call a set w of natural numbers an

enumerator of a set E of sets of natural numbers if

∀z(z is a set of natural numbers & z is in E →
∃x(x is a natural number &

∀z(∀y(y is a natural number → (y is in z ↔ J (x, y) is in w)))).

The fact about enumerators and enumerability we need is that a set E of sets of natural
numbers is enumerable if and only if E has an enumerator.

[The reason: suppose E is enumerable. Let e0, e1, e2, . . . be an enumeration of sets of

natural numbers that contains all the members of E , and perhaps other sets of natural

numbers also. Then the set of numbers J (x, y) such that y is in ex is an enumerator of E .

Conversely, if w is an enumerator of E , then letting ex be the set of those numbers y such

that J (x, y) is in w , we get an enumeration e0, e1, e2, . . . that contains all members of E ,

and E is enumerable.]

We want now to look at a language and some of its interpretations. The language contains

just the following: constants 0, 1, 2, . . . , two one-place predicates N and S, a two-place

predicate ∈, and a two-place function symbol J. An interpretation I of the kind we are

interested in will have as the elements of its domain all the natural numbers, some or all of

the sets of natural numbers, and nothing else. The denotations of 0, 1, 2, and so on will be

the numbers 0, 1, 2, and so on. The denotation of N will be the set of all natural numbers,

and of S will be the set of all sets of natural numbers in the domain; while the denotation

of ∈ will be the relation of membership between numbers and sets of numbers. Finally, the

denotation of J will be the function J , extended to give some arbitrary value—say 17—for

arguments that are not both numbers (that is, one or both of which are sets). Among such

interpretations, the standard interpretation J will be the one in which the domain contains

all sets of natural numbers.

Consider the sentence ∼∃w F(w) where F(w) is the formula

Sw & ∀z(Sz → ∃x(Nx & ∀y(Ny → (y ∈ z ↔ J(x, y) ∈ w)))).

In each of the interpretations I that concern us, ∼∃w F(w) will have a truth value. It will be

true in I if and only if there is set in the domain of I that is an enumerator of the set of all

sets of numbers that are in the domain of I , as can be seen by compairing the formula F(w)

with the definition of enumerator above. We cannot say, more simply, that the sentence

is true in the interpretation if and only if there is no enumerator of the set of all sets of

numbers in its domain, because the quantifier ∃w only ‘ranges over’ or ‘refers to’ sets in
the domain.

There is, as we know, no enumerator of the set of all sets of numbers, so the sentence

∼∃w F(w) is true in the standard interpetation J , and can be said to mean ‘nonenumerably

many sets of numbers exist’ when interpreted ‘over’ J , since it then denies that there is an

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19.3. HERBRAND’S THEOREM 253

enumerator of the set of all sets of numbers. By the Löwenheim–Skolem theorem, there is

an enumerable subinterpretation K of J in which the sentence is also true. (Note that all

numbers will be in its domain, since each is the denotation of some constant.) Thus there is

an interpretation K whose domain contains only enumerably many sets of numbers, and in

which S is true of just the sets of numbers in its domain. This is the ‘Skolem paradox’.

How is the paradox to be resolved? Well, though the set of all sets of numbers in the

domain of K does indeed have an enumerator, since the domain is enumerable, none of its

enumerators can be in the domain of K. [Otherwise, it would satisfy F(x), and ∃w F(x)

would be true in K, as it is not.] So part of the explanation of how the sentence ∼∃w F(x)

can be true in K is that those sets that ‘witness’ that the set of sets of numbers in the domain

of K is enumerable are not themselves members of the domain of K.

A further part of the explanation is that what a sentence should be understood as saying

or meaning or denying is at least as much as function of the domain over which the sentence

is interpreted (and even of the way in which that interpretation is described or referred to)

as of the symbols that constitute the sentence. ∼∃w F(x) can be understood as saying

‘nonenumerably many sets of numbers exist’ when its quantifiers are understood as ranging

over a collection containing all numbers and all sets of numbers, as with the domain of the

standard interpretationJ ; but it cannot be so understood when its quantifiers range over other

domains, and in particular not when they range over the members of enumerable domains.

The sentence ∼∃w F(x)—that sequence of symbols—‘says’ something only when supplied

with an interpretation. It may be surprising and even amusing that it is true in all sorts of

interpretations, including perhaps some subinterpretations K of J that have enumerable

domains, but it should not a priori seem impossible for it to be true in these. Interpreted

over such a K, it will only say ‘the domain of K contains no enumerator of the set of sets

of numbers in K′. And this, of course, is true.

19.3 Herbrand’s Theorem

The applications of Skolem normal form with which we are going to be concerned

in this section require some preliminary machinery, with which we begin. We work

throughout in logic without identity. (Extensions of the results of this section to logic

with identity are possible using the machinery to be developed in the next section,

but we do not go into the matter.)

Let A1, . . . , An be atomic sentences. A (truth-functional) valuation of them is

simply a function ω assigning each of them one of the truth values, true or false

(represented by, say, 1 and 0). The valuation can be extended to truth-functional

compounds of the Ai (that is, quantifier-free sentences built up from the Ai using ∼
and & and ∨) in the same way that the notion of truth in an interpretation is extended

from atomic to quantifier-free sentences:

ω(∼B) = 1 if and only if ω(B) = 0

ω(B & C) = 1 if and only if ω(B) = 1 and ω(C) = 1

ω(B ∨ C) = 1 if and only if ω(B) = 1 or ω(C) = 1.

A set � of quantifier-free sentences built up from the Ai is said to be truth-functionally
satisfiable if there is some valuation ω giving every sentence S in � the value 1.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

254 NORMAL FORMS

Now if � is satisfiable in the ordinary sense, that is, if there is an interpretation A
in which every sentence in � comes out true, then certainly � is truth-functionally

satisfiable. Simply take for ω the function that gives a sentence the value 1 if and

only if it is true in A.

The converse is also true. In other words, if there is a valuation ω that gives every

sentence in � the value 1, then there is an interpretation A in which every sentence in

� comes out true. To show this, it is enough to show that for any valuation ω, there is

an interpretation A such that each Ai comes out true in A just in case ω assigns it the

value 1. This is in fact the case even if we start with an infinite set of atomic formulas

Ai . To specifyA, we must specify a domain, and assign a denotation to each constant,

function symbol, and predicate occurring in the Ai . Well, simply take for each closed

term t in the language some object t*, with distinct terms corresponding to distinct

objects. We take the domain of our interpretation to consist of these objects t*. We

take the denotation of a constant c to be c*, and we take the denotation of a function

symbol f to be the function that given the objects t1*, . . . , tn* associated with terms

t1, . . . , tn as arguments, yields as value the object f (t1, . . . , tn)* associated with the

term f (t1, . . . , tn). It follows by induction on complexity that the denotation of an

arbitrary term t is the object t* associated with it. Finally, we take as the denotation

of a predicate P the relation that holds of objects the objects t1*, . . . , tn* associated

with terms t1, . . . , tn if and only if the sentence P(t1, . . . , tn) is one of the Ai and

ω assigns it the value 1. Thus truth-functional satisfiability and satisfiability in the

ordinary sense come to the same thing for quantifier-free sentences.

Let now � be a set of ∀-formulas of some language L , and consider the set � of all

instances P(t1, . . . , tn) obtained by substituting in sentences ∀x1. . .∀xn P(x1, . . . , xn)

of � terms t1, . . . , tn of L for the variables. If every finite subset of � is truth-

functionally satisfiable, then every finite subset of � is satisfiable, and hence so is �,

by the compactness theorem.

Moreover, by Proposition 12.7, if A is an interpretation in which every sentence in

� comes out true, and B is the subinterpretation of A whose domain is the set of all

denotations of closed terms, then every sentence in � also comes out true in B. Since

in B every element of the domain is the denotation of some term, from the fact that

every instance P(t1, . . . , tn) comes out true it follows that the ∀-formula ∀x1. . . ∀xn

P(x1, . . . , xn) comes out true, and thus B is a model of �. Hence � is satisfiable.

Conversely, if � is satisfiable, then since a sentence implies all its substitution in-

stances, every finite or infinite set of substitution instances of sentences in� will be sat-

isfiable and hence truth-functionally satisfiable. Thus we have proved the following.

19.11 Theorem (Herbrand’s theorem). Let � be a set of ∀-sentences. Then � is sat-

isfiable if and only if every finite set of substitution instances of sentences in � is truth-

functionally satisfiable.

It is possible to avoid dependence on the compactness theorem in the foregoing

proof, by proving a kind of compactness theorem for truth-functional valuations,

which is considerably easier than proving the ordinary compactness theorem. (Then,

starting with the assumption that every finite subset of � is truth-functionally sat-

isfiable, instead of arguing that each finite subset is therefore satisfiable, and hence

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19.4. ELIMINATING FUNCTION SYMBOLS AND IDENTITY 255

that � is satisfiable by compactness, instead one would apply compactness for truth-

functional satisfiability to conclude that � is truth-functionally satisfiable, from which

it follows that � is satisfiable.) Herbrand’s theorem actually then implies the compact-

ness theorem: Given a set� of sentences, let�# be the set of Skolem forms of sentences

in �. We know from the preceding section that if every finite subset of � is satisfiable,

then every finite subset of �# is satisfiable and hence truth-functionally satisfiable,

and so by Herbrand’s theorem �# is satisfiable, whence the original � is satisfiable.

Herbrand’s theorem also implies the soundness and Gödel completeness theorems

for an appropriate kind of proof procedure (different from that used earlier in this book

and from those used in introductory textbooks), which we next describe. Suppose we

are given a finite set � of sentences and wish to know if � is unsatisfiable. We first

replace the sentences in � by Skolem forms: the proofs of the normal form theorems

given in the preceding two sections implicitly provide an effective method of doing

so. Now having the finite set S1, . . . , Sn , of ∀-sentences that are the Skolem forms

of our original sentences, and any effective enumeration t1, t2, t3, . . . of terms of the

language, we set about effectively generating all possible substitution instances. (We

could do this by first substituting in each formula for each of its variables the term

t1, then substituting for each variable in each formula either t1 or t2, then substituting

for each variable in each formula either t1 or t2 or t3, and so on. At each stage we get

only finitely many substitution instances, namely, at stage m just km , where k is the

total number of variables; but in the end we get them all.)

Each time we generate a new substitution instance, we check whether the finitely

many instances we have generated so far are truth-functionally satisfiable. This can

be done effectively, since on the one hand at any given stage we will have generated

so far only finitely many substitution instances, so that there are only finitely many

valuations to be considered (if the substitution instances generated so far involve m
distinct atomic sentences, the number of possible valuations will be 2m); while on the

other hand, given a valuation ω and a truth-functional compound B of given atomic

sentences Ai , we can effectively work out the value ω(B) required (the method of

truth tables expounded in introductory textbooks being a way of setting out the work).

If any finite set of Skolem instances (that is, of substitution instances of Skolem

forms) turns out to be truth-functionally unsatisfiable, then the original set � is

unsatisfiable: producing such a set of Skolem instances is a kind of refutation of

�. Conversely, if � is unsatisfiable, the above-described procedure will eventually

produce such a refutation. This is because we know from the preceding section that �

is unsatisfiable if and only if �# is, and so, by Herbrand’s theorem, � is unsatisfiable

if and only if some finite set of substitution instances of Skolem forms is truth-

functionally unsatisfiable. The refutation procedure just described is thus sound and

complete (hence so would be the proof procedure that proves � implies D by refuting

� ∪ {∼D}).

19.4 Eliminating Function Symbols and Identity

While the presence of identity and function symbols is often a convenience, their

absence can often be a convenience, too, and in this section we show how they can,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

256 NORMAL FORMS

in a sense to be made precise, be ‘eliminated’. (Constants will be treated as a special

sort of function symbol, namely 0-place function symbols. Whatever we say about

function symbols in this section goes for constants, too, and they will not be given

separate consideration.)

Let us take up the elimination of function symbols first. The first fact we need is

that any sentence is logically equivalent to one in which all function symbols occur

immediately to the right of the identity symbol. This means that no function symbols

occur in the blanks to the right of predicates other than the identity predicate, or

in the blanks to the right of a function symbol, or in the blank to the left of the

identity symbol, so the only occurrences of an n-place function symbol f are in

atomic subformulas of the type v = f (u1, . . . , un), where v and the ui are variables

(not necessarily all distinct).

The proof is quite simple: Suppose that S is a sentence with at least one occurrence

of a function symbol f in a position other than immediately to the right of the identity

symbol. In any such occurrence, f occurs as the first symbol in some term t that

occurs (possibly as a subterm of a more complex term) in some atomic subformula

A(t). Let v be any variable not occurring in S, and let S− be the result of replacing

A(t) by the logically equivalent ∃v(v = t & A(v)). Then S is logically equivalent to

S−, and S−contains one fewer occurrence of function symbols in positions other

than immediately to the right of the identity symbol. Reducing the number of such

occurrences one at a time in this way, S is ultimately equivalent to a sentence with no

such occurrences. So for the remainder of this chapter, we consider only sentences

without such occurrences.

We show how to eliminate function symbols one at a time from such sentences.

(The process may be repeated until all function symbols, including constants, have

been eliminated.) If S is such a sentence and f an n-place function symbol occurring

in it, let R be a new (n + 1)-place predicate. Replace each subformula of the type

v = f (u1, . . . , un) in which f occurs—and remember, these are the only kind of

occurrences of f in S—by R(u1, . . . , un, v), and call the result S±. Let C be the

following sentence, which we call the functionality axiom:

∀x1 . . . ∀xn∃y∀z(R(x1, . . . , xn, z) ↔ z = y).

Let D be the following sentence, which we call the auxiliary axiom:

∀x1 . . .∀xn∀z(R(x1, . . . , xn, z) ↔ z = f (x1, . . . , xn)).

The precise sense in which the symbol f is ‘dispensable’ is indicated by the following

proposition (and its proof).

19.12 Proposition. S is satisfiable if and only if S± & C is satisfiable.

Proof: Let us begin by sorting out the relationships among the various sentences

we have introduced. If we call the language to which the original sentence S belonged

L , the language obtained by adding the new predicate R to this language L+, and the

language obtained by removing the old function symbol f from the latter language

L±, then S belongs to L , D to L+, and S± and C to L±. Note that D implies C , and

D implies S ↔ S±.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

19.4. ELIMINATING FUNCTION SYMBOLS AND IDENTITY 257

Now note that every interpretation M of L has a unique expansion to an interpre-

tation N of L+ that is a model of D. The one and only way to obtain such an N is

to take as the denotation RN of the new predicate the relation that holds of a1, . . . ,

an , b if and only if b = f M(a1, . . . , an). Also, every interpretation P of L± that is a

model of C has a unique expansion to an interpretation N of L+ that is a model of D.

The one and only way to obtain such an N is to take as the denotation f N of the new

function symbol the function that given a1, . . . , an as arguments yields as value the

unique b such that RP (a1, . . . , an , b) holds. (The truth of C in P is need to guarantee

that there will exist such a b and that it will be unique.)

If S has a model M, by our observations in the preceding paragraph it has an

expansion to a model N of S & D. Then since D implies S ↔ S± and C , N is a

model of S± & C . Conversely, if S± & C has a model P , then by our observations

in the preceding paragraph, it has an expansion to a model N of S± & D. Then since

D implies S ↔ S±, N is a model of S.

We now turn to the matter of eliminating the identity symbol, supposing that

function symbols have already been eliminated. Thus we begin with a language L
whose only nonlogical symbols are predicates. We add a further two-place relation-

symbol ≡ and consider the following sentence E , which we have already encountered

in chapter 12, and will call the equivalence axiom:

∀x x ≡ x &

∀x∀y(x ≡ y → y ≡ x) &

∀x∀y∀z((x ≡ y & y ≡ z) → x ≡ z).

In addition, for each predicate P of L we consider the following sentence CP , which

we will call the congruence axiom for P:

∀x1 . . . ∀xn∀y1 . . . ∀yn((x1 ≡ y1 & . . . & xn ≡ yn) →
(P(x1, . . . , xn) ↔ P(y1, . . . , yn))).

Note that the result of replacing the new sign ≡ by the identity sign = in E or any CP

is a logically valid sentence. For any sentence S, we let S* be the result of replacing

the identity sign = throughout by this new sign ≡, and CS the conjunction of the

CP for all predicates P occurring in S. The precise sense in which the symbol = is

‘dispensable’ is indicated by the following proposition (and its proof).

19.13 Proposition. S is satisfiable if and only if S* & E & CS is satisfiable.

Proof: One direction is easy. Given a model of S, we get a model of S* & E &

CS by taking the identity relation as the denotation of the new sign.

For the other direction, suppose we have a model A of S* & E & CS . We want to

show there is a model B of S. Since E is true in A, the denotation ≡A of the new sign

in A is an equivalence relation on the domain |A|. We now specify an interpretation

B whose domain |B| will be the set of all equivalence classes of elements of |A|. We

need to specify what the denotation PB of each predicate P of the original language

is to be. For any equivalence classes b1, . . . , bn in |B|, let PB hold of them if and only

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

258 NORMAL FORMS

if PA holds of a1, . . . , an for some a1 in b1, . . . , and an in bn . We also need to specify

what the denotation ≡B of the new sign is to be. We take it to be the genuine identity

relation.

Let now j be the function from |A| to |B| whose value for argument a is the equiv-

alence class of a. If PA(a1, . . . , an) holds, then by definition of PB, PB(j(a1), . . . ,

j(an)) holds; while if PB(j(a1), . . . , j(an)) holds, then again by definition of PB,

PA(a′
1, . . . , a′

n) holds for some a′
i , where each a′

i belongs to the same equivalence class

j(a′
i) = j(ai) as ai . The truth of CP in A guarantees that in that case PA(a1, . . . , an)

holds. Trivially, a1 ≡A a2 holds if and only if j(a1) = j(a2), which is to say, if and

only if j(a1) ≡B j(a2) holds. Thus the function j has all the properties of an isomor-

phism except for not being one-to-one. If we look at the proof of the isomorphism

lemma, according to which exactly the same sentences are true in isomorphic inter-

pretations, we see that the property of being one-to-one was used only in connection

with identity. Hence, so far as sentences not involving identity are concerned, by the

same proof as that of the isomorphism lemma, the same ones are true in B as in A.

(See Proposition 12.5 and its proof.) In particular S* is true in B. But since ≡B is

the genuine identity relation, it follows that the result of replacing ≡ by = in S* will

also be true in B—and the result of this substitution is precisely the original S. So we

have a model B of S as required.

Propositions 19.12 and 19.13 can both be stated more generally. If � is any set

of sentences and �± the set of all S± for S in �, together with all functionality

axioms, then � is satisfiable if and only if �± is. If � is any set of sentences not

involving function symbols, and �* is the set of all S* for S in � together with the

equivalence axiom and all congruence axioms, then � is satisfiable if and only if �*

is satisfiable. Applications of the function-free and identity-free normal forms of the

present section will be indicated in the next two chapters.

Problems

19.1 Find equivalents

(a) in negation-normal form

(b) in disjunctive normal form

(c) in full disjunctive normal form

for ∼((∼A & B) ∨ (∼B & C)) ∨ ∼(∼A ∨ C).

19.2 Find equivalents in prenex form for

(a) ∃x(P(x) → ∀x P(x))

(b) ∃x(∃x P(x) → P(x)).

19.3 Find an equivalent in prenex form for the following, and write out its Skolem

form:

∀x(Qx → ∃y(Py & Ryx)) ↔ ∃x(Px & ∀y(Qy → Rxy).

19.4 Let T be a set of finite sequences of 0s and 1s such that any initial segment

(e0, . . . , em−1), m < n, of any element (e0, . . . , en−1) in T is in T . Let T * be

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-19 CB421-Boolos July 27, 2007 16:48 Char Count= 0

PROBLEMS 259

the subset of T consisting of all finite sequences s such that there are infinitely

many finite sequences t in T with s is an initial segment of t . Show that if T is

infinite, then there is an infinite seqeunce e1, e2, . . . of 0s and 1s such that every

initial segment (e0, . . . , em−1) is in T *.

19.5 State and prove a compactness theorem for truth-functional valuations.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

20

The Craig Interpolation Theorem

Suppose that a sentence A implies a sentence C. The Craig interpolation theorem tells us
that in that case there is a sentence B such that A implies B, B implies C, and B involves
no nonlogical symbols but such as occur both in A and in B. This is one of the basic
results of the theory of models, almost on a par with, say, the compactness theorem.
The proof is presented in section 20.1. The proof for the special case where identity and
function symbols are absent is an easy further application of the same lemmas that we
have applied to prove the compactness theorem in Chapter 13, and could have been
presented there. But the easiest proof for the general case is by reduction to this special
case, using the machinery for the elimination of function symbols and identity developed
in section 19.4. Sections 20.2 and 20.3, which are independent of each other, take up
two significant corollaries of the interpolation theorem, Robinson’s joint consistency

theorem and Beth’s definability theorem.

20.1 Craig’s Theorem and Its Proof

We begin with a simple observation.

20.1 Proposition. If a sentence A implies a sentence C , then there is a sentence B that

A implies, that implies C , and that contains only such constants as are contained in both of

A and C .

Proof: The reason is clear: If there are no constants in A not in C , we may take A
for our B; otherwise, let a1, . . . , an be all the constants in A and not in C , and let A* be

the result of replacing each ai by some new variable vi . Then, since A → C is valid,

so is ∀v1 · · · ∀vn(A* → C), and hence so is ∃v1 · · · ∃vn A* → C . Then ∃v1 · · · ∃vn A*

is a suitable B, for A implies it, it implies C , and all constants in it are in both A and C .

It might occur to one to ask whether the fact just proved about constants can be

subsumed under one about constants, function symbols, and predicates; that is, to ask

whether if A implies C , there is always a sentence B that A implies, that implies C ,

and that contains only constants, function symbols, and predicates that are in both A
and C . The answer to the question, as stated, is no.

260

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

20.1. CRAIG’S THEOREM AND ITS PROOF 261

20.2 Example (A failure of interpolation). Let A be ∃x Fx & ∃x ∼ Fx , and let C be

∃x∃y x �= y. Then A implies C , but there is no sentence at all that contains only con-

stants, function symbols, and predicates that are in both A and C , and therefore there is no

such sentence that A implies and that implies C .

Suppose we do not count the logical predicate of identity, and ask whether, if

A implies C , there is always a sentence B that A implies, that implies C , and that

contains no nonlogical symbols (that is, no constants, no function symbols, and no

nonlogical predicates) except such as are both in A and in C . The Craig interpolation

theorem is the assertion that the answer to our question, thus restated, is yes.

20.3 Theorem (Craig interpolation theorem). If A implies C , then there is a sentence

B that A implies, that implies C , and that contains no nonlogical symbols except such as

are both in A and in C .

Such a B is called an interpolant between A and C. Before launching into the

proof, let us make one clarificatory observation.

20.4 Example (Degenerate cases). It may happen that we need to allow the identity symbol

to appear in the interpolant even though it appears in neither A nor C . Such a situation can

arise if A is unsatisfiable. For instance, if A is ∃x(Fx & ∼Fx) and C is ∃xGx , then ∃x x �= x
will do for B, but there are no sentences at all containing only predicates that occur in both

A and C , since there are no such predicates. A similar situation can arise if C is valid.

For instance, if A is ∃x Fx and C is ∃x(Gx ∨ ∼Gx), then ∃x x = x will do for B, but

again there are no predicates that occur in both A and C . Note that ∃x x �= x will do for

an interpolant in any case where A is unsatisfiable, and ∃x x = x in any case where C is

valid. (We could avoid the need for identity if we admitted the logical constants � and ⊥ of

section 19.1.)

Proof, Part I: This noted, we may restrict our attention to cases where A is

satisfiable and C is not valid. The proof that, under this assumption, an interpolant

B exists will be, like so many other proofs, divided into two parts. First we consider

the case where identity and function symbols are absent, then reduce the general case

where they are present to this special case. (The proof, unlike that of Proposition 20.1,

will be nonconstructive. It will prove the existence of an interpolant, without showing

how to find one. More constructive proofs are known, but are substantially longer and

more difficult.)

Let us begin immediately on the proof of the special case. Considering only sen-

tences and formulas without identity or function symbols, let A be a sentence that

is satisfiable and C a sentence that is not valid (which is equivalent to saying that

∼C is satisfiable), such that A implies C (which is equivalent to saying {A, ∼C}
is unsatisfiable). We want to show there is a sentence B containing only predicates

common to A and C , such that A implies B and B implies C (which is equivalent to

saying ∼C implies ∼B).

What we are going do is to show that if there is no such interpolant B, then

{A, ∼C} is after all satisfiable. To show this we apply the model existence theorem

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

262 THE CRAIG INTERPOLATION THEOREM

(Lemma 13.3). This tells us that if L is a language containing all the nonlogical

symbols of A and of C , and if L* is a language obtained by adding infinitely many

new constants to L , then {A, ∼C} will be satisfiable provided it belongs to some set S
of sets of sentences of L* having certain properties. For the present situation, where

identity and function symbols are absent, these properties are as follows:

(S0) If � is in S and �0 is a subset of �, then �0 is in S.

(S1) If � is in S, then for no sentence D are both D and ∼D in �.

(S2) If � is in S and ∼∼D is in �, then � ∪ {D} is in S.

(S3) If � is in S and (D1 ∨ D2) is in �, then � ∪ {Di } is in S for either i = 1 or i = 2.

(S4) If � is in S and ∼(D1 ∨ D2) is in �, then � ∪ {∼Di } is in S for both i = 1 and

i = 2.

(S5) If � is in S and {∃x F(x)} is in �, and then � ∪ {F(b)} is in S for any constant b
not in � or ∃xF(x).

(S6) If � is in S and ∼∃x F(x) is in �, then � ∪ {∼F(b)} is in S for any constant b at

all.

What we need to do is to define a set S, use the hypothesis that there is no interpolant

B to show {A, ∼C} is in S, and establish properties (S0)–(S1) for S. Towards defining

S, call a sentence D of L* a left formula (respectively, a right formula) if every

predicate in D is in A (respectively, is in C). If �L is a satisfiable set of left sentences

and �R a satisfiable set of right sentences, let us say that B bars the pair �L , �R if

B is both a left and a right sentence and �L implies B while �R implies ∼B. Our

assumption that there is no interpolant, restated in this terminology, is the assumption

that no sentence B of L bars {A}, {∼C}. It follows—by a proof quite like that of

Proposition 20.1—that no sentence B of L* bars {A}, {∼C}. Let S be the set of all �

that admit and unbarred division in the sense that we can write � as a union �L ∪ �R

of two sets of sentences where �L consists of left and �R of right sentences, each of

�L and �R is satisfiable, and no sentence bars the pair �L , �R . Then what we have

said so far is that {A, ∼C} is in S. What remains to be done is to establish properties

(S0)–(S6) for S.

(S0) is easy and left to the reader. For (S1), if � = �L ∪ �R is an unbarred division,

then the assumptions that �L is satisfiable implies that there is no sentence D with

both D and ∼D in �L . Similarly for �R . Nor can there be a D with D in �L and

∼D in �R , for in that case D would be both a left sentence (since it belongs to �L)

and a right sentence (since it belongs to �R) and therefore would be a sentence that

is implied by �L and whose negation is implied by �R , and so would bar �L , �R .

Similarly, the reverse case with ∼D in �L and D in �R is impossible, since ∼D would

bar the pair �L , �R .

For (S2), suppose � = �L ∪ �R is an unbarred division and ∼∼D is in �. There

are two cases according as ∼∼D is in �L or in �R , but the two are just alike, and

we consider only the former. Then since ∼∼D is a left formula, so is D, and since

D is implied by �L , adding D to �L cannot make it unsatisfiable if it was satisfiable

before, nor can it make any sentence B a consequence that was not a consequence

before. So � ∪ {D} = (�L ∪ {D}) ∪ �R is an unbarred division, and � ∪ {D} is in S.

(S4)–(S6) are very similar.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

20.1. CRAIG’S THEOREM AND ITS PROOF 263

(S3) is just slightly different. Suppose � = �L ∪ �R is an unbarred division and

(D1 ∨ D2) is in �. Again there are two cases, and we consider only the one where

(D1 ∨ D2) is in �L . Each of the Di is of course a left sentence, since their disjunction

is. We claim that � ∪ {Di } = (�L ∪ {Di }) ∪ �R is an unbarred division for at least

one i . Towards showing this, note that if �L ∪ {D1} is unsatisfiable, then �L implies

both (D1 ∨ D2) and ∼D1, and hence implies D2. In this case, the proof that (�L ∪
{D2}) ∪ �R is an unbarred division is just like the proof of the preceding paragraph.

Similarly, if �L ∪ {D2} is unsatisfiable, then (�L ∪ {D2}) ∪ �R gives an unbarred

division. So we are left to treat the case where �L ∪ {Di } is satisfiable for both i .
In this case, (�L ∪ {Di }) ∪ �R can fail to give an unbarred division only because

there is a sentence Bi that bars the pair �L ∪ {Di }, �R . What we claim is that there

cannot exist such Bi both both i = 1 and i = 2. For suppose there did. Then since

Bi is implied by �L ∪ {Di } for each i , and �L contains (D1 ∨ D2), it follows that

B = (B1 ∨ B2) is implied by �L . Moreover, since each ∼Bi is implied by �R , so

is ∼B. Finally, since each Bi is both a left and a right sentence, the same is true

of B. Thus there is a sentence B that bars �L , �R , contrary to hypothesis. This

contradiction completes the proof for the case where identity and function symbols

are absent.

Proof, Part II: We next consider the case where identity is present but func-

tion symbols are still absent. Suppose A implies C . As in section 18.4, we in-

troduce the new two-place predicate ≡. We write EL for the conjunction of the

equality axioms and the congruence axioms for predicates in A, and ER for the

corresponding sentence for C . We write * to indicate replacing = by ≡. Since A
implies C , A & ∼C is unsatisfiable. What the proof of Proposition 19.13 tells us is

that therefore EL & ER & A* & ∼C* is unsatisfiable. It follows that EL & A* implies

ER → C*. By the interpolation theorem for sentences without identity, there is a sen-

tence B* involving only ≡ and nonlogical predicates common to A and C , such that

EL & A* implies B* and B* implies ER → C*. It follows that EL & A* & ∼B* and

ER & B* & C* are unsatisfiable. Then we claim B, the result of replacing ≡ by =
in B*, is the required interpolant between A and C . Certainly its nonlogical predi-

cates are common to A and C . Further, what the proof of Proposition 18.13 tell us

is is that A & ∼B and B & ∼C are unsatisfiable, and therefore A implies B and B
implies C . The treatment of function symbols is much the same, but using the ma-

chinery of Proposition 19.12 rather than of Proposition 19.13. Details are left to the

reader.

In the remaining sections of this chapter we apply the interpolation theorem to

prove two results about theories: one about the conditions under which the union

of two theories is satisfiable, the other about the conditions under which defini-

tions are consequences of theories. (Throughout ‘theory’ is being used, as else-

where in this book, in a very broad way: A theory in a language is just a set of

sentences of the language that contains every sentence of that language that is a

logical consequence of the set. A theorem of a theory is just a sentence in that

theory.)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

264 THE CRAIG INTERPOLATION THEOREM

20.2 Robinson’s Joint Consistency Theorem

We begin with a preliminary result.

20.5 Lemma. The union T1 ∪ T2 of two theories T1 and T2 is satisfiable if and only if

there is no sentence in T1 whose negation is in T2.

Proof: The ‘only if’ part is obvious: if there were a sentence in T1 whose negation

was T2, the union could not possibly be satisfiable; for there could be no interpretation

in which both the sentence and its negation were true.

The ‘if’ part follows quickly from the compactness theorem and Craig’s theorem:

Suppose the union of T1 and T2 is unsatisfiable. Then by the compactness theorem,

there is a finite subset S0 of the union which is unsatisfiable. If there are no members

of S0 that belong to T1, then T2 is unsatisfiable, and so ∀x x = x is a sentence in T1

whose negation is in T2; if no members of S0 belong to T2, then T1 is unsatisfiable,

and so ∼∀x x = x is a sentence in T1 whose negation is in T2. So we may suppose

that S0 contains some members both of T1 and of T2. Let F1, . . . , Fm be the members

of S0 that are in T1; let G1, . . . , Gn be the members of S0 that are in T2.

Let A be (F1 & . . . & Fm), and let C be ∼(G1 & . . . & Gn). A implies C . By

Craig’s theorem, there is a sentence B implied by A, implying C , and containing

only nonlogical symbols contained in both A and C . B is therefore a sentence in

the languages of both T1 and T2. Since A is in T1 and implies B, B is in T1. Since

(G1 & . . . & Gn) is in T2, so is ∼B, as (G1 & . . . & Gn) implies ∼B. So B is a

sentence in T1 whose negation is in T2.

An extension T ′ of a theory T is just another theory containing it. The extension

is called conservative if every sentence of the language of T that is a theorem of T ′
is a theorem of T . We next prove a theorem about conservative extensions.

