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PREFACE

This is one of two volumes consisting of 33 invited papers presented at the
International Indian Statistical Association Conference held during
October 10–11, 1998, at McMaster University, Hamilton, Ontario, Canada.
This Second International Conference of IISA was attended by about 240
participants and included around 170 talks on many different areas of
Probability and Statistics. All the papers submitted for publication in this
volume were refereed rigorously. The help offered in this regard by the
members of the Editorial Board listed earlier and numerous referees is
kindly acknowledged. This volume, which includes 33 of the invited papers
presented at the conference, focuses on Advances on Methodological and
Applied Aspects of Probability and Statistics.

For the benefit of the readers, this volume has been divided into nine parts
as follows:

Part I Applied Probability
Part II Models and Applications
Part III Estimation and Testing
Part IV Robust Inference
Part V Regression and Design
Part VI Sample Size Methodology
Part VII Applications to Industry
Part VIII Applications to Ecology, Biology and Health
Part IX Applications to Economics and Management

I sincerely hope that the readers of this volume will find the papers to be
useful and of interest. I thank all the authors for submitting their papers
for publication in this volume.
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CHAPTER 1

FROM DAMS TO
TELECOMMUNICATION—

A SURVEY OF BASIC MODELS

N.U.PRABHU
Cornell University, Ithaca, NY

Abstract: In 1954 P.A.P.Moran formulated a simple discrete time model
for a finite dam. This model was extended in several directions by J.Gani
and the author during 1956–1963. The concepts underlying this model
and the techniques used in its analysis are applicable in a wide variety
of situations, as has already been demonstrated. Most recently, models
for data communication systems have also been analyzed with these
techniques. In this paper we survey some of this work.

Keywords and phrases: Buffer content, dam, data communication,
idle time, input, fluid input, Lévy process, Markov chain, Markov-
additive process, packets, Poisson arrivals, queues, subordinator, unmet
demand, workload

1.1 INTRODUCTION

In 1954 P.A.P.Moran formulated a simple discrete time model for the
finite dam. The basic components of this model are inputs that are
independent and identically distributed random variables, a constant
demand for water and the release policy “meet the demand if physically
possible.” During 1956–1963 J.Gani and the author extended this
discrete time model to continuous time, where the input is described by
a subordinator, the demand is at a unit rate and the release policy is
the same as before. This continuous time model has several applications,
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in particular, to single server queues with Poisson arrivals and first
come, first served discipline or priority discipline of the static or dynamic
type. Because these models have several common features in regard to
the underlying concepts and techniques of analysis, the author proposed
the term stochastic storage processes to describe the processes that arise
from the family of such models and presented a unified theory of these
processes [see Prabhu (1998)]. The most recent extension of this theory
is to models for transmission of telecommunication data. Here the input
of data is characterized as a Markov-additive process, the desired
transmission (demand) rate depends on the Markov component of the
input and the actual transmission (release) policy is to “meet the demand
if physically possible.” The resulting theory may be viewed as the
Markov-modulated version of the theory of dams.

In this paper we survey some of this work, emphasizing only the
modeling aspects in order to point out the common features of the models
considered. For detailed results and recent references see Prabhu (1998).
For historical references see Prabhu (1965).

In Section 1.2 we describe Moran’s discrete time model for the finite
dam. The continuous time dam model is described in Section 1.3, and
its extension to the data communication model in Section 1.4.

1.2 MORAN’S MODEL FOR THE FINITE DAM

Moran’s discrete time model for a dam (water reservoir) is the following.
A dam of finite capacity is designed to meet the demand for electric
power (expressed in terms of the volume of water required to produce
it) or for water to be supplied to a city. The demand for water at time n
is m (<c) and this demand is met “if physically possible,” that is, to the
extent that this quantity is available in the dam at time n. The dam is
fed by inputs of water such that if Xn+1 denotes the input during the
time interval (n, n+1], then {Xn, n≥1} is assumed to be a sequence of
independent and identically distributed random variables. Because of
this randomness the amount of water in the dam (the dam content) at
time n is a random variable which we denote by Zn (n≥0).

Since the capacity of the dam is finite there is a possibility of an
overflow and the actual input during (n, n+1] is therefore

(1.2.1)

The amount of water available for release at time n+1 is then Zn+ηn+1

and the release policy implies that
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The sequence {Zn, n≥0} satisfies the relation

(1.2.2)

To see how the dam operates subject to these assumptions we note
that during a time interval (0, n] there is a certain amount Fn of overflow
from the dam, and an amount Dn of the total demand nm that is not
met. Easy calculations show that

(1.2.3)

where Sn=X1+X2+···+Xn(n≥1), S0=0 and Sn-nm is the net input (input
minus demand) during (0, n].

The assumption on the inputs Xn implies that {Zn, n≥0} is a time-
homogeneous Markov chain on the state space . The problems of
practical importance that arise in the analysis of the model are the
derivation of (i) the steady state distribution of {Zn} and (ii) the
distribution of the random variable

(1.2.4)

which is the duration of the wet period in the dam whose initial content
is Z0>0. Although these problems are standard in the theory of Markov
chains, general solutions are not known because of the presence of the
constant c (<∞) in (1.2.2). However, solutions are available for some
important special cases of the input distributions [see Prabhu (1965)].

When c=∞ (the case of the infinite dam) the equations (1.2.2) and
(1.2.3) reduce to

(1.2.5)

and

(1.2.6)

These lead to the expressions

(1.2.7)

(1.2.8)

where mn is the minimum functional of the random walk {Sn-nm, n≥0},
namely

(1.2.9)

The equation (1.2.5) arises in queueing theory, specifically for waiting
times Zn in the single server queue with constant interarrival times
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(=m) and general service times Xn(n≥1). The quantity Dn in (1.2.6) is the
total idle period during (0,n], while the random variable T(Z0) defined
by (1.2.4) is the number of customers served during the busy period
initiated by a waiting time Z0>0. Thus the results for the infinite dam
are applicable to queueing theory.

1.3 A CONTINUOUS TIME MODEL FOR THE DAM

In developing a continuous time model for the dam we first assume
that its capacity is ∞. For the input we postulate a nonnegative process
with stationary independent increments, that is, a Lévy process {X(t),
t≥0} with nondecreasing sample functions (also called a subordinator)
and zero drift. The demand for water occurs at a rate dοZ(t), where Z(t)
is the dam content at time t≥0. As in the discrete time case, this demand
is met “if physically possible”. These assumptions lead to the integral
equation

(1.3.10)

We can rewrite this is

(1.3.11)

Here on the right side of (1.3.11) the first integral represents the total
demand during (0, t] and the second integral is the part of this demand
that is not met. The equation (1.3.11) is the continuous time analogue
of (1.2.6).

The most extensively studied special case of (1.3.10) is the one with
unit demand rate (that is, d(x)≡1), which arises also in the queueing
system M/G/1 and single server queues with Poisson arrivals and static
or dynamic priorities. In the queue M/G/1, the input X(t) of workload is
a compound Poisson process, and Z(t) represents the remaining workload
(virtual waiting time) at time t. In dam models the special cases of
input include the gamma process, stable process with exponent 1/2 and
the inverse Gaussian process. The integral equation (1.3.11) reduces in
the case of unit demand rate to

(1.3.12)

where Y(t)=X(t)-t (the net input) and the integral

(1.3.13)
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represents the amount of unmet demand (dry period in a dam or idle
time in the queue M/G/1).

As formulated above, the integral equation (1.3.12) does not have a
unique nonnegative solution. However, if we modify it by writing

(1.3.14)

then the unique nonnegative solution of (1.3.14) is given by

(1.3.15)

where m(t) is the minimum functional

(1.3.16)

It follows from (1.3.14) that

(1.3.17)

on account of the nonnegativity of Z(t). The results (1.3.15) and (1.3.17)
are the continuous time analogues of (1.2.7) and (1.2.8) for the discrete
time case.

Remarks.

1. When Z(0)=0, the solution (1.3.15) reduces to

(1.3.18)

In current literature (1.3.18) is referred to as reflection mapping.
This term does not give credit to the pioneering 1958 paper by
E.Reich, who derived (1.3.15) for the virtual waiting time in M/G/1.
Furthermore, the identification of the idle time with the minimum
functional does not follow from the reflection mapping.

2. The joint distribution of Z(t) and I(t) can be obtained directly from
(1.3.12). For the compound Poisson input the older technique of
analysis is based on the forward Kolmogorov integro-differeritial
equation for the distribution of Z(t).            �
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1.4 A MODEL FOR DATA COMMUNICATION SYSTEMS

A buffer of infinite capacity receives inputs of data represented as a
Markovadditive process {X(t), J(t), t≥0} on the state space  in
which the additive component is a compound Poisson process.
Specifically

(1.4.19)

Here X0(t) is a compound Poisson process in which the rate at which
jumps occur as well as the jump sizes depend on the state of the Markov
process J on a countable state space , these jumps representing the
arrivals of packets. In addition X has a drift that occurs at a rate a(j)
when J is in state j, and the integral in (1.4.19) represents the amount
of data that arrive in a fluid fashion. The desired transmission (demand)
rate is d(j) when J is in state j and the transmission (release) policy is
to meet the demand “if physically possible.” Let Z(t) denote the buffer
content at time t≥0. The above assumptions lead to the integral equation

(1.4.20)

where the release rate r is given by

(14.21)

Comparison with (1.3.10) show that (1.4.20) is indeed an extension of
the (now classical) dam model. The presence of J is to be understood
with reference to specific models. We first consider two special cases.

A fluid model for data communication. If the arrival of data is only
in a fluid fashion, then X0(t)≡0 and the integral equation (1.4.20) reduces
to

(1.4.22)

where x(j) is the net input rate

(1.4.23)
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A model with packet arrivals. In the presence of packet arrivals
we need to assume that the desired transmission rate d(j) exceeds the
rate of fluid arrival a(j). The integral equation (1.4.20) then reduces to

(1.4.24)

where d1(j)=d(j)-a(j)>0. �

The integral equation that describes each of the above models is of the form

(1.4.25)

where {X(t), J(t)} is a Markov-additive process and

(1.4.26)

Comparing (1.4.25) with the integral equation (1.3.10) we see that the
data communication models described here are extensions of the
continuous time dam model of Section (1.3). The unique nonnegative
solution of (1.4.25), modified as in (1.3.14), is formally the same as
(1.3.15), where the net input Y(t) given by

(1.4.27)

and it should be noted that {Y(t), J(t)} is a Markov-additive process.

The following are two fluid models that have been investigated in the
literature. The presence of the Markov component J will be clear from
these models.

a. A multiple source data handling system. There are N sources of
messages, which are “on” or “off” from time to time. A switch receives
messages at a unit rate from each source and transmits them at a fixed
maximum rate c (1≤N<∞, 0<c<∞). Messages that are not transmitted
are stored in a buffer of infinite capacity (see Figure 1.1). Denoting by
J(t) the number of “on” sources at time t≥0, we assume that {J(t), t≥0} is
a birth and death process on the state space {0, 1, 2,…, N}. Of interest is
the buffer content Z(t). It is seen that Z(t) satisfies the integral equation

(1.4.28)

where

(1.4.29)
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Clearly, this is a fluid model with a(j)=j and d(j)=c. �

b. An integrated circuit and packet switching multiplexer. A
buffer of infinite capacity receives voice calls as well as data. There are
s+u output channels, of which u channels are reserved for data
transmission, while the remaining s channels are shared by data and
voice calls, with calls having preemptive priority over data and calls
that find all s channels that serve them being lost (see Figure 1.2).

FIGURE 1.1 A buffer of infinite capacity for storage

FIGURE 1.2 An integrated circuit and packet switching multiplexer
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Voice calls arrive in a Poisson process and their service times have
an exponential density. Data arrive continuously at a constant rate c0

and are transmitted at a rate c1(<c0). At time t≥0, let Z(t) denote the
amount of data in the buffer and J(t) the number of channels available
for data transmission. It is clear that s+u-J(t) represents the queue
length in an M/M/s loss system, and Z(t) satisfies the integral equation

(1.4.30)

where

(1.4.31)

This is a fluid model with a(j)=c0 and d(j)=c1j.

Remarks.

1. Some authors take (1.3.18) as the starting point of their investigation
of data communication models. Such an approach neglects the
modeling aspects that are important in any area of applied
probability. In particular it does not emphasize the role of Markov-
additive inputs.

2. The forward Kolmogorov equation (in the matrix form) can be used
to derive the joint distribution of Z(t) and J(t). However, as in the
case of the dam model it is much more straightforward to derive
the joint distribution of Z(t), I(t) and J(t) directly from (1.4.25), I(t)
being the amount of the unmet demand.

3. It is hoped that this brief survey has made it clear that all of the
models described in Sections (1.3) and (1.4) are indeedstorage
models. The use of the term fluid queue, currently in fashion, is
obviously based on lack of familiarity with earlier literature in this
subject area. This term is both unnecessary and unpleasant, and
the author hopes that discriminating researchers will not use it in
the future.
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CHAPTER 2

MAXIMUM LIKELIHOOD
ESTIMATION IN QUEUEING

SYSTEMS

U.NARAYAN BHAT
Southern Methodist University, Dallas, TX

ISHWAR V.BASAWA
University of Georgia, Athens, GA

Abstract: This paper provides an overview of the literature on the use
of the maximum likelihood method for estimating parameters in
queueing models. Two cases, one when the system elements are fully
observable and the second when only a limited amount of information
is available are considered. The paper also includes some new results
in later sections.

Keywords and phrases: Parameter estimation, maximum likelihood,
GI/G/1 queue, M/G/1 queue, GI/M/1 queue, waiting time, queue length

2.1 INTRODUCTION

There are two key steps in the use of the method of maximum likelihood
estimation (m.l.e.): constructing the likelihood function and deriving
estimators that maximize the function. It was Clarke (1957) who first
demonstrated that the likelihood function can be constructed for the
underlying queue length process in the queueing system M/M/1 (Poisson
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arrivals, exponential service times and single servers) if one can describe
its sample path as a realization of random events that can be described
in terms of distributions. The general maximum likelihood theory for
Markov processes, of which M/M/1 is a simple example, has been given
by Billingsley (1961). Since then, researchers have explored ways of
using this method to non-Markovian systems as well.

In stochastic models, many times factors such as system structure and
cost may prevent full observation. In such cases, inference on system
parameters will have to be made using other system characteristics.
For instance, in a queueing system where embedded Markov chains
can be identified, observations relative to those Markov chains can be
used to estimate parameters. Goyal and Harris (1972) provides one of
the first examples of this procedure.

In this paper we provide an overview of the use of maximum likelihood
estimation in queueing systems under both cases of complete and
incomplete information. In addition to describing some of the basic work
on Markovian systems, we review research on non-Markovian systems
when the processes are fully observable and when information only on
certain characteristics is available. In the latter case some new results
are also presented. The paper is arranged in eight sections. Parameter
estimation in Markovian and non-Markovian systems is described in
Sections 2.2 and 2.3 respectively. These procedures assume the
availability of complete information on the system, although in
continuous time, discrete state Markovian systems the set of sufficient
statistics used is smaller than that we normally require for non-
Markovian systems. Section 2.4 deals with estimation using the
embedded Markov chains for the waiting time process and in Section
2.5, the procedure described in Section 2.4 is modified for system time
(waiting time plus service time) instead of only waiting time. In Sections
2.6 and 2.7 the process considered is the number of customers in the
system and the two sections deal with the queues M/G/1 and GI/M/1
respectively. Finally, Section 2.8 provides some concluding observations.
Also Sections 2.5 and 2.7 include new results.

We do not plan to provide a long bibliography in this overview. Only
those papers with major influence in the course of research are cited.
For the general theory of inference on Markov processes Billingsley’s
book (1961) is an excellent reference. Basawa and Prakasa Rao (1980)
and Karr (1991) provide the theory of inference on stochastic processes,
in general. For inference on queues, Bhat et al. (1997) is a good reference
which includes an extensive bibliography.
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2.2 M.L.E. IN MARKOVIAN SYSTEMS

Any discussion of m.l.e. in Markovian queues has to start with the paper
by Clarke (1957). Even though two earlier papers by Moran (1951, 1953)
described a procedure to estimate the birth and death parameters in
the simple birth-and-death process, it was Clarke who used the complete
description of the sample path to construct the likelihood function.

Let the system be observed for a length of time t such that the time
spent in a busy state is a preassigned value tb. Let na, ns, te represent
the number of arrivals, number of service completions, and the time
spent in the empty state, respectively, during [0, t]. Furthermore, let n0

be the initial queue length. Also assume that the system is in the steady
state. The likelihood function can be written as

(2.2.1)

and the m.l.e.’s of � and µ are found from the equations

(2.2.2)

Estimating  from the second equation gives a quadratic in . Of the
two solutions, any negative solution is rejected, and for the remaining
values of , corresponding  is obtained. Furthermore, any pair 
would be rejected for which  or . If both solutions are valid,
then the solution which maximizes the likelihood function is chosen.

For large ns-n0 Clarke gives a sample approximation for  and  as

(2.2.3)

The consistency of  and  has been examined by Samaan and Tracy
(1978) who could establish only a weak consistency for . If we ignore
the initial queue size, the estimates of � and µ are, respectively, na/t
and ns/tb.

As noted by Cox (1965), specializing Billingsley’s (1961) results, this
procedure can be extended to the generalized birth-and-death models.
The conditional likelihood function (ignoring the contribution of the
initial state) is of the form

(2.2.4)

where �i, µi are the rates of arrival and service compilations in state i,
 and  are the numbers of arrivals and service completions in state i,

and ti is the total time spent in state i during the observation interval (0, t].
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For a finite state birth-death queue, ignoring the impact of the initial
queue size, the m.l.e’s of �i and µi are given by

(2.2.5)

The above results and similar estimates for parameters in M/M/s, M/
M/∞, and machine interference problem have been given by Wolff (1965),
where many details are provided. For an extension of these methods to
a simple Markovian queueing network, commonly known as the Jackson
network, see Thiruvaiyaru et al. (1991), where joint asymptotic
normality of the estimators is also established. Also see, Beneš (1957)
for a discussion of the set of sufficient statistics in similar problems,
and Cox (1965), and Lilliefors (1966) for confidence intervals for
estimates.

2.3 M.L.E. IN NON-MARKOVIAN SYSTEMS

In Markovian systems, due to the memoryless property of the
exponential distribution data-collection gets simplified because of our
ability to pool observations without losing information. In non-
Markovian systems this is not the case and therefore the two cases, one
with complete information and the second with incomplete information
(which arises when the system cannot be observed fully), become
relevant. In this section we cover two important papers by Basawa and
Prabhu (1981, 1988) which assume the availability of complete
information. Research on cases with incomplete information is discussed
in later sections.

Basawa and Prabhu (1981) obtain the m.l.e.’s of parameters of the
arrival and service time distributions with continuous densities f(u; �)
and , respectively. The sampling scheme is to observe the queue
until the first n customers have departed from the system and the service
times of these n customers, say (v1, v2,…,vn). Let the nth departure epoch
be Dn and observe the interarrival times of all customers who arrive
during (0, Dn], giving the interarrival sequence , where
NA=NA(Dn)=max.{k:u1+u2+…+uk≤Dn}. Under this sampling scheme, the
likelihood function is

(2.3.6)

where
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Since the factor [1-F(xn; �)] causes difficulty in obtaining simple
estimates, consider the alternative approximate likelihood function
obtained by dropping the last terms in (2.3.6):

(2.3.7)

If ,  are the m.l.e.’s of � and  based on , they are solutions of
the equations

(2.3.8)

Basawa and Prabhu prove that ,  are consistent estimators of � and
 and that

(2.3.9)

where N2 represents a bivariate normal density with

(2.3.10)

� =max(1, �), and � being the traffic intensity.
Let  and  be the estimators based on the full likelihood function

(2.3.6). It is seen that , and  differs from , but it can be
shown that  and  have the same limiting distributions whenever

(2.3.11)

This condition is satisfied for Erlangian arrivals. For large samples,
estimators of � and  can be determined from (2.3.8) at least numerically,
if not in closed form. Using (2.3.9) confidence intervals for � and  can
also be constructed. From a practical point of view, it is significant to
note that the limit properties of these statistics are obtained without
the assumption on the existence of equilibrium. Basawa and Prabhu
also consider m.l.e.’s for arrival and service rates in the M/M/1 queue
based on a sample function observed over a fixed interval (0, t], as done
by Wolff (1965), and obtain limit distributions of the m.l.e.’s without
any restrictions on �.
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In a subsequent paper, Basawa and Prabhu (1988) have provided
a unified framework for the estimation problem described above
where the observation period is (0, T], with a suitable stopping time
T. Four different stopping rules are considered. It is shown that the
limit distribution does not depend on the particular stopping rule if
a random norming is used. They assume that the interarrival and
service time distributions belong to the class of non-negative
exponential families. Basawa and Prabhu also derive similar results
using a generalized linear model for interarrival and service time
distributions.

An extension of these procedures to Jackson-type queueing networks
with arrivals at each node following a renewal process and service times
being arbitrary has been carried out by Thiruvaiyaru and Basawa
(1996). As an illustration, the inter-arrival time and service time
distributions are assumed to belong to two separate exponential families
of distributions. Two sampling plans, one based on a realization over a
fixed interval and the second with observations over a certain random
interval are used.

2.4 M.L.E. FOR SINGLE SERVER QUEUES USING WAITING
TIME DATA

In Sections 2.4–2.7 m.l.e. procedures are described when complete
information on the systems under consideration is not available. This
section uses waiting time data, Section 2.6 employs system time (waiting
time plus service time) data and the following two sections use queue
length data for estimation.

A maximum likelihood procedure for the estimation of parameters
in a single server queueing system GI/G/1 was presented in a recent
paper by Basawa, Bhat and Lund (1996) using information on waiting
times {Wt}, t=1, 2,…, n of n successive customers. Information is collected
from each of n successive customers on the amount of time spent by
them in waiting for service. Let Wt denote the waiting time of the tth
customer. The waiting time process {Wt, t=1, 2,…} satisfies the following
well known equation:

(2.4.12)

where Xt=Vt-1-Ut, with Vt and Ut denoting, respectively, the service and
inter-arrival times corresponding to the tth customer. It should be noted
that {Xt} is a sequence of independent and identically distributed random
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variables and Xt+1 is independent of Wt. It is clear that {Wt} is a Markov
chain and its transition distribution function can be written as

(2.4.13)

where Fx(.) is the distribution of Xt. The transition distribution function
has a discontinuity at 0. Define

(2.4.14)

Then, for the transition density we have

(2.4.15)

Define the indicator function

(2.4.16)

Using Zt+1, for the transition density of Wt, we can write

(2.4.17)

The likelihood function based on the sample (W1, W2,…, Wn) is given by

(2.4.18)

Let �=(�1, �2,…,�r)’ be the unknown parameter vector corresponding to
the distribution of Xt. Basawa et al. (1996) show that estimates for �
can in fact be determined using the likelihood function (2.4.18) following
the standard procedure. Basawa et al. also have established the
consistency and the asymptotic normality of the estimators, and
discussed issues pertaining to their efficiency.

2.5 M.L.E. USING SYSTEM TIME

The sampling plan used in the last section requires the knowledge of
the amount of time customers spend in waiting for service. In practice,
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in many instances, it may not be as easy to determine the actual waiting
time as it is to determine the total time spent by customers in the system;
i.e., the waiting time plus service time. We shall call this characteristic
system time.

Let Yt be the system time corresponding to the tth customer. Based on
its definition, we have

(2.5.19)

which can also be written in display form as

(2.5.20)

Incidentally, the continuous time analog {Y(t), t≥0} of the process {Yt,
t= 1, 2, 3…} was originally introduced by Prabhu (1964) in the context
of queue GI/M/1. The process Y(t) exhibits properties of duality with
the virtual waiting time process W(t) as defined by Takács (1955) and
the graph of Y(t) can be looked upon as a mirror image of the graph of
W(t) [see, Prabhu (1965, p. 102)].

Equation (2.3.9) shows that {Yt}, t=1, 2,… is a Markov process. We
now proceed to derive the transition density corresponding to the Markov
process {Yt}. We have

(2.5.21)

where a(u) is the inter-arrival time density. The result in (2.5.21) follows
readily from (2.5.20), considering the two possibilities: Ut+1≥Yt and Ut+1<Yt

and applying the addition law. The transition probability of Yt+1 given
Yt is then obtained by differentiating (2.5.21) with respect to yt+1:

(2.5.22)

where b(·) and A(·)denote the density of service time V and the
distribution function of inter-arrival time, U, respectively. The likelihood
function based on (Y1,…, Yn) is then given by
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(2.5.23)

where � is the parameter of interest, and p(Y1; �) is the initial density of
Y1. The ML estimator  is obtained as a solution of the equation

(2.5.24)

Since {Wt} is an ergodic process (assuming that the traffic intensity
ρ<1), it follows that {Yt}, Yt=Wt+Vt, is also ergodic. The consistency and
the asymptotic normality of the MLE, , can therefore be deduced as in
Basawa et al. (1996).

2.6 M.L.E. IN M/G/1 USING QUEUE LENGTH DATA

In this and the next section, the sampling scheme used for collecting
data includes only observing the number of customers in the system for
a fixed length of time or some variation of it.

Consider the embedded Markov chain of the queue length in M/G/1,
defined at departure epochs. Let Qt be the number of customers in the
system immediately after the tth departure. The process {Qt, t=0, 1,
2,…} is a Markov chain. Let B(·) be the service time distribution and
the Poisson arrival rate be �. If we denote by At, the number of arriving
customers during the service period, we get the distribution of At as

 (2.6.25)

It is well known that Qt satisfies the relation

(2.6.26)

which is similar in structure to Eq. (2.5.20). For the transition
probabilities of {Qt}, we have

(2.6.27)

Copyright © 2002 Taylor & Francis



U.N.BHAT and I.V.BASAWA22

Suppose the process is observed until the number of departures
reaches a fixed value n. Now tracing the sample path of the process we
may write down the likelihood function as

(2.6.28)

Let nij be the number of transitions of Qt from i to j on the sample path,
and �, the vector of parameters for which estimators are being sought.
We get

(2.6.29)

Depending on the form of the service time distribution, an explicit
expression for the likelihood function can be written down and
maximized in the usual manner to determine maximum likelihood
estimates. The same general formulation holds when the service times
are dependent. Goyal and Harris (1972) consider two such systems: (i)
service times are exponential but with different means when the queue
size is 1 and when it is >1, (ii) service times are exponential with means
linearly dependent on the number of customers in the system (µt=tµ).
They derive m.l.e.’s for utilization factors (arrival rate/service rate) in
the case of these two systems when the effect of the initial queue length
can or cannot be ignored. Depending on the complexity of likelihood
functions to be maximized, some equations will have to be solved using
numerical approximation methods.

Another approach to maximum likelihood estimation using embedded
Markov chains is to observe only the number of arrivals during
successive service periods. In particular, when the arrivals are Poisson
and the service times are Erlangian, Harishchandra and Rao (1984)
have constructed the likelihood function using the number of arrivals
during successive service periods as the sample. In an M/Ek/1 queue, in
which k is the shape parameter of the Erlangian distribution and � is
the traffic intensity, let At denote the number of arrivals during the
service of the (t+1)th customer. Then At has the negative binomial
distribution given by
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(2.6.30)

Suppose the system is observed only at departure epochs. Using equation
(2.6.26), the queue length data can be easily converted into arrival data.
Let x1, x2,…, xn be the number of arrivals during the first n service times,
respectively. The likelihood function for this sample is then

(2.6.31)

The maximum likelihood estimate of � is found to be  This
estimator is unbiased and consistent, since  and 

. Furthermore, it turns out that  is also the minimum variance
bound (MVB) estimator and therefore uniformly minimum variance
unbiased estimator (UMVUE) of �. It can be shown that the probability
distribution of X belongs to the one-parameter exponential family and
hence T=�xi is a sufficient statistic for �. Finally, for large values of n,

(2.6.32)

where

(2.6.33)

Even though, conceptually, estimating k using the likelihood function
(2.6.31) is only a mathematical problem, due to the complexities of the
expressions, the procedure does not become tractable. The results
derived by Miller and Bhat (1997) overcome this problem by using a
different approach.

Miller and Bhat use the number of customers served while the system
has been busy for a specific length of time as the data element. In this
formulation the service process, after eliminating idle times, resembles
a renewal process. Consider the following two sampling plans for this
renewal process.

Sampling Plan I: Assuming that the first observation period begins at
time zero, observe the renewal process at time � and record the
number of renewals in . To assure independent observations,
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the next observation period will begin when the next renewal occurs.
Then after a period of � time units, the number of renewals occurring
in this second period is recorded. Wait until the next renewal occurs
and the renewal epoch begins the following observation period, etc.

Sampling Plan II: Assuming the first observation period begins at
time zero, observe the renewal process at time � and record the
number of renewals in . Also record the time until the next
renewal following time � which will signal the start of a new
observation period. Then after a period of � time units, the number
of renewals occurring in this second period is recorded. Record the
time elapsed until the next renewal and the renewal epoch begins
the following observations period, etc.

The second sampling plan uses the additional information on the waiting
time to start the next observation.

Let  denote the number of renewals (service completions)
occurring in the observation periods, 1, 2, 3,…, respectively. In the second
sampling plan the observations will be bivariate 
where  is the excess life of the renewal period encountered at the ith
observation. Using these observations,  with Sampling
Plan I and  with Sampling Plan II, Miller and
Bhat construct likelihood functions which can be used to derive m.l.e. for
k either assuming k to be continuous first and determining the best integer
k from that result, or using the method of integer maximum likelihood
estimation. As one would expect Sampling Plan II leads to better results
in estimation.

2.7 M.L.E. IN GI/M/1 USING QUEUE LENGTH DATA

Consider the imbedded Markov chain {Qt, t=0, 1, 2,…} in a GI/M/1 queue
in which arrivals from a renewal process and service times are
exponential. Let Qt represent the number of customers in the system
just before the tth arrival. Let A(·) be the inter-arrival time distribution
function and µ be the service rate so that the exponential service time
density is given by µe-µx(x>0). Define Dt as the number of potential
departures during an inter-arrival period if an unlimited number of
customers are available for service. The random variable Dt has the
distribution

(2.7.34)
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It is well known that Qt satisfies the relation

(2.7.35)

Let

 

Then, (2.7.35) can be re-written in the form

(2.7.36)

which is similar in structure to Eq. (2.4.12).
From equation (2.7.36) we get

(2.7.37)

where we have written . Also

(2.7.38)

Using the indicator function Zt defined in (2.4.16), with Wt replaced by
Qt, we may write the transition probability as

(2.7.39)

and the likelihood function as

(2.7.40)

It should be noted that when estimating � using maximization of (2.7.40),
numerical methods maybe needed. For instance, when the inter-arrival
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time distribution is Erlangian with

(2.7.41)

Even though δ(r) lends itself convenient for taking logarithms and
differentiating,  is not easily tractable in such
operations. Then, direct maximization using numerical techniques is
recommended.

If k is also an unknown parameter, methods using integer-maximum
likelihood estimation will have to be incorporated in the process [see,
Dahiya (1986) and Miller (1997)]. Another approach is to follow the
procedure of Miller and Bhat (1977) described in Section 2.6. The
arrival process is a renewal process and the estimation procedure
proposed by Miller and Bhat gives m.l.e. for Erlang k of the arrival
distribution.

In deriving Eq. (2.7.35), we note that Dt has been defined as the
number of potential departures during an inter-arrival period. (It is
the actual number when the system is busy throughout the period;
otherwise it is the number of departures if there are an unlimited
number of customers in the system). Consequently, the information
available on {Qt} cannot be transformed into information on Dt completely
as done for Eq. (2.6.30) in Section 2.6. Therefore, if one has to carry out
inference based solely on queue length, the maximum likelihood method
described above seems to be the best approach.

2.8 SOME OBSERVATIONS

From a review of research papers on the use of m.l.e. to estimate
parameters of queueing models, it is clear that if one is interested in
deriving simple readily usable results, a Markovian model is almost a
necessity. Even when using information from an embedded chain in
the queue M/G/1, the procedure leads to closed-form solutions only
when the service time distribution is Erlangian. When likelihood
function becomes complex, maximization can be accomplished only
through numerical approximation methods. Therefore, in applications
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with non-Markovian models where easy numerical results are needed,
regardless of the sophistication of the maximum likelihood procedure
and the desirable properties possessed by the estimators resulting from
it, we may not have any recourse but to use moment estimators.
However, with the increasing capability of computers one should be
able to numerically maximize likelihood functions of increasing
complexity. Alternatively, one could also use one-step maximum
likelihood estimation starting with the moment estimator as the initial
value [see, Lehmann (1983)].
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CHAPTER 3

NUMERICAL EVALUATION OF
STATE PROBABILITIES AT

DIFFERENT EPOCHS IN
MULTISERVER GI/Geom/m

QUEUE
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Abstract: In this paper, we analyze numerically a multiserver discrete-
time queue with arbitrary interarrival and geometric service times. For
completeness’ sake, both early and late arrival models are considered.
We first propose a way of evaluating arbitrary-epoch probabilities from
those at prearrival epoch for the early arrival system. Then the results
for the late arrival system with delayed access are derived. Outside
observer’s observation epoch probabilities are also discussed for both
the models. Numerical results have been validated by computer
simulation. It is hoped that the results obtained in this paper should be
of interest to both specialists and practitioners of queueing theory.

Keywords and phrases: Queueing, discrete-time, multiserver
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3.1 INTRODUCTION

The high-speed multi-access communication channels such as
Broadband Integrated Services Digital Network (BISDN) are designed
to support a wide range of services: transmission of video, voice and
data signals. The Asynchronous Transfer Mode (ATM) is the first
technology to merge video, voice and data into a common format and
uses very short, fixed length packets called “cells.” In all these systems,
events (packet arrival and onward transmission of packets) occur only
at a regularly spaced points in time. In the past, continuous-time
queueing models have been used to evaluate performance measures of
communication systems but due to recent changes in technology which
is based on discrete time, they can only be used as approximations to
real systems. In view of this, discrete time queueing models seem more
appropriate. A detailed discussion and applications of discretetime
queues to telecommunication systems may be found in a recent book by
Bruneel and Kim (1993).

Discrete-time queueing systems with a single server have been
discussed extensively. However, very little seems to have been done on
the corresponding multiserver queues. One of the earliest work in this
direction was by Chan and Maa (1978). Using the imbedded Markov
chain technique, they obtain only the distribution of number of
customers in the system at a prearrival epoch. However, in many
situations we need performance measures such as average queue length
at other epochs, e.g. arbitrary and outside observer’s observation epochs.
In a recent paper, Chaudhry and Gupta (1997) develop relations among
state probabilities at various epochs for two models: GI/Geom/m system
with early arrivals (EAS) and GI/Geom/m system with late arrivals
and delayed access (LAS-DA). They further show that, in the limiting
case, these relations tend to the corresponding continuous-time results.
It may be remarked here that using a recursive algorithm some results
on the discrete-time GI/Geom/m/m queue have also been investigated
by Chaudhry and Gupta (1999).

In this paper, we first consider GI/Geom/m queue with early arrival
system (EAS). Some details on EAS may be found in Hunter (1983) or
Chaudhry et al. (1996). The aim of this paper is to numerically evaluate
the state probabilities at arbitrary epochs from those at prearrival
epochs. Unfortunately, the direct substitution of prearrival epoch
probabilities into equations (3.2.7) and (3.2.8) (see below) does not yield
arbitrary epoch probabilities. Similar remarks also apply to the
evaluation of outside observer’s observation epoch probabilities though
such probabilities can be easily obtained in the corresponding
continuous-time multiserver GI/M/m queue, Takács (1962). It is shown
later on how to resolve this in the discrete-time case.
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Once the state probabilities at various epochs are evaluated for the
GI/Geom/m queue with EAS, we derive similar results for the GI/Geom/
m queue with LAS-DA. This is done by developing relation between
prearrival epoch probabilities of EAS and LAS-DA. Subsequently,
arbitrary epoch probabilities are evaluated for the LAS-DA GI/Geom/
m queue using the relation developed by Chaudhry and Gupta (1997).
Further, numerical results have also been validated by performing
computer simulation experiments for both the EAS and LAS-DA
systems.

3.2 MODEL AND SOLUTION: GI/Geom/m (EAS)

Though the GI/Geom/m queue with EAS is discussed in Chaudhry and
Gupta (1997b), it is briefly described here again for the sake of
completeness. We assume that the interarrival times are independent
identically distributed (iid) random variables (rvs) having common
probability mass function (pmf) an=P(A=n), n≥1, probability generating
function A(z), and mean a. The transmission time S of each of the m
servers is independent and geometrically distributed with distribution
given by

 

Further, the probability that j customers are served given that there
are i in the system is given by

 

with c(0|0)=1 and , r>k or r<0.
Let the time axis be marked by 0, 1, 2,…, t,…, and assume that the

potential arrivals occur in (t, t+) and the potential departures occur in
(t-, t). More specifically various time epochs at which events occur are
depicted in Figure 3.1.

The state of the system just before a potential arrival is described by
two variables: the number of customers in the system (Nt) and the
remaining interarrival time for the next arrival (Ut). Let us define
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It follows that the marginal distribution Qn is given by

 

In steady-state, assuming it exists (ρ=1/amμ<1), we relate the states
of the system at two consecutive epochs t and t+1, and get for u≥1

(3.2.1)

and

(3.2.2)

FIGURE 3.1 Various time epochs in early arrival system (EAS)
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Let

 

Multiplying (3.2.1) and (3.2.2) by zu, summing over u=1 to ∞ and
adjusting terms for u=0, we obtain

(3.2.3)

(3.2.4)

Adding (3.2.3) and (3.2.4) over all possible values of n, we get, after
simplification,

(3.2.5)

Letting z→1 in (3.2.5) yields

(3.2.6)

Equation (3.2.5) and (3.2.6) have intuitive and probabilistic
interpretations. Whereas  represents the arrival rate of
customers,  gives the transform of stationary residual
interarrival time measured from a slot boundary. To obtain relations
between distributions of numbers in system at prearrival epoch, 
and arbitrary epoch, , we set z=1 in (3.2.3) and (3.2.4) and use

. They are

(3.2.7)
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and

(3.2.8)

It appears from the above two expressions that once the distribution
 is known, one can obtain . However, as stated earlier this

is not straight forward. For details, see the next section.
The state probabilities  at a prearrival epoch can be obtained

using Chan and Maa (1978). For easy reference and computational
purposes, their main results have been reproduced below.

If the condition ρ<1 is satisfied, then the limiting probability
distribution, , is independent of the initial distribution and is given by

(3.2.9)

where

 

x is the solution of equation

 

and
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Also, for i≥0, the probability vector q-(i) is iterated until the following
condition is met

 

Though the iterative method is a bit slower, it is stable, even for inter-
arrival distributions with infinite support such as geometric.

3.2.1 Evaluation of  from 

In this section, we discuss the procedure for evaluating  from
. First, we use (3.2.9) to get  as discussed earlier. Once

Because of the alternating signs in (3.2.9), the above expressions fail
to give  completely for high values of m and ρ even if double
precision is used. However, this problem can be resolved if we use
MAPLE (1995) with extended precision. Further, we can also solve

 

iteratively,where  and q-(0)=[1, 0,…, 0]T.
In this case, entries for the transition probability matrix (tpm) P, see
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prearrival epoch probabilities are evaluated either by expression (3.2.9)
or using iteration, we use (3.2.8) for the evaluation of . It may be
pointed out that equation (3.2.7) is not needed for the evaluation of the
probabilities . However, this equation can be used as a check on

 and . Let us denote the final prearrival epoch probabilities
by the new vector . Also, let q=[Q1, Q2,…, Qsize]T

which is yet to be evaluated. Re-arranging (3.2.8) by isolating the term
Qn yields

(3.2.10)

With i≥0 and using iteration on (3.2.10), the vector q=[Q1, Q2,…, Qsize]T

can be obtained. Thus, we write

(3.2.11)

and

(3.2.12)

where  are the probabilities evaluated from the i-th iteration with
the initial estimate q(0)=[0, 0,…, 0]T and (x)+=max(0, x). Note that for
size≤m only (3.2.12) will be used. Further, note that Q0 is not used in
(3.2.11) and (3.2.12), but can be obtained later using normalization.
For i≥0, the probability vector q(i) is iterated until the following condition
is met
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Finally, Q0 is obtained from

(3.2.13)

3.2.2 Outside observer’s distribution

Since an outside observer’s observation epoch falls in an interval after
a potential arrival and before a potential departure, the probability 
that the outside observer sees n in the system can be obtained from Qn

using the following relation

(3.2.14)

which is obtained through probabilistic arguments. One may note that
c(i|j)=c(i|m) if j≥m. Since we know , the vector  is obtained
iteratively following the procedure discussed in the previous section.

3.3 GI/Geom/m (LAS-DA)

In this section, we obtain the state probabilities at various epochs in
the case of LAS-DA by developing relations between state probabilities
at prearrival epochs of EAS and LAS-DA. Again, for the sake of
completeness, the GI/Geom/m queue with LAS-DA is described briefly
and the relations are reproduced below. In this case, a potential customer
arrives in (t-, t) and a potential departure occurs in (t, t+). More
specifically, various time epochs at which events occur are depicted in
Figure 3.2.

Here, the state of the system just before a potential arrival is described
again by two variables: the number of customers in the system at t-(Nt-)
and the remaining interarrival time for the next arrival (Ut-). In what
follows, the minus sign ‘-’ after t is omitted for simplicity. Let us define
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It then follows that

 

We have, in steady state,

(3.3.15)

and

Define

 

FIGURE 3.2 Various time epochs in late arrival system with delayed access
(LAS-DA)

(3.3.16)
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From (3.3.15) to (3.3.16) we obtain, respectively,

(3.3.17)

(3.3.18)

Adding equations (3.3.17) to (3.3.18) over all possible values of n, we
get, after simplification,

(3.3.19)

Letting z→1 yields

(3.3.20)

Equations (3.3.19) and (3.3.20) may be interpreted as before. To obtain
a relation between  and , we set z=1 in (3.3.17) to (3.3.18)
and use . They are

(3.3.21)

(3.3.22)
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3.3.1 Evaluation of  from 

It can be seen from (3.3.21) and (3.3.22) that to obtain Pn we first need 
which can be obtained from the following relation between  and :

(3.3.23)

Since only departures occur between two arrivals for the two systems,
the above relation between  and  can be obtained by connecting
probabilities at two prearrival epochs and using probabilistic arguments.
Having known ,  are obtained using iteration as discussed in
Section 3.2.1.

Now once  is known we can obtain Pn using

where  are the probabilities calculated from the i-th iteration and
(x)+=max(0, x). Note that for size≤m only (3.3.25) will be used. We use
the initial estimate p(0)=[0,0,…, 0]T. Further, note that P0 is not used in
(3.3.24) and (3.3.25), but can be obtained later using normalization.

3.3.2 Outside observer’s distribution

In the case of LAS-DA, outside observer’s observation epoch falls in a
time interval after a potential departure and before a potential arrival,

(3.3.24)

(3.3.25)
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the probability that an outside observer sees n in the system,  is
same as Pn, .

3.4 NUMERICAL RESULTS

Numerical work has been performed using the procedures described
in Sections 3.2.1 and 3.3.1. Further, numerical results have also been
validated by performing computer simulation experiments. As
expected, simulation took much more time to achieve desired level of
accuracy. In other words, to get the same values which were obtained
by an analytic method, one has to increase the number of trials which,
in turn, increases time (in some cases it took 10 hours on a 486 PC).
The results given in columns 2, 3, 4 and 5 of Table 3.1 for Geom/Geom/
m queue have been obtained directly from the model equations derived
independently, whereas the results in columns 6, 7, 8 and 9 were
obtained from the procedure discussed in this paper and have been
denoted by C&G. Finally, the results given in columns 10, 11, 12 and
13 were obtained using computer simulation method. It may be
remarked here that since , no separate results have been
reported for  and Pn. The results for D/Geom/m queue are obtained

values of model parameters m and ρ
values of m and/or ρ, numerical work can be done using the method
discussed in this paper since Chan and Maa’s procedure creates
instability as stated earlier. Various measures such as average queue
length at various epochs and average waiting time can be obtained in
the usual way. One may note that since all the results reported here
were rounded to four decimal places, the sum may not add to one in
some cases.

A final remark may be in order. The method discussed here works
even if we wish to get low probabilities such as <10-7. In this case, one
only needs to increase the size of the vector q- given in Section 3.2.1.
In Tables 3.1, 3.2 and 3.3, the size was taken as 30, 30, 150,
respectively.
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TABLE 3.1 Distributions of numbers in system, at various epochs, in
the queueing system Geom/Geom/m with μ=0.2, λ=0.2, m=5, and ρ=0.2

TABLE 3.2 Distributions of numbers in system, at various epochs, in
the queueing system D/Geom/m with μ=0.2, a=4, m=5, and ρ =0.25
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TABLE 3.3 Distributions of numbers in
system, at various epochs, in the queueing
system D/Geom/m with μ=0.016666, a=4,
m=20, and ρ=0.75
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CHAPTER 4

BUSY PERIOD ANALYSIS OF
GIbIM/1/N QUEUES—LATTICE

PATH APPROACH

KANWAR SEN MANJU AGARWAL

University of Delhi, Delhi, India

Abstract: Queuing theory literature reveals that steady state solutions
are available for various types of infinite-space queuing models both
Markovian and nonMarkovian. Also that, while some work has been
done to find transient solutions of finite/infinite Markovian queues, non-
Markovian queues are not attempted much. However, transient
solutions of non-Markovian finite bulk queues have not perhaps been
attempted as yet. This study is an effort towards this direction and
deals with the busy period analysis of GIb/M/1/N queue. Via Lattice
Paths Combinatorics (LPC), results are obtained in explicit
computational form. The general interarrival time distribution is
approximated by 2-phase Cox distribution C2 that has Markovian
property, amenable to Lattice Paths Combinatorics. The distribution
C2 covers a wide range of distributions that have square coefficient of
variation Iying in [1/2,). As such, the results obtained in this paper are
applicable to a large class of real life situations. Some numerical results
for the  model are also given.

Keywords and phrases: Lattice paths combinatorics, transient
solutions, busy period density, non-Markovian queues, bulk queues

4.1 INTRODUCTION

Explicit closed form results for time dependent behaviour of non-
Markovian bulk finite queues do not seem to be available in queuing
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literature though they are very much required in real life systems. This
may be due to the inherent difficulties in analysing such systems. This
paper aims at studying the queue GIb/M/1/N and provides busy period
density in explicit closed form. For the purpose, lattice paths
combinatorics (LPC) is used.

However, using LPC the transient analysis of finite queues GI/M/1/
N and M/G/l/N have been carried out by Agarwal (2000) and Kanwar
Sen (1999), respectively. In LPC analysis, the process is split up at
suitable renewable epochs and thus can be represented by a LP. The
general distributions involved have been approximated by 2-phase Cox
distributions, C2 [Cox (1955)], that have Markovian property amenable
to LPC analysis. Same way, the busy period analysis of bulk queue GIb/
M/1 has also been carried out by Agarwal and Sen (1997). The results
generalize those obtained by Sen and Gupta (1996a, b) for Mb/M/1.

The LPC method consists in providing transient solution through a
discrete time analogue and a limiting process [Meisling (1958), Mohanty
and Panny (1989) Bourn (1993)]. This method is found to be simple and
elegant in studying Markovian queuing systems under different control

(1993,1994,1997)] as well as for non-Markovian queuing systems

methods involving LPs, transient solutions for M/M/1 queues have also
been obtained by Mohanty and Panny (1990), Böhm (1993) and Böhm
and Mohanty (1994a, b). However, whatever other transient solutions
are available for non-Markovian queues, they are obtained by applying
the much used so called top-to-bottom techniques [Böhm and Mohanty
(1994a, b)] and thus are given either in terms of Laplace-Stieltjes
transforms (LSTs) or other integral transforms [Takàs (1962), Benes
(1963), Dalen and Natvig (1980), Neuts (1989), Takagi (1991, 1993 a,
b), Böhm (1993)]. As such, they are much complicated, intractable and
hard to implement. This raises the question regarding the
implementation of the models and as such one may have to be satisfied
by getting their numerical solutions only [Grassman (1990)]. Lucantoni
et al. (1994) and Logothetis et al. (1996) developed numerical
computational algorithms for Batch Markovian Arrival Process (BMAP)/
G/1 queues with infinite and finite waiting spaces, respectively, and
took general distributions to be deterministic. Alfa (1982) considered
time-inhomogeneous batch-server discrete time queuing model G/G/1/
N for its transient behaviour. Mohanty (1991) studied the transient
behaviour of a finite discrete time birth-death process. Recently,
Mohanty (1996) surveyed briefly the work done on transient behaviour
of discrete time queues.

The distribution C2 consists of 2 independent exponential phases with
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arrival rate λj (j=1, 2) as shown below (Fig. 4.1). After phase 1 of arrival,
the unit either enters phase 2 of arrival with probabihty α or joins the
system for service with probability â(=1-α).

FIGURE 4.1 2-phase Cox distribution C2

The distributions C2 cover a wide range of distributions in terms of
differing values of squared coefficient of variation, Marie (1978, 1980),
Botta et al. (1987). As such the results obtained are applicable to a
large class of real life situations.

4.2 THE GIb/M/1/N MODEL

We assume that the system starts initially nonempty and has finite
capacity N (assumed to be a multiple of b) including the one in service.
The customers arrive in batches of size b and the service is done one by
one. Interarrival time distribution of batches of customers is general,
which is approximated by 2-phase Cox distribution C2. Service time
distribution is exponential. Therefore, as in Fig. 4.1,

λ1: exponential interarrival rate in phase 1

λ2: exponential interamval rate in phase 2

α: P{a batch of b customers enters into phase 2 of arrival after
completing phase 1 of arrival}

â: P{a batch of customers joins the system for service after phase 1 of
arrival} (α+â=1).

Let

μ: exponential service rate

i: number of batches of customers initially in the system.
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4.3 LATTICE PATH APPROACH

To study the busy period distribution of the continuous queue GIb/M/1/
N we first study the discretized system on segmenting the time interval,
say, (0, t] into a sequence of t/h (an integer) time slots, each of very
small duration h (>0). Obviously in a time slot only one of the following
events takes place:

(i) a batch of b customers joins the system (after either phase 1 or
phase 2 of arrival)

(ii) a customer departs from the system after getting service

(iii) a batch of b customers enters into phase 2 of arrival

(iv) none of these. This is termed as a stay.

Therefore, by Discretizing the system time, the sequence of events can
be represented by a two dimensional LP representing, respectively, (see
Fig. 4.3):.

• an arrival of a batch after phase 1 by a horizontal step of length b
units

• an arrival of a batch after phase 2 by a dotted horizontal step of
length b units

• a departure by a vertical step of unit length

• entry of a batch into phase 2 of arrival by a diagonal step of length
b units

• stay by a point.

It is obvious that, for the discretized model, system state at the end of
any time slot is represented by a vertex (x, y) on a LP(x y and x i). To
make understanding better, we first consider, as an example, a LP
representing busy period of the server, Fig. 4.3. The server becomes free
only at the vertex B(y, y) when the LP touches the line Y=X for the first
time. Moreover, since no batch can join the system when it is full to its
capacity N, obviously the LP cannot cross the line Y=X-N and therefore
is to lie between the lines Y=X and Y=X-N. The points A1, A2, A3, A4 and
A5, where the LP touches the line Y=X-N, represent that the system is
full to its capacity and hence would continue in this state until

(i) either a departure, i.e. , a service completion takes place
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(ii) or a batch enters phase 2 of arrival.

It may be noted that while at the point A3 system state changes due to
(ii) , it changes due to (i) at the other points A1, A2, A4 and A5.

Since for a fixed t, length of the busy period of the server, there can
be more than one LP that touches the line Y=X for the first time at the
end of t/h time slots, to obtain busy period probability, we have to count
the number of all possible LPs that lead the system to empty state and
then associate the appropriate probabilities with the corresponding LPs
and take their sum. Finally, on taking the limit as h→0, the desired
continuous time transient results can be obtained [Meisling (1958),
Mohanty and Panny (1989) and Böhm (1993)].

4.4 DISCRETIZED  MODEL

4.4.1 Transient Probabilities

According to the model assumptions, following transitions are possible
in a time slot:

FIGURE 4.2 Possible transitions in a time

Therefore, we have the following transition probabilities:

(i) P{(x, y)(x+b, y) if arrival after phase 1, y<x< y+N-b+1}= âλ1h+o(h)
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(ii) P{(x, y)(x+b, y) if arrival after phase 2, y<x<y+N-b+1}= λ2h+o(h)

(iii) P{(x, y)(x+b,y+b), i.e., entry into phase 2 of arrival, y<xy+N}=
αλ1h+o(h)

(iv) P{(x, y)(x, y+1), i.e., a departure, y<xy+N}=μh+o(h)

(v) P{(x, y)(x, y) if a batch is in phase 1 of arrival, y<x< y+N-b+l}= 1–
(λ1+μ) h+o(h)

(vi) P{(x, y)(x, y) if a batch is in phase 2 of arrival, y< zx<y+N-b+ 1}=1-
(λ2+μ)h+o(h)

(vii) P{(x, y)(x, y) if a batch is in phase 1 of arrival, y+N-b<xy+N}= 1–
(αλ1+μ)h+o(h)

(viii) P{(x, y)(x, y) if a batch is in phase 2 of arrival, y+N-b<xy+N}= 1-
μh+o(h).

Stays occurring in (v) to (viii) are called as type 1, type 2, type 3 and type
4, respectively.

4.4.2 Counting of Lattice Paths

To see, in general, how to count the number of possible LPs, if in Fig.
4.3, all the diagonals are removed, then we have a LP having only
horizontal steps (each of length b units), and vertical steps (each of unit

Run: A sequence of consecutive horizontal (vertical) steps bounded on
each side by a vertical (horizontal) step is called a horizontal
(vertical) run. The sequence of horizontal steps starting from the
origin followed by the first vertical as well as the sequence of
vertical steps at the end following the last horizontal step are also
called horizontal and vertical runs, respectively.

Now, Fig. 4.4, obtained from Fig. 4.3, does not contain any diagonals,
therefore, it represents a very special case that all arrivals to the system
take place after phase 1 on ly. But, since some arrivals (at the maximum
all) could be after phase 2 as well, therefore, while counting the possible
LPs, one has to think of all the different possibilities in which diagonals
can be inserted into horizontal and vertical runs. Keeping in mind the
distribution C2, it is clear that we have to observe the following
conditions:
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(i) two or more consecutive diagonals should not occur,

(ii) in any horizontal run any number of diagonals may occur,

(iii) in any vertical run not more than one diagonal should occur,

(iv) the first horizontal step following a diagonal step has to be a dotted
horizontal step,

(v) two or more consecutive dotted horizontal steps should not occur,

(vi) a doffed horizontal step should not be immediately preceded by a
horizontal step,

(vii) from any vertex (x, y) such that y+N-b<xy+N, there should not be
a horizontal step, only vertical steps or diagonal steps are possible.

The counting of LPs has to be done, therefore, keeping in view the above
restrictions.

4.4.3 Notations

In a LP, let
y-bk: number of arrivals (including those initially in the system) as

well as the number of departures in a busy period, obviously y will be a
multiple of b (batch size),

r: number of horizontal runs and vertical runs, separately (r≥1),
bls: length of the sth horizontal run (s=1, 2,…, r),
Ls: length of the sth vertical run (s=1, 2,…, r),
L: (l1, l2,…, lr; L1, L2,…, Lr),
k: total number of diagonals inserted in horizontal and vertical runs

(k 0),
j: number of diagonals inserted, one each, in vertical runs, (0 j k),
k-j: number of diagonals inserted in horizontal runs,
i: (i1, i2,…, is,…, ij), numbered vertical runs in which j diagonals are

inserted (one each),
Li: , length of j vertical runs numbered i, in

which the j diagonals are inserted,
Ki: , respective distances from the lower end

of the vertical runs at which j diagonals are inserted,
bm: number of possible vertices where type m stays can occur (m= 1,

2, 3, 4),
Cm: number of type m stays (m=1, 2, 3, 4),
b: (b1, b2, b3, b4),
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c: (c1, c2, c3, c4),
N: capacity of the system (assumed to be a multiple of b).
With the vertex (y, y) on the line Y=X, it is obvious that
# of departures during a busy period (number of vertical steps each

of length b)=  y–i,
# of diagonals each of length b (number of batches entered into phase

2 of arrival)=k.

Obviously, bms should satisfy the relation:

 (excluding the end vertex (y, y)).

To understand these notations we refer to Fig. 4.3,

b=4, i=l, N=16, y=68, r=7, k=6, j=4,

L=(l1, l2,…, l7; L1, L2,…, L7)=(4, 1, 1, 1, 1, 2, 1; 4, 5, 3, 6, 8, 2, 16),

i=(i1, i2, i3, i4)=(1, 4, 5, 7),

Li=(4, 6, 8, 16),

Ki=(2, 0, 1, 6),

b=(11, 23, 19, 7),

The remaining 2 (=k-j) diagonals are inserted in horizontal runs
numbered 1 and 6.

To count the number of required LPs, therefore, we have

Theorem 4.4.1 For fixed values of nonnegative integers i, b, y, N, k, j, r,
L, i, Ki, b, c, let  denote the number of LPs from
A(bi,0) to B(y,y) remaining below the line Y=X but not crossing the line
Y=X-N, each comprising of k diagonals, of length b horizontal steps of
length b each  (including those from (0,0) to (bi, 0)) and y-bk vertical
steps, such that

 horizontal steps form r horizontal runs of lengths
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FIGURE 4.3 Busy period illustration
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FIGURE 4.4  model. Lattice path ignoring the diagonals
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Theorem 4.4.2 (b) y-bk vertical steps form r vertical runs of lengths L1,
L2,…, Lr, respectively, L1, L2,…, Lr > 0,

(c) max(bi, L1+1)≤ b11≤N,

 

i.e.,

 

(These conditions ensure that the LP touches Y=X for the first time at (y,
y) without crossing the line Y=X–N),

(d) j diagonals are inserted one each into j vertical runs numbered i=
(i1, i2,…, ij), respectively, of lengths  at distances

 from bottom (including the vertices at both ends
of the vertical runs except the vertex at the end of the last vertical run),

(e) the remaining k-j diagonals are inserted into horizontal runs; one
or more diagonals can be inserted in any horizontal run except at the
vertices at both ends of horizontal runs,

f) cm stays of type m can occur at bm vertices (m=1, 2, 3, 4), respectively.
Then for r>1,

(4.4.1)
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where, for k>0,

(4.4.2)

(4.4.3)

(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)
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and for k=0, defining

dn=number of possible vertices for type n stays to occur n=1, 3,

en=number of type n stays, n=1, 3,

we have

(4.4.10)

(4.4.11)

with

(4.4.12)

PROOF To prove (4.4.1), it is obvious that fixed values of nonnegative
integers i, b, y, N, k, j, r, L, i, Ki would lead to only one unique LP with
only j diagonals (each of length b) inserted, one each, in vertical runs.
However, insertion of the remaining k-j diagonals along the r horizontal
runs as well as the distribution of different types of stays (cms and ens)
into the corresponding vertices (bms. and dns) will generate the required
number of LPs. Therefore the crux of the theorem is to compute the
values of bm (m=1, 2, 3, 4) and dn (n=1, 3).

First we compute b4, the number of possible vertices for type 4 stays
to occur. It is equal to the number of vertices of the type (x, y) (x- Nyx-N
+ b-1) following the j diagonals inserted, one each, in j vertical runs
numbered i1, i2,…, ij) of lengths (  at distances

, respectively, from their lower end points (see Fig. 4.3).
Therefore, by defining ap, and the indicator function V(b, N, Kp, ap) as
in (4.4.6) and (4.4.8), respectively, we get 64 as given in (4.4.5).

For computing the value of b3, it is observed that b3 is the number of
vertices of the type(x, y) (x-Nyx-N+b-1) Iying on the vertical runs
following the r horizontal runs but preceding the diagonal steps, if any,
inserted in vertical runs (see Fig. 4.3). Therefore, by defining the
indicator functions U(b,N,ap) and W(b, N, Kp, ap) as in (4.4.7), and (4.4.9),
respectively, we get b3 as in (4.4.4).

b2 clearly includes the end points of the k-j diagonals inserted in the
horizontal runs and the vertices of the type(x, y) (x-N+b-1< y<x) following
the j diagonals inserted in vertical runs but preceding the subsequent
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horizontal steps, (see Fig. 4.3). In case ij=r, then since there can not be
any stays at (y, y), the value of b2 is reduced by 1. This explains

Lastly b1 follows from (A), i.e.,

 

which is (4.4.2).
If k=0 (see Fig. 4.4); then arrivals of all batches take place after phase

1 only and, only two types of stays are possible, i.e., type 1 and type 3.
The indicator function D(b, N, lp, ap) which is defined in (4.4.12) on the
lines of indicator function U(b, N, ap) in (4.4.7) is self explanatory. The
values of d1 and d3 in (4.4.10)and (4.4.11), respectively, then follow easily.

As regards for the case k>0, the insertion of k-j diagonal steps, each
of length b, into r horizontal runs, these can be inserted into any k-j
vertices out of the only  vertices available along the
horizontal runs in  ways.

Finally, by identifying stays with balls and vertices with cells, and
the n using the formula  of the number of ways of distributing e
similar balls into f cells [Feller (1985)], we get (4.4.1) for k>0 and k=0,
respectively. �

4.5 BUSY PERIOD PROBABILITY FOR THE DISCRETIZED
 MODEL

Theorem 4.5.1 If  denotes the probability that the busy period is
of length  time slots for the discretized  system starting
initially with bi units (i.e., with i batches), then
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(4.5.13)

where

and the summations are defined as

R: , y is a multiple of b,

R′: ,

R1: ,

R2: ,

R3: 

,

R4: 

R5: 

R6: 

R7: 

,
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R8: ,

R9: ,

R10: ,

PROOF For computing the  when the total number of time slots
is given to be , we have to consider both the cases k=0 and k>0, and
hence (4.5.13) consists of corresponding two terms. For the case k=0, let

 be the number of time slots in which the system has type 3 stays.
The total number of transitions in , time slots is  therefore,
the number of type 1 stays is

 

Using the transition probabilities given in Section 4.4.1, the probability
of occurrence of:

(i) e1 type 1 stays is (1–(λ1+μ)h)e1+o(h)

(ii) e3 type 3 stays is (1–(αλ1+μ)h)e3+o(h)

(iii) y departures is (μh)y+o(h)

(iv) arrivals of  batches is .

Thus multiplying the number of stipulated LPs from (2) by the above
transition probabilities and then summing over (R, R3, R2, R1) we get
the first term in (4.5.13). For the case k>0, let  be the number
of time slots out of the total  time slots in which the system has type m
stay (m=2, 3, 4). Since, the number of transitions in the remaining

 time slots is  we get the number of type 1

stays c1, equal to

 

Using the transition probabilities given in Section 4.4.1, we multiply
by stipulated number of LPs given in (4.4.1) and then take the sum
over (R′, R2,..., R10). This gives the second term in (4.5.13). �
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4.6 CONTINUOUS  MODEL

On using a limiting process as h 0 in (4.5.13) [Meisling (1958), Mohanty
and Panny (1989) and Böhm (1993)], we obtain the expression for the
busy period density function as given in the following.

Theorem 4.6.1 The probability density function of the busy period for
 system starting initially with bi units (i.e., i batches) is

given by

PROOF On taking limit as h 0, (4.5.13) leads to

(4.6.14)

(4.6.15)
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which, on simplification yields (4.6.14).

4.7 PARTICULAR CASES

(i) Mb/M/1/N model

Taking α=0, â=1, λ1=λ, λ2=0, (4.6.14) yields the busy period density
function for Mb/M/1/N queue, i.e.,

(4.7.16)

Further, when  (4.7.16) becomes

 

where  of LPs from (bi, 0) to (y,y)
touching Y=X for the first time at (y, y) with horizontal steps each of
length b and vertical steps, each of unit length. Therefore

(4.7.17)

[see Mohanty (1979)]. Then

(4.7.18)

gives the busy period density of the Mb/M/I queue.
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For b=1, (4.7.18) further reduces to

(4.7.19)

where

 

is the modified Bessel function.
Eq. (4.7.19) gives the busy period density of the M/M/1 queue [see

Saaty (1961) and Kanwar Sen and Jain (1993)].

(ii)  model

Taking  in (4.6.14)
we get, as in case (i),

(4.7.20)

Eq. (4.7.20) gives the busy period density function for GIb/M/1 system
[Agarwal and Kanwar Sen (1997)].

4.8 NUMERICAL COMPUTATIONS AND COMMENTS

Numerical examples and graphs give insight into the effect of varying
the parameter values. In view of this and even otherwise to test our
results, numerical computations have been performed in Fortran 77 in
double precision on PC Pentium-III for different sets of values of the
parameters involved for busy period probability,  given in (4.5.13),
of the discretized model . The computations could be
performed in a short time since the program deals mainly with multiple
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summations. From illustration point of view some results are given in
Tables 4.1–4.7 along with their corresponding graphs in Figs. 4.5–4.11.

