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PREFACE

This is one of two volumes consisting of 33 invited papers presented at the
International Indian Statistical Association Conference held during
October 1011, 1998, at McMaster University, Hamilton, Ontario, Canada.
This Second International Conference of IISA was attended by about 240
participants and included around 170 talks on many different areas of
Probability and Statistics. All the papers submitted for publication in this
volume were refereed rigorously. The help offered in this regard by the
members of the Editorial Board listed earlier and numerous referees is
kindly acknowledged. This volume, which includes 33 of the invited papers
presented at the conference, focuses on Advances on Methodological and
Applied Aspects of Probability and Statistics.

For the benefit of the readers, this volume has been divided into nine parts
as follows:

Part1 Applied Probability

PartII Models and Applications

Part III Estimation and Testing

PartIV Robust Inference

PartV Regression and Design

Part VI Sample Size Methodology

Part VII  Applications to Industry

Part VIIT  Applications to Ecology, Biology and Health
Part IX Applications to Economics and Management

I sincerely hope that the readers of this volume will find the papers to be
useful and of interest. I thank all the authors for submitting their papers
for publication in this volume.
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N.BALAKRISHNAN MCMASTER UNIVERSITY
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CHAPTER 1

FROM DAMS TO
TELECOMMUNICATION—
A SURVEY OF BASIC MODELS

N.U.PRABHU
Cornell University, Ithaca, NY

Abstract: In 1954 P.A.P.Moran formulated a simple discrete time model
for a finite dam. This model was extended in several directions by J.Gani
and the author during 1956-1963. The concepts underlying this model
and the techniques used in its analysis are applicable in a wide variety
of situations, as has already been demonstrated. Most recently, models
for data communication systems have also been analyzed with these
techniques. In this paper we survey some of this work.

Keywords and phrases: Buffer content, dam, data communication,
idle time, input, fluid input, Lévy process, Markov chain, Markov-
additive process, packets, Poisson arrivals, queues, subordinator, unmet
demand, workload

1.1 INTRODUCTION

In 1954 P.A.P.Moran formulated a simple discrete time model for the
finite dam. The basic components of this model are inputs that are
independent and identically distributed random variables, a constant
demand for water and the release policy “meet the demand if physically
possible.” During 1956-1963 J.Gani and the author extended this
discrete time model to continuous time, where the input is described by
a subordinator, the demand is at a unit rate and the release policy is
the same as before. This continuous time model has several applications,
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in particular, to single server queues with Poisson arrivals and first
come, first served discipline or priority discipline of the static or dynamic
type. Because these models have several common features in regard to
the underlying concepts and techniques of analysis, the author proposed
the term stochastic storage processes to describe the processes that arise
from the family of such models and presented a unified theory of these
processes [see Prabhu (1998)]. The most recent extension of this theory
is to models for transmission of telecommunication data. Here the input
of data is characterized as a Markov-additive process, the desired
transmission (demand) rate depends on the Markov component of the
input and the actual transmission (release) policy is to “meet the demand
if physically possible.” The resulting theory may be viewed as the
Markov-modulated version of the theory of dams.

In this paper we survey some of this work, emphasizing only the
modeling aspects in order to point out the common features of the models
considered. For detailed results and recent references see Prabhu (1998).
For historical references see Prabhu (1965).

In Section 1.2 we describe Moran’s discrete time model for the finite
dam. The continuous time dam model is described in Section 1.3, and
its extension to the data communication model in Section 1.4.

1.2 MORAN’S MODEL FOR THE FINITE DAM

Moran’s discrete time model for a dam (water reservoir) is the following.
A dam of finite capacity is designed to meet the demand for electric
power (expressed in terms of the volume of water required to produce
it) or for water to be supplied to a city. The demand for water at time n
is m (<c) and this demand is met “if physically possible,” that is, to the
extent that this quantity is available in the dam at time n. The dam is
fed by inputs of water such that if X,., denotes the input during the
time interval (n, n+1], then {X,, n>1} is assumed to be a sequence of
independent and identically distributed random variables. Because of
this randomness the amount of water in the dam (the dam content) at
time n is a random variable which we denote by Z, (n>0).

Since the capacity of the dam is finite there is a possibility of an
overflow and the actual input during (n, n+1] is therefore

NMn+1 = min(c - ZTH Xn+1) (n 2 0) (1'2'1)

The amount of water available for release at time n+1 is then Z,+n,,;
and the release policy implies that

Zn+1 = Zn + nn-|—1 - min(m, Zn + 'nn+1).
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The sequence {Z,, n>0} satisfies the relation
Zn1 = (Zn+ny1 —m)t  (n>0). (1.2.2)

To see how the dam operates subject to these assumptions we note
that during a time interval (0, n] there is a certain amount F), of overflow
from the dam, and an amount D, of the total demand nm that is not
met. Easy calculations show that

Zn =204+ (Sn —nm)—F,+ D, (n>0) (1.2.3)

where S,=X,+X,++X,(n>1), S;=0 and S,-nm is the net input (input
minus demand) during (0, n].

The assumption on the inputs X, implies that {Z,, n>0} is a time-
homogeneous Markov chain on the state space IR,. The problems of
practical importance that arise in the analysis of the model are the
derivation of (i) the steady state distribution of {Z,} and (i1) the
distribution of the random variable

T(Zy) =min{n>1: 2, =0} (1.2.4)

which is the duration of the wet period in the dam whose initial content
is Zy>0. Although these problems are standard in the theory of Markov
chains, general solutions are not known because of the presence of the
constant ¢ (<) in (1.2.2). However, solutions are available for some
important special cases of the input distributions [see Prabhu (1965)].

When c=e (the case of the infinite dam) the equations (1.2.2) and
(1.2.3) reduce to

Znt1=(Zn+ Xn1 —m)t (n>0) (1.2.5)
and
Zn =25+ (Sn —mn) + Dn  (n>0). (1.2.6)
These lead to the expressions
Zn = max{Zg + Sp, — nm, S, —nm —my} 1.2.7)

D, = (Zog+mp)~ (1.2.8)
where m, is the minimum functional of the random walk {S,-nm, n>0},
namely

My = orsnlchsln(sk —km) (n>0). (1.2.9)

The equation (1.2.5) arises in queueing theory, specifically for waiting
times Z, in the single server queue with constant interarrival times
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(=m) and general service times X, (n>1). The quantity D, in (1.2.6) is the
total idle period during (0,n], while the random variable 7(Z,) defined
by (1.2.4) is the number of customers served during the busy period
initiated by a waiting time Z,>0. Thus the results for the infinite dam
are applicable to queueing theory.

1.3 A CONTINUOUS TIME MODEL FOR THE DAM

In developing a continuous time model for the dam we first assume
that its capacity is . For the input we postulate a nonnegative process
with stationary independent increments, that is, a Lévy process {X(%),
t>0} with nondecreasing sample functions (also called a subordinator)
and zero drift. The demand for water occurs at a rate doZ(t), where Z(t)
is the dam content at time £>0. As in the discrete time case, this demand
is met “if physically possible”. These assumptions lead to the integral
equation

t
Z(t) = Z(0) + X(t) —/0 do Z(s)1{z(s)>0yds. (1.3.10)

We can rewrite this is
¢ ¢
Z(t) = Z(0) + X (t) —/ do Z(s)ds +/ do Z(s)l{z(s)=0yds. (1.3.11)
0 0

Here on the right side of (1.3.11) the first integral represents the total
demand during (0, ¢] and the second integral is the part of this demand
that is not met. The equation (1.3.11) is the continuous time analogue
of (1.2.6).

The most extensively studied special case of (1.3.10) is the one with
unit demand rate (that is, d(x)=1), which arises also in the queueing
system M/G/1 and single server queues with Poisson arrivals and static
or dynamic priorities. In the queue M/G/1, the input X(t) of workload is
a compound Poisson process, and Z(t) represents the remaining workload
(virtual waiting time) at time ¢. In dam models the special cases of
input include the gamma process, stable process with exponent 1/2 and
the inverse Gaussian process. The integral equation (1.3.11) reduces in
the case of unit demand rate to

t
20)= 20+ Y0 - [ 1z ds (1.3.12)
0
where Y(t)=X(t)-t (the net input) and the integral

t
I(t)=/ 1{z(s)=0}ds (1.3.13)
0
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represents the amount of unmet demand (dry period in a dam or idle
time in the queue M/G/1).

As formulated above, the integral equation (1.3.12) does not have a
unique nonnegative solution. However, if we modify it by writing

t
2(t) = 2(0) + Y (t) - /0 Liz(<0yds (1.3.14)

then the unique nonnegative solution of (1.3.14) is given by
Z(t) = max{Z(0)+ Y (), Y () — m(¢)} (1.8.15)
where m(t) is the minimum functional

m(t) = inf Y(s). (1.3.16)

0<s<t

It follows from (1.3.14) that
t
I(t) = /0 Liz(s)=0yds = [Z(0) + m(t)]” (1.3.17)

on account of the nonnegativity of Z(¢). The results (1.3.15) and (1.3.17)
are the continuous time analogues of (1.2.7) and (1.2.8) for the discrete
time case.

Remarks.

1. When Z(0)=0, the solution (1.3.15) reduces to
Z(t) = Y (t) — m(t). (1.3.18)

In current literature (1.3.18) is referred to as reflection mapping.
This term does not give credit to the pioneering 1958 paper by
E.Reich, who derived (1.3.15) for the virtual waiting time in M/G/1.
Furthermore, the identification of the idle time with the minimum
functional does not follow from the reflection mapping.

2. 'The joint distribution of Z(¢) and I(¢) can be obtained directly from
(1.3.12). For the compound Poisson input the older technique of
analysis is based on the forward Kolmogorov integro-differeritial
equation for the distribution of Z(%). O
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1.4 AMODEL FOR DATA COMMUNICATION SYSTEMS

A buffer of infinite capacity receives inputs of data represented as a
Markovadditive process {X(%), J(t), >0} on the state space IRy x & in
which the additive component i1s a compound Poisson process.
Specifically

X(t) = Xo(t) + /Otao J(s)ds. (1.4.19)

Here Xy(t) is a compound Poisson process in which the rate at which
jumps occur as well as the jump sizes depend on the state of the Markov
process J on a countable state space &£, these jumps representing the
arrivals of packets. In addition X has a drift that occurs at a rate a(j)
when </ is in state j, and the integral in (1.4.19) represents the amount
of data that arrive in a fluid fashion. The desired transmission (demand)
rate is d(j) when </ is in state j and the transmission (release) policy is
to meet the demand “if physically possible.” Let Z(#) denote the buffer
content at time £>0. The above assumptions lead to the integral equation

Z(t) = Zo(t) + X (t) — /Ot ro(Z(s),J(s))ds (1.4.20)

where the release rate r is given by

d(j)if >0
min(d(j),a(j)) if = =0.

r(z,5)

I

(14.21)

Comparison with (1.3.10) show that (1.4.20) is indeed an extension of
the (now classical) dam model. The presence of J is to be understood
with reference to specific models. We first consider two special cases.

A fluid model for data communication. If the arrival of data is only

in a fluid fashion, then X;(¢)=0 and the integral equation (1.4.20) reduces
to

i i
Z(t)=Z(0)+/O a:oJ(s)‘Lds—/O on(s)_l{Z(s)>0}dS (1.4.22)

where x(j) is the net input rate

z(§) = a(j) — d(j).0 (1.4.23)
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A model with packet arrivals. In the presence of packet arrivals
we need to assume that the desired transmission rate d(j) exceeds the
rate of fluid arrival a(j). The integral equation (1.4.20) then reduces to

t
2(t) = 2(0) + Xo(t) - /0 d o J(&)zwsods  (1.4.24)
where d,(j)=d(j)-a(j)>0. O

The integral equation that describes each of the above models is of the form

Z(t)y = Z(0)+ X(t) — /t ro(Z(s),J(s))ds (1.4.25)
0

where {X(t), J(t)} is a Markov-additive process and
r(z,7) = d(§)1{z>0- (1.4.26)

Comparing (1.4.25) with the integral equation (1.3.10) we see that the
data communication models described here are extensions of the
continuous time dam model of Section (1.3). The unique nonnegative
solution of (1.4.25), modified as in (1.3.14), is formally the same as
(1.3.15), where the net input Y(?) given by

t
Y(t)=X(¢t) - / do J(s)ds (1.4.27)
0
and it should be noted that {Y(z), J(t)} is a Markov-additive process.

The following are two fluid models that have been investigated in the
literature. The presence of the Markov component J will be clear from
these models.

a. A multiple source data handling system. There are N sources of
messages, which are “on” or “off” from time to time. A switch receives
messages at a unit rate from each source and transmits them at a fixed
maximum rate ¢ (1<N<eo, 0<c<cw). Messages that are not transmitted
are stored in a buffer of infinite capacity (see Figure 1.1). Denoting by
J(t) the number of “on” sources at time >0, we assume that {J(t), t>0} is
a birth and death process on the state space {0, 1, 2,..., N}. Of interest is
the buffer content Z(z). It is seen that Z() satisfies the integral equation

Z(t) = Z(0) + /Ot J(s)ds — /Otr o (Z(s),J(s))ds (1.4.28)

where
cif z>0
min(j, ¢} if z=0.

r(@.J) (1.4.29)

I
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Clearly, this is a fluid model with a(j)=j and d(j)=c. O

* BUFFER — -
OUTPUT CHANNEL

SOURCES ("ON" OR "OFF")

FIGURE 1.1 A buffer of infinite capacity for storage

b. An integrated circuit and packet switching multiplexer. A
buffer of infinite capacity receives voice calls as well as data. There are
s+u output channels, of which © channels are reserved for data
transmission, while the remaining s channels are shared by data and
voice calls, with calls having preemptive priority over data and calls
that find all s channels that serve them being lost (see Figure 1.2).

1
VOICE CALLS 2
POISSON())
BUFFER 5
DATA e
CONST. RATE ¢
s+u

FIGURE 1.2 An integrated circuit and packet switching multiplexer
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Voice calls arrive in a Poisson process and their service times have
an exponential density. Data arrive continuously at a constant rate ¢,
and are transmitted at a rate ¢;(<c;). At time =0, let Z(t) denote the
amount of data in the buffer and J(z) the number of channels available
for data transmission. It is clear that s+u-J(%) represents the queue
length in an M/ M/s loss system, and Z(t) satisfies the integral equation

2(t) = 2(0) + /0 " cods /0 o (Z(s) J(s)ds  (1.4.30)

where

r(z,7) = cjif x>0

= min(clj, Co) if z=0. (1431)

This is a fluid model with a(j)=c, and d(j)=c,j.

Remarks.

1. Some authors take (1.3.18) as the starting point of their investigation
of data communication models. Such an approach neglects the
modeling aspects that are important in any area of applied
probability. In particular it does not emphasize the role of Markov-
additive inputs.

2. The forward Kolmogorov equation (in the matrix form) can be used
to derive the joint distribution of Z(¢) and J(t). However, as in the
case of the dam model it is much more straightforward to derive
the joint distribution of Z(t), I(t) and J(t) directly from (1.4.25), I(t)
being the amount of the unmet demand.

3. It is hoped that this brief survey has made it clear that all of the
models described in Sections (1.3) and (1.4) are indeedstorage
models. The use of the term fluid queue, currently in fashion, is
obviously based on lack of familiarity with earlier literature in this
subject area. This term is both unnecessary and unpleasant, and
the author hopes that discriminating researchers will not use it in
the future.
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MAXIMUM LIKELIHOOD
ESTIMATION IN QUEUEING
SYSTEMS

U.NARAYAN BHAT
Southern Methodist University, Dallas, TX
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Abstract: This paper provides an overview of the literature on the use
of the maximum likelihood method for estimating parameters in
queueing models. Two cases, one when the system elements are fully
observable and the second when only a limited amount of information
is available are considered. The paper also includes some new results
in later sections.

Keywords and phrases: Parameter estimation, maximum likelihood,
GI/G/1 queue, M/G/1 queue, GI/M/1 queue, waiting time, queue length

2.1 INTRODUCTION

There are two key steps in the use of the method of maximum likelihood
estimation (m.l.e.): constructing the likelihood function and deriving
estimators that maximize the function. It was Clarke (1957) who first
demonstrated that the likelihood function can be constructed for the
underlying queue length process in the queueing system M/M/1 (Poisson

13
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14 U.N.BHAT and I.V.BASAWA

arrivals, exponential service times and single servers) if one can describe
its sample path as a realization of random events that can be described
in terms of distributions. The general maximum likelihood theory for
Markov processes, of which M/M/1 is a simple example, has been given
by Billingsley (1961). Since then, researchers have explored ways of
using this method to non-Markovian systems as well.

In stochastic models, many times factors such as system structure and
cost may prevent full observation. In such cases, inference on system
parameters will have to be made using other system characteristics.
For instance, in a queueing system where embedded Markov chains
can be identified, observations relative to those Markov chains can be
used to estimate parameters. Goyal and Harris (1972) provides one of
the first examples of this procedure.

In this paper we provide an overview of the use of maximum likelihood
estimation in queueing systems under both cases of complete and
incomplete information. In addition to describing some of the basic work
on Markovian systems, we review research on non-Markovian systems
when the processes are fully observable and when information only on
certain characteristics is available. In the latter case some new results
are also presented. The paper is arranged in eight sections. Parameter
estimation in Markovian and non-Markovian systems is described in
Sections 2.2 and 2.3 respectively. These procedures assume the
availability of complete information on the system, although in
continuous time, discrete state Markovian systems the set of sufficient
statistics used is smaller than that we normally require for non-
Markovian systems. Section 2.4 deals with estimation using the
embedded Markov chains for the waiting time process and in Section
2.5, the procedure described in Section 2.4 is modified for system time
(waiting time plus service time) instead of only waiting time. In Sections
2.6 and 2.7 the process considered is the number of customers in the
system and the two sections deal with the queues M/G/1 and GI/M/1
respectively. Finally, Section 2.8 provides some concluding observations.
Also Sections 2.5 and 2.7 include new results.

We do not plan to provide a long bibliography in this overview. Only
those papers with major influence in the course of research are cited.
For the general theory of inference on Markov processes Billingsley’s
book (1961) is an excellent reference. Basawa and Prakasa Rao (1980)
and Karr (1991) provide the theory of inference on stochastic processes,
in general. For inference on queues, Bhat et al. (1997) is a good reference
which includes an extensive bibliography.
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2.2 M.L.E. IN MARKOVIAN SYSTEMS

Any discussion of m.l.e. in Markovian queues has to start with the paper
by Clarke (1957). Even though two earlier papers by Moran (1951, 1953)
described a procedure to estimate the birth and death parameters in
the simple birth-and-death process, it was Clarke who used the complete
description of the sample path to construct the likelihood function.

Let the system be observed for a length of time t such that the time
spent in a busy state is a preassigned value ¢,. Let n,, n,, f, represent
the number of arrivals, number of service completions, and the time
spent in the empty state, respectively, during [0, ¢]. Furthermore, let n,
be the initial queue length. Also assume that the system is in the steady
state. The likelihood function can be written as

A i A Mg, Ns ,—(A+u)ty ,— At
LA p)=1|= 1— — ) Atepleem TR T e, (2.2.1)
" "
and the m.l.e.’s of A and u are found from the equations
A= (H—A)(ng+no—At) and A= (A —})(ns — no — fits). (2.2.2)

Estimating ; from the second equation gives a quadratic in . Of the
two solutions, any negative solution is rejected, and for the remaining
values of ), corresponding 7 is obtained. Furthermore, any pair (X, i)
would be rejected for which 7 < gor 2 /fi > 1. If both solutions are valid,
then the solution which maximizes the likelihood function is chosen.

For large n,-n, Clarke gives a sample approximation for y and z; as

P (na +mno)/t, =~ (ns — ng)/tp. (2.2.3)

The consistency of )\ and fi has been examined by Samaan and Tracy
(1978) who could establish only a weak consistency for ). If we ignore
the initial queue size, the estimates of A and u are, respectively, n,/t
and n,/t,.

As noted by Cox (1965), specializing Billingsley’s (1961) results, this
procedure can be extended to the generalized birth-and-death models.
The conditional likelihood function (ignoring the contribution of the
initial state) is of the form

e—E(Ai+#i)tin/\?”i 'uj‘-"i (2.2.4)

1 ]
where A, u; are the rates of arrival and service compilations in state i,

e, and ns, are the numbers of arrivals and service completions in state i,
and #; 1s the total time spent in state i during the observation interval (0, ¢].
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For a finite state birth-death queue, ignoring the impact of the initial
queue size, the m.l.e’s of A; and y; are given by

N=ng, /L (0<i<M-1), fi=n,/t (1 <i<M). (2.2.5)

The above results and similar estimates for parameters in M/M/s, M/
M/oo, and machine interference problem have been given by Wolff (1965),
where many details are provided. For an extension of these methods to
a simple Markovian queueing network, commonly known as the Jackson
network, see Thiruvaiyaru et al. (1991), where joint asymptotic
normality of the estimators is also established. Also see, Benes (1957)
for a discussion of the set of sufficient statistics in similar problems,
and Cox (1965), and Lilliefors (1966) for confidence intervals for
estimates.

2.3 M.L.E. IN NON-MARKOVIAN SYSTEMS

In Markovian systems, due to the memoryless property of the
exponential distribution data-collection gets simplified because of our
ability to pool observations without losing information. In non-
Markovian systems this is not the case and therefore the two cases, one
with complete information and the second with incomplete information
(which arises when the system cannot be observed fully), become
relevant. In this section we cover two important papers by Basawa and
Prabhu (1981, 1988) which assume the availability of complete
information. Research on cases with incomplete information is discussed
in later sections.

Basawa and Prabhu (1981) obtain the m.l.e.’s of parameters of the
arrival and service time distributions with continuous densities f(u, 6)
and g(v; ¢), respectively. The sampling scheme is to observe the queue
until the first n customers have departed from the system and the service
times of these n customers, say (vy, vs,...,0,). Let the nth departure epoch
be D, and observe the interarrival times of all customers who arrive
during (0, D,], giving the interarrival sequence (u1,u2,...,un,), where
N,=N,(D,)=max.{k:u,+u,+...+1;<D,}. Under this sampling scheme, the
likelihood function is

Na n
Latr.) = {IT 100 W TTotso) 11 - POl 236
i=1 i=1
where

Na
ZTn = 2p(Dyn) = Dy, — Zuj.
j=1
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Since the factor [1-F(x,; 6)] causes difficulty in obtaining simple
estimates, consider the alternative approximate likelihood function
obtained by dropping the last terms in (2.3.6):

L%(f,9) { Hf uJ,H)}{iIZIlg(vj;qﬁ)}- (2.3.7)

If 5;, {5;‘1 are the m.l.e.’s of  and ¢ based on L&(f, g), they are solutions of
the equations

Ny 3 n 8
Zl 5glo8 f(u536) = 0, 2‘; Bgloe9(vi9) =0. (2.3.8)
j= =

Basawa and Prabhu prove that §g, 5‘:1 are consistent estimators of # and

¢ and that
Vi@ -6) | o 0\ [ o2/n ©
{ﬁ($z—¢>}*N2{(0)’{ 0 o }} (239

where N, represents a bivariate normal density with

-1

ag—[ (;)ologf)] ,oi:[ (ad)logg)z] ,  (2.3.10)

n max(l n), and p being the traffic intensity.

Let §,, and &, be the estimators based on the full likelihood function
(2.3.6). It 1s seen that ¢n = ¢n, and 0 differs from 0" but it can be
shown that g, and 0“ have the same limiting dlstrlbutlons whenever

\/—69 log(l F(z,;0)) £o. (2.3.11)

This condition is satisfied for Erlangian arrivals. For large samples,
estimators of § and ¢ can be determined from (2.3.8) at least numerically,
if not in closed form. Using (2.3.9) confidence intervals for 6 and ¢ can
also be constructed. From a practical point of view, it is significant to
note that the limit properties of these statistics are obtained without
the assumption on the existence of equilibrium. Basawa and Prabhu
also consider m.l.e.’s for arrival and service rates in the M/M/1 queue
based on a sample function observed over a fixed interval (0, ¢], as done
by Wolff (1965), and obtain limit distributions of the m.l.e.’s without
any restrictions on p.
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In a subsequent paper, Basawa and Prabhu (1988) have provided
a unified framework for the estimation problem described above
where the observation period is (0, 7], with a suitable stopping time
T. Four different stopping rules are considered. It is shown that the
limit distribution does not depend on the particular stopping rule if
a random norming is used. They assume that the interarrival and
service time distributions belong to the class of non-negative
exponential families. Basawa and Prabhu also derive similar results
using a generalized linear model for interarrival and service time
distributions.

An extension of these procedures to Jackson-type queueing networks
with arrivals at each node following a renewal process and service times
being arbitrary has been carried out by Thiruvaiyaru and Basawa
(1996). As an illustration, the inter-arrival time and service time
distributions are assumed to belong to two separate exponential families
of distributions. Two sampling plans, one based on a realization over a
fixed interval and the second with observations over a certain random
interval are used.

2.4 M.L.E. FOR SINGLE SERVER QUEUES USING WAITING
TIME DATA

In Sections 2.4-2.7 m.l.e. procedures are described when complete
information on the systems under consideration is not available. This
section uses waiting time data, Section 2.6 employs system time (waiting
time plus service time) data and the following two sections use queue
length data for estimation.

A maximum likelihood procedure for the estimation of parameters
in a single server queueing system GI/G/1 was presented in a recent
paper by Basawa, Bhat and Lund (1996) using information on waiting
times {W,}, t=1, 2,..., n of n successive customers. Information is collected
from each of n successive customers on the amount of time spent by
them in waiting for service. Let W, denote the waiting time of the ¢th
customer. The waiting time process {W, =1, 2,...} satisfies the following
well known equation:

I

W {Wt+Xt+l , Wi+ X1 >0
t+1

0 , Wi+ X <0
= max(O, W + Xt+1) (2.4.12)

where X,=V,;-U,, with V, and U, denoting, respectively, the service and
inter-arrival times corresponding to the tth customer. It should be noted
that {X,}is a sequence of independent and identically distributed random
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variables and X,,; is independent of W,. It is clear that {W,} is a Markov
chain and its transition distribution function can be written as

F:c(y_w) ’ yZO

0 s y < 0 (2.4.13)

PWip <y|We=w) = {

where F,(*) is the distribution of X,. The transition distribution function
has a discontinuity at 0. Define

a(w) = 1 — Fy(—w). (2.4.14)
Then, for the transition density we have

l-a(w) y=0
pylw) = foly—w) y>0. (2.4.15)
0 y<0

Define the indicator function

_ 0 if Wt+1 = 0
Ziy1 = { 1 if Wipr >0 (2.4.16)

Using Z,.,, for the transition density of W, we can write
P(Wi1[Wy) = [1 = a(W)' =241 [fo(Weqq — W)t (2.4.17)

The likelihood function based on the sample (W;, W,,..., W,) is given by

n—1

L=pW1) Y p(Wip1|Wy). (2.4.18)

t=1

Let 6=(0,, 6,,...,0,) be the unknown parameter vector corresponding to
the distribution of X,. Basawa et al. (1996) show that estimates for 0
can in fact be determined using the likelihood function (2.4.18) following
the standard procedure. Basawa et al. also have established the
consistency and the asymptotic normality of the estimators, and
discussed issues pertaining to their efficiency.

2.5 M.L.E. USING SYSTEM TIME

The sampling plan used in the last section requires the knowledge of
the amount of time customers spend in waiting for service. In practice,
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in many instances, it may not be as easy to determine the actual waiting
time as it is to determine the total time spent by customers in the system,;
1.e., the waiting time plus service time. We shall call this characteristic
system time.

Let Y, be the system time corresponding to the ¢ customer. Based on
its definition, we have

Yivr = Vi + Wi
= Vip1 + Max(0, W, + V; — Usq1)
= ‘/t+1 + Max(O, Yt — Ut+1) (2519)

which can also be written in display form as

Y =-U + Ve if V3 —Up >0
)/t-i-l - { V:‘,+1 if Yt i Ut+1 S 0 (2520)

Incidentally, the continuous time analog {Y(%), >0} of the process {Y,
t=1, 2, 3...} was originally introduced by Prabhu (1964) in the context
of queue GI/M/1. The process Y(¢) exhibits properties of duality with
the virtual waiting time process W(t) as defined by Takacs (1955) and
the graph of Y(¢) can be looked upon as a mirror image of the graph of
W(t) [see, Prabhu (1965, p. 102)].

Equation (2.3.9) shows that {Y,}, t=1, 2,... is a Markov process. We
now proceed to derive the transition density corresponding to the Markov
process {Y,}. We have

P(Ye1 < yealYe=y1)

= P(Vit1 < Ye41)P(Uss1 > 4t)
Y
+ [ P(Viy1 < yeg1 — ye + w)a(u)du, (2.5.21)
0

where a(u) is the inter-arrival time density. The result in (2.5.21) follows
readily from (2.5.20), considering the two possibilities: U,,>Y, and U,,<Y,
and applying the addition law. The transition probability of Y,,; given
Y, is then obtained by differentiating (2.5.21) with respect to y,.:

P(ye+1lys) = b(yea1)(1 — A(wr))

Y

+ blysr1 — ye + w)a(u)du, (2.5.22)
0

where b(-) and A(-)denote the density of service time V and the
distribution function of inter-arrival time, U, respectively. The likelihood
function based on (Y,..., Y,) is then given by
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n—1

L(0) = p(Y1;0) [ [ p(Y;411Y5:0), (2.5.23)
7=1

where 61s the parameter of interest, and p(Y;, 6) is the initial density of
Y;. The ML estimator ¢ is obtained as a solution of the equation

d log L(6)

= =0 (2.5.24)

Since {Wt} is an ergodic process (assuming that the traffic intensity
p<1), it follows that {Y,}, Y=W;+V,, is also ergodic. The consistency and
the asymptotic normality of the MLE, 8, can therefore be deduced as in
Basawa et al. (1996).

2.6 M.L.E. IN M/G/1 USING QUEUE LENGTH DATA

In this and the next section, the sampling scheme used for collecting
data includes only observing the number of customers in the system for
a fixed length of time or some variation of it.

Consider the embedded Markov chain of the queue length in M/G/1,
defined at departure epochs. Let @, be the number of customers in the
system immediately after the ith departure. The process {Q, t=0, 1,
2,...} 1s a Markov chain. Let B(‘) be the service time distribution and
the Poisson arrival rate be A. If we denote by A,, the number of arriving
customers during the service period, we get the distribution of A, as

. oz (A .
P(A: = j) =k; :/ xz ]w) dB(z), i=0,1,2,... (2.6.25)
0
It is well known that @, satisfies the relation

Q1 = {Qt—1+At+1 ifQ:>0

A ifQ:=0
Qt_1+At+1 ith—1>0
Ay if@:—-1<0 (2.6.26)

which is similar in structure to Eq. (2.5.20). For the transition
probabilities of {@,}, we have

o R P(AH.] = 'it+1) lf it =0
P(Qt+1 — Zt+1|Qt — Zt) - { P(At+1 — it+1 _ it + 1) if Iit Z 1 (2627)
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Suppose the process is observed until the number of departures

reaches a fixed value n. Now tracing the sample path of the process we
may write down the likelihood function as

n—1
L(8) = p(Q1;0) [ | p(Qes11Q¢:9). (2.6.28)
t=1

Let n; be the number of transitions of @, from i to j on the sample path,
and 6, the vector of parameters for which estimators are being sought.
We get

log L(6) = log P(Qo = o)

o0
+ Z(ngj + ny;) log k;

§=0
+ Z Z nijlogkj—it1.
i=2 j=i~1 (2.6.29)

Depending on the form of the service time distribution, an explicit
expression for the likelihood function can be written down and
maximized in the usual manner to determine maximum likelihood
estimates. The same general formulation holds when the service times
are dependent. Goyal and Harris (1972) consider two such systems: (i)
service times are exponential but with different means when the queue
size1s 1 and when i1t is >1, (11) service times are exponential with means
linearly dependent on the number of customers in the system (u=t,).
They derive m.l.e.’s for utilization factors (arrival rate/service rate) in
the case of these two systems when the effect of the initial queue length
can or cannot be ignored. Depending on the complexity of likelihood
functions to be maximized, some equations will have to be solved using
numerical approximation methods.

Another approach to maximum likelihood estimation using embedded
Markov chains is to observe only the number of arrivals during
successive service periods. In particular, when the arrivals are Poisson
and the service times are Erlangian, Harishchandra and Rao (1984)
have constructed the likelihood function using the number of arrivals
during successive service periods as the sample. In an M/E;/1 queue, in
which % is the shape parameter of the Erlangian distribution and p is
the traffic intensity, let A, denote the number of arrivals during the
service of the (¢t+1)th customer. Then A, has the negative binomial
distribution given by
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k-1 k"
P(Ay=2) = f(z,p) = (m+x )(HL;C) <m>
£=0,1,2,... . (2.6.30)

Suppose the system is observed only at departure epochs. Using equation
(2.6.26), the queue length data can be easily converted into arrival data.
Let x4, x,,..., x, be the number of arrivals during the first n service times,
respectively. The likelihood function for this sample is then

n z; k
zi+k—1 0 : k

i=1

The maximum likelihood estimate of p is found to be p = Yz;/n. This
estimator is unbiased and consistent, since F(p) = p and Var(p) = p(p +
k)/(kn). Furthermore, it turns out that p is also the minimum variance
bound (MVB) estimator and therefore uniformly minimum variance
unbiased estimator (UMVUE) of p. It can be shown that the probability
distribution of X belongs to the one-parameter exponential family and
hence T=3x; is a sufficient statistic for p. Finally, for large values of n,

1 -
—Va(p—p) 2 N(0,1), (2.6.32)
where

241
o? = [E (Bﬁp log f(x,p)) ] = g(p_kl-_@ (2.6.33)

Even though, conceptually, estimating k using the likelihood function
(2.6.31) is only a mathematical problem, due to the complexities of the
expressions, the procedure does not become tractable. The results
derived by Miller and Bhat (1997) overcome this problem by using a
different approach.

Miller and Bhat use the number of customers served while the system
has been busy for a specific length of time as the data element. In this
formulation the service process, after eliminating idle times, resembles
a renewal process. Consider the following two sampling plans for this
renewal process.

Sampling Plan I: Assuming that the first observation period begins at

time zero, observe the renewal process at time 7 and record the
number of renewals in (0, 7). To assure independent observations,
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the next observation period will begin when the next renewal occurs.
Then after a period of 7time units, the number of renewals occurring
in this second period is recorded. Wait until the next renewal occurs
and the renewal epoch begins the following observation period, etc.

Sampling Plan II: Assuming the first observation period begins at
time zero, observe the renewal process at time 7 and record the
number of renewals in (0, 7). Also record the time until the next
renewal following time 7 which will signal the start of a new
observation period. Then after a period of 7time units, the number
of renewals occurring in this second period is recorded. Record the
time elapsed until the next renewal and the renewal epoch begins
the following observations period, etc.

The second sampling plan uses the additional information on the waiting
time to start the next observation.

Let NT, NJ,....denote the number of renewals (service completions)
occurring in the observation periods, 1, 2, 3,..., respectively. In the second
sampling plan the observations will be bivariate {( N, Y;(7)), i =1,2,...}
where Y;(7)is the excess life of the renewal period encountered at the ith
observation. Using these observations, {N], i = 1,2,...} with Sampling
Plan I and {{N],Yi(7))}, ¢ = 1,2,...} with Sampling Plan II, Miller and
Bhat construct likelihood functions which can be used to derive m.l.e. for
k either assuming & to be continuous first and determining the best integer
k from that result, or using the method of integer maximum likelihood
estimation. As one would expect Sampling Plan II leads to better results
in estimation.

2.7 M.L.E. IN GI/M/1 USING QUEUE LENGTH DATA

Consider the imbedded Markov chain {®,, t=0, 1, 2,...} in a GI/M/1 queue
in which arrivals from a renewal process and service times are
exponential. Let @, represent the number of customers in the system
just before the tth arrival. Let A(") be the inter-arrival time distribution
function and u be the service rate so that the exponential service time
density is given by ue**(x>0). Define D, as the number of potential
departures during an inter-arrival period if an unlimited number of
customers are available for service. The random variable D, has the
distribution

P(D; =j)=46(j) = /Ooo e"“z%—x!)]dA(x), 7=0,1,2,... (2.7.34)
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It is well known that @, satisfies the relation

[ Quy1—D¢ , textif Qo +1-D;>0
Qur = { 0 , if Qi+1-D,<0 - (2.7.35)
Let
Xit1=1-Dy.

Then, (2.7.35) can be re-written in the form

Qi+ Xepr , if Qe+ Xey1 >0
0

Qi1 = { D Oyt Xeps <0 (2.7.36)

which is similar in structure to Eq. (2.4.12).
From equation (2.7.36) we get

P(Qi1y=0|Q:=14) = P(i+ X¢y1 <0)
= P(Dy>i+1)

= Y &

r=t+1
= 1-af(i) (2.7.37)

where we have written Zizo &(r) = a(3). Also

PQi+1=34|Q:t =17) = P(i+ Xey1=17)
= P(D;=i+1-j)
= 0(i+1-7),({>0). (2.7.38)

Using the indicator function Z, defined in (2.4.16), with W, replaced by
Q,, we may write the transition probability as

P(Qe411Q:) = [1 — a(Q0)]' "+ [8(Q¢ + 1 — Qeqr))?+t (2.7.39)

and the likelihood function as

n-—1

L(8) = p(Q1;9) H p(Qt+11Q+3 0). (2.7.40)

t=1

It should be noted that when estimating 6 using maximization of (2.7.40),
numerical methods maybe needed. For instance, when the inter-arrival
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time distribution is Erlangian with

—kAx (k»‘x)k_l

dA(z) = e (k—_l—)Tk/\da: (x>0) (2.7.41)
T e ) g (RAZ)E
é(r) = /0 e e kA %=1 kAdz

_ (r+k-1 g\ [ kx \F
- r p+ kX p+kx)

Even though 6(r) lends itself convenient for taking logarithms and
differentiating, a(é) =3 .._,8(r) is not easily tractable in such
operations. Then, direct maximization using numerical techniques is
recommended.

If £ is also an unknown parameter, methods using integer-maximum
likelihood estimation will have to be incorporated in the process [see,
Dahiya (1986) and Miller (1997)]. Another approach is to follow the
procedure of Miller and Bhat (1977) described in Section 2.6. The
arrival process is a renewal process and the estimation procedure
proposed by Miller and Bhat gives m.l.e. for Erlang k of the arrival
distribution.

In deriving Eq. (2.7.35), we note that D, has been defined as the
number of potential departures during an inter-arrival period. (It is
the actual number when the system is busy throughout the period,
otherwise it is the number of departures if there are an unlimited
number of customers in the system). Consequently, the information
available on {@,} cannot be transformed into information on D, completely
as done for Eq. (2.6.30) in Section 2.6. Therefore, if one has to carry out
inference based solely on queue length, the maximum likelihood method
described above seems to be the best approach.

2.8 SOME OBSERVATIONS

From a review of research papers on the use of m.l.e. to estimate
parameters of queueing models, it is clear that if one is interested in
deriving simple readily usable results, a Markovian model is almost a
necessity. Even when using information from an embedded chain in
the queue M/G/1, the procedure leads to closed-form solutions only
when the service time distribution is Erlangian. When likelihood
function becomes complex, maximization can be accomplished only
through numerical approximation methods. Therefore, in applications
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with non-Markovian models where easy numerical results are needed,
regardless of the sophistication of the maximum likelihood procedure
and the desirable properties possessed by the estimators resulting from
it, we may not have any recourse but to use moment estimators.
However, with the increasing capability of computers one should be
able to numerically maximize likelihood functions of increasing
complexity. Alternatively, one could also use one-step maximum
likelihood estimation starting with the moment estimator as the initial
value [see, Lehmann (1983)].
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CHAPTER 3

NUMERICAL EVALUATION OF
STATE PROBABILITIES AT
DIFFERENT EPOCHS IN
MULTISERVER GI/Geom/m
QUEUE

M.L.CHAUDHRY

Royal Military College of Canada, Kingston, Ontario, Canada
U.C.GUPTA

Indian Institute of Technology, Kharagpur, India

Abstract: In this paper, we analyze numerically a multiserver discrete-
time queue with arbitrary interarrival and geometric service times. For
completeness’ sake, both early and late arrival models are considered.
We first propose a way of evaluating arbitrary-epoch probabilities from
those at prearrival epoch for the early arrival system. Then the results
for the late arrival system with delayed access are derived. Outside
observer’s observation epoch probabilities are also discussed for both
the models. Numerical results have been validated by computer
simulation. It is hoped that the results obtained in this paper should be
of interest to both specialists and practitioners of queueing theory.

Keywords and phrases: Queueing, discrete-time, multiserver
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3.1 INTRODUCTION

The high-speed multi-access communication channels such as
Broadband Integrated Services Digital Network (BISDN) are designed
to support a wide range of services: transmission of video, voice and
data signals. The Asynchronous Transfer Mode (ATM) is the first
technology to merge video, voice and data into a common format and
uses very short, fixed length packets called “cells.” In all these systems,
events (packet arrival and onward transmission of packets) occur only
at a regularly spaced points in time. In the past, continuous-time
queueing models have been used to evaluate performance measures of
communication systems but due to recent changes in technology which
is based on discrete time, they can only be used as approximations to
real systems. In view of this, discrete time queueing models seem more
appropriate. A detailed discussion and applications of discretetime
queues to telecommunication systems may be found in a recent book by
Bruneel and Kim (1993).

Discrete-time queueing systems with a single server have been
discussed extensively. However, very little seems to have been done on
the corresponding multiserver queues. One of the earliest work in this
direction was by Chan and Maa (1978). Using the imbedded Markov
chain technique, they obtain only the distribution of number of
customers in the system at a prearrival epoch. However, in many
situations we need performance measures such as average queue length
at other epochs, e.g. arbitrary and outside observer’s observation epochs.
In a recent paper, Chaudhry and Gupta (1997) develop relations among
state probabilities at various epochs for two models: GI/Geom/m system
with early arrivals (EAS) and GI/Geom/m system with late arrivals
and delayed access (LAS-DA). They further show that, in the limiting
case, these relations tend to the corresponding continuous-time results.
It may be remarked here that using a recursive algorithm some results
on the discrete-time GI/Geom/m/m queue have also been investigated
by Chaudhry and Gupta (1999).

In this paper, we first consider GI/Geom/m queue with early arrival
system (EAS). Some details on EAS may be found in Hunter (1983) or
Chaudhry et al. (1996). The aim of this paper is to numerically evaluate
the state probabilities at arbitrary epochs from those at prearrival
epochs. Unfortunately, the direct substitution of prearrival epoch
probabilities into equations (3.2.7) and (3.2.8) (see below) does not yield
arbitrary epoch probabilities. Similar remarks also apply to the
evaluation of outside observer’s observation epoch probabilities though
such probabilities can be easily obtained in the corresponding
continuous-time multiserver GI/M/m queue, Takacs (1962). It is shown
later on how to resolve this in the discrete-time case.
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Once the state probabilities at various epochs are evaluated for the
GI/Geom/m queue with EAS, we derive similar results for the GI/Geom/
m queue with LAS-DA. This is done by developing relation between
prearrival epoch probabilities of EAS and LAS-DA. Subsequently,
arbitrary epoch probabilities are evaluated for the LAS-DA GI/Geom/
m queue using the relation developed by Chaudhry and Gupta (1997).
Further, numerical results have also been validated by performing
computer simulation experiments for both the EAS and LAS-DA
systems.

3.2 MODEL AND SOLUTION: GI/Geom/m (EAS)

Though the GI/Geom/m queue with EAS is discussed in Chaudhry and
Gupta (1997Db), it is briefly described here again for the sake of
completeness. We assume that the interarrival times are independent
identically distributed (iid) random variables (rvs) having common
probability mass function (pmf) a,=P(A=n), n>1, probability generating
function A(z), and mean a. The transmission time S of each of the m
servers is independent and geometrically distributed with distribution
given by

PS=n)=b,=(1-p)" 1y, O0<p<l, n>L

Further, the probability that j customers are served given that there
are I in the system is given by

(i) = (;,),ﬂ'(l—p)"—j, i=1,2,om,  §=0,1,..,4,

Gli) = (’J’.’)uj(l—u)m—f, i>m,  j=01,..m,

with ¢(010)=1 and (’:) =0, r>k or r<0.

Let the time axis be marked by 0, 1, 2,..., £,..., and assume that the
potential arrivals occur in (¢, £+) and the potential departures occur in
(¢-, t). More specifically various time epochs at which events occur are
depicted in Figure 3.1.

The state of the system just before a potential arrival is described by
two variables: the number of customers in the system (N, and the
remaining interarrival time for the next arrival (U,). Let us define

Q'n(tsu) = P{Nt=n,Ut=u}, u>0
Qn(w) = lim Qn(tu).
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Potential
A (Arrival )
| | | | | |
i I -/ * I il N2
t- t t+ (t+1)- t+1 t+1)+
Potential
D D (Depanlure)

O Potential arrival epoch

o Potential departure epoch

+ : Outside observer's epoch
{t+.(t+1)-): Outside observer's interval
t+: epoch after a potential arrival

1-: epoch prior to a potential departure

FIGURE 3.1 Various time epochs in early arrival system (EAS)

It follows that the marginal distribution @, is given by
Qn = Z Qn (u)
u=0

In steady-state, assuming it exists (p=1/amu<1), we relate the states
of the system at two consecutive epochs ¢ and #+1, and get for u>1

m m—1
Qou—1) = Y Q;weclils) +au Y_ Qi(0)c(j+1]j+1)
=0 =0
(3.2.1)
and
n-+m
Qulu=1) = > Q;(w)e(j—nlj)
” m+n—1
taw Y, Qi0ei-n+1j+1), nx1
j=n-1
(3.2.2)
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Let

Qi) =Y Qu2¥, A(x) =) auz*, ao=0.
u=0 u=0

Multiplying (3.2.1) and (3.2.2) by 2% summing over u=1 to « and
adjusting terms for u=0, we obtain

2 —c00]Q5(z) = 3 Q(2)e(ild)

=1

+ 3 QO{AG)CG + 115 +1) — e(ili)
=0

= Qm(0)c(m|m) (3.2.3)

n+m m+n
[z—cOmMIQnz) = Y Q)G —nlj)— Y Q(0)c(i — nlj)
j=n+1 j=n
’ n—1+4+m ’
+(2) Y Qi0)c(i—n+1j+15) n>1
j=n—1

(3.2.4)

Adding (3.2.3) and (3.2.4) over all possible values of n, we get, after
simplification,

d A
ZQn( )= (Z) ZQn(O) (3.2.5)
Letting z—1 in (3.2.5) yields
> 1
D Qn(0) =~ (3.2.6)
n=0

Equation (3.2.5) and (3.2.6) have intuitive and probabilistic
interpretations. Whereas Y om0 @n(0) represents the arrival rate of
customers, D neo @n(2) gives the transform of stationary residual
interarrival time measured from a slot boundary. To obtain relations
between distributions of numbers in system at prearrival epoch, {@;, }§°
and arbitrary epoch, {@r}§, we set z=1 in (3.2.3) and (3.2.4) and use
Q@ = aQn(0). They are

> Quelili) = 1| Y@ il ~cli+ Ui+ D) (g2
j=1 J=0
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and
n+m
Qnll —cOn)] — > Qjc(j —nlj)
j=n+1
1 n+m
[ S @ {eG-n+ 1+l —cG-nlp}|, nx1
j=n-1

(3.2.8)

It appears from the above two expressions that once the distribution
{@7 }&° is known, one can obtain {Q, }§°. However, as stated earlier this
is not straight forward. For details, see the next section.

The state probabilities {@; }$° at a prearrival epoch can be obtained
using Chan and Maa (1978). For easy reference and computational
purposes, their main results have been reproduced below.

If the condition p<1 is satisfied, then the limiting probability
distribution, @,,, is independent of the initial distribution and is given by

Qn = {Zi}l(—l)“"(f,)w n=012..m-1 399

Dgn—m n>m

where

H.
Ur = DB _Zr;.l B(l——fl)

1/{@*23,-(1—,4]-)}

o (m\ (A -pm (z — Aj) = (m UT '

= (J> zmtt [(1—u)+uw]m—(1—u)j];<T)<l~u)
" k

> fk(j)

k=m+1-r

©
It

x is the solution of equation

z = A((L—p)+pz™) = S - )+ pal e, 0<z<1
k=1

and

j oo

Ak ki
” l_Ak,andAj:§ (1—p)¥ay.
k=1 k=1
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Because of the alternating signs in (3.2.9), the above expressions fail
to give {@;, }&° completely for high values of m and p even if double
precision is used. However, this problem can be resolved if we use
MAPLE (1995) with extended precision. Further, we can also solve

Pq—(i) — q—(i+1)’ i>0

iteratively,where q~® = [Q7®, Q7 ®, ..., @ZYIT and q*=[1, 0,..., O]

size

In this case, entries for the transition probability matrix (tpm) P, see
Chan and Maa (1978), are given below:

o>,
.+
[ury

)((1 MY = (1= )y,

0<i<mand0<j<i+1<m
oo n m m (_1 ; s
by = Z [ZZ Z (i-:—nlr—uls)'u+1

% (1 _ u)m(r—l)-—(i+1—u—s) (TZ) Mu(l _ u)m—u (j)

x (1— @)™ m9(1 - (1 - M)”_T)S“J} Qn,
j<m<i
o0
i = Z ( nm ’>'u,i+1—j(1 _ pymn=Giti=d)g

t>2mandm+1<j<i+1.

Also, for i>0, the probability vector q is iterated until the following
condition is met

stze

D1 — QM) < 107,
n=0
Though the iterative method is a bit slower, it is stable, even for inter-

arrival distributions with infinite support such as geometric.

3.2.1 Evaluation of {Qx}5° from {@;; }§°

In this section, we discuss the procedure for evaluating {Q,}§ from
{Q;}&. First, we use (3.2.9) to get {Q-}3° as discussed earlier. Once
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prearrival epoch probabilities are evaluated either by expression (3.2.9)
or using iteration, we use (3.2.8) for the evaluation of {Q,,}$°. It may be
pointed out that equation (3.2.7) is not needed for the evaluation of the
probabilities {Q, }¢°. However, this equation can be used as a check on
{@; }rrand {Q, }T Let us denote the final prearrival epoch probabilities
by the new vector q~ = [Q7, Q5 , - @zi..)T- Also, let q=[Q1, Qs,..., Qs:..]”
which is yet to be evaluated. Re-arranging (3.2.8) by isolating the term
Q, yields

n+m

Qn = 1—-60[7?,{ Z QJ ]—’fllj

j=n+1

Q|

n+m
[ > Qj_{c(j“"lj)—C(j—n+llj+1)}]}, n>1.

j=n-1
(3.2.10)

With i>0 and using iteration on (3.2.10), the vector q=[Q1, Q:,..., Q.i.l”
can be obtained. Thus, we write

n+m
(i+1)  _ 1 ( ) _
1 n+m
*;[ZIQJ{cU —nlj) — e —n+ 1]+ 1)}] }
j=n—
1<n< (size—m)* (3.2.11)
and
(i+1) 1 = @) (s
@ T 1—-¢(0n) {j_zn;rl Q;"c(d —nlj)

j=n—1

| S Qs (el —nlg) i —n+ 1 +1) }]}
7

(size —m)T < n < size (3.2.12)

where st ) are the probabilities evaluated from the i-th iteration with
the initial estimate q”=[0, 0,..., 0]7 and (x)*=max(0, x). Note that for
size<m only (3.2.12) will be used. Further, note that @, is not used in
(3.2.11) and (3.2.12), but can be obtained later using normalization.
For i>0, the probability vector q% is iterated until the following condition
is met
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size

IRt — W) <1071,
n=1

Finally, @, is obtained from

size

Q=1-) Qn (3.2.13)

n=1

3.2.2 Outside observer’s distribution

Since an outside observer’s observation epoch falls in an interval after
a potential arrival and before a potential departure, the probability Q9
that the outside observer sees n in the system can be obtained from @,
using the following relation

n+m

Qn = Y Qc(i-nlj), n>0 (3.2.14)

j=n

which is obtained through probabilistic arguments. One may note that
c(ilj)=c(ilm) if j>m. Since we know {Q }3°, the vector {Q?2}&° is obtained
iteratively following the procedure discussed in the previous section.

3.3 GI/Geom/m (LAS-DA)

In this section, we obtain the state probabilities at various epochs in
the case of LAS-DA by developing relations between state probabilities
at prearrival epochs of EAS and LAS-DA. Again, for the sake of
completeness, the GI/Geom/m queue with LAS-DA is described briefly
and the relations are reproduced below. In this case, a potential customer
arrives in (¢-, t) and a potential departure occurs in (¢, ¢+). More
specifically, various time epochs at which events occur are depicted in
Figure 3.2.

Here, the state of the system just before a potential arrival is described
again by two variables: the number of customers in the system at ¢-(IV,)
and the remaining interarrival time for the next arrival (U,). In what
follows, the minus sign ‘- after ¢ is omitted for simplicity. Let us define

Po(t,u) = P{N;=n,U=u}, u=>0
P,(u) = tlim P,(t,u)
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Potential
A A (G
| | 1. i ! |
1 | " T ] !
t- t t+ (t-+1)- (t+1) (t+1)+
Potential
D D (Depanure)

O : Potential arrival epoch

@ Potential departure epoch

% : Outside observer's epoch
(t+,(t+1)-): Outside observer's intervat

1+: epoch after a potentiat departure
t-: epoch prior to a potential arrival

FIGURE 3.2 Various time epochs in late arrival system with delayed access
(LAS-DA)

It then follows that

F, =:§g%I%(u)

We have, in steady state,

Pu—1) = Y Py(ue(ily) (3.3.15)
=0
and
n+m n+m-—1
Puu—1) = Y Piwe—nlj)+a Y, P;(0)c(j—n+1]5),
ji=n j=n-—1
n>1 (3.3.16)
Define

o o0
Pi(2) =) Pa(w)z*, A(x)=) auz*, ao=0.
u=0

u=0
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From (3.3.15) to (3.3.16) we obtain, respectively,

[z — c(0[0)] P5 (2) 3" Pr(2)c(li) — Y Pi(0)e(ili) (3.3.17)

Jj=1 j=0
m-+n
[z—cOm)IPi(z) = > Pi()e(i—nlj)

j=n+1
n—1+m

+A(2) Y Pi(0)e(j —n+15)
j=n—1

m+n

=Y P0G —nlj) n>1 (3.3.18)
j=n

Adding equations (3.3.17) to (3.3.18) over all possible values of n, we
get, after simplification,

(z—1) Y Pi(z) = [A(z) — 1] Y Pa(0) (3.3.19)

n=0

Letting z—1 yields
>, 1
D Pa0) =~ (3.3.20)
=0

Equations (3.3.19) and (3.3.20) may be interpreted as before. To obtain
a relation between { P, }° and { P, }3°, we set z=1 in (3.3.17) to (3.3.18)
and use P, = aP,(0). They are

> Pre(il) =a)_ Pic(ili) (3.3.21)
3=0 j=1
n+m
B[l = ¢0ln)] = Y Pjc(j —nlj)
j=n+1
1 n+m
== |Pyc(Oln — 1)+ 3 P {c(j—n+11j) — (i —nif}|,
j=n
n > 1. (3.3.22)
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3.3.1 Evaluation of { P} from {P,; }&°

It can be seen from (3.3.21) and (3.3.22) that to obtain P, we first need P,
which can be obtained from the following relation between P, and @:

m+n

Q. =>_ PycG-nlj), mn>0. (3.3.23)

ji=n
Since only departures occur between two arrivals for the two systems,
the above relation between ;; and P, can be obtained by connecting
probabilities at two prearrival epochs and using probabilistic arguments.
Having known @;;, P, are obtained using iteration as discussed in
Section 3.2.1.
Now once P, is known we can obtain P, using

Pr(li+1)
SN N
1—c(0jn) | . J
j=n+1l
1 n+m
+EI: n—lc(0|n - 1) + Z Pj-{c(] —n+ 1|.7) - C(J - n[.])}j! }a
J=n
1<n < (size—m)* (3.3.24)
Péi+1)
3 1 size ) - )
j=n+1
1 _ size _ ) ) ) )
+o | Pooie(Oln —1) + Z P{c(j—n+1]j) —c(i - nIJ)}] }
Jj=n

(size —m)* <n < size (3.3.25)

where p(¥) are the probabilities calculated from the i-th iteration and
(x)*=max(0, x). Note that for size<m only (3.3.25) will be used. We use
the initial estimate p‘»=[0,0,..., 0]*. Further, note that P, is not used in
(3.3.24) and (3.3.25), but can be obtained later using normalization.

3.3.2 Outside observer’s distribution

In the case of LAS-DA, outside observer’s observation epoch falls in a
time interval after a potential departure and before a potential arrival,
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the probability that an outside observer sees n in the system, P? is
same as P, ¥n, > 0.

3.4 NUMERICAL RESULTS

Numerical work has been performed using the procedures described
in Sections 3.2.1 and 3.3.1. Further, numerical results have also been
validated by performing computer simulation experiments. As
expected, simulation took much more time to achieve desired level of
accuracy. In other words, to get the same values which were obtained
by an analytic method, one has to increase the number of trials which,
in turn, increases time (in some cases it took 10 hours on a 486 PC).
The results given in columns 2, 3, 4 and 5 of Table 3.1 for Geom/Geom/
m queue have been obtained directly from the model equations derived
independently, whereas the results in columns 6, 7, 8 and 9 were
obtained from the procedure discussed in this paper and have been
denoted by C&G. Finally, the results given in columns 10, 11, 12 and
13 were obtained using computer simulation method. It may be
remarked here that since P? = @7 = F,, no separate results have been
reported for P2 and P, The results for D/Geom/m queue are obtained
similarly and are given in Table 3.2. Numerical results for higher
values of model parameters m and p are given in Table 3.3. For large
values of m and/or p, numerical work can be done using the method
discussed in this paper since Chan and Maa’s procedure creates
instability as stated earlier. Various measures such as average queue
length at various epochs and average waiting time can be obtained in
the usual way. One may note that since all the results reported here
were rounded to four decimal places, the sum may not add to one in
some cases.