20.6 Theorem. Let L0, L1, L2 be languages, with L0 = L1 ∩ L2. Let Ti be a theory

in Li for i = 0, 1, 2. Let T3 be the set of sentences of L1 ∪ L2 that are consequences

of T1 ∪ T2. Then if T1 and T2 are both conservative extensions of T0, then T3 is also a

conservative extension of T0.

Proof: Suppose B is a sentence of L0 that is a theorem of T3. We must show that

B is a theorem of T0. Let U2 be the set of sentences of L2 that are consequences of

T2 ∪ {∼B}. Since B is a theorem of T3, T1 ∪ T2 ∪ {∼B} is unsatisfiable, and therefore

T1 ∪ U2 is unsatisfiable. Therefore there is a sentence D in T1 whose negation ∼D
is in U2. D is a sentence of L1, and ∼D of L2. Thus D and ∼D are both in L0, and

hence so is (∼B → ∼D). Since D is in T1, which is a conservative extension of T0,

D is in T0. And since ∼D is in U2, (∼B → ∼D) is in T2, which is a conservative

extension of T0. Thus (∼B → ∼D) is also in T0, and therefore so is B, which follows

from D and (∼B → ∼D).

An immediate consequence is

20.7 Corollary (Robinson’s joint consistency theorem). Let L0, L1, L2 be languages,

with L0 = L1 ∩ L2. Let Ti be a theory in Li for i = 0, 1, 2. If T0 is complete, and T1 and

T2 are satisfiable extensions of T0, then T1 ∪ T2 is satisfiable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

20.3. BETH’S DEFINABILITY THEOREM 265

Proof: A satisfiable extension of a complete theory is conservative, and a conserva-

tive extension of a satisfiable theory is satisfiable. Thus if the Ti satisfy the hypotheses

of Corollary 20.7, then T3 as defined in Theorem 20.6 is a satisfiable extension of T0,

and therefore T1 ∪ T2 is satisfiable.

20.8 Example (Failures of joint consistency). Let L0 = L1 = L2 = {P, Q}, where P and

Q are one-place predicates. Let T1 (respectively, T2) be the set of consequences in L1

(respectively, L2) of {∀x Px, ∀x Qx} (respectively, {∀x Px, ∀x ∼ Qx}. Let T0 be the set of

consequences in L0 of ∀x Px . Then T1 ∪ T2 is not satisfiable, though each of T1 and T2 is

a satisfiable extension of T0. This is not a counterexample to Robinson’s theorem, because

T0 is not complete. If instead we let L0 = {P}, then again we do not get a counterexample,

because then L0 is not the intersection of L1 and L2, while L is. This shows the hypotheses

in Corollary 20.7 are needed.

We have proved Robinson’s theorem using Craig’s theorem. Robinson’s theorem

can also be proved a different way, not using Craig’s theorem, and then used to prove

Craig’s theorem. Let us indicate how a ‘double compactness’ argument yields Craig’s

theorem from Robinson’s.

Suppose A implies C . Let L1 (L2) be the language consisting of the nonlogical

symbols occurring in A (C). Let L0 = L1 ∩ L2. We want to show there is a sentence

B of L0 implied by A and implying C . Let � be the set of sentences of L0 that are

implied by A. We first show that � ∪ {∼C} is unsatisfiable. Suppose that it is not and

thatM is a model of � ∪ {∼C}. Let T0 be the set of sentences of L0 that are true inM.

T0 is a complete theory whose langauge is L0. Let T1 (T2) be the set of sentences of

L1 (L2) that are consequences of T0 ∪ {A} (T0 ∪ {∼C}). T2 is a satisfiable extension

of T0: M is a model of T0 ∪ {∼C}, and hence of T2. But T1 ∪ T2 is not satisfiable: any

model of T1 ∪ T2 would be a model of {A, ∼C}, and since A implies C , there is no

such model. Thus by the joint consistency theorem, T1 is not a satisfiable extension

of T0, and therefore T0 ∪ {A} is unsatisfiable. By the compactness theorem, there is a

finite set of sentences in T0 whose conjunction D, which is in L0, implies ∼A. Thus

A implies ∼D, ∼D is in L0, ∼D is in �, and ∼D is therefore true in M. But this is

a contradiction, as all of the conjuncts of D are in T0 and are therefore true in M. So

� ∪ {∼C} is unsatisfiable, and by the compactness theorem again, there is a finite

set of members of � whose conjunction B implies C . B is in L0, since its conjuncts

are, and as A implies each of these, A implies B.

20.3 Beth’s Definability Theorem

Beth’s definability theorem is a result about the relation between two different ex-

plications, or ways of making precise, the notion of a theory’s giving a definition of
one concept in terms of other concepts. As one might expect, each of the explica-

tions discusses a relation that may or may not hold between a theory, a symbol in the

language of that theory (which is supposed to ‘represent’ a certain concept), and other

symbols in the language of the theory (which ‘represent’ other concepts), rather than

directly discussing a relation that may or may not hold between a theory, a concept,

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

266 THE CRAIG INTERPOLATION THEOREM

and other concepts. The supposition of Beth’s theorem, then, is that α and β1, . . . , βn

are nonlogical symbols of the language L of some theory T and that α is not among

the βi .

The first explication is straightforward and embodies the idea that a theory defines

a concept in terms of others when ‘a definition of that concept in terms of the others

is a consequence of the theory’. This sort of definition is called an explicit definition:

we say that α is explicitly definable in terms of the βi in T if a definition of α from

the βi is one of the sentences in T. What precisely is meant by a definition of α in

terms of the βi depends on whether α is a predicate or a function symbol. In the case

of a (k + 1)-place predicate, such a definition is a sentence of the form

∀x0∀x1 · · · ∀xk(α(x0, x1, . . . , xk) ↔ B(x0, . . . , xk))

and in case of a k-place function symbol, such a definition is a sentence of the form

∀x0∀x1 · · · ∀xk(x0 = α(x1, . . . , xk) ↔ B(x0, . . . , xk))

where in either case B is a formula whose only nonlogical symbols are among the βi .

(Constants may be regarded as 0-place function symbols, and do not require separate

discussion. In this case the right side of the biconditional would simply be x0 = α.)

The general form of a definition may be represented as

∀x0 · · · ∀xk(—α, x0, . . . , xk— ↔ B(x0, . . . , xk)).

The second explication is rather more subtle, and incorporates the idea that a theory

defines a concept in terms of others if ‘any specification of the universe of discourse

of the theory and the meanings of the symbols representing the other concepts (that

is compatible with the truth of all the sentences in the theory) uniquely determines

the meaning of the symbol representing that concept’. This sort of definition is called

implicit definition: we say that α is implicitly definable from the βi in T if any two

models of T that have the same domain and agree in what they assign to the βi also

agree in what they assign to α.

It will be useful to develop a more ‘syntactic’ reformulation of this ‘semantic’

definition of implicit definability. To this end, we introduce a new language L ′ ob-

tained from L by replacing every nonlogical symbol γ of L , other than the βi , by a

new symbol γ ′ of the same kind: 17-place function symbols are replaced by 17-place

function symbols, 59-place predicates by 59-place predicates, and so on.

Given two models M and N of T that have the same domain and agree on what

they assign to the βi , we let M+ N be the interpretation of L ∪ L ′ that has the same

domain, and assigns the same denotations to the βi , and, for any other nonlogical

symbol γ of L , assigns to γ what M assigns to γ , and assigns to γ ′ what N assigns

to γ . Then M+ N is a model of T ∪ T ′.
Conversely, if K is a model of T ∪ T ′, then K can clearly be ‘decomposed’ into

two models M and N of T , which have the same domain (as each other, and as K)

and agree (with each other and with K) on what they assign to the βi , where for any

other nonlogical symbol γ of L , what M assigns to γ is what K assigns to γ , and

what N assigns to γ is what K assigns to γ ′.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

20.3. BETH’S DEFINABILITY THEOREM 267

20.9 Lemma. α is implicitly definable from β1, . . . , βn in T if and only if

∀x0 · · · ∀xk(—α, x0, . . . , xk— ↔ —α′, x0, . . . , xk—)(1)

is a consequence of T ∪ T ′.

Proof: Here, of course, by —α′, x0, . . . , xk— is meant the result of substituting α′

for α in —α, x0, . . . , xk—. Note that (1) will be true in a given interpretation if and

only if that interpretation assigns the same denotation to α and to α′.
For the left-to-right direction, suppose α is implicitly definable from the βi in T .

Suppose K is a model of T ∪ T ′. Let M and N be the models into which K can be

decomposed as above, so that K = M + N . Then M and N have the same domain

and agree on what they assign to the βi . By the supposition of implicit definability,

they must therefore agree on what they assign to α. Therefore the biconditional (1)

is true in K. In other words, any model of T ∪ T ′ is a model of (1), which therefore

is a consequence of T ∪ T ′.
For the right-to-left direction, suppose that (1) follows from T ∪ T ′. Suppose M

and N are models of T that have the same domain and agree on what they assign to

the βi . Then M+N is a model of T ∪ T ′ and therefore of (1), by the supposition that

(1) is a consequence of T ∪ T ′. It follows that M+N assigns the same denotation

to α and α′, and therefore that M and N assign the same denotation to α. Thus α is

implicitly definable from the βi in T .

One direction of the connection between implicit and explicit definability is now

easy.

20.10 Proposition (Padoa’s method). If α is not implicitly definable from the βi in T ,

then α is not explicitly definable from the βi in T .

Proof: Suppose α is explicitly definable from the βi in T . Then some definition

∀x0 · · · ∀xk(—α, x0, . . . , xk— ↔ B(x0, . . . , xk))(2)

of α from the βi is in T . Therefore

∀x0 · · · ∀xk(—α′, x0, . . . , xk— ↔ B(x0, . . . , xk))(3)

is in T ′. (Recall that B involves only the βi , which are not replaced by new nonlogical

symbols.) Since (1) of Lemma 20.9 is a logical consequence of (2) and (3), it is a

consequences of T ∪ T ′, and by that lemma, α is implicitly definable from the βi

in T .

20.11 Theorem (Beth’s definability theorem). α is implicitly definable from the βi in

T if and only if α is explicitly definable from the βi in T .

Proof: The ‘if’ direction is the preceding proposition, so it only remains to prove

the ‘only if’ direction. So suppose α is implicitly definable from the βi in T. Then

(1) of Lemma 20.9 is a consequence of T ∪ T ′. By the compactness theorem, it is a

consequence of some finite subset of T ∪ T ′. By adding finitely many extra sentences

to it, if necessary, we can regard this finite subset as T0 ∪ T ′
0, where T0 is a finite subset

of T , and T ′
0 comes from T0 on replacing each nonlogical symbol γ other than the βi

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

268 THE CRAIG INTERPOLATION THEOREM

by γ ′. Let A(A′) be the conjunction of the members of T0 (T ′
0). Then (1) is implied by

A & A′ Let c0, . . . , ck be constants not occurring in T ∪ T ′, and hence not in A, A′,
—α, x0, . . . , xk—, or —α′, x0, . . . , xk—. Then

—α, c0, . . . , ck— ↔ —α′, c0, . . . , ck—

is a consequence of (1) and therefore of A & A′. Here of course by —α, c0, . . . , ck—

is meant the result of substituting ci for xi in —α, x0, . . . , xk—for all i , and similarly

for —α′, c0, . . . , ck—. It follows that

(A & A′) → (—α, c0, . . . , ck— ↔ —α′, c0, . . . , ck—)

is valid, and hence that

A & —α, c0, . . . , ck—(4)

implies

A′ → —α′, c0, . . . , ck—.(5)

We now apply the Craig interpolation lemma. It tells us that there is a sentence

B(c0, . . . , ck) implied by (4) and implying (5), such that the nonlogical symbols of

B are common to (4) and (5). This means that they can include only the ci , which

we have displayed, and the βi . Since (4) implies B(c0, . . . , ck), A and therefore T
implies

—α, c0, . . . , ck— → B(c0, . . . , ck)

and since the ci do not occur in T , this means T implies

∀x0 · · · ∀xk(—α, x0, . . . , xk— → B(x0, . . . , xk)).(6)

Since B(c0, . . . , ck) implies (5), A′ and therefore T ′ implies

B(c0, . . . , ck) → —α′, c0, . . . , ck—

and since the ci do not occur in T ′, this means T ′ implies

∀x0 · · · ∀xk(B(x0, . . . , xk) → —α′, x0, . . . , xk—).

Replacing each symbol γ ′ by γ ′, it follows that T implies

∀x0 · · · ∀xk(B(x0, . . . , xk) → —α, x0, . . . , xk—).(7)

But (6) and (7) together imply, and therefore T implies, the explicit definition

∀x0 · · · ∀xk(—α, x0, . . . , xk— ↔ B(x0, . . . , xk)).

Thus, α is explicitly definable from the βi in T , and Beth’s theorem is proved.

Problems

20.1 (Lyndon’s interpolation theorem) Let A and C be sentences without constants

or function symbols and in negation-normal form. We say that an occurrence of

a predicate in such a sentence is positive if it is not preceded by ∼, and negative

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-20 CB421-Boolos July 27, 2007 16:49 Char Count= 0

PROBLEMS 269

if it is preceded by ∼. Show that if A implies C , and neither ∼A nor C is valid,

then there is another such sentence B such that: (i) A implies B; (ii) B implies

C ; (iii) any predicate occurs positively in B only if it occurs positively in both

A and C , and occurs negatively in B if and only if it occurs negatively in both

A and C .

20.2 Give an example to show that Lyndon’s theorem does not hold if constants are

present.

20.3 (Kant’s theorem on the indefinability of chirality). For points in the plane, we

say y is between x and z if the three points lie on a straight line and y is between

x and z on that line. We say w and x and y and z are equidistant if the distance

from w to x and the distance from y to z are the same. We say x and y and z form

a right-handed triple if no two distances between different pairs of them are the

same, and traversing the shortest side, then the middle side, then the longest side

of the triangle having them as vertices takes one around the triangle clockwise,

as on the right in Figure 20-1.

Figure 20-1. Right and left handed triangles.

Show that right-handedness cannot be defined in terms of betweenness and

equidistance. (More formally, consider the language with a three-place predi-

cate P , a four-place predicate Q, and a three-place predicate R; consider the

interpretation whose domain is the set of the points in the plane and that assigns

betweenness and equidistance and right-handedness as the denotations of P and

Q and R; and finally consider the theory T whose theorems are all the sentences

of the language that come out true under this interpretation. Show that R is not

definable in terms of P and Q in this theory.)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

21

Monadic and Dyadic Logic

We have given in earlier chapters several different proofs of Church’s theorem to the
effect that first-order logic is undecidable: there is no effective procedure that applied
to any first-order sentence will in a finite amount of time tell us whether or not it is
valid. This negative result leaves room on the one hand for contrasting positive results,
and on the other hand for sharper negative results. The most striking of the former is
the Löwenheim–Behmann theorem, to the effect that the logic of monadic (one-place)
predicates is decidable, even when the two-place logical predicate of identity is admitted.
The most striking of the latter is the Church–Herbrand theorem that the logic of a single
dyadic (two-place) predicate is undecidable. These theorems are presented in sections
21.2 and 21.3 after some general discussion of solvable and unsolvable cases of the
decision problem for logic in section 21.1. While the proof of Church’s theorem requires
the use of considerable computability theory (the theory of recursive functions, or of
Turing machines), that is not so for the proof of the Löwenheim–Behmann theorem or for
the proof that Church’s theorem implies the Church–Herbrand theorem. The former uses
only material developed by Chapter 11. The latter uses also the elimination of function
symbols and identity from section 19.4, but nothing more than this. The proofs of these
two results, positive and negative, are independent of each other.

21.1 Solvable and Unsolvable Decision Problems

Let K be some syntactically defined class of first-order sentences. By the decision
problem for K is meant the problem of devising an effective procedure that, applied

to any sentence S in K , will in a finite amount of time tell us whether or not S is

valid. Since S is valid if and only if ∼S is not satisfiable, and S is satisfiable if and

only if ∼S is not valid, for any class K that contains the negation of any sentence it

contains, the decision problem for K is equivalent to the satisfiability problem for K ,

the problem of devising an effective procedure that, applied to any sentence S in K ,

will in a finite amount of time tell us whether or not S is satisfiable, or has a model.

The formulation in terms of satisfiability turns out to be the more convenient for our

purposes in this chapter.

The most basic result in this area is a negative one, Church’s theorem, which asserts

the unsolvability of the satisfiability problem full first-order logic, where K is the class

of all sentences. We have given three different proofs of this result, two in Chapter 11

and another in section 17.1; but none of the machinery from any of these proofs of

270

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

21.1. SOLVABLE AND UNSOLVABLE DECISION PROBLEMS 271

Church’s theorem need be recalled for purposes of this chapter. We are going to prove

sharper results than Church’s theorem, to the effect that the satisfiability problem is

unsolvable for narrower classes K than the class of all first-order sentences; but in

no case will we prove these sharper results by going back to the proof of Church’s

theorem and sharpening the proof. Instead, we are simply going to prove that if the

satisfiability problem for K were solvable, then the satisfiability problem for full

first-order logic would be solvable, as Church’s theorem tells us it is not. And we

are going to prove this simply by showing how one can effectively associate to any

arbitrary sentence a sentence in K that is equivalent to it for satisfiability.

We have in fact already done this in one case in section 19.4, where we showed

how one can effectively associate to any arbitrary sentence a sentence of predicate
logic (that is, one not involving constants or function symbols), and indeed one of

predicate logic without identity, that is equivalent to it for satisfiability. Thus we have

already proved the following slight sharpening of Church’s theorem.

21.1 Lemma. The satisfiability problem for predicate logic without identity is un-

solvable.

Sharper results will be obtained by considering narrower classes of sentences:

dyadic logic, the part of predicate logic without identity where only two-place pred-

icates are allowed; the logic of a triadic predicate, where only a single three-place

predicate is allowed; and finally the logic of a dyadic predicate, where only a single

two-place predicate is allowed. Section 21.3 will be devoted to proving the following

three results.

21.2 Lemma. The satisfiability problem for dyadic logic is unsolvable.

21.3 Lemma. The satisfiability problem for the logic of a triadic predicate is unsolvable.

21.4 Theorem (The Church–Herbrand theorem). The satisfiability problem for the

logic of a dyadic predicate is unsolvable.

Let us now turn to positive results. Call a sentence n-satisfiable if has a model of

some size m ≤ n. Now note three things. First, we know from section 12.2 that if a

sentence comes out true in some interpretation of size m, then it comes out true in

some interpretation whose domain is the set of natural numbers from 1 to m. Second,

for a given finite language, there are only finitely many interpretations whose domain

is the set of natural numbers from 1 to m. Third, for any given one of them we

can effectively determine for any sentence whether or not it comes out true in that

interpretation.

[It is easy to see this last claim holds for quantifier-free sentences: the specification

of the model tells us which atomic sentences are true, and then we can easily work out

whether a given truth-functional compound of them is true. Perhaps the easiest way to

see the claim holds for all sentences is to reduce the general case to the special case of

quantifier-free sentences. To do so, for each 1 ≤ k ≤ m add to the language a constant k

denoting k. To any sentence A of the expanded language we can effectively associate

a quantifier-free sentence A* as follows. If A is atomic, A* is A. If A is a truth-

functional compound, then A* is the same compound of the quantifier-free sentences

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

272 MONADIC AND DYADIC LOGIC

associated with the sentences out of which it is compounded. For instance, (B & C)* is

B* & C*, and analogously for ∨. If A is ∀x F(x), then A* is (F(1)& . . . &F(m))*, and

analogously for ∃. Then A comes out true in the interpretation if and only if A* does.]

Putting our three observations together, we have proved the following.

21.5 Lemma. For each n, the n-satisfiability problem for first-order logic is solvable.

To show that the decision problem for a class K is solvable, it is sufficent to show

how one can effectively calculate for any sentence S in K a number n such that if

S has a model at all, then it has a model of size ≤n. For if this can be shown, then

for K the satisfiability problem is reduced to the n-satisfiability problem. The most

basic positive result that can be proved in this way concerns monadic logic, where

only one-place predicates are allowed.

21.6 Theorem. The decision problem for monadic logic is solvable.

A stronger result concerns monadic logic with identity, where in addition to one-

place predicates, the two-place logical predicate of identity is allowed.

21.7 Theorem. The decision problem for monadic logic with identity is solvable.

These results are immediate from the following lemmas, whose proofs will occupy

section 21.2.

21.8 Lemma. If a sentence involving only monadic predicates is satisfiable, then it has

a model of size no greater than 2k , where k is the number of predicates in the sentence.

21.9 Lemma. If a sentence involving only n monadic predicates and identity is satis-

fiable, then it has a model of size no greater than 2k · r , where k is the number of monadic

predicates and r the number of variables in the sentence.

Before launching into the proofs, some brief historical remarks may be in order.

The first logician, Aristotle, was concerned with arguments such as

All horses are mammals.

All mammals are animals.

Therefore, all horses are animals.

The form of such an argument would in modern notation be represented using one-

place predicates. Later logicians down through George Boole in the middle 19th

century considered more complicated arguments, but still ones involving only one-

place predicates. The existence had been noticed of intuitively valid arguments in-

volving many-place predicates, such as

All horses are animals.

Therefore, all who ride horses ride animals.

But until the later 19th century, and especially the work of Gottlob Frege, logi-

cians did not treat such arguments systematically. The extension of logic beyond the

monadic to the polyadic is indispensable if the forms of arguments used in mathemat-

ical proofs are to be represented, but the ability of contemporary logic to represent

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

21.2. MONADIC LOGIC 273

the forms of such arguments comes at a price, namely, that of the undecidability

of the contemporary notions of validity and satisfiability. For, as the results listed

above make plain, undecidability sets in precisely when two-place predicates are

allowed.

21.2 Monadic Logic

Let us get straight to work.

Proof of Lemma 21.9: Let S be a sentence of monadic logic with identity involving

k one-place predicates (possibly k = 0) and r variables. Let P1, . . . , Pk be predicates

and v1, . . . , vr the variables. Suppose M is a model of S.

For each d in the domain M = |M| let the signature σ (d) of d be the sequence

(j1, . . . , jk) whose i th entry ji is 1 or 0 according as PM
i does or does not hold

of d [if k = 0, then σ (d) is the empty sequence ()]. There are at most 2k possible

signatures. Call e and d similar if they have the same signature. Clearly similarity is

an equivalence relation. There are at most 2k equivalence classes.

Now let N be a subset of M containing all the elements of any equivalence class

that has ≤r elements, and exactly r elements of any equivalence class that has ≥r
elements. Let N be the subinterpretation of M with domain |N | = N . Then N has

size ≤2k · r . To complete the proof, it will suffice to prove that N is a model of S.

Towards this end we introduce an auxiliary notion. Let a1, . . . , as and b1, . . . , bs

be sequences of elements of M . We say they match if for each i and j between 1

and n, ai and bi are similar, and ai = a j if and only if bi = b j . We claim that if

R(u1, . . . , us) is a subformula of S (which implies that s ≤ r and that each of the us

is one of the vs) and a1, . . . , as and b1, . . . , bs are matching sequences of elements

of M , with the bi all belonging to N , then the ai satisfy R in M if and only if the bi

satisfy R in N . To complete the proof it will suffice to prove this claim, since, applied

with s = 0, it tells us that since S is true in M, S is true in N , as desired.

The proof of the claim is by induction on complexity. If R is atomic, it is either of

the form Pj (ui) or of the form ui = u j . In the former case, the claim is true because

matching requires that ai and bi have the same signature, so that PM
j holds of the

one if and only if it holds of the other. In the latter case, the claim is true because

matching requires that ai = a j if and only if bi = b j .

If R is of form ∼Q, then the as satisfy R in M if and only if they do not satisfy

Q, and by the induction hypothesis the as fail to satisfy Q in M if and only if the bs

fail to satisfy Q in N , which is the case if and only if the bs satisfy R in N , and we

are done. Similarly for other truth-functional compounds.

It remains to treat the case of universal quantification (and of existential quantifi-

cation, but that is similar and is left to the reader). So let R (u1, . . . , us) be of form

∀us+1 Q(u1, . . . , us, us+1), where s + 1 ≤ r and each of the us is one of the vs. We

need to show that a1, . . . , as satisfy R in M (which is to say that for any as+1 in

M , the longer sequence of elements a1, . . . , as, as+1 satisfies Q in M) if and only if

b1, . . . , bs satisfy R in N (which is to say that for all bs+1 in N , the longer sequence

of elements b1, . . . , bs, bs+1 satisfies Q in N). We treat the ‘if’ direction and leave

the ‘only if’ direction to the reader.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

274 MONADIC AND DYADIC LOGIC

Our induction hypothesis is that if a1, . . . , as, as+1 and b1, . . . , bs, bs+1 match,

then a1, . . . , as, as+1 satisfy Q in M if and only if b1, . . . , bs, bs+1 satisfy Q in N .

What we want to show is that if b1, . . . , bs, bs+1 satisfy Q in N for all bs+1 in N ,

then a1, . . . , as, as+1 satisfy Q in M for all as+1 in M . Therefore it will be enough

to show that if a1, . . . , as and b1, . . . , bs match, where s < r , then for any as+1 in M
there is a bs+1 in N such that a1, . . . , as, as+1 and b1, . . . , bs, bs+1 match.

In the degenerate case where as+1 is identical with one of the previous ai , we may

simply take bs+1 to be identical with the corresponding bi . In the non-degenerate case,

as+1 belongs to some equivalence class C and is distinct from any and all previous ai

that belong to C . Let the number of such ai be t (where possibly t = 0), so that there

are at least t + 1 elements in C , counting as+1. To ensure matching, it will suffice

to choose bs+1 to be some element of C that is distinct from any and all previous bi

that belong to C . Since a1, . . . , as and b1, . . . , bs match, the number of such bi will

also be t . Since t ≤ s < r , and there are at least t + 1 ≤ r elements in C , there will

be at least that many elements of C in N , and so we can find an appropriate bs+1, to

complete the proof.

21.10 Corollary. If a sentence involving no nonlogical symbols (but only identity) is

satisfiable, then it has a model of size no greater than r , where r is the number of variables

in the sentence.

21.11 Corollary. If a sentence of monadic logic involving only one variable is satis-

fiable, then it has a model of size no greater than 2k , where k is the number of monadic

predicates in the sentence.

Proofs: These are simply the cases k = 0 and r = 1 of Lemma 21.9.

Proof of Lemma 21.7: This is immediate from Corollary 21.11 and the following, which

is a kind of normal form theorem.

21.12 Lemma. Any sentence of monadic logic without identity is logically equivalent

to one with the same predicates and only one variable.

Proof: Call a formula clear if in any subformula ∀x B(x) or ∃x B(x) that begins

with a quantifier, no variable other than the variable x attached to the quantifier

appears in F . Thus ∀x∃y(Fx & Gy) is not clear, but ∀x Fx & ∃ yGy is clear. To prove

the lemma, we show how one can inductively associate to any formula A of monadic

logic without identity an equivalent formula A© with the same predicates that is clear

(as in our example the first formula is equivalent to the second). We then note that any

clear sentence is equivalent to the result of rewriting all its variables to be the same (as

in our example the second sentence is equivalent to ∀zFz & ∃zGz). The presence of

identity would make such clearing impossible. (There is no clear sentence equivalent

to ∀x∃y x �= y, for instance.)

To an atomic formula we associate itself. To a truth-functional compound of for-

mulas to which clear equivalents have been associated, we associate the same truth-

functional compound of those equivalents. Thus (B ∨ C)© is B© ∨ C©, for instance,

and analogously for &. The only problem is how to define the associate (∃x B(x))©

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

21.3. DYADIC LOGIC 275

to a quantified formula ∃x B(x) in terms of the associate (B(x))© of the subformula

B(x), and analogously for ∀.

∃xB(x) will of course be equivalent to ∃x(B(x))©. And (B(x))© will be a truth-

functional compound of clear formulas A1, . . . , An , each of which either is atomic or

begins with a quantifier. Consider a formula equivalent to (B(x))© that is in disjunctive

normal form in the Ai . It will be a disjunction B1 ∨ · · · ∨ Br of formulas B j , each of

which is a conjunction of some of the Ai and their negations. We may assume each

B j has the form

C j,1 & . . . & C j,r & D j,1 & . . . & D j,s

where the Cs are the conjuncts in which the variable x does occur and the Ds those in

which it does not; by clarity, the Ds will include all conjuncts that begin with or are

the negations of formulas beginning with quantifiers, and the Cs will all be atomic.

Then as ∃x(B(x))© we may take the disjunction B ′
1 ∨ · · · ∨ B ′

r , where B ′
j is

∃x(C j,1 & · · · & C j,r) & D j,1 & . . . & D j,s .

(In the degenerate case where r = 0, B ′
j is thus the same as B j .)

21.3 Dyadic Logic

Again we go straight to work.

Proof of Lemma 21.2: Lemma 21.1 tells us the satisfiability problem is unsolvable

for predicate logic, and we want to show it is unsolvable for dyadic logic. It will be

enough to show how one can effectively associate to any sentence of predicate logic a

sentence of dyadic logic such that the former will be satisfiable if and only if the latter

is. What we are going to do is to show how to eliminate one three-place predicate

(at the cost of introducing new two- and one-place predicates). The same method

will work for k-place predicates for any k ≥ 3, and applying it over and over we

can eliminate all but two- and one-place predicates. The one-place ones can also be

eliminated one at a time, since given a sentence S containing a one-place predicate

P , introducing a new two-place predicate P* and replacing each atomic subformula

Px by P*xx clearly produces a sentence S* that is satisfiable if and only if S is. Thus

we can eliminate all but two-place predicates.

To indicate the method for eliminating a three-place predicate, let S be a sentence

containing such a predicate P . Let P* be a new one-place predicate, and Qi for

i = 1, 2, 3 a trio of new two-place predicates. Let w be a variable not appearing in

S, and let S* be the result of replacing each atomic subformula of form Px1x2x3

in S by

∃w(Q1wx1 & Q2wx2 & Q3wx3 & P∗w).

We claim S is satisfiable if and only if S* is satisfiable. The ‘if’ direction is easy.

For if S is unsatisfiable, then ∼S is valid, and substitution (of a formula with the

appropriate free variables for a predicate) preserves validity, so ∼S* is valid, and S*

is unsatisfiable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

276 MONADIC AND DYADIC LOGIC

For the ‘only if’ direction, suppose S has a model M. By the canonical domains

theorem (Corollary 12.18) we may take the domain ofMbe the set of natural numbers.

We want to show that S* has a model M*. We will take M* to have domain the

set of natural numbers, and to assign to every predicate in S other than P the same

denotation that M assigns. It will suffice to show that we can assign denotations to

P* and the Qi in such a way that natural numbers a1, a2, a3 will satisfy ∃w(Q1wx1 &

Q2wx2 & Q3wx3 & P∗w) inM* if and only if they satisfy Px1x2x3 inM. To achieve

this, fix a function f from the natural numbers onto the set of all triples of natural

numbers. It then suffices to take as the denotation of P* in M* the relation that holds

of a number b if and only if f (b) is a triple a1, a2, a3 for which the relation that is the

denotation of P in M holds, and to take as the denotation of Qi in M* the relation

that holds of b and a if and only if a is the i th component of the triple f (b).

Proof of Lemma 21.3: We want next to show that we can eliminate any number

of two-place predicates P1, . . . , Pk in favour of a single three-place predicate Q. So

given a sentence S containing the Pi , let u1, . . . , uk be variables not occurring in S,

and let S* be the result of replacing each atomic subformula of form Pi x1x2 in S by

Qvi x1x2, and let S† be the result of prefixing S* by ∃v1 · · · ∃vk . For instance, if S is

∀x∃y(P2 yx & ∀z(P1xz & P3zy))

then S† will be

∃v1∃v2∃v3∀x∃y(Qv2 yx & ∀z(Qv1xz & Qv3zy)).

We claim S is satisfiable if and only if S† is satisfiable. As in the preceding proof,

the ‘if’ direction is easy, using the fact that substitution preserves validity. (More

explicitly, if there is a model M† of S†, some elements a1, . . . , ak of its domain

satisfy the formula S*. We can now get a model M of S by taking the same domain,

and assigning as denotation to Pi in M the relation that holds between b1 and b2

if and only if the relation that is the denotation of Q in M† holds among ai and b1

and b2.)

For the ‘only if’ direction, suppose M is a model of S. As in the preceding proof,

we may take the domain of M to be the set of natural numbers, using the canonical

domains theorem. We can now get a model M† of S†, also with domain the natural

numbers, by taking as the denotation of Q inM† the relation that holds among natural

numbers a and b1 and b2 if and only if 1 ≤ a ≤ k, and as the denotation of Pa in M
the relation that holds between b1 and b2. From the fact that M is a model of S, it

follows that 1, . . . , k satisfy S* in M†, and hence S† is true in M†.