It can be observed that in all the Tables, in general, for a given set of
parameter values, the probabilities increase up to a certain value of
busy period t/h, and then start decreasing, satisfying the expected
normal pattern, thus justifying our results. Table 4.1 (Fig. 4.5) contains
busy period probability for b=2, 3, 4, when h=0.02, i=1, N=5, α=0.6

 λ1=3, λ2=2, μ=5. We note that probabilities decrease as b
increases. Interestingly, it can also be noted that there are zeros at
places when b>t/h as it should. Besides, 1st row in each table also
contains all zeros since for b=2, busy period cannot tenninate in t/h=1
time slot.

Table 4.2 (Fig. 4.6) gives behaviour of probabilities for different values
of α=0.0,0.2,…, 1.0. The values for α=0.0 and α=1.0 correspond to busy
period probabilities for Mb/M/1/N and  models, respectively.
The probabilities are increasing w.r.t. α since when the probability of
customers entering phase 2 of arrival increases the busy period should
terminate early. But the reverse pattern should hold w.r.t. λ1 as well as
λ2 
when repair rate μ increases, busy period terminates faster and so

initial number of batches present in the system. Obviously when i

the behaviour of busy period probabilities can be observed w.r.t. N. It
can be noticed that probabilities remain equal for N>t/h which is obvious
otherwise too. Also it is noted in Table 4.7 that the differences in
probabilities are very very small for N 5. Therefore the corresponding

Further, in Table 4.4 it is interesting to note that λ2 has no effect
up to t/h=3 when i=1, b=2 and N=5. It is so since for t/h=2, the
probability is (μh)2 and when t/h=3, a fresh batch of size 2 can at most
enter phase 2 of arrival but can not join the system. Hence λ2 does not
occur in the value for busy period probability. The expression for
probability is 2(μh)2(1-(λ1+μ)h)+2(μh)2(αλ1h). Also in Tables 4.2, 4.3
and 4.4, row 2 (for t/h=2) is constant containing the value 0.0 100
since this probability is (μh)2 and is independent of α, λ1 and λ2

respectively. The numerical computations can similarly be done for
other expressions.
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TABLE 4.1 Busy period probabilities for different values of b when h=0.02,
i=1, N=5, α=0.6, â=0.4, λ1=3, λ2=2, μ=5
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FIGURE 4.5
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TABLE 4.2 Busy period probabilities for different values of α when h=0.02,
i=1, b=2, N=5, λ1=3, λ2=2, μ=5

Copyright © 2002 Taylor & Francis



KANWAR SEN and M.AGARWAL74

FIGURE 4.6
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TABLE 4.3 Busy period probabilities for different values of λ1 when h=0.02,
i=1, b=2, N=5, α=0.6, â=0.4, λ2=2, μ=5
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FIGURE 4.7
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TABLE 4.4 Busy period probabilities for different values of λ2 when h=0.02,
i=1, b=2, N=5, α=0.6, â=0.4, λ1=3, μ=5
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FIGURE 4.8
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TABLE 4.5 Busy period probabilities for different values of μ, when h=0.02,
i=1, N=5, b=2, α=0.6, â=0.4, λ1=3, λ2=2
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FIGURE 4.9
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TABLE 4.6 Busy period probabilities for different values of i when h=0.02,
b=2, N=5, α=0.6, â=0.4, λ1=3, λ2=2, μ=5
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FIGURE 4.10
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TABLE 4.7 Busy period probabilities for different values of N when h=0.02,
i=1, b=2, α=0.6, â=0.4, λ1=3, λ2=2, μ=5
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FIGURE 4.11
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CHAPTER 5

MEASURES FOR
DISTRIBUTIONAL

CLASSIFICATION AND MODEL
SELECTION

GOVIND S.MUDHOLKAR RAJESHWARI NATARAJAN

University of Rochester, Rochester, NY

Abstract: The use of conventional measures of skewness ( ) and
kurtosis (ß2) for distributional classification and model selection is
classical. In this paper, we review such existing measures and propose
a new set (ξ1, ξ2) having some distinguishability advantages. In the
(ß1, ß2)-chart the normal family appears as the limiting point of lines
representing gamma, Type V, lognormal and the inverse Gaussian
families. In the new (ξ1, ξ2)-chart the Gaussian, inverse Gaussian and
gamma families appear as three distinct points. The asymptotic
distributions of the estimates (J1, J2) of (ξ1, ξ2) for samples from some
parent populations are derived and the implications of the
distinguishability for the goodness-of-fit problems are discussed.

Keywords and phrases: Model selection, measure of skewness,
measure of kurtosis, goodness-of-fit.

5.1 INTRODUCTION

Constructing a stochastic model for populations is an essential step prior
to the statistical analysis of data from them. The space of all probability
distributions being too large and complex, the choice for the model
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building is generally restricted to some well understood system of
distributions such as those due to Pearson, Johnson, Burr, Perk etc.;
see e.g. Johnson, Kotz and Balakrishnan (1994). The selection of a
parametric family from the system, assuming generalities such as
continuity and unimodality, involves use of common tools of exploratory
data analysis and various measures of distributional classification.

The most commonly employed measures of distributional morphology,
often used in tandem, are the classical cofficients of skewness and
kurtosis, their variations, and the related charts discussed in Johnson,
Kotz and Balakrishnan (1994), Elderton and Johnson (1969) or Ord
(1972). More recently, Mudholkar and Natarajan (1998) while examining
the remark-able similarity between the Gaussian and inverse Gaussian
(IG) families, noted by many e.g., Folks and Chhikara (1978), lyengar
and Patwardhan (1988), introduced the coefficients δ1 and δ2 respectively
of IG-skewness and IG-kurtosis. Mudholkar and Natarajan demonstrate
several remark-able analogies between the measures  and
( δ1, δ2), and between their respective sample versions. They propose
( δ1, δ2)-chart for model selection and illustrate its use with some well
known datasets. Ord (1967) proposes the ratio of the coefficient of
skewness and coefficient of variation as a measure for classifying such
distributions.

The purpose of this paper is to supplement Ord’s (1967) measure,
denoted here by ξ1, with another ratio ξ2 and consider the pair ( ξ1, ξ2)
for the purpose of classifying distributions. It is noted that in a chart
based on ( ξ1, ξ2), the Gaussian, inverse Gaussian and gamma appear as
three distinct points.

The existing measures of distributional classification of distributions
are briefly reviewed in Section 5.2. The new measures ξ1 and ξ2 are
discussed and the uses of ( ξ1, ξ2)-chart as of (ß1, ß2)-chart and of the
sample estimates (J1, J2) are illustrated in Section 5.3. The asymptotic
distributions of (J1, J2) for samples from Gaussian, inverse Gaussian
and gamma populations are derived in Section 5.4. The final section is
given to miscellaneous remarks including mainly applications to
goodness-of-fit tests.

5.2 CURRENT MEASURES FOR DISTRIBUTIONAL
MORPHOLOGY

The best known among the measures used for classifying statistical
distributions are the conventional coefficients of skewness and kurtosis
defined as  and  respectively where µj refers to

the jth central moment. Even though there exist asymmetric distributions
with , (e.g. MacGillivray (1986) and Freimer et al. (1988)) the
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coefficient of skewness is generally accepted as a measure of asymmetry.
The meaning of the coefficient of kurtosis is somewhat amorphous; see
Balanda and MacGillivray (1988) for a critical review in which they
describe it “vaguely as the location-and scale-free movement of
probability mass from the shoulders of a distribution into its center
and tails…”. MacGillivray (1986) and Balanda and MacGillivray (1988)
discuss partial orderings of probability distributions in terms of 
and ß2 respectively.

Many variations of , ß2 exist in literature. Well known among
these are the measures based upon the quantiles. For example, an
alternative

(5.2.1)

to skewness appears in David and Johnson (1956), whereas Groeneveld
and Meeden (1984) propose

(5.2.2)

as a measure of kurtosis.
Hosking (1990) has proposed and studied two ratios  and

 of Sillitto’s (1951) L-moments �r,

(5.2.3)

where Xr-k:r denotes the (r-k)th order statistic, as substitutes for  and
ß2. The measures, L-skewness τ3 and L-kurtosis τ4 are believed to be
less variable and more meaningful in the context of procedures such as
ShapiroWilk test of normality; see Hosking (1992). More recently
Mudholkar and Hutson (1998) have proposed LQ-moments, quantile
analogs of L-moments, as

(5.2.4)

where 0≤α≤1/2, 0≤p≤1/2, based on quick estimators such as Trimean,
Gastwirth’s estimator, and have developed measures η3=ζ3/ζ2 of LQ-
skewness and η4=ζ4/ζ2 of LQ-kurtosis based upon them. The L-measures
and LQ-measures behave similarly, except that LQ-moments always
exist, whereas L-moments exist only for distributions with finite
expectations.
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Mudholkar and Natarajan (1998) define and discuss uses of two new
measures δ1 and δ2 as IG-analogs of  and ß2 respectively. The
coefficient δ1 is based upon a suggestion in Mudholkar, Natarajan and
Chaubey (1998) which contains Z(IG)-test analogous to Lin and
Mudholkar’s Z-test of normality against asymmetric alternatives. The
coefficient δ1 which appears as a parameter in the power function of the
Z(IG)-test is proposed as a measure of IG-skewness, where a random
variable X is said to be IG-symmetric about µ if it satisfies the countable
equalities

(5.2.5)

To construct an analog of ß2, they compare the asymptotic distribution
of the sample variance given by

(5.2.6)

with that of IG parameter estimate  to
arrive at the coefficient δ2 of IG-kurtosis. The measure δ1 involves the
first two positive moments and first negative moment, whereas δ2

involves the first two positive and the first two negative moments. It is
shown that the asymptotic distributions of the estimates d1, d2 of δ1, δ2

for IG-samples are exactly the same as those of  and b2 for normal
samples. Furthermore, they also offer, study, and illustrate the use of
(δ1, δ2)-chart as the IG analog of the (ß1, ß2)-chart for distributional
classification and data modelling.

Carver (1919) considered a difference equation

(5.2.7)

analogous to the well known differential equation underlying the
Pearson system. When the lower threshold of the distribution is zero
and b0=0, the three constants a, b1, b2 may be associated with the first
three moments of the distribution. In view of this Ord (1967) uses the
two ratios  and S=µ3/µ2 to propose a measure �=S/I, to
distinguish between distributions with positive support. We also note
that Cox and Oakes (1984) discuss a use of the chart based on coefficient
of variation � and coefficient of skewness  in the context of survival
analysis for model selection. We denote Ord’s measure ω by

(5.2.8)

where ki refers to the ith cumulant.
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5.3 ( ξξξξξ1 , ξξξξξ2 ) SYSTEM

If the coefficient b0 in Equation (5.2.7) is non-zero, or the support of
distribution is not strictly positive, then four moments or cumulants
are necessary to describe the constants in the difference equation or
corresponding differential equation. Hence, one may define another
measure

(5.3.9)

where �2 represents the coefficient of excess kurtosis, as a supplement
to the index ξ1 defined by Ord (1967). The two indices ξ1 and ξ2 can then
be used in place of  and ß2 for distributional classification, and their
sample versions J1 and J2 may be placed on the (ξ1, ξ2)-chart given in
Figure 5.1 for model selection.
( ξξξξξ1 , ξξξξξ2 )-Chart. Several features of the (ξ1, ξ2)-chart are noteworthy.

Since ξ1=0 whenever ß1=0, all symmetric families are represented as
the vertical line ξ1=0, with an exception of the normal family. The normal
family for which ß1=0= �2, appears as the point (0,0) in the (ξ1, ξ2)-chart.
As a matter of technicality, it may be noted that the point (0,3) in (ß1,
ß2)-chart and the point (0,0) in the (ξ1, ξ2)-chart may also represent non-
normal distributions for which  but some higher order

cumulants are non-zero. Both variance-ratio F and beta families occupy
certain regions of the chart. The curves in Figure 5.1 corresponding to
the variance-ratio F(m, n), and the beta B(m, n) distributions for fixed
m and varying n and fixed n and varying m, give approximate location
of these regions. Figure 5.1 also contains the curves corresponding to
the Weibull and lognormal families and shows the position of the
datasets discussed later in this section as points D1 and D2.
Interestingly, the gamma and inverse Gaussian families which appear
as lines in the (ß1, ß2)-chart, are represented in the (ξ1, ξ2)-chart by points
(2, 6) and (3, 15) respectively. In (ß1, ß2)-chart, gamma and inverse
Gaussian lines, both converge to the normal point (0, 3) whereas in this
chart they are distinct points and hence may be considered better
discriminators between these distributions.

Model Selection. The consistent sample versions 
and J2=[(m4-3m2

2)m1
2]/(m2

3), obtained by plugging-in the sample
moments, in conjunction with the ( ξ1, ξ2)-chart, may be used to select a
parametric model using data. We illustrate the process using two
datasets D1 and D2. The values of the measures , b2 and J1, J2 for

Copyright © 2002 Taylor & Francis

these data appear in Table 5.1.



G.S.MUDHOLKAR and R.NATARAJAN92

D1. Rainfall Data. These data in Table 5.2, used in Mooley (1973)
give the July rainfall (in millimeters) at Kyoto over a period of 80 years
1880–1960. Conventionally such meteorological data were analyzed by
using normal fit. Mooley argued that for such data a gamma model
would be more appropriate. In the (ξ1, ξ2)-chart, the point D1 (1.77, 4.5)
falls on the Weibull line but is very close to the gamma point. In order
to compare these models we consider Pearson’s chi-square statistics
obtained from Table 5.2. The values �2(gamma)=7.12 and
�2(weibull)=5.57; both with six degrees of freedom, and p-values of 0.31
and 0.473 respectively, suggests the preferability of the Weibull model
over the gamma model.

D2. Bus Motor Failures. These data, originally in Davis (1952),
are reanalyzed in Mudholkar, Srivasatava and Freimer (1995) using
the exponentiated Weibull family.

TABLE 5.1 Comparison of  and
(J1, J2) for the datasets

TABLE 5.2 Rainfall (in mm) at Kyoto, Japan for the
month of July from 1880–1960

Source: World Weather Records Smithsonian
Institution, Miscellaneous Collections and U.S.
Department of Commerce.

TABLE 5.3 Fifth bus motor failure

Source: Davis (1952), Journal of the American Statistical Association, 47.
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Table 5.3 gives the number of miles (in 1000’s) between the fourth
and fifth failures of the motors. The reanalysis shows appropriateness
of a Weibull model for the data. The placement of D2 (1.04,-0.58) in the
( ξ1, ξ2)-chart confirms appropriateness of the model, whereas the choice
of a parametric model in the (ß1, ß2)-chart is unclear.

5.4 ASYMPTOTIC DISTRIBUTIONS OF J1, J2

In addition to the model selection applications the empirical skewness
and kurtosis coefficients  and b2 have been widely used for testing
goodness-of-fit hypotheses such as normality; see Chapter 7 by Bowman
and Shenton in D’Agostino and Stephens (1986). In this section, with a
similar goal in mind, we consider the asymptotic distributions of the
coefficients J1 and J2 for samples from the normal, gamma and inverse
Gaussian populations.

Gaussian Population. For a random sample of size n from an N
(µ, σ) population, the asymptotic sampling distribution of  and b2, as
n→∞, is well known; see e.g. Kendall and Stuart (1969). Specifically, as
n→∞,

(5.4.10)

Hence, if the population mean µ≠0, using (5.4.10) and an appeal to
Slutsky’s theorem we get

(5.4.11)

as n→∞. Similarly, from the sampling distribution of b2

(5.4.12)

as n→∞, we see that

(5.4.13)

Furthermore, since  and b2 are asymptotically independent, using
the multivariate version of Slutsky’s theorem, [e.g. Cramér (1946)] it is
seen that J1 and J2 are also asymptotically independent. In other words,
for a sample from normal population, as n→∞

 (5.4.14)
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Hence, by use of the multivariate version of Mann-Wald theorem,
[Serfling (1980)] we see that, as n→∞, the vector j’=(J1, J2) has a bivariate
normal distribution with mean (2, 6) and covariance matrix given by

Gamma Population. For a random sample of size n from a G(α)
population with shape parameter α, as n→∞, the vector 
is asymptotically normally distributed with mean (µ, µ2, µ3, µ4), and
covariance matrix (1/n) Σ=(σij)/n, where, with the notation  and
mi=E[(X-m1)i], σii=Var(mi), σij=Cov(mi, mj) we have, 

Inverse Gaussian Population. For a random sample of size n from
an IG(µ,�) population, as n→∞, the vector  is
asymptotically normally distributed with mean (µ, µ2, µ3, µ4)’, and
covariance matrix (1/n) Σ=(σij)/n, where with the notation in gamma
population case  

(5.4.15)
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where  denotes the shape parameter.

5.5 MISCELLANEOUS REMARKS

The classical (ß1, ß2)-chart provides the view of only one cross-section of
the space of probability distributions. As noted earlier, in this cross-
section the gamma, inverse Gaussian and type V families appear as
lines converging to the (0, 3) point representing the normal family. In
the (ξ1, ξ2)-chart, however, the gamma and inverse Gaussian and normal
families appear as distinct points. Hence, the sample estimates (J1, J2)
may be useful in distinguishing between these families.

1. Testing Normality. Among various tests of the composite
hypothesis of normality, those based  on are the oldest (Chapter
7 of D’Agostino and Stephens (1986)). The indices J1 and J2 can be
similarly employed to construct an omnibus test of normality, and also
tests directed at asymmetric alternatives or non-normal kurtosis
alternatives. From the asymptotic distribution (5.4.14) it appears that,
for a population with large coefficient of variation, such tests may have
superior power properties. Furthermore, using an approach similar to
that in Mudholkar, Marchetti and Lin (1998) J1 and J2 tests could be
combined to detect restricted asymmetric and non-normal kurtosis
alternatives.

2. Gamma Hypothesis. At present there do not exist reasonable
goodness-of-fit tests for the composite gamma hypothesis. This is mainly
because even the asymptotic null distributions of most goodness-of-fit
test statistics involve the population parameters in both mean and
variances. As shown in (5.4.15), the expectation of asymptotic
distributions of (J1, J2) is parameter-free. Hence, the prospect of a gamma
goodness-of-fit test based on J1 and J2 appears promising.

3. Inverse Gaussian hypothesis. Over the last few decades, the
analytical simplicity of the inverse Gaussian inference procedures and
the analogy of IG family with Gaussian family has intrigued the

Hence, by use of the multivariate version of Mann-Wald theorem, it
follows that, as n→∞, the vector J’=(J1, J2) has a bivariate normal
distribution with mean (3,15) and covariance matrix given by

(5.4.16)
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statistical community. The family is highly recommeded as a model for
asymmetric data. The goodness-of-fit tests for the IG model are still
very few, see Mudholkar, Natarajan and Chaubey (1998). Hence, use of
(J1, J2) for testing goodness-of-fit of the composite IG hypothesis seems
a reasonable project.

4. Confidence regions. The asymptotic joint distributions of the
indices (J1, J2) may be used to construct confidence regions for (ξ1, ξ2).
For large sample sizes, they may be useful in choosing between
competing models suggested by the (ξ1, ξ2)-chart in Figure 5.1.

5. Variations of (ξ1, ξ2). Several variations of the classical coefficients
of skewness and kurtosis based on population quantiles, L-moments
and LQ-moments are described in Section 5.2. Similar variations of the
measures ξ1 and ξ2 are obviously feasible.

N: Normal Point, G: Gamma Point, IG: Inverse Gaussian Point, and
D1, D2 locate datasets in Section 5.3

FIGURE 5.1 The (ξ1, ξ2)-chart
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CHAPTER 6

MODELING WITH A BIVARIATE
GEOMETRIC DISTRIBUTION

SUNIL K.DHAR

New Jersey Institute of Technology, Newark, NJ

Abstract: The discrete analog of the bivariate distributions of Freund’s
models is described, interpreting its assumptions. This discrete bivariate
geometric distribution has applications to survival analysis, reliability
theory and count data. Related models derived by incorporating the
environmental effects are also discussed. The application to sports data
is demonstrated.

Keywords and phrases: Survival function, environmental effect

6.1 INTRODUCTION

A number of authors have arrived at different bivariate geometric
distributions (BVG). Azlarov and Volodin (1982) considered the discrete
analog of Marshall-Olkin’s (1967) bivariate and trivariate exponential
distributions. However, Basu and Dhar (1995) looked at this problem
from a totally independent approach and have arrived at the same
discrete analog of Marshall-Olkin’s (1967) for the general multivariate
exponential (MVE) with no restriction on their parameters, except that
probability parameters are between 0 and 1. This BVG is different from
the one described in Marshall-Olkin (1985).

Dhar (1998) arrived at another bivariate geometric distribution that
was developed using ideas from Freund (1961) reliability models.
Though this newly obtained geometric model is named after the author
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x, y=1, 2,…. Note that if component represented by X fails at x, before Y
fails, then the failed component is immediately replaced. Hence, the
updated two component system will follow the distribution X*, Y*. The
(X*=x) and (x<Y*) are then treated to be independent.

Freund (1961), not all the distribution properties follow those of the
Freund (1961) model. In this paper, the assumptions leading to the
bivariate geometric model are interpreted. New bivariate models are
derived from this bivariate geometric distribution taking into account
the environmental effects. Further, the method of Dhar (1998) to
compute the moment estimator under the practical data set has been
expressed clearly. The applicability of this model is demonstrated using
a real data set in Section 6.4.

6.2 INTERPRETATION OF BVG MODEL ASSUMPTIONS

To clarify the assumptions the basic derivation from Dhar (1998) is
repeated here. Let X and Y be the discrete lifetime distributions of
components 1 and 2, respectively. The joint density

(6.2.1)

 where 0<pi<1, pi+qi=1, i=1, 2 and pi is the

probability of survival of the replaced component i, for a unit time, when
component i failed before its counterpart, i=1, 2. Take the conditional
survival distributions to be truncated geometric

0 < p3, p4<1, pi+qi=1, i=3, 4. Here, pj, j=3, 4 represents the probability of
survival of component j-2 for a unit time, given that it has already
survived for some time, at the end of which the adjacent component

(6.2.2)

(6.2.3)
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In order for the above function to be a density, we need p1p2<p3 and
p1p2<p4. These strict inequalities tell us that the joint survival of the
replaced components 1 and 2, treated to be independent of each other,
is less than the probability of survival of the component which is known
to have out lived the other. In Dhar (1998) it is seen that the survival
function corresponding to (6.2.5) satisfies the loss of memory property
iff p12=p1p2. This condition suggests that the probability of simultaneous
survival of the two components is equal to the probability of the joint
survival of the replaced components 1 and 2, when they fail before their
complimentary components and are treated to be independent of each
other. The bivariate geometric model with the additional assumption
p12=p1p2, in (6.2.5) will be referred to as BVG (p1, p2, p3, p4). Again from
Dhar (1988, Lemma 3.2), the BVG (p1, p2, p3, p4) model has its marginals
as a mixture of two geometric distributions, provided p3>p1 and p4>p2.
These two conditions interpret as follows. The probability of survival of
the component which is known to have out lived the other is greater
than the probability of survival of that replaced component which failed
before the other component. The two survival probabilities so compared
are referring to the same component slots but under different
circumstances.

failed. Finally, visualizing the two components as a single
interdependent unit in which both the components fail simultaneously,
the probability of the failure occurring at time X=Y is

(6.2.4)

where x=1, 2,…, 0<p2<1, p12+q12=1. Here p12 represents the probability
of simultaneous survival, for a unit time, of the two components treated
as one component. Then, from (6.2.2) P(X=Y)=1-P(X≠ Y)=1-{[p1q2+p2q1]
[1-p1p2]-1}=q1q2[1-p1p2]-1. This, along with (6.2.2) to (6.2.4) substituted in
(6.2.1), gives

(6.2.5)
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6.3 THE MODEL UNDER THE ENVIRONMENTAL EFFECT

Consider η to be the random variable that counts the number of discrete
time steps needed for ‘a’ number of events to occur. Then a density of η
is given by , where 0<b<1 and 1≤a≤η (the Negative
Binomial [NB] distribution). The longer the waiting or elapsed time η
in the environment, smaller is the probability of survival pη of the
component, where p is the initial survival probability. Multiplying the
conditional density, given η, of the r.v.  by the density
of η and then summing over all possible integer values of η≥a yields a
new bivariate geometric distribution BVG-NB(p1, p2, p3, p4, a, b). Let

i.e., the backward shift operator acting on the i-th variable. Further, let
 and  denote the minimum and maximum of the two real

numbers x and y. Then, the joint density of BVG-NB(p1, p2, p3, p4, a, b) is
given by

Here, 0<p1, p2<1, p1p2<p3 and p1p2<p4. The corresponding joint survival
function computed using Dhar (1998, Equation 3.6) is given by

(6.3.6)

(6.3.7)
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PROOF. Obvious from (6.3.7). �

Lemma 6.3.2 For BVG-NB, the distribution of min(X1, X2) belongs to
the family of distributions with survival function [(1-b)px]a[1-bpx]-a, 1≤ a,
x=0, 1, 2,…the discrete analog of the Pareto type 2 distribution.

PROOF. Note that

 

when (X1, X2) has the BVG-NB distribution, u=0, 1, 2,… This in turn
follows by letting u=x=y in (6.3.7). �

6.4 DATA ANALYSIS WITH BVG MODEL

Dhar (1998) demonstrated the applicability of the bivariate geometric
model, using simulation and a practical data set. In this section, 1995
IX World Cup diving championship data is introduced to demonstrate
the inference procedure and the practical applicability of the model.
The data consists of scores given by seven judges from seven different
countries recorded in a video that starts at the end of the fourth round,

where x, y=1, 2,….

Lemma 6.3.1 The marginal survival functions of (i) BVG-NB are
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which is a random start, taken from NBC sports TV. The score given by
each judge is a discrete random variable taking integer values and also
the midpoints of consecutive integers between zero and 10. After
dropping the highest and the lowest of the seven raw scores, the
remaining 5 scores are averaged, multiplied by 3 times the degree of
difficulty of the dive to give a score for the dive. In this data set, we
compare the scores given by two groups of the judges. One group consists
of Asian and Caucasus countries namely Japan and Tajikistan, with
the maximum of their scores as X. The other group consists of western
countries, United Kingdom, Australia, Canada, France and Iceland, with
their maximum score as Y. The scores given by these judges to divers
from the Asian and Caucasus group, which include countries like China,
Ukraine, Belarus, Russia will be looked at. We will see the MLE estimate
of P(X<Y) and compare it with the MLE estimate of P(Y <X), to determine
which maximum score is higher, with large probability. The same
procedure will be repeated for all divers including the ones from western
countries like Germany and USA, to see if there is any change in the
probabilistic inequality of the maximum scores of the two sets of judges.

Given below in Table 6.1 is 2×(x, y) in the sequence in which Judges
scores were relayed. The 2 here is to convert the data into integer valued
random variable. The score corresponding to the dive of Michael Murphy
of Australia (item number 3) was not displayed by NBC sports.

To estimate the parameters of the bivariate geometric model the above
data is assumed to be a random sample. If we had the entire data,
rounds one to six, of the diving competition one could remove the earlier
scores of the same diver. Also, assuming that the maximums will follow
the bivariate geometric distribution. We will compute the MLE estimate
based on thirteen observations, item numbers 1, 5, 6, 8, 9, 10, 11, 14, 15,
17 to 20, excluding for the time being, divers from USA and Germany.
Dhar (1998) has shown through simulation that MLE gives smaller bias
than method of moment estimators of the p’s. The MLE’s so computed
are , , ,  

 and .
This suggests that the maximum score of the judges from Japan and
Tajikistan is probabilistically lower than the maximum score of the
judges from the western countries. Again, this computation is carried
through, all the data points in Table 6.1 to give ,

, , ,   and
, which implies that the maximum

score given the judges from the western countries continue to
probabilistically dominate those of the judges from Japan and Tajikistan.
There is no indication in this study of any partiality towards one region
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TABLE 6.1 This data is taken from a video recording during the summer of
1995 relayed by NBC sports TV, IX World Cup diving competition, Atlanta,
Georgia. The data starts at the last dive of the fourth round of the diving
competition
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The method of moment estimators as described in Dhar (1998), using
EX, EY, EX2 and EY2 in terms of the p’s, is repeated here for the sake of
clarification. These are four equations in p1-p4, because p12 is taken to
be equal to p1p2. This in turn gives a polynomial equation in m=p1p2.

 

Using MATHEMATICA one notices that this polynomial in 1-myields
four real solutions for the data in Table 6.2, of which only one is
extraneous, i.e., outside the range of [0, 1]. The largest solution among
the remaining three gives the most meaningful estimate of 1-p1p2 as 1–m.

The estimates of p3 and p4 can now be obtained from

 

and

 

Here again, as described above,  is the second sample moment of Y
values. Using the original moment equations, corresponding to  and

over the other by these groups of judges. These probability estimates in
terms of relative magnitudes are consistent with their respective empirical
estimates.

Consider the data set in Dhar (1998, Table 3) constructed by projecting
consumers preference, from 1, the highest, to 10, the lowest. For the
sake of clarity this table has been repeated here as Table 6.2 given
below. The table contains scores given by 15 customers to the two most
popular competing soft drinks, e.g., Coke (X) and Pepsi (Y).

TABLE 6.2 Projected
consumers preference ranks,
from 1, the highest preference,
to 10, the lowest
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, gives  and .
Since p1p2=m, one could use this equation to eliminate extraneous
solutions of p1 to p4, corresponding to various values of m.

The estimates corresponding to this method of moment estimation,
when applied to Table 6.2 data, yield , ,

, ,  and
 i.e., brand X is more likely to be preferred

over brand Y. Here, the MLE’s are , 
, , ,

 and , i.e., brand
X is more likely to be preferred to brand Y. The last two conclusions are
consistent with the empirical estimates  and

 and are, therefore, the right conclusions.
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CHAPTER 7

SMALL AREA ESTIMATION:
UPDATES WITH APPRAISAL

J.N.K.RAO

Carleton University, Ottawa, Ontario, Canada

Abstract: Small area estimation has received a lot of attention in recent
years due to growing demand for reliable small area estimators.
Traditional area-specific direct estimators do not provide adequate
precision because sample sizes in small areas are seldom large enough.
This makes it necessary to employ indirect estimators that borrow
strength from related areas; in particular, model-based indirect
estimators. Ghosh and Rao (1994) provided a comprehensive review
and appraisal of methods for small area estimation, covering the
literature to 1992–3. This paper provides updates to Ghosh and Rao
(1994) by covering the literature over the past five years or so on model-
based estimation. In particular, we cover several small area models and
empirical best linear unbiased prediction (EBLUP), empirical Bayes (EB)
and hierarchical Bayes (HB) methods applied to these models. We also
present several recent applications of small area estimation.

Keywords and phrases: Small area estimation, empirical best linear
unbiased prediction, empirical Bayes, hierarchical Bayes.

7.1 INTRODUCTION

A geographical area or more generally any subpopulation (domain) is
regarded as a “small area” if the number of domain—specific sample
observations is small. Typically, the domain sample size tends to increase
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with the size of the domain, but this is not always true. For example, in
the U.S. Third National Health and Nutrition Examination Survey
(NHANESIII) states with large Hispanic and black populations (e.g.,
California, Texas) were oversampled at the expense of very small samples
or even no samples in other states (e.g., mid-western states). Yet reliable
estimates are desired for all the states and sub-areas (e.g., counties)
within states. Demand for reliable small area statistics from both public
and private sectors has grown rapidly in recent years.

“Direct” estimators, based only on the domain-specific sample data,
are typically used to estimate domain parameters. But sample sizes in
small areas are rarely large enough for direct estimators to provide
acceptable precision. This makes it necessary to “borrow strength” from
related areas to find “indirect” estimators that increase the effective
sample size and thus increase the precision. Such indirect estimators
are based on either implicit or explicit models that provide a link to
related small areas through supplementary data such as recent census
counts and current administrative records. Indirect estimators based
on implicit models include synthetic and composite estimators, while
those based on explicit models incorporating area-specific effects include
empirical Bayes (EB), empirical best linear unbiased prediction (EBLUP)
and hierarchical Bayes (HB) estimators.

Ghosh and Rao (1994) presented a comprehensive overview and
appraisal of methods for small area estimation, covering the literature
to 1992–3. We refer the reader to Schaible (1996) for an excellent account
of the use of indirect estimators in U.S. Federal Programs.

Ghosh and Rao (1994) provided a list of symposia and workshops on
small area estimation that have been organized in recent years. We
update that list by the following: (i) Conference on Small Area Estimation,
U.S. Bureau of the Census, Washington, D.C., March 26–27, 1998; (ii)
International Satellite Conference on Small Area Estimation, Riga, Latvia,
August 20–21, 1999. Short courses have also been organized: (i) “Small
Area Estimation” by J.N.K.Rao, W.A.Fuller, G.Kalton and W.L.Schaible,
organized by the Joint Program in Survey Methodology and the
Washington Statistical Society, Washington, D.C., May 22–23, 1995; (ii)
“Introduction to Small Area Estimation” by J.N.K.Rao, organized by
the International Association of Survey Statisticians, Riga, Latvia,
August 19, 1999. In addition, numerous invited and contributed sessions
on small area estimation have been organized at recent professional
statistical meetings, including the American Statistical Association
Annual Meetings, the International Statistical Institute bi-annual
sessions and the International Indian Statistical Association Conference,
Hamilton, Canada, 1998.

Singh, Gambino and Mantel (1994) discussed survey design issues
that have an impact on small area statistics. In particular, they presented
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an excellent illustration of compromise sample size allocations to satisfy
reliability requirements at the provincial level as well as sub provincial
level. For the Canadian Labour Force Survey with a monthly sample of
59,000 households, optimizing at the provincial level yields a coefficient
of variation (CV) for “unemployed” as high as 17.7% for some
Unemployment Insurance (UI) regions. On the other hand, a two-step
allocation with 42,000 households allocated at the first step to get reliable
provincial estimates and the remaining 17,000 households allocated in
the second step to produce best possible UI region estimates reduces
the worst case of 17.7% CV for UI regions to 9.4% at the expense of a
small increase in CV at the provincial and national levels: CV for Ontario
increases from 2.8% to 3.4% and for Canada from 1.36% to 1.51%.
Preventive measures, such as compromise sample allocations, should
be taken at the design stage, whenever possible, to ensure precision for
domains like the UI region. But even after taking such measures sample
sizes may not be large enough for direct estimates to provide adequate
precision for all small areas of interest. As noted before, sometimes the
survey is deliberately designed to oversample specific areas (domains)
at the expense of small samples or even no samples in other areas of
interest.

This paper provides updates to Ghosh and Rao (1994) by covering
recent work on model-based small area estimation; in particular, on
empirical best linear unbiased prediction (EBLUP), empirical Bayes (EB)
and hierarchical Bayes (HB) methods and their applications.

7.2 SMALL AREA MODELS

It is now generally accepted that when indirect estimators are needed
they should be based on explicit models that relate the small areas of
interest through supplementary data such as last census data and
current administrative data. An advantage of the model approach is
that it permits validation of models from the sample data. Interesting
work on traditional indirect estimates (synthetic, sample-size dependent

Small area models may be broadly classified into two types: area
level and unit level.

7.2.1 Area Level Models

Area-specific auxiliary data, xi, are assumed to be available for the
sampled areas i (=1,…, m) as well as the nonsampled areas. A basic
area level model assumes that the population small area total Yi or
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some suitable function �i=g(Yi), such as �i=log(Yi), is related to xi through
a linear model with random area effects vi:

(7.2.1)

where ß is the p-vector of regression parameters and the vi’s are
uncorrelated with mean zero and variance  Normality of the vi is also
often assumed. The model (7.2.1) also holds for the non sampled areas.
It is also possible to partition the areas into groups and assume separate
models of the form (7.2.1) across groups.

We assume that direct estimators  of Yi are available whenever the
area sample size ni>1. It is also customary to assume that

(7.2.2)

where  and the sampling errors ei are independent N(0, �i)
with known �i. Combining this sampling model with the “linking” model
(7.2.1), we get the well-known area level linear mixed model of Fay and
Herriot (1979):

(7.2.3)

Note that (7.2.3) involves both design-based random variables ei and
modelbased random variables vi. In practice, sampling variances �i are
seldom known, but smoothing of estimated variances  is often done to
get stable estimates  which are then treated as the true �i. Other
methods of handling unknown �i are mentioned in Section 7.4. An
advantage of the area-level model (7.2.3) is that the survey weights are
accounted for through the direct estimators .

The assumption E(ei|�i)=0 in the sampling model ref 2.2) may not be
valid if the sample size ni is small and �i is a nonlinear function of Yi,
even if the direct estimator  is design-unbiased, i.e. . A
more realistic sampling model is given by

(7.2.4)

with  i.e.,  is design-unbiased for the total Yi. In this case,
however, we cannot combine (7.2.4) with the linking model to produce a
linear mixed model. As a result, standard results in linear model theory
do not apply, unlike in the case of (7.2.3). Alternative methods to handle

The basic area level model has been extended to handle correlated
sampling errors, spatial dependence of random small area effects, vectors
of parameters �����i (multivariate case), time series and cross-sectional data
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and others (see Ghosh and Rao, 1994). We discuss some of the recent models
for combining cross-sectional and time series data. Suppose �it denotes a
parameter of interest for small area i at time t and  is a direct estimator
of �it. Ghosh et al. (1996) assumed the sampling model 
with known sampling variances �it, and the linking model

(7.2.5)

and

(7.2.6)

with known auxiliary variables xit and zit; they have actually studied
the multivariate case �����it. Note that (7.2.6) is the well-known random
walk model. The above model has the following limitations: (i)
Independence of  over t for each i may not be realistic because estimates
are typically correlated over time. (ii) The linking model (7.2.5) does not
include area-specific random effects. As a result, it can lead to “over
shrinkage”. Rao and Yu (1992, 1994) proposed more realistic sampling
and linking models. They assumed the sampling model

(7.2.7)

with known sampling covariance matrix �i, and the linking model

(7.2.8)

with  and independent of uit’s which are assumed to follow
an AR(1) model:

(7.2.9)

with  where ´ and �����i=(�1,…,�iT)´. Models
of the form (7.2.7)–(7.2.9) have been extensively studied in the
econometric literature, ignoring sampling errors, i.e., treating  as �it.
The above sampling model permits correlations among sampling errors
over time and the linking model (7.2.9) includes both area-specific
random effects vi and area by time specific random effects uit. Datta,
Lahiri and Lu (1994), following Rao and Yu (1992), used the same
sampling model (7.2.7) but assumed the following linking model:

(7.2.10)

where ßi’s and ’s are random and ut follows the random walk model
(7.2.6). This model allows area-specific random effects vi and random
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slopes ßi, but does not contain area by time specific random effects uit.
Datta, Lahiri and Maiti (1999) used the Rao-Yu sampling and linking
models (7.2.7) and (7.2.8) but replaced the AR(1) model (7.2.9) by a
random walk model given by (7.2.9) with �=1. Datta et al. (1999)
considered a similar model but added extra terms to  to reflect
seasonal variation in their application to estimating unemployment
rates for the U.S. states. Singh et al. (1994) also used time series/
cross-sectional models, but assumed that the sample errors are
uncorrelated over time.

Area level models have also been used in the context of disease
mapping or estimating regional mortality and disease rates, as noted
by Ghosh and Rao (1994). A simple model assumes that the observed
small area disease counts  Poisson P(ni �i) and  gamma
G(a, b), where �i is the true incidence rate and ni is the number exposed

in area i. Maiti (1998) used  instead of .
He also considered a spatial dependence model for ßi’s, using conditional
autoregression (CAR) that relates each ßi to a set of neighbourhood areas
of area i; see also Ghosh et al. (1997). Lahiri and Maiti (1996) modelled
age-group specific area disease counts yij, using Clayton and Kaldor’s
(1987) approach. They assumed that  and

 where ei= �j�jnij is the expected number of deaths in area i,
�j is the j-th group effect assumed to be known and nij is the number
exposed in the j-th age group and area i. Nandram et al. (1998) assumed

that  and log  with  where
�ij is the area/age-specific mortality rate and xj is a vector of covariates
for age group j. They also considered random slopes ßi in the linking
model.

7.2.2 Unit Level Models

A basis unit level population model assumes that the unit y-values yij,
associated with the units j in the areas i, are related to auxiliary variables
xij through a nested error regression model

(7.2.11)

where  are independent of  and Ni is the
number of population units in the i-th area. The parameters of interest
are the totals Yi or the means .

The model (7.2.11) is appropriate for continuous variables y. To handle
count or categorical (e.g., binary) y–variables, generalized linear mixed
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models with random small area effects, vi, are often used. Ghosh et al.
(1998) assumed models of the form: (i) Given �ij’s, the yij’s are independent
and belong to the exponential family with canonical parameter �ij; (ii)
Linking model  where  and g(.) is a strictly
increasing function. The linear mixed model (7.2.11) is a special case of
this class with g(a)=a. The logistic function g(a)=log[a/(1-a)] is often
used for binary y [see e.g., Farrell, MacGibbson and Tomberlin (1997)]
although probit functions can also be used and offer certain advantages
for hierarchical Bayes (HB) inference [Das, Rao and You (1999)].

The sample data {yij, xij, j=1,…, ni; i=1,…, m} is assumed to obey the
population model. This implies that the sample design is ignorable or
selection bias is absent which, for example, is satisfied for simple
random sampling within areas. For more general designs, the sample
indicator variable, aij, should be unrelated to yij, condition on xij. Model-
based estimators for unit level models do not depend on the survey
weights,  so that design-consistency as ni increases is forsaken except
when the design is self-weighting, i.e.,  as in the case of simple
random sampling. The area level model (7.2.3) is free of these
limitations but assumes that the sample variances �i are known; if
�i’s are assumed unknown the model becomes nonidentifiable or nearly
nonidentifiable leading to highly unstable estimates of the parameters.
The unit level model is free of the latter difficulty and survey weights
can also be incorporated using model-assisted estimators; see Section
7.3.14.

Various extensions of the basic area level models have been studied
over the past five years or so. Stukel and Rao (1999) studied two-fold
nested error regression models which are appropriate for two-stage
sampling within small areas. Following Kleffe and Rao (1992) Arora
and Lahiri (1997) studied unit level models of the form (7.2.11) with
random error variances  such that ; Kleffe and Rao (1992)
assumed the existence of only mean and variance of , without
specifying a parametric distribution on . Datta et al. (1999) extended
the unit level model (7.2.11) to the multivariate case yij, following Fuller
and Harter (1987). This extension leads to a multivariate nested error
regression model. Moura and Holt (1999) generalized (7.2.11) to allow
some or all of the regression coefficients to be random and to depend on
area level auxiliary variables, thus effectively integrating the use of
unit level and area level covariates into a single model. You and Rao
(1999a) also studied similar two-level models.

Malec, Davis and Cao (1996) and Malec et al. (1997) studied the binary
case, using logistic linear mixed models with random slopes to link the
small areas. Raghunathan (1993) specified only the first two moments
of yij’s conditional on small area means �i’s and the first moment of �i as
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for  known inverse “link” function h(.) and the second moment
of �i is allowed to depend on �i.

Many of the small area linear mixed models studied in the literature
are special cases of the following general linear mixed model with a
block diagonal covariance structure, sometimes called longitudinal mixed
linear models [Prasad and Rao (1990); Datta and Lahiri (1997)]:

(7.2.12)

where  and independent of . For example,
the basic area level (7.2.3) is of the form (7.2.12) with  ,

 and  Das and Rao (1999) studied general mixed
ANOVA models of the form

(7.2.13)

where Zi consists of only 0’s and 1’s such that there is exactly one 1 in
each row and at least one 1 in each column,  and independent
of e~(0, �2I). This model relaxes the assumption a block diagonal
covariance structure.

Ghosh and Rao (1994) reviewed some work on model diagnostics for
models involving random effects. Jiang, Lahiri and Wu (1998) developed
a chi-squared test for checking the normality of the random effects vi and
the errors eij in the basic unit level sample model ,

.

7.3 MODEL-BASED INFERENCE

EBLUP, EB and HB methods have played a prominent role for model-
based small area estimation. EBLUP is applicable for linear mixed
models whereas EB and HB are more generally valid. EBLUP point
estimators do not require distributional assumptions, but normality
of random effects is often assumed for estimating the mean squared
error (MSE) of the estimators. Also, EBLUP and EB estimators are
identical under normality and nearly equal to the HB estimator, but
measures of variability of the estimators may be different. To illustrate
the methods, we consider the basic area level model (7.2.3), which is
extensively used in practice, and then discuss recent methodological
developments.
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7.3.1 EBLUP Method

Appealing to general results for linear mixed models, the BLUP
estimator of �i under (7.2.3) is given by

(7.3.14)

where  and  is the weighted least squares (WLS)
estimator of ß with weights . It follows from (7.3.14) that the
BLUP estimator is a weighted combination of the direct estimator 
and the regression synthetic estimator . The result (7.3.14) does
not require the normality of vi and ei. Since  is unknown, we replace it
by a suitable estimator  to obtain a two-step or EBLUP estimator

. The estimator of total Yi is taken as . One
could use either the method of fitting constants (not requiring normality)
or the restricted maximum likelihood (REML) method under normality
to estimate . Jiang (1996) showed that REML estimators of variance
components in linear mixed models remain consistent under deviations
from normality. Therefore,  with REML estimator of  is also
asymptotically valid under nonnormality.

As noted in Section 7.2.1, EBLUP estimation is not applicable if the
sampling model (7.2.2) is changed to the more realistic model (7.2.4).

A measure of variability associated with EBLUP estimator is given
by its MSE, but no closed form for MSE exists except in some special
cases. As a result, considerable attention has been given in recent years
to obtain accurate approximations to the MSE of EBLUP estimators.
An accurate approximation to , for large m, under
normality is given by

(7.3.15)

where

(7.3.16)

(7.3.17)

(7.3.18)

(7.3.19)

and  is the asymptotic variance of  [Prasad and Rao (1990)]. The
leading term  is of order O(1) whereas , due to
estimating ß, and  due to estimating , are both of order O(m-1),
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for large m. Note that the leading term shows that  can be
substantially smaller than  under the model (7.2.3) when �i is
small or the model variance  is small relative to the sampling variance
�i. The success of small area estimation, therefore, largely depends on
getting good auxiliary information {xi} that leads to a small model
variance relative of �i. Of course, one should also make a thorough
validation of the assumed model.

An estimator of , correct to the same order of approximation
as (7.3.15), is given by

(7.3.20)

ie., the bias of (7.3.20) is of lower order than m-1 for large m. The
approximation (7.3.20) is valid for both the method of fitting constants
estimator and the REML estimator, but not for the ML estimator of 
[Datta and Lahiri (1997); Prasad and Rao (1990)]. Using the fitting of
constants estimator, Lahiri and Rao (1995) showed that (7.3.20) is robust
to nonnormality of the small area effects vi in the sense that approximate
unbiasedness remains valid. Note that the normality of sampling errors
ei is still assumed but it is less restrictive due to the central limit
theorem’s effect on the direct estimators .

A criticism of the MSE estimator (7.3.20) is that it is not area-specific
in the sense that it does not depend on  although xi is involved through
(7.3.17). But it is easy to find other choices using the form 7.3.18) for

. For example, we can use

(7.3.21)

where  and  for the fitting
of constants estimator  [Rao (1998)]. The last term of (7.3.21) is less
stable than  but it is of lower order than the leading term .

Stukel and Rao (1999) obtained EBLUP estimators and associated
approximately unbiased (or second-order correct) MSE estimators
under two-way nested error regression models. Moura and Holt (1999)
obtained similar results for the two-level models. Simulation results
of Stukel and Rao (1999) suggest that the behaviour of relative bias of
MSE estimators is more complex than in the one-way case. Datta,
Day and Basawa (1999) studied the multivariate nested error
regression model and developed EBLUP estimators and associated
second-order correct estimators of MSE, using REML or ML estimators.
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In the case of REML estimators, a formulae of the form (7.3.20) holds
but for ML estimators an extra term of order O(m-1) should be
subtracted. Datta and Lahiri (1997) obtained similar results for the
general linear mixed model with a block diagonal covariance structure,
(7.2.12). Das and Rao (1999) extended these results to the general
mixed ANOVA model (7.2.13) in which case the asymptotic set-up is
more complex. Datta, Lahiri and Maiti (1999) and You (1999) obtained
EBLUP estimators and associated second-order correct estimators of
MSE for the time series/cross-sectional linking model (7.2.8) with a
random walk model on uit’s. Datta et al. used ML and REML estimators
of model parameters while You employed the method of moments
estimators.

As noted in Section 7.2, model-based estimators for unit level models
do not depend on the survey weights. Prasad and Rao (1999) obtained
model-assisted estimators for the nested error regression model that
depend on survey weights  and remain design-consistent as the sample
size, ni, increases. The unit level sample model is first reduced to

(7.3.22)

where  with  and similar expressions for
. and . A pseudo-BLUP estimator of , for fixed  and

, say  is then obtained from the reduced model (7.3.22),
noting that , where  is the vector of known
population means and  for large Ni (This estimator is called
pseudo-BLUP because it is different from the BLUP estimator under
the full unit-level sampling model). The unknown parameters  and 
are then replaced by model-consistent estimators  and  under the
full model to obtain the pseudo-EBLUP estimator . This
estimator is model-assisted and it is approximately design and model
unbiased even if the sample design is nonignorable. Prasad and Rao
(1999) also obtained a second-order correct estimator of 

Rivest and Belmonte (1999) obtained an unbiased estimator of the
conditional MSE of the EBLUP estimator  for the basic area
level model, assuming only the sampling model, i.e., conditionally given
θi’s. Hwang and Rao (1987) obtained similar results and showed
empirically that the model-based estimator of MSE, (7.3.20), is much
more stable than the unbiased estimator and that it tracks the
conditional MSE quite well even under moderate violations of the
assumed linking model (7.2.1). Only in extreme cases, such as large
outliers θi, the model-based estimator might perform poorly compared
to the unbiased estimator.
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7.3.2 EB Method

In the EB approach to the basic area level model, given by (7.2.1) and
(7.2.2), the conditional distribution of �i given  and model parameters
ß and , denoted , is first obtained. The model
parameters are estimated from the marginal distribution of ,s, and
inferences are then based on the estimated conditional (or posterior)
distribution of �i, . In particular, the mean of the
estimated posterior distribution is the EB estimator . Under
normality,  is identical to the EBLUP estimator  but the EB
approach is applicable generally for any joint distribution. It should
be noted that the EB approach is essentially frequentist because it
uses only the sampling model and the linking model which can be
validated from the data; no priors on the model parameters are involved
unlike in the HB approach.

As a measure of variability of , the variance of the estimated
posterior is used. Under normality, it is given by  which
leads to severe underestimation of true variability as measured by MSE.
Laird and Louis (1987) proposed a parametric bootstrap method to
account for the variability in  and  but Butar and Lahiri (1997)
showed that it is not second-order correct, ie. its bias involves terms of
order m-1, unlike the bias of (7.3.20) or (7.3.21). By correcting this bias,
they obtained an estimator which is identical to the area-specific MSE
estimator (7.3.21). Therefore, corrected EB and EBLUP lead to the same
result under normality.

Farrell, MacGibbon and Tomberlin (1997) studied EB estimation
for binary y, assuming the sampling model  Bernoulli(�ij)
and the linking logistic model  with

. The conditional distribution of �ij’s is approximated by
a multivariate normal to get an EB estimator of local area proportion

. They employed the bootstrap method of Laird and Louis (1987) to
get a bootstrap-adjusted estimate of variability associated with the
EB estimator. But results of Butar and Lahiri (1997) for the linear
case suggest that the bootstrap method may not be second-order correct
in the nonlinear case as well. Jiang and Lahiri (1998) also studied EB
estimation for the above model and obtained the EB estimator exactly
through one-dimensional numerical integration. They called the EB
estimator an empirical best predictor (EBP) which may be more
appropriate because no priors on model parameters are involved.
Employing method of moment estimators of model parameters ß and

 they also obtained an approximation to MSE of the EB estimator
correct to terms of order m-1. Jiang and Lahiri (1998) proposed a
jackknife method of estimating MSE that is applicable to general
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longitudinal linear and generalized linear mixed models. This method
leads to second-order correct MSE estimators and looks promising.
But one needs to recompute the REML estimates of model parameters
by deleting each area in turn. The computations can be significantly
reduced by using a single step of the Newton-Raphson algorithm with
the estimates from the full sample as starting values. Properties of
this simplification remain to be studied. Booth and Hobert (1988)
argued that the conditional MSE of the EBP given the i-th area data
is more relevant as a measure of variability than the unconditional
MSE because it is area-specific. Fuller (1989) earlier proposed a similar
criterion in the context of linear mixed models. But the MSE estimator
(7.3.21) shows that it is possible to obtain area-specific estimators of
the unconditional MSE, at least in the linear model case. Also, it is not
clear how one should proceed with the conditioning when two or more
small area estimators need to be aggregated to obtain an estimator
for a larger area. How would one define the conditional MSE of the
larger area estimator?

Arora et al. (1997) studied the nested error regression model with
random error variances  and assumed . They obtained
the EB estimator of small area mean  and applied the Laird-Louis
bootstrap to estimate its MSE, taking account of the variability due to
estimation of model parameters.

7.3.3 HB Method

The HB approach has been extensively used for small area estimation.
It is straightforward, inferences are exact and it can handle complex
problems using recently developed Monte Carlo Markov Chain (MCMC)
methods, such as the Gibbs sampler. A prior distribution on the model
parameters (also called hyper parameters) is specified and the posterior
distribution of the small area totals Yi or g(Yi)=�i is then obtained.
Inferences are based on the posterior distribution; in particular, Yi or �i

is estimated by its posterior mean and its precision is measured by its
posterior variance.

For the basic area level model, (7.2.1) and (7.2.2), with normality of vi

and ei, the posterior mean  and posterior variance  are
obtained in two stages, where . In the first stage, we
obtain  and  for fixed , assuming an improper
prior, f(ß) 	 const., on ß to reflect absence of prior information on ß. The
conditional posterior mean, given , is identical to the BLUP estimator

 and the conditional posterior variance is equal to .
At the second stage, we take account of the uncertainty about  by first
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calculating its posterior distribution , assuming a prior
distribution on  and prior independence of ß and . The posterior
mean and variance are then obtained as

(7.3.23)

(7.3.24)

where  and  denote the expectation and variance with respect
to . No closed form expressions for (7.3.23) and (7.3.24) exist,
but in this simple case they can be evaluated numerically using only
one-dimensional integration. For complex models, high-dimensional
integration is often involved and it is necessary to use MCMC-type
methods to over-come the computational difficulties.

It follows from (7.3.23) that  but (7.3.24) shows that
ignoring uncertainty about  and using  as a measure
of variability can lead to significant underestimation.

If the assumed prior  is proper and informative, the HB approach
encounters no difficulties. On the other hand, an improper prior 
could lead to an improper posterior [Hobert and Casella (1996)]. In the
latter case, we cannot avoid the difficulty by choosing a diffuse proper
prior on  because we will be simply approximating an improper
posterior by a proper posterior.

To illustrate the use of Gibbs sampling, we again consider the basic
area level model under normality. To implement Gibbs sampling
assuming the prior  is a gamma(a, b), a>0, b>0, we need the
following Gibbs-conditional distributions:

(7.3.25)

(7.3.26)

(7.3.27)

where X is the m×p matrix with  as the i-th row and �����=(�1,…, �m)´. The
Gibbs algorithm is as follows: (a) Using starting values  and ,
draw ß(1) from (7.3.25). (b) Draw  i=1,…, m from (7.3.26) using ß(1)

and . (c) Draw  from (7.3.27) using , i=1,…, m and ß(1).
Steps (a)-(c) complete one cycle. Perform a large number of cycles,
say t, called “burn-in period”, until convergence and then treat
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 as J samples from the joint posterior
of ß,  and �i, i=1,…, m. Other methods use multiple parallel runs
instead of a single long run as above. Parallel runs can be wasteful
because initial “burn-in” periods are discarded from each run. But single
long run may leave a significant portion of the space generated by the
joint posterior unexplored.

The posterior mean and posterior variance are estimated as

(7.3.28)

and

(7.3.29)

The estimator (.) has smaller simulation error than the estimator
 because of the Rao-Blackwell property. It is therefore

advisable to do analytical calculations first before applying Gibbs
sampling.

For the basic area level model, all the conditional distributions,
(7.3.25)–(7.3.27), are in a closed form and, therefore, samples can be
generated directly. But for more complex models, some of the conditionals
may not have closed form in which case alternative algorithms, such as
Metropolis-Hastings within Gibbs, are needed to draw samples from

an excellent review of MCMC methods. Software, called BUGS and
CODA, are readily available for implementing MCMC and convergence
diagnostics, but caution should be exercised in using MCMC methods.
For example, Hobert and Casella (1996) demonstrated that the Gibbs
sampler could lead to seemingly reasonable inferences about a
nonexistent posterior distribution. This happens when the posterior is
improper and yet all the Gibbs-conditional distributions are proper.
Another difficulty with MCMC is that the convergence diagnostics tools
can fail to detect the sorts of convergence failure that they were designed
to identify [Cowles and Carlin (1996)]. Further difficulties in-clude the
choices of t for the burn-in period, number of simulated samples, J, and
the starting values.

The HB methodology for the small area models discussed in Section
7.2 and other models has been developed in recent years and a variety
of applications to real data have been reported. Some of these
applications are given in Section 7.4.
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To take account of survey weights, You and Rao (1999b) developed a
pseudo-HB methodology which leads to estimators similar to the pseudo-
EBLUP estimators of Prasad and Rao (1999).

Singh et al. (1998) made a comparison of frequentist and Bayesian
measures of error, using analytical and empirical methods.

Datta and Lahiri (1995) considered robust HB estimation using a
class of scale mixtures of normal distributions on the random effects vi

with basic area level model. This class includes t, Laplace and logistic
distributions; Cauchy distribution for outlier areas was adopted.

You (1999) considered the more realistic sampling model (7.2.4) on 
with sampling errors  and the linking model (7.2.1). Assuming 

 and , he used HB methods to demonstrate that
for small sample sizes the posterior inferences under the sample model
(7.2.4) can be significantly different from those under the sampling model
on .

7.4 SOME RECENT APPLICATIONS

In this section we present some recent applications of EBLUP, EB and
HB approaches to small area estimation.

7.4.1 Area-level Models

Basic models

(1) Dick (1995) used the basic area level model (7.2.3) to estimate net
under coverage rates in the 1991 Canadian Census. The goal is to
estimate 96 adjustment factors �i=Ti/Ci, corresponding to 2(sex)×4(age)×
12(province) combinations, where Ti is the true (unknown) count and
Ci is the census count in the i-th area (domain); the net undercoverage
rate in the i-th area is given by . Direct estimates  were
obtained from a post enumeration survey, and sampling variances �i

were derived through smoothing of estimated variances, assuming �i

is proportional to some power of Ci. Explanatory variables, x, were
selected from a set of 42 variables by backward stepwise regression.
EBLUP (EB) estimates of �i were used and their MSE estimated using
(7.3.20) with REML estimate of . The EB adjustment factors  were
converted to estimates of missing persons, Mi=Ti-Ci, and these estimates
were raked to ensure consistency with direct estimates of marginal
totals. The raked EB estimates, , were used as the final estimates of
Mi’s. MSE estimate of  was obtained as . This
somewhat ad hoc method ensures that the coefficient of variation (CV)
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of  is retained by , but properties of this method remains to be
investigated.

(2) The basic area level model (7.2.3) with �i=log Yi has been recently
used to produce model-based county estimates of poor school-age children
in U.S.A. [National Research Council (1998)]. Using these estimates,
the US Department of Education allocates over $7 billion of federal
funds annually to counties. The difficulty with unknown �i was handled
by using a model of the form (7.2.3) for the census year 1990, for which
reliable estimates  of sampling variances, �ic, are available and
assuming the census small area effects vic follow the same distribution
as vi, i.e., . Under the latter assumption, an estimate of was 
obtained from the census data assuming  and used in the current
model (7.2.3), assuming , to get an estimate of . The resulting
estimate, , was treated as the true �i in developing EBLUP
estimates,  of �i. The small area (county) totals Yi (number of school-
age children in poverty) can then be estimated as  but a
more refined method based on the mean of lognormal distribution was

used: , ignoring the g3i-term in (7.3.20) which was
found to be small. The MSE of  was estimated using the approximation

. The estimates  were raked to agree with model-
based state estimates obtained from a state model. The reader is referred
to National Research Council (1998) for details on x-variables used in
the county model and evaluation of the models. Several criteria were
used for evaluating the models and the estimates, including regression
diagnostics and comparisons to the 1990 Census counts.

(3) Other applications of the basic area level model include the
following: (i) Estimation of unemployment rates at census tract level
[Chand and Alexander (1995)]; (ii) Estimation of counts in employment
categories and household income categories at the Congressional District
level [Griffiths (1996)]; (iii) Estimation at the provincial level in the
Italian Labour Force Survey [Falorsi, Falorsi and Russo (1995)].

Multivariate models

Datta et al. (1996) used multivariate area level (Fay-Herriot) models to
develop HB estimators of median income of four-person families for U.S.
states. Here �����i=(�i1, �i2, �i3)´ with �i1, �i2 and �i3 denoting the true median
incomes of four-, three- and five-person families in state i. Adjusted
census income and base-year median census median income for the three
groups were used as explanatory variables. Diffuse priors on model
parameters were used along with Gibbs sampling. The resulting HB
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estimators, HB3, were compared to the direct Current Population Survey
(CPS) estimators and univariate and bivariate model based HB
estimators, HB1 and HB2, treating the 1979 estimates, available from
the 1980 census data, as the true values. In terms of absolute relative
bias averaged over the states, the three HB estimators performed
similarly, but outperformed the direct CPS estimates. In this application,
the univariate estimator HB1 worked well and it is not necessary to use
more complicated estimators based on multivariate models. Estimates
of �i1 are used for administering an energy assistance program to low-
income families.

Time series models

(1) Ghosh et al. (1996) developed HB estimators under the time series
linking model given by (7.2.5) and (7.2.6) and applied them to estimate
median income of four person families using direct estimates

; t=1,…, 10 for the 51 states over a ten year period.
(2) Datta et al. (1994) used the time series model (7.2.10) with ut

following (7.2.6) and developed HB estimators. They also used methods
for validating the model, based on cross-validation. They applied the
methods to estimate monthly unemployment rates for U.S. states. HB
estimators performed significantly better than the CPS estimates, as
measured by the CPS and HB standard errors. We refer the reader to
Datta et al. (1994) for details on the x-variables used. Datta et al. (1999)
used the linking model (7.2.8) with a random walk model on the uit’s,
but added extra terms to (7.2.8) to reflect seasonal variation in
unemployment rates.

(3) Datta et al. (1999) developed EB estimators to estimate median
income of four-person families by U.S. states using time series and cross-
sectional data. They employed the linking model (7.2.8) with a random
walk model on uit’s. Using the 1979 estimates available from the 1980
Census data as the true values, they compared the EB (EBLUP)
estimates with the HB estimates of Ghosh et al. (1996) and the CPS
direct estimates. In terms of absolute relative bias averaged over states,
EB performed better than HB and both EB and HB performed much
better than the CPS direct estimate. In terms of coefficient of variation,
EB again performed better than HB and CPS; second-order correct
estimate of MSE of EB was used.

Disease mapping models

Maiti (1998) used the model  and 
with diffuse prior on µ and a gamma prior on � -2. He obtained HB
estimators of �i and the posterior variance of �i, and applied the results
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to the well-known lip cancer data from Scottish Counties (small areas);

under the spatial dependence model for ßi’s mentioned in Section 7.2.1.
Estimates of �i’s are very similar for both the models but standard errors
for the spatial model are smaller than those under the first model. Lahiri
and Maiti (1996) obtained EB estimators and second order correct
estimators of MSE under the Clayton-Kaldor model mentioned in Section
7.2.1, and illustrated the method on the Clayton-Kaldor data set.
Nandram et al. (1998) used the age-group specific models, mentioned in
Section 7.2.1, to obtain HB estimators and also developed Bayesian
methods to compare alternative models, using three different measures
of fit. They applied the results to estimate age specific and age adjusted
mortality rates for Health Service Areas (sets of counties based on where
residents seek routine hospital care) for the disease category “all cancers
for white males”.

7.4.2 Unit Level Models

We now briefly describe some recent applications of unit level models.

Basic nested error regression models

Rao and Choudhry (1995) provided an overview of small area estimation
in the context of business surveys. They also studied the performance of
EBLUP estimator of small area total relative to traditional estimators
through simulation using real and synthetic populations.

Multivariate nested error regression models

Datta, Day and Basawa (1999) obtained EBLUP (EB) estimators and
second order correct estimators of MSE, as noted in Section 7.3.1, for
the multivariate nested error regression models. They conducted a
simulation study using the sample sizes and auxiliary variable values
given by Battese, Harter and Fuller (1988). Further, they estimated
model parameters for their multivariate model using Battese et al. data
on crop areas under corn and soybeans for m=12 counties in North-
Central Iowa. Treating the estimated parameters as true values, they
generated simulated samples and showed that the multivariate approach
can achieve substantial improvement over the univariate approach.
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Random error variance models

Arora and Lahiri (1997) obtained a reduced model from the unit level
random error variance model by incorporating survey weights. They
performed HB analysis on the reduced model with , and
applied the results to estimate the average weekly consumer
expenditures of various items, goods and services for m=43 publication
areas (small areas) in U.S.A.