A final remark may be in order. The method discussed here works
even if we wish to get low probabilities such as <107. In this case, one
only needs to increase the size of the vector q- given in Section 3.2.1.
In Tables 3.1, 3.2 and 3.3, the size was taken as 30, 30, 150,
respectively.
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TABLE 3.1 Distributions of numbers in system, at various epochs, in
the queueing system Geom/Geom/m with #=0.2, A=0.2, m=5, and p=0.2
Geom/Geom/m C&G

Qn  Qn Qn P Qp Qn @ P7
4323 4323  .3458 3458 4323 4323 .3458 .3458
.3807 .3807 .3910 .3910 .3807 .3807 .3910 .3910
1478 1478 1944  .1944 1478 1478 1944 .1944
0336 .0336 .0564 .0564 .0336 .0336 .0564 .0564
.0050 .0050 .0107 .0107 .0050 .0050 .0107 .0107
.0005 .0005 .0014 .0014 .0005 .0005 .0014 .0014
.0001 .0001 .0002 .0002 .0001 .0001 .0002 .0002
.0000 .0000 .0060 .0000 .0000 .0000 .0000 .0000

N O W - ONS

simulation
Qn Qn Q@ Py
4323 4323 3458  .3458
3807  .3807 .3910 .3910
1478 1478 1944 1944
.0336 .0336 .0564 .0564
..0050 .0050 .0107 .0107
..0005 .0005 .0014 .0014
.0001 .0001 .0002 .0002
..0000 .0000 .0000 .0000

N O U W = O3

TABLE 3.2 Distributions of numbers in system, at various epochs, in
the queueing system D/Geom/m with x=0.2, a=4, m=5, and p =0.25
C&G simulation
Qn Q@n S-S N Q@n Qn  Pr
4361 .2734 1644 .3319 4361 .2734 .1644 .3319
4438 4864 4845 4878 4438 4864 .4845 4878
1107 .2087  .2920 .1623 .1107 .2087 .2920 .1623
0092 .0299 .0553 .0173 .0092 .0292 .0553 .0173
.0003 .0016 .0038 .0007 .0003 .0016 .0038 .0007
.00060 .0000 .0001 .0000 .000C .0000 .0001 .0000

T N~ O3
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TABLE 3.3 Distributions of numbers in
system, at various epochs, in the queueing
system D/Geom/m with 1=0.016666, a=4,
m=20, and p=0.75

n &n Qn Qn Py

<4 .0000 .0000 .0000 .0000
5 .0001 .0002 .0001 .0001
6 .0005 .0007 .0003 .0005
7 .0018 .0027 .0013 .0020
8 .0058 .0081 .0044 .0064
9 0150 .0199 .0120 .0163
10 0323 .0406 .0271 .0347
11 0587 .0701 .0513 .0623
12 .0911 .1033 .0828 .0953
13 1216 .1311 .1147 1253
14 .1409  .1445 1376 .1429
15 1425 1391 1439 .1421
16 1266 1177 1320 .1240
17 .0993 .0880 .1067 .0955
18 0690 .0584 .0765 .0652
19 .0428 .0346 .0487 .0397
20 0239 .0187 .0279 .0218
21 .0129 .0101 .0151 .0118
22 .0070 .0055 .0082 .0064
23 .0038 .0030 .0044 .0035
24 .0020 .0016 .0024 .0019
25 .0011 .0009 .0013 .0010
26 .0006 .0005 .0007 .0005
27 .0003 .0003 .0004 .0003
28 .0002 .0001 .0002 .0002
29 .0001 .0001 .0001 .0001
30 .0001 .0000 .0001 .0000
> 31 .0000 .0000 .0000 .0000

Copyright © 2002 Taylor & Francis

45



46 M.L.CHAUDHRY and U.C.GUPTA

REFERENCES

Bruneel, H. and Kim, B.G. (1993). Discrete-Time Models for
Communication Systems Including ATM, Kluwer Academic
Publishers, Boston.

Chan, W.C. and Maa, D.Y. (1978). The GI/Geom /N queue in discrete
time, INFOR, 16(3), 232—-252.

Chaudhry, M.L. and Gupta, U.C. (1999). Algorithmic discussions of
distributions of numbers of busy channels for GI/Geom/m/m queues,
INFOR (to appear).

Chaudhry, M.L. and Gupta, U.C. (1997). Relations among limiting
distributions of the numbers of customers at different epochs in
discreteand continuous-time multiserver queues: GI/Geom/m and
GI/M/m, Submitted for publication.

Chaudhry, M.L., Gupta, U.C. and Templeton, J.G.C. (1996). On the
relations among the distributions at different epochs for discrete-
time GI/Geom/1 queues, Operations Research Letters, 18, 247-255.

Hunter, J.J. (1983). Mathematical Techniques of Applied Probability,
Volume II, Discrete Time Models: Techniques and Applications,
Academic Press, New York.

Maple (1995). Maple V Release 4, Waterloo Maple Software, 450 Philip
Street, Waterloo, Ontario N2L 5J2, Canada.

Takéacs, L. (1962). Introduction to the Theory of Queues, Oxford
University Press, New York.

Copyright © 2002 Taylor & Francis



CHAPTER 4

BUSY PERIOD ANALYSIS OF
GI’IM/1/N QUEUES—LATTICE
PATH APPROACH

KANWAR SEN MANJU AGARWAL
University of Delhi, Delhi, India

Abstract: Queuing theory literature reveals that steady state solutions
are available for various types of infinite-space queuing models both
Markovian and nonMarkovian. Also that, while some work has been
done to find transient solutions of finite/infinite Markovian queues, non-
Markovian queues are not attempted much. However, transient
solutions of non-Markovian finite bulk queues have not perhaps been
attempted as yet. This study is an effort towards this direction and
deals with the busy period analysis of GI?/M/1/N queue. Via Lattice
Paths Combinatorics (LPC), results are obtained in explicit
computational form. The general interarrival time distribution is
approximated by 2-phase Cox distribution C,; that has Markovian
property, amenable to Lattice Paths Combinatorics. The distribution
C; covers a wide range of distributions that have square coefficient of
variation Iying in [1/2,). As such, the results obtained in this paper are
applicable to a large class of real life situations. Some numerical results
for the C3/M/1/N model are also given.

Keywords and phrases: Lattice paths combinatorics, transient
solutions, busy period density, non-Markovian queues, bulk queues

4.1 INTRODUCTION

Explicit closed form results for time dependent behaviour of non-
Markovian bulk finite queues do not seem to be available in queuing

47
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literature though they are very much required in real life systems. This
may be due to the inherent difficulties in analysing such systems. This
paper aims at studying the queue GI®’M/1/N and provides busy period
density in explicit closed form. For the purpose, lattice paths
combinatorics (LPC) is used.

However, using LPC the transient analysis of finite queues GI/M/1/
N and M/G/I/N have been carried out by Agarwal (2000) and Kanwar
Sen (1999), respectively. In LPC analysis, the process is split up at
suitable renewable epochs and thus can be represented by a LP. The
general distributions involved have been approximated by 2-phase Cox
distributions, C, [Cox (1955)], that have Markovian property amenable
to LPC analysis. Same way, the busy period analysis of bulk queue GI?/
M/1 has also been carried out by Agarwal and Sen (1997). The results
generalize those obtained by Sen and Gupta (1996a, b) for M®/M/1.

The LPC method consists in providing transient solution through a
discrete time analogue and a limiting process [Meisling (1958), Mohanty
and Panny (1989) Bourn (1993)]. This method is found to be simple and
elegant in studying Markovian queuing systems under different control
policies, vacations and numerous other restrictions [see Kanwar Sen
and Jain (1993), Kanwar Sen et al. (1993), Kanwar Sen and Gupta
(1993,1994,1997)] as well as for non-Markovian queuing systems
[Kanwar Sen and Agarwal (1997a, b, ¢, 1998)]. By using combinatorial
methods involving LPs, transient solutions for M/M/1 queues have also
been obtained by Mohanty and Panny (1990), B6hm (1993) and B6hm
and Mohanty (1994a, b). However, whatever other transient solutions
are available for non-Markovian queues, they are obtained by applying
the much used so called top-to-bottom techniques [B6hm and Mohanty
(1994a, b)] and thus are given either in terms of Laplace-Stieltjes
transforms (LSTs) or other integral transforms [Takas (1962), Benes
(1963), Dalen and Natvig (1980), Neuts (1989), Takagi (1991, 1993 a,
b), Bohm (1993)]. As such, they are much complicated, intractable and
hard to implement. This raises the question regarding the
implementation of the models and as such one may have to be satisfied
by getting their numerical solutions only [Grassman (1990)]. Lucantoni
et al. (1994) and Logothetis et al. (1996) developed numerical
computational algorithms for Batch Markovian Arrival Process (BMAP)/
G/1 queues with infinite and finite waiting spaces, respectively, and
took general distributions to be deterministic. Alfa (1982) considered
time-inhomogeneous batch-server discrete time queuing model G/G/1/
N for its transient behaviour. Mohanty (1991) studied the transient
behaviour of a finite discrete time birth-death process. Recently,
Mohanty (1996) surveyed briefly the work done on transient behaviour
of discrete time queues.

The distribution C; consists of 2 independent exponential phases with
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arrival rate 4; (j=1, 2) as shown below (Fig. 4.1). After phase 1 of arrival,
the unit either enters phase 2 of arrival with probabihty « or joins the
system for service with probability 4(=1-).

I _f '_hase 1 o Phase 2
Xl xz
a 1

FIGURE 4.1 2-phase Cox distribution C,

The distributions C, cover a wide range of distributions in terms of
differing values of squared coefficient of variation, Marie (1978, 1980),
Botta et al. (1987). As such the results obtained are applicable to a
large class of real life situations.

4.2 THE GI®/M/1/N MODEL

We assume that the system starts initially nonempty and has finite
capacity N (assumed to be a multiple of ) including the one in service.
The customers arrive in batches of size b and the service is done one by
one. Interarrival time distribution of batches of customers is general,
which is approximated by 2-phase Cox distribution C,. Service time
distribution is exponential. Therefore, as in Fig. 4.1,

A1: exponential interarrival rate in phase 1

Ao: exponential interamval rate in phase 2

a: Pla batch of b customers enters into phase 2 of arrival after
completing phase 1 of arrival}

a: Pl{a batch of customers joins the system for service after phase 1 of
arrival} (a+d=1).

Let
u: exponential service rate

i: number of batches of customers initially in the system.
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4.3 LATTICE PATH APPROACH

To study the busy period distribution of the continuous queue GI*/M/1/
N we first study the discretized system on segmenting the time interval,
say, (0, ¢] into a sequence of ¢/h (an integer) time slots, each of very
small duration A (>0). Obviously in a time slot only one of the following
events takes place:

(i) a batch of b customers joins the system (after either phase 1 or
phase 2 of arrival)

(ii) a customer departs from the system after getting service
(iii) a batch of b customers enters into phase 2 of arrival

(iv) none of these. This is termed as a stay.

Therefore, by Discretizing the system time, the sequence of events can
be represented by a two dimensional LP representing, respectively, (see
Fig. 4.3)..

L an arrival of a batch after phase 1 by a horizontal step of length b
units

L an arrival of a batch after phase 2 by a dotted horizontal step of
length b units

. a departure by a vertical step of unit length

*  entryof a batch into phase 2 of arrival by a diagonal step of length
b units

J stay by a point.

It is obvious that, for the discretized model, system state at the end of
any time slot is represented by a vertex (x, y) on a LP(x y and x i). To
make understanding better, we first consider, as an example, a LP
representing busy period of the server, Fig. 4.3. The server becomes free
only at the vertex B(y, y) when the LP touches the line Y=X for the first
time. Moreover, since no batch can join the system when it is full to its
capacity N, obviously the LP cannot cross the line Y=X-N and therefore
is to lie between the lines Y=X and Y=X-N. The points A, A,, As, A, and
As;, where the LP touches the line Y=X-N, represent that the system is
full to its capacity and hence would continue in this state until

(i) either a departure, i.e. , a service completion takes place
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(i1) or a batch enters phase 2 of arrival.

It may be noted that while at the point A; system state changes due to
(i1) , it changes due to (i) at the other points A,, A,, A, and As.

Since for a fixed ¢, length of the busy period of the server, there can
be more than one LP that touches the line Y=X for the first time at the
end of ¢/ h time slots, to obtain busy period probability, we have to count
the number of all possible LPs that lead the system to empty state and
then associate the appropriate probabilities with the corresponding LPs
and take their sum. Finally, on taking the limit as 2—0, the desired
continuous time transient results can be obtained [Meisling (1958),
Mohanty and Panny (1989) and B6hm (1993)].

4.4 DISCRETIZED cg /M/1/N MODEL
4.4.1 Transient Probabilities

According to the model assumptions, following transitions are possible
in a time slot:

(x,y+1) if there is a d epar-
4

(x+b,y+b) if a batch enters into phase 2 of a rrival

» (x+b,y) if there is a batch arrival

&, after either phase (i.e. phase 1 or

if there is no movement,

FIGURE 4.2 Possible transitions in a time

Therefore, we have the following ¢ransition probabilities:

(i)  Pl(x, y)(x+b, y) if arrival after phase 1, y<x< y+N-b+1}= G 1h+o(h)
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(i1) Pf(x, y)(x+b, y) if arrival after phase 2, y<x<y+N-b+1}= Ah+o(h)

(iii) Pf(x, y)(x+b,y+b), i.e., entry into phase 2 of arrival, y<xy+N}=
alh+o(h)

@iv) Pl(x, y)(x, y+1), i.e., a departure, y<xy+N}=uh+o(h)

(v) Pf(x, y)(x, y) if a batch is in phase 1 of arrival, y<x< y+N-b+l}= 1—
(A+u) h+o(h)

(vi) Pf(x, y)(x, y) if a batch is in phase 2 of arrival, y< zx<y+N-b+ 1}=1-
(Ag+u)h+o(h)

(vii) Pf(x, y)(x, y) if a batch is in phase 1 of arrival, y+N-b<xy+N}= 1—
(ar+u)h+o(h)

(viii) P{(x, y)(x, y) if a batch is in phase 2 of arrival, y+N-b<xy+N}= 1-
uh+o(h).

Stays occurring in (v) to (viii) are called as type 1, type 2, type 3 and type
4, respectively.

4.4.2 Counting of Lattice Paths

To see, in general, how to count the number of possible LPs, if in Fig.
4.3, all the diagonals are removed, then we have a LP having only
horizontal steps (each of length b units), and vertical steps (each of unit
length) as shown in Fig. 4.4. At this stage we define Run as:

Run: A sequence of consecutive horizontal (vertical) steps bounded on
each side by a vertical (horizontal) step is called a horizontal
(vertical) run. The sequence of horizontal steps starting from the
origin followed by the first vertical as well as the sequence of
vertical steps at the end following the last horizontal step are also
called horizontal and vertical runs, respectively.

Now, Fig. 4.4, obtained from Fig. 4.3, does not contain any diagonals,
therefore, it represents a very special case that all arrivals to the system
take place after phase 1 on ly. But, since some arrivals (at the maximum
all) could be after phase 2 as well, therefore, while counting the possible
LPs, one has to think of all the different possibilities in which diagonals
can be inserted into horizontal and vertical runs. Keeping in mind the
distribution C,, it is clear that we have to observe the following
conditions:
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(i) two or more consecutive diagonals should not occur,
(i1) in any horizontal run any number of diagonals may occur,
(iii) in any vertical run not more than one diagonal should occur,

(iv) the first horizontal step following a diagonal step has to be a dotted
horizontal step,

(v) two or more consecutive dotted horizontal steps should not occur,

(vi) a doffed horizontal step should not be immediately preceded by a
horizontal step,

(vii) from any vertex (x, y) such that y+N-b<xy+N, there should not be
a horizontal step, only vertical steps or diagonal steps are possible.

The counting of LPs has to be done, therefore, keeping in view the above
restrictions.

4.4.3 Notations

InaLP,let

y-bk: number of arrivals (including those initially in the system) as
well as the number of departures in a busy period, obviously y will be a
multiple of b (batch size),

r: number of horizontal runs and vertical runs, separately (r>1),

bl,: length of the sth horizontal run (s=1, 2,..., r),

L,: length of the sth vertical run (s=1, 2,..., r),

L: (4, 1,,...,1,; Ly, Ly,...,L,),

k: total number of diagonals inserted in horizontal and vertical runs
(£ 0),

J: number of diagonals inserted, one each, in vertical runs, (0 k),

k-j: number of diagonals inserted in horizontal runs,

i: (i1, i3,..., Ls,--., I;), numbered vertical runs in which ;j diagonals are
inserted (one each),

L;: (L, Li,,...,Li,,..., L), length of j vertical runs numbered i, in
which the j diagonals are inserted,

K:(K;,,Ki,,...,K;,,...,Ki,), respective distances from the lower end
of the vertical runs at which j diagonals are inserted,

b,,: number of possible vertices where type m stays can occur (m=1,
2,3, 4),

C,.: number of type m stays (m=1, 2, 3, 4),

b: (b, by, b3, by),
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c: (cy, €y, 3, C),

N: capacity of the system (assumed to be a multiple of b).

With the vertex (y, y) on the line Y=X, it is obvious that

# of departures during a busy period (number of vertical steps each
of length b)=% — k y—i,

# of diagonals each of length b (number of batches entered into phase

2 of arrival)=k.
Therefore, the total number of transitions in a busy period is = £ —k —

i+ (y—bk)+k="ly — bk -
Obv10usly, b..s should satisfy the relation:

b+1
Z bm = —3/ bk — i (excluding the end vertex (y, y)).

To understand these notations we refer to Fig. 4.3,
b=4, i=l, N=16, y=68, r=7, k=6, j=4,
L=(,,l,,...,l3; Ly, Ly,..., L)=(4,1,1,1,1,2,1; 4,5, 3, 6, 8, 2, 16),
i=(1y, iy, 15, 1)=(1,4, 5, 7),
L;=(4,6, 8, 16),
K=(2,0,1,6),
_(11 23,19, 7),

1
Zb :bLy bk — i = 60.

The remaining 2 (=k-j) diagonals are inserted in horizontal runs
numbered 1 and 6.
To count the number of required LPs, therefore, we have

Theorem 4.4.1 For fixed values of nonnegative integers i, b, y, N, k, j, r,
L i K,b,c,let LP? by Nk i, Ko b.e denote the number of LPs from
A(bi,0) to B(y,y) remaining below the Zme Y=X but not crossing the line
Y=X-N, each comprising of k diagonals, of length b horizontal steps of
length b each % — k (including those from (0,0) to (bi, 0)) and y-bk vertical
steps, such that

(a) ¥ — k horizontal steps form r horizontal runs of lengths

bly,bla, ..., bl 1y 4;10,15,...,01. >0,
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1: vertices for type 1 stays
2: vertices for type 2 stays
3: vertices for type 3 stays
4: vertices for type 4 stays

artures

dep

(0,0) Abi,0) (N,0)

FIGURE 4.3 Busy period illustration
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(y-bk, y-bk)
) " -
<
=
e
arrivals
0,0 ®i0) N,0) -

FIGURE 4.4 C5/M/1/N model. Lattice path ignoring the diagonals
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Theorem 4.4.2 (b) y-bk vertical steps form r vertical runs of lengths L,
L,,..., L, respectively, L,, L,,..., L.> 0,
(¢c) max(bi, L;+1)< b1,<N,

lSZUS%—l, u=2,3,...,71

I<L,<N-1, u=12,...,r—1,
b+1< L, <N,

bzv:lu >§v:Lu, v=2,3,...,r—1, and
u=1

u=1
bZr:zu :y—bk=2r:Lu,
u=1 u=1

ie.,

{L:(NZbll > max(bi, Ly + 1)) ﬂ (lglu 5—1;1— )
u=2

r—1
x (YA<Ly<N-1)N(b+1<L, <N)
1

x ﬁl <bu;lu >\iLu> N (bglu:y—bkzzr:Lu>},

v=2 u=1 u=1

3 8

(These conditions ensure that the LP touches Y=X for the first time at (v,
y) without crossing the line Y=X-N),

(d) j diagonals are inserted one each into j vertical runs numbered i=
(iy, iy..., i), respectively, of lengths L; = (L, Li,, .. ., L;;) at distances
K; = (K, K,,...,K;,)from bottom (including the vertices at both ends
of the vertical runs except the vertex at the end of the last vertical run),

(e) the remaining k-j diagonals are inserted into horizontal runs; one
or more diagonals can be inserted in any horizontal run except at the
vertices at both ends of horizontal runs,

f) ¢, stays of type m can occur at b,, vertices (m=1, 2, 3, 4), respectively.

Then for r>1,

LP, | niinLiK.bo
(FE L (), ks
= (51+d_1]—1) (e3+d;—1), em k=0 (4.4.1)

€] ea
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where, for k>0,

b+1 :
by = (Ty bk — z) — by — by — ba, (4.4.2)

by = Y. (Lp—Kp+ 1)+ (k—17)
pE(in,ia,..,i5)

- ) V({®NKipa)-A

PE(i1,82,..-y5) (4.4.3)
_ 1, ’Lf ’l:j =T
A= { 0, otherwise ,
b3 - Z W(b9 N7 Kpaap) + Z U(b7 Nvap)a (444)
pe(il,‘iz,...,ij) Pe(ilyiz,u-,ij) o
b4 = Z V(b’ N7 Kp’ap)y (44.5)

pe(ilyi%-"vij)

P p—1
ap=bzls_ZLs, p=12...,r (4.4.6)
s=1 s=1

Ub,N,a,) = {3—N+az~ ifap=N—b+1,...,N,

otherwise ,
pg(ilai%"',ij)a (447)
V(b,N, Ky, ap)
b— K, ~N+ap, ifap=N-b+1,....,N
= and K, + N —a, < b,
0, otherwise, (4.4.8)
pe(ilai27"'7ij)
W(b,N, K,,ap)
K, +1, fap=N-b+1,...,N
and K + N —ap, <b
= b~ N+ap, Hfap=N-b+1,...,N
and Kp -+ N —ap, > b (4.4.9)

0, otherwise,
pe (il,i2,.. . ,ij)
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and for k=0, defining
d,=number of possible vertices for type n stays to occur n=1, 3,

e,=number of type n stays, n=1, 3,

we have
di = Hle—z'—dg, (4.4.10)
ds = XT:D(”’N”%%) (4.4.11)
p=1
with
D(b,N,lpa,) = {8,—N+ap, :’)ft’c::n——;ij\g——bJrl,...,N
forp=1,2,...,r (4.4.12)

PROOQOF To prove (4.4.1), it is obvious that fixed values of nonnegative
integers i, b,y, N, k, j, r, L, i, K; would lead to only one unique LP with
only j diagonals (each of length b) inserted, one each, in vertical runs.
However, insertion of the remaining k-j diagonals along the r horizontal
runs as well as the distribution of different types of stays (c,s and e,s)
into the corresponding vertices (b,,s. and d,.s) will generate the required
number of LPs. Therefore the crux of the theorem is to compute the
values of b, (m=1, 2, 3, 4) and d,, (n=1, 3).

First we compute b,, the number of possible vertices for type 4 stays
to occur. It is equal to the number of vertices of the type (x, y) (x- Nyx-N
+ b-1) following the j diagonals inserted, one each, in j vertical runs
numbered i), is..., I;) of lengths (L;,,Ls,,...,L;; at distances
K;,K,,...,K;, respectively, from their lower end points (see Fig. 4.3).
Therefore, by defining a,, and the indicator function V(b, N, Kp, a,) as
in (4.4.6) and (4.4.8), respectively, we get 64 as given in (4.4.5).

For computing the value of b, it is observed that b3 is the number of
vertices of the type(x, y) (x-Nyx-N+b-1) Iying on the vertical runs
following the r horizontal runs but preceding the diagonal steps, if any,
inserted in vertical runs (see Fig. 4.3). Therefore, by defining the
indicator functions U(b,N,a,) and W(b, N, K,, a,) asin (4.4.7), and (4.4.9),
respectively, we get b3 as in (4.4.4).

b, clearly includes the end points of the k-j diagonals inserted in the
horizontal runs and the vertices of the type(x, y) (x-N+b-1< y<x) following
the j diagonals inserted in vertical runs but preceding the subsequent
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horizontal steps, (see Fig. 4.3). In case i;=r, then since there can not be
any stays at (y, y), the value of b, is reduced by 1. This explains

_J 1, wheni;=r . . :
A= { 0. otherwise. Therefore by is obtained as in (4.4.3).

Lastly b, follows from (A), i.e.,

by = <I)+le—bk—i)—(b2+b3+b4)

which is (4.4.2).

If 2=0 (see Fig. 4.4); then arrivals of all batches take place after phase
1 only and, only two types of stays are possible, i.e., type I and type 3.
The indicator function D(b, N, l,, a,) which is defined in (4.4.12) on the
lines of indicator function U(b, N, a,) in (4.4.7) is self explanatory. The
values of d; and d; in (4.4.10)and (4.4.11), respectively, then follow easily.

As regards for the case k>0, the insertion of k-j diagonal steps, each
of length b, into r horizontal runs, these can be inserted into any k-j
vertices out of the only ¥ —k —i—r vertices available along the
horizontal runs in %‘k__.i_’ ways.

Finally, by identifymg,r stays with balls and vertices with cells, and
the n using the formula (e+£ ‘1) of the number of ways of distributing e
similar balls into f cells [Feller (1985)], we get (4.4.1) for £>0 and £=0,
respectively. O

4.5 BUSY PERIOD PROBABILITY FOR THE DISCRETIZED
C%/M/1/N MODEL

Theorem 4.5.1 If /2 (£) denotes the probability that the busy period is
of length £ time slots for the discretized C5/M/1/N system starting
initially with bi units (i.e., with i batches), then

fib,N(%)
= Z (61 +dy — 1) <e3 +j: - 1)(uh)y(ﬂ/\1h)%-f

(R,R2,R3,R1) @
X(1— (A1 + ph)* (1 = (ars + p)h)*

Y k—i—r\ o [c + by —1
b m m
- Z ( k —j > H ( Cm )
(R',Rz2,...,R10) m=1
x(“h)y—bk(a)\lh)k(B/\lh)%—zk—i-FA()\zh)k-A
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x(1 = (A1 + p)h)*(1 = (A2 + p)h)*

x(1 = (aA; + p)h)= (1 — ph)™ + o(h), (4.5.13)

where
T . b7 b+1 _
€3 = h’» 1= A b ki )
_ b _ls _la
C2 = h’ 63-—}1, C4_h7
= otm [b+1 .
c1 3 — 5 y—bk—1

and the summations are defined as

Ry{r:1<r<y—-i+1},

R3:{L:(max(bi,L1+1) <bl; < N) ﬂ (1 <l, < E_l)

u=2 b
r—1
x(JA<SL,SN-1)Nb+1<L, <N)
u=1

r—1 v v T r
x (bZlu > ZLu> N (bZlu =y—bk= ZLU)},
v=2 u=1 u=1 u=1 u=1

Ri{k:1<k<c¢},

o f—i-r+1, fi—r+1<¥<i+2r—1
Tlr+E-i-2r+1)], FE>i+2r -1,

Ry {] : max (O,2k+z+r 1 h) <j Smln(r,k)},
Re: {1 : (i1,42,...,4;) 11 <d; <ipg <---<i; <7},

R:: {Ki (K, Kiy, .. Kiy), 0< Ky, < Ly,

821’2""’j—1’OsKijSLij—A,A:{1’ ifi; =r }’

0, otherwise
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PROOF For computing the ff () when the total number of time slots
is given to be %, we have to consider both the cases £=0 and £>0, and
hence (4.5.13) consists of corresponding two terms. For the case £=0, let
€e = % be the number of time slots in which the system has type 3 stays.
The total number of transitions in £, time slots is (2tly — ;) therefore,
the number of type 1 stays is

t—T b+1 .
e = T ——b—y—z .

Using the transition probabilities given in Section 4.4.1, the probability
of occurrence of:

(1) e, type 1 stays is (1—(A+u)h ) +o(h)

(i1) e5 type 3 stays is (1-(al+u)h)3+o(h)

(iii) y departures is (uh)'+o(h)

(iv) arrivals of ¥ — i batches is (BA ) ¥ % + o(h).

Thus multiplying the number of stipulated LPs from (2) by the above
transition probabilities and then summing over (R, Rs, R,, R,) we get
the first term in (4.5.13). For the case £>0, let cm = %‘f‘ be the number
of time slots out of the total £ time slots in which the system has type m
stay (m =2, 3, 4). Since, the number of transitions in the remaining

t tm time slots is ( —+—y — bk — 1) we get the number of type 1

stays ¢y, equal to

t— 3 otm  [b+1 :
5 —( 5 y—»bk—z).

Using the transition probabilities given in Section 4.4.1, we multiply
by stipulated number of LPs given in (4.4.1) and then take the sum
over (R', R,,..., Ryy). This gives the second term in (4.5.13). O
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4.6 CONTINUOUS C4/M/1/N MODEL

On using a limiting process as z 0 in (4.5.13) [Meisling (1958), Mohanty
and Panny (1989) and Béhm (1993)], we obtain the expression for the
busy period density function as given in the following.

Theorem 4.6.1 The probability density function of the busy period for
C52b/M/1/N system starting initially with bi units (i.e., i batches) is
given by

'ib,N (t)

= e~ atp)t Z Z#y(ﬁ)\l)%-itp+b—t—ly—i—l

(R,R2,R3) p=0
(A1(1 - @))PD(p + d3)
PIT(ds)T(p + 2ty — )

+e~Gutmit 3 Z Z Z < —k—i-— r)

(R’,R2,R3,R4,Rs5,Re,R7) P1=0 p2=0 p3=0
X R (@A Ag)F (BA) 2R AN ASA (A (1 — @))P2 (A — Ag)P?
tP1+P2+pa+bi+bz+ba+by— 1F(p1 + by)T(p2 + b3)T(p3 + by)
1P pa T (b2) T (63) T (02T (p1 + P2 + Pa + b1 + b + bg + ba)
(4.6.14)

PROOF On taking limit as A4 0, (4.5.13) leads to

t
Jim, fin (h)
= i,N(t)dt
= e (&t Ban)t 7971 (¢ — )BT dBTDdrdy
(R,R2,R3) A(dl)A(d3) 7=0

to-Outmt 3 (% —k-i- T)
(R’,R2,R3,R4,Rs,Re,R7) k=i

My—bk (Ot)\lf\z) (IB/\I)%—Zk-H—A)\z—A
T'(b1)T'(ba)T'(b3)T'(bsg)

i t—ta t—ta—t3
X/ / / tbz—ltgs—ltz.;—l(t_tz —t3-—t4)b1_1
to=0Jtg ty

Xe()‘l A2)t2 )\ltS(l a) )‘ltddt2dt3dt4dt (4.6.15)
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which, on simplification yields (4.6.14).

4.7 PARTICULAR CASES
(i) M®/M/1/N model

Taking a=0, d=1, 1,=A, 1,=0, (4.6.14) yields the busy period density
function for M®/M/1/N queue, i.e.,

D S D

b+l 4
(R Ra Ry p=0 PT(@3)T (0 + 2y — 1)
xuy)\.g._¢+ptp++y_z-1 (4.7.16)

Further, when N (= d3 = 0, p = 0) (4.7.16) becomes
dim fou() = f2@)

= e~ (At Z

(R,Rz,R3)
)\%—iuytb—“;—ly—i—l

— —(A+p)t
= e -
ZR: L(%y —1)

/\%—iuyt"—};—’y-i—l
T(5ty —1)

>0

(R2,R3)

where > (g, ry) () = 1+1 > r. (1) =# of LPs from (bi, 0) to (v,)
touching Y=X for the ﬁrst t1me at (y, y) with horizontal steps each of
length b and vertical steps, each of unit length. Therefore

bi btl, -
Z(l)— ("y.z> 4.7.17
(Rz,Rs) AN (4710

[see Mohanty (1979)]. Then

biab =iy ==t

) = ey

= G-9y
bi e (A )TN (VRIS (3 THOTDe
t mu slb(s +4)! u ’

(4.7.18)

gives the busy period density of the M*/M/I queue.

Copyright © 2002 Taylor & Francis



ANALYSIS OF GI'IM/1/N QUEUES 65

For b=1, (4.7.18) further reduces to

. —if2
fi(t) = %e_o“ﬂi)t (2) L;(2+/Aut), (4.7.19)
where
x a2.9+i
[i(20) = ; s(si)!

is the modified Bessel function.
Eq. (4.7.19) gives the busy period density of the M/M/1 queue [see
Saaty (1961) and Kanwar Sen and Jain (1993)].

(ii) C5/M/1 model

Taking N (= pr=p2 =p3 =0,by = by =0, p=0 and d3 = 0)in (4.6.14)
we get, as in case (i),

bi
bi sy [(BAY 7

b = o—(Bitit [ AL

o = B (D)

X i (\/Wt)(b+1)s+bi (&) G

slb(s + i)! m

Y kit
k—3j
(R',R2,R3,R4,Rs,Re,R7)

) Y= (QAg Ag) (B ) B 2k—i+A \ -4 sitba-1  (4.7.20)
(b, + bo)

Eq. (4.7.20) gives the busy period density function for GI>/M/1 system
[Agarwal and Kanwar Sen (1997)].

4.8 NUMERICAL COMPUTATIONS AND COMMENTS

Numerical examples and graphs give insight into the effect of varying
the parameter values. In view of this and even otherwise to test our
results, numerical computations have been performed in Fortran 77 in
double precision on PC Pentium-III for different sets of values of the
parameters involved for busy period probability, ib’ N (%) givenin (4.5.13),
of the discretized model Cg/M/l/N. The computations could be
performed in a short time since the program deals mainly with multiple
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summations. From illustration point of view some results are given in
Tables 4.1-4.7 along with their corresponding graphs in Figs. 4.5-4.11.

It can be observed that in all the Tables, in general, for a given set of
parameter values, the probabilities increase up to a certain value of
busy period ¢/h, and then start decreasing, satisfying the expected
normal pattern, thus justifying our results. Table 4.1 (Fig. 4.5) contains
busy period probability for =2, 3, 4, when h=0.02, i=1, N=5, a=0.6
(& = 0.4) 1,=3, 1,=2, u=5. We note that probabilities decrease as b
increases. Interestingly, it can also be noted that there are zeros at
places when b>t/h as it should. Besides, 1st row in each table also
contains all zeros since for =2, busy period cannot tenninate in ¢/h=1
time slot.

Table 4.2 (Fig. 4.6) gives behaviour of probabilities for different values
of ©=0.0,0.2,..., 1.0. The values for «=0.0 and a=1.0 correspond to busy
period probabilities for M’/M/1/N and E4/M/1/N models, respectively.

The probabilities are increasing w.r.t. a since when the probability of
customers entering phase 2 of arrival increases the busy period should
terminate early. But the reverse pattern should hold w.r.t. 1, as well as
s which one can see in Tables 4.3 and 4.4 (Fig. 4.7 and 4.8). However,
when repair rate u increases, busy period terminates faster and so
probabilities increase, as they should, see Table 4.5 (Fig. 4.9). In Table
4.6 (Fig. 4.10) we see behaviour of busy period probabilities w.r.t. i, the
initial number of batches present in the system. Obviously when i
increases, busy period probabilities decrease. In Table 4.7 (Fig. 4.11),
the behaviour of busy period probabilities can be observed w.r.t. N. It
can be noticed that probabilities remain equal for N>t/ h which is obvious
otherwise too. Also it is noted in Table 4.7 that the differences in
probabilities are very very small for N 5. Therefore the corresponding
graphs in Fig. 4.11 have overlapped.

Further, in Table 4.4 it is interesting to note that A, has no effect
up to t/h=3 when i=1, b=2 and N=5. It is so since for ¢#/h=2, the
probability is (z4)? and when ¢/ h=3, a fresh batch of size 2 can at most
enter phase 2 of arrival but can not join the system. Hence A, does not
occur in the value for busy period probability. The expression for
probability is 2(uh)?(1-(A+1)h)+2(uh)?(ad:h). Also in Tables 4.2, 4.3
and 4.4, row 2 (for £/h=2) is constant containing the value 0.0 100
since this probability is (#h)? and is independent of o, A, and A,
respectively. The numerical computations can similarly be done for
other expressions.
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TABLE 4.1 Busy period probabilities for different values of b6 when £=0.02,
i=1,N=5, 0=0.6, 4=0.4, 1,=3, ,=2, u=5

[t/h

2

3

4

0.000000000

0.000000000

0.000000000

0.010000000

0.000000000

0.000000000

0.017520000

0.001000000

0.000000000

0.023004000

0.002652000

0.000100000

0.026834304

0.004686048

0.000357600

0.029337095

0.006896461

0.000799027

0.030788515

0.009130058

0.001427942

0.031420796

0.011276176

0.002232394

| ] | A | A W N e

0.031428172

0.013258230

0.003190242

ok
(=

0.030972387

0.015026660

0.004273319
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TABLE 4.2 Busy period probabilities for different values of o when 2=0.02,
i=1, =2, N=5, \,=3, Ay=2, u=5

t/h

0.0

0.2

0.4

0.6

0.8

1.0

0.0000000000

.0000000000,

0.0000000000

0.0000000000

0.0000000000

0.0000000000

10.0100000000

0.0100000000

10.0100000000

0.0100000000

0.0100000000

0.0100000000,

0.0168000000

0.0170400000

0.0172800000

0.0175200000

0.0177600000

0.0180000000

10.0211680000

0.0217800000;

0.0223920000

0.0230040000

0.0236160000

0.0242280000

0.0237201600

0.0247582080)

10.0257962560

0.0268343040

0.0278723520

0.0289104000

0.0249443280

0.0264086700

0.0278729260

0.0293370950

0.0308011780

0.0322651750

0.0252215605

0.0270776480

0.0289332990

0.0307885150

0.0326432990)

0.0344976560

0.0248452821

0.0270384050,

0.0292302360

0.0314207560

0.0336101010)

0.0357981710

O 00 N3] SN W] R W N e

0.0240379712

0265042490,

0.0289676280

0.0314281720

0.0338859430,

0.0363410050

[
<

0.0229654226

0.0256398440

0.0283087770

0.0309723870

0.0336308340

0.0362842760
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TABLE 4.3 Busy period probabilities for different values of A, when £=0.02,
i=1 b=2, N=5, 0=0.6, 4=0.4, ,=2, u=5

A

=3
=

1

3

5

7

9

11

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.010000000

0.010000000

0.010000000

0.010000000

0.010000000

0.010000000

0.017840000

0.017520000

0.017200000

0.016880000

0.016560000

0.016240000

0.023858400

0.023004000

0.022188000

0.021410400

0.020671200

0.019970400

0.028350464

0.026834304

0.025450240

0.024192128

0.023053824

0.022029184

0.031572703

0.029337095

0.027384536

0.025689378

0.024227204

0.022974826

0.033747039

0.030788515

0.028313731

0.026258730

0.024565544

0.023181898

0.035064715

0.031420796

0.028498286

0.026173600

0.024340072

0.022506321

Wi ] N & ] Kl W] N e

0.035689912

0.031428172

0.028147559

0.025644040

0.023749828

0.022328260

Yt
<

0.035763072

0.030972387

0.027429585

0.024832361

0.022943635

0.021579597
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TABLE 4.4 Busy period probabilities for different values of A, when ~=0.02,
i=1, b=2, N=5, 04=0.6,4=0.4, ,,=3, u=5

=
e
~

2

4

6

8

10

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000,

0.0100000000

0.0100000000

0.0100000000

0.0100000000

0.0100000000

0175200000

0.0175200000

0.0175200000

0.0175200000

0.0175200000

0.0230040000

0.0229608000

0.0229176000

10.0228744000

0.0228312000

0.0268343040

0.0266891520

0265486080,

0.0264126720

0.0262813440

0.0293370950

0.0290328990

0.028747711

0.0284808400

0.0282315950

0.0307885150

0.0302798620

0.0298181810

0.0294001210

0.0290224650

0.0314207960

0.0306791260

0.0300275490

0.0294565990

0.0289575430

O 90 N3] &N | & W N =

0.0314281720

0.0304438030

0.0296071370

0.0288978340

0.0282978730

—
=

0.0309723870

0.0297545880

0.0287539470

0.0279336710

0.0272624460
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TABLE 4.5 Busy period probabilities for different values of z, when ~2=0.02,
i=1, N=5,b=2, 0=0.6, 4=0.4, 1,=3, L,=2

=
=3
=

=

3

5

7

9

11

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0036000000

0.0100000000

0.0196000000

0.0324000000

0.0484000000

0.0065952000

0.0175200000

0.0327712000

0.0515808000

0.0731808000

0.0090555840

0.0230040000

0.0410612160

0.0615314880

0.0829033920

0.0110457446

0.0268343040

0.0457148520

0.0652408470

0.0835162520

0.0126249071

0.0293370950

0.0477192700

0.0649001 100

0.0790200960

0.0138470761

0.0307885150

0.0478475750

0.0620836700

0.0720200840

0.0147612683

0.0314207960

0.0466985310

0.0579011640

0.0641560940

O 00 ~I & il Al W N e

0.0154118003

0.0314281720

0.0447313790

0.0531204130

0.0564229230

—
(=]

0.0158386124

0.0309723870

0.0422955310

0.0482638430

0.0494000980
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TABLE 4.6 Busy period probabilities for different values of i when £=0.02,
b=2, N=5, 0=0.6, 4=0.4, A,=3, A,=2, u=5

t/h

1

2

0.00000000000000000

0.00000000000000000

0.01000000000000000

0.00000000000000000

0.01752000001091510

0.00000000000000000

0.02300400001037120

0.00010000000000000 |

0.02683430411069560

0.00035280000000000

0.02933709531054610

0.00077742700000000

0.03078851467469500

0.00136975700000000

0.03142079570278680

0.00211075000000000

ol ool N[ | Wl &) W N

0.03142817232505390

0.00297270300000000

—
<

0.03097238703722280

0.00392389500000000
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TABLE 4.7 Busy period probabilities for different values of N when ~2=0.02,
i=1, b6=2, 0=0.6, 4=0.4, 1,=3, 1,=2, u=5

=
=
Z

0.0000000000)

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

.0100000000

10.0100000000

0.0100000000

0.0100000000

0.0100000000

0.0100000000

01 7760000q

0.0175200000

0.0175200000

0.0175200000

0.0175200000

.0175200000

0.0236462400

0.0230040000

0.0230040000

0.0230040000

0.0230040000

0.0230040000

0.0279766235

0.0268319040

0.0268343040

0.0268343040

0.0268343040

0.0268343040

0.0310254925

0.0293265260

0.0293370950

0.0293370380

0.0293370380

10.0293370380

0.0330283407,

0.0307605240

0.0307885150

0.0307882080

0.0307882080

0.0307882080

0.0341863036

0.0313629880

0.0314207960

0.0314198430

0.0314198430

0.0314198430

N 00 3] Nl ] B W N e

0.03467033640.0313255000

0.0314281720

0.0314259190

0.0314259230

0.0314259230

o
=]

0.0346250342

0.0308076210

0.0309678930

00309723870

0.0309679090

0.0309679090
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CHAPTER 5

MEASURES FOR
DISTRIBUTIONAL
CLASSIFICATION AND MODEL
SELECTION

GOVIND SMUDHOLKAR RAJESHWARI NATARAJAN
University of Rochester, Rochester;, NY

Abstract: The use of conventional measures of skewness (v/B;) and
kurtosis () for distributional classification and model selection is
classical. In this paper, we review such existing measures and propose
a new set (&, &) having some distinguishability advantages. In the
(1, B2)-chart the normal family appears as the limiting point of lines
representing gamma, Type V, lognormal and the inverse Gaussian
families. In the new (&, &)-chart the Gaussian, inverse Gaussian and
gamma families appear as three distinct points. The asymptotic
distributions of the estimates (J,, J5) of (£, &) for samples from some
parent populations are derived and the implications of the
distinguishability for the goodness-of-fit problems are discussed.

Keywords and phrases: Model selection, measure of skewness,
measure of kurtosis, goodness-of-fit.

5.1 INTRODUCTION

Constructing a stochastic model for populations is an essential step prior
to the statistical analysis of data from them. The space of all probability
distributions being too large and complex, the choice for the model

87
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building is generally restricted to some well understood system of
distributions such as those due to Pearson, Johnson, Burr, Perk etc.;
see e.g. Johnson, Kotz and Balakrishnan (1994). The selection of a
parametric family from the system, assuming generalities such as
continuity and unimodality, involves use of common tools of exploratory
data analysis and various measures of distributional classification.

The most commonly employed measures of distributional morphology,
often used in tandem, are the classical cofficients of skewness and
kurtosis, their variations, and the related charts discussed in Johnson,
Kotz and Balakrishnan (1994), Elderton and Johnson (1969) or Ord
(1972). More recently, Mudholkar and Natarajan (1998) while examining
the remark-able similarity between the Gaussian and inverse Gaussian
(IG) families, noted by many e.g., Folks and Chhikara (1978), lyengar
and Patwardhan (1988), introduced the coefficients 6, and J, respectively
of IG-skewness and IG-kurtosis. Mudholkar and Natarajan demonstrate
several remark-able analogies between the measures (v/B1,52) and
(6, &»), and between their respective sample versions. They propose
(6, 05)-chart for model selection and illustrate its use with some well
known datasets. Ord (1967) proposes the ratio of the coefficient of
skewness and coefficient of variation as a measure for classifying such
distributions.

The purpose of this paper is to supplement Ord’s (1967) measure,
denoted here by &, with another ratio & and consider the pair (&, &)
for the purpose of classifying distributions. It is noted that in a chart
based on (&, &), the Gaussian, inverse Gaussian and gamma appear as
three distinct points.

The existing measures of distributional classification of distributions
are briefly reviewed in Section 5.2. The new measures &, and &, are
discussed and the uses of (£, &)-chart as of (8, §5)-chart and of the
sample estimates (/;, J,) are illustrated in Section 5.3. The asymptotic
distributions of (J;, J,) for samples from Gaussian, inverse Gaussian
and gamma populations are derived in Section 5.4. The final section is
given to miscellaneous remarks including mainly applications to
goodness-of-fit tests.

5.2 CURRENT MEASURES FOR DISTRIBUTIONAL
MORPHOLOGY

The best known among the measures used for classifying statistical
distributions are the conventional coefficients of skewness and kurtosis
defined as /B, = ua/ Hg/ 2 and By = pa/pé respectively where y; refers to

the j”* central moment. Even though there exist asymmetric distributions
with \/B; = 0, (e.g. MacGillivray (1986) and Freimer et al. (1988)) the

Copyright © 2002 Taylor & Francis
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coefficient of skewness is generally accepted as a measure of asymmetry.
The meaning of the coefficient of kurtosis is somewhat amorphous; see
Balanda and MacGillivray (1988) for a critical review in which they
describe it “vaguely as the location-and scale-free movement of
probability mass from the shoulders of a distribution into its center
and tails...”. MacGillivray (1986) and Balanda and MacGillivray (1988)
discuss partial orderings of probability distributions in terms of /fF;

and /3, respectively.

Many variations of /f, 3, exist in literature. Well known among
these are the measures based upon the quantiles. For example, an
alternative

F11 —w)+ F1(w) - 2F1(0.5 1
[ ({F_l)(f_u)(_;_l(u)]( )], ue(0,5) (5.2.1)

Yo (F) = 2

to skewness appears in David and Johnson (1956), whereas Groeneveld
and Meeden (1984) propose

H=1(0.75 + a) + H1(0.75 — a) — 2H~1(0.75)

Ba(a, H) = H-1(0.75+ o) — H-1(0.75 — )

, (5.2.2)

as a measure of kurtosis.
Hosking (1990) has proposed and studied two ratios 73 = A3/A2 and
T4 = A4/ A2 of Sillitto’s (1951) L-moments A,

r—1
_ -1
Ar =7 IZ(—I)k ( " k ) E(Xr_k;;r), r= 172a sy (52.3)
k=0

where X,.,.. denotes the (r-k)" order statistic, as substitutes for /3, and
2. The measures, L-skewness 7; and L-kurtosis 7, are believed to be
less variable and more meaningful in the context of procedures such as
ShapiroWilk test of normality; see Hosking (1992). More recently
Mudholkar and Hutson (1998) have proposed LQ-moments, quantile
analogs of L-moments, as

r—1
_ -1
C,,. =17 1 E ( r k ) Tp,a(X‘r—k:'r‘)1 T= 1727 LR (524)
k=0

where 0<0<1/2, 0<p<1/2, based on quick estimators such as Trimean,
Gastwirth’s estimator, and have developed measures 1;={y/{, of LQ-
skewness and 1,=¢,/{, of LQ-kurtosis based upon them. The L-measures
and LQ-measures behave similarly, except that LQ-moments always
exist, whereas L-moments exist only for distributions with finite
expectations.
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Mudholkar and Natarajan (1998) define and discuss uses of two new
measures & and &, as IG-analogs of v/B; and f3, respectively. The
coefficient 9, is based upon a suggestion in Mudholkar, Natarajan and
Chaubey (1998) which contains Z(IG)-test analogous to Lin and
Mudholkar’s Z-test of normality against asymmetric alternatives. The
coefficient 6, which appears as a parameter in the power function of the
Z(1G)-test is proposed as a measure of IG-skewness, where a random
variable X is said to be IG-symmetric about x if it satisfies the countable

equalities
X —_r X r+41
(ﬁ) <_) } L r=1,2,... (5.2.5)

L
To construct an analog of 3,, they compare the asymptotic distribution
of the sample variance given by

E =F

Vi (log 82 —logo?) % N(0, (B2 - 1)), (5.2.6)

with that of IG parameter estimate V = A7* = 37 (1/X; — 1/X)to
arrive at the coefficient 6, of IG-kurtosis. The measure 6; involves the
first two positive moments and first negative moment, whereas o,
involves the first two positive and the first two negative moments. It is
shown that the asymptotic distributions of the estimates d,, d, of 6, &,
for IG-samples are exactly the same as those of v/b; and b, for normal
samples. Furthermore, they also offer, study, and illustrate the use of
(61, &)-chart as the IG analog of the (f,, 8o)-chart for distributional
classification and data modelling.
Carver (1919) considered a difference equation

Ayz a—z
Azy,  bo+ bz + bpa?’

(5.2.7)

analogous to the well known differential equation underlying the
Pearson system. When the lower threshold of the distribution is zero
and b,=0, the three constants a, b,, b, may be associated with the first
three moments of the distribution. In view of this Ord (1967) uses the
two ratios J = l‘2/l‘,1 and S=us/u, to propose a measure w=S/I, to
distinguish between distributions with positive support. We also note
that Cox and Oakes (1984) discuss a use of the chart based on coefficient
of variation y and coefficient of skewness +/F1 in the context of survival
analysis for model selection. We denote Ord’s measure o by

S
=22 y= = =VBi/ (5.2.8)

where k; refers to the i** cumulant.
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5.3 (€, &) SYSTEM

If the coefficient b, in Equation (5.2.7) is non-zero, or the support of
distribution is not strictly positive, then four moments or cumulants
are necessary to describe the constants in the difference equation or
corresponding differential equation. Hence, one may define another
measure

b= —0 = 2, (5.3.9)

where v, represents the coefficient of excess kurtosis, as a supplement
to the index &, defined by Ord (1967). The two indices &, and &, can then
be used in place of \/B; and 3, for distributional classification, and their
sample versions J; and J, may be placed on the (&, &)-chart given in
Figure 5.1 for model selection.

(&, &)-Chart. Several features of the (£, &)-chart are noteworthy.
Since &,=0 whenever $,=0, all symmetric families are represented as
the vertical line £,=0, with an exception of the normal family. The normal
family for which f3,=0=,, appears as the point (0,0) in the (&, &)-chart.
As a matter of technicality, it may be noted that the point (0,3) in (/3;,
f35)-chart and the point (0,0) in the (&, &)-chart may also represent non-
normal distributions for which /8] = 0 = «, but some higher order

cumulants are non-zero. Both variance-ratio F and beta families occupy
certain regions of the chart. The curves in Figure 5.1 corresponding to
the variance-ratio F(m, n), and the beta B(m, n) distributions for fixed
m and varying n and fixed n and varying m, give approximate location
of these regions. Figure 5.1 also contains the curves corresponding to
the Weibull and lognormal families and shows the position of the
datasets discussed later in this section as points D1 and D2.
Interestingly, the gamma and inverse Gaussian families which appear
as lines in the (3, §5)-chart, are represented in the (&;, &)-chart by points
(2, 6) and (3, 15) respectively. In (3, f2)-chart, gamma and inverse
Gaussian lines, both converge to the normal point (0, 3) whereas in this
chart they are distinct points and hence may be considered better
discriminators between these distributions.

Model Selection. The consistent sample versions J; = mam;/(m3)
and J,=[(m4,3mj?)m,2]/(m,?), obtained by plugging-in the sample
moments, in conjunction with the (&, &)-chart, may be used to select a
parametric model using data. We illustrate the process using two
datasets D1 and D2. The values of the measures /5, b, and J;, <J, for
these data appear in Table 5.1.
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TABLE 5.1 Comparison of (/b;, b2) and

(J4, Jy) for the datasets

Datset b1 b i Jo
D1 1.00 460 177 45
D2 0.76 2.69 1.04 -0.58

TABLE 5.2 Rainfall (in mm) at Kyoto, Japan for the
month of July from 1880-1960

Expected

Rainfall | Observed | Weibull fit | Gamma fit
0-50 5 4.83 3.78
50-100 9 11.05 12.27
100-150 12 13.86 15.45
150-200 18 13.84 14.24
200-250 17 11.93 11.27
250-300 6 9.16 8.14
300-350 5 6.38 5.53
350-400 4 4.07 3.60
400-above 4 4.83 572

Source: World Weather Records Smithsonian
Institution, Miscellaneous Collections and U.S.
Department of Commerce.

D1. Rainfall Data. These data in Table 5.2, used in Mooley (1973)
give the July rainfall (in millimeters) at Kyoto over a period of 80 years
1880-1960. Conventionally such meteorological data were analyzed by
using normal fit. Mooley argued that for such data a gamma model
would be more appropriate. In the (£, &)-chart, the point D1 (1.77, 4.5)
falls on the Weibull line but is very close to the gamma point. In order
to compare these models we consider Pearson’s chi-square statistics
obtained from Table 5.2. The values x%(gamma)=7.12 and
xAweibull)=5.57; both with six degrees of freedom, and p-values of 0.31
and 0.473 respectively, suggests the preferability of the Weibull model
over the gamma model.

D2. Bus Motor Failures. These data, originally in Davis (1952),
are reanalyzed in Mudholkar, Srivasatava and Freimer (1995) using
the exponentiated Weibull family.

TABLE 5.3 Fifth bus motor failure

Mileage (Thousands of Miles) | 0-20 20-40 40-60 60-80 80-up Total
Observed Number 29 27 14 8 7 85

Source: Davis (1952), Journal of the American Statistical Association, 47.
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Table 5.3 gives the number of miles (in 1000’s) between the fourth
and fifth failures of the motors. The reanalysis shows appropriateness
of a Weibull model for the data. The placement of D2 (1.04,-0.58) in the
(&), &)-chart confirms appropriateness of the model, whereas the choice
of a parametric model in the (3, ,)-chart is unclear.

5.4 ASYMPTOTIC DISTRIBUTIONS OF J,, J,

In addition to the model selection applications the empirical skewness
and kurtosis coefficients v/b; and b, have been widely used for testing
goodness-of-fit hypotheses such as normality; see Chapter 7 by Bowman
and Shenton in D’Agostino and Stephens (1986). In this section, with a
similar goal in mind, we consider the asymptotic distributions of the
coefficients JJ; and ¢/, for samples from the normal, gamma and inverse
Gaussian populations.

Gaussian Population. For a random sample of size n from an N
(1, o) population, the asymptotic sampling distribution of /5, and b, as
n—, is well known; see e.g. Kendall and Stuart (1969). Specifically, as
n—>oo,

Vnbs > N(O, 6). (5.4.10)

Hence, if the population mean u#0, using (5.4.10) and an appeal to
Slutsky’s theorem we get

2
V() 5 N(o, %"2—), (5.4.11)

as n—oo. Similarly, from the sampling distribution of b,
Vn(bs — 3) % N(0,24), (5.4.12)

as n—e, we see that

244

V() % N0, =

). (5.4.13)

Furthermore, since /b; and b, are asymptotically independent, using
the multivariate version of Slutsky’s theorem, [e.g. Cramér (1946)] it is
seen thatJ; and J, are also asymptotically independent. In other words,
for a sample from normal population, as n—oo

‘/ﬁ[( 2 )‘ ( 2 )] 4N [0( 6“20/"2 24;3/04 )] (5.4.14)
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Gamma Population. For a random sample of size n from a G(o)
population with shape parameter o, as n—, the vector (X, mq, ms, m4)’
is asymptotically normally distributed with mean (u, u, us us), and
covariance matrix (1/n) 2=(o;) / n, where, with the notation X = mjand
m=E[(X-m,)], 0;=Var(m,), 0,=Cov(m,, m; we have,

o1 = o, 012 = 20,

o13 =6a o014 =12a(2+ a),
020 =20 (3 + @), 0923 = 120(2 + @),
024 = 1200 + 1080° + 1503, 033 = 1200 + 900 + 602,
034 = 720a 4 79202 + 14403, 044 = 50400 + 68880 + 20880 + 96a*.

Hence, by use of the multivariate version of Mann-Wald theorem,
[Serfling (1980)] we see that, as n—oo, the vector j’=(J}, JJ,) has a bivariate
normal distribution with mean (2, 6) and covariance matrix given by

Var(Ji) = 2a_0 +26+6a, Var(Jy) =12 (? +2924+ 750 — a2> ,

1
Cov(Jy, Jp) =12 (38 +24 + 5a> .
(5.4.15)

Inverse Gaussian Population. For a random sample of size n from
an IG(u,A) population, as n—e, the vector (X,mq,ms,ms) is
asymptotically normally distributed with mean (u, s, us, #4), and
covariance matrix (1/n) X=(o;) /n, where with the notation in gamma
population case

o 10540 | 1848
on = N 023 = T T3
3 5 ﬂll 264N10 15'u9
M U G U U
15u7 945utt  216u'C  6u°
T T e T e
_105° | 188 ~10395u'®  3440u'%  216p!!
ME T T MT T T T T
1507  2u8 13513545  49230u!*  5004u!®  96u!2
= PN MT T T T T T mr T
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Hence, by use of the multivariate version of Mann-Wald theorem, it
follows that, as n—e, the vector J’=(J;, J,) has a bivariate normal
distribution with mean (3,15) and covariance matrix given by

Var(J;) =6¢+ 72+ %9, Var(Jz) = 6 (_2¢2 + 3516 + 4380 + 13;60) ,

CO’U(Jl, J2) =2 (45¢+ 748 + &(:_9) s

(5.4.16)

where ¢ = A/¢t denotes the shape parameter.

5.5 MISCELLANEOUS REMARKS

The classical (3, 35)-chart provides the view of only one cross-section of
the space of probability distributions. As noted earlier, in this cross-
section the gamma, inverse Gaussian and type V families appear as
lines converging to the (0, 3) point representing the normal family. In
the (&, &,)-chart, however, the gamma and inverse Gaussian and normal
families appear as distinct points. Hence, the sample estimates (J;, J5)
may be useful in distinguishing between these families.

1. Testing Normality. Among various tests of the composite
hypothesis of normality, those based (v/b1, b2) on are the oldest (Chapter
7 of D’Agostino and Stephens (1986)). The indices /; and ¢/, can be
similarly employed to construct an omnibus test of normality, and also
tests directed at asymmetric alternatives or non-normal kurtosis
alternatives. From the asymptotic distribution (5.4.14) it appears that,
for a population with large coefficient of variation, such tests may have
superior power properties. Furthermore, using an approach similar to
that in Mudholkar, Marchetti and Lin (1998) J/; and J, tests could be
combined to detect restricted asymmetric and non-normal kurtosis
alternatives.

2. Gamma Hypothesis. At present there do not exist reasonable
goodness-of-fit tests for the composite gamma hypothesis. This is mainly
because even the asymptotic null distributions of most goodness-of-fit
test statistics involve the population parameters in both mean and
variances. As shown in (5.4.15), the expectation of asymptotic
distributions of (J;, JJ,) is parameter-free. Hence, the prospect of a gamma
goodness-of-fit test based on J; and </, appears promising.

3. Inverse Gaussian hypothesis. Over the last few decades, the
analytical simplicity of the inverse Gaussian inference procedures and
the analogy of IG family with Gaussian family has intrigued the
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statistical community. The family is highly recommeded as a model for
asymmetric data. The goodness-of-fit tests for the /G model are still
very few, see Mudholkar, Natarajan and Chaubey (1998). Hence, use of
(J1, ;) for testing goodness-of-fit of the composite IG hypothesis seems
a reasonable project.

4. Confidence regions. The asymptotic joint distributions of the
indices (J4, J,) may be used to construct confidence regions for (&, &,).
For large sample sizes, they may be useful in choosing between
competing models suggested by the (&, &)-chart in Figure 5.1.

5. Variations of (£, £,). Several variations of the classical coefficients
of skewness and kurtosis based on population quantiles, L-moments
and LQ-moments are described in Section 5.2. Similar variations of the
measures & and &, are obviously feasible.