Proof of Theorem 21.4: We want next to show that we can eliminate a single three-

place predicate P in favour of a single two-place predicate Q. So given a sentence

S containing the P , let u1, u2, u3, u4 be variables not occurring in S, and let S* be

the result of replacing each atomic subformula of form Pi x1x2x3 in S by a certain

formula P∗(x1, x2, x3), namely

∃u1∃u2∃u3∃u4 (∼Qu1u1 & Qu1u2 & Qu2u3 & Qu3u4

& Qu4u1 & Qu1x1 & Qu2x2 & Qu3x3 & ∼Qx1u2 & ∼Qx2u3 & ∼Qx3u4 & Qu4x1).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

21.3. DYADIC LOGIC 277

We then claim S is satisfiable if and only if S* is satisfiable. As in the preceding

proofs, the ‘if’ direction is easy, and for the ‘only if’ direction what we need to do

is to show, given a model M of S, which may be taken to have domain the natural

numbers, that we can define an interpretation M*, also with domain the natural

numbers, which will assign as denotation to Q in M* a relation such that for any

natural numbers b1, b2, b3, those numbers will satisfy P∗(x1, x2, x3) in M* if and

only if those numbers satisfy P(x1, x2, x3) in M. To accomplish this last and so

complete the proof, it will be enough to establish the following lemma.

21.13 Lemma. Let R be a three-place relation on the natural numbers. Then there is

a two-place relation S on the natural numbers such that if a, b, c are any natural numbers,

then we have Rabc if and only if for some natural numbers w, x, y, z we have

∼Sww & Swx & Sxy & Syz & Szw &

Swa & Sxb & Syc & ∼Sax & ∼Sby & ∼Scz & Sza.
(1)

Proof: One of the several ways of enumerating all triples of natural numbers is to

order them by their sums, and where these are the same by their first components,

and where these also are the same by their second components, and where these also

are the same by their third components. Thus the first few triples are

(0, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

(0, 0, 2)

(0, 1, 1)

(0, 2, 0)

(1, 0, 1)

(1, 1, 0)

(2, 0, 0)

(0, 0, 3)
...

·
Counting the initial triple as the first rather than the zeroth, it is clear that if the nth

triple is (a, b, c), then a, b, c are all <n. It follows that if w, x, y, and z are respectively

4n + 1, 4n + 2, 4n + 3, and 4n + 4, then a, b, c are all less than w − 4, x − 4, y − 4,

and z − 4. (For instance, a < n implies a + 1 ≤ n, which implies 4a + 4 ≤ 4n <

4n + 1.)

Now to define S. If the nth triple is (a, b, c), we let Svu hold in each of the following

four cases:

v = 4n + 1 and (u = 4n + 2 or u = a)

v = 4n + 2 and (u = 4n + 2 or u = 4n + 3 or u = b)

v = 4n + 3 and (u = 4n + 3 or u = 4n + 4 or u = c)

v = 4n + 4 and (u = 4n + 4 or u = 4n + 1 or (u = a and Rabc)).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-21 CB421-Boolos July 27, 2007 17:23 Char Count= 0

278 MONADIC AND DYADIC LOGIC

Svu is not to hold in any other cases. Note that

if Svu, then v + 1 ≥ u(2)

there is at most one u < v − 4 such that Svu.(3)

We must now show that Rabc holds if and only if there are w, x, y, z such that

(1) above holds. The ‘only if’ direction is immediate: if Rabc, take w, x, y, z to

be 4n + 1, 4n + 2, 4n + 3, 4n + 4, where (a, b, c) is the nth triple, and (1) will hold.

[∼Sax holds because a < x − 4 holds, so a + 1 ≥ x fails, so Sax fails by (2); similarly

for the other negations in (1).]

Now suppose (1) holds for some w, x, y, z. We must show that Rabc. To begin

with, (1) gives us ∼Sww, so w must be of the form 4n + 1 for some n ≥ 1.

Also, (1) gives us Swx , Sxy, Syz, Szw. Therefore, by (2), x + 3 ≥ y + 2 ≥
z + 1 ≥ w, whence x ≥ w − 3. Similarly, y ≥ x − 3 and z ≥ y − 3. So neither x <

w − 4 nor y < x − 4 nor z < y − 4. Since Swx holds while x < w − 4 fails, we

must have x = w + 1 = 4n + 2.

Also, since Sxy holds while y < x − 4 fails, either y = x or y = x + 1. Similarly,

either z = y or z = y + 1. But if either y = x or z = y, then z = w + 1 = 4n + 2 or

z = w + 2 = 4n + 3. But this is impossible, since Svu never holds for u = 4m + 1

and v = 4n + 2 or 4n + 3, whereas we have Szw. It follows that y = x + 1 = 4n + 3

and z = y + 1 = 4n + 4.

If we can show that the nth triple is (a, b, c), then we can conclude that Rabc: for

if (a, b, c) is the nth triple, then Sza if and only if Rabc, and (1) gives Sza.

We have Swa, Swb, Syc and ∼Sax, ∼Sby, ∼Scz from (1). And since we know

w = 4n + 1, x = 4n + 2, y = 4n + 3, z = 4n + 4, we also have Sxx, Sxy, Syy, Syz,

and Szz from the definition of S. So a �= x, b �= x, b �= y, c �= y, and c �= z. So we

have Swa and a < w − 4, Sxb and b < x − 4, and Syc and c < y − 4. If the nth triple

is (r, s, t), then we also have Swr , Sxs, Syt and r < w − 4, s < x − 4, t < y − 4. So

by (3) above we must have r = a, s = b, and t = c. So (a, b, c) is the nth triple, and

the proof is complete.

Problems

21.1 Prove Lemma 21.8 directly, without deriving it from Lemma 21.9.

21.2 Show that the estimates 2k and 2k · r in Lemmas 21.8 and 21.9 cannot be

improved.

21.3 What happens if constants are added to monadic logic with identity?

21.4 The language of set theory has a single nonlogical symbol and two-place pre-

dicate ∈. ZFC is a certain theory in this language, of which it was asserted

towards the end of section 17.1 that it is ‘adequate for formalizing essen-

tially all accepted mathematical proofs’. What is the bearing of this fact on

Theorem 21.4?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-22 CB421-Boolos July 27, 2007 16:50 Char Count= 0

22

Second-Order Logic

Suppose that, in addition to allowing quantifications over the elements of a domain,
as in ordinary first-order logic, we allow also quantification over relations and functions
on the domain. The result is called second-order logic. Almost all the major theorems
we have established for first-order logic fail spectacularly for second-order logic, as
is shown in the present short chapter. This chapter and those to follow generally
presuppose the material in section 17.1. (They are also generally independent of each
other, and the results of the present chapter will not be presupposed by later ones.)

Let us begin by recalling some of the major results we have established for first-order

logic.

The compactness theorem: If every finite subset of a set of sentences has a model,

the whole set has a model.

The (downward) Löwenheim–Skolem theorem: If a set of sentences has a model,

it has an enumerable model.

The upward Löwenheim–Skolem theorem: If a set of sentences has an infinite

model, it has a nonenumerable model.

The (abstract) Gödel completeness theorem: The set of valid sentences is semire-

cursive.

All of these results fail for second-order logic, which involves an extended notion

of sentence, with a corresponding extension of the notion of truth of a sentence in

an interpretation. In introducing these extended notions, we stress at the outset that

we change neither the definition of language nor the definition of interpretation:

a language is still an enumerable set of nonlogical symbols, and an interpretation

of a language is still a domain together with an assignment of a denotation to each

nonlogical symbol in the language. The only changes will be that we add some new

clauses to the definition of what it is to be a sentence of a language, and correspond-

ingly some new clauses to the definition of what it is for a sentence of a language to

be true in an interpretation.

What is a second-order sentence? Let us refer to what we have been calling ‘vari-

ables’ as individual variables. We now introduce some new kinds of variable: relation
variables and function variables. Just as we have one-, two-, three-, and more-place

predicates or relation symbols and function symbols, we have one-, two-, three-, and

more-place relation variables and function variables. (Since one-place relations are

279

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-22 CB421-Boolos July 27, 2007 16:50 Char Count= 0

280 SECOND-ORDER LOGIC

just sets, one-place relation variables may be called set variables.) We suppose that

no symbol of any sort is also a symbol of any other sort. We extend the definition of

formula by allowing relation or function variables to occur in those positions in formu-

las where previously only relation symbols (a.k.a. predicates) or function symbols

(respectively!) could occur, and also by allowing the new kinds of variable to oc-

cur after ∀ and ∃ in quantifications. Free and bound occurrences are defined for

the new kinds of variable exactly as they were for defined for individual variables.

Sentences, as always, are formulas in which no variables (individual, relation, or

function) occur free. A second-order formula, then, is a formula that contains at least

one occurrence of a relation or function variable, and a second-order sentence is a

second-order formula that is a sentence. A formula or sentence of a language, whether

first- or second-order, is, as before, one whose nonlogical symbols all belong to the

language.

22.1 Example (Second-order sentences). (In the following examples we use u as a one-

place function variable, and X as a one-place relation variable.)

In first-order logic we could identify a particular function as the identity function:

∀x f (x) = x . But in second-order logic we can assert the existence of the identity func-

tion: ∃u ∀x u(x) = x .

Similarly, where in first-order logic we could assert that two particular indviduals share

a property (Pc & Pd), in second-order logic we can assert that every two individuals share

some property or other: ∀x∀y∃X (Xx & Xy).

Finally, in first-order logic we can assert that if two particular individuals are identical,

then they must either both have or both lack a particular property: c = d → (Pc ↔ Pd).

But in second-order logic we can define identity through Leibniz’s law of the identity of
indiscernibles: c = d ↔ ∀X (Xc ↔ Xd).

Each of the three second-order sentences above is valid: true in each of its interpretations.

When is a second-order sentence S true in an interpretation M? We answer this

question by adding four more clauses (for universal and existential quantifications

involving relation and function variables) to the definition of truth in an interpreta-

tion given in section 9.3. For a universal quantification ∀XF(X) involving a relation

variable, the clause reads as follows. First we define what it is for a relation R
(of the appropriate number of places) on the domain of M to satisfy F(X): R does

so if, on expanding the language by adding a new relation symbol P (of the appro-

priate number of places) to the language, and expanding the interpretation M to an

interpretation MP
R of the expanded language by taking R as the denotation of P , the

sentence F(P) becomes true. Then we define ∀XF(X) to be true in M if and only if

every relation R (of the appropriate number of places) on the domain of M satisfies

F(X). The clauses for existential quantifications and for function symbols are simi-

lar. The definitions of validity, satisfiability, and implication are also unchanged for

second-order sentences. Any sentence, first- or second-order, is valid if and only if

true in all its interpretations, and satisfiable if and only if true in at least one of them.

A set � of sentences implies a sentence D if and only if there is no interpretation in

which all the sentences in � are true but D false.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-22 CB421-Boolos July 27, 2007 16:50 Char Count= 0

SECOND-ORDER LOGIC 281

(The foregoing gives the standard notion of interpretation and truth for second-

order logic. In the literature nonstandard notions, euphemistically called ‘general’,

are sometimes considered, where an interpretation has separate domains of individ-

uals and of relations and functions. These will not be considered here.)

22.2 Example (The definition of identity). The Leibniz definition of identity in Example

22.1 is unnecessarily complicated, since the following simpler Whitehead–Russell definition

will do:

c = d ↔ ∀X (Xc → Xd)

We don’t need a biconditional on the right!

Proof: ∼Pc ∨ Pd or Pc → Pd is true in an interpretation just in case the set P
denotes either fails to contain the individual c denotes or contains the one d denotes.

Hence a set R satisfies Xc → Xd just in case it either fails to contain the individual c
denotes or contains the one d denotes. Hence ∀X (Xc → Xd) is true just in case every

set either fails to contain the individual c denotes or contains the one d denotes. If c
and d denote the same individual, this must be so for every set, while if c and d do not

denote the same individual, then it will fail to be so for the set whose one and only

element is the individual c denotes. Thus ∀X (Xc → Xd) is true just in case c and d
denote the same individual, which is to say, if and only if c = d is true. (Intuitively,

the Whitehead–Russell definition is valid because among the properties of a is the

property of being identical with a; hence if the individual b is to have all the properties

of a, it must in particular have the property of being identical with a.)

22.3 Example (The ‘axiom’ of enumerability). Let Enum be the sentence

∃z∃u∀X ((Xz & ∀x(X x → Xu(x))) → ∀x X x).

Then Enum is true in an interpretation if and only if its domain is enumerable.

Proof: First suppose Enum is true in an interpretation M. This means there exists

an individual a in |M| and a one-place function f on |M| that satisfy

∀X ((Xz & ∀x(X x → Xu(x))) → ∀x X x).

Thus, if we add a constant 0 and let it denote a, and a one-place function symbol ′

and let it denote f , then

∀X ((X0 & ∀x(X x → X x ′)) → ∀x X x)

is true. This means every subset A of |M| satisfies

(X0 & ∀x(X x → X x ′)) → ∀x X x .

In particular this is so for the enumerable subset A of |M| whose elements are all and

only a, f (a), f (f (a)), f (f (f (a))), and so on. Thus if we add a one-place predicate

N and let it denote A, then

(N0 & ∀x(Nx → Nx ′)) → ∀xNx

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-22 CB421-Boolos July 27, 2007 16:50 Char Count= 0

282 SECOND-ORDER LOGIC

is true. But N0 is true, since the individual a that is the denotation of 0 is in the set

A that is the denotation of N, and ∀x(Nx → Nx ′) is true, since if any individual is in

A, so is the value obtained when the function f that is the denotation of ′ is applied

to that individual as argument. Hence ∀xNx must be true, and this means that every
individual in the domain is in A, so the domain, being just A, is enumerable.

Conversely, suppose that the domain of an interpretation M is enumerable. Fix

an enumeration of its elements: m0, m1, m2, and so on. Let a be m0, and let f be the

function that given mi as argument yields mi+1 as value, and add a constant 0 and a

one-place function symbol ′ to denote a and f . Given any subset A of the domain,

suppose we add a one-place predicate N to denote A. Then if N0 is true, a = m0

must belong to A, and if ∀x(Nx → Nx ′) is true, then whenever mi belongs to A,

f (mi) = mi+1 must belong to A. So if both are true, every element m0, m1, m2, . . .

of the domain must belong to A, and therefore ∀xNx is true. Thus

(N0 & ∀x(Nx → Nx ′)) → ∀xNx

is true if N is taken to denote A, and therefore A satisfies

(X0 & ∀x(X x → X x ′)) → ∀x X x

and since this is true for any A,

∀X ((X0 & ∀x(X x → X x ′)) → ∀x X x)

is true, and therefore

∃z∃u∀X ((Xz & ∀x(X x → Xu(x))) → ∀x X x)

or Enum is true in M.

22.4 Example (The ‘axiom’ of infinity). Let Inf be the sentence

∃z∃u(∀xz �= u(x) & ∀x∀y(u(x) = u(y) → x = y)).

Then Inf is true in an interpretation if and only if its domain is infinite. The proof is left to

the reader.

22.5 Proposition. The downward and upward Löwenheim–Skolem theorems both fail

for second-order logic.

Proof: Inf & ∼Enum and Inf & Enum are both second-order sentences having

infinite but no finite models. The former has only nonenumerable models, contrary

to the downward Löwenheim–Skolem theorem; the latter only denumerable models,

contrary to the upward Löwenheim–Skolem theorem.

It is an immediate consequence of the downward and upward Löwenheim–Skolem

theorems that if a first-order sentence or set of such sentences has an infinite model,

then it has nonisomorphic infinite models. Even this corollary of the Löwenheim–

Skolem theorems fails for second-order logic, as the next example shows.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-22 CB421-Boolos July 27, 2007 16:50 Char Count= 0

SECOND-ORDER LOGIC 283

22.6 Example (Second-order arithmetic). Let PII be the conjunction of the axioms of Q

(as in section 16.2) with the following sentence Ind, called the axiom of induction:

∀X ((X0 & ∀x(X x → X x ′)) → ∀x X x).

Then an interpretation of the language of arithmetic is a model of PII if and only if it is

isomorphic to the standard interpretation.

Proof: We have already in effect seen in the proof of Example 22.3 that in any

model of Ind, the domain will consist precisely of the denotations of the terms

0, 0′, 0′′, . . . , which is to say, of the numerals 0, 1, 2, . . . , as we usually abbrevi-

ate those terms. We have also seen in section 16.2 that in any model of the axioms

of Q, all the following will be true for natural numbers m, n, and p:

m �= n if m �= n
m< n if m < n

∼m< n if m ≥ n
m + n = p if m + n = p
m + n �= p if m + n �= p
m · n = p if m · n = p
m · n �= p if m · n �= p.

Now let M be a model of PII. Every element of |M| is the denotation of at least

one m, because M is a model of Ind, and of at most one m, because M is a model

of the axioms of Q and therefore of m �= n whenever m �= n, by the first fact on the

list above. We can therefore define a function j from |M| to the natural numbers by

letting the value of j for the argument that is the denotation of m by m. By the other

six facts on the list above, j will be an isomorphism between M and the standard

interpretation.

Conversely, PII is easily seen to be true in the standard interpretation, and the proof

of the isomorphism theorem (Proposition 12.5) goes through essentially unchanged

for second-order logic, so any interpretation isomorphic to the standard interpretation

will also be an model of PII.

22.7 Proposition. The compactness theorem fails for second-order logic.

Proof: As in the construction of a nonstandard model of first-order arithmetic, add

a constant c to the language of arithmetic and consider the set

� = {PII, c �= 0, c �= 1, c �= 2, . . . }.
Every finite subset �0 has a model obtained by expanding the standard interpretation

to assign a suitable denotation to c—any number bigger than all those mentioned in

�0 will do. But � itself does not, because in any model of PII every element is the

denotation of one of the terms 0, 1, 2, and so on.

22.8 Proposition. The (abstract) Gödel completeness theorem fails for second-order

logic: The set of valid sentences of second-order logic is not semirecursive (or even arith-

metical).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-22 CB421-Boolos July 27, 2007 16:50 Char Count= 0

284 SECOND-ORDER LOGIC

Proof: A first-order sentence A of the language of arithmetic is true in the standard

interpretation if and only if it is true in all interpretations isomorphic to the standard

one, and hence by the preceding example if and only if it is true in all models of

PII, or equivalently, if and only if PII → A is valid. The function taking (the code

number of) a first-order sentence A to (the code number of) the second-order sentence

PII → A is clearly recursive. (Compare the proof of Theorem 17.6.) Hence if the set of

(code numbers of) valid second-order sentences were semirecursive, the set of (code

numbers of) sentences of the language of arithmetic true in the standard interpretation

would be also. But the latter set is not arithmetical (by Theorem 17.3) and a fortiori
not semirecursive.

Proposition 22.8 is sometimes formulated as follows: ‘Second-order logic is

incomplete’. A more accurate formulation would be: ‘No sound proof procedure

for second-order logic is complete’. (After all, it’s not the logic that’s incomplete, but

candidate proof procedures.)

We conclude this chapter with a preview of the next. Recall that a set S of natural

numbers is arithmetically definable, or simply arithmetical, if there is a first-order

formula F(x) of the language of arithmetic such that S consists of just those m for

which F(m) is true in the standard interpretation, or equivalently, just those m that

satisfy F(x) in the standard interpretation. A set S of natural numbers is analytically
definable or analytical if there is a first- or second-order formula φ(x) of the language

of arithmetic such that S consists of just those m that satisfy φ(x) in the standard

interpretation. Let us, for the space of this discussion, use the word class for sets of sets

of natural numbers. Then a class � of sets of natural numbers is arithmetical if there

is a second-order formula F(X) with no bound relation or function variables such that

� consists of just those sets M that satisfy F(X) in the standard intepretation. A class

� of sets of natural numbers is analytical if there is a second-order formula φ(X) such

that � consists of just those sets M that satisfy φ(X) in the standard interpretation.

We have seen that recursive and semirecursive sets are arithmetical, but that the set of

(code numbers of) first-order sentences of the language of arithmetic that are true in

the standard interpretation is not arithmetical. It can similarly be shown that the set of

first- and second-order sentences true in the standard interpretation is not analytical.

However, the set V of (code numbers of) first-order sentences true in the standard

interpretation is analytical. This follows from the fact, to be proved in the next chapter,

that the class {V } of sets of natural numbers whose one and only member is the set

V is arithmetical. The latter result means that there is a second-order formula F(X)

with no bound relation or function variables such that V is the one and only set that

satisfies F(X) in the standard interpretation. From this it follows that V is precisely

the set of m that satisfy ∃X (F(X) & X x); and this shows that, as asserted, V is

analytical. It will also be shown that the class of arithmetical sets of natural numbers

is not arithmetical. (Again, this class can be shown to be analytical.) In order to keep

the next chapter self-contained and independent of this one, a different definition of

arithmetical class will be given there, not presupposing familiarity with second-order

logic. However, the reader who is familiar with second-order logic should have no

difficulty recognizing that this definition is equivalent to the one given here.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-22 CB421-Boolos July 27, 2007 16:50 Char Count= 0

PROBLEMS 285

Problems

22.1 Does it follow from the fact that ∃xFx & ∃x∼Fx is satisfiable that ∃X (∃xXx &

∃x∼Xx) is valid?

22.2 Let us write R∗ab to abbreviate

∀X [Xa & ∀x∀y((X x & Rxy) → X y) → Xb].

Show that the following are valid:

(a) R∗aa
(b) Rab → R∗ab
(c) (R∗ab & R∗bc) → R∗ac
Suppose Rab if and only if a is a child of b. Under what conditions do we have

R∗ab?

22.3 (A theorem of Frege) Show that (a) and (b) imply (c):

(a) ∀x∀y∀z[(Rxy & Rxz) → y = z]

(b) ∃x(R∗xa & R∗xb)

(c) (R∗ab ∨ a = b ∨ R∗ba).

22.4 Write ♦(R) to abbreviate

∀x∀y(∃w(Rwx & Rwy) → ∃z(Rxz & Ryz)).

Show that ♦(R) → ♦(R*) is valid.

22.5 (The principle of Russell’s paradox) Show that ∃X∼∃y∀x(X x ↔ Rxy) is

valid.

22.6 (A problem of Henkin) Let Q1 and Q2 be as in section 16.2, and let I be the

induction axiom of Example 22.6. Which of the eight combinations

{(∼)Q1, (∼)Q2, (∼)I }, where on each of the three sentences the negation

sign may be present or absent, are satisfiable?

22.7 Show that the set of (code numbers of) second-order sentences true in the

standard model of arithmetic is not analytical.

22.8 Show that PII is not logically equivalent to any first-order sentence.

22.9 Show that for any first- or second-order sentence A of the language of arith-

metic, either PII & A is equivalent to PII, or PII & A is equivalent to 0 �= 0.

22.10 Show that the set of (code numbers of) second-order sentences that are equiv-

alent to first-order sentences is not analytical.

22.11 Prove the Craig interpolation theorem for second-order logic.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

23

Arithmetical Definability

Tarski’s theorem tells us that the set V of (code numbers of) first-order sentences of the
language in arithmetic that are true in the standard interpretation is not arithmetically
definable. In section 23.1 we show that this negative result is poised, so to speak, between
two positive results. One is that for each n the set Vn of sentences of the language of
arithmetic of degree of complexity n that are true in the standard interpretation is
arithmetically definable (in a sense of degree of complexity to be made precise). The
other is that the class {V} of sets of natural numbers whose one and only member is V
is arithmetically definable (in a sense of arithmetical definability for classes to be made
precise). In section 23.2 we take up the question whether the class of arithmetically
definable sets of numbers is an arithmetically definable class of sets. The answer is
negative, according to Addison’s theorem. This result is perhaps most interesting on
account of its method of proof, which is a comparatively simple application of the method
of forcing originally devised to prove the independence of the continuum hypothesis in
set theory (as alluded to in the historical notes to Chapter 18).

23.1 Arithmetical Definability and Truth

Throughout this chapter we use L and N for the language of arithmetic and its

standard interpretation (previously called L* and N*), and V for the set of code

numbers of first-order sentences of L ture in N . It will be convenient to work with

a version of logic in which the only operators are ∼ and ∨ and ∃ (& and ∀ being

treated as unofficial abbreviations). We measure the ‘complexity’ of a sentence by

the number of occurrences of logical operators ∼ and ∨ and ∃ in it. (Our results

do, however, go through for other reasonable notions of measures of complexity: see

the problems at the end of the chapter). By Vn we mean the set of code numbers of

first-order sentences of L of complexity ≤n that are true in N .

We are going to be discussing natural numbers, sets of natural numbers, and sets

of sets of natural numbers. To keep the levels straight, we generally use numbers for

the natural numbers, sets for the sets of natural numbers, and classes for the sets of

sets of natural numbers. We write Lc for the expansion of L by adding a constant c,

and N c
a for the expansion of N that assigns c as denotation the number a. Then a

set S of numbers is arithmetically definable if and only if there is a sentence F(c) of

Lc such that S is precisely the set of a for which F(c) is true in N c
a . Analogously,

we write LG for the expansion of L by adding a one-place predicate G, and N G
A for

286

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

23.1. ARITHMETICAL DEFINABILITY AND TRUTH 287

the expansion of N that assigns G as denotation the set A. And we say a class � of

sets of numbers is arithmetically definable if and only if there is a sentence F(G) of

LG such that � is precisely the set of A for which F(G) is true in N G
A .

The following two results contrast with Tarski’s theorem to the effect that V is not

arithmetically definable.

23.1 Theorem. For each n, Vn is arithmetically definable.

23.2 Theorem. The class {V } whose one and only member is V is arithmetically

definable.

This entire section will be devoted to the proofs. We are going to need certain facts

about recursiveness (or the ‘arithmetization of syntax’):

(1) The set S of code numbers of the sentences of L is recursive.

(2) For each n, the set Sn of code numbers of sentences of L with no more than n
occurrences of logical operators is recursive.

(3) There exists a recursive function ν such that if B is a sentence of L with code

number b, then ν(b) is the code number of ∼B.

(4) There exists a recursive function δ such that if B and C are sentences of L with

code numbers b and c, then δ(b, c) is the code number of (B ∨ C).

(5) There exists a recursive function η such that if v is a variable with code numbers q
and F(v) is a formula with code number p, then η(p, q) is the code number of

∃v F(v).

(6) There exists a recursive function σ such that if v, F(v), q, p are as in (5), then for

any m, σ (p, q, m) is the code number of F(m).

(7) The set V0 of atomic sentences of L that are true in N is recursive.

[We may suppose that ν, δ, η, σ take the value 0 for inappropriate arguments; for

instance, if b is not the code number for a sentence, then ν(b) = 0.]

In every case, intuitively it is more or less clear that the set or function in question is

effectively decidable or computable, so according to Church’s thesis they should all be

recursive. Proofs not depending on appeal to Church’s thesis have been given for (1)

and (3)–(6) in Chapter 15; and the proof for (2) is very similar and could easily have

been included there as well (or placed among the problems at the end of that chapter).

As for (7), perhaps the simplest proof is to note that V0 consists of the elements

of the recursive set S0 that are theorems of Q, and equivalently whose negations

are not theorems of Q (since Q proves all true atomic sentences and disproves all

false ones). But we know from Chapter 15 that the set of theorems of Q or any

axiomatizable theory is a semirecursive set, and the set of sentences whose negations

are not theorems is the complement of a semirecursive set. It follows that V0 is both

a semirecursive set and the complement of one, and is therefore recursive.

The sets above all being recursive, they are definable in arithmetic and indeed in

Q, and the functions are representable. Let S(x), S0(x), S1(x), S2(x), . . . , Nu(x, y),

Delta(x, y, z), Eta(x, y, z), Sigma(x, y, z, w), and V 0(x) be defining or representing

formulas for S, S0, S1, S2, . . . , ν, δ, η, σ , and V0. This machinery will be used in the

proofs of both theorems.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

288 ARITHMETICAL DEFINABILITY

Proof of Theorem 23.1: A sentence A that contains n + 1 logical operators is

either the negation ∼B of a sentence B containing n operators, or the disjunction

B ∨ C of two sentences B and C each containing at most n operators, or else an

existential quantification ∃v F(v) of a formula F(v) containing n operators. In the last

case, for each m, the sentence F(m) also contains n operators. In the first case A will

be true if and only if B is not true. In the second case, A will be true if and only if B
is true or C is true. In the third case, A will be true if and only if, for some m, F(m)

is true.

In terms of Vn , we can therefore characterize Vn+1 as the set of those numbers a
in Sn+1 such that either k is in Vn; or for some b, a = ν(b) and b is not in Vn; or for

some b and c, a = δ(b, c) and either b is in Vn or c is in Vn; or finally, for some p
and q, a = η(p, q), and for some m, σ (p, q, m) is in Vn . So if V n(x) arithmetically

defines Vn , the following formula V n+1(x) arithmetically defines Vn+1:

Sn+1(x) & {V n(x) ∨ ∃y[Nu(y, x) & ∼V n(y)]

∨ ∃y∃z[Delta(y, z, x) & (V n(y) ∨ V n(z))]

∨ ∃y∃z[Eta(y, z, x) & ∃u∃w(Sigma(y, z, u, w) & V n(w))]}.

Since we know V0 is arithmetically definable, it follows by induction that Vn is

arithmetically definable for all n.

Proof of Theorem 23.2: The set of sentences true in N can be characterized as

the unique set � such that:

� contains only sentences of L .

For any atomic sentence A, A is in � if and only if A is a true atomic sentence.

For any sentence B, ∼B is in � if and only if B is not in �.

For any sentences B and C, (B ∨ C) is in � if and only if B is in � or C is in �.

For any variable v and formula F(v), ∃v F(v) is in � if and only if, for some m,

F(m)is in �.

The set V of code numbers of sentences true in N can therefore be characterized

as the unique set M such that:

For all b, if b is in M, then b is in S.

For all a, if a is in S0, then a is in M if and only if a is in V0.

For all b, if ν(b) is in S, then ν(b) is in M if and only if b is not in M.

For all b and c, if δ(b, c) is in S, then δ(b, c) is in M if and only if either b is in

M or c is in M.

For all p and q , if η(p, q) is in S, then η(p, q) is in M if and only if, for some

m, σ (p, q, m) is in M .

So on expanding L be adding the one-place predicate G, if we let F(G) be the

conjunction

∀x(Gx → S(x)) &

∀x(S0(x) → (Gx ↔ V 0(x))) &

∀x∀y((Nu(x, y) & S(y)) → (Gy ↔ ∼Gx)) &

∀x∀y∀z((Delta(x, y, x) & S(z)) → (Gz ↔ (Gx ∨ Gy))) &

∀x∀y∀z((Eta(x, y, z) & S(z)) → (Gz ↔ ∃u∃w(Sigma(x, y, u, w) & Gw)))

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

23.2. ARITHMETICAL DEFINABILITY AND FORCING 289

then the only way to expand N to get a model of F(G) is to take V as the denotation

of G.

23.2 Arithmetical Definability and Forcing

We retain the terminology and notation of the preceding section. This entire section

will be devoted to the proof of the following result.

23.3 Theorem (Addison’s theorem). The class of arithmetically definable sets of num-

bers is not an arithmetically definable class of sets.

The first notion we need is that of a condition, by which we mean a finite, consistent

set of sentences of the language LG each either of the form Gm or ∼Gm. The empty

set ∅ is a condition. Other examples are {G17}, {G17, ∼G59}, and

{G0, G1, G2, . . . , G999 999, G1 000 000}.
We use p, q, r as variables for conditions. We say a condition q extends or is an

extension of a condition p if p is a subset of q . Thus every condition extends itself

and extends ∅.

Forcing is a relation between certain conditions and certain sentences of LG . We

write p � S to mean that condition p forces sentence S. The relation of forcing is

inductively defined by the following five stipulations:

(1) If S is an atomic sentence of L , then p � S if and only if N |= S.

(2) If t is a term of L and m is the denotation of t in N , then if S is the sentence Gt ,
then p � S if and only if Gm is in p.

(3) If S is a disjunction (B ∨ C), then p � S if and only if either p � B or p � C .

(4) If S is an existential quantification ∃x B(x), then p � S if and only if, for some n,

p � B(n).

(5) If S is a negation ∼B, then p � S if and only if, for every q that extends p, it is not

the case that q � S.

The last clause bears repeating: a condition forces the negation of a sentence

if and only if no extension forces the sentence. It follows that no condition forces

some sentence and its negation, and also that either a condition forces the negation

of a sentence or some extension forces the sentence. (It will soon be shown that if a

condition forces a sentence, so does every extension of it.)

It follows from (2) and (5) that p �∼Gm if and only if ∼Gm is in p. For if ∼Gm

is not in p, then p ∪ {Gm} is an extension of p that forces Gm. So if p �∼Gm, that

is, if no extension of p forces Gm, then ∼Gm must be in p. Conversely, if ∼Gm is

in p, then Gm is in no extension of p, and hence no extension of p forces Gm, and

so p �∼Gm.