Two level models

Moura and Holt (1999) applied EBLUP estimators to data from a sample
of 951 retail stores in Southern Brazil classified into 73 small areas.
They compared the average second order correct MSE of the estimators
to the average MSE value for the nested error regression model to
demonstrate improvement in efficiency. You and Rao (1999a) applied
HB methods to the Brazilian data. They studied three different two
level models: (1) equal error variances; (2) unequal error variances; (3)
random error variances. Bayesian diagnostics revealed that model (2)
fits the data better than models (1) and (3).

Logistic linear mixed models

Malec et al. (1997) used logistic linear mixed models and the HB approach
to estimate proportions for demographic groups within U.S. states. Data
from the National Health Interview Survey were used for this purpose.
Cross-validation methods were used to evaluate the model fit. For one
of the binary variables observed for respondents to the 1990 census
long form, they compared the estimates from alternative methods and
models with the very accurate census estimates of true values. For
logistic linear mixed models, not all the conditional distributions for
Gibbs sampling have closed form unlike those obtained for the probit
linear mixed model derived from a latent variable approach [Das et al.
(1999)].

Malec, Davis and Cao (1996) studied logistic linear mixed models to
estimate overweight prevalence for subgroups (small areas) using
National Health and Nutrition Examination Survey (NHANES III) data.
Again, HB methods were used but survey weights were incorporated
using a pseudo-likelihood. Folsom, Shah and Vaish (1999) studied
general logistic mixed linear models in the context of estimating
substance abuse in U.S. states from the 1994–6 National Household
Surveys on Drug Abuse. They developed survey-weighted pseudo HB
estimators and associated posterior variance, using MCMC methods.
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Ghosh et al. (1998) applied the HB approach to generalized linear
mixed models and used the results on two real data sets. The first data
set, based on a 1991 sample of all persons in 15 geographical regions of
Canada consists of responses classified into four categories to the
question “Have you experienced any negative impact of exposure to
health hazards in the work place?” Objective here is to estimate the
proportion of workers in each of the four response categories for every
one of 60 groups cross-classified by 16 geographical regions and 4
demographic (age × sex) groups. The second data set relates to cancer
mortality rates for the 115 counties in Missouri during 1972–81.
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CHAPTER 8

UNIMODALITY IN CIRCULAR
DATA: A BAYES TEST

SANJIB BASU

Northern Illinois University, DeKalb, IL

S.RAO JAMMALAMADAKA

University of California, Santa Barbara, CA

Abstract: Circular data which represent directions in two dimensions,
may be measured as angles. Unimodality, which is often assumed, is a
crucial issue since modeling and further inference depend on it. Just as
on the real line, descriptive as well as inference tools are different for
unimodal data as opposed to multi-modal data. We propose a Bayesian
test for unimodality of circular data using mixtures of von-Mises
distribution as the alternative. The proposed test is performed and
evaluated using Markov Chain Monte-Carlo methodology.

Keywords and phrases: Directional data, von Mises distribution,
mixture distribution, Bayes approach

8.1 INTRODUCTION

Suppose we have a set of independent and identically distributed
measurements on 2-dimensional directions, say �1, �2,…, �n. These
measurements, called angular or circular data, can be represented as
points on the circumference of a circle with unit radius. They may be
wind directions, the vanishing angles at the horizon for a group of birds
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or the times of arrival at a hospital emergency room where the 24 hour
cycle is represented as a circle. Such data may have one or more peaks
or show no preferred direction at all, i.e., correspond to an isotropic or
uniform distribution. Most circular statistical inference about preferred
directions or modes starts after eliminating the last possibility namely
that the data has no preferred direction i.e., that it is not uniformly
distributed. The next step is to ask if there is just a single mode or if the
data is multimodal, which is the subject of this paper.

As an example, consider a meteorologist studying wind directions.
Based on past data, (s)he might be interested in knowing if the wind
direction is predominantly in one direction or whether it is indeed
different say at different times of the day or week. Similarly in calculating
the directional spectrum of ocean waves, it is crucial to know whether
we are dealing a unimodal or multimodal spectrum.

Circular data involves observations � which are angles, i.e, 0��<2�.
Such data are inherently periodic, i.e., �=(�+2�k) for any integer k. This
inherent periodicity sets apart circular statistical analysis, from the more
common “linear” statistical analysis where one uses methods and models
based on the mean, variance, etc. Such models and methods are not
appropriate in circular statistics.

In standard(linear) statistics, a univariate density f is unimodal or
has a single mode if f is non-decreasing up to a point M and non-
increasing thereafter. In circular statistics, however, due to the circular
nature and lack of well-defined left and right endpoints (such as-∞ and
∞ in real line), the definition of unimodality also requires an antimode
A. We will say that a circular probability density p(�) is unimodal with
mode at M if there exists an antimode A such that p(�) is non-decreasing
for A���M and is non-increasing for M���A.

Knowledge of the number of modes of p(�) is clearly of importance in
circular statistics. For instance, a common example of circular data
involves the vanishing directions of pigeons when they are released some
distance away from their “home”. The underlying scientific question
relates to how these birds orient themselves. Are they flying towards
their “home-direction” ? Unimodality of the density p(�) here would imply
that pigeons have a preferred vanishing direction and is a hypothesis of
considerable scientific interest.

As another example, several stations measure the mean wave
direction every hour which corresponds to the dominant energy of the
period. The wave directions depend on weather conditions, ocean
currents and many other natural factors. The daily variation of the wave
directions is an example of circular data on a 24-hour cycle. The
hypothesis of unimodality here would imply that there is an overall
preferred direction around which the daily variations of the wave
directions are distributed.
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In linear statistics, the problem of estimating the number of modes
and/or statistical tests for discovering the presence of more than one
mode are considered by many authors. The earliest approach involve

(1970). Later works include several different approaches, density
estimation and bump hunting [Good and Gaskins (1981), Silverman
(1981)], distance of empirical distribution from the closest unimodal
distribution [Hartigan and Hartigan (1985)] and the approach of excess
mass functional [Müller and Swatzki (1991)]. Recently, Basu (1995)
proposed a Bayesian test for unimodality using the Khintchine
representation which states that every unimodal distribution on the
real line can be represented as a mixture of uniform distributions.

We address a similar problem here but in the context of circular data.
Let �1,…, �n be i.i.d. observations from the circular density p( �). We want
to test H0: p(�) is a unimodal against the alternative that it is not. We
propose a Bayesian test which incorporates observed data and prior
information. In this test, we restrict ourselves to the class of models
whose density p(�) can be represented parametrically as a mixture of
two von-Mises distributions. After observing the data �1,…�n, the joint
prior distribution of the mixing proportion and the location and scale
parameters of the two components are updated to their joint posterior
distribution. The posterior probability of p(�) being unimodal is then
compared to the prior probability of unimodality to make a decision
between H0 and H1. These probabilities are computed by Markov Chain
Monte Carlo sampling. In fact, one of the major strength of the proposed
method is the simplicity of the computations involved; they are mostly
direct simulations from popular densities which can be routinely
implemented.

8.2 EXISTING LITERATURE

Many excellent books discuss statistical analysis of circular data,
including Mardia (1972), Batschelet (1981) and Fisher (1993). We

there does not seem to be any work on tests for unimodality of circular
data.

The circular data literature, related to this article can be broadly
divided into three groups. The first group involves tests for randomness
against a unimodal alternative. Here the null hypothesis is isotropy,
modeled by the uniform distribution on the circle. A common test for
this against the vonMises distribution, is known as the Rayleigh test.
This test based on the length of the sample resultant, is known to be
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pp. 180–182). For other tests which are more nonparametric, see Section
3.1 of Rao (Jammalamadaka) (1984).

Another set of references which could be related to the question we
are studying comes from the density estimation point of view.
Semiparametric and nonparametric density estimation for circular data
are studied by many, for example, see Bai et al. (1988). From a density
estimate one can determine the number of modes. However, tests of
hypotheses are harder to come by since this involves the much harder
problem of density estimation.

Other related work is on mixture distributions and estimating the
number of mixing components, etc; see Mardia (1972), Bartel (1984).
Spurr and Koutbeiy (1991) proposed a stepwise procedure for testing
for the number of components in a von-Mises mixture, by first testing
for one component against more than one, then two components against
more than two and so on. This is a Bootstrap based test and can be
computationally intensive. We point out here that a two or more
component mixture can still be unimodal and hence the problem we are
addressing is clearly distinct from these articles.

We also mention here that Mardia and Spurr (1973) developed a
multi-sample test for data drawn from a L-modal population which they
model by a mixture of a scaled von-Mises distribution on [0, 2�/L),
another scaled von-Mises distribution on [2�/L, 4�/L) and so on. Our
approach is also quite distinct from this work.

8.3 MIXTURE OF TWO VON-MISES DISTRIBUTIONS

We are given n i.i.d. circular observations �1,…, �n (0��<2�) from an
unknown circular density p(�) and want to test H0: p(�) is unimodal
against H1: p(�) is not unimodal. We model p(�) parametrically as a
mixture of two von-Mises distribution,

(8.3.1)

where vm(�|µ, k)=exp(k cos(�-µ))/{2�I0(k)}, 0��<2� denotes the density
of a von-Mises distribution. Here I0(K) is the modified Bessel function of
order 0.

The von-Mises distribution vm(�|µ, k) plays a central role in
circular statistics, quite similar to that of the normal distribution in
linear statistics. The parameter µ, (0�µ<2�) is called the mean
direction. The von-Mises distribution is symmetric and unimodal about
µ. The parameter k>0 is the concentration parameter (similar to a
precision parameter) and measures the concentration of mass around
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µ. Note that while the mean direction parameter µ is angular (i.e.,
0�µ<2�), the concentration k is a positive real parameter, a fact useful
our posterior simulations. As k →∞, the von-Mises distribution
converges to the uniform distribution on the circle whereas as k →∞,
the von-Mises distribution converges to a degenerate distribution at
µ. The popularity of von-Mises distribution in circular statistics stems
from the fact that closed form results are often available for the
sampling distributions of statistics from this model which are almost
impossible for most other circular distributions. We refer the reader
to books by Mardia (1972), Fisher (1993) for further properties of this
distribution.

There are several advantages to modeling p(�) parametrically as
von-Mises mixture. A 2-component von-Mises mixture allows a wide
variety shapes (based on various choices of the parameters µ1, µ2, k1, k2

and �) which includes symmetric and asymmetric, as well as both
unimodal and bimodal densities. In Figure 8.1 we show three such
mixtures to illustrate the different shapes and modality choices that
are possible. Secondly, the conjugate prior for the mean direction of a
von-Mises distribution is known and is another von-Mises distribution.
This structure provides a flexible and at the same time, a
mathematically convenient prior structure. Thirdly, if p(�) is a 2-
component von-Mises mixture, then a complete mathematical
characterization is available about when p(�) is unimodal and when it
is not. This characterization, due to Mardia and Sutton (1975), is
described next.

Let p(�)=� vm(�|µ1, k1)+(1-�)vm(�|µ2, k2). By appropriate choice of
the zero direction, one can assume that µ1=0 and 0�µ2��. The
characterization is stated in this parametrization.

Case 1. This is a boundary case when µ2=�, i.e., the two means are at
the opposite ends of the circle. Then the density p(�) is bimodal if
and only if the mixing proportion � satisfies p1���p2 where
p1={1+k* exp(k1+k2)}-1, p2={1+k* exp(-k1-k2)}-1, and k*={k1I0(k2)}/
{k2I0(k1)}. In this case, the two modes are at � and 2�.

Case 2. This is the important case when 0<µ2<�. Then the density p(�)
is bimodal if and only if  and sin  Here

, j=1, 2; k* is as defined above, u(�)={sin(�-
µ2)/sin�}exp(k2cos(�-µ2)-k1 cos�} and 0<�1<�2<µ2 are the two solutions
of the equation h(�)=sin µ2. Finally, h(�)=sin � sin(�-µ2){k2 sin(�mu2)
-k1 sin�} and  maximizes h(�) within 0<�<µ2 which further can be
obtained as the real root of a cubic equation.
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Mardia and Sutton (1975) also provide information on the location of
the mode(s) and antimode(s) of the mixture density p(�) which are
omitted here as they are not of primary importance in our context.

8.4 PRIOR SPECIFICATION

We next specify the prior models for the parameters of the mixture
density p(�). Note that this density has five parameters, the mixing
proportion �, the two mean directions µ1 and µ2 and the two
concentrations �1 and �2. For the mixing proportion �, we assume a
Uniform[0, 1] prior which reflects our prior uncertainty about its value.

We next describe the prior distributions for the mean directions µi, i=
1, 2. Note that the von-Mises distribution can alternatively be written as

 where 
and . This alternative representation shows
the exponential family structure of the von-Mises distribution. Using this
structure, Mardia and El-Atoum (1976) showed that a conjugate prior for
µ in the vm(�|µ, �) sampling density is another von-Mises distribution,
say .

We use this convenient conjugate structure in our formulation and
assume that the two mean directions, µj, j=1, 2, have two independent
von-Mises prior, . Within the von-Mises parametric
structure, the choice of the hyperparameters  actually provides
considerable flexibility in modeling different prior opinion. Note that as

 tends to zero, the  prior tends to the uniform distribution on
the circle. Thus, one can specify small values for the hyperparameter 
to reflect prior ignorance about µj.

Finally we specify the priors for the two concentration parameters k1

and k2. The concentration parameter k of a von-Mises distribution does
not have a conjugate prior (due to the presence of the modified Bessel
function I0(k) term). However, as we noted before, k is not restricted to
a circular domain and can take any positive real value. A popular prior
choice for precision parameter is a Gamma prior. We assume that the
two concentration parameters kj, j=1, 2 have two independent Gamma
(�j, ßj), j=1, 2 priors. In fact, many other prior choices for kj are possible.
Basu and Jammalamadaka (1999) describe a broad class of prior choices
for kj and describe how the unimodality test can be carried out for any
prior selection from this broad class.
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8.5 PRIOR AND POSTERIOR PROBABILITY OF
UNIMODALITY

In the following, we first repeat the complete model structure.

• We observe circular observations �1,…, �n i.i.d. from the the density
p(�)=�vm(�|, µ1, k1)+(1-�)vm(�|µ2, k2). This results in the likelihood

(8.5.2)

• The mixing proportion � has a Uniform[0, 1] prior distribution.
• The prior for µj is .
• The prior for kj is p(kj)=Gamma(�j, ßj), j=1.2.

Our proposed Bayesian test of unimodality is performed by comparing
the prior probability from this model with the posterior probability of
unimodality. The computation for these probabilities are described
next.

The prior probability of unimodality is the integral of the joint prior
density of (�, µ1, µ2, k1, k2) over the region of the joint parameter space
(as described in the Mardia and Sutton (1975) result of Section 8.3) on
which the mixture density p(�) is unimodal. While the joint prior
density p(�, µ1, µ2, k1, k2) can be easily written down, the form of the
unimodality region in the five-dimensional space of (�, µ1, µ2, k1, k2)
described in the Mardia and Sutton (1975) result is highly complicated
and hence the resulting integral is analytically intractable. We instead
obtain a Monte Carlo estimate of the prior probability of unimodality
as follows. (i) Let  We generate i.i.d. samples

 from the joint prior distribution of . (ii) For each
generated , we examine if the resulting mixture density p(�) is
unimodal by checking the Mardia-Sutton condition. (iii) Finally, we
obtain a simulation-consistent estimator of the prior probability of
unimodality as {Number of generated  for which the resulting p(�)
is unimodal}/T1. Due to the independence structure, simulation from
the joint prior can be done componentwise, which only involves random
variate generation from some common densities. Further, checking
the Mardia-Sutton condition for a given value of  is also relatively
straightforward.
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The other probability required for the assessment of modality is the
joint posterior probability of the parameter region on which the mixture
density p(�) is unimodal. We plan to estimate this probability also as a
Monte Carlo average, i.e., once we have samples 
from the joint posterior distribution, we can simply estimate the posterior
probability of unimodality by following the method outlined in the
previous paragraph.

The joint posterior distribution p( �, µ1, µ2, k1, k2 | data) is, however,
analytically intractable and hence direct generation 
is very hard. We, instead, take recourse to Gibbs Sampling. We refer
the reader to Gelfand and Smith (1990), Casella and George (1992) and
the collection of papers by Gilks et al. (1995) for the theory,
implementation and convergence issues of the Gibbs sampler. The main
idea of the Gibbs sampler is to simulate alternately and iteratively for
the conditional posterior distributions of each unobservable given the
data and other observables.

The details of the Gibbs sampler for our model including the form of
the full conditional distributions and how to simulate from this
conditional distributions is described in Basu and Jammalamadaka
(1999). We note here that latent variables I1,…, In are introduced in the
implementation of the Gibbs sampler. Ii is an indicator variable denoting
the component from which �i is coming, i.e., �i|Ii=1~vm(µi, k1), �i|Ii=2~vm(µ2,
k2), i=1,…, n and I1,…,In are i.i.d. with P(Ii=1)= �, P(Ii=2)=1- � a priori. For
further details of the Gibbs sampler, the reader is referred to Basu and
Jammalamadaka (1999).

8.6 THE BAYES FACTOR

Standard Bayesian solution to a hypothesis testing problem involves
formulating parametric models for null (H0) and alternative (H1)
hypotheses and subsequently choosing one over the other in the light of
the data and prior opinion. Perhaps the most widely used selection
criterion used in this context is the ‘Bayes factor of H1 against H0’

formally defined as the ratio  The

Bayes factor is used as a summary of evidence of H1 against H0 provided

by the data. Thus, operationally, Bayes factor has the same role as that
of a P-value in classical hypothesis testing scenario (see the review article

Bayes factor and P-values). From another perspective, the Bayes factor
is similar to the likelihood ratio statistics as the former is the ratio of
the marginal likelihood under H1 against that over H0. The following

interpretation of B10 and log B10.
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For our test of H0 : p(�) is unimodal against H1 : p(�) is non-unimodal,
we report the estimated Bayes factor B10. This is easily obtained once we
estimate P(H0)=prior probability of unimodality and P(H0|data)=posterior
probability of unimodality by the Monte Carlo methods mentioned in
section 8.5.

8.7 APPLICATION

We consider data collected by Schmidt-Koenig (1963) in an experiment
to determine how do birds determine directions and orient themselves.
In this experiment, 15 homing pigeons were released about 16.25
kilometers northwest from their loft. The measurements listed in Table
8.2 are their vanishing directions measured in degrees. The direction of
the loft is 149°.

TABLE 8.1 Evidence in support of alternative model from
Bayes factor

These data have been analyzed by several authors, including Mardia
(1972) and Fisher (1993). As can be seen in Table 8.2, most of the
observations are concentrated around south (180°) with two observations
in the east and west direction. Fisher (1993) reports that a goodness-of-
fit test reveals there is some evidence a von-Mises distribution may not
be a totally adequate description of the data.

We apply our proposed Bayesian modality test to these circular data.
The following priors are used: (i) �~Uniform(0,1), (ii) µ1~vm(0°, 0.25)
and µ2~vm(180°, 0.25), and (iii) Kj~Gamma (1, 5), j=1, 2 where Gamma
(�, ß) has density proportional to xa-1 exp(-x/ß). These are moderately
flat priors and the mean directions for µ1 and µ2 are chosen in opposite
directions.

TABLE 8.2 Vanishing direction of 15 homing pigeons. The loft
direction is 149°
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The prior probability of unimodality is estimated based on 100,000
samples generated from the above prior model and then following the
method outlined in Section 8.5. We estimate the prior probability of
unimodality to be 0.48867.

The posterior probability is estimated from 50,000 MCMC samples
generated from the posterior after an initial burn-in of 10,000 and then
once again following the method of section 8.5. Figure 8.2 shows the
kernel density estimates of the posterior density for the two mean
directions µ1, µ2, the two concentration parameters k1, k2 and the mixing
proportion �. These density estimates are obtained using the CODA
software [Best et al (1996)]. The posterior summary estimates (posterior
mean, standard deviation and percentiles) of these parameters are shown
in Table 8.3. We check convergence of the MCMC sampler using different
convergence and stationarity checks available in CODA. The
autocorrelation plots at different lags based on the simulated samples
of k1, k2, µ2, µ2 and � are shown in Figure 8.3. High autocorrelations
typically imply slow mixing and slow convergence. In Figure 8.3, the
autocorrelations for k1 and k2 die out quickly. The autocorrelations for
µ1 and µ2 do not die so quickly whereas � has significant autocorrelations
till lag 20.

TABLE 8.3 Estimated posterior mean, standard deviation and
percentiles of µ1, µ2, k1, k2 and �

The posterior probability of unimodality from the generated MCMC
samples is estimated to be 0.68382. Based on these prior and posterior
probabilities of unimodality, the Bayes factor for non-unimodality against
unimodality is estimated as B10=0.44188. Thus, the data do not provide
almost any evidence against the null hypothesis of unimodality. This is
also evident from the posterior density estimates in Figure 8.2. The
posterior density estimates of µ1, µ2 and k1, k2 are almost identical, which
probably indicate that the two components of the mixture density are
close to identical or that the mixture density is just a single von-Mises
distribution. If this is true, then the mixing proportion � becomes
redundant which could explain the large spread in its posterior density
estimate and its autocorrelations staying on for up to lag 20.
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We further compute the predictive density of a new circular
observation p(�|data) conditioned on the 15 vanishing directions already
observed. This is obtained as

 

where �( �, µ1, µ2, k1, k2 | data) is the posterior distribution of the
parameters. This predictive density is estimated on a grid of � values
where the integral above is estimated by the Monte Carlo average of
the generated MCMC samples. This estimated predictive density in

evidence to our test result.

8.8 SOME ISSUES

A. Identifiability: In mixture modeling, identifiability of parameters
is typically of concern. To see how identifiability issues may arise in our
two-component von-Mises mixture model, consider the likelihood
function defined in (8.5.2). It is easy to see from (8.5.2) that L(�, µ1, µ2,
k1, k2) = L(1-�, µ2, µ1, k2, k1), i.e., (�, µ1, µ2, k1, k2) and (1-�, µ2, µi, k2, k1)
provide identical likelihood. In Bayesian analysis, non-identifiability is
often avoided by bringing in separation of parameter values in the prior
modeling. However, if (µ1, µ2) and (k1, k2) have exchangeable priors and
if the prior for � is symmetric around 1/2, then the prior and hence the
posterior also fails to identify between (�, µ1, µ2, k1, k2) and (1-�, µ2, µ1,
k2, k1). While non-identifiability is not a formal problem in Bayesian
inference, it may lead to very slow convergence of the MCMC sampler.
The resulting inference could also be troublesome. for example, the
posterior distribution of µ1 may appear to be bimodal due to concentration
of mass around the mean directions of both components.

One way to ensure identifiability is to put some prior constraints on
the parameter space. For example, a common constraint put in two
component mixture is µ1�µ2. In Bayesian analysis, this constraint can
be brought in very naturally by simply defining the prior support to be
the constrained space. This constraint makes all the parameters
identifiable. Bayesian analysis under this constraint can be carried out
in a straightforward manner, however it does bring in complications
within the MCMC sampler. The full conditional distributions of both µ1

and µ2 are now constrained by the other parameter. Robert (1996) discuss
the issue of parameterizations and constraints in the context of normal
mixture models and suggests the reparametrization µ=µ1 and �=µ2-µ1

where � is assumed to non-negative a priori. This reparametrization
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generally achieves more stability within the MCMC sampler and faster
convergence.

B. Choice of two component mixture. We model the sampling
distribution as a two component mixture of von-Mises distribution. This
model allows substantial flexibility as the mixing proportion �, the two
mean directions µ1, µ2 and the two concentration parameters k1, k2 are
allowed to vary thus resulting in different shapes and scales of the
mixture density. However, a two-component mixture can at most produce
a bimodal density. Thus, if data generated from a tri-modal or multi-
modal distribution is fed into our model, it is not obvious how our
proposed test will behave. Secondly, the unimodal or non-unimodal
densities that can be obtained within our model are only those which
can be characterized as two-component mixtures of von-Mises
distributions. We thus do not have extensive flexibility on the functional
form of the density.

The problem of more than two modes can be addressed by considering

a k-component mixture density model:  where

. The analysis for such a model can be performed in an

analogous manner with some minor modifications in the full conditional
distributions of the parameters. However, the identifiability issues
discussed above becomes more severe and convergence issues in the
MCMC sampler becomes more critical. Another problem is how to
determine the value of k. One can put a hierarchical structure to the
problem by assuming a prior distribution supported on positive integer
values for k. This, however, makes the problem very hard as it now
becomes a variable dimension problem and one may need to use the
reversible jump algorithm to move from one dimension to another within
the MCMC sampler. Green and Richardson (1997) recently addressed
this variable dimension problem in the context of normal mixtures.

Mixtures of more than two components allows somewhat more
flexibility in the functional form of the mixture density. Further flexibility
can be obtained by semiparametric modeling. For example, in real line,
all univariate unimodal distributions can be characterized as mixtures
of uniform distributions (known as the Khintchine representation). This
mixture representation is often used in modeling univariate unimodal
distribution, one then assumes a prior on the mixing distribution of the
uniforms. A similar representation also exists for unimodal distributions
on the circle, they can also be written as mixtures of uniform distributions

test for unimodality of circular data based on this representation.
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FIGURE 8.1 Three von-Mises mixtures: Top=0.5vm(�|-90°,2)+0.5vm(�|90°, 2),
Middle=0.6vm(�|-45°, 1.5)+ 0.4vm(�|45, 45°, 1.5), Bottom =0.65 vm(�|-60°,
2)+0.35 vm(�| 90 , 90°, 2)
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FIGURE 8.2 Kernel estimates of the posterior density of the parameters k1, k2,
µ1, µ2, �

pi
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FIGURE 8.3 Autocorrelation plot at different lags for the five parameters: k1,
k2, µ1, µ2, �
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FIGURE 8.4 Predictive density of a new circular obsevation for the pigeon
data
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CHAPTER 9

MAXIMUM LIKELIHOOD
ESTIMATION OF THE LAPLACE

PARAMETERS BASED ON
PROGRESSIVE TYPE-II
CENSORED SAMPLES

RITA AGGARWALA

University of Calgary, Calgary, Alberta, Canada

N.BALAKRISHNAN

McMaster University, Hamilton, Ontario, Canada

Abstract: In this paper, we derive the maximum likelihood estimators
of the location and scale parameters of a Laplace distribution based on
progressive Type-II right censored samples. The results obtained here
are a generalization of those given in Balakrishnan and Cutler (1995)
for one-sided Type-II censoring.

Keywords and phrases: Progressive type-II censoring, order statistics,
Laplace distribution, maximum likelihood estimators

9.1 INTRODUCTION

Maximum likelihood estimation for the Laplace distribution based on
full samples has been discussed by a number of authors; see, for
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example, Johnson, Kotz and Balakrishnan (1995) Balakrishnan and
Cutler (1995) have discussed maximum likelihood estimation for
parameters of the Laplace distribution based on conventional Type-II
censored samples. They consider both symmetric and one-sided (right)
censoring.

The scheme of progressive Type-II right censoring arises naturally
in life-testing experimentation, as it is often desirable to remove live
items from experimentation at points other than the final termination
point. In this scheme, we begin the test at time zero with n independent
live items on test. Immediately following the first observed failure, a
fixed number R1 of surviving items are removed at random from the
test. Immediately following the next observed failure, a fixed number
R2 of surviving items are removed at random from the test. This process
continues until, immediately following the time of the mth observed
failure, the remaining Rm=n-R1-R2-…Rm-1-m items are removed from
the test. We will denote the m ordered observed failure times by

, i=1,…, m and cal1 them the progressive Type-II right
censored order statistics of size m from a sample of size n with
progressive censoring scheme (R1, R2,…, Rm). This type of censoring
scheme may be desirable, for example, in destructive testing of
mechanical components; see, for example, Montanari and Cacciari
(1988). A number of other authors have studied problems of inference
pertaining to progressive censoring, including Cohen (1963, 1975, 1991),
Mann (1969, 1971), Thomas and Wilson (1972), and Viveros and
Balakrishnan (1994). Balakrishnan and Sandhu (1995, 1996), and
Aggarwala and Balakrishnan (1998) discuss some mathematical
properties of these progressive Type-II censored order statistics arising
from general continuous, exponential and uniform distributions. A
thorough overview of the subject of progressive censoring is given in
Balakrishnan and Aggarwala (2000).

It is well documented [see, for example, Lawless (1982) or any of the
references mentioned above] that if the failure times of the n items
originally on test with progressive censoring scheme (R1, R2,…, Rm) are
from a continuous population with cumulative distribution function F
(x) and probability density function f (x), then the joint probability
density function of , i=1,…, m is given by

(9.1.1)

where
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For convenience in notation, since in this discussion, it will not be unclear
as to what the progressive Type-II right censoring scheme is, we will
denote the m progressive Type-II right censored order statistics by ,
i= 1,…, m.

In this paper, we assume that the underlying failure times follow a
two-parameter double exponential, or Laplace, distribution, with
probability density function given by

(9.1.2)

and cumulative distribution function given by

(9.1.3)

We derive the maximum likelihood estimators of the location and
scale parameters of the above Laplace distribution based on
progressive Type-II right censored samples. The results obtained are
generalizations of those given in Balakrishnan and Cutler (1995),
where it is shown that for conventional Type-II right censored
samples, where only the first m failure times are observed, the
maximum likelihood estimator of �1 is simply the usual sample
median based on the full sample, provided . For , the
MLE of �1 turns out to be a linear function of the observed order
statistics. In both cases, they show that the MLE of �2 is a linear
function of the observed order statistics. The results presented in
this paper for maximum likelihood estimation based on progressive
Type-II right censored samples from the Laplace distribution simplify
to those presented by Balakrishnan and Cutler (1995) for the special
case when R1=R2=…=Rm-1=0 and Rm=n-m, in which case we are left
with a conventional progressive Type-II right censored sample.

9.2 EXAMINING THE LIKELIHOOD FUNCTION

Consider a progressive Type-II right censored sample of size m with
censoring scheme (R1, R2,…, Rm) from a random sample of size n from the
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Laplace distribution with probability density function given in (9.1.2).
The likelihood function, L, for a progressive Type-II right censored sample
(Yi:m:n, i=1, 2,…, m) is given by (ignoring the constant c)

(9.2.4)

where f(.) and F(.) are as given in (9.1.2) and (9.1.3), respectively.
We will first maximize with respect to �1.
Notice that, for values of �1�Y1:m:n, the likelihood function reduces to

(9.2.5)

which is a monotonically increasing function of �1. Next, we consider
values of �1>Ym:m:n. For these values, the likelihood function reduces to

(9.2.6)

Upon taking the logarithm of Lm and differentiating with respect to �1,
we obtain

(9.2.7)

Now, if R1=R2=…=Rm=0, then m=n, so that the right hand side of (9.2.7)
is simply  which is strictly less than 0. If some Ri>0, i= 1, 2,…, m, then

 

so that Lm is monotonically decreasing for these values of m. Thus, if
the observed number of failures , the maximum likelihood
estimator of �1 lies in the interval [ ]

Consider now the values of �1 such that  for .
 In this case, the likelihood function reduces to

(9.2.8)
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Notice that the likelihood function is a continuous function in �1

(-�<�1<�), so that

 

Upon taking the logarithm of Lj and differentiating with respect to �1,
we obtain

(9.2.9)

Now, if Ri=0, i=1, 2,…, j, then the right hand side of (9.2.9) becomes
simply , which is strictly negative, provided . If some Ri> 0,
i=1, 2,…, j, then the right hand side of (9.2.9) is strictly less than

. Thus, in general,

 

so that Lj is monotonically decreasing for these values of j. Thus, if the
observed number of failures,  the maximum likelihood estimator
of �1 lies in the interval [ ]

Upon further inspection of (9.2.9), it is evident that if n-R1-R2- ...-Rj-
2 j>0, then the right hand side is strictly positive. This can
only be possible if  in which case 

 if . Thus,

 

so that Lj is monotonically increasing for these values of j.

9.3 ALGORITHM TO FIND MLE’S

At this point, we can formulate the following algorithm to narrow our
search for, and obtain the maximum likelihood estimates of the location
and scale parameters from a Laplace distribution when a progressive
Type-II right censored sample of size m from a sample of size n is
observed, with censoring scheme (R1, R2,…, Rm). We will denote the
progressive Type-II right censored order statistics from this sample by

 i=1, 2,…, m, and the corresponding observed values of the order
statistics by yi, i=1, 2,…, m.

1. Find the largest number  such that 
assuming R0=0.
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2. (a) If , the maximum likelihood estimates are those
corresponding to

 

(b) If , the maximum likelihood estimates are those
corresponding to

 

if n is even, and

if n is odd.

For the case n is odd, notice that we may have  This
simply means that the likelihood function is monotonically
increasing for �1<Y(n+1)/2:m:n and the likelihood function is
monotonically decreasing for �1>Y(n+1)/2:m:n. Thus, the
maximum likelihood estimator of �1 is <Y(n+1)/2:m:n, which we
can use to solve for the maximum likelihood estimator of �2.
The resulting likelihood function to be maximized with
respect to �2 is proportional to

 

(This corresponds to maximizing either ,
due to the continuity of the likelihood function discussed
earlier.)

(c) If , the maximum likelihood estimates are those corre
sponding to
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Notice that here, it is possible to obtain 
1. This means that for �1<Ym:m:n, the likelihood function is
monotonically increasing and for �1>Ym:m:n. the likelihood
function is monotonically decreasing. Therefore, the
maximum likelihood estimator of �1 is Ym:m:n. This can be
used to solve for the maximum likelihood estimator of �2.
The resulting likelihood function to be maximized with
respect to �2 is proportional to

Remark 9.3.1 For the special case of conventional Type-II right
censoring, where R1=R2 =…=Rm-1=0 and Rm=n-m, this algorithm
reduces to that given in Balakrishnan and Cutler (1995): for ,
k=m–1, and we just maximize Lm. For , for n odd, , and
the maximum likelihood estimator for �1 is Y(n+1)/2:m:n. For n even,

, and we must maximize . From (9.2.9),  is obviously
zero, so the maximum likelihood estimator of �1 is any value in
[ ]. Finally, for , , so that the
maximum likelihood estimator of �1 is . These estimates of �1

may then be used to obtain maximum likelihood estimates of �2.

9.4 NUMERICAL EXAMPLE

Using the simulational algorithm given in Balakrishnan and Sandhu
(1995), a progressive Type-II right censored sample of size m=10 from a
sample of size n=20 from the Laplace distribution with �1=25 and �2=5
was simulated, with censoring scheme R=(2, 0, 0, 2, 0, 0, 0, 2, 0, 4). The
simulated progressive Type-II right censored sample is as follows:

19.21167876, 21.97364262, 23.41776818, 23.66253070, 23.80222832,
24.23017797, 25.62072188, 25.86990938, 26.47997028, 27.55344134.

From part (1) of the algorithm presented above, we find k=6. Thus,
from part (2c), we must find �1 and �2 which correspond to
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Using Maple V Release 3, the maximum value of the likelihood function
is obtained when we maximize L8 (�1, �2) over the region specified above.
The corresponding maximum likelihood estimates are  and

. It has been shown by the authors [see Aggarwala and
Balakrishnan (1999)] that the best linear unbiased estimates and their
standard errors for the two parameters in this case are

 

These values agree well with the MLE’s which we have just obtained.

Remark 9.4.1 It should be noted here that to obtain standard errors of
the MLE’s, a simulational study needs be conducted. Furthermore, since
the class of distributions under study does not possess “regularity”
properties, due to its lack of differentiability, it may not be appropriate
to approximate the asymptotic variance-covariance matrix of the MLE’s
using the method of inverting the matrix of second derivatives.
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CHAPTER 10

ESTIMATION OF PARAMETERS
OF THE LAPLACE

DISTRIBUTION USING RANKED
SET SAMPLING PROCEDURES

DINESH S.BHOJ

Rutgers University, Camden, NJ

Abstract: The estimators of the parameters of Laplace distribution are
obtained by using (i) ranked set sampling (RSS) proposed by McIntyre
(1952), (ii) modified ranked set sampling (MRSS), and (iii) new ranked
set sampling (NRSS) proposed by Bhoj (1997c). The coefficients to
compute the estimators by using these procedures are reported. These
estimators are compared with the ordered least squares estimators given
by Govindarajulu (1966), and among themselves. It is demonstrated
that the relative precisions of the estimators based on NRSS are higher
than those based on the least squares method and the other two ranked
set sampling procedures.

Keywords and phrases: Laplace distribution, least squares estimators,
minimum variance estimators, modified ranked set sample, new ranked
set sample, ranked set sample, relative precision, unbiased estimators

10.1 INTRODUCTION

Ranked set sampling (RSS) is a method of sampling that is advantageous
when quantification of all sampling units is costly but where small sets
of units can be ranked by means of visual inspection or other methods
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not requiring actual measurements. In order to draw a ranked set sample
of size n, n sets each of size n are drawn from a population. The n units
from a single set are ranked on the basis of the magnitude of the variable
under investigation without actually quantifying them. This ranking
procedure is applied to all n sets. The n2 ordered observations in the n
sets can be displayed as:

The unit with the lowest rank is quantified from the first set, the unit
with the second lowest rank is quantified from the second set, and this
procedure is continued until the unit with the highest rank is quantified
from the nth set. Thus only n observations x(11), x(22),…, x(nn) are measured
accurately and they constitute the RSS. Note that x(ii) is the ith ordered
observation in the ith sample, and x(11), x(22),..., x(nn) are independently
distributed. The method of RSS was introduced by McIntyre (1952) to
estimate mean pasture yields with greater efficiency than simple random
sampling (SRS). McIntyre’s goal was to maintain unbiasedness of SRS
while effectively incorporating into the estimates the information given
by ranking. It appears that RSS was not used by other investigators for
over a decade. Then Halls and Dell (1966) first used this method in
estimating forage yields in a pine hardwood forest. They found
empirically that RSS was more efficient than SRS to estimate the
population mean. But the required mathematical foundation for RSS
was provided by Takahasi and Wakimoto (1968) and Dell and Clutter
(1972). Dell and Clutter (1972) also considered theoretically the
performance of RSS when there are errors in ranking. They showed
that the RSS estimator for population mean is unbiased and is at least
as effective as the SRS estimator with the same number of
quantifications even when there are ranking errors. The relative
precision of the two methods is equal to unity only if the ranking is no
better than random. David and Levine (1972) considered the case where
the ranking is done on the basis of a covariate instead of judgment.
Under certain assumptions, they obtained a formula expressing relative
precision in terms of the squared correlation coefficient between the
covariate and the variate of interest. Stokes (1977) explored this model
further. Stokes (1980) proposed an estimator for the population variance
based on RSS. She showed that the estimator is asymptotically unbiased
even in the presence of errors in ranking. Stokes and Sager (1988)
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developed an RSS estimator for a cumulative distribution function. They
showed that an empirical distribution function based on RSS is an
unbiased estimator for a distribution function and the estimator has
smaller variance than the one based on SRS. Then they used the RSS
estimator to construct confidence bands for the distribution function by
using the Kolmogorov-Smirnov statistic. Bohn and Wolfe (1992) used
the ranked set empirical distribution to derive an RSS version of the
Mann-Whitney statistic and obtained some of its distributional
properties. They compared the asymptotic relative efficiency of the RSS
Mann- Whitney test with its corresponding SRS counterpart. They
concluded that RSS approach was preferable. Patil, Sinha and Taillie
(1993a) used the RSS method when sampling is from a finite population.
They obtained explicit expressions for the variance and relative precision
of RSS estimator for several set sizes when the population follows a
linear or quadratic trend. These authors (1993b) studied the relative
precision of RSS estimator with the regression estimator when the
ranking is done on the basis of an auxiliary variable. Bhoj (1997a)
obtained the estimators of parameters of the extreme value distribution
using RSS. Bhoj and Ahsanullah (1996) derived the minimum variance
linear unbiased estimators for the parameters of the generalized
geometric distribution using RSS. Recently Bhoj (1997b, 1997c) proposed
modified ranked set sampling (MRSS) and new ranked set sampling
(NRSS) procedures, respectively for estimating the parameters. In this
paper we use RSS, MRSS and NRSS to derive the estimators of mean
and standard deviation of the Laplace distribution. These estimators
are then compared with the other competing estimators and among
themselves.

10.2 ESTIMATION OF PARAMETERS BASED ON THREE
PROCEDURES

10.2.1 Ranked Set Sampling

In this section we use the ranked set sample of n observations x(11),
x(22),…, x(nn) to estimate the location and scale parameters of the
distribution. Let µ and σ denote the location and scale parameters of
the distribution. We define

 

In terms of original x(ii)’s we have

 

Let X’=(x(11), x(22),…, x(nn)),
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and Variance-Covariance matrix of X=Vσ2, where V is an n×n diagonal
matrix with vii as (i, i)th element. Then we can write

 

where  and .

The minimum variance linear unbiased estimators (MVLUE) of � is
obtained by the least squares theorem of Gauss and Markoff. If  denotes
the MVLUE of �, then . After some simplifications,
we can write

(10.2.1)

(10.2.2)

where

 

(10.2.3)

(10.2.4)

The variances and covariance of these estimators are given by

(10.2.5)

10.2.2 Modified Ranked Set Sampling

We assume that n (n=2m) is even so that direct comparison with the
estimators based on new ranked set sampling procedure can be made.
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In the modified ranked set sampling we select only two appropriate
order statistics. For notational convenience, we assume that the jth order
statistic is selected from the first m samples and the kth order statistics
is selected from the last m samples. The choices of jth and kth order
statistics depend upon the distribution under investigation and the
parameter(s) to be estimated.

Let µ* and σ* denote the estimators of µ and σ based on MRSS. These
estimators can be derived by using the method described for the RSS
procedure. These estimators and their variances and covariance are
given by

(10.2.6)

(10.2.7)

(10.2.8)

(10.2.9)

(10.2.10)

where

(10.2.11)

10.2.3 New Ranked Set Sampling

In new ranked set sampling (NRSS), we take m (n=2m) samples, each
of size 2n, from the population, and measure appropriate jth and kth
order statistics from each sample. The n2 ranked set sampling units
can be displayed as:
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The n measured observations (x(ij), x(i, k)), i=1, 2,..., m and j<k constitute
the NRSS sample. Now x(ij) and x(ik) are not independently distributed.
However, (x(ij), x(ik)) and (x(i’,j), x(i’,k)) for  are independently distributed.

Let µ** and σ** denote the estimators of µ and σ based on NRSS.
Then µ** and σ** are given by

(10.2.12)

(10.2.13)

where the coefficients cj, ck, dj and dk are given in (10.2.11). The variances
and covariance of these estimators are given by

(10.2.14)

(10.2.15)

(10.2.16)

where

In Section 10.4, we compare the three sets of estimators of mu and
sigma based on three ranked set sampling procedures, and one more
set of estimators based on the ordered observations given by
Govindarajulu (1966) for the Laplace distribution.

10.3 LAPLACE DISTRIBUTION

The random variable X has a Laplace (Double Exponential) distribution
if it has a probability distribution function (pdf) of form

 

This distribution is also known as the first law of Laplace. It is known
that E(x)=µ and standard deviation, . Although we concentrate
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on the estimation of µ and σ, it is clear that the estimation of standard
deviation, σ’, needs minor adjustment by using the above relationship.

Govindarajulu (1966) derived the least squares estimates of and σ
based on the ordered observations x(1)<x(2)<…< x(n) by using Lloyd’s (1952)
method. Note that these observations are positively correlated.
Govindara julu defined

 

and showed that

(10.3.17)

(10.3.19)

where  and Sr(j2, j1) for j2� j1 is interpreted
as Sr(j1, j2). Let

 

and Σ=(σij). Then the formulae for σii and σij can be obtained from
(10.3.17), (10.3.18) and (10.3.19). Govindarajulu gave the values of µi
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accurate to six decimal places for i=1+ [(n+1)/2],…, n, where [.] denotes
the largest integer contained in [.]. The values of µi for i�[(n+1)/2] can
be obtained from the relation:

 

with  for odd n.
Let  and  denote the least squares estimates of µ and σ based on

order statistics. Govindarajulu showed that

 

where µ’=(µ1, µ2,…, µn).
In terms of our notation from Section 10.2,

(10.3.20)
(10.3.21)

The computed values of αi and �ii are used in (10.2.3) and (10.2.4) to
calculate w1i and w2i. To facilitate computations of the estimators  and

, the coefficients w1i and w2i are given in Table 10.1 for 2�n�15. We
note that w1i=w1 n-i+1 and more weight in the center and less weight in
the tails, and all weights are positive. In the case of w2i, w2i=-w2 n-i+1, and
zero weight in the middle when n is odd.

10.4 COMPARISON OF ESTIMATORS

10.4.1 Joint Estimation of µ and σ

The variances of our estimators  and  are computed from (10.2.5),
and the covariance between them is zero. The variances of our estimators
are compared with those based on ordered least squares estimators to
assess the effectiveness of the ranked set sampling. The variances of 
and  are taken from Govindarajulu (1966). Table 10.2 gives the
variances of both sets of estimators and the following two relative
precisions:

 

We note that  is uniformly better than  and  is better than  for
n>4.

In the case of MRSS and NRSS procedures, we choose the values of j
and k which minimize the generalized variance of the estimators, where
generalized variance of µ* and σ* is given by
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The generalized variance of µ** and σ** is similarly defined. In the case
of MRSS, the values of (j, k) are (1, 2), (1, 3), (2, 5), (2,6) and (2, 7) for
n=2, 4,…, 10, respectively. In the case of NRSS, the values of (j, k) are
(1,3), (2,6), (2,8), (3,10) and (3,12) for n=2,4,…, 10, respectively. We also
note that we get the same minimum generalized variance for the two
pairs of (j, k) and (n’-k+1, n’-j+1), where n’=n and 2n for MRSS and
NRSS, respectively. Tables 10.3 and 10.4 give the coefficients cj, dk,
variances and covariance of the estimators for MRSS and NRSS
respectively. From Tables 10.2, 10.3 and 10.4 we note that the estimators
for µ and σ based on RSS and MRSS are identical for n=2. However, for
n>2, µ* and σ* are better than  and .Furth  for all n. We computed
the following six relative efficiencies to assess the merit of NRSS
compared to all other estimators:

 

We note that there are substantial gains in relative precisions of µ**
and σ** over the other estimators. The gains in relative precision of µ**
over  is much higher than that of σ** over . However, the gains in
relative precision of σ** over  and σ* are larger than those of µ** over

 and  respectively.

10.4.2 Estimation of µ

In the previous section, we considered the joint estimation of the two
parameters based on n observations. Here we are interested in
estimating µ only without assuming any knowledge on σ or its estimator.
In the case of MRSS, j=n/2 and k=(n/2)+1 minimizes the variance of µ*.
For NRSS procedure, we choose the jth and kth order statistics so that
the variance of µ** will be minimized. The optimal estimator of µ is
based on quasi-mid-range (x(j) + x(2n-j+1))/2, where j=2, 4, 6, 7 and 9 for
2n=4, 8, 12, 16 and 20, respectively. These are exactly the same as
reported by Raghunandanan and Srinivasan (1971). Table 10.6 gives
the variances µ* and µ** and the relative efficiency RP9=Var(µ*)/
Var(µ**). We note the estimator µ** is quite superior to µ* for all n.

10.4.3 Estimation of σσσσσ

In this section, using MRSS and NRSS, we estimate sigma only without
assuming any knowledge on µ or its estimator. We choose the appropriate
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values of j and k to minimize the variances of σ* and σ**. In the case of
MRSS, the optimal values are j=1 and k=n for the range of values of n
considered here. In the case of NRSS, the optimal estimator for sigma
is based on jth quasi- range, x(2n-j+i)-x

(j), where j=1, 1, 2, 2 and 3 for n=2, 4,
6 and 10, respectively. The values of coefficients and variances of σ*
and σ** are presented in Table 10.6. The relative precision,
RP10=Var(σ*)/Var(σ**), is also provided in Table 10.6 to compare σ**
with �*. It is clear that the estimators based on NRSS are superior to
those based on MRSS. RP9 decreases as n increases. However, RP10

decreases and then increases as n increases. The high values of the
relative efficiencies for small n are important since the use of NRSS is
recommended in practice for small n. Therefore, we recommend that
the estimators based on NRSS should be used particularly for small n.
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CHAPTER 11

SOME RESULTS ON ORDER
STATISTICS ARISING IN

MULTIPLE TESTING

SANAT K.SARKAR

Temple University, Philadelphia, PA

Abstract: Results on increasing sequences of critical values for order
statistics, which are useful in multiple testing, are discussed. Some new
results on probability distribution of ordered components are also
presented.

Keywords and phrases: Order statistics, critical values, multiple test
procedure, multivariate totally positive of order two, positively
dependent, step-up test, step-down test

11.1 INTRODUCTION

A sudden upsurge of research has taken place in the area of multiple
testing in the recent years that has resulted in some newer results and
raised interesting questions related to probability distributions of
ordered components of dependent random variables. A review of these
and presentation of some additional new results are the main focus of
this paper.

Given a family of null hypotheses H1,…, Hn, a multiple test procedure
is designed to simultaneously test the hypotheses based on p-values
associated with them. There are two types of multiple test procedure—
single-step and stepwise. A single-step procedure tests a hypothesis
without reference to one another in the family; whereas, in a stepwise

Copyright © 2002 Taylor & Francis



S.K.SARKAR184

procedure, the tests are conducted step by step in a certain order until
a decision, either acceptance or rejection, is reached for each hypothesis
in the family. The two most commonly used stepwise procedures are
step-down and step-up procedures. Let P(1)≤…≤P(n) denote the ordered
versions of P1,…, Pn, the p-values corresponding to H1,…, Hn, respectively.
Suppose that the hypotheses which correspond to these ordered p- values
are H(1),…, H(n), respectively. Then a step-down procedure, based on n
constants 0<a1≤…≤an<1, proceeds with P(1), the most significant p-value.
If P(1)>a1, testing stops and accepts all the hypotheses; otherwise, it
rejects H(1) and goes to the next step. In general, if testing continues
upto the ith step (1≤i≤n) and if P(i)>ai, testing stops by accepting all the
remaining hypotheses H(i),…, H(n); otherwise, rejects H(i) and goes to the
(i+1)th step. A step-up procedure, based on n constants 0<b1≤…≤bn<1,
however, proceeds with P(n), the least significant p-value. If P(n)≤bn,
testing stops and rejects all the hypotheses; otherwise, it accepts H(n)
and goes to the next step. In general, if testing continues upto the ith
step (1≤i≤n) and if P(n-i+1)≤bn-i+1, testing stops by rejecting all the remaining
hypotheses H(n-i+1),…, H(1); otherwise, accepts H(n-i+1) and goes to the (i +
1)th step.

The idea of controlling the familywise error (FWE) rate, that is, the
probability of rejecting any true null hypothesis, at a pre-specified level

 is a widely accepted concept in multiple testing [Hochberg and
Tamhane (1993), Hsu (1996) and Westfall and Young (1993)]. The critical
values in the above stepwise tests are chosen subject to such a
requirement. We will assume that the p-values P1,…, Pn correspond to
right-tailed tests based on the test statistics X1,…, Xn, respectively, and
that these statistics are all continuous having an exchangeable joint
probability distribution under the null hypotheses. Then, in terms of
X(1):n≤…≤X(n):n, the ordered values of X1,…, Xn, the determination of the
critical values in a step-down test becomes equivalent to finding
constants c1≤…≤cn satisfying

(11.1.1)

whereas, for a step-up test, the critical values correspond to constants
d1≤…≤dn satisfying the following set of inequalities:

(11.1.2)

For discussions on step-down and step-up tests, the readers are referred
to Dunnett and Tamhane (1991, 1992a,b, 1993, 1995), Finner and Roter
(1998), Hochberg (1988), Hochberg and Tamhane (1987), Rom (1990),
Liu (1996, 1997a,b) and Tamhane, Liu and Dunnett (1998).
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Do increasing sequences of critical values defined in (11.1.1)–(11.1.2)
really exist? Although the answer is yes in case of (11.1.1), which can be
easily seen by using the fact that X(k):k stochastically increases with k, it
is however not so immediate for (11.1.2). The existence of increasing
d1,…, dn satisfying (11.1.2) has been verified in some particular
situations, and in that process some new results on probability
distribution of ordered components of a random vector have been
developed. These recent results will be reviewed in the following sections,
in addition to presenting a few new ones.

11.2 THE MONOTONICITY OF di’s

Towards finding a set of increasing di’s satisfying (11.1.2), Hochberg
(1988) first noted that with  where F-1 is the
inverse of the common marginal cdf F, since

(11.2.3)

where  for i=1,…,k, and the right-hand side of
(11.2.3) is 1-α when Xi’s are iid [see, for example, Karlin (1969), Sarkar
and Chang (1997), and Simes (1986)], an increasing sequence of di’s
does exist in the iid case. The fact that these same di’s also provide a
solution to (11.1.2) in a more general situation where the Xi’s are
positively dependent was theoretically established in Sarkar (1998),
and Sarkar and Chang (1997). That is, the following inequality:

(11.2.4)

still holds even if Xi’s are positively dependent. It was initially
conjectured in Simes (1986) based on simulations.

In many multiple testing situations, when the null hypotheses are
true, the underlying test statistics posses multivariate distributions
that are positively dependent in the sense of satisfying the multivariate
totally positive of order two (MTP2) condition [due to Karlin and Rinott,
(1980, 1981)]. An n-dimensional random vector X=(X1,…, Xn)’ is said to
be MTP2, and TP2 when n=2, if its probability density, f(x), satisfies the
following condition:

 

where, with x=(x1,…,xn)’ and 
 and . This condition

is satisfied by a large family of multivariate distributions, such as those
with densities of the form
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(11.2.5)

for some probability densities f(x, z) and g(z), where f(x, z) is TP2 in (x,
z), listed in Sarkar and Chang (1997), in addition to the multivariate
normal with zero means and nonnegative correlations, and the absolute-
valued multivariate normal with zero means and some specific
covariance structures.

The proof of (11.2.4) for general MTP2 distributions and certain
mixtures of MTP2 distributions given in Sarkar (1998b) relies heavily
on a new identity involving joint probability distribution of ordered
components of a random vector Y=(Y1,…Yn), not necessarily MTP2. This
identity reduces to the one proved in Sarkar and Chang (1997) for iid
random variables that was used to prove (11.2.4) for distributions of
the type (11.2.5). These identities are presented in the next section along
with other interesting results.

The problem of verifying the existence of increasing di’s satisfying
(11.1.2) becomes much more difficult for n>3 if we insist on the equalities,
rather than the inequalities, in (11.1.2); that is, if we want our step-up
test to control the familywise error rate exactly at α. Note that, the
monotonicity of the di’s will follow using an induction argument if we
can show that for

(11.2.6)

which is a nondecreasing function of d, �n(dn-1)≤1-α≤�n(∞), assuming
that there exist d1≤…≤dn-1 satisfying

(11.2.7)

Since X(i):n≤X(i):n-1 for i=1,…, n-1,

 

Hence, proving the other inequality �n(dn-1)≤1-α assuming (11.2.7) for
n>3 is the major problem here. Dalal and Mallows (1992) have given a
proof of this in the special case of iid Xi’s, but it remains to be a
challenging open problem in the more general case of dependent Xi’s.
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Finner and Roters (1998) gave a counterexample which makes the
point that one should not hope for increasing di’s for any set of dependent
Xi’s. Sarkar (1998a) showed that the random variables considered in
Finner and Roter’s (1998) counterexample is not MTP2 , and proved
that for equicorrelated trivariate normal with a nonnegative common
correlation not exceeding a certain value (depending on �), which is
MTP2, the increasing property of the di’s does hold. This raises the hope
that the required monotonicity property might hold for positively
dependent Xi’s.

11.3 RESULTS ON ORDERED COMPONENTS OF A RANDOM
VECTOR

We will state in this section a number of results involving joint
probability distribution of the ordered components of a random vector
Y= (Y1,…,Yn). First, we have some identities which played key roles in
proving (11.2.4).

Theorem 11.3.1 [Sarkar (1998b)] Let Y(1)≤…≤Y(n) be the ordered
components of Y=(Y1,…, Yn)’, and Fi be the marginal of Yi. Then, (i) for
any fixed a1≤…, ≤ an,

and
(ii) for any fixed b1≤…, ≤bn,

(11.3.8)

where, for each  denote the ordered

components of the (n-1)-dimensional random vectorY(-i) obtained by
ignoring Yi from Y.

A number of interesting results follow from these identities.

(11.3.9)
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and

(ii)

Corollary 11.4 If(Y1,…,Yn) is exchangeable with the common marginal
F, then

(i)

(11.4.10)

Corollary 11.5 [Sarkar and Chang (1997)] If (Y1,..., Yn) are iid, then

(i)

(11.4.11)

and

(ii)

(11.5.12)

(11.5.13)
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The probability distribution of the other extreme can be similarly
expressed in terms of marginal and the bivariate probabilities involving
Yi and , j≠i. It is to be noted that the term  in (11.6.14)
provides a lower bound to the probability P{Y(n).n ≤a} which one would
get by applying the Bonferroni inequality [Miller (1981, p. 8)]. An
improvement of this bound could be obtained by including the additional
bivariate probabilities involving order statistics. This type of
improvement is different from those known in the literature [see, for
example, Efron (1997)].

We will now present some results relating to the question of finding
increasing di’s satisfying (11.1.2) with the equalities; that is, to the
problem of proving the inequality �n(dn-1)≤1-α as stated in the above
section. First note that in the case of iid Xi’s,

 

where Ui’s are iid uniform on (0, 1). The required inequality in the iid
case then follows by using the fact that F(di)→1 for each i=1,…,n-1 as
F(d1)→1 in the following theorem.

Theorem 11.6.1 [Dalal and Mallows (1992)] Let U(1):n≤…≤U(n):n be the
order statistics based on n iid observations from U(0, 1), and let
0<c1≤···≤cn<1 be such that P{U(1):k≤c1,…, U(k):k≤ck}=c1 for all k≤1,…, n. Then,

E[(cn-U(n):n)I(U(1):n≤c1,…,U(n):n≤cn)] is increasing in c1.

where .

Corollary 11.6 Let U(1):n≤···≤U(n):n be the order statistics based on n iid
observations from U(0, 1), then min1≤i≤n{nU(i):n/i} is also U(0, 1)

Alternative expressions for probability distributions of the extreme
values can be obtained from the above identities. For instance,

(11.6.14)
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for all k=3,…, n-2.

PROOF. It is enough to prove this for k=n.

The following theorem gives an idea how close the constants in
Theorem 11.6.1 are to each other.

Theorem 11.6.2 The constants c1≤ …≤ cn in Theorem 11.6.1 satisfy

(11.6.15)

Now, since P{U(1):k≤c1,…,U(k):k≤ck} is the same for k=n-2, n-1 and n, we
get  
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This proves the result. �
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CHAPTER 12

ROBUST ESTIMATION VIA
GENERALIZED L-STATISTICS:
THEORY, APPLICATIONS, AND

PERSPECTIVES

ROBERT SERFLING
University of Texas at Dallas, Richardson, TX

Abstract: Generalized L-statistics, introduced in Serfling (1984) and
including classical U-statistics and L-statistics, are linear functions
based on the ordered evaluations of a kernel over subsets of the sample
observations. In particular, generalized median statistics fall within
this class and are found to fulfill an interesting and potent principle,
that “smoothing” followed by “medianing” yields a very favorable
combination of efficiency and robustness. Extensive asymptotic theory
now available for generalized L-statistics is reviewed, including
asymptotic normality, strong convergence, large deviation, sequential
fixed-width confidence interval, jackknife, and bootstrap results, as well
as Glivenko-Cantelli theory for associated empirical processes of U-
statistic structure. Illustrative applications are treated, including
nonparametric and robust location and spread estimation,
nonparametric analysis of linear models, nonparametric regression, and
robust parametric scale estimation for exponential distributions,
equivalently tail index estimation for Pareto distributions.

Keywords and phrases: Generalized L-statistics, robust estimation

12.1 INTRODUCTION

The notion of generalized L-statistics (GL-statistics) unifies the simpler
classes of L- and U-statistics while maintaining a nice level of
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mathematical tractability. In applications, the notion leads to
formulation of highly competitive estimators in both nonparametric and
robust parametric estimation contexts. Here we review the theory and
applications of GL-statistics and illustrate through several examples
an interesting and potent principle, that “smoothing” followed by
“medianing” yields a very favorable combination of efficiency and
robustness.

Initially we consider the setting of a sample of i.i.d. real-valued
observations X1,…, Xn having cdf F. Denote the ordered observations by
Xn1≤···≤Xnn. We ask

What common or unifying feature is shared by the sample mean,
sample variance, sample median, 5% trimmed mean, Hodges-
Lehmann location estimator (i.e., median of pairwise averages
(Xi+Xj)/2), median of three-way averages (Xi+Xj+Xk)/3), Theil’s
nonparametric regression slope estimator (i.e., median of pairwise
slopes (Yi-Yj)/(Xi-Xj)), and median of absolute differences |Xi-
Xj| (i≠j)?

Note that among these the sample mean, sample median, and 5%
trimmed mean are L-statistics, i.e., linear functions of order statistics
given by  for some choice of constants cni. Also, the sample
mean and sample variance are U-statistics: i.e., for particular choices
of real-valued “kernel” h(x1,…, xm) defined on Rm, they can be represented
in the form , where the sum is over all n(m)=n(n-
1)…(n- m+1) m-tuples (i1,…, im) of distinct indices from {1,…, m}. Finally,
the Hodges-Lehmann location estimator can be represented as an R-
statistic, i.e., a function of the ranks of the Xi’s. [General background on
L-, U-, and R-statistics may be found in Huber (1981) and Serfling
(1980).] The remainder of the above statistics, however, are neither L-
nor U- nor R-statistics, nor do they fall within any other traditional
class of statistics.

12.1.1 A Unifying Structure

We can, however, draw together all of the above statistics into a single
coherent class, as follows. Consider again a kernel h(x1,…, xm) defining
a U-statistic, denote the ordered values of the summands 
appearing in the associated U-statistic by
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and with these associate the class of all linear combinations of the ordered
Wni’s, i.e., all statistics having the form

(12.1.1)

for some choice of constants cni. We call statistics of form (12.1.1)
generalized L-statistics (GL-statistics).

Note that each of the statistics considered in the above question may
be expressed in this form for suitable choice of h and cni. Also, in
particular, the entire class of L-statistics is obtained by taking kernel
h(x)=x, and the entire class of U-statistics is obtained by taking cni≡1/
n(m). Moreover, interesting new varieties of statistic are included in this
structure:

• trimmed U-statistics (i.e., eliminate the upper proportion � and
lower proportion � Wni’s and average the rest)

• Winsorized U-statistics
• median of m-wise averages, i.e., median  (which

gives for m=1 the usual sample median, for m=2 a version of the
Hodges-Lehmann location estimator, and for m>2 new. competitors
to these estimators).

Various examples will be treated formally in Section 12.5.
The setting of GL-statistics may be extended in two ways. (i) The Xi’s

may be random elements of an arbitrary space as long as the kernel h is
real-valued. (In the case h(x)=x, this reduces to requiring the Xi’s to be
real-valued.) (ii) In Section 12.2, after introducing a representation of
GL-statistics in terms of statistical functionals, we widen this class of
statistics by introducing a more general form of functional.

In order for the GL-statistic generalization to be useful in practice,
the usual battery of theoretical results are needed, including asymptotic
normality, strong convergence, Berry-Esséen rates, large deviation
theory, sequential fixed-width confidence intervals, and jackknife and
bootstrap results. These are obtained as follows. In Section 12.2 GL-
statistics are formulated as statistical functionals, specifically as L-
functionals evaluated at generalized empirical df’s of U-statistic
structure. This representation enables us in Section 12.3 to combine
functional analysis for L-functionals with probabilistic analysis
(specifically, Glivenko-Cantelli theory) for the generalized empirical df’s,
establishing a foundation for developing in Section 12.4 the above-
mentioned theoretical results for GL-statistics. Also, in Section 12.4,
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some extensions to broader contexts are indicated. In Section 12.5 we
examine a variety of illustrative applications in nonparametric
estimation and robust parametric estimation.

12.2 BASIC FORMULATION OF GL-STATISTICS

Here we represent GL-statistics as statistical functionals. This enables
a characterization of the parameter estimated by a GL-statistic as well
as of the estimation error, thus providing a foundation for theoretical
analysis by the method of differentiable statistical functions.

12.2.1 Representation of GL-Statistics as Statistical
Functionals

Our representation of a GL-statistic as a “differentiable statistical
functional” entails

• the use of L-functionals T, and
• the evaluation of such a T(·) at an empirical df of U-statistic

structure.

We first review the nature of L-functionals T(·), then define the
appropriate empirical df, and then put these together.

L-Statistics as statistical functionals

A functional T(·) defined on real-valued df’s G and having the form

 

for some choice of function J(·) on [0, 1], integer d≥0, values 
and constants aj, is called an L-functional. It represents a weighting of
the quantiles of G, combining a continuous weighting of all quantiles
via J with a discrete weighting of selected quantiles. In connection with
a sample of real-valued X1,…, Xn having df F, evaluation of such a T(·)
at the usual empirical cdf

 

yields
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which we recognize as an L-statistic because 
. Thus a wide class of L-statistics is generated by evaluating

various L-functionals at .

Empirical CDF of U-statistic structure

Analogous to the above empirical df  which jumps 1/n at the order
statistics Xni, we define an empirical df associated with the Wni’s given
above, namely the step function with jumps of size 1/n(m):

 

For each fixed y,  is a U-statistic as defined above. Thus, although
this generalization of the usual empirical cdf has complex structure, it
is of a familiar type. Note that  estimates the df HF of h(X1,…, Xm):

 

For the kernel h(x)=x, HF reduces to F and  to .