—— LN; Lognormal
~~~~~~~~~~~~~ W, Weibull
----- B; Beta

———- F: Variance ratio
g2 | ——- LP; Laplace

15
!

10

N: Normal Point, G: Gamma Point, IG: Inverse Gaussian Point, and
D1, D2 locate datasets in Section 5.3

FIGURE 5.1 The (&, &,)-chart
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CHAPTER 6

MODELING WITH A BIVARIATE
GEOMETRIC DISTRIBUTION

SUNIL K.DHAR
New Jersey Institute of Technology, Newark, NJ

Abstract: The discrete analog of the bivariate distributions of Freund’s
models is described, interpreting its assumptions. This discrete bivariate
geometric distribution has applications to survival analysis, reliability
theory and count data. Related models derived by incorporating the
environmental effects are also discussed. The application to sports data
is demonstrated.

Keywords and phrases: Survival function, environmental effect

6.1 INTRODUCTION

A number of authors have arrived at different bivariate geometric
distributions (BVG). Azlarov and Volodin (1982) considered the discrete
analog of Marshall-Olkin’s (1967) bivariate and trivariate exponential
distributions. However, Basu and Dhar (1995) looked at this problem
from a totally independent approach and have arrived at the same
discrete analog of Marshall-Olkin’s (1967) for the general multivariate
exponential (MVE) with no restriction on their parameters, except that
probability parameters are between 0 and 1. This BVG is different from
the one described in Marshall-Olkin (1985).

Dhar (1998) arrived at another bivariate geometric distribution that
was developed using ideas from Freund (1961) reliability models.
Though this newly obtained geometric model is named after the author

101
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Freund (1961), not all the distribution properties follow those of the
Freund (1961) model. In this paper, the assumptions leading to the
bivariate geometric model are interpreted. New bivariate models are
derived from this bivariate geometric distribution taking into account
the environmental effects. Further, the method of Dhar (1998) to
compute the moment estimator under the practical data set has been
expressed clearly. The applicability of this model is demonstrated using
a real data set in Section 6.4.

6.2 INTERPRETATION OF BVG MODEL ASSUMPTIONS

To clarify the assumptions the basic derivation from Dhar (1998) is
repeated here. Let X and Y be the discrete lifetime distributions of
components 1 and 2, respectively. The joint density

PX=2Y=y) = PY=ylX=z<Y)P(X=z<Y)
+PX =z|]Y =y < X)P(Y =y < X)
+PX =2z, Y=yl X =Y)P(X =Y),
(6.2.1)

x, y=1, 2,.... Note that if component represented by X fails at x, before Y
fails, then the failed component is immediately replaced. Hence, the
updated two component system will follow the distribution X*, Y*. The
(X"=x) and (x<Y*) are then treated to be independent.

PX=z<Y) = PX'=z<Y")
PX*=x)Pz<Y")

x r—1

PPy qi,

Il

I

(6.2.2)
[P(Y =y< X)= pfpg_lqz] where O<p;<1, p+q;=1, i=1, 2 and p; is the

probability of survival of the replaced component i, for a unit time, when
component i failed before its counterpart, i=1, 2. Take the conditional
survival distributions to be truncated geometric

PX=z]Y =y<X)=gp; ¥', 1<y<u, (6.2.3)

[P(Y=y|X=w<Y)=q4pZ_“_llSw<y], z,y=12,...,

0 < p3, ps<l, pi+q:=1,i=3, 4. Here, p; j=3, 4 represents the probability of
survival of component j-2 for a unit time, given that it has already
survived for some time, at the end of which the adjacent component
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failed. Finally, visualizing the two components as a single
interdependent unit in which both the components fail simultaneously,
the probability of the failure occurring at time X=Y is

PX=2Y=yX=Y)=qp5", (6.2.4)

where x=1, 2,..., 0<py<1, p12+q1.=1. Here py, represents the probability
of simultaneous survival, for a unit time, of the two components treated
as one component. Then, from (6.2.2) P(X=Y)=1-P(X# Y)=1-{[p:1qs+p2q1]
[1-pp2lti=q1qs[1-pp.17. This, along with (6.2.2) to (6.2.4) substituted in
(6.2.1), gives

y
P(X=2Y=y) = %lw] pE, ify<z zy=12,...,
p2p3 | P3
q p2]”
= 1—‘14[&——%J v, ifz<y, z,y=12,...,
Pipa | P4
92912 1 .
= 1 g fr=y=12,....
1-pip' %

(6.2.5)

In order for the above function to be a density, we need p,p,<ps; and
p1p2<ps. These strict inequalities tell us that the joint survival of the
replaced components 1 and 2, treated to be independent of each other,
is less than the probability of survival of the component which is known
to have out lived the other. In Dhar (1998) it is seen that the survival
function corresponding to (6.2.5) satisfies the loss of memory property
iff p1o=p1p.. This condition suggests that the probability of simultaneous
survival of the two components is equal to the probability of the joint
survival of the replaced components 1 and 2, when they fail before their
complimentary components and are treated to be independent of each
other. The bivariate geometric model with the additional assumption
P12=pP1Ps, in (6.2.5) will be referred to as BVG (p, ps, ps, p,). Again from
Dhar (1988, Lemma 3.2), the BVG (p,, ps, ps, p4) model has its marginals
as a mixture of two geometric distributions, provided ps;>p; and p>p,.
These two conditions interpret as follows. The probability of survival of
the component which is known to have out lived the other is greater
than the probability of survival of that replaced component which failed
before the other component. The two survival probabilities so compared
are referring to the same component slots but under different
circumstances.
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6.3 THE MODEL UNDER THE ENVIRONMENTAL EFFECT

Consider 1 to be the random variable that counts the number of discrete
time steps needed for ‘a’ number of events to occur. Then a density of n
is given by (Z:})b”_“(l — b)%, where 0<b<1 and 1<a<n (the Negative
Binomial [NB] distribution). The longer the waiting or elapsed time 7
in the environment, smaller is the probability of survival p" of the
component, where p is the initial survival probability. Multiplying the
conditional density, given n, of the r.v. BVG(p], p7, p1, p])by the density
of 1 and then summing over all possible integer values of n>a yields a

new bivariate geometric distribution BVG-NB(p, ps, ps, ps, a, b). Let
Aif(x1’127 ceny Ly veny xn)
= flz1,Zo,.c0y@i — 1,00, 2n) — f(Z1,Z2, ey iy oeey Tnr),

i.e., the backward shift operator acting on the i-th variable. Further, let
zAy and zVy denote the minimum and maximum of the two real

numbers x and y. Then, the joint density of BVG-NB(p1, ps, ps, ps, @, b) is
given by

(1=0)"{pp} "W P(X =2,Y =)

= Ap{p5®[p2p§ — bpYPYr5] " — 5% [pY§ — bpYrypi] "},
fy<e, z,y=1,2,...,

= Ao {p{¥[pipf — bpirspY] ™ — ri¥[p§ — bpipspyl ™},
fr<y, z,y=1,2,...,

[prp2 — bpip5] ™ — [p2 — bpip3)™* — [p1 — bpTP3]™* + [1 — bpip3] ™,
fr=y=1,2,....

]

(6.3.6)

Here, 0<py, ps<1, pip2<ps and pip.<p4. The corresponding joint survival
function computed using Dhar (1998, Equation 3.6) is given by

1-bH)7*PX >z,Y >y
B SP 3 (0192)° @) ([paph — b5 (p1p2) ]~
i=1
~[p5 — bp5 ¥ (pp2)¥ 1)
y-o
x Iy <al+ 3 rY ™ i) ([} - b (oape) 0
i=1

~[ph — oo T (p1p2)* %)
x Iz < y]+ [pp2)* VP [L = b(p1pa2)™V¥] 72, (6.3.7)
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where x, y=1, 2,....

Lemma 6.3.1 The marginal survival functions of (i) BVG-NB are

(1=b)P(Y > 1)
y . . .
> 0¥ (p1p2)* ([p1pl — b0Y (p1p2)] ™
i=1
— [ph — 0§ (p1p2)*]™%) I[y > 0]
- [le]ay[l - b(plp2)y]_ay y= 1’2’ e
(1- b)‘aP(X > )
ZP (p1p2)* ([p2ps — bP5 (prp2)’]
- [P3 — b5 (mp2)’] %) I[z > 0]
- [plpz]ax[l - b(p1p2) ]-a’ T = 1’27 e .
PROOF. Obvious from (6.3.7). O
Lemma 6.3.2 For BVG-NB, the distribution of min(X,, X,) belongs to
the family of distributions with survival function [(1-b)p*]4[1-bp*]*, 1< a,
x=0, 1, 2,...the discrete analog of the Pareto type 2 distribution.

PROOF. Note that

Plmin(X,,Xg) >u] = P[X; >u,Xs >yl
[(1 = B)(p1p2)“]*[1 — b(p1p2)*] %,

when (X;, X,) has the BVG-NB distribution, =0, 1, 2,... This in turn
follows by letting u=x=y in (6.3.7). O

6.4 DATA ANALYSIS WITH BVG MODEL

Dhar (1998) demonstrated the applicability of the bivariate geometric
model, using simulation and a practical data set. In this section, 1995
IX World Cup diving championship data is introduced to demonstrate
the inference procedure and the practical applicability of the model.
The data consists of scores given by seven judges from seven different
countries recorded in a video that starts at the end of the fourth round,
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which is a random start, taken from NBC sports TV. The score given by
each judge is a discrete random variable taking integer values and also
the midpoints of consecutive integers between zero and 10. After
dropping the highest and the lowest of the seven raw scores, the
remaining 5 scores are averaged, multiplied by 3 times the degree of
difficulty of the dive to give a score for the dive. In this data set, we
compare the scores given by two groups of the judges. One group consists
of Asian and Caucasus countries namely Japan and Tajikistan, with
the maximum of their scores as X. The other group consists of western
countries, United Kingdom, Australia, Canada, France and Iceland, with
their maximum score as Y. The scores given by these judges to divers
from the Asian and Caucasus group, which include countries like China,
Ukraine, Belarus, Russia will be looked at. We will see the MLE estimate
of P(X<Y) and compare it with the MLE estimate of P(Y <X), to determine
which maximum score is higher, with large probability. The same
procedure will be repeated for all divers including the ones from western
countries like Germany and USA, to see if there is any change in the
probabilistic inequality of the maximum scores of the two sets of judges.

Given below in Table 6.1 is 2x(x, y) in the sequence in which Judges
scores were relayed. The 2 here is to convert the data into integer valued
random variable. The score corresponding to the dive of Michael Murphy
of Australia (item number 3) was not displayed by NBC sports.

To estimate the parameters of the bivariate geometric model the above
data is assumed to be a random sample. If we had the entire data,
rounds one to six, of the diving competition one could remove the earlier
scores of the same diver. Also, assuming that the maximums will follow
the bivariate geometric distribution. We will compute the MLE estimate
based on thirteen observations, item numbers 1, 5, 6, 8, 9, 10, 11, 14, 15,
17 to 20, excluding for the time being, divers from USA and Germany.
Dhar (1998) has shown through simulation that MLE gives smaller bias
than method of moment estimators of the p’s. The MLE’s so computed
are p; = 162/174, D2 = 168/174,py = 168/174, p3 = 0.5 ps = 0.3
P(X > Y) = 27/850 = 0.317647058 and P(X <Y) = 56/85 = 0.658823529.
This suggests that the maximum score of the judges from Japan and
Tajikistan is probabilistically lower than the maximum score of the
judges from the western countries. Again, this computation is carried
through, all the data points in Table 6.1 to give p; = 245/262,
P2 = 252/259,p3 = 1/6,p4 = 1/4, P(X > Y) = 245/874 =(.280320366 and
P(X <Y) = 612/874 = 0.700228833, which implies that the maximum
score given the judges from the western countries continue to
probabilistically dominate those of the judges from Japan and Tajikistan.
There is no indication in this study of any partiality towards one region

Copyright © 2002 Taylor & Francis



BIVARIATE GEOMETRIC DISTRIBUTION 107

TABLE 6.1 This data is taken from a video recording during the summer of
1995 relayed by NBC sports TV, IX World Cup diving competition, Atlanta,
Georgia. The data starts at the last dive of the fourth round of the diving
competition

Item Diver . X: max score, Y: max
# Asian & Caucasus score, West
Sun Shuwet,
1 China. 19 19
David Pichler,
2 USA 15 15
4 Jan Hempel, 13 14
Germany
5 Roman Vol'odkuv, 1 12
Ukrain
6 Sergei Kudrevich, 14 14
Belarus
7 Patrick Jeffrey, USA 15 14
Valdimir
8 Timoshinin, Russia 13 16
9 Dimitry Sfmutln, 7 5
Russia
Xiao Hailiang,
10 China. 13 13
Sun Shuwei,
11 China 15 16
David Pichler,
12 USA 15 15
13 Jan Hempel, 17 18
Germany
14 Roman Vol'odkuv, 16 16
Ukrain
15 Sergei Kudrevich, 12 i3
Belarus
Patrick Jeffrey,
16 USA 14 14
Valdimir
17 Timoshinin, Russia 12 13
18 Dimitry S'autm, 17 18
Russia
Xiao Hailiang,
19 China 9 10
Sun Shuwei,
20 China 18 18
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over the other by these groups of judges. These probability estimates in
terms of relative magnitudes are consistent with their respective empirical
estimates.

Consider the data set in Dhar (1998, Table 3) constructed by projecting
consumers preference, from 1, the highest, to 10, the lowest. For the
sake of clarity this table has been repeated here as Table 6.2 given
below. The table contains scores given by 15 customers to the two most
popular competing soft drinks, e.g., Coke (X) and Pepsi (Y).

TABLE 6.2 Projected
consumers preference ranks,
from 1, the highest preference,
to 10, the lowest

X Y XY XY
1 10 4 5 1 9
10 1 5 5 5 1
3 7 1 3 1 10
2 4 2 1 2 6
6 1 2 2 2 3

The method of moment estimators as described in Dhar (1998), using
EX, EY, EX? and EY?in terms of the p’s, is repeated here for the sake of
clarification. These are four equations in p;-p4, because pi, is taken to
be equal to pp,. This in turn gives a polynomial equation in m=pp,.

m [[(Z + Z2)/2](1 = m) — Z) [[(§ + %2)/2](1 — m) — §]
= [m{((z + 22)/2)(1 - m) — 2} + [1 - 2(1 - m))’]
x [m{{(@ + 52)/21(1 = m) = g} + [1 = §(1 — m)]*].
Using MATHEMATICA one notices that this polynomial in 1-myields
four real solutions for the data in Table 6.2, of which only one is
extraneous, i.e., outside the range of [0, 1]. The largest solution among

the remaining three gives the most meaningful estimate of 1-p,p, as 1-m.
The estimates of p; and p, can now be obtained from

p=1- (2= (1 -m)7] @ +32)/2) - 21 -m)~] ")
and
p=1- (- -m)™] [G+5)/2 - g0 -m) 7).

Here again, as described above, §2 is the second sample moment of Y
values. Using the original moment equations, corresponding to r and
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Y, gives p1 = (1-m)[(1-p3)Z—1]+p3 and P2 = (1-m)[(1—p4)y—1]+Pa.
Since pp,=m, one could use this equation to eliminate extraneous
solutions of p; to ps4, corresponding to various values of m.

The estimates corresponding to this method of moment estimation,
when applied to Table 6.2 data, yield p1 = 0.702492288 po = 0.866047395,
P = 0.585531905, py = 0.667665863, P(X > Y) = 0.240292793 and
P(X < Y) = 0.657942448 i.e., brand X is more likely to be preferred
over brand Y. Here, the MLE’s are p1 = 17/28 = 0.607142857, po =
22/28 = 0.785714285,ps = 15/19 = 0.789473684 ,ps = 31/40 = 775
P(X >Y) = 0.2487860488 and P(X <Y) = 0.590243902, i.e., brand
X is more likely to be preferred to brand Y. The last two conclusions are
consistent with the empirical estimates P(X >Y) =4/15 = .26 and

P(X <Y)=19/15= 0.6 and are, therefore, the right conclusions.
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CHAPTER 7

SMALL AREA ESTIMATION:
UPDATES WITH APPRAISAL

J.N.K.RAO

Carleton University, Ottawa, Ontario, Canada

Abstract: Small area estimation has received a lot of attention in recent
years due to growing demand for reliable small area estimators.
Traditional area-specific direct estimators do not provide adequate
precision because sample sizes in small areas are seldom large enough.
This makes it necessary to employ indirect estimators that borrow
strength from related areas; in particular, model-based indirect
estimators. Ghosh and Rao (1994) provided a comprehensive review
and appraisal of methods for small area estimation, covering the
literature to 1992—3. This paper provides updates to Ghosh and Rao
(1994) by covering the literature over the past five years or so on model-
based estimation. In particular, we cover several small area models and
empirical best linear unbiased prediction (EBLUP), empirical Bayes (EB)
and hierarchical Bayes (HB) methods applied to these models. We also
present several recent applications of small area estimation.

Keywords and phrases: Small area estimation, empirical best linear
unbiased prediction, empirical Bayes, hierarchical Bayes.

7.1 INTRODUCTION

A geographical area or more generally any subpopulation (domain) is
regarded as a “small area” if the number of domain—specific sample
observations is small. Typically, the domain sample size tends to increase
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with the size of the domain, but this is not always true. For example, in
the U.S. Third National Health and Nutrition Examination Survey
(NHANESIII) states with large Hispanic and black populations (e.g.,
California, Texas) were oversampled at the expense of very small samples
or even no samples in other states (e.g., mid-western states). Yet reliable
estimates are desired for all the states and sub-areas (e.g., counties)
within states. Demand for reliable small area statistics from both public
and private sectors has grown rapidly in recent years.

“Direct” estimators, based only on the domain-specific sample data,
are typically used to estimate domain parameters. But sample sizes in
small areas are rarely large enough for direct estimators to provide
acceptable precision. This makes it necessary to “borrow strength” from
related areas to find “indirect” estimators that increase the effective
sample size and thus increase the precision. Such indirect estimators
are based on either implicit or explicit models that provide a link to
related small areas through supplementary data such as recent census
counts and current administrative records. Indirect estimators based
on implicit models include synthetic and composite estimators, while
those based on explicit models incorporating area-specific effects include
empirical Bayes (EB), empirical best linear unbiased prediction (EBLUP)
and hierarchical Bayes (HB) estimators.

Ghosh and Rao (1994) presented a comprehensive overview and
appraisal of methods for small area estimation, covering the literature
to 1992-3. We refer the reader to Schaible (1996) for an excellent account
of the use of indirect estimators in U.S. Federal Programs.

Ghosh and Rao (1994) provided a list of symposia and workshops on
small area estimation that have been organized in recent years. We
update that list by the following: (i) Conference on Small Area Estimation,
U.S. Bureau of the Census, Washington, D.C., March 26-27, 1998; (ii)
International Satellite Conference on Small Area Estimation, Riga, Latvia,
August 20-21, 1999. Short courses have also been organized: (i) “Small
Area Estimation” by J.N.K.Rao, W.A Fuller, G.Kalton and W.L.Schaible,
organized by the Joint Program in Survey Methodology and the
Washington Statistical Society, Washington, D.C., May 22—-23, 1995; (i1)
“Introduction to Small Area Estimation” by J.N.K.Rao, organized by
the International Association of Survey Statisticians, Riga, Latvia,
August 19, 1999. In addition, numerous invited and contributed sessions
on small area estimation have been organized at recent professional
statistical meetings, including the American Statistical Association
Annual Meetings, the International Statistical Institute bi-annual
sessions and the International Indian Statistical Association Conference,
Hamilton, Canada, 1998.

Singh, Gambino and Mantel (1994) discussed survey design issues
that have an impact on small area statistics. In particular, they presented
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an excellent illustration of compromise sample size allocations to satisfy
reliability requirements at the provincial level as well as sub provincial
level. For the Canadian Labour Force Survey with a monthly sample of
59,000 households, optimizing at the provincial level yields a coefficient
of variation (CV) for “unemployed” as high as 17.7% for some
Unemployment Insurance (UI) regions. On the other hand, a two-step
allocation with 42,000 households allocated at the first step to get reliable
provincial estimates and the remaining 17,000 households allocated in
the second step to produce best possible UI region estimates reduces
the worst case of 17.7% CV for Ul regions to 9.4% at the expense of a
small increase in CV at the provincial and national levels: CV for Ontario
increases from 2.8% to 3.4% and for Canada from 1.36% to 1.51%.
Preventive measures, such as compromise sample allocations, should
be taken at the design stage, whenever possible, to ensure precision for
domains like the Ul region. But even after taking such measures sample
sizes may not be large enough for direct estimates to provide adequate
precision for all small areas of interest. As noted before, sometimes the
survey is deliberately designed to oversample specific areas (domains)
at the expense of small samples or even no samples in other areas of
interest.

This paper provides updates to Ghosh and Rao (1994) by covering
recent work on model-based small area estimation; in particular, on
empirical best linear unbiased prediction (EBLUP), empirical Bayes (EB)
and hierarchical Bayes (HB) methods and their applications.

7.2 SMALL AREA MODELS

It is now generally accepted that when indirect estimators are needed
they should be based on explicit models that relate the small areas of
interest through supplementary data such as last census data and
current administrative data. An advantage of the model approach is
that it permits validation of models from the sample data. Interesting
work on traditional indirect estimates (synthetic, sample-size dependent
etc.), however, is also reported in the recent literature [see e.g., Falorsi,
Falorsi and Russo (1994); Chaudhuri and Adhikary (1995); Schaible
(1996); Marker (1999)].

Small area models may be broadly classified into two types: area
level and unit level.

7.2.1 Area Level Models

Area-specific auxiliary data, x;, are assumed to be available for the
sampled areas i (=1,..., m) as well as the nonsampled areas. A basic
area level model assumes that the population small area total Y; or
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some suitable function 6;=g(Y;), such as 6,=log(Y,), is related to x; through
a linear model with random area effects v;:

9,;=X;',3+’Ui, i1=1,...,m (7.2.1)

where § is the p-vector of regression parameters and the v,’s are
uncorrelated with mean zero and variance o2 Normality of the v; is also
often assumed. The model (7.2.1) also holds for the non sampled areas.
It is also possible to partition the areas into groups and assume separate
models of the form (7.2.1) across groups.

We assume that direct estimators Y; of Y; are available whenever the
area sample size n;>1. It is also customary to assume that

b, = 0; +e; (7.2.2)

where §; = g(Y;) and the sampling errors e; are independent N(O, )
with known ;. Combining this sampling model with the “linking” model
(7.2.1), we get the well-known area level linear mixed model of Fay and
Herriot (1979):

0; = X\B8+v; + e;. (7.2.3)

Note that (7.2.3) involves both design-based random variables e; and
modelbased random variables v;. In practice, sampling variances ; are
seldom known, but smoothing of estimated variances ¢, is often done to
get stable estimates ¥ which are then treated as the true ;. Other
methods of handling unknown y; are mentioned in Section 7.4. An
advantage of the area-level model (7.2.3) is that the survey weights are
accounted for through the direct estimators 4;.

The assumption E(e; | 6)=0 in the sampling model ref 2.2) may not be
valid if the sample size n; is small and 6; is a nonlinear function of Y,
even if the direct estimator Y; is design-unbiased, i.e. E(Y; | Y;) = V;- A
more realistic sampling model is given by

Yi=Yi+e (7.2.4)

with E(e} | ¥;) = 0,1.e.,Y;is design-unbiased for the total Y;. In this case,
however, we cannot combine (7.2.4) with the linking model to produce a
linear mixed model. As a result, standard results in linear model theory
do not apply, unlike in the case of (7.2.3). Alternative methods to handle
this case are needed (see Section 7.3).

The basic area level model has been extended to handle correlated
sampling errors, spatial dependence of random small area effects, vectors
of parameters 6; (multivariate case), time series and cross-sectional data
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and others (see Ghosh and Rao, 1994). We discuss some of the recent models
for combining cross-sectional and time series data. Suppose 6, denotes a
parameter of interest for small area i at time ¢ and §;, is a direct estimator
of 6,. Ghosh et al. (1996) assumed the sampling model §,, | 6;, T N (634, i1
with known sampling variances 5, and the linking model

0i¢ | u ~ N(x},8 + zjuy, 07) (7.2.5)
and
u; I Up_q ~ N(ut_l,W) (726)

with known auxiliary variables x;, and z,,; they have actually studied
the multivariate case 0,. Note that (7.2.6) is the well-known random
walk model. The above model has the following limitations: (i)
Independence of §;, over ¢ for each i may not be realistic because estimates
are typically correlated over time. (ii) The linking model (7.2.5) does not
include area-specific random effects. As a result, it can lead to “over
shrinkage”. Rao and Yu (1992, 1994) proposed more realistic sampling
and linking models. They assumed the sampling model

0: 16, ™ N(B,, 1) (7.2.7)
with known sampling covariance matrix V;, and the linking model
Oit = X8 + vi + it (7.2.8)

withv; % N (0,02) and independent of u;’s which are assumed to follow
an AR(1) model:

Uig = Plig—1 + €ty |p| <1 (7.2.9)

withe;; %9 N(0,02)where&; = (b1,...,0:r) and 8=(6,...,6T)". Models
of the form (7.2.7)—(7.2.9) have been extensively studied in the
econometric literature, ignoring sampling errors, i.e., treating g,, as 6;.
The above sampling model permits correlations among sampling errors
over time and the linking model (7.2.9) includes both area-specific
random effects v; and area by time specific random effects u;. Datta,
Lahiri and Lu (1994), following Rao and Yu (1992), used the same
sampling model (7.2.7) but assumed the following linking model:

Ois | vi,ug ~ N(Xﬁﬂi +v; + zgut,of) (7.2.10)
where f3’s and ¢?’s are random and u, follows the random walk model

(7.2.6). This model allows area-specific random effects v; and random
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slopes /3, but does not contain area by time specific random effects u;,.
Datta, Lahiri and Maiti (1999) used the Rao-Yu sampling and linking
models (7.2.7) and (7.2.8) but replaced the AR(1) model (7.2.9) by a
random walk model given by (7.2.9) with p=1. Datta et al. (1999)
considered a similar model but added extra terms to x% 3 + v; to reflect
seasonal variation in their application to estimating unemployment
rates for the U.S. states. Singh et al. (1994) also used time series/
cross-sectional models, but assumed that the sample errors are
uncorrelated over time.

Area level models have also been used in the context of disease
mapping or estimating regional mortality and disease rates, as noted
by Ghosh and Rao (1994). A simple model assumes that the observed
small area disease counts y; | ¢; nd Poisson P(n,6) and 9; id gamma
G(a, b), where 0, is the true incidence rate and n, is the number exposed
in area i. Maiti (1998) used f3; = log6; & N(u,o?)instead of 6; i G(a,b).
He also considered a spatial dependence model for f3;’s, using conditional
autoregression (CAR) that relates each f3; to a set of neighbourhood areas
of area i; see also Ghosh et al. (1997). Lahiri and Maiti (1996) modelled
age-group specific area disease counts y;, using Clayton and Kaldor’s
(1987) approach. They assumed that y; = ;45|60 ‘2! P(e;6;) and
0; “ @ (a, by where e,= 3;in,; is the expected number of deaths in area i,
; is the j-th group effect assumed to be known and n; is the number
exposed in the j-th age group and area i. Nandram et al. (1998) assumed
that ys; | 6;; S P(n;;6;;) and log 05 = X}B+v; with o; 2 N(0, 02) where
0 is the area/age-specific mortality rate and xj is a vector of covariates
for age group j. They also considered random slopes f3; in the linking
model.

7.2.2 Unit Level Models

A basis unit level population model assumes that the unit y-values y,;
associated with the units j in the areas i, are related to auxiliary variables
x; through a nested error regression model

yz-j:xéj,@—}-vi—{-eij, 7=1,...,N;i=1,....m (7.2.11)

where v; & N (0,02) are independent of e;; YN (0,02) and N; is the
number of population units in the i-th area. The parameters of interest
are the totals Y; or the means Y.

The model (7.2.11) is appropriate for continuous variables y. To handle
count or categorical (e.g., binary) y—variables, generalized linear mixed
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models with random small area effects, v, are often used. Ghosh et al.
(1998) assumed models of the form: (i) Given 6,s, the y,’s are independent
and belong to the exponential family with canonical parameter 6,; (ii)
Linking model 9(8;;) = x;;8 + viwherev; “d N(0,02)and g(-) is a strictly
increasing function. The linear mixed model (7.2.11) is a special case of
this class with g(a)=a. The logistic function g(a)=logla/(1-a)] is often
used for binary y [see e.g., Farrell, MacGibbson and Tomberlin (1997)]
although probit functions can also be used and offer certain advantages
for hierarchical Bayes (HB) inference [Das, Rao and You (1999)].

The sample data {y;, x;;, j=1,..., n;; i=1,..., m} is assumed to obey the
population model. This implies that the sample design is ignorable or
selection bias is absent which, for example, is satisfied for simple
random sampling within areas. For more general designs, the sample
indicator variable, a;;, should be unrelated to y;;, condition on x;;. Model-
based estimators for unit level models do not depend on the survey
weights, Wijso that design-consistency as n, increases is forsaken except
when the design is self-weighting, i.e., w;; = w as in the case of simple
random sampling. The area level model (7.2.3) is free of these
limitations but assumes that the sample variances ; are known; if
J;’s are assumed unknown the model becomes nonidentifiable or nearly
nonidentifiable leading to highly unstable estimates of the parameters.
The unit level model is free of the latter difficulty and survey weights
can also be incorporated using model-assisted estimators; see Section
7.3.14.

Various extensions of the basic area level models have been studied
over the past five years or so. Stukel and Rao (1999) studied two-fold
nested error regression models which are appropriate for two-stage
sampling within small areas. Following Kleffe and Rao (1992) Arora
and Lahiri (1997) studied unit level models of the form (7.2.11) with
random error variances o7 such that ¢ “ Ga, b); Kleffe and Rao (1992)
assumed the existence of only mean and variance of o2, without
specifying a parametric distribution on ¢2. Datta ef al. (1999) extended
the unit level model (7.2.11) to the multivariate case y;, following Fuller
and Harter (1987). This extension leads to a multivariate nested error
regression model. Moura and Holt (1999) generalized (7.2.11) to allow
some or all of the regression coefficients to be random and to depend on
area level auxiliary variables, thus effectively integrating the use of
unit level and area level covariates into a single model. You and Rao
(1999a) also studied similar two-level models.

Malec, Davis and Cao (1996) and Malecet al. (1997) studied the binary
case, using logistic linear mixed models with random slopes to link the
small areas. Raghunathan (1993) specified only the first two moments
of y;/’s conditional on small area means 6;s and the first moment of 6; as
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for r; = h{z,B)known inverse “link” function A(-) and the second moment
of 6; is allowed to depend on 7,.

Many of the small area linear mixed models studied in the literature
are special cases of the following general linear mixed model with a
block diagonal covariance structure, sometimes called longitudinal mixed
linear models [Prasad and Rao (1990); Datta and Lahiri (1997)]:

y: _—_Xz,@+sz,+e“ 1= 1,,m (7212)

ind ind

where v; ~ (0, G;(7))and independent of e; ~ (0, R;(7)). For example,
the basic area level (7.2.3) is of the form (7.2.12) with y; = 6;, Z; = 1,
G;i(T) = c2and R; (1) = ;. Das and Rao (1999) studied general mixed
ANOVA models of the form

y* = X,B +Zivi+ -+ quq +e; (7.2.13)

where Z; consists of only 0’s and 1’s such that there is exactly one 1 in
each row and at least one 1 in each column, v; "2 (0,0?%1)and independent
of e~(0, ¢?I). This model relaxes the assumption a block diagonal
covariance structure.

Ghosh and Rao (1994) reviewed some work on model diagnostics for
models involving random effects. Jiang, Lahiri and Wu (1998) developed
a chi-squared test for checking the normality of the random effects v; and
the errors e; in the basic unit level sample model ¥%i; = X;;8 + vi + €ij,
i=1...,n;i=1,...,m

7.3 MODEL-BASED INFERENCE

EBLUP, EB and HB methods have played a prominent role for model-
based small area estimation. EBLUP is applicable for linear mixed
models whereas EB and HB are more generally valid. EBLUP point
estimators do not require distributional assumptions, but normality
of random effects is often assumed for estimating the mean squared
error (MSE) of the estimators. Also, EBLUP and EB estimators are
identical under normality and nearly equal to the HB estimator, but
measures of variability of the estimators may be different. To illustrate
the methods, we consider the basic area level model (7.2.3), which is
extensively used in practice, and then discuss recent methodological
developments.
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7.3.1 EBLUP Method

Appealing to general results for linear mixed models, the BLUP
estimator of 6, under (7.2.3) is given by

6:(02) = 7ibi + (1 — v)x,B(o2) (7.3.14)

where v; = 02/(c2 + ¥:) and B(o2)is the weighted least squares (WLS)
estimator of 8 with weights (62 + ;). It follows from (7.3.14) that the
BLUP estimator is a weighted combination of the direct estimator él
and the regression synthetic estimator x,3(c2). The result (7.3.14) does
not require the normality of v; and e;. Since ¢2 is unknown, we replace it
by a suitable estimator 2 to obtain a two-step or EBLUP estimator
0; = 0;(62) The estimator of total Y; is taken as g=1(6;) = h(f;). One
could use either the method of fitting constants (not requiring normality)
or the restricted maximum likelihood (REML) method under normality
to estimate o2. Jiang (1996) showed that REML estimators of variance
components in linear mixed models remain consistent under deviations
from normality. Therefore, §; with REML estimator of o2 is also
asymptotically valid under nonnormality.

As noted in Section 7.2.1, EBLUP estimation is not applicable if the
sampling model (7.2.2) is changed to the more realistic model (7.2.4).

A measure of variability associated with EBLUP estimator is given
by its MSE, but no closed form for MSE exists except in some special
cases. As a result, considerable attention has been given in recent years
to obtain accurate approximations to the MSE of EBLUP estimators.
An accurate approximation to MSE(6;) = E(6; — 6;)2, for large m, under
normality is given by

MSE(6;) ~ g1:(02) + 92:(02) + 93i(03) (7.3.15)
where
qulo) = %t _ (7.3.16)
92i(03) = (1—7)"x [Z xixi/ (o5 + ¢i)] Xi,  (7.3.17)
g5i(0d) = [W1/(os+ )" E(6: - 2iB)°V(6)),  (7318)

= [¥2/(02 +4:)*) V(62) (7.3.19)
and V(62)is the asymptotic variance of 62 [Prasad and Rao (1990)]. The

leading term g¢i1;(02) = v:%; is of order O(1) whereas g2i(c2), due to
estimating 3, and g3i(02) due to estimating o2, are both of order O(m™),
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for large m. Note that the leading term shows that MSE(6;) can be
substantially smaller than MSE(§;) under the model (7.2.3) when y; is
small or the model variance o2 is small relative to the sampling variance
;. The success of small area estimation, therefore, largely depends on
getting good auxiliary information {x;} that leads to a small model
variance relative of ;. Of course, one should also make a thorough
validation of the assumed model.

An estimator of MSE(6;), correct to the same order of approximation
as (7.3.15), is given by

mse(0;) & g1:(62) + g24(62) + 2g3i(52), (7.3.20)

ie., the bias of (7.3.20) is of lower order than m™ for large m. The
approximation (7.3.20) is valid for both the method of fitting constants
estimator and the REML estimator, but not for the ML estimator of o2
[Datta and Lahiri (1997); Prasad and Rao (1990)]. Using the fitting of
constants estimator, Lahiri and Rao (1995) showed that (7.3.20) is robust
to nonnormality of the small area effects v; in the sense that approximate
unbiasedness remains valid. Note that the normality of sampling errors
e; is still assumed but it is less restrictive due to the central limit
theorem’s effect on the direct estimators §;.

A criticism of the MSE estimator (7.3.20) is that it is not area-specific
in the sense that it does not depend on §; although x; is involved through
(7.3.17). But it is easy to find other choices using the form 7.3.18) for
g3:(62). For example, we can use

mse(6;)) = g1i(02) + g2i(2) + gai(02)
+ [/ (62 +:)*] (6 — xiB)*hi(62),  (7.3.21)

where 8 = B8(62) and hi(02) = V(62) = 2m~2%;(02 +1;)? for the fitting
of constants estimator o2 [Rao (1998)]. The last term of (7.3.21) is less
stable than g3:(62) but it is of lower order than the leading term g1:(62).

Stukel and Rao (1999) obtained EBLUP estimators and associated
approximately unbiased (or second-order correct) MSE estimators
under two-way nested error regression models. Moura and Holt (1999)
obtained similar results for the two-level models. Simulation results
of Stukel and Rao (1999) suggest that the behaviour of relative bias of
MSE estimators is more complex than in the one-way case. Datta,
Day and Basawa (1999) studied the multivariate nested error
regression model and developed EBLUP estimators and associated
second-order correct estimators of MSE, using REML or ML estimators.
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In the case of REML estimators, a formulae of the form (7.3.20) holds
but for ML estimators an extra term of order O(m-!) should be
subtracted. Datta and Lahiri (1997) obtained similar results for the
general linear mixed model with a block diagonal covariance structure,
(7.2.12). Das and Rao (1999) extended these results to the general
mixed ANOVA model (7.2.13) in which case the asymptotic set-up is
more complex. Datta, Lahiri and Maiti (1999) and You (1999) obtained
EBLUP estimators and associated second-order correct estimators of
MSE for the time series/cross-sectional linking model (7.2.8) with a
random walk model on u,’s. Datta et al. used ML and REML estimators
of model parameters while You employed the method of moments
estimators.

As noted in Section 7.2, model-based estimators for unit level models
do not depend on the survey weights. Prasad and Rao (1999) obtained
model-assisted estimators for the nested error regression model that
depend on survey weights Wi;j and remain design-consistent as the sample
size, n,, increases. The unit level sample model is first reduced to

Tiw = XinB + Vi + Ciw, (7.3.22)

where Ty, = Bjwi;y5; with wy; = W,;;/X;@;; and similar expressions for
K- and &;,,. A pseudo-BLUP estimator of §; = X ;8 + v;, for fixed o2 and
a2, say Ozw(av, e) 1s then obtained from the reduced model (7.3.22),
noting that &, N (0,025;w?), where X, is the vector of known
population means and Y; ~ 6; for large N; (This estimator is called
pseudo-BLUP because it is different from the BLUP estimator under
the full unit-level sampling model). The unknown parameters o2and o2
are then replaced by model-consistent estimators 2 and 2 under the
full model to obtain the pseudo-EBLUP estimator fie = 11, (62,62). This
estimator is model-assisted and it is approximately design and model
unbiased even if the sample design is nonignorable. Prasad and Rao
(1999) also obtained a second-order correct estimator of MSE(6;,,).

Rivest and Belmonte (1999) obtained an unbiased estimator of the
conditional MSE of the EBLUP estimator §; = 6;(52) for the basic area
level model, assuming only the sampling model, i.e., conditionally given
6’s. Hwang and Rao (1987) obtained similar results and showed
empirically that the model-based estimator of MSE, (7.3.20), is much
more stable than the unbiased estimator and that it tracks the
conditional MSE quite well even under moderate violations of the
assumed linking model (7.2.1). Only in extreme cases, such as large
outliers 6, the model-based estimator might perform poorly compared
to the unbiased estimator.
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7.3.2 EB Method

In the EB approach to the basic area level model, given by (7.2.1) and
(7.2.2), the conditional distribution of 6, given §; and model parameters
B and o2, denoted f(6; | 0:,8,02), is first obtained. The model
parameters are estimated from the marginal distribution of §;s, and
inferences are then based on the estimated conditional (or posterior)
distribution of 6, f{6; | 9,,,@, &2%). In particular, the mean of the
estimated posterior distribution is the EB estimator oEB Under
normality, ()EB is identical to the EBLUP estimator §; but the EB
approach is apphcable generally for any joint distribution. It should
be noted that the EB approach is essentially frequentist because it
uses only the sampling model and the linking model which can be
validated from the data; no priors on the model parameters are involved
unlike in the HB approach.

As a measure of variability of OEB the variance of the estimated
posterior is used. Under normality, it is given by ¢1:(62) = %¥; which
leads to severe underestimation of true variability as measured by MSE.
Laird and Louis (1987) proposed a parametrlc bootstrap method to
account for the variability in B and 62 but Butar and Lahiri (1997)
showed that it is not second-order correct, ie. its bias involves terms of
order m™, unlike the bias of (7.3.20) or (7.3.21). By correcting this bias,
they obtained an estimator which is identical to the area-specific MSE
estimator (7.3.21). Therefore, corrected EB and EBLUP lead to the same
result under normality.

Farrell, MacGibbon and Tomberlin (1997) studied EB estimation
for binary y, assuming the sampling model vij | 03 ind Bernoulli(6 )
and the linking logistic model log{6;;/(1 — w)} = x};8 + v; with

4N (0,.02). The conditional distribution of 6,’s is approximated by

a multlvarlate normal to get an EB estimator of local area proportion
Y- They employed the bootstrap method of Laird and Louis (1987) to
get a bootstrap-adjusted estimate of variability associated with the
EB estimator. But results of Butar and Lahiri (1997) for the linear
case suggest that the bootstrap method may not be second-order correct
in the nonlinear case as well. Jiang and Lahiri (1998) also studied EB
estimation for the above model and obtained the EB estimator exactly
through one-dimensional numerical integration. They called the EB
estimator an empirical best predictor (EBP) which may be more
appropriate because no priors on model parameters are involved.
Employing method of moment estimators of model parameters § and
o2 they also obtained an approximation to MSE of the EB estimator
correct to terms of order m. Jiang and Lahiri (1998) proposed a
jackknife method of estimating MSE that is applicable to general
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longitudinal linear and generalized linear mixed models. This method
leads to second-order correct MSE estimators and looks promising.
But one needs to recompute the REML estimates of model parameters
by deleting each area in turn. The computations can be significantly
reduced by using a single step of the Newton-Raphson algorithm with
the estimates from the full sample as starting values. Properties of
this simplification remain to be studied. Booth and Hobert (1988)
argued that the conditional MSE of the EBP given the i-th area data
is more relevant as a measure of variability than the unconditional
MSE because it is area-specific. Fuller (1989) earlier proposed a similar
criterion in the context of linear mixed models. But the MSE estimator
(7.3.21) shows that it is possible to obtain area-specific estimators of
the unconditional MSE, at least in the linear model case. Also, it is not
clear how one should proceed with the conditioning when two or more
small area estimators need to be aggregated to obtain an estimator
for a larger area. How would one define the conditional MSE of the
larger area estimator?

Arora et al. (1997) studied the nested error regression model with

—g iid .
random error variances 07 and assumed o;2 ¢ G(a, b). They obtained

the EB estimator of small area mean Y, and applied the Laird-Louis
bootstrap to estimate its MSE, taking account of the variability due to
estimation of model parameters.

7.3.3 HB Method

The HB approach has been extensively used for small area estimation.
It is straightforward, inferences are exact and it can handle complex
problems using recently developed Monte Carlo Markov Chain (MCMC)
methods, such as the Gibbs sampler. A prior distribution on the model
parameters (also called hyper parameters) is specified and the posterior
distribution of the small area totals Y; or g(Yi)=60; is then obtained.
Inferences are based on the posterior distribution; in particular, Y; or 6,
is estimated by its posterior mean and its precision is measured by its
posterior variance.

For the basic area level model, (7 2.1) and (7.2.2), with normality of v;
and e;, the posterior mean E(6; | 6) and posterior variance V/ (4, | 0) are
obtained in two stages where 8 = (64, ... m) In the first stage, we
obtain E(6; | 8, ¢ 2)and V (6; | 0,0 2) for ﬁxed 02, assuming an improper
prior, f(3) « const., on 3 to reflect absence of prior information on 3. The
conditional posterlor mean, given o2, is identical to the BLUP estimator

0;(02) and the conditional posterior variance is equal to g1:(02) + g2i(o2).
At the second stage, we take account of the uncertainty about o2 by first
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calculating its posterior distribution f(o2 | @), assuming a prior
distribution on ¢2 and prior independence of § and o2. The posterior
mean and variance are then obtained as

OB = E(6; | ) = E,q5(0:(02)] (7.3.23)

V(048) = E 51014002 + i (02)] + Viapl6i(02)]  (7.3.24)

where Eagié and Vag|é denote the expectation and variance with respect

to f(62 | 6). No closed form expressions for (7.3.23) and (7.3.24) exist,
but in this simple case they can be evaluated numerically using only
one-dimensional integration. For complex models, high-dimensional
integration is often involved and it is necessary to use MCMC-type
methods to over-come the computational difficulties.

It follows from (7.3.23) that B ~ §;(62) but (7.3.24) shows that
ignoring uncertainty about ¢ and using g1;(62) + g2:(62) as a measure
of variability can lead to significant underestimation.

If the assumed prior f(c2)is proper and informative, the HB approach
encounters no difficulties. On the other hand, an improper prior f(o?)
could lead to an improper posterior [Hobert and Casella (1996)]. In the
latter case, we cannot avoid the difficulty by choosing a diffuse proper
prior on o2 because we will be simply approximating an improper
posterior by a proper posterior.

To illustrate the use of Gibbs sampling, we again consider the basic
area level model under normality. To implement Gibbs sampling
assuming the prior f(7, = ¢;2)is a gamma(a, b), a>0, b>0, we need the
following Gibbs-conditional distributions:

(i)  B16,02,8 ~ N[(X'X)™1X'8,02(X'X)7}] (7.3.25)

) 0 ]8,02,0 X N(@:(B.02) = i + (1 — %)xiB,vivhs),  (7.3.26)
i=1,...,m

(i) 0;%1B,0.0~C|F +a, %Z(Oi - xiB)’+b/, (7.3.27)

where X is the mxp matrix with x/ as the i-th row and 6=(6,,..., 6,)". The
Gibbs algorithm is as follows: (a) Us1ng starting values 0(0) and 20,
draw % from (7.3.25). (b) Draw 9 , m from (7.3. 26) using BV
and 2. (c) Draw ,2() from (7.3.27) using o), i=1,..., m and .
Steps (a)-(c) complete one cycle. Perform a large number of cycles,
say ¢, called “burn-in period”, until convergence and then treat
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(Bt+) o20+9) gli+d) 5 — 1 .. J)asdJ samples from the joint posterior
of B, 02 and 6, i=1,..., m. Other methods use multiple parallel runs
instead of a single long run as above. Parallel runs can be wasteful
because initial “burn-in” periods are discarded from each run. But single
long run may leave a significant portion of the space generated by the
joint posterior unexplored.

The posterior mean and posterior variance are estimated as

N 1 , Iz, 7
gHB 72;@ [aﬁ“ﬂ)] =5 zj:t%(]) = 6;(") (7.3.28)
and

V0:10) & 33 [u(02) + gau(a2H)]
J
1 o 92
+7Zj:[92’(7)“9"(’)] : (7.3.29)

The estimator §;(-) has smaller simulation error than the estimator
J! Z]- 0§t+J ) because of the Rao-Blackwell property. It is therefore
advisable to do analytical calculations first before applying Gibbs
sampling.

For the basic area level model, all the conditional distributions,
(7.3.25)—(7.3.27), are in a closed form and, therefore, samples can be
generated directly. But for more complex models, some of the conditionals
may not have closed form in which case alternative algorithms, such as
Metropolis-Hastings within Gibbs, are needed to draw samples from
the joint posterior distribution. We refer the reader to Brooks (1998) for
an excellent review of MCMC methods. Software, called BUGS and
CODA, are readily available for implementing MCMC and convergence
diagnostics, but caution should be exercised in using MCMC methods.
For example, Hobert and Casella (1996) demonstrated that the Gibbs
sampler could lead to seemingly reasonable inferences about a
nonexistent posterior distribution. This happens when the posterior is
improper and yet all the Gibbs-conditional distributions are proper.
Another difficulty with MCMC is that the convergence diagnostics tools
can fail to detect the sorts of convergence failure that they were designed
to identify [Cowles and Carlin (1996)]. Further difficulties in-clude the
choices of ¢ for the burn-in period, number of simulated samples, </, and
the starting values.

The HB methodology for the small area models discussed in Section
7.2 and other models has been developed in recent years and a variety
of applications to real data have been reported. Some of these
applications are given in Section 7.4.
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To take account of survey weights, You and Rao (1999b) developed a
pseudo-HB methodology which leads to estimators similar to the pseudo-
EBLUP estimators of Prasad and Rao (1999).

Singh et al. (1998) made a comparison of frequentist and Bayesian
measures of error, using analytical and empirical methods.

Datta and Lahiri (1995) considered robust HB estimation using a
class of scale mixtures of normal distributions on the random effects v,
with basic area level model. This class includes ¢, Laplace and logistic
distributions; Cauchy distribution for outlier areas was adopted.

You (1999) considered the more realistic sampling model (7.2.4) on ¥;
with sampling errors e} and the linking model (7.2.1). Assuming V (e} |
Y;) = ¢%2Y? and 6; = log(Y;), he used HB methods to demonstrate that
for small sample sizes the posterior inferences under the sample model
(7.2.4) can be significantly different from those under the sampling model
on §;.

7.4 SOME RECENT APPLICATIONS

In this section we present some recent applications of EBLUP, EB and
HB approaches to small area estimation.

7.4.1 Area-level Models

Basic models

(1) Dick (1995) used the basic area level model (7.2.3) to estimate net
under coverage rates in the 1991 Canadian Census. The goal is to
estimate 96 adjustment factors 6,=T;/C, corresponding to 2(sex)x4(age)x
12(province) combinations, where T is the true (unknown) count and
C; is the census count in the i-th area (domain); the net undercoverage
rate in the i-th area is given by U; = 1 — 6, !, Direct estimates g, were
obtained from a post enumeration survey, and sampling variances
were derived through smoothing of estimated variances, assuming
is proportional to some power of C;. Explanatory variables, x, were
selected from a set of 42 variables by backward stepwise regression.
EBLUP (EB) estimates of 6; were used and their MSE estimated using
(7.3.20) with REML estimate of o2. The EB adjustment factors §FB were
converted to estimates of missing persons, M;=T,-C;, and these estimates
were raked to ensure consistency with direct estimates of marginal
totals. The raked EB estimates, 5{3, were used as the final estimates of
M/s. MSE estimate of 2 was obtained as [mse(§FB)] (R /6EB)2. This
somewhat ad hoc method ensures that the coefficient of variation (CV)
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of ézEB is retained by 67,3, but properties of this method remains to be
investigated.

(2) The basic area level model (7.2.3) with 6;=log Y; has been recently
used to produce model-based county estimates of poor school-age children
in U.S.A. [National Research Council (1998)]. Using these estimates,
the US Department of Education allocates over $7 billion of federal
funds annually to counties. The difficulty with unknown ; was handled
by using a model of the form (7.2.3) for the census year 1990, for which
reliable estimates ¢, of sampling variances, i, are available and
assuming the census small area effects v,. follow the same distribution
as v; i.e., N(0,02). Under the latter assumption, an estimate of was o2
obtained from the census data assuming 4, = 1);, and used in the current
model (7.2.3), assuming ¢; = o2 /n;, to get an estimate of o2 The resulting
estimate, J;i = 62/n; was treated as the true ¢ in developing EBLUP
estimates, ¢, of 6,. The small area (county) totals Y; (number of school-
age children in poverty) can then be estimated as Y; = exp(§;) but a
more refined method based on the mean of lognormal distribution was
used: ?i: exp{9~i + %mse(éi)}, ignoring the gs-term in (7.3.20) which was
found to be small.N The MSE of ?z was estimated using the approximation
MSE(4;) ~ CV?(Y;). The estimates ? ; were raked to agree with model-
based state estimates obtained from a state model. The reader is referred
to National Research Council (1998) for details on x-variables used in
the county model and evaluation of the models. Several criteria were
used for evaluating the models and the estimates, including regression
diagnostics and comparisons to the 1990 Census counts.

(3) Other applications of the basic area level model include the
following: (i) Estimation of unemployment rates at census tract level
[Chand and Alexander (1995)]; (ii) Estimation of counts in employment
categories and household income categories at the Congressional District
level [Griffiths (1996)]; (iii) Estimation at the provincial level in the
Italian Labour Force Survey [Falorsi, Falorsi and Russo (1995)].

Multivariate models

Datta et al. (1996) used multivariate area level (Fay-Herriot) models to
develop HB estimators of median income of four-person families for U.S.
states. Here 0,=(6;y, 0,5, 0;5)" with 6;;, 6;, and 6,5 denoting the true median
incomes of four-, three- and five-person families in state i. Adjusted
census income and base-year median census median income for the three
groups were used as explanatory variables. Diffuse priors on model
parameters were used along with Gibbs sampling. The resulting HB
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estimators, HB3, were compared to the direct Current Population Survey
(CPS) estimators and univariate and bivariate model based HB
estimators, HB! and HB?, treating the 1979 estimates, available from
the 1980 census data, as the true values. In terms of absolute relative
bias averaged over the states, the three HB estimators performed
similarly, but outperformed the direct CPS estimates. In this application,
the univariate estimator HB! worked well and it is not necessary to use
more complicated estimators based on multivariate models. Estimates
of 6;; are used for administering an energy assistance program to low-
income families.

Time series models

(1) Ghosh et al. (1996) developed HB estimators under the time series
linking model given by (7.2.5) and (7.2.6) and applied them to estimate
median income of four person families using direct estimates
00,5=1,...,51 ¢=1,..., 10 for the 51 states over a ten year period.

(2) Datta et al. (1994) used the time series model (7.2.10) with u,
following (7.2.6) and developed HB estimators. They also used methods
for validating the model, based on cross-validation. They applied the
methods to estimate monthly unemployment rates for U.S. states. HB
estimators performed significantly better than the CPS estimates, as
measured by the CPS and HB standard errors. We refer the reader to
Dattaet al. (1994) for details on the x-variables used. Datta et al. (1999)
used the linking model (7.2.8) with a random walk model on the u;’s,
but added extra terms to (7.2.8) to reflect seasonal variation in
unemployment rates.

(3) Datta et al. (1999) developed EB estimators to estimate median
income of four-person families by U.S. states using time series and cross-
sectional data. They employed the linking model (7.2.8) with a random
walk model on u;’s. Using the 1979 estimates available from the 1980
Census data as the true values, they compared the EB (EBLUP)
estimates with the HB estimates of Ghosh et al. (1996) and the CPS
direct estimates. In terms of absolute relative bias averaged over states,
EB performed better than HB and both EB and HB performed much
better than the CPS direct estimate. In terms of coefficient of variation,
EB again performed better than HB and CPS; second-order correct
estimate of MSE of EB was used.

Disease mapping models

Maiti (1998) used the model y; | 8; ‘% P(n;6;) and B; = log 8; ¢ N(u, o?)
with diffuse prior on  and a gamma prior on o2 He obtained HB
estimators of 6; and the posterior variance of 6, and applied the results
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to the well-known lip cancer data from Scottish Counties (small areas);
see Clayton and Kaldor (1987) for details. He also studied HB estimation
under the spatial dependence model for 5;’s mentioned in Section 7.2.1.
Estimates of 6s are very similar for both the models but standard errors
for the spatial model are smaller than those under the first model. Lahiri
and Maiti (1996) obtained EB estimators and second order correct
estimators of MSE under the Clayton-Kaldor model mentioned in Section
7.2.1, and illustrated the method on the Clayton-Kaldor data set.
Nandram et al. (1998) used the age-group specific models, mentioned in
Section 7.2.1, to obtain HB estimators and also developed Bayesian
methods to compare alternative models, using three different measures
of fit. They applied the results to estimate age specific and age adjusted
mortality rates for Health Service Areas (sets of counties based on where
residents seek routine hospital care) for the disease category “all cancers
for white males”.

7.4.2 Unit Level Models

We now briefly describe some recent applications of unit level models.

Basic nested error regression models

Rao and Choudhry (1995) provided an overview of small area estimation
in the context of business surveys. They also studied the performance of
EBLUP estimator of small area total relative to traditional estimators