Thus {G3} forces neither G11 nor ∼G11, and so does not force (G11 ∨ ∼G11).

Thus a condition may imply a sentence without forcing it. (It will soon be seen that

the inverse is also possible; that, for example, ∅ forces ∼∼∃xGx , even though it

does not imply it, and does not force ∃xGx .)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

290 ARITHMETICAL DEFINABILITY

23.4 Lemma. If p � S and q extends p, then q � S.

Proof: Suppose that p � S and q extends p. The proof that q � S is by induction

on complexity of S. The atomic case has two subcases. If S is an atomic sentence

of L , then since p � S, S is true in N , and since S is true in N , q � S. If S is an

atomic sentence of form Gt, then since p � S, Gm is in p, where m is the denotation

of t in N , and since q extends p, Gm is also in q and q � Gt. If S is (B ∨ C), then

since p � S, either p � B or p � C ; so by the induction hypothesis, either q � B or

q � C , and so q � (B ∨ C). If S is ∃x B(x), then since p � S, we have p � B(m) for

some m; so by the induction hypothesis, q � B(m) and q � ∃x B(x). Finally, if S is

∼B, then since p � S, no extension of p forces B; and then, since q is an extension

of p, every extension of q is an extension of p, so no extension of q forces B, and so

q �∼B.

Two observations, not worthy of being called lemmas, follow directly from the

preceding lemma. First, if p � B, then p �∼∼B; for any extension of p will force

B, hence no extension of p will force ∼B. Second, if p �∼B and p �∼C , then

p �∼(B ∨ C); for every extension of p will force both ∼B and ∼C , and so will

force neither B nor C , and so will not force (B ∨ C).

A more complicated observation of the same kind may be recorded here for future

reference, concerning the sentence

∼(∼(∼B ∨ ∼C) ∨ ∼(B ∨ C))(∗)

which is a logical equivalent of ∼(B ↔ C). Suppose p � B and p �∼C . Then

p � (∼B ∨ ∼C), so by our first observation in the preceding paragraph, p �
∼∼(∼B ∨ ∼C). Also p � (B ∨ C), so p �∼∼(B ∨ C). Hence by our second ob-

servation, p � (*). Similarly, if p �∼B and p � C , then again p � (*).

23.5 Lemma. If S is a sentence of L , then for every p, p � S if and only if N |= S.

Proof: The proof again is by induction on the complexity of S. If S is atomic, the

assertion of the lemma holds by the first clause in the definition of forcing. If S is

(B ∨ C), then p � S if and only if p � B or p � C , which by the induction hypothesis

is so if and only N |= B or N |= C , which is to say, if and only if N |= (B ∨ C). If

S is ∃x B(x), the proof is similar. If S is ∼B, then p � S if and only if no extension

of p forces B, which by the induction hypothesis is so if and only if it is not the case

that N |= B, which is to say, if and only if N |= ∼B.

Forcing is a curious relation. Since ∅ does not contain any sentence Gn, for no n
does ∅ force Gn, and therefore ∅ does not force ∃xGx . But ∅ does force ∼∼∃xGx!

For suppose some p forces ∼∃xGx . Let n be the least number such that ∼Gn is not

in p. Let q be p ∪ {Gn}. Then q is a condition, q extends p, and q forces Gn, so q
forces ∃xGx . Contradiction. Thus no p forces ∼∃xGx , which is to say, no extension

of ∅ forces ∼∃xGx , so ∅ forces ∼∼∃xGx .

We are going to need some more definitions. Let A be a set of numbers. First,

we call a condition p A-correct if for any m, if Gm is in p, then m is in A, while

if ∼Gm is in p, then m is not in A. In other words, p is A-correct if and only if

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

23.2. ARITHMETICAL DEFINABILITY AND FORCING 291

N G
A (the expansion of the standard interpretation N of the language of arithmetic

L to an interpretation of the language LG in which the new predicate G is taken to

denote A) is a model of p.

Further, say A FORCES S if some A-correct condition forces S. Note that the union

of any two A-correct conditions is still a condition and is still A-correct. It follows

that A cannot FORCE both S and ∼S, since the union of an A-correct condition forcing

S with one forcing ∼S would force both, which is impossible.

Finally, we call A generic if for every sentence S of LG, either A FORCES S or

A FORCES ∼S. If this is so at least for every sentence S with at most n occurrences

of logical operators, we call A n-generic. Thus a set is generic if and only if it is

n-generic for all n.

The first fact about generic sets that we have to prove is that they exist.

23.6 Lemma. For any p, there is a generic set A such that p is A-correct.

Proof: Let S0, S1, S2, . . . be an enumeration of all sentences of LG . Let p0, p1,

p2, . . . be an enumeration of all conditions. We inductively define a sequence q0,

q1, q2, . . . of conditions, each an extension of those that come before it, as follows:

(0) q0 is p.

(1) If qi forces ∼Si , then qi+1 is qi .

(2) If qi does not force ∼Si , in which case there must be some q extending qi and

forcing Si , then qi+1 is the first such q (in the enumeration p0, p1, p2, . . .).

Let A be the set of m such that Gm is in qi for some i .
We claim that p is A-correct and that A is generic. Since p = q0, and since for

each i , either qi+1 � Si or qi+1 �∼Si , it will be enough to show that for each i, qi is

A-correct. And since m is in A when Gm is in qi , it is enough to show that if ∼Gm

is in qi , then m is not in A. Well, suppose it were. Then Gm would be in q j for some

j . Letting k = max(i, j), both ∼Gm and Gm would be in qk , which is impossible.

This contradiction completes the proof.

The next fact about generic sets relates FORCING and truth.

23.7 Lemma. Let S be a sentence of LG, and A a generic set. Then A FORCES S if and

only if N G
A |= S.

Proof: The proof will be yet another by induction on complexity, with five cases,

one for each clause in the definition of forcing. We abbreviate ‘if and only if’ to ‘iff’.

Case 1. S is an atomic sentence of L . Then A FORCES S iff some A-correct p forces

S, iff (by Lemma 23.5) N |= S, iff N G
A |= S.

Case 2. S is an atomic sentence Gt. Let m be the denotation of t in N . Then A
FORCES S iff some A-correct p forces Gt, iff Gm is in some A-correct p, iff m is in

A, iff N G
A |= Gt .

Case 3. S is (B ∨ C). Then A FORCES S iff some A-correct p forces (B ∨ C),

iff some A-correct p forces B or forces C , iff either some A-correct p forces B or

some A-correct p forces C , iff A FORCES B or A FORCES C , iff (by the induction

hypothesis) N G
A |= B or N G

A |= C , iff N G
A |= (B ∨ C).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

292 ARITHMETICAL DEFINABILITY

Case 4. S is ∃x B(x). Then A FORCES S iff some A-correct p forces ∃x B(x), iff

for some A-correct p there is an m such that p forces B(m), iff for some m there is

an A-correct p such that p forces B(m), iff for some m, A forces B(m), iff (by the

induction hypothesis) for some m, N G
A |= B(m), iff N G

A |= ∃x B(x).

Case 5. S is ∼B. No set FORCES both B and ∼B. Since A is generic, A FORCES at

least one of B or ∼B. Hence A FORCES ∼B iff it is not the case that A FORCES B, iff

(by the induction hypothesis) not N G
A |= B, iff N G

A |= ∼B.

The last fact about generic sets that we have to prove is that none of them is

arithmetical.

23.8 Lemma. No generic set is arithmetical.

Proof: Suppose otherwise. Then there is a generic set A and a formula B(x) of L
such that for every n, n is in A if and only ifN |= B(n). SoN G

A |= ∀x(Gx ↔ B(x)) or

N G
A |= ∼∃x F(x), where F(x) is the following logical equivalent of ∼(Gx ↔ B(x)):

∼(∼(∼Gx ∨ ∼B(x)) ∨ ∼(Gx ∨ B(x))).

By Lemma 23.7, A FORCES ∼∃x F(x), so some A-correct p forces ∼∃x F(x), so for

no q extending p and no n does q force F(n), which is to say

∼(∼(∼Gn ∨ ∼B(n)) ∨ ∼(Gn ∨ B(n))).(∗)

Let k be the least number such that neither Gk nor ∼Gk is in p. Define a condition

q extending p by letting q = p ∪ {Gk} if N |= ∼B(k) and letting q = p ∪ {∼Gk}
if N |= B(k). In the former case, q � Gk, while by Lemma 23.5 q �∼B(k). In the

latter case, q �∼Gk while by Lemma 23.5 q � B(k). In either case, q � (*) by our

observations following Lemma 23.4, which is to say q � F(n). Contradiction.

Suppose that at the beginning of the proof of Lemma 23.6, instead of enumerating

all sentences we enumerate those sentences of complexity ≤ n (that is, having no

more than n occurrences of logical operators). Then the proof would establish the

existence of an n-generic set rather than of a generic set. Suppose that in the hypothesis

of Lemma 23.7 we only assume the set A is n-generic rather than generic. Then the

proof would establish the conclusion of Lemma 23.7 for sentences of complexity

≤ n, rather than for all sentences. But suppose that in the hypothesis of Lemma 23.8

we only assume the set A is n-generic rather than generic. Then the proof would

break down entirely. And indeed, in contrast to Lemma 23.8, we have the following.

23.9 Lemma. For any n, there is an n-generic set A that is arithmetical.

Proof: The proof will be indicated only in outline. The idea is to carry out the

construction in the proof of Lemma 23.6, starting from an enumeration of all sentences

of complexity ≤ n, and with p =∅. It is necessary to show that, if code numbers are

assigned in a suitable way, then various relations among code numbers connected with

the construction will be arithmetical, with the result that the generic set constructed

is arithmetical as well.

First note that, since we have seen in the preceding section that the set of code

numbers of sentences of complexity ≤ n is recursive, the function enumerating the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

23.2. ARITHMETICAL DEFINABILITY AND FORCING 293

elements of that set in increasing order is recursive. That is, if we enumerate the

sentences S0, S1, S2, . . . in order of increasing code number, then the function taking

us from i to the code number for Si will be recursive.

We also enumerate the conditions p0, p1, p2, . . . in order of increasing code num-

ber, where code numbers are assigned to finite sets of sentences—for that is what

conditions are—as in section 15.2. As we observed in section 15.2, the relation ‘the

sentence with code number i belongs to the set with code number s’ is recursive.

Using this fact and the fact that the function taking m to the code number for Gm—

essential the substitution function σ used in the preceding section—is recursive, it is

not hard to show that the set of code numbers of conditions is recursive, and that the

relation that holds between m and s if and only if s is the code number of a condition

containing Gm is recursive. We also observed in section 15.2 that the relation ‘the set

with code number s is a subset of the set with code number t’ is recursive. Hence the

relation that holds between s and t if and only if they are code numbers of conditions

p and q , with q an extension of p, is also recursive. Being recursive, the various

functions and relations we have mentioned are all arithmetical.

We also need one more fact: that for each n, the relation that holds between i and s
if and only if i is the code number of a sentence S of complexity ≤n and s is the code

number of a condition p, and p forces S, is arithmetical. The proof is very similar to

the proof in the preceding section that for each n the set Vn is arithmetical, and will

be left to the reader.

Now returning to the construction of an n-generic set A, by the method of the

proof of Lemma 23.6, we see that m is in A if and only if there exists a sequence s
of conditions such that the following hold (for each i less than the length of the

sequence):

(0) The 0th entry of the sequence is the empty condition ∅
(1) If the i th entry of the sequence forces the negation of the i th sentence in the

enumeration of sentences, then the (i + 1)st entry is the same as the i th.

(2) Otherwise, the (i + 1)st entry is a condition that extends the i th and that forces

the i th sentence in the enumeration of sentences, and is such that no condition

earlier in the enumeration of conditions (that is, no condition of smaller code

number) does both these things.

(3) The sentence Gm belongs to the last entry of the sequence.

We can, of course, replace ‘there exists a sequence. . .’ by ‘there exists a code

number for a sequence. . .’. When everything is thus reformulated in terms of code

numbers, what we get is a logical compound of relations that we have noted in the

preceding several paragraphs to be arithmetical. It follows that A itself is arithmetical.

At last we are in a position to prove Addison’s theorem.

Proof of Theorem 23.3: Suppose the theorem fails. Then there is a sentence S of

LG such that for any set A,N G
A |= S if and only if A is arithmetical. Let S be of

complexity n. By Lemma 23.9 there exists an n-generic set A that is arithmetical. So

N G
A |= S. So by Lemma 23.7 (or rather, the version for n-generic sets and sentences

of complexity ≤n, as in our remarks following Lemma 23.8), A FORCES S. So some

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-23 CB421-Boolos July 27, 2007 16:51 Char Count= 0

294 ARITHMETICAL DEFINABILITY

A-correct p forces S. By Lemma 23.6, there exists a (fully) generic set A* such that

p is A*-correct. Since p forces S, by Lemma 23.7 (in its original version), N G
A∗ |= S.

But this means A* is arithmetical, contrary to Lemma 23.8.

Problems

23.1 Use Beth’s definability theorem, Tarski’s theorem on the first-order indefin-

ability of first-order arithmetic truth, and the results of section 23.1 to obtain

another proof of the existence of nonstandard models of arithmetic.

23.2 Show that for each n the set of (code numbers of) true prenex sentences of the

language of arithmetic that contain at most n quantifiers is arithmetical. Show

the same with ‘prenex’ omitted.

23.3 Show that if p �∼∼∼B, then p �∼B.

23.4 Given an example of a sentence B such that the set of even numbers FORCES

neither B nor ∼B.

23.5 Show that the set of pairs (i, j) such that j codes a sentence of LG and i codes

a condition that forces that sentence is not arithmetical.

23.6 Where would the proof of Addison’s theorem have broken down if we had

worked with ∼, & , ∀ rather than ∼, ∨, ∃ (and made the obvious analogous

stipulations in the definition of forcing)?

23.7 Show that the only arithmetical subsets of a generic set are its finite subsets.

23.8 Show that if A is generic, then {A} is not arithmetical.

23.9 Show that {A : A is generic} is not arithmetical.

23.10 Show that every generic set contains infinitely many prime numbers.

23.11 Show that the class of generic sets is nonenumerable.

23.12 A set of natural numbers is said to have density r , where r is a real number, if r
is the limit as n goes to infinity of the ratio (number of members of A < n)/n.

Show that no generic set has a density.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-24 CB421-Boolos July 27, 2007 17:14 Char Count= 0

24

Decidability of Arithmetic without Multiplication

Arithmetic is not decidable: the set V of code numbers of sentences of the language
L of arithmetic that are true in the standard interpretation is not recursive (nor even
arithmetical). But for some sublanguages L* of L, if we consider the elements of V that
are code numbers of sentences of L*, then the set V* of such elements is recursive:
arithmetic without some of the symbols of its language is decidable. A striking case
is Presburger arithmetic, or arithmetic without multiplication. The present chapter is
entirely devoted to proving its decidability.

We have used (true) arithmetic to mean the set of sentences of the language

of arithmetic L = {0, <, ′, +, ·} that are true in the standard interpretation N . By

arithmetic without multiplication we mean the set of sentences of (true) arithmetic

that do not contain the symbol ·. By arithmetic without addition we mean the set

of sentences of (true) arithmetic that do not contain the symbols <, ′, +. In contrast

to the undecidability of arithmetic stand Presburger’s theorem, to the effect that

arithmetic without multiplication is decidable, and Skolem’s theorem, to the effect that

arithmetic without addition is decidable. [Note in connection with the latter theorem

that ′ is easily definable in terms of < and that + is definable in terms of ′ and ·, as

follows:

x + y = z ↔ (x ′ · z′′) ′ · (y′ · z′′) = ((x ′ · y′)′ · (z′′ · z′′))′.

That is why < and ′ have to be dropped along with +.] This chapter will be entirely

devoted to proving the former theorem, by describing an effective procedure for deter-

mining whether or not a given sentence of the language of arithmetic not involving ·
is true in the standard interpretation.

We begin with a reduction of the problem. Let K be the language with con-

stants 0 and 1, infinitely many one-place predicates D2, D3, D4, . . . , the two-place

predicate < , and the two-place function symbols + and ---. Let M be the

interpretation with domain the set of all integers (positive, zero, negative), and with

the following denotations for the nonlogical symbols. 0, 1, <, +, --- will denote the

usual zero and unity elements, order relation, and addition and subtraction oper-

ations on integers. Dn will denote the set of integers divisible without remainder

by n.

295

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-24 CB421-Boolos July 27, 2007 17:14 Char Count= 0

296 DECIDABILITY OF ARITHMETIC WITHOUT MULTIPLICATION

Given a sentence S of L without ·, replace ′ everywhere in it by +1, and replace

every quantification ∀x or ∃x by a relativized quantification

∀x((x = 0 ∨ 0< x) → · · ·) ∃x((x = 0 ∨ 0< x) & . . .).

to obtain a sentence S* of K . Then S will be true in N if and only if S* is true in

M. Thus to prove Presburger’s theorem, it will be sufficient to describe an effective

procedure for determining whether or not a given sentence of K is true in M.

For the remainder of this chapter, therefore, term or formula or sentence will al-

ways mean term or formula or sentence of K, while denotation or satisfaction or truth
will always mean denotation or satisfaction or truth in M. We call two terms r and

s coextensive if ∀v1 . . . ∀vn r = s is true, where the vi are all the variables occurring

in r or s. We call two formulas F and G coextensive if ∀v1. . .∀vn(F ↔ G) is true,

where the vi are all the free variables occurring in F or G.

Given any closed term, we can effectively calculate its denotation. Given any

atomic sentence, we can effectively determine its truth value; and we can therefore

do the same for any quantifier-free sentence. We are going to show how one can

effectively decide whether a given sentence S is true by showing how one can effec-

tively associate to S a coextensive quantifier-free sentence T : once T is found, its

truth value, which is also the truth value of S, can be effectively determined.

The method to be used for finding T , given S, is called elimination of quanti-
fiers. It consists in showing how one can effectively associate to a quantifier-free

formula F(x), which may contain other free variables besides x , and quantifier-free

G such that G is coextensive with ∃x F(x) and G contains no additional free variables

beyond the free variables in ∃x F(x). This shown, given S, we put it in prenex form,

then replace each quantification ∀x by ∼∃x ∼, and work from the inside outward,

successively replacing existential quantifications of quantifier-free formulas by co-

extensive quantifier-free formulas with no additional free variables, until at last a

sentence with no free variables, which is to say, a quantifier-free sentence T , is

obtained.

So let F(x) be a quantifier-free formula. We obtain G, coextensive with ∃x F(x)

and containing no addition free variables beyond those in ∃x F(x), by performing, in

order, a sequence of 30 operations, each of which replaces a formula by a coextensive

formula with no additional free variables.

In describing the operations to be gone through, we make use of certain notational

conventions. When writing of a positive integer k and a term t we allow ourselves to

write

−t instead of 0 --- t
k instead of 1 + 1 + · · ·+ 1 (k times)

kt instead of t + t + · · ·+ t (k times)

for instance. With such notation, the 30 operations are as follows:

(1) Put F into disjunctive normal form. (See section 19.1.) Thus we get a disjunction

of conjunctions of atomic formulas of the forms r = s or r < s or Dms (where r
and s are terms) and negations of such.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-24 CB421-Boolos July 27, 2007 17:14 Char Count= 0

DECIDABILITY OF ARITHMETIC WITHOUT MULTIPLICATION 297

(2) Replace each formula of form r = s by (r < s + 1 & s < r + 1).

(3) Replace each formula of form r �= s by (r < s ∨ s < r).

(4) Put the result back into disjunctive normal form.

(5) Replace each formula of form ∼r < s by s < r + 1.

(6) Replace each formula of form ∼Dms by the disjunction of Dm(s + i) for all i with

0 < i < m. The result is coextensive with the original, because for any number

a, m divides exactly one of a, a + 1, a + 2, . . . , a + m − 1.

(7) Put the result back into disjunctive normal form.

(8) At this point we have a disjunction of conjunctions of atomic formulas of the

forms r < s and Dms. Replace each formula of form r < s by 0 < (s --- r).

(9) We say a term is in normal form if it has one of the five forms

kx,--- kx,kx + t,--- kx + t , or t , wherein t is a term not containing the variable x .

For every term one can effectively find a coextensive term in normal form by

ordinary algebraic operations, such as regrouping and reordering summands.

Replace each term in the formula that is not in normal form by a coextensive one

that is.

(10) Replace each formula of form

0 < ---kx, 0 < kx + t, or 0 < ---kx + t

by

kx < 0, ---t < kx, or kx < t

as the case may be.

(11) At this point all atomic formulas with predicate < that contain the variable x have

either the form t < kx or the form kx < t , where k is positive and t does not

contain x . We call those of the former form lower inequalities and those of the

latter form upper inequalties. Rearrange the order of conjuncts in each disjunct so

that all lower inequalities occur on the left.

(12) Towards reducing the number of lower inequalities occurring in any disjunct, if a

conjunction of form t1 < k1x & t2 < k2x occurs in a disjunct, replace it by the

disjunction of the following three conjunctions:

(i) t1 < k1x & k1t2 < k2t1
(ii) t1 < k1x & k1t2 = k2t1

(iii) t2 < k2x & k2t1 < k1t2.

To see that this substitution is justified (that is, to see that it produces a result

coextensive with the original), note that exactly one of the second conjuncts in

(i)–(iii) must hold, and that (i) or (ii) holds, then so do k2t1 < k1k2x and

k1t2 < k1k2x , and hence so does t2 < k2x ; while similarly (iii) yields t1 < k1x .

(13) Eliminate any occurrences of = introduced at the previous step by repeating steps

(2) and (4).

(14) The effect of the preceding three steps is to reduce by one the number of lower

inequalities in any disjunct where there were more than one to begin with. (Note

that k1t2 < k2t1, for instance, does not count as a lower inequality, since it does not

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-24 CB421-Boolos July 27, 2007 17:14 Char Count= 0

298 DECIDABILITY OF ARITHMETIC WITHOUT MULTIPLICATION

contain the variable x .) Repeat these three steps over and over until no disjunct has

more than one lower inequality among its conjuncts.

(15) Carry out an analogous process for upper inequalities, until no disjunct has more

than one lower or upper inequality among its conjuncts.

(16) Replace each formula of form

Dm(kx), Dm(---kx), Dm(kx + t), or Dm(---kx + t)

by

Dm(kx --- 0), Dm(kx --- 0), Dm(kx --- (---t)), or Dm(kx --- t)

as the case may be. This step is justified because for any number a, m divides a if

and only if m divides −a.

(17) At this point all atomic formulas with Dm and involving x have the form

Dm(kx --- t), where k is a positive integer. Replace any formula of this form by the

disjunction of all conjunctions

Dm(kx --- i) & Dm(t --- i)

for 0 ≤ i < m. To see that this step is justified, note that m divides the difference of

two numbers a and b if and only if a and b leave the same remainder on division

by m, and that the remainder on dividing a (respectively, b) by m is the unique i
with 0 ≤ i < m such that m divides a − i (respectively, b − i).

(18) Put the result back into disjunctive normal form.

(19) At this point all atomic formulas with Dm and involving x have the form

Dm(kx --- i), where k is a positive integer and 0 ≤ i < m. Replace any formula of

this form with k >1 by the disjunction of the formulas Dm(x --- j) for all j with

0 ≤ j < m such that m divides k j − i . This step is justified because for any

number a, ka leaves a remainder of i on division by m if and only if kj does, where

j is the remainder on dividing a by m.

(20) Put the result back into disjunctive normal form.

(21) At this point all atomic formulas with Dm and involving x have the form

Dm(x --- i), where i is a nonnegative integer. In any such case consider the prime

decomposition of m; that is, write

m = pe1

1 · · · pek
k where p1 < p2 < · · · < pk and all ps are primes.

If k >1, then let m1 = pe1

1 , . . . , mk = pek
k , and replace Dm(x --- i) by

Dm1
(x --- i) & . . . & Dmk (x --- i).

This step is justified because the product of two given numbers having no common

factor (such as powers of distinct primes) divides a given number if and only if

each of the two given numbers does.

(22) At this point all atomic formulas with Ds and involving x have the form

Dm(x − i), where i is a nonnegative integer, and m a power of a prime. If in a

given disjunct there are two conjuncts Dm(x − i) and Dn(x − j) where m and n
are powers of the same prime, say m = pd , n = pe, d ≤ e, then drop Dm(x --- i) in

favor of Dn(i − j), which does not involve x . This step is justified because, since

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-24 CB421-Boolos July 27, 2007 17:14 Char Count= 0

DECIDABILITY OF ARITHMETIC WITHOUT MULTIPLICATION 299

m divides n, for any number a, if a leaves remainder j on division by n, a will

leave remainder i on division by m if and only if j does.

(23) Repeat the preceding step until for any two conjuncts Dm(x --- i) and Dn(x --- j) in a

single disjunct, m and n are powers of distinct primes, and therefore have no

common factors.

(24) Replace each Dm(x --- i) by Dm(x --- i*), where i* is the remainder on dividing i
by m.

(25) Rewrite each disjunct so that all atomic formulas with with Ds and involving x are

on the left.

(26) At this point each disjunct has the form

Dm1
(x --- i1) & . . . & Dmk (x --- ik) & (other conjuncts)

where 0 ≤ i1 < m1, . . . , 0 ≤ ik < mk . Let m = m1 · · · · · mk . According to the

Chinese remainder theorem (see Lemma 15.5), there exists a (unique) i with

0 ≤ i < m such that i leaves remainder i1 on division by m1, . . . , i leaves

remainder ik on division by mk . Replace the conjuncts involving Ds by the single

formula Dm(x --- i).

(27) At this point we have a disjunction F1 ∨ · · · ∨ Fk each of whose disjuncts is a

conjunction containing at most one lower inequality, at most one upper inequality,

and at most one formula of form Dm(x − i). Rewrite ∃x(F1 ∨ · · · ∨ Fk) as

∃x F1 ∨ · · · ∨ ∃x Fk .

(28) Within each disjunct ∃xF, rewrite the conjunction F so that any and all conjuncts

involving x occur on the left, and confine the quantifier to these conjuncts, of

which there are at most three; if there are none, simply omit the quantifier.

(29) At this point, the only occurrences of x are in sentences of one of the seven types

listed in Table 24-1. Replace these by the sentences listed on the right.

Table 24-1. Elimination of quantifiers

∃x s < j x 0 < 1

∃x kx < t 0 < 1

∃x Dm(x --- i) 0 < 1

∃x(Dm(x --- i) & s < j x) 0 < 1

∃x(Dm(x --- i) & kx < t) 0 < 1

∃x(s < j x & kx < t) ∃x(D jk(x --- 0) & ks < x & x < j t)
∃x(Dm (x --- i) & s < j x & kx < t) ∃x(D jkm(x --- jki) & ks < x & x < j t)

This step is justified in the first five cases because in these cases the sentence on

the right is automatically true. (In the fourth case this is because there are

arbitrarily large integers leaving a prescribed remainder i on division by m, and

similarly in the fifth case.) The sixth and seventh cases are similar to each other.

We discuss the latter because it is slightly more complicated. First note that the

sentence on the left,

∃x(Dm(x − i) & s < j x & kx < t)(i)

is coextensive with

∃x(D jkm(jkx − jki) & ks < jkx & jkx < j t).(ii)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-24 CB421-Boolos July 27, 2007 17:14 Char Count= 0

300 DECIDABILITY OF ARITHMETIC WITHOUT MULTIPLICATION

This in turn is coextensive with

∃y(D jkm(y − jki) & ks < y & y < j t)(iii)

which is the sentence on the right, except for relettering the variable. For if x is as

in (ii), then y = jkx will be as in (iii); and conversely, if y is as in (iii), then since

jk divides y − jki, jk must divide y, which is to say that y will be of the form jkx
for some x , which x will then be as in (ii).

(30) At this point, the only occurrences of x are in sentences of the form

∃x(Dm(x − i) & s < x & x < t).

Replace this by the disjunction of

Dm(s + j − i) & s + j < t

for all j with 1 ≤ j ≤ m. This step is justified because, given two integers a and b,

there will be an integer strictly between them that leaves the same remainder as i
when divided by m if and only if one of a + 1, . . . , a + m is such an integer.

We now have eliminated x altogether, and have obtained a quantifier-free formula

coextensive with our original formula and involving no additional free variables, and

we are done.

Problems

24.1 Consider monadic logic without identity, and add to it a new quantifier

(Mx)(A(x) > B(x)), which is to be true if and only if there are more x such

that A(x) than there are x such that B(x). Call the result comparative logic.

Show how to define in terms of M:

(a) ∀ and ∃ (so that these can be officially dropped and treated as mere

abbreviations)

(b) ‘most x such that A(x) are such that B(x)’

24.2 Define a comparison to be a formula of the form (Mx)(A(x) > B(x)) where

A(x) and B(x) are quantifier-free. Show that any sentence is equivalent to a

truth-functional compound of comparisons (which then by relettering may be

taken all to involve the same variable x).

24.3 As with sets of sentences of first-order logic, a set of sentences of logic with

the quantifier M is (finitely) satisfiable if there is an interpretation (with a finite

domain) in which all sentences in the set come out true. Show that finite satis-

fiability for finite sets of sentences of logic with the quantifier M is decidable.

(The same is true for satisfiability, but this involves more set theory than we

wish to presuppose.)

24.4 For present purposes, by an inequality is meant an expression of the form

a1x1 + · · · + am xm § b

where the xi are variables, the ai and b are (numerals for) specific rational

numbers, and § may be any of <, ≤, >, ≥. A finite set of inequalities is coherent

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-24 CB421-Boolos July 27, 2007 17:14 Char Count= 0

PROBLEMS 301

if there are rational numbers ri that if taken for the xi would make each inequality

in the set come out true (with respect to the usual addition operation and order

relation on rational numbers). Show that there is a decision procedure for the

coherence of finite sets of inequalities.

24.5 In sentential logic the only nonlogical symbols are an enumerable infinity of

sentence letters, and the only logical operators are negation, conjunction, and

disjunction ∼, &, ∨. Let A1, . . . , An be sentence letters, and consider sentences

of sentential logic that contain no sentence letters, but the Ai , or equivalently, that

are truth-functional compounds of the Ai . For each sequence e = (e1, . . . , en)

of 0s and 1s, let Pe be (∼)A1 & . . . & (∼)An , where for each i, 1 ≤ i ≤ n, the

negation sign preceding Ai is present if ei = 0, and absent if ei = 1. For present

purposes a probability measure μ may be defined as an assignment of a rational

number μ(Pe) to each Pe in such a way that the sum of all these numbers is 1.

For a truth-functional combination A of the Ai we define μ(A) to be the sum

of the μ(Pe) for those Pe that imply A, or equivalently, that are disjuncts in

the full disjunctive normal form of A). The conditional probability μ(A\B) is

defined to be the quotient μ(A & B)/μ(A) if μ(A) �= 0, and is conventionally

taken to be 1 if μ(A) = 0. For present purposes, by a constraint is meant an

expression of the form μ(A) § b or μ(A\B) § b, where A and B are sentences

of sentential logic, b a nonnegative rational number, and § any of <, ≤, >, ≥.

A finite set of constraints is coherent if there exists a probability measure μ

that makes each constraint in the set come out true. Is the set of constraints

μ(A\B) = 3/4, μ(B\C) = 3/4, and μ(A\C) = 1/4 coherent?

24.6 Show that there is a decision procedure for the coherence of finite sets of

constraints.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25

Nonstandard Models

By a model of (true) arithmetic is meant any model of the set of all sentences of the
language L of arithmetic that are true in the standard interpretation N . By a nonstan-

dard model is meant one that is not isomorphic to N . The proof of the existence of an
(enumerable) nonstandard model of arithmetic is as an easy application of the compact-
ness theorem (and the Löwenheim–Skolem theorem). Every enumerable nonstandard
model is isomorphic to a nonstandard model M whose domain is the same as that of
N , namely, the set of natural numbers; though of course such an M cannot assign
the same denotations as N to the nonlogical symbols of L. In section 25.1 we analyze
the structure of the order relation in such a nonstandard model. A consequence of this
analysis is that, though the order relation cannot be the standard one, it at least can be
a recursive relation. By contrast, Tennenbaum’s theorem tells us that it cannot happen
that the addition and multiplication relations are recursive. This theorem and related
results will be taken up in section 25.2. Section 25.3 is a sort of appendix (independent
of the other sections, but alluding to results from several earlier chapters) concerning
nonstandard models of an expansion of arithmetic called analysis.

25.1 Order in Nonstandard Models

Let M be a model of (true) arithmetic not isomorphic to the standard model N . (The

existence of such models was established in the problems at the end of Chapter 12, as

an application of the compactness theorem.) What does such a model look like? We’ll

call the objects in the domain |M| NUMBERS. M assigns as denotation to the symbol

0 some NUMBER O we’ll call ZERO, and to the symbol ′ some function † on NUMBERS

we’ll call SUCCESSOR. It assigns to < some relation ≺ we’ll call LESS THAN, and

to + and · some functions ⊕ and ⊗ we’ll call ADDITION and MULTIPLICATION. Our

main concern in this section will be to understand the LESS THAN relation.