GL-statistics as statistical functionals

In the same way that L-functionals evaluated at Fn yield L-statistics,
we generate GL-statistics by evaluating these same L-functionals at
the generalized empirical df , producing

A wide class of linear combinations of the Wni’s is thus generated.
Moreover, through this representation we easily characterize the
parameter that is estimated by a GL-statistic. Quite simply, since 
estimates HF, T( ) estimates

 

In the following we shall treat GL-statistics in the form (12.2.1) as well
as in an extended form now to be introduced.

(12.2.1)
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12.2.2 A More General Form of Functional

Let us generalize the above L-functional to:

(12.2.2)

where

• for each , Tt(·) denotes a particular L-functional as defined
above (with J(·) replaced by a function Jt(·), d replaced by dt, each
aj by atj, each pj by ptj)

•  is a Borel-measurable function.

With q(x)=x and Tt(G)=G-1(t), each t, we recover the case of simple L-
functionals. Below we shall see other useful cases of q(·) and Tt(·).

Two examples: Spread measures of Bickel and Lehmann

Evaluation of the functional (12.2.2) at either the classical empirical df
 or the more general empirical df  brings further statistics of interest

into our scope. As examples, we mention two spread measures which
Bickel and Lehmann (1979) formulated on an intuitive basis but which
are best studied theoretically through reformulation as GL-statistics.

Example 1. Use (12.2.2) with q(x)=x2, Tt(G)=G-1(t)-G-1(1-t), J*(t)=(1–
2ß)-1 for ß≤t≤1-ß and=0 elsewhere, where ß is chosen in (0,1/2), D=0, and
take h(x)=x in defining  (i.e.,  take ). Then the relevant GL-statistic
is essentially

 

a nonparametric measure of spread. Note that in this example the more
general functional T(·) is applied to the classical empirical df. �

Example 2. Use (12.2.2) with 
 elsewhere, where 0<α< 1/2 < 1-

ß<1, D=0, and take h(x1, x2)=x1-x2 in defining Hn. Then T(Hn) yields still
another nonparametric measure of spread, one which involves both the
more general functional T(·) and the more general empirical df . �
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12.2.3 The Estimation Error

Our general goal is to study the estimation error,

 

where  is given by (12.2.1) using a simple L-functional, or, more
generally, with T(·) given by a functional of form (12.2.2).

12.3 SOME FOUNDATIONAL TOOLS

We combine functional analysis for the functional T(·) with probabilistic
analysis for the empirical cdf . A convenient representation for the
latter is

 

where δy denotes the cdf placing mass 1 at the point y.

12.3.1 Differentiation Methodology

For some purposes, we require the functional T(·) to be differentiable,
for which a quite basic form of differential serves very well. For an
arbitrary functional T(·) on df ‘s G, the Gâteaux differential at G0 is
defined by

 

As is well-known [e.g., Serfling (1980)], this yields an approximation to
T(G1)-T(G0), when G1 is “close” to G0. To apply this to our object of study,
the estimation error, we take G0=HF and G1= , obtaining  

where in the last step linearity of T’ in its second argument is assumed
(to be checked for each specific functional T under consideration). Thus,
for any functional T whose Gâteaux differential satisfies the above
linearity property, the corresponding approximation to the estimation
error  has the form of a U-statistic, based on the “kernel”

(12.3.1)
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More generally, for T given by (12.2.2) with q differentiable, we have

That is, under linearity we have:

In particular, for T an L-functional, and for the case that the df G0

has density go, we obtain after some manipulations [Serfling (1980)]

(12.3.2)

with the quantities  being of form (12.3.2). We see that
the desired linearity of T’ indeed holds, whereby we have: for GL-statistics,
the differential approximation to the estimation error is a U-statistic. For
explicit formulation of the relevant kernel given by (12.3.1), see Serfling
(1984) and Janssen, Serfling, and Veraverbeke (1984). Here we simply
note that the kernel in (12.3.1) has mean 0 and we denote its variance by

 

12.3.2 The Estimation Error in the U-Empirical Process

The closeness of  to T (HF) is related, of course, to the closeness of
 to HF· This becomes manifest in various ways. For example, to

establish asymptotic normality of , the relevant
consideration is the behavior of the normalized difference

 

for which a precise treatment entails the use of rates for the convergence
of  to HF in various norms.

(12.3.3)
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On the other hand, to establish the SLLN for T( ), the relevant
considerations are continuity rather than differentiability of T(·),
combined with convergence of the quantile functions  to  in
various modes of convergence.

Thus the “U-empirical process” which underlies our investigation of
GL-statistics becomes itself a target of investigation. The general goal
is to establish for  the wide collection of results already available for
the classical empirical cdf .

The first general result for the empirical process of U-statistic
structure appears to have been developed by Silverman (1976), in work
preceding the appearance of “GL-statistics” and motivated by other
considerations. Indeed, treating a larger class of empirical processes,
he established weak convergence of  to a Gaussian
process. In Silverman (1983), specifically for the context of GL-statistics,
extension with respect to a stronger topology was obtained. One can
also treat the the empirical process of U-statistic structure as a special
case of “U-process” as introduced by Nolan and Pollard (1987, 1988),
for which a general treatment of weak and strong convergence is
provided by Arcones and Giné (1993). For a large deviation result for
U-processes, see Serfling and Wang (1998).

12.3.3 Extended Glivenko-Cantelli Theory

One class of results for  covers the convergence of  to HF in various
modes and norms. We call this “Glivenko-Cantelli theory,” in a broad
sense of the term.

Results for 

An exponential probability inequality for  was established
by Helmers, Janssen, and Serfling (1988):

 

where C is a universal constant and [·] denotes “integer part.” This is
an analogue of the Dvoretzky, Kiefer, and Wolfowitz (1956) inequality
for . In fact, the latter inequality is used as a lemma in
Helmers, Janssen, and Serfling (1988) to obtain an exponential bound
on the moment generating function of , thus providing a
new tool even for the case . As a corollary of the above probability
inequality, we readily obtain
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which gives the “Glivenko-Cantelli Theorem” for  along with a rate
of convergence. Compare the “in-probability” version,

 

for HF continuous, proved in Serfling (1984).
The above probability inequality for  also has a

multisample extension, given in Helmers, Janssen, and Serfling (1988).
Another variant concerns weighted versions of the above sup-norm, i.e.,

 

where w(·) is some specified weight function. See Silverman (1983) and
Helmers, Janssen, and Serfling (1988) for particular results.

Further results

For treatment of , see Serfling (1984), Helmers, Janssen,
and Serfling (1988), and Arcones and Giné (1993), and for

, see Janssen, Serfling, and Veraverbeke (1984) and
Helmers, Janssen, and Serfling (1988). Strong approximation of the U-
empirical process is treated by Dehling, Denker, and Philipp (1985).

12.3.4 Oscillation Theory, Generalized Order Statistics, and
Bahadur Representations

A classical nonparametric approach for obtaining a confidence interval
for a quantile parameter F-1(p) is to take as endpoints of the interval a
pair of order statistics,

 

with the ranks a(n),b(n) selected to achieve desired confidence. Extension
to sequential fixed-width nonparametric C.I.’s is obtained by letting n
be defined suitably as a random stopping time N.

A much more general and interesting class of parameters is defined
by retaining the simplicity of the quantile functional,

 

with G given by HF based on various choices of kernel h(x1,…, xm). We
have seen several examples above. For such parameters we may form
nonparametric C.I.’s by taking as endpoints a suitably chosen pair of
generalized order statistics,
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letting n be given by a stopping time N in the case of a sequential
procedure.

Such applications are based on theoretical results for the behavior of
sequences of the generalized order statistics, Wn, k(n), for certain choices
of rank sequence k(n). A key result is a “Bahadur-type representation”:
for 0<p<1, HF twice differentiable with  and k(n)
satisfying

 

we have that almost surely as n→∞

 

In particular, this yields for the (generalized) pth quantile  a
representation as approximately a sample mean in form.

A fundamental result on which the above result is based concerns
the oscillation behavior of the empirical process based on . Denote by

 

the modulus of continuity function for a given function g, and by

 

the empirical process based on . Results on the rate of convergence to
0 of ω( αn;an) and related quantities, for sequences an tending to 0 at
appropriate rates, are given in Silverman (1983), Janssen, Serfling, and
Veraverbeke (1984), and Choudhury and Serfling (1988). In particular,
the latter paper provides a broad treatment including general
application to the context of sequential fixed-width nonparametric C.I.’s.
The results sharpen and extend previous work of Bahadur (1966) for
the case h(x)=x [see also Serfling (1980)] and of Geertsema (1970) for
both the cases h(x)=x and . For extension to the
multi-sample case, see Serfling (1992).

12.3.5 Estimation of the Variance of a U-Statistic

The evaluation of the Gâteaux differential of a GL-functional at 
was seen to be a U-statistic in form. The variance σ2(T, HF) of the
corresponding kernel (3) is the relevant variance parameter in the
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asymptotic normality of T( ). Some applications require estimation of
this variance parameter, e.g., for confidence intervals on T(HF).

General methodology for estimation of the variance of an ordinary
U-statistic is available, for example, in Sen (1981). However, in the
present case the kernel of our U-statistic involves unknown parameters.
For GL-statistics which are quantiles of , estimation of σ2(T, HF) is
treated in Choudhury and Serfling (1988).

12.4 GENERAL RESULTS FOR GL-STATISTICS

12.4.1 Asymptotic Normality and the LIL

Results on asymptotic normality of GL-statistics  are developed
in Serfling (1984) and Helmers and Ruymgaart (1988) for for T(·) a
classical L-functional with bounded scores and unbounded scores,
respectively, and in Janssen, Serfling, and Veraverbeke (1984) for T(·)
having the more general form (12.2.2). Under moderate regularity
conditions, these statistics satisfy

 

For T(·) a simple L-functional, the development parallels the
treatment of T ( ) (ordinary L-statistics) as in Serfling (1980). Briefly,
put

 

and decompose this into ∆n=∆n1+∆n2, corresponding to the continuous
(J-function) and discrete components of the functional T. Then, for ∆n1,
establish inequalities of the form

(12.4.1)

where A=∞ and B=Lp, or vice versa, and

 

with  This sets the stage for an analysis which
motivates and exploits some of the Glivenko-Cantelli results for  in
Section 12.3. For the component ∆n2, it turns out that this quantity is
precisely that which is treated in the Bahadur representation result for

 as discussed in Section 12.3.4. For T(·) given by the more general
functional (12.2.2), the treatment is somewhat more complicated.
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For the LIL, a parallel approach works. For the Berry-Esséen rate for
the convergence in the AN result and its use as a tool in the bootstrap
analysis of GL-statistics, see Helmers, Janssen, and Serfling (1990).

12.4.2 The SLLN

The classical SLLN states that the sample mean converges almost surely
to its expectation, a result that has fundamental and wide application
in probability and statistics. Considering now the “statistical setting”,
we ask

In what generality does the SLLN hold?

For the generality of the class of L-statistics, a sharp SLLN was
established by van Zwet (1980). This was extended to GL-statistics in
Helmers, Janssen, and Serfling (1988): under moderate regularity
conditions, we have

 

In some sense this is a weaker conclusion than asymptotic normality,
but, since we thus need to establish it under weaker conditions, the
problem can in principle be a harder one (and in fact is).

In the development of Helmers, Janssen, and Serfling (1988), the
problem was handled by identifying and formulating the functional-
analytic and probabilistic components inherent in the problem and then
treating these separately. One first investigates the convergence
behavior of the functional T(·) evaluated at a deterministic sequence of
weakly convergent df’s Gn. This leads to conditions on T(·) and on {Gn},
sufficient for convergence of T(Gn) to a limit. Then one establishes, as
an extended Glivenko-Cantelli property for , that with probability 1
the random sequence of empirical df’s  indeed satisfies the
conditions on {Gn}.

12.4.3 Large Deviation Theory

The large deviation problem, specialized to GL-statistics, is to evaluate
the limit

 

under appropriate conditions. For ordinary L-statistics as well as other
functionals of , this has been solved fairly completely in Groeneboom
et al. (1979). For extension to GL-statistics and other functionals of ,
see Serfling and Wang (1999).
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12.4.4 Further Results

Jackknife results were established for U-statistics, by Arvesen (1969)
and for L-statistics by Parr and Schucany (1982). For GL-statistics of
the simple form (12.2.1), jackknife results have been developed by Shao
(1990). It is of interest to extend to the more general form (12.2.2).
For bootstrap results for GL-statistics, see Helmers, Janssen, and
Serfling (1990). Multi-sample GL-statistics are treated by Akritas
(1986) and Serfling (1992). Generalizing the study of incomplete U-
statistics by Blom (1976), incomplete GL-statistics based on the form
(12.2.1) are investigated by Hössjer (1996). It is also of interest to extend
to (12.2.2).

12.5 SOME APPLICATIONS

12.5.1 One-Sample Quantile Type Parameters

A general treatment of GL-statistics having the form , for some
choice of kernel h and 0<p<1, is given by Choudhury and Serfling (1988).
Some examples are as follows.

Location estimation

For estimation of the location parameter θ of a symmetric and continuous
cdf F, classical nonparametric estimators are provided by the median
and by the median of pairwise averages (the Hodges-Lehmann location
estimator). More generally, let us consider—as noted in Section 12.1
and proposed in Serfling (1984)—the median of m-wise averages:

 

(which for m>2 gives competitors to the classical estimators). With the
kernel , this is a GL-statistic: . It
estimates the generalized quantile parameter . Besides the
treatment of Choudhury and Serfling (1988) for this example, see also
Choudhury (1989, 1990) and, for extension to multivariate Xi’s,
Chaudhuri (1992). In terms of asymptotic relative efficiency (ARE) with
respect to  at the Normal distribution, and breakdown point (BP), the
estimator HL(m) exhibits a very favorable trade-off in comparison with
other estimators, as shown in the following table.
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We interpret this finding in the context of robust parametric estimation
and arrive at the following principle:

The use of the median operation, after “smoothing” the data by
taking a function of several observations at a time, over all subsets
of the data, leads to a statistic which has a favorable combination
of efficiency and robustness. I.e., smoothing followed by
medianing yields both efficiency and robustness.

A more general type of location estimator is given by taking a kernel of
form  See Choudhury and

Serfling (1988) for further discussion.

Spread estimation

Among various measures of spread discussed by Bickel and Lehmann
(1979) is the median of the distribution of |X1-X2|, where X1 and X2 are
independent r.v.’s having cdf F. This is a generalized quantile parameter,

, based on the kernel h(x1, x2)=|x1-x2|.
More generally, as discussed in Choudhury and Serfling (1988), we

might consider the class of spread measures and estimators
corresponding to kernels of the form

 

with  This generalizes the above m-wise average form of

kernel and extends an approach studied by Maritz, Wu and Staudte
(1977).

Regression slope estimation

Consider the simple linear regression model  with
 i.i.d. r.v.’s independent of Xi, and Xi a sequence of random regressors.

Let F denote the common cdf of the mutually independent pairs (Xi, Yi),
1≤i≤n, and let HF denote the cdf of h((X1, F1), (X2, Y2)), where
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For this choice of kernel, the nonparametric estimator of ß given by
Theil (1950), i.e., the median of the slopes (Yi-Yj)/(Xi-Xj), is the
corresponding GL-statistic based on the median functional:

. The results of Choudhury and Serfling (1988) provide
sequential nonparametric fixed-width confidence intervals for this
classical estimator.

12.5.2 Two-Sample Location and Scale Problems

Location

Suppose F(2)(x)=F(1)(x- θ), and let F denote (F(1), F(2)). For integer m≥1
consider the kernel

 

Assuming F(1) continuous, we have that HF( θ)=1/2, i.e., ,
and a corresponding estimator is  where n=(n1, n2), the
vector of respective sample sizes. The case m=1 is the shift estimator
given by Hodges and Lehmann (1963), while the cases m≥2 represent
new competing estimators. Note that under the null hypothesis θ=0 we
have HF(0)=1/2, and a corresponding test statistic is given by  (0). For
the case m=2, this test was proposed by Hollander (1967) [see also
discussion in Randles and Wolfe (1979, pp. 96–97]. See Serfling (1992)
for a general development.

Scale

Suppose F(2)(x)=F(1)((x-θ)/η), for θ an unknown nuisance parameter and
η>0 the parameter of interest. With the kernel

 

we have , and a corresponding estimator is given by 
, Under the null hypothesis η=1 we have HF(1)=1/2, and a

corresponding test statistic is given by (1), as proposed by Lehmann
(1951). See Serfling (1992) for a general development.
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12.5.3 Robust ANOVA

Here we suppose that F(j)(x)=F0(x-∆j), 1≤ j≤ c, and consider estimation of
a parameter of form

 

where d1,…, dc are specified constants and the ∆j’s are unknown. The
problem of nonparametric estimation of θ in the case of a contrast

  was initially studied and solved by Lehmann (1963), whose
approach consists of expressing θ in the form of a linear combination of
the differences ∆i=∆j and using nonparametric estimates of these. A rich
literature has developed on this approach and its modifications. Using
the framework of GL-statistics, however, a straightforward competing
estimator may be formulated, based on the kernel

 

We suppose F0 to be symmetric about 0, in which case we have 
 and a natural estimator of θ is thus given by ,

where n=(n1,…, nc). Surprisingly, this estimator has not been
investigated previously in the literature. This formulation also includes
the case that θ is not a contrast. For testing the null hypothesis θ=θ0, a
natural test statistic is given by (θ0).

12.5.4 Robust Regression

Frees (1991) has introduced and investigated a wide class of estimators
of ß, in which a typical estimator is given by trimming the collection of
ordered slopes (Yi-Yj)/(Xi-Xj), and then taking a weighted average of the
remaining slopes. Using an extended notion of generalized empirical
cdf, he represents these as GL-statistics for appropriate choices of kernel.

12.5.5 Robust Estimation of Exponential Scale Parameter

Consider the problem of robust estimation of θ in the two-parameter
exponential distribution E(µ, θ) having cdf

(12.5.1)

for θ>0 and-∞<µ<∞, with µ an unknown “nuisance parameter”. The
maximum likelihood estimator of θ, , is efficient, being
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asymptotically normal with mean θ and variance θ2/n, but is nonrobust,
having BP=0. Competing trimmed mean type estimators  for various
choices of trimming level ß have been investigated by Kimber (1983a,b)
and established to possess relatively high efficiency coupled with
favorable robustness. It has been found, however, that these trimmed
type estimators are outperformed by generalized median type estimators

 based on suitable kernels. This finding illustrates again the general
principle stated in Section 12.5.1. As a typical example,  based on
10% upper and lower trimming has ARE=.85 and upper BP=.10, whereas

 for a suitable kernel has ARE=.94 and upper BP=.13. For full details,
see Brazauskas and Serfling (1999). Note that the above exponential
scale estimation problem is equivalent, through exponential
transformation of the data, to that of tail index estimation in a two-
parameter Pareto model.
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CHAPTER 13

A CLASS OF ROBUST STEPWISE
TESTS FOR MANOVA
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Abstract: It is well known that Student’s t test as well as the ANOVA
F test are reasonably validity-robust with respect to moderate
departures from normality; see e.g. Mudholkar, Mudholkar and
Srivastava (1991), Marchetti, Mudholkar and Mudholkar (1998).
However, in the absence of normality substantial power loss is associated
with the above procedures. The same holds for Hotelling’s T2 and various
normal theory MANOVA procedures in multivariate analysis; see Seber
(1984), Mudholkar and Srivastava (1999a, b) and the references therein.
Recently, Mudholkar and Srivastava (1999c) have proposed a class of
robust stepwise tests as alternatives to Hotelling’s problem by
incorporating the modification of J. Roy’s (1958) step down argument
presented in Mudholkar and Subbaiah (1980). In this paper, we extend
their reasoning to construct a class of robust tests for the multivariate
analysis of variance for the one way classification and examine their
robustness properties. The new procedures use relatively familiar
univariate tests and avoid any new distributional problems. The robust
stepwise tests have a reasonable type I error control and substantially
enhanced power at nonnormal alternatives without significant loss of
power in the presence of normality.
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Keywords and phrases: Decomposition, robust trimmed ANOVA
statistics, combining independent P-values

13.1 INTRODUCTION

Consider the problem of testing the simplest multivariate general linear
hypothesis, i.e. testing the homogeneity of the means µ1, µ2,…, µ K of k
multivariate normal populations with the common covariance matrix
ΣΣΣΣΣ, i.e. testing H0 : µ1=µ2=…=µk· The properties of the well known
invariant tests such as Wilk’s likelihood ratio ( Λ), Lawley-Hotelling
Trace, Bartlett-Nanda-Pillai Trace, Roy’s maximum root, have been
extensively examined in the literature, e.g. see Anderson (1984), Mardia,
Kent and Bibby (1979), Seber (1984). It is well known that none of the
invariant tests uniformly dominates the others in terms of power.
However, an asymptotic analysis appearing in Hsieh (1979a, b) shows
that the likelihood ratio test, which is maximin [Anderson (1984, p.
332)], is superior to Lawley-Hotelling trace and Roy’s largest root tests
in terms of Bahadur efficiency. For a decision theoretic analysis of
multivariate procedures see Kiefer and Schwartz (1965) and Schwartz
(1967).

It is generally well recognized that, as in the univariate case, the
commonly used multivariate invariant procedures are validity robust
for small departures from normality. However, from several robustness
studies it is known that, in the context of testing the significance of a
mean vector or testing the equality of k (k�2) mean vectors, the normal
theory based invariant tests are either invalid or very conservative; see
Chase and Bulgren (1971), Everitt (1979), Bauer (1981), Srivastava
and Awan (1982), Tiku and Singh (1982), Davis (1980), Olson (1974).
More seriously, it is believed that the non robustness of these tests is
manifested mainly and substantially in loss of power. In the univariate
setting, Geary (1947) somewhat flamboyantly remarked that,
“Normality is a myth; there never was, and never will be, a normal
distribution”. Since the multivariate normality entails marginal as well
as joint normality of the components, Mudholkar and Srivastava (1998)
observe that Geary’s provocative comment is a fortiori true in the
multivariate case, and the multivariate normality assumption is at best
dubious. Thus, in light of this and the few and sketchy studies of
efficiency robustness, a need for robust multivariate procedures is
strongly indicated. However, the development of multivariate robust
methods is in rudimentary stages.

Even in the univariate case robust methods for estimation are better
understood and accessible than those for testing the hypotheses. The
robust estimation in multivariate setting, including the extensions of
well known univariate L, M and R approaches, have been discussed by

Copyright © 2002 Taylor & Francis



A CLASS OF ROBUST STEPWISE TESTS FOR MANOVA 221

many including Mood (1941), Bickel (1965), Gnanadesikan and Kettenring
(1972), Bebbington (1978), Titterington (1978). Also, as in the univariate
case, the literature on multivariate rank tests, which bypass the nuisance
of studentization for unknown scale and are related to the R-estimators, is
most extensive; see Puri and Sen (1971). However, the justification of
these nonparametric multivariate tests is largely asymptotic and the related
distribution theory for their implementation in moderate sized samples is
not adequately understood. Furthermore, these tests are often regarded
as less efficient. M-methods have also been theoretically discussed in the
context of univariate and multivariate testing of hypothesis, see Hampel
et al. (1986). However, Draper (1988) in his review paper of the robust
methods observes that, “the L-methods have historically been the most
awkward of the three in generalizing to linear models”.

Yet, the L-estimates such as the median, trimmed means and trimeans
are the oldest and the most easily motivated estimators of location. The
earliest use of trimmed means is in Tukey and McLaughlin’s (1963)
studentization of trimmed mean followed by its application by Yuen and
Dixon (1973) and Yuen (1974) for testing equality of two means. Mudholkar,
Mudholkar and Srivastava (1991) note some limitations of these tests and
employ the asymptotic distribution of the trimmed means in Huber (1970),
together with empirical methods, to construct robust trimmed-t tests valid
for samples of size n�10. Similar tests based upon quick estimators of
location, e.g. trimean and Gastwirth estimator, are given in Patel et al.
(1985), and Srivastava, Mudholkar and Mudholkar (1992). These studies
demonstrate a dramatic power advantage of the tests based on trimmed
means and quick estimators of location. For example, for some
nonnormal populations the power of these robust tests can be as high
as 70% as compared 14% for the classical t test. More recently, Marchetti
(1997), and Marchetti, Mudholkar and Mudholkar (1998) have developed
a trimmed ANOVA test based on trimmed means for the one way
classification analysis of variance. The purpose of this paper is to
combine their arguments and results with those in Mudholkar and
Srivastava (1999c) to develop some robust stepwise tests for one way
classification for multivariate analysis of variance.

The robust one way ANOVA and other preliminaries are given in
Section 13.2. The development of the modified step down procedure
and the construction of a class of robust stepwise tests for testing the
homogeneity of means of k multivariate samples appears in Section
13.3. Empirical evaluation of the operating characteristics of the
procedures are presented in Section 13.4. The final section, Section 13.5,
is given to conclusions.
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13.2 PRELIMINARIES

In this section we summarize the basic properties of the trimmed means,
describe their use in testing of hypothesis, and outline the logic of
modified stepwise tests.

13.2.1 Robust Univariate Tests

One Sample. Let X1<X2<…< Xn be the order statistics of a random
sample from a continuous, symmetric population with distribution
function (d.f.) F({x-µ}/σ). Then the g-trimmed mean or δ-trimmed
mean, δ=g/n, of the sample is .
Tukey and McLaughlin (1963) used empirical analysis, as Huber
(1970) describes, involving “trial” and “error” to propose the
studentization of  by Winsorized variance , where

 , and
h=(n- . Huber (1970) confirmed the validity of their studentization by
showing that as, n→�,

(13.2.1)

and

(13.2.2)

where . Mudholkar, Mudholkar and Srivastava
(1991), fix the normal family as the target population, i.e. take F=Φ,
and obtain polynomial approximations,

(13.2.3)

and

(13.2.4)

They use empirical methods for approximating the small sample null
distribution of the trimmed-t statistic proposed by Tukey and
McLaughlin (1963).

Two Samples. Now consider random samples of sizes n1 and n2 from
two symmetric location-scale populations F((x-µ1)/σ) and F((x-µ2)/σ). Let

 and  denote the δ1 and δ2 trimmed means, respectively, and ,  and
 denote the corresponding Winsorized standard deviation estimators
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defined above. Then, using the asymptotic distribution, as in (2.2),
Mudholkar, Mudholkar and Srivastava (1991) propose pooling the
Winsorized sample variances, , and  by

(13.2.5)

where , to construct the two
sample trimmed-t statistic for testing H0 : µ1=µ2 as,

(13.2.6)

and obtain a scaled Student’s t approximation, , where v=
2 * (w1+w2) and A, obtained empirically, is given by:

 

where δ=(δ1+δ2)/2.
One Way Classification. Now consider the usual one way ANOVA

hypothesis, H0:µ1=µ2=…=µk, on the basis of samples Xij, j= 1, 2,…, ni,
from k normal populations N(µi, δ2), i=1, 2,…, k. The above approach
used in construction of the one- and two-sample trimmed-t test does not
have a straight forward extension for the k-sample case. Hence, Marchetti
(1997), and Marchetti, Mudholkar and Mudholkar (1998) begin anew by
empirically refining the asymptotic distribution of the trimmed mean
and the Winsorized variance given in (13.2.1) and (13.2.2) to make them
reasonably applicable in small samples. Specifically, they use 10000
replication Monte Carlo study involving random samples of size n, for
various values of n and several values of trimming proportion δ, in order
to estimate r(n, δ), s(n, δ) and t(n,δ) such that approximations

(13.2.7)

and

(13.2.8)

hold for values of n�5. specifically, Using regression methods, they obtain
and recommend the following:

Copyright © 2002 Taylor & Francis



D.K.SRIVASTAVA ET AL.224

as the expressions for r(n,δ), s(n,δ) and t(n,δ). Then, for testing the
homogeneity of the k means, they propose the following trimmed analog,

 of the normal theory variance ratio:

(13.2.10)

where

(13.2.11)

In (13.2.10) and (13.2.11), for the i-th population,  are

the trimmed mean and Winsorized variance estimators,  is the analog
of (13.2.3),  where is as given in (13.2.4), 

 are the analogs of (2.9),
 and They suggest that the null distribution of

the statistic . be approximated by the variance ratio F distribution
with (k-1) and v (=2ΣQi) d.f. It may be noted that in the above development
the proportion of trimmings may vary by samples. We will use these
results to develop the robust stepwise test for one way multivariate
analysis of variance hypothesis.

13.2.2 Combining Independent P-Values

The robust stepwise tests in Mudholkar and Srivastava (1999, c) use the
logic in Mudholkar and Subbaiah’s (1980) modification of J. Roy’s (1958)
step down tests, which, in turn, employ classical methods for combining
independent tests. The combination of P-values is a meta-analytic tool
for an overall judgement regarding a scientific hypothesis. Its
investigation often involves conducting several, m, independent studies
differing in design and size in which the original hypothesis takes form
of possibly different null hypotheses. It is well known that, when the
overall hypothesis is true, the P-values of the tests from these studies
are independent and uniformly distributed on (0, 1). Some of the best
known and widely used combination statistics, for combining m
independent P-values P1, P2,…Pm, are; (i) �T =min(Pi) due to Tippett, (ii)
�F=-2 Σ log(Pi) due to Fisher, (iii) �N= ΣΦ-1(1-Pi) due to Liptak, and (iv)

 where A=π2m(5m+2)(15m+12), due to
George and Mudholkar (1979). The overall null hypothesis is rejected
for small values of �T and �L and large values of �F and �N. Under the

(13.2.9)
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null hypothesis �T is distributed as a minimum of m uniform variates,
�F has a �2 distribution with 2m degrees of freedom, �N is distributed as
a N(0, m) variate, and �L is approximated by a t-distribution with (5m +
4) degrees of freedom. In the following section, we propose robust tests
based on the modified step down logic.

13.2.3 Modified Step Down Procedure

The multivariate general linear model, very similar to its better known
univariate version, is given by

(13.2.12)

where the n rows of the observation matrix Y (nxp) are independent
normal variates with a p.d. covariance matrix ΣΣΣΣΣ, A (nxm) is a known
design matrix of rank m, and � (mxp) is the matrix of unknown
parameters. The MANOVA hypothesis about the (mxp) matrix � of
parameters for some matrix B (txm) of full rank is,

(13.2.13)

It is well known that the problem of testing the hypothesis in (13.2.13)
has an invariant structure and the invariant tests, such as the likelihood
ratio (Λ), Hotelling-Lawley trace and Roy’s maximum root, all depend
upon the characteristic roots of HE-1, where H and E are the matrix
analogs of the univariate sum of squares due to hypothesis and error;
for distributional and other results see Anderson (1984).

A step down procedure for testing H0 given by J.Roy (1958) involves a
sequence of familiar univariate tests. In the first stage of the procedure
consideration is restricted to the first components of the p-variate
observations, and consists of testing the univariate linear hypothesis
obtained by the corresponding restriction of H0 using the familiar F test
at level α1. Second stage considers the distribution of the second
component of the observation vector conditional upon the first component
as the covariate, and consists of using an analysis of covariance F test at
level α2, for testing the univariate linear hypothesis implied by H0 for
the conditional distributions; and so on for the further stages of the
procedure. The remarkable fact which makes the stepwise procedures
simple and convenient is that under H0 the F tests at the successive
stages of the procedure are independent; for details see J. Roy (1958),
Anderson (1984) or Seber (1984). The step down procedure involves
familiar univariate tests and raises no new distribution problems; but
presents the problem of choosing significance levels αi’s for the successive
F tests. The modified stepwise tests by Mudholkar and Subbaiah (1980,
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1988) avoid the problem by combining the independent P-values of the p
independent step down F tests using one of the combining procedures
given in Section 13.2.2. They have shown that if the P-values are combined
using either Fisher’s or Logit method then the resulting tests are B-
optimal and asymptotically equivalent to the likelihood ratio test in terms
of Bahadur efficiency. Furthermore, the empirical evidence shows that
in the rank one particular case, i.e. the Hotelling’s problem, the power
functions of these modified stepwise tests are practically indistinguishable
from that of Hotelling’s T2 test; see Mudholkar and Subbaiah (1980).

Multivariate One Way Classification. In this particular case we
have p-variate random samples Yij, j=1, 2,…, ni, of size ni, Σni=n, from k
p-variate normal populations Np(µi, Σ), i=1, 2,…, k and the MANOVA
hypothesis reduces to,

(13.2.14)

For simplicity let p=2, and denote the component of the observation
vector by Uij and Vij. At the first stage of the stepwise procedure we have
to test the homogeneity of the mean of k univariate normal populations
on the basis of random sample Uij, j=1, 2,…, ni, from them. Let P1 denote
the P-value of the ANOVA test statistic, 

At the second stage we have k bivariate normal populations of (U, V)’
with possibly different means (��i, �i)’ but with the same covariance
matrix. Consider the conditional distribution of V given U for which

(13.2.15)

So at the second stage the problem of testing the homogeneity of the
means at (13.2.15) can be solved by using the standard linear model
theory or using the residual like quantities

(13.2.16)

where the regression coefficient b as well as the  the estimator of the
conditional variance of Vij given Uij are obtained from the pooled sample
covariance matrix. Let P2 denote the P-value corresponding to the
analysis of variance F test at the second stage. A similar reasoning can
be extended to p-variate populations, and the modified stepwise procedure
for the one way MANOVA is completed by combining the P-values
corresponding to all the p stages. It may be noted that process could be
considerably simplified, with possibly minor loss of efficiency, by using
independent estimates of the common regression coefficient of V on U
for each sample and regarding eij ’s as approximately independent.
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13.3 ROBUST STEPWISE TESTS

A use of the independence properties of the conditional distributions and
normal theory regression residual like quantities appears in Tiku and
Singh (1982) and Tiku and Balakrishnan (1988) where they use maximum
likelihood estimates with censored normal data to test the significance
of the equality of the mean vectors of two nonnormal bivariate
populations. Mudholkar and Srivastava (1999c) recast and view their
work in the framework of the modified step down tests and construct a
class of robust stepwise tests for the equality of two nonnormal
multivariate populations. Their work was motivated, on the one hand,
by the multivariate analog of the Winsor’s observation, noted in Mallows
and Tukey (1982), that “all observed distributions are Gaussian in the
middle”, and on the other hand by the belief that for large samples the
independence properties would remain approximately valid if the means
are replaced by the trimmed means with the associated appropriate
changes, especially those involving small sample adaptations of the
asymptotic distributions of the trimmed means and the Winsorized
variances outlined in Section (13.2.1). The robust analysis of variance by
Marchetti, Mudholkar and Mudholkar (1998) developed in Section (13.2.1)
is now used in conjunction with the modified stepwise one way MANOVA
procedure in Section (13.2.3) to construct the following robust stepwise
tests.

Suppose Yij, i=1, 2,…, k and j=1, 2,…, ni be random samples from k p-
variate populations with distribution functions F(S-1/2(y-µi)), i= 1, 2,…, k
and suppose it is of interest to test the null hypothesis H0: µ1= µ2=…=µk.
Let  denote the l-th component, l=1, 2,…, p, of the p-dimensional
observation Yij.

Step 1. Consider the k univariate samples , j=1, 2,…, ni, i= 1,
2,…, k, of the first component of the multivariate samples. Trim a
proportion δi=gi/ni from each end of the i-th sample and compute the
trimmed mean  and the Winsorized sample standard deviation ,
i=1, 2,…, k, and use the trimmed ANOVA statistic  using equation
(13.2.10), to obtain the robust P-value .

Step 2. Consider regression of the second components  on 
Now, in the interest of simplicity regress  on  sample by sample
separately and obtain independent estimates  of the common regression
coefficient ß21 and obtain the residual like quantities,

(13.3.17)

Again apply the trimmed ANOVA procedure as discussed in Section
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13.2.1 to the residual like quantities  in (3.1), and obtain the statistic
 to test the homogeneity of k parameter values .

Compute the P-value of  test by replacing ni by (ni-1) in the null
distribution approximation discussed in Section 13.2.1 and denote it
by 

Step 3. Now consider the conditional distribution of  given 
and . Apply the logic of Step 2 for robust testing of the homogeneity
of expected values of  across the k
populations. That is obtain  the robust trimmed statistic and the
corresponding P-value  by applying the procedure to the residual
like quantities  and using ni-2 instead
of ni in the null distribution approximation. Proceed in a similar manner
and obtain the remaining P-values, , the p robust
approximately independent P-values, corresponding to p stepwise
trimmed ANOVA tests.

Step 4. Combine the approximately independent P-values  l= 1,
2,…, p, obtained in Step 3 by using any of the combination methods,
namely, Fisher, Logit, Liptak and Tippett, denoted by , , , and

, respectively, to obtain the robust P-value for overall MANOVA
hypothesis.

Remark. It may be noted that the ni residual like quantities
obtained, for i-th population at the l-th stage of the decomposition,
using equations given in Steps 2–4 are not independently distributed.
Indeed, their covariance matrix is of rank (ni-l). One could potentially
improve the performance of the proposed statistics using Helmert’s
transformation and making the residuals independent. However, in
view of the convenience of implementation and the fact that, for ni

large in relation to p, this dependence would be negligible one can
treat the residual like quantities obtained above as approximately
independent.

13.4 A MONTE CARLO EXPERIMENT

13.4.1 The Study

In this section we describe a Monte Carlo experiment conducted in order
to understand the operating characteristics of the robust modified
stepwise MANOVA tests based on the four classical combination methods.
Although, the procedure allows for varying trimming proportions for
different samples and different stages, in this experiment, we kept the
trimming proportions equal at all stages. That is, we assumed
δi1=δi2=…=δip=δi, i=1, 2,…, k, where δi is the proportion of observations
trimmed from the i-th population.
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Null Distribution. This part of the simulation experiment, involving
5000 replications, was devoted to the study of Type I error control of the
robust stepwise MANOVA tests. Each replication consisted of samples of
size n from three bivariate populations with a common covariance matrix
Σ, with 1 as the diagonal elements and .5 as the off diagonal element,
and mean vectors . The robust stepwise MANOVA
tests described in Section 13.4, using all four combination methods of
Section 13.2.2, were applied to the set of three samples in each replication
to test the homogeneity of the population vectors. The proportion of
rejections in the 5000 tests was used as the estimate of the Type I error
probabilities. The samples were of size n, n=10 (5) 50, and the populations
used were: (I) N2(µ, Σ), (II) 0.8 N2(µ, Σ)+0.2 N2(µ, 9Σ), (III) 0.8 N2(µ,
Σ)+0.2 N2(µ, 16Σ), (IV) ,  (V) Bivariate T with 3 degrees of
freedom and (VI) Bivariate Cauchy. The details of the methods for
generating random samples from the above populations are discussed in
Mudholkar and Srivastava (1999a) or Johnson (1987). A selection of the
results, corresponding to some populations and Fisher combination
method, is presented in Table 13.1.

Power Study. The power function of the robust stepwise tests were estimated
using the above process in which each set of three samples came from the
bivariate populations with a common covariance matrix Σ, as above, and
different location vectors. The location vector for the first population was

 and various alternative location vectors for the second and third
populations considered were : (A) ,

and , and
(C)   and . A selection of the results of the
simulation experiments for the power properties is presented in Table 13.2.
For a visual depiction of the improvement observed for nonnormal populations
a selection of results, corresponding to level α=.05, is presented in Figure
13.1. In Figure 13.1, on the alternative axis, 0.2, 0.5, and 1.0 correspond to
the alternatives (A), (B) and (C) discussed above and 0 refers to null situation
with all three vectors centered about 0.

Results. From the results of the Monte Carlo experiment, a selection
from which appear in Tables 13.1 and 13.2, and Figure 13.1, it is seen
that the robust stepwise MANOVA test procedures offer satisfactory Type
I error control. For very heavy tailed populations, such as multivariate
Cauchy, the accuracy of the null distribution improves with increasing
proportion of trimming. For example, when the underlying distribution
is bivariate Cauchy and the three samples are of equal size 50, then it is
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seen that the estimates of 5% nominal probability improve from .0154 to
.0386, .0418 and .0476 respectively for 0% , 10%, 16% and 20% trimmings.
In terms of the power functions the robust tests experience minimally
lower power at normal populations. For example, when the three samples
of size 50 are chosen from bivariate normal population, with alternative
(B), then the power declines from .7620 for 0% trimming to .7136, .7094
and .6750 corresponding to 10%, 16% and 20% trimming, respectively.
However, their power advantage is substantial for nonnormal populations,
especially when the populations are very heavy tailed. For example,
when three samples of size 50 are taken from bivariate Cauchy population
centered at the alternative (C), discussed above, the power estimates
improve from .0558 corresponding to 0% trimming to .7130, .8582, and
.9070 corresponding to 10%, 16% and 20% trimming, respectively. In
general, we suggest between 15–20% trimming from each end at each
stage of the procedure.

FIGURE 13.1 Power function of Fisher combination test** of Section 13.3

Copyright © 2002 Taylor & Francis



A CLASS OF ROBUST STEPWISE TESTS FOR MANOVA 231

13.5 CONCLUSIONS

In general, the multivariate normality assumption, underlying the
commonly used normal theory methods, is at best dubious. In this paper,
we have presented a class of robust stepwise tests based on the normal
theory modified step down tests due to Mudholkar and Subbaiah (1988).
They provide satisfactory Type I error control for a broad class of
symmetric multivariate populations. However, the real advantage of
the robust tests, as in the univariate case [Mudholkar, Mudholkar and
Srivastava (1991) and Srivastava, Mudholkar and Mudholkar (1992)], is
their remarkably and substantially higher power in case of heavy tailed
nonnormal populations without significant loss of power when the normal
assumption is satisfied. Hence, they are effective solutions for testing
the homogeneity of the means of multivariate samples.
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TABLE 13.1 Type I error control with Fisher combination statistic of Section
13.3; k=3, p=2, gi=number and δi=% trimmed from the i-th population
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TABLE 13.1 (Cont.)
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TABLE 13.1 (Cont.)
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TABLE 13.2 Empirical power functions for Fisher combination statistic of Section
13.3; k=3, p=2, Alternatives (A), (B) and (C) in Section 13.4, gi= number and δi=%
trimmed from i-th population
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TABLE 13.2 (Cont.)
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TABLE 13.2 (Cont.)
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CHAPTER 14

ROBUST ESTIMATORS FOR
THE ONE-WAY VARIANCE

COMPONENTS MODEL

YOGENDRA P.CHAUBEY K.VENKATESWARLU

Concordia University, Montreal, Quebec, Canada

Abstract: Since the adaptation of using pseudo-observations generated
by M-estimation technique by Rocke (1983, Biometrika) for proposing robust
estimators of variance components, there have been added quite a few
methods in this direction [see the review article by Welsh and Richardson
(1997) in Handbook of Statistics, Vol. XV]. However, not much extensive
comparative studies of these methods are available [see, e.g. Richardson
and Welsh (1995), Biometrics]. In this article, we present our numerical
study of the ML and REML procedures and their robust versions for the
one-way random effects model. Biases, MSE’s and convergence properties
of the different procedures are compared.

Keywords and phrases: Variance components, robust methods,
unbalanced ANOVA

14.1 INTRODUCTION

Variance component models are used in various fields including sample
surveys, animal breeding experiments and quality control procedures.
The recent decade has seen several developments towards inference
procedures for these models [see Rao (1997), Rao and Kleffé (1988), Searle
et al. (1992)]. There are various procedures for estimating the variance
components. The ANOVA method is still popular in the case of a
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balanced design. However, for the unbalanced case, the choice is not
absolutely clear. With the development of efficient numerical algorithms,
there has been a tendency to use the maximum likelihood approach.
The maximum likelihood approach, necessarily demands normality
assumptions and therefore may not be appropriate when such
assumptions are not justified. Even when the data can be considered
normal, in general, contamination of the observations and/or gross errors
make the maximum likelihood approach [Hartley and Rao (1967)] (which
is totally dependent on the model assumptions) inefficient as was
demonstrated by Huber (1981) and Hampel et al. (1986). Owing to these
practical considerations, there have been attempts to develop robust
estimators for variance components.

One possible alternative to the normality assumption is to replace
the distributions of error components by longer tailed distributions as
investigated in Lange et al. (1989) and Stahel and Welsh (1992). Since
the validity of a particular long tailed distribution may not be justified
in practice, Rocke (1983) presented robustified version of the ANOVA
estimates for the balanced two-component mixed model, which was
subsequently extended to the unbalanced data by considering
Henderson’s Method 3. However, one drawback of this method is its
inability to prevent negative estimates. A more general approach was
introduced by Fellner (1986) robustifying the Henderson-Harville REML
algorithm [see Harville (1977)]. These methods were motivated from
the algorithmic nature of Huber’s approach to robust estimation in
linear models, and the asymptotic properties of the resulting estimators
are yet to be established.

A different direction was taken in Huggins (1993), which replaced the
quadratic function in the likelihood by a slowly varying function motivated
by Huber’s original suggestion for the robust estimation of a location
parameter. Asymptotic properties of the resulting estimators were
established by Richardson (1995). Similar to Huber’s proposal I and II,
Richardson and Welsh (1995) studied the corresponding � functions for
the robust estimators for variance component models. These were named
Robust ML1 and Robust ML2.

The maximum likelihood estimator is known to be badly biased in small
samples; see Swallow and Monahan (1984). This problem was overcome
by Patterson and Thompson (1971, 1974) in the classical case by introducing
restricted likelihood (likelihood of independent contrasts of the data rather
than of the data itself). The resulting likelihood does not involve the fixed
parameters and the corresponding estimators of variance components are
known as the REML estimators. Richardson and Welsh (1995) also
robustified REML algorithm similar to Huber’s approach as mentioned
above. These are called Robust REML1 and Robust REML2. For a detailed
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ac-count of various robust methods for mixed linear models the reader
may refer to Welsh and Richardson (1997).

There have been numerical studies comparing various estimators in
the classical case [such as Hocking and Kutner (1975), Corbeil and Searle
(1976), Chaubey (1984) and Swallow, Monahan (1984) and Westfall (1987)
and others] for finite samples. For comparing robust estimators there are
only a few studies in the literature. Stahel and Welsh (1992, 1996) compared
the REML with robust estimators of Fellner (1986) and Rocke (1991) for
the balanced one way model. Richardson and Welsh (1995) conducted a
small simulation study to compare the ML, REML and their robust versions
for a two component mixed model. Gervini and Yohai (1998) compare
another robust version of the ML with the robust procedures of Rock (1991)
and Fellner (1986).

The purpose of this paper is to provide a detailed comparison of some
robust estimators for the unbalanced one way model. Consideration of
other procedures is in progress. Section 14.2 outlines the ML and REML
methods for estimating the variance components along with their robust
versions as proposed in Richardson and Welsh (1995). Section 14.3 gives
details of the sampling experiment together with the numerical results
and Section 14.4 presents a discussion of these results. The final section
presents summary and conclusions.

14.2 MIXED LINEAR MODELS AND ESTIMATION OF
PARAMETERS

14.2.1 General Mixed Linear Model

The general mixed linear model is given by

(14.2.1)

where, y is an n-vector of responses, X and Zi are known n×p and n×qi

design matrices, respectively, � is a p-vector of unknown fixed effects, ßi

represent qi vectors of unobserved random effects, 1≤i≤c-1; and 	 is an n-
vector of unobserved errors. The random effects ßi are assumed to be
independent with mean zero and variance ; each component of the error
	 is assumed to be independent with mean zero and variance ; and ß1,…,
ßc-1 and 	 are assumed to be independent. Thus, we have
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(14.2.2)

14.2.2 Maximum Likelihood and Restricted Maximum
Likelihood Estimators

Assuming the normality of the random effects and the error term in the
model (14.2.1), the log-likelihood function is given by

(14.2.3)

where . We may write (14.2.3) as

(14.2.4)

where . This partitioning is such that yj and yj’ (j
j’) are
uncorrelated and X and V are partitioned conformably. Now, the maximum
likelihood estimator of the variance components  can
be obtained by solving the following estimating equations

(14.2.6)

Each  is block-diagonal with jth block being denoted by  These
equations can be solved iteratively.

The REML estimator of �0 is obtained by maximizing

(14.2.7)

As shown by Harville (1977), this estimator is obtained from

(14.2.8)

where

(14.2.9)

In the following section we outline the robust versions of (14.2.5) and
(14.2.8) as presented by Richardson and Welsh (1995).
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14.2.3 Robust Versions of ML and REML Estimators

Huggins (1993) method maximizes the following modified likelihood
function with respect to �0,

(14.2.10)

where the functions rhoj is supposed to diminish the effect of large residuals,
providing robust estimates. The resulting estimate are called Robust ML1
and can be obtained by solving the following estimating equations;

where K1=E[e�(e)’] with  are
suitable non-negative vector functions and . The choice
for � being considered for Robust ML1 is  where
�(x)=(1/2)x2 for |x|c and �(x)=c|x|-(1/2)c2 is the usual Huber’s � function.
The second proposal comes from the requirement to bound the values of

 in the above equation rather than bounding only Zj· This results
in the following estimating equations:

where K2=E[�(e)�(e)’]. This procedure is called Robust ML2. The equations,
(14.2.11) and (14.2.12) also require the value of α, which is obtained by
solving

(14.2.13)

The robust version of REML is obtained by minimizing a robust version
of (14.2.7) as in the case of the robust ML method which results in the
following proposals:

Robust REML1: Solve

(14.2.11)

(14.2.12)

(14.2.12)
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Robust REML2: Solve

 

14.2.4 Computation of Estimators for the One Way Model

The one way model is given by

(14.2.16)

where µ is an unknown parameter, ai denote the random effects and eij are
unobservable errors; .
The constant k is the number of groups and (n1, n2,…, nk) is called the n-
pattern. This model in the matrix form can be written as

(14.2.17)

where 1N denotes a N-vector of one’s, N=� ni,

 

=(a1, a2,…,ak), ,  denoting the column vector
 Thus y is a vector  of observations with mean vector

µ,1N and variance covariance matrix

(14.2.18)

With these values the general iterating schemes given in Sections 14.2.2
and 14.2.3 are used in the numerical experiment described in the next
section.

14.3 DESCRIPTION OF THE SIMULATION EXPERIMENT

We chose the 10 n-patterns studied in Swallow and Monahan as given
below;

P1=(3, 5, 7)
P2=(l, 5, 9)
P3=(3, 3, 5, 5, 7, 7)
P4=(l, l, 5, 5, 9, 9)
P5=(1, 1, 1, 1, 13, 13)
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P6=(3, 3, 3, 5, 5, 5, 7, 7, 7)
P7=(1, 1, 1, 5, 5, 5, 9, 9, 9)
P8=(1, 1, 1, 1, 1, 1, 1, 19, 19)
P9=(2, 10, 18)
P10=(3, 15, 27)
These represent various degrees of unbalancedness as discussed in

Swallow and Searle (1978). We generated 1000 trials for each pattern
such that the convergence was achieved in a maximum of 200 iterations
for different degrees of contamination (CTYPE) in ai and  as described
below (see also Rocke (1991)) where N stands for standard normal
distribution, LT stands for a mixture distribution with 90% N(0, 1) and
10% N(0, 9)and VLT stands for a 95% N(0,l) and 5% N(0,100) mixture.
Thus, CTYPE (NN)  refers to and CTYPE (NLT) etc. are
defined in a conformal fashion.

The convergence was considered to have been achieved when the
estimates at the kth and (k+1)th iterations satisfied

 

This criterion is the same as the one used by Swallow and Monahan (1984)
except that we have a tighter error bound (.00001 instead of .0001) and the
maximum number of iterations was 200 [instead of 20 used by Swallow
and Monahan (1984)]. This criterion is based on the premise that relative
discrepancy is more meaningful than the absolute discrepancy. Unity is
added to each denominator to prevent division by zero. In the case of CTYPE
(NN), convergence was reached in less than 200 iterations for all n-
patterns. However as contamination increased the number of trials which
did not converge in less than 200 iterations also increased (see Table 14.3
for a comparison).

For each combination of CTYPE and n-pattern we computed the estimates
of bias and MSE by averaging over all the replications. It should be also
pointed out here for clarity that the parameter of interest in this study is
the variance component of non-contaminated part. The biases and MSE’s
for only n-patterns P1, P2 and P3 are displayed in Tables 14.1 and 14.2. A
detailed picture is given through graphs for all the patterns. The graphs
for absolute biases computed from these simulations for  and  are
presented in Figures 14.1 and 14.2 respectively, where as those for the
MSE are presented in Figures 14.3 and 14.4.
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14.4 DISCUSSION OF THE RESULTS

14.4.1 Biases of the Estimators of 

• For NN case, absolute biases are smaller for REML and its robust
versions than for ML and its robust versions. This feature is common
with the balanced case [see Swallow and Searle (1978)]. The biases
for robust procedures are slightly larger than those for its nonrobust
counterpart in the case of REML. However, this trend is reversed in
the case of ML.

• If the effects are contaminated, then there is a tendency for increased
bias in REML and its robust versions as compared with that of ML
and its robust versions. If the effects are uncontaminated, a large
contamination in the error can also produce a large absolute bias in
REML than that in ML.

• When the random effects are not contaminated but the errors are
contaminated, the biases of robust REML are smaller than those of
REML.

• When both the components are contaminated, the robust procedures
do not seem to have much added (if any) advantage for estimating

.

• When the degree of unbalancedness is small (e.g., see P1, P3 and
P6), the robust REML procedures have slightly smaller bias than
REML, even when both components are contaminated.

14.4.2 Biases of the Estimators of 

• The behaviour of the estimators in this case is clearer. For the NN
case, biases of all the estimators are small. When there is a
contamination in error terms, robust REML2 seems to drastically
reduce the bias in REML. Such performance is also visible with
respect to ML and its robust versions, especially, for very large
contamination.

• The biases in robust REML procedures are generally higher than
those for robust ML, especially, when there is a contamination in
the error component.

14.4.3 MSE’s of Estimators of 

• For NN case REML and its robust versions RREML1 and RREML2
have larger MSE’s than ML and their robust counterparts.
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• When the random effects are not contaminated, but the errors are,
the MSE’s of robust procedures are reduced when the degree of
unbalancedness is small. However, this tendency is reversed as the
unbalancedness increases.

• When the random effects are contaminated, robust procedures tend
to have larger MSE’s than their non robust versions. However, it
may depend on the nature of unbalancedness in the data and the
degree of contamination.

• Robust ML procedures, generally, seem to be better than the robust
REML procedures for estimating .

14.4.4 MSE’s of Estimators of 

• In the case of no contamination at all, there is no serious loss in
efficiency by using any of the robust procedures.

• Significant gains can be achieved by the robust procedures, especially
when the degree of contamination is large. In particular, Robust
ML2 seems to have smaller MSE’s than other procedures.

14.5 SUMMARY AND CONCLUSIONS

It is clear from this numerical study that robust versions of ML and REML
methods in case of one way ANOVA model, generally reduce the MSE’s for
the estimator of the variance component due to the error term, especially,
for a large contamination in the error term. However, no such general
pattern is evident for the estimators of . Thus, we are of the opinion that
better robust versions for estimating  are desired.
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TABLE 14.1 Bias of different estimators  for and 
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FIGURE 14.1a Absolute bias vs. contamination types for random effect
variance component

FIGURE 14.1b Absolute bias vs. contamination types for random effect
variance component
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FIGURE 14.1c Absolute bias vs. contamination types for random effect
variance component

FIGURE 14.2a Absolute bias vs. contamination types for error variance
component
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FIGURE 14.2b Absolute bias vs. contamination types for error variance
component

FIGURE 14.2c Absolute bias vs. contamination types for error variance
component
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TABLE 14.2 MSE’s of different estimators for  and 
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FIGURE 14.3a Mean square error vs. contamination types for random effect
variance component

FIGURE 14.3b Mean square error vs. contamination types for random effect
variance component
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FIGURE 14.3c Mean square error vs. contamination types for random effect
variance component

FIGURE 14.4a Mean square error vs. contamination types for error variance
component
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FIGURE 14.4b Mean square error vs. contamination types for error variance
component

FIGURE 14.4c Mean square error vs. contamination types for error variance
component
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TABLE 14.3 Number of trials not converged in 200 iterations
(in 1000 trials)
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CHAPTER 15

PERFORMANCE OF THE PTE
BASED ON THE CONFLICTING

W, LR AND LM TESTS IN
REGRESSION MODEL

Md. BAKI BILLAH

University of Dhaka, Dhaka, Bangladesh

A.K. Md. E.SALEH

Carleton University, Ottawa, Ontario, Canada

Abstract: The problem of estimating the regression coefficients in the
usual multiple regression model is considered when it is apriori
suspected that the coefficients may be restricted to a subspace. The
preliminary test estimator (PTE) based on the Wald (W), Likelihood
Ratio (LR), and Lagrangian Multiplier (LM) tests are given. Their bias,
mean square error matrix (M), and risk function are derived and
compared. In the neighbourhood of the null hypothesis the PTE based
on the LM test has the smallest risk followed by the LR based estimator
and the estimator based on the W test is the worst. However, the PTE
based on the W test performs the best followed by the LR based estimator
when the parameter moves away from the subspace of the restriction
and the LM based estimator is the worst. A table has been prepared for
maximum and minimum guaranteed relative efficiency of the estimators
corresponding to the three tests. This table allows one to determine
optimum level of significance corresponding to the optimum estimator
among the three. It has been shown that the optimum choice of the
level of significance becomes the traditional choice by using the W test.
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Keywords and phrases: Preliminary test estimators; relative
efficiency; level of significance; risk analysis; conflict in tests

15.1 INTRODUCTION

Consider the regression model

(15.1.1)

where y is an n×1 vector of the response variable, X is an n×p matrix of
non-stochastic independent variables, ß is a p-dimensional column vector
of regression parameters and e is the vector of errors associated with y
having the same dimension. It is assumed that X is of full rank and
n≥p. Also assume that the errors follow normal distribution with mean
vector 0 and covariance matrix �2I.

The null hypothesis to be tested is

(15.1.2)

where H is a known q×p matrix of full row rank and h is a known q×1
vector. The maximum likelihood (ML) estimator for ß is the ordinary
least squares (OLS) estimator given by

 

where C=X�X.
Further, the ML estimator of �2 is given by

 

The bias and M of the unrestricted estimator of ß are 0 and �2C-1

respectively.
The restricted OLS estimators of ß and �2 are

 

respectively. The restricted estimator of ß has bias,

 

and M,  where .
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The restricted estimator performs better than the unrestricted
estimator when the null hypothesis Hß=h holds. However, as Hß differs
from h, the restricted estimator may be considerably biased, inefficient
and inconsistent while the performance of the unrestricted estimator
remains steady over such departure. For this reason, it is desirable to
develop an estimator which is a compromise between the unrestricted
and the restricted estimators under uncertain prior information Hß=h.
This can be done by using the preliminary test approach. The PTE of ß
is defined by

(15.1.3)

where ξ* is the general test statistics for testing the hypothesis (15.1.2),
 is the a-level of the critical value of ξ* and I(A) is the indicator

function of the set A. The idea of preliminary test estimator was proposed
by Bancroft (1944). The performance of the PTE depends on the size of
the test a. The PTE falls in the area of inference with uncertain prior
information and have been studied by Bancroft (1944, 1964), Mosteller
(1948), Kitagawa (1963), Han and Bancroft (1968) among others.
Asymptotic theory together with robustness considerations have been
extensively studied by Saleh and Sen (1978, 1984a, b, 1986) among
others. Two bibliographies in this area of study are given by Bancroft
and Han (1977), and Han, Rao and Ravichandran (1988).

Our main objective of this study is to provide a finite sample theory
of the preliminary test estimators (PTE) based on W, LR, and LM tests
with normality assumption for the estimation of regression coefficients
under general uncertain sub-hypothesis situation stated earlier and to
compare the performance of the three estimators. In Section 15.2, we
proposed the estimators and test statistics for the null hypothesis
H0:Hß=h. Section 15.3 contains the bias, M, and risk of the estimators.
In Section 15.4, we discuss the relative performance of the estimators.
The generalized efficiency is discussed in Section 15.5. Finally, Section
15.6 summarizes the findings.

15.2 THE TESTS AND PROPOSED ESTIMATORS

To test the null hypothesis (15.1.2) the usual F statistic is

(15.2.4)

where m=n-p,  is the unrestricted residual
sum of squares and  is the restricted residual
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sum of squares. Under the alternative hypothesis the distribution of
(15.1.2) is a non-central F with (q, n-p) degrees of freedom and with the
non-centrality parameter given by

(15.2.5)

Three general principles employed for hypothesis testing in econometrics
are the W, LR, and LM criteria. The W test was introduced by Wald
(1943) and the LM test by Aitchison and Silvey (1958) and Silvey (1959).
The LM test is the same as the score test of Rao (1947). Savin (1976)
shows that a systematic numerical inequality exists between the test
statistics for testing linear restrictions on the coefficients of certain linear
models. The inequality relation between the values of the test statistics
is W=LR=LM. The three test statistics for testing the hypothesis (15.1.2)
are

(15.2.6)

(15.2.7)

(15.2.8)

These test statistics can also be written as follows

(15.2.9)

(15.2.10)

(15.2.11)

The three test statistics are a function of F statistic since .
Each test statistic has a different exact sampling distribution and hence
the critical value for each test statistic is different. When these tests
employ exact critical values they are referred to as exacts tests. The
PTE defined in terms of exact tests at a given significance level have
the same bias, M and risk. However, due to the inequality relation
between the value of the test statistics the estimators based on a fixed
critical value may have different bias, M and risk.

The exact sampling distributions of the three test statistics is
complicated, so that in practice the critical regions of the tests are
commonly based on asymptotic approximations. Under the null
hypothesis the three test statistics have the same asymptotic chi-square
distribution. In most of the econometric applications this asymptotic
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chi-square distribution is used for the testing purposes. When the exact
distribution is approximated by the asymptotic chi-square distribution
the critical value for an a level test of H0 is approximated by the chi-
square critical value . The tests based on this approximate critical
value are known as large sample tests. The PTE based the large sample
tests are defined as follows

(15.2.12)

(15.2.13)

(15.2.14)

15.3 BIAS, M AND RISK OF THE ESTIMATORS

In this section, we give the expressions for the bias, quadratic risk and
M matrix of the preliminary test estimators ,  and . Direct
computation following Judge and Bock (1978) lead to the following
results.

The bias of the PTE based on the W, LR, and LM tests are given by
(15.3.15)–(15.3.17) respectively:

(15.3.15)

(15.3.16)

(15.3.17)

where ,
 is the critical value of the central x2 distribution of q degrees of

freedom at a significance level and Gq+2,m (.; �) is the cumulative
distribution function of a non-central F-distribution with (q+2, m)
degrees of freedom and non-centrality parameter �.

Note that for �=0, the bias of the three estimators coincide with the
bias of the restricted estimator, , while for �=1, it coincides with that
of , the unrestricted estimator. Also, as the non-centrality parameter

 while   becomes
unbounded. However, under H0 : Hß=h, �=0, hence all the estimators
are unbiased:

(15.3.18)

The M of the PTE based on the W, LR, and LM tests are given by
(15.3.19)–(15.3.21) respectively:

Copyright © 2002 Taylor & Francis



Md. BAKI BILLAH and A.K. Md. E.SALEH268

(15.3.19)

(15.3.20)

(15.3.21)

where

 

and

 

and Gq+4,m (.; �) is the cumulative distribution function of a non-central
F-distribution with (q+4, m) degrees of freedom and non-centrality
parameter �.

If the loss function is (ß*-ß)�W(ß*-ß) for a given non-singular matrix
W using the estimator ß*, then the risk is defined by

 

where M is the mean-squared error matrix of ß*. Now direct computation
following Judge and Bock (1978) lead to the following theorem.

The risk of the PTE based on the W, LR, and LM tests are given by
(15.3.22)–(15.3.24) respectively:

(15.3.22)
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(15.3.23)

(15.3.24)

The risk of the PTE depend on the matrices C and W. To ease the
computations, we let W=�-2C. With these substitution in equations
(15.3.22)–(15.3.24), the three risks, for simplicity, are

(15.3.25)

(15.3.26)

(15.3.27)

15.4 RELATIVE PERFORMANCE OF THE ESTIMATORS

15.4.1 Bias Analysis of the Estimators

The quadratic bias of the PTE based on the W, LR, and LM tests are
given by (15.4.28)–(15.4.30) respectively: Here, the quadratic bias is a
quadratic form in the bias vectors in equations (15.3.15)–(15.3.17) where
the weight matrix is (1/�2)C.

(15.4.28)

(15.4.29)

(15.4.30)

Since, , we have

 

Therefore, an inequality relation between the quadratic biases of the
three estimators is given by

 

Copyright © 2002 Taylor & Francis



Md. BAKI BILLAH and A.K. Md. E.SALEH270

15.4.2 M Analysis of the Estimators

In this subsection we analyse the M of the PTE based on the three tests
and determine their dominance properties.