through simulation using real and synthetic populations.

Multivariate nested error regression models

Datta, Day and Basawa (1999) obtained EBLUP (EB) estimators and
second order correct estimators of MSE, as noted in Section 7.3.1, for
the multivariate nested error regression models. They conducted a
simulation study using the sample sizes and auxiliary variable values
given by Battese, Harter and Fuller (1988). Further, they estimated
model parameters for their multivariate model using Battese et al. data
on crop areas under corn and soybeans for m=12 counties in North-
Central Iowa. Treating the estimated parameters as true values, they
generated simulated samples and showed that the multivariate approach
can achieve substantial improvement over the univariate approach.
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Random error variance models

Arora and Lahiri (1997) obtained a reduced model from the unit level
random error variance model by incorporating survey weights. They
performed HB analysis on the reduced model with o; 2 ud G(a,b), and
applied the results to estimate the average weekly consumer
expenditures of various items, goods and services for m=43 publication
areas (small areas) in U.S.A.

Two level models

Moura and Holt (1999) applied EBLUP estimators to data from a sample
of 951 retail stores in Southern Brazil classified into 73 small areas.
They compared the average second order correct MSE of the estimators
to the average MSE value for the nested error regression model to
demonstrate improvement in efficiency. You and Rao (1999a) applied
HB methods to the Brazilian data. They studied three different two
level models: (1) equal error variances; (2) unequal error variances; (3)
random error variances. Bayesian diagnostics revealed that model (2)
fits the data better than models (1) and (3).

Logistic linear mixed models

Malecet al. (1997) used logistic linear mixed models and the HB approach
to estimate proportions for demographic groups within U.S. states. Data
from the National Health Interview Survey were used for this purpose.
Cross-validation methods were used to evaluate the model fit. For one
of the binary variables observed for respondents to the 1990 census
long form, they compared the estimates from alternative methods and
models with the very accurate census estimates of true values. For
logistic linear mixed models, not all the conditional distributions for
Gibbs sampling have closed form unlike those obtained for the probit
linear mixed model derived from a latent variable approach [Das et al.
(1999)].

Malec, Davis and Cao (1996) studied logistic linear mixed models to
estimate overweight prevalence for subgroups (small areas) using
National Health and Nutrition Examination Survey (NHANES III) data.
Again, HB methods were used but survey weights were incorporated
using a pseudo-likelihood. Folsom, Shah and Vaish (1999) studied
general logistic mixed linear models in the context of estimating
substance abuse in U.S. states from the 1994-6 National Household
Surveys on Drug Abuse. They developed survey-weighted pseudo HB
estimators and associated posterior variance, using MCMC methods.
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Ghosh et al. (1998) applied the HB approach to generalized linear
mixed models and used the results on two real data sets. The first data
set, based on a 1991 sample of all persons in 15 geographical regions of
Canada consists of responses classified into four categories to the
question “Have you experienced any negative impact of exposure to
health hazards in the work place?” Objective here is to estimate the
proportion of workers in each of the four response categories for every
one of 60 groups cross-classified by 16 geographical regions and 4
demographic (age x sex) groups. The second data set relates to cancer
mortality rates for the 115 counties in Missouri during 1972-81.
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CHAPTER 8

UNIMODALITY IN CIRCULAR
DATA: A BAYES TEST

SANJIB BASU

Northern Illinois University, DeKalb, IL

S.RAO JAMMALAMADAKA

University of California, Santa Barbara, CA

Abstract: Circular data which represent directions in two dimensions,
may be measured as angles. Unimodality, which is often assumed, is a
crucial issue since modeling and further inference depend on it. Just as
on the real line, descriptive as well as inference tools are different for
unimodal data as opposed to multi-modal data. We propose a Bayesian
test for unimodality of circular data using mixtures of von-Mises
distribution as the alternative. The proposed test is performed and
evaluated using Markov Chain Monte-Carlo methodology.

Keywords and phrases: Directional data, von Mises distribution,
mixture distribution, Bayes approach

8.1 INTRODUCTION

Suppose we have a set of independent and identically distributed
measurements on 2-dimensional directions, say «;, as,..., a,. These
measurements, called angular or circular data, can be represented as
points on the circumference of a circle with unit radius. They may be
wind directions, the vanishing angles at the horizon for a group of birds
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or the times of arrival at a hospital emergency room where the 24 hour
cycle is represented as a circle. Such data may have one or more peaks
or show no preferred direction at all, i.e., correspond to an isotropic or
uniform distribution. Most circular statistical inference about preferred
directions or modes starts after eliminating the last possibility namely
that the data has no preferred direction i.e., that it is not uniformly
distributed. The next step is to ask if there is just a single mode or if the
data is multimodal, which is the subject of this paper.

As an example, consider a meteorologist studying wind directions.
Based on past data, (s)he might be interested in knowing if the wind
direction is predominantly in one direction or whether it is indeed
different say at different times of the day or week. Similarly in calculating
the directional spectrum of ocean waves, it is crucial to know whether
we are dealing a unimodal or multimodal spectrum.

Circular data involves observations # which are angles, i.e, 0=6<27.
Such data are inherently periodic, i.e., 6=(6+2 k) for any integer k. This
inherent periodicity sets apart circular statistical analysis, from the more
common “linear” statistical analysis where one uses methods and models
based on the mean, variance, etc. Such models and methods are not
appropriate in circular statistics.

In standard(linear) statistics, a univariate density f is unimodal or
has a single mode if f is non-decreasing up to a point M and non-
increasing thereafter. In circular statistics, however, due to the circular
nature and lack of well-defined left and right endpoints (such as-- and
o in real line), the definition of unimodality also requires an antimode
A. We will say that a circular probability density p(6) is unimodal with
mode at M if there exists an antimode A such that p(6) is non-decreasing
for A=0=M and is non-increasing for M=6=A.

Knowledge of the number of modes of p(6) is clearly of importance in
circular statistics. For instance, a common example of circular data
involves the vanishing directions of pigeons when they are released some
distance away from their “home”. The underlying scientific question
relates to how these birds orient themselves. Are they flying towards
their “home-direction” ? Unimodality of the density p(6) here would imply
that pigeons have a preferred vanishing direction and is a hypothesis of
considerable scientific interest.

As another example, several stations measure the mean wave
direction every hour which corresponds to the dominant energy of the
period. The wave directions depend on weather conditions, ocean
currents and many other natural factors. The daily variation of the wave
directions is an example of circular data on a 24-hour cycle. The
hypothesis of unimodality here would imply that there is an overall
preferred direction around which the daily variations of the wave
directions are distributed.
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In linear statistics, the problem of estimating the number of modes
and/or statistical tests for discovering the presence of more than one
mode are considered by many authors. The earliest approach involve
modeling multimodality through mixtures of distributions, see Wolfe
(1970). Later works include several different approaches, density
estimation and bump hunting [Good and Gaskins (1981), Silverman
(1981)], distance of empirical distribution from the closest unimodal
distribution [Hartigan and Hartigan (1985)] and the approach of excess
mass functional [Miiller and Swatzki (1991)]. Recently, Basu (1995)
proposed a Bayesian test for unimodality using the Khintchine
representation which states that every unimodal distribution on the
real line can be represented as a mixture of uniform distributions.

We address a similar problem here but in the context of circular data.
Let 6;,..., 6, be i.i.d. observations from the circular density p(6). We want
to test Hy: p(6) is a unimodal against the alternative that it is not. We
propose a Bayesian test which incorporates observed data and prior
information. In this test, we restrict ourselves to the class of models
whose density p(6) can be represented parametrically as a mixture of
two von-Mises distributions. After observing the data 6,,...6,, the joint
prior distribution of the mixing proportion and the location and scale
parameters of the two components are updated to their joint posterior
distribution. The posterior probability of p(6) being unimodal is then
compared to the prior probability of unimodality to make a decision
between H, and H,. These probabilities are computed by Markov Chain
Monte Carlo sampling. In fact, one of the major strength of the proposed
method is the simplicity of the computations involved; they are mostly
direct simulations from popular densities which can be routinely
implemented.

8.2 EXISTING LITERATURE

Many excellent books discuss statistical analysis of circular data,
including Mardia (1972), Batschelet (1981) and Fisher (1993). We
refer the reader to these books and the references therein. However,
there does not seem to be any work on tests for unimodality of circular
data.

The circular data literature, related to this article can be broadly
divided into three groups. The first group involves tests for randomness
against a unimodal alternative. Here the null hypothesis is isotropy,
modeled by the uniform distribution on the circle. A common test for
this against the vonMises distribution, is known as the Rayleigh test.
This test based on the length of the sample resultant, is known to be
uniformly most powerful invariant test; see, for instance Mardia (1972,
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pp. 180-182). For other tests which are more nonparametric, see Section
3.1 of Rao (Jammalamadaka) (1984).

Another set of references which could be related to the question we
are studying comes from the density estimation point of view.
Semiparametric and nonparametric density estimation for circular data
are studied by many, for example, see Bai et al. (1988). From a density
estimate one can determine the number of modes. However, tests of
hypotheses are harder to come by since this involves the much harder
problem of density estimation.

Other related work is on mixture distributions and estimating the
number of mixing components, etc; see Mardia (1972), Bartel (1984).
Spurr and Koutbeiy (1991) proposed a stepwise procedure for testing
for the number of components in a von-Mises mixture, by first testing
for one component against more than one, then two components against
more than two and so on. This is a Bootstrap based test and can be
computationally intensive. We point out here that a two or more
component mixture can still be unimodal and hence the problem we are
addressing is clearly distinct from these articles.

We also mention here that Mardia and Spurr (1973) developed a
multi-sample test for data drawn from a L-modal population which they
model by a mixture of a scaled von-Mises distribution on [0, 27/L),
another scaled von-Mises distribution on [27/L, 47/L) and so on. Our
approach is also quite distinct from this work.

8.3 MIXTURE OF TWO VON-MISES DISTRIBUTIONS

We are given n i.i.d. circular observations 6,,..., 6, (0=6<27) from an
unknown circular density p(6) and want to test H,: p(6) is unimodal
against H;: p(6) is not unimodal. We model p(6) parametrically as a
mixture of two von-Mises distribution,

p(6) = mom(Blpr, k1) + (1 — ) vm(B|us, K2) (8.3.1)

where vm (01 u, k)=exp(k cos(6-u))/{2ml\(k)}, 0=0<2m denotes the density
of a von-Mises distribution. Here I,(K) is the modified Bessel function of
order 0.

The von-Mises distribution vm(6lu, k) plays a central role in
circular statistics, quite similar to that of the normal distribution in
linear statistics. The parameter u, (0=u<2m) is called the mean
direction. The von-Mises distribution is symmetric and unimodal about
u. The parameter £>0 is the concentration parameter (similar to a
precision parameter) and measures the concentration of mass around

Copyright © 2002 Taylor & Francis



A BAYES TEST 145

u. Note that while the mean direction parameter u is angular (i.e.,
0=u<2m), the concentration % is a positive real parameter, a fact useful
our posterior simulations. As k—, the von-Mises distribution
converges to the uniform distribution on the circle whereas as k—oo,
the von-Mises distribution converges to a degenerate distribution at
. The popularity of von-Mises distribution in circular statistics stems
from the fact that closed form results are often available for the
sampling distributions of statistics from this model which are almost
impossible for most other circular distributions. We refer the reader
to books by Mardia (1972), Fisher (1993) for further properties of this
distribution.

There are several advantages to modeling p(6) parametrically as
von-Mises mixture. A 2-component von-Mises mixture allows a wide
variety shapes (based on various choices of the parameters u,, s, k1, ko
and 7) which includes symmetric and asymmetric, as well as both
unimodal and bimodal densities. In Figure 8.1 we show three such
mixtures to illustrate the different shapes and modality choices that
are possible. Secondly, the conjugate prior for the mean direction of a
von-Mises distribution is known and is another von-Mises distribution.
This structure provides a flexible and at the same time, a
mathematically convenient prior structure. Thirdly, if p(6) is a 2-
component von-Mises mixture, then a complete mathematical
characterization is available about when p(6) is unimodal and when it
is not. This characterization, due to Mardia and Sutton (1975), is
described next.

Let p(0)=7 vm(0|u,, k)+(1-mvm(01u,, ks). By appropriate choice of
the zero direction, one can assume that x,=0 and 0=u,=m. The
characterization is stated in this parametrization.

Case 1. This is a boundary case when u,=, i.e., the two means are at
the opposite ends of the circle. Then the density p(6) is bimodal if
and only if the mixing proportion = satisfies p;=w=p, where
pi=t1+k* exp(ki+ky))?, po={1+k* exp(-ki-ky)}?, and k*={k[\(ky)}/
{koI(k1)}. In this case, the two modes are at 7 and 2.

Case 2. This is the important case when O<u,<7. Then the density p(6)
is bimodal if and only if p; < 7 < ph and sin py < A(f) Here
v, = {1 — x*/u(8:;)}% j=1, 2; k* is as defined above, u(6)={sin(6-
Us)/sinblexp(kqocos(6-u2)-k, cosb) and 0<6;<6,<u, are the two solutions
of the equation &(6)=sin u,. Finally, A(6)=sin 6 sin(6-u.){k, sin(0,,u.)
-k, sinf} and g maximizes A(6) within 0<6<u, which further can be
obtained as the real root of a cubic equation.
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Mardia and Sutton (1975) also provide information on the location of
the mode(s) and antimode(s) of the mixture density p(6) which are
omitted here as they are not of primary importance in our context.

8.4 PRIOR SPECIFICATION

We next specify the prior models for the parameters of the mixture
density p(6). Note that this density has five parameters, the mixing
proportion 7, the two mean directions u; and u, and the two
concentrations «; and k,. For the mixing proportion 7, we assume a
Uniform|[O0, 1] prior which reflects our prior uncertainty about its value.

We next describe the prior distributions for the mean directions x;, i=
1, 2. Note that the von-Mises distribution can alternatively be written as
vm(B|u, k) = {27 Io(k)} ! exp(knT1) where nT = (m1,72) = (cos p, sin )
and |7 = (l1,l2) = (cosf,sin@). This alternative representation shows
the exponential family structure of the von-Mises distribution. Using this
structure, Mardia and El-Atoum (1976) showed that a conjugate prior for
u in the vm(61u, k) sampling density is another von-Mises distribution,
say n(p) = vm(v, 7).

We use this convenient conjugate structure in our formulation and
assume that the two mean directions, z; j=1, 2, have two independent
von-Mises prior, vm(v;,7;), j = 1,2, Within the von-Mises parametric
structure, the choice of the hyperparameters v;,7; actually provides
considerable flexibility in modeling different prior opinion. Note that as
7; tends to zero, the vm(y;, 7;) prior tends to the uniform distribution on
the circle. Thus, one can specify small values for the hyperparameter 7;
to reflect prior ignorance about u;

Finally we specify the priors for the two concentration parameters &,
and k,. The concentration parameter % of a von-Mises distribution does
not have a conjugate prior (due to the presence of the modified Bessel
function I,(k) term). However, as we noted before, & is not restricted to
a circular domain and can take any positive real value. A popular prior
choice for precision parameter is a Gamma prior. We assume that the
two concentration parameters &, j=1, 2 have two independent Gamma
(e, 3),7=1, 2 priors. In fact, many other prior choices for k; are possible.
Basu and Jammalamadaka (1999) describe a broad class of prior choices
for k; and describe how the unimodality test can be carried out for any
prior selection from this broad class.
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8.5 PRIOR AND POSTERIOR PROBABILITY OF
UNIMODALITY

In the following, we first repeat the complete model structure.

*  We observe circular observations 6,,..., 6, i.i.d. from the the density
p(O)=mom (61, u,, k)+(1-mvm (61 us, ky). This results in the likelihood

L(m, p1, peo, K1, K2)
= [I»6:) = [[{mvm(@ilpa, 51) + (1 —7) vm(Biuz, 52)}

i=1 i=1

(8.5.2)

¢ The mixing proportion 7 has a Uniform[0, 1] prior distribution.
* The prior for ; is p(p;) = vm(v;,75), j=1,2.
e The prior for %, is p(k)=Gammal(e; f3,), j=1.2.

Our proposed Bayesian test of unimodality is performed by comparing
the prior probability from this model with the posterior probability of
unimodality. The computation for these probabilities are described
next.

The prior probability of unimodality is the integral of the joint prior
density of (7, 11, Us, k1, k) over the region of the joint parameter space
(as described in the Mardia and Sutton (1975) result of Section 8.3) on
which the mixture density p(6) is unimodal. While the joint prior
density p(m, u1, s, k1, ks) can be easily written down, the form of the
unimodality region in the five-dimensional space of (7, 11, 1o, k1, ks)
described in the Mardia and Sutton (1975) result is highly complicated
and hence the resulting integral is analytically intractable. We instead
obtain a Monte Carlo estimate of the prior probability of unimodality
as follows. (i) Let ¢ = (m,p1, 2, K1,k2) We generate i.i.d. samples
{(2 ® ¢ = 1,...,T1 } from the joint prior distribution of . (it) For each
generated ¢ ), we examine if the resulting mixture density p(6) is
unimodal by checking the Mardia-Sutton condition. (iii) Finally, we
obtain a simulation-consistent estimator of the prior probability of
unimodality as {Number of generated ¢ ® for which the resulting p(6)
is unimodal}/T';. Due to the independence structure, simulation from
the joint prior can be done componentwise, which only involves random
variate generation from some common densities. Further, checking
the Mardia-Sutton condition for a given value of ¢ is also relatively
straightforward.
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The other probability required for the assessment of modality is the
joint posterior probability of the parameter region on which the mixture
density p(6) is unimodal. We plan to estimate this probability also as a
Monte Carlo average, i.e., once we have samples {Q ® .t =1,... ,To}
from the joint posterior distribution, we can simply estimate the posterior
probability of unimodality by following the method outlined in the
previous paragraph.

The joint posterior distribution p(m, u; s, k1, k2 | data) is, however,
analytically intractable and hence direct generation ¢ = (7, i1, p2, £1, K2)
is very hard. We, instead, take recourse to Gibbs Sampling. We refer
the reader to Gelfand and Smith (1990), Casella and George (1992) and
the collection of papers by Gilks et al. (1995) for the theory,
implementation and convergence issues of the Gibbs sampler. The main
idea of the Gibbs sampler is to simulate alternately and iteratively for
the conditional posterior distributions of each unobservable given the
data and other observables.

The details of the Gibbs sampler for our model including the form of
the full conditional distributions and how to simulate from this
conditional distributions is described in Basu and Jammalamadaka
(1999). We note here that latent variables I4,..., I, are introduced in the
implementation of the Gibbs sampler. I; is an indicator variable denoting
the component from which 6, is coming, i.e., 6, | [=1~vm(u;, k1), 6; | [=2~vm(u,,
ky),i=1,...,n and I,,...,I, are i.i.d. with P(I;=1)=, P(I;=2)=1-7 a priori. For
further details of the Gibbs sampler, the reader is referred to Basu and
Jammalamadaka (1999).

8.6 THE BAYES FACTOR

Standard Bayesian solution to a hypothesis testing problem involves
formulating parametric models for null (H,) and alternative (H,)
hypotheses and subsequently choosing one over the other in the light of
the data and prior opinion. Perhaps the most widely used selection
criterion used in this context is the ‘Bayes factor of H, against H,’
_ postgrior odds _ p(H,|data)P(Ho) The

prior odds P(Holdata)P(H;)
Bayes factor is used as a summary of evidence of H, against H, provided

formally defined as the ratio Bio

by the data. Thus, operationally, Bayes factor has the same role as that
of a P-value in classical hypothesis testing scenario (see the review article
by Kass and Raftery (1995) for an illuminating discussion comparing
Bayes factor and P-values). From another perspective, the Bayes factor
is similar to the likelihood ratio statistics as the former is the ratio of
the marginal likelihood under H, against that over H,. The following
Table 8.1 provided by Kass and Raftery (1995) gives a rounded scale for
interpretation of B;, and log Bj,.
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TABLE 8.1 Evidence in support of alternative model from
Bayes factor

Bio log B1g evidence for M;
<1 <0 negative (supports My
1to3 Otol barely worth mentioning

3 to 12 1to 2.5 positive
12 to 150 25t05 strong
> 150 >5 very strong

For our test of H, : p(6) is unimodal against H; : p(6) is non-unimodal,
we report the estimated Bayes factor By, This is easily obtained once we
estimate P(H,)=prior probability of unimodality and P(H, | data)=posterior
probability of unimodality by the Monte Carlo methods mentioned in
section 8.5.

8.7 APPLICATION

We consider data collected by Schmidt-Koenig (1963) in an experiment
to determine how do birds determine directions and orient themselves.
In this experiment, 15 homing pigeons were released about 16.25
kilometers northwest from their loft. The measurements listed in Table
8.2 are their vanishing directions measured in degrees. The direction of
the loft is 149°.

TABLE 8.2 Vanishing direction of 15 homing pigeons. The loft
direction is 149°

[ 85 135 135 140 145 150 150 150 160 285 200 210 220 225 270 |

These data have been analyzed by several authors, including Mardia
(1972) and Fisher (1993). As can be seen in Table 8.2, most of the
observations are concentrated around south (180°) with two observations
in the east and west direction. Fisher (1993) reports that a goodness-of-
fit test reveals there is some evidence a von-Mises distribution may not
be a totally adequate description of the data.

We apply our proposed Bayesian modality test to these circular data.
The following priors are used: (i) m~Uniform(0,1), (i) u;~vm(0°, 0.25)
and u,~vm(180°, 0.25), and (iii) K;,~Gamma (1, 5), j=1, 2 where Gamma
(o, 3) has density proportional to x%! exp(-x/f3). These are moderately
flat priors and the mean directions for ; and u, are chosen in opposite
directions.
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The prior probability of unimodality is estimated based on 100,000
samples generated from the above prior model and then following the
method outlined in Section 8.5. We estimate the prior probability of
unimodality to be 0.48867.

The posterior probability is estimated from 50,000 MCMC samples
generated from the posterior after an initial burn-in of 10,000 and then
once again following the method of section 8.5. Figure 8.2 shows the
kernel density estimates of the posterior density for the two mean
directions x,, i5, the two concentration parameters k4, £, and the mixing
proportion 7. These density estimates are obtained using the CODA
software [Best et al (1996)]. The posterior summary estimates (posterior
mean, standard deviation and percentiles) of these parameters are shown
in Table 8.3. We check convergence of the MCMC sampler using different
convergence and stationarity checks available in CODA. The
autocorrelation plots at different lags based on the simulated samples
of ky, kg, 1o, 14, and 7r are shown in Figure 8.3. High autocorrelations
typically imply slow mixing and slow convergence. In Figure 8.3, the
autocorrelations for &, and %, die out quickly. The autocorrelations for
u, and i, do not die so quickly whereas 7 has significant autocorrelations
till lag 20.

TABLE 8.3 Estimated posterior mean, standard deviation and
percentiles of 11, us, k1, ke and 7

Posterior Mean | Posterior Std. Dev. Percentiles
(2.5%, 25%, 50%, 75%,97.5%)
i 185 56.4 (61.8,152,180,220,311)
7 184 51.1 (81.2, 152, 179, 216, 296)
K1 3.18 3.24 (0.22, 1.39, 2.22, 3.75, 12.2)
K3 3.21 3.20 (0.28, 1.40, 2.24, 3.81, 12.1)
s 0.50 0.28 (0.03, 0.27, 0.50, 0.73, 0.98)

The posterior probability of unimodality from the generated MCMC
samples is estimated to be 0.68382. Based on these prior and posterior
probabilities of unimodality, the Bayes factor for non-unimodality against
unimodality is estimated as B1,=0.44188. Thus, the data do not provide
almost any evidence against the null hypothesis of unimodality. This is
also evident from the posterior density estimates in Figure 8.2. The
posterior density estimates of u,, 1, and k4, k, are almost identical, which
probably indicate that the two components of the mixture density are
close to identical or that the mixture density is just a single von-Mises
distribution. If this is true, then the mixing proportion 7 becomes
redundant which could explain the large spread in its posterior density
estimate and its autocorrelations staying on for up to lag 20.
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We further compute the predictive density of a new circular
observation p(0| data) conditioned on the 15 vanishing directions already
observed. This is obtained as

p(f|data) = /P(9|7F,M1,#2,R1,K2) dm(m, p1, po, K1, K2 | data)

where w7, uy, Uy, ki, ky | data) is the posterior distribution of the
parameters. This predictive density is estimated on a grid of 6 values
where the integral above is estimated by the Monte Carlo average of
the generated MCMC samples. This estimated predictive density in
Figure 8.4 exhibits a clear unimodal structure and provide further
evidence to our test result.

8.8 SOME ISSUES

A. Identifiability: In mixture modeling, identifiability of parameters
is typically of concern. To see how identifiability issues may arise in our
two-component von-Mises mixture model, consider the likelihood
function defined in (8.5.2). It is easy to see from (8.5.2) that L(, 14, u,,
ki, ko) = L(1-7, o, U1, ko, k1), 1.€., (77, Uy, Us, Ry, ks) and (1-71, 1y, 1;, ks, k1)
provide identical likelihood. In Bayesian analysis, non-identifiability is
often avoided by bringing in separation of parameter values in the prior
modeling. However, if (11, 12,) and (&4, k,) have exchangeable priors and
if the prior for 7 is symmetric around 1/2, then the prior and hence the
posterior also fails to identify between (m, 1y, 12, k1, k) and (1-7, s, us,
ks, k1). While non-identifiability is not a formal problem in Bayesian
inference, it may lead to very slow convergence of the MCMC sampler.
The resulting inference could also be troublesome. for example, the
posterior distribution of zz; may appear to be bimodal due to concentration
of mass around the mean directions of both components.

One way to ensure identifiability is to put some prior constraints on
the parameter space. For example, a common constraint put in two
component mixture is u;=u, In Bayesian analysis, this constraint can
be brought in very naturally by simply defining the prior support to be
the constrained space. This constraint makes all the parameters
identifiable. Bayesian analysis under this constraint can be carried out
in a straightforward manner, however it does bring in complications
within the MCMC sampler. The full conditional distributions of both z,
and i, are now constrained by the other parameter. Robert (1996) discuss
the issue of parameterizations and constraints in the context of normal
mixture models and suggests the reparametrization u=u, and A=py-1,
where A is assumed to non-negative a priori. This reparametrization
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generally achieves more stability within the MCMC sampler and faster
convergence.

B. Choice of two component mixture. We model the sampling
distribution as a two component mixture of von-Mises distribution. This
model allows substantial flexibility as the mixing proportion m, the two
mean directions u,, u, and the two concentration parameters %, k, are
allowed to vary thus resulting in different shapes and scales of the
mixture density. However, a two-component mixture can at most produce
a bimodal density. Thus, if data generated from a tri-modal or multi-
modal distribution is fed into our model, it is not obvious how our
proposed test will behave. Secondly, the unimodal or non-unimodal
densities that can be obtained within our model are only those which
can be characterized as two-component mixtures of von-Mises
distributions. We thus do not have extensive flexibility on the functional
form of the density.

The problem of more than two modes can be addressed by considering

k
a k-component mixture density model: P(f) = '21 mj vm(0|u;, 5;5) where
j=
k

21 7; = 1. The analysis for such a model can be performed in an
i=
analogous manner with some minor modifications in the full conditional
distributions of the parameters. However, the identifiability issues
discussed above becomes more severe and convergence issues in the
MCMC sampler becomes more critical. Another problem is how to
determine the value of k. One can put a hierarchical structure to the
problem by assuming a prior distribution supported on positive integer
values for k. This, however, makes the problem very hard as it now
becomes a variable dimension problem and one may need to use the
reversible jump algorithm to move from one dimension to another within
the MCMC sampler. Green and Richardson (1997) recently addressed
this variable dimension problem in the context of normal mixtures.

Mixtures of more than two components allows somewhat more
flexibility in the functional form of the mixture density. Further flexibility
can be obtained by semiparametric modeling. For example, in real line,
all univariate unimodal distributions can be characterized as mixtures
of uniform distributions (known as the Khintchine representation). This
mixture representation is often used in modeling univariate unimodal
distribution, one then assumes a prior on the mixing distribution of the
uniforms. A similar representation also exists for unimodal distributions
on the circle, they can also be written as mixtures of uniform distributions
[see Fang et al. (1989)]. We are currently developing a semiparametric
test for unimodality of circular data based on this representation.
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100 50 50 160 150

FIGURE 8.1 Three von-Mises mixtures: Top=0.5vm(61-90°,2)+0.5vm(6190°, 2),
Middle=0.6vm(61-45°, 1.5)+ 0.4vm(6145, 45°, 1.5), Bottom =0.65 vm(6|-60°,
2)+0.35 vim(61 90 , 90°, 2)
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FIGURE 8.2 Kernel estimates of the posterior density of the parameters k4, &,
M1, Uz, T
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FIGURE 8.4 Predictive density of a new circular obsevation for the pigeon
data
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CHAPTER 9

MAXIMUM LIKELIHOOD
ESTIMATION OF THE LAPLACE
PARAMETERS BASED ON
PROGRESSIVE TYPE-II
CENSORED SAMPLES

RITA AGGARWALA

University of Calgary, Calgary, Alberta, Canada
N.BALAKRISHNAN

McMaster University, Hamilton, Ontario, Canada

Abstract: In this paper, we derive the maximum likelihood estimators
of the location and scale parameters of a Laplace distribution based on
progressive Type-II right censored samples. The results obtained here
are a generalization of those given in Balakrishnan and Cutler (1995)
for one-sided Type-II censoring.

Keywords and phrases: Progressive type-II censoring, order statistics,
Laplace distribution, maximum likelihood estimators

9.1 INTRODUCTION

Maximum likelihood estimation for the Laplace distribution based on
full samples has been discussed by a number of authors; see, for

159
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example, Johnson, Kotz and Balakrishnan (1995) Balakrishnan and
Cutler (1995) have discussed maximum likelihood estimation for
parameters of the Laplace distribution based on conventional Type-11
censored samples. They consider both symmetric and one-sided (right)
censoring.

The scheme of progressive Type-II right censoring arises naturally
in life-testing experimentation, as it is often desirable to remove live
items from experimentation at points other than the final termination
point. In this scheme, we begin the test at time zero with n independent
live items on test. Immediately following the first observed failure, a
fixed number R, of surviving items are removed at random from the
test. Immediately following the next observed failure, a fixed number
R, of surviving items are removed at random from the test. This process
continues until, immediately following the time of the m™ observed
failure, the remaining Rm=n-R,R,-...R,,;-m items are removed from
the test. We will denote the m ordered observed failure times by
Y\ B ReonBm) 4, m and call them the progressive Type-II right
censored order statistics of size m from a sample of size n with
progressive censoring scheme (R, R,,..., R,). This type of censoring
scheme may be desirable, for example, in destructive testing of
mechanical components; see, for example, Montanari and Cacciari
(1988). A number of other authors have studied problems of inference
pertaining to progressive censoring, including Cohen (1963, 1975, 1991),
Mann (1969, 1971), Thomas and Wilson (1972), and Viveros and
Balakrishnan (1994). Balakrishnan and Sandhu (1995, 1996), and
Aggarwala and Balakrishnan (1998) discuss some mathematical
properties of these progressive Type-II censored order statistics arising
from general continuous, exponential and uniform distributions. A
thorough overview of the subject of progressive censoring is given in
Balakrishnan and Aggarwala (2000).

It is well documented [see, for example, Lawless (1982) or any of the
references mentioned above] that if the failure times of the n items
originally on test with progressive censoring scheme (R, R;,..., R,,) are
from a continuous population with cumulative distribution function
(x) and probability density function f (x), then the joint probability
density function of y{EuRaBm) =1 . m is given by

m
fl,2,...,m:m:'n (yl’y2y LR ,I'Jm) = ch (yi) [1 - F(y‘l)]Rl ’
i=1 9.1.1)
—00 <Y1 < < Ym < 00,

where
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¢c = n(n-Ri—-1)(n—Ri—Ry—2)---
c+(n—Ry—Rg—---—Rp1—m+1).

For convenience in notation, since in this discussion, it will not be unclear
as to what the progressive Type-II right censoring scheme is, we will
denote the m progressive Type-II right censored order statistics by Yi.m:n,
i=1,...,m.

In this paper, we assume that the underlying failure times follow a
two-parameter double exponential, or Laplace, distribution, with
probability density function given by

1
fly) = ﬁe"y“’ll/"% —00 <Y < 00, —00 < 01 <00, 6 >0, (9.1.2)
2

and cumulative distribution function given by

1
F(z) = ge=®/% 2 <0,

1

= 1- Ee—(z—el)/eg? x>0, (9.1.3)

We derive the maximum likelihood estimators of the location and
scale parameters of the above Laplace distribution based on
progressive Type-II right censored samples. The results obtained are
generalizations of those given in Balakrishnan and Cutler (1995),
where it is shown that for conventional Type-II right censored
samples, where only the first m failure times are observed, the
maximum likelihood estimator of 6, is simply the usual sample
median based on the full sample, provided m > %. For m < %, the
MLE of 6; turns out to be a linear function of the observed order
statistics. In both cases, they show that the MLE of 6, is a linear
function of the observed order statistics. The results presented in
this paper for maximum likelihood estimation based on progressive
Type-II right censored samples from the Laplace distribution simplify
to those presented by Balakrishnan and Cutler (1995) for the special
case when R,=R,=...=R,, ;=0 and R,,=n-m, in which case we are left
with a conventional progressive Type-II right censored sample.

9.2 EXAMINING THE LIKELTHOOD FUNCTION

Consider a progressive Type-II right censored sample of size m with
censoring scheme (R,, R,,..., R,,) from a random sample of size n from the
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Laplace distribution with probability density function given in (9.1.2).
The likelihood function, L, for a progressive Type-II right censored sample
(Yin, 1=1, 2,..., m) is given by (ignoring the constant c)

L (61,62) Hf emin) [1 = F (Yiimen)] ™ (9.2.4)
i=1

where f{) and F(-) are as given in (9.1.2) and (9.1.3), respectively.
We will first maximize with respect to 6.
Notice that, for values of 61 =<Y,.... the likelihood function reduces to

e Z (Rt 1) (Yiim:n—61)/62

Lo (61,02) = 2n0m ) (9.2.5)

which is a monotonically increasing function of ;. Next, we consider
values of 6,>Y,,.,... For these values, the likelihood function reduces to

L S Gemn—)/6 TT [ L -
Lm (01,02) (29 )me s M imn 1 2 H {1 _ 56(311‘:111:71—91)/02] .
i=1

(9.2.6)

Upon taking the logarithm of L,, and differentiating with respect to 6;,
we obtain

OlnL,, m R; e(Yimin—61)/62
9, 6y + Z 20, [1 — Le(Van: n—el)/ez] (9.2.7)

Now, if R,=R,=...=R,,=0, then m=n, so that the right hand side of (9.2.7)
is simply — % which is strictly less than 0. If some R;>0,i=1, 2,..., m, then
dln Lm m Zi:l R, <

— i . < ie. n— < ie. m >
50, < 92—}— % _Olng,_m,len m<m,ie. m>

b3

so that L,, is monotonically decreasing for these values of m. Thus, if
the observed number of failures m > %, the maximum likelihood
estimator of 6, lies in the interval [Yi.m:n, Ym:m:nl

Consider now the values of 6, such that Yj.m:n < 61 < Yjy1:m:n for 4.
€{1,2,..., m—1}In this case, the likelihood function reduces to

1 Vi = 1 o
L;(61,0,) = W@ S (Yimin—61)/65 H [1 _ 5e(yimm,-el)/ez]
i=1

™oy, 0)/6. 11 [1 f
X e i=j+1( imin—01)/62 H l:_e—(yi:nuﬂ_el)/e2] .
i=j-+1

(9.2.8)
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Notice that the likelihood function is a continuous function in 6,
(-0<f,<), so that

L; (Yj+1:mm,02) = Lit1 Yj41mm,62), 7=0,1,...,m—1.

Upon taking the logarithm of L; and differentiating with respect to 6,,
we obtain

31n LJ _ 1 i R’L e(Yi:m:n—el)/eg

J
- = ~S" R, —2j|.
891 92 -1 2 — 6(}/i:n1:n.—91)/92 + n ; R ] (9'2'9)

Now, if R;=0, i=1, 2,..., j, then the right hand side of (9.2.9) becomes
simply &-5;2_1, which is strictly negative, provided j > %. If some R;> 0,
i=1, 2,..., j, then the right hand side of (9.2.9) is strictly less than
"7721 <0if j > §. Thus, in general,
2
L.
%f— < 0 provided j > g

so that L; is monotonically decreasing for these values of j. Thus, if the
observed number of failures, m > % the maximum likelihood estimator
of 0, lies in the interval [Y1:m:n, Yjn/2141:mml

Upon further inspection of (9.2.9), it is evident that if n-R;-Ry- ----R;-
2>0, then the right hand side is strictly positive. This can

only be possible if j < % in which casen — Ri1 ~Rp — -+ — R; — 2j >
8 _j—Ry—Ry——R;>0if R+ Ry+ - +R;+j < & Thus,
oL,

6—01>0providedj<gandR1+R2+-~~+Rj+j§g,

so that L; is monotonically increasing for these values of ;.

9.3 ALGORITHM TO FIND MLE’S

At this point, we can formulate the following algorithm to narrow our
search for, and obtain the maximum likelihood estimates of the location
and scale parameters from a Laplace distribution when a progressive
Type-II right censored sample of size m from a sample of size n is
observed, with censoring scheme (R, R,,..., R,). We will denote the
progressive Type-II right censored order statistics from this sample by
Yiimn,i=1, 2,..., m, and the corresponding observed values of the order
statistics by y;, i=1, 2,..., m.

1. Find the largest number k¥ < Zsuchthat Ry + Ry +---+ Rx +k < §
assuming R,=0.
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2. (a)

(b)

(c)

RITA AGGARWALA and N.BALAKRISHNAN

If m < %, the maximum likelihood estimates are those

corresponding to

MaXy, ,, <6: <yeta, 020 Lik+1,
MaXy, , 2<61 <ykt3, §2>0 Liya,- -,
maxy,, 1<0;<ym, 62>0 L1
maxg, >yy,, 62>0 Ly,

max

If m > %, the maximum likelihood estimates are those

corresponding to

MaXy, ;1<61<yks2, 62>0 L1,
max MaXy, . <01 <ykt+s, 82>0 Lk+2a ey
MaXy,, <81 <y(n/nr+1, 620 Ln/2

if n is even, and

MmaXy, , 1<61<yk+2, 62>0 Liya,
max MAaXy, |, <6 <yrsa, 0250 Lk42,- .+,
MaXy . _1)/2<015y(n+1)/2) 02>0 L("—l)/2

if n is odd.

For the case n is odd, notice that we may have k = 25! This
simply means that the likelihood function is monotonically
increasing for 6,<Y(,,1y2.m.x and the likelihood function is
monotonically decreasing for 6,>Y,.1)2.mn. Thus, the
maximum likelihood estimator of 6,is <Y,,1)2.msy Which we
can use to solve for the maximum likelihood estimator of 6.
The resulting likelihood function to be maximized with
respect to 6, is proportional to

1 —e (71. 1)/2(Yzmn_y(n+1)/2m. n)/e2
02
(n-1)/2

R;
X H {1 - e[yz e n‘y(n+1)/2]/02}

e~ E:;("+3)/2(Ri+1) Yiimin—Y(ns1)/2)/62

(This corresponds to maximizing either L(,_1y/ or Lin41)/2,
due to the continuity of the likelihood function discussed
earlier.)

Ifm = %, the maximum likelihood estimates are those corre
sponding to
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max Ly max Lita,...
Ye+1501<yi42, 620 ’yk+2<915yk+3, 62>0 ’ ’
max L
(n/2)-1

max
Y(n/2)-1<01<yY(ns2), 02>0

Notice that here, it is possible to obtaink = 3 ~1 = m —
1. This means that for 6,<Y,,...., the likelihood function is
monotonically increasing and for 6,>Y,.,... the likelihood
function is monotonically decreasing. Therefore, the
maximum likelihood estimator of 6, is Y,,...,. This can be
used to solve for the maximum likelihood estimator of 6.
The resulting likelihood function to be maximized with
respect to 6, is proportional to

i

1 SNy, Y, )/8 H—l 1 v Y, /6
. smin = Ymuemen 2 _ rmen Ymenen
9—2—6 - i=1 [1 2e 2:|

Remark 9.3.1 For the special case of conventional Type-II right

censoring, where R,=R, =---=R,,,=0 and R,=n-m, this algorithm

reduces to that given in Balakrishnan and Cutler (1995): for m < 3,
n n—i

k=m-1, and we just maximize L, For m > %, for n odd, k = 25*, and

the maximum likelihood estimator for 6, is Y,.1y2.mn. FOr n even,
k = % — 1, and we must maximize L, 5. From (9.2.9), %522 is obviously
zero, so the maximum likelihood estimator of 0, is any value in
[Yan/2:mms Y(n/2)+1:mm]. Finally, for m = %, k=4 —1, so that the
maximum likelihood estimator of 6, is Yn/2:m:n. These estimates of 6,

may then be used to obtain maximum likelihood estimates of 6,.

9.4 NUMERICAL EXAMPLE

Using the simulational algorithm given in Balakrishnan and Sandhu
(1995), a progressive Type-II right censored sample of size m=10 from a
sample of size n=20 from the Laplace distribution with 6,=25 and 6,=5
was simulated, with censoring scheme R=(2, 0, 0, 2,0, 0, 0, 2, 0, 4). The
simulated progressive Type-II right censored sample is as follows:

19.21167876,21.97364262, 23.41776818, 23.66253070, 23.80222832,
24.23017797,25.62072188, 25.86990938, 26.47997028, 27.55344134.

From part (1) of the algorithm presented above, we find £=6. Thus,
from part (2¢), we must find 6; and 6, which correspond to

max max L, max Lg, max Lg ;.
y7<01<ys, 62>0 ys<61<ys, §2>0 y9<601<y10, §2>0
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Using Maple V Release 3, the maximum value of the likelihood function
is obtained when we maximize Lg (6,, 0,) over the region specified above.
The corresponding maximum likelihood estimates are §, = 26.31069 and
0y = 2.67091. It has been shown by the authors [see Aggarwala and
Balakrishnan (1999)] that the best linear unbiased estimates and their
standard errors for the two parameters in this case are

07 = 26.26607, SE (67) = 0.72333, 63 = 2.64071, SE (63) = 0.28972.
These values agree well with the MLE’s which we have just obtained.

Remark 9.4.1 It should be noted here that to obtain standard errors of
the MLE’s, a simulational study needs be conducted. Furthermore, since
the class of distributions under study does not possess “regularity”
properties, due to its lack of differentiability, it may not be appropriate
to approximate the asymptotic variance-covariance matrix of the MLE’s
using the method of inverting the matrix of second derivatives.
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CHAPTER 10

ESTIMATION OF PARAMETERS
OF THE LAPLACE
DISTRIBUTION USING RANKED
SET SAMPLING PROCEDURES

DINESH S.BHOJ
Rutgers University, Camden, NJ

Abstract: The estimators of the parameters of Laplace distribution are
obtained by using (i) ranked set sampling (RSS) proposed by McIntyre
(1952), (ii) modified ranked set sampling (MRSS), and (iii) new ranked
set sampling (NRSS) proposed by Bhoj (1997c). The coefficients to
compute the estimators by using these procedures are reported. These
estimators are compared with the ordered least squares estimators given
by Govindarajulu (1966), and among themselves. It is demonstrated
that the relative precisions of the estimators based on NRSS are higher
than those based on the least squares method and the other two ranked
set sampling procedures.

Keywords and phrases: Laplace distribution, least squares estimators,
minimum variance estimators, modified ranked set sample, new ranked
set sample, ranked set sample, relative precision, unbiased estimators

10.1 INTRODUCTION

Ranked set sampling (RSS) is a method of sampling that is advantageous
when quantification of all sampling units is costly but where small sets
of units can be ranked by means of visual inspection or other methods
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not requiring actual measurements. In order to draw a ranked set sample
of size n, n sets each of size n are drawn from a population. The n units
from a single set are ranked on the basis of the magnitude of the variable
under investigation without actually quantifying them. This ranking
procedure is applied to all n sets. The n? ordered observations in the n
sets can be displayed as:

Tay ZTaz)y o ZTam)
T21) T22) " T(2n)
T(n1) T(n2) " Z(nn)

The unit with the lowest rank is quantified from the first set, the unit
with the second lowest rank is quantified from the second set, and this
procedure is continued until the unit with the highest rank is quantified
from the nth set. Thus only n observations x1), X2),. .., Xun) are measured
accurately and they constitute the RSS. Note that x,is the ith ordered
observation in the ith sample, and x ), X9),"**, Xy are independently
distributed. The method of RSS was introduced by McIntyre (1952) to
estimate mean pasture yields with greater efficiency than simple random
sampling (SRS). McIntyre’s goal was to maintain unbiasedness of SRS
while effectively incorporating into the estimates the information given
by ranking. It appears that RSS was not used by other investigators for
over a decade. Then Halls and Dell (1966) first used this method in
estimating forage yields in a pine hardwood forest. They found
empirically that RSS was more efficient than SRS to estimate the
population mean. But the required mathematical foundation for RSS
was provided by Takahasi and Wakimoto (1968) and Dell and Clutter
(1972). Dell and Clutter (1972) also considered theoretically the
performance of RSS when there are errors in ranking. They showed
that the RSS estimator for population mean is unbiased and is at least
as effective as the SRS estimator with the same number of
quantifications even when there are ranking errors. The relative
precision of the two methods is equal to unity only if the ranking is no
better than random. David and Levine (1972) considered the case where
the ranking is done on the basis of a covariate instead of judgment.
Under certain assumptions, they obtained a formula expressing relative
precision in terms of the squared correlation coefficient between the
covariate and the variate of interest. Stokes (1977) explored this model
further. Stokes (1980) proposed an estimator for the population variance
based on RSS. She showed that the estimator is asymptotically unbiased
even in the presence of errors in ranking. Stokes and Sager (1988)
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developed an RSS estimator for a cumulative distribution function. They
showed that an empirical distribution function based on RSS is an
unbiased estimator for a distribution function and the estimator has
smaller variance than the one based on SRS. Then they used the RSS
estimator to construct confidence bands for the distribution function by
using the Kolmogorov-Smirnov statistic. Bohn and Wolfe (1992) used
the ranked set empirical distribution to derive an RSS version of the
Mann-Whitney statistic and obtained some of its distributional
properties. They compared the asymptotic relative efficiency of the RSS
Mann- Whitney test with its corresponding SRS counterpart. They
concluded that RSS approach was preferable. Patil, Sinha and Taillie
(1993a) used the RSS method when sampling is from a finite population.
They obtained explicit expressions for the variance and relative precision
of RSS estimator for several set sizes when the population follows a
linear or quadratic trend. These authors (1993b) studied the relative
precision of RSS estimator with the regression estimator when the
ranking is done on the basis of an auxiliary variable. Bhoj (1997a)
obtained the estimators of parameters of the extreme value distribution
using RSS. Bhoj and Ahsanullah (1996) derived the minimum variance
linear unbiased estimators for the parameters of the generalized
geometric distribution using RSS. Recently Bhoj (1997b, 1997¢) proposed
modified ranked set sampling (MRSS) and new ranked set sampling
(NRSS) procedures, respectively for estimating the parameters. In this
paper we use RSS, MRSS and NRSS to derive the estimators of mean
and standard deviation of the Laplace distribution. These estimators
are then compared with the other competing estimators and among
themselves.

10.2 ESTIMATION OF PARAMETERS BASED ON THREE
PROCEDURES
10.2.1 Ranked Set Sampling

In this section we use the ranked set sample of n observations x),
X(22),---, X(uny tO estimate the location and scale parameters of the
distribution. Let xz and o denote the location and scale parameters of
the distribution. We define

Yaiy = (2@s) — 1)/0, E(yey) = i and Var(yus)) = vy
In terms of original x(ii)’s we have
E(z@)) = p+oa; and Var(zy;)) = U(ii)O'z.

Let X’=(x(11>, X(22)++> X(un)s
U = (1,1,..,1),
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o = (a1,09,...,an),

and Variance-Covariance matrix of X=V¢? where V is an nxn diagonal
matrix with v;; as (7, i)th element. Then we can write

BE(X) = pl + oo = A8,

1 -1
WhereA'=(O}1 ap e Oln)andé?’z(u,a).

The minimum variance linear unbiased estimators (MVLUE) of 6 is
obtained by the least squares theorem of Gauss and Markoff. If  denotes
the MVLUE of 6, then § = (4'V-14)-!A'V-!X. After some simplifications,
we can write

o= ) wuza (10.2.1)
i=1

o= ) wutg, (10.2.2)
=1

where
wiy = (T —oT3)/(Dvi),

we; = (oyTe — T3)/(Dvy),
T, = ) (@f/va), Ta=) (1/vw), (10.2.3)
i=1 i=1
T3 = Z(al/vii) and D= T1T2 - T32 (10.2.4)

i=1

The variances and covariance of these estimators are given by

- 0’2T1 - 0'2T2
Var(p) = o Var(s) = D and
Y o*T: (10.2.5)
Cov(i,6) = ——’73 .

10.2.2 Modified Ranked Set Sampling

We assume that n (n=2m) is even so that direct comparison with the
estimators based on new ranked set sampling procedure can be made.
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In the modified ranked set sampling we select only two appropriate
order statistics. For notational convenience, we assume that the jth order
statistic is selected from the first m samples and the kth order statistics
is selected from the last m samples. The choices of jth and kth order
statistics depend upon the distribution under investigation and the
parameter(s) to be estimated.

Let #* and o* denote the estimators of x and obased on MRSS. These
estimators can be derived by using the method described for the RSS
procedure. These estimators and their variances and covariance are
given by

po= Z&(Cj(w(in“k””(fnﬂk)), (10.2.6)
m

o= Zim (i@ T dToni) (10.2.7)
m

. (02v;; + a?vgk) o2
Var(p*) = ’zoj:_—aJ)2 -, (10.2.8)
1

. L) o2
Var(o™) = %% (10.2.9)
J

_ (ajvkk + akvjj) o2

CO’U(,UI*,O'*) = (ak — a])2 —'f;l— ) (10.2.10)
where
Ok —Q;j
C] - Cr =
QG — Qj Qp —
dik = —1  and d;=—de. (10.2.11)
(ak — ;)

10.2.3 New Ranked Set Sampling

In new ranked set sampling (NRSS), we take m (n=2m) samples, each
of size 2n, from the population, and measure appropriate jth and kth
order statistics from each sample. The n? ranked set sampling units
can be displayed as:

Ty Ta2) ot T 2n)
Z21) T22) - T(2 2nn)
Tn1)y Tm2) *°° L(n2n)-
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The n measured observations (x, x; ), i=1, 2,..., m and j<k constitute
the NRSS sample. Now x; and x, are not independently distributed.
However, (x, xu) and (x,j, Xz foré ¢ i’ are independently distributed.

Let #** and o** denote the estimators of # and o based on NRSS.
Then x** and o** are given by

g = iz + ) (10.2.12)
m.

o = Zimi(@Ten +dkzan) (10.2.13)
m

where the coefficients c;, ¢;, d;and d, are given in (10.2.11). The variances
and covariance of these estimators are given by

02 (c2v;; + ok — 200805k
Var(u) = L% “m(a:_a,y SO 10914
j

o%(vj; + vk — 2v;
Var(o™) = (;;(ak f’“aj)g ) (10.2.15)

2
o ey —0%{orvj; + arvee — (@ + ak)vjk}
Cov(u**,0"") = mlan —a))? )

(10.2.16)

where

vk = Cov(Y(sj), Yeik))-

In Section 10.4, we compare the three sets of estimators of mu and
sigma based on three ranked set sampling procedures, and one more
set of estimators based on the ordered observations given by
Govindarajulu (1966) for the Laplace distribution.

10.3 LAPLACE DISTRIBUTION

The random variable X has a Laplace (Double Exponential) distribution
if it has a probability distribution function (pdf) of form

f(z) = (20)~texp[—|z — pl/o]), —co <z <00, 0 >0
- 0, otherwise.

This distribution is also known as the first law of Laplace. It is known
that E(x)=u and standard deviation, o' = /2 ¢. Although we concentrate

Copyright © 2002 Taylor & Francis



RANKED SET SAMPLING PROCEDURES 175

on the estimation of # and o, it is clear that the estimation of standard
deviation, ¢’, needs minor adjustment by using the above relationship.

Govindarajulu (1966) derived the least squares estimates of and o
based on the ordered observations x;<x<...< X, by using Lloyd’s (1952)
method. Note that these observations are positively correlated.
Govindara julu defined

Ziy = (X@y —p)/o, i=12,..,n,

and showed that
- m:;m (;) Sy(myn—i+1)— mzzj (Z) S1(m, %)
(10.3.17)
ru? = B2

= Z (Z){Sz(m,n—i—i—l)+Sl2(m,n—i+1)}

m=n-—i+1
n n . .
+ mX_: (m) {S2(m,3) + §%(m,i)} (10.3.18)
Ppig = 2B(ZyZ()

n

3 (Z){Sg(m,n —i+1)

m=n—i+1

+S1(m,n—i+1)S1(m,n—j7+1)}

Jj—1 n
-y (m)Sl(m,z')Sl(n—j+ 1,n —m)

m=i
n

+>° (:1) {S2(m, j) + S(m,)S1(m, )} (10.3.19)

m=j

where S, (7, k) = Z’;\,:j N—, r = 1,2and S,(j,,j) for j,=j, is interpreted
as S,(j;, o). Let

o3 = E{(Zw —w)(Z — )}, 15i<j<n,

and 2=(o;). Then the formulae for o, and o, can be obtained from
(10.3.17), (10.3.18) and (10.3.19). Govindarajulu gave the values of u;
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accurate to six decimal places for i=1+ [(n+1)/2],..., n, where [-] denotes
the largest integer contained in [-]. The values of u; for i=[(n+1)/2] can
be obtained from the relation:

Bi = —pn—i+1, 1< [(n+1)/2]
with #{21+1 = O for odd n.
Let £ and & denote the least squares estimates of z and o based on
order statistics. Govindarajulu showed that

2
Var(iy) = Var(6) = ;71_ and Cov(jz,6)=0.

o2
1's-11"’ sy
where 1’=(u1, to,..., un).

In terms of our notation from Section 10.2,

o = (10.3.20)
vi = p? -2 i=12,...n. (10.3.21)

The computed values of o; and v; are used in (10.2.3) and (10.2.4) to
calculate w; and w,;. To facilitate computations of the estimators £ and
o, the coefficients w;; and w,; are given in Table 10.1 for 2=n=15. We
note that wy,=w, ,,,; and more weight in the center and less weight in
the tails, and all weights are positive. In the case of w,;, wy=-w, ,.;,1, and
zero weight in the middle when n is odd.

10.4 COMPARISON OF ESTIMATORS

10.4.1 Joint Estimation of x and o

The variances of our estimators f& and & are computed from (10.2.5),
and the covariance between them is zero. The variances of our estimators
are compared with those based on ordered least squares estimators to
assess the effectiveness of the ranked set sampling. The variances of £t
and & are taken from Govindarajulu (1966). Table 10.2 gives the
variances of both sets of estimators and the following two relative
precisions:

RP, =Var(i)/Var(i) and RP, = Var(d)/Var(s).
We note that £ is uniformly better than £ and & is better than & for
n>4.
In the case of MRSS and NRSS procedures, we choose the values of j

and £ which minimize the generalized variance of the estimators, where
generalized variance of #* and o* is given by

GVar(u*,0%) = Var(u*)Var(c*) — (Cov(p*,0*))>.
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The generalized variance of #** and ¢** is similarly defined. In the case
of MRSS, the values of (j, k) are (1, 2), (1, 3), (2, 5), (2,6) and (2, 7) for
n=2, 4,..., 10, respectively. In the case of NRSS, the values of (j, k) are
(1,3),(2,6), (2,8),(3,10) and (3,12) for n=24,,..., 10, respectively. We also