First of all, no NUMBER is LESS THAN itself. For no (natural) number is less than

itself. So ∀x ∼ x < x is true in N , so it is true in M, and so as asserted no NUMBER

is LESS THAN itself. This argument illustrates our main technique for obtaining infor-

mation about the ‘appearance’ of M: observe that the natural numbers have a certain

property, conclude that a certain sentence of L is true in N , infer that it must also be

true in M (since the same sentences of L are true in M as in N), and decipher the

sentence ‘over’M. In this way we can conclude that exactly one of any two NUMBERS

is LESS THAN the other, and that if one NUMBER is LESS THAN another, which is LESS

302

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25.1. ORDER IN NONSTANDARD MODELS 303

THAN a third, then the first is LESS THAN the third. LESS THAN is a linear ordering of

the NUMBERS, just as less than is a linear ordering of the numbers.

Zero is the least number, so ZERO is the LEAST NUMBER. Any number is less than

its successor, and there is no number between a given number and its successor (in

the sense of being greater than the former and less than the latter), so any NUMBER

is LESS THAN its SUCCESSOR, and there is no NUMBER between a given NUMBER and

its SUCCESSOR. In particular, 0′ (that is, 1 or one) is the next-to-least number, and O†

(which we may call I or ONE) is the next-to-LEAST NUMBER; 0′′ is next-to-next-to-least

and O†† is next-to-next-to-LEAST; and so on. So there is an initial segment O, O†,
O††, . . . of the relation LESS THAN that is isomorphic to the series 0, 0′′, 0′′, . . . of the

(natural) numbers.

We call O, O†, O††, . . . the standard NUMBERS. Any others are nonstandard. The

standard NUMBERS are precisely those that can be obtained from ZERO by applying

the SUCCESSOR operation a finite number of times. For any (natural) number n, let us

write h(n) for O††...†(n times), which is the denotation of the numeral n or 0′′... ′(n times)

in M. Then the standard NUMBERS are precisely the h(n) for n a natural number. Any

others are nonstandard. Any standard NUMBER h(n) is LESS THAN any nonstandard

NUMBER m. This is because, being true in N , the sentence

∀z((z �= 0 & . . . & z �= n) → n < z)

must be true in M, so any NUMBER other than h(0), . . . , h(n) must be GREATER THAN

h(n).

[It is not quite trivial to show that there must be some nonstandard NUMBERS

in any nonstandard model M. If there were not, then h would be a function from

(natural) numbers onto the domain of M. We claim that in that case, h would be

an isomorphism between N and M, which it cannot be if M is nonstandard. First,

h would be one-to-one, because when m �= n, m �= n is true in N and so in M, so

the denotations of m and n in M are distinct, that is, h(m) �= h(n). Further, when

m + n = p, m + n = p is true in N and so in M, so h(m + n) = h(m) ⊕ h(n).

Finally, h(m · n) = h(m) ⊗ h(n) by a similar argument.]

Any number other than zero is the successor of some unique NUMBER, so any

NUMBER other than ZERO is the SUCCESSOR of some unique number. So we can define

a function ‡ from NUMBERS to NUMBERS by letting O‡ = O and otherwise letting m‡

be the unique NUMBER of which m is the SUCCESSOR. If n is standard, then n† and n‡

are standard, too, and if m is nonstandard, then m† and m‡ are nonstandard. Moreover,

if n is standard and m nonstandard, then n is LESS THAN m‡.
We’ll now define an equivalence relation ≈ on NUMBERS. If a and b are NUMBERS,

we’ll say that a ≈ b if for some standard(!) NUMBER c, either a ⊕ c = b or b ⊕ c = a.

Intuitively speaking, a ≈ b if a and b are a finite distance away from each other, or

in other words, if one can get from a to b by applying † or ‡ a finite number of times.

Every standard NUMBER bears the relation ≈ to all and only the standard NUMBERS.

We call the equivalence class under ≈ of any NUMBER a the block of a. Thus a’s

block is

{. . . , a‡‡‡, a‡‡, a‡, a, a†, a††, a†††, . . .}.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

304 NONSTANDARD MODELS

Note that a’s block is infinite in both directions if a is nonstandard, and is ordered

like the integers (negative, zero, and positive).

Suppose that a is LESS THAN b and that a and b are in different blocks. Then since

a† is LESS THAN or equal to b, and a and a† are in the same block, a† is LESS THAN b.

Similarly, a is LESS THAN b‡. It follows that if there is even one member of a block A
that is LESS THAN some member of a block B, then every member of A is LESS THAN

every member of B. If this is the case, we’ll say that block A is LESS THAN block B.

A block is nonstandard if and only if it contains some nonstandard number. The

standard block is the LEAST block.

There is no LEAST nonstandard block, however. For suppose that b is a nonstandard

NUMBER. Then there is an a LESS THAN b such that either a ⊕ a = b or a ⊕ a ⊕ I = b.

[Why? Because for any (natural) number b greater than zero there is an a less than b
such that either a + a = b or a + a + 1 = b.] Let’s suppose a ⊕ a = b. (The other

case is similar.) If a is standard, so is a ⊕ a. So a is nonstandard. And a is not in the

same block as b: for if a ⊕ c = b for some standard c, then a ⊕ c = a ⊕ a, whence

c = a, contradicting the fact that a is nonstandard. (The laws of addition that hold in

N hold in M.) So a’s block is LESS THAN b’s block. Similarly, there is no GREATEST

block.

Finally, if one block A is LESS THAN another block C , then there is a third block

B that A is LESS THAN, and that is LESS THAN C . For suppose a is in A and c is in C ,

and a is LESS THAN c. There there is an b such that a is LESS THAN b, b is LESS THAN

c, and either a ⊕ c = b ⊕ b or a ⊕ c ⊕ I = b ⊕ b. (Averages, to within a margin of

error of one-half, always exist in N ; b is the AVERAGE in M of a and c.) Suppose

a ⊕ c = b ⊕ b. (The argument is similar in the other case.) If b is in A, then b = a ⊕ d
for some standard d , and so a ⊕ c = a ⊕ d ⊕ a ⊕ d, and so c = a ⊕ d ⊕ d (laws of

addition), from which it follows, as d ⊕ d is standard, that c is in A. So b is not in A,

and, similarly not in C either. We may thus take as the desired B the block of b.

To sum up: the elements of the domain of any nonstandard model M of arithmetic

are going to be linearly ordered by LESS THAN. This ordering will have an initial

segment that is isomorphic to the usual ordering of natural numbers, followed by a

sequence of blocks, each of which is isomorphic to the usual ordering of the integers

(negative, zero, and positive). There is neither an earliest nor a latest block, and

between any two blocks there lies a third. Thus the ordering of the blocks is what

was called in the problems at the end of Chapter 12 a dense linear ordering without
endpoints, and so, as shown there, it is isomorphic to the usual ordering of the rational

numbers. This analysis gives us the following result.

25.1a Theorem. The order relations on any two enumerable nonstandard models of

arithmetic are isomorphic.

Proof: Let K be the set consisting of all natural numbers together with all pairs

(q, a) where q is a rational number and a and integer. Let <K be the order on K in

which the natural numbers come first, in their usual order, and the pairs afterward,

ordered as follows: (q, a) <K (r, b) if and only if q < r in the usual order on ra-

tional numbers, or (q = r and a < b in the usual order on integers). Then what we

have shown above is that the order relation in any enumerable nonstandard model of

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25.1. ORDER IN NONSTANDARD MODELS 305

arithmetic is isomorphic to the ordering <K of K. Hence the order relations in any

two such models are isomorphic to each other.

This result can be extended from models of (true) arithmetic to models of the

theory P (introduced in Chapter 16).

25.1b Theorem. The order relations on any two enumerable nonstandard models of P

are isomorphic.

Proof: We indicate the proof in outline. What one needs to do in order to extend

Theorem 25.1a from models of arithmetic to models of P is to replace every argument

‘S must be true in M because S is true in N ’ that occurs above, by the argument ‘S
must be true in M because S is a theorem of P’. To show that S is indeed a theorem

of P, one needs to ‘formalize’ in P the ordinary, unformalized mathematical proof

that S is true in N . In some cases (for instance, laws of arithmetic) this has been done

already in Chapter 16; in the other cases (for instance, the existence of averages) what

needs to be done is quite similar to what was done in Chapter 16. Details are left to

the reader.

Any enumerable model of arithmetic or P (or indeed any theory) is isomorphic

to one whose domain is the set of natural numbers. Our interest in the remainder of

this chapter will be in the nature of the relations and functions that such a model

assigns as denotations to the nonlogical symbols of the language. A first result on

this question is a direct consequence of Theorem 25.1a.

25.2 Corollary. There is a nonstandard model of arithmetic with domain the natural

numbers in which the order relation is a recursive relation (and the successor function a

recursive function).

Proof: We know the order relation on any nonstandard model of arithmetic is

isomorphic to the order <K on the set K defined in the proof of Theorem 25.1a. The

main step in the proof of the corollary will be relegated to the problems at the end of the

chapter. It is to show that there is a recursive relation ≺ on the natural numbers that is

also isomorphic to the order <K on the set K . Now, given any enumerable nonstandard

model M of arithmetic, there is a function h from the natural numbers to |M| that

is an isomorphism between the ordering ≺ on the natural numbers and the ordering

<M on M. Much as in the proof of the canonical-domains lemma (Corollary 12.6),

define an operation † on natural numbers by letting n† be the (unique) m such that

h(m) = h(n)′M; and define functions ⊕ and ⊗ similarly. Then the interpretation with

domain the natural numbers and with ≺,† , ⊕, ⊗ as the denotation of <, ′,+, · will

be isomorphic to M. It will thus be a model of arithmetic, with the order relation ≺
recursive. (If one is careful, one can get the successor function † to be recursive as well.)

The Löwenheim–Skolem theorem tells us that any theory that has an infinite model

has a model with domain the natural numbers. The arithmetical Löwenheim–Skolem
theorem asserts that any axiomatizable theory that has an infinite model has a model

with domain the natural numbers and the denotation of every nonlogical symbol an
arithmetical relation or function. The proof of this result requires careful review of

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

306 NONSTANDARD MODELS

the proof of the model existence lemma in Chapter 13. It is outlined in the problems

at the end of this chapter. While (true) arithmetic is not an axiomatizable theory, P

is, and so the arithmetical Löwenheim–Skolem theorem gives us the following.

25.3 Corollary. There is a nonstandard model of P with domain the natural numbers

in which the denotation of every nonlogical symbol is an arithmetical relation or function.

Proof: As in the proof of the existence of nonstandard models of arithmetic, add a

constant ∞ to the language of arithmetic and apply the compactness theorem to the

theory

P ∪ {∞ �= n: n = 0, 1, 2, . . . }
to conclude that it has a model (necessarily infinite, since all models of P are). The

denotation of ∞ in any such model will be a nonstandard element, guaranteeing that

the model is nonstandard. Then apply the arithmetical Löwenheim–Skolem theorem

to conclude that the model may be taken to have domain the natural numbers, and the

denotations of all nonlogical symbols arithmetical.

The results of the next section contrast sharply with Corollaries 25.2 and 25.3.

25.2 Operations in Nonstandard Models

Our goal in this section is to indicate the proof of two strengthenings of Tennenbaum’s

theorem to the effect that there is no nonstandard model of P with domain the natural

numbers in which the addition and multiplication functions are both recursive, along

with two analogues of these strengthened results. Specifically, the four results are as

follows.

25.4a Theorem. There is no nonstandard model of (true) arithmetic with domain the

natural numbers in which the addition function is arithmetical.

25.4b Theorem (Tennenbaum–Kreisel theorem). There is no nonstandard model of P

with domain the natural numbers in which the addition function is recursive.

25.4c Theorem. There is no nonstandard model of (true) arithmetic with domain the

natural numbers in which the multiplication function is arithmetical.

25.4d Theorem (Tennenbaum–McAloon theorem). There is no nonstandard model of

P with domain the natural numbers in which the multiplication function is recursive.

The proof of Theorem 25.4a will be given in some detail. The modifications

needed to prove Theorem 25.4b and those needed to prove Theorem 25.4c will both

be indicated in outline. A combination of both kind of modifications would be needed

for Theorem 25.4d , which will not be further discussed.

Throughout the remainder of this section, by formula we mean formula and sen-

tence of the language of arithmetic L , and by model we mean an interpretation of L
with domain the set of natural numbers. For the moment our concern will be with

models of (true) arithmetic. Let M be such a model that is not isomorphic to the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25.2. OPERATIONS IN NONSTANDARD MODELS 307

standard model N , and let us use ⊕ and ⊗ as in the preceding section for the deno-

tations it assigns to the addition and multiplication symbols.

A notational preliminary: Our usual notation for the satisfaction in a model M of

a formula F(x, y) by elements a and b of the domain has been M |= F[a, b]. For the

remainder of this chapter, rather than write, for instance, ‘let F(x, y) be the formula

∃z x = y · z and let M |= F[a, b]’, we are just going to write ‘let M |= ∃z x =
y · z[a, b]’. (Potentially this briefer notation is ambiguous where there is more than

one free variable, since nothing in it explicitly indicates that it is a that goes with x and

b with y rather than the other way around; actually, context and alphabetical order

should always be sufficient to indicate what is intended.) Thus instead of writing

‘Let F(z) be the formula n< z and suppose M |= F[d]’, we just write ‘Suppose

M |= n< z[d]’. In this notation, a number d is a nonstandard element of M if and

only if for for every n, M |= n< z[d]. (If d is nonstandard, M |= d< z[d].)

We know from the previous section that nonstandard elements exist. The key to

proving Theorem 25.4a is a rather surprising result (Lemma 25.7a below) asserting

the existence of nonstandard elements with special properties. In the statement of this

result and the lemmas needed to prove it, we write π (n) for the nth prime (counting 2

as the zeroth, 3 as the first, and so on). In order to be able to write about π in

the language of arithmetic, fix a formula �(x, y) representing the function π in Q

(and hence in P and in arithemetic), as in section 16.2. Also, abbreviate as x | y
the rudimentary formula defining the relation ‘x divides y’. Here, then, are the key

lemmas.

25.5a Lemma. Let M be a nonstandard model of arithmetic. For any m > 0,

M |= ∀x m · x = x + · · ·+ x (m xs).

25.6a Lemma. Let M be a nonstandard model of arithmetic. Let A(x) be any formula

of L . Then there is a nonstandard element d such that

M |= ∃y∀x < z (∃w(�(x, w) & w | y) ↔ A(x))[d].

25.7a Lemma. Let M be a nonstandard model of arithmetic. Let A(x) be any formula

of L . Then there exists a b such that for every n,

M |= A(n) if and only if for some a, b = a ⊕ · · · ⊕ a [π (n) as].

Proof of Lemma 25.5a: The displayed sentence is true in N , and hence is true in

M.

Proof of Lemma 25.6a: It is enough to show that the sentence

∀z∃y∀x < z (∃w(�(x, w) & w | y) ↔ A(x))

is true in N , since it must then be true in M. Now what this sentence says, interpreted

over N , is just that for every z there exists a positive y such that for all x < z, the x th

prime divides y if and only if A(x) holds. It is enough to take for y the product of the

x th prime for all x < z such that A(x) holds.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

308 NONSTANDARD MODELS

Before giving the details of the proof of Lemma 25.7a, let us indicate Tennenbaum’s

main idea. Lemma 25.6a can be regarded as saying that for every z there is a y that

encodes the answers to all questions A(x)? for x less than z. Apply this to a non-

standard element d in M. Then there is a b that encodes the answers to all questions

M |= A(x)[i]? for all i LESS THAN d . But since d is nonstandard, the denotations

of all numerals are LESS THAN d . So b codes the answers to all the infinitely many

questions M |= A(n)? for n a natural number.

Proof of Lemma 25.7a: Let d be as in Lemma 25.6a, so we have

M |= ∃y∀x < z (∃w(�(x, w) & w | y) ↔ A(x))[d].

Let b be such that

M |= ∀x < z (∃w(�(x, w) & w | y) ↔ A(x))[b, d].

Since d is nonstandard, for every n, M |= n< z[d]. Thus we have

M |= (∃w(�(n, w) & w | y) ↔ A(n))[b].

Since � represents π , we have

M |= ∀w(�(n, w) ↔ w = pn).

Thus for every n,

M |= pn|y ↔ A(n)[b].

That is,

M |= ∃x(pn · x = y) ↔ A(n)[b].

It follows that, for every n,

M |= A(n) if and only if for some a, M |= pn · x = y[a, b].

By Lemma 25.5a this means

M |= A(n) if and only if for some a, b = a ⊕ · · · ⊕ a [π (n) as]

as required to complete the proof.

Proof of Theorem 25.4a: Suppose ⊕ is arithmetical. Then, since it is obtainable

from ⊕ by primitive recursion, the function f taking a to a ⊕ · · · ⊕ a(n as) is arith-

metical; and then, since it is obtainable from f and π by composition, the function g
taking a to a ⊕ · · · ⊕ a [π (n) as] is arithmetical. (The proof in section 16.1 that re-

cursive functions are arithmetical shows that processes of composition and primitive

recursion applied to arithmetical functions yield arithmetical functions.) Hence the

relation H given by

Hbn if and only if for some a, b = a ⊕ · · · ⊕ a [π (n) as]

or in other words

Hbn if and only if ∃a b = g(a, n)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25.2. OPERATIONS IN NONSTANDARD MODELS 309

is arithmetical, being obtainable by existential quantification from the graph relation

of an arithmetical function.

So let B(x, y) be a formula arithmetically defining H . Let A(x) be the formula

∼B(x, x). Apply Lemma 25.7a to obtain a b such that for all n,M |= A(n) if and

only if Hbn. Since the same sentences are true in M and N , for all n, N |= A(n) if

and only if Hbn. In particular, N |= A(b) if and only if Hbb, that is, N |= ∼B(b, b)

if and only if Hbb. But since B arithmetically defines H , we also have N |= B(b, b)

if and only if Hbb. Contradiction.

For the proof of Theorem 25.4b, we need extensions of the lemmas used for

Theorem 25.4a that will apply not just to models of arithmetic but to models of

P. We state these as Lemmas 25.5b through 25.7b below. As in the case of the

extension of Theorem 25.1a to Theorem 25.1b, some ‘formalizing’ of the kind done

in Chapter 16 is needed. What is needed for Lemma 25.6b, however, goes well beyond

this; so, leaving other details to the reader, we give the proof of that lemma, before

going on to give the derivation of Theorem 25.4b from the lemmas. The proof of

Lemma 25.6b itself uses an auxiliary lemma of some interest, Lemma 25.8 below.

25.5b Lemma. Let M be a nonstandard model of P. For any m > 0,

M |= ∀x m · x = x + · · ·+ x(m xs).

25.6b Lemma. Let M be a nonstandard model of P. Let A(x) be any formula of L .

Then there is a nonstandard element d such that

M |= ∃y∀x < z (∃w(�(x, w) & w | y) ↔ A(x))[d].

25.7b Lemma. Let M be a nonstandard model of P. Let A(x) be any formula of L .

Then there exists a b such that for every n,

M |= A(n) if and only if for some a, b = a ⊕ · · · ⊕ a [π (n) as].

25.8 Lemma (Overspill principle). Let M be a nonstandard model of P. Let B(x) be

any formula of L that is satisfied in M by all standard elements. Then B(x) is satisfied in

M by some nonstandard element.

Proof of Lemma 25.8: Assume not. Then for any d that satisfies B(x) in M, d is

standard, hence d† is standard, and hence d† satisfies B(x) in M. Thus

M |= ∀x(B(x) → B(x ′))

since O, being standard, satisfies B(x) in M,M |= B(0). But also

M |= (B(0) & ∀x(B(x) → B(x ′))) → ∀x B(x)

since this is an axiom of P. So M |= ∀x B(x) and every element satisfies B(x) in M,

contrary to assumption.

Proof of Lemma 25.6b: It is possible to formalize the proof of

∀z∃y∀x < z (∃w(�(x, w) & w | y) ↔ A(x))

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

310 NONSTANDARD MODELS

in P, but to do so would be both extremely tedious and entirely unnecessary, since in

view of the preceding lemma it is enough to show that

∃y∀x < z (∃w(�(x, w) & w | y) ↔ A(x))

is satisfied by all standard elements, and for this it is enough to show that for every

n, the following is a theorem of P:

∃y∀x < n (∃w(�(x, w) & w | y) ↔ A(x)).(1)

Let n = m + 1. First recall that the following is a theorem of P:

∀x(x < n ↔ (x = 0 ∨ · · · ∨ x = m)).(2)

Since � represents π , writing pi for π (i), for all i < n the following is a theorem

of P:

∀w(�(i, w) ↔ w = pi).(3)

Using (2) and (3), (1) is provably equivalent in P to

∃y((p0 | y ↔ A(0)) & . . . & (pm | y ↔ A(m))).(4)

For each sequence e = (e0, . . . , em) of length n of 0s and 1s, let Ae be the conjunction

of all (∼)A(i), where the negation sign is present if ei = 0 and absent if ei = 1. Let

Be(y) be the analogous formula with pi | y in place of A(i). Then the formula after

the initial quantifier in (4) is logically equivalent to the disjunction of all conjunctions

Ae & Be(y). The existential quantifier may be distributed through the disjunction, and

in each disjunct confined to the conjuncts that involve the variable y. Thus (4) is

logically equivalent to the disjunction of all conjunctions Ae & ∃y Be(y). Hence (1)

is provably equivalent in P to this disjunction. But ∃y Be(y) is a true ∃-rudimentary

sentence, and so is provable in P. Hence (1) is provably equivalent in P to the dis-

junction of all Ae. But this disjunction is logically valid, hence provable in P or any

theory. So (1) is provable in P.

Proof of Theorem 25.4b: We need a fact established in the problems at the end

of Chapter 8 (and in a different way in those at the end of Chapter 16): there exist

disjoint semirecursive sets A and B such that there is no recursive set containing A and

disjoint from B. Since the sets are semirecursive, there are ∃-rudimentary formulas

∃yα(x, y) and ∃yβ(x, y) defining them. Replacing these by

∃y(α(x, y)) & ∼∃z ≤ yβ(x, y)) and ∃y(β(x, y) & ∼∃z ≤ y α(x, y))

we get ∃-rudimentary formulas α*(x) and β*(x) also defining A and B, and for which

∼∃x(α*(x) & β*(x)) is a theorem of P. If n is in A, then since α*(n) is ∃-rudimentary

and true, it is a theorem of P, and hence M |= α*(n); while if n is in B, then similarly

β*(n) is a theorem of P and hence so is ∼α*(n), so that M |= ∼α*(n).

Now by Lemma 25.7b, there are elements b+ and b− such that for every n,

M |= α*(n) if and only if for some a, b+ = a ⊕ · · · ⊕ a (π (n) as)

M |= ∼α*(n) if and only if for some a, b− = a ⊕ · · · ⊕ a (π (n) as).

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25.2. OPERATIONS IN NONSTANDARD MODELS 311

Let Y + be {n: M |= α*(n)}, and let Y − be its complement, {n: M |= ∼α*(n)}. Then

we have

Y + = {n: for some a, b+ = a ⊕ · · · ⊕ a (π (n) as)}.
If the function ⊕ is recursive, then (much as in the proof of Theorem 25.4a) since

the function g taking a to a ⊕ · · · ⊕ a (π (n) as) is obtainable from ⊕ by primitive

recursion and composition with π , this g is recursive. Since

Y + = {n: ∃a b+ = g(a, n)}.
Y + is semirecursive. A similar argument with b− in place of b+ shows that the com-

plement Y − of Y + is also semirecursive, from which it follows that Y + is recursive.

But this is impossible, since Y + contains A and is disjoint from B.

For the proof of Theorem 25.4c, we need lemmas analogous to those used for

Theorem 25.4a, with ⊗ in place of ⊕. We state these as Lemmas 25.5c through 25.7c
below. These lemmas pertain to exponentiation. Now the notation x y for exponentia-

tion is not available in L , any more than the notation π for the function enumerating

the primes. But we allow ourselves to use that in stating the lemmas, rather than use

a more correct but more cumbersome formulation in terms of a formula representing
the exponential function. We also write x ↓ y for ‘y has an integral x th root’ or ‘y is

the x th power of some integer’. The only real novelty comes in the proof of Lemma

25.6c, so we give that proof, leaving other details to the reader.

25.5c Lemma. Let M be a nonstandard model of arithmetic. For any m > 0,

M |= ∀x xm = x · · · · · x (m xs).

25.6c Lemma. Let M be a nonstandard model of arithmetic. Let A(x) be any formula

of L . Then there is a nonstandard element d such that

M |= ∃y∀x < z (∃w(�(x, w) & w ↓ y) ↔ A(x))[d].

25.7c Theorem. LetM be a nonstandard model of arithmetic. Let A(x) be any formula

of L . Then there exists a b such that for every n,

M |= A(n) if and only if for some a, b = a ⊗ · · · ⊗ a (π (n) as).

Proof of Lemma 25.6c: It is enough to show that

∀z∃y∀x < z (∃w(�(x, w) & W↓ y) ↔ A(x))

is true in N , since it must then be true in M. Recall that we have shown in the proof

of Lemma 25.6b that

∀z∃y∀x < z (∃w(�(x, w) & w | y) ↔ A(x))

is true in N . It suffices to show, therefore, that the following is true in N :

∀y∃v∀w(w ↓ v ↔ w | y).

In fact, given y, 2y will do for v (unless y = 0, in which case v = 0 will do). For

suppose w divides y, say y = uw. Then 2y = 2uw = (2u)w, and 2y is a wth power.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

312 NONSTANDARD MODELS

And suppose conversely 2y is a wth power, say 2y = tw. Then t cannot be divisible

by any odd prime, and so must be a power of 2, say t = 2u . Then 2y = (2u)w = 2uw,

and y = uw, so y is divisible by w.

25.3 Nonstandard Models of Analysis

In the language L* of arithmetic, under its standard interpretation N* (to revert to

our former notation), we can directly ‘talk about’ natural numbers, and can indirectly,

through coding, ‘talk about’ finite sets of natural numbers, integers, rational numbers,

and more. We cannot, however, ‘talk about’ arbitrary sets of natural numbers or

objects that might be coded by these, such as real or complex numbers. The language
of analysis L**, and its standard interpretation N**, let us do so.

This language is an example of a two-sorted first-order language. In two-sorted

first-order logic there are two sorts of variables: a first sort x, y, z, . . . , which may

be called lower variables, and a second sort X, Y, Z , . . . , which may be called upper
variables. For each nonlogical symbol of a two-sorted language, it must be specified

not only how many places that symbol has, but also which sorts of variables go into

which places. An interpretation of a two-sorted language has two domains, upper

and lower. A sentence ∀x F(x) is true in an interpretation if every element of the

lower domain satisfies F(x), while a sentence ∀XG(X) is true if every element of

the upper domain satisfies G(X). Otherwise the definitions of language, sentence,

formula, interpretation, truth, satisfaction, and so forth are unchanged from ordinary

or one-sorted first-order logic.

An isomorphism between two interpretations of a two-sorted language consists of

a pair of correspondences, one between the lower domains and the other between

the upper domains of the two interpretations. The proof of the isomorphism lemma

(Proposition 12.5) goes through for two-sorted first-order logic, and so do the proofs

of more substantial results such as the compactness theorem and the Löwenheim–

Skolem theorem (including the strong Löwenheim–Skolem theorem of Chapter 19).

Note that in the Löwenheim–Skolem theorem, an interpretation of a two-sorted lan-

guage counts as enumerable only if both its domains are enumerable.

In the language of analysis L** the nonlogical symbols are those of L*, which

take only lower variables, plus a further two-place predicate ∈, which takes a lower

variable in its first place but an upper in its second. Thus x ∈ Y is an atomic formula,

but x ∈ y, X ∈ Y , and X ∈ y are not. In the standard interpretation N** of L*, the

lower domain is the set of natural numbers and the interpretation of each symbol of

L is the same as in the standard interpretation N* of L . The upper domain is the

class of all sets of natural numbers, and the interpretation of ∈ is the membership or

elementhood relation ∈ between numbers and sets of numbers. As (true) arithmetic

is the set of sentences of L* true in N*, so (true) analysis is the set of all sentences

of L** true in N**. A model of analysis is nonstandard if it is not isomorphic to

N**. Our aim in this section is to gain some understanding of nonstandard models

of (true) analysis and some important subtheories thereof.

By the lower part of an interpretation of L**, we mean the interpretation of L*

whose domain is the lower domain of the given interpretation, and that assigns to each

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25.3. NONSTANDARD MODELS OF ANALYSIS 313

nonlogical symbol of L* the same denotation as does the given interpretation. Thus

the lower part of N** is N*. A sentence of L* will be true in an interpretation of L**

if and only if it is true in the lower part of that interpretation. Thus a sentence of L* is

a theorem of (that is, is in) true arithmetic if and only if it is a theorem of true analysis.

Our first aim in this section will be to establish the existence of nonstandard models

of analysis of two distinct kinds. An interpretation of L** is called an ∈-model if (as

in the standard interpretation) the elements of the upper domain are sets of elements

of the lower domain, and the interpretation of ∈ is the membership or elementhood

relation ∈ (between elements of the lower and the upper domain). The sentence

∀X∀Y (∀x(x∈X ↔ x∈Y) → X = Y)

is called the axiom of extensionality. Clearly it is true in any ∈-model and hence in

any model isomorphic to an ∈-model. Conversely, any model M of extensionality

is isomorphic to an ∈-model M#. [To obtain M# from M, keep the same lower

domain and the same interpretations for symbols of L*, replace each element α of

the upper domain of M by the set α# of all elements a of the lower domain such that

a ∈M α, and interpret ∈ not as the relation ∈M but as ∈. The identity function on the

lower domain together with the function sending α to α# is an isomorphism. The only

point that may not be immediately obvious is that the latter function is one-to-one. To

see this, note that if α# = β#, then α and β satisfy ∀x(x ∈ X ↔ x ∈ Y) in M, and

since (2) is true in M, α and β must satisfy X = Y , that is, we must have α = β.]

Since we are going to be interested only in models of extensionality, we may restrict

our attention to ∈-models.

If the lower part of an ∈-model M is the standard model of arithmetic, we call

M an ω-model. The standard model of analysis is, of course, an ω-model. If an

ω-model of analysis is nonstandard, its upper domain must consist of some class

of sets properly contained in the class of all sets of numbers. If the lower part of an

∈-modelM is isomorphic to the standard interpretationN* of L*, thenM as a whole

is isomorphic to an ω-model M#. [If j is the isomorphism from N* to the lower part

of M, replace each element α of the upper domain of M by the set of n such that

j(n) ∈ α, to obtain M#.] So we may restrict our attention to models that are of one of

two kinds, namely, those that either are ω-models, or have a nonstandard lower part.

Our first result is that nonstandard models of analysis of both kinds exist.

25.9 Proposition. Both nonstandard models of analysis whose lower part is a nonstan-

dard model of arithmetic and nonstandard ω-models of analysis exist.

Proof: The existence of nonstandard models of arithmetic was established in the

problems at the end of Chapter 12 by applying the compactness theorem to the theory

that results upon adding to arithmetic a constant ∞ and the sentences ∞ �= n for all

natural numbers n. The same proof, with analysis in place of arithmetic, establishes

the existence of a nonstandard model of analysis whose lower parts is a nonstandard

model of arithmetic. The strong Löwenheim–Skolem theorem implies the existence

of an enumerable subinterpretation of the standard model of analysis that is itself

a model of analysis. This must be an ω-model, but it cannot be isomorphic to the

standard model, whose upper domain is nonenumerable.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

314 NONSTANDARD MODELS

The axiomatizable theory in L* to which logicians have devoted the most attention

is P, which consists of the sentences deducible from the following axioms:

(0) The finitely many axioms of Q

(1) For each formula F(x) of L*, the sentence

(F(0) & ∀x(F(x) → F(x ′))) → ∀x F(x).

It is to be understood that in (1) there may be other free variables u, v, . . . present,

and that what is really meant by the displayed expression is the universal closure

∀u∀v · · · (F(0, u, v, . . .) & ∀x(F(x, u, v, . . .) → F(x ′, u, v, . . .))

→ ∀x F(x, u, v, . . .)).

The sentence in (1) is called the induction axiom for F(x).

The axiomatizable theory in L** to which logicians have devoted the most attention

is the theory P** consisting of the sentences deducible from the following axioms:

(0) The finitely many axioms of Q

(1*) ∀X (0 ∈ X & ∀x(x ∈ X → x ′ ∈ X) → ∀x x ∈ X)

(2) ∀X∀Y (∀x(x ∈ X ↔ x ∈ Y) → X = Y)

(3) For each formula F(x) of L*, the sentence

∃X∀x(x∈X ↔ F(x)).