For the M comparison of  and , we consider the M-difference

(15.4.31)

where  and 
 This M-difference is positive semi-definite whenever for

a given non-zero vector t=(t1,…, tp)’, we have .
That is to say,

 

Hence for all (p×1) non-zero vectors t, we have

 

since t’C-1t>0. Now

 

We know that

 

and

 

since H’(HC-1H’)-1HC-1 is an idempotent matrix [see Searle (1971)].
Thus (15.4.31) is positive definite if and only if

(15.4.32)

Within this interval the estimator  performs better than the
estimator , and  performs better than  outside the interval
i.e. for

(15.4.33)

Now, for the M comparison of  and , we consider the M-difference

(15.4.34)
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where

 

and

 

Proceeding in the similar way as above the M-difference is positive semi-
definite whenever

(15.4.35)

Thus  is superior to  in this range of �, otherwise  is superior.
Hence, the M of the estimators has the dominance picture

(15.4.36)

for all � in the interval

 

while

(15.4.37)

within the interval defined by

 

15.4.3 Risk Analysis of the Estimators

In this subsection, we provide the risk analysis of the estimators with
the general loss function. We study the relative performance of the
estimators under the null hypothesis as well as under the alternative
hypothesis.

We get from the Courant theorem [see, e.g., Mardia (1979)] that

 

or,
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where chmin (WC-1) and chmax(WC-1) are the minimum and maximum
eigenvalues of (WC-1) and  Now we compare  versus .
The risk difference in this case is as follows:

(15.4.38)

Thus, we see that the right hand side of (15.4.38) is nonnegative (≥0),
whenever

(15.4.39)

The length of this interval is bigger than the interval (15.4.32), provided
by the M analysis. In this case  performs better than  while  
performs better whenever

(15.4.40)

For W=C we note that tr(W�)=q and the required intervals follows
(15.4.39) and (15.4.40). Under H0, we see that  is superior to 
since the difference is positive for all a. We can describe the graph of

 as follows: It begins with a value

 

at �=0, then increases crossing the risk of  to a maximum then drops
gradually towards �2tr(WC-1) as �→∞.

Now we compare  and . Both  and  are superior to
 under the null hypothesis H0 : Hß=h. In general the risk difference

is given by

(15.4.41)

Thus, we obtain that the risk difference is nonnegative (≥ 0) whenever

(15.4.42)

and  performs better than  in this interval. Also, the length of
this interval is bigger than the interval (15.4.35), provided by the M
analysis.
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The risk difference is negative if

(15.4.43)

Thus,  performs better than  in this interval. Also, the length of
this interval (15.4.42) is bigger than the interval (15.4.35), provided by
the M analysis.

We can describe the graph of  as follows: It begins with a value

 

at �=0, then increases crossing the risk of  and  to a maximum
then drops gradually towards �2tr(WC-1) as �→∞. Clearly, the risk of
the three estimators may be ordered as

(15.4.44)

in the interval

 

while

(15.4.45)

in the interval

 

Graphical display of relative risks of the three estimators are given in
Figures 15.1–15.4.

15.5 EFFICIENCY ANALYSIS AND RECOMMENDATIONS

In this section, we consider the risk efficiency of the three estimators
for ß and provide a max-min rule for the optimum choice of the level of
significance for the preliminary test of the null hypothesis H0:Hß=h.
Table for relative effciency (maximum and minimum) and � value at
which minimum efficiency of a given estimator,  occurs relative to
the unrestricted estimator  is provided, For discussion we take W=C.
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The relative efficiency of  compared to , is given by

(15.5.46)

where

 

For a given n, E is a function of a and �. The function E(a, �) for a ≠0,
has its maximum at �=0 with value  and
decreases crossing the line E(a, �)=1 to a minimum E(a, �)=E0 at �= �0.
As � increases beyond �0, the relative efficiency increases and
approaches 1 as �→∞. In the case when �=0 and a varies we have maxa

E(a; 0)=E(0; 0)=(1-q/p)-1. The value E(a;0) decreases as a increases. On
the other hand if a=0 and � vary, then the curve E(0; �) and E(1; �)=1
intersect at �=q. For a general a, E(0; �) and E(1; �) will intersect in
the interval 0≤�≤q; the value of � at the intersection decreases as a
increases.

In order to choose an estimator with maximum relative efficiency we
adopt the following procedure: If it is known that 0≤�≤ q, the estimator

 is chosen since E(0; �) is the largest for all � in this range. However,
if � is unknown, there is no way of choosing a uniformly best estimator.
In such case, we pre-assign a value of the efficiency, say E0, that we are
willing to accept then consider the set  and
the estimator is chosen which maximizes E(a, �) over all  and �.
Thus, we solve for a such that . Hence, for
each estimator we can find optimum level of significance say 
and   respectively with minimum guaranteed effieiency E0. Then,
we choose  as the optimum level of
significance since .

Our main objective is to choose the smallest level of significance (a)
to yield the best estimator in the sense of highest efficiency. Table 15.1
provides the values of maximum and guaranteed minimum relative
efficiency and recommended corresponding size a of the three PTE’s for
p=4 and n=10, 15, 20. For example, if n=10 and p=4, and the
experimenter wishes to have an estimator with a minimum guaranteed
efficiency of 0.80, then using Table 15.1, we recommend him to select
a=0.05, corresponding to W based PTE, because such a choice of a would
yield an estimator with a maximum efficiency of 1.9065 at �=0 and a
minimum guaranteed efficiency of 0.8331. Notice that a=0.05 is the
traditional level of significance used by experimenters.
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15.6 CONCLUSION

In this paper, we studied the effect of the tests on the PTE for the
regression parameter when there exists uncertain prior information
(UPI) that H0:Hß=h may hold. It is well known that the test statistics
satisfies the inequality W≥LR≥LM. Thus there may exists conflict in
the resulting test conclusions when certain fixed critical value is chosen
to test the hypothesis.

In this paper, we find that the resulting PTE’s of the regression
parameter with UPI satisfy the MSE ordering

 

for

 

and the MSE ordering

 

for

 

Similarly, the risk orderings are

 

in the interval

 

while the ordering is
 

in the interval

 

We have also discussed the method of choosing an optimum level of
significance to obtain maxi-mini guaranteed efficient estimators. The
W based PTE is found to be performs best in the choice of the smallest
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level of significance to yield the best estimator in the sense of highest
minimum guaranteed efficiency. The most striking feature of the results
is the optimum choice of the level of significance becomes the traditional
choice by using the W test.

s The research was supported by Natural Science
and Engineering Research Council grant A3088 when the first author
visited Carleton University, Ottawa, Canada, during the Summer of
1996.
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FIGURE 15.1 Risk function of the PTE based on the W(- -), LR(…) and LM
(-⋅-) tests for various significance levels
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FIGURE 15.2 Risk function of the PTE based on the W(- -), LR(…) and LM
(-⋅-) tests for various significance levels
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FIGURE 15.3 Risk function of the PTE based on the W(- -), LR(…) and LM
(-⋅-) tests for various significance levels
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FIGURE 15.4 Risk function of the PTE based on the W(- -), LR(…) and LM
(-⋅-) tests for various significance levels
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TABLE 15.1 Maximum and minimum guaranteed efficiency of PTE’s (p=4)
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CHAPTER 16

ESTIMATION OF REGRESSION
AND DISPERSION PARAMETERS

IN THE ANALYSIS OF
PROPORTIONS

SUDHIR R.PAUL

University of Windsor, Windsor, Ontario, Canada

Abstract: Data in the form of proportions arise in Toxicology and other
similar fields. These proportions often exibit extra variation than can
be explained by a simple binomial distribution. In the analysis of these
proportions interest is, generally, in the estimation of the mean or the
regression parameters. The dispersion parameter then plays the role of
a nuisance parameter. However , in some instances the dispersion
parameter or the intraclass correlation parameter is of primary interest.
For example, in some binary-data situations in Toxicology the intraclass
correlation is interpreted as ‘heritability of a dichotomous trait’. In this
paper we consider estimation of the dispersion parameter along with
the regression parameters by using quadratic estimating functions
(QEEs) of Crowder (1987). By varying the coefficients of the QEEs we
obtain five sets of estimating equations. We compare large sample
relative efficiency of these estimates with the maximum likelihood
estimates. Estimated large sample relative efficiencies are also
compared for three real life data sets arising from biostatistical practices.

Keywords and phrases: Dispersion parameter, efficiency, Gaussian
likelihood, intraclass correlation, joint estimation, optimal estimating
equations
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16.1 INTRODUCTION

Data in the form of proportions arise in toxicology [Weil (1970) and
Williams (1975)] and other similar fields [Crowder (1978) and Otake
and Prentice (1948)]. These proportions often exibit extra dispersion
(over-dispersion or under-dispersion) compared to that predicted by a
simple binomial model. In situation like this, interest is often in the
estimation of the mean or the regression parameters. The dispersion
parameter can then be treated as nuisance parameter. However, in many
situations the dispersion parameter or the intraclass correlation
parameter may be of interest in its own right, as in some binary-data
situations where it is interpreted as ‘heritability of a dichotomous trait’
[see Elston (1977) and Crowder (1982)]. Estimation of the dispersion
parameter is also important for making inference regarding the
regression parameters. Marginal or conditional estimation of the
dispersion parameter is difficult. So we consider joint estimation of the
mean (regression) parameters and the dispersion parameter. The usual
procedure is to take a parametric model, such as, the beta-binomial or
the extended beta-binomial model to allow over as well as under
dispersion and obtain maximum likelihood estimates of the parameters.
This procedure may produce inefficient or biased estimates when the
parametric model does not fit the data well. Alternatively , more robust
estimates, such as moment estimates, quasi-likelihood estimates
[Breslow (1990) and Moore and Tsiatis (1991)], extended quasi-likelihood
estimates [Nelder and Pregibon (1987)], the Gaussian likelihood
estimates [Whittle (1961) and Crowder (1985)], estimates based on the
pseudo-likelihood estimating equations of Davidian and Carrol (1987)
and estimates based on quadratic estimating functions of Crowder (1987)
and Godambe and Thompson (1989) can be considered. Paul and Islam
(1998) study six such estimates and compare the small and large sample
efficiency and bias properties of these estimates with the maximum
likelihood estimates [see Paul and Islam (1998) for details]. Their study
show that if interest is only in the mean or the regression parameters
then the quasi-likelihood is the method of choice. On the other hand if
we need estimation of the dispersion parameter or the joint estimation
of the regression and the dispersion paramters then the Guassian
likelihood estimates are the estimates of choice. Crowder (1985) finds
similar good properties of the Gaussian likelihood estimates. Note that
the generalized estimating equations approach of Liang and Ziger (1986)
does not apply here as the primary focus of the procedure is to estimate
the regression parameters only.

In this paper we consider estimating the regression and the dispersion
parameters by the quadratic estimating equations (QEE’s) of Crowder
(1987) and Godambe and Thompson (1989). By varying the coefficients
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of the QEE’s we obtain five sets of estimating equations. Some of these
five sets of estimating equations coincide with some of those studied by
Paul and Islam (1998). We compare the large sample efficiency of the
five sets of estimates obtained by the QEE’s and the estimates obtained
by quasi-likelihood method with the maximum likelihood estimates.
We also compare estimated relative efficiencies of the estimates for three
sets of real life data arising from biostatistical practices.

Joint estimation of the regression parameters and the dispersion
parameter by the seven methods are discussed in Section 16.2. In Section
16.3 we derive and compare large sample relative efficiencies. Estimated
relative efficiencies of the estimates for three sets of real life data are
compared in Section 16.4. A discussion is given in Section 16.5.

16.2 ESTIMATION

16.2.1 The Extended Beta-Binomial Likelihood

We assume that Yi|p~binomial (ni, p), for i=1,…, m. That is,

 

Note that the binomial parameter p may not remain constant within a
litter. So, we assume that the binomial probability p is a random variable
distributed as a beta distribution with parameters a and ß having
probability density function

 

where  is the beta function. Then, the marginal

distribution of Yi is the beta-binomial distribution with probability
function

 

Reparameterizing a and ß as �=a/(a+ß) and , the
unconditional distribution Yi can be expressed as
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with 0≤ πi≤1 and  [Prentice (1986)]. The mean
structure π=πi is given by the logistic model

 

where Xiß=Xi1ß1+…+Xikßk and X1,…, Xk are k explanatory variables ,
ß1,…, ßk are the k regression parameters. The mean and variance of the
extended beta-binomial variate Yi are nipi and 

 Clearly when , the beta- binomial variance coincides with
the binomial variance. The parameter  is the dispersion parameter or
the intraclass correlation parameter. Maximum likelihood estimate
(mle) of ß=(ß1,…, ßk) and  can be obtained by solving the ml estimating
equations

 

and

 

simultaneously, where

 

Now, denote the parameter vector  by �. Then the maximum
likelihood estimate of � is denoted by .

16.2.2 The Quasi-Likelihood Method

The quasi-likelihood [Wedderburn (1974)] is based on the knowledge of
the form of first two moments of the random variable Zi=Yi/ni, which
coincides with those based on the extended beta-binomial model. The
quasilikelihood with the above mean and variance is given by

, where
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Then, given , the unbiased estimating equation for ßj is

(16.2.1)

No such estimating equation exists for . However, an unbiased
estimating equation for  can be obtained by using moment method,
which, when the k ß parameters are estimated is [Breslow (1984, 1990)
and Moore and Tsiatis (1991)]

(16.2.2)

Denote the estimates of ß and , obtained by solving equations (16.2.1)
and (16.2.2) simultaneously, by .

16.2.3 Estimation Using Quadratic Estimating Equations

For joint estimation Crowder (1987) proposed a general class of
estimating functions called the quadratic estimating functions. Joint
estimation of the parameters by the quadratic estimating functions avoid
the failure of the maximum quasi-likelihood estimation to give
reasonable results. For more details see Crowder (1987). We consider
estimating functions quadratic in Zi that has general form (3.1) of
Crowder (1987)

 

where ai� and bi� are specified nonstochastic functions of �. Thus, the
unbiased quadratic estimating equations for ß1,…, ßk and  have the
form

(16.2.3)
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and

(16.2.4)

If we take

 

and

 

we obtain the Gaussian estimating equations [see Paul and Islam
(1998)]. Denote the estimates by .

If we take ,  and 
then we obtain the unbiased estimating equations(QEE’s) studied by
Paul and Islam (1998) which were obtained by combining the quasi-
likelihood estimating equations for the regression parameters and the
optimal quadratic estimating equations of Crowder (1987) for the
dispersion parameter after setting �1 and �2 to zero. Denote the estimates
so obtained by .

For

 

and

 

where, , we obtain the optimal quadratic estimating
equations [Crowder (1987)]. Note that the forms of the skewness �1i
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and the kurtosis �2i are not known. We take these based on the second,
third and fourth moments of the beta-binomial distribution, which are:

 

and

 

Denote the estimates obtained by solving these optimal quadratic
estimating equations by . Further, denote the estimates obtained
by solving the optimal quadratic estimating equations with �1i�=�2i�=0
by . Note, the estimates  are also obtained by using the pseudo-
likelihood estimating equations of Davidian and Carrol (1987).

Finally, if we take 

and , we obtain a set of unbiased estimating

equations obtained by combining the quasi-likelihood estimating
equations for . the regression parameters and the Gaussian likelihood
estimating equation for Denote the estimates by .

16.3 ASYMPTOTIC RELATIVE EFFICIENCY

We compare the asymptotic relative efficiency of the estimates 
obtained by the seven estimation procedures. Asymptotic relative
efficiency of  is , where t=QL, GL, M1, M2, M3, M4.
Expressions for  and Var(�QL) have been obtained by Paul and
Islam (1998). So, we omit these from presentation in this paper. The
estimating equations for all the other five estimates given in this paper
have the general form (16.2.1) with specific expressions for

 for each method given in Section 16.2. So, asymptotic
 are given in general forms.

From results of Inagaki (1973), the estimators , t=GL, M1, M2, M3,
M4 under conditions similar to those for which standard ML asymptotics
hold, is consistent and asymptotically, as m→∞, normal with covariance
matrix
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where A(�) B(�) are (k+1)×(k+1) matrices with

 

and

 

where µ2i, µ3i, µ4i are the second, third and the fourth moments of zi. The
forms of the third and the fourth moments of the zi are generally
unknown. However, for the purpose of comparison, we consider the third
and fouth moments of zi based on the beta-binomial distribution as given
in Section 16.2. Note that with no covariate we have only two parameters
�=eß1/(1-eß1) and  and dij(ß)=1.

For numerical relative efficiency comparisons we consider a model
with two parameters � and  and a simple logit linear regression model
with parameter ß0, ß1 and . As in Paul and Islam (1998) we consider
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litter sizes [obtained from a real life experiment by Potthoff and
Whittinghill (1966)] ni:11, 1, 6, 7, 8, 6, 2, 19, 4, 2, 15, 6, 6, 10, 8, 4, 5, 6,
6, 4, 12, 8, 4, 5, 5, 6, 4, 10, 8, 11, 4, 4, 4, 2, 2, 3.

For the two parameter model we considered four sets of combinations
of the parameters π and  π=.05, .10(.05),…Z, .90; 
π=.05, .10(.05),…, .90; π=.1, ; π=.4, 

. The relative efficiency results for  are summarized
in Table 16.1 and those for  are summarized in Table 16.2.

For the three parameter model we took litter specific covariate values:
.005,.01, .015, .02, .025, .03, .005, .01, .015, .02, .025, .03, .005, .01, .015,
.02, .025, .03, .005, .01, .015, .02, .025, .03, .005, .01, .015, .02, .025, .03,
.005, .01, .015, .02, .025, .03. For the parameter ß0, ß1 and  we considered
six sets of values of , (1.5, .1), (10,.l), (.1,.4), (1.5,.4), (10,.4)
and considered each of these six sets of  with ß0=.05, .10(.05),…,
.90. The relative efficiency results for  are summarized in Table 16.3
and those for  are summarized in Table 16.4. The results for  are
similar to those for .

From Table 16.1 and Table 16.3 we see that the methods QL, M1 and
M4 provide high efficiency for the mean (regression) parameters. The
methods QL and M1 provide identical results and for method M4
efficiency, sometimes, drops to .92. Note that all these three methods
have the quasi-likelihood estimating equations for the mean (regression)
parameters. The method M2 shows high efficiency (never dropping below
.94). The method GL also produces high efficiency, although efficiency
drops considerably as all parameter values become large (for example,
for ß0=.8, ß1=10,  efficiency drops to .80). The method M3 shows
inconsistent behavior. Efficiency, some times is very low (for π=.05,

 efficiency is .37) and some times very high (for ß0=.8, ß1=10, 
efficeincy is 1.44).

From Table 16.2 and Table 16.4 we see that efficiency of by  the QL,
M1 and M3 methods are, in general, lower than those given by the
methods GL, M2 and M4. Sometimes the efficiency drops to close to
zero. Efficiency of  by the methods M2 is consistently the best. The
next best appears to be the GL method. The efficiency of  by the method
M4 is close to that by the GL method, slightly lower in some instances.
For the joint estimation it appears that the method M2 (the optimal
quadratic estimating equations) produces the best efficiency results.
Both the GL and the M4 methods produce good efficiency results,
although on the whole, it looks as though the method M4 has an edge
over GL. Note that the method M4 combines the good behaviour of the
quasi-likelihood estimating equations for the mean (regression)
parameters with the GL estimating equation for the dispersion
parameter. Note also that given , the quasi-likelihood estimating
equations for the regression parameters ßj, j=1,…, k are optimal and
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given ßj, j=1,…, k the GL estimating equation for , being a likelihood
equation, is optimal.

16.4 EXAMPLES

In this section we analyse three sets of real data. The first two sets of
data do not involve covariates while the third set involves covariates.

Example 16.4.1 This is an example of a set of biological data. The
data given in Table 16.5 from Potthoff and Whittinghill (1966) refer to
cross-overs in fruit flies. For this data set the estimates of π and  by
the different methods and the estimated relative efficiencies are given
in Table 16.6. Estimates of π by all methods have high efficiencies.
Estimate of  by the QL method has relatively low efficiency.
Estimates of  by all other methods have similar and reasonably high
efficiency (80%).

Example 16.4.2 This is an example of a set of toxicological data. The
data given in Table 16.7 refer to proportion of affected foetuses in
litters of mice in the low dose group of Paul (1982). For this data set
the estimates of π and  by the different methods and the estimated
relative efficiencies are given in Table 16.8. Estimates of π by all
methods except method M3 have high efficiencies. Estimates of  by
the GL, M2 and M4 methods have very high efficiencies (above 94%);
the method M2 having the highest efficiency. Estimate of  by the QL
method has relatively lower efficiency (86%). Estimates of  by the
methods M1 and M3 have very low efficiencies.

Example 16.4.3 This is an example of an experiment in teratology
from Shepard, Mackler and Finch (1980). This was an experiment to
study the effects of chemical agents or dietary regimens on foetal
development in laboratory rats. Female rats were put on iron-
deficient diets and divided into four groups. One group of controls was
given weekly injections of iron supplement to bring their iron intake to
normal levels, while another group was given only placebo injections.
Two other groups were given fewer iron-supplement injections than
the controls. The rats were made pregnant, sacrificed 3 weeks later,
and the total number of foetuses and the number of dead foetuses in
each litter were counted. In addition, the hemoglobin levels of the
mothers were measured. The data are presented in Table 16.9. Moore
and Tsiatis (1991) analyse these data to select an appropriate model.
A complete analysis of the data is not intended here. For illustrative
purpose we take the quardratic model relating proportion dead in the
logit scale to the hemoglobin level. For this data set the estimates of
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ß0, ß1 and by  the different methods and the estimated relative
efficiencies are given in Table 16.10. Clearly method M2 is the best.
Next best, in terms of the efficiency of , is the method GL. In terms of
efficiencies of the estimates  and  the performance of the method
M4 is closer to that of the method M2.

16.5 DISCUSSION

In previous studies Crowder (1985) and Paul and Islam (1998) found
that the Gaussian likelihood method is best for the estimation of the
intraclass correlation . Those studies did not include estimates based
on the optimal quadratic functions. In this paper we study the
estimates based on the quadratic estimating functions in an unified
manner: We show that the Gaussian likelihood estimates (the GL
method), the estimates based on the combination of the quasi-likehood
estimates for the regression parameters and the optimal quadratic
estimating equation for  after setting the skewness and kurtosis to
zero (the M1 method) and the estimates based on the pseudo-likelihood
estimating equations of Davidian and Carrol (1987) (the M3 method)
are all special cases of the quadratic estimating equations. The present
study of the estimates through large sample efficiency and data
analyses show that the estimates based on the optimal quadratic
estimating equations with the third and fourth cumulants of the beta-
binomial distribution are the best, not only for the dispersion
parameter but also for the joint estimation of the regression
parameters and the dispersion parameter. The next best, at the cost of
some loss of efficiency, are the GL or the M4 method. The M4 method
has simpler estimating equations (the QL) for the regression
parameters. Neither of these methods require the knowledge of the
third and the fourth cumulants.

Note that the large sample efficiency results are similar for both the
simulated data and the real data analysed here. Although, small
sample properties of some these estimates have been found by earlier
studies [Crowder (1985) and Paul and Islam (1998)] to be similar to the
large sample properties it might be worthwhile to conduct a small
sample study of the properties of the estimates by the quadratic
estimating equations, particularly, because, the optimal quadratic
estimating equations involve the third and fourth cumulants of the
beta-binomial distribution.
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TABLE 16.1 Asymptotic relative efficiency of  by the QL, GL, M1=(QL
and QEE combination), M2=QEE, M3=(QEE with �1=�2=0) and M4=(QL
and GL combination) methods; two parameter model
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TABLE 16.2 Asymptotic relative efficiency of  by the QL, GL, M1=(QL
and QEE combination), M2=QEE, M3=(QEE with �1=�2=0) and M4=(QL
and GL combination) methods; two parameter model
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TABLE 16.3 Asymptotic relative efficiency of  by the QL, GL, M1=(QL and
QEE combination), M2=QEE, M3=(QEE with �1=�2=0) and M4=(QL and GL
combination) methods; the simple logit linear regression model
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TABLE 16.4 Asymptotic relative efficiency of  by the QL, GL, M1=(QL and
QEE combination), M2=QEE, M3=(QEE with �1=�2=0) and M4=(QL and GL
combination) methods; the simple logit linear regression model
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TABLE 16.6 The estimates  and  and their estimated relative efficiencies
by the ML, QL, GL, M1=(QL and QEE combination), M2=QEE, M3= (QEE with
�1=0, �2=0) and M4=(QL and GL combination) methods for the cross-over data

TABLE 16.7 The toxicological data of law dose group from Paul (1982). m=19
litters. y=number of live foetuses affected by treatment, n=total of live foetuses

TABLE 16.5 Number of the cross-over offsprings in m=36 families from Potthoff
and Whittinghill (1966). y=number of ++ offsprings, n=total cross-over offsprings
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TABLE 16.8 The estimates  and  and their estimated relative efficiencies
by the ML, QL, GL, M1=(QL and QEE combination), M2=QEE, M3= (QEE with
�1=0, �2= 0) and M4=(QL and GL combination) methods for the toxicology data
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TABLE 16.9 Low-iron rat teratology data. N De-
notes the litter size, R the number of dead foetuses,
HB the hemoglobin level, and GRP the group
number. Group 1 is the untreated (low-iron) group,
group 2 received injections on day 7 or day 10 only,
group 3 received injections on days 0 and 7, and
group 4 received injections weekly
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TABLE 16.10 The estimates ,  and  and their
estimated relative efficiencies by the ML, QL, GL,
M1=(QL and GL combination), M2=QEE, M3=(QEE
with �1=0, �2=0) and M4=(QL and GL combination)
methods for the low-iron rat teratology data
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CHAPTER 17

SEMIPARAMETRIC
LOCATION-SCALE REGRESSION
MODELS FOR SURVIVAL DATA

XUEWEN LU

Agriculture and Agri-Food Canada, Guelph, Ontario, Canada

R.S.SINGH

University of Guelph, Guelph, Ontario, Canada

Abstract: In survival analysis, a special class of accelerated failure time
models has a log form: logT=�(Z, X)+σε, where T is a random variable
denoting the event time, (Z, X) are covariates, �(�,�) is a regression
function, ε is a random disturbance term. This type of model is also called
location-scale model for log lifetime T, where �(Z, X) is the location term
and σ is the scale parameter. In this paper, covariates are modeled as �
(Z, X)=ZTß+λ(X), Z may be vector-valued, X is a univariate. ß is an unknown
parameter vector, λ takes value in a real line and is an unknown smooth
function. Hence, the relationship between response and covariates is
modeled semiparametrically, the conventional maximum likelihood is
not directly applicable to estimate the parametric components. This paper
uses the method of Severini and Wong (1992, Annals of Statistics, 20,
1768–1802) to construct asymptotically efficient estimators of the
parametric component and to specify their asymptotic distributions. An
application to the Primary Biliary Cirrhosis Data is provided.

Keywords and phrases: Asymptotic, accelerated failure time model,
censored data, generalized profile likelihood, location-scale model,
semiparametric regression
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17.1 INTRODUCTION

The accelerated failure time model is an important class of regression
models in survival analysis. A number of these models have a log form:

(17.1.1)

where ε is a random disturbance term, T is a random variable denoting the
event time. �(X) is a regression function, σ is an unknown parameter. This
model is also called location-scale model for log lifetime T, where �(X) is the
location term, � is the scale parameter. When �(X) has a parametric from,
for example, �(X)=XTß, it is well known that one can use the maximum
likelihood estimation to analyze this model, Kalbfleisch and Prentice (1980)
and Lawless (1982) give a detailed introduction on the parametric regression
model in the context of survival analysis. Most statistical softwares, for
example, SAS and Splus can analyze some standard accelerated failure
time models. In SAS, the LIFEREG procedure produces estimates of five
types of models, it allows for five distributions for ε: normal, extreme value
(2 parameter), extreme value (1 parameter), log-gamma and logistic. the
function SURVREG in Splus does the similar things. But these packages
lack the ability to analyze the model in which the regression function �(X)
is not parametrized to a linear form or it contains unknown regression
functions.

In the situation of censored data, when no assumptions are made
about the form of the regression relationship and the distribution of ε,
in order to estimate the functional form of �, Fan and Gijbels (1994) use
nonparametric regression techniques to transform the observed data
in an appropriate way and then apply a locally weighted least squares
regression. In this paper, we introduce the following semiparametric
regression model,

(17.1.2)

In fact, this is a partly linear model. Using this model, rewrite (17.1.1) as

(17.1.3)

where Y=logT is log lifetime. We assume that λ(x) is a smooth function of
x from  to  and σ is an unknown scale parameter. ß is an unknown �×1
parameter vector. (Z, X) is a vector of explanatory variables. The variable
X is continuous with values in a closed interval , and Z is discrete
or continuous with values in .

The paper is organized as follows. Section 17.2 of the paper introduces
the likelihood for the location-scale model under censoring. Section 17.3
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describes the generalized profile likelihood and investigates the finite sample
behavior of the maximum generalized profile likelihood estimator. Section
17.4 presents three types of semiparametric location-scale regression models
with the computation given in the Appendix. Finally, Section 17.5 illustrates
the performance of the proposed procedure via analysis of the Primary
Biliary Cirrhosis data.

17.2 LIKELIHOOD FUNCTION FOR THE PARAMETRIC
LOCATION-SCALE MODELS

Assume that S0(�) is the survivor function for ε, f0(�) is its p.d.f., λ(x) is
parametrized as λ(x)=λ(x; γ). Then the survivor function for Y, given
(Z, X)=(z, x), is of the form S0(�), where . The
p.d.f. for Y=log T can be written

 

Let f(t|z, x) denote the conditional density function of Y given (Z, X)=(z, x),
and let S(t|z,x)=P{Y>t|(Z, X)=(z, x)} be its conditional survivor function.
The conditional distribution function of censoring random variable C given
(Z, X)=(z, x) is denoted by G(t|z,x). Then under independent and
noninformative censoring (i.e., G(t|z,x) does not involve the parameters
σ, ß and γ), the conditional likelihood function is given by

(17–2.4)

where  and  denote respectively the products involving the
uncensored and the censored observations. Let δi represent the censoring
indicator, i.e. δi=[Ti≤Ci], and Yi represent a log lifetime or a log censoring
time for ith individual, i.e. Yi=min(logTi, log Ci), the likelihood function
can be written as

(17.2.5)

where �=(ßT, σ)T, . Under the locationscale
model (17.1.3) with �(x)=�(x; �), we have the log-likelihood for the
sample
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(17.2.6)

Maximization of (17.2.6) leads to the maximum likelihood estimators
of �, ß and �.

17.3 GENERALIZED PROFILE LIKELIHOOD

If �(x) is not parametrized, to estimate the parameter � and the
nonparametric smooth function �(x), we apply the generalized profile
likelihood method of Severini and Wong (1992) and Stein (1956). This
method is applied by Severini and Staniswalis (1994) in studying the
quasi-likelihood estimation in semiparametric models and by Staniswalis,
Thall and Salch (1997) in semiparametric regression analysis for recurrent
event interval counts. Generalized profile likelihoods are an extension to
semiparametric models of the profile likelihood for parametric models.
The resulting estimator of � converges to the true parameter value at a

 rate and is asymptotically efficient for conditionally parametric
models.  is uniformly consistent for �(x).

17.3.1 Application of Generalized Profile Likelihood to
Semiparametric Location-Scale Regression Models

Let Z, X and (Y, 	) be random variables such that the distribution of
(Y, 	) conditional on (Z, X)=(z, x) is ,
where  ,  and �(x)
is a smooth function of x. It is assumed that the joint distribution of the
explanatory variables Z and X does not contain information about � or
�. Severini and Wong (1992) refer to such a semiparametric model as
conditionally parametric because, conditional on (Z, X)=(z, x), the model
for (Y, 	) is parametrized by a finite-dimensional parameter .

Set l=log(f), Severini and Wong (1992, pp. 1773–1774) show that the
least favorable curve �� maximizes

 

with respect to �. Here, E0 denotes expectation using the true parameter
value. An estimator of M(�; �, x) is constructed using nonparametric
smoothing. Severini and Wong (1992) propose the following estimator of
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(17.3.7)

where (Zi, Xi, (Yi,	i)); i=1,…, n are i.i.d. sample from the population (Z, X,
(Y, 	)), W(�) is a nonnegative weight function, Wb(�)=(1/b)W(�/b), b is the
bandwidth. Then by maximizing  with respect to � for each fixed
� and x, an estimator  of the least favorable curve is obtained. The
estimator  that maximizes the generalized profile likelihood

 

with respect to � is obtained as the solution of

(17.3.8)

Under certain regularity conditions on the likelihood and the nonparametric
smoother, Severini and Wong (1992) establish that this estimator of � is
asymptotically efficient for conditionally parametric models and  is
uniformly consistent for �(x). They note that their results can easily be
extended to allow for multidimensional X, �.

17.3.2 Estimation and Large Sample Properties

The empirical version of M(�; �, x) given in (17.3.7) is a consistent estimation
of M(�; �, x), it is proportional to a local likelihood for estimating ��(x). For
fixed �, let  be the maximizer of (17.3.7). Substituting  into the log-
likelihood (17.2.6), we obtain the generalized profile likelihood  for
�. Let  be the maximizer of  with respect to �. Then  is an
estimator of the true parameter value �0.

We now discuss the large sample properties of  For establishing the
consistency and asymptotic normality of  the estimator  must be a
consistent estimator of a least favorable curve and must satisfy the nuisance
parameter (NP) conditions of Severini and Wong (1992, p. 1779). These
can be verified without difficulties by an application of their Lemma 5.

We now establish the consistency and asymptotic normality of .
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Theorem 17.3.1 Let  be any element of 
 satisfying

 

where 
 is a compact subset of  (since �>0). Then, under the
regularity conditions provided by Severini and Wong (1992),

 

Theorem 17.3.2 Under the regularity conditions given above,

 

where i� is the marginal Fisher information matrix for � given by

 

v*=  is the least favorable direction. i� can be consistently estimated by
.

Theorem 17.3.1 and Theorem 17.3.2 follow from Propositions 1 and 2
of Severini and Wong (1992). From their NP conditions along with the
fact that , we obtain following result on the estimation
of nonparametric component:

Theorem 17.3.3 

17.4 EXAMPLES OF SEMIPARAMETRIC LOCATION-
SCALE REGRESSION MODELS

Example 1: Extreme value and Weibull regression models.

If the p.d.f of lifetime T, given (Z, X)=(z, x), is of the form

 

which is a Weibull model, then the p.d.f of Y=logT, given (z, x), is
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where . This model can be
written as

 

where ε has a standard extreme value distribution with p.d.f f0(s)=exp(s-
es), -∞<s<∞. We have S0(s)=exp(-es), then

 

and

 

where we define 
 . In this case’ equation  in Step a

of computations (see Appendix) may be solved explicitly to obtain

 

then an iterative approach of (17.5.9) given in Appendix yields .

Example 2: Normal and log-normal regression models.

If we consider regression models in which lifetime T is log-normal, then
log lifetime Y=logT is normally distributed, ε has a standard normal
distribution, , S0(s)=1-Φ(s). Hence we have

 

and

Example 3: Logistic and log-logistic regression models.

If we consider regression models in which the distribution of lifetime T
is log-logistic, then distribution of log lifetime Y=logT is logistic. ε has a
logistic distribution with p.d.f and survivor function
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Hence, we have

 

 

and

 

17.5 AN EXAMPLE WITH CENSORED SURVIVAL DATA:
PRIMARY BILIARY CIRRHOSIS (PBC) DATA

The data set is found in Appendix D of Fleming and Harrington (1991).
Between January 1974 and May 1984, the Mayo Clinic collected data
on PBC, a rare but fatal Chronic liver disease of unknown cause of the
412 registered patients, the first 312 cases participated in the
randomized trial, and contain largely complete data; Our analysis is
based on those patients. A more extended discussion can be found in
Fleming and Harrington (1991, Chap. 4). In this study, the response T
is the time (in days) between registration and death, or liver
transplantation or time of the study analysis (July 1986), we study the
effects of AGE (in months), Log(ALBUMIN), Log(BILIRUBIN),
Log(PROTIME) (PROTIME=Prothrombin time) and EDAME. Fleming
and Harrington (1991) find that the model with these five variables is
biologically reasonable.

We fit semiparametric Log-normal, Log-logistic and Weibull models
respectively. We use the quartic kernel

 

with the boundary modification of Rice (1984). the bandwidth is chosen
by visual inspection. Table 17.1 presents the results for the estimates
of parameters. Figures 17.1–17.3 report the functional form for AGE
and the linear lines fitted by the fully parametric models. These three
models give similar results. Relying on the shapes of the semiparametric
model estimates of �(.) in Figure 1–3, we find that a linear function of
AGE provides a reasonable fit. Thus, the parametric model logT is �
(Z, X)=ß0+ß1*AGE+ß2*log (ALBUMIN) + ß3*log (BILIRUBIN) + ß4*EDEMA
+ ß5*log(PROTIME) One can see in the Table 17.1, the numerical values of
the estimates of parameters common to both parametric and
semiparametric models are very similar. However, the standard errors
of the parameter estimates are slightly different, suggesting that we
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may have not completely succeeded in capturing the true shape of the
functional form for AGE. Note the shape of the estimated curve for
AGE, we see that there are two peaks and three troughs, which are
shifted in time, the overall behave of this curve is that it decreases with
aging. This reflects the fact that the log-survival time decreases with
aging, but it may increase locally with aging.
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APPENDIX: COMPUTATION OF THE ESTIMATES

Please note that the method provided in previous sections may be
computationally intensive since each evaluation of  requires a
separate maximization of  for each X=xj, j=1,…, n. The

computation of an estimator  also involves tedious work. If  has a
closed-form, the procedure is very much simplified, this is seen in Section
17.4 from the Extreme Value Regression Model.

We now establish an algorithm for computing the estimates of �= (ßT,
�)T and �. Let l((Yj, 	i)�,�)=log f((Yj, 	i);�,�)=	j[log f0 (��j(�)]+ (1-	j) log[
1-S0(��j(�))]-	j log�, . Define

 

and

 

 
Then �=(ßT�)T and � are estimated by the following procedure:

a. For each x, �, calculate  by solving  for �.

b. Estimate � by solving  for �.

c. Estimate � by 

We consider step b for calculating . Let  denote the (�+1)×(�+1) matrix
by

 

Using Newton-Raphson iterative method, an initial estimate  can be
updated to  using

(17.5.9)

This iteration can be continued until convergence. The estimated
asymptotic covariance matrix of  can be determined using .
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Denote by  and . Usually,
iterative methods are also needed to calculate .
For fixed � and x, consider step a, solving .
Because

 

and

 

Then an initial estimate �0 can be updated to � by Newton-Raphson method:

(17.5.10)

As for calculating  since  satisfies  for

all �, x, it follows that

(17.5.11)

Denote  noticing that

 

and

 

then

 

Hence, for k, l=1,…, �, we have
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and

 

 

 

Solving these equations, we get, for k, l=1,…, p,

(17.5.12)
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(17.5.13)

(17.5.14)

    

(17.5.15)

(17.5.16)

We find an interesting phenomenon, if k or l is replaced by (r+1) in 
and , then let the associated term Zjk or Zjl be replaced by , we
obtain ,  and .

After we obtain the estimates of ��(x), etc., we can compute the
estimates of �. Denote by

 

Recall that
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where

 

 

and
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Then
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TABLE 17.1 Estimates of the parameters under
the semiparametric and parametric models for PBC
data
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TABLE 17.1 (cont’d) Estimates of the parameters under
the semiparametric and parametric models for PBC
data (cont’d)
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FIGURE 17.1 Fitted function for age using semiparametric log-normal model
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FIGURE 17.2 Fitted function for age using semiparametric log-logistic model
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FIGURE 17.3 Fitted function for age using semiparametric extreme value model
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CHAPTER 18

ANALYSIS OF SATURATED AND
SUPER-SATURATED

FACTORIAL DESIGNS: A
REVIEW

KIMBERLY K.J.KINATEDER DANIEL T.VOSS
WEIZHEN WANG

Wright State University, Dayton, OH

Abstract: Various methods have been proposed in the literature for
the analysis of saturated and super-saturated factorial designs, but few
of these methods are known to provide strong control of error rates.
This paper is a review of known results and open problems concerning
the strong control of error rates in the analysis of such designs.

Keywords and phrases: Closed test, directional inference, effect
sparsity, experiment-wise error rate, orthogonal factorial design, non-
orthogonal factorial design, saturated design, step-down test, stepwise
test, super-saturated design

18.1 INTRODUCTION

This paper concerns methods of analysis of saturated and super-saturated
designs which strongly control error rates for individual or family-wise
inference. Methods known to strongly control error rates are reviewed, with
discussion of the techniques by which the results have been established.
Also, a variety of related open problems are stated.

Substantial progress has been made establishing methods of analysis
of orthogonal saturated designs. Methods known to strongly control error
rates include: an exact, closed, step-down test for simultaneously testing

Copyright © 2002 Taylor & Francis



K.K.J.KINATEDER, D.T.VOSS and W.WANG326

the hypotheses H0i:�i=0 (i=1, 2,…, k), applicable for a broad class of statistics
[Voss (1988)]; analogous exact individual tests of the each of the hypotheses
H0i:�i=0 [Berk and Picard (1991)]; exact individual confidence intervals
[Voss (1999)]; and exact simultaneous confidence intervals [Voss and Wang
(1999)].

There remain a number of open problems concerning the analysis of
orthogonal saturated designs. Strong control of error rates has not been
established for any of the following methods: the aforementioned methods
of Voss (1988), Berk and Picard (1991), Voss and Wang (1999), and Voss
(1999) if the methods are adaptive with respect to the number of terms
used to form the denominator of each statistic; adaptive methods along
the lines of Lenth (1989); step-down tests using sharper critical values
as recommended by Zahn (1975a, b), Venter and Steel (1998), and
Langsrud and Naes (1998), and as discussed by Voss (1988); and the
step-up tests of Venter and Steel (1998) and Langsrud and Naes (1998).
It is also an open problem to show that directional error rate is controlled
for the step-down tests of Zahn (1975a,b), Voss (1988), Venter and Steel
(1998), and Langsrud and Naes (1998), or for the step-up tests of Venter
and Steel (1998) and Langsrud and Naes (1998).

For saturated designs which are non-orthogonal, there has been very
little progress developing methods known to strongly control error rates.
It is problematic that the estimators are correlated. Kunert (1997)
provided a method of transforming the correlated estimators into
uncorrelated estimators, with k! possible such transformations to
orthogonality. Furthermore, he proposed the use of either a
predetermined transformation or the best of the k! transformations to
obtain an improved variance estimator—namely, one which is robust
to the presence of a few non-negligible effects. Using such variance
estimators, he also proposed methods of data analysis but did not
establish strong control of error rates. Kinateder, Voss and Wang (1999)
obtained exact individual confidence intervals for each of the effects �i

(i=1, 2,…, k), using Kunert’s (1997) method of transformation to
orthogonality. The result depends on making an a priori choice of one of
(k-1)! possible transformations, where the (k-1)! choices depend on i.
However, the method of Kinateder, et.al. has its shortcomings, as will
be discussed in Section 18.4.

Concerning the analysis of non-orthogonal saturated designs, there
are more open problems than results. It remains an open question
whether the confidence intervals of Kinateder, Voss and Wang (1999),
with appropriate modification of critical values, would strongly control
the error rate if any of the (k-1)! possible transformations is used.
Alternatively, tighter confidence intervals might be obtained if a
methodology could more directly take into account the correlation structure
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of the estimators. More generally, there are still no methods of simultaneous
inference, either tests or confidence intervals, known to strongly control
error rates.

Finally, for the analysis of super-saturated designs, there are still no
methods which are known to strongly control error rates. It remains an
open problem to find individual or simultaneous tests or confidence
intervals in this case.

18.2 BACKGROUND

Consider the analysis of data for an unreplicated or fractional factorial
design which is saturated or super-saturated. Suppose there are n
observations and k parameters of interest. Denote the parameters by
�i, for i . These are typically treatment contrasts.
Throughout this paper we assume effect sparsity—namely, that few of
the effects are nonzero (or non-negligible).

Also assume throughout the paper that the following linear model is
appropriate:

 

where Yn×1 is a vector of independent, normally distributed observations
with common unknown variance �2, Xn×p is the design matrix, ßp×1 is the
vector of unknown parameters, and In×n is the identity matrix. Without
loss of generality, the vector �����k×1 of effects of interest is of the form �����=Cß
for some k×p matrix C of rank k.

18.2.1 Orthogonality and Saturation

For purposes of analysis, we classify the designs of interest into three
types: orthogonal saturated designs, non-orthogonal saturated designs,
and super-saturated designs. A design is saturated or super-saturated
if the rank of the design matrix X is n. Then all degrees of freedom are
consumed by the estimation of model parameters, leaving no degrees of
freedom for error. Given a saturated or super-saturated design, the
design is saturated if the vector ����� is estimable—otherwise, the design
is super-saturated. In other words, a design is saturated if the rank of
Xn×p is n and the row space of C is in the row space of X. A design is
super-saturated if the rank of Xn×p is n and the row space of C is not in
the row space of X. A design is necessarily super-saturated, for example,
if n<k +1, the effects of interest are treatment contrasts, and the model
includes an intercept.
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For a saturated design, the vector of  effect (least squares) estimators
is of the form

 

where An×k is of full rank k. A saturated design is orthogonal if the matrix
A’A is diagonal, or equivalently, if the columns of A are orthogonal—
otherwise, the design is non-orthogonal.

For example, consider the regular  fractional factorial design
shown in Table 18.1, (with defining relation generated by the effects
ABD, ACE, BCF and ABCG). The n=8 observations allow the
independent estimation of the k =7 factorial main effects, the matrix A
being 1/4 times the array in Table 18.1. However, having n=k+1 leaves
no error degrees of freedom after adjustment for mean response. The
same design would be super-saturated if used to estimate all main effects
and two-factor interactions of the seven factors.

TABLE 18.1 A regular  fractional factorial design

Another example is the Plackett-Burman (1946) design in Table 18.2
for n=12 observations. This is an orthogonal saturated design for the
estimation of the main effects of k=11 factors each at two levels under a
first-order model. The 12 observations allow the independent estimation
of the k=11 factorial main effects, the matrix A being 1/6 times the
array in Table 18.2. However, having n=k+1 leaves no error degrees of
freedom after adjustment for mean response. The same design would
be nearly saturated, but non-orthogonal, if used for any four of the factors
to model their four main effects and six two-factor interactions. The
same design would be super-saturated if used to estimate the main effects
and two-factor interactions of any five of the factors.
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The main challenge for a saturated design is that there are no error
degrees of freedom for independent estimation of variability. Consequently,
the data analysis depends on the relative magnitudes of either the effect
estimates or their sums of squares. Such methods of data analysis invariably
depend on an assumption of effect sparsity.

18.2.2 Control of Error Rates

This paper concerns the strong control of error rates, individually or
familywise, in the analysis of saturated and super-saturated designs.

Individual and familywise control of error rates

Control of individual error rates is control of the Type I error rate for
testing each null hypothesis Hi0:�i=0 or, equivalently, control of the
confidence level associated with each confidence interval (Li, Ui) for �i,

 Familywise control of error rates is control of the chance of making
any Type I errors while testing the family of k hypotheses Hi0:�i=0 ,
or, equivalently, control of the level of confidence that all of the k
confidence intervals (Li, Ui)  are simultaneously correct. [See
Hochberg and Tamhane (1987, pages 5–12).]

Even in the analysis of a screening experiment, there is value in the
use of both individual and familywise inference procedures. Then failure
to identify a non-negligible effect (a Type II error) may be more
detrimental than falsely asserting a nonexistent effect to be statistically
significant (a Type I error). Individual inference procedures are generally

TABLE 18.2 The 12-run Plackett-Burman design
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preferred for the analysis of screening experiments because of their greater
power. However, this greater power is at the expense of a higher rate of
false positives. In comparison, simultaneous methods of inference are more
conservative, but effects found to be significant by such methods are more
often real effects. Both individual and simultaneous inference procedures
should be used for the analysis of a screening experiment, since they provide
different information which is available at no cost!

Strong control of error rates

A procedure provides strong control of the error rate if the error rate is
controlled over all parameter configurations [Hochberg and Tamhane
(1987, p. 3)]. For example, consider an individual confidence interval for
�1. Then the other effects �2,…, �k are nuisance parameters. It is not enough
that the confidence level for capturing �1 be as specified only if the other
parameters �2,…, �k are all zero, since they almost certainly are not.

For strong control of the individual error rate for a confidence interval
for �1, the desired probability inequality is of the form

(18.2.1)

where the inequality is understood to hold for all �����.
Similarly, for strong control of the familywise error rate for

simultaneous confidence intervals for the , the desired
probability inequality is of the form

(18.2.2)

If the appropriate probability inequality, (18.2.1) or (18.2.2), holds, and if
the infimum over ����� of the corresponding probability is 1-�, then the error
rate is �, the confidence level is 100(1–�)%, and the confidence intervals
are said to be exact. If the probability inequality holds but the infimum
exceeds 1-�, then the confidence intervals are conservative.

The notion of an exact confidence interval is equivalent to the notion of
a test being of size �, the size of an individual test being

 

Consider what is meant by the size when simultaneously testing the
hypotheses H0i:�i=0 for . Let I be a non empty subset of K=
{1, 2,…, k}. Then  denotes the hypothesis that H0i is true for
all , viewing each hypothesis as a subset of the parameter space.
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For simultaneous testing the k hypotheses H0i, the size of the test is

 

For strongly controlling error rates in the analysis of saturated and
supersaturated designs, the nature of the problem and the results
available depend upon the design. The easiest case is when the design
is orthogonal and saturated, as discussed in Section 18.3. Non-orthogonal
saturated designs may be analyzed by transformation or projection to
orthogonality, as will be discussed in Section 18.4. For a super-saturated
design, nonestimability of  poses additional problems for the analysis, as
discussed in Section 18.5.

18.3 ORTHOGONAL SATURATED DESIGNS

18.3.1 Background

This section contains a review of known results and open problems in the
analysis of orthogonal saturated designs. In this case,

 

where the covariance matrix  is diagonal and known up to
the constant �2. Since the estimators can be scaled each to have variance
�2, assume without loss of generality that D is the identity matrix. Thus,
we assume  and independent . Effect sparsity is also
assumed.

There have been many methods proposed for the analysis of
orthogonal saturated designs.

Daniel (1959) made a fundamental contribution, using half-normal
plots for the subjective analysis of orthogonal saturated designs.
Normal probability plots are still widely used for this purpose even
today.

At the same time, Daniel (1959) and Birnbaum (1959) considered more
formal, objective methods of analysis of such designs. Each considered
testing for a nonzero effect, assuming at most one effect is nonzero.
Birnbaum provided an optimal decision rule for this case, based on the
size of the largest of k independent sum of squares relative to the total
sum of squares (or equivalently, to the sum of the rest of the effect sums of
squares). An optimal level-� test for the detection of at most one nonzero
effect could be iterated to test for multiple nonzero effects, but the iterative
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procedure would no longer be level-� or optimal. Birnbaum also considered
optimal decision rules in the case of at most two nonzero effects, noting
that the problem was then already quite complex. Zahn (1975a,b) considered
some variations on the iterative methods of Daniel (1959) and Birnbaum
(1959), but his results were primarily empirical. The subjective use of
normal probability plots remained the standard methodology for the analysis
of orthogonal saturated designs until the late 1980’s.

Then Box and Meyer (1986, 1993) provided Bayesian methods for
obtaining posterior probabilities that effects are active, and there
followed a flurry of papers proposing new frequentist methods, making
refinements on the methods, and making empirical comparisons of the
many variations. See for example papers by Voss (1988), Benski (1989),
Lenth (1989), Berk and Picard (1991), Loh (1992), Juan and Peña (1992),
Schneider, Kasperski and Weissfeld (1993), Dong (1993), Torres (1993),
Haaland and O’Connell (1995), Venter and Steel (1996, 1998), Voss and
Wang (1999), and Langsrud and Naes (1998). Hamada and Balakrishnan
(1998) provide an extensive review of existing methods, including a
Monte Carlo-based comparison of the operating characteristics of the
methods.

All of the afore-mentioned methods rely on an assumption of effect
sparsity. Most of the methods are heuristically appealing, and in many
cases the operating characteristics have been studied empirically or
justified in approximation. However, relatively few of the methods are
known to provide strong control of error rates, which is the focus of this
work.

The objective here is to obtain tests of the hypotheses Hi0:�i=0 or
confidence intervals for the parameters  which strongly control
error rates either individually or simultaneously. Strong control of error
rates and confidence levels requires establishment of appropriate
probability inequalities, which corresponds to a stochastic ordering of
distributions. In order to establish this theoretically, the following
definition and lemma are useful.

A family of distribution functions F�(x) on the real line, with a real
parameter �, is said to be stochastically decreasing if �<�’ implies F�(x)≤
F�’ (x) for all x [Lehmann (1986, p. 84)].

The following lemma follows from similar results of Alam and Rizvi
(1966) and Mahamunulu (1967), used in the ranking and selection
literature for identifying least favorable configurations. For related
discussion of applications to ranking and selection, see Gupta, Huang
and Panchapakesan (1982).

Lemma 18.3.1 [Stochastic Ordering Lemma, Voss (1999)] Let ,
with real parameter �i, be a stochastically increasing family of distribution
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functions on the real line, for i=1, 2,…, k. Let X1, X2,…, Xk be independent
random variables, where the distribution function of Xi is . For
any fixed i, 1≤i≤k, if the statistic t=t(x1, x2,…, xk) is a non-increasing
function of xi when all xj for ji are held fixed, then the distribution of
T=t(X1, X2,…, Xk) is stochastically decreasing in �i.

In the rest of this section, some known results and open problems
are discussed in some detail.

18.3.2 Simultaneous Stepwise Tests

Closed, step-down tests

The first procedure known to strongly control the error rate in the
analysis of an orthogonal saturated design was a closed, step-down
testing procedure of Voss (1988) for simultaneously testing the
hypotheses  ). The following broad class of statistics
was considered. Let  be a nonnegative, increasing function on the
nonnegative real numbers, and let , with corresponding order
statistics

 

The test statistics are of the form

(18.3.3)

where , for nonnegative scalars ai not all zero.
Included, for example, are the statistics

(18.3.4)

which compare the order statistics of the sums of squares to the quasi
mean squared error QMSE obtained as the average of the v smallest
sums of squares. These statistics are obtained if  and, for fixed
v (1≤v≤k), ai=1/v for i≤v and ai=0 otherwise.

Also included, for example, are the statistics

(18.3.5)

which compare the order statistics (i) of the absolute effect estimate
 to the average of the v smallest absolute effect estimates, for 

and, for fixed v (1≤v≤ k), ai=1/v for i≤v and ai=0 otherwise.
These test statistics include several statistics proposed in the literature.

They include for example the ratio of the largest sum of squares to the
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total sum of squares considered by Cochran (1941), the modulus-ratio
statistics of Daniel (1959), the X and S statistics of Zahn (1975a, b), and
(the square of) the ratio statistic of Schneider, Kasperski and Weissfeld
(1993).

A variation on the statistics in equation (18.3.3) is for D to be the median
or some other quantile of the absolute effect estimates. Then the statistics
in (18.3.3) are analogous to adaptive statistics used by Lenth (1989) and
others, except these are not adaptive. Adaptive methods are considered in
Section 18.3.6.

Voss (1988) obta ined the critical values as follows. For fixed function
 and scalar vector  let c�(i, a, k) be the upper-�

quantile of

 

under the null distribution—namely, when �i=0 for all i. Thus, �=
.

The step-down testing procedure of Voss (1988), illustrated here using
the statistics ss(i)/qmse of equation (18.3.4), is as follows. Let �(i) denote
the parameter corresponding to the ith smallest sum of squares, ss(i). If
ss(k)/qmse > c�(k,a, k), then assert �(k)0 and continue; otherwise stop. If
ss(k-1)/qmse>c�(k-1, a, k), then assert �(k-1)0 and continue; otherwise stop.
Continue in this fashion, asserting �(i)0 for each i such that ss(j)/
qmse>c�(j, a, k) for all j≥i.

Theorem 18.3.1 [Voss (1988)] This step-down testing procedure is of
familywise size �.

Proof of the above result was based on the following observation.
Denote the (unknown) number of negligible effects by m. Without loss
of generality, let the first m effects be negligible. A necessary condition
for a false assertion to occur is that

 

Under the null distribution, this occurs with probability �. Voss (1988)
argued that

 

is stochastically decreasing in  for each i>m, so

 

for all (�m+1,…, �k) when �1=�2=…=�m= 0. Application of the Stochastic
Ordering Lemma makes the proof rigorous. Because the probability bound
is achieved in the null case, the size of the test is �.
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Marcus, Peritz, and Gabriel (1976) provided a general method of
constructing step-down tests which strongly control the familywise error
rate. The method is called the closure method. Given the finite family of
hypotheses , the closure of this family is obtained by taking
all non-empty intersections of parameter spaces,  for

. The method hinges on the existence of a level-�
test of each hypothesis HI. The closed testing procedure rejects HI at level
� if and only if HK is rejected by its associated level-� test for all 
[For further details on step-down tests and closed tests, see Hochberg and
Tamhane (1987, pp. 53–54).]

The procedure of Voss (1988) is a closed, step-down test. To see this,
consider the test of HI. This hypothesis is rejected if

 

where |I| is the number of elements in the set I. By definition of the
critical value c�(|I|, a, k), the Type I error rate is exactly � when �i=0 for
all  Also, by the Stochastic Ordering Lemma, the distribution of

 is stochastically decreasing in |�j| for each . It follows
that the test of HI is of size a.

Iterative methods and sharper critical values: an open problem

In the step-down testing procedure of Voss (1988), the critical value c�(i, a,
k) is determined from the null distribution of the random variable

 

Here Ci is a function of all k random variables Xi, because .
Voss (1988) observed that sharper critical values are obtained if Ci is taken
to be a function of only i random variables. Specifically, c�(i, a, i)<c�(i, a,
k) for all i for which the former is well defined, which is the case if aj=0 for
all j>i. Use of the sharper critical values corresponds to iteratively testing
the effect corresponding to the largest of i estimators, for i=k, k-1,..., the
ith test statistic being a function of only i effects. Use of these sharper
critical values has been advocated for example by Daniel (1959), Zahn
(1975a, b), Venter and Steel (1998), and Langsrud and Naes (1998).

In fact, Venter and Steel (1998) considered a more general class of
statistics than those in equation (18.3.3). They considered statistics of
the form

(18.3.6)
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where  and  for nonnegative scalars aij not
all zero. Thus, the denominators Di can depend on i. It is reasonable to
allow �(x)=x2, which would enlarge the class of statistics. Concerning Di,
one could also allow aij to be nonzero for j≥i. While this in not desirable,
the resulting class of statistics (18.3.6) would then generalize those of
Voss (1988) in Equation (18.3.3).

For the step-down testing procedure, Venter and Steel (1998)
recommend using critical values obtained as the upper-� quantile of

 

under the null distribution of X1, X2,…, Xi, taking the X(j) in Di to be the
order statistics of only X1, X2,…, Xi, not of X1, X2,…, Xk. These critical
values were chosen so that, for , the test of “ ”
has Type I error rate � if �i is infinite for each .

Similarly, Langsrud and Naes (1998) propose forward selection and
backward elimination strategies, incorporating, but not requiring, an
independent estimator of error variance (�2). Their analysis involves
the statistics

(18.3.7)

where s2 denotes the independent error estimator with t degrees of freedom.
They provide a stochastic ordering result to compare different null
distributions of interest. Nonetheless, they do not go so far as to rigorously
strongly control error rates (termed “protection levels” in their work), but
rather establish the protection level in the null case.

Empirical evidence suggests that familywise error rate is strongly
controlled if step-down testing is used with the sharper critical values [Zahn
(1969, 1975b) and Venter and Steel (1998)], but this result has only been
proven for the cases of k=2, 3 [Zahn (1969)]. These tests are not closed,
step-down tests—the method provides no a-level test of the individual
hypotheses H0i:�i=0, for example. It remains an open problem to prove that
such methods strongly control the familywise error rate for k>3.

Directional inference: an open problem

Another open problem concerning step-down tests is the following.
Suppose a step-down procedure for testing the hypotheses 
controls the familywise error rate to be at most �. Is the error rate still
at most � if, for each hypothesis H0i rejected, one infers �i>0 if >0 and
�i<0 if <0? Shaffer (1980) and Holm (1979) establish such control of
directional error rate in other scenarios. See Hsu (1996, p. 20) for discussion.
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Step-up tests

Holms and Berrettoni (1969) proposed a step-up testing procedure for testing
the hypotheses , using the test statistics

 for i≥m, where m is a pre-specified integer, 1<m≤k.
More recently, Venter and Steel (1996, 1998) proposed using the same
step-up testing procedure but with the more general class of statistics
T(i)=X(i)/Di of equation (18.3.6). Following Venter and Steel (1998), the
procedure is as follows. For fixed m (1<m≤k), let n be the minimum
value in {m, m+1,…, k} such that T(i)>c�(i, ai), for critical values c�(i, ai),
ai=(ai1,…, ai, i-1) (i=m, m +1,…, k). The procedure is to infer �(i)0 for all
i=n, n+1,…, k, where �(i) is the parameter corresponding to ss(i). If no
such n exists, no inferences are made.

Venter and Steel (1998) conjecture that if c�(i, ai) is the upper-� critical
value of max{X1,…, Xi}/Di, then their step-up procedure strongly controls
the familywise error rate to be at most �. A similar conjecture can be
made for the step-up procedure of Langsrug and Naes (1998),
corresponding to equation (18.3.7). It remains an open problem to prove
these conjectures.

18.3.3 Individual Tests

Individual tests which strongly control error rates follow from the
existence of closed, step-down tests, since the closure method requires
the existence of an �-level test of each hypothesis Hi0:�i=0.

Theorem 18.3.2 [Berk and Picard (1991)] A size-� test of the hypothesis
Hi0:�i=0 is to reject Hi0 if Xi/D>c�(1, a, k), where Xi, D and c�(1, a, k) are
as defined for Theorem 18.3.1.

The critical value for testing Hi0 is obtained as the upper-� quantile
of the null distribution of X1/D, and �i is asserted to be nonzero if Xi/D
exceeds the critical value.

It is not clear whether directional error rate is controlled if a
directional inference is made when the null hypothesis is rejected. If
directional inference is desired, it can be obtained with a slight
modification of the denominator used to obtain a confidence interval
(see Section 18.3.4).

Loughin and Noble (1997) proposed using a permutation test with
the test statistic of Birnbaum (1959), comparing the largest sum of
squares to the sum of the rest, to test for a single non-negligible
effect. They also considered extensions to testing multiple effects,
recommending use of a step-up procedure. However, error rates were
considered only under the complete null distribution of no active
effects.
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18.3.4 Individual Confidence Intervals

Exact individual confidence intervals were obtained by Voss (1999). Strong
control of the error rate follows from the Stochastic Ordering Lemma,
once an appropriate pivotal quantity is identified. To obtain the pivotal
quantity, the denominator D used for individual and simultaneous tests is
modified to be independent of the estimator of the effect of interest.

To illustrate the method, consider a confidence interval for the first
effect, �1. Let

 

denote the order statistics of the k-1 sums of squares SSj excluding SS1.
Furthermore, let QMSE1 denote the quasi mean squared error obtained
as the average of the v smallest of these k-1 order statistics, for v a pre-
specified integer, (1≤v≤k). Then following Voss (1999),

(18.3.8)

is a pivotal quantity with respect to �1. By the Stochastic Ordering Lemma,
the distribution of (18.3.8) is stochastically decreasing in |�i| for all i 1.
Hence, we have the following result.

Theorem 18.3.3 An exact confidence interval for �1 is

 

where q�(v, k) is the upper-� quantile of the null distribution of the pivotal
quantity (18.3.8).

These confidence intervals are not adaptive. For open problems concerning
confidence intervals based on adaptive methods, see Section 18.3.6.

Conservative simultaneous confidence intervals can be obtained by
applying the Bonferroni method to these exact individual confidence
intervals, but exact simultaneous confidence intervals can also be
obtained, as seen next.

18.3.5 Simultaneous Confidence Intervals

Voss and Wang (1999) obtained exact simultaneous confidence intervals
for the k parameters �i, by consideration of the distribution of the maximum
of the pivotal quantities used by Voss (1999) for individual confidence
intervals. The method of proof differs, because the Stochastic Ordering
Lemma does not apply.
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Following Voss (1999), let

 

denote the order statistics of the k-1 sums of squares SSj excluding SSi,
and let QMSEi denote the quasi mean squared error obtained as the
average of the v smallest of these k-1 order statistics, where v is a
predetermined integer. Consider the distribution of

 

Voss and Wang (1999) showed that the distribution of M is stochastically
decreasing in each of the |�i| if each  has a symmetric unimodal
distribution, so that the null distribution can be used to obtain upper-�
critical values for exact simultaneous confidence intervals.

Theorem 18.3.4 [Voss and Wang (1999)] If the  are independently
distributed, and if  has a symmetric, unimodal distribution with mean
�i  then exact simultaneous confidence intervals are

 

where m�(v, k) is the upper-a quantile of the null distribution of M.

The Stochastic Ordering Lemma does not apply to M. Instead, this theorem
was established by direct computation of the distribution function of M,
with the problem reducing to consideration of the conditional distribution
of  for given ,…, .

18.3.6 Adaptive Methods

A challenging open problem is to show strong control of error rates for
adaptive methods of inference.

Lenth (1989) proposed use of an estimate of the error standard
deviation � that is adaptive to the number of nonzero effects. Specifically,
he computed a preliminary estimate

 

then obtained a second, more robust estimate as 1.5 times the median of
those absolute effect estimates not exceeding 2.5 0—namely,
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This estimate  is adaptive, because it is computed from a random number
of the smaller effect estimates.