note that we get the same minimum generalized variance for the two
pairs of (j, k) and (n’-k+1, n’-j+1), where n’=n and 2n for MRSS and
NRSS, respectively. Tables 10.3 and 10.4 give the coefficients c;, d;,
variances and covariance of the estimators for MRSS and NRSS
respectively. From Tables 10.2, 10.3 and 10.4 we note that the estimators
for # and obased on RSS and MRSS are identical for n=2. However, for
n>2, u* and ¢* are better than iz and &.Furth & for all n. We computed
the following six relative efficiencies to assess the merit of NRSS
compared to all other estimators:

Var() Var(i) Var(p*)
= el = —_— Pe= —— ,
BB = Vargey BT Varey T VarGe)
Var(6) Var(é) Var(o*)
P _varlo) = Y9 and RPs= 22037
RFs Var(o**) ' RPy Var(o**)’ and RFPs Var(o**)

We note that there are substantial gains in relative precisions of z**
and o** over the other estimators. The gains in relative precision of z**
over & is much higher than that of ¢** over &. However, the gains in
relative precision of 6** over & and o* are larger than those of z** over
£t and [t respectively.

10.4.2 Estimation of

In the previous section, we considered the joint estimation of the two
parameters based on n observations. Here we are interested in
estimating u only without assuming any knowledge on o or its estimator.
In the case of MRSS, j=n/2 and £=(n/2)+1 minimizes the variance of zz*.
For NRSS procedure, we choose the jth and kth order statistics so that
the variance of x** will be minimized. The optimal estimator of u is
based on quasi-mid-range (x; + x(5,,:1))/2, where j=2, 4, 6, 7 and 9 for
2n=4, 8, 12, 16 and 20, respectively. These are exactly the same as
reported by Raghunandanan and Srinivasan (1971). Table 10.6 gives
the variances p* and p** and the relative efficiency RPy=Var(u*)/
Var(u**). We note the estimator z** is quite superior to u* for all n.

10.4.3 Estimation of o

In this section, using MRSS and NRSS, we estimate sigma only without
assuming any knowledge on i or its estimator. We choose the appropriate
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values of j and & to minimize the variances of ¢* and ¢**. In the case of
MRSS, the optimal values are j=1 and k=n for the range of values of n
considered here. In the case of NRSS, the optimal estimator for sigma
is based on jth quasi- range, x«, ;)= Where j=1, 1, 2, 2 and 3 for n=2, 4,
6 and 10, respectively. The values of coefficients and variances of ¢*
and o** are presented in Table 10.6. The relative precision,
RP,=Var(c*)/Var(c**), is also provided in Table 10.6 to compare c**
with o*. It is clear that the estimators based on NRSS are superior to
those based on MRSS. RP, decreases as n increases. However, RP,
decreases and then increases as n increases. The high values of the
relative efficiencies for small n are important since the use of NRSS is
recommended in practice for small n. Therefore, we recommend that
the estimators based on NRSS should be used particularly for small .
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TABLE 10.1 Coefficients for computing £t and &
n : 1 2 3 4 5 6 7 8
2 Wiy 0.50000
wy; | —0.66667
3 wq,4 0.23727 0.52547
woy | —0.44444 0.00000
4 wii 0.13267 0.36733
wy; | —0.30834  —0.21182
5 wyg 0.083086 024306 0.34776
wog; | —0.22798  —0.24059 0.00000
6 wyg 0.05639 0.16586 0.27775
wg; | —0.17653  —0.22172  —0.10829
7 w14 004059 0.11829 0.21082 026059
wo; —0.14147 -0.19467 —0.14808 000000
8 wyg 003053 0.08788 0.15981 0.22178
wo; —0.11638 —0.16937 —0.15558 —0.06647
9 wyg 0.02375 0068757 0.12317 0.18108 0.20892
wo, —0.08773 —0.14779 —0.15003 —0.09994 0.00000
10 wyy 0.01898 0.05344 0.09697 0.14621 0.18439
wg; —0.08343 —0.12981 —0.13995 —0.11338 —0.04517
11 wyg 0.01550 0.043286 0.077986 0.11859 0.15733 0.17469
wog —0.07219 —0.11485 —0.12885 —0.11813 —0.07193 0.00000
12 wy, 0.01289 0.03571 0.06388 0.09724 0.13246 0.15783
wo, —0.06317 —0.10235 —0.11813 —0.11359 —0.08581 —0.03277
13 wyg 0.01089 0.02995 0.05322 0.08076 0.11135 0.138868 0.15032
woy —0.05582 —0.09182 —0.10827 —0.10866 —-0.09187 —0.05423 0.00000
14 Wy, 0.00931 0.02547 0.04498 0.06795 0.09406 0.12020 0.13803
wog —004973 —0.08288 —0.09938 —0.10279 —0.09284 —0.06704 —0.02490
15 wy4 (.00805 0.02192 0.03849 0.05786 0.08009 0.10373 0.12382 0.13207
wo —0.04463 —~0.07522 —0.09145 —0.09671 —0.09140 —0.07387 —0.04235 0.00000
TABLE 10.2 Variances and relative precisions
n Vt;'-r‘éu) szg(u) Va;‘z(o') Va(;(o’) }{])1 RP2
2 | 1.0000 | 0.7188 | 0.7778 | 1.2778 | 1.391 | 0.609
3 | 0.5895 | 0.3357 | 0.4321 | 0.5590 | 1.756 | 0.773
4 ) 0.4155 | 0.1913 | 0.2986 | 0.3209 | 2.172 | 0.931
5 | 0.3169 | 0.1221 | 0.2290 | 0.2110 | 2.595 | 1.085
6 | 0.2548 | 0.0842 | 0.1858 | 0.1502 | 3.024 | 1.237
7 10.2122 | 0.0614 | 0.1565 | 0.1127 | 3.456 | 1.389
8 | 0.1814 | 0.0466 | 0.1351 | 0.0878 | 3.889 | 1.538
9 1 0.1581 | 0.0366 { 0.1190 | 0.0705 | 4.322 | 1.689
10 | 0.1399 | 0.0294 | 0.1062 | 0.0578 | 4.756 | 1.836
11 | 0.1253 [ 0.0242 | 0.0960 | 0.0483 | 5.187 | 1.986
12 1 0.1134 | 0.0202 | 0.0876 } 0.0410 | 5.630 | 2.135
13 ) 0.1035 | 0.0171 | 0.0805 | 0.0353 | 6.052 | 2.283
14 ] 0.0952 | 0.0147 | 0.0745 | 0.0306 | 6.488 | 2.432
15 | 0.0880 | 0.0127 | 0.0693 | 0.0269 | 6.917 | 2.579
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TABLE 10.3 Coefficients, variances and covariance of
estimators for MRSS
n ¢ dk Tagf Va;(Qa') C’ov(gz‘ 0 )
2 | 0.5000 | 0.6667 | 0.7188 1.2778 0.0000
4 1 0.1988 | 0.5783 | 0.1956 0.3282 0.0378
6 | 0.5000 { 0.6667 | 0.0847 0.1505 0.0000
8 1 0.3556 | 0.6491 | 0.0472 0.0867 0.0026
10 | 0.7580 | 0.6135 | 0.0296 0.0566 0.0024
TABLE 10.4 Coefficients, variances and covariance of
estimators for NRSS
n ¢ dy. Var;](éf') Vara(g“) C‘o1)(p,a“2"= o)
2 | 0.1900 | 0.5783 0.4788 0.4725 —0.0202
4 | 0.3356 | 0.6491 0.1221 0.1208 —0.0082
6 | 0.1843 | 0.5785 | 0.0487 0.0611 —0.0065
8 10.1621 | 0.7055 | 0.0244 0.0382 —0.0023
10 | 0.1133 | 0.6313 | 0.0149 0.0253 —0.0016
TABLE 10.5 Relative efficiencies of the estimators
n RPg RP4 RP5 RPG RP7 Rpg
2 | 2.080 | 1.051 | 1.501 | 1.646 | 2.704 | 2.704
4 | 3.404 | 1.567 | 1.603 | 2.471 | 2.665 | 2.715
6 | 5.232 | 1.730 | 1.738 | 3.042 | 2.459 | 2.464
8 | 7.428 | 1.910 | 1.931 | 3.540 | 2.302 | 2.271
10 1 9.392 | 1.975 | 1.985 | 4.195 | 1.284 | 1.235
TABLE 10.6 Relative efficiencies of the estimators based on MRSS and
NRSS
n | Xerfp) dy Yorfg ) | Yarlg ) d Yerle D) 1 RPy | RPyo
2 0.7188 0.6667 1.2778 0.4201 0.3609 0.3152 1.711 | 4.054
4 0.1302 0.3609 0.1878 0.0937 0.2470 0.0860 1.390 | 2.183
6 0.0506 0.2847 0.0807 0.0394 0.3546 0.0407 1.284 | 1.985
8 0.0263 0.3935 0.0466 0.0213 0.2963 0.0230 1.234 | 2.027
10 0.106 0.2236 0.0310 0.0131 0.3560 0.0151 1.215 | 2.057

Copyright © 2002 Taylor & Francis







CHAPTER 11

SOME RESULTS ON ORDER
STATISTICS ARISING IN
MULTIPLE TESTING

SANAT K.SARKAR
Temple University, Philadelphia, PA

Abstract: Results on increasing sequences of critical values for order
statistics, which are useful in multiple testing, are discussed. Some new
results on probability distribution of ordered components are also
presented.

Keywords and phrases: Order statistics, critical values, multiple test
procedure, multivariate totally positive of order two, positively
dependent, step-up test, step-down test

11.1 INTRODUCTION

A sudden upsurge of research has taken place in the area of multiple
testing in the recent years that has resulted in some newer results and
raised interesting questions related to probability distributions of
ordered components of dependent random variables. A review of these
and presentation of some additional new results are the main focus of
this paper.

Given a family of null hypotheses H,, ..., H,, a multiple test procedure
is designed to simultaneously test the hypotheses based on p-values
associated with them. There are two types of multiple test procedure—
single-step and stepwise. A single-step procedure tests a hypothesis
without reference to one another in the family; whereas, in a stepwise
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procedure, the tests are conducted step by step in a certain order until
a decision, either acceptance or rejection, is reached for each hypothesis
in the family. The two most commonly used stepwise procedures are
step-down and step-up procedures. Let P;<...<P,, denote the ordered
versions of P;,..., P,, the p-values corresponding to H,..., H,, respectively.
Suppose that the hypotheses which correspond to these ordered p- values
are H,,..., H(,), respectively. Then a step-down procedure, based on n
constants 0<a,<...<a,<1, proceeds with P, the most significant p-value.
If Py>a,, testing stops and accepts all the hypotheses; otherwise, it
rejects H;, and goes to the next step. In general, if testing continues
upto the ith step (1<i<n) and if P;>a,, testing stops by accepting all the
remaining hypotheses H;, ..., H,,; otherwise, rejects H;, and goes to the
(i+1)th step. A step-up procedure, based on n constants 0<b<...<b,<1,
however, proceeds with P(,), the least significant p-value. If P(,)<b,,
testing stops and rejects all the hypotheses; otherwise, it accepts H(n)
and goes to the next step. In general, if testing continues upto the ith
step (1<i<n) and if P,;,1<b,...1, testing stops by rejecting all the remaining
hypotheses H,,.;,1),..., H); otherwise, accepts H,..,;, and goes to the (i +
1)th step.

The idea of controlling the familywise error (FWE) rate, that is, the
probability of rejecting any true null hypothesis, at a pre-specified level
ae(0,1) is a widely accepted concept in multiple testing [Hochberg and
Tamhane (1993), Hsu (1996) and Westfall and Young (1993)]. The critical
values in the above stepwise tests are chosen subject to such a
requirement. We will assume that the p-values P,,..., P, correspond to
right-tailed tests based on the test statistics X,..., X,, respectively, and
that these statistics are all continuous having an exchangeable joint
probability distribution under the null hypotheses. Then, in terms of
XnZ...£X(,).,, the ordered values of Xi,..., X,,, the determination of the
critical values in a step-down test becomes equivalent to finding
constants c;<...<c, satisfying

P{X(tyk <ck} > 1—a, fork=1,...,n; (11.1.1)

whereas, for a step-up test, the critical values correspond to constants
d.<...<d, satisfying the following set of inequalities:

P{X(l):k <d,... ,X(k):k <dig} 21-a, fork=1,...,n. (11.1.2)

For discussions on step-down and step-up tests, the readers are referred
to Dunnett and Tamhane (1991, 1992a,b, 1993, 1995), Finner and Roter
(1998), Hochberg (1988), Hochberg and Tamhane (1987), Rom (1990),
Liu (1996, 1997a,b) and Tamhane, Liu and Dunnett (1998).
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Do increasing sequences of critical values defined in (11.1.1)—(11.1.2)
really exist? Although the answer is yes in case of (11.1.1), which can be
easily seen by using the fact that X, stochastically increases with &, it
is however not so immediate for (11.1.2). The existence of increasing
di,..., d, satisfying (11.1.2) has been verified in some particular
situations, and in that process some new results on probability
distribution of ordered components of a random vector have been
developed. These recent results will be reviewed in the following sections,
in addition to presenting a few new ones.

11.2 THE MONOTONICITY OF d/’s

Towards finding a set of increasing d;’s satisfying (11.1.2), Hochberg
(1988) first noted that with d; = F~1(1-2),4=1,...,n where F'' is the

inverse of the common marginal cdf F, since

P{Xyk < diyeoo, Xy < di}
(11.2.3)
> P{X1)x <dig,- o Xkyik < diic}s
where F(dix) = 1 — 5=tla for j=1,....k, and the right-hand side of
(11.2.3) is 1-a when X;’s are iid [see, for example, Karlin (1969), Sarkar
and Chang (1997), and Simes (1986)], an increasing sequence of d;’s
does exist in the iid case. The fact that these same d;s also provide a
solution to (11.1.2) in a more general situation where the X;s are
positively dependent was theoretically established in Sarkar (1998),
and Sarkar and Chang (1997). That is, the following inequality:

P{Xayk <digy--s Xy < dri} = 1—a, (11.2.4)

still holds even if Xs are positively dependent. It was initially
conjectured in Simes (1986) based on simulations.

In many multiple testing situations, when the null hypotheses are
true, the underlying test statistics posses multivariate distributions
that are positively dependent in the sense of satisfying the multivariate
totally positive of order two (MTP,) condition [due to Karlin and Rinott,
(1980, 1981)]. An n-dimensional random vector X=(X;,..., X,) is said to
be MTP,, and TP, when n=2, if its probability density, f(x), satisfies the
following condition:

fl® vy)f(®Ay) 2 f(@)f(y) for all 2,y e R”,

where, with x=(x4,...,x,)” and ¥y = (¥1,-..,¥n), VY = (max(z1,y1),
...,max(zn,¥s)) and = Ay = (min(zy,¥1),...,min(z,,y,)). This condition
is satisfied by a large family of multivariate distributions, such as those
with densities of the form
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/Hf(zi,Z)g(z)dz, (11.2.5)
i=1

for some probability densities f(x, z) and g(z), where flx, z) is TP, in (x,
z), listed in Sarkar and Chang (1997), in addition to the multivariate
normal with zero means and nonnegative correlations, and the absolute-
valued multivariate normal with zero means and some specific
covariance structures.

The proof of (11.2.4) for general MTP, distributions and certain
mixtures of MTP, distributions given in Sarkar (1998b) relies heavily
on a new identity involving joint probability distribution of ordered
components of a random vector Y=(Y1,...Y,), not necessarily MTP,. This
identity reduces to the one proved in Sarkar and Chang (1997) for iid
random variables that was used to prove (11.2.4) for distributions of
the type (11.2.5). These identities are presented in the next section along
with other interesting results.

The problem of verifying the existence of increasing d;’s satisfying
(11.1.2) becomes much more difficult for n>3 if we insist on the equalities,
rather than the inequalities, in (11.1.2); that is, if we want our step-up
test to control the familywise error rate exactly at o. Note that, the
monotonicity of the d;’s will follow using an induction argument if we
can show that for

Yu(d) = P{X1yn < di,. -, X(n-1)in < dn-1,X(n):n < d}, (11.2.6)

which is a nondecreasing function of d, ¥,(d,.1)<1-0<i;,(c0), assuming
that there exist d;<...<d,.; satisfying

P{X(l):k S dl,...,X(k):k S dk} =1-afork= 1,...,n— 1. (11.2.7)

Since X;).,<X};).... for i=1,..., n-1,

¢n(00) P{X(l)'n. < d17 R aX(n—l):n < dn—l}
P{X(l):n—l <d,... ,X(n-l):n—l < dn—l}
= 1-a.

v

Hence, proving the other inequality ¢,(d,.;)<1-o assuming (11.2.7) for
n>3 is the major problem here. Dalal and Mallows (1992) have given a
proof of this in the special case of iid X;’s, but it remains to be a
challenging open problem in the more general case of dependent X;’s.
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Finner and Roters (1998) gave a counterexample which makes the
point that one should not hope for increasing d;’s for any set of dependent
X;’s. Sarkar (1998a) showed that the random variables considered in
Finner and Roter’s (1998) counterexample is not MTP, , and proved
that for equicorrelated trivariate normal with a nonnegative common
correlation not exceeding a certain value (depending on «), which is
MTP,, the increasing property of the d;’s does hold. This raises the hope
that the required monotonicity property might hold for positively
dependent X/’s.

11.3 RESULTS ON ORDERED COMPONENTS OF A RANDOM
VECTOR

We will state in this section a number of results involving joint
probability distribution of the ordered components of a random vector
Y= (Y,,...,Y,). First, we have some identities which played key roles in
proving (11.2.4).

Theorem 11.3.1 [Sarkar (1998b)] Let Y <...<Y,, be the ordered
components of Y=(Y1,..., Y,), and F; be the marginal of Y;. Then, (i) for
any fixed a.<...,<a,,

P{Y'(l) < Alyenn, Y'(n) < an}

nd I(Y,->an_- I(Y; > an—jt1)
_ _ZF o +2121E . i) _ : i1y
i=1 j=

x P{YE;;) <ap,..., Y52 <an VY], (11.3.8)

and
(it) for any fixed b.<..., <b,,

P{Yv(l) > bl,... Yv(n) > bn}

n n—1

i=1 j=1 J +1 J
x P{Y(j_) > bj+1,...,Y§;:)1) > b, |Yi}, (11.3.9)
where, for each 1 =1,.. Yél)z) <. .- <L Yg;i)l) denote the ordered

components of the (n-1)-dimensional random vectorY obtained by
ignoring Y;from Y.

A number of interesting results follow from these identities.
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Corollary 11.4 IAY,...,Y,) is exchangeable with the common marginal
E, then

(i)

P{Yqy <ai,...,Yn) < an}

n—1
I(Yn > Qn- ) I(Yn > Qp— '+1)
= F + E _ J/ : 7
(@)+nd B{=—15 ; }
X P{Y(l) ") <ai,... ,Yg,::)n < an—j|Yn}]7 (11.4.10)

and

(i1)

P{Y(l) >b1,,Y(n) >bn}

-1
— 1= P+ p( s ) TR =h),

x PIY Y > b1, 0 YT > balVa)]. (11.4.11)

Corollary 11.5 [Sarkar and Chang (1997)] If (Y4,..., Y,) are iid, then

(i)
P{Yy) <ay,...,Y(n < an}
= F(ai) +nZ{F(an J) F(anj—j+1)}
X P{Y(l)m—1 <ai,. s Yimjyn-1 < anj},
(11.5.12)
and
(it)

P{Y(l) > by,... Y(n) > b, }

F(b F(b;
— Flb)+n Z{ J(j_+11) (J)}
j=1

X P{Y(ym-1 > bjs1,- s Yino1)m—1 > bn},  (11.5.13)
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where F =1 — F.

Corollary 11.6 Let U, ,<[11100<U,,., be the order statistics based on n iid
observations from U(0, 1), then min,.,/nU./i} is also U(0, 1)

Alternative expressions for probability distributions of the extreme
values can be obtained from the above identities. For instance,

P{Y(n):'n < a}

n n-—1

1 }n: } : (—1)
n = Fila) - J( +1) {Y(" -j) = a,Y; > a}

i=1 j=1

n
= Z i +

i=1 i=1 =1

—

n n-—

70 P{mln(Y(n—'J),Y) > a}.

(11.6.14)

The probability distribution of the other extreme can be similarly
expressed in terms of marginal and the bivariate probabilities involving
Y;and Y 9 j#i. Tt is to be noted that the term 1 — S, Fi(a)in(11.6.14)
prov1des a lower bound to the probability P{Y,, ,<a} which one would
get by applying the Bonferroni inequality [Miller (1981, p. 8)]. An
improvement of this bound could be obtained by including the additional
bivariate probabilities involving order statistics. This type of
improvement is different from those known in the literature [see, for
example, Efron (1997)].

We will now present some results relating to the question of finding
increasing d;s satisfying (11.1.2) with the equalities; that is, to the
problem of proving the inequality i,(d,.1)<1-o as stated in the above
section. First note that in the case of iid X/’s,

z/)n(d -1)
= nE[(F(dn-1) = Un-1)in-1)IUpyn-1 < F(d1), ..., Un-1)in-1
S F(d’n—l))]a

where U/’s are iid uniform on (0, 1). The required inequality in the iid
case then follows by using the fact that F(d;)—1 for each i=1,...,n-1 as
F(d,)—1 in the following theorem.

Theorem 11.6.1 [Dalal and Mallows (1992)] Let U,.,<...<U(,):, be the
order statistics based on n iid observations from U(0, 1), and let
0<c,<[11<e,<1 be such that P{Uy2cy,. .., Upasci)=c, for all k<1,...,n. Then,
cl_IE[(cn-UW:n)I(Ua):nScl,...,U(,,):nSc,,)] is increasing in c;.
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The following theorem gives an idea how close the constants in
Theorem 11.6.1 are to each other.

Theorem 11.6.2 The constants ¢,< ...<c, in Theorem 11.6.1 satisfy

k-1
Ck—Ch-1 = —5 [Var(Ugk—2):k—2)
— Var(Uk—2)k—2|U1yk—2 < €1y -+, Ug—2):k—2 < cr—2)],

(11.6.15)

for all k=3,..., n-2.

PROOF. It is enough to prove this for k=n.

P{Ugyn <1y, Uy < Cn}
nE{(cn = Un-1)m-1)I(Uayn-1 < 1, U—1)m-1 < €n-1)}
n(cn —en—1)P{Uayn-1 < c1,- -, Um—1yin—1 < €a-1}
+ nE{(cn-1 = Un-1)n-1)I(Uayn-1 < €1, Um—iyin-1 < cn-1)}
= nlcn — cne1)P{Unyin-1 <1y -, Un—1)in—1 < Cn-1}
n(n —1)

+ __2_E{(cn—1 - U(n—2):n—2)2I(U(1):n—2

<er, e Une2ynog Scno2)}
= n(cn - Cn—-l)P{U(l):n—l S I U(n—l):n——l < Cn—l}

N n(n2— 1)

[Var((cn—1 — Un—2):n-2)lU(1):n—2
<etyeo s Ungyn—2 < Cn—2)
+ E*{(cn-1 — Upn-2yn-2)lUayn-2 < 1y, Un_2ym—2 < €nz}]
X P{Uym—-2 <c1,...,Un—2ym—2 < cn-2}
= n(en — e 1)P{Unym-1 <1,y Un—1)in—1 < €a1}
n(n—1)

2 [Var((cn—1 = Un—2):n—2)IU(1)m—2

S Ciyenn,y U(n——Z):’n—2 < Cn—2)

1
+ W]P{Uu)m—z <ctyeo s Upn—2yin—2 < Cnoa, }.

Now, since P{U<c,...,Uy<c;} is the same for k=n-2, n-1 and n, we
get
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n{cn — Cn—-1)

n(n—1) I 2 1 )
2 nn—1) (n-1)2

— Var((cn-1 ~ Upn-2)in-2)lUyin—2 < €1, .., Un—2)in—2 < cn_2)|
-1

'Tl(‘%_z[var(U(n—z)m—z)

— Var(Un—2)mn-2)lUtym—2 < ¢1, - .., Un—2yin—2 < tn2)].

This proves the result. O
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CHAPTER 12

ROBUST ESTIMATION VIA
GENERALIZED L-STATISTICS:
THEORY, APPLICATIONS, AND

PERSPECTIVES

ROBERT SERFLING
University of Texas at Dallas, Richardson, TX

Abstract: Generalized L-statistics, introduced in Serfling (1984) and
including classical U-statistics and L-statistics, are linear functions
based on the ordered evaluations of a kernel over subsets of the sample
observations. In particular, generalized median statistics fall within
this class and are found to fulfill an interesting and potent principle,
that “smoothing” followed by “medianing” yields a very favorable
combination of efficiency and robustness. Extensive asymptotic theory
now available for generalized L-statistics is reviewed, including
asymptotic normality, strong convergence, large deviation, sequential
fixed-width confidence interval, jackknife, and bootstrap results, as well
as Glivenko-Cantelli theory for associated empirical processes of U-
statistic structure. Illustrative applications are treated, including
nonparametric and robust location and spread estimation,
nonparametric analysis of linear models, nonparametric regression, and
robust parametric scale estimation for exponential distributions,
equivalently tail index estimation for Pareto distributions.

Keywords and phrases: Generalized L-statistics, robust estimation

12.1 INTRODUCTION

The notion of generalized L-statistics (GL-statistics) unifies the simpler
classes of L- and U-statistics while maintaining a nice level of
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mathematical tractability. In applications, the notion leads to
formulation of highly competitive estimators in both nonparametric and
robust parametric estimation contexts. Here we review the theory and
applications of GL-statistics and illustrate through several examples
an interesting and potent principle, that “smoothing” followed by
“medianing” yields a very favorable combination of efficiency and
robustness.

Initially we consider the setting of a sample of i.i.d. real-valued
observations X,..., X, having cdf F. Denote the ordered observations by
X, <<X,,. We ask

What common or unifying feature is shared by the sample mean,
sample variance, sample median, 5% trimmed mean, Hodges-
Lehmann location estimator (i.e., median of pairwise averages
(X+X)/2), median of three-way averages (X+X+X,)/3), Theil’s
nonparametric regression slope estimator (i.e., median of pairwise
slopes (Y-Y))/(X-X))), and median of absolute differences |X;-
X,| ()7

Note that among these the sample mean, sample median, and 5%
trimmed mean are L-statistics, 1.e., linear functions of order statistics
given by Z;;l ¢niXni for some choice of constants c¢,;. Also, the sample
mean and sample variance are U-statistics: i.e., for particular choices
of real-valued “kernel” h(x,,..., x,,) defined on R™, they can be represented
in the form n(_Ti) > h(Xiy,. .., X5, ), where the sum is over all "(m)=n(n-
1)...(n- m+1) m-tuples (iy,..., i,,) of distinct indices from {1,..., m}. Finally,
the Hodges-Lehmann location estimator can be represented as an R-
statistic, 1.e., a function of the ranks of the X;’s. [General background on
L-, U-, and R-statistics may be found in Huber (1981) and Serfling
(1980).] The remainder of the above statistics, however, are neither L-
nor U- nor R-statistics, nor do they fall within any other traditional
class of statistics.

12.1.1 A Unifying Structure

We can, however, draw together all of the above statistics into a single
coherent class, as follows. Consider again a kernel h(x,..., x,,) defining
a U-statistic, denote the ordered values of the summands h(X;,,..., X;,,)
appearing in the associated U-statistic by

Wnl S i S Wn,n(m)a
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and with these associate the class of all linear combinations of the ordered
W.’s, i.e., all statistics having the form

T(m)

> cniWhi (12.1.1)
i=1

for some choice of constants c,. We call statistics of form (12.1.1)
generalized L-statistics (GL-statistics).

Note that each of the statistics considered in the above question may
be expressed in this form for suitable choice of A and c,;. Also, in
particular, the entire class of L-statistics is obtained by taking kernel
h(x)=x, and the entire class of U-statistics is obtained by taking c,=1/
1. Moreover, interesting new varieties of statistic are included in this
structure:

*  trimmed U-statistics (i.e., eliminate the upper proportion « and
lower proportion a W,;/’s and average the rest)

*  Winsorized U-statistics

*  median of m-wise averages, i.e., median {(X;, + --- X;,,)/m} (which
gives for m=1 the usual sample median, for m=2 a version of the
Hodges-Lehmann location estimator, and for m>2 new. competitors
to these estimators).

Various examples will be treated formally in Section 12.5.

The setting of GL-statistics may be extended in two ways. (1) The X;'s
may be random elements of an arbitrary space as long as the kernel A is
real-valued. (In the case h(x)=x, this reduces to requiring the X/’s to be
real-valued.) (i1) In Section 12.2, after introducing a representation of
GL-statistics in terms of statistical functionals, we widen this class of
statistics by introducing a more general form of functional.

In order for the GL-statistic generalization to be useful in practice,
the usual battery of theoretical results are needed, including asymptotic
normality, strong convergence, Berry-Esséen rates, large deviation
theory, sequential fixed-width confidence intervals, and jackknife and
bootstrap results. These are obtained as follows. In Section 12.2 GL-
statistics are formulated as statistical functionals, specifically as L-
functionals evaluated at generalized empirical df’s of U-statistic
structure. This representation enables us in Section 12.3 to combine
functional analysis for L-functionals with probabilistic analysis
(specifically, Glivenko-Cantelli theory) for the generalized empirical df’s,
establishing a foundation for developing in Section 12.4 the above-
mentioned theoretical results for GL-statistics. Also, in Section 12.4,
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some extensions to broader contexts are indicated. In Section 12.5 we
examine a variety of illustrative applications in nonparametric
estimation and robust parametric estimation.

12.2 BASIC FORMULATION OF GL-STATISTICS

Here we represent GL-statistics as statistical functionals. This enables
a characterization of the parameter estimated by a GL-statistic as well
as of the estimation error, thus providing a foundation for theoretical
analysis by the method of differentiable statistical functions.

12.2.1 Representation of GL-Statistics as Statistical
Functionals

Our representation of a GL-statistic as a “differentiable statistical
functional” entails

*  the use of L-functionals T, and
*  the evaluation of such a T(-) at an empirical df of U-statistic
structure.

We first review the nature of L-functionals 7T(-), then define the
appropriate empirical df, and then put these together.

L-Statistics as statistical functionals

A functional 7(-) defined on real-valued df’s G and having the form
1 d
T(G) = / Gl e)J(B)dt + > a;G7H(py)
0 =

for some choice of function J(*) on [0, 1], integer d=0, values ; € [0,1]
and constants a;, is called an L-functional. It represents a weighting of
the quantiles of G, combining a continuous weighting of all quantiles
via J with a discrete weighting of selected quantiles. In connection with
a sample of real-valued X;,..., X, having df F, evaluation of such a 7))
at the usual empirical cdf

Fp(z)=n"1)"1{X; <z}, —oc0<z <00,
i=1

yields

~ n i/n ~ a
T(Fn)=2[/( J(t) ] wl(/n) + Z o
i=1 i=t

i—~1)/n
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which we recognize as an L-statistic because F=1(p) = Xp; for (i —1)/n <
p <i/n. Thus a wide cla/s\s of L-statistics is generated by evaluating
various L-functionals at Fr.

Empirical CDF of U-statistic structure

Analogous to the above empirical df ﬁn which jumps 1/n at the order
statistics X,;, we define an empirical df associated with the W,;/s given
above, namely the step function with jumps of size 1/n,,):

Ha(y) = nipy > Xy, Xi,) Sy}, —o00<y < oo

For each fixed y, ﬁn (y)is a U-statistic as defined above. Thus, although
this generalization of the usual empirical cdf has complex structure, it
is of a familiar type. Note that H, estimates the df Hy of h(X,..., X,,):

EH,(y) = Hr(y) = P(h(X1,..., Xm) <¥), —00<y<00.

For the kernel h(x)=x, Hr reduces to F' and fIn to ﬁn.

GL-statistics as statistical functionals

In the same way that L-functionals evaluated at F, yield L-statistics,
we generate GL-statistics byAevaluating these same L-functionals at
the generalized empirical df H,, producing

~ S e
T(H.) =) [/( J(t )dtl 2 (/) + Z%H Hpy)-

i=1 i—1)/n(m) i=1
(12.2.1)

A wide class of linear combinations of the W,’s is thus generated.
Moreover, through this representation we easily characterize the
parameter that is estimated by a GL-statistic. Quite simply, since H,

estimates Hy, T(H,) estimates

T(Hp) = / H7 () J(t)dt + Za,HF (p;)-
j=1

In the following we shall treat GL-statistics in the form (12.2.1) as well
as in an extended form now to be introduced.
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12.2.2 A More General Form of Functional

Let us generalize the above L-functional to:

1 D
T(G) = /0 goTi(G) J*() dt + 3. 4; goTr(G), (12.2.9)

Jj=1

where

«  foreacht € (0,1), T\(-) denotes a particular L-functional as defined
above (with J(-) replaced by a function <J,(*), d replaced by d,, each
a; by ay, each p; by py)

*  g:R— Ris a Borel-measurable function.

With g(x)=x and T,(G)=G'(t), each ¢, we recover the case of simple L-
functionals. Below we shall see other useful cases of q(-) and T,(").

Two examples: Spread measures of Bickel and Lehmann

Evaluation of the functional (12.2.2) at either the classical empirical df
F}, or the more general empirical df H, brings further statistics of interest
into our scope. As examples, we mention two spread measures which
Bickel and Lehmann (1979) formulated on an intuitive basis but which
are best studied theoretically through reformulation as GL-statistics.

Example 1. Use (12.2.2) with g(x)=x?, T(G)=G(t)-G'(1-t), J*(t)=(1—
2/3)* for p<t<1- and=0 elsewhere, where [ is chosen in (0,1/2), D=0, and
take h(x)=x in defining Hn (.e., ﬁn take ). Then the relevant GL-statistic
is essentially

n—[ng)
(n - 2[’)7,,8])—1 Z (Xnk - Xn,n—k+1)2a

k=[np]+1

a nonparametric measure of spread. Note that in this example the more
general functional 7(*) is applied to the classical empirical df. O

Example 2. Use (12.2.2) with q(z) = 22, TH(G) = G71(&}), J*(t) =
I-a-pB)tfora <t<1-and = 0elsewhere, where 0<o< 1/2 < 1-
B<1, D=0, and take A(x;, x,)=x,.x, in defining H,. Then T(H,) yields still
another nonparametric measure of spread, one which involves both the
more general functional 7(-) and the more general empirical df . O
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12.2.3 The Estimation Error

Our general goal is to study the estimation error,
T(H,) - T(Hr),

where T(I:In) is given by (12.2.1) using a simple L-functional, or, more
generally, with 7(-) given by a functional of form (12.2.2).

12.3 SOME FOUNDATIONAL TOOLS

We combine functional analysis for the functional 7() with probabilistic
analysis for the empirical cdf H,. A convenient representation for the

latter 1s

-~ -1
H,=ng, Z OR(Xsg s Xin )

where 9, denotes the cdf placing mass 1 at the point y.

12.3.1 Differentiation Methodology

For some purposes, we require the functional 7(") to be differentiable,
for which a quite basic form of differential serves very well. For an
arbitrary functional 7() on df ‘s G, the Gateaux differential at G, is
defined by

d
T'(Go; G1 — Go) = E:\'T(GO + MG = Go))| .
o+

As is well-known [e.g., Serfling (1980)], this yields an approximation to
T(G)-T(G,), when G, is “close” to G,. To apply this to our object of study,
the estimation error, we take Gy=H and G,=H,,, obtaining

T,(HF;ﬁn - HF)

T/(HF;n(_,,,ll) Z Oh(Xiy s Xin,) — HF)

= n(—"11) ZT,(HF§ On(Xiy s Xin) — HF),

Ii-

T(H,) - T(Hr)

where in the last step linearity of T"in its second argument is assumed
(to be checked for each specific functional T'under consideration). Thus,
for any functional T whose Gateaux differential satisfies the above
linearity property, the corresponding approximation to the estimation
error T(ﬁn) —T(Hp) has the form of a U-statistic, based on the “kernel”

T'(Hp; On(zr,.nzm) — HF)- (12.3.1)
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That is, under we have:

The differential approximation to the estimation error is a U—statistic.]

In particular, for 7"an L-functional, and for the case that the df G,
has density go, we obtain after some manipulations [Serfling (1980)]

T'(GoiGi ~ Go) = - / 161 () — Golw)] J(Goly)) dy
— (G (py)
+; G (12.3.2)

More generally, for T given by (12.2.2) with g differentiable, we have

1
T'(Go; Gy —Go) = ~— / ¢ 0 Ti(Go) TY(Go; Gy — Go) J*(2) dt
0

D
+Y_Aj q o Tp,(G) Tp,(Go; G1 — Go), (12.3.3)

j=1

with the quantities T}(Go; G1 — Go) being of form (12.3.2). We see that
the desired linearity of T"indeed holds, whereby we have: for GL-statistics,
the differential approximation to the estimation error is a U-statistic. For
explicit formulation of the relevant kernel given by (12.3.1), see Serfling
(1984) and Janssen, Serfling, and Veraverbeke (1984). Here we simply
note that the kernel in (12.3.1) has mean 0 and we denote its variance by

0’2(T, HF) = Var( T’(HF; 5h(X1,...,Xm) — HF) )

12.3.2 The Estimation Error in the U-Empirical Process

The closeness of T(H,) to T (Hp) is related, of course, to the closeness of
ﬁn to Hy This becomes manifest in various ways. For example, to
establish asymptotic normality of T(ﬁn) —T(Hp), the relevant
consideration is the behavior of the normalized difference

n/2(T(H,) — T(Hp) — T'(Hp; Hn ~ Hr)),

for which a precise treatment entails the use of rates for the convergence
of H, to Hyin various norms.
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On the other hand, to establish the SLLN for T(H,), the relevant
considerations are continuity rather than differentiability of T(-),
combined with convergence of the quantile functions H;! to H;l in
various modes of convergence.

Thus the “U-empirical process” which underlies our investigation of
GL-statistics becomes itself a target of investigation. The general goal
is to establish for H, the wide collection of results already available for
the classical empirical cdf E,.

The first general result for the empirical process of U-statistic
structure appears to have been developed by Silverman (1976), in work
preceding the appearance of “GL-statistics” and motivated by other
considerations. Indeed, treating a larger class of empirical processes,
he established weak convergence of n'/2(H,(-) — Hr(-)) to a Gaussian
process. In Silverman (1983), specifically for the context of GL-statistics,
extension with respect to a stronger topology was obtained. One can
also treat the the empirical process of U-statistic structure as a special
case of “U-process” as introduced by Nolan and Pollard (1987, 1988),
for which a general treatment of weak and strong convergence is
provided by Arcones and Giné (1993). For a large deviation result for
U-processes, see Serfling and Wang (1998).

12.3.3 Extended Glivenko-Cantelli Theory

One class of results for H,, covers the convergence of H,, to Hpin various
modes and norms. We call this “Glivenko-Cantelli theory,” in a broad
sense of the term.

Results for ||ﬁn ~ Hrlloo

An exponential probability inequality for ”ﬁn — Hr |l was established
by Helmers, Janssen, and Serfling (1988):

P(|H, — Hplloo > d) < (1+4Cn/m]"/2d) e=2/™¥ 4> 0, n > m,

where C is a universal constant and [] denotes “integer part.” This is
an analogue of the Dvoretzky, Kiefer, and Wolfowitz (1956) inequality
for ||Fr, — F|leo. In fact, the latter inequality is used as a lemma in
Helmers, Janssen, and Serfling (1988) to obtain an exponential bound
on the moment generating function of ||Hn — Hrlle, thus providing a
new tool even for the case f’n. As a corollary of the above probability
inequality, we readily obtain

logn

1/2
[|[Hp — Hrlloo = O ( ) almost surely, n — oo,
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which gives the “Glivenko-Cantelli Theorem” for ﬁn along with a rate
of convergence. Compare the “in-probability” version,

|H, — Hrlloo = Op(n~"?), n — oo,

for Hy continuous, proved in Serfling (1984).

The above probability inequality for |Hy ~ Hrlloo also has a
multisample extension, given in Helmers, Janssen, and Serfling (1988).
Another variant concerns weighted versions of the above sup-norm, i.e.,

”(ﬁn - HF)/(w ° HF)“oo,

where w(') is some specified weight function. See Silverman (1983) and
Helmers, Janssen, and Serfling (1988) for particular results.

Further results

For treatment of ”ﬁn - HFHL,,, see Serfling (1984), Helmers, Janssen,
and Serfling (1988), and Arcones and Giné (1993), and for
I:T;l(-) - HEI(-), see Janssen, Serfling, and Veraverbeke (1984) and
Helmers, Janssen, and Serfling (1988). Strong approximation of the U-
empirical process is treated by Dehling, Denker, and Philipp (1985).

12.3.4 Oscillation Theory, Generalized Order Statistics, and
Bahadur Representations

A classical nonparametric approach for obtaining a confidence interval
for a quantile parameter F'(p) is to take as endpoints of the interval a
pair of order statistics,

(Xn,a(n) ) Xn,b(n)) ’

with the ranks a(n),b(n) selected to achieve desired confidence. Extension
to sequential fixed-width nonparametric C.1.’s is obtained by letting n
be defined suitably as a random stopping time N.

A much more general and interesting class of parameters is defined
by retaining the simplicity of the quantile functional,

T(G) =G~ (p),

with G given by Hy based on various choices of kernel h(xy,..., x,). We
have seen several examples above. For such parameters we may form
nonparametric C.I.’s by taking as endpoints a suitably chosen pair of
generalized order statistics,

(Wn,a(n) ’ Wn,b(n)) )
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letting n be given by a stopping time N in the case of a sequential
procedure.

Such applications are based on theoretical results for the behavior of
sequences of the generalized order statistics, W, ., for certain choices
of rank sequence k(n). A key result is a “Bahadur-type representation’
for 0<p<1, Hj twice differentiable with Hp(Hgz'(p)) > 0 and k(n)

satisfying
k 1/2
LG (lo_gﬁ) ,
n(m) n

we have that almost surely as n—oo

k(n)/n(m) - ﬁn(HEI (p))
H(Hg' (p))

W’n,k(n) = HEI (p) + + O( n_3/4 (log n) —3/4 )

In particular, this yields for the (generalized) pth quantile ﬁ; p) a
representation as approximately a sample mean in form.

A fundamental result on which the above result is based concerns
the oscillation behavior of the empirical process based on Hy,. Denote by

w(g;0) = sup |g(s) — g(®)l,
|s—t|<é

the modulus of continuity function for a given function g, and by
an() = n'*[Ha() ~ Hp ()]

the empirical process based on H,. Results on the rate of convergence to
0 of w(c,,a,) and related quantities, for sequences a, tending to 0 at
appropriate rates, are given in Silverman (1983), Janssen, Serfling, and
Veraverbeke (1984), and Choudhury and Serfling (1988). In particular,
the latter paper provides a broad treatment including general
application to the context of sequential fixed-width nonparametric C.I.’s.
The results sharpen and extend previous work of Bahadur (1966) for
the case h(x)=x [see also Serfling (1980)] and of Geertsema (1970) for
both the cases h(x)=x and h(zi,z2) = 3(x1 +z2). For extension to the
maulti-sample case, see Serfling (1992).

12.3.5 Estimation of the Variance of a U-Statistic

The evaluation of the Gateaux differential of a GL-functional at ﬁn — Hp
was seen to be a U-statistic in form. The variance o*(T, Hy) of the
corresponding kernel (3) is the relevant variance parameter in the
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asymptotic normality of T(ﬁn). Some applications require estimation of
this variance parameter, e.g., for confidence intervals on T(Hj).

General methodology for estimation of the variance of an ordinary
U-statistic is available, for example, in Sen (1981). However, in the
present case the kernel of our U-statistic involves unknown parameters.
For GL-statistics which are quantiles of H,, estimation of oX(T, Hy) is
treated in Choudhury and Serfling (1988).

12.4 GENERAL RESULTS FOR GL-STATISTICS
12.4.1 Asymptotic Normality and the LIL

Results on asymptotic normality of GL-statistics T(ﬁn) are developed
in Serfling (1984) and Helmers and Ruymgaart (1988) for for 7(-) a
classical L-functional with bounded scores and unbounded scores,
respectively, and in Janssen, Serfling, and Veraverbeke (1984) for 7(-)
having the more general form (12.2.2). Under moderate regularity
conditions, these statistics satisfy

n'/2[T(H,) — T(Hr)] —a N(0,0%(T, Hp), n — oo.

For T(-) a si/r\nple L-functional, the development parallels the
treatment of 7' (F,,) (ordinary L-statistics) as in Serfling (1980). Briefly,
put

A, =n?T(H,) — T(Hp) — T'(Hp; H, — Hr))

and decompose this into A,=A,;+A,,, corresponding to the continuous
(J-function) and discrete components of the functional 7. Then, for A,;,
establish inequalities of the form

|An1| < W5, lla |Hn — Hrlls, (12.4.1)

where A=ec and B=L,, or vice versa, and

KGWN-KEW) _ J(F(y)), Gly)# Fy)

0, G(y) = F(y),

with K(t) = fot J(u)du. This sets the stage for an analysis which
motivates and exploits some of the Glivenko-Cantelli results for &, in
Section 12.3. For the component A, it turns out that this quantity is
precisely that which is treated in the Bahadur representation result for
H,, as discussed in Section 12.3.4. For T(:) given by the more general
functional (12.2.2), the treatment is somewhat more complicated.

We,r(y) = {

Copyright © 2002 Taylor & Francis



GENERALIZED L-STATISTICS 209

For the LIL, a parallel approach works. For the Berry-Esséen rate for
the convergence in the AN result and its use as a tool in the bootstrap
analysis of GL-statistics, see Helmers, Janssen, and Serfling (1990).

12.4.2 The SLLN

The classical SLLN states that the sample mean converges almost surely
to its expectation, a result that has fundamental and wide application
in probability and statistics. Considering now the “statistical setting”,
we ask

In what generality does the SLLN hold?

For the generality of the class of L-statistics, a sharp SLLN was
established by van Zwet (1980). This was extended to GL-statistics in
Helmers, Janssen, and Serfling (1988): under moderate regularity
conditions, we have

T(H,) —as. T(Hp), n — co.

In some sense this is a weaker conclusion than asymptotic normality,
but, since we thus need to establish it under weaker conditions, the
problem can in principle be a harder one (and in fact is).

In the development of Helmers, Janssen, and Serfling (1988), the
problem was handled by identifying and formulating the functional-
analytic and probabilistic components inherent in the problem and then
treating these separately. One first investigates the convergence
behavior of the functional 7(") evaluated at a deterministic sequence of
weakly convergent df’s G,. This leads to conditions on 7(-) and on {G,},
sufficient for convergence of T(G,) to a limit, Then one establishes, as
an extended Glivenko-Cantelli property for Hyn, that with probability 1
the random sequence of empirical df’s {Hn,} indeed satisfies the
conditions on {G,}.

12.4.3 Large Deviation Theory

The large deviation problem, specialized to GL-statistics, is to evaluate
the limit

e 108 PUT(Hy) — T(HF)| > d)
n—oo n ’
under appropriate conditions. For ordinary L-statistics as well as other
functionals of F;,, this has been solved fairly completely in Groeneboom

et al. (1979). For extension to GL-statistics and other functionals of Hp,
see Serfling and Wang (1999).
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12.4.4 Further Results

Jackknife results were established for U-statistics, by Arvesen (1969)
and for L-statistics by Parr and Schucany (1982). For GL-statistics of
the simple form (12.2.1), jackknife results have been developed by Shao
(1990). It is of interest to extend to the more general form (12.2.2).
For bootstrap results for GL-statistics, see Helmers, Janssen, and
Serfling (1990). Multi-sample GL-statistics are treated by Akritas
(1986) and Serfling (1992). Generalizing the study of incomplete U-
statistics by Blom (1976), incomplete GL-statistics based on the form
(12.2.1) are investigated by Hossjer (1996). It is also of interest to extend
to (12.2.2).

12.5 SOME APPLICATIONS

12.5.1 One-Sample Quantile Type Parameters

A general treatment of GL-statistics having the form ﬁ;l(p), for some
choice of kernel 2 and 0<p<1, is given by Choudhury and Serfling (1988).
Some examples are as follows.

Location estimation

For estimation of the location parameter 0 of a symmetric and continuous
cdf F, classical nonparametric estimators are provided by the median
and by the median of pairwise averages (the Hodges-Lehmann location
estimator). More generally, let us consider—as noted in Section 12.1
and proposed in Serfling (1984)—the median of m-wise averages:

HL () = median {XL-’_TX—’"&}

(which for m>2 gives competitors to the classical estimators). With the
kernel A(z1,...,Tm) = D=t8n this is a GL-statistic: Hy'(1/2). It
estimates the generalized quantile parameter H;l(l/z). Besides the
treatment of Choudhury and Serfling (1988) for this example, see also
Choudhury (1989, 1990) and, for extension to multivariate X;'s,
Chaudhuri (1992). In terms of asymptotic relative efficiency (ARE) with
respect to ¥ at the Normal distribution, and breakdown point (BP), the
estimator HL,, exhibits a very favorable trade-off in comparison with
other estimators, as shown in the following table.
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Estimator | ARE BP

median 637 .500
25%-trim | .833  .250

HLy) 955 293
HL s, 981 .206
HL (4 989 .160

We interpret this finding in the context of robust parametric estimation
and arrive at the following principle:

The use of the median operation, after “smoothing” the data by
taking a function of several observations at a time, over all subsets
of the data, leads to a statistic which has a favorable combination
of efficiency and robustness. l.e., smoothing followed by
medianing yields both efficiency and robustness.

A more general type of location estimator is given by taking a kernel of
form h(zq,...,2m) = > 1o, osz; with i~ a; = 1. See Choudhury and
Serfling (1988) for further discussion.

Spread estimation

Among various measures of spread discussed by Bickel and Lehmann
(1979) is the median of the distribution of | X;-X, |, where X, and X, are
independent r.v.’s having cdf F. This is a generalized quantile parameter,
H;1(1/2), based on the kernel A(x;, x,)=|x-x5 | .

More generally, as discussed in Choudhury and Serfling (1988), we
might consider the class of spread measures and estimators
corresponding to kernels of the form

m
Z Bizi
i=1

with ™" | 3; = 0 This generalizes the above m-wise average form of

h(zy,...,Zm) =

*

kernel and extends an approach studied by Maritz, Wu and Staudte
(1977).

Regression slope estimation

Consider the simple linear regression model YV; = a + BX; + €, with
{&:}ii.d. r.v. s independent of X, and X; a sequence of random regressors.
Let F'denote the common cdf of the mutually independent pairs (X, Y;),
1<i<n, and let Hr denote the cdf of A((X;, F)), (X,, Y5)), where

h((z1,91), (x2,92)) = gz—:?;—ll
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For this choice of kernel, the nonparametric estimator of f given by
Theil (1950), i.e., the median of the slopes (Y;-Y)/(X;-X)), is the
corresponding GL-statistic based on the median functional:
B = H71(1/2). The results of Choudhury and Serfling (1988) provide
sequential nonparametric fixed-width confidence intervals for this
classical estimator.

12.5.2 Two-Sample Location and Scale Problems

Location

Suppose FP(x)=FY(x-0), and let F denote (F, F?). For integer m>1
consider the kernel

(x(ll) +...+$7('r11)) —(z?’ +...+:c$3))

1 2
h(mg),...,mg);mg),...,zg))z -

Assuming FV continuous, we have that Hy(0)=1/2, i.e., § = H;1(1/2),
and a corresponding estimator is 8, = H;1(1/2) where n=(n,, n,), the
vector of respective sample sizes. The case m=1 is the shift estimator
given by Hodges and Lehmann (1963), while the cases m>2 represent
new competing estimators. Note that under the null hypothesis 6=0 we
have Hx(0)=1/2, and a corresponding test statistic is given by , (0). For
the case m=2, this test was proposed by Hollander (1967) [see also
discussion in Randles and Wolfe (1979, pp. 96-97]. See Serfling (1992)
for a general development.

Scale

Suppose F?(x)=FY((x-6)/n), for 6 an unknown nuisance parameter and
1n>0 the parameter of interest. With the kernel

W oW, @ @ _ ey -2
h(zi’ 2’5 21, T3 ):_(2—)"—(—2)—,
lzo” — 1|

we haven = H;l (1/2), and a corresponding estimator is given by fin =
ﬁ;1(1/2), Under the null hypothesis n=1 we have Hx(1)=1/2, and a
corresponding test statistic is given by ﬁn(l), as proposed by Lehmann
(1951). See Serfling (1992) for a general development.

Copyright © 2002 Taylor & Francis



GENERALIZED L-STATISTICS 213

12.5.3 Robust ANOVA

Here we suppose that F9(x)=F(x-A;), 1< j< ¢, and consider estimation of

a parameter of form
c
0=> d;A;,
=1

where d,,..., d. are specified constants and the A’s are unknown. The
problem of nonparametric estimation of 6 in the case of a contrast
>5d; = 0) was initially studied and solved by Lehmann (1963), whose
approach consists of expressing 6in the form of a linear combination of
the differences A=A, and using nonparametric estimates of these. A rich
literature has developed on this approach and its modifications. Using
the framework of GL-statistics, however, a straightforward competing
estimator may be formulated, based on the kernel

h(a:(l) . ’zlc)) - Zd .’L‘(J).

We suppose Fj, to be symmetric about 0, in which case we have 8 =
H;1(1/2) and a natural estimator of 6 is thus given by b, = 'ﬁ;1(1/2),
where n=(n,,..., n.). Surprisingly, this estimator has not been
investigated previously in the literature. This formulation also includes
the case that 6 1s not a contrast. For testing the null hypothesis 6=6,, a
natural test statistic is given by Hn(6,).

12.5.4 Robust Regression

Frees (1991) has introduced and investigated a wide class of estimators
of 3, in which a typical estimator is given by trimming the collection of
ordered slopes (Y;-Y)/(X-X)), and then taking a weighted average of the
remaining slopes. Using an extended notion of generalized empirical
cdf, he represents these as GL-statistics for appropriate choices of kernel.

12.5.5 Robust Estimation of Exponential Scale Parameter

Consider the problem of robust estimation of 6 in the two-parameter
exponential distribution E(u, 6) having cdf

Glz)=1—e" WP 7> (12.5.1)

for 6>0 and-co<u<eo, with u an unknown “nuisance parameter”. The
maximum likelihood estimator of 6, Oy = Xn — Xn1, is efficient, being
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asymptotically normal with mean 6 and variance &/n, but is nonrobust,
having BP=0. Competing trimmed mean type estimators f for various
choices of trimming level $ have been investigated by Kimber (1983a,b)
and established to possess relatively high efficiency coupled with
favorable robustness. It has been found, however, that these trimmed
type estimators are outperformed by generalized median type estimators
fem based on suitable kernels. This finding illustrates again the general
principle stated in Section 12.5.1. As a typical example, 6, based on
10% upper and lower trimming has ARE=.85 and upper BP=.10, whereas
Oan: for a suitable kernel has ARE=.94 and upper BP=.13. For full details,
see Brazauskas and Serfling (1999). Note that the above exponential
scale estimation problem is equivalent, through exponential
transformation of the data, to that of tail index estimation in a two-
parameter Pareto model.
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Abstract: It is well known that Student’s ¢ test as well as the ANOVA
F test are reasonably validity-robust with respect to moderate
departures from normality; see e.g. Mudholkar, Mudholkar and
Srivastava (1991), Marchetti, Mudholkar and Mudholkar (1998).
However, in the absence of normality substantial power loss is associated
with the above procedures. The same holds for Hotelling’s 7% and various
normal theory MANOVA procedures in multivariate analysis; see Seber
(1984), Mudholkar and Srivastava (1999a, b) and the references therein.
Recently, Mudholkar and Srivastava (1999c) have proposed a class of
robust stepwise tests as alternatives to Hotelling’s problem by
incorporating the modification of J. Roy’s (1958) step down argument
presented in Mudholkar and Subbaiah (1980). In this paper, we extend
their reasoning to construct a class of robust tests for the multivariate
analysis of variance for the one way classification and examine their
robustness properties. The new procedures use relatively familiar
univariate tests and avoid any new distributional problems. The robust
stepwise tests have a reasonable type I error control and substantially
enhanced power at nonnormal alternatives without significant loss of
power in the presence of normality.
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13.1 INTRODUCTION

Consider the problem of testing the simplest multivariate general linear
hypothesis, i.e. testing the homogeneity of the means x4, u,,..., ug of k
multivariate normal populations with the common covariance matrix
X, i.e. testing H, : u,=us,=...=u;[ 1 The properties of the well known
invariant tests such as Wilk’s likelihood ratio (A), Lawley-Hotelling
Trace, Bartlett-Nanda-Pillai Trace, Roy’s maximum root, have been
extensively examined in the literature, e.g. see Anderson (1984), Mardia,
Kent and Bibby (1979), Seber (1984). It is well known that none of the
invariant tests uniformly dominates the others in terms of power.
However, an asymptotic analysis appearing in Hsieh (1979a, b) shows
that the likelihood ratio test, which is maximin [Anderson (1984, p.
332)], is superior to Lawley-Hotelling trace and Roy’s largest root tests
in terms of Bahadur efficiency. For a decision theoretic analysis of
multivariate procedures see Kiefer and Schwartz (1965) and Schwartz
(1967).

It is generally well recognized that, as in the univariate case, the
commonly used multivariate invariant procedures are validity robust
for small departures from normality. However, from several robustness
studies it is known that, in the context of testing the significance of a
mean vector or testing the equality of 2 (¢=2) mean vectors, the normal
theory based invariant tests are either invalid or very conservative; see
Chase and Bulgren (1971), Everitt (1979), Bauer (1981), Srivastava
and Awan (1982), Tiku and Singh (1982), Davis (1980), Olson (1974).
More seriously, it is believed that the non robustness of these tests is
manifested mainly and substantially in loss of power. In the univariate
setting, Geary (1947) somewhat flamboyantly remarked that,
“Normality is a myth; there never was, and never will be, a normal
distribution”. Since the multivariate normality entails marginal as well
as joint normality of the components, Mudholkar and Srivastava (1998)
observe that Geary’s provocative comment is a fortiori true in the
multivariate case, and the multivariate normality assumption is at best
dubious. Thus, in light of this and the few and sketchy studies of
efficiency robustness, a need for robust multivariate procedures is
strongly indicated. However, the development of multivariate robust
methods is in rudimentary stages.

Even in the univariate case robust methods for estimation are better
understood and accessible than those for testing the hypotheses. The
robust estimation in multivariate setting, including the extensions of
well known univariate L, M and R approaches, have been discussed by
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many including Mood (1941), Bickel (1965), Gnanadesikan and Kettenring
(1972), Bebbington (1978), Titterington (1978). Also, as in the univariate
case, the literature on multivariate rank tests, which bypass the nuisance
of studentization for unknown scale and are related to the R-estimators, is
most extensive; see Puri and Sen (1971). However, the justification of
these nonparametric multivariate tests is largely asymptotic and the related
distribution theory for their implementation in moderate sized samples is
not adequately understood. Furthermore, these tests are often regarded
as less efficient. M-methods have also been theoretically discussed in the
context of univariate and multivariate testing of hypothesis, see Hampel
et al. (1986). However, Draper (1988) in his review paper of the robust
methods observes that, “the L-methods have historically been the most
awkward of the three in generalizing to linear models”.

Yet, the L-estimates such as the median, trimmed means and trimeans
are the oldest and the most easily motivated estimators of location. The
earliest use of trimmed means is in Tukey and McLaughlin’s (1963)
studentization of trimmed mean followed by its application by Yuen and
Dixon (1973) and Yuen (1974) for testing equality of two means. Mudholkar,
Mudholkar and Srivastava (1991) note some limitations of these tests and
employ the asymptotic distribution of the trimmed means in Huber (1970),
together with empirical methods, to construct robust trimmed-t tests valid
for samples of size n=10. Similar tests based upon quick estimators of
location, e.g. trimean and Gastwirth estimator, are given in Patel et al.
(1985), and Srivastava, Mudholkar and Mudholkar (1992). These studies
demonstrate a dramatic power advantage of the tests based on trimmed
means and quick estimators of location. For example, for some
nonnormal populations the power of these robust tests can be as high
as 70% as compared 14% for the classical ¢ test. More recently, Marchetti
(1997), and Marchetti, Mudholkar and Mudholkar (1998) have developed
a trimmed ANOVA test based on trimmed means for the one way
classification analysis of variance. The purpose of this paper is to
combine their arguments and results with those in Mudholkar and
Srivastava (1999c) to develop some robust stepwise tests for one way
classification for multivariate analysis of variance.

The robust one way ANOVA and other preliminaries are given in
Section 13.2. The development of the modified step down procedure
and the construction of a class of robust stepwise tests for testing the
homogeneity of means of £ multivariate samples appears in Section
13.3. Empirical evaluation of the operating characteristics of the
procedures are presented in Section 13.4. The final section, Section 13.5,
is given to conclusions.
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13.2 PRELIMINARIES

In this section we summarize the basic properties of the trimmed means,
describe their use in testing of hypothesis, and outline the logic of
modified stepwise tests.

13.2.1 Robust Univariate Tests