It is to be understood that in (3) there may be other free variables u, v, . . . and/or

U, V, . . . present, and that what is really meant by the displayed expression is the

universal closure

∀u∀v · · · ∀U∀V · · · ∃X∀x(x ∈ X ↔ F(x, u, v, . . . , U, V, . . .)).

The sentence (1*) is called the induction axiom of P**, the extensionality axiom

(2) has already been encountered, and the sentence (3) is called the comprehension
axiom for F(x). We call P** axiomatic analysis.

Since the set of theorems of (true) arithmetic is not arithmetical, the set of theorems

of (true) analysis is not arithmetical, and a fortiori is not semirecursive. By contrast,

the set of theorems of axiomatic analysis P** is, like the set of theorems of any

axiomatizable theory, semirecursive. There must be many theorems of (true) analysis

that are not theorems of axiomatic analysis, and indeed (since the Gödel theorems

apply to P**), among these are the Gödel and Rosser sentences of P**, and the

consistency sentence for P**.

Note that the induction axiom (1) of P for F(x) follows immediately from the

induction axiom (1) of P** together with the comprehension axiom (3) for F(x).

Thus every theorem of P is a theorem of P**, and the lower part of any model of

P** is a model of P. We say a model of P is expandable to a model of P** if it is the

lower part of a model of P**. Our second result is to establish the nonexistence of

certain kinds of nonstandard models of P**.

25.10 Proposition

Not every model of P can be expanded to a model of P**.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

25.3. NONSTANDARD MODELS OF ANALYSIS 315

Proof: We are not going to give a full proof, but let us indicate the main idea.

Any model of P that can be expanded to a model of P** must be a model of every

sentence of L* that is a theorem of P**. Let A be the consistency sentence for P

(or the Gödel or Rosser sentence). Then A is not a theorem of P, and so there is a

model of P ∪ {∼A}. We claim such a model cannot be expanded to a model of P**,

because A is provable in P**. The most simple-minded proof of the consistency of

P is just this: every axiom of P is true, only truths are deducible from truths, and

0 = 1 is not true; hence 0 = 1 is not deducible from P. In section 23.1 we in effect

produced a formula F(X) of L** which is satisfied in the standard model of analysis

by and only by the set code numbers of sentences of L* that are true in the lower

part of that model (that is, in the standard model of arithmetic). Working in P**,

we can introduce the abbreviation True(x) for ∃X (F(X) & x ∈ X), and ‘formalize’

the simple-minded argument just indicated. (The work of ‘formalization’ required,

which we are omitting, is extensive, though not so extensive as would be required for

a complete proof of the second incompleteness theorem.)

Recall that if a language L1 is contained in a language L2, a theory T1 in L1 is

contained in a theory T2 in L2, then T2 is called a conservative extension of T1 if and

only if every sentence of L1 that is a theorem of T2 is a theorem of T1. What is shown

in the proof indicated for the preceding proposition is, in this terminology, that P**

is not a conservative extension of P.

A weaker variant P+ allows the comprehension axioms (3) only for formulas F(x)

not involving bound upper variables. [There may still be, in addition to free lower

variables u, v, . . . , free upper variables U, V, . . . in F(X).] P+ is called (strictly)
predicative analysis. When one specifies a set by specifying a condition that is nec-

essary and sufficient for an object to belong to the set, the specification is called

impredicative if the condition involves quantification over sets. Predicative analysis

does not allow impredicative specifications of sets. In ordinary, unformalized mathe-

matical argument, impredicative specifications of sets of numbers are comparatively

common: for instance, in the first section of the next chapter, an ordinary, unfor-

malized mathematical proof of a principle about sets of natural numbers called the

‘infinitary Ramsey’s theorem’ will be presented that is a typical example of a proof

that can be ‘formalized’ in P** but not in P+.

An innocent-looking instance of impredicative specification of a set is implicitly

involved whenever we define a set S of numbers as the union S0 ∪ S1 ∪ S2 ∪ · · · of

a sequence of sets that is defined inductively. In an inductive definition, we specify

a condition F0(u) such that u belongs to S0 if and only if F0(u) holds, and specify a

condition F ′(u, U) such that for all i, u belongs to Si+1 if and only if F ′(u, Si) holds.

Such an inductive definition can be turned into a direct definition, since x ∈ S if and

only if

there exists a finite sequence of sets U0, . . . , Un such that

for all u, u ∈ U0, if and only if F0(u)

for all i < n, for all u, u ∈ Ui+1 if and only if F ′(u, Ui)

x ∈ Un.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

316 NONSTANDARD MODELS

But while the quantification ‘there exists a finite sequence of sets’ can by suitable

coding be replaced by a quantification ‘there exists a set’, in general the latter quan-

tification cannot be eliminated. The inductive definition implicitly involves—what

the corresponding direct definition explicitly involves—an impredicative specifica-

tion of a set. In general, one cannot ‘formalize’ in P+ arguments involving this kind

of inductive specification of sets, even if the conditions F0 and F ′ involve no bound

upper variables.

Also, one cannot ‘formalize’ in P+ the proof of the consistency sentence for P

indicated in the proof of the preceding proposition. [One can indeed introduce the

abbreviation True(x) for ∃X (F(X) & x ∈ X), but one cannot in P prove the existence

of {x : True(x)}, and so cannot apply the induction axiom to prove assertions involving

the abbreviation True(x).] So the proof indicated for the preceding proposition fails

for P+ in place of P*. In fact, not only is the consistency sentence for P not an example

of a sentence of L* that is a theorem of P+ and not of P, but actually there can be no
example of such sentence: P+ is a conservative extension of P.

Our last result is a proposition immediately implying the fact just stated.

25.11 Proposition. Every model of P can be expanded to a model of P+.

Proof: Let M be a model of P. Call a subset S of the domain |M| parametri-
cally definable over M if there exist a formula F(x, y1, . . . , ym) of L* and elements

a1, . . . , am of |M| such that

S = {b:M |= F[b, a1, . . . , am]}.
Expand M to an interpretation of L** by taking as upper domain the class of all

parametrically definable subsets ofM, and interpreting ∈ as ∈.We claim the expanded

model M+ is a model of P+. The axioms that need checking are induction (1) and

comprehension (3) (with F having no bound upper variables). Leaving the former to

the reader, we consider an instance of the latter:

∀u1∀u2∀U1∀U2∃X∀x(x ∈ X ↔ F(x, u1, u2, U1, U2)).

(In general, there could be more than two us and more than two Us, but the proof

would be no different.) To show the displayed axiom is true in M+, we need to show

that for any elements s1, s2 of |M| and any parametrically definable subsets S1, S2 of

|M| there is a parametrically definable subset T of |M| such that

M+ |= ∀x(x ∈ X ↔ F(x, u1, u2, U1, U2))[s1, s2, S1, S2, T].

Equivalently, what we must show is that for any such s1, s2, S1, S2, the set

T = {b:M+ |= F(x, u1, u2, U1, U2)[s1, s2, S1, S2, b]}

is parametrically definable. To this end, consider parametric definitions of U1, U2:

U1 = {b:M |= G1[b, a11, a12]}
U2 = {b:M |= G2[b, a21, a22]}.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

PROBLEMS 317

(In general, there could be more than two as for each U , but the proof would be no

different.) Now let

H (x, u1, u2, v11, v12, v21, v22)

be the result of replacing any subformula of form Ui (w) by Gi (w, vi1, vi2). Then

T = {b:M |= H [b, s1, s2, a11, a12, a21, a22]}
and is parametrically definable as required.

Problems

25.1 Show how the proof of the existence of averages can be formalized in P, in

the style of Chapter 16.

25.2 Show that there is a recursive relation ≺ on the natural numbers that is also

isomorphic to the order <K on the set K defined in the proof of Theorem 25.1.

25.3 Show that the successor function † associated with ≺ may also be taken to be

recursive.

25.4 Show that in an ∈-model that is not an ω-model, the upper domain cannot

contain all subsets of the lower domain.

The remaining problems outline the proof of the arithmetical Löwenheim–

Skolem theorem, and refer to the alternative proof of the model existence lemma
in section 13.5 and the problems following it.

25.5 Assuming Church’s thesis, explain why, if � is a recursive set of (code numbers

of) sentences in a recursive language, the set �* obtained by adding (the code

numbers of) the Henkin sentences to � is still recursive (assuming a suitable

coding of the language with the Henkin constants added).

25.6 Explain why, if � is an arithmetical set of sentences, then the relation

i codes a finite set of sentences 	,

j codes a sentence D,

and � ∪ 	 implies D

is also arithmetical.

25.7 Suppose �* is a set of sentences in a language L* and i0, i1, . . . an enumeration

of all the sentences of L*, and suppose we form �# as the union of sets �n ,

where �0 = �* and �n+1 = �n if �n implies ∼in , while �n+1 = �n ∪ {in}
otherwise. Explain why, if �* is arithmetical, then �# is arithmetical.

25.8 Suppose we have a language with relation symbols and enumerably many

constants c0, c1, . . . , but function symbols and identity are absent. Suppose

�# is arithmetical and has the closure properties required for the construction

of section 13.2. In that construction take as the element cMi associated with

the constant ci the number i . Explain why the relation RM associated with

any relation symbol R will then be arithmetical.

25.9 Suppose we have a language with relation symbols and enumerably many

constants c0, c1, . . . , but that function symbols are absent, though identity

may be present. Suppose �# is arithmetical has the closure properties required

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-25 CB421-Boolos March 20, 2007 21:48 Char Count= 0

318 NONSTANDARD MODELS

for the construction of section 13.3. Call i minimal if there is no j < i such

that ci = c j is in �#. Show that the function δ taking n to the nth number i
such that ci is minimal is arithmetical.

25.10 Continuing the preceding problem, explain why for every constant c there

is a unique n such that c = δ(n) is in �#, and that if in the construction of

section 13.3 we take as the element cMi associated with the constant ci this

number n, then the relation RM associated with any relation symbol R will

be arithmetical.

25.11 Explain how the arithmetical Löwenheim–Skolem theorem for the case where

function symbols are absent follows on putting together the preceding six

problems, and indicate how to extend the theorem to the case where they are

present.

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

26

Ramsey’s Theorem

Ramsey’s theorem is a combinatorial result about finite sets with a proof that has inter-
esting logical features. To prove this result about finite sets, we are first going to prove,
in section 26.1, an analogous result about infinite sets, and are then going to derive, in
section 26.2, the finite result from the infinite result. The derivation will be an application
of the compactness theorem. Nothing in the proof of Ramsey’s theorem to be presented
requires familiarity with logic beyond the statement of the compactness theorem, but at
the end of the chapter we indicate how Ramsey theory provides an example of a sentence
undecidable in P that is more natural mathematically than any we have encountered
so far.

26.1 Ramsey’s Theorem: Finitary and Infinitary

There is an old puzzle about a party attended by six persons, at which any two of the

six either like each other or dislike each other: the problem is to show that at the party

there are three persons, any two of whom like each other, or there are three persons,

any two of whom dislike each other.

The solution: Let a be one of the six. Since there are five others, either there will be

(at least) three others that a likes or there will be three others that a dislikes. Suppose

a likes them. (The argument is similar if a dislikes them.) Call the three b, c, d. Then

if (case 1) b likes c or b likes d or c likes d , then a, b, and c, or a, b, and d, or a, c,

and d , respectively, are three persons any two of whom like each other; but if (case 2)

b dislikes c, b dislikes d, and c dislikes d , then b, c, and d are three persons, any two

of whom dislike each other. And either case 1 or case 2 must hold.

The number six cannot in general be reduced; if only five persons, a, b, c, d, e are

present, then the situation illustrated in Figure 26-1 can arise. (A broken line means

‘likes’; a solid line, ‘dislikes’.) In this situation there are no three of a, b, c, d, e any

two of whom like each other (a ‘clique’) and no three, any two of whom dislike each

other (an ‘anticlique’).

A harder puzzle of the same type is to prove that at any party such as the previous

one at which eighteen persons are present, either there are four persons, any two of

whom like each other, or four persons, any two of whom dislike each other. (This

puzzle has been placed among the problems at the end of this chapter.) It is known

that the number eighteen cannot be reduced.

319

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

320 RAMSEY’S THEOREM

Figure 26-1. A party with no clique or anticlique of three.

We are going to prove a theorem that bears on these puzzles. Recall that by a

partition of a nonempty set we mean a family of nonempty subsets thereof, called the

classes of the partition, such that every element of the original set belongs to exactly

one of these classes. By a size-k set we mean a set with exactly k elements.

26.1 Theorem (Ramsey’s theorem). Let r, s, n be positive integers with n ≥ r . Then

there exists a positive integer m ≥ n such that for X = {0, 1, . . . , m − 1}, no matter how

the size-r subsets of X are partitioned into s classes, there will always be a size-n subset Y
of X such that all size-r subsets of Y belong to the same class.

A set Y all of whose size-r subsets belong to the same one of the s classes is called

a homogeneous set for the partition. Note that if the theorem holds as stated, then it

clearly holds for any other size-m set in place of {0, 1, . . . , m − 1}.
For instance, it holds for the set of partiers at a party where m persons are present.

In the puzzles, the size-2 subsets of the set of persons at the party were partitioned

into two classes, one consisting of the pairs of persons who like each other, the other,

of the pairs of persons who dislike each other. So in both problems r = s = 2. In the

first, where n = 3, we showed how to prove that m = 6 is large enough to guarantee

the existence of a homogeneous set of size n—a clique of three who like each other,

or an anticlique of three who dislike each other. We also showed that 6 is the least
number m that is large enough. In the second problem, where n = 4, we reported that

m = 18 is large enough, and that 18 is in fact the least value of m that is large enough.

In principle, since there are only finitely many size-r subsets of {0, . . . , m − 1},
and only finitely many ways to partition these finitely many subsets into s classes,

and since there are only finitely many size-n subsets, we could set a computer to

work searching through all partitions, and for each looking for a homogeneous set.

If some partition were found without a homogeneous set, the computer could go on

to do a similar check for {0, . . . , m}. Continuing in this way, in a finite amount of

time it would find the least m that is large enough to guarantee the existence of the

required homogeneous set.

In practice, the numbers of possibilities to be checked are so large that such a

procedure is hopelessly infeasible. We do not at present have sufficient theoretical

insight into the problem to be able to reduce the number of possibilities that would

have to be checked to the point where a computer could feasibly be employed in

surveying them in order to pinpoint the least m. And it is entirely conceivable that

because of the such physical limitations as those imposed by the speed of light, the

atomic character of matter, and the short amount of time before the universe becomes

unable to sustain life, we are never going to know exact what the value of the least m
is, even for some quite small values of r , s, and n.

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

26.1. RAMSEY’S THEOREM: FINITARY AND INFINITARY 321

So let us set aside the difficult problem of finding the least m that is large enough,

and turn to proving that there is some m that is large enough. The proof of Theorem

26.1 that we are going to present will make a ‘detour through the infinite’. First we

prove the following infinitary analogue:

26.2 Theorem (Infinitary Ramsey’s theorem). Let r, s be positive integers. Then no

matter how the size-r subsets of the set X = {0, 1, 2, . . . } are partitioned into s classes,

there will always be an infinite subset Y of X such that all size-r subsets of Y belong to the

same class.

Note that if the theorem holds as stated, then it clearly holds for any other enu-

merably infinite set in place of {0, 1, 2, . . . }. (If Zeus threw a party for an enumerable

infinity of guests, any two of whom either liked each other or disliked each other,

there would either be infinitely many guests, any two of whom liked each other, or

infinitely many, any two of whom disliked each other.) In fact Theorem 26.2 holds

for any infinite set X , because any such set has an enumerably infinite subset (though

it requires the axiom of choice to prove this, and we are not going to go into the

matter).

The proof of Theorem 26.2 will be given in this section, and the derivation of

Theorem 26.1 from it—which will involve an interesting application of the compact-

ness theorem—in the next. Before launching into the proof, let us introduce some

notation that will be useful for both proofs.

A partition of a set Z into s classes may be represented by a function f whose

arguments are the elements of Z and whose values are elements of {1, . . . , s}: the

i th class in the partition is just the set of those z in Z with f (z) = i . Let us write

f : Z → W to indicate that f is a function whose arguments are the elements of

Z and whose values are elements of W . Our interest is in the case where Z is the

collection of all the size-r subsets of some set X . Let us denote this collection [X]r .

Finally, let us write ω for the set of natural numbers. Then the infintary version of

Ramsey’s theorem may be restated as follows: If f : [ω]r → {1, . . . , s}, then there is

an infinite subset Y of ω and a j with 1 ≤ j ≤ s such that f : [Y]r → { j} (that is, f
takes the value j for any size-r subset of Y as argument).

Proof of Theorem 26.2: Our proof will proceed as follows. For any fixed s > 0,

we show by induction on r that for any r > 0 we can define an operation � such that

if f : [ω]r → {1, . . . , s}, then �(f) is a pair (j , Y) with f : [Y]r → { j}.
Basis step: r = 1. In this case the definition of �(f) = (j, Y) is easy. For each of

the infinitely many size-1 sets {b}, f ({b}) is one of the finitely many positive integers

k ≤ s. We can thus define j as the least k ≤ s such that f ({b}) = k for infinitely many

b, and define Y as {b : f ({b}) = j}.
Induction step: We assume as induction hypothesis that � has been suitably defined

for all g : [ω]r → {1, . . . , s}. Suppose f : [ω]r+1 → {1, . . . , s}. In order to define

�(f) = (j, Y), we define, for each natural number i , a natural number bi , infinite sets

Yi , Zi , Wi , a function fi : [ω]r → {1, . . . , s}, and a positive integer ji ≤s. Let Y0 = ω.

We now suppose Yi has been defined, and show how to define bi , Zi , fi , ji , Wi , and

Yi+1.

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

322 RAMSEY’S THEOREM

Let bi be the least member of Yi .

Let Zi = Yi − {bi }. Since Yi is infinite, so is Zi . Let the members of Zi in increasing

order be ai0, ai1,

For any size-r set x of natural numbers, where x = {k1, . . . , kr }, with k1 < · · · <

kr , let fi (x) = f ({bi , aik1
, . . . , aikr }). Since bi is not one of the aik and f is defined

on all size-(r + 1) sets of natural numbers, fi is well defined.

By the induction hypothesis, for some positive integer ji ≤ s and some infinite set

Wi , �(fi) = (ji , Wi) and for every size-r subset x of Wi , we have fi (x) = ji . We

have thus defined ji and Wi , and we define Yi+1 = {aik : k ∈ Wi }.
Since Wi is infinite, Yi+1 is infinite. Yi+1 ⊆ Zi ⊆ Yi , and thus if i1 ≤ i2, then

Yi2
⊆ Yi1

. And since bi is less than every member of Yi+1, we have bi < bi+1, which

is the least member of Yi+1. Thus if i1 < i2 then bi1
< bi2

.

For each positive integer k ≤ s, let Ek = {i : ji = k}. As in the basis step, some Ek

is infinite, and we let j be the least k such that Ek is infinite, and let Y = {bi : i ∈ E j }.
This completes the definition of �.

Since bi1
< bi2

if i1 < i2, Y is infinite. In order to complete the proof, we must

show that if y is a size-(r + 1) subset of Y , then f (y) = j . So suppose that y =
{bi , bi1

, . . . , bir }, with i < i1 < · · · < ir and i, i1, . . . , ir all in E j . Since the Yi are

nested, all of bi1
, . . . , bir are in Yi . For each m, 1 ≤ m ≤ r , let km be the unique

member of Wi such that bim = aikm . And let x = {k1, . . . , kr }. Then x is a sub-

set of Wi , and since i1 < · · · < ir , we have bi1
< · · · < bir , aik1

< · · · < aikr , and

k1 < · · · < kr , and thus x is a size-r subset of Wi . But �(fi) = (ji , Wi) and thus

fi (x) = ji . Since i is in Ej , ji = j . Thus

f (y) = f
({

bi , bi1
, . . . , bir

}) = f
({

bi , aik1
, . . . , aikr

}) = fi (x) = j

as required.

Before moving on to the next section and the proof of Theorem 26.3, let us point

out that the following strengthening of Theorem 26.2 is simply false: Let s be a

positive integer. Then no matter how the finite sets of natural numbers are partitioned

into s classes, there will always be an infinite set Y of natural numbers such that all

positive integers r , all size-r subsets of Y belong to the same one of the s classes.

Indeed, this fails for s = 2. Let f (x) = 1 if the finite set x contains the number that

is the number of members in x ; and f (x) = 2 otherwise. Then there is no infinite set

Y such that for every r , either f (y) = 1 for all size-r subsets y of Y or f (y) = 2 for

all such y. For if r is a positive integer that belongs to Y and b1, . . . , br are r other

members of Y , then f ({r, b2, . . . , br }) = 1, while f ({b1, . . . , br }) = 2.

26.2 König’s Lemma

In order to derive the original, finitary version of Ramsey’s theorem from the infinitary

version, we will establish a principle known as König’s lemma, concerning objects

called trees. For present purposes, a tree consists of: (i) a nonempty set T of elements,

called the nodes of the tree; (ii) a partition of T into finitely or infinitely many sets

T = T0 ∪ T1 ∪ T2 ∪ · · ·

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

26.2. K ÖNIG’S LEMMA 323

called the levels of the tree; and (iii) a two-place relation R subject to the following

conditions:

(1) Rab never holds for b in T0.

(2) For b in Tn+1, Rab holds for exactly one a, and that a is in Tn .

When Rab holds, we say a is immediately below b, and b is immediately above a.

Figure 26-2 is a picture of a finite tree with ten nodes and four levels. Line segments

connect nodes immediately below and above each other.

Figure 26-2. A finite tree.

A branch through a tree is a sequence of nodes b0, b1, b2, . . . with each bn imme-

diately below bn+1. Obviously, an infinite tree none of whose levels is infinite must

have infinitely many nonempty levels. The following is not so obvious.

26.3 Lemma (König’s lemma). An infinite tree none of whose levels is infinite must

have an infinite branch.

Postponing the proof of this result, let us see how it can be used as a bridge between

the finite and the infinite.

Proof of Theorem 26.1: Suppose that Theorem 26.1 fails. Then for some positive

integers r, s, n, with n ≥ r , for every m ≥ n there exists a partition

f : [{0, 1, . . . , m − 1}]r → {1, . . . , s}
having no size-n homogeneous set Y . Let T be the set of all such partitions without

size-n homogeneous sets for all m, and let Tk be the subset of T consisting of those

f with m = n + k. Let Rfg hold if and only if for some k

f : [{0, 1, . . . , n + k − 1}]r → {1, . . . , s}
g : [{0, 1, . . . , n + k}]r → {1, . . . , s}

and g extends f, in the sense that g assigns the same value as does f to any argument

in the domain of f . It is easily seen that for any g in Tk+1 there is exactly one f in Tk

that g extends, so what we have defined is a tree.

There are only finitely many functions from a given finite set to a given finite set,

so there are only finitely many nodes f in any level Tk . But our initial supposition was

that for every m = n + k there exists a partition f in Tk , so the level Tk is nonempty for

all k, and the tree is infinite. König’s lemma then tells us there will be an infinite branch

f0, f1, f2, . . . , which is to say, an infinite sequence of partitions, each extending the

one before, and none having a size-n homogenous set. We can then define a partition

F : [ω]r → {1, . . . , s}

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

324 RAMSEY’S THEOREM

as follows. For any size-r subset x of ω, let p be its largest element. Then for any k
large enough that p < n + k, x will be in the domain of fk , and we have

fk(x) = fk+1(x) = fk+2(x) = · · ·.
Let F(x) be this common value.

By the infinitary version of Ramsey’s theorem, F has an infinite homogeneous set.

That is, there is an infinite Y and a j with 1 ≤ j ≤ s such that F : [Y]r → { j}. Let Z
be the set of the first n elements of Y , and take k large enough that the largest element

of Z is less than n + k. Then Z will be a size-n subset of {0, . . . , n + k − 1}, with

fk(x) = F(x) = j for all size-r subsets x of Z . In other words, Z will be a size-n
homogeneous set for fk , which is impossible, since fk is in T . This contradiction

completes the proof.

Proof of Lemma 26.3: To prove König’s lemma we are going to use the compact-

ness theorem. Let LT be the language with one one-place predicate B and with one

constant t for each node t in the tree T . Let � consist of the following quantifier-free

sentences:

Bs1 ∨ · · · ∨ Bsk(1)

where s1, . . . , sk are all the nodes in T0;

∼(Bs & Bt)(2)

for all pairs of nodes s, t belonging to the same level; and

∼Bs ∨ Bu1 ∨ · · · ∨ Bum(3)

for every node s, where u1, . . . , um are all the nodes immediately above s. [If there

are no nodes above s, the sentence (3) is just ∼Bs.]

We first show that if � has a model M, then T has an infinite branch. By (1) there

will be at least one node r in T0 such that Br is true in M. By (2) there will in fact

be exactly one such node, call it r0. By (3) applied with r0 as s, there will be at least

one node r immediately above r0 such that Br is true in M. By (2) there will in fact be

exactly one such node, call it r1. Repeating the process, we obtain r0, r1, r2, . . . , each

immediately above the one before, which is to say that we obtain an infinite branch.

We next show that � does have a model. By the compactness theorem, it is enough

to show that any finite subset � of � has a model. In fact, we can show that for any

k, the set �k containing the sentence (1), all the sentences (2), and all the sentences

(3) for s of level less than k has a model. We can then, given a finite �, apply this fact

to the least k such that all s occurring in � are of level <k, to conclude that � has a

model.

To obtain a model of �k , let the domain be T , and let the denotation of each

constant r be the node r . It remains to assign a denotation to B. Take any tk at level

Tk , and take as the denotation of B the set consisting of tk , the node tk−1 at level Tk−1

immediately below tk , the node tk−2at level Tk−2 immediately below tk−1, and so on

down until we reach a node t0 at level 0.

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

26.2. K ÖNIG’S LEMMA 325

The presence of t0 in the denotation of B will make (1) true. Since we have included

in the denotation of B only one node ti at each level Ti for i ≤ k and none at higher

levels, (2) will be true. For a sentence of form (3) with s of level i < k, the first disjunct

will be true unless s is ti , in which case the Bti+1 will be among the other disjuncts,

and will be true. In either case, then, (3) will be true for every sentence of this type in

�k . [The sentence of form (3) with tk as s will be false, but that sentence is not in �k .]

Before indicating the connection of Ramsey’s theorem with the kind of logical

phenomena we have been concerned with in this book, we digress a moment to

present a pretty application of Ramsey’s theorem.

26.4 Corollary (Schur’s theorem). Suppose that each natural number is ‘painted’ ex-

actly one of some finite number of ‘colors’. Then there are positive integers x, y, z all the

same color such that x + y = z.

Proof: Suppose the number of colors is s. Paint each size-2 set {i, j}, i < j , the

same color as the natural number j − i . By Ramsey’s theorem (r = 2, n = 3), there

are a positive integer m ≥ 3 and a size-3 subset {i, j, k} of {0, 1, . . . , m − 1} with

i < j < k, such that {i, j}, { j, k} and {i, k} are all the same color. Let x = j − i ,
y = k − j , and z = k − i . Then x, y, z are positive integers all the same color, and

x + y = z.

Ramsey’s theorem is, in fact, just the starting point for a large body of results in

combinatorial mathematics. It is possible to add some bells and whistles to the basic

statement of the theorem. Call a nonempty set Y of natural numbers glorious if Y
has more than p elements, where p is the least element of Y . Since every infinite set

is automatically glorious, it would add nothing to the infinitary version of Ramsey’s

theorem to change ‘infinite homogeneous set’ to ‘glorious infinite homogeneous set’.

It does, however, add something to the statement of the original Ramsey’s theorem

to change ‘size-n homogeneous set’ to ‘glorious size-n homogeneous set’.

Let us call the result of this change the glorified Ramsey’s theorem. Essentially

the same proof we have given for Ramsey’s theorem proves the glorified Ramsey’s

theorem. (At the beginning, take T to be the set of partitions without glorious size-n
homogeneous sets, and towards the end, take Z to be the set of the first q elements

of Y , where q is the maximum of n and p, p being the least element of Y.) There is,

however, an interesting difference in logical status between the two.

While the proof we have presented for Ramsey’s theorem involved a detour through

the infinite, F. P. Ramsey’s original proof of Ramsey’s theorem did not. Using a reason-

able coding of finite sets of natural numbers by natural numbers, Ramsey’s theorem

can be expressed in the language of arithmetic, and by ‘formalizing’ Ramsey’s proof,

it can be proved in P. By contrast, the glorified Ramsey’s theorem, though it can be

expressed in the language of arithmetic, cannot be proved in P.

It is an example of a sentence undecidable in P that is far more natural, mathe-

matically speaking, than any we have encountered so far. (The sentences involved in

Gödel’s theorem or Chaitin’s theorem, for instance, are ‘metamathematical’, being

about provability and computability, not ordinary mathematical notions on the order of

those occurring in Ramsey’s theorem.) Unfortunately, the Paris–Harrington theorem,

P1: GEM

CB421-26 CB421-Boolos July 27, 2007 17:15 Char Count= 0

326 RAMSEY’S THEOREM

which tells us that glorified Ramsey’s theorem is undecidable in P, requires a deeper

analysis of nonstandard models than that undertaken in the preceding chapter, and is

beyond the scope of a book such as this one.

Problems

26.1 Show that at a party attended by at least nine persons, any two of whom either

like each other or dislike each other, either there are four, any two of whom like

each other, or there are three, any two of whom dislike each other.

26.2 Show that at a party attended by at least eighteen persons, any two of whom

either like each other or dislike each other, either there are four, any two of

whom like each other, or there are four, any two of whom dislike each other.

26.3 A finite set of points in the plane, none lying on the line between any other two,

is said to be convex if no point lies in the interior of the triangle formed by any

three other points, as on the left in Figure 26-3. It is not hard to show that given

Figure 26-3. Convex and concave sets of points.

any set of five points in the plane, none lying on the line between any other

two, there is a convex subset of four points. The Erdös–Szekeres theorem states

that, more generally, for any number n > 4 there exists a number m such that

given a set of (at least) m points in the plane, none lying on the line between

any other two, there is a convex subset of (at least) n points. Show how this

theorem follows from Ramsey’s theorem.

26.4 Show that the general case of Ramsey’s theorem follows from the special case

with s = 2, by induction on s.

26.5 For r = s = 2 and n = 3, each node in the tree used in the proof of Theorem

26.1 in section 26.2 can be represented by a picture in the style of Figure 26-1.

How many such nodes will there be in the tree?

26.6 Prove König’s lemma directly, that is, without using the compactness theorem,

by considering the subtree T * of T consisting of all nodes that have infinitely

many nodes above them (where above means either immediately above, or

immediately above something immediately above, or . . .).

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

27

Modal Logic and Provability

Modal logic extends ‘classical’ logic by adding new logical operators � and ♦ for
‘necessity’ and ‘possibility’. Section 27.1 is an exposition of the rudiments of (sentential)
modal logic. Section 27.2 indicates how a particular system of modal logic GL is related
to the kinds of questions about provability in P we considered in Chapters 17 and 18.
This connection motivates the closer examination of GL then undertaken in section 27.3.

27.1 Modal Logic

Introductory textbooks in logic devote considerable attention to a part of logic we

have not given separate consideration: sentential logic. In this part of logic, the

only nonlogical symbols are an enumerable infinity of sentence letters, and the only

logical operators are negation, conjunction, and disjunction: ∼, &, ∨. Alternatively,

the operators may be taken to be the constant false (⊥) and the conditional (→). The

syntax of sentential logic is very simple: sentence letters are sentences, the constant ⊥
is a sentence, and if A and B are sentences, so is (A → B).

The semantics is also simple: an interpretation is simply an assignment ω of truth

values, true (represented by 1) or false (represented by 0), to the sentence letters. The

valuation is extended to formulas by letting ω(⊥) = 0, and letting ω(A → B) = 1 if

and only if, if ω(A) = 1, then ω(B) = 1. In other words, ω(A → B) = 1 if ω(A) = 0

or ω(B) = 1 or both, and ω(A → B) = 0 if ω(A) = 1 and ω(B) = 0. ∼A may be

considered an abbreviation for (A → ⊥), which works out to be true if and only if

A is false. (A & B) may similarly be taken to be an abbreviation for ∼(A → ∼B),

which works out to be true if and only if A and B are both true, and (A ∨ B) may be

taken to be an abbreviation for (∼A → B).

Validity and implication are defined in terms of interpretations: a sentence D is im-

plied by a set of sentences � if it is true in every interpretation in which all sentences

in � are true, and D is valid if it is true in all interpretations. It is decidable whether a

given sentence D is valid, since whether D comes out true on an interpretation ω de-

pends only on the values ω assigns to the finitely many sentence letters that occur in D.

If there are only k of these, this means that only a finite number of interpretations,

namely 2k of them, need to be checked to see if they make D true. Similar remarks

apply to implication.