Lenth then based tests on the ratios  and confidence intervals on
the quantities . He recommended use of critical values from
the t-distribution with k/3 degrees of freedom, based on fitting scaled
chisquared distributions to the empirical distributions of  for k=7, 15
and 31 by matching the first two moments. For variations on the method
of Lenth (1989), see Juan and Peña (1992), Dong (1993), and Haaland
and O’Connell (1995).

The estimate  and also the quantities  and  were shown
in Voss (1999) to not be monotone in the absolute values of the effect
estimates. Hence, the Stochastic Ordering Lemma does not apply, and
control of error rates and confidence levels for such adaptive methods
remains an important open problem, requiring an alternate method of
proof.

Other open problems concern adaptive versions of the step-down tests
of Voss (1988), the individual tests of Berk and Picard (1991), the
individual confidence intervals of Voss (1999), and the simultaneous
confidence intervals of Voss and Wang (1999). Specifically, suppose in
each case the denominator is obtained as the average of the v smallest
sums of squares. If the number of sums of squares, v, used to form the
denominator is adaptive—namely, if v varies from sample to sample—
then can the corresponding procedure be shown to strongly control the
error rate?

18.4 NON-ORTHOGONAL SATURATED DESIGNS

This section contains a review of known results and open problems in
the analysis of non-orthogonal saturated designs. The results are few
and the open problems many. The only method known to strongly
control error rates is an exact individual confidence interval procedure
of Kinateder, Voss and Wang (1999). The confidence intervals could
also be used for exact individual tests. The methodology is essentially
an extension of the results of Voss (1999) for the case of orthogonal
designs, utilizing projections to orthogonality introduced by Kunert
(1997).

In the non-orthogonal case, the vector of effect estimators is of the form
, where An×k=(a1,…, ak) is of full rank k, and

the matrix A’A is non-diagonal. The latter condition corresponds to the
columns of A being non-orthogonal.
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18.4.1 Individual Confidence Intervals

The method of Kinateder, Voss and Wang (1999) is presented here. Consider
obtaining an exact confidence interval for the first effect, �1. The
fundamental idea is to transform the dependent estimators  into
independent estimators , to which the Stochastic Ordering Lemma
can be applied to construct the desired confidence interval. Following
Kunert (1997), the transformation to independence is accomplished by use
of projections to orthogonalize the columns ai of An×k=(a1,…, ak).
Equivalently, one applies the Gram-Schmidt process to the columns of A
(without scaling the columns to have norm one) to obtain the matrix
Bn×k=(b1,…, bk) with orthogonal columns. It follows that B=AC, for
Ck×k=(chi) an upper-triangular matrix.

Then for  where 
 and D=B’B. The parameters  are called the induced effects. By

construction, the columns of B are orthogonal, so D=(dij) is a diagonal
matrix. Consequently, the estimators  (i=1,…, k) are independently
distributed, and  is an unbiased estimator of .

Because the induced estimators  are independently distributed, the
approach of Voss (1999) for an orthogonal design can be applied to the

 to obtain an exact confidence interval for �1. Specifically, the v smallest
sums of squares of the k-1 estimators  for i1 are pooled together into
a quasi mean squared error, QMSE1, for pre-specified integer v,
(1≤v<k).The quantity

 

is then a pivotal quantity with respect to �1, where 
, and the distribution of  is stochastically decreasing in 

for all j1.

Theorem 18.4.1 [Kinateder, Voss and Wang (1999)] An exact confidence
interval for �1 is

 

where q�(v,k) is the upper-� quantile of the null distribution of the pivotal
quantity 

Exact confidence intervals for each of the other k-1 effects can be
obtain analogously. Also, the existence of exact individual confidence
intervals implies the existence of exact individual tests.

An apparent shortcoming of the method of Kinateder, Voss and Wang
(1999) is that the induced effects  tend to have less effect sparsity
than the effects �1,…, �k� Specifically, the induced effect  corresponds in
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a sense to �i but is a linear combination of � 1,…, � i. This contamination
of  by some �j for j<i is a consequence of the nonorthogonality of the
design and the projection to orthogonality inherent in the methodology.

18.4.2 Open Problems

As noted previously, there are more open problems than proven methods
in the case of non-orthogonal saturated designs. Here are some.

In method of Kinateder, Voss and Wang (1999) just presented, the
induced effects depend on the subjective choice of the order of projections,
or equivalently, on the order of the columns of the matrix A, the columns
being in one-to-one correspondence with the effects �i. If the columns of
the matrix A were permuted before applying the Gram-Schmidt process,
then a different set of induced effects and a different confidence interval
width would result. This subjective choice of the order of projections
must be made a priori—use of that order which gives the tightest
confidence interval would invalidate the procedure, making the
procedure liberal. In order to remove this subjectivity, it is of interest
to consider the distribution of the pivotal quantity using that
permutation of the last k-1 columns of A which minimizes the resulting
quasi mean squared error, or equivalently, which minimizes the
confidence interval width. It is an open problem to show that this
variation on the procedure still provides strong control of the confidence
level.

Also concerning the method of Kinateder, Voss and Wang (1999) for
constructing individual confidence intervals, a different transformation
or projection to orthogonality is needed for each effect. It is desirable to
obtain exact methods for which this is not the case. Along these lines,
Kunert (1997) used just one such transformation to obtain independent
sums of squares with which to construct a single estimate of �2, then
proposed using this same estimator of �2 for the inferences for each of
the effects. It is still an open problem to show that his approach strongly
controls the error rate.

Finally, there are no known results concerning simultaneous tests
or confidence intervals which strongly control error rates.

18.5 SUPER-SATURATED DESIGNS

While there is only one method known to strongly control error rates for
the analysis of non-orthogonal saturated designs, there do not exist any
for the analysis of super-saturated designs. This is an obvious gap in the
statistical literature, because design and analysis of experiments are
inseparable, and substantial work has been done on the construction of
supersaturated designs. Construction of designs has been considered for
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example by Booth and Cox (1962), Srivastava (1975), Srivastava and Gupta
(1979), Anderson and Thomas (1980), Ghosh (1980, 1981), Rosenberger
and Smith (1984), Ohnishi and Shirakura (1985), Barnett and Hurwitz
(1990), Shirakura (1991), Lin (1993, 1995), Nguyen (1996), Tang and Wu
(1997), Yamada and Lin (1997).

Even discussion of the analysis of super-saturated designs in the
literature is scarce. This is probably due to the difficulty of the problem.
Supersaturated designs not only present the difficult problem of non-
orthogonality but also the additional complication of non-estimability.
Specifically, if all effects of interest are included in the model, then the
model is overparameterized, so effects are not estimable. Two approaches
have been suggested in the literature to circumvent this problem of
non-estimability.

The first method of analysis proposed concerns a special class of
supersaturated designs called search designs, introduced by Srivastava
(1975). Suppose the k=k1+k2 effects can be partitioned into two sets of
sizes k1 and k2, respectively, in such a way that all k1 effects in the first
set may be nonzero so are to be estimated, and at most m of the other k2

effects are nonzero. A design is a k1+m search design if it allows the
(search and) identification of all nonzero effects under a noiseless model.
An equivalent condition is that, for each combination of 2m of the k2
effects in the second set, the submatrix of the design matrix
corresponding to the k1+2m effects is of rank k1+2m [Srivastava (1975)].
For the analysis of search design, Srivastava suggested use of the best
submodel of given size for the analysis, the best submodel being the
one yielding the smallest mean squared error. This appears to be the
best starting point for the analysis of super-saturated designs, but no
results concerning control of error rates are available.

The second approach suggested for the analysis of super-saturated
designs is by Westfall, Young and Lin (1998). They proposed use of
forward selection for model building and discussed error control, but
they were unable to establish strong control of error rates.
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CHAPTER 19

ON ESTIMATING
SUBJECT-TREATMENT

INTERACTION

GARY GADBURY
University of North Carolina, Greensboro, NC
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Abstract: We begin by considering a population of units U=(u
1
, u

2
,…, u

N
).

Our objective is to study the effect of a treatment t on these units with
respect to a particular response of interest in the context of a randomized
experiment. We make use of a model sometimes referred to as a “Potential
response model” or as “Rubin model for causal inference.” The model has
been used by others to analyze problems associated with estimating a mean
treatment effect in both randomized experiments and observational studies.

However, an “average treatment effect” is a meaningful quantity only
when it adequately represents the effect of t on each unit. If the effect of
t is highly variable from one unit to another, i.e., when the subject-
treatment interaction is nonnegligible, then the average treatment effect
loses its importance. In fact, a treatment might appear to be a “beneficial”
treatment when examining its average effect even though a substantial
proportion of the units in the population experience an “unfavorable”
effect. This proportion can be calculated or approximated if one knows
the variance of the treatment effects along with the mean. Questions
concerning the estimation of the variance of treatment effects in a finite
population is the subject of this paper.

Keywords and phrases: Rubin model, non-additivity, counterfactual
model, potential response model
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19.1 INTRODUCTION

We begin by considering a population of units U=(u1, u2,…,uN). Our
objective is to study the effect of a treatment t on these units with respect
to a particular response of interest in a designed experiment. This effect
is to be assessed by comparing the response when the units are subjected
to the treatment t with the response when the units are subjected to a
control treatment c which is used as a basis of reference. In the ideal
situation when the responses to both treatments t and c are known for
each unit, the “true” effect of treatment t can be calculated for each unit
by taking the difference between the responses of that unit to treatments
t and c, respectively. Without loss of generality let us suppose that a
positive difference indicates that the treatment effect is “beneficial” and
a negative difference indicates an “unfavorable” effect.

In practice it is not possible to obtain the responses of each unit to
each of the two treatments at the same time. Instead, what is often
done is the following. Suppose that the size of the experimental group is
N=2n. Half of these units, chosen randomly, will receive treatment t,
with the other half receiving treatment c. The average effect of treatment
t is estimated by computing the difference between the average response
of the units receiving treatment t and the average response of the units
receiving treatment c.

“Average treatment effect” is a meaningful quantity only when it
adequately represents the effect of t applied on each unit. If the effect of
t is highly variable from one unit to another, then the average treatment
effect loses its importance. In fact, a treatment may appear to be
“beneficial” when examining its average effect even though a substantial
proportion of the units in the population experience an “unfavorable”
effect. This proportion can be calculated or approximated if one knows
the variance of the treatment effects in addition to its mean. Questions
concerning the estimation of the variance of treatment effects in a finite
population is the subject of this paper.

Consider the following matrix of responses Xi, Yi, i=1,…:, N
corresponding to the N units in the finite population under consideration.

(19.1.1)

Here Xi represents the response of unit ui if treatment t is applied to it and
Yi denotes its response if treatment c is applied. Even though only one of
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the two responses can be observed on any given unit, conceptually, the
“true” treatment effect for the ith unit is defined as Di given by

(19.1.2)

When the values of Di are different from one unit to the next, i.e., when a
subject-treatment interaction is present, it may be useful to consider the
variance  of the treatment effects given by

(19.1.3)

where  and  are the finite population variances of X and Y respectively,
and SX, Y is the finite population covariance. The finite population standard
deviation of treatment effects is then SD and the correlation between X
and Y is

 

Observe that  is zero if and only if there is no subject-treatment
interaction.

The key problem of estimating the variance of treatment effects is
rooted in the fact that the correlation parameter RX, Y is not estimable
from observable data. This nonestimable correlation parameter has a long
history going back to Neyman (1935) [the idea of potential responses actually
dates to Neyman 1923)]. In the 1935 paper, Neyman demonstrated how in
a finite population, estimates of standard errors of the estimated mean
treatment effect can be biased due to a subject-treatment interaction, but
he did not consider estimation of this interaction.

The assumption throughout this paper is that units only receive one
treatment, t or c. We do not consider repeated measures or crossover studies
which allow the observation of responses to several treatments on the
same subject because these observations are not made under identical
conditions and, without several additional unverifiable assumptions,
inference about the “true” treatment effect is not possible with these designs.
Therefore, it seems reasonable that if we are to proceed with an estimation
of , the unobserved values (which may be thought of as missing values)
may have to be estimated.

Several authors have considered the problem of missing values in various
contexts. Estimating missing values in survey data has been referred to
as imputation [Rubin (1996), Fay (1996) and Rao (1996)]. Imputing survey
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data is an important topic of research since missing responses may
introduce bias in the estimated mean treatment effect if the responses are
not missing at random. In our context, though, the missing values occur
as a result of a random treatment assignment. Our motivation for
estimating these missing responses is to estimate individual treatment
effects thereby facilitating an estimate of .

When covariate information is available on all units in the finite
population as in Rubin (1978), we may be able to use this information to
estimate the unobserved values. Rao (1996), for instance, considers
stratification, regression, and ratio imputation in survey data. In each
of these cases, the overall objective was the estimation of a mean
response and its standard error. Another technique to consider is the
matching of subjects by covariate information. The problem of matching
units in order to obtain a mean treatment effect and its standard error
in observational studies has been considered extensively [Rosenbaum
(1989), Rosenbaum (1995) and Rosenbaum and Rubin (1983)].

The present work focuses on estimation of the standard deviation SD

using covariate information to impute unobserved potential responses in
a two sample design. In Section 19.2 we consider the use of a single
covariate and discuss the bias of the resulting estimator of . Section
19.3 includes an illustrative example. We conclude with a summary
discussion.

19.2 AN ESTIMATOR OF  USING CONCOMITANT
INFORMATION

Consider a finite population of size N=2n. In a randomized experiment for
estimating the effect of the treatment t, suppose half the units in the finite
population, chosen randomly, are subjected to treatment t and the other
half are subjected to treatment c. We partition the indices i=1, 2,…, N of
U into two sets v and w, where  is assigned to the treatment group,

 and is assigned to the control group. We let Xv denote the vector
of responses to t of the n units in the treatment group, and Yw denote the
vector of responses to c of the n units in the control group. Once units are
randomly assigned to a treatment group and a control group as described
above, we observe the responses Xv and Yw. The observations may be written
as follows:

(19.2.4)

The dashed lines in the above matrix constitute values that were not
observed.
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Suppose a covariate Z is observed on all the units in the finite population.
Further suppose that Z is used to predict the unobserved values for the N
units. The collection of all observed values and the combined set of observed
as well as predicted values for the N population units may be exhibited as
shown below.

(19.2.5)

For convenience, we have labeled the population units such that units
that received treatment t are labeled 1 through n. We call the populations
in 19.2.5 above the “observed population” (on the left), and the “estimated
population” (on the right).

Let the vector of treatment differences in the estimated population
be d=x-y. An obvious estimator of  is the quantity  defined by

(19.2.6)

Noting that we can only observe half of the potential responses, X and
Y, and, so, must predict the other half, one may be concerned that too
many values are being imputed in forming the estimator . This is an
inherent limitation of the problem and it arises due to the
nonestimability of the correlation parameter RX,Y. Certainly we expect

 to be a biased estimator  of in general and the bias could be relatively
large in magnitude. The first question we consider is, “how large is the
bias when expectations are taken over all possible treatment assignments
on the true finite population?” It is reasonable to expect that the bias will
depend on how well the prediction function estimates the unobserved
values. First, we answer this question without making any assumptions
regarding the form of the prediction function or of the true finite
population. We only assume a random treatment assignment.
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A general prediction approach

We describe the estimated population for a given treatment assignment j
(that we refer to as sample j), as follows:

(19.2.7)

where eij, is equal to 0 if Xi is actually observed in sample j. If Xi is not
observed, then it is estimated by  and eij represents an error term
which is defined by

 

The term fij is defined in a similar manner, but with respect to Y. Note
that the prediction  may depend not only on the unit ui, but also the
other units in sample j. Here i belongs to the set {1, 2,…, N} and j belongs
to the set {1, 2,..., k} where  the total number of possible treatment
assignments. For any unit ui in sample j, note that at least one of eij, fij

will be zero.
Recall that D=(X1-Y1, X2-Y2,…, X2n-Y2n)T and define the 2n×k matrix

(19.2.8)

by defining gij=eij-fij. We consider both D and G as fixed, but not necessarily
known. We can write G in the form

(19.2.9)

That is, gj is the jth column of G. Let

 

In other words,  is the variance of the jth column of G. Also let

That is, SD,gj is the covariance between D and the jth column of G. We
then have the following proposition.

where
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Proposition 19.2.1 The expectation of  over all possible random
treatment assignments on the true finite population (represented by
equation (19.1.1)) is given by

 

(19.2.10)

where the overlined quantities simply represent averages of the quantities
over all columns of G.

PROOF. Since the treatment assignment is random we can proceed in a
straightforward manner. Note that for any fixed j we have,

It follows that,

 

Therefore, for a fixed j,

 

Taking expectations of the left hand side over all possible random treatment
assignments (i.e., over all j=1, 2,…, k) gives the result. �

We write the bias of  as an estimator of , over all possible treatment

assignments as

(19.2.11)

One can see that, for  to be an unbiased estimator of , one of the

following conditions must hold.

1. the variance of each column of G is zero, or
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2.

In practice, neither of the conditions is expected to hold in general. To
develop a better understanding of the nature of the bias, we consider
the finite population of responses to be a sample of size N from a suitable
superpopulation, and investigate the expectation of the bias computed
over this superpopulation. We use the symbol ε to denote this expectation
operator. We must also choose a prediction function since the distribution
of the errors gij becomes relevant. This is discussed in the next proposition.

Proposition 19.2.2 Suppose the following assumptions are satisfied:

1. (Xi, Yi, Zi), i=1,…, N=2n is an iid sample from a superpopulation
which is normal with mean equal to

and covariance matrix equal to

 

2. Treatment assignment is random with n units receiving treatment
t and the rest receiving treatment c.

3. A least squares linear regression function relating X and Z is used
to predict the unobserved X values. Also, a least squares linear
regression function relating Y and Z is used to predict the unobserved
Y values. So, for a given sample s, where indices i=1,…2n, are
partitioned into sets v and w with i 
we have

 

4. The population size N=2n≥8.

Then the expectation of this bias over the superpopulation is given by

   (19.2.12)
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where   are the conditional
variances of X and Y, respectively, and  is
the conditional covariance of X and Y, given Z. Here �XY is the correlation
between X and Z, and �YZ is the correlation between Y and Z, in the
superpopulation.

The proof of Proposition 19.2.2 follows from standard results concerning
expectations of quadratic forms. As an immediate consequence of this
proposition, we have the following corollary.

Corollary 19.2.1 As  and approach zero, BIAS in equation
(19.2.12) approaches zero.

This result follows by noting that  approaches zero as 
and approach zero.

Thus, when Z is a good covariate, i.e., it is a good predictor of X and Y,
the estimator  of  may be expected to have a very small bias.

Note that all superpopulation parameters in BIAS in equation (19.2.12)
are estimable from the observed data with the exception of  or,
equivalently, �XY. If one were to write the likelihood function based on the
observed data, one would note that the parameter �XY does not even appear
in the likelihood function. In the special case when  we see
that BIAS is zero if and only if

(19.2.13)

where  is the partial correlation coefficient of X and Y conditional
on Z. For values of  larger than  BIAS is positive. For
large N the condition in (19.2.13) reduces to .

We can get an idea of the sensitivity of BIAS to varying values of ρ XY,
by fixing all other parameters and letting ρ XY vary over values such that
the trivariate correlation matrix of (X, Y, Z)T is positive definite. For
illustration we fix σ X=σY=σ z=1, and �xz=�YZ=0.7. All means are set to zero
since the results will not depend on the population means. Figure 19.1
shows the relationship between the true superpopulation variance of
treatment effects, Var(X-Y), and the expected value of . Under the
assumed superpopulation structure BIAS is negative for most values of
�XY. However BIAS becomes much smaller as �XY approaches the values of
�XY and �YZ. As �XY becomes larger than �XY and �YZ, BIAS becomes positive
indicating that, on average, the estimator will overestimate Var(X-Y). It
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is clear that, as the values of �XY and �Yz become close to one, BIAS becomes
smaller for all allowable values of �XY.

A related contribution by Rubin and Thayer (1978) and Thayer (1983)
shows how, for selected plausible values of the partial correlation ,
one can average over the covariate Z obtaining limits on the simple
correlation �XY. Furthermore, under specific conditions, the limits on �XY

are tighter than the selected plausible limits on . However, this
analysis required selecting plausible limits on the partial correlation
which may or may not be practical depending on the particular
application. Also note that the partial correlation is not estimable from
the observed data due to the fact that there is no information on the
simple correlation, �XY.

Using the fact that the trivariate correlation matrix of the random
vector (X, Y, Z)t must be positive definite one can obtain bounds for 
and, under the superpopulation model, for . These bounds are estimable

FIGURE 19.1 Illustration of the sensitivity of BIAS to varying values of
� XY-σ x=σ Y=σ z=1, and �XY=�YZ=0.7. The true treatment variance is
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based on observable data. Gadbury and Iyer (1999) gave the maximum
likelihood estimator for mathematical bounds for  and for the proportion
P_ of the population units experiencing an unfavorable treatment effect.
They also gave the large sample distributions of these estimators. However,
they did not study the characteristics of any estimator for the variance of

, nor did they consider randomization based inference setup as we do in
this article.

Simulations could be used to examine the characteristic of estimated
bounds for  with respect to a randomization distribution. Results of a
simulation study that examined the operating characteristics of estimated
bounds may be found in Gadbury and Iyer (1997). The simulation results
indicated that, when a suitable covariate Z is available, useful estimates
for the bounds on  can be calculated from observed data. Furthermore,
as the correlations RXZ and RYZ approach one, the estimator   approaches
the true variance .

19.3 AN ILLUSTRATIVE EXAMPLE

We illustrate the ideas reported in this paper using a constructed example
so that the true variance of treatment effects, , is known. A finite
population of potential responses (Xi, Yi, Zi), i=1,…, N=40 was generated
as iid observations from a normal superpopulation with mean equal to
(µX, µY, µZ)T=(3, 0, 0)T, correlation matrix equal to

and  The potential responses are shown in
Table 19.1. The true treatment effects are shown in the column D=X-Y.
The finite population mean treatment effect is =2.75, and the variance
is  (SD=2.762). Note that the standard deviation of treatment
effects, SD, is nearly equal to the average of 2.75. It is the mean treatment
effect that is usually estimated from observed data, but knowing
something about the magnitude of the variance of treatment effects will
help in understanding how the treatment is affecting individuals in the
population.

A random treatment assignment produces the observed population shown
in Table 19.2. As mentioned earlier, either X or Y can be observed for a
unit but not both, so a true treatment effect, D, cannot be observed for any
unit. Let Xv and Yw be the observed X and Y, respectively, after treatment
assignment as indicated in Section 19.2. Then it is straightforward to
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show [Rubin (1974)] that  (for this example) is an unbiased
estimate for .

Estimating  requires some knowledge about the individual treatment
effects. So we estimate the Di i=1,…, 40 as described in Section 19.2 in
Proposition 19.2.2. That is, we use Z to predict missing potential responses
using least squares regression models relating observed X and Z, and
relating observed Y and Z. The resulting estimated population is shown in
Table 19.3.

The variance of predicted treatment effects is  which is a
biased estimate of the true variance from results stated in Proposition
19.2.1. To investigate the nature of this bias we can use Proposition 19.2.2.
We first estimate the parameters that can be estimated from the observable
data. The sample statistics are,

 

We then let the nonestimable �XY range over selected values such that the
estimated 3-dimensional correlation matrix remained positive defmite, that
is, �XY=0.2, 0.3,…, 0.9. An estimated BIAS using equation (19.2.12) would
depend on these values of �XY. The results are,

These results show that the bias of  could be large in magnitude
unless ρ XY is close to 0.80. Specifically, using equation (19.2.13), we see
that the partial correlation =0.483 would correspond to BIAS=0.
One could solve for the simple correlation and find that =0.483
corresponds to �XY=0.774. Since, for our example, =0.50, the estimated
BIAS our estimator  would be -5.13, but this value could not be known
in practice since it would depend on subjective knowledge about the value
of �XY. The BIAS would approach zero as �XY and �YZ approach 1.

19.4 SUMMARY/CONCLUSIONS

In this paper we have used what is often called a Potential Response Model
to define “true” effect of a treatment on any individual in a population.
Using this framework, one can conceive of true treatment effects for
individual units and can thereby conceive of a true average treatment
effect, and a true variance of treatment effects over a finite population. We
argued that if the variance of treatment effects is large with respect to the
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magnitude of the average effect, then the average treatment effect alone
does not adequately describe how the treatment is affecting the population.
Others have considered inference on the true average treatment effect but
inference on the variance has not been considered. Various assumptions
have been put forward in the literature, for instance, unit homogeneity
and constant effect, under which the variance of treatment effects is zero
(or, in practice, very small). Without such strong assumptions, one must
use available data themselves to learn about this variance.

Availability of concomitant information was then considered and a biased
estimator of  was proposed. The finite population bias of this estimator
was derived and the sensitivity of the bias to varying values of the
nonestimable correlation between X and Y was examined using a
superpopulation framework. These results extend in a straightforward
manner to the case of multiple covariates. See Gadbury and Iyer (1997).
While it is well known that good covariates allow for more efficient
estimation of an average treatment effect, the results of this paper
demonstrate that they also lead to useful information on the variance of
the treatment effects.

Two final comments are noteworthy. The framework used in this
paper did not assume any measurement error in the responses. An added
degree of complexity arises if measurement errors are suspected. Also,
treatment effects were only considered for one point in time. In general,
one could conceive of multiple “true potential populations” of responses
occurring at different points in time. Even if we can observe all potential
responses, it is still possible that the treatment effects differ in time for
individual units. One must then consider what is meant by a “true
treatment effect” before inference techniques can be employed. Exploring
these two issues is a topic of continuing research.
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TABLE 19.1 True finite population of potential responses

TABLE 19.2 Observed responses from the population after
treatment assignment
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Table 19.3 Estimated population after treatment assignment and prediction of
unobserved responses
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CHAPTER 20

ADVANCES IN SAMPLE SIZE
METHODOLOGY FOR BINARY

DATA STUDIES-A REVIEW

M.M.DESU

State University of New York at Buffalo, NY

Abstract: One of the topics that received lot of attention recently is the
sample size requirements for studies undertaken to establish therapeutic
equivalence of two treatments. Several papers on this topic appeared in
the journal, Statistics in Medicine, in the decade of nineties. In this paper
we present a review of these advances in the sample size methodology for
equivalence studies with binary responses. Both parallel and paired data
studies will be discussed. In case of paired data studies the classical problem
of testing for equality of treatment effects will also be considered. This
review is limited to the work that appeared in Statistics in Medicine,
however we also refer to the related work that appeared elsewhere to make
the review some what complete.

Keywords and phrases: Binary data, therapeutic equivalence, parallel
studies, paired data studies, sample size

20.1 ESTABLISHING THERAPEUTIC EQUIVALENCE IN
PARALLEL STUDIES

At times we are interested in comparing the effect of a new treatment
with the effect of a standard treatment. In the classical hypothesis testing
framework, a null hypothesis of equality of the effects is postulated and we
want to reject this null hypothesis in favor of the alternative that the
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effects are not equal. However in the context of therapeutic equivalence
problem it is of interest to establish that the new treatment is as effective
as the standard one. It is usually formulated as a hypothesis testing
problem. The new treatment is considered as equivalent to the standard
one if it is only negligibly inferior. This equivalence is taken as the
alternative hypothesis and the nonequivalence case is taken as the null
hypothesis. It is a common practice to use a parallel study to gather data
for this purpose; however use of paired data studies also have been discussed
in literature. So first we will focus our attention on the size of parallel
studies. Next we consider a similar problem in relation to paired data
studies. The determination of the size of a study, where a confidence bound
based test is used, will also be discussed.

Tests for one-sided equivalence or therapeutic equivalence (Tests
for non-zero risk difference or non-unity relative risk) in
comparative Bernoulli trials

Let π1(π2) be the effect rate of the standard treatment (new treatment).
Let ∆ be the difference in the effect rates, that is,

The effect rates are also known as response probabilities and ∆ is also
called the risk difference. Usually the two treatments are considered as
equivalent if ∆ is small. Dunnett and Gent (1977) formulated this (one-
sided) equivalence problem as that of testing

(20.1.1)

where ∆0(>0) is a specified constant. It should be noted that the null
hypothesis indicates nonequivalence. This formulation has also been used
by Rodary et al. (1989), who derived an expression for the sample size in
relation to a parallel study. Blackwelder (1982) considered a slightly different
formulation, where one tests

(20.1.2)

This formulation is the one considered by Farrington and Manning (1990).
Also, it should be noted that formulation (20.1.1) with ∆0=0 reduces to the
usual two sample problem with one-sided alternatives. Such a formulation
is used by Rodary et al. (1989) in relation to an efficacy trial. The usual
homogeneity testing problem has been discussed extensively in literature.
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Sahai and Khurshid (1996) gave a comprehensive review of the work on
testing for the equality of effect rates.

The formulation (20.1.2) will be referred to as the ∆-formulation. In the
following we will summarize the results for this formulation. Then results
for the relative risk formulation (ψ-formulation) will follow.

20.1.1 Tests under �-Formulation (20.1.2)

Using formulation (20.1.1) and the test statistic of Dunnett and Gent,
Rodary et al. (1989) derived an expression for the sample size. These results
also hold for the formulation (20.1.2). The various investigations considered
tests based on the statistic

(20.1.3)

where  are sample proportions, which are the natural estimates of the
effect rates. This statistic is an unbiased estimator of �. We assume that
a parallel study, with each group of size n, needs to be planned. This n is
the sample size we want to determine. This determination is done so as to
ensure an a-level test has power 1-ß at the alternative �=�1<�0.

To define the tests, we need an expression for the variance of  This
variance is given by

(20.1.4)

An alternative (equivalent) expression is

(20.1.5)

The critical region of the test to be used is chosen using the approximate
normal distribution of . Thus a test with approximate size a

(20.1.6)

where zp is the pt-h quantile of the standard normal distribution and v2 is
an estimate of the variance of . Three different estimates, proposed earlier,
were investigated by Farrington and Manning (1990). The relevant details
are given below.

Blackwelder:
The suggested estimate is
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This estimate uses the sample proportions to estimate π′s. It is also used
at times for testing the homogeneity hypothesis.

Dunnett and Gent:
In this approach π′s are estimated under the restriction ∆=∆0, subject

to the marginal totals remaining equal to those observed. The resulting
estimates are

 

These estimates are used to compute v2 as

 

Maximum likelihood estimation:
Restricted maximum likelihood method is used to get the estimates of

π’s. To obtain these estimates one need to solve a third degree equation
and the relevant details are given in Farrington and Manning (1990).
Using these estimates the v2 is computed as

 

This method has been proposed earlier by Miettinen and Nurminen (1985)
and others.

Using the power, which is approximated by a normal probability, the
required sample size is obtained. The general formula for the sample size
(per group) depends on two quantities A and B. These are

 

where π1 and ∆1 are population values under the alternative and

 

where ,  are the large sample approximations to the estimates of π’s
used in computing v. The required sample size is

(20.1.7)

We now present the B values corresponding to the estimation methods
indicated earlier.
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Blackwelder.

(20.1.8)

Dunnett and Gent, Rodary et al:

(20.1.9)

Restricted ML estimation (Farrington and Manning):

(20.1.10)

where π′s are the large sample approximations to the proposed estimates
of π′s.

Roebruck and Kühn (1995) made a comparative study of the sample size
calculations of Blackwelder, Rodary et al. and Farrington and Manning.
The following are their recommendations.

“the methods of Dunnett and Gent and Rodary et al. may be
ruled out in a first step due to bad performance of sample
size formula and to the fact that, in nearly no situations is
the test superior to both of the others. The comparison of
Blackwelder’s formulae with those of Farrington and
Manning suggests, that both may be used for ∆0<π1/2 with
the restriction that for n1/n2=(3/2) and small π1 only the
latter may be used. The Farrington/Manning test (and
consequently their sample size formula) should be used for
π1≤0.1 and ∆0≥π1. For the quite unusual configurations as

 Blackwelder’s
test performs better and can be used in combination with
his sample size formula.”

20.1.2 Tests under Relative Risk Formulation (ψ Formulation)

For comparing the two effect rates, another popular measure is the risk
ratio or relative risk, which is defined as

(20.1.11)
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Using this measure, Farrington and Manning formulated the equivalence
problem as that of testing

(20.1.12)

where ψ0 is a specified constant. Here the test statistic is

(20.1.13)

It is easy to see that the expectation of this statistic is

 

and the variance is

 

The suggested test of approximate size α

rejects H0 in favor H1 if TR<za.w0,

where  is an estimate of the null variance of TR. Farrington and Manning
obtained a formula for the sample size. This expression is

(20.1.14)

where

 

and

 

Here π1R and π2R are the large sample approximations to the corresponding
quantities used in the estimate .

Blackwelder (1993) considered two other methods and made a
comparison. One method is based on a logarithmic transformation and
the other one uses a Poisson approximation. These results will be described
now.

Logarithmic transformation

Here the test depends on log , an estimate of log ψ. This statistic is

 

The approximate mean of this statistic is logψ and the approximate
variance is
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The distribution of this statistic can be approximated by a normal
distribution. So a test of approximate size α

 (20.1.15)

where  is an estimate of the variance υ2 (π1, π2). Now the sample
size is seen to be

(20.1.16)

Poisson approximation

Let xi be the number of cases which showed effect, so that the sample pro-
portion is . For large n and small pi, xi is distributed
approximately as a Poisson variable with mean npi. The conditional
distribution of x1, given X=x1+x2, is a binomial distribution with parameters
X and Π, where

 

The hypotheses of (20.1.12) can be stated in terms of Π. Using this
eguivalent formulation, and approximating the conditional binomial
distribution by an appropriate normal distribution, the required number
of cases, X, can be seen to be

     (20.1.17)

As X is determined by the data, for planning purposes one usually computes
the required sample size as

(20.1.18)

Blackwelder’s comparative study indicated that the method of Farrington
and Manning is generally preferable to the logarithmic transform method.
The asymptotic formulation of the score test (method of Farrington and
Manning) is more generally applicable, even if the analysis uses the log
statistic. The Poisson approximation is appropriate in general for risks up
to about 0.05.

20.1.3 Confidence Bound Method for ∆ ∆ ∆ ∆ ∆ Formulation

Rodary et al. (1989) suggested a test based on an upper confidence bound
for ∆. One can use the power of this test to find an expression for the
sample size. The suggested confidence bound is
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The corresponding test rejects H0 if this bound is less than ∆0.
Approximating the power function by a normal probability and replacing
the p′s in SE by population π′s the sample size can be seen to be

      (20.1.19)

where .
Nam (1994) considered the sample size requirements for stratified studies

where the null hypothesis of non-unity relative risk is under test. The
score method is used to obtain the test and the sample size is derived for
this score test. When we consider only one stratum, results of Nam
(equation 5) coincides with the results of Farrington and Manning .

Yanagawa et al. (1994) proposed Mantel-Haenszel type tests for testing
equivalence in relation to a stratified study. It will be interesting to derive
the sample size formula for these tests.

All the above investigations are concerned with comparative binomial
trials. In the next section we consider similar problems in relation to
paired data studies.

20.2 SAMPLE SIZE FOR PAIRED DATA STUDIES

We consider an experiment where we observe binary responses on N pairs.
The data is the set of observations on the N vectors (Y1j, Y2j) for j= 1, 2,…,
N. The variable Y1 (Y2) is the response under standard treatment or
treatment I(new treatment or treatment II). Since the response variables
are discrete variables the data can be summarized as a frequency table.
The distinct values are called the outcomes. The frequency distribution
and the probability model is displayed in a tabular form as follows.

Table 20.1 Probability model for paired data studies

The quantities mij are the outcome frequencies and πij are the probabilities
associated with the outcomes. Now

  

and

 

First we consider the problem of testing for the equality of πI and πII· Then
we will discuss the problem of equivalence.
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20.2.1 Testing for Equality of Correlated Proportions

The problem of interest is to test the null hypothesis

(20.2.20)

This problem is usually referred to as testing for equality of two correlated
proportions. It is a common practice to restate the null hypothesis of
(20.2.20) as

      (20.2.21)

Various procedures for this testing problem have been proposed. A very
popular testing procedure is the McNemar’s test. May and Johnson (1997a)
made a comparative study of the validity and power of various tests proposed
for this testing problem. They recommend, “the use of either the modified
Wald’s test, the mid-P test or McNemar’s test if m10+m01 < 40 and the
interest is in holding the nominal 5 percent level.” It would be of interest
to determine the sample size, N, in relation to the recommended modified
Wald’s test. Also May and Johnson (1997b) made a study of different
methods proposed for constructing a confidence interval for the difference
∆=πI-πII=π10-π01. They recommend the Quesenberry and Hurst confidence
intervals.

There are various investigations dealing with the determination of
sample size for studies using McNemar’s test. Two popular approaches
will be described. One approach uses the conditional power function
and determines the number of discordant pairs needed. The other
approach uses multinomial unconditional power function to determine
the sample size.

The McNemar’s test uses the standardized statistic

(20.2.22)

The critical region is determined using the approximate standard normal
distribution for Z. For the one-sided alternatives H1:ψ>1 or ∆>0, the test

(20.2.23)

A method for sample size determination for a case-control study is given
by Schlesselman (1982). In this method the conditional distribution of X
given M is used to find the power function. Using a normal approximation
to the conditional power function Schlesselman obtained an expression for
the number of discordant pairs, M, required to provide power 1-ß to detect
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a specified value ψ1(>1) for the ratio . Now the required number
of discordant pairs, M, can be seen to be

(20.2.24)

For planning purposes, this value of M is converted to the sample size
estimate as

(20.2.25)

where πd(=π10+π01) is the probability of a discordant pair. Clearly one needs
to input a value for πd to calculate this sample size. Lachin (1992) refers to
this method of calculating the sample size from the M value given by
(20.2.25) as First-order unconditional power function method.

Using the multinomial model for the frequencies we can get an
expression for the variance of X . Approximating the distribution of X by a
normal distribution, an approximation to the required sample size is
obtained as

(20.2.26)

where ∆1 is value of the difference, , under the alternative at
which we want to control the power. Here also one needs to use a value for
πd like in the result (20.2.25). This result, when expressed in terms of ψ1

and π01, reads as

     (20.2.27)

This result appears in Connett et al. (1987).
The above discussion is from Lachin (1992), who made a comparison of

the various sample size proposals for the McNemar’s test, in reference to
a matched case-control study. His analysis found that the multinomial
based result given by Connor (1987) and Connett et al. (1987) is fairly
accurate. In the context of evaluating M using (20.2.24), Lachin indicated
that a referee suggested a sequential approach. Under this approach one
recruits matched pairs until M discordant pairs are included. Thus to
implement this sampling scheme one need not specify πd. It may be noted
that Lui (1997) did consider such a sampling method and determined M
by controlling the power of the associated equivalence test .

Lachenbruch (1992) also investigated the problem of sample size for
studies based on McNemar’s test. He states that usually investigators
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can specify the marginal probabilities πI and πII rather than ψ and πd. This
information on the marginal probabilities leads to some restrictions on
the possible values of the cell probabilities, πij. Thus he proposes a method
for computing the sample size needed in these cases and compares them
with the values given by the two formulas mentioned earlier. His proposal
for the sample size is

(20.2.28)

where . Lachenbruch found that the values
given by his method are close to the values found in.a Monte Carlo study
of Connett et al.

20.2.2 Tests for Establishing Equivalence

Nam (1997) considered the problem of testing the clinical equivalence
hypothesis. Identifying treatment I as the new treatment and treatment
II as the standard treatment, he is interested in testing a hypothesis about

 

The problem is posed as testing

(20.2.29)

where ∆0<0. Nam derived a test using the score method. He also considered
a test based on the difference between the observed response rates. Lee
and Lusher (1991) proposed a test based on an upper confidence bound for
∆. These three methods will be described now.

Score test

The score function is

         (20.2.30)

Let v(π01, ∆) be the approximate variance of the score function. The score
test is based on the statistic

(20.2.31)

where  is the MLE of π01 under H0. The test

(20.2.32)
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For ∆0=0, the statistic ZS reduces to the McNemar’s statistic ZM of (20.2.22).
Thus the test (20.2.32) can be seen to be a generalization of the McNemar’s
test (20.2.23). Approximating the power function by a normal probability
and replacing the MLE of π01 by its large sample limit , the sample size
is obtained. Let

 

and

(20.2.33)

where  Now the required sample size is

(20.2.34)

Test based on sample proportions

Nam also considered a test based on the observed proportions

 

which are the unrestricted ML estimates of the probabilities πij . In terms
of these proportions, estimates of πI and πII are

 

Thus an estimate of ∆ is

 

A statistic of interest is

 

It is easy to see that

 

and

 

The estimated null variance v* is used to construct the test statistic
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where  is the MLE of π01 under H0. An approximate α-level test

(20.2.35)

It is easy to see that, for ∆0=0, the test statistic Zt reduces to the McNemar’s
test statistic ZM of (20.2.22). So the test (20.2.35) can also be viewed as a
generalization of the one-sided version of McNemar’s test (20.2.23). Nam
further showed that the score method test statistic ZS is equal to the test
statistic Zt. Thus the two tests (20.2.32) and (20.2.35) are equivalent.
However the approximate power functions are different and thus the sample
size estimates are different. The sample size required to control the power
of the test based on Zt at ∆=∆1(>∆0) is

(20.2.36)

where  is large sample limit of the restricted MLE . A continuity
correction modification of the test statistic Zt has also been considered.
The sample size for the continuity corrected test is

(20.2.37)

Nam states, “the sample size calculated by the score method is intermediate
between those by corrected and uncorrected ML methods when the required
power is greater than 50 percent. These three values are close and
comparable.” So one can use either of the two methods considered so far.

A Wald type test

Lu and Bean (1995) considered a similar problem and proposed a test
based on a Wald-type statistic

 

This statistic is approximately a standard normal variable. An approximate
α-level test

(20.2.38)

It is of some interest to note that the statistic ZLB is equal to the statistic
ZM of (20.2.22), when ∆0=0. So the test (20.2.38) of Lu and Bean can also
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be viewed as a generalization of McNemar’s test. However this test is
different from the test derived by Nam (1997). Lu and Bean derived the
required sample size as

(20.2.39)

This expression is very much like Nt; however they differ in the first
terms.

Nam also compared the sample sizes obtained by Lu and Bean with the
sample sizes NS and Nt. He found that Lu and Bean method substantially
underestimates sample size because its false-positive error rate is greater
than the nominal rate and thereby also inflates power.

Test based on a confidence bound

Lee and Lusher (1991) considered the problem of demonstrating equivalence
using a confidence bound for ∆. First a 100(1-α) percent upper confidence
bound for ∆ is computed as

 

(20.2.41)

It may be noted that this bound is similar to the upper end point of the
confidence interval that one can derive from Wald’s test. The formal test
based on this bound

(20.2.41)

Approximating the power function by a normal probability and replacing
 by the population expression, the required sample size is obtained as

(20.2.42)

This expression depends on πd, the probability of a discordant pair. It may
be noted that this type of dependence occured in expressions (20.2.25) and
(20.2.26).
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CHAPTER 21

ROBUSTNESS OF A SAMPLE SIZE
RE-ESTIMATION PROCEDURE IN

CLINICAL TRIALS

Z.GOVINDARAJULU

University of Kentucky, Lexington, KY

Abstract: One of the central questions that arise in clinical trials is,
how many additional observations, if any, are needed beyond those
originally planned. Consider a two treatment normal response double-
blind clinical experiment. We wish to test the null hypothesis of equality
of the means against one-sided alternative when the common variance
�2 is unknown. We wish to determine the required total sample size
when the error probabilities � and ß are specified at a predetermined
alternative. Shih (1992) provides a two-stage procedure which is an
extension of Stein’s one-sample procedure. Assuming a preliminary
guessed value of �, he estimates �2 by the method of maximum likelihood
via the E-M algorithm. Since he introduces indicator variables which
are treated as unknown parameters, the mle of � 2 may not be consistent.
Here, we propose an estimator of � 2 that has a closed-form and derive
expressions for the effective level of significance (�*) and the power of
the test at the specified alternative. In particular, it is shown that �*-�
is negligible and that the power exceeds 1-ß when the initial (total)
sample size is large.

Keywords and phrases: Robustness, clinical trials, double-blind
experiment, sample size re-estimation

21.1 INTRODUCTION

Estimation of the required sample size is an important issue in most of
clinical trials. Fixed-sample size designs use previous data or guess work
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of the parameters which can be unreliable. The classical sequential
designs are limited to situations where outcome assessment can be made
only after patients are enrolled in the trial. Group sequential designs
have also been used in clinical trials. However, the type I error rate at
each analysis stage need to be adjusted so as to control the overall type
I error probability at a specified level. In several clinical trials, especially
those dealing with nonfatal ailments, investigators would like to come
up with a procedure at an interim stage in order to obtain updated
information on the adequacy of the planned initial sample size. This
often occurs when the natural history of the ailment is not well known
or the therapy under study is new. In those cases, investigators are
often unsure of the assumed values of the parameters that were initially
employed for calculating the sample size at the planning stage. Note
that the initial parameters are obtained, invariably, from previous
studies conducted on different patient populations, diagnostic criteria
etc. Consequently, the initial sample size does not guarantee either the
width of the confidence interval in estimation or the desired power in
hypothesis-testing setup. Hence it is desirable to monitor the clinical
trial so as to assure that the basic assumptions on the design are
reasonably satisfied and to construct procedures for estimating the
sample size using these observations available at the interim stage. Thus,
Shih (1992) makes a compelling case for not unblinding the treatment
codes at the interim stage so that the integrity of the trial is maintained
and no conscious or unconscious bias enters.

If the goal of the trial is to reestimate the required sample size, the
only decision that would be taken is the determination of how many
additional observations, if any, are needed beyond those planned earlier.
If no further observations are needed the planned sample size is sufficient
and the trial will be carried out. Shih (1992) proposes a two-stage
procedure which is an extension of Stein’s one-sample (two-stage)
procedure to the two-sample situation. Suppose the two treatment
responses are normally distributed with unknown means µ1 and µ2 and
unknown common variance, � 2. We wish to test H0:µ1=µ2 against the
alternative H1:µ1<µ2 with specified error probabilities � and ß at
µ2=µ1+�*, where �* is specified. The clinical trial is double-blind so that
we do not know to which treatment the response belongs. Shih (1992)
assigns n1=n2=n/2 patients at random to each of the two treatments
where n is the preassigned initial total sample size. Assuming a
preliminary guessed value �* of �, he estimates �2 by the method of
maximum likelihood via the E-M algorithm. He introduces n indicator
variables which take the value one if the patients was assigned to
treatment with mean µ1 and zero, otherwise. The indicator functions
are treated at unknown parameters which need to be estimated.
However, there is no closed-form expression for the mle of �2 and it may
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not be consistent since the number of nuisance parameters is getting
large with n. Hence, it’s worth while to come up with alternative
estimates for � 2. Cohen (1967) provides a method of moments estimate
of � 2 from a distribution that is a mixture of two normal distributions.
Blumenthal and Govindarajulu (1977) studied the robustness of Stein’s
two-stage procedure for mixtures of two normal populations differing
in means. Here, we use a simpler but unbiased and consistent estimate
of � 2 under H0 and investigate the robustness of the level of significance
and power at the specified alternative.

21.2 FORMULATION OF THE PROBLEM

Let U denote the response. Then

(21.2.1)

Since we are allocating equal number of patients to each treatment,

(21.2.2)

Then it is easy to observe that

(21.2.3)

since we assume that X {Y} has mean µ1 {µ2} and variance �2. If n1 out n
are allocated to treatment I, then n1 is distributed binomially with
parameters n and . If (U1,…, Un) denotes the response vector, and =
�Ui/n, we can write

(21.2.4)

where n2=n-n1 and  and  denote the sample mean of X’s and Y’s
respectively. Note that in the double blind case, X’s and Y’s are not
observable. Also

(21.2.5)
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Shih (1992) takes n1=n2=n/2 and estimates �2 by the method of maximum
likelihood via the E-M algorithm. Let  denote an estimate of �. If �
and ß are the specified error probabilities at µ2=µ1+�*, then, Shih (1992)
obtains

(21.2.6)

where �* is a preliminary guessed value of � and z�=�����-1 (1-�), ����� denoting
the standard normal distribution. Let

(21.2.7)

and N=max (n1, M)=total # of observations on each treatment. That is

(21.2.8)

Draw N-n1 additional observations from each treatment. Then the
decision rule is:

(21.2.9)

Then one can ask, (i) What is the effective level of significance of this
procedure? (ii) What is the effective power at the specified alternative?
We shall provide answers to these questions in the next sections.

21.3 THE MAIN RESULTS

Let . Then we have the following lemma.

Lemma 21.3.1 We have , and  tends to � 2 with
probability one when H0 holds as n gets large.

PROOF. One can write

(21.3.10)

Copyright © 2002 Taylor & Francis



SAMPLE SIZE RE-ESTIMATION PROCEDURE 387

Hence,

 

The second assertion follows from the strong law of large numbers. �

We can reasonably assume that n>30. Hence we can replace tn-1,� in
(2.9) by z�.

Lemma 21.3.2 Let . Then as n becomes large

 

Hence

 

where .

PROOF. When H0 is true Z has a standard normal distribution and
hence Z2 is distributed as chi-square with one degree of freedom. When
µ2-µ1=�*, one can write

 

where  is a standard normal variable. Hence

 

from which (i) follows.
Since

 

(ii) readily follows from (i). �

Lemma 21.3.3 Let �=(�*/�)2. Then as n gets large
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PROOF. From (21.2.7) we have

 

Now use Lemma 21.3.2(ii) and note that V tends to one in probability.
Let �* and ß* denote the effective error probabilities and for the sake

of simplicity we write t in the place of za. �

Result 21.3.1 For sufficiently large n (say n>30), we have

(21.3.11)

where V=W/(n-1) and 

PROOF. Consider

 

Next recall that

 

where ,  normal (0, 1) when H0 is true, and W and Z are
independent. Hence
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 (21.3.12)

As n gets large,

(21.3.13)

where FV (v) denotes the distribution of V.
Note that in one or more steps above, we have exploited the symmetry

of the normal distribution.

Recall that

Hence

From Lemma 21.3.3, we have

Hence by Anscombe’s theorem (1952)

(21.3.14)

Consider T2
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Combining (21.3.13) and (21.3.14) we obtain

(21.3.15)

Since V will be close to unity as n gets large and ����� is monotonic
increasing, it is surmised that �*-� will be positive. Hence

(21.3.16)

Or

(21.3.17)

In Table 21.1 we tabulate the values of . for selected values
of α and n1.

Let us make an asymptotic assessment of the upper bound for the
error in �* given by (21.3.15). Expanding in Taylor series we obtain

 

Hence

 

Let

 

Then . One can easily compute

(21.3.18)
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after using Stirling’s approximation to the gamma functions. Now using
(21.3.18) we have

 

Further one can easily show that E (S-1)3 and E (S-1)4 are 0 (v-2). Hence

(21.3.19)

For example, α=0.05, n1=11 and t=1.645, give

 

and

 

which are very close to the values given in Table 21.1.
In Table 21.1, we give numerical values of α*=EF (-tS) for selected

values of n1=(v/2)+1 and α. �

From Table 21.1 we infer that α*-α is negligible.
Next, we will turn to type II error probability. Let µ2-µ1=δ* where δ*

is specified. For the sake of simplicity we write

 

Then

(21.3.20)

TABLE 21.1 Numerical values of
α*=EΦ(-tS)
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Now

(21.3.21)

Thus, the bias in

(21.3.22)

For ß* we have the following result.

Result 21.3.2 We have

(21.3.23)

PROOF. One can write

 

Now,
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(21.3.24)

where Z* denotes a standard normal variable.
Next consider

Note that

 

Hence

By Anscombe’s Theorem

 

is asymptotically normal. Hence
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(21.3.25)

Therefore, combining (21.3.24) and (21.3.25) we have

(21.3.26)

�-�*2/4� 2�1 implies that ��1+ �*2/4� 2 and hence

 

So in general, ß*<ß, for all values of �.
In Tables 21.2 and 21.3 we tabulate (1-ß*) / (1-ß) as a percent for

selected values of the parameters.

TABLE 21.2 Values of ratio (as a percent)
of the effective power to the nominal
power at the specified alternative µ2-µ1=�*
when �=ß and ��1 +�*2/4� 2

Remark 21.3.1 For fixed �* and �*, both �*/� and  increase as �
decreases. When �*2�2��*2/4 the gain in power is higher than when
�*2�2<�*2/4.
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Remark 21.3.2 The values 0.2, 0.35 and 0.50 for �*/� are of much
interest in clinical trials. From Table 21.3 we infer that the percentage
of gain in power is positive and is less than 3 percent for all practical
values of �*/�.

21.4 FIXED-WIDTH CONFIDENCE INTERVAL
ESTIMATION

Suppose we wish to estimate �=µ2-µ1 with a confidence interval having
width 2d and confidence coefficient 	. Let t=z(1+	)/2 be such that 2� (t)-
1=	. As before, let �* be a preliminary estimate of �. Then n1 the number
of patients to be assigned to each treatment is given by

(21.4.27)

Let  where n=2n1 denote an estimate of σ2 based on the blinded
responses U1,… Un. Then, according to Stein’s (1945) two-stage procedure
we stop at n1 if

 

Otherwise, allocate M-n1, additional patients to each treatrnent where

(21.4.28)

Note that

(21.4.29)

That is, N the total number of patients on each treatment is given by

(21.4.30)

TABLE 21.3 Values of ratio (as a percent)
of the effective power to the nominal power
at the specified alternative µ2-µ1=�* when
�<1+�*2/4� 2

Copyright © 2002 Taylor & Francis



Z.GOVINDARAJULU396

We assume that n1 is sufficiently large (�30). After we stop, the
confidence interval for �=µ2-µ1 is  (we also assume that
after total experimentation it is unblinded and we know which are X
and Y observations. We are interested in evaluating the effective
coverage probability 	* of the resultant confidence interval. Towards
this we have the following result.

Result 21.4.1 For sufficiently large n1, we have

 

where

(21.4.31)

or

(21.4.32)

PROOF.

where �=(� */�)2. Consider

(21.4.33)

after using (21.4.27). Next consider
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Now, recall that Mθ/n1 (1+η2/4σ2) tends to 1 in probability as n gets
large and hence by Anscombe’s theorem (1952) that

(21.4.34)

Hence, we obtain

(21.4.35)

Now combining (21.4.33) and (21.4.35) we obtain the desired result.
Further, V will be a degenerate random variable at unity when n is
sufficiently large and thus (21.4.32) follows.

In Tables 21.4 and 21.5 we provide some values of �* for selected values
of �, �/� and . We infer that �*�� and, in Table 21.4 that �* increases
with �/� and the increase in �* decreases with �. The increase in the
coverage probability is large when ��1+�2/4� 2 than when �<1+�2/4� 2.

Acknowledgements I thank Dr. Weichung J.Shih of Merck. Sharp &
Dohme Research Labs for bringing this problem to my attention and
Dr. Alexie Dmitrienko for his help in computing Table 21.1.

TABLE 21.4 Values of 

 when �<
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TABLE 21.5 Values 
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CHAPTER 22

IMPLEMENTATION OF
STATISTICAL METHODS IN

INDUSTRY

BOVAS ABRAHAM

University of Waterloo, Waterloo, Ontario, Canada

Abstract: Statisticians have devised many tools to collect and analyse
data from experimental and observational studies. However, attempts
to bridge the gap between the available tools and what are practiced in
industry have been very limited. It is very important for statisticians to
direct serious attention to this issue if Statistics is to be relevant in the
society at large. In this paper we propose some ideas for implementation
of Statistical Methods based on our interaction with industry.

Keywords and phrases: Experimental studies, observational studies,
industrial applications

22.1 INTRODUCTION

What do we mean by implementation? An industrial organization is
instituting Statistical Thinking and implementing statistical tools so
that it becomes a part of the every day business. We are not thinking
about a statistician consulting with a scientist or an engineer for a one
time project even though such activities are important in their own right.
Implementation, in the sense used here, is much broader and the
associated issues are not trivial.
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22.2 LEVELS OF STATISTICAL NEED IN INDUSTRY

We envision Statistics to play important roles at three levels of an
organization: Strategic Level, Managerial Level and Operational Level.
This classification is general and somewhat arbitrary. However, this
identifies and emphasizes different tools to be directed at different
levels.

(i) Strategic Level (Top of an Organization)

At this level the most emphasis should be on Statistical Thinking (ST)
which includes the following: Notion of Process, Measurement and Data
Based Decisions, Understanding and Dealing with Variation, and
Systematic Approach. Decisions at the strategic level requires an
understanding of variation and these decisions should be based on facts
supported by data [Deming (1986)]. Absence of these are quite prevalent
in many organizations. Embracing any program that comes along is an
expression of decisions not supported by data.

(ii) Managerial Level (Middle)

This is the level at which systems are devised for implementation of the
directions taken by upper management. In particular, systems for
process control and improvement, robust product and process design,
and training are the responsibility of middle management.
Understanding of Statistical Thinking and some statistical tools are
required.

(iii) Operational Level

This is the stage at which the methods are implemented through the
system built at the managerial level. Understanding of statistical tools
such as Control Charting, Capability, Design of Experiments (DOE),
Measurement System Analysis, Regression Analysis, etc. and the actual
use of these tools must be one of the objectives. Here people in different
areas may not need the details of all the tools. For instance, an operator
who is using a control chart for maintaining stability of a process need
not know a lot about Design of Experiments; on the other hand an
engineer responsible for process improvement should be knowledgeable
in several aspects of Statistical Process Control (SPC) and DOE.

22.3 IMPLEMENTATION: GENERAL ISSUES

Commitment of management

For the success of any program affecting the whole organization the
full commitment of senior management is essential. They have to assess
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the situation early and decide to allocate the resources needed. If it is
really important for the organization then senior people need to be
involved in the implementation as well. Decide in advance what role
they can and will play. For example, the success of the Six Sigma
program at GE corporation is due to the commitment of its chief
executive officer.

Expected benefits

It is important to recognize the benefits of implementation in the
beginning. This helps to focus on what is needed. Of course it can help
solve problems, improve processes and increase customer satisfaction.
Another benefit is that a good measurement of performance can be done.
An overall benefit is that it helps the organization to be a learning
organization; a knowledge based company is going to be successful in
the long run.

Systems thinking

As in any other implementation, there are several components involved
and these need to be considered as part of the system for implementation.
Some of these components are: Statisticians, Other People, Technology,
Methodology, Organizational Structure and Culture. These components
have to work jointly so that the system yields improvements. We need to
recognize that there will be ’effects’ of each component and ‘interaction
effects’ among the components. We have to build the system such that
interaction effects are positive and that the total effect is more than the
effects of the components. For example if there are two components A
and B then EF(A+B)�EF(A)+EF(B), but EF(A+B)=EF(A)+EF(B)+EF(AB)
where EF(A) stands for the effect of A. It is important to make the
interaction AB [i.e., EF(AB)] positive so that the effect of A and B is more
than the sum of the individual effects of A and B. Some guiding principles
such as Deming’s 14 points for management can be extremely beneficial
during the implementation. Such principles help to foster positive
interaction between components such as people and technology. Often
sophisticated software is used to train without considering the
background of the trainees. This can lead to negative interaction.

Implementation of Statistical Methods can be part of other system
implementations such as those of the quality systems ISO 9000, QS-
9000, and Six Sigma.
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Implementation plan

We need to answer a number of questions before the activities can start.
How does it start? When do the activities take place? Who is responsible
for the tasks? What is the scope of the system, calendar of activities?
What are the review points, and the associated expected results? Are
resources assigned for the planned activities?

Project implementation systems

There are many implementation systems that one can use. Deming’s
PDSA circle (Shehart’s wheel)-Plan, Do, Study, Act [Deming (1986)] is
a well known example. A similar system is used in a Statistics Course
(Statistics 231) at the University of Waterloo-Problem, Plan, Data,
Analysis, Conclusion (PPDAC for short). The Institute for Improvement
in Quality and Productivity (IIQP) uses a 7-step system-Problem, Plan,
Data, Solution, Confirmation, Standardization, Follow-up. There are
many others used by various organizations.

22.4 IMPLEMENTATION VIA TRAINING AND/OR
CONSULTING

All organizations do have existing knowledge and acquiring new
knowledge may require changes in thinking and culture of the
organization. However, there has to be sensitivity about this issue and
an understanding of existing knowledge base before anything is
implemented. Also any plans for training should reflect this
understanding.

Introduction of new knowledge requires training and the training
needs for the different levels of the organization can be very diverse.
This distinctive needs should be recognized and training programs should
be designed in such a way to suit each of the Strategic, Managerial, and
Operational levels.

Training considerations

Trainers should have a thorough statistical background and good
industrial experience. They should be aware of the culture and structure
of the organization. Also they should have an understanding of the
context in which they are working (for instance, interfacing with other
Quality System trainings) and the background of the trainees.

The quality of the material presented is very important as it should
be relevant to the particular needs of the trainees. Schedule and duration
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of each module is also important. In addition, presentation of the
material in an understandable and enjoyable way requires careful
planning. Material needs to be presented with implementable and
understandable technology. Communication between the trainer and
trainee and that between software and participants should be smooth.
The interaction between people and technology should be positive.

Training programmes can be interfaced with other programs such as
ISO 9000, QS-9000, and Six Sigma. In this case sequencing should be
carefully planned and the interaction between the programmes need to
be positive.

22.5 IMPLEMENTATION VIA EDUCATION

Today’s students are tomorrow’s employees. Industrial organizations
need graduates with technical and nontechnical skills. These students
have to get the education from the universities and it is difficult for the
universities to provide all the skills needed to function in the workplace.
However, a university statistics curriculum can be improved so that
potential employees have enough statistics and communication skills.
Many authors have discussed ideas for enhancing statistical education,

(1995), Snee (1993), Vere-Jones (1995) and Wild (1995).

Undergraduate programme

A Statistics undergraduate program should include the following:
Scientific method, Problem solving system, Measurement system
analysis (MSA), Control charting, Design and analysis of experiments
(DOE), Regression analysis, Sampling, Computing and Mathematics
[see ASA (1980)]. In addition, the students should get experience in
solving industry related problems and communicate the results to people
in other areas. There are different ways of achieving this goal. One
method adopted at the University of Waterloo is to enroll the students
in a co-operative program. In this system the students cycle between
university and industry after each term during their undergraduate
program. We will discuss this further later. Another approach may be
to have joint programs between Engineering and Statistics; one can
major in Statistics with a minor in Engineering or vice versa.

Graduate programme

A useful model to consider is to require undergraduate engineering
background for a graduate degree in Statistics or Engineering Statistics.
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Also one should design the graduate program to enable the students to
have internships in industry. This can enhance familiarity with working
environments, hands-on experience, and communication skills. Joint
projects such as seminars between university and industry will also be
very helpful. Seminars by people working in industry, not necessarily
research seminars, but seminars with issues can open up project and
thesis topics for students.

22.6 UNIVERSITY-INDUSTRY COLLABORATION

Universities seek academic excellence. Industries require that their
employees work on relevant issues. These two goals need not be on a
collision course. With proper insight universities can provide academic
excellence with relevance. Basically a university provides education to
students. It can also provide faculty for training in the workplace. It is
difficult for a university, by itself, to provide the well rounded education
required for students to function in the workplace. Industry can help by
providing contexts for relevance, and by their input into education.
Collaboration between university and industry is essential to produce
graduates for the future who can handle the difficult issues of the work
place [Brajac and MacKay (1994), Hoadley and Kettenring (1990), Snee
(1990)]. Such collaboration requires carefully designed systems for
implementation. Since this is not an isolated problem, this also should
be thought in a systems framework.

In a university-industry partnership needs of University and Industry
must be clearly defined, and roles of the partners clearly understood.
The system should be flexible so that students and faculty can spend
time in industry to enhance nontechnical skills and to gain some hands-
on-experience. University courses can be modified to include project
oriented teaching. The industry should provide opportunities to gain
experience in problem formulation, planning of approach and data
collection and problem solving. Different models can be used for
undergraduate and graduate students. The collaboration system must
make sure that the transition between university and industry is smooth
for students as well as faculty. Also the systems should be flexible to
accommodate student and faculty interests. It should also be important
to recognize that long term commitments are required by both partners.

22.7 UNIVERSITY OF WATERLOO AND INDUSTRY

University of Waterloo has been involved with industry in several areas
at different levels. Here we focus on the involvement related to Statistical
Methods.
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(i) Co-operative Programmes

The University of Waterloo has a large (probably the largest in the world)
co-op programme involving about 10,000 undergraduate students
annually. In this programme a student goes to an industry for a four
month “work term” after every four month school term. Each student is
expected to write a work term report for each work term, which will
then be evaluated by the employer (industry) as well as by the University.
Students are expected to finish 4–6 successful work terms during their
degree programme. The Engineering Undergraduate programme at
Waterloo is only available through the co-op option while other
undergraduate programmes including Statistics are available by co-op
as well as regular routes. Each “faculty” (college) has its own special
requirements. However, all co-op placements in industry are
administered through the Department of Co-Operative Education, a
large administrative group on campus. In general, placement rates in
Engineering and Mathematics are well over 90%. During recession
periods, some difficulties in placing first year students were experienced,
prompting some adjustments to the timing of work terms and academic
terms. There is a representative group from industry called the Waterloo
Advisory Council which meets with University administration twice a
year to exchange ideas on many issues facing the University and
industry. Co-op education and University-industry collaboration is often
discussed. This is an opportunity for the University to get input from
industry regarding curriculum changes, new courses and programs.