One Sample. Let X,;<X,<...< X, be the order statistics of a random
sample from a continuous, symmetric population with distribution
function (d.f.) F({x-u}/c). Then the g-trimmed mean or J-trimmed
mean, §=g/n, of the sample is X = (Xg41 4 ... + Xn_y) / (n —.
Tukey and McLaughlin (1963) used empirical analysis, as Huber
(1970) describes, involving “trial” and “error” to propose the
studentization of )?be Winsorizgd variance SZ, / h(h—1), where
Sty =19+ 1)(Xg41 = X)> HXgy2 — X)2 + ... + (g + 1)(Xng — X)?], and
h=(n-2g). Huber (1970) confirmed the validity of their studentization by
showing that as, n—»,

V(X —p)  — N (0, b}(5) o?) (13.2.1)

and
VR —1(3 - b%(8) 0*) — N(0, R%(8) o), (13.2.2)
where 52 = S2, / n(1-26)2. Mudholkar, Mudholkar and Srivastava

(1991), fix the normal family as the target population, i.e. take F=®,
and obtain polynomial approximations,

b2(8) ~ 1+ 0.485+ 1.216%, (13.2.3)
and
w(®) = [b3(8) / RZ(H)] =~ 0.5—1.626 +1.9162 —1.856% .(13.2.4)

They use empirical methods for approximating the small sample null
distribution of the trimmed-t statistic proposed by Tukey and
McLaughlin (1963).

Two Samples. Now consider random samples of sizes n, and n, from
two symmetric location-scale populations F((x-u,)/6) and F((x-u,)/0). Let
X1 and X, denote the 8, and §, trimmed means, respectively, and , 5; and

5, denote the corresponding Winsorized standard deviation estimators
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defined above. Then, using the asymptotic distribution, as in (2.2),
Mudholkar, Mudholkar and Srivastava (1991) propose pooling the
Winsorized sample variances, 53, and s, by

2 # 53 -1
Spool = (w157 + 'w2'52_) (wr + wo)™ (13.2.5)
1 2

where b2 = b3(3;), wi = we(8;) = (n; — 1)w}(8;), to construct the two
sample trimmed-¢ statistic for testing H, : u,=u, as,
~ (X1 — Xa)
t, = = ; 13.2.6
i Spool V/ b]/nl + b%/'n& ( )

and obtain a scaled Student’s ¢ approximation,t, ~ A t,, where v=
2 * (w,+w,) and A, obtained empirically, is given by:
8 52 ) 53

A=1-13-+ 7.5— + 16— — 150~ ,
v v v 14

where 86=(8,+0,)/2.

One Way Classification. Now consider the usual one way ANOVA
hypothesis, Hyu,=u,=...=uk, on the basis of samples X;;, j= 1, 2,..., n,,
from k£ normal populations N(u;, &%), i=1, 2,..., k. The above approach
used in construction of the one- and two-sample trimmed-t test does not
have a straight forward extension for the k-sample case. Hence, Marchetti
(1997), and Marchetti, Mudholkar and Mudholkar (1998) begin anew by
empirically refining the asymptotic distribution of the trimmed mean
and the Winsorized variance given in (13.2.1) and (13.2.2) to make them
reasonably applicable in small samples. Specifically, they use 10000
replication Monte Carlo study involving random samples of size n, for
various values of n and several values of trimming proportion g, in order
to estimate r(n, §), s(n, 8 and ¢(n,d) such that approximations

V(X —8) = N(, r(n,d) b3(8) 6% ), (13.2.7)
and

Vvn—1(3% — t(n,8) r(n,8) b3(6) 02 ) = N(0, s(n,8) R3(8) o* ),
(13.2.8)

hold for values of n=5. specifically, Using regression methods, they obtain
and recommend the following:

76 2182 5783

r(n,d) = 1—4\/7_1-0-\/5—-\/7—1
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456 30282 67283

s(n,6) = 1— — + —
306 23562 5808° (13.2.9)
t(n, ) - 1- n + n n ’

as the expressions for r(n,d), s(n,8) and ¢(n,d). Then, for testing the
homogeneity of the £ means, they propose the following trimmed analog,
F of the normal theory variance ratio:

F =%Qi(Xi-X)*/(k-1)3%,) , (13.2.10)
where
oot = [ZQi ) (ritibl)] / TQ; . (13.2.11)

In (13.2.10) and (13.2.11), for the i-th population, ; = 1,2, ..., k, X;, $2are
the trimmed mean and Winsorized variance estimators, b? is the analog
of (13.2.3), R? = b}/w} where is as given in (13.2.4), Q7 = n;/(r; * b?)
Qi = [(retab?)?(ni — V)] / (siR?), 13y 54, ti are the analogs of (2.9),
X, = (EQ{)A(;-) /(£Q7) and They suggest that the null distribution of

the statistic F. be approximated by the variance ratio F' distribution
with (k-1) and v (=2XQ),) d.f. It may be noted that in the above development
the proportion of trimmings may vary by samples. We will use these
results to develop the robust stepwise test for one way multivariate
analysis of variance hypothesis.

13.2.2 Combining Independent P-Values

The robust stepwise tests in Mudholkar and Srivastava (1999, c) use the
logic in Mudholkar and Subbaiah’s (1980) modification of J. Roy’s (1958)
step down tests, which, in turn, employ classical methods for combining
independent tests. The combination of P-values is a meta-analytic tool
for an overall judgement regarding a scientific hypothesis. Its
investigation often involves conducting several, m, independent studies
differing in design and size in which the original hypothesis takes form
of possibly different null hypotheses. It is well known that, when the
overall hypothesis is true, the P-values of the tests from these studies
are independent and uniformly distributed on (0, 1). Some of the best
known and widely used combination statistics, for combining m
independent P-values Py, P,,...P,, are; (i) W, =min(P;) due to Tippett, (ii)
W=-2 ¥ log(P;) due to Fisher, (iii) Wy= Z®(1-P;) due to Liptak, and (iv)
U, = A"1/2% log{P,/(1- P;)} where A=r>m(5m+2)(15m+12), due to
George and Mudholkar (1979). The overall null hypothesis is rejected
for small values of W and W, and large values of W and Wy. Under the
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null hypothesis W, is distributed as a minimum of m uniform variates,
W has a x2 distribution with 2m degrees of freedom, Wy is distributed as
aN(0, m) variate, and W, is approximated by a ¢-distribution with (5m +
4) degrees of freedom. In the following section, we propose robust tests
based on the modified step down logic.

13.2.3 Modified Step Down Procedure

The multivariate general linear model, very similar to its better known
univariate version, is given by

EY) = A®, (13.2.12)

where the n rows of the observation matrix Y (nxp) are independent
normal variates with a p.d. covariance matrix X, A (nxm) is a known
design matrix of rank m, and ® (mxp) is the matrix of unknown
parameters. The MANOVA hypothesis about the (mxp) matrix @ of
parameters for some matrix B (¢zxm) of full rank is,

Hy: $=BOG=0. (13.2.13)

It is well known that the problem of testing the hypothesis in (13.2.13)
has an invariant structure and the invariant tests, such as the likelihood
ratio (A), Hotelling-Lawley trace and Roy’s maximum root, all depend
upon the characteristic roots of HE", where H and E are the matrix
analogs of the univariate sum of squares due to hypothesis and error;
for distributional and other results see Anderson (1984).

A step down procedure for testing H, given by J.Roy (1958) involves a
sequence of familiar univariate tests. In the first stage of the procedure
consideration is restricted to the first components of the p-variate
observations, and consists of testing the univariate linear hypothesis
obtained by the corresponding restriction of H, using the familiar F test
at level o;. Second stage considers the distribution of the second
component of the observation vector conditional upon the first component
as the covariate, and consists of using an analysis of covariance F test at
level o, for testing the univariate linear hypothesis implied by H, for
the conditional distributions; and so on for the further stages of the
procedure. The remarkable fact which makes the stepwise procedures
simple and convenient is that under H, the F tests at the successive
stages of the procedure are independent; for details see J. Roy (1958),
Anderson (1984) or Seber (1984). The step down procedure involves
familiar univariate tests and raises no new distribution problems; but
presents the problem of choosing significance levels o,’s for the successive
F tests. The modified stepwise tests by Mudholkar and Subbaiah (1980,
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1988) avoid the problem by combining the independent P-values of the p
independent step down F' tests using one of the combining procedures
given in Section 13.2.2. They have shown that if the P-values are combined
using either Fisher’s or Logit method then the resulting tests are B-
optimal and asymptotically equivalent to the likelihood ratio test in terms
of Bahadur efficiency. Furthermore, the empirical evidence shows that
in the rank one particular case, i.e. the Hotelling’s problem, the power
functions of these modified stepwise tests are practically indistinguishable
from that of Hotelling’s T? test; see Mudholkar and Subbaiah (1980).

Multivariate One Way Classification. In this particular case we
have p-variate random samples Y;;, j=1, 2,..., n;, of size n;, Xn;=n, from k
p-variate normal populations N,(u,;, ), i=1, 2,..., ¢ and the MANOVA
hypothesis reduces to,

Hy:py =pz2=...= pix - (13.2.14)

For simplicity let p=2, and denote the component of the observation
vector by U;; and V;;. At the first stage of the stepwise procedure we have
to test the homogeneity of the mean of £ univariate normal populations
on the basis of random sample U}, j=1, 2,..., n;, from them. Let P, denote
the P-value of the ANOVA test statistic, F = (n — k)Xn;(U;. = U )2/ (k -
DEZU; - U.)?

At the second stage we have & bivariate normal populations of (U, V)’
with possibly different means (&v,, m;)’ but with the same covariance
matrix. Consider the conditional distribution of V given U for which

E(Vi|lU; ) = mi—-BUs;—-&),i=1,2,.k (132.15)

So at the second stage the problem of testing the homogeneity of the
means at (13.2.15) can be solved by using the standard linear model
theory or using the residual like quantities

ei; = Vij —bUi; , (13.2.16)

where the regression coefficient b as well as the s3 ; the estimator of the
conditional variance of V; given U}; are obtained from the pooled sample
covariance matrix. Let P, denote the P-value corresponding to the
analysis of variance F' test at the second stage. A similar reasoning can
be extended to p-variate populations, and the modified stepwise procedure
for the one way MANOVA is completed by combining the P-values
corresponding to all the p stages. It may be noted that process could be
considerably simplified, with possibly minor loss of efficiency, by using
independent estimates of the common regression coefficient of V on U
for each sample and regarding e;;’s as approximately independent.
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13.3 ROBUST STEPWISE TESTS

A use of the independence properties of the conditional distributions and
normal theory regression residual like quantities appears in Tiku and
Singh (1982) and Tiku and Balakrishnan (1988) where they use maximum
likelihood estimates with censored normal data to test the significance
of the equality of the mean vectors of two nonnormal bivariate
populations. Mudholkar and Srivastava (1999c¢) recast and view their
work in the framework of the modified step down tests and construct a
class of robust stepwise tests for the equality of two nonnormal
multivariate populations. Their work was motivated, on the one hand,
by the multivariate analog of the Winsor’s observation, noted in Mallows
and Tukey (1982), that “all observed distributions are Gaussian in the
middle”, and on the other hand by the belief that for large samples the
independence properties would remain approximately valid if the means
are replaced by the trimmed means with the associated appropriate
changes, especially those involving small sample adaptations of the
asymptotic distributions of the trimmed means and the Winsorized
variances outlined in Section (13.2.1). The robust analysis of variance by
Marchetti, Mudholkar and Mudholkar (1998) developed in Section (13.2.1)
is now used in conjunction with the modified stepwise one way MANOVA
procedure in Section (13.2.3) to construct the following robust stepwise
tests.

Suppose Y;;, i=1, 2,..., k and j=1, 2,..., n; be random samples from % p-
variate populations with distribution functions F(S"(y-u,)), i= 1, 2,..., k
and suppose it is of interest to test the null hypothesis Hy: z1- uo=...=t;.
Let Yi(jl) denote the [-th component, /=1, 2,..., p, of the p-dimensional
observation Yj;.

Step 1. Consider the £ univariate samples Y( ), Jj=1,2,..., n;, i= 1,

, k, of the first component of the multlvarlate samples. Trim a
proportion d,=g;/n; from each end of the i-th sample and compute the
trimmed mean Y(l) and the Winsorized sample standard deviation g(l),
i=1, 2,..., k, and use the trimmed ANOVA statistic F(1) using equatlon
(13.2. 10) to obtain the robust P-value p(1).

Step 2. Consider regression of the second components Y(Q) on Y(l)
Now, in the interest of simplicity regress Y(72) on Y(l) sample by sampie
separately and obtain independent estimates 2! of the common regression
coefficient *! and obtain the residual like quantities,

e = YO -yl j=12.nandi=12.k. 13317

Again apply the trimmed ANOVA procedure as discussed in Section
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13.2.1 to the residual like quantities eg) in (3.1), and obtain the statistic
F(2 to test the homogeneity of £ parameter values E(Yi(f) - pA Yig.l) ).
Compute the P-value of F(2) test by replacing n; by (n;-1) in the null
distribution approximation discussed in Section 13.2.1 and denote it
by P

Step 3. Now consider the conditional distribution of Y;(?) given Yig.?)
and Y; jl). Apply the logic of Step 2 for robust testing of the ﬂomogeneity
of expected values of E(Yi?) - B2 Yig?) ——,631Yz.g.1)) across the &
populations. That is obtain F(3) the robust trimmed statistic and the
corresponding P-value P(3) by applying the procedure to the residual
like quantities e =y — 32 Yi?) - bleigl)and using n,-2 instead
of ni in the null distribution approximation. Proceed in a similar manner
and obtain the remaining P-values, p(4) _ p®), the p robust
approximately independent P-values, corresponding to p stepwise
trimmed ANOVA tests.

Step 4. Combine the approximately independent P-values p(®) =1,
2,..., p, obtained in Step 3 by using any of the combination methods,
namely, Fisher, Logit, Liptak and Tippett, denoted by T, T, Ty, and
TT, respectively, to obtain the robust P-value for overall MANOVA
hypothesis.

Remark. It may be noted that the n; residual like quantities
obtained, for i-th population at the /-th stage of the decomposition,
using equations given in Steps 2—4 are not independently distributed.
Indeed, their covariance matrix is of rank (n;-/). One could potentially
improve the performance of the proposed statistics using Helmert’s
transformation and making the residuals independent. However, in
view of the convenience of implementation and the fact that, for n;
large in relation to p, this dependence would be negligible one can
treat the residual like quantities obtained above as approximately
independent.

13.4 AMONTE CARLO EXPERIMENT

13.4.1 The Study

In this section we describe a Monte Carlo experiment conducted in order
to understand the operating characteristics of the robust modified
stepwise MANOVA tests based on the four classical combination methods.
Although, the procedure allows for varying trimming proportions for
different samples and different stages, in this experiment, we kept the
trimming proportions equal at all stages. That is, we assumed
8;1=0;9=...=06,,=0;, i=1, 2,..., k, where §; is the proportion of observations
trimmed from the i-th population.
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Null Distribution. This part of the simulation experiment, involving
5000 replications, was devoted to the study of Type I error control of the
robust stepwise MANOVA tests. Each replication consisted of samples of
size n from three bivariate populations with a common covariance matrix
¥, with 1 as the diagonal elements and .5 as the off diagonal element,
and mean vectors iy = ph = ps = (0,0). The robust stepwise MANOVA
tests described in Section 13.4, using all four combination methods of
Section 13.2.2, were applied to the set of three samples in each replication
to test the homogeneity of the population vectors. The proportion of
rejections in the 5000 tests was used as the estimate of the Type I error
probabilities. The samples were of size n, n=10 (5) 50, and the populations
used were: (I) Ny(u, X), (IT) 0.8 Ny(u, 2)+0.2 Ny(u, 92), (IIT) 0.8 Ny(x,
2)+0.2 Ny(u, 16X), (IV) , ECo (1, ¥, |€|) (V) Bivariate T with 3 degrees of
freedom and (VI) Bivariate Cauchy. The details of the methods for
generating random samples from the above populations are discussed in
Mudholkar and Srivastava (1999a) or Johnson (1987). A selection of the
results, corresponding to some populations and Fisher combination
method, is presented in Table 13.1.

Power Study. The power function of the robust stepwise tests were estimated
using the above process in which each set of three samples came from the
bivariate populations with a common covariance matrix X, as above, and
different location vectors. The location vector for the first population was
13 = (0,0)and various alternative location vectors for the second and third

populations considered were : (A)u, = (u21,p22) = (0.2,0.2),
and pa = (us1,us2) = (0.2,0.2) (B) 5 = (0.5,0.5), uZ = (0.5,0.5), and
(C) py = (1.0,1.0) and pj = (1.0,1.0). A selection of the results of the

simulation experiments for the power properties is presented in Table 13.2.
For a visual depiction of the improvement observed for nonnormal populations
a selection of results, corresponding to level 0=.05, is presented in Figure
13.1. In Figure 13.1, on the alternative axis, 0.2, 0.5, and 1.0 correspond to
the alternatives (A), (B) and (C) discussed above and 0 refers to null situation
with all three vectors centered about 0.

Results. From the results of the Monte Carlo experiment, a selection
from which appear in Tables 13.1 and 13.2, and Figure 13.1, it is seen
that the robust stepwise MANOVA test procedures offer satisfactory Type
I error control. For very heavy tailed populations, such as multivariate
Cauchy, the accuracy of the null distribution improves with increasing
proportion of trimming. For example, when the underlying distribution
is bivariate Cauchy and the three samples are of equal size 50, then it is
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** Three bivariate populations, equal sample size (n), equal trimming
proportion § = (g/n)
* as discussed in Section 13.4

FIGURE 13.1 Power function of Fisher combination test** of Section 13.3

seen that the estimates of 5% nominal probability improve from .0154 to
.0386, .0418 and .0476 respectively for 0% , 10%, 16% and 20% trimmings.
In terms of the power functions the robust tests experience minimally
lower power at normal populations. For example, when the three samples
of size 50 are chosen from bivariate normal population, with alternative
(B), then the power declines from .7620 for 0% trimming to .7136, .7094
and .6750 corresponding to 10%, 16% and 20% trimming, respectively.
However, their power advantage is substantial for nonnormal populations,
especially when the populations are very heavy tailed. For example,
when three samples of size 50 are taken from bivariate Cauchy population
centered at the alternative (C), discussed above, the power estimates
improve from .0558 corresponding to 0% trimming to .7130, .8582, and
.9070 corresponding to 10%, 16% and 20% trimming, respectively. In
general, we suggest between 15-20% trimming from each end at each
stage of the procedure.
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13.5 CONCLUSIONS

In general, the multivariate normality assumption, underlying the
commonly used normal theory methods, is at best dubious. In this paper,
we have presented a class of robust stepwise tests based on the normal
theory modified step down tests due to Mudholkar and Subbaiah (1988).
They provide satisfactory Type I error control for a broad class of
symmetric multivariate populations. However, the real advantage of
the robust tests, as in the univariate case [Mudholkar, Mudholkar and
Srivastava (1991) and Srivastava, Mudholkar and Mudholkar (1992)], is
their remarkably and substantially higher power in case of heavy tailed
nonnormal populations without significant loss of power when the normal
assumption is satisfied. Hence, they are effective solutions for testing
the homogeneity of the means of multivariate samples.
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TABLE 13.1 Type I error control with Fisher combination statistic of Section
13.3; k=3, p=2, g, =number and § =% trimmed from the i-th population

A CLASS OF ROBUST STEPWISE TESTS FOR MANOVA

Population I : Ny(0, ¥)

Nominal Probabilites

ni_n2 n3 g1(01) g2(%) g3(d3) .05 01

20 20 20 0(0) 0(0) 0)  .0510 0122
20 20 20 3(15 3(15) 3(15) .0408 0076
20 20 20 5(25) 5(25) 5(25) .0406 .0072
50 50 50 0(0) 0(0) 0(0) .0492 0118
50 50 50 5(10) 5(10) 5(10) .0488 0094
50 50 50 8(16) 8(16) 8(16) .0500 0124
50 50 50 10(20) 10 (20) 10 (20) .0514 0108
20 20 50 0(0) 0(0) 0(0) .0482 0126
20 20 50 3(15) 3(15) 5(10) .0438 0078
20 50 50 0(0) 0(0) 0(0) .0542 0126
20 50 50 4(20) 6(12) 10 (20) .0460 0082
20 50 50 4(20) 10(20) 10 (20) .0506 0120

Population II : .8 N2(0,X) + .2 N3(0,9 X)

20 20 20 0() 0(0) 0(0) .0464 0078
20 20 20 3(15) 3(15) 3 (15) .0382 0072
20 20 20 5(25) 5(25) 5(25) .0390 0056
50 50 50 0() 0(0) 0(0) .0470 0080
50 50 50 5(10) 5(10) 5 (10) .0450 0096
50 50 50 8(16) 8(16) 8 (16) .0462 0102
50 50 50 10 (20) 10 (20) 10 (20) .0510 0078
20 20 50 0() 0(0) 0(0) .0516 0088
20 20 50 3(15) 3(15) 5(10) .0470 L0098
20 50 50 0(0) 0(0) 0(0) .0488 0072
20 50 50 4(20) 6(12) 10 (20) .0444 0094
20 50 50 4(20) 10(20) 10 (20) .0416 .0084
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TABLE 13.1 (Cont.)

Population III : .8 N2(0,X) + .2 N2(0,16 X)
Nominal Probabilites

ni_ne ny g1 (61) g2(%) g3(d3) .05 01

20 20 20 0(0) 0 (0) 0(0) .0418 .0060
20 20 20 3(15) 3(15) 3(15) .0408 0068
20 20 20 5(25) 5(25 5(25) .0364 0080
50 50 50 0(0) 0(0) 0(0) .0436 0084
50 50 50 5(10) 5(10) 5(10) .0366 0074
50 50 50 8(16) 8(16) 8(16) .0432 0092
50 50 50 10 (20) 10 (20) 10 (20) .0434 0078
20 20 50 0(0) 0(0) 0(0) .0476 0076
20 20 50 3(15) 3(15) 5(10) .0422 .0090
20 50 50 0(0) 0(0) 0(0) .0422 0078
20 50 50 4(20) 6(12) 10(20) .0464 0110
20 50 50 4(20) 10(20) 10(20) .0460 0090

Population 1V : EC3(0, %, |G/G/| )

20 20 20 0(0) 0 (0) 0(0) .0418 0076
20 20 20 3(15) 3(15) 3(15 .0398 .0070
20 20 20 5(25) 5(25) 5(25) .0476 0102
50 50 50 0(0) 0() 0(0) .0384 .0060
50 50 50 5(10) 5(10) 5 (10) .0446 0108
50 50 50 8(16) 8(16) 8 (16) .0496 0104
50 50 50 10(20) 10 (20) 10 (20) .0512 0110
20 20 50 0(0) 0(0) 0(0) .0464 0108
20 20 50 3(15) 3(15) 5(10) .0488 0116
20 50 50 0(0) 0(0) 0(0) .0430 .0080
20 50 50 4(20) 6 (12) 10 (20) .0454 .0088
20 50 50 4(20) 10(20) 10(20) .0486 0096
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TABLE 13.1 (Cont.)

237

Population V : Bivariate T with 3 Degrees of Freedom

Nominal Probabilites

ni ng n3 g1 (01) g2(d) g3(d3) .05 .01

20 20 20 00 0 (0) 0(0) .0506 .0068
20 20 20 3(15) 3 (15 3 (15) .0420 .0074
20 20 20 5(25) 5(25) 5(25) .0398 .0064
50 50 50 0(0) 0(0) 0(0) .0458 0098
50 50 50 5(10) 5(10) 5(10) .0434 .0066
50 50 50 8(16) 8 (16) 8 (16) .0442 .0092
50 50 50 10 (20) 10(20) 10 (20) .0432 .0064
20 20 50 0(0) 0 (0) 0(0) .0486 .0088
20 20 50 3(15) 3(15) 5(10) .0428 .0100
20 50 50 0 (0) 0 (0) 0(0) .0440 .0084
20 50 50 4(20) 6(12) 10 (20) .0462 0102
20 50 50 4(20) 10(20) 10(20) .0478 .0096

Population VI : Bivariate Cauchy

20 20 20 0(0) 0 (0) 0(0) .0182 .0010
20 20 20 3(15) 3 (15 3(15) .0358 .0064
20 20 20 5(25) 5(25) 5(25) .0326 .0084
50 50 50 0 (0) 0 (0) 0(0) .0154 .0004
50 50 50 5(10) 5(10) 5(10) .0386 0070
50 50 50 8(16) 8 (16) 8 (16) .0418 .0070
50 50 50 10 (20) 10 (20) 10 (20) .0476 0104
20 20 50 0(0) 0 (0) 0(0) .0312 .0026
20 20 50 3(15) 3 (15) 5(10) .0434 .0120
20 50 50 0(0) 0 (0) 0(0) .0396 .0064
20 50 50 4(20) 6(12) 10(20) .0484 .0148
20 50 50 4(20) 10 (20) 10(20) .0570 0160
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TABLE 13.2 Empirical power functions for Fisher combination statistic of Section
13.3; k=3, p=2, Alternatives (A), (B) and (C) in Section 13.4, g;= number and =%
trimmed from i-th population

Fopulation I : Np(— , 5

Level o= .05 Level o= .01

ny  mng  nz  g1(61)  92(82)  ga(s3) Alternatives Alternatives
(A) () (©) %) () ©)
20 20 20 0 (0) 0 (0) 0 (0) .0976 .3736 .9342 .0268 1744 .8154
20 20 20 3 (15) 3 (15) 3 (15) 0758 .2846 8812 -0200 .1230 L7122
20 20 20 5 (25) 5 (25) 5 (25) 0652 .2508 8226 .0128 .0938 .5944
50 50 50 0 (0) 0 (0) 0 (0) .1556 7620 1.000 .0470 5460 .9988
50 50 50 5 (10) 5 (10) 5 (10) .1450 7136 .9998 .0408 4714 .9984
50 50 50 8 (16) 8 (16) 8 (18) .1420 .7094 .9998 .0428 .48640 .9978
50 50 50 10 (20) 10 (20) 10 (20) -1266 6750 .9994 .0372 .4396 .9960
20 20 50 0 (0) 0 (0) 0 (0) .1016 4112 .9684 .0240 .2006 .8954
20 20 50 3 (15) 3 (15) 5 (10) .0860 .3458 9444 .0202 -1504 .8298
20 50 50 0 (0) 0 (0) 0 (0) .0966 .4590 .9808 .0288 .2358 19204
20 50 50 4 (20) 6 (12) 10 (20) .0866 .3832 .9530 .0234 .1810 .8660

20 50 50 4 (20) 10 (20) 10 (20) .0948 .3806 9516 .0280 1718 .8496

Population II : .8 Ng(— .X) + .2 Np(— .9 =)

20 20 20 0 (0) 0 (0) 0 (0) .0586  .1814  .6046  .0126  .0622  .3792
20 20 20 3 (15) 3 (15) 3 (15) 0576 2082  .7190  .0124  .0722  .4842
20 20 20 5 (25) 5(25) 5 (25) 0610  .1820  .6656  .0154  .0586  .4166
50 50 50 0 (0) 0 (0) 0 (0) 0880 3860  .9292  .0268  .1738  .8252
50 50 50 5 (10) 5 (10) 5 (10) 1094 5144 9870  .0290  .2876  .9568
50 50 50 8 (16) 8 (16) 8 (16) 1092 .5234  .9898  .0314  .2008  .9612
50 50 50 10 (20) 10 (20) 10 (20)  .1028  .5168  .9904  .0284  .2782  .9604
20 20 50 0 (0) 0 (0) 0 (0) .0666  .1982  .6668  .0162  .0664  .4478
20 20 50 3 (15) 3 (15) 5 (10) .0618  .2408  .7990  .0128  .0956  .5924
20 50 50 0 (0) 0 (0) 0 (0) 0676 2284  .6924  .0200  .0888  .4664
20 50 50 4 (20) 6 (12) 10 (20)  .0724  .2728  .8550  .0158  .1162  .6824

20 50 50 4 (20) 10 (20) 10 (20) 0774 .2880 -8608 .0218 1218 6842
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TABLE 13.2 (Cont.)
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Population III : .8 No(— . X) + .2 Np(— , 16 &)

Level o= .05

Level o= .01

ny g Ty a1 (51) ug (82) 93 (83) Alternatives Alternatives

(A) (€] ) (4) (B) )
20 20 20 0 (0) 0 (0) 0 (0) .0560 .1346 4552 .0098 .0366 .2516
20 20 20 3 (15) 3 (15) 3 (15) .0520 .1888 .6676 .0114 .0670 .4386
20 20 20 5 (25) 5 (25) 5 (25) .0510 1782 6576 .0112 .0612 4004
50 50 50 0 (0) 0 (0) 0 (0) .0714 2552 .7914 .0152 .1008 5922
50 50 50 5 (10) 5 (10) 5 (10) .0870 4644 .9760 .0210 2472 9176
50 50 50 8 (18) 8 (18) 8 (16) .1054 4898 .9862 .0276 .2576 19502
50 50 50 10 (20) 10 (20) 10 (20) -1040 .4956 .9842 .0284 2636 .9364
20 20 50 0 (0) 0 (0) 0 (0) .0536 1492 4856 .0096 .0478 .2720
20 20 50 3 (15) 3 (15) 5 (10) 0606 2214 7582 0158 0816 5424
20 50 50 0 (0) 0 (0) 0 (0) .0600 .1566 .5394 .0124 .0528 .3230
20 50 50 4 (20) 6 (12) 10 (20) .0646 2722 .8342 .0148 L1116 .6486
20 50 50 4 (20) 10 (20) 10 (20) .0762 28586 .8594 0224 1172 6766

Population IV : KCo(—~ , T, |G/G))

20 20 20 0 (0) 0 (0) 0 (0) .0720 .2770 7862 .0148 .1228 6142
20 20 20 3 (15) 3 (15) 3 (15) .0906 .3790 9360 .0252 .1804 .8248
20 20 20 5 (25) 5(25) 5 (25) .0760 -3456 .8098 .0206 .1458 .7520
50 50 50 0 (0) 0 (0) 0 (0) .1080 5350 9548 .0302 3220 -8002
50 50 50 5 (10) 5 (10) 5 (10) L1724 .8188 .9998 .0600 6212 9994
50 50 50 & (16) 8 (16) 8 (186) 1726 .8180 1.000 .0618 .6218 .9986
50 50 50 10 (20) 10 (20) 10 (20) 1794 8184 1.000 0394 6260 .9998
20 20 50 0 (0) 0 (0) 0 (0) .5362 6614 .8510 .3038 4340 .7168
20 20 50 3 (15) 3 (15) 5 (10} .6974 .8138 .9702 4002 5796 -8898
20 50 50 0 (0) 0 (0) 0 (0) .0818 .3168 .8306 .0258 .1508 .6988
20 50 50 4 (20) 6 (12) 10 (20) .1036 .5346 .9846 .0322 .3094 .9466
20 50 50 4 (20) 10 (20) 10 (20) L1162 5428 .0844 .0336 .3078 .9506
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Population V : Bivariate T with 3 Degreesof Freedom
Level o= .05 Level o= .01

L5% ng na g1 (81) g2 (52) g3 (83) Alternatives Alternatives

B [€S))] (A) (B) &)
20 20 20 0 (0) 0 (0) 0 (0) .0474 .0836 .2232 -0100 .0188 .0832
20 20 20 3 (15) 3 (15) 3 (13) .0466 .0906 .2852 .0096 .0210 .1122
20 20 20 5 (25) 5 (25) 5 (25) .0440 .0786 .2616 .0086 .0194 .0938
50 50 50 0 (0) 0 (0) 0 (0) .0646 .1436 .5000 .0134 .0408 .2738
50 50 50 5 (10) 5 (10) 5 (10) .0666  .1938 6912 0142 0752 4650
50 50 50 8 (186) 8 (16) 8 (16) .0708 .2006 .7184 .0144 .0896 .4814
50 50 50 10 (20) 10 (20) 10 (20) 0674 .2044 .7218 .0168 .0728 .4886
20 20 50 0 (0) 0 (0) 0 (0) .0552 .0982 2712 .0118 .0262 .1084
20 20 50 3 (15) 3 (18) 5 (10) .0870 .1102 .3332 .0136 .0316 .1510
20 50 50 0 (0) 0 (0) 0 (0) .0590 .0938 .2816 .0138 .0270 .1168
20 50 50 4 (20) 6 (12) 10 (20) .0606 .1082 .3946 .0156 .0306 .1868
20 50 50 4 (20) 10 (20) 10 (20) .0568 1214 .4090 .0132 .0374 .1964

Population VI : Bivariate Cnuchy

20 20 20 0 (0) 0 (0) 0 (0) .0190 0274 .0564 .0016 .0042 .0130
20 20 20 3 (15) 3 (15) 3 (15) .0430 .1028 .3766 .0072 .0316 .1886
20 20 20 5 (25) 5(25) 5 (25) .0454 .1254 .4704 .0098 .0390 .2504
50 50 50 0 (0) 0 (0) 0 (0) .0166 .0244 .0558 .0012 .0034 .0116
50 50 50 5 (10) 5 (10) 5 (10) .0580 .2070 .7130 .0176 0764 .4896
50 50 50 8 (16) B (18) 8 (16) .0746 .2908 .8582 .0184 .1314 .6988
50 50 50 10 (20) 10 (20) 10 (20) .0818 .3548 .8070 .0244 .1728 .7850
20 20 50 0 (0) 0 (0) 0 (0) .0314 0410 .0636 .0034 .0102 .0154
20 20 50 3 (15) 3 (18) 5 (10) .0558 11024 .3962 .0152 .0366 .1992
20 50 50 0 (0) 0 (0) 0 (0) .0360 .0394 .0634 .0044 .0074 .0156
20 50 50 4 (20) 6 (12) 10 (20) .0588 .1488 .5264 .0190 .0536 3172
20 50 50 4 (20) 10 (20) 10 (20) L0712 .2092 .6456 -0202 .0834 4264

Copyright © 2002 Taylor & Francis



CHAPTER 14

ROBUST ESTIMATORS FOR
THE ONE-WAY VARIANCE
COMPONENTS MODEL

YOGENDRA P.CHAUBEY K.VENKATESWARLU

Concordia University, Montreal, Quebec, Canada

Abstract: Since the adaptation of using pseudo-observations generated
by M-estimation technique by Rocke (1983, Biometrika) for proposing robust
estimators of variance components, there have been added quite a few
methods in this direction [see the review article by Welsh and Richardson
(1997) in Handbook of Statistics, Vol. XV]. However, not much extensive
comparative studies of these methods are available [see, e.g. Richardson
and Welsh (1995), Biometrics]. In this article, we present our numerical
study of the ML and REML procedures and their robust versions for the
one-way random effects model. Biases, MSE’s and convergence properties
of the different procedures are compared.

Keywords and phrases: Variance components, robust methods,
unbalanced ANOVA

14.1 INTRODUCTION

Variance component models are used in various fields including sample
surveys, animal breeding experiments and quality control procedures.
The recent decade has seen several developments towards inference
procedures for these models [see Rao (1997), Rao and Kleffé (1988), Searle
et al. (1992)]. There are various procedures for estimating the variance
components. The ANOVA method is still popular in the case of a
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balanced design. However, for the unbalanced case, the choice is not
absolutely clear. With the development of efficient numerical algorithms,
there has been a tendency to use the maximum likelihood approach.
The maximum likelihood approach, necessarily demands normality
assumptions and therefore may not be appropriate when such
assumptions are not justified. Even when the data can be considered
normal, in general, contamination of the observations and/or gross errors
make the maximum likelihood approach [Hartley and Rao (1967)] (which
is totally dependent on the model assumptions) inefficient as was
demonstrated by Huber (1981) and Hampel ez al. (1986). Owing to these
practical considerations, there have been attempts to develop robust
estimators for variance components.

One possible alternative to the normality assumption is to replace
the distributions of error components by longer tailed distributions as
investigated in Lange et al. (1989) and Stahel and Welsh (1992). Since
the validity of a particular long tailed distribution may not be justified
in practice, Rocke (1983) presented robustified version of the ANOVA
estimates for the balanced two-component mixed model, which was
subsequently extended to the unbalanced data by considering
Henderson’s Method 3. However, one drawback of this method is its
inability to prevent negative estimates. A more general approach was
introduced by Fellner (1986) robustifying the Henderson-Harville REML
algorithm [see Harville (1977)]. These methods were motivated from
the algorithmic nature of Huber’s approach to robust estimation in
linear models, and the asymptotic properties of the resulting estimators
are yet to be established.

A different direction was taken in Huggins (1993), which replaced the
quadratic function in the likelihood by a slowly varying function motivated
by Huber’s original suggestion for the robust estimation of a location
parameter. Asymptotic properties of the resulting estimators were
established by Richardson (1995). Similar to Huber’s proposal I and II,
Richardson and Welsh (1995) studied the corresponding s functions for
the robust estimators for variance component models. These were named
Robust ML1 and Robust ML2.

The maximum likelihood estimator is known to be badly biased in small
samples; see Swallow and Monahan (1984). This problem was overcome
by Patterson and Thompson (1971, 1974) in the classical case by introducing
restricted likelihood (likelihood of independent contrasts of the data rather
than of the data itself). The resulting likelihood does not involve the fixed
parameters and the corresponding estimators of variance components are
known as the REML estimators. Richardson and Welsh (1995) also
robustified REML algorithm similar to Huber’s approach as mentioned
above. These are called Robust REML1 and Robust REML2. For a detailed
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ac-count of various robust methods for mixed linear models the reader
may refer to Welsh and Richardson (1997).

There have been numerical studies comparing various estimators in
the classical case [such as Hocking and Kutner (1975), Corbeil and Searle
(1976), Chaubey (1984) and Swallow, Monahan (1984) and Westfall (1987)
and others] for finite samples. For comparing robust estimators there are
only a few studies in the literature. Stahel and Welsh (1992, 1996) compared
the REML with robust estimators of Fellner (1986) and Rocke (1991) for
the balanced one way model. Richardson and Welsh (1995) conducted a
small simulation study to compare the ML, REML and their robust versions
for a two component mixed model. Gervini and Yohai (1998) compare
another robust version of the ML with the robust procedures of Rock (1991)
and Fellner (1986).

The purpose of this paper is to provide a detailed comparison of some
robust estimators for the unbalanced one way model. Consideration of
other procedures is in progress. Section 14.2 outlines the ML and REML
methods for estimating the variance components along with their robust
versions as proposed in Richardson and Welsh (1995). Section 14.3 gives
details of the sampling experiment together with the numerical results
and Section 14.4 presents a discussion of these results. The final section
presents summary and conclusions.

14.2 MIXED LINEAR MODELS AND ESTIMATION OF
PARAMETERS

14.2.1 General Mixed Linear Model

The general mixed linear model is given by

c—1

y=Xo+) Zfi+e (14.2.1)

=1

where, y is an n-vector of responses, X and Z; are known nxp and nxq;
design matrices, respectively, a is a p-vector of unknown fixed effects, /3;
represent q; vectors of unobserved random effects, 1<i<c-1; and €is an n-
vector of unobserved errors. The random effects f3; are assumed to be
independent with mean zero and variance oZ; each component of the error
e is assumed to be independent with mean zero and variance 2 and f3,,...,
/3.1 and € are assumed to be independent. Thus, we have

E(y) = Xa
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var(8i) = o7l,; var(e) = oI, and (14.2.2)
c—1
var(y) = V =0a2I,+ Z 022;7].

i=1

14.2.2 Maximum Likelihood and Restricted Maximum
Likelihood Estimators

Assuming the normality of the random effects and the error term in the
model (14.2.1), the log-likelihood function is given by

18) = (-1/2)log|V]] — (1/2)(y — X&)’V (y — Xa) (14.2.3)
where 8§ = (a,02,0%, ...,02)". We may write (14.2.3) as
10) = (-1/2) Xg:log[leH — (1/2)(y; — X;0)'V; Wy — X50)  (14.2.4)
j=1
where ¥ = (1, -.-,¥y)". This partitioning is such that yj and yj’ (j#;’) are
uncorrelated and X and V are partitioned conformably. Now, the maximum

likelihood estimator of the variance components 6o = (o ?,02,...,0%) can
be obtained by solving the following estimating equations

a=(XVIX)IX'Vly,. (14.2.6)
g
> =tV Z 205 + (v — X;0)' Vi Z: 20V (s — Xje) =0,
=1
i=1,..,c (14.2.5)

Each Z; Z}1is block-diagonal with jth block being denoted by [Z; Z;{]; These
equations can be solved iteratively.
The REML estimator of 6, is obtained by maximizing

Ir(60) = (=1/2)log[|V|] - (1/2) log[|X'V ' X|] - (1/2)y'Py. ~ (142.7)
As shown by Harville (1977), this estimator is obtained from
—tr[PZZ]] + (y — Xa)'VYZ; Z )V~ H(y — Xa) =0,
r 1+ {y - Xa)'V [Z: Z]] _ (y — Xa) (14.2.8)
i=1,2,...,c
where
P=V I - X(X'VIX)"lx'V
and o= (X'VIX)~IX'V-ly
In the following section we outline the robust versions of (14.2.5) and
(14.2.8) as presented by Richardson and Welsh (1995).

(14.2.9)
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14.2.3 Robust Versions of ML and REML Estimators

Huggins (1993) method maximizes the following modified likelihood
function with respect to 6,,

g9
lrob = 3 (=1/2) l0g[[V;[] — 5[V, 2 (w5 — X50)],  (14.2.10)
j=1

where the functions rho; is supposed to diminish the effect of large residuals,
providing robust estimates. The resulting estimate are called Robust ML.1
and can be obtained by solving the following estimating equations;

(1/2) Zz Vo PZ 2V P (25) — wel KV ZaZ);) = 0
j=1
i=1,..,c (14.2.11)

where K =E/eys(e)’] with e ~ N(0,1,), z; = Vj_1/2(y] Xja),{p;} are
suitable non-negative vector functions and ¢;(z) = dp; (z) /0z. The choice
for p being considered for Robust ML1 is pj(2;) = 3.7_; p(25:) where
p(x)=(1/2)x? for x| =c and p(x)=c | x | -(1/2)c? is the usual Huber’s p function.
The second proposal comes from the requirement to bound the values of
z; 1;(2;)in the above equation rather than bounding only Z; This results
in the following estimating equations:

<1/2>ij ) VR Z 2V () — wlKg VT HZZY;] = 0,

j=1 (14.2.12)
i=1,...,¢c

where K,=E[y(e)y(e)’]. This procedure is called Robust ML2. The equations,
(14.2.11) and (14.2.12) also require the value of o, which is obtained by
solving

g
- ~1/2
DXVl s - Xe)] = 0. (14.2.13)
The robust version of REML is obtained by minimizing a robust version
of (14.2.7) as in the case of the robust ML method which results in the
following proposals:

Robust REML1: Solve

{(y = XYV Z,Z)V~ Y2V (y — Xa)] — tr[K1 PZ; Z]]} = 0,
i=1,..c. (14.2.12)
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Robust REML2: Solve
(V12 (y - Xa)' V22, 2]V 2V 2 (y — Xa)]
—tr[KoPZ:Z)} =0, i=(14.2.5)

14.2.4 Computation of Estimators for the One Way Model
The one way model is given by
Yij = K +a; + €ij (14216)

where u is an unknown parameter, a; denote the random effects and e;; are
unobservable errors;a; ~ N(0,02), e;; ~ N(0,02), j =1,..,n5,i=1,.... k.

The constant % is the number of groups and (n4, n,,..., n,) is called the n-
pattern. This model in the matrix form can be written as

y=1yp+ Z1oq +€ (14.2.17)

where 1y denotes a N-vector of one’s, IV: =2 ni,

1,, O
1n,
7, =
1n,
7 7 7/ ’ / . :
o=(a, as...,ay), € = (€1, €2, .-, €%), € denoting the column vector

(€ij),7 = 1,...,n;. Thus y is a vector of observations with mean vector

u, 1y and variance covariance matrix
V =0V + o2Vs. (14.2.18)

With these values the general iterating schemes given in Sections 14.2.2
and 14.2.3 are used in the numerical experiment described in the next
section.

14.3 DESCRIPTION OF THE SIMULATION EXPERIMENT

We chose the 10 n-patterns studied in Swallow and Monahan as given
below;

P1=(3,5,7)

P2=(1,5,9)

P3=(3,3,5,5,7,7)

P4=(1,1,5,5,9,9)

P5=(1,1,1,1, 13, 13)
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P6=(3,3,3,5,5,5,7,7,7)
P7=(1,1,1,5,5,5,9,9,9)
P8=(1,1,1,1,1,1,1, 19, 19)
P9=(2, 10, 18)

P10=(3, 15, 27)

These represent various degrees of unbalancedness as discussed in
Swallow and Searle (1978). We generated 1000 trials for each pattern
such that the convergence was achieved in a maximum of 200 iterations
for different degrees of contamination (CTYPE) in a; and €i; as described
below (see also Rocke (1991)) where N stands for standard normal
distribution, LT stands for a mixture distribution with 90% N(0, 1) and
10% N(0, 9)and VLT stands for a 95% N(0,1) and 5% N(0,100) mixture.
Thus, CTYPE (NN)a; ~ N, €; ~ N refers to and CTYPE (NLT) etc. are
defined in a conformal fashion.

The convergence was considered to have been achieved when the
estimates at the kth and (k+1)th iterations satisfied

/\2 /\2 ~ A
|Ua,k+1 - %,kl |‘72,k+1 - Ug,k,
1462, 1+62,

< .00001.

This criterion is the same as the one used by Swallow and Monahan (1984)
except that we have a tighter error bound (.00001 instead of .0001) and the
maximum number of iterations was 200 [instead of 20 used by Swallow
and Monahan (1984)]. This criterion is based on the premise that relative
discrepancy is more meaningful than the absolute discrepancy. Unity is
added to each denominator to prevent division by zero. In the case of CTYPE
(NN), convergence was reached in less than 200 iterations for all n-
patterns. However as contamination increased the number of trials which
did not converge in less than 200 iterations also increased (see Table 14.3
for a comparison).

For each combination of CTYPE and n-pattern we computed the estimates
of bias and MSE by averaging over all the replications. It should be also
pointed out here for clarity that the parameter of interest in this study is
the variance component of non-contaminated part. The biases and MSE’s
for only n-patterns P1, P2 and P3 are displayed in Tables 14.1 and 14.2. A
detailed picture is given through graphs for all the patterns. The graphs
for absolute biases computed from these simulations for ¢2 and o2 are
presented in Figures 14.1 and 14.2 respectively, where as those for the
MSE are presented in Figures 14.3 and 14.4.
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14.4 DISCUSSION OF THE RESULTS

14.4.1 Biases of the Estimators of 52

For NN case, absolute biases are smaller for REML and its robust
versions than for ML and its robust versions. This feature is common
with the balanced case [see Swallow and Searle (1978)]. The biases
for robust procedures are slightly larger than those for its nonrobust
counterpart in the case of REML. However, this trend is reversed in
the case of ML.

Ifthe effects are contaminated, then there is a tendency for increased
bias in REML and its robust versions as compared with that of ML
and its robust versions. If the effects are uncontaminated, a large
contamination in the error can also produce a large absolute bias in
REML than that in ML.

When the random effects are not contaminated but the errors are
contaminated, the biases of robust REML are smaller than those of
REML.

When both the components are contaminated, the robust procedures

do not seem to have much added (if any) advantage for estimating
2

When the degree of unbalancedness is small (e.g., see P1, P3 and
P6), the robust REML procedures have slightly smaller bias than
REML, even when both components are contaminated.

(o4

14.4.2 Biases of the Estimators of 62

The behaviour of the estimators in this case is clearer. For the NN
case, biases of all the estimators are small. When there is a
contamination in error terms, robust REML2 seems to drastically
reduce the bias in REML. Such performance is also visible with
respect to ML and its robust versions, especially, for very large
contamination.

The biases in robust REML procedures are generally higher than
those for robust ML, especially, when there is a contamination in
the error component.

14.4.3 MSE’s of Estimators of 62

For NN case REML and its robust versions RREML1 and RREML2
have larger MSE’s than ML and their robust counterparts.
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¢ When the random effects are not contaminated, but the errors are,
the MSE’s of robust procedures are reduced when the degree of
unbalancedness is small. However, this tendency is reversed as the
unbalancedness increases.

* When the random effects are contaminated, robust procedures tend
to have larger MSE’s than their non robust versions. However, it
may depend on the nature of unbalancedness in the data and the
degree of contamination.

* Robust ML procedures, generally, seem to be better than the robust
REML procedures for estimating o2.

14.4.4 MSE’s of Estimators of 52

¢ In the case of no contamination at all, there is no serious loss in
efficiency by using any of the robust procedures.

¢ Significant gains can be achieved by the robust procedures, especially
when the degree of contamination is large. In particular, Robust
ML2 seems to have smaller MSE’s than other procedures.

14.5 SUMMARY AND CONCLUSIONS

Itis clear from this numerical study that robust versions of ML and REML
methods in case of one way ANOVA model, generally reduce the MSE’s for
the estimator of the variance component due to the error term, especially,
for a large contamination in the error term. However, no such general
pattern is evident for the estimators of o2. Thus, we are of the opinion that
better robust versions for estimating o2 are desired.
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TABLE 14.1 Bias of different estimators o2 for and o2
CTYPE
Variance Estimation
Component Method NN NLT NVLT LTN LTLT LTVLT VLTVLT
T-patterni(3,5,7)
ML -0.3643 -0. -0.3610 0.2238 | 0.0808 0.1167 1.37217
RML1 -0.3441 -0.4058 -0.4985 0.2442 0.0782 -0.0309 1.1562
ag RML2 -0.3454 -0.4310 -0.4518 0.2286 0.0550 0.0409 1.1237
REML 0.0451 0.0469 0.2687 0.9338 0.7687 0.9836 2.8708
RREML1 0.0863 0.0327 -0.1372 0.9852 0.7661 0.5890 2.3624
RREML2 0.0941 0.0028 -0.0838 0.9790 0.9838 0.6212 2.4935
ML -0.0273 0.7637 4.5439 -0.0225 0.7358 4.5046 3.2010
RML1 -0.0157 0.6080 2.3990 -0.0157 0.5696 2.5001 1.9319
03 RML2 -0.0144 0.4248 0.4416 -0.0193 0.3930 0.5182 0.5194
REML -0.0151 0.7970 4.7175 -0.0139 0.7667 4.7223 3.3149
RREML1 0.0046 0.6631 2.6943 0.0020 0.6228 2.7756 2.1686
RREML2 0.0136 0.4938 0.4909 0.0068 0.4534 0.6123 0.7060
n-pattern:(1,5,9)
ML -0.4040 -0.3587 0.2329 0.1453 0.1287 0.2273 1.5416
RML1 -0.3761 -0.3362 0.2145 0.1840 0.1642 0.2284 1.5905
0(21 RML2 -0.3762 -0.3339 0.2415 0.1898 0.1883 0.2326 1.6567
REML 0.0541 0.2023 1.1355 0.9232 0.9684 1.1252 3.0850
RREML1 0.1135 0.2517 1.0284 1.0164 1.0450 1.0614 3.1012
RREML2 0.1213 0.2738 1.3420 1.0358 1.2819 1.2511 3.5126
ML -0.0192 0.7382 2.5932 -0.0046 0.7189 2.2748 2.2830
RML1 -0.0070 0.5870 1.5351 0.0103 0.5580 1.4348 1.3982
03 RML2 -0.0050 0.4077 0.4401 0.0128 0.3833 0.4810 0.3919
REML -0.0077 0.7723 2.7269 -0.0015 0.7449 2.3867 2.4069
RREML1 0.0106 0.6334 1.7262 0.0173 0.5951 1.6075 1.5711
RREML2 0.0197 0.4620 0.5335 0.0273 0.4244 0.6143 0.5130
h-patternt(3.3,5,5.7,7)
ML -0.2433 -0.1826 0.0540 0.52186 0.4578 U.5385 3.3712
RML1 -0.2332 -0.2153 -0.3080 0.5262 0.4280 0.2559 2.9807
03 RML2 -0.2339 -0.2298 -0.2272 0.5089 0.4240 0.4613 3.3088
REML -0.0478 0.0539 0.4481 0.8702 0.8223 1.0145 4.4079
RREML1 -0.0313 0.0064 -0.1160 0.8857 0.7822 0.5701 3.8541
RREML2 -0.0276 -0.0027 0.0681 0.8775 0.7979 1.0208 4.5013
ML 0.0218 0.7784 3.8570 -0.0047 0.7654 3.6352 3.4797
RML1 0.0282 0.5703 1.8069 -0.0023 0.5642 1.7844 1.6077
{7? RML2 0.0294 0.3946 0.4685 -0.0050 0.3940 0.4822 0.4337
REML 0.0228 0.7830 3.8874 -0.0043 0.7694 3.6651 3.5099
RREML1 0.0336 0.5849 1.8985 0.0023 0.5775 1.8661 1.6827
RREML2 0.0387 0.4142 0.5132 0.0034 0.4119 0.5231 0.4743
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TABLE 14.2 MSE’s of different estimators for 62 and o2
TTYPE
Variance Estimation
Component | Method NN NLT NVLT LTN LTLT LTVLT VLTVLT
n-pattern:(3,5,7)

ML 07823 | 0.8708 T4176 15078 10292 15480 I3 552

RML1 0.8146 | 0.8222 0.9037 4.7067 3.9851 3.6507 42.0383

o RML2 0.8319 | 0.8100 2.0722 4.7126 4.0790 8.0904 41.5787
REML 1.5007 | 1.7339 4.8036 11.0292 9.8250 13.2336 103.9541

RREML1 1.6385 | 1.6100 1.7077 11.6758 9.8577 8.9991 98.4896
RREML2 1.7071 ) 1.6002 2.7501 11.8535 | 74.4219 11.0710 103.3757

ML 0.1524 | 2.0643 [ 103.3943 0.1667 7.1060 107.9137 75.9659

RML1 0.1602 | 1.2913 29.9037 0.1670 1.3222 35.8396 37.4485

a2 RML2 0.1730 | 0.8072 2.5724 0.1745 0.8540 4.1133 3.0606
REML 0.1562 | 2.2007 | 112.5792 0.1707 2.3180 119.7921 82.1319

RREML1 0.1657 | 1.4762 37.9285 0.1739 1.4788 44.6710 46.7762

RREML2 0.1786 0.9661 3.3544 0.1818 0.9656 7.3851 7.1338

n-pattern:(1,5,9)

ML 03704 ] 1.0535 ] : 7500 50714 5414 51,4413

RML1 1.0254 | 2.1142 29.6552 5.1397 5.3396 9.2087 55.1236

o2 RML2 1.0325 | 2.2584 28.9563 5.2942 5.9530 9.5551 57.2195
REML 1.9496 | 4.6069 65.7224 11.7468 | 13.0268 21.6921 121.5250

RREML1 2.1498 | 5.0550 68.8978 12.8104 | 14.0980 22.7529 130.1634

RREML2 2.1979 | 5.8225 82.1688 13.29092 | 35.8792 27.5250 145.6212

ML 0.1518 | 2.0021 15.6996 0.1732 71618 39.9752 $2.0543

RML1 0.1595 | 1.2685 18.7252 0.1810 1.2956 19.7899 27.2794

. RML2 0.1723 | o.77e1 2.9569 0.1909 0.7978 3.4047 1.9174

o2 REML 0.1573 | 2.1703 54.4292 0.1713 2.2798 43.7717 58.4719
RREML1 0.1666 | 1.4263 23.6981 0.1789 1.3987 24.9129 34.1214

RREML2 0.1802 | 0.8907 3.8541 0.1912 0.8864 6.3028 4.2974

n-pattern:(3,3,5,5,7,7)

ML 0.464 - . [~ 3.5020 35523 B2617 105.4454

RML1 0.4734 | 0.5279 0.6582 3.5413 3.4843 3.7267 98.6461

o'g RML2 0.4827 0.5122 0.6060 3.4890 3.6761 5.2697 117.0506
REML 0.5886 0.8447T 3.3043 5.4102 5.5012 8.6247 155.0287

RREML1 0.6115 | 0.7041 0.8882 5.5470 5.4014 5.7320 145.5551

HRREML2 0.6204 ! 0.7121 1.4411 5.5601 5.9078 13.2309 197.8034

ML 0.0859 ] 1.3380 46.3292 0.0831 1.4843 48.2451 32.3332

RML1 0.0888 | 0.7324 11.0704 0.0855 0.8217 14.0499 9.8386

o2 RML2 0.0946 | 0.4340 0.8445 0.0917 0.4871 0.8191 0.8707
REML 0.0863 | 1.3551 46.9358 0.0834 1.5035 49.3238 43.1850

RREML1 0.0902 | 0.7622 12.3410 0.0862 0.8532 15.6365 10.8664

RREML2 0.0965 | 0.4598 1.0049 0.0925 0.5121 0.9505 0.9925
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TABLE 14.3 Number of trials not converged in 200 iterations
(in 1000 trials)

Estimation Method
n-Pattern | ML | RML1 | RML2 | REML | RREML1 | RREML2
CTYPE: NVLT
P1 6 6 52 7 6 86
P2 10 12 67 5 6 118
P3 20 8 65 14 7 83
P4 15 4 98 14 3 139
p5 6 5 97 7 7 142
P6 21 5 64 17 6 96
PT7 13 10 99 12 4 139
P8 8 6 93 4 12 124
P9 10 11 155 6 24 243
P10 6 15 258 6 17 365
CTYPE: LTVLT
P1 10 6 51 9 4 87
P2 8 4 63 4 10 125
P3 20 10 74 11 4 96
P4 15 4 101 11 6 133
P5 7 9 106 6 15 136
Pé6 14 2 49 14 5 77
P7 6 6 94 12 5 133
P8 3 5 105 4 10 124
P9 4 8 171 3 20 258
P10 6 18 224 4 36 334
CTYPE: VLTVLT

P1 10 5 44 6 6 90
P2 9 7 70 4 11 119
P3 15 6 77 14 3 100
P4 13 5 97 10 4 135
P5 6 7 105 7 7 156
P6 17 1 58 19 4 94
P7 18 3 104 4 5 143
P8 5 10 92 4 11 110
P9 4 13 183 4 18 265
P10 4 14 223 3 34 331
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CHAPTER 15

PERFORMANCE OF THE PTE
BASED ON THE CONFLICTING
W, LR AND LM TESTS IN
REGRESSION MODEL

Md. BAKI BILLAH
University of Dhaka, Dhaka, Bangladesh

A K. Md. E.SALEH

Carleton University, Ottawa, Ontario, Canada

Abstract: The problem of estimating the regression coefficients in the
usual multiple regression model is considered when it is apriori
suspected that the coefficients may be restricted to a subspace. The
preliminary test estimator (PTE) based on the Wald (W), Likelihood
Ratio (LR), and Lagrangian Multiplier (LM) tests are given. Their bias,
mean square error matrix (M), and risk function are derived and
compared. In the neighbourhood of the null hypothesis the PTE based
on the LM test has the smallest risk followed by the LR based estimator
and the estimator based on the W test is the worst. However, the PTE
based on the W test performs the best followed by the LR based estimator
when the parameter moves away from the subspace of the restriction
and the LM based estimator is the worst. A table has been prepared for
maximum and minimum guaranteed relative efficiency of the estimators
corresponding to the three tests. This table allows one to determine
optimum level of significance corresponding to the optimum estimator
among the three. It has been shown that the optimum choice of the
level of significance becomes the traditional choice by using the W test.
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Keywords and phrases: Preliminary test estimators; relative
efficiency; level of significance; risk analysis; conflict in tests

15.1 INTRODUCTION
Consider the regression model
y=XB+e, (15.1.1)

where y is an nx1 vector of the response variable, X is an nxp matrix of
non-stochastic independent variables, /3 is a p-dimensional column vector
of regression parameters and e is the vector of errors associated with y
having the same dimension. It is assumed that X is of full rank and
n>p. Also assume that the errors follow normal distribution with mean
vector 0 and covariance matrix ¢2I.

The null hypothesis to be tested is

Ho: HB = h, (15.1.2)

where H is a known gxp matrix of full row rank and % is a known gx1
vector. The maximum likelihood (ML) estimator for /3 is the ordinary
least squares (OLS) estimator given by

B = C_IX'?J,

where C=X"X.
Further, the ML estimator of ¢2 is given by

5=y~ XP)y - XP).

The bias and M of the unrestricted estimator of  are 0 and ¢*C-
respectively.
The restricted OLS estimators of § and ¢® are

B—C*H'(HC'H"\"Y(HB —h) and
(v XB)(w— XB),

(SR
Il

>

respectively. The restricted estimator of § has bias,
B(B)=n=—C~'H'(HC™'H')~(HB - h)

and M, M(B) = 02C~1 —o2A+ny Where A = C-'H'(HC~'H')"*HC™L.
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The restricted estimator performs better than the unrestricted
estimator when the null hypothesis Hf=h holds. However, as Hf differs
from A, the restricted estimator may be considerably biased, inefficient
and inconsistent while the performance of the unrestricted estimator
remains steady over such departure. For this reason, it is desirable to
develop an estimator which is a compromise between the unrestricted
and the restricted estimators under uncertain prior information Hf3=h.
This can be done by using the preliminary test approach. The PTE of 3
is defined by

A =B+ -IE <& INB-H), (15.1.3)

where £* is the general test statistics for testing the hypothesis (15.1.2),
&, o is the a-level of the critical value of £* and I(A) is the indicator
function of the set A. The idea of preliminary test estimator was proposed
by Bancroft (1944). The performance of the PTE depends on the size of
the test a. The PTE falls in the area of inference with uncertain prior
information and have been studied by Bancroft (1944, 1964), Mosteller
(1948), Kitagawa (1963), Han and Bancroft (1968) among others.
Asymptotic theory together with robustness considerations have been
extensively studied by Saleh and Sen (1978, 1984a, b, 1986) among
others. Two bibliographies in this area of study are given by Bancroft
and Han (1977), and Han, Rao and Ravichandran (1988).

Our main objective of this study is to provide a finite sample theory
of the preliminary test estimators (PTE) based on W, LR, and LM tests
with normality assumption for the estimation of regression coefficients
under general uncertain sub-hypothesis situation stated earlier and to
compare the performance of the three estimators. In Section 15.2, we
proposed the estimators and test statistics for the null hypothesis
H:Hf3=h. Section 15.3 contains the bias, M, and risk of the estimators.
In Section 15.4, we discuss the relative performance of the estimators.
The generalized efficiency is discussed in Section 15.5. Finally, Section
15.6 summarizes the findings.

15.2 THE TESTS AND PROPOSED ESTIMATORS
To test the null hypothesis (15.1.2) the usual F statistic is

_ RRSS—URSSm

F= URSS 7 (15.2.4)

where m=n-p, URSS = (y ~ X B)’(y — XB) is the unrestricted residual
sum of squares and RRSS = (y— X B)'(y— X B) is the restricted residual
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sum of squares. Under the alternative hypothesis the distribution of
(15.1.2) is a non-central F with (g, n-p) degrees of freedom and with the
non-centrality parameter given by

A= %%(Hﬁ — hY(HC-YH')"Y(HS ~ h). (15.2.5)

Three general principles employed for hypothesis testing in econometrics
are the W, LR, and LM criteria. The W test was introduced by Wald
(1943) and the LM test by Aitchison and Silvey (1958) and Silvey (1959).
The LM test is the same as the score test of Rao (1947). Savin (1976)
shows that a systematic numerical inequality exists between the test
statistics for testing linear restrictions on the coefficients of certain linear
models. The inequality relation between the values of the test statistics
is W=LR=LM. The three test statistics for testing the hypothesis (15.1.2)
are

Y = (HB-h)(G*HC'H")"Y(HB - h), (15.2.6)
LR = pllné? — Iné?, (15.2.7)
LM = (HB—h)'(6*HC™'H')"'(HB — h). (15.2.8)

These test statistics can also be written as follows
¢ = Zp, (15.2.9)
¢"F = nin (1 + 5—;) , (15.2.10)

LM fw

£ = Trev7m (15.2.11)

The three test statistics are a function of F statistic since " = MF.
Each test statistic has a different exact sampling distribution and hence
the critical value for each test statistic is different. When these tests
employ exact critical values they are referred to as exacts tests. The
PTE defined in terms of exact tests at a given significance level have
the same bias, M and risk. However, due to the inequality relation
between the value of the test statistics the estimators based on a fixed
critical value may have different bias, M and risk.

The exact sampling distributions of the three test statistics is
complicated, so that in practice the critical regions of the tests are
commonly based on asymptotic approximations. Under the null
hypothesis the three test statistics have the same asymptotic chi-square
distribution. In most of the econometric applications this asymptotic
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chi-square distribution is used for the testing purposes. When the exact
distribution is approximated by the asymptotic chi-square distribution
the critical value for an a level test of H, is approximated by the chi-
square critical value x2(q). The tests based on this approximate critical
value are known as large sample tests. The PTE based the large sample
tests are defined as follows

B = BIEY <x2(@) +BIEY >x2(g), (15.2.12)
BER = BI(EER <¥2(q) + BIELR > x2(g), (15.2.13)

BEM = BIEM™ <xA(a) +BIEM > xA(g).  (152.14)

15.3 BIAS, M AND RISK OF THE ESTIMATORS

In this section, we give the expressions for the bias, quadratic risk and
M matrix of the preliminary test estimators gW, 3LR and BLM. Direct
computation following Judge and Bock (1978) lead to the following
results.

The bias of the PTE based on the W, LR, and LM tests are given by
(15.3.15)—(15.3.17) respectively:

(i) BBY) = —nGerom(l;n), (15.3.15)

(i) BB'R) = —nGuam(tEFR;A), (15.3.16)

(1)) B(B"™M) = —nGaram(@™;4), (15.3.17)
x2 (@)

2
where &Y = so0d (), 87 = g™ - 1), 4V = ey,
x2(q) is the critical value of the central x* distribution of q degrees of
freedom at a significance level and Gy (; A) is the cumulative
distribution function of a non-central F-distribution with (¢+2, m)
degrees of freedom and non-centrality parameter A.

Note that for =0, the bias of the three estimators coincide with the