327

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

328 MODAL LOGIC AND PROVABILITY

What is done in introductory textbooks that we have not done here is to work

out many particular examples of valid and invalid sentences, and implications and

nonimplications among sentences. We are simply going to presume a certain facility

with recognizing sentential validity and implication.

Modal sentential logic adds to the apparatus of ordinary or ‘classical’ sentential

logic one more logical operator, the box �, read ‘necessarily’ or ‘it must be the case

that’. One more clause is added to the definition of sentence: if A is a sentence, so

is �A. The diamond ♦, read ‘possibly’ or ‘it may be the case that’, is treated as an

abbreviation: ♦A abbreviates ∼�∼A.

A modal sentence is said to be a tautology if it can be obtained from a valid

sentence of nonmodal sentential logic by substituting modal sentences for sentence

letters. Thus, since p ∨ ∼p is valid for any sentence letter p, A ∨ ∼A is a tautology

for any modal sentence A. Analogously, tautological consequence for modal logic is

definable in terms of implication for nonmodal sentential logic. Thus since q is implied

by p and p → q for any sentence letters p and q , B is a tautologous consequence of

A and A → B for any modal sentences A and B. The inference from A and A → B
to B is traditionally called modus ponens.

There is no single accepted view as to what modal sentences are to be considered

modally valid, beyond tautologies. Rather, there are a variety of systems of modal

logic, each with its own notion of a sentence being demonstrable.

The minimal system of modal sentential logic, K, may be described as follows.

The axioms of K include all tautologies, and all sentences of the form

�(A → B) → (�A → �B).

The rules of K allow one to pass from earlier sentences to any sentence that is a

tautologous consequence of them, and to pass

from A to �A.

The latter rule is called the rule of necessitation. A demonstration in K is a sequence

of sentences, each of which either is an axiom or follows from earlier ones by a

rule. A sentence is then demonstrable in K, or a theorem of K, if it is the last sen-

tence of some demonstration. Given a finite set � = {C1, . . . , Cn}, we write ∧C for

the conjunction of all its members, and say � is inconsistent if ∼∧C is a theorem.

We say a sentence D is deducible from � if ∧C → D is a theorem. The usual rela-

tionships hold.

Stronger systems can be obtained by adding additional classes of sentences as ax-

ioms, resulting in a larger class of theorems. The following are among the candidates:

�A → A(A1)

A → �♦A(A2)

�A → ��A(A3)

�(�A → A) → �A.(A4)

For any system S we write �S A to mean that A is a theorem of S.

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

27.1. MODAL LOGIC 329

There is a notion of interpretation or model for K. We are going to be interested

only in finite models, so we build finiteness into the definition. A model for K will

be a triple W = (W, >, ω), where W is a nonempty finite set, > a two-place relation

on it, and ω a valuation or assignment of truth values true or false (represented by

1 or 0) not to sentence letters but to pairs (w, p) consisting of an element w of W and

a sentence letter p. The notion W , w |= A of a sentence A being true in a model W
and an element w is defined by induction on complexity. The clauses are as follows:

W, w |= p for p a sentence letter iff ω(w, p) = 1

notW, w |= ⊥
W, w |= (A → B) iff notW, w |= A or W, w |= B
W, w |= �A iff W, v |= A for all v < w.

(We have written v < w for w > v.) Note that the clauses for ⊥ and → are just like

those for nonmodal sentential logic. We say a sentence A is valid in the model W if

W, w |= A for all w in W .

Stronger notions of model of can be obtained by imposing conditions that the

relation > must fulfill, resulting in a smaller class of models. The following are

among the candidates.

(W 1) Reflexivity: for all w, w > w

(W 2) Symmetry: for all w and v, if w > v, then v > w

(W 3) Transitivity: for all w, v, and u, if w > v > u, then w > u
(W 4) Irreflexivity: for all w, not w > w.

(We have written w > v > u for w > v and v > u.) For any class � of models, we say A
is valid in �, and write |=� A, if A is valid in all W in �.

Let S be a system obtained by adding axioms and � a class obtained by imposing

conditions on >. If whenever �S A we have |=� A, we say S is sound for �. If when-

ever |=� A we have �S A, we say S is complete for �. A soundness and completeness

theorem relating the system S to a class of models � generally tells us that the (set

of theorems of) the system S is decidable: given a sentence A, to determine whether

or not A is a theorem, one can simultaneously run through all demonstrations and

through all finite models, until one finds either a demonstration of A or a model of ∼A.

A large class of such soundness and completeness theorems are known, of which we

state the most basic as our first theorem.

27.1 Theorem (Kripke soundness and completeness theorems). Let S be obtained by

adding to K a subset of {(A1), (A2), (A3)}. Let � be obtained by imposing on <W the

corresponding subset of {(W1), (W2), (W3)}. Then S is sound and complete for �.

Since there are eight possible subsets, we have eight theorems here. We are going

to leave most of them to the reader, and give proofs for just two: the case of the

empty set, and the case of the set {(A3)} corresponding to {(W3)}: K is sound and

complete for the class of all models, and K + (A3) is sound and complete for the class

of transitive models. Before launching into the proofs we need a couple of simple

facts.

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

330 MODAL LOGIC AND PROVABILITY

27.2 Lemma. For any extension S of K, if �S A → B, then �S �A → �B.

Proof: Suppose we have a proof of A → B. Then we can then extend it as follows:

(1) A → B G

(2) �(A → B) N(1)

(3) �(A → B) → (�A → �B) A

(4) �A → �B T(2), (3)

The annotations mean: G[iven], [by] N[ecessitation from step] (1), A[xiom], and

T[autological consequence of steps] (2), (3).

27.3 Lemma. �K (�A & �B) ↔ �(A & B), and similarly for more conjuncts.

Proof:

(1) (A & B) → A T

(2) �(A & B) → �A 25.2(1)

(3) �(A & B) → �B S(2)

(4) A → (B → (A & B)) T

(5) �A → �(B → (A & B)) 25.2(4)

(6) �(B → (A & B)) → (�B → �(A & B)) A

(7) (�A & �B) ↔ �(A & B) T(2), (3), (5), (6)

The first three annotations mean: T[autology], [by Lemma] 25.2 [from] (1), and

S[imilar to] (2).

Proof of Theorem 27.1: There are four assertions to be proved.

K is sound for the class of all models. Let W be any model, and write w |= A
for W , w |= A. It will be enough to show that if A is an axiom, then for all w we

have w |= A, and that if A follows by a rule from B1, . . . , Bn , and for all w we have

w |= Bi for each i , then for all w we have w |= A.

Axioms. If A is tautologous, the clauses of the definition of |= for ⊥ and →
guarantee that w |= A. As for axioms of the other kind, if w |= �(A → B) and w |=
�A, then for any v < w, v |= A → B and v |= A. Hence v |= B for any v < w, and

w |= �B. So w |= �(A → B) → (�A → �B).

Rules. If A is a tautologous consequence of the Bi and w |= Bi for each i , then

again the clauses of the definition of |= for ⊥ and → guarantee that w |= A. For

the other rule, if w |= A for all w, then a fortiori for any w and any v < w, we have

v |= A. So w |= �A.

K is complete for the class of all models. Suppose A is not a theorem. We construct

a model in which A is not valid. We call a sentence a formula if it is either a subsentence

of A or the negation of one. We call a consistent set of formulas maximal if for every

formula B it contains one of every pair of formulas B, ∼B. First note that {∼A} is

consistent: otherwise ∼∼A is a theorem, and hence A is, as a tautologous conse-

quence. Further, note that every consistent set � is a subset of some maximal set:

∧� is equivalent to some nonempty disjunction each of whose conjuncts is a con-

junction of formulas that contains the members of � and contains every formula

exactly once, plain or negated. Further, note that a maximal set contains any formula

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

27.1. MODAL LOGIC 331

deducible from it: otherwise it would contain the negation of that formula; but a set

that contains the negation of a formula deducible from it is inconsistent.

Let W be the set of all maximal sets. W is not empty, since {∼A} is consistent and

therefore a subset of some maximal set. W is finite: if there are only k subsentences

of A, there are at most 2k maximal sets. Define a relation > on W by letting w > v

if and only if whenever a formula �A is in w, the formula A is in v. Finally, for w

in W and sentence letter p, let ω(w, p) = 1 if p is in w, and ω(w, p) = 0 if not. Let

W = (W, >, ω). We are going to show by induction on complexity that for any w in

W and any formula B we have W , w |= B if and only if B is in w. Since there is a

w containing ∼A rather than A, it follows that A is not valid in W .

For the base step, if B is a sentence letter p, then p is in w iff ω(w, p) = 1 iff

w |= p. If B is ⊥, then ⊥ is not in w, since w is consistent, and also it is not the case

that w |= ⊥. For the induction step, if B is C → D, then C and D are subsentences

of A, and ∼B ↔ (C & ∼D) is a theorem, being tautologous. Thus B is not in w iff

(by maximality) ∼B is in w, iff C and ∼D are in w, iff (by the induction hypothesis)

w |= C and not w |= D, iff not w |= C → D. If B is �C , the induction hypothesis is

that for any v, v |= C iff C is in v. We want to show that w |= �C iff �C is in w. For

the ‘if’ direction, suppose �C is in w. Then for any v < w, C is in v and so v |= C .

It follows that w |= �C .

For the ‘only if’ direction, suppose w |= �C . Let

V = {D1, . . . , Dm, ∼C}

where the �Di for 1 ≤ i ≤ m are all the formulas in w that begin with �. Is V
consistent? If it is, then it is contained in some maximal v. Since all Di are in v, we

have v < w. Since ∼C is in v, not v |= C , which is impossible, since w |= �C . So

V is inconsistent, and it follows that

(D1 & · · · & Dm) → C

is a theorem. By Lemma 27.2,

�(D1 & · · · & Dm) → �C

is a theorem, and so by Lemma 27.3,

(�D1 & · · · & �Dm) → �C

is a theorem. Hence, since each �Di is in w, �C is in w.

K + (A3) is sound for transitive models. If w |= �A, then for any v < w it is the

case that for any u < v we have by transitivity u < w, and so u |= A. Thus v |= �A
for any v < w , and w |= ��A. Thus w |= �A → ��A.

K + (A3) is complete for transitive models. The construction used to prove K

complete for the class of all models needs to be modified. Define w > v if and only

if whenever a formula �B is in w, the formulas �B are both B in v. Then > will be

transitive. For if w > v > u, then whenever �A is in w, �A and A will be in v, and

since the former is in v, both will also by in u, so w > u.

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

332 MODAL LOGIC AND PROVABILITY

The only other part of the proof that needs modification is the proof that if w |= �C ,

then �C is in w. So suppose w |= �C , and let

V = {�D1, D1, . . . , �Dm, Dm, ∼C}
where the �Di are all the formulas in w that begin with �. If V is consistent and

v is a maximal set containing it, then w > v and v |= ∼C , which is impossible. It

follows that

�D1 & D1 & · · · & �Dm & Dm → C

�(�D1 & D1 & · · · & �Dm & Dm) → �C

(��D1 & �D1 & · · · & ��Dm & �Dm) → �C

are theorems, and hence any tautologous consequence of the last of these and the

axioms �Di → ��Di is a theorem, and this includes

(�D1 & · · · & �Dm) → �C

from which it follows that w |= �C .

Besides its use in proving decidability, the preceding theorem makes it possible

to prove syntactic results by semantic arguments. Let us give three illustrations. In

both the first and the second, A and B are arbitrary sentences, q a sentence letter not

contained in either, F(q) any sentence, and F(A) and F(B) the results of substituting

A and B respectively for any and all occurrences of q in F . In the second and third,

�� A abbreviates �A & A. In the third, •A is the result of replacing � by �� throughout

A.

27.4 Proposition. If �K A ↔ B, then �K F(A) ↔ F(B).

27.5 Proposition. �K+(A3) �� (A ↔ B) → �� (F(A) ↔ F(B)).

27.6 Proposition. If �K+(A1)+(A3) A, then �K + (A3) •A.

Proof: For Proposition 27.4, it is easily seen (by induction on complexity of F)

that if W = (W, >, ω) and we let W ′ = (W, >, ω′), where ω′ is like ω except that for

all w

ω′(w, q) = 1 if and only if W, w |= A

then for all w, we have

W, w |= F(A) if and only if W ′, w |= F(q).

But if �K A ↔ B, then by soundness for all w we have

W, w |= A if and only if W, w |= B

and hence

W, w |= F(B) if and only if W ′, w |= F(q)

W, w |= F(A) if and only if W, w |= F(B).

So by completeness we have �K F(A) ↔ F(B).

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

27.1. MODAL LOGIC 333

For Proposition 27.5, it is easily seen (by induction on complexity of A) that since

each clause in the definition of truth at w mentions only w and those v with w > v,

for any W = (W, >, ω) and any w in W , whether W , w |= A depends only on the

values of ω(v, p) for those v such that there is a sequence

w = w0 > w1 > · · · > wn = v.

If > is transitive, these are simply those v with w ≥ v (that is, w = v or w > v).

Thus for any transitive model (W, >, ω) and any w, letting Ww = {v : w ≥ v} and

Ww = (Ww, >, ω), we have

W, w |= A if and only if Ww, w |= A.

Now

W, w |= �� C if and only if for all v ≤ w we have W, v |= C.

Thus if W , w |= �� (A ↔ B), then Ww, v |= A ↔ B for all v in Ww. Then, arguing as

in the proof of Proposition 27.4, we have Ww, v |= F(A) ↔ F(B) for all such v, and

so W, w |= �� (F(A) ↔ F(B)). This shows

W, w |= �� (A ↔ B) → �� (F(A) ↔ F(B))

for all transitive W and all w, from which the conclusion of the proposition follows

by soundness and completeness.

For Proposition 27.6, for any model W = (W, >, ω), let •W = (W, ≥, ω). It is

easily seen (by induction on complexity) that for any A and any w in W

W, w |= A if and only if •W, w |= •A.

•W is always reflexive, is the same as W if W was already reflexive, and is transitive

if and only if W was transitive. It follows that A is valid in all transitive models if and

only if •A is valid in all reflexive transitive models. The conclusion of the proposition

follows by soundness and completeness.

The conclusion of Proposition 27.4 actually applies to any system containing K

in place of K, and the conclusions of Propositions 27.5 and 27.6 to any system
containing K + (A3) in place of K + (A3). We are going to be especially interested

in the system GL = K + (A3) + (A4). The soundness and completeness theorems

for GL are a little tricky to prove, and require one more preliminary lemma.

27.7 Lemma. If �GL (�A & A & �B & B & �C) → C , then�GL (�A & �B) → �C ,

and similarly for any number of conjuncts.

Proof: The hypothesis of the lemma yields

�GL (�A & A & �B & B) → (�C → C).

Then, as in the proof of the completeness of K + (A3) for transitive models, we get

�GL (�A & �B) → �(�C → C).

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

334 MODAL LOGIC AND PROVABILITY

From this and the axiom �(�C → C) → �C we get as a tautologous consequence

the conclusion of the lemma.

27.8 Theorem (Segerberg soundness and completeness theorems). GL is sound and

complete for transitive, irreflexive models.

Proof: Soundness. We need only show, in addition to what has been shown in

the proof of the soundness of K + (A3) for transitive models, that if a model is also

irreflexive, then w |= �(�B → B) → �B for any w. To show this we need a notion

of rank.

First note that if > is a transitive, irreflexive relation on a nonempty set W , then

whenever w0 > w1 > · · · > wm , by transitivity we have wi > w j whenever i < j , and

hence by irreflexivity wi �= w j whenever i �= j . Thus if W has only m elements, we can

never have w0 > w1 > · · · > wm . Thus in any transitive, irreflexive model, there is for

any w a greatest natural number k for which there exists elements w = w0 > · · · > wk .

We call this k the rank rk(w) of w. If there is no v < w, then rk(w) = 0. If v < w,

then rk(v) < rk(w). And if j < rk(w), then there is an element v < w with rk(v) = j .

(If w = w0 > · · · > wrk(w), then wrk(w)− j is such a v.)

Now suppose w |= �(�B → B) but not w |= �B. Then there is some v < w such

that not v |= B. Take such a v of lowest possible rank. Then for all u < v, by transitivity

u < w, and since rk(u) < rk(v), u |= B. This shows v |= �B, and since not v |= B,

not v |= �B → B. But that is impossible, since v < w and w |= �(�B → B). Thus

if w |= �(�B → B) then w |= �B, so for all w, w |= �(�B → B) → �B.

Completeness. We modify the proof of the completeness of K + (A3) by letting W
be not the set of all maximal w, but only of those for which not w > w. This makes

the model irreflexive.

The only other part of the proof that needs modification is the proof that if w |= �C ,

then �C is in w. So suppose w |= �C , and let

V = {�D1, D1, . . . , �Dm, Dm, �C, ∼C}

where the �Di are all the formulas in w that begin with �. If V is consistent and v is

a maximal set containing it, then since �C is in v but C cannot be in v, we have not

v > v, and v is in W . Also w > v and v |= ∼C , which is impossible. It follows that

�D1 & D1 & · · · & �Dm & Dm & �C → C

is a theorem, and hence by the preceding lemma so is

(�D1 & · · · & �Dm) → �C

from which it follows that w |= �C .

27.2 The Logic of Provability

Let us begin by explaining why the system GL is of special interest in connection

with the matters with which we have been concerned through most of this book. Let L

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

27.2. THE LOGIC OF PROVABILITY 335

be the language of arithmetic, and φ a function assigning to sentence letters sentences

of L . We associate to any modal sentence A a sentence Aφ of L as follows:

pφ = φ(p) for p a sentence letter

⊥φ = 0 = 1

(B → C)φ = Bφ → Cφ

(�B)φ = Prv(Bφ)

where Prv is a provability predicate for P, in the sense of chapter 18. Then we have

the following relationship between GL and P:

27.9 Theorem (Arithmetical soundness theorem). If �GL A, then for all φ, �P Aφ .

Proof: Fix any φ. It is sufficient to show that �P Aφ for each axiom of GL, and that

if B follows by rules of GL from A1, . . . , Am and �P Aφ

i for 1 ≤ i ≤ m, then �P Bφ .

This is immediate for a tautologous axioms, and for the rule permitting passage to tau-

tologous consequences, so we need only consider the three kinds of modal axioms, and

the one modal rule, necessitation. For necessitation, what we want to show is that if �P

Bφ , then �P (�B)φ , which is to say �P Prv(Bφ). But this is precisely property (P1)

in the definition of a provability predicate in Chapter 18 (Lemma 18.2). The axioms

�(B → C) → (�B → �C) and �B → ��B correspond in the same way to the

remaining properties (P2) and (P3) in that definition.

It remains to show that �P Aφ where A is an axiom of the form

�(�B → B) → �B.

By Löb’s theorem it suffices to show �P Prv(Aφ) → Aφ . To this end, write S for

Bφ , so that Aφ is

Prv(Prv(S) → S) → Prv(S).

By (P2)

Prv(Aφ) → [Prv(Prv(Prv(S) → S)) → Prv(Prv(S))]

Prv(Prv(S) → S) → [Prv(Prv(S)) → Prv(S)]

are theorems of P, and by (P3)

Prv(Prv(S) → S) → Prv(Prv(Prv(S) → S))

is also a theorem of P. And therefore

Prv(Aφ) → [Prv(Prv(S) → S) → Prv(S)]

which is to say Prv(Aφ) → Aφ , being a tautological consequences of these three

sentences, is a theorem of P as required.

The converse of Theorem 27.9 is the Solovay completeness theorem: if for all

φ, �P Aφ , then �GL A. The proof of this result, which will not be needed in what

follows, is beyond the scope of a book such as this.

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

336 MODAL LOGIC AND PROVABILITY

Theorem 27.9 enables us to establish results about provability in P by establishing

results about GL. The remainder of this section will be devoted to the statement

of two results about GL, the De Iongh–Sambin fixed point theorem and a normal
form theorem for letterless sentences, with an indication of their consequences for P.

The proofs of these two results are deferred to the next section. Before stating the

theorems, a few preliminary definitions will be required.

We call a sentence A modalized in the sentence letter p if every occurrence of p
in A is part of a subsentence beginning with �. Thus if A is modalized in p, then

A is a truth-functional compound of sentences �Bi and sentence letters other than

p. (Sentences not containing p at all count vacuously as modalized in p, while

⊥ and truth-functional compounds thereof count conventionally as truth-functional

compounds of any sentences.) A sentence is a p-sentence if it contains no sentence

letter but p, and letterless if it contains no sentence letters at all.

So for example �p → �∼p is a p-sentence modalized in p, as is (vacuously and

conventionally) the letterless sentence ∼⊥, whereas q → �p is not a p-sentence but

is modalized in p, and ∼p is a p-sentence not modalized in p, and finally q → p is

neither a p-sentence nor modalized in p.

A sentence H is a fixed point of A (with respect to p) if H contains only sentence

letters contained in A, H does not contain p, and

�GL �� (p ↔ A) → (p ↔ H).

For any A, �0 A = A and �n + 1 A = ��n A. A letterless sentence H is in normal
form if it is a truth-functional compound of sentences �n⊥. Sentences B and C are

equivalent in GL if �GL (B ↔ C).

27.10 Theorem (Fixed point theorem). If A is modalized in p, then there exists a fixed

point H for A relative to p.

Several proofs along quite different lines are known. The one we are going to give

(Sambin’s and Reidhaar-Olson’s) has the advantage that it explicitly and effectively

associates to any A modalized in p a sentence A§, which is then proved to be a fixed

point for A.

27.11 Theorem (Normal form theorem). If B is letterless, then there exists a letterless

sentence C in normal form equivalent to B in GL.

Again the proof we give will effectively associate to any letterless B a sentence

B# that in normal form equivalent to B in GL.

27.12 Corollary. If A is a p-sentence modalized in p, then there exists a letterless

sentence H in normal form that is a fixed point for A relative to p.

The corollary follows at once from the preceding two theorems, taking as H the

sentence A§#. Some examples of the H thus associated with certain A are given in

Table 27-1.

What does all this tell us about P? Suppose we take some formula α(x) of L
‘built up from’ Prv using truth functions and applying the diagonal lemma to obtain

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

27.3. THE FIXED POINT AND NORMAL FORM THEOREMS 337

Table 27-1. Fixed points in normal form

A �p ∼�p �∼p ∼�∼p ∼��p �p →�∼p
H ∼⊥ ∼�⊥ �⊥ ⊥ ∼��⊥ ��⊥ →�⊥

a sentence γ such that �P πα ↔ α(πα). Let us call such a sentence π a sentence of

Gödel type. Then α(x) corresponds to a p-sentence A(p), to which we may apply

Corollary 27.12 in order to obtain a fixed point H in normal form. This H will in

turn correspond to a truth-functional compound η of the sentences

0 = 1, Prv(0 = 1), Prv(Prv(0 = 1)), . . .

and we get �P πα ↔ η. Since moreover the association of A with H is effective, so

is the association of α with η. Since the sentences in the displayed sequence are all

false (in the standard interpretation), we can effectively determine the truth value of

η and so of πα . In other words, there is a decision procedure for sentences of Gödel

type.

27.13 Example (‘Cashing out’ theorems about GL as theorems about P). When α(x) is

Prv(x), then πα is the Henkin sentence, A(p) is �p, and H is (according to Table 27-1)

∼⊥, so η is 0 �= 1, and since �P πα ↔ 0 �= 1, we get the result that the Henkin sentence

is true—and moreover that it is a theorem of P, which was Löb’s answer to Henkin’s

question. When α(x) is ∼Prv(x), then πα is the Gödel sentence, A(p) is ∼�p, and H is

(according to Table 27-1) ∼�⊥, so η is the consistency sentence ∼Prv(0 = 1), and since

�P πα ↔ ∼Prv(0 = 1), we get the result that the Gödel sentence is true, which is something

that we knew—and moreover that the Gödel sentence is provably equivalent in P to the
consistency sentence, which is a connection between the first and second incompleteness

theorems that we did not know of before.

Each column in Table 27-1 corresponds to another such example.

27.3 The Fixed Point and Normal Form Theorems

We begin with the normal form theorem.

Proof of Theorem 27.11: The proof is by induction on the complexity of B.

(Throughout we make free tacit use of Proposition 27.4, permitting substitution of

demonstrably equivalent sentences for each other.) It clearly suffices to show how

to associate a letterless sentence in normal form equivalent to �C with a letterless

sentence C in normal form.

First of all, put C in conjunctive normal form, that is, rewrite C as a conjunction

D1 & · · · & Dk of disjunctions of sentences �i⊥ and ∼�i⊥. Since � distributes over

conjunction by Lemma 27.3, it suffices to find a suitable equivalent for �D for any

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

338 MODAL LOGIC AND PROVABILITY

disjunction D of �i⊥ and ∼�i⊥. So let D be

�n1⊥ ∨ · · · ∨ �n p ⊥ ∨ ∼�m1⊥ ∨ · · · ∨ ∼�mq ⊥.

We may assume D has at least one plain disjunct: if not, just add the disjunct �0⊥ = ⊥,

and the result will be equivalent to the original.

Using the axiom �B → ��B and Lemma 27.2, we see �GL �i B → �i+1 B for

all i , and hence

(∗) �GL �i B → � j B and �GL ∼� j B → ∼�i B whenever i ≤ j.

So we may replace D by�n⊥ ∨ ∼�m⊥, where n = max(n1, . . . , n p) and m = min(m1,

. . . , mq). If there were no negated disjuncts, this is just �n⊥, and we are done.

Otherwise, D is equivalent to �m⊥ → �n⊥. If m ≤ n, then this is a theorem, so we

may replace D by ∼⊥.

If m > n, then n + 1 ≤ m. We claim in this case �GL �D ↔ �n+1⊥. In one direc-

tion we have

(1) �n⊥ → �n+1⊥ (∗)

(2) (�m⊥ → �n⊥) → (�m⊥ → �n+1⊥) T(1)

(3) �(�m⊥ → �n⊥) → �(�m⊥ → �n+1⊥) 27.2(2)

(4) �(�n + 1⊥ → �n⊥) → �n+1⊥ A

(5) �(�m⊥ → �n⊥) → �n+1⊥ T(3), (4)

(6) �n⊥ → (�m⊥ → �n⊥) T

(7) �n+1⊥ → �(�m⊥ → �n⊥) 27.2(6)

(8) �(�m⊥ → �n⊥) ↔ �n+1⊥. T(5), (7)

And (8) tells us �GL �D ↔ �n+1⊥.

Turning to the proof of Theorem 27.10, we begin by describing the transform

A§.Write � for ∼⊥. Let us say that a sentence A is of grade n if for some distinct

sentence letters q1, . . . , qn (where possibly n = 0), and some sentence B(q1, . . . , qn)

not containing p but containing all the qi , and some sequence of distinct sentences

C1(p), . . . , Cn(p) all containing p, A is the result B(�C1(p), . . . , �Cn(p)) of substi-

tuting for each qi in B the sentence �Ci . If A is modalized in p, then A is of grade n
for some n.

If A is of grade 0, then A does not contain p, and is a fixed point of itself. In this

case, let A§ = A. If

A = B(�C1(p), . . . , �Cn+1(p))

is of grade n + 1, for 1 ≤ i ≤ n + 1 let

Ai = B(�C1(p), . . . , �Ci−1(p), �, �Ci+1(p), . . . ,�Cn+1(p)).

Then Ai is of grade n, and supposing § to be defined for sentences of grade n, let

A§ = B(�C1(A§
1), . . . , �Cn(A§

n+1)).

27.14 Examples (Calculating fixed points). We illustrate the procedure by working out A§

in two cases (incidentally showing how substitution of demonstrably equivalent sentences

for each other can result in simplifications of the form of A§).

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

27.3. THE FIXED POINT AND NORMAL FORM THEOREMS 339

Let A = �∼p. Then A = B(�C1(p)), where B(q1) = q1 and C1(p) = ∼p. Now A1 = B
(�) = � is of grade 0, so A§

1 = A1 = �, and A§ = B(�C1(A§
1)) = �∼�, which is equivalent

to �⊥, the H associated with this A in Table 27-1.

Let A = �(p → q) → �∼p. Then A = B(�C1(p), �C2(p)), where B(q1, q2) =
(q1 → q2), C1(p) = (p → q), C2(p) = ∼p. Now A1 = (� → �∼p), which is equivalent to

�∼p, and A2 = �(p → q) → �, which is equivalent to �. By the preceding example,

A§
1 = �∼�, and A§

2 is equivalent to �. So A§ is equivalent to B(�C1(�⊥), � ∼C2(�)) =
�(�∼� → q) → �∼�, or �(�⊥ → q) → �∼⊥.

To prove the fixed-point theorem, we show by induction on n that A§ is a fixed

point of A for all formulas A modalized in p of grade n. The base step n = 0, where

A§ = A, is trivial. For the induction step, let A, B, Ci be as in the definition of §,
let i range over numbers between 1 and n + 1, write H for A§ and Hi for A§

i , and

assume as induction hypothesis that Hi is a fixed point for Ai . Let W = (W, >, ω)

be a model, and write w |= D for W , w |= D. In the statements of the lemmas, w

may be any element of W .

27.15 Lemma. Suppose w |= �� (p ↔ A) and w |= �Ci (p). Then w |= Ci (p) ↔
Ci (Hi) and w |= �Ci (p) ↔ �Ci (Hi).

Proof: Sincew |= �Ci (p), by axiom (A3)w |= ��Ci (p); hence for allv ≤ w, v |=
�Ci (p). It follows that w |= �� (Ci (p) ↔ �). By Proposition 27.5, w |= �� (A ↔ Ai),

whence by Lemma 27.5 again w |= �� (p ↔ Ai), since w |= �� (p ↔ A). Since Hi

is a fixed point for Ai , w |= �� (p ↔ Hi). The conclusion of the lemma follows on

applying Proposition 27.5 twice (once to Ci , once to �Ci).

27.16 Lemma. w |= �� (p ↔ A) → �� (�Ci (p) → �Ci (Hi)).

Proof: Suppose w |= �� (p ↔ A). By Proposition 27.6, �� D → �� �� D is a theorem,

so w |= �� �� (p ↔ A), and if w ≥ v, then v |= �� (p ↔ A). Hence if v |= �Ci (p), then

v |= �Ci (p) ↔ �Ci (Hi) by the preceding lemma, and so v |= �Ci (Hi). Thus if

w ≥ v, then v |= �Ci (p) ↔ �Ci (Hi), and so w |= �� (�Ci (p) → �Ci (Hi)).

27.17 Lemma. w |= �� (p ↔ A) → �� (�Ci (Hi) → �Ci (p)).

Proof: Suppose w |= �� (p ↔ A), w ≥ v, and v |= ∼�Ci (p). Then there exist u
with v ≥ u and therefore w ≥ u with u |= ∼Ci (p). Take u ≤ v of least rank among

those such that u |= ∼Ci (p). Then for all t with u > t , we have t |= Ci (p). Thus

u |= �Ci (p). As in the proof of Lemma 27.16, u |= �� (p ↔ A), and so by that lemma,

u |= Ci (p) ↔ Ci (Hi) and u |= ∼Ci (Hi). Thus v |= ∼�Ci (Hi) and v |= �Ci (Hi) →
�Ci (p) and w |= �� (�Ci (Hi) → �Ci (p)).

The last two lemmas together tell us that

�� (p ↔ A) → �� (�Ci (Hi) ↔ �Ci (p))

is a theorem of GL. By repeated application of Proposition 27.5, we successively see

that �� (p ↔ A) → �� (A ↔ D) and therefore �� (p ↔ A) → �� (p ↔ D) is a theorem of

P1: GEM

CY504-27 CB421-Boolos June 21, 2007 12:7 Char Count= 0

340 MODAL LOGIC AND PROVABILITY

GL for all the following sentences D, of which the first is A and the last H:

B(�C1(p), �C2(p), . . . , �Cn+1(p))

B(�C1(H1), �C2(p), . . . , �Cn+1(p))

B(�C1(H1), �C2(H2), . . . , �Cn+1(p))
...

B(�C1(H1), �C2(H2), . . . , �Cn+1(Hn+1)).

Thus �� (p ↔ A) → (p ↔ H) is a theorem of GL, to complete the proof of the fixed

point theorem.

The normal form and fixed point theorems are only two of the many results about

GL and related systems that have been obtained in the branch of logical studies known

as provability logic.

Problems

27.1 Prove the cases of Theorem 27.1 that were ‘left to the reader’.

27.2 Let S5 = K + (A1) + (A2) + (A3). Introduce an alternative notion of model for

S5 in which a model is just a pair W = (W, ω) and W, w |= �A iff W, v |= A
for all v in W . Show that S5 is sound and complete for this notion of model.

27.3 Show that in S5 every formula is provably equivalent to one such that in a

subformula of form �A, there are no occurrences of � in A.

27.4 Show that there is an infinite transitive, irreflexive model in which the sentence

�(�p → p) → �p is not valid.

27.5 Verify the entries in Table 27-1.

27.6 Suppose for A in Table 27-1 we took �(∼p → �⊥) → �(p → �⊥). What

would be the corresponding H?