(ii) Institute for Improvement in Quality and Productivity (IIQP)

University of Waterloo has many centres and institutes working with
industry. Recognizing the prominent role of Statistical Methods in the
QI activities the IIQP was established in 1985 as a liaison between the
University and industry to implement Statistical Methods in industry.
Its mission statement states:

“The Institute for Improvement in Quality and Productivity at the
University of Waterloo is a group of individuals and corporate
members committed to the development, communication and
application of methods for quality and productivity improvement.
The Institute’s goal is to serve its members, the University and
Business Communities.”

Goals and objectives of the Institute are:

• To provide a focus for multidisciplinary consulting and research in
technical and managerial methods for improving quality
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• To develop a centre offering courses and seminars for business
and industry

• To aid in developing undergraduate and graduate programs in
technical and managerial methods for quality improvement

• To facilitate experience-exchange programs between university
faculty and industry personnel

• To stimulate development of innovative training methods in quality
for the work place.

University members of the Institute include faculty members from
approximately ten disciplines, and this enhances interaction among
several disciplines which is helpful in carrying out technology transfer
activities.

IIQP activities—training and consulting

The IIQP has an active program of in-company and public courses
spanning a range of topics in Industrial Statistics. To encourage rapid
implementation of the methods taught in the classroom, work related
projects are usually included as part of the courses. Third or fourth year
undergraduate, Masters and PhD students have the opportunity of
getting involved in these projects with industry, or serving as teaching
assistants in the short courses that are offered.

Research

By promoting closer contact between faculty members and industry,
the Institute encourages increased applied research on topics of great
interest to business and industry. It plays a direct role in stimulating
research in the University community through financial awards for
graduate work in areas relating to quality improvement. The Institute
also provides direct financial support for faculty research. It publishes
a research report series containing the results of current research done
at the Institute. Graduate students have benefited from the funding
provided but, more importantly, from the problems generated for their
research from the industrial collaboration.

Co-op students

The IIQP has been employing one or two undergraduate co-op students
(Engineering and/or Statistics) each term. They routinely work with
faculty members to help with projects. They have the opportunity of
visiting companies initially with and later without faculty members.
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Campus course curriculum changes

Faculty members involved in the partnership gained valuable experience
and ideas in working with industry. These have helped them to
implement substantial changes to the content of Statistics courses at
Waterloo.

The first course (second year undergraduate) taught to Mechanical
and Systems Design Engineering students now centres around
Continuous Process Improvement. These students are exposed to
Experimental Design, Statistical Process Control, etc. and they have
conducted experiments at industrial partner facilities during their work
terms which have resulted in substantial annual savings. Significant
changes have been made to a second year Statistics course in the Faculty
of Mathematics. In this course, students conduct experiments in a
laboratory in groups, deal with Measurement System issues and write
laboratory reports as a team. Major changes have also been made to an
advanced course in Experimental Design to reflect the applications in
industrial partner facilities.

A wide variety of examples including casting, injection moulding,
undercoating, etc. have been collected from partner facilities and these
appear as examples in lectures and assignments. Students are excited
by the fact that these examples are real and often involve thousands of
dollars in savings [see Brajac and MacKay (1994)].

IIQP partnership with industry continues to provide many tangible
and intangible benefits:

• Enhancements in content and delivery of courses
• Graduate and Undergraduate student involvement in real projects
• Enhancement of applied research of Faculty and Graduate students
• Professional development of the faculty members
• Enhancement of Statistical Thinking at some industrial partner

facilities and modest cultural changes
• Application of newly developed methods in partner facilities
• Savings in real dollars for industrial partners

22.8 CONCLUDING REMARKS

Statistical Thinking and Methods need to become part of the knowledge
base of an organization. We outlined many issues related to the
implementation of Statistical Methods in Industrial Organizations.
Implementation can be achieved by well planned and systematic
training in the organizations and through the enhancements of
university education by changes in course contents and delivery. We
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discussed the need for universities to form partnerships with industry
to provide opportunities for students to enhance their skills. Some may
argue that universities should be a place for education and should not
be in the business of training. It is important to keep the balance, and
all such endeavours should be motivated by “academic excellence with
relevance.”

It is important that the professional Statistician is equipped with
good technical and non-technical skills. This is a challenge the
universities have to face and one model for success is to form partnerships
with industry as suggested. There is no need to compromise on academic
excellence, however building in “relevance” to the programme enhances
its value.
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CHAPTER 23

SEQUENTIAL DESIGNS BASED
ON CREDIBLE REGIONS

ENRIQUE GONZÁLEZ
Universidad de La Laguna, La Laguna, Spain

JOSEP GINEBRA
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract: Assume we can control an input , and observe
one response yn such that E[yn|xn, ß]=f(xn;ß) and that the objective is to
keep all the responses close to a target T. We propose sequential designs
that always improve on Bayesian certainty equivalence designs by
searching for the best design in a family that contains them. To regulate
the distance and direction that they move away from the certainty
equivalence choice, the new designs experiment on a credible region for
the root of f(x; ß)=T. These heuristics perturb certainty equivalence to
incentive ‘active’ learning about ß and improve future control. We also
describe how to apply this approach to the response surface bandit,
where we need to keep all the responses close to the maximum of f(x; ß).

Keywords and phrases: Adaptive designs, certainty equivalence,
highest posterior density interval, sequential optimization, stochastic
control

23.1 INTRODUCTION

Assume that we can control an input , and observe one
response yn such that:
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with E[y|x, ß]=f(x; ß) known up to a distribution on the parameters ß,
�0(ß). We consider sequential designs, denoted by d, that select
successive design points , given the history of input levels

 and observations .
In the multiperiod control problem the objective is to find designs

that minimize ri(d)=E[Li(YN, T)], where Li(YN, T) is a loss function that
punishes distance between  and a known target T. In particular we
look into the minimization of . In the
response surface bandit problem defined in Ginebra and Clayton (1995)
and denoted as the R.S.B., the objective is to find designs that maximize
wi(d)=E[Ui(YN)], where Ui(YN) is a utility that values closeness between

 and the maximum of f(x;ß). In particular we look into the
maximization of . Expectations are always w.r.t.
the joint distribution for YN and ß, that depend on d through .

The multiperiod control problem and the R.S.B. model many
situations in process control and in clinical trials where there are costs
and ethical imperatives to provide the best set of input values for the
individual to be treated next at the same time that we learn about the
surface to enhance future performance. References on these areas are
Astrom and Wittenmark (1995) and Rosenberger (1996).

When selecting xn we face two conflicting goals; On one hand we need
xn to be such that (yn(xn)-T)2 is small in expectation (or that yn(xn) is
large for the R.S.B.), but on the other hand we use (xn, yn(xn)) to learn
about ß and help improve the performance at later stages. Each one of
these two goals by itself typically requires xn to be in different parts of
the experimental region, and we have to care about both goals at once.
This trade off is labeled by the adaptive control literature as the dual
aspect of control, described in Chapter 7 of Astrom and Wittenmark
(1995).

In principle backward induction identifies the optimal designs [see
De Groot (1970) and Berry and Fristedt (1985)], but it is too complicated
to implement them for these problems. Partial results can be found in
Berliner (1983), Srinivasan (1984), Berry and Fristedt (1985) and
references therein. Instead of aiming at optimality we define a subset
of sequential designs Dl, and search through simulation for designs

 either minimizing ri(dl) or maximizing wi(dl), in a way analogous
to Ginebra and Clayton (1995).

If we knew f(x;ß) we would know the root θ that solves f(θ;ß)=T and
the k that maximizes f(x; ß) and experimenting at either  or

 would be optimal for the multi-period control problem or the
R.S.B. respectively. Sequential certainty equivalence designs are the
ones that would be optimal if f(x; ß) was some current estimate for it,
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 For the control problem, certainty equivalence designs observe
yn+1 at the  that solves  and for the R.S.B. they observe
yn+1 at the  that maximizes . Note that certainty equivalence
designs, (c.e. from now on), depend on the estimator chosen for f(x; ß)
but do not depend on the.loss or the utility for the problem.

C.e. is the approach used in almost all the engineering applications;
In particular they assume that , and thus c.e. designs
for them are the ones that would be optimal if ß was known to be .
Berliner (1982) shows that some certainty equivalence rules are not
even admissible. Lai and Robbins (1982), Ying and Wu (1997), Hu (1998)
and references therein look into the asymptotic properties of some of
these rules for specific models. Recently Chen and Hu (1998) prove that
the Bayes c.e. designs are asymptotically optimal for simple linear
models.

Ginebra and Clayton (1995) and González and Ginebra (1999a)
propose heuristics for the R.S.B. and the multi-period control problem
respectively that improve on c.e. designs; These heuristics are different
for both problems and require either the estimation of the standard
deviation of  or the estimation of . In this paper we propose
new heuristics based on credible sets for θ and k that apply to both
problems at once. In Section 23.2 we illustrate them by tackling the
multiperiod control problem through designs supported on highest
posterior density (H.P.D.) sets for θ. In Section 23.3 we illustrate this
approach with an example involving the simple linear model, exploring
how do these designs and their performances depend on the prior, the
level of noise, the horizon and the size of the prior support for θ. In
Section 23.4 we describe how to deal with the R.S.B. through designs
supported on intervals based on posterior quantiles for k.

23.2 DESIGNS FOR CONTROL BASED ON H.P.D. SETS

The certainty equivalence designs for the control problem observe yn+1

at some estimate of the root of , without taking
into account the uncertainty in those estimates. By experimenting away
from , we may incur into extra immediate loss but that might help
learning about θ and increase the chances of experimenting closer to θ
in later runs. To decide how far do we move away from the c.e. choice,
we propose the use of posterior regions for θ. We illustrate the idea
through designs that experiment on highest posterior density regions,
denoted by dhpd, that perturb the c.e. design that observes yn+1 at the
mode of the marginal posterior for θ at stage n, .

Let gn(θ) be proportional to the posterior marginal density for θ after
stage n, πn(θ|Xn, Yn, π0). Let  and  be the maximum and
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Given that  belongs to  for any �, it splits that region in
two parts; Let ls and li be the lengths of the wider and narrower part
respectively, with the convention that when  is a set of disjoint
intervals, we evaluate li and ls by only taking into account the points in

. Figure 23.1 illustrates all these definitions.
HPD designs are indexed by  and are denoted by

. They observe yn+1 at a point  on the set . The
index � regulates the width of the region; The larger �, the further the
design is allowed to stray away from that c.e. choice. The index �

indicates the relative position of  on the set  and its
sign indicates the direction in which we move away from .
When  experiments on the side of  where  is
wider, at a distance from  equal to � times the length of that part, ls.
When �<0 it experiments on the narrower side at a distance from 

minimum values for gn(θ) on the support of θ. Given , let 
be the set:

 

Observe that  only contains  and that  is
the support of the posterior density for θ. The region  is either
an interval or a set of disjoint intervals and its width is monotonically
increasing with �. When the marginal posterior for θ is unimodal, 
will be an interval for any � but when it is multimodal,  is a set
of disjoint intervals for some .

FIGURE 23.1 Example of an  region and of the different
ingredients that intervene in the definition of the design 
when the marginal posterior distribution for θ is unimodal. gn(θ)
is proportional to πn(θ|Xn, Yn, π0) and the support for θ is [rtl, rtu]
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equal to � times its length, li. Thus for fixed �, the larger |�| the further
 is away from . When  is on an end of

.
Note that when either  experiments on 

. As n increases,  will tend to become narrower and
 will tend to be closer to , matching the decreasing need to

perturb c.e. to learn about θ as we get closer to n=N. Observe that
analogous designs can be implemented on credible regions other than
H.P.D., like with equally tailed intervals based on posterior quantiles
for θ.

To find the  that minimizes 
 we proceed through simulation from the joint

parameter and sample space as follows; For each  we repeatedly
simulate parameters ßi from π0(ß) and for each ßi we simulate the use of

 on data from the model for (y|x, ßi), estimating  as the
average of the observed losses. By searching among various 
we find the  that is estimated to be the ‘best’ for the specific
loss, prior and model. We know that  always improves on the
c.e. design that experiments at ; Indeed when either �* or
�* are close to 0, that c.e. design is the best HPD design. Müller (1998)
and Carlin et al. (1998) present recent uses of simulation on sequential
design problems.

23.3 AN EXAMPLE OF THE USE OF HPD DESIGNS

To illustrate the use of HPD designs for control, we explore their
performance for the normal linear model, (yn|xn, ß)~N(ß0+ß1xn,σ2),
parameterized through E[y|x,ß]=T+ß1(x-θ). We assume that 

 and that ß1 is independent

of θ, and T=0. To estimate , we simulate 500000 realizations of (ß1,
θ)i from its prior, and for each (ß1,θ)i we run the  design on yn’s
simulated from  and average the observed losses; Since
the estimated standard deviation for  is of the order of .0009, the
signal to noise in  is very large and the  minimizing  can
be easily located through a deterministic optimization process.

To evaluate the relative improvement of , with respect to
any other HPD design, , we define  to be the relative
increase in expected loss when we switch from  to ,
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In particular rr(0, �) is the relative increase in expected loss when we use
the c.e. design that experiments on , instead of

.
Figure 23.2 explores how  and rr(0, �) depend on 

where R measures the size of the support for θ. Both �* and �* increase
with increasing σ, while they are rather insensitive to variations in .
For most of the combinations of  tried, �* is positive and thus the
best HPD design experiments in the wider part of . When N
increases both �* and �* decrease and thus the larger AT, the closer the
best HPD design is to the c.e. design. When R increases, �* and �* first
decrease and then they increase.

Figure 23.2 also shows that rr(0, �) increases with increasing σ and
with decreasing , being more sensitive to changes in σ than in .
This means that the more we know about ß1 and the smaller the
information in y(x) about ß, the larger the improvement of 
over c.e. On the other hand, rr(0, �) decreases with increasing N,
consistently with the Bayes c.e. being asymptotically optimal. We have
found the behavior for �*, �* and rr(0, �) with respect to  and R
to be similar for all the priors, horizons and sizes of the support for θ
that we have tried.

23.4 DESIGNS FOR R.S.B. BASED ON C.P. INTERVALS

The certainty equivalence designs for the R.S.B. observe yn+1 at some
estimate of k, the x value maximizing . Instead,
Ginebra and Clayton (1995) perturb c.e. by experimenting on the xn+1
maximizing an upper bound for the predicted surface, , Here we
describe how we could experiment on an equally tailed interval for k
based on its posterior quantiles, perturbing the c.e. design that observes
yn+1 on the median of the posterior distribution for .

Let  and  be the α/2 and (1-α/2) quantiles of the posterior
distribution for k, and let  be a central posterior
interval for k. Note that cpn(α=1) only contains  and that cpn(α= 0)
is the support of the posterior density for k. The width of cpn(α) is
monotonically decreasing in α and  splits cpn(α) in two sub-intervals.

The “cp” designs are indexed by  and are
denoted by dcp(�,�). They observe yn+1 at a point  on the
interval cpn(α). The smaller α, the further the design is allowed to stray
away from that c.e. choice. The index � indicates the relative position of

 on that interval. When �>0, dcp(�,�) experiments on the side
of  where cpn(α) is wider, at a distance from  equal to �
times the length of that subinterval. When �<0 dcp(�,�) experiments on

Copyright © 2002 Taylor & Francis



DESIGNS BASED ON CREDIBLE REGIONS 419

FIGURE 23.2 Contour plots of  and of the relative increase in expected
loss when c.e. is used instead of . The model is:
(yn|xn,ß)~N(T+ß1(xn-θ), σ2) with  and ß1

independent of θ. The objective is to minimize 
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the side of  where cpn(α) is narrower, at a distance from 
equal to |�| times its length. Thus for fixed �, the larger |�| the further

 is away from . When  is either  or
, depending on which one of these quantiles is closer to .

When either �=1 or �=0, dcp(�, �) experiments on   .
As n increases,  tends to be closer to , matching the
decreasing need to “actively” learn about k as we get closer to n=N.

To find the design dcp(α*, �*) that maximizes
  we would proceed in a way

analogous to the one described in Section 23.2. For each (�, �) we would
repeatedly simulate the use of the corresponding design on data from
the assumed model, estimating wi(�, �). By searching among various
dcp(�, �), we find the  dcp(�*,�*) that is best, improving on the c.e. design
that experiments at ; When �* is close to 1, or �* close to 0,
that c.e. design is the best one in this family.

23.5 CONCLUDING REMARKS

The designs here described induce probing actions on certainty
equivalence to improve the intermediate estimates for θ, (or k), and
enhance future performance, adding an “active” learning feature on
top of the “accidental” olearning done by c.e. designs. One way to further
improve  (or dcp(�*, �*)), is to re-estimate  (or �*) and �* at
some intermediate stages m, based on the posterior distributions of θ
(or k) at those stages.

The main difficulty when implementing the designs proposed is in
the repeated computation of the credible regions to estimate , (or
(α*, �*)). Using H.P.D. type designs requires the repeated computation
of the pro file of the marginal posterior for θ (or k); When that profile is
not easily available we can implement the designs based on central
posterior intervals, where the difficulty is the repeated evaluation of
the posterior quantiles for θ (or k). When neither approach is feasible,
we can use the designs proposed in González and Ginebra (1999a) and
Ginebra and Clayton (1995).

The designs proposed in this paper can presumably be extended to
other adaptive design problems with one input variable, but their
extensions to problems with more than one input variable is not
straightforward; When x∈Rk, the solution of f(x;ß)=T will be an
hypersurface and not a real number, and k will be a point in Rk. González
and Ginebra (1999b) presents designs for multiperiod control with
multiple control variables that improve both on c.e. as well as on the
myopic choice, (that is the one that would be optimal if there was only
one observation left to be taken).

Copyright © 2002 Taylor & Francis



DESIGNS BASED ON CREDIBLE REGIONS 421

APPENDIX: MODEL USED IN SECTION 23.3

In the normal linear model, (yn|xn, ß)~N(ß0+ß1xn,σ2), and E[y|x,ß] =
ß0+ß1x=T+ß1(x-θ), with θ=(T-ß0)/ß1. To implement the H.P.D. designs in
Section 23.3 we use,

Proposition 23.5.1 Let  with ,
 independent of θ and σ known. The

marginal posterior density for θ is:

PROOF. The joint distribution for (Yn, θ, ß1), (the likelihood times the
prior distribution), is:

with . Thus the joint posterior density for (θ, ß1) will be:

The marginal posterior for θ is obtained integrating out ß through using
results for normal densities. �
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The proof for the next proposition follows by showing that the roots
of dπn(θ|Yn, Xn, π0)/dθ=0 are the roots of a third degree polynomial, and
thus the marginal posterior for θ has either one or two maxima. We
observe instances of bimodality for small n; When that happens, one of
the modes tends to be several orders of magnitude larger than the second
mode.

Proposition 23.5.2 Let 
and  ß1 independent of θ and σ known.
The marginal posterior density for θ has at most two modes.
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CHAPTER 24

AGING WITH LAPLACE ORDER
CONSERVING SURVIVAL UNDER

PERFECT REPAIRS

MANISH C.BHATTACHARJEE
New Jersey Institute of Technology, Newark, NJ

SUJIT K.BASU
National Institute of Management, Calcutta, India

Abstract: Survival distributions that are Laplace order dominated by
exponentials is the largest among the standard aging families. In this
article, we investigate the subfamily of such distributions for which the
asymptotic remaining life under perfect repairs preserves this Laplace
ordering.

Keywords and phrases: Survival distributions, perfect repair, Laplace
ordering, renewal theory, shock models

24.1 INTRODUCTION

To model the degradation of a repairable equipment over time, it is
important to specify not only the ‘aging’ character of the equipment’s
initial survival time via a suitable nonparametric specification, but also
that of the remaining life of such an equipment in use under a repair
discipline. In light of this approach, it is then natural to ask: what are
the ramifications of invoking an aging property in conjunction with an
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appropriate repair scheme? The focus of our present study is on survival
distributions which are weakly aging in the sense that they belong to
the class  [Klefsjö (1983)], such that under repeated renewals or
replacements, the corresponding asymptotic remaining life of a
sufficiently aged unit conserves this property.

Section 24.2 introduces the class  of survival distributions, and its
dual, with the above Laplace order conserving property under perfect
repairs and briefly reviews some of their properties as a necessary
background to investigate their closure under reliability operations in
Section 24.3. Negative results on closures are supported by
counterexamples. To study their preservation under shock models,
Section 24.4 considers the discrete versions of these classes, which are
of independent interest as well and clarifies the role of geometric
distributions as extreme points therein. In the final section we consider
preservation of the class properties under renewal process shock models.

Our motivation for considering the class  property in this context is
that, it is the weakest among all standard aging properties (IFR, DMRL,
IFRA, NBUE, [Barlow and Proschan (1975)], HNBUE and  [Klefsjö
(1982, 1983)], and thus constitutes the largest among the survival
distribution defined by them. The  family of distributions is a version
of Laplace ordering [see, Stoyan (1983)] relative to the exponential
distributions. Note that each of the aging classes above describe some
feature of a new equipment’s degradation over time until first failure,
which does not necessarily translate to a corresponding description of
its worsening under repair.

24.2 THE CLASS 

In what follows, F will generically denote a distribution function (d.f.)
of the life X≥0 (F(0-)=0) of a new unit, with survival function 
and Laplace transform

 

By µr,F, we shall denote the r-th moment of F, whenever it is finite, and
by ηF its coefficient of variation (c.v.). Klefsjö (1983) defines the 
aging (its dual  resp.) property of a survival distribution F, with a
finite mean, by

(24.2.1)

Equivalently,  if and only if  
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i.e., iff the Laplace transform of F is dominated by (dominates, resp.)
the Laplace transform of an exponential distribution with the same
mean as that of F. For several interesting interpretations of the definition
(24.2.1) and its reliability theoretic ramifications, see Klefsjö (ibid.).

Returning to the theme of aging relative to renewals, consider an
unit with life d.f. F, which is instantaneously replaced (perfectly repaired)
by a statistically identical and independent copy every time it fails. For
the renewal process driven by F, which describes the corresponding point
process of failures and repairs, let

(24.2.2)

denote the first derived distribution induced by F, i.e., the d.f. to which
the remaining life and age of an item in use under repeated renewals,
converges in distribution. Consider the class of d.f.s such that the
asymptotic remaining life distribution conserves the class  aging (or,
its dual) property of a new unit, as defined below.

Definition 24.2.1 A life d.f. F with a finite mean is in the class  ( ,
resp.) if F as well as the asymptotic remaining life d.f. F1 under repeated
replacements on failure, are both in  ( , resp.); i.e.,

 

Replacing  with  similarly defines the dual class .
Bhattacharjee and Sengupta (1996) proved that if , then F has

a finite variance and indeed, like its immediate predecessor class
HNBUE among the standard nested aging classes, preseryes the
property that its coefficient of variation (c.v.) �F satisfies �F≤1, the c.v.
of exponential distributions. Correspondingly, if , the second
moment need not be finite, but if it is, then �F≥1. It is known [Basu and
Bhattacharjee (1984), Bhattacharjee and Sethuraman (1990)] that unit
c.v. characterizes the exponentials within all standard nested aging
classes up to HNBUE, as well as among survival distributions within
all corresponding dual classes up to HNWUE with a finite variance.
Bhattacharjee and Sengupta (ibid) also provided an example of a d.f. in

, which has a c.v.=1, but which is not exponential. This counterexample
then implies that the preceeding characterization of exponentials does
not extend to the class  or its dual, and suggests an immediate question:
viz., is there a class smaller than  ( , resp.) not contained within
HNBUE (HNWUE, resp.), wherein unit c.v. still characterizes the
exponentials? The class  and its dual was originally motivated by
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Mitra et al. (1995) in an effort to answer this question in the affirmative,
with the following result.

Theorem 24.2.1 [Mitra, Basu and Bhattacharjee (1995)] Suppose
. Then ηF≤(≥)1. Further, F is exponential if and only if ηF=1.

Mitra et al. did not pursue the wider ramifications of the aging property
defined by . When we consider the fact that F1 describes the remaining
life in the long run under repeated renewals; the class  acquires a
natural setting to explore its properties such as closure under reliability
operations, and which describes the motivation for the present work.

The hierarchical relationship of  to the standard aging classes is
shown in the following diagram, with a corresponding chain of
implication for the respective duals.

Relationship of  to standard aging classes

 

Except for the nesting relationships of , the other implications are
well known. The claim  follows, since  is a subset
of  so that, , and by noting that 

 There are no known relationships between  and
NBUE or HNBUE. In fact neither of the last two properties is implied
by . This observation follows from our Counterexample 24.3.1 in
Section 24.3 which exhibits a d.f. in , but which is not HNBUE and
hence is not NBUE.

The moments and Laplace transforms of F and the corresponding
first derived distribution, which we will find useful for later reference,
are related to each other, by

(24.2.3)

(24.2.4)
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Remark 24.2.1 It follows from the first claim in Theorem 24.2.1 and
(24.2.3) that, if , then

 

This chain of inequalities clearly implies,

(24.2.5)

Suppose, the third moment of F agrees with the corresponding
exponential moment . Then the first chain in (24.2.5)
collapses and immediately implies ηF=1, which then guarantees the
exponentiality of F by the second claim in Theorem 24.2.1. For higher
values of r, an analogous argument can be constructed by repeatedly
using (24.2.3). We thus have the following corollary to Theorem 24.2.1,
which shows that within , agreement of any moment of order r=2,
3,…with the corresponding exponential moment also characterizes
exponentiality.

Corollary 24.2.1 Let . If  for some integer r≥2,
then F must be exponential.

24.3 CLOSURE PROPERTIES

This section is devoted to the investigation of preservation properties
of  and  under reliability operations such as coherent structures
and convolutions.

24.3.1 Coherent Structures

We show that neither  nor  are closed under coherent structures.
The latter is what one would expect (Counterexample 24.3.2), since

 is negatively aging. The first assertion, which requires more effort
to demonstrate (Counterexample 24.3.1), is also not unexpected, and
is parallel to the corresponding findings that other weakly aging
classes such as NBUE and HNBUE are also not closed under
formation of coherent structures [Barlow and Proschan (1975) and
Klefsjö (1983)].

Counterexample 24.3.1  is not closed under coherent structures.
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Consider the d.f. F with jumps of magnitude 0.3 and 0.7 at x=0.3 and
3 respectively,

 

Klefsjö (1983) used this example to conclude that  is not closed under
coherent structures by proving  and that for the d.f  of
the survival time of a series system of two i.i.d. components with lifetime
d.f. F as above, we have .

We show . This is enough to demonstrate that  is not closed
under coherent structures, since the d.f.  and  then
implies .

To check , we only need to show that , since we already
know that . Now,  if and only if its Laplace transform satisfies
the inequality

 

or, equivalently, if and only if

for all s³0. Let cr=coefficient of sr in the expansion of , r= 0, 1, 2,…. Then,

co=c1=0,

For r≥2, the first of the two additive terms, defining cr, is clearly positive.
The sign of the second term is that of

 

since µ1,F=2.19, µ2,F=6.327, so that =(6.327/4.38)<1.05; and further setting
r=2 in the expression of cr above, we get

 

Thus c0=c1=0, cr>0 for all r≥2, so that , for all . Hence
.
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Counterexample 24.3.2 The life distribution of a parallel system of
two independent exponential components with different means is IFRA
[Barlow and Proschan (1975, p. 83)] but is not exponential, and hence is
strictly in  and thus not in  or, its subset . Since, exponentials are
trivially in , it follows that  is not closed under coherent structures.

24.3.2 Convolutions

Our main result is that  is closed under formation of cold standby
systems of independent components (Theorem 24.3.1), while its dual
class is not (Counterexample 24.3.3).

Theorem 24.3.1 Suppose F and G both , and let H:=F*G be their
convolution. Then .

PROOF. Since  we have  and the corresponding first
derived distributions  as well. Hence  since  is closed
under convolutions [Klefsjö (1983)]. To complete the argument, we
further need to show that .

Since class  distributions have a finite variance and thus a finite
c.v., assume without loss of generality that ηG≤ηF. Next, note that for
any survival distribution S (in , or not) with a finite mean; using
(24.2.4), we see that the corresponding derived distribution

 )-1, i.e.,

(24.3.6)

Since LH1(s)={1-LF(s)LG(s)}/{s(µ1,F+µ1,G)}; by invoking (3.1) for F,
, and some routine computations, we see that

where,

(24.3.7)

(24.3.8)
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and

(24.3.9)

Now, from (24.3.6) and (24.3.7), we see that to conclude , it is
enough to show that

(24.3.10)

To verify (24.3.10), we compute the mean of H1 by using the following
easily proved representation [Bhattacharjee et al. (1998)] of H1 as a
mixture,

(24.3.11)

where α is given by (24.3.9). This yields

(24.3.12)

Using (24.3.8) and (24.3.12), the coefficient of s on the left hand side of
(24.3.10) is,

 

and thus equals the coefficient of s on the righthand side of (24.3.10).
Since  implies ηF≤1 [i.e., , by (24.2.3)]; from (24.3.8),
we have . Thus, the coefficient of s2 on the left hand side of
(24.3.10) can be bounded above, by

 

Hence, we will be done if we can show that , for then the
coefficient of s2 on the left hand side of (24.3.10) will be dominated by
its counterpart on right hand side, thereby confirming the inequality.
Now, using (24.3.12),

(24.3.13)

since . However, since ηG≤ηF, we indeed have
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which implies that (24.3.13) is satisfied as a strict inequality, and the
proof is complete. �

Remark 24.3.1 If ηF<ηG; then use the alternative representation

 

which follows from (24.3.11) and commutativity of convolutions (H=F*
G=G*F), and then proceed analogously by reversing the roles of F and
G in the subsequent computations following (24.3.11).

Counterexample 24.3.3 Since the convolution of two i.i.d. exponentials
(which are trivially in  as well as in ) is strictly IFR and thus cannot
belong to ; it follows that  is not closed under convolutions.

24.3.3 Mixtures

A mixture of exponentials (which are, of course in ), being strictly
DFR, belongs to . Thus  is not closed under mixtures, while its
dual is, as the next proposition shows.

Theorem 24.3.2  is closed under arbitrary mixing.

PROOF. Routine. Let

(24.3.14)

be an arbitrary mixture of d.f.s in a family  of -
distributions with a mixing distribution P on Λ. To show , simply
note that, if F1, Fλ,1 denote the first derived distributions corresponding
to F, F1 respectively, then we can write,

(24.3.15)

where P* is the probability measure on Λ such that

 

Note that (24.3.14) implies µ1,F=�Λ µ1,F� dP(�), which guarantees P*(Λ)
=1, so that the measure P* defined above is indeed a probability on Λ.

Since,  requires  and , all , and  is closed
under mixing [Klefsjö (1983)]; it follows that both the mixtures in
(24.3.14) and (24.3.15) must be in , so that . �
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24.4 THE DISCRETE CLASS  AND ITS DUAL

In order to investigate the preservation of class  property under shock
models, in this section we introduce the discrete version  of the class

, the corresponding dual class, and note some of their relevant
properties. The definition of the class  is prompted by consideration
analogous to those which motivated our construction of the class  as
a subset of . To do this, we first need the class  [Klefsjö (1983)],the
discrete counterpart of .

Definition 24.4.1 [Klefsjö (1983)] The distribution P={p1, p2,…} of a
positive integer valued random variable N, with mean EN=m and
probability generating function (p.g.f.) �N (z):=EzN, 0≤z ≤1 belongs to 
( , resp.), if

(24.4.16)

where, N* is a geometric r.v. with EN*=EN=m. Assume, m>1, w.l.o.g.
Note that (i) N* has the geometric distribution P*, defined by,

and (ii) the class  defined above via (24.4.16) is a special case of the
partial ordering <g via generating functions [see, Stoyan (1983)] defined
among integer valued r.v.s J, K by J<g K if EzJ≥EzK, 0≤z≤1; so that,

 

If := P(N>k), k=0, 1, 2,…are the survival probabilities of N, then
(24.4.16) can be expressed as,

 

Corresponding to the r.v. N, consider an induced r.v. N1 with distribution
Q={q1, q2,…}, defined by,

(24.4.17)

with the probability generating function,

(24.4.18)
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Definition 24.4.2 The distribution P of a strictly positive integer valued
r.v. N with a finite mean belongs to  if the distribution P of N as
well as the corresponding induced distribution Q of N1 belong to ,
i.e.,

 

where is N1
* is a r.v. with distribution defined by replaying N in (24.4.17)

with the geometric r.v. N* with mean EN*=m. The dual  is similarly
defined by interchanging the roles of N and N* in the partial ordering
above.

Theorem 24.2.1 has the following analog in the discrete classes 
(and their duals) which have the family of geometric distributions in
their boundary.

Theorem 24.4.1 (i) If  with mean m, then

(24.4.19)

(ii) Further, if , then the extremal value of the c.v.
is attained iff P=P*; i.e., if and only if P is geometric.

PROOF. We indicate the argument when  respectively, as the
dual case follows similarly.

(i) If the distribution of N is in , then by using (24.4.18) and (24.4.16),
it follows that the distribution of the induced r.v. N1 must satisfy,

 

As z ↑ 1, the left hand side converges to EN1, by the monotone
convergence theorem. Hence, as z ↑ 1, the above inequality implies

(24.4.20)

From (24.4.18), check that

(24.4.21)
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From (24.4.22), we see that ηP attains the extremal value in (24.4.19) if
and only if EN1=EN. When this happens, the bounds on the p.g.f. in
(24.4.23) then collapse to show that N must then be a geometric r.v. �

As Theorem 24.4.1 suggests, the class  is strictly larger than 
(  since the extreme possible value of the c.v. characterizes the
geometric distribution only within the latter classes. The following
counterexample shows that attaining the extremal value of the c.v.
within the class  does not require a geometric distribution. A similar
example can be constructed for the class .

Counterexample 24.4.1 Consider the distribution P of a r.v. N such
that  and . Then, , so
that ηP attains the bound in (24.4.19). Also, with N* denoting the
geometric r.v. with mean EN*=EN, we have,

 

Clearly, �N(z)—�N*(Z)≥0, all  if and only if z(z-1)3≤0, which
trivially holds on [0.1]. Thus, , without being geometric, although
its c.v. achieves the lower bound in (24.4.19).

24.5  AND  AGING WITH SHOCKS

Let S be the standard shock model distribution with survival probability

(24.5.24)

The inequality (24.4.20) then clearly implies,

(24.4.22)

which leads to the desired conclusion in (24.4.19).
(ii) Suppose . Then its c.v. still satisfies the bound in (24.4.19).

Using (24.4.16), (24.4.18) and the defining property of the class , we
easily obtain,

(24.4.23)
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where  is the probability of surviving k shocks, and N(t) is the number
of shocks occuring up to time t. When shocks arise according to a renewal
process, the family of models in (24.5.24) are the so called renewal process
shock models. We show that when the inter arrival time between shocks
is  aging and the number of shocks to failure has the
corresponding  resp.) property, then the survival time d.f. S
inherits the  ( , resp.) property. A similar finding holds for the dual
classes (Theorems 24.5.1 and 24.5.2).

let F be the d.f. driving the renewal process N(t) of shocks, N the
number of shocks to failure with P(N=k)=pk and shock-resistance
probabilities . Note that when , or
their duals; we have p0=0; i.e., no failure occurs without shocks.

Theorem 24.5.1 If  and , then
.

PROOF. Whether p0=0 or not; when N(t) is a renewal process driven by
F, using (24.5.24) we can write

(24.5.25)

where F*k is the k-fold convolution of F with itself. Standard
computations now yield the Laplace transform of S as, LS(s)=�N(LF(s)),
where �N is the p.g.f. of the number N of shocks to failure. From (24.5.25),
we see that,

(24.5.26)

Hence, the mean survival time and the mean time between shocks are
related by,

where m=EN is the average number of shocks to failure. If  
resp.) and , then using the monotonicity of
p.g.f.s and Laplace transforms, the defining properties of the of the
classes  (their duals) and (24.5.25), we get,

(24.5.27)
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which proves the desired conclusion. �

Remark 24.5.1 Theorem 24.5.1 supplements the results of Klefsjö
(1983), who considered the shock models (24.5.24) where the number of
shocks to failure has a distribution in  (or its dual) but shocks arise as
a birth process

Theorem 24.5.2 If  and ,
then .

PROOF. If S is a renewal process shock model d.f. (24.5.25); the key
idea is to derive a suitable representation of the corresponding derived
distribution S1, which is then used to verify its membership in  or, its
dual. From (24.5.25), we have,

 

where, for notational convenience, we write Gk for the first derived
distribution (F*k)1 induced by F*k. It then follows that,

 

where {πk:k≥1} is the distribution on the positive integers, defined by

 

Consequently,

Standard computations show that,

 

(24.5.28)
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Plugging this in (24.5.28) and using (24.4.21), we get,

(24.5.29)

Now, from (24.2.4) and (24.5.25), we get

(24.5.30)

If  and N has a distribution in ; in virtue of (24.2.4) and
(24.4.23), we note that,

(24.5.31)

(24.5.32)

Observe that the lower bound on the right hand side of (24.5.32) is
nondecreasing in z over [0,1]. By monotonicity of LF and �N, (24.5.30)–
(24.5.32) now imply

where, the last step follows from (24.5.27) and (24.5.29), by noting

 

This shows , while Theorem 24.5.1 guarantees . Hence,
. The dual case follows by reversing the inequalities in (24.5.31)–

(24.5.33). �
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CHAPTER 25

DEFECT RATE ESTIMATION
USING IMPERFECT

ZERO-DEFECT SAMPLING WITH
RECTIFICATION

NEERJA WADHWA
GE Capital, Stamford, CT

Abstract: An important aspect of any quality control program is
estimation of the quality of outgoing products. This paper applies
Acceptance Sampling with rectification to the problem of quality
assuance when the inspection procedure is imperfect. The objective is
to develop effective rectification sampling plans and estimators based
on these plans without making the assumption of a perfect inspection
procedure. We develop estimators, under two different sampling plans,
for the number of undetected defects remaining after a set of lots has
been passed. We compare, by extensive simulation, the proposed
estimators with existing ones in terms of Root Mean Squares Error
(RMSE). One of our estimators, an empirical Bayes estimator, is seen
to consistently obtain substantially lower RMSE overall.

Keywords and phrases: Acceptance sampling, rectification, mean
squared error, empirical Bayes estimator, imperfection errors

25.1 INTRODUCTION

An increasing number of manufacturers are pursuing high quality
standards these days. Manufacturers such as Texas Instruments,

Copyright © 2002 Taylor & Francis



NEERJA WADHWA442

Motorola, and General Electric are striving to achieve Six Sigma Quality.
This corresponds to a target of no more than 3.4 defects per million
products. Given such stringent quality standards, it has become
increasingly important to measure quality reliably, consistently, and
accurately. Suppliers, for example, are frequently required to
demonstrate through sampling inspection that their products meet
specified quality standards. Inspection process, therefore, plays a very
crucial role for total quality control in manufacturing. In quality
assurance a lot is either accepted outright as satisfactory, or inspection
is done on every item in the lot. Alternately, one may use an acceptance
sampling plan. An acceptance sampling plan is one which indicates
conditions for acceptance or rejection of the lot being inspected. In this
paper, we focus on a particular type of sampling inspection, Acceptance
Sampling with Rectification (ASWR). In an acceptance sampling plan,
a random sample is inspected from each lot. The lot is accepted if less
than a certain number, k, of defective units (defectives) are found in
the sample; else it is rejected. Often, to an acceptance sampling plan
there is attached a provision for further inspection of lots rejected by
the plan. Rectification calls for retention of rejected lots and their
submission for further inspection. Commonly, the rejected lot is made
to undergo 100% screening operation; the defectives thus found either
discarded or replaced. The process may be represented as follows:

An important aspect of any quality control program is the estimation
of the quality of outgoing products. Extensive research has been
conducted in the area of estimating the proportion of defectives in
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outgoing lots. For example, Hahn (1986) investigates two naive
estimators and proposes one empirical Bayes approach to estimating
the percentage defectives in accepted lots with zero-defect sampling.
Zaslavsky (1988) formally demonstrates Hahn’s results and extends
them in several ways. Brush, Hoadley, and Saperstein (1990) use a
hierarchical Bayes model to estimate the proportion of defectives in
accepted lots, based on both accepted and rejected lots. Martz and
Zimmer (1990) present an estimator for the percentage of defectives in
lots under zero-defect sampling (the sample is deemed acceptable when
the number of defectives k, in the initial sample, is zero). Greenberg
and Stokes (1992) provide estimators of the number of defectives in a
set of T outgoing lots under zero-defect sampling with rectification. To
date, almost all research in ASWR has been conducted under the
restrictive assumption of the inspection procedure being perfect. This is
often an unrealistic assumption. In this paper we consider two
rectification sampling plans when the inspection procedure is imperfect.
We estimate the defective rates in the lots after zero defect sampling,
when the inspection environment is not 100% accurate. We then develop
estimators for the number of undetected defectives remaining in a set
of accepted lots. Recently, in a working paper, Greenberg and Stokes
(1996) have proposed an adjustment to their estimator taking into
account imperfections in the inspection procedure. We compare the
performance of our estimators with those proposed by Greenberg and
Stokes (1992, 1996). We also compare the two sampling plans on the
basis of RMSE and cost.

25.2 SAMPLING PLAN A

25.2.1 Model

Consider a set of T lots, each of size n units. A random sample of size m
units is selected from each lot and inspected. If no defectives are found
in this sample, the lot is accepted. If at least one defective is found, the
entire lot undergoes inspection. The defectives detected are discarded
and the lot is accepted. The notation in this paper follows Greenberg
and Stokes (1992). Let

Di1: The number of defectives in sample i.
Di2: Additional defectives among the un-sampled units in lot i.
Di: Total number of defectives in lot i. (Di=Di1+Di2).
Yi1: Number of defectives detected in sample i.
Yi2: Additional defectives detected in the remaining (n-m) units in lot i.
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Yi: Number of defectives detected in lot i. (Yi=Yi1+Yi2).

 

Ui: Number of undetected defectives in lot i. (Ui=D-Yi).

The objective is to estimate the number of defectives, U, in the T
outgoing lots; where . In the next section we discuss the
Greenberg and Stokes (1992, 1996) estimators, and modify the
Greenberg and Stokes (1996) estimator.

25.2.2 Modification of Greenberg and Stokes Estimators

In this section we first discuss the Greenberg and Stokes (1992) estimator
for the number of undetected defectives remaining in the outgoing lots.
We then discuss the Greenberg and Stokes (1996) estimator for the
imperfect machine, and then propose a modification to it. The estimator
proposed by Greenberg and Stokes (1992) is a non-parametric estimator
which allows for general variability of the defective rates across lots.
The estimator is defined as:

(25.2.1)

where

(25.2.2)

Pi is the probability that Yi1>0, and  is subtracted in (25.2.1)
because identified defectives are rectified.

When the inspection process is not error free, two kinds of errors
may occur: a defective unit is declared non-defective, or a non-defective
unit is declared defective. Let,

p=Pr[unit declared defective | unit is defective]

p’=Pr[unit declared defective | unit is not defective].

We will assume that p and p’ are known by previous calibration.
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An initial adjustment proposed by Greenberg and Stokes (1996) for the
estimate of , in the case of imperfect inspection procedure is:

(25.2.3)

where Pi is defined in (25.2.2). Please note that, recently, Greenberg
and Stokes (1996) have further updated this estimator to

 

This estimator is an unbiased estimate of U. The original ÛGS,2,
however, seems to have better RMSE properties for most levels of
machine imperfection.

We now propose an estimator for . This estimator is a
modification of the one proposed by Greenberg and Stokes (1996) in
(25.2.3). In our estimator, the probability Pi, i.e., the probability of
detecting at least one defective in the sample, has been improved to
take into account the imperfections of the inspection procedure. The
estimator is,

(25.2.4)

where

(25.2.5)

In the next section, we first discuss the model used, and then propose
an Empirical Bayes estimator for the number of undetected defectives
remaining in the outgoing lots.
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25.2.3 An Empirical Bayes Estimator

The model considered is a modification of the one proposed by Greenberg
and Stokes (1992). A set of T lots, each of size n units is considered. A
random sample of size m units is selected from each lot and inspected.
If no defectives are found in this sample, the lot is accepted. If at least
one defective is found, the entire lot undergoes inspection. The defectives
detected are discarded and the lot is accepted. We assume that each
unit in lot i is independently defective with probability �i, and �i varies
from lot to lot. The model is then specified as:

 

To account for inspection error, we overlay the above model with the
following:

Yi1~binomial(Di1, p)+binomial(m-Di1, p’)
Yi2|Yi1>0~binomial(Di2, p)+binomial(n-m-Di2, p’)

Yi1 represents the number of detected defectives in the sample of lot i.
Next, we propose an empirical Bayes estimator for the number of

undetected defectives remaining in the outgoing lots. In order to estimate
the number of undetected defectives in outgoing lots, researchers have
historically based their information only on those lots where at least
one defective is found. The estimators discussed above confer to this
rationale. It is, however, debatable on how much information about
rejected lots one can directly derive from an accepted lot.

Assuming reasonable parameter values, P(�=0|Yi1=0) is substantially
greater than P( �>0|Yi1=0) (see appendix A1.2). Thus, if no units are
declared defective in a lot, the probability that �=0 for that lot is very
high. In other words, most of the lots where no defectives are found
come from the path with probability 1-π. Conversely, if at least one unit
is declared defective, the probability that �>0 for that lot is very high.
These lots are, thus, more likely to come from the π path. The rejected
lots should thus be treated separately from the accepted lots, and one
should not directly extrapolate information about one from the other.
The empirical Bayes estimator is thus based on the following expression:
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where E(Di| Yi1=0) is a constant whose calculation is discussed in
appendix A1.1. In Unew, 2ab known, we seek to estimate separately the number
of undetected defectives in accepted versus rejected lots. For accepted
lots, we take the expectation of the number of defectives, given the
information that no defectives were observed as an estimate of U.

The reader should note that Unew 2ab known uses population parameters
a, b, and π, and thus cannot be compared fairly with other estimators.
Therefore, in the expression for Unew 2ab known we substitute the parameters
a, b, and π with their estimates â, ^b and  respectively. The empirical
Bayes estimator thus is,

(25.2.6)

We estimate a and b using the method of moments approach. As
discussed in Appendix A1.2, if zero defectives are observed in the initial
sample, the probability of a lot being defective is very small. We thus
consider lots where at least one defective is observed in the sample.
Using the rationale of hypotheses testing, we consider the null
hypothesis to be that of no defectives present in a lot, versus the
alternative that there exists at least one defective in the lot. Under
the null hypothesis, Yi is distributed as Binomial(n,p’). Thus for a level
of significance of 2.5%, the rejection criterion is to reject a lot if

. Note that, clearly, higher the

value of µ=a/(a+b), the greater the power of the test. Consider a simple
example: let p=0.99, p’=0.01, n=5000, and m=125. Even for the smallest
value of µ considered, that is µ=0.01, Pr[Type I Error]=2.5%, and Pr[Type
II Error]≈ 0.

The mean may be equated as follows:

(25.2.7)

where  and # lots=Number of lots satisfying the condition

 

Similarly, we equate the variance term using the method of moments
as follows:

(25.2.8)
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We obtain the estimates of a and b by solving the Equations (25.2.7)
and (25.2.8).

We estimate π by solving the following equation for .

(25.2.9)

The intuition for the above estimate of �, the proportion of defective
lots, is as follows: Using the above mentioned rationale of hypotheses
testing, the first term in the numerator of Equation (25.2.9) indicates
the number of rejected lots, or in other words, the number of defective
lots given that at least one defective is observed in the sample. The
second term in the numerator accounts for the expected number of
defective lots given that no defectives are observed in the sample. This
term is included because even when zero defectives are observed in a
lot, there exists a possibility of the lot being defective.

25.2.4 Comparison of Estimators

In this section we present simulation evidence that when the inspection
procedure is imperfect, the proposed estimators have a lower MSE than
ÛGS,1 and ÛGS,2. The difference in the MSE of the various estimators is
usually very large, which makes it difficult to plot the MSE of the
estimators on the same scale. Thus, the measure of comparison used is
Root Mean Squared Error (RMSE). Appendix A2.2 derives the bias and
MSE for estimators ÛGS,1, ÛGS,2 and Ûnew,1. These expressions are very
general and can be applied to any estimator of the form .
However, a limitation of these expressions is their computational
difficulty due to the large number of calculations involved. We,
therefore, resort to simulation to get the RMSE of these estimators for
large lot/sample sizes (Large lot/sample sizes refer to n=5000 and
m=1254. Small lot/sample sizes refer to n=15 and m=3). The
expressions for bias and MSE are useful when the lot/sample sizes are
small.

The performance of the four estimators is compared for the same
values of n, m and T as used in Greenberg and Stokes (1992).
Comparisons are done by way of several RMSE figures. The figures are
based on 200 simulations, each consisting of 300 lots; one parameter is
made to vary in each figure. In Figures 25.1A and 25.1B the RMSE of
the estimators is plotted against µ. We take π=0.1, and r=0.34 for
Figures 25.1A and 25.1B. ρ is the within-lot correlation of defectives,
defined in Greenberg and Stokes (1992). They define ρ as follows: Let Xi

(or Xj)=1 if the ith (or jth) unit in a lot is defective and 0 otherwise. Then
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ρ=corr(Xi,Xj) ( ρ= . The RMSE of the estimators is
Plotted against the average proportion of defectives, µ=a/(a+b) [ii]. The
values considered for population parameters a and b in the simulations
are calculated using simultaneous equations [i] and [ii]. The maximum
standard error of the RMSE across different levels of µ is stated for
these figures. ÛGS,1 and ÛGS2 are referred to as GS1 and GS2 in the
figures. Ûnew,1 and Ûnew,2 are new1 and new2 respectively. ÛGS,1 and ÛGS,2

and are identical when the inspection procedure is perfect, and their
performance lies between Ûnew,1 and Ûnew,2. However, when there is a
slight imperfection, ÛGS,1 rises very fast. Note that this estimator seems
to be changing shape for different levels of machine imperfection. Thus,
the performance of ÛGS,1 seems to be rather poor when the inspection
procedure is imperfect.

The RMSE performance of the second estimator, ÛGS,2 is
substantially better than ÛGS,1. It almost always performs better than
that of ÛGS,1 and its shape is consistent for different levels of p and p’.
The standard error of this estimator is almost two orders of magnitude
smaller than that of ÛGS,1.

Ûnew,1 performs worse than ÛGS,1 and ÛGS,2 when the machine is
perfect. The reason is that for the perfect machine,  reduces to 1,
and thus Ûnew,1 is always zero. However, with even slight
imperfection, the performance of Ûnew,1 becomes much better. Since
we are concerned with the cases when the inspection procedure is
imperfect, the overall performance of Ûnew,1 seems to dominate that of
ÛGS,1 and ÛGS,2.

The fourth estimator i.e., Ûnew,2, performs well for all levels of p and
p’. It has a lower RMSE than the other three estimators at all level of
machine imperfection, including the case when the inspection
procedure is perfect. In fact, the maximum RMSE of Ûnew,2 is less than
the minimum RMSE of all the other estimators.

In Figure 25.2 we plot the RMSE of the estimators against ρ. We
take π=0.1 and µ=0.1. ρ is made to vary from 0.1 to 0.9 in increments
of 0.2. In Figure 25.3 we take µ=0.1, and ρ=0.3. The RMSE of the
estimators is plotted against π. Note that π can vary widely
depending on whether the process is in control or not. The behavior
of the estimators is similar to that described for the case when µ
varies.

As is clear from the preceding figures, the performance of Ûnew,2 is
better than the other estimators under all circumstances. We shall,
therefore, restrict attention to this estimator.

The reader should note that there is minimal difference in the RMSE
performance of Ûnew,2ab known and Ûnew,2 for various levels of p and p’.
Therefore, for simplicity, we base Figure 25.4 on analytical values of
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Ûnew,2ab known instead of simulated values of Ûnew,2. In Figure 25.4, the
performance of Ûnew,2ab known is studied for different levels of machine
imperfection as µ varies. The other parameters are taken to be constant
at n=5000, m=125, ρ=0.3 and π=0.1. The values of µ range from 0.01
to 0.3.

When the machine is near perfect, the RMSE is low for small and
very large values of µ, but is relatively high for intermediate values. To
see this, consider a simple example where the machine is perfect and
µ=0 ( i.e., there are no defectives in the lots). The RMSE for the
undetected defectives is zero. Similarly, when µ=1, (i.e., either a lot has
all defectives, or all non-defectives), the RMSE is again zero. For all
other values of µ, the RMSE would be non-zero because the number of
undetected defectives would not always be zero. As the machine
becomes more imperfect, the RMSE increases monotonically with µ.
Looking at the cross section for a particular µ, for small and medium
values of µ, the RMSE decreases and later increases as the level of
machine imperfection increases. Note that the level of machine
imperfection where RMSE starts increasing (approximately p=0.95,
p’=0.05) is not shown on the figure. Cases such as this where m and p’
are such that all units are almost always sampled are uninteresting
and hence were not considered.

The intuitive explanation for this is as follows: As the machine goes
from perfect to highly imperfect, there are two counteracting effects.
First, the number of lots sampled increases since false errors are
detected in the sample. This tends to decrease the RMSE, since more
sampling is being done. Second, due to machine imperfection the
RMSE increases. When the machine goes from perfect to slightly
imperfect, the first effect dominates, thereby reducing the RMSE.
However, as the machine approaches severe imperfection, the
probability of sampling a lot approaches one. Therefore, the decrease in
the RMSE due to the first effect approaches zero. The second effect
dominates, thereby increasing the RMSE. Hence, the RMSE first
decreases and later increases.

When the value of µ is high, we see that the RMSE increases
monotonically as the machine goes from perfect to highly imperfect.
The probability of a defective showing up in a sample is high, and
therefore, the probability of lot being sampled is high. Hence the first
effect is minimal.

25.2.5 Example

To illustrate the computation of the estimators, we simulate a data
set based on the model discussed in Section 25.2.3. The data, shown
in Tables 25.1 through 25.4 below, is generated by taking 125 samples
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from each of 300 lots of size 5000. The values for µ, ρ, and π considered
in the simulations are 0.1, 0.3, and 0.1 respectively. p and p’ are
taken to be 0.999 and 0.001. Tables 25.1 and 25.2 present the actual
number of defectives and the observed defectives in the 300 lots
respectively.

For generation of Table 25.1, the actual number of defectives, Di,
follows Binomial(n,�). Specifically, Di1~Binomial(m,�), and
Di2~Binomial(n– m, �). Table 25.2 is generated from Table 25.1. The
declared number of defectives in the sample, Yi1, is generated in two
steps. Defectives that are declared defective are simulated as
Binomial(Di1,p). Non-defectives declared defective are simulated as
Binomial(Di2,p’). Thus, Yi1=Binomial(Di1,p)+Binomial(Di2,p’). The
declared number of defectives in the remaining lot, Yi2, is simulated
similarly. Yi is obtained by adding Yi1 and Yi2. The computation of the
estimators and their comparison to the actual number of undetected
defectives is shown below.

TABLE 25.2 (p=0.999, p’=0.001)

TABLE 25.1 (p=0.999, p’=0.001)

Actual number of undetected defectives=100.
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As can be seen, the estimators are highly disparate. Ûnew,2 seems to
perform the best amongst all estimators considered; its value of 66 is
closest to the actual value (100) of the number of undetected defectives
in the accepted lots.

25.3 SAMPLING PLAN B

In this section we present a plan which is referred to as Sampling Plan
B. First, we present estimators for the number of undetected defectives
left in outgoing lots for this sampling plan in Section 25.3.1. We do so
by modifying the proposed estimators for sampling plan A. Next, we
compare this sampling plan with plan A on the basis of RMSE in Section
??.

25.3.1 Estimators

We consider a sampling plan where the initial sample is inspected three
times instead of once in each lot. A unit is declared defective if it fails at
least twice. If no defectives are found, the lot is accepted. If at least one
defective is found, the entire lot is screened, and all the defectives are
removed. Note that this sampling plan is especially important when p
and p’ are not known. This is because in order to estimate p and p’, it is
necessary to inspect some items at least three times [see Johnson, Kotz
and Wu (1991)].

The probability of correctly classifying a defective as well as incorrectly
classifying a non-defective for this sampling plan may easily be stated
in terms of p and p’ respectively (It is easy to show that q*<(>)q if q<
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(>)0.5. Since p is usually greater than 0.5, and p’ less than 0.5, screening
the initial sample three times is equivalent to screening it once but with
a inspection procedure that is more perfect.)

The probability of correctly classifying a defective may now be stated
in terms of p and p’ as follows:

 

Similarly, the probability of incorrectly classifying a non-defective as
defective is defined as

 

Note that the error probabilities for the initial sample will be different
from the ones associated with the remaining lot. This is so because the
sample is screened three times, whereas the remaining units are
screened at most once. Therefore,

 

Thus, Di can be estimated by

 

The estimator, Ûnew,1, for the number of undetected defectives is modified
as,

(2.3.10)

where

(25.3.11)
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The second estimator, Ûnew,2, can be modified for this sampling plan
as follows:

 

where Ê*(Di|Yi1=0) is a constant calculated in the same way as E*(Di|
Yi1=0) for sampling plan A.

25.4 SUGGESTIONS FOR FURTHER RESEARCH

As part of future research, the proposed estimators can be extended to
the case of c-defect acceptance sampling. The estimators can be further
modified for situations where lot/sample sizes and/or acceptance
numbers vary from lot to lot. Also, the empirical Bayes estimator is
based on the beta-binomial model. It can easily be computed for other
models, such as gamma-poisson et al.

In this paper, misclassification error probabilities, that is p and p’,
are assumed to be known. In many practical situations, p and p’ will be
unknown, so that one would not be able to compute the proposed
estimators. However, estimates of p and p’ can be substituted in the
estimators. Blischke (1964) proposed several estimators for the
misclassification error probabilities. Estimation of the probabilities p
and p’ has also been considered by Johnson et al. (1991). Since
computational burden is insignificant these days, maximum likelihood
estimators can also be computed [see Greenberg and Stokes (1996)].

such that
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APPENDIX A1: CALCULATION OF THE SECOND TERM IN Ûnew,2

Appendix A1.1: Calculation of E(Di|Yi1=0)

(25.4.12)

(25.4.13)

where �=�p+(1-�)p’.
The values of integrals in expressions (25.4.12) and (25.4.13) are found

by numerical integration. Adding equations (25.4.12) and (25.4.13), we
obtain E(Di|Yi1=0).

Appendix A1.2: Calculations of Probabilities
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APPENDIX A2: ANALYTICAL EXPRESSIONS FOR THE BIAS
AND MSE

Appendix A2.1: Bias and the MSE Derivation for Ûnew,2abknown

Bias calculations for Ûnew,2abknown

 

where

 

Note that K represents E(Di|Yi1=0).

MSE for Ûnew,2abknown

 

where

 

where
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Appendix A2.2: MSE of estimators, ÛGS,1, ÛGS,2 or Ûnew,1

MSE calculations
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where
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CHAPTER 26

STATISTICS IN THE REAL
WORLD—WHAT I’VE LEARNT

IN MY FIRST YEAR (AND A
HALF) IN INDUSTRY

REKHA AGRAWAL
GE Corporate Research & Development, Schenectady, NY

It’s been a year and a half since I graduated with my Ph.D. in statistics
from the University of Waterloo (Canada). Since then, I have been
working at GE Corporate Research and Development in the Applied
Statistics Program. I thought I would take this opportunity to reflect on
my time in industry, and discuss my experiences, the surprises I had
coming to industry, and my feelings on being an industrial statistician.
The objective is to describe to graduating students the types of
experiences they may encounter in their first job and to give them a feel
for how they might be spending their time. A secondary objective is to
describe those same things to academic departments, so that they can
better prepare their students.

26.1 THE GE ENVIRONMENT

The GE Company has 11 businesses: Aircraft Engines, Appliances,
Capital Services, Industrial Systems, Information Services, Lighting,
Medical Systems, NBC, Plastics, Power Systems and Transportation
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Systems. This is an incredibly diverse company, unlike any other in the
world. This puts us statisticians in the fortunate position of being able
to apply statistical methods to such varied applications as evaluating
promotional effectiveness on NBC, developing a methodology for
evaluating cost on a long term service agreement for locomotives, and
helping to isolate the source of defective particles in a thermoplastic
resin.

The role of the Corporate Research and Development Center (CRD)
is to provide technology and leadership to all of these businesses. In
this role, CRD develops “game-changing” technology for the businesses
(e.g. Lexan resin, medical cat-scanner), invests in multi-generational
product development plans and serves as a key resource in crisis
situations, among other things. The businesses must fund activity that
is going on at the center on their behalf, although some funding does
come to CRD from the corporate office. Therefore, before we can spend
almost any time working on an issue with a business, we must have a
funding source to charge the effort to. This constant search for charge
numbers tends to ensure that we are working on the most vital projects,
where someone is willing to pay for our involvement.

CRD is divided into 12 areas of specialization, which we call
laboratories. Some examples are the ceramics lab, the polymer and
inorganic systems lab and the manufacturing and business process lab.
There are also business interface managers for each business, whose
role is to co-ordinate all activities between CRD and their business. CRD
employs about 1500 people, about half of which have doctoral degrees.

The atmosphere at the center has changed substantially in the past
15 years. Whereas it used to be mostly an academic-like research
environment, the emphasis now is on providing immediate value to the
businesses. This does not imply that we are always in “fire-fighting”
mode we do get involved with longer-term strategic initiatives such as
improving the reliability of new product introductions. The emphasis,
however, is on providing direct benefit.

It used to be that work time was given for people at CRD to pursue
their own research interests. Rumor has it, in fact, that the placemats
in the cafeteria had graph paper on them, for people to do quick
calculations as they were eating lunch. Now, we are measured on how
we can help businesses become more productive and profitable in a
competitive global environment the more definable those benefits, the
better. If we are interested in pursuing our own academic research
interests, we have to do that on our own time. These changes are a
significant contributing factor, I feel, to why CRD is one of the few
remaining industrial research labs and to our organization becoming a
vital part of GE.

The Applied Statistics Program is one of six groups in the
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Information Technology Laboratory. There are 16 full-time members
in our group, a mix of people with master’s and Ph.D. degrees. Most of
the members of our group have degrees in either economics or
engineering, as well as statistics. Our group works with essentially all
of the different businesses, and this diversity is one of the things that I
find most exciting about my job. This variety of applications
necessitates the inclusion of a variety of statistical techniques in our
work. We often form part of larger CRD teams, working closely with
scientists to solve company problems. As a result of this integration
with the businesses, we tend to do quite a bit of traveling, some of
which is international.

The people in the Applied Statistics Program are the very best part
of my job. I feel very fortunate to have the opportunity to work with and
learn from them, because they are some of the best statisticians
anywhere. The mission statement for our group is the following: To
provide leadership in helping GE businesses achieve their strategic
objectives by developing and implementing tools, methodologies and
programs utilizing our unique technical strengths in:

• Applied statistical methods,
• Holistic approaches to problem definition and resolution, and
• Enhancing the businesses’ internal capability in the previous

two fields.

This mission statement emphasizes a proactive role for our group.
Such a role requires close contact and understanding of the businesses,
to be able to anticipate their needs.

26.2 SIX SIGMA

A few years ago, GE adopted the Six Sigma quality initiative,
originally developed by Motorola and brought to GE with the help of
Mikel Harry of the Six Sigma Academy. This program is a disciplined
and highly quantitative approach to implementing quality, with a
large emphasis on statistics. It defines five major steps to approaching
every problem: Define, Measure, Analyse, Improve and Control. At GE,
every employee, including company officers, must do Six Sigma
training, and demonstrate that they are using the techniques in their
jobs. See Hahn and Hoerl (1998) and Hoerl (1998).

At GE, Six Sigma has been led by the very top levels of management.
Our chairman, Jack Welch, has made it clear that the key players in
driving this initiative, known as Master Black Belts, should be the
company’s best people and that they will be rewarded with “big jobs” if
they are successful. In contrast to the way some other companies have
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implemented Six Sigma, GE is using it not just as a tool for
manufacturing quality, but also in commercial quality (i.e., service,
finance, marketing, etc ) and design.

In some businesses, Six Sigma training can be up to 13 days, spread
over four months. This training is heavily based in statistics (and to
some extent statistical thinking), and can involve everything from basic
plots, to the normal distribution, to hypothesis testing, to response
surface methodology. It provides a step by step approach to problem
solving rather than a collection of statistical tools. In almost all cases,
the instructors leading the training have not had any formal education
in statistics prior to their own Six Sigma training. In some businesses,
the trainees must pass a test at the end as well, to demonstrate their
ability to use the tools.

Clearly, all of this has some consequences for the statisticians in our
company, though these statisticians had nothing to do with the decision
of adopting Six Sigma. I find my customers to be well versed in some
basic statistical concepts, which makes it easier to communicate with
them. They all have access to some standard statistical software, which
means they don’t ask me to do routine calculations for them. I generally
get involved in cases where the statistical issues are non-trivial. I think
in general that my customers’ familiarity with statistics helps them to
understand what a statistician does, although we still need to work
hard to help them to understand the added value that we can bring to
the table.