bias of the restricted estimator, B, while for a=1, it coincides with that
of 3, the unrestricted estimator. Also, as the non-centrality parameter
A — oo, B(8Y) = B("") = B(BEM) = B(B) = 0 while B(j)becomes
unbounded. However, under H, : HB=h, A=0, hence all the estimators
are unbiased:

B(BY) = B(B*R) = B(B*M) = B(3) = B(B) =0. (15.3.18)

The M of the PTE based on the W, LR, and LM tests are given by
(15.3.19)—(15.3.21) respectively:
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@) M@BY) = o2C! = AGgiam(&;A)
+m [2Gg42,m (85 A) — Coram(Y;0)], (15.3.19)

(i) M(BIR) = o%C™! — 0®AGyiom(EFR; A)
71 [2Gqr2,m (617 ) — Gayam (375 A)],(15.3.20)

(@) M(B*M) = 62C' — 62 AGqo.m(£FM; A)
+m [2Gg12,m(EFM; A) — Gopam(G3™; 4)] (15.3.21)

where
m
EW — 2 ,
2 (9

kR = R ),

2 (g+4) )
and

LM _ mXi(fI)

B = AT D - 2@

and Gg.4m (.5 A) is the cumulative distribution function of a non-central
F-distribution with (g+4, m) degrees of freedom and non-centrality
parameter A.

If the loss function is (5*-5) W(3*-f) for a given non-singular matrix
W using the estimator £*, then the risk is defined by

R=E[(f* - B)W(B" - )] = tr(WM),

where M is the mean-squared error matrix of 5*. Now direct computation
following Judge and Bock (1978) lead to the following theorem.

The risk of the PTE based on the W, LR, and LM tests are given by
(15.3.22)—(15.3.24) respectively:

(@) RBY) = oHr(WC™) —c2tr(WA)Gorom(€Y; A)
+tr(Wi') [2Gg42,m (@15 8) — Garam (85 8)] (15.3.22)

(@) R(B™®) = Ptr(WC™) - ®tr(WA)Gyram(t1%; A)
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+tr(Wnn') [2Gg42,m (67 A) — Goyam(€57;4)],  (15.3.23)
(@55) R(B*™M) = o*tr(WC™) — a2tr(WA)Gyram(EFM; A)
+r(Win') [2Ggs2,m (675 8) = Goram (55 4)] -
(15.3.24)

The risk of the PTE depend on the matrices C and W. To ease the
computations, we let W=0-2C. With these substitution in equations
(15.3.22)—(15.3.24), the three risks, for simplicity, are

(i) R(BY) = p—qGuram(£Y;A)

15.3.2
+A [2Ggsom( @5 A) — Goyam(@;a)] (10325
(@) R(B®) = p—qGeram(tF%A)
FA [2Gg40,m(EER; A) — Gyyam(EER; )] (15:3:26)
(i5) R(B*M) = p—qGeiam(tE™;A) (15.5.27)
FA [2G g 12.m (55 A) — Gopam (55 8)] 125

15.4 RELATIVE PERFORMANCE OF THE ESTIMATORS
15.4.1 Bias Analysis of the Estimators

The quadratic bias of the PTE based on the W, LR, and LM tests are
given by (15.4.28)—(15.4.30) respectively: Here, the quadratic bias is a
quadratic form in the bias vectors in equations (15.3.15)—(15.3.17) where
the weight matrix is (1/62)C.

@) QBBY) = A[Gpam(” A, (15.4.28)

(i) QBB"®) = AlGuam(@RA)?,  (154.29)
(i) QB(B™M) = A[Geiam(0)]°. (15430
Since, #fM > R > 0¥ we have
Gor2,m(lFM;A) > Goyam(ULR;8) > Ggrom (€5 A).

Therefore, an inequality relation between the quadratic biases of the
three estimators is given by

QB(8Y) < QB(B"") < @B(B*M).
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15.4.2 M Analysis of the Estimators

In this subsection we analyse the M of the PTE based on the three tests
and determine their dominance properties.
For the M comparison of 3W and LR, we consider the M-difference

M(B%) — M(BYR) = 0® Ay — i/ [20) — 9], (15.4.31)

where Y= Gq+2,m(€fR§ A) - Gq+2,m(e¥V;A) and Y* = GQ+4ym(Z%R; A) -
Gyi2.m(£¥; A) This M-difference is positive semi-definite whenever for
a given non-zero vector ¢t=(t,,..., ¢,), we have ¢’ [c? Ayy—nn’ {2 —1p* }]t > 0.
That is to say,

Yot At > (29 — ¥*)t'nn't.
Hence for all (px1) non-zero vectors ¢, we have

(29 —o*) t'm't < t'At
P o2t'C-1t — ¢C-1¢’

since ’C-t>0. Now

(29 — ) t'mn't t'At
v X apot SMEyoip
We know that
t'nn't n'Cn
maX SveT - o2 T o
and
t'At / A .
max ==y, = ChmaxH' (HC *HY"'HC '] =1,

since H'(HC*H’)'HC" is an idempotent matrix [see Searle (1971)].
Thus (15.4.31) is positive definite if and only if

0<A<@2—y*/y) . (15.4.32)

Within this interval the estimator LR performs better than the
estimator 3W, and W performs better than 3LR outside the interval
i.e. for

A>(2—y* /)t (15.4.33)

Now, for the M comparison of 3LR and 3LM, we consider the M-difference

M(B R) — M(BEM) = oAy — ' (291 — 97, (15.4.34)
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where

b1 = Goram(M; A) = Goyom (405 4)
and

¥ = Goram(EM; ) = Garam (5% D).

Proceeding in the similar way as above the M-difference is positive semi-
definite whenever

A< @291/t (15.4.35)

Thus BLM is superior to LR in this range of A, otherwise LR is superior.
Hence, the M of the estimators has the dominance picture

M(BY) > M(BERY > M(BEM), (15.4.36)

for all A in the interval
oy —1 wy —1
[O,min{<2— %) , (2— %) }] ,

M(B%) < M(BLR) < M(GEM), (15.4.37)

while

within the interval defined by
«/z*)‘l ( ¢f)”1
Aefmazri{2-— 02— == , .
( { ( (4 (2} >

15.4.3 Risk Analysis of the Estimators

In this subsection, we provide the risk analysis of the estimators with
the general loss function. We study the relative performance of the
estimators under the null hypothesis as well as under the alternative

hypothesis.
We get from the Courant theorem [see, e.g., Mardia (1979)] that
'Wn
hmin WC—I < 77_ < hma:t WC—I
or,

2 AChmin(WC™Y) < /W < 62 Achmaz(WC™1),
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where ch,,;, (WC') and chmax(WQ"l) are the minimum and maximum
eigenvalues of (WC?) and A = -'J;C,ﬂ Now we compare W versus LR.
The risk difference in this case is as follows:

R(BY) — R(BER) = o2tr(WAYW — ' W29 — v*). (15.4.38)

Thus, we see that the right hand side of (15.4.38) is nonnegative (=0),
whenever
tr(WA)
T Chmae(WC-1)(2 - 41) (15.4.39)

The length of this interval is bigger than the interval (15.4.32), provided
by the M analysis. In this case gLE performs better than gW while aW
performs better whenever
tr(WA)
" chmin(WCH) (@2 - 5 (15440

For W=C we note that tr(WA)=g and the required intervals follows
(15.4.39) and (15.4.40). Under H,, we see that LR is superior to W
since the difference is positive for all a. We can describe the graph of
BLR as follows: It begins with a value

A2tr(WC™) - a®tr(WA)Gygpo,m (¢X7;0)

at A=0, then increases crossing the risk of 3% to a maximum then drops
gradually towards ¢?r(WC™) as A—oo.

Now we compare LR and gLM. Both gLR and gLM are superior to
BW under the null hypothesis H,, : Hf=h. In general the risk difference
is given by

R(B*®) — R(B"M) = a*tr(WAY1 — ' Wn(2¢1 — yi). (15:4.41)

Thus, we obtain that the risk difference is nonnegative (> 0) whenever

tr(WA)

0<AL _
Chimae(WC—1)(2 — %IL) (15.4.42)

and gLM performs better than 3LR in this interval. Also, the length of
this interval is bigger than the interval (15.4.35), provided by the M
analysis.
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The risk difference is negative if
tr(WA)
Chmin(WC-1)(2 — %5_) ’ (15.4.43)

A>

Thus, LR performs better than LM in this interval. Also, the length of
this interval (15.4.42) is bigger than the interval (15.4.35), provided by
the M analysis.

We can describe the graph of 3LM as follows: It begins with a value

c*tr(WC™Y) — o tr(WA)Gyr2,m(£FM; A)
at A=0, then increases crossing the risk of 3LR and gW to a maximum

then drops gradually towards o?tr(WC?) as A—oo. Clearly, the risk of
the three estimators may be ordered as

R(B*M) < R(B"") < R(B™), (15.4.44)
in the interval
0< A < min tr(WA) _ tr(WA) —,
chmae(WC-1)(2 — %) Chmaz(WC1)(2 - E-];)

while
R(B"M) > R(B*") > R(BY), (15.4.45)

in the interval

tr(WA) tr(WA)
A € | mazx — = (.00 ).
( {chmax(WC—l)@ —2) Chimaz(WC-1)(2 — 51 } )

Graphical display of relative risks of the three estimators are given in
Figures 15.1-15.4.

15.5 EFFICIENCY ANALYSIS AND RECOMMENDATIONS

In this section, we consider the risk efficiency of the three estimators
for  and provide a max-min rule for the optimum choice of the level of
significance for the preliminary test of the null hypothesis H,:Hf3=h.
Table for relative effciency (maximum and minimum) and A value at
which minimum efficiency of a given estimator, 3+ occurs relative to
the unrestricted estimator 3 is provided, For discussion we take W=C.
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The relative efficiency of 3+ compared to 3, is given by

RE( : f) = T

= F(a; A .5.
PN (;A) (15.5.46)

where
9(8) = (¢/p)Gyr2m(€7; B) = (A/q) [2Gg2,m (€55 A) — Garam(€3; A)].

For a given n, E is a function of @ and A. The function E(a, A) for a0,
has its maximum at A=0 with value (1 — ¢/pGqr2,m(¢3;0))™* (> 1) and
decreases crossing the line E(a, A)=1 to a minimum E(a, A)=E, at A=A,.
As A increases beyond A, the relative efficiency increases and
approaches 1 as A—oo. In the case when A=0 and a varies we have max,
E(a; 0)=E(0; 0)=(1-q /p)*. The value E(a;0) decreases as a increases. On
the other hand if =0 and A vary, then the curve E(0; A) and E(1; A)=1
intersect at A=q. For a general a, E(0; A) and E(1; A) will intersect in
the interval 0<A<q; the value of A at the intersection decreases as a
increases.

In order to choose an estimator with maximum relative efficiency we
adopt the following procedure: If it is known that 0<A<gq, the estimator
3 1s chosen since E(0; A) is the largest for all A in this range. However,
if A is unknown, there is no way of choosing a uniformly best estimator.
In such case, we pre-assign a value of the efficiency, say E,, that we are
willing to accept then consider the set B = [a|E(o;A) > Ey,VA] and
the estimator is chosen which maximizes E(a, A) over all o, ¢ B and A.
Thus, we solve for a such that max,ep mina E(a, A) = Eo. Hence, for
each estimator we can find optimum level of significance say ayy, afr
and a7, respectively with minimum guaranteed effieiency E,. Then,
we choose ajy = min(ajy,0lg,05) as the optimum level of
significance since ajy < ajp < af .

Our main objective is to choose the smallest level of significance (a)
to yield the best estimator in the sense of highest efficiency. Table 15.1
provides the values of maximum and guaranteed minimum relative
efficiency and recommended corresponding size a of the three PTE’s for
p=4 and n=10, 15, 20. For example, if n=10 and p=4, and the
experimenter wishes to have an estimator with a minimum guaranteed
efficiency of 0.80, then using Table 15.1, we recommend him to select
a=0.05, corresponding to W based PTE, because such a choice of a would
yield an estimator with a maximum efficiency of 1.9065 at A=0 and a
minimum guaranteed efficiency of 0.8331. Notice that ¢=0.05 is the
traditional level of significance used by experimenters.
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15.6 CONCLUSION

In this paper, we studied the effect of the tests on the PTE for the
regression parameter when there exists uncertain prior information
(UPI) that Hy:Hf=h may hold. It is well known that the test statistics
satisfies the inequality W>LR>LM. Thus there may exists conflict in
the resulting test conclusions when certain fixed critical value is chosen
to test the hypothesis.

In this paper, we find that the resulting PTE’s of the regression
parameter with UPI satisfy the MSE ordering

BW > BLR > BLIM’

o —1 N =1
OSASmm[(z—%-) ,(2—%) ]

and the MSE ordering

for

,BW <,BLR </@LMa

AN __w_)
AZmax|i(2 w) ,<2 ™ .

Similarly, the risk orderings are

BLI\I < BLR < BW,

for

in the interval

0 < A < min { tr(WA) tr(WA) J ,

Chimaz(WC=1)(2 = %) chynaa (WC—1)(2 — B

while the ordering is
BIM - BLR 5 W

in the interval

A > maz [ tr(WA) tr(WA) J .

Chmax(WC_l)(2 - %p_*) ’ Chmaz(WC—l)(2 - ZJ})

We have also discussed the method of choosing an optimum level of
significance to obtain maxi-mini guaranteed efficient estimators. The
W based PTE is found to be performs best in the choice of the smallest
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level of significance to yield the best estimator in the sense of highest
minimum guaranteed efficiency. The most striking feature of the results
is the optimum choice of the level of significance becomes the traditional
choice by using the W test.
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TABLE 15.1 Maximum and minimum guaranteed efficiency of PTE’s (p=4)

n =10
Test o 5% 10% 15% 20% 25% 30%
w Max 1.90650 1.62379 1.47491 1.37847 1.25309 1.10537
Min 0.83308 0.87967 0.90612 0.92494 0.93917  0.94999
A 4.00000 4.00000 3.50000 3.50000 3.00000  3.00000
LR Max 3.38472 2.35811 193005 1.68932 1.103767 1.41601
Min 0.67164 0.77281 0.82963 0.86800 0.89594  0.91749
A 5.50000 5.00000 4.00000 4.00000 3.50000  3.50000
LM Max 814.66395 13.12121 5.02178 3.13313 2.34099 1.91390
Min 0.19748 0.38799 0.57301 0.69251 0.77387  0.83199
A 12.50000 9.50000 6.50000 5.50000 4.50000  4.00000
n =15
w Max 2.54892 2.00571 1.74055 1.57678 1.46131 1.37356
Min 0.78409 0.84151 0.87551 0.89978 0.91849 0.93278
A 4.00000 4.00000 3.50000 3.50000  3.00000 3.0000
LR Max 4.32222 2.81708 2.22004 1.89372 1.68251 1.53237
Min 0.66671 0.76046 0.81642 0.85539  0.88377  0.90689
A 5.00000 4.50000 4.00000 3.50000 3.50000  3.50000
LM Max 21.20441 6.44112 3.75890 2.72800  2.19044 1.86058
Min 0.41128 0.58923 0.69617 0.76804 0.81968  0.85954
A 8.00000 6.00000 5.00000 4.50000 4.00000 3.50000
n =20
W Max 3.05974 2.28485 1.92521 1.70988 1.56138 1.45049
Min 0.75864 0.82112 0.85895 0.88608 0.90716  0.92329
A 4.00000 4.00000 3.50000 3.50000  3.00000 3.00000
LR Max 4.86009 3.30704 2.37686  2.00280 1.76291 1.59349
Min 0.66721 0.75795 0.81216 0.85018 0.87899  0.90260
A 5.00000 4.00000 4.00000 3.50000 3.50000  3.50000
LM Max 13.32845 5.38561 3.44083 2.60337  2.13703 1.83932
Min 0.50846 0.64861 0.73385 0.80375 0.83610 0.86926
A 6.50000 5.00000 4.50000 4.00000 3.50000 3.50000
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CHAPTER 16

ESTIMATION OF REGRESSION
AND DISPERSION PARAMETERS
IN THE ANALYSIS OF
PROPORTIONS

SUDHIR R.PAUL

University of Windsor, Windsor, Ontario, Canada

Abstract: Data in the form of proportions arise in Toxicology and other
similar fields. These proportions often exibit extra variation than can
be explained by a simple binomial distribution. In the analysis of these
proportions interest is, generally, in the estimation of the mean or the
regression parameters. The dispersion parameter then plays the role of
a nuisance parameter. However , in some instances the dispersion
parameter or the intraclass correlation parameter is of primary interest.
For example, in some binary-data situations in Toxicology the intraclass
correlation is interpreted as ‘heritability of a dichotomous trait’. In this
paper we consider estimation of the dispersion parameter along with
the regression parameters by using quadratic estimating functions
(QEEs) of Crowder (1987). By varying the coefficients of the QEEs we
obtain five sets of estimating equations. We compare large sample
relative efficiency of these estimates with the maximum likelihood
estimates. Estimated large sample relative efficiencies are also
compared for three real life data sets arising from biostatistical practices.

Keywords and phrases: Dispersion parameter, efficiency, Gaussian
likelihood, intraclass correlation, joint estimation, optimal estimating
equations
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16.1 INTRODUCTION

Data in the form of proportions arise in toxicology [Weil (1970) and
Williams (1975)] and other similar fields [Crowder (1978) and Otake
and Prentice (1948)]. These proportions often exibit extra dispersion
(over-dispersion or under-dispersion) compared to that predicted by a
simple binomial model. In situation like this, interest is often in the
estimation of the mean or the regression parameters. The dispersion
parameter can then be treated as nuisance parameter. However, in many
situations the dispersion parameter or the intraclass correlation
parameter may be of interest in its own right, as in some binary-data
situations where it is interpreted as ‘heritability of a dichotomous trait’
[see Elston (1977) and Crowder (1982)]. Estimation of the dispersion
parameter is also important for making inference regarding the
regression parameters. Marginal or conditional estimation of the
dispersion parameter is difficult. So we consider joint estimation of the
mean (regression) parameters and the dispersion parameter. The usual
procedure is to take a parametric model, such as, the beta-binomial or
the extended beta-binomial model to allow over as well as under
dispersion and obtain maximum likelihood estimates of the parameters.
This procedure may produce inefficient or biased estimates when the
parametric model does not fit the data well. Alternatively , more robust
estimates, such as moment estimates, quasi-likelihood estimates
[Breslow (1990) and Moore and Tsiatis (1991)], extended quasi-likelihood
estimates [Nelder and Pregibon (1987)], the Gaussian likelihood
estimates [Whittle (1961) and Crowder (1985)], estimates based on the
pseudo-likelihood estimating equations of Davidian and Carrol (1987)
and estimates based on quadratic estimating functions of Crowder (1987)
and Godambe and Thompson (1989) can be considered. Paul and Islam
(1998) study six such estimates and compare the small and large sample
efficiency and bias properties of these estimates with the maximum
likelihood estimates [see Paul and Islam (1998) for details]. Their study
show that if interest is only in the mean or the regression parameters
then the quasi-likelihood is the method of choice. On the other hand if
we need estimation of the dispersion parameter or the joint estimation
of the regression and the dispersion paramters then the Guassian
likelihood estimates are the estimates of choice. Crowder (1985) finds
similar good properties of the Gaussian likelihood estimates. Note that
the generalized estimating equations approach of Liang and Ziger (1986)
does not apply here as the primary focus of the procedure is to estimate
the regression parameters only.

In this paper we consider estimating the regression and the dispersion
parameters by the quadratic estimating equations (QEE’s) of Crowder
(1987) and Godambe and Thompson (1989). By varying the coefficients
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of the QEE’s we obtain five sets of estimating equations. Some of these
five sets of estimating equations coincide with some of those studied by
Paul and Islam (1998). We compare the large sample efficiency of the
five sets of estimates obtained by the QEE’s and the estimates obtained
by quasi-likelihood method with the maximum likelihood estimates.
We also compare estimated relative efficiencies of the estimates for three
sets of real life data arising from biostatistical practices.

Joint estimation of the regression parameters and the dispersion
parameter by the seven methods are discussed in Section 16.2. In Section
16.3 we derive and compare large sample relative efficiencies. Estimated
relative efficiencies of the estimates for three sets of real life data are
compared in Section 16.4. A discussion is given in Section 16.5.

16.2 ESTIMATION

16.2.1 The Extended Beta-Binomial Likelihood
We assume that Yi | p~binomial (ni, p), for i=1,..., m. That is,

P(Y; = yilp) = ( Z )p’“(l )

Note that the binomial parameter p may not remain constant within a
litter. So, we assume that the binomial probability p is a random variable
distributed as a beta distribution with parameters a and f having
probability density function

a—1 1— B-1
f(pla’/g) = I)_E('ﬁ_—vo <p< l,a> 07ﬂ > 07
where B(a, ) = FF(ES’FL(LB) is the beta function. Then, the marginal

distribution of Y; is the beta-binomial distribution with probability
function

P(Y; = yini) = ( e ) Blotvim 8-y

Yi B(a, )
Reparameterizing a and  as m=a/(a+$) and ¢ = 1/(1 + a + §), the
unconditional distribution Y; can be expressed as
P(Y; = yi|ni)
_ ( n; ) ro {1 = o)+ o} T~ {(L - $)(1 — ) + 76}
v [I75 {1+ (r ~ 1)} ’
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with 0< n;<1 and maw(%) < ¢ < 1 [Prentice (1986)]. The mean
structure n=m; is given by the logistic model

mi(Xi; B) = eXP /(1 + eXiP),

where X;5=X;3,+...+X;5, and Xj,..., X, are k explanatory variables ,
f1,..., B are the k regression parameters. The mean and variance of the
extended beta-binomial variate Y; are np; and n;m;(1 — m){1 + (n; —
1)¢}. Clearly when ¢ = 0, the beta- binomial variance coincides with
the binomial variance. The parameter ¢ is the dispersion parameter or
the intraclass correlation parameter. Maximum likelihood estimate
(mle) of f=(f31,..., 5;) and ¢ can be obtained by solving the ml estimating
equations

a & —g
55 ~ A\ T om

n;—yi—1 1_¢ |

,,;0 (1—¢)(1—7r1)+7.¢} (ﬂ):O’ i=1,.,k

and
a & e m+r mi ! —(l—m)+r
% Z{Za— it 2 Too0-mitre
r—1
_Z(l—¢)+r¢} O

simultaneously, where

di;(B) =

87r1~

3_,8]' = 7!'-,;(1 - 7T1;)X1;j.

Now, denote the parameter vector (3, ¢) by A. Then the maximum
likelihood estimate of \ is denoted by },,;.

16.2.2 The Quasi-Likelihood Method

The quasi-likelihood [Wedderburn (1974)] is based on the knowledge of
the form of first two moments of the random variable Z,=Y;/n; which
coincides with those based on the extended beta-binomial model. The
quasi}ikelihood with the above mean and variance is given by

Q= Z Q(z;, m;, ¢’), where

=1
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dt.

_ (i (Zi — t)ni
Qe mnd) = / DI+~ D)

Then, given ¢, the unbiased estimating equation for f3; is

_9Q _ ¥ (2 — mi)nidi; (B) _
Uihd) =55 = L mi-miit -0~ "

i=1..k (16.2.1)

i=1

No such estimating equation exists for ¢. However, an unbiased
estimating equation for ¢ can be obtained by using moment method,
which, when the & § parameters are estimated is [Breslow (1984, 1990)
and Moore and Tsiatis (1991)]

= (7 — mi)?ny _
lh*“@¢)_§:wx1—mxl+ou—1w}”“n_k)_o' (16.2.2)

i=1

Denote the estimates of f and ¢, obtained by solving equations (16.2.1)
and (16.2.2) simultaneously, by XQ L

16.2.3 Estimation Using Quadratic Estimating Equations

For joint estimation Crowder (1987) proposed a general class of
estimating functions called the quadratic estimating functions. Joint
estimation of the parameters by the quadratic estimating functions avoid
the failure of the maximum quasi-likelihood estimation to give
reasonable results. For more details see Crowder (1987). We consider
estimating functions quadratic in Z; that has general form (3.1) of
Crowder (1987)

g = Z[ai)\(zi — ) + bia{(zi — m)? — o2},
i=1

where a;, and b;, are specified nonstochastic functions of A. Thus, the
unbiased quadratic estimating equations for f3;,..., fx and ¢ have the
form

m

Ui(B,¢) = > laig, (2 — m) + big, {(zi = m)* = ah}] =0,

i=1

i=1,..,k 1 (16.2.9)
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and
Ueri(B,8) = ) _laig(zi — m) + big{(z — m)* — o} = 0.(16.2.4)
i=1
If we take
_ 1 n;(1 — 2m;)?
aig; = [ +2(1—¢)7r 1 —m)? ] di;(8),
b _ —n,¢(1 — 27rz)dz,7(6)
BT - mA - m)ag,
) _ —(]. — 27l'i)n7;
Y T A —grm(l—m)
and

ni{l + (n; — 1)¢}
2(1 — d)2 {1+ (n; - 1)¢}0i2,\

biqs

we obtain the Gaussian estimating equations [see Paul and Islam
(1998)]. Denote the estimates by AaL: (mee1)

If we take a;g, = d;j(8)/0?, big, = 0, aig = 0 and bip = W
then we obtain the unbiased estimating equations(QEE’s) studie by
Paul and Islam (1998) which were obtained by combining the quasi-
likelihood estimating equations for the regression parameters and the
optimal quadratic estimating equations of Crowder (1987) for the
dispersion parameter after setting v, and v, to zero. Denote the estimates
so obtained by ;.

For

Gg = [=(v2ix + 2+ (1 = 2m)oyn/mi(1 — 7)]di; (B)
P 12>\'7i>\ '
b = D= (- 27rz)dx/7rz(1 — mi)|di; (B )

‘iﬂj -

1)\71)\
aip = maami(l — m)(ni — 1)/niodvia
and

big = —mi(1 — m;)(ni — 1) /nichvix,

where, Yix = Y2ix +2 — ’yfi 5 We obtain the optimal quadratic estimating
equations [Crowder (1987)]. Note that the forms of the skewness vy;
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and the kurtosis vy,; are not known. We take these based on the second,
third and fourth moments of the beta-binomial distribution, which are:

p2i = m(l—m){l+ (ni — 1)é}/n,
pai = poi(1—2m){14 (2n; — 1)¢}/n:(1 + @)

and

o AL 20 = DO} + Bri — DOH1 = 3m(1 — 7o)}

e = 1-9)
b (s — 1){é + Inapigs | ———?
‘ TR + 202

Denote the estimates obtained by solving these optimal quadratic
estimating equations by ),zo. Further, denote the estimates obtained
by solving the optimal quadratic estimating equations with y;;,=74:,=0
by Ajss- Note, the estimates ) ,,5 are also obtained by using the pseudo-
likelihood estimating equations of Davidian and Carrol (1987).
2
Finally, ifwe(:;al;e ’)liﬂj = dij (ﬂ)/o‘?» biﬁj =0, Qi = 2(1_1;){215?(1};1_)34)}}0%

and by = ST=aEna—y We obtain a set of unbiased estimating

equations obtained by combining the quasi-likelihood estimating
equations for ¢. the regression parameters and the Gaussian likelihood
estimating equation for Denote the estimates by },,,.

16.3 ASYMPTOTIC RELATIVE EFFICIENCY

We compare the asymptotic relative efficiency of the estimates A
obtained by the seven estimation procedures. Asymptotic relative
efficiency of A, is Var(Amr)/Var(A:), where t=QL, GL, M1, M2, M3, M4.
Expressions for Var(Ayr) and Yar(Ay) have been obtained by Paul and
Islam (1998). So, we omit these from presentation in this paper. The
estimating equations for all the other five estimates given in this paper
have the general form (16.2.1) with specific expressions for
aiﬁnlfiﬁ,»aaidn biy for each method given in Section 16.2. So, asymptotic
Var(A:) are given in general forms.

From results of Inagaki (1973), the estimators Ay, t=GL, M1, M2, M3,
M4 under conditions similar to those for which standard ML asymptotics
hold, is consistent and asymptotically, as m—e, normal with covariance
matrix

Vark, = {A()} 1 BO){AGH} YT,
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where A(A) B(A) are (k+1)x(k+1) matrices with

—8U;
0Ps

= Y laig, + big; (1 — 2m){1 + (ni — 1)¢}/ni]dis(B),
i=1
Ajk+1 = 80;]] Z big;mi(1 — mi) (i — 1) /s,
—~0Ux 11

0B;

= ) laig + big(1 — 2m){1 + (ns — 1)} /ni]dis(8),

i=1

—BU
Ak+1,k+1 = k+1 Z bz¢771(1 - 7"1)("1 - 1)/"’17

i=1

A, = E

Ak+1,j = F

Bjs = EU;Us) = Z[aiﬁjaiﬁsﬂ'% + aig,; big, Hai
i=1

+ aig,bip, pisi + bip, bip, (ai — 13:)),
m

Bijkr1 = E(UjUk1) =) _laig,aiptiai + ip; bighai

i=1

+ aigbig; u3i + big, big(pai — 13;)] = Bry1,j

and

m
Biyierr = BUL) = la2spai + 2aigbighiai + bly(pas — p3)];
i=1

where u,;, s, 1y are the second, third and the fourth moments of z;. The
forms of the third and the fourth moments of the z; are generally
unknown. However, for the purpose of comparison, we consider the third
and fouth moments of z; based on the beta-binomial distribution as given
in Section 16.2. Note that with no covariate we have only two parameters
m=e!/(1-e’') and ¢ and di;(3)=1.

For numerical relative efficiency comparisons we consider a model
with two parameters 7 and ¢ and a simple logit linear regression model
with parameter f3,, #; and ¢. As in Paul and Islam (1998) we consider
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litter sizes [obtained from a real life experiment by Potthoff and
Whittinghill (1966)] n;:11, 1,6, 7, 8, 6, 2, 19, 4, 2, 15, 6, 6, 10, 8, 4, 5, 6,
6,4,12,8,4,5,5,6,4,10,8,11,4, 4,4,2, 2, 3.

For the two parameter model we considered four sets of combinations
of the parameters 7 and ¢ : ¢ = .1, 7=.05, .10(.05),...Z, .90; ¢ = 4
n=.05, .10(.05),..., .90; n=.1, ¢ = .05,.10(.05),...,.90; r=.4, ¢ =
.05,.10(.05), ..., .90. The relative efficiency results for # are summarized
in Table 16.1 and those for ¢ are summarized in Table 16.2.

For the three parameter model we took litter specific covariate values:
.005,.01, .015, .02, .025, .03, .005, .01, .015, .02, .025, .03, .005, .01, .015,
.02,.025, .03, .005, .01, .015, .02, .025, .03, .005, .01, .015, .02, .025, .03,
.005,.01,.015, .02, .025, .03. For the parameter (3, #, and ¢ we considered
six sets of values of (81, ¢) =(.1,.1),(1.5,.1),(10,.1), (.1,.4), (1.5,.4), (10,.4)
and considered each of these six sets of (£, ¢) with (,=.05, .10(.05),...,
.90. The relative efficiency results for 3, are summarized in Table 16.3
and those for ¢ are summarized in Table 16.4. The results for /5, are
similar to those for j3;.

From Table 16.1 and Table 16.3 we see that the methods QL, M1 and
M4 provide high efficiency for the mean (regression) parameters. The
methods QL and M1 provide identical results and for method M4
efficiency, sometimes, drops to .92. Note that all these three methods
have the quasi-likelihood estimating equations for the mean (regression)
parameters. The method M2 shows high efficiency (never dropping below
.94). The method GL also produces high efficiency, although efficiency
drops considerably as all parameter values become large (for example,
for 3,=.8, $:=10, ¢ = 4 efficiency drops to .80). The method M3 shows
inconsistent behavior. Efficiency, some times is very low (for 7=.05,
¢ = .4efficiencyis .37) and some times very high (for 5,=.8, =10, ¢ = .4
efficeincy is 1.44).

From Table 16.2 and Table 16.4 we see that efficiency of by ¢ the QL,
M1 and M3 methods are, in general, lower than those given by the
methods GL, M2 and M4. Sometimes the efficiency drops to close to
zero. Efficiency of ¢ by the methods M2 is consistently the best. The
next best appears to be the GL method. The efficiency of by the method
M4 is close to that by the GL method, slightly lower in some instances.
For the joint estimation it appears that the method M2 (the optimal
quadratic estimating equations) produces the best efficiency results.
Both the GL and the M4 methods produce good efficiency results,
although on the whole, it looks as though the method M4 has an edge
over GL. Note that the method M4 combines the good behaviour of the
quasi-likelihood estimating equations for the mean (regression)
parameters with the GL estimating equation for the dispersion
parameter. Note also that given ¢, the quasi-likelihood estimating
equations for the regression parameters (3, j=1,..., k are optimal and
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given f3;, j=1,..., k the GL estimating equation for &, being a likelihood
equation, is optimal.

16.4 EXAMPLES

In this section we analyse three sets of real data. The first two sets of
data do not involve covariates while the third set involves covariates.

Example 16.4.1 This is an example of a set of biological data. The
data given in Table 16.5 from Potthoff and Whittinghill (1966) refer to
cross-overs in fruit flies. For this data set the estimates of 7 and & by
the different methods and the estimated relative efficiencies are given
in Table 16.6. Estimates of 7 by all methods have high efficiencies.
Estimate of ¢ by the QL method has relatively low efficiency.
Estimates of ¢ by all other methods have similar and reasonably high
efficiency (80%).

Example 16.4.2 This is an example of a set of toxicological data. The
data given in Table 16.7 refer to proportion of affected foetuses in
litters of mice in the low dose group of Paul (1982). For this data set
the estimates of 7 and ¢ by the different methods and the estimated
relative efficiencies are given in Table 16.8. Estimates of 7 by all
methods except method M3 have high efficiencies. Estimates of & by
the GL, M2 and M4 methods have very high efficiencies (above 94%);
the method M2 having the highest efficiency. Estimate of @ by the QL
method has relatively lower efficiency (86%). Estimates of ¢ by the
methods M1 and M3 have very low efficiencies.

Example 16.4.3 This is an example of an experiment in teratology
from Shepard, Mackler and Finch (1980). This was an experiment to
study the effects of chemical agents or dietary regimens on foetal
development in laboratory rats. Female rats were put on iron-
deficient diets and divided into four groups. One group of controls was
given weekly injections of iron supplement to bring their iron intake to
normal levels, while another group was given only placebo injections.
Two other groups were given fewer iron-supplement injections than
the controls. The rats were made pregnant, sacrificed 3 weeks later,
and the total number of foetuses and the number of dead foetuses in
each litter were counted. In addition, the hemoglobin levels of the
mothers were measured. The data are presented in Table 16.9. Moore
and Tsiatis (1991) analyse these data to select an appropriate model.
A complete analysis of the data is not intended here. For illustrative
purpose we take the quardratic model relating proportion dead in the
logit scale to the hemoglobin level. For this data set the estimates of
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fo, 51 and by @ the different methods and the estimated relative
efficiencies are given in Table 16.10. Clearly method M2 is the best.
Next best, in terms of the efficiency of &, is the method GL. In terms of
efficiencies of the estimates Gy and £, the performance of the method
M4 is closer to that of the method M2.

16.5 DISCUSSION

In previous studies Crowder (1985) and Paul and Islam (1998) found
that the Gaussian likelihood method is best for the estimation of the
intraclass correlation ¢. Those studies did not include estimates based
on the optimal quadratic functions. In this paper we study the
estimates based on the quadratic estimating functions in an unified
manner: We show that the Gaussian likelihood estimates (the GL
method), the estimates based on the combination of the quasi-likehood
estimates for the regression parameters and the optimal quadratic
estimating equation for ¢ after setting the skewness and kurtosis to
zero (the M1 method) and the estimates based on the pseudo-likelihood
estimating equations of Davidian and Carrol (1987) (the M3 method)
are all special cases of the quadratic estimating equations. The present
study of the estimates through large sample efficiency and data
analyses show that the estimates based on the optimal quadratic
estimating equations with the third and fourth cumulants of the beta-
binomial distribution are the best, not only for the dispersion
parameter but also for the joint estimation of the regression
parameters and the dispersion parameter. The next best, at the cost of
some loss of efficiency, are the GL or the M4 method. The M4 method
has simpler estimating equations (the QL) for the regression
parameters. Neither of these methods require the knowledge of the
third and the fourth cumulants.

Note that the large sample efficiency results are similar for both the
simulated data and the real data analysed here. Although, small
sample properties of some these estimates have been found by earlier
studies [Crowder (1985) and Paul and Islam (1998)] to be similar to the
large sample properties it might be worthwhile to conduct a small
sample study of the properties of the estimates by the quadratic
estimating equations, particularly, because, the optimal quadratic
estimating equations involve the third and fourth cumulants of the
beta-binomial distribution.
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TABLE 16.1 Asymptotic relative efficiency of #+ by the QL, GL, M1=(QL
and QEE combination), M2=QEE, M3=(QEE with y,=v,=0) and M4=(QL
and GL combination) methods; two parameter model

Parameters Methods

T ¢ QL GL M1 M2 M3 M4
.05 .10 1.02 .98 1.02 1.01 AT 1.02
.05 .40 .97 .93 97 .96 37 .97
.10 .10 1.02 .99 1.02 1.01 77 1.00
.10 .20 1.00 .95 1.00 .98 .72 1.00
.10 .40 .98 .93 .98 .96 .69 .98
.20 .10 1.01 .99 1.01 .98 .96 1.01
.20 .40 97 94 .97 .95 .92 .97
.30 .10 1.00 .99 1.00 .99 .99 1.00
.30 .40 97 .96 .97 .94 .96 .97
.40 .10 1.00 1.00 1.00 .98 .99 1.00
.40 .20 .99 .99 .99 .99 .99 .99
.40 .40 97 .97 97 .95 97 .97
.60 .10 1.00 .99 1.00 .98 .99 1.00
.60 .40 .97 97 .97 .95 97 .97
.80 .10 1.00 .98 1.00 .98 .94 1.00
.80 .40 .98 .95 .98 .95 .93 .98
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TABLE 16.2 Asymptotic relative efficiency of <23 by the QL, GL, M1=(QL
and QEE combination), M2=QEE, M3=(QEE with y,=y,=0) and M4=(QL

and GL combination) methods; two parameter model

Parameters Methods

T ¢ QL GL M1 M2 M3 M4
.05 .10 .79 1.03 .38 1.04 37 1.02
.05 .40 .84 .83 .18 .90 13 .59
.10 .10 .88 1.08 .51 1.09 .73 1.07
.10 .20 .80 .87 .34 .90 .51 .75
.10 .40 .85 .83 .22 .90 .34 .63
.20 .10 .94 1.09 .73 1.09 1.02 1.09
.20 .40 .85 .85 .33 .90 71 .72
.30 .10 .89 1.02 .85 1.01 1.00 1.02
.30 .40 .86 .86 .51 91 .86 .79
.40 .10 .80 .90 .86 .90 .89 .90
.40 .20 .83 .89 .82 .90 .89 .88
.40 .40 .86 .86 7 .93 91 .84
.60 .10 .61 .69 .65 .68 .68 .69
.60 .40 .87 .87 7 .92 .92 .85
.80 .10 .53 61 42 .62 .52 .62
.80 40 .87 .86 .33 .92 .72 .73
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TABLE 16.3 Asymptotic relative efficiency of Bl by the QL, GL, M1=(QL and
QEE combination), M2=QEE, M3=(QEE with vy,=y,=0) and M4=(QL and GL
combination) methods; the simple logit linear regression model

Parameters Methods
Bo 51 [} QL GL M1l M2 M3 M4
.10 .10 .10 1.00 1.00 1.00 .99 1.02 1.00
.20 1.00 1.00 1.00 .99 1.03 1.00
40 1.00 1.00 1.00 .99 1.06 1.00
.60 1.00 .99 1.00 .99 1.11 .99
.80 1.00 .99 1.00 .99 1.18 .99
.10 1.50 .10 1.00 1.00 1.00 .99 1.03 1.00
.20 1.00 1.00 1.00 .99 1.03 1.00
.40 1.00 1.00 1.00 .99 1.06 1.00
.60 1.00 .99 1.00 .99 1.12 .99
.80 1.00 .99 1.00 .99 1.19 .99
.10 10.0 .10 1.00 1.00 1.00 .99 1.04 1.00
.20 1.00 1.00 1.00 .99 1.05 1.00
.40 1.00 .99 1.00 .99 1.10 .99
.60 1.00 .99 1.00 .99 1.17 .99
.80 1.00 .98 1.00 .99 1.27 .98
.10 .10 .40 1.00 .97 1.00 .95 1.03 97
.20 1.00 .93 1.00 .95 1.04 .97
.40 1.00 .86 1.00 95 1.09 .95
.60 1.00 .82 1.00 .95 1.17 94
.80 1.00 81 1.00 .95 1.30 .92
.10 1.50 .40 1.00 .96 1.00 .95 1.03 .98
.20 1.00 .92 1.00 .95 1.04 .97
.40 1.00 .85 1.00 .95 1.09 .97
.60 1.00 .82 1.00 .95 1.18 .95
.80 1.00 .81 1.00 95 1.31 .93
.10 10.0 40 1.00 .90 1.00 .95 1.05 97
.20 1.00 .87 1.00 .95 1.07 97
.40 1.00 .82 1.00 .95 1.15 .95
.60 1.00 .80 1.00 .95 1.27 .94
.80 1.00 .80 1.00 94 1.44 .92
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TABLE 16.4 Asymptotic relative efficiency of qg by the QL, GL, M1=(QL and
QEE combination), M2=QEE, M3=(QEE with v,=y,=0) and M4=(QL and GL
combination) methods; the simple logit linear regression model

Parameters Methods
Bo 61 ¢ QL GL M1 M2 M3 M4
.10 .10 .10 .83 1.00 .98 .99 .98 1.00
.20 .32 1.00 .85 .99 .96 1.00
.40 .02 .99 .23 .99 .88 .99
.60 .00 .99 .05 .98 .76 .99
.80 .00 .98 .02 97 .64 .98
.10 1.50 .10 79 1.00 .08 .99 .98 1.00
.20 .24 1.00 .79 .99 .95 1.00
.40 .02 .99 .20 .99 .86 .99
.60 .00 .99 .05 .98 .75 .99
.80 .00 .98 .01 97 .62 .98
.10 10.0 .10 45 .98 .88 .99 .93 .99
.20 .06 .99 .45 .99 .88 .99
.40 .01 .99 .08 .98 7 .99
.60 .01 .98 .02 .98 .65 .98
.80 .00 .97 .01 97 .53 97
.10 .10 .40 .80 .90 .88 .95 .92 .90
20 25 90 37 95 83 89
40 02 90 .04 95 59 88
60 03 89 .01 94 40 86
80 00 89 .00 94 27 83
.10 1.50 .40 .75 .90 .82 95 .90 .90
20 18 90 .29 95 80 89
40 01 89 .03 95 56 88
60 00 89 .01 94 37 85
80 00 89 .00 94 26 82
.10 10.0 .40 37 .90 44 .95 72 .89
20 04 89 .09 95 61 88
40 00 89 .01 94 41 86
60 00 89 .00 94 28 83
80 00 88 .00 94 20 80
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TABLE 16.5 Number of the cross-over offsprings in m=36 families from Potthoff
and Whittinghill (1966). y=number of ++ offsprings, n=total cross-over offsprings

y: 7 1 4 3 5 3 0 11 3 5] 10 3 ¥ 4 2 2 3 5
n: 11 1 6 7 8 6 2 19 4 2 15 6 6 10 8 4 5 6
y: 2 1 2 3 1 1 4 5 3 3 5 1 1 3 4 0 1 2
n: 6 4 12 8 4 5 5 6 4 10 8 11 4 4 4 2 2 3

TABLE 16.6 The estimates 7 and 43 and their estimated relative efficiencies
by the ML, QL, GL, M1=(QL and QEE combination), M2=QEE, M3= (QEE with
v,=0, ,=0) and M4=(QL and GL combination) methods for the cross-over data

Methods Estimates of Estimated relative
4 ¢ efficiency for

# ¢
ML 0.4728 0.0950 1.0000 1.0000
QL 0.4742 0.1094 0.9449 0.6655
GL 0.4741 0.0953 0.9940 0.8041
M1 0.4741 0.0944 0.9975 0.8044
M2 0.4741 0.0959 0.9921 0.8022
M3 0.4742 0.0944 0.9973 0.8045
M4 0.4741 0.0959 0.9921 0.8016

TABLE 16.7 The toxicological data of law dose group from Paul (1982). m=19
litters. y=number of live foetuses affected by treatment, n=total of live foetuses

y: []] 1 1 0 2 ] 170 1 0 0 3 [9) 0 1 5 [ 3] 3
n: 5 11 7 9 12 8 6 7 6 4 6 9 6 7 5 9 1 6 9
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TABLE 16.8 The estimates 7 and (}3 and their estimated relative efficiencies
by the ML, QL, GL, M1=(QL and QEE combination), M2=QEE, M3= (QEE with
=0, y,= 0) and M4=(QL and GL combination) methods for the toxicology data

Methods Estimates of Estimated relative
T ¢ efficiency for

7 ¢
ML 0.1272 0.1054 1.0000 1.0000
QL 0.1275 0.1006 1.0158 0.8556
GL 0.1331 0.1006 0.9709 0.9875
M1 0.1265 0.1225 0.9438 0.4527
M2 0.1273 0.1055 0.9988 0.9282
M3 0.1109 0.1576 0.8034 0.4535
M4 0.1277 0.1055 0.9958 0.9431
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TABLE 16.9 Low-iron rat teratology data. N De-
notes the litter size, R the number of dead foetuses,
HB the hemoglobin level, and GRP the group
number. Group 1 is the untreated (low-iron) group,
group 2 received injections on day 7 or day 10 only,
group 3 received injections on days 0 and 7, and
group 4 received injections weekly

N R HB GRP N R HB GRP
10 1 41 1 9 7 31 1
11 4 3.2 1 14 14 36 1
129 47 1 12 7 4.1 1
4 4 35 1 11 9 48 1
10 10 3.2 1 13 8 4.7 1
11 9 59 1 14 5 438 1
9 9 47 1 10 10 6.7 1
11 11 4.7 1 12 10 5.2 1
10 10 3.5 1 13 8 43 1
10 7 438 1 10 10 39 1
12 12 43 1 14 3 63 1
10 9 41 1 13 13 44 1
8§ 8 3.2 1 4 3 52 1
11 9 6.3 1 8 8 39 1
6 4 43 1 13 5 7.7 1
N R HB GRP N R HB GRP
12 12 5.0 1 14 0 126 3
10 1 86 2 14 1 95 3
3 1 111 2 11 0 98 3
13 1 72 2 3 0 16.6 4
12 0 88 3 13 0 145 4
14 4 93 2 9 2 154 4
9 2 93 2 17 2 145 4
13 2 85 2 15 0 14.6 4
16 1 94 2 2 0 165 4
1 0 6.9 2 14 1 1438 4
4 0 89 2 8 0 136 4
1 0 111 2 6 0 145 4
120 90 2 17 0 124 4
8§ 0 11.2 3
1 1 115 3
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TABLE 16.10 The estimates 3g, 51 and ¢ and their
estimated relative efficiencies by the ML, QL, GL,
M1=(QL and GL combination), M2=QEE, M3=(QEE
with y,=0, v,=0) and M4=(QL and GL combination)

methods for the low-iron rat teratology data

Methods Estimates of
Bo 51 B2 m
ML 6.0158 -1.2512 0.0457 0.2793
QL 5.5728 -1.1344 0.0363 0.2710
GL 5.8247 -1.3005 0.0491 0.2843
M1 5.5738 -1.1389 0.0363 0.2644
M2 5.8566 -1.2210 0.0433 0.2956
M3 54828 -1.1437 0.0339 0.3016
M4 5.5818 -1.1381 0.0365 0.2200
Methods | Estimated relative efficiencies for
Bo B1 B2 ¢
ML 1.0000 1.0000 1.0000 1.0000
QL 0.8043 0.7218 0.6178 0.5588
GL 0.7023 0.6454 0.6273 0.7312
M1 0.2865 0.1610 0.0766 0.0229
M2 0.9012 0.8718 0.8399 0.8618
M3 0.2548 0.1894 0.1440 0.3607
M4 0.9238 0.8280 0.7074 0.5844
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SEMIPARAMETRIC
LOCATION-SCALE REGRESSION
MODELS FOR SURVIVAL DATA

XUEWEN LU

Agriculture and Agri-Food Canada, Guelph, Ontario, Canada

R.S.SINGH

University of Guelph, Guelph, Ontario, Canada

Abstract: In survival analysis, a special class of accelerated failure time
models has a log form: logT=y(Z, X)+c¢, where T is a random variable
denoting the event time, (Z, X) are covariates, y([J,[]) is a regression
function, ¢is a random disturbance term. This type of model is also called
location-scale model for log lifetime 7, where Z, X) is the location term
and o is the scale parameter. In this paper, covariates are modeled as s
(Z, X)=Z"3+MX), Z may be vector-valued, X is a univariate.  is an unknown
parameter vector, A takes value in a real line and is an unknown smooth
function. Hence, the relationship between response and covariates is
modeled semiparametrically, the conventional maximum likelihood is
not directly applicable to estimate the parametric components. This paper
uses the method of Severini and Wong (1992, Annals of Statistics, 20,
1768-1802) to construct asymptotically efficient estimators of the
parametric component and to specify their asymptotic distributions. An
application to the Primary Biliary Cirrhosis Data is provided.

Keywords and phrases: Asymptotic, accelerated failure time model,
censored data, generalized profile likelihood, location-scale model,
semiparametric regression
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17.1 INTRODUCTION

The accelerated failure time model is an important class of regression
models in survival analysis. A number of these models have a log form:

logT = Y(X) + o¢, (17.1.1)

where ¢is a random disturbance term, 7'is a random variable denoting the
event time. Y(X) is a regression function, ois an unknown parameter. This
model is also called location-scale model for log lifetime 7', where #1X) is the
location term, o is the scale parameter. When (X) has a parametric from,
for example, y(X)=X"f3, it is well known that one can use the maximum
likelihood estimation to analyze this model, Kalbfleisch and Prentice (1980)
and Lawless (1982) give a detailed introduction on the parametric regression
model in the context of survival analysis. Most statistical softwares, for
example, SAS and Splus can analyze some standard accelerated failure
time models. In SAS, the LIFEREG procedure produces estimates of five
types of models, it allows for five distributions for &: normal, extreme value
(2 parameter), extreme value (1 parameter), log-gamma and logistic. the
function SURVREG in Splus does the similar things. But these packages
lack the ability to analyze the model in which the regression function {(X)
is not parametrized to a linear form or it contains unknown regression
functions.

In the situation of censored data, when no assumptions are made
about the form of the regression relationship and the distribution of ¢
in order to estimate the functional form of i, Fan and Gijbels (1994) use
nonparametric regression techniques to transform the observed data
in an appropriate way and then apply a locally weighted least squares
regression. In this paper, we introduce the following semiparametric
regression model,

W(Z,X) = ZT B+ M\(X). (17.1.2)
In fact, this is a partly linear model. Using this model, rewrite (17.1.1) as

Y = 278+ X(X) + o¢, (17.1.3)

where Y=logT is log lifetime. We assume that A(x) is a smooth function of
x from R to R and ois an unknown scale parameter. 3 is an unknown px1
parameter vector. (Z, X) is a vector of explanatory variables. The variable
X is continuous with values in a closed interval X € R, and Z is discrete
or continuous with values in R”.

The paper is organized as follows. Section 17.2 of the paper introduces
the likelihood for the location-scale model under censoring. Section 17.3

Copyright © 2002 Taylor & Francis



LOCATION-SCALE REGRESSION MODELS 307

describes the generalized profile likelihood and investigates the finite sample
behavior of the maximum generalized profile likelihood estimator. Section
17 .4 presents three types of semiparametric location-scale regression models
with the computation given in the Appendix. Finally, Section 17.5 illustrates
the performance of the proposed procedure via analysis of the Primary
Biliary Cirrhosis data.

17.2 LIKELTHOOD FUNCTION FOR THE PARAMETRIC
LOCATION-SCALE MODELS

Assume that Sy(I) is the survivor function for g, fi([) is its p.d.f., A(x) is
parametrized as A(x)=A(x; y). Then the survivor function for Y, given
(Z, X)=(z, x), is of the form S,(w), where w = [y — (278 + A(z;¥))]/o. The
p.d.f. for Y=log T can be written

o7 fo(w).

Let f(t |z, x) denote the conditional density function of Y given (Z, X)=(z, x),
and let S(¢ | z,x)=P{Y>t | (Z, X)=(z, x)} be its conditional survivor function.
The conditional distribution function of censoring random variable C given
(Z, X)=(z, x) is denoted by G(¢!z,x). Then under independent and
noninformative censoring (i.e., G(t|z,x) does not involve the parameters
o, § and p), the conditional likelihood function is given by

L=T]rlz, x) ] 8(YilZ:, X), (17-2.4)

where J], and []. denote respectively the products involving the

uncensored and the censored observations. Let &, represent the censoring
indicator, i.e. 5=[T;<C/], and Y; represent a log lifetime or a log censoring
time for i** individual, i.e. Y;=min(logT}, log C;), the likelihood function
can be written as

n

L(8,7) = [[lo™ fo(w:))* So(ws)' %, (17.2.5)

1

where 6=(", )", w; = [y; — (ziTﬁ + Azi;v))]/o- Under the locationscale
model (17.1.3) with A(x)=A(x; y), we have the log-likelihood for the
sample

La(6,y) = S [6ilog f(YilZi, Xi) + (1 — &) log S(¥i| Zi, X:)]

7
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= Z{5i[— log(o) + log(fo(ws)] + (1 — &;)So(wi) }-
(17.2.6)

Maximization of (17.2.6) leads to the maximum likelihood estimators
of g, f and .

17.3 GENERALIZED PROFILE LIKELIHOOD

If A(x) is not parametrized, to estimate the parameter 6 and the
nonparametric smooth function A(x), we apply the generalized profile
likelihood method of Severini and Wong (1992) and Stein (1956). This
method is applied by Severini and Staniswalis (1994) in studying the
quasi-likelihood estimation in semiparametric models and by Staniswalis,
Thall and Salch (1997) in semiparametric regression analysis for recurrent
event interval counts. Generalized profile likelihoods are an extension to
semiparametric models of the profile likelihood for parametric models.
The resulting estimator of 6 converges to the true parameter value at a
Vi rate and is asymptotically efficient for conditionally parametric
models. A;(z) is uniformly consistent for A(x).

17.3.1 Application of Generalized Profile Likelihood to
Semiparametric Location-Scale Regression Models

Let Z, X and (Y, &) be random variables such that the distribution of
(Y, &) conditional on (Z, X)=(z, x) is f((y,6);2,¢) = [0~ fo(w)1®So(w)'~9,
where w = [y — T8 + Ma))/o, ¢ = (6,\(z)), 8 = (BT,0)T and A(x)
is a smooth function of x. It is assumed that the joint distribution of the
explanatory variables Z and X does not contain information about 6 or
A. Severini and Wong (1992) refer to such a semiparametric model as
conditionally parametric because, conditional on (Z, X)=(z, x), the model
for (Y, &) is parametrized by a finite-dimensional parameter ¢.

Set I=log(f), Severini and Wong (1992, pp. 1773-1774) show that the
least favorable curve A, maximizes

M(X;6,x) = Eo(l((Y,0); 2,0, )| X = z)

with respect to A. Here, E, denotes expectation using the true parameter
value. An estimator of M(A; 6, x) is constructed using nonparametric
smoothing. Severini and Wong (1992) propose the following estimator of
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M(X;0,x),

M(x;8,z) = [Zn: Wi (Xi — 2)U(Ys, 6:); Zi, 6, M)/ i Wi(Xi — z), (17.3.7)

i=1 i=1

where (Z;, X;, (Y,,6)),i=1,...,n arei.i.d. sample from the population (Z, X,
(Y, 8), W([0) is a nonnegative weight function, W,((1)=(1/6)W([1/b), b is the
bandwidth. Then by maximizing M (X; 8, x) with respect to A for each fixed
0 and x, an estimator Ag(z) of the least favorable curve is obtained. The
estimator @ that maximizes the generalized profile likelihood

La(8,38) = Y _ U(Y:, 6:); Z:, 8, Aa(Xi))

i=1

with respect to 0is obtained as the solution of

d . ~[d
ELn(H,/\O) = ; [%l((n’&i);zi,ea/\) I/\=5\9(Xi)

0 d -
+—a-:\-l((yia 5i);Zi, 0,)\) ’)\:S\Q(Xi) @AQ(X,L)] (17.3.8)
0.

Under certain regularity conditions on the likelihood and the nonparametric
smoother, Severini and Wong (1992) establish that this estimator of 6is
asymptotically efficient for conditionally parametric models and Ag(z)is
uniformly consistent for A(x). They note that their results can easily be
extended to allow for multidimensional X, 6.

17.3.2 Estimation and Large Sample Properties

The empirical version of M(A; 6, x) given in (17.3.7) is a consistent estimation
of M(); 6, x), it is proportional to a local likelihood for estimating A,(x). For
fixed 6, let g be the maximizer of (17.3.7). Substituting g into the log-
likelihood (17.2.6), we obtain the generalized profile likelihood Ly (6, A) for
6. Let § be the maximizer of L, (8, A9) with respect to 6. Then 4 is an
estimator of the true parameter value 6,.

We now discuss the large sample properties of § For establishing the
consistency and asymptotic normality of § the estimator Ag must be a
consistent estimator of a least favorable curve and must satisfy the nuisance
parameter (NP) conditions of Severini and Wong (1992, p. 1779). These
can be verified without difficulties by an application of their Lemma 5.

We now establish the consistency and asymptotic normality of 4.

Copyright © 2002 Taylor & Francis



310 XUEWEN LU and R.S.SINGH

Theorem 17.3.1 Let § be any element of O satisfying
Ln(8, ;\é) = sup Ln (0, \g),
0€©
where O is a compact subset of R? x R* (since 0>0). Then, under the
regularity conditions provided by Severini and Wong (1992),
65 6.
Theorem 17.3.2 Under the regularity conditions given above,

Vr(d —00) 3 N(0,i;1),

where i, is the marginal Fisher information matrix for 6 given by

®2
io = o (3500 + 5r G, N0

v”‘—)‘e0 is the least favorable direction. iycan be consistently estimated by
i =~ 1_7'3939 Ln(6, %) |g—

Theorem 17.3.1 and Theorem 17.3.2 follow from Propositions 1 and 2
of Severini and Wong (1992). From their NP conditions along with the
factthatd = @y + Op(n=1/2), we obtain following result on the estimation
of nonparametric component:

Theorem 17.3.3 || A; — A [|= op(n=1/4).

174 EXAMPLES OF SEMIPARAMETRIC LOCATION-
SCALE REGRESSION MODELS

Example 1: Extreme value and Weibull regression models.

If the p.d.f of lifetime T, given (Z, X)=(z, x), is of the form

e (awm) =l ()] oo

which is a Weibull model, then the p.d.f of Y=logT, given (z, x), is

F0l(e. ) = > exp [y—"jfﬂ—exp(y“jfﬂ)] <y <o,
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where u(z, ) = logla(z,z)] = ZTB + M), 0 = 1/k. This model can be
written as

Y = 278 + A(X) + o,

where ¢ has a standard extreme value distribution with p.d.ff,(s)=exp(s-
e’), -oo<s<oo. We have S(s)=exp(-e®), then

ao(s) =1 —exp(s), ai(s) =ao(s) —1, az(s) =ao(s) - 1;
and
bo(s) = exp(s), bi(s) =bo(s), ba(s) = bo(s),
where we define a0(s) = ff((s))’ bo(s) = g f?s(:()sw a1(s) = ag(s), bi(s) = by(s);

az(s) = af(s), ba(s) = bjj(s). In this case’ equation ¢1(7;6,2) = 0in Stepa
of computations (see Appendix) may be solved explicitly to obtain

Y-2fo

then an iterative approach of (17.5.9) given in Appendix yields &.
Example 2: Normal and log-normal regression models.

If we consider regression models in which lifetime 7' is log-normal, then
log lifetime Y=logT is normally distributed, ¢ has a standard normal
distribution, fo(s) = \/% exp{—3%s2}, Sy(s)=1-®(s). Hence we have

ao(s) = —s, ai(s) = —1, aa(s) =0;

and

bO(s) I_{O—S;()—S)a

ba(s) = bo(s)[(bo(s) - 5)(2bo(s) — 5) —1].

bi(s) = —sbo(s) + b2(s),

Example 3: Logistic and log-logistic regression models.

If we consider regression models in which the distribution of lifetime T
is log-logistic, then distribution of log lifetime Y=logT is logistic. ¢ has a
logistic distribution with p.d.f and survivor function

_ exp(s) _ 1
fols) = (1 4 exp(s))?’ So(s) = 1+ exp(s)’
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Hence, we have

exp(s) _ exp(s) |
ap(s) = 1 TT exp(s)’ bo(s) = T exp(s)’
—2exp(s) _exp(s) |
HOT Tremer T T en@R
and
az(s) = ap{s)ai(s), bo(s) = ao(s)bi(s).

17.5 AN EXAMPLE WITH CENSORED SURVIVAL DATA:
PRIMARY BILIARY CIRRHOSIS (PBC) DATA

The data set is found in Appendix D of Fleming and Harrington (1991).
Between January 1974 and May 1984, the Mayo Clinic collected data
on PBC, a rare but fatal Chronic liver disease of unknown cause of the
412 registered patients, the first 312 cases participated in the
randomized trial, and contain largely complete data; Our analysis is
based on those patients. A more extended discussion can be found in
Fleming and Harrington (1991, Chap. 4). In this study, the response T
is the time (in days) between registration and death, or liver
transplantation or time of the study analysis (July 1986), we study the
effects of AGE (in months), Log(ALBUMIN), Log(BILIRUBIN),
Log(PROTIME) (PROTIME=Prothrombin time) and EDAME. Fleming
and Harrington (1991) find that the model with these five variables is
biologically reasonable.

We fit semiparametric Log-normal, Log-logistic and Weibull models
respectively. We use the quartic kernel

W(v) = (15/16)(1 — v2)?I[-1,1](v)

with the boundary modification of Rice (1984). the bandwidth is chosen
by visual inspection. Table 17.1 presents the results for the estimates
of parameters. Figures 17.1-17.3 report the functional form for AGE
and the linear lines fitted by the fully parametric models. These three
models give similar results. Relying on the shapes of the semiparametric
model estimates of A(.) in Figure 1-3, we find that a linear function of
AGE provides a reasonable fit. Thus, the parametric model logT is
(Z, X)=f+f3-AGE+f1log (ALBUMIN) + 83:log (BILIRUBIN) + 4. EDEMA
+ f51og(PROTIME) One can see in the Table 17.1, the numerical values of
the estimates of parameters common to both parametric and
semiparametric models are very similar. However, the standard errors
of the parameter estimates are slightly different, suggesting that we
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may have not completely succeeded in capturing the true shape of the
functional form for AGE. Note the shape of the estimated curve for
AGE, we see that there are two peaks and three troughs, which are
shifted in time, the overall behave of this curve is that it decreases with
aging. This reflects the fact that the log-survival time decreases with
aging, but it may increase locally with aging.
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APPENDIX: COMPUTATION OF THE ESTIMATES

Please note that the method provided in previous sections may be
computationally intensive since each evaluation of L, (6, \¢) requires a
separate maximization of Mn(n;o,x) for each X=x;, j=1,..., n. The
computation of an estimator § also involves tedious work. If Ag has a
closed-form, the procedure is very much simplified, this is seen in Section
17.4 from the Extreme Value Regression Model.

We now establish an algorithm for computing the estimates of 6= (87,
o)Tand A. Let [((Y;, 6)6,m)=log f((Y,, 6);0,m)=8/log fy (wu(m)]+ (1-8) logl

1-Sy(wyg(n))]-6;loga, wej(n) = YJ‘(Zz B+m). Define
¢1(n;0,x) = Zm(x — )5 l(( ,8;);0,m),

and

$25(6)

Z gﬁ_l((yj,(sj);a, do(X;)),

$®) = 3 215,816, 30(X,)),
J

$2(6,%0) = (¢35(0), 020 (6)".
Then 0=(3"c)” and A are estimated by the following procedure:

a. For each x, 6, calculate Ag by solving ¢; (n;6,z) = 0 for .
b. Estimate 6 by solving ¢2(8, As) = 0 for 6.
c. Estimate A by 5\9’-

We consider step b for calculating 8. Let H denote the (p+1)x(p+1) matrix
by

8¢2(8, M)
a0T -

Using Newton-Raphson iterative method, an initial estimate § can be
updated to §* using

0* =6 —H1 ()20, \g). (17.5.9)

This iteration can be continued until convergence. The estimated
asymptotic covariance matrix of @ can be determined using —H~1(6).
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Denote by Ayp = OAe(2)/88k and \/pa(z) = 62/\9(:1;)/60k801 Usually,
iterative methods are also needed to calculate Ag(z), A,p(x) and A/ e ()-
For fixed 6 and x, consider step a, solving ¢, (n;#,z) = 0 for n = Aa(z).
Because

¢1(77;0,:£) = Z Wb(Xj - w){éjao(woj(??)) - (1 - 5j)b0(w0j(77))}(—§),
J
and

3¢1 (n;0,2) = ZW" i~ #){d5a1(we;(m) — (1 _51')51(000]'(77))}(%)2-

Then an initial estimate 7, can be updated to by Newton-Raphson method:
3]
n =10 — $1(10; 0, x)/a%‘(no; 6,z). (17.5.10)

As for calculating j\fco and 5\2’10 (z) since Ag(z) satisfies ¢1 (Ng; 0, z) = 0 for
all 6, x, it follows that

891 (Mo (); 6, z) 8%¢1(Me(z); 6, 7)
= = . (175.11
50 0, 50907 0, forall 8,z. ( )
R (2T B+ 50 (2
Denote wg; = wej(Ae(z)) = M—?—Mnoticing that
and
6‘*):9”]' 1 z 85\9
Fra (*;)(wej + 3_0(5'3)),
then

61(0010,2) = ST, = 2)(5j(ey) — (1 - b0 i) H(—3) = 0.

Hence, for %, [=1,..., p, we have

d¢1(Ne(2); 6, x)
OBk

= ZW,, X; — z){dja1(wg;) — (1 — 6;)b1(wg;) }

Zjk + M)
02

]
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oo A
wg; + A
= Z Wo(X; — z){8;a1(w§;) — (1 — &;)by (ng)}[ﬂ_;;;ﬁ(x)]
=0
and

321 (Do (z); 0, 2)
ojenelen

= S WX — ) (Fraa(wf;) ~ (1~ 53)ba(w)} i + Mg ()]
X[Z1+ Na(@)](~2)?

+ WX, — 2 (Ear () — (1 55)br (w5 Mo (@))(5)?
= 0,

¢1(0o(2);0,2)  0%¢1(Ne(x); 6, )
OB0c - olsgelo

= ZWb(Xj — z){dja2(wg;) — (1 — ;)ba(wg;) Hus; + )‘(r+1)9( )]

X2 + Mg @))(~2)°

+2Wb — z){d;a1(wg;) — (1 —8;)b1 (C‘Je])}[)‘k(rﬂ)a(973)](%)2