27.7 To prove that the Gödel sentence is not provable in P, we have to assume

the consistency of P. To prove that the negation of the Gödel sentence is not

provable in P, we assumed in Chapter 17 the ω-consistency of P. This is a

stronger assumption than is really needed for the proof. According to Table 27-1,

what assumption is just strong enough?

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-BIB CB421-Boolos July 27, 2007 16:53 Char Count= 0

Annotated Bibliography

General Reference Works

BARWISE, JON (1977) (ed.), Handbook of Mathematical Logic (Amsterdam: North Holland). A col-

lection of survey articles with references to further specialist literature, the last article being an

exposition of the Paris–Harrington theorem.

GABBAY, DOV, and GUENTHNER, FRANZ (1983) (eds.), Handbook of Philosophical Logic (4 vols.)

(Dordrecht: Reidel). A collection of survey articles covering classical logic, modal logic and allied

subjects, and the relation of logical theory to natural language. Successive volumes of an open-

ended, much-expanded second edition have been appearing since 2001.

VAN HEIJENOORT, JEAN (1967) (ed.), From Frege to Gödel: A Source Book in Mathematical Logic,
1879–1931 (Cambridge, Massachusetts: Harvard University Press). A collection of classic pa-

pers showing the development of the subject from the origins of truly modern logic through the

incompleteness theorems.

Textbooks and Monographs

ENDERTON, HERBERT (2001), A Mathematical Introduction to Logic, 2nd ed. (New York: Harcourt/

Academic Press). An undergraduate textbook directed especially to students of mathematics and

allied fields.

KLEENE, STEVEN COLE (1950), Introduction to Metamathematics (Princeton: D. van Nostrand). The

text from which many of the older generation first learned the subject, containing many results still

not readily found elsewhere.

SHOENFIELD, JOSEPH R. (1967), Mathematical Logic (Reading, Massachusetts: Addison-Wesley).

The standard graduate-level text in the field.

TARSKI, ALFRED, MOSTOWSKI, ANDRZEJ, and ROBINSON, RAPHAEL (1953), Undecidable Theories
(Amsterdam: North Holland). A treatment putting Gödel’s first incompleteness theorem in its most

general formulation.

By the Authors

BOOLOS, GEORGE S. (1993), The Logic of Provability (Cambridge, U.K.: Cambridge University Press).

A detailed account of work on the modal approach to provability and unprovability introduced in

the last chapter of this book.

JEFFREY, RICHARD C. (1991), Formal Logic: Its Scope and Limits, 4th ed. (Indianapolis: Hackett).

An introductory textbook, supplying more than enough background for this book.

341

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-BIB CB421-Boolos July 27, 2007 16:53 Char Count= 0

342

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

Index

abacus (machine), 45ff, simulation of Turing machine

by, 51ff

abacus-computable function, 46ff

abbreviation, 108ff

accent (′), 64

Ackermann, Wilhelm, see Ackermann function

Ackermann function, 84f

A-correct, 290

Addison, John, see Addison’s theorem

Addison’s theorem, 286, 289ff

addition, abacus computability of, 48f, laws of, 218,

Turing computability of, 29f

address of a register, 46

ampersand (&), 102

analysis, 312ff, axiomatic, 314, predicative, 315

analytical sets, relations, functions, 284

antidiagonal sequence, 18, set, 18

Arabic numerals, see decimal representation

argument(s) of a function, 4

Aristotle, 272

arithmetic (true arithmetic), 150, 207, non-standard

models of, 150f, 302ff, undecidability of, 222,

without addition, 295, without multiplication, 295;

see also P, Q, R

arithmetical classes, 287

arithmetical completeness theorem, see Solovay

completeness theorem

arithmetical definability, see arithmetical sets,

arithmetical classes

arithmetical equivalence of formulas, 205

arithmetical Löwenheim–Skolem theorem, 305, 317f

arithmetical sets and relations, 199, 286ff

arithmetical soundness theorem, 335

arithmetization of syntax, 187ff

arrow (→), 102, 107f, 327

associative laws of addition and multiplication, 218,

of conjunction and disjunction, 245

atomic formula, 107

atomic term, 107

avoidable appeal to Church’s thesis, 83

axiom of choice (AC), 163, 248, 341

axiom of enumerability, 281, of induction, 214, 283,

314, of infinity, 282

axioms of GL, 333, of K, 328, of P, 214–215, of Q,

207f, of R, 216, of S5, 340

axiom scheme, 214

axiomatizable theory, 191, finitely, 191

back-and-forth argument, 345

bars, 262

Barwise, Jon, 341

base-b representation of numbers, 11; see also binary,

decimal, duodecimal

base step in proof by induction, 109, 212–213

basic functions, 64

Behmann, Heinrich, see Löwenheim–Behmann

theorem

Benacerraf, Paul, xii

Bernays, Paul, 233

Berry’s paradox, 227

Bertrand’s postulate, see Chebyshev’s theorem

beta function (β-function) lemma, 203

Beth, Ewart W., see Beth definability theorem

Beth definability theorem, 265ff

biconditional (↔), 102, 108

binary representation of numbers, 11, 21, 89

Boole, George, 272

box (�, ��), 328, 332

box of an abacus, 46

bound variables, 111, relettering of, 124

bounded minimization and maximization, 77

bounded quantification, 76

branch, 323

Büchi, J. R., see Turing–Büchi proof

busy beaver problem, see productivity

canonical domains, 142, 147

Cantor, Georg, 239; see also back-and-forth argument,

Cantor’s theorem, diagonalization method, zig-zag

enumeration

Cantor’s theorem, 16ff

caret (∧), 328

343

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

344 INDEX

categorical theory, see denumerably categorical

Chaitin, Gregory, see Chaitin’s theorem

Chaitin’s theorem, 228f

characteristic function, 73

Chebyshev’s theorem, 204, 238

Ch’in Chiu-shiao (Qin Jiushao), see Chinese

remainder theorem

Chinese remainder theorem, 203

choice, axiom of, see axiom of choice

Church, Alonzo, 239; see also Church–Herbrand

theorem, Church’s theorem, Church’s thesis

Church–Herbrand theorem, 270f; see also dyadic

logic

Church’s theorem, 120, 132, 134, Gödel-style proof

of, 132ff, Turing–Büchi proof of, 126ff

Church’s thesis, 71, 134, 189, 192, avoidable and

unavoidable appeals to, 83, extended, 71

class, 286

clique, 319

closed formula or sentence, 103, 112

closed term, 103

closure properties of recursive relations, 76, of

semi-recursive relations, 81f

closure properties of a set of sentences, 155

code number, 8ff, of an expression, 188, 193, of a

sequence, 12f, of a Turing machine, 36ff

coding operations of a Turing machine, 88ff; see also
code number

coextensive, 296

cofinite, 15

Cohen, Paul, 239

coherence, 301

combining Turing machines, 39

commutative laws of addition and multiplication, 218,

of conjunction and disjunction, 245

compactness theorem, 137, 147ff, and second-order

logic, 279, 283, for truth-functional valuations, 254

complementation principle, 82

complete induction, 213

complete set of sentences, 147, theory, 191

completeness, 148, in modal logic, 329

completeness theorem, see Gödel completeness

theorem, Kripke completeness theorems, Segerberg

completeness theorem, Solovay completeness

theorem

complexity, 228f

composition of functions, 14, 58, 64

comprehension, axiom, 314

concatenation function, 84, 187

conclusion of a rule, 169

condition, 289

conditional (→), 102, 108, 327

conditional probability, 301

configuration of a Turing machine, 27, standard initial

and halting, 31f

congruence axioms, 257

conjunction (&), 75, 102, 107, 327, general (∧), 328

conjunctive normal form, 244, full, 245

connective, 102, zero-place, see constant truth and

falsehood

consequence, logical, 101, 119

conservative extension, 264, 315

consistency, unprovability of, see second

incompleteness theorem

consistency sentence, 232

consistent set of sentences, 169, theory, 191

constant functions, 65

constant symbol, 103, elimination of, 255ff

constant truth and falsehood (�, ⊥), 245, 327

constraint, 301

constructive proof, 182, 237f

continuum hypothesis (CH), 239

convex set of points, 326

copying machine, 39

correct, 199; see also A-correct

correspondence, 14

corners (�,�), see Gödel numeral

countable, 3; see also enumerable

Craig, William, see Craig interpolation theorem,

Craig reaxiomatizability lemma

Craig interpolation theorem, 260ff

Craig reaxiomatizability lemma, 198

cryptographic functions, 193

cut elimination, 181

decidable, effectively, 73, recursively, see recursive

sets; semi-recursively, see semi-recursive sets

decidable set of sentences, 191, theory, 191

decimal representation of numbers, 11, 24f

decision problem, 126

decoding, 8

deduction, deducibility, 148, 168f, in modal logic,

328

definability, explicit, 266, implicit, 266; see also
Addison’s theorem, analytical sets, arithmetical

sets, Beth’s definability theorem, predicative and

impredicative, Richard’s paradox, Tarski’s theorem

definition by cases, 74

De Jongh, Dick, see de Jongh–Sambin theorem

De Jongh–Sambin theorem, 336

demonstration, demonstrability, 148, 168f, in modal

logic, 328

denial, see negation

denotation of a symbol, 104, of a term, 115

dense linear order, 152

density, 294

denumerable or enumerably infinite, 4

denumerably categorical, 147

derivation and derivability, 168

description of a time, 130

diagonal lemma, 220f

diagonal sequence, 18, set, 18

diagonalization, method of, 17ff, of a relation, 86, of

an expression, 220

diagram, 164

diamond (♦), 328

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

INDEX 345

difference function (.−), modified, 61, 69

disjunction (∨), 76, 102, 107, 372

disjunctive normal form, 244, full, 245

distributive law of addition and multiplication, 218, of

conjunction and disjunction, 245

dithering machine, 39

divisibility (|), 86

domain of a function, 7

domain of an interpretation or model, 103f, canonical,

142, 147

double arrow (↔), 102, 107f

double turnstile (|=), 114

Dreben, Burton, xii

duodecimal representation of numbers, 11

dyadic predicates and dyadic logic, 271, 275ff

effectively computable function, 23ff, 63

effectively decidable set or relation, 73

effectively semi-decidable set or relation, 80

Elements of Geometry, see Euclid’s Elements
elementarily equivalent, 251

elementary operation of an abacus, 47

elementary subinterpretation or submodel, 251

elimination of quantifiers, 296

empty function, 7

empty language, 103

empty set (Ø), 4

emptying a box, 47

encoding, 8

Enderton, Herbert, 341

entering sentence, 169

entry function, 80

enumerability, axiom of, 281

enumerable, 3

enumerably infinite or denumerable, 4

enumerator, 252

Epimenides or liar paradox, 106, 227

epsilon model (∈-model), 313

equals sign, see identity symbol

equinumerous sets, 14

equivalence, arithmetical, 205

equivalence, axiom of, 257

equivalence, logical, 122, 124f

equivalence class, 143

equivalence relation, 142ff

erasure act of a Turing machine, 26

Erdös–Paul, see Erdös–Szekeres theorem

Erdös–Szekeres theorem, 326

essential undecidability, 222

Euclid of Alexandria, see Euclid’s Elements
Euclid’s Elements, 203, 238

Euler φ-function, 86

existential quantification (∃), 103, 107, bounded, 76

existential sentences and formulas, 164, 247

existential, rudimentary (∃-rudimentary) sentences

and formulas, 204, generalized, 204

exiting sentence, 169

expansion, 247

explicit definability, 266

exponential function (↑), 66, abacus computability

of, 50

exponential-arithmetical (↑-arithmetical)

definability, 200

extended Church’s thesis, 71

extension of an interpretation or model, 250

extension of a set of sentences or theory, 264,

conservative, 264, 315

extensionality axiom, 313f

extensionality lemma, 118, 123

factorial, 68

falsehood, constant (⊥), 245, 327

Fara, Michael, xiii

Felapton, 112

Field, Hartry, xii

finite character, 154, 163

finitely axiomatizable theory, 191

finitely satisfiable sentence or set, 271f, 300; see also
Trakhtenbrot’s theorem

finitism, 238

first graph principle, 82

first incompleteness theorem, 223f

first-order logic, 101ff

fixed point theorem, see De Jongh–Sambin theorem

flow chart, 26

flow graph, see flow chart

forcing (
), 289ff, and FORCING, 291ff

formalization, 215

formation sequence, 107, 113, 195

formula, 103, 107f, second-order, 279f

free variables, 111, 195f

Frege, Gottlob, 272, 285

function, 4, one-to-one, onto, 14, partial and total, 7

function symbols, 103, elimination of, 255ff

function variable, 279

GL (system of modal logic), 333ff

Gabbay, Dov, 341

generalized existential-rudimentary (∃-rudimentary)

formula or sentence, 204

generic set, 291ff

Gentzen, Gerhard, see sequent calculus, cut

elimination

Gentzen system, see sequent calculus

glorified Ramsey’s theorem, 325

Glymour, Clark, xii

Gödel, Kurt, 232ff–9, see also completeness theorem,

first and second incompleteness theorems

Gödel completeness theorem, 148, 163ff, 174ff,

abstract, 190, failure for second-order logic, 279,

283

Gödel incompleteness theorems, see first

incompleteness theorem, second incompleteness

theorem

Gödel number, see code number of an expression

Gödel numeral, 220

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

346 INDEX

Gödel sentence, 225

Gödel–Berry formula, 228

Gödel–Chaitin formula, 228

Gödel–Grelling formula, 227

Gödel–Rosser sentence, 226

Gödel-style proof of Church’s theorem, 126, 132ff

Goldfarb, Warren, xiii

graph principle, first, 82, second, 96

graph relation of a function, 75

greatest common divisor, 86

Grelling or heterological paradox, 227

Guenthner, Franz, 341

halting, of a Turing machine, 26, in standard

configuration or position, 32, 91

halting function, 38f

halting problem, 40

Hare, Caspar, xiii

Harrington, Leo, see Paris–Harrington theorem

Henkin, Leon, 285; see also Henkin axioms, Henkin

sentence

Henkin axioms, 162, 164

Henkin sentence, 235

Herbrand, Jacques, see Herbrand–Church theorem,

Herbrand’s theorem

Herbrand’s theorem, 253ff

heterological or Grelling paradox, 227

Hilbert, David, 238; see also Hilbert’s thesis

Hilbert’s thesis, 185

Hindu–Arabic numerals, see decimal representation

homogeneous set, 320

horizontal section, 86

identifying nodes of a flow chart, 43

identity function(s), 5, 57, 64

identity of indiscernibles, 280

identity relation, 104, Whitehead–Russell definition

of, 281

identity symbol, 103, elimination of, 255ff

implication, logical, 101

implicit definability, 266

impredicative and predicative, 315f

incompleteness of second-order logic, see Gödel

completeness theorem, failure for second-order

logic

incompleteness theorems, see first incompleteness

theorem, second incompleteness theorem

inconsistent sentence or set, 148, theory, 191, in

modal logic, 328

individual symbol, see constant

individual variable, 278; see also variable

induction, mathematical, proof by, 212– 213,

complete, 213

induction axioms, 214, second-order, 283

induction hypothesis, 109

induction on complexity, proof by, 109ff

induction scheme, 214

induction step in a proof, 109, 213

infinitary Ramsey’s theorem, 321

infinity, axiom of, 282

instance of a formula, 112

interpolant, 261

interpolation theorem, see Craig interpolation

theorem, Lyndon interpolation theorem

interpretation of a language, 102, 103f, in modal

logic, 327

inverse function, 14

inversion lemma, 179f, 186

irrefutable, see consistent

isomorphism, 139ff

isomorphism lemma, 140

isomorphism type, 142

J, see pairing function

junction, see conjunction, disjunction

K (minimal system of modal logic), 328ff

Kant’s theorem, 269

Kleene normal form theorem, 94

Kleene, Steven Cole, 341; see also Kleene normal

form theorem, Kleene’s theorem

Kleene’s theorem, 82

Kochen, Simon, xiii

König’s lemma, 322ff

Kreisel, Georg, see Tennenbaum–Kreisel theorem

Kripke, Saul, xi; see also Kripke completeness

theorem

Kripke completeness theorems, 329ff

L∗, see language of arithmetic

L∗∗, see language of analysis

Lagrange’s theorem, 204, 213

Lambek, Joachim, see abacus

Lambek machine, see abacus

language, 103, empty, 103, meta-, 121, natural, 122f,

non-enumerable, 162f, object, 121, of analysis, 312,

of arithmetic, 103

leapfrog routine, 31

least common multiple, 86

least-number principle, 214

left introduction rules, 170

left movement of a Turing machine, 26

left number, 89

Leibniz’s law, 280

length function, 80

letterless sentence, 336, normal form theorem for, 336ff

level of a tree, 322f

Lewis, David, xiii

liar or Epimenides paradox, 106

linear order, 151f

lines or steps, 168

Löb, M. H., see Löb’s theorem

Löb’s theorem, 236

logarithm functions, 79

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

INDEX 347

logical consequence, see consequence

logical equivalence, see equivalence, logical

logical symbols, 102

Löwenheim, Leopold, see Löwenheim–Behmann

theorem, Löwenheim–Skolem theorem

Löwenheim–Behmann theorem, 270; see also
monadic logic

Löwenheim–Skolem theorem, 137, 147ff,

arithmetical, 305, 317f, and second-order logic,

279, 282, strong, 251, upward, 163

lower domain, 312

lower inequality, 297

lower part, 312

Lyndon, Roger, see Lyndon interpolation theorem

Lyndon interpolation theorem, 268

machine table, 26

Maltsev (Malcev), A. I., see compactness theorem

mathematical induction, proof by, see induction,

mathematical

matrix, 246

max function, 34

maximal principle, 163

McAloon, Kenneth, see Tennenbaum–McAloon

theorem

Mellema, Paul, xiii

metalanguage, 121

metalogical, 120

min function, 34

minimal arithmetic, see Q

minimal system of modal logic, see K

minimization, 60f, 70ff, bounded, 77

modal logic, 123, 327ff

modalized, 336

models, 137ff, existence of, 153ff, number of, 139ff,

size of, 137, in modal logic, 329ff; see also epsilon

model, non-standard model, standard model

modus ponens, 328

monadic predicates and monadic logic, 272ff

monadic represention of numbers, 24, modified, 63f

monotone function, 98

mop-up, 54ff

Mostowski, Andrzej, 341

multiplication, abacus computability of, 49, laws of,

218, Turing computability of, 29ff

N*, see standard model of arithmetic

N**, see standard model of analysis

name, see constant

natural language, 122f; see also Hilbert’s thesis

necessity (�), 328

necessitation, 328

negation (∼), 75, 102, 107, 327

negation normal form, 243f

n-generic, 291

nonconstructive proof, 182, 237f

nonlogical symbols, 103

nonstandard models, of analysis, 312ff, of arithmetic,

150f, 302ff

normal form, for sentences and sets, 243, conjunctive,

244, disjunctive, 244, full conjunctive and

disjunctive, 245, for letterless sentences, 336ff,

negation, 243f, prenex, 246, Skolem, 247f

normal form, for terms, 297

nullity problem, 132

numerals, see base-b representation, monadic or tally

representation

object language, 121

objectual quantifier, 117

official and unofficial notation, see abbreviation

omega-consistency and -inconsistency (ω-consistency

and -inconsistency), 217, 226

omega-model (ω-model), 313

one-to-one function, 14

onto function, 14

open formula, 103, 112

open term, 103

ordinal numbers, 210

ordinary language, see natural language

overspill, 147, 309

P (Peano arithmetic), 214–215

Padoa, Alessandro, see Padoa’s method

Padoa’s method, 267

pairing function (J), 8f, 71

paradox, Berry, 227, Epimenides or liar, 106, 227,

Grelling or heterological, 227, Richard, 21f,

Russell’s, 285, Skolem, 252f

parentheses, 102, 109; see also abbreviation

parenthesis lemma, 109

Paris, Jeffrey, see Paris–Harrington theorem

Paris–Harrington theorem, 325, 341

partition, 143; see also Ramsey’s theorem

parity, 29

partial function, 7, recursive function, 71

Peano, Giuseppi, see P

Peano arithmetic, see P

Pendelbury, Michael J., xiii

pi (�) notation, 69

places, 103

positively semi-decidable, see semi-decidable

positively semi-definable, see semi-definable

possibility (♦), 328

power, see exponentiation

predecessor function, 69

predicate or relation symbol, 103, dyadic, 271, 275ff,

identity, 103, 255ff, monadic, 272ff

predicative and impredicative, 315f

prefix, 246

premiss of a rule, 169

prenex normal form, 246

Presburger arithmetic, see arithmetic without

multiplication

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

348 INDEX

Presburger, Max, see arithmetic without

multiplication

preservation upwards and downwards, 164f

prime decomposition, 13

primitive recursion, 58f, 67

primitive recursive functions, 67, 132ff, real numbers,

86, sets or relations, 73

print operation of a Turing machine, 26

probability measure, 301

product, see multiplication, pi notation

productivity, of a Turing machine, 42

projection functions, 64

proof by contradiction, 170, 238

proof by induction, see induction

proof procedure, 166ff

proof theory, 179

provability logic, 387; see also GL

provability predicate, 234, 335

provable (
), 191

power, see exponentiation

Putnam, Hilary, xiii

Q (minimal arithmetic), 207ff

Qin Jiushao (Ch’in Chiu-shao), see Chinese

remainder theorem

quadruples of a Turing machine, 26

quantifier, 102, bounded, 76, existential, 102, 107,

universal, 102, 107

Quine, Willard Van Orman, xiii

quotient function, 12, 61

R (Robinson arithmetic), 216ff

Rado, Tibor, see productivity

Ramsey, Frank Plumpton, see Ramsey’s theorem

Ramsey’s theorem, 319ff, glorified, 325, infinitary,

321

random access, 46

range of a function, 7

recursion, see primitive recursion

recursion equations, 67

recursive function, 61, 71, set or relation, 73

recursively enumerable sets, 96ff; see also
semi-recursive sets

recursively inseparable sets, 98

reduct, 247

reflexive relation, 143

refutation, refutability, 167ff; see also inconsistent

registers of an abacus, see box

regular function or relation, 71

Reidhaar-Olson, Lisa, 336

relation, 73, 104

relation symbol or predicate, 103

relation variable, 279

relatively prime, 86

relativized quantifiers, 296

relettering bound variables, 124

remainder function, 12, 61

representable, 207ff

Richard’s paradox, 21f

right introduction rules, 170

right movement of a Turing machine, 26

right number, 89

Robinson, Abraham, see Robinson’s joint

consistency theorem

Robinson arithmetic, see R

Robinson, Raphael, 341; see also R

Robinson’s joint consistency theorem, 264f

Rosser, J. Barkley, see Rosser sentence

Rosser sentence, 225

rudimentary formula, 204; see also existential-

rudimentary, universal-rudimentary

rudimentary function, 206

rule of inference, 169

Russell, Bertrand, see Russell’s paradox,

Whitehead–Russell definition of identity

Russell’s paradox, 285

S5, 340

Sambin, Giovanni, 336; see also De Jongh–Sambin

theorem

Santa Claus, 235

satisfaction of a formula, 117ff

satisfaction properties, 153f

satisfiable sentence or set, 120

Scanlon, T. M., xiii

scanned symbol, 25

scheme, see axiom scheme

Schur’s theorem, 325

scoring function, 40f

second graph principle, 96

second incompleteness theorem, 232ff

second-order logic, 279ff

section of a relation, see horizontal section,

vertical section

secures (⇒), 167f

Segerberg, Krister, see Segerberg completeness

theorem

Segerberg completeness theorem, 334

semantics of first-order logic, 114ff, distinguished

from syntax, 106

semi-decidable set or relation, effectively, 80,

recursively, see semi-recursive set or relation

semi-definable set or relation, 218

semi-recursive set or relation, 80ff; see also
recursively enumerable

sentence or closed formula, of first-order logic, 103,

112, of modal logic, 328, of second-order logic, 280

sentence letter, 103, 107, 114, 327

sentential logic, 301, 327

sequents and sequent calculus, 166ff

Shoenfield, J. R., 341

sigma (�) notation, 69

signature of an equivalence relation, 143, 151

size-n set, 320

Skolem, Thoralf, see Löwenheim–Skolem theorem,

Skolem normal form

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

INDEX 349

Skolem axioms, 248

Skolem expansion, 248

Skolem function symbol, 247

Skolem normal form, 247

Skolem paradox, 252f

Smith, Nicholas, xiii

Solovay, Robert, see Solovay completeness theorem

Solovay completeness theorem, 335

soundness, 148, 167, 174ff, in modal logic, 329,

arithmetical, 335

spectrum, 149

standard configuration or position, initial, 31, final or

halting, 32, 91

standard element of a non-standard model, 303

standard interpretation or model, of the language of

analysis, 312, of the language of arithmetic, 104

standing sentence, 169

state of a Turing machine, 25

steps or lines, 168

subformula, 111

subinterpretation or submodel, 249f, elementary,

251

subsentence, 112

substitution, of equivalents, 124

substitution of functions, see composition

substitution of functions in relations, 75

substitution of terms for variables, 188f, 195;

see also instance

substitution function, 84

substitutional quantification, 116

subterm, 111

successor function, 57, 64

successor step in proof by induction, see induction

step

sum, see addition, sigma notation

Sun Zi (Sun Tze), see Chinese remainder theorem

super-duper-exponentiation, 67

super-exponentiation (⇑), 66f

symmetric relation, 143

syntax of first-order logic, 106ff, distinguished from

semantics, 106

tally representation of numbers, see monadic

representation

Tarski, Alfred, 341; see also compactness theorem,

Tarski’s theorem, truth

Tarski’s definition of truth, see truth

Tarski’s theorem, 222

tautology and tautological consequence, 328

Tennenbaum, Stanley, see Tennenbaum’s theorem,

Tennenbaum–Kreisel and Tennenbaum–McAloon

theorems

Tennenbaum’s theorem, 302

Tennenbaum–Kreisel theorem, 306

Tennenbaum–McAloon theorem, 306

term, 103, 107, atomic, 107, closed, 103, 107,

denotation of, 115, open, 103, 107

term model, 155

theorem, of a first-order theory, 191, 263, in modal

logic, 328

theory, 191, 263, axiomatizable, 191, complete, 191,

consistent, 191, decidable, 191, finitely

axiomatizable, 191

Thomson, James, xiii

total function, 7

touring machines, 42

Tovey, Peter, xiii

Trakhtenbrot, Boris, see Trakhtenbrot’s theorem

Trakhtenbrot’s theorem, 135, 198

transfer theorem, see Löwenheim–Skolem theorem

transitive relation, 143

trees, 322ff

true analysis, see analysis

true arithmetic, see arithmetic

truth, definability of, 286ff; see also Tarski’s theorem

truth in an interpretation (|=), 114, for modal logic,

329

truth predicate, see Tarski’s theorem

truth tables, 255

truth value, 105

truth-functional compound, 244

truth-function satisfiability, 253

truth-functional valuation, 253, 327

Turing, Alan M., 239; see also Turing computability,

Turing machine, Turing’s thesis

Turing computability, 33

Turing machine, 25ff, 126ff, code number for, 36ff,

coding operations of, 88ff, simulation of abacus by,

51ff, universal, 44, 95f

Turing–Büchi proof of Church’s theorem, 126ff

Turing’s thesis, 33, 132; see also Church’s thesis

turnstile (
), 191, 328, double (|=), 114

two-sorted language, 312

unavoidable appeal to Church’s thesis, 83

unbarred, 262

uncomputability, 35ff

undecidability, of arithmetic, 222, essential, 222, of

first-order logic, see Church’s theorem

undecidable sentence, 224, theory, see decidable

theory

undefined, 6

unique readability lemma, 111, 123

universal closure, 208

universal function, 217

universal quantification (∀), 102, 107, bounded, 76

universal sentences and formulas, 165, 247

universal Turing machine, 44, 95f

universal-rudimentary (∀-rudimentary), 204

universe of discourse, see domain of an

interpretation

unofficial and official notation, see abbreviation

unsatisfiable, see satisfiable

upper domain, 312

upper inequality, 297

upward Löwenheim–Skolem theorem, 163

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY186-ind CB421-Boolos July 27, 2007 16:52 Char Count= 0

350 INDEX

valid sentence, 120, 327

valuation, truth-functional, 327, 253

value of a function, 4

van Heijenoort, Jean, 341

variable, 102, 106, bound and free, 111, individual

and second-order, 279

Vaught, Robert, see Vaught’s test

Vaught’s test, 147

vertical section, 86

Wang, Hao, see coding operations of a Turing

machine

Wang coding, see coding operations of Turing

machine

wedge (∨), 76, 102, 107, 372

Whitehead, Alfred North, see Whitehead–Russell

definition of identity

Whitehead–Russell definition of identity, 281

zero function, 57, 64

zero step in proof by induction, see base step

Zeus, 19f, 23, 235, 321

ZFC, 278

zig-zag enumeration, 7

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface to the Fifth Edition
	1 Enumerability
	1.1 Enumerability
	1.2 Enumerable Sets
	Problems

	2 Diagonalization
	Problems

	3 Turing Computability
	Problems

	4 Uncomputability
	4.1 The Halting Problem
	4.2* The Productivity Function
	Problems

	5 Abacus Computability
	5.1 Abacus Machines
	5.2 Simulating Abacus Machines by Turing Machines
	5.3 The Scope of Abacus Computability
	Problems

	6 Recursive Functions
	6.1 Primitive Recursive Functions
	6.2 Minimization
	Problems

	7 Recursive Sets and Relations
	7.1 Recursive Relations
	7.2 Semirecursive Relations
	7.3* Further Examples
	Problems

	8 Equivalent Definitions of Computability
	8.1 Coding Turing Computations
	8.2 Universal Turing Machines
	8.3∗ Recursively Enumerable Sets
	Problems

	9 A Precis of First-Order Logic: Syntax
	9.1 First-Order Logic
	9.2 Syntax
	Problems

	10 A Precis of First-Order Logic: Semantics
	10.1 Semantics
	10.2 Metalogical Notions
	Problems

	11 The Undecidability of First-Order Logic
	11.1 Logic and Turing Machines
	11.2 Logic and Primitive Recursive Functions
	11.3 Lemma
	Problems

	12 Models
	12.1 The Size and Number of Models
	12.2 Equivalence Relations
	12.3 The Lowenheim–Skolem and Compactness Theorems
	Problems

	13 The Existence of Models
	13.1 Outline of the Proof
	13.2 The First Stage of the Proof
	13.3 The Second Stage of the Proof
	13.4 The Third Stage of the Proof
	13.5* Nonenumerable Languages
	Problems

	14 Proofs and Completeness
	14.1 Sequent Calculus
	14.2 Soundness and Completeness
	14.3* Other Proof Procedures and Hilbert’s Thesis
	Problems

	15 Arithmetization
	15.1 Arithmetization of Syntax
	15.2* Godel Numbers
	15.3* More Godel Numbers
	Problems

	16 Representability of Recursive Functions
	16.1 Arithmetical Definability
	16.2 Minimal Arithmetic and Representability
	16.3 Mathematical Induction
	16.4* Robinson Arithmetic
	Problems

	17 Indefinability, Undecidability, Incompleteness
	17.1 The Diagonal Lemma and the Limitative Theorems
	17.2 Undecidable Sentences
	17.3* Undecidable Sentences without the Diagonal Lemma
	Problems

	18 The Unprovability of Consistency
	Historical Remarks

	19 Normal Forms
	19.1 Disjunctive and Prenex Normal Forms
	19.2 Skolem Normal Form
	19.3 Herbrand’s Theorem
	19.4 Eliminating Function Symbols and Identity
	Problems

	20 The Craig Interpolation Theorem
	20.1 Craig’s Theorem and Its Proof
	20.2 Robinson’s Joint Consistency Theorem
	20.3 Beth’s Definability Theorem
	Problems

	21 Monadic and Dyadic Logic
	21.1 Solvable and Unsolvable Decision Problems
	21.2 Monadic Logic
	21.3 Dyadic Logic
	Problems

	22 Second-Order Logic
	Problems

	23 Arithmetical Definability
	23.1 Arithmetical Definability and Truth
	23.2 Arithmetical Definability and Forcing
	Problems

	24 Decidability of Arithmetic without Multiplication
	Problems

	25 Nonstandard Models
	25.1 Order in Nonstandard Models
	25.2 Operations in Nonstandard Models
	25.3 Nonstandard Models of Analysis
	Problems

	26 Ramsey’s Theorem
	26.1 Ramsey’s Theorem: Finitary and Infinitary
	26.2 Konig’s Lemma
	Problems

	27 Modal Logic and Provability
	27.1 Modal Logic
	27.2 The Logic of Provability
	27.3 The Fixed Point and Normal Form Theorems
	Problems

	Annotated Bibliography
	General Reference Works
	Textbooks and Monographs
	By the Authors

	Index