= 0,

8¢1(De(2); 6, z)
Oo?

= YW - D) {Bj0(f) - (1 - b))
X[y + N i@ P(—2)?

+ Wi(X; - o) {da1 (W) — (1 6)bl(wej)}[AEr+l)(r+1)0(x)]( )?
= 0.

Solving these equations we get, for &, l—l, oD,

ko Y Wb(X - a:){é a1 (‘*'eg) (1 AT ORI
(17.5.12)
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_ XWX —a){dj01(wf;) — (1 - §;)ba (wg;) Jwe;

x =
Nr41)6(2) S Wi(X; — 2){05a1(wg;) — (1 = 6;)b1(w;))
(17.5.13)
kw(f'f)
1 £ Wo(X;—2){8502(w],;)—(1=8;)ba(w§)}Zj + Mg (@) 25+ 3k (=)] (17.5.14)
- o 2. W (X;—2){d;a1(w;)—(1—08;)b1(wj;)} ’

;\;c’(r+1)e (z)
= /\Elr+1)k9($)

12Wb(xj—$){5;a2(weg) (1=8;)b2(wWi ) Hewd; + Al 1y0 (@) 256+ Ao (2)]
EWb(XJ z){sjal(wg]) (1- 6])51(“’0])} ’

(17.5.15)
}‘I(Ir+1)(r+1)e($)
1 Z Wa(X;—){d;02(w§;)—(1-8;)ba(w]; )} wh, + ¢ ,+1)6(m)]2 (17.5.16)
- e W (X;—2){8;a1(wg;)-(1=-8;)b1(wg;)}

We find an interesting phenomenon, if £ or [ is replaced by (r+1) in ’\ke
and /\kw, then let the associated term Z;, or Z; be replaced by wg;, we
obtain Aty41)p(%), A(r11)s(€) and )‘(r+1)(r+1)9( )

After we obtain the estimates of A, (x), etc., we can compute the
estimates of 6. Denote by

Y; — (ZTB+ Ao(X;))

we; = we;(Me(X;)) = >

Recall that

(0, M) Zz((Y,,aj );6, Ae),

&) = 689 (6.39)

G (0,%) ) _ ( $26(0) )
aL" (8, /\9) ¢20(9) ’
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where

e

b0 = (=) S lbsao(ons) — (1 - & bofun, )12 + S

J

=7 (X5,

$20(0) = —é > {[8;a0(we;) — (1 — 8;)bo(we;)]
J

s + 2] +5,),

and

2 3 .
6?9251(“0) = (—é);[‘sjao(woj)*(1“51)1’0(“’”)][66207(;3)]

)P 16501 (weg) — (1= &) )]
J

8)\9

Bﬁ

O

xX[Z; + == Fr

X)(Z; + -z (X)),

O¢25(0)
oo 3
= (=2)620(0) + (~2) 2 16j00(ces) = (1 = 3 tu(en)[ 5

Ao

+(= ) 2[5 a1(wej) = (1 = 8j)br(wej)]lwe; + ——(X;)]

3)\9

x[2; + 55 (X))

a¢20 (0) [a¢2ﬂ 0)]T
T ' o
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6¢20(0)
0o
2 ) )
= (_é)%(o) + (_%) > "[6;a0(we;) — (1 - éj)bo(wej)][a—%(?]—)
J
(=2 g + P25+ (502 Y0 ) — (1 85)bu ()

J
AN
X [we; + a—:(Xj)]z-
Then

H =

PLn(0.30) _ ¢2(6) _ [ 257 29
80007 o0T
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TABLE 17.1 Estimates of the parameters under
the semiparametric and parametric models for PBC
data

Parameters Estimates SE x°
Model 1: Log-normal model
Semiparametric model

o 0.8534 0.055 240.76
Log (Albumin) 1.6415 0.535 9.41
Log (Bilirubin) -0.5283 0.069 58.62
Edema -0.7797 0.233 11.20

Log (Protime)  -3.2561 0.816 15.92

Parametric model

o 0.865 0.056 238.59
Log (Albumin)  1.4807 0.528 7.88
Log (Bilirubin) -0.5371 0.069  59.81
Edema -0.765 0.230 11.03
Log (Protime)  -3.210 0.821 15.30
Intercept 12.024 2.114 32.35
Age -0.002 0.0005 16

Model 2: Log-logistic model
Semiparametric model

lod 0.4583 0.033 192.87
Log (Albumin) 1.8234 0.514 12.58
Log (Bilirubin) -0.5195 0.065 63.88
Edema -0.7226 0.228 10.04

Log (Protime)  -3.0778 0.774 15.81

Parametric model

o 0.4654 0.034 187.37
Log (Albumin) 1.679 0.509 10.90
Log (Bilirubin) -0.5335 0.066 64.71
Edema -0.6790 0.229 8.80
Log (Protime)  -3.0679 0.780 15.47
Intercept 11.4333 1.964 34.23
Age -0.0022 0.0005 19.36
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TABLE 17.1 (cont’d) Estimates of the parameters under
the semiparametric and parametric models for PBC

data (cont’d)
Parameters Estimates SE x*
Model 38: Extreme value model

Semiparametric model

o 0.6104 0.0427 204.35
Log (Albumin) 2.20 0.443 24.66
Log (Bilirubin) -0.5147 0.059 76.10
Edema -0.5042 0.188 7.19
Log (Protime)  -2.4975 0.730 11.70
Parametric model

o 0.620 0.0437 201.30
Log (Albumin) 1.8485 0.4240 19.01
Log (Bilirubin)  -0.5259 0.0583 81.37
Edema -0.4821 0.1808 7.11
Log (Protime)  -2.3774 0.7273 10.68
Intercept 9.865 1.870 27.83
Age -0.0021 0.0005 17.54
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FIGURE 17.1 Fitted function for age using semiparametric log-normal model
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FIGURE 17.2 Fitted function for age using semiparametric log-logistic model
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FIGURE 17.3 Fitted function for age using semiparametric extreme value model
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CHAPTER 18

ANALYSIS OF SATURATED AND
SUPER-SATURATED
FACTORIAL DESIGNS: A
REVIEW

KIMBERLY K.J.KINATEDER DANIEL T.VOSS
WEIZHEN WANG

Wright State University, Dayton, OH

Abstract: Various methods have been proposed in the literature for
the analysis of saturated and super-saturated factorial designs, but few
of these methods are known to provide strong control of error rates.
This paper is a review of known results and open problems concerning
the strong control of error rates in the analysis of such designs.

Keywords and phrases: Closed test, directional inference, effect
sparsity, experiment-wise error rate, orthogonal factorial design, non-
orthogonal factorial design, saturated design, step-down test, stepwise
test, super-saturated design

18.1 INTRODUCTION

This paper concerns methods of analysis of saturated and super-saturated
designs which strongly control error rates for individual or family-wise
inference. Methods known to strongly control error rates are reviewed, with
discussion of the techniques by which the results have been established.
Also, a variety of related open problems are stated.

Substantial progress has been made establishing methods of analysis
of orthogonal saturated designs. Methods known to strongly control error
rates include: an exact, closed, step-down test for simultaneously testing
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the hypotheses H,;:6,=0 (i=1, 2,..., k), applicable for a broad class of statistics
[Voss (1988)]; analogous exact individual tests of the each of the hypotheses
H,;:6,=0 [Berk and Picard (1991)]; exact individual confidence intervals
[Voss (1999)]; and exact simultaneous confidence intervals [Voss and Wang
(1999)1.

There remain a number of open problems concerning the analysis of
orthogonal saturated designs. Strong control of error rates has not been
established for any of the following methods: the aforementioned methods
of Voss (1988), Berk and Picard (1991), Voss and Wang (1999), and Voss
(1999) if the methods are adaptive with respect to the number of terms
used to form the denominator of each statistic; adaptive methods along
the lines of Lenth (1989); step-down tests using sharper critical values
as recommended by Zahn (1975a, b), Venter and Steel (1998), and
Langsrud and Naes (1998), and as discussed by Voss (1988); and the
step-up tests of Venter and Steel (1998) and Langsrud and Naes (1998).
It is also an open problem to show that directional error rate is controlled
for the step-down tests of Zahn (1975a,b), Voss (1988), Venter and Steel
(1998), and Langsrud and Naes (1998), or for the step-up tests of Venter
and Steel (1998) and Langsrud and Naes (1998).

For saturated designs which are non-orthogonal, there has been very
little progress developing methods known to strongly control error rates.
It is problematic that the estimators are correlated. Kunert (1997)
provided a method of transforming the correlated estimators into
uncorrelated estimators, with k! possible such transformations to
orthogonality. Furthermore, he proposed the use of either a
predetermined transformation or the best of the £/ transformations to
obtain an improved variance estimator—namely, one which is robust
to the presence of a few non-negligible effects. Using such variance
estimators, he also proposed methods of data analysis but did not
establish strong control of error rates. Kinateder, Voss and Wang (1999)
obtained exact individual confidence intervals for each of the effects 6;
(i=1, 2,..., k), using Kunert’s (1997) method of transformation to
orthogonality. The result depends on making an a priori choice of one of
(k-1)! possible transformations, where the (k-1)! choices depend on i.
However, the method of Kinateder, et.al. has its shortcomings, as will
be discussed in Section 18.4.

Concerning the analysis of non-orthogonal saturated designs, there
are more open problems than results. It remains an open question
whether the confidence intervals of Kinateder, Voss and Wang (1999),
with appropriate modification of critical values, would strongly control
the error rate if any of the (k-1)! possible transformations is used.
Alternatively, tighter confidence intervals might be obtained if a
methodology could more directly take into account the correlation structure
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of the estimators. More generally, there are still no methods of simultaneous
inference, either tests or confidence intervals, known to strongly control
error rates.

Finally, for the analysis of super-saturated designs, there are still no
methods which are known to strongly control error rates. It remains an
open problem to find individual or simultaneous tests or confidence
intervals in this case.

18.2 BACKGROUND

Consider the analysis of data for an unreplicated or fractional factorial
design which is saturated or super-saturated. Suppose there are n
observations and & parameters of interest. Denote the parameters by
0, for i € K = {1,2,...,k}. These are typically treatment contrasts.
Throughout this paper we assume effect sparsity—namely, that few of
the effects are nonzero (or non-negligible).

Also assume throughout the paper that the following linear model is
appropriate:

Y ~ N.(XB,10%),

where Y, is a vector of independent, normally distributed observations
with common unknown variance ¢, X,,,, is the design matrix, f,,; is the
vector of unknown parameters, and I,,,, is the identity matrix. Without
loss of generality, the vector 6, of effects of interest is of the form 6=Cf}
for some kxp matrix C of rank k.

18.2.1 Orthogonality and Saturation

For purposes of analysis, we classify the designs of interest into three
types: orthogonal saturated designs, non-orthogonal saturated designs,
and super-saturated designs. A design is saturated or super-saturated
if the rank of the design matrix X is n. Then all degrees of freedom are
consumed by the estimation of model parameters, leaving no degrees of
freedom for error. Given a saturated or super-saturated design, the
design is saturated if the vector 0 is estimable—otherwise, the design
is super-saturated. In other words, a design is saturated if the rank of
X, is n and the row space of C is in the row space of X. A design is
super-saturated if the rank of X,,, is n and the row space of C is not in
the row space of X. A design is necessarily super-saturated, for example,
if n<k +1, the effects of interest are treatment contrasts, and the model
includes an intercept.
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For a saturated design, the vector of @ effect (least squares) estimators
is of the form

Orxi = A'Y ~ Ni(6,A’Ac?),

where A, is of full rank &. A saturated design is orthogonal if the matrix
A’A is diagonal, or equivalently, if the columns of A are orthogonal—
otherwise, the design is non-orthogonal.

For example, consider the regular 2;1_14 fractional factorial design
shown in Table 18.1, (with defining relation generated by the effects
ABD, ACE, BCF and ABCG). The n=8 observations allow the
independent estimation of the £ =7 factorial main effects, the matrix A
being 1/4 times the array in Table 18.1. However, having n=k+1 leaves
no error degrees of freedom after adjustment for mean response. The
same design would be super-saturated if used to estimate all main effects
and two-factor interactions of the seven factors.

TABLE 18.1 A regular 27} fractional factorial design

Obs. A B C D E F G
1 -1 -1 -1 1 1 1 -1
-1 -1 1 1 -1 -1 1
-1 1 -1 -1 1 -1 1
-1 1 1 -1 -1 1 -1
1 -1 -1 -1 -1 1 1
1 -1 1 -1 1 -1 -1
11 -1 1 -1 -1 -1
11 1 1 1 1 1

00 3 O UL Wi

Another example is the Plackett-Burman (1946) design in Table 18.2
for n=12 observations. This is an orthogonal saturated design for the
estimation of the main effects of =11 factors each at two levels under a
first-order model. The 12 observations allow the independent estimation
of the k=11 factorial main effects, the matrix A being 1/6 times the
array in Table 18.2. However, having n=k+1 leaves no error degrees of
freedom after adjustment for mean response. The same design would
be nearly saturated, but non-orthogonal, if used for any four of the factors
to model their four main effects and six two-factor interactions. The
same design would be super-saturated if used to estimate the main effects
and two-factor interactions of any five of the factors.
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TABLE 18.2 The 12-run Plackett-Burman design

Obs. A B C D E F G H I J K
1 11 1 -1 -1 -1 1 1 1 -1 1
2 11 -1 1 -1 -1 -1 1 1 1 -1
3 .11 1 -1 1 -1 -1 -1 1 1 1
4 1 -1 1 1 -1 1 -1 -1 -1 1 1
5 1 1-1 1 1 -1 1 -1 -1 -1 1
6 +¥r 1 1 -1 1 1 -1 1 -1 -1 -1
7 -1 1 1 -1 1 1 -1 1 -1 -1
8 121 1 1 1 -1 1 1 -1 1 -1
9 -1 -1 -1 1 1 1 -1 1 1 -1 1

10 1 -1 -1 -1 1 1 1 -1 1 1 -1
11 -11 -1 -1 -1 1 1 1 -1 1 1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

The main challenge for a saturated design is that there are no error
degrees of freedom for independent estimation of variability. Consequently,
the data analysis depends on the relative magnitudes of either the effect
estimates or their sums of squares. Such methods of data analysis invariably
depend on an assumption of effect sparsity.

18.2.2 Control of Error Rates

This paper concerns the strong control of error rates, individually or
familywise, in the analysis of saturated and super-saturated designs.

Individual and familywise control of error rates

Control of individual error rates is control of the Type I error rate for
testing each null hypothesis H;y:6,=0 or, equivalently, control of the
confidence level associated with each confidence interval (L;, U;) for 6,
(i € K)Familywise control of error rates is control of the chance of making
any Type I errors while testing the family of 2 hypotheses H;y:6;=0 (¢ € K),
or, equivalently, control of the level of confidence that all of the £
confidence intervals (L, U,) (i € K) are simultaneously correct. [See
Hochberg and Tamhane (1987, pages 5-12).]

Even in the analysis of a screening experiment, there is value in the
use of both individual and familywise inference procedures. Then failure
to identify a non-negligible effect (a Type II error) may be more
detrimental than falsely asserting a nonexistent effect to be statistically
significant (a Type I error). Individual inference procedures are generally
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preferred for the analysis of screening experiments because of their greater
power. However, this greater power is at the expense of a higher rate of
false positives. In comparison, simultaneous methods of inference are more
conservative, but effects found to be significant by such methods are more
often real effects. Both individual and simultaneous inference procedures
should be used for the analysis of a screening experiment, since they provide
different information which is available at no cost!

Strong control of error rates

A procedure provides strong control of the error rate if the error rate is
controlled over all parameter configurations [Hochberg and Tamhane
(1987, p. 3)]. For example, consider an individual confidence interval for
6.. Then the other effects 6,,..., 6, are nuisance parameters. It is not enough
that the confidence level for capturing 6, be as specified only if the other
parameters 6;,..., 6, are all zero, since they almost certainly are not.

For strong control of the individual error rate for a confidence interval
for 60,, the desired probability inequality is of the form

Pe(Ly <, <) >1—a, (18.2.1)

where the inequality is understood to hold for all 6.

Similarly, for strong control of the familywise error rate for
simultaneous confidence intervals for the 6; (i € K), the desired
probability inequality is of the form

Pg(LZSG‘LSUz : ViEK)Zl—a. (18.2.2)

If the appropriate probability inequality, (18.2.1) or (18.2.2), holds, and if
the infimum over 6 of the corresponding probability is 1-a, then the error
rate is a, the confidence level is 100(1-a)%, and the confidence intervals
are said to be exact. If the probability inequality holds but the infimum
exceeds 1-a, then the confidence intervals are conservative.

The notion of an exact confidence interval is equivalent to the notion of
a test being of size q, the size of an individual test being

a = sup Py(reject Hp).
@cHyp

Consider what is meant by the size when simultaneously testing the
hypotheses H;:0,=0 for i € K. Let I be a non empty subset of K=
{1,2,..., k}. Then H; = N;er Hg; denotes the hypothesis that Hy, is true for
all ¢ € I, viewing each hypothesis as a subset of the parameter space.
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For simultaneous testing the 2 hypotheses H,, the size of the test is
a = supPy(3 6, =0, but declare 4;, # 0)
)

= max sup Pyp(reject Hy; for some i € I).
Ic BcH;

For strongly controlling error rates in the analysis of saturated and
supersaturated designs, the nature of the problem and the results
available depend upon the design. The easiest case is when the design
is orthogonal and saturated, as discussed in Section 18.3. Non-orthogonal
saturated designs may be analyzed by transformation or projection to
orthogonality, as will be discussed in Section 18.4. For a super-saturated
design, nonestimability of § poses additional problems for the analysis, as
discussed in Section 18.5.

18.3 ORTHOGONAL SATURATED DESIGNS
18.3.1 Background

This section contains a review of known results and open problems in the
analysis of orthogonal saturated designs. In this case,

bix1 ~ Ni(8x,Ds?),

where the covariance matrix Cov(@) = Do?is diagonal and known up to
the constant o®. Since the estimators can be scaled each to have variance
0%, assume without loss of generality that D is the identity matrix. Thus,
we assume 8; ~ N(6;,0%)and independent (¢ € K). Effect sparsity is also
assumed.

There have been many methods proposed for the analysis of
orthogonal saturated designs.

Daniel (1959) made a fundamental contribution, using half-normal
plots for the subjective analysis of orthogonal saturated designs.
Normal probability plots are still widely used for this purpose even
today.

At the same time, Daniel (1959) and Birnbaum (1959) considered more
formal, objective methods of analysis of such designs. Each considered
testing for a nonzero effect, assuming at most one effect is nonzero.
Birnbaum provided an optimal decision rule for this case, based on the
size of the largest of £ independent sum of squares relative to the total
sum of squares (or equivalently, to the sum of the rest of the effect sums of
squares). An optimal level-a test for the detection of at most one nonzero
effect could be iterated to test for multiple nonzero effects, but the iterative
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procedure would no longer be level-a or optimal. Birnbaum also considered
optimal decision rules in the case of at most two nonzero effects, noting
that the problem was then already quite complex. Zahn (1975a,b) considered
some variations on the iterative methods of Daniel (1959) and Birnbaum
(1959), but his results were primarily empirical. The subjective use of
normal probability plots remained the standard methodology for the analysis
of orthogonal saturated designs until the late 1980’s.

Then Box and Meyer (1986, 1993) provided Bayesian methods for
obtaining posterior probabilities that effects are active, and there
followed a flurry of papers proposing new frequentist methods, making
refinements on the methods, and making empirical comparisons of the
many variations. See for example papers by Voss (1988), Benski (1989),
Lenth (1989), Berk and Picard (1991), Loh (1992), Juan and Pefia (1992),
Schneider, Kasperski and Weissfeld (1993), Dong (1993), Torres (1993),
Haaland and O’Connell (1995), Venter and Steel (1996, 1998), Voss and
Wang (1999), and Langsrud and Naes (1998). Hamada and Balakrishnan
(1998) provide an extensive review of existing methods, including a
Monte Carlo-based comparison of the operating characteristics of the
methods.

All of the afore-mentioned methods rely on an assumption of effect
sparsity. Most of the methods are heuristically appealing, and in many
cases the operating characteristics have been studied empirically or
justified in approximation. However, relatively few of the methods are
known to provide strong control of error rates, which is the focus of this
work.

The objective here is to obtain tests of the hypotheses H,,:0,=0 or
confidence intervals for the parameters §; (i € K)which strongly control
error rates either individually or simultaneously. Strong control of error
rates and confidence levels requires establishment of appropriate
probability inequalities, which corresponds to a stochastic ordering of
distributions. In order to establish this theoretically, the following
definition and lemma are useful.

A family of distribution functions Fy(x) on the real line, with a real
parameter 6, is said to be stochastically decreasing if 6<6 implies Fy(x)<
Fy(x) for all x [Lehmann (1986, p. 84)].

The following lemma follows from similar results of Alam and Rizvi
(1966) and Mahamunulu (1967), used in the ranking and selection
literature for identifying least favorable configurations. For related
discussion of applications to ranking and selection, see Gupta, Huang
and Panchapakesan (1982).

Lemma 18.3.1 /[Stochastic Ordering Lemma, Voss (1999)] Let Fig,(x),
with real parameter 0, be a stochastically increasing family of distribution
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functions on the real line, fori=1,2,..., k. Let X, X,,..., X;, be independent
random variables, where the distribution function of X; is Fyy, (x;). For
any fixed i, 1<i<k, if the statistic t=t(x,, Xs,..., X3) IS @ non-increasing
function of x; when all x; for j#i are held fixed, then the distribution of
T=t(X,, X,,..., X;) is stochastically decreasing in 6,

In the rest of this section, some known results and open problems
are discussed in some detail.

18.3.2 Simultaneous Stepwise Tests
Closed, step-down tests

The first procedure known to strongly control the error rate in the
analysis of an orthogonal saturated design was a closed, step-down
testing procedure of Voss (1988) for simultaneously testing the
hypotheses Hy : 8; = 0 (i € K). The following broad class of statistics
was considered. Let ¢ be a nonnegative, increasing function on the
nonnegative real numbers, and let X; = ¢(|6;]), with corresponding order
statistics

X(l) < X(g) < vve <X(k).

The test statistics are of the form

R(,;) = X(,;)/D, i€ K, (18.3.3)

where D = Zfz, a; X(;), for nonnegative scalars a; not all zero.
Included, for example, are the statistics

R(,;) = X(,;)/D, ie K, (18.3.4)

which compare the order statistics of the sums of squares to the quasi
mean squared error QMSE obtained as the average of the v smallest
sums of squares. These statistics are obtained if ¢(z) = 22 and, for fixed
v (1<v<k), a;=1/v for i<v and a;=0 otherwise.

Also included, for example, are the statistics

Ry =8ly/D, (i€ K), (18.3.5)

which compare the order statistics 0; |» of the absolute effect estimate
|6;] to the average of the v smallest absolute effect estimates, for ¢(z) =
and, for fixed v (1<v< k), a;=1/v for i<v and ;=0 otherwise.

These test statistics include several statistics proposed in the literature.
They include for example the ratio of the largest sum of squares to the
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total sum of squares considered by Cochran (1941), the modulus-ratio
statistics of Daniel (1959), the X and S statistics of Zahn (1975a, b), and
(the square of) the ratio statistic of Schneider, Kasperski and Weissfeld
(1993).

A variation on the statistics in equation (18.3.3) is for D to be the median
or some other quantile of the absolute effect estimates. Then the statistics
in (18.3.3) are analogous to adaptive statistics used by Lenth (1989) and
others, except these are not adaptive. Adaptive methods are considered in
Section 18.3.6.

Voss (1988) obta ined the critical values as follows. For fixed function
¢ and scalar vector @ = (a1, ag,...,ax) let c.(i, a, k) be the upper-a
quantile of

Pg(Ci > ca(i,a,k) | 0= (0,...,0)')

under the null distribution—namely, when 6,=0 for all i. Thus, a=
Py(C; > co(i,a, k) | @ =(0,...,0)).

The step-down testing procedure of Voss (1988), illustrated here using
the statistics ss(;/gmse of equation (18.3.4), is as follows. Let 6; denote
the parameter corresponding to the ith smallest sum of squares, ss). If
ssay/gmse >c (k,a, k), then assert 6,,#0 and continue; otherwise stop. If
ssqg.r/gmse>c,(k-1, a, k), then assert 6;.,,#0 and continue; otherwise stop.
Continue in this fashion, asserting 6;#0 for each i such that ssg/
gmse>c,(j, a, k) for all j>i.

Theorem 18.3.1 [Voss (1988)] This step-down testing procedure is of
familywise size .

Proof of the above result was based on the following observation.
Denote the (unknown) number of negligible effects by m. Without loss
of generality, let the first m effects be negligible. A necessary condition
for a false assertion to occur is that

max{X1,Xs,...,Xn}/D > ca(m,a,k).

Under the null distribution, this occurs with probability a. Voss (1988)
argued that

max{X1, Xo,...,Xm}/D
is stochastically decreasing in Iéil for each i>m, so
Py (max{X;,Xa,...,Xn}/D > ca(m,a,k)) < a

for all (6,,1,..., 6,) when 6,=6,=...=60,,= 0. Application of the Stochastic
Ordering Lemma makes the proof rigorous. Because the probability bound
is achieved in the null case, the size of the test is a.
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Marcus, Peritz, and Gabriel (1976) provided a general method of
constructing step-down tests which strongly control the familywise error
rate. The method is called the closure method. Given the finite family of
hypotheses{Hoi : ¢ € K}, the closure of this family is obtained by taking
all non-empty intersections of parameter spaces, H; = N;c;Hy; for
I C K ={1,2,...,k}. The method hinges on the existence of a level-a
test of each hypothesis H;. The closed testing procedure rejects H; at level
a if and only if Hy is rejected by its associated level-a test for all K D
[For further details on step-down tests and closed tests, see Hochberg and
Tamhane (1987, pp. 53-54).]

The procedure of Voss (1988) is a closed, step-down test. To see this,
consider the test of H;. This hypothesis is rejected if

max(X:}/D > ca|Tl,a,k),

where |71 is the number of elements in the set I. By definition of the
critical valuec, (111, a, k), the Type I error rate is exactly « when 6,=0 for
all i € K Also, by the Stochastic Ordering Lemma, the distribution of
max;er{X;}/Dis stochastically decreasing in | 6;| for each j ¢ I. It follows

that the test of H; is of size a.
Iterative methods and sharper critical values: an open problem

In the step-down testing procedure of Voss (1988), the critical value ¢ (i, a,
k) is determined from the null distribution of the random variable

C; = max{Xl,Xg,...,X,-}/D, ie K.

Here C;is a function of all £ random variables X, because D = Zle a; X (i)
Voss (1988) observed that sharper critical values are obtained if C; is taken
to be a function of only i random variables. Specifically, c (i, @, i)<c.(i, a,
k) for all i for which the former is well defined, which is the case if a;=0 for
all j>i. Use of the sharper critical values corresponds to iteratively testing
the effect corresponding to the largest of i estimators, for i=£k, k-1,..., the
ith test statistic being a function of only i effects. Use of these sharper
critical values has been advocated for example by Daniel (1959), Zahn
(1975a, b), Venter and Steel (1998), and Langsrud and Naes (1998).

In fact, Venter and Steel (1998) considered a more general class of
statistics than those in equation (18.3.3). They considered statistics of
the form

Tu = Xiy/Diy i €K, (18.3.6)
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where X(;) = Iél(i) and D; = 3, ai; X(;) for nonnegative scalars a; not
all zero. Thus, the denominators D; can depend on i. It is reasonable to
allow ¢(x)=x2 which would enlarge the class of statistics. Concerning D,
one could also allow a;; to be nonzero for j>i. While this in not desirable,
the resulting class of statistics (18.3.6) would then generalize those of
Voss (1988) in Equation (18.3.3).

For the step-down testing procedure, Venter and Steel (1998)
recommend using critical values obtained as the upper-a quantile of

Ci = max{Xl,Xz,. .o ,X—,}/D1

under the null distribution of Xi, X, ..., X;, taking the X; in D, to be the
order statistics of only X, X,,..., X;, not of X;, X,,..., X;. These critical
values were chosen so that, for I C K, the test of “Hy : §; =0VieI”
has Type I error rate « if 6; is infinite for each i ¢ I.

Similarly, Langsrud and Naes (1998) propose forward selection and
backward elimination strategies, incorporating, but not requiring, an
independent estimator of error variance (¢?). Their analysis involves
the statistics

55¢j) .
v;(t) = —2,... .k
i (1/(g; + )(t8* + T ss@) ~ (18.3.7)

where s? denotes the independent error estimator with ¢ degrees of freedom.
They provide a stochastic ordering result to compare different null
distributions of interest. Nonetheless, they do not go so far as to rigorously
strongly control error rates (termed “protection levels” in their work), but
rather establish the protection level in the null case.

Empirical evidence suggests that familywise error rate is strongly
controlled if step-down testing is used with the sharper critical values [Zahn
(1969, 1975b) and Venter and Steel (1998)], but this result has only been
proven for the cases of k=2, 3 [Zahn (1969)]. These tests are not closed,
step-down tests—the method provides no a-level test of the individual
hypotheses H,;:6,=0, for example. It remains an open problem to prove that
such methods strongly control the familywise error rate for £>3.

Directional inference: an open problem

Another open problem concerning step-down tests is the following.
Suppose a step-down procedure for testing the hypotheses Hy; (i € K)
controls the familywise error rate to be at most «. Is the error rate still
at most « if, for each hypothesis Hy, rejected, one infers 6;>0 if ;>0 and
6,<0 if 8,<0? Shaffer (1980) and Holm (1979) establish such control of
directional error rate in other scenarios. See Hsu (1996, p. 20) for discussion.
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Step-up tests

Holms and Berrettoni (1969) proposed a step-up testing procedure for testing
the hypotheses Hy; : 6; = 0 (i € K), using the test statistics
SS(iy/ ¥_j=1 S8j) for izm, where m is a pre-specified integer, 1<m<k.
More recently, Venter and Steel (1996, 1998) proposed using the same
step-up testing procedure but with the more general class of statistics
T:=X/D; of equation (18.3.6). Following Venter and Steel (1998), the
procedure is as follows. For fixed m (1<m<k), let n be the minimum
value in {m, m+1,..., k} such that T;,>c.(i, a;), for critical values c.(i, a,),
a=(a;,...,a; 1) i=m, m +1,..., k). The procedure is to infer 6,,#0 for all
i=n, n+1,..., k, where 6, is the parameter corresponding to ss;;. If no
such n exists, no inferences are made.

Venter and Steel (1998) conjecture that if c (i, @;) is the upper-« critical
value of max{Xj,..., X;}/D, then their step-up procedure strongly controls
the familywise error rate to be at most . A similar conjecture can be
made for the step-up procedure of Langsrug and Naes (1998),
corresponding to equation (18.3.7). It remains an open problem to prove
these conjectures.

18.3.3 Individual Tests

Individual tests which strongly control error rates follow from the
existence of closed, step-down tests, since the closure method requires
the existence of an a-level test of each hypothesis H;,:6,=0.

Theorem 18.3.2 [Berk and Picard (1991)] A size-a test of the hypothesis
H,y:6,=0 is to reject Hyy if X;/ D>c (1, a, k), where X;, D and c,(1, a, k) are
as defined for Theorem 18.3.1.

The critical value for testing H,, is obtained as the upper-a quantile
of the null distribution of X;/D, and 6, is asserted to be nonzero if X;/D
exceeds the critical value.

It is not clear whether directional error rate is controlled if a
directional inference is made when the null hypothesis is rejected. If
directional inference is desired, it can be obtained with a slight
modification of the denominator used to obtain a confidence interval
(see Section 18.3.4).

Loughin and Noble (1997) proposed using a permutation test with
the test statistic of Birnbaum (1959), comparing the largest sum of
squares to the sum of the rest, to test for a single non-negligible
effect. They also considered extensions to testing multiple effects,
recommending use of a step-up procedure. However, error rates were
considered only under the complete null distribution of no active
effects.
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18.3.4 Individual Confidence Intervals

Exact individual confidence intervals were obtained by Voss (1999). Strong
control of the error rate follows from the Stochastic Ordering Lemma,
once an appropriate pivotal quantity is identified. To obtain the pivotal
quantity, the denominator D used for individual and simultaneous tests is
modified to be independent of the estimator of the effect of interest.

To illustrate the method, consider a confidence interval for the first
effect, 0,. Let

S8(1:1) < 8S(2:1) < -+ < SS(k-1.1)

denote the order statistics of the k-1 sums of squares SS; excluding SS,.
Furthermore, let QMSE, denote the quasi mean squared error obtained
as the average of the v smallest of these k-1 order statistics, for v a pre-
specified integer, (1<v<k). Then following Voss (1999),

(6, — 6:)%/ QMSE, (18.3.8)

is a pivotal quantity with respect to 6,. By the Stochastic Ordering Lemma,
the distribution of (18.3.8) is stochastically decreasingin | 6;| for all i+ 1.
Hence, we have the following result.

Theorem 18.3.3 An exact confidence interval for 6, is
01 % v/qa(v, k)gmse, ,

where q (v, k) is the upper-a quantile of the null distribution of the pivotal
quantity (18.3.8).

These confidence intervals are not adaptive. For open problems concerning
confidence intervals based on adaptive methods, see Section 18.3.6.

Conservative simultaneous confidence intervals can be obtained by
applying the Bonferroni method to these exact individual confidence
intervals, but exact simultaneous confidence intervals can also be
obtained, as seen next.

18.3.5 Simultaneous Confidence Intervals

Voss and Wang (1999) obtained exact simultaneous confidence intervals
for the £ parameters 6, by consideration of the distribution of the maximum
of the pivotal quantities used by Voss (1999) for individual confidence
intervals. The method of proof differs, because the Stochastic Ordering
Lemma does not apply.
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Following Voss (1999), let
SS(1:4) < 8S(2:4y < -+ < SS(k—12)

denote the order statistics of the k-1 sums of squares SS; excluding SS,,
and let QMSE; denote the quasi mean squared error obtained as the
average of the v smallest of these k-1 order statistics, where v is a
predetermined integer. Consider the distribution of

M = max { (6 - 0,)*/QMSE,}

Voss and Wang (1999) showed that the distribution of M is stochastically
decreasing in each of the |6;| if each 6, has a symmetric unimodal
distribution, so that the null distribution can be used to obtain upper-«
critical values for exact simultaneous confidence intervals.

Theorem 18.3.4 [Voss and Wang (1999)] If the 6; are independently
distributed, and if 8; has a symmetric, unimodal distribution with mean
0; (i € K ) then exact simultaneous confidence intervals are

6; € 6, mq (v, k)gmse, ,
where m (v, k) is the upper-a quantile of the null distribution of M.

The Stochastic Ordering Lemma does not apply to M. Instead, this theorem
was established by direct computation of the distribution function of M,
with the problem reducing to consideration of the conditional distribution
of 4, for given 6s,...,6;.

18.3.6 Adaptive Methods

A challenging open problem is to show strong control of error rates for
adaptive methods of inference.

Lenth (1989) proposed use of an estimate of the error standard
deviation o that is adaptive to the number of nonzero effects. Specifically,
he computed a preliminary estimate

60 = 1.5 x median {|6;]:1 <4 < k}

then obtained a second, more robust estimate as 1.5 times the median of
those absolute effect estimates not exceeding 2.56,—namely,

& = 1.5 x median {|6;] : 1 < i < k and |§;| < 2.560}.
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This estimate & is adaptive, because it is computed from a random number
of the smaller effect estimates.

Lenth then based tests on the ratios §; /& and confidence intervals on
the quantities (6; — 6;)/6. He recommended use of critical values from
the ¢-distribution with %2/3 degrees of freedom, based on fitting scaled
chisquared distributions to the empirical distributions of 2 for k=7, 15
and 31 by matching the first two moments. For variations on the method
of Lenth (1989), see Juan and Pena (1992), Dong (1993), and Haaland
and O’Connell (1995). A X

The estimate & and also the quantities 6;/6 and (6; — 8;) /6 were shown
in Voss (1999) to not be monotone in the absolute values of the effect
estimates. Hence, the Stochastic Ordering Lemma does not apply, and
control of error rates and confidence levels for such adaptive methods
remains an important open problem, requiring an alternate method of
proof.

Other open problems concern adaptive versions of the step-down tests
of Voss (1988), the individual tests of Berk and Picard (1991), the
individual confidence intervals of Voss (1999), and the simultaneous
confidence intervals of Voss and Wang (1999). Specifically, suppose in
each case the denominator is obtained as the average of the v smallest
sums of squares. If the number of sums of squares, v, used to form the
denominator is adaptive—namely, if v varies from sample to sample—
then can the corresponding procedure be shown to strongly control the
error rate?

18.4 NON-ORTHOGONAL SATURATED DESIGNS

This section contains a review of known results and open problems in
the analysis of non-orthogonal saturated designs. The results are few
and the open problems many. The only method known to strongly
control error rates is an exact individual confidence interval procedure
of Kinateder, Voss and Wang (1999). The confidence intervals could
also be used for exact individual tests. The methodology is essentially
an extension of the results of Voss (1999) for the case of orthogonal
designs, utilizing projections to orthogonality introduced by Kunert
(1997).

In the non-orthogonal case, the vector of effect estimators is of the form
8i1 = A'Y ~ Ni(8,A' Ac?), where A, ,=(a,,..., a;)is of full rank &, and
the matrix A’A is non-diagonal. The latter condition corresponds to the
columns of A being non-orthogonal.
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18.4.1 Individual Confidence Intervals

The method of Kinateder, Voss and Wang (1999) is presented here. Consider
obtaining an exact confidence interval for the first effect, 6;. The
fundamental idea is to transform the dependent estimators §; = a,Y into
independent estimators #; = b]Y, to which the Stochastic Ordering Lemma
can be applied to construct the desired confidence interval. Following
Kunert (1997), the transformation to independence is accomplished by use
of projections to orthogonalize the columns a; of A, ,=(a,,..., a).
Equivalently, one applies the Gram-Schmidt process to the columns of A
(without scaling the columns to have norm one) to obtain the matrix
B, .=(,,..., b,) with orthogonal columns. It follows that B=AC, for
C,..=(c;) an upper-triangular matrix.

Then for #ix1 = (f1,...,7%) = B'Y, fix1 ~ N(1,D0c?) where T =
C'6 and D=B’B. The parameters T1; are called the induced effects. By
construction, the columns of B are orthogonal, so D=(d;) is a diagonal
matrix. Consequently, the estimators #; (i=1,..., k) are independently
distributed, and #; = #; is an unbiased estimator of §; = 7.

Because the induced estimators 7, are independently distributed, the
approach of Voss (1999) for an orthogonal design can be applied to the
#,to obtain an exact confidence interval for 6,. Specifically, the v smallest
sums of squares of the k-1 estimators 7; for i #1 are pooled together into
a quasi mean squared error, QMSE,, for pre-specified integer v,
(1<v<k).The quantity

Q% = (b1 — 61)%/(d11 x QMSE;, )

is then a pivotal quantity with respect to 6,, where di; = Var(d;)/o? =
Var(#1)/0?, and the distribution of (% is stochastically decreasing in |7;]
for all j#1.

Theorem 18.4.1 [Kinateder, Voss and Wang (1999)] An exact confidence
interval for 6, is

6, + \/qo,(z/, k) d11 qmse, ,

where q,(v,k) is the upper-a quantile of the null distribution of the pivotal
quantity Q3.

Exact confidence intervals for each of the other k-1 effects can be
obtain analogously. Also, the existence of exact individual confidence
intervals implies the existence of exact individual tests.

An apparent shortcoming of the method of Kinateder, Voss and Wang
(1999) is that the induced effects 71, . . . , T tend to have less effect sparsity
than the effects 6,,..., 6,1 Specifically, the induced effect 7; corresponds in
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a sense to 6, but is a linear combination of 0 ,,..., 0,. This contamination
of 7; by some 6, for j<i is a consequence of the nonorthogonality of the
design and the projection to orthogonality inherent in the methodology.

18.4.2 Open Problems

As noted previously, there are more open problems than proven methods
in the case of non-orthogonal saturated designs. Here are some.

In method of Kinateder, Voss and Wang (1999) just presented, the
induced effects depend on the subjective choice of the order of projections,
or equivalently, on the order of the columns of the matrix A, the columns
being in one-to-one correspondence with the effects 6,. If the columns of
the matrix A were permuted before applying the Gram-Schmidt process,
then a different set of induced effects and a different confidence interval
width would result. This subjective choice of the order of projections
must be made a priori—use of that order which gives the tightest
confidence interval would invalidate the procedure, making the
procedure liberal. In order to remove this subjectivity, it is of interest
to consider the distribution of the pivotal quantity using that
permutation of the last £-1 columns of A which minimizes the resulting
quasi mean squared error, or equivalently, which minimizes the
confidence interval width. It is an open problem to show that this
variation on the procedure still provides strong control of the confidence
level.

Also concerning the method of Kinateder, Voss and Wang (1999) for
constructing individual confidence intervals, a different transformation
or projection to orthogonality is needed for each effect. It is desirable to
obtain exact methods for which this is not the case. Along these lines,
Kunert (1997) used just one such transformation to obtain independent
sums of squares with which to construct a single estimate of ¢2, then
proposed using this same estimator of o2 for the inferences for each of
the effects. It is still an open problem to show that his approach strongly
controls the error rate.

Finally, there are no known results concerning simultaneous tests
or confidence intervals which strongly control error rates.

18.5 SUPER-SATURATED DESIGNS

While there is only one method known to strongly control error rates for
the analysis of non-orthogonal saturated designs, there do not exist any
for the analysis of super-saturated designs. This is an obvious gap in the
statistical literature, because design and analysis of experiments are
inseparable, and substantial work has been done on the construction of
supersaturated designs. Construction of designs has been considered for
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example by Booth and Cox (1962), Srivastava (1975), Srivastava and Gupta
(1979), Anderson and Thomas (1980), Ghosh (1980, 1981), Rosenberger
and Smith (1984), Ohnishi and Shirakura (1985), Barnett and Hurwitz
(1990), Shirakura (1991), Lin (1993, 1995), Nguyen (1996), Tang and Wu
(1997), Yamada and Lin (1997).

Even discussion of the analysis of super-saturated designs in the
literature is scarce. This is probably due to the difficulty of the problem.
Supersaturated designs not only present the difficult problem of non-
orthogonality but also the additional complication of non-estimability.
Specifically, if all effects of interest are included in the model, then the
model is overparameterized, so effects are not estimable. Two approaches
have been suggested in the literature to circumvent this problem of
non-estimability.

The first method of analysis proposed concerns a special class of
supersaturated designs called search designs, introduced by Srivastava
(1975). Suppose the k=k,+k, effects can be partitioned into two sets of
sizes k, and k,, respectively, in such a way that all &, effects in the first
set may be nonzero so are to be estimated, and at most m of the other &,
effects are nonzero. A design is a k,+m search design if it allows the
(search and) identification of all nonzero effects under a noiseless model.
An equivalent condition is that, for each combination of 2m of the k2
effects in the second set, the submatrix of the design matrix
corresponding to the k,+2m effects is of rank %,+2m [Srivastava (1975)].
For the analysis of search design, Srivastava suggested use of the best
submodel of given size for the analysis, the best submodel being the
one yielding the smallest mean squared error. This appears to be the
best starting point for the analysis of super-saturated designs, but no
results concerning control of error rates are available.

The second approach suggested for the analysis of super-saturated
designs is by Westfall, Young and Lin (1998). They proposed use of
forward selection for model building and discussed error control, but
they were unable to establish strong control of error rates.
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ON ESTIMATING
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INTERACTION
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Abstract: We begin by considering a population of units U=(u , « ,..., u ).
Our objective is to study the effect of a treatment ¢ on these units with
respect to a particular response of interest in the context of a randomized
experiment. We make use of a model sometimes referred to as a “Potential
response model” or as “Rubin model for causal inference.” The model has
been used by others to analyze problems associated with estimating a mean
treatment effect in both randomized experiments and observational studies.

However, an “average treatment effect” is a meaningful quantity only
when it adequately represents the effect of ¢ on each unit. If the effect of
t is highly variable from one unit to another, i.e., when the subject-
treatment interaction is nonnegligible, then the average treatment effect
loses its importance. In fact, a treatment might appear to be a “beneficial”
treatment when examining its average effect even though a substantial
proportion of the units in the population experience an “unfavorable”
effect. This proportion can be calculated or approximated if one knows
the variance of the treatment effects along with the mean. Questions
concerning the estimation of the variance of treatment effects in a finite
population is the subject of this paper.

Keywords and phrases: Rubin model, non-additivity, counterfactual
model, potential response model
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19.1 INTRODUCTION

We begin by considering a population of units U=(u,, us,...,uy). Our
objective is to study the effect of a treatment ¢ on these units with respect
to a particular response of interest in a designed experiment. This effect
1s to be assessed by comparing the response when the units are subjected
to the treatment ¢ with the response when the units are subjected to a
control treatment ¢ which is used as a basis of reference. In the ideal
situation when the responses to both treatments ¢ and ¢ are known for
each unit, the “true” effect of treatment ¢ can be calculated for each unit
by taking the difference between the responses of that unit to treatments
t and c, respectively. Without loss of generality let us suppose that a
positive difference indicates that the treatment effect is “beneficial” and
a negative difference indicates an “unfavorable” effect.

In practice it is not possible to obtain the responses of each unit to
each of the two treatments at the same time. Instead, what is often
done is the following. Suppose that the size of the experimental group is
N=2n. Half of these units, chosen randomly, will receive treatment ¢,
with the other half receiving treatment c. The average effect of treatment
tis estimated by computing the difference between the average response
of the units receiving treatment ¢ and the average response of the units
receiving treatment c.

“Average treatment effect” is a meaningful quantity only when it
adequately represents the effect of ¢ applied on each unit. If the effect of
tis highly variable from one unit to another, then the average treatment
effect loses its importance. In fact, a treatment may appear to be
“beneficial” when examining its average effect even though a substantial
proportion of the units in the population experience an “unfavorable”
effect. This proportion can be calculated or approximated if one knows
the variance of the treatment effects in addition to its mean. Questions
concerning the estimation of the variance of treatment effects in a finite
population is the subject of this paper.

Consider the following matrix of responses X;, Y;, i=1,...., N
corresponding to the IV units in the finite population under consideration.

X1 Y
X2 Y

S (19.1.1)
XN Yy

Here X; represents the response of unit u; if treatment ¢ is applied to it and
Y; denotes its response if treatment c is applied. Even though only one of
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the two responses can be observed on any given unit, conceptually, the
“true” treatment effect for the i unit is defined as D, given by

D, =X;,-Y,. (19.1.2)
When the values of D; are different from one unit to the next, i.e., when a

subject-treatment interaction is present, it may be useful to consider the
variance Sg, of the treatment effects given by

1 —2
B = (02N

8% + 8% —25x v (19.1.3)

where S% and S% are the finite population variances of X and Y respectively,
and Sx y1s the finite population covariance. The finite population standard

deviation of treatment effects is then Sp and the correlation between X
and Y is

_ Sx,y
Sx Sy’

Rx vy

Observe that S3 is zero if and only if there is no subject-treatment
interaction.

The key problem of estimating the variance of treatment effects is
rooted in the fact that the correlation parameter Ry, vy is not estimable
from observable data. This nonestimable correlation parameter has a long
history going back to Neyman (1935) [the idea of potential responses actually
dates to Neyman 1923)]. In the 1935 paper, Neyman demonstrated how in
a finite population, estimates of standard errors of the estimated mean
treatment effect can be biased due to a subject-treatment interaction, but
he did not consider estimation of this interaction.

The assumption throughout this paper is that units only receive one
treatment, ¢ or c. We do not consider repeated measures or crossover studies
which allow the observation of responses to several treatments on the
same subject because these observations are not made under identical
conditions and, without several additional unverifiable assumptions,
inference about the “true” treatment effect is not possible with these designs.
Therefore, it seems reasonable that if we are to proceed with an estimation
of S, the unobserved values (which may be thought of as missing values)
may have to be estimated.

Several authors have considered the problem of missing values in various
contexts. Estimating missing values in survey data has been referred to
as imputation [Rubin (1996), Fay (1996) and Rao (1996)]. Imputing survey
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data is an important topic of research since missing responses may
introduce bias in the estimated mean treatment effect if the responses are
not missing at random. In our context, though, the missing values occur
as a result of a random treatment assignment. Our motivation for
estimating these missing responses is to estimate individual treatment
effects thereby facilitating an estimate of S3.

When covariate information is available on all units in the finite
population as in Rubin (1978), we may be able to use this information to
estimate the unobserved values. Rao (1996), for instance, considers
stratification, regression, and ratio imputation in survey data. In each
of these cases, the overall objective was the estimation of a mean
response and its standard error. Another technique to consider is the
matching of subjects by covariate information. The problem of matching
units in order to obtain a mean treatment effect and its standard error
in observational studies has been considered extensively [Rosenbaum
(1989), Rosenbaum (1995) and Rosenbaum and Rubin (1983)].

The present work focuses on estimation of the standard deviation Sy,
using covariate information to impute unobserved potential responses in
a two sample design. In Section 19.2 we consider the use of a single
covariate and discuss the bias of the resulting estimator of §3. Section
19.3 includes an illustrative example. We conclude with a summary
discussion.

19.2 AN ESTIMATOR OF S3 USING CONCOMITANT
INFORMATION

Consider a finite population of size N=2n. In a randomized experiment for
estimating the effect of the treatment t, suppose half the units in the finite
population, chosen randomly, are subjected to treatment ¢ and the other
half are subjected to treatment c. We partition the indices i=1, 2,..., N of
U into two sets v and w, where ¢ € vis assigned to the treatment group,
1 € w if u;and is assigned to the control group. We let X, denote the vector
of responses to t of the n units in the treatment group, and Y,, denote the
vector of responses to ¢ of the n units in the control group. Once units are
randomly assigned to a treatment group and a control group as described
above, we observe the responses X, and Y,,. The observations may be written

as follows:
X, ——
< v, ) (19.2.4)

The dashed lines in the above matrix constitute values that were not
observed.
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Suppose a covariate Z is observed on all the units in the finite population.
Further suppose that Z is used to predict the unobserved values for the N
units. The collection of all observed values and the combined set of observed
as well as predicted values for the N population units may be exhibited as
shown below.

[ X Y Z \ [ X y Y/
X - 4 X1 16 Zy
Xo — 2 X2 Y2 Zy
X, — z, (= x, 1. =z | 925
- Y”‘H Z’”+1 X’n+l Yn+1 Zn+l
k -— Yn Zn ] XN YN Zn

For convenience, we have labeled the population units such that units
that received treatment ¢ are labeled 1 through n. We call the populations
in 19.2.5 above the “observed population” (on the left), and the “estimated
population” (on the right).

Let the vector of treatment differences in the estimated population
be d=x-y. An obvious estimator of S is the quantity S3 defined by

1 -2
8i =y di-Nd]. (19.2.6)

Noting that we can only observe half of the potential responses, X and
Y, and, so, must predict the other half, one may be concerned that too
many values are being imputed in forming the estimator S%. Thisis an
inherent limitation of the problem and it arises due to the
nonestimability of the correlation parameter Rxy. Certainly we expect
S3tobe a biased estimator S% of in general and the bias could be relatively
large in magnitude. The first question we consider is, “how large is the
bias when expectations are taken over all possible treatment assignments
on the true finite population?” It is reasonable to expect that the bias will
depend on how well the prediction function estimates the unobserved
values. First, we answer this question without making any assumptions
regarding the form of the prediction function or of the true finite
population. We only assume a random treatment assignment.
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A general prediction approach

We describe the estimated population for a given treatment assignment j
(that we refer to as sample j), as follows:

X1+ ey Yy + fi;
Xo + ey Yo + f2j
. . (19.2.7)

Xon +eam; Yon + fony

where e, is equal to 0 if X; is actually observed in sample j. If X; is not
observed, then it is estimated by X,, and e; represents an error term
which is defined by X

eij = Xij — Xi.

The term f; is defined in a similar manner, but with respect to Y. Note
that the prediction X;; may depend not only on the unit u;, but also the
other units in sample j. Here i belongs to the set {1, 2,..., N} and j belongs
tothe set {1, 2,..., k} where k = (2:) the total number of possible treatment
assignments. For any unit u; in sample j, note that at least one of e, f;;
will be zero.

Recall that D=(X;-Y;, X,-Y5,..., X,,-Y,,)" and define the 2nxk matrix

G = {g} (19.2.8)

by defining g;=e,;-f;. We consider both D and G as fixed, but not necessarily
known. We can write G in the form

G =[g1,82,...,8x] (19.2.9)
where

gJ = (gljngj’ .. 792n7j)T'

That is, g; is the jth column of G. Let
2 _ _1_[ 2 (Zigij)2}

BT op gl 2n

In other words, Sé_‘ is the variance of the jth column of G. Also let

SD:SJ 2 Z gl]

That is, Sp,g is the covariance between D and the jth column of G. We
then have the following proposition.
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Proposition 19.2.1 The expectation of S5 over all possible random
treatment assignments on the true finite population (represented by
equation (19.1.1)) is given by

k
E(S3) = Sp++ Z , +25D.g)]

= Sp+ Séj +25p.4, (19.2.10)

where the overlined quantities simply represent averages of the quantities
over all columns of G.

PROOF. Since the treatment assignment is random we can proceed in a
straightforward manner. Note that for any fixed j we have,

dij = Di + gij

It follows that,

¥ Z(dz,

= Var{d”}z 1,
= Var(D;) + Var{gzj}'i:l,.‘.,N +2Cov({D;}, {9:}i=1,..,.N

N
1 —
= = Y (Di - D) + SZ, +25p g

i=1

Therefore, for a fixed j,
Sz = SD + ng + 2SD,S_]'

Taking expectations of the left hand side over all possible random treatment
assignments (i.e., over all j=1, 2,..., k) gives the result. O

We write the bias of §3 as an estimator of S, over all possible treatment

assignments as

bias = .5'2 + 25D g, (19.2.11)

One can see that, for S3 to be an unbiased estimator of §3, one of the

following conditions must hold.

1. the variance of each column of G is zero, or
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2. 2 = 25D,

In practice, neither of the conditions is expected to hold in general. To
develop a better understanding of the nature of the bias, we consider
the finite population of responses to be a sample of size NV from a suitable
superpopulation, and investigate the expectation of the bias computed
over this superpopulation. We use the symbol € to denote this expectation
operator. We must also choose a prediction function since the distribution
of the erro