Overall, I think Six Sigma has been positive for the statisticians at
GE. Since I got to CRD, our group has constantly been in a mode of
recruiting and expansion. It does, however, leave some uncertainty about
how our roles might change once this initiative is no longer at the
forefront. I see the Six Sigma initiative as giving us valuable exposure
in which we have an opportunity to show how we add value. It is up to
us to make the most of that opportunity so that when Six Sigma does
fade, we are still valuable members of teams addressing key company
issues.

26.3 THE PROJECTS THAT I’VE WORKED ON

26.3.1 Introduction

In this section, I will describe a sample of projects that I’ve worked on,
to give a flavor for the types of situations I encounter. Most of the projects
that I’ve worked on so far have been related to reliability. I had to learn
this subject quickly, because I lacked the foresight to take courses in it
while I was in graduate school.
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26.3.2 New Product Launch

On a Friday afternoon three weeks after I had arrived at CRD, my boss
came into my office and asked “How do you feel about going to
Louisville for Monday?” My reply “Sure, where the heck is Louisville?”
(My American geography was not yet up to snuf). 48 hours later I was
in Louisville, which shows how early I learned one of the crucial
lessons in industry the need for being responsive.

The reason for being called to Louisville, KY was a new product
introduction. The design team for this new product had been working
for months, and they were now close to launch. They had just
discovered a potential failure mode, and they wanted some help to
project the failure rates associated with that mode. They wanted to
avert any potential field failure issues, while a solution to the problem
was being sought. The timing was critical, since any delay on a new
product launch is extremely expensive.

The biggest issue that we confronted from a statistical point of view
on this project was the lack of sufficient data. We developed a
comprehensive program to collect data from a variety of sources,
including in-house tests, surveys and field tests. In most cases,
however, the data available was scanty, with questionable
measurement accuracy. Given this, we felt it important to convey the
variability associated with any projected estimates of failure. This was
difficult to do by the engineers themselves, however, since the
techniques we used to assess the variability were somewhat more
sophisticated than those they had seen in their Six Sigma training (e.g.
Jack-knifing).

26.3.3 Reliability Issue with a Supplied Part

The next project I was involved with was one on a manufactured
product, related to the reliability of a supplied part that we used. For
convenience, let’s say that we are talking about a “knob” in a “toaster”.
We manufacture these “toasters” in large volume, and so while the
“knob” had a relatively low failure rate, it was still affecting a
substantial number of toasters. It was also the single largest failure
mode of the toaster. Another thing that compounded the problem was
the fact that the failures occurred quickly in the field, which
contributed to customer dissatisfaction. Also, failures that occurred in
the field were quite expensive to fix, even though the actual cost of the
knob was not high: the fix cost 35 times the cost of the knob. All of these
factors resulted in high visibility of this project by upper level
management.
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There were a few things about this project that made it difficult to
handle. The first was the fact that we were unable to correlate any
process variables with the field failure. At the end of the line at the
supplier factory, various characteristics of the knobs were measured,
and we would have liked to show that any one of these characteristics
was an indication of a weak knob, one that would fail later in the field.
Unfortunately, this was not the case. Thus, the only way to determine
whether a particular knob was going to fail was to do some type of cycle
testing. Our suppliers were unequipped to handle this type of extensive
testing. We were able to do this testing at CRD but that was expensive,
especially in light of the relatively small failure rate of the knobs. All of
this made it difficult to approach the problem using a designed
experiment.

At the supplier plant, there was a functional test done on 100knobs.
We were able to demonstrate a high correlation between the defect rate
that was found on the knobs at the supplier in that test, and the field
failure rates that we later found in our toasters. In constructing the
model for this relationship we accounted for such factors as our
manufacturing period, the lag between when knobs were manufactured
at the supplier and when they were installed in our toasters, and the
amount of time our toasters had seen in the field. The existence of this
relationship meant that we could use in-house supplier defect levels as
a monitoring tool on the quality of knobs we were installing in our
toasters.

Perhaps not surprisingly, the results of this analysis had a negative
effect on the way we interacted with our supplier. They become reluctant
to share any of their in-house data with us, which made it much more
difficult to make progress on this project. Eventually, we were able to
reduce the number of failures due to this failure mode, but progress
was slow.

26.3.4 Constructing a Reliability Database

A GE manufacturing business requested our help in constructing a
reliability database. They manufactured a series of products, and sold
those products with a specific warranty period. This business had a
good understanding of what happened to their products in the warranty
period, i.e. what the failure rates were, and to some extent what the
causes of those failure were. They now wanted to estimate failure rates
beyond that warranty period, to extend to the useful life of the product.
My assignment was to find and assess any data that was available to
estimate long term failure rates, and then develop an appropriate
methodology. Because of the nature of the assignment, it was set up as
a four month “bridge” program, which meant that for those four months,
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I spent 80% of my time at the client site. The overall goal here was to
use these estimates of failure rates to feedback to design and improve
long term reliability.

Again, the biggest obstacle in this project was the lack of complete
data. In this case, we used service contracts that were sold on the product
as the biggest source of information. Clearly, there were some problems
with this. For example, were there enough service contracts sold to
provide a sufficient sample of the population? Was this particular
segment of the population biased in any way relative to the total
population? We eventually concluded that while this source of
information did not completely meet our needs, it was much better then
what we had before. There is now a database and analysis methods set
up that estimates failure rates on all of the business products, on all of
the known failure modes. These were constructed as a direct result of
our recommendations. Any engineer in the business can access this
database from his or her desktop computer.

At the beginning of this project, I had a concern about having the
value of the statistician confused for the value of the data. In other words,
if there had been no data from which long-term failure rates could have
been estimated, would I have been considered a failure in this assignment?
Fortunately, I didn’t have to find out the answer to that question.

Another thing that came across strongly from this project was the
importance of having a champion in the business. A large amount of
the success that this project had was because my customer in the
business was a strong advocate.

26.4 SOME SURPRISES COMING TO INDUSTRY

Maybe the biggest surprise to me in coming to industry is the amount
of learning that I’ve been able to do, and the different opportunities I’ve
been exposed to. That learning has been both technical, and also non-
technical things like good and bad ways of interacting with non-
statisticians and communicating ideas. It’s also been really interesting
to me to see the variety of different roles that can be taken in projects
everything from statistical consultant to a leadership role, to one of
looking for new opportunities.

One thing that I have struggled with at CRD are project funding issues.
For example, I was told in October of 1998 to stop working with a
particular business, because of a shift in business priorities. This was
frustrating, because I had put a lot of time and energy into developing
relationships with many people at this business. Although this was clearly
a business decision, it is sometimes hard not to take things personally.

The following are some conclusions that I’ve come to in the time I’ve
spent so far in industry:

Copyright © 2002 Taylor & Francis



REKHA AGRAWAL472

Required Soft Skills

1. Flexibility—the ability to adapt to travel, to diverse business
environments, to numerous (and sometimes conflicting) customer
requirements.

2. Communication—the ability to communicate technical ideas to non-
statisticians, from an operator in manufacturing to the CEO of the
business.

3. Balance—the ability to balance dual roles of being responsive to
the customer and acting as a “change agent” to promote better, newer
ways of doing things.

4. Learning—the ability to learn quickly—about application areas and
technical areas - from everyone around you.

5. Team skills—the ability to interact positively with people at all
levels and from all sorts of different backgrounds.

Required Hard Skills

1. Knowledge of reliability—It was a big mistake for me not to take
courses in this at graduate school. While taking such courses would
have helped to give me a base in the subject, many of the techniques
I have used have been quite specialized (e.g.. Analysis of truncated
data or repairable systems) or tailored specifically for the data that
was available.

2. Powerpoint engineering—A large part of the communication at
GE does not take place in formal, written reports, but rather in
presentations. Success in this area, I have found, is dependent
on being able to communicate ideas in a concise and creative
manner.

Recommendations to Students

1. Take advantage of all opportunities to work with non-statisticians
on their problems. One of the hardest things I found to do initially
was to talk to a non-statistician about his or her work, and then
translate that into a statistical problem. This was especially true
when I talked to someone for a long time I would get so engulfed
in the details, I found it hard to sort out the information relevant
to the statistical problem from the other information. I found
that I got better at this with practice, and by watching other
people do it.
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2. Learn from the experiences of the people around you in handling
consulting types of situations. I was fortunate in graduate school
to have people around me who frequently worked with industry.
This allowed me to get their viewpoint on the “do’s” and “don’ts”
of working with industry. Of course, this didn’t stop me from
making some major errors once I got to the job. My favorite story
occurred when I told an engineer that the statistical method in
question was intuitive, even though he hadn’t seen it before. He
picked up a contraption that went into a washing machine, and
told me that to him, that contraption was intuitive. Hopefully, I
made fewer of these mistakes as a result of learning from the
people around me in graduate school, and continuing to learn
while I’m on the job.

3. Develop a broad base of technical knowledge. I used to get very
nervous when I was working at a business and someone would
start a conversation with “You are a statistician, let me ask you
about…” I was always worried that they would be asking me
something that I didn’t know about, and that by not being able to
answer their question, I would destroy my credibility as an expert.
There are many different ways of addressing this problem, but it
will always help to have a broad technical base from which you are
responding.

4. Be interested in the world outside statistics. I think it helps a lot
when working with people if they can sense that you are genuinely
interested in what they do, not just your piece of the bigger picture.
It is also a great opportunity to learn about all sorts of different
areas that you might otherwise not have known about, as
exemplified for me when I got to witness the manufacturing process
of a street lamp fixture.

Recommendations to Departments

1. Develop contacts with local industry, and allow students direct
interactions with those contacts, through term projects, internships
or any other available method.

2. Encourage students to take a problem in context and turn it into a
statistical one, leaving them to decide what information from the
context is relevant to the statistical problem.

3. When presenting standard techniques and methods, encourage “out-
of-the-box” thinking. Within two weeks of arriving at this job, some-
one in the business asked me, “I ran an expensive fractional factorial
experiment, but didn’t randomize one of the factors. What can I do
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now with the results?” This question unnerved me substantially
because the area of design of experiments, unlike reliability, was
one I felt I knew something about. Unfortunately, I had never
considered this engineer’s question before.

26.5 GENERAL COMMENTS

I love my job! It’s been a truly rich experience, with a plethora of
opportunities. The environment I work in is dynamic and exciting, and
I’ve had the opportunity to learn about everything from locomotives to
refrigerators; from circuit breakers to supply chain modeling. I can’t
think of a better thing to be doing.
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CHAPTER 27

CONTEMPORARY CHALLENGES
AND RECENT ADVANCES IN

ECOLOGICAL AND
ENVIRONMENTAL SAMPLING

G.P.PATIL C.TAILLIE

Pennsylvania State University, University Park, PA

Abstract: Surveys for monitoring changes and trends in our environment
and its resources involve some unusual conceptual and methodological
issues pertaining to the observer, the observed, and the observational
process. In this paper, we briefly introduce some of the novel methods of
ecological and environmental sampling and present some of the relevant
research in progress at the Center for Statistical Ecology and Environmental
Statistics in these innovative methods with some emphasis relating to the
remote sensing satellite imagery. Keith (1996) may be a good source of
additional information.

Keywords and phrases: Adaptive sampling, composite sampling,
distance sampling, guided transect sampling, spatial sampling

27.1 CERTAIN CHALLENGES AND ADVANCES IN TRANSECT
SAMPLING

As discussed in Patil, Taillie, and Talwalker (1993), the method of
line transect sampling has been used to estimate the abundance of
plants or animals of a particular species in a given region. The line
transect method consists of drawing a baseline across the region to be
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surveyed and then drawing a line transect through a randomly
selected point on the baseline. The surveyor looks around while walking
along the line transect and includes the sighted objects of interest in
the sample.

It is obvious that the nearer the object or the larger its size, the
higher is the probability of sighting the object. Similarly, when the
individuals cluster in groups, such as schools or herds, then it is
appropriate to regard clusters as the basic sampling units with their
encounter probabilities being affected by cluster size. Estimates of cluster
abundance can be adjusted to individual abundance using the recorded
cluster sizes.

Encounter probabilities in transect sampling can be influenced by
numerous other factors such as varying terrain and vegetation cover,
weather conditions, time of day, systematic responsive movement toward
or away from the transect, etc. Some of these factors are characteristics of
the objects themselves and will vary from object to object. “Size” is an
example of such a factor. Other factors, notably environmental features,
are survey characteristics but can vary from segment to segment in a
multi-segmented survey. We refer to members of these two classes as
object-factors and survey-factors, respectively.

It is clearly desirable to account for as many of these factors as possible,
and much of the recent transect sampling literature has been concerned
with this issue. Section 27.1.1 summarizes some of our own work involving
a seabed transect survey for red crabs in which monotonicity of the
sighting function was flagrantly violated. The cause was eventually
identified and accounted for by putting an additional multiplicative factor
in the sighting function. Section 27.1.2 surveys the work of Ramsey,
Wildman, and Engbring (1987) and Drummer and McDonald (1987).
Each of these papers incorporates the extra-distance factors into the scale
parameter of the sighting function. Ramsey et al. are concerned with
the effects of survey-factors, in which case a purely conditional, regression-
like, analysis is adequate. Drummer and McDonald examine an object-
factor, specifically size, and need to consider the probability distribution
of that factor as well as the visibility bias that occurs in the recorded
sizes. Finally, Section 27.1.3 introduces guided transect sampling due to
Stahl, Ringvall, and Lamas(1997) in progress in collaboration with the
Penn State Center.

27.1.1 Deep-Sea Red Crab

Patil, Taillie, and Wigley (1979, 1980) describe a photographic survey
in which features of the optical geometry partially masked the
sighting-distance bias by inflating the recorded counts at larger
distances from the transect. The survey’s purpose was to determine
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the abundance of the deep-sea red crab, Geryon quinquedens Smith,
in continental slope waters off the northeastern United States. Water
depth at 33 sampling stations ranged from about 200 to 1500 meters.
The sampling device was an underwater camera system mounted on
a 1200 kg steel sled that was lowered to the ocean floor at each station
and towed for 30 to 75 minutes depending upon local conditions. Several
hundred non-overlapping photographs were obtained for each station;
about half, representing the best quality, were selected for quantitative
analysis.

Roughly one crab was sighted for every four frames analyzed. Even so,
determination of the perpendicular sighting distance to each crab proved
excessively labor-intensive, and an alternative was devised in which every
photograph was divided into five zones or strips running parallel to the
transect and representing widths of 1.22 meters on the ocean floor. [For
technical reasons, the zone closest to the camera was only half as wide,
requiring appropriate adjustments; see Patil, Taillie, and Wigley (1979).]
The zones were delineated on an overlay and the number of crabs in each
zone was counted.

The sighting frequency had been expected to fall off rapidly with distance
because of factors such as turbidity, increasingly diffused lighting, and
roughness of the seabed. (The camera was angled in a way that exposed
the bottoms of seabed depressions provided they were close to the sled.)
But, in fact, the histograms of sighting-frequency versus distance showed
only a very gradual decline and, at small distances, suggested that
frequency might even increase with distance. The explanation was
eventually found when it was noted that what appeared in the photograph
as a rectangular zone actually represented a trapezoid on the ocean floor
with the shorter side closest to the camera. Thus, at sighting-distance x,
the photograph exposes a length a+bx where the constants a and b could
be determined from the geometry. The data were analyzed using a composite
weight function of form

 

where the sighting function v(x; �) represents the pure sighting-distance
bias and would typically involve unknown parameters �. For the red crab
study, the exponential-power sighting function gave a reasonable fit to the
data and yielded abundance estimates that were consistent with the results
of other survey methods [Wigley, Theroux, and Murray (1975)].
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27.1.2 Bivariate Sighting Functions

We let L be the length of the transect and � the width of the sighting strip
on either side of the transect. Sometimes � is established by the sampling
design. More often, � is taken to be the visible (or audible) horizon, in
which case it is convenient to formally let � go to infinity and to estimate
abundance as a density instead of a count (see below).

With w(x) as the sighting function, the mean detection probability is

 

or

(27.1.1)

where

(27.1.2)

is known as the effective half-width. Writing N and n for the population
and sample counts, one has E[n]=PN so that abundance can be estimated
as

(27.1.3)

provided an estimator  is available for ω. The awkward quantity � can
be eliminated if (27.1.3) is divided by the survey area 2L� to obtain the
density estimator

(27.1.4)

The recorded right angle distances x have their probability density
function given by w(x)/ ω, 0<x<�, so that ω can, in principle, be estimated
from these distances. See Burnham, Anderson and Laake (1980) or Seber
(1993) for further details on line transect sampling in general.

When � can be taken to be infinite, Ramsey (1979) has suggested a
general technique for constructing parametric visibility functions in which
the effective half width ω appears explicitly as a scale parameter. Starting
with a kernel h(t; �), 0<t<�, which is monotone decreasing in t and satisfies

, Ramsey’s family of sighting functions
is defined by

(27.1.5)

Here, � is a vector of nuisance parameters that regulate the shape of the
sighting function. A common choice of kernel is the exponential-power
form,

(27.1.6)
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which includes the negative exponential and the half-normal as special
cases.

Ramsey et al. (1987) propose that covariate information y=(y1,…, yp)
be incorporated into the sighting function by letting ω in (27.1.5) be a
parametric function of y. Notice that this effectively yields a multivariate
sighting function w(x, y). Ramsey et al. suggest the specific form

(27.1.7)

where the covariates may need to be transformed before inclusion in
(27.1.7). Ramsey et al. develop the maximum likelihood estimators
conditional upon the recorded covariate values. This conditional approach
is appropriate for what we have referred to as survey factors in a multi-
segmented survey. Here one wants to pool data from the various segments
in order to obtain precise estimates of the visibility functions. However,
density is estimated separately for each segment using the segment-specific
estimate of ω.

Ramsey et al. give an example involving tropical birds with time of day
as the covariate. The raw counts suggested a declining abundance through
the course of the day; this apparent effect could be accounted for as due to
declining visibility (audibility) over time.

Drummer and McDonald (1987) have considered the problem of
estimating minke whale abundance where the group size, an object-specific
factor, becomes important. They take the group as the basic sighting object
and include the group size y as a scaling factor in the exponential-power
sighting function

(27.1.8)

Drummer and McDonald employ a slightly different parametrization.
Notice that (27.1.8) falls into the framework of (27.1.7) with the log of
group size as covariate since

(27.1.9)

Since y is an object-factor, its random variation from object to object
needs to be taken into account, and the conditional approach of Ramsey et
al. is no longer sufficient. Let f(y) be the “natural” distribution of group
size. The joint distribution of recorded (x, y) is then proportional to

(27.1.10)

with normalizing constant given by

(27.1.11)
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This argument also shows that recorded y follow the size-biased distribution
of order α, . It is readily seen that equations 27.1.1–
27.1.4 remain valid when ω is replaced by .

If one were prepared to assume a parametric form for f (y) then
estimation could proceed via maximum likelihood in conjunction with
(27.1.10) and (27.1.11). Drummer and McDonald prefer a two-stage
approach in which � and � (as well as the nuisance parameter γ) are
estimated using the conditional procedure of Ramsey et al. The moment
µα in (27.1.11) is then estimated nonparametrically using

. a variant of the Cox (1969) identity for size-biased
distributions. Similarly, , so that the mean group size,
µ1, can be estimated for the purpose of adjusting group abundance to
individual whale abundance.

27.1.3 Guided Transect Sampling

Introduction

As discussed in Stahl, Ringvall, and Lamas (1997), guided transect
sampling is primarily intended for the sampling of sparse, geographically
scattered, populations for which there exist no list of the units. Basically,
it consists of a two-stage design, using wide strips in the first stage and a
subsampling procedure in each strip in the second stage. The subsampling
is guided by prior information, e.g. in the form of remote sensing image
data. Different strategies can be used for the guidance, resulting in different
probabilities of inclusion of population units, and consequently in slightly
different estimators.

The general principle for second stage subsampling guidance can be
coupled with a number of methods for how the samples should be selected
along the “guided route.” Strip sampling, line transect sampling, adaptive
cluster sampling, and plot sampling are examples of methods that can be
used. However, in the theoretical set-up of the method, it is assumed that
all objects in grid-cells passed by the survey transect are found. The
gridcells, covering the entire area under study, contain the covariate data
that are used for directing the sampling effort. The method has some
similarities with the covariate-directed sampling approach proposed by
Patil, Grigoletto, and Johnson (1996).

The method

An overview of the method, in its basic form, is given in Figure 27.1
below. In the forest area delineated, strips too wide to be entirely surveyed
are first randomly laid out. Secondly, a route for the subsampling within
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The entire area of interest is partitioned into grid cells of some suitable
size, e.g. 20 by 20 meters (or possibly rectangular to simplify the field
work). For each such cell, a covariate value is assessed prior to the sampling.
For example, the covariate could be the estimated volume of deciduous
trees in case the population under study is known to prefer deciduous
forest to coniferous forest. Such prior volume estimates can be obtained
by, e.g., using satellite data and the kNN-method [e.g. Nilsson (1997)].

In order to facilitate the theoretical description of the method, an
assumption is made that all sampling units are detected and counted/
measured once the surveyor enters the grid cell they are situated in. Also,
the method relies on use of GS, differential in real time, for the guidance of
the surveyor through the forest. However, in simple cases it should also
be possible to use a compass and a measuring tape.

The first stage strips are laid our randomly, with the restriction that
they should match with the system of grid cells. The second stage is a
subsampling of grid-cells along a survey line within each first stage strip.
Many different strategies can be used for determining where the second-
stage transect should be located. One basic idea is, however, that the grid-
cells in some manner should be selected with probabilities proportional to
their covariate values. Another basic idea is that the field-work should not
be too complicated, implying that the survey transect should be some,
more or less, connected curve from the beginning to the end of a strip.
This is also the reason for introducing the first stage strips. Without them,

FIGURE 27.1 A general outline of guided transect sampling. A first stage
sampling of wide strips (left) is followed by a second stage guided subsampling
within each strip (right)

each strip is guided by prior information. The details of this guidance are
described below.
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the survey lines within the forest area would tend to be complicated. Finally,
the idea is also to use some line-based inventory rather than plots in order
to obtain a more efficient search for individuals of the sparse population in
this theoretical description of the method, a strip survey is approximated
by a continuous survey of neighboring grid-cells. The surveyor is assumed
to perform an entire search for objects in all grid-cells entered.

Conforming to all this, many different strategies for the subsampling
within each strip can still be identified. Some straightforward possibilities
are:

(i) Random walk (Markovian) with the probability to enter a
neighboring cell, in the direction of the survey line, given by the
cell’s covariate value [Figure 27.2(a)]

(ii) As (i) but allowing the surveyor to step from a particular cell to
any of the grid-cells in front. That is, “big steps” are allowed,
since the surveyor in this case may go directly from one side of
the strip to the other. The strip will no longer be connected [Figure
27.2(b)]

(iii) Random simulation of entire transects through a strip (without
considering the covariate data at this stage). Transition is only
allowed to neighboring cells. A large number of transects are
simulated. For each one, the sum of cell-wise covariate values is
calculated. This sum, or some transformation of it, is used for
selecting one particular transect by PPS [Figure 27.3(c)].

To make the method useful from a practical point of view, the grid-cells
should generally be rectangular (very elongated in the direction of the
strips) in order to avoid too much zigzagging for the surveyor. An alternative
to this would be to assign higher probabilities for straight continuation
than for changing to another row in the grid-cell system. However, in all
figures in this theoretical description of the method, square grid-cells are
used.
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FIGURE 27.2 Different principles for guiding the subsampling. In (a) transition
is only allowed to neighboring cells, in (b) transition is allowed to any onward
cell, while in (c) entire transects are simulated. In (a) and (b), the probabilities
of transition (the p-values) are determined from the covariate values (x-values)
in the next stage, denoted i. In (c), entire transects are determined from the
sum(Q-values) of covariates in grid-cells visited
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27.2 CERTAIN CHALLENGES AND ADVANCES IN COMPOSITE
SAMPLING

27.2.1 Estimating Prevalence Using Composites

Consider a trait whose prevalence in a population is denoted by p. We take
up the problem of estimating p on the basis of composite samples of size k.
Since p is a population mean, this might appear as merely a special case of
estimating population means with composite samples. Here, however, a
composite sample drawn from the population has the trait in question
exactly when one or more of the individual samples making up the
composite has the trait. This implies that the measured value on a
composite is the indicator function for the composite and this is different
from the average of the indicator values for the constituent samples. In
fact, the composite indicator is the maximum of the individual indicators.
The maximum is a nonlinear function, and this nonlinearity is the reason
that estimating prevalence with composites requires special attention.

For simplicity, we suppose that the composite sample size k is constant
and we let π=πk be the prevalence of the trait across all possible composites
of size k. We also limit ourselves to (effectively) infinite populations. Now,
π and p are related by the formula 1- π=(1–p)k or

(27.2.12)

We call H(·) the prevalence transformation. Its graph is depicted in Figure
27.3 for several values of k. From the Figure, we see that when k>1 the
prevalence transformation is monotone increasing, convex, and becomes
highly nonlinear when π is large.

The maximum likelihood estimate of π is the sample proportion  so
that the maximum likelihood estimate of p is

 

Since H is nonlinear, the MLE  is biased.
We examine the following issues:

• What is the performance of composite sampling for estimating p as
compared with individual sampling?

• What is the optimal value, kopt of the composite sample size k?

• The optimal k will depend on the true, but unknown, value of p.
What is the sensitivity and robustness of kopt to misspecification
of p?
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• Is the bias in important and, if so, how can it be reduced?

FIGURE 27.3 The prevalence transformation H(π) for k=1, 2,4,8

Asymptotic performance of compositing

Using statistical differentials, the asymptotic variance of  is given by

 

where n=nc is the number of composites analyzed. For individual sampling,
the variance is

 

where n=ni is the number of individuals analyzed. When quantification
rather than sample acquisition is the primary cost factor, the relative cost
of the two sampling designs can be measured by the ratio of the sample
sizes needed to achieve the same variance for the two designs. By the
above equations, the asymptotic relative cost of compositing compared
with individual sampling is
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Here, values of RC that are less than unity favor compositing over
individual sampling. It is not hard to see that the relative cost satisfies
the following:

• RC →1/k as p →0, and

• RC→� as p →1 (unless k=1).

These two properties indicate that neither sampling design is uniformly
better than the other and that compositing tends to be better for small p
while individual sampling is better for large p. The second property also
shows that the use of compositing with an inappropriate choice of k can
have disastrous consequences for the relative performance.

Optimal composite sample size and its robustness

The asymptotic relative cost RC is plotted against p in Figure 27.4 for
selected values of k. The lower envelope of these curves determines the
optimal value of RC as well as the corresponding optimal composite sample
size kopt. Notice that the curves in this Figure are steeply rising as p
becomes large. This implies that compositing will perform poorly compared
to individual sampling if one determines kopt by using a prior value of p
that is much smaller than the actual value of p. Thus, it is better to err in
the direction of overestimating p and underestimating kopt.

When p is sufficiently large (p>2/3), Figure 27.4 shows that kopt=1
which means that individual sampling is better than compositing for p>
2/3. For smaller values of p, kopt increases in discrete jumps as p decreases
from 2/3 to 0. We have calculated the values of p=pk where kopt jumps
from the value k to the value k+1. These transitional values of p are
shown in Table 27.1.

The table shows that kopt gets large very fast as p→0. In fact, kopt~1.594/
p when p is small. Often, it may happen that the optimal composite sample
size is too large for practical implementation. This may be contrasted
with group testing with the Dorfman procedure where kopt=

. However, we have seen above that it is safer to use a
smaller than optimal composite sample size.

The table also reveals that the values of πk are remarkably constant
and usually fall in the range 0.7<πk<0.8. From Figure 27.3, we see that
this is the range where nonlinearity in the prevalence transformation
starts to become pronounced. Consequently,  may be significantly biased
when optimal composite sample sizes are used.
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TABLE 27.1 Values of p=pk where the optimal composite sample size makes a
transition from kopt=k to kopt=k+1. When p is slightly larger than pk, the optimal
composite sample size is k; when p is slightly smaller than pk the optimal
composite sample size is k+1. The composite prevalence πk=H-1(pk) corresponding
to pk is also tabulated

FIGURE 27.4 The asymptotic cost of compositing relative to individual sampling
as a function of the true prevalenee p for k=2(1)7, 20, 100
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Bias reduction

Since the prevalence transformation p=H(π) is convex, Jensen’s inequality
implies that  is positively biased,

 

where the inequality is strict when k>1. The bias can be quite severe
when π is close to unity, e.g., when an optimal composite sample size is
used.

Now, H is also monotone increasing, so one way of reducing the bias in
 is to shrink  toward zero before applying the prevalence transformation.

The shrinking method thus uses

(27.2.13)

to estimate p, where � is a suitably chosen constant satisfying 0≤�≤1.
Since the bias disappears with large sample sizes, the constant a has to
depend upon the sample size n and should go to unity as n becomes large.
A natural choice is

 

where b and c are suitable chosen constants that do not depend upon the
sample size.

The choice  eliminates the first order term from the asymptotic
expansion of the bias. The constant c is undetermined by first order
considerations. Although one could attempt to eliminate the second order
bias term, it is probably better to examine the mean square error. With
the above choice of b the shrinking method gives a one parameter family
of estimators that are first order unbiased.

A particular member of the shrinking family of estimators has been
proposed by Burrows who suggests using

 

where . Thus, the Burrows estimator is the special case of the
shrinking estimator with c=b.
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Jackknifing is another way of eliminating the first order bias from an
estimator. In fact, if we let  be the jackknifed version of , then

 

when

 

Thus, jackknifing eliminates the first order bias without increasing the
magnitude of the second order bias.

It is natural to ask how these three methods of bias reduction compare
with respect to their effect on the mean square error. For each of the three
methods, we find that the mean square error has the form

 

where A is the same for all three methods (A is the asymptotic variance).
The shrinking method and jackknifing have different B, but the form of B
does not involve the constant c of the shrinking method. Further, B depends
upon p and neither the shrinking method nor jackknifmg is uniformly
better than the other in minimizing the magnitude of B.

Discrimination among the various shrinking estimators would require
looking at the small sample properties.

27.2.2 Two-Way Compositing

Compositing of individual samples is a cost-effective method for estimating
a population mean, but at the expense of losing information about the
individual sample values. The largest of these sample values (hotspot) is
sometimes of particular interest. Sweep-out methods [Gore and Patil (1994),
Gore, Patil, and Taillie (1996)] attempt to identify the hotspot and its
value by quantifying a (hopefully, small) subset of individual samples as
well as the usual quantification of the composites. Sweep-out design is
concerned with the sequential selection of individual samples for
quantification on the basis of all earlier quantifications (both composite
and individual). The design-goal is for the number of individual
quantifications to be small (ideally, minimal).

Sweep-out procedures were originally developed for conventional oneway
composites, but Gore, Patil, and Taillie (1995) considered two-way
composites using a heuristic method for sequentially selecting samples for
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quantification. Aragon, Patil, and Taillie (1995) have proposed a more
formal and rigorous method for making the selections. In two-way
compositing, the individual samples are arranged in a rectangular array
and a composite is formed from each row and also from each column. At
each step, the procedure employs all available measurements (composite
and individual) to form the best linear unbiased predictions for the currently
unquantified cells. The cell corresponding to the largest predicted value is
chosen next for individual measurement. The procedure continues
iteratively and terminates when the largest individual value has been
identified with certainty.

The following important and interesting issues arise:
(a) Comparative performance of the two algorithms, perhaps in terms

of the mean and variance of the total number of measurements. Least
squares prediction appears to encounter the maximum sooner, but takes
about the same number of measurements to identify the maximum.

(b) Design questions, such as: Is a square layout better than a rectangular
one for a given number of cells? Does a two-way layout provide any benefits
over the one-way layout? Is a large layout better than a replication of
small layouts?

(c) Distributional questions, such as: How is performance affected by
the distribution, especially skewness, of the individual cell values? How is
performance affected by correlation among individual cell values as it might
arise from sampling in time or space? Is an initial randomization of the
cell values advantageous?

27.2.3 Compositing and Stochastic Monotonicity

The basic principle behind the sweep-out methods is that larger individual
values are more likely to be found in composites having larger composite
values. We have recently attempted to give this intuitively plausible
assertion a more rigorous formulation. Initially, we expected that it would
be an easy exercise. However, the problem has proven to be surprisingly
difficult and the answer—to the extent that we have an answer—has proven
to be surprising.

We limit ourselves to composites of size two (k=2). Let X and Y be iid
random variables that are positive. These are the individual values
comprising the composite. Let

 

so that T is the composite total. The question to be considered is the
following: “Is it the case that X|T=t is stochastically increasing in t?”
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When the answer to the preceding question is in the affirmative, we
say that the distribution of X is stochastically monotone with respect to
(two-fold) convolutions (SMC). One simple result is the following: A positive
random variable is SMC if it has a log-concave density. In fact, this is
enough to establish that the family of distributions, X|T=t, has monotone
likelihood ratio with respect to t.

In the next sections, we give three standard parametric families of
distributions which—for varying values of their parameters—are
respectively always, never, and sometimes SMC.

Gamma distribution

Let X and Y follow a gamma distribution with index parameter ß. Then X
is SMC for all values of ß. This is easy to see when ß�1 since the gamma
density is then log-concave. A direct argument is needed for ß<1.

Lognormal distribution

Suppose X and Y follow a lognormal distribution with parameters µ and �2

(these are the mean and variance on the log-scale). Then, there are no
values of µ and �2 for which X is SMC. The proof is not easy and will be
given elsewhere. However, it turns out that there is a value t0=t0(µ, �2)
such that X is SMC on the interval (0, t0), i.e., X|T=t is stochastically
increasing in t for 0<t<t0. A natural measure for the size of the interval (0,
t0) is Pr(T<t0) and this probability turns out to be at least 0.94 regardless
of the values of µ and �2 (see Figure 27.5). Thus, the lognormal distribution
is SMC with “high probability.” Note that the “high probability” refers to
the frequency of occurrence of the composites.

Pareto distribution

The Pareto that we have in mind is shifted so that its lower bound is at
the origin. The density function is given by

 

where ß>0. This distribution is SMC provided ß≤1/2. If ß>1/2 the distribution
is not SMC but, as in the lognormal case, there is a t0=t(ß) such that the
Pareto distribution is SMC on the interval (0, t0). Figure 27.6 plots Pr(T<t0)
versus ß. Here, the probability of stochastic monotonicity is never less
than 0.87.
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FIGURE 27.5 Probability of stochastic monotonicity for the lognormal
distribution. The horizontal axis is the coefficient of variation, given by

FIGURE 27.6 Probability of stochastic monotonicity for the Pareto distribution
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Stochastic monotonicity of the order statistics

Up until now, we have been looking at stochastic monotonicity for an
arbitrary one of the individual samples comprising a composite. If the
interest is in the largest individual value, then it is more natural to study
stochastic monotonicity of the ordered individual values. With the same
notation as above, let

 

We have established the following result:

Theorem 27.2.1 The random variable X is SMC if and only if both order
statistics are stochastically increasing in t, i.e.,

• L|T=t is stochastically increasing in t for all t, and

• U|T=t is stochastically increasing in t for all t.

Our proof applies only to the case of two components. It would be of
considerable interest to extend the result to an arbitrary number of
components.

The lognormal distribution and the Pareto distribution with ß>1/2 are
not SMC. Therefore, at least one of the order statistics must fail to be
stochastically increasing for these distributions. We have been able to
show that the failure is for the smaller order statistic and that the larger
order statistic is stochastically increasing in t for both distributions (and
for many other distributions as well). This is perhaps heartening for the
sweep-out paradigm.

27.3 CERTAIN CHALLENGES AND ADVANCES IN ADAPTIVE
CLUSTER SAMPLING

27.3.1 Adaptive Sampling and GIS

Several ecological and environmental populations are spatially distributed
in a clumped manner. They are not very efficiently sampled by conventional
probability based sampling designs. Adaptive sampling is therefore
introduced [Thompson (1990)] as a multistage design in which only the
initial sample is obtained using a conventional probability based procedure.
When the variable of interest for a sampling unit satisfies a given criterion,
however, additional units in the neighborhood are selected in the next
sampling stage. This procedure is repeated until no new units satisfy the
criterion, or the conditions of a stopping rule are satisfied. For methods of
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unbiased estimation and related statistical inference, see Thompson and
Seber (1995).

Consider the point process in Figure 27.7. Here, a sampling frame is
delineated by square sampling units laid over the area which contains
the population of interest. One may draw a simple random sample of n
units using a random number generator for choosing the coordinates for
each unit to be included in the initial sample. The variable of interest, Y,
in this case may be the number of points per unit, such as the population
density for a given species. After obtaining the set of measurements,
{yi:i=1, 2,…, n}, each measurement is compared to the given criterion to
decide if neighboring units should be sampled. A criterion is typically to
include neighboring units in the next sampling stage if yi>c for some
constant c, and otherwise do not include neighboring units in the next
stage. If monitoring for an animal or plant species, the criterion may
simply be to sample the neighbors of any unit from the initial sample
which contains at least one individual. If monitoring contaminant
concentrations, the criterion may be to sample neighboring units if a
measured concentration in the initial sample exceeds an action level or
cleanup standard.

Viewing Figure 27.7, we see that an initial random sample from the
grid of sampling units can result in several units that do not satisfy the
criterion and would therefore not have any neighboring units sampled in
the second stage. For those units in the initial sample which do contain
points, each neighboring unit would be sampled in the second stage, and
this would be repeated for subsequent stages until clusters are delineated.
For our example, the final selection of sample units is shown in Figure
27.8. A cluster is defined as a group of adjacent sampling units that includes
all the edge units that do not satisfy the criterion. A network is defined as
the group of adjacent units which all satisfy the criterion. Therefore each
network set is contained within a cluster set.

While the simple arithmetic mean of the initial random sample of n
units is unbiased, the arithmetic mean of the final sample obtained through
adaptive cluster sampling is biased upwards. Thompson (1992) presents
two “probability proportional to size” estimators that are unbiased for the
population mean or total.

With the recent growth of geographic information systems (GIS), spatial
data coverages for landscapes are becoming almost universal. Such
information, obtained mainly from digitized maps and remotely sensed
sources, may provide a powerful aid to adaptive cluster sampling for
increasing the efficiency of sampling clustered populations from across a
two-dimensional surface.
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FIGURE 27.7 A grid of sample units, superimposed on a clustered population
of points object, along with a random sample of 10 initial observations
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On one extreme, GIS-based information may dictate where the actual
clusters are, thus excluding the need for “adaptive” cluster sampling.
However, when clusters must be sought through an initial probability
based sample, then GIS based information may be exploited to help decide
which neighbors of the initial random sample should in turn be sampled.

Once a measurement is obtained, its corresponding location can be
referenced to a GIS database for obtaining auxiliary information about
that location and its neighbors. Such information may aid in deciding
which neighboring units should be sampled. Analytical results from a
GIS may suggest that some neighbors not be sampled, thus saving on
sampling and analysis costs. For neighbors that are recommended for
sampling, the probability of inclusion may be conditional on the auxiliary
information. If inclusion probabilities are affected, then the estimators
presented above may require modification, which is an area requiring
research.

FIGURE 27.8 The final adaptive cluster sample. Two clusters were intercepted
by the initial random sample
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For one example, consider a wildlife monitoring situation where we
detect a colony of ground shrews in an initial random sample. After referring
this location to a GIS, we may determine that one neighboring unit is
expected to have soils far too wet for suitable shrew habitat. Another lo
cation may be marginal, therefore we would only sample it if the budget
allows. Meanwhile, GIS may indicate that habitat in the other neighboring
units is suitable enough to assign relatively high prior probabilities of
shrew presence.

Similar ideas can be applied to pollution monitoring. For example,
consider assessing ground water contamination by agricultural pesticides.
Any locations revealing a measurement that satisfies the inclusion criterion
can be referenced to a GIS for determining things like proximity to farms
and geologic formations in order to estimate probabilities of neighboring
units being contaminated.

27.3.2 Using Covariate-Species Community Dissimilarity to
Guide Sampling

Estimating species richness over a large geographic area based on a
subsample of the area presents a special sampling challenge due to the
non-additivity of species richness. The basic problem is one of estimating
the number of classes in a multinomial population. Various sample-theoretic
approaches have been reviewed by Bunge and Fitzpatrick (1993); however,
these methods all apply to data that include abundance measurements for
each species that is encountered. Data from sampling a large geographic
area is most likely to be available as presence/absence recordings for each
species encountered within each sample unit.

An approach to this problem has been suggested by Johnson and Patil
(1995), which utilizes the species-area relationship. As discussed in Patil,
Johnson and Grigoletto (1996), the number of species in an area is expected
to grow with increasing area that is sampled, according to a power function,
presented as S=kAz, where S is the species richness and A is the area,
while z and k are population specific parameters. Since 0≤z≤1, this model
implies that a “point of diminishing returns” is approached as the area A
increases. The objective then becomes to sample enough of the area of
interest in order to either encounter all of the species in the area or (more
realistically) encounter the plateau region of the true species-area curve.
This is desirable for a sample which is intended for estimating the true
species richness, whether the estimate is simply the number of species
encountered in the sample [Johnson and Patil (1995)], extrapolation of a
fitted species-area curve [Patil, Johnson and Grigoletto (1996)] or a bounded
monotonically increasing curve [Bunge and Fitzpatrick (1993)], or even
when abundance measurements are available so that sample-theoretic
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methods may apply [Bunge and Fitzpatrick (1993) and Bunge, Fitzpatrick
and Handley (1995)].

Fundamentally, we want to encounter as many of the species that occur
in the area of interest with an affordably small sampled area. This objective
therefore provides the criterion for comparing efficiency of various sampling
plans.

Postulating that maximizing the habitat heterogeneity within a selected
sample will maximize the number of species encountered, Johnson and
Patil (1995) investigated covariate-directed sampling. Using a GIS database
that provided synoptic coverage of both breeding bird and tree species in
Pennsylvania, they retrospectively sampled the statewide breeding bird
community, using incremental tree species richness as a covariate to direct
sampling. While this approach performed somewhat better than random
sampling, it still missed the northern tier of the state which contained
some of the highest bird richness. Indeed, the northern tier of Pennsylvania
is amongst the least disturbed regions of the state and therefore has more
forest interior, but relatively low tree richness. Johnson, Patil and Rodriguez
(1997) attempted to overcome this problem by investigating some other
approaches to maximizing forest community dissimilarity as an investigator
moves from one sample unit to the next. They further tested these
approaches with other covariate-species data that were available.

The dataset was based on a tesselation of Pennsylvania in hexagons,
each being 635 km2. Covariate species and the response variable, breeding
bird species, were listed within each hexagon. For more description, see
Johnson and Patil (1995). The sampling frame of hexagons, along with a
thematic presentation of breeding bird species richness, is also seen in
Figure 27.9.

The general protocol for community dissimilarity-directed sampling
using known covariate species follow the steps listed below.

1. Select a sample unit with the highest covariate species richness;
then enumerate the species of interest that are encountered in this
unit.

2. Select the next unit as the one revealing maximum community
dissimilarity, compared to either the most recently sampled unit or
to all accumulatively sampled units (ties may be broken by choosing
at random).

3. Add the number of newly encountered species of interest to the overall
species richness.

Copyright © 2002 Taylor & Francis



ECOLOGICAL AND ENVIRONMENTAL SAMPLING 501

4. Repeat until an affordable sample size has been reached.

FIGURE 27.9 Bird richness in the hexagons

For example, Johnson, Patil and Rogriguez (1997) used the Jaccard
dissimilarity index based on pairwise comparisons between the current
and prospective sample units. For a covariate species that occur in both
sample units, b that occur exclusively in one unit and c that occur
exclusively in the other,

 

They call D the Jaccard dissimilarity index because it is the compliment
of the classic Jaccard similarity measure [Ludwig and Reynolds (1988, p.
131)], which is designed for presence/absence data. It is simply the
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compliment of the intersection of two finite sets expressed as a proportion
of the full union.

FIGURE 27.10 Species area curves from pairwise Jaccard sampling which
selects hexagons in order of maximum covariate-species community dissimilarity
based on pairwise comparison of the most recently sampled hexagon with each
remaining unsampled one

Using a variety of covariate species that were available, these authors
investigated dissimilarity directed sampling by retrospectively sampling
the entire state of Pennsylvania for enumerating breeding bird species.
The resulting state-wide species area curves are reported in Figure 27.10,
along with the expected curve under random sampling, as computed by
Equation 27.3.14.

(27.3.14)

The “pairwise Jaccard” protocol worked well for trees as well as reptiles
and amphibians, but did not consistently outperform what is expected
with random sampling for all covariate species that were tested.
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This initial exploratory data analysis allows the use of a synoptic database
for a whole state to be used to entertain some new ideas about sampling
for the enumeration of a non-additive variable such as species richness.
For other datasets we may see very different results; therefore, these
protocols should continue to be tested with other datasets.
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CHAPTER 28

THE ANALYSIS OF MULTIPLE
NEURAL SPIKE TRAINS

SATISH IYENGAR

University of Pittsburgh, Pittsburgh, PA

Abstract: A common experimental method in neuroscience involves the
recording of the activity of a single neuron. However, studies of the
functional connectivity of collections of neurons and their behavior require
the simultaneous recording of their activity. Current technology permits
such recordings of over a hundred neurons. These recordings yield large
data sets that present challenging problems in their analysis and their
interpretation in biological terms. In this paper, we describe various
techniques for detecting functional connections between neurons and
describing the nature of those connections.

Keywords and phrases: Coherency, cross-intensity, diffusion process,
gravitational clustering, Markovian interval process, multivariate point
process, snowflake plot

28.1 INTRODUCTION

The brain consists of many cells called neurons which are the fundamental
units that process information. One way that information is transmitted
between neurons is through changes in their electrical activity. Most
notable is the nerve impulse or action potential, which is a large fluctuation
in voltage that is propagated towards other cells. For many purposes, the
action potential is usually short enough to be considered a spike and modeled
as a point event; a typical recording will yield a sequence of spikes, or a
spike train. A common experimental method in neuroscience that dates

Copyright © 2002 Taylor & Francis



SATISH IYENGAR508

back to its earliest days is based on the recording of the activity of a single
neuron. It has been especially useful for studies of the effects of sensory
inputs.

However, a substantial part of recent research in neuroscience involves
the study of the cognitive or attentional state of subjects. Such studies
require the simultaneous recording of many neurons. In addition, studies
of the functional connectivity of collections of neurons require similar data.
Current technology permits such recordings of over a hundred neurons.
The resulting large data sets present challenging problems in their analysis
and their interpretation in biological terms. In this paper, we describe
various techniques for detecting functional connections between neurons
and describing the nature of those connections.

In Section 28.2 we describe the requisite neurophysiology. In Section
28.3 we describe the various methods that have been proposed and used
for the analysis of simultaneously recorded spike trains. In Section 28.4
we conclude with a discussion of avenues for further research.

28.2 PHYSIOLOGICAL BACKGROUND

We begin with a brief account of the physiology of the neuron. This is
drawn from more extensive treatments intended for mathematics, signal
processing, and statistics audiences are in the books by MacGregor (1987)
and Tuckwell (1988, 1989); from neurophysiology texts by Levitan and
Kaczmarek (1991) and Shepherd (1994); and the research literature, some
of which is cited below.

Neurons differ widely according to their location and function, but they
do share certain basic features. In short, a neuron gathers electrochemical
signals at its soma or cell body and at its dendrites, which form a treelike
projection emanating from the soma. The neuron integrates these signals.
When the result of that integration exceeds a certain threshold, the neuron
emits an impulse or action potential down another projection called the
axon. The axon branches repeatedly, ending at swollen terminals called
knobs. These knobs are adjacent to another neuron’s cell body or its
dendritic tree, to which they send a signal across a small gap known as
the synapse. The cell that sends the signal is called presynaptic and the
cell that receives it postsynaptic.

The soma contains a nucleus with its genetic materials, and
organelles for the synthesis of proteins and their turnover, and to meet
its energy needs. The entire cell is encased by a plasma membrane, a
lipid double layer which prevents the mixing of the cell contents with
that of the extracellular space. The membrane also has important
electrical properties. Typically, its interior is negatively charged and
its exterior is positively charged because of different ionic concentrations
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inside and outside the neuron. The movement of ions across the
membrane is largely determined by the voltage and ion concentration
gradients, and the permeability of the membrane to the various ion
species, such as calcium, chloride, potassium, and sodium. When there
are no external signals, the membrane potential is at or near its resting
state, which is in the range of -40 to -90 millivolts. Much of the cell’s
energy is expended in maintaining this potential difference by activating
certain proteins at the membrane that transfer ions through channels
across the membrane.

Signals received by the postsynaptic neuron move the membrane
potential away from rest. The synaptic connections are either excitatory
or inhibitory. The response of the postsynaptic cell to an excitatory input
is called an excitatory postsynaptic potential or EPSP. This response is
due to the release of a chemical neurotransmitter by the presynaptic
cell’s knob during the spike, which in turn increases the permeability of
the postsynaptic membrane to certain ions, including sodium and
potassium. The inhibitory postsynaptic potential or IPSP is similar, but
with the permeability of potassium and chloride ions increasing while
that of sodium ions remaining low. As their names indicate, EPSPs
(IPSPs) move the membrane potential toward (away from) the firing
threshold.

The dendritic tree and postsynaptic sites on the soma are characterized,
at least to a first approximation, by passive electrical properties. That is,
the inputs to them are summed linearly with the resting potential, both
temporally and spatially. In contrast, a special location known as the
trigger zone (usually at the base of the axon, or axon hillock) is characterized
by active electrical properties, meaning that there are voltage-dependent
ion channels. When the membrane potential at the trigger zone exceeds
the firing threshold, a fast depolarization occurs. The axon’s membrane is
also active; hence the depolarization propagates down the axon and its
branches without change. That signal is known as a nerve impulse, action
potential, or spike. The spike for a neuron has a characteristic shape;
however, the duration of the spike is sufficiently short to be regarded as a
point event for many purposes. Finally, a sequence of spikes from a neuron
is called a spike train.

Multiple spike train recordings can arise from a single microelectrode
that is implanted in the extracellular space near several axons. Current
technology also allows for extended recordings from multiple extracellular
microelectrodes; hence, simultaneous spike trains from over a hundred
units are now possible. Regardless of how the multiple spike trains are
obtained, they must first be sorted before any meaningful analysis of the
data are done. That is, each spike must be identified with a particular
neuron that generated it. This step requires detailed measurements on
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the shape of the spike itself. The extracellular action potential waveforms
differ in detail according to the neuron and the relative position of the
measuring micro electrode. These differences provide a basis for
attributing the spikes to the neurons that generate them. There are two
general classes of algorithms to do this: feature clustering and template
matching. Feature clustering takes several properties of a waveform
such as its height and duration and clusters them. Template matching
classifies a spike on the basis of the overlap of its waveform with a set of
previously determined template waveforms. For a more detailed
description of these methods and a recent automatic sorting procedure,
see Fee, Mitra, and Kleinfeld (1996).

28.3 METHODS FOR DETECTING FUNCTIONAL
CONNECTIONS

In this section, we describe the following approaches that have been used
to study multiple spike trains: moment methods, intensity function based
methods, frequency domain methods, graphical methods, and parametric
methods. The categories are somewhat arbitrary, for there is some overlap
among them and most of these methods have their roots in the theory of
point processes: see, for example, Daley and Vere-Jones (1988), Karr (1991),
and Snyder and Miller (1991). One exception is the gravitational clustering
method below which draws upon the cluster analysis and pattern
recognition literature.

28.3.1 Moment Methods

We start with the case of two neurons A and B which have firing times
 and  over some recording

period [0, T]. Also, let Ni(s,t) be the number of spikes from neuron i
occurring in the interval (s, t] for i=A, B. Assuming regularity, the joint
spike intensity function is

 

When the two neurons are independent, �(t, u)=�A(t)�B(u), where �i(t) is
the marginal intensity function for neuron i; and there is further
simplification when the two processes are independent stationary Poisson
processes. To estimate �(t, u), we generally need M replicates of the process
over a time interval, say [0, T]. Subdivide the square [0, T]2 into smaller
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squares of length h, let Sij be the subsquare with center (ih/2, jh/2), and
estimate � there by

 

where I is the indicator function. Hypotheses about the joint intensity can
then be assessed using �2 goodness-of-fit tests.

Assuming (at least second order) stationarity, one measure of the
dependence between A and B is the cross-intensity function

 

When the two neurons are independent, �AB(u) is the product of the
individual intensities �A�B, so that large values of |�AB(u)-�A�B| indicates
dependence. In the neuroscience literature �AB(u) is also called the cross-
correlation function even though it is not bounded. Brillinger (1976)
proposed the following estimate of �AB(u):

 

where I is an indicator function. Under suitable regularity, the estimates
 at a finite number of points {ul:1 ≤l ≤L} are approximately

independent Poisson random variables. Hence, the cross-intensity can be
used to estimate �AB(u) at those points. This estimate is also called the
cross-correlation histogram or cross-correlogram: for examples of its use
and interpretation, see Aersten and Gerstein (1985), Knox (1974), and
Moore et al. (1970).

Taking a different viewpoint, Doss (1989) studied the function K(t1, t2),
which was proposed by Ripley (1976, 1977) in the context of spatial statistics:

 

When the two neurons are independent, K(t1, t2)=(t2-t1), regardless of the
marginal intensities �A and �B. Given data over a time interval [0, T],
Ripley proposed the estimate
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Assuming certain regularity conditions, Doss showed that as nB →�, is
 consistent and asymptotically normal with a variance that can

also be consistently estimated from the data.
Doss also noted that K and �AB are related thus:

 

Even though these two measures of dependence are mathematically
equivalent, in practice they are quite different. The regularity conditions
imposed by Doss and Brillinger do not imply each other. And while  is
similar a density estimate with variance on the order of (hT)-1, the estimate

 is similar to that of a distribution function with variance on the
order 1/nB· Hence, the two methods are complementary.

In practice, the cross-correlogram is the more common of the two.
Typically, the analysis for more than two neurons proceeds in a pairwise
fashion, although it is widely recognized that such an analysis can miss
important three-way or higher order interactions. For one early attempt
at dealing with this problem see Gerstein, Perkel, and Subramanian (1978).
The next three sections describe several methods that attempt to deal
directly with them.

28.3.2 Intensity Function Based Methods

A more elaborate but related approach models the intensity functions of
the counting processes of several neurons as functions of each other. The
approach is due to Cox and Lewis (1972), who used it in a reliability context.
Applications to neuroscience are due to Borisyuk et al. (1985), Chornoboy,
Schramm, and Karr (1988), and Utikal (1997a,b). In this section, we largely
follow Utikal’s treatment.

For (p+1) neurons consider the (p+1)-variate counting process N= (N,
N(1),…, N(p)) that monitors the spikes which occur at the random times
{T1, T2,…}, { , ,…}, …,{ , ,…}, respectively. As the notation
indicates, this discussion assumes a target neuron with counting process
N and trigger neurons with counting processes N(i) for i= 1,…, p; however,
in principle the neurons could be treated symmetrically. Under certain
regularity conditions, the counting processes can be decomposed into the
sum of an intensity process �(t) and a martingale M(t):
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The models of neural interaction say that the intensity functions depend
upon the time passed since the most recent firings. Specifically, define the
backward recurrence times of N(i) at time t to be . Then the
models for N have the form above with

 

where the functions � and �i are assumed to be unknown; any further
information about them about could be incorporated in specific instances.

Cox and Lewis (1972) called such a process a Markov interval process
for the case p=1. Chornoboy et al. (1988) used the following additive model
for �(t):

 

Utikal (1997) argues that the additive model is not appropriate for the
rather sudden jumps in the intensity function that are due to inhibitory
or excitatory inputs. He therefore proposes the multiplicative or proportional
hazards model

 

which allows the use of standard statistical packages to compute certain
test statistics. At this point, specific parametric models may be imposed to
test the different kinds of interactions. Utikal gives an explicit example
involving inhibition and excitation, including a delay term for the
transmission of a signal from a trigger neuron to the target neuron. Utikal
proposes several test statistics to assess the parameters of this
semiparametric model.

28.3.3 Frequency Domain Methods

Measures of dependence in the frequency domain are based on the Fourier
transform of the processes. As in the spectral theory of stationary Gaussian
processes, they provide an alternative to time domain methods, which
have certain disadvantages. For instance, the cross-intensity function is
analogous to a covariance function; thus, it is unbounded and is a
dimensional quantity; Kirkwood (1979) discusses further limitations and
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other disadvantages of cross-correlation functions. On the other hand,
regression techniques involve correlational measures which are bounded;
in the Fourier domain, they involve the coherence and phase as measures
of association and partial association: see Rosenberg et al. (1989). They
also provide system identification techniques for studying synaptic
interactions: see Brillinger (1975) and Brillinger, Bryant, and Segundo
(1976). In this section, we describe some of these techniques.

Assume once again that we have stationary processes with counting
measures Ni(t) for neuron i=A, B. In that case, the joint spike density
�AB(t, u) is a function of the time difference (u-t); we call that �AB(u-t) also.
In most cases of interest, the processes become independent as the lag
increases:

 

so that the processes are mixing. Bartlett (1963) defined the cross-spectrum
between two point processes at frequency ω as the Fourier transform of
the cross-covariance density qAB(u)=�AB(u)-�A�B,

 

The auto-spectrum for the single process NA is

 

where the first term is due to the singularity of the autocovariance at
zero. Bartlett’s cross-spectrum is related to the empirical Fourier transform
of the process itself,

 

thus:

 

where the bar indicates the complex conjugate. This expression leads
immediately to an estimate of the cross-spectrum.

The cross-spectrum leads to a measure of dependence called the
coherence, which comes from the problem of predicting a linear functional
of one process from that of the other. Specifically, consider the linear
combinations  and , where a(t) and b(t) have
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Fourier transforms â(ω) and , respectively. Then the mean-squared
error of prediction

 

is minimized by

 

The minimum value achieved is

 

where

 

is the coherence of the process at frequency ω. In addition,

 

Thus, the coherence is between zero and one; when it is zero, one process
is of no use in linearly predicting the other, and when it is one, one process
gives a perfect linear prediction of the other. Next, the phase spectrum i s

 

is useful in assessing timing relations between the processes. In the
simple case that B is a lagged version of A with lag h (Aj=Bj+h), then
�AB(ω)=-hω.

For estimating the coherence and phase from observations over a time
period [0, LT], Brillinger proposed breaking up the time interval into L
disjoint sections of length T, computing the empirical Fourier transform
of the counting process,  in each interval l=1, …, L, and
estimating the cross-spectrum thus

 

to get the following estimate of the coherence:
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The estimate of the phase spectrum follows similarly. Rosenberg et al.
(1989) contains the details of inference using these measures (for
example, using the transform tanh-1  instead of the coherence
to improve the normal approximation, and setting critical values). They
also show how to use the partial coherence , which
measures the improvement by neuron B when neuron C is already
included in the prediction of neuron A. See also Brillinger and Villa
(1994) for applications of these methods to the study of neurons from
Aplysia Californica, a sea hare that has been the subject of many
neurophysiological investigations.

28.3.4 Graphical Methods

All of the approaches discussed in this paper use graphical displays.
However, we have isolated the two methods in this section because they
are graphical procedures that have not been studied systematically from a
theoretical standpoint.

The first is called a snowflake plot. Perkel et al. (1975) developed it to
study networks of three neurons. They postulated that the analysis of
relationships between the neurons depends upon the differences between
their firing times. If Tij is the jth firing time of neuron i, then the cyclic
differences T1j-T2k, T2k-T3l, and T3l-T1j sum to zero. Hence, they can be
displayed in two dimensions. Perkel used a triangular coordinate system
which treats the three neuron pairs symmetrically. The axes make a 120°
angle with each other. The vertical axis corresponds to an interval between
the firings of the first two neurons; the signed distance along that axis is
given by T1j-T2k (upwards if the sign of this difference is positive). The
other two axes correspond to the other two pairs of neurons, and are treated
similarly. Thus, the point on the snowflake plot corresponding to T1j, T2k,
T3l is given by drawing the three perpendiculars to the axes at the given
distances and plotting the point where they meet. The Cartesian coordinates
of that intersection is .

Next, let the span L be the time between the first firing and the last
firing among the three neurons. The original proposal for snowflake plot
suggested that all such points with span less than L (therefore all points)
be plotted. While this is feasible for three neurons, it becomes less so with
larger numbers of neurons, so it becomes necessary to define smaller spans
and only plot points that fall within them. Of course, the choice of appropriate
span depends on an assessment of the length of time during which neural
interactions can be sustained: for example, can the firing of the first neuron
now affect another neuron ten seconds hence? Thus, any implementation
should experiment with several choices of time window.
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Perkel et al. bounded the plot in a hexagon, hence the name snowflake
plot. They used extensive computer simulations to show how different
networks’ firing patterns appeared on the snowflake plot. For instance,
they showed that if the first neuron caused the second one to fire at a lag
h with high probability (and the third neuron were firing independently
of the other two), then there would be a dense set of points along a line
perpendicular to the first axis at a distance h from the origin. They
showed the results of other networks that included inhibition, feedback
loops, and coincidence detectors. They also noted that with just these
synaptic types, there were over seven hundred distinct networks of three
neurons. One limitation of this method is that there is not a one-to-one
correspondence between a particular network and its resulting snowflake
plot: several distinct networks can give similar plots. Therefore, they
recommended its use for screening purposes; that is, to identify a class
of possible networks from a plot rather than to expect to identify a
particular network.

The extension of this graphical procedure to p neurons yielding
correspondingly high dimensional data is straightforward in some
respects but presents considerable challenges. The relation among the
cyclic differences above reduces the dimension of the data by only one to
(p-1). Thus, the problem here is that of detecting structure in high-
dimensional data that is noisy. Projection pursuit is one methodology
with this specific aim: see, for instance, Huber (1985) for further discussion
and references.

One aim of projection pursuit is to identify interesting low dimensional
projections of data. Here, the word “interesting” is often construed to mean
“far from Gaussian” [Huber (1985, p.443)], using some measure of entropy.
An important issue is the computational feasibility of this procedure; that
is, one major concern is the number of projections needed to be assured
that a thorough search has been done. But in the problem of multiple
spike trains, several directions are distinguished from our prior substantive
knowledge. That is, candidates for interesting one-dimensional projections
would look for evidence of pairwise excitation or inhibition. Similarly,
candidates for interesting two-dimensional projections could be based on
our knowledge of the various kinds of higher order interactions. Thus, the
candidates for interesting projections are at least partly well defined; in
short, this type of data set is well suited for exploratory data analysis
using an interactive projection pursuit algorithm. The implementation of
this more elaborate graphical aid, along with a careful study of its
theoretical properties remains to be done.

The other graphical approach that we describe here is related to
gravitational clustering, which is used in the pattern recognition literature,
and was applied to this problem by Gerstein, Perkel, and Dayhoff (1985).
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The idea behind this approach is the following. First, the activity of neurons
is mapped into motions of particles in Euclidean space of appropriate
dimension. The forces exerted on particles by others are due to “charges”
that represent interactions between the corresponding neurons. [Even
though a charge is used here, indicating electrical attraction and repulsion,
we use the term gravitational clustering because of earlier work on pattern
recognition, that used the term: see Wright (1977).] The particles are
allowed to move about until they begin to cluster as a result of the charges,
and the resulting aggregation of the particles into smaller subgroups then
presumably represent the functionally related, or cooperative, subgroups
that are sought. Of course, detailed knowledge about the nature of the
connection is not available from this technique.

Gravitational clustering is an attractive approach to such problems,
but a number of cautionary remarks are in order. First, there is no
evidence yet that the gravitational clustering approach models a
biophysical mechanism. It is a formal mathematical tool to try to detect
functional connections among neurons. Gerstein et al. recognize this
limitation, saying that they are not interested in “dynamic realism but
are using these dynamics only as a means to allow appropriate particles
to aggregate” (p.884). It is important, therefore, to consider variations of
this model to see if the substantive conclusions about the functional
connections change much when the details of the gravitational algorithms
are changed. Next, this clustering procedure has the same difficulty
that any clustering algorithm has: namely, without some external
validation, it is not possible to say with any confidence that the derived
clusters are indeed correct, rather than being artifacts of the clustering
process. A related point here is that there are no guidelines on deciding
when to stop the aggregation process; when a certain connection between
two neurons is strong, the algorithm should quickly join them into one
cluster; more extensive simulation studies are needed to understand the
quantitative relationship between the time to joining and the strength of
connection. This problem is similar to the difficulty in hierarchical
clustering algorithms, where the choice of the appropriate time to stop
splitting the sub-clusters is not clear, especially when there is no external
validation.

28.3.5 Parametric Methods

When there is extensive information about a particular network, many
detailed questions are bound to arise. In that case, it is often fruitful to
propose parametric models to try to answer such questions.

One example comes from Brillinger’s (1988) analysis of data from a
network of neurons from Aplysia. Let the spike trains of two neurons, say
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A and B be modeled as the point processes A(t) (the number of spikes by A
up to time t) and B(t), respectively. Suppose that the effect of A on B is of
interest. If A fires at time 	, let the postsynaptic effect on B be ;  a
is called the summation function. If γ(t) is the time since B last fired, then
the potential at the trigger zone for B is

Brillinger allows the firing threshold Vf to be the random function of t,
, where  is zero mean noise used to represent the

contributions of unmeasured neurons influencing B. In order to include
B’s own effect on its internal potential, spontaneous firings, and its
refractoriness, Brillinger suggested adding a recovery term
�1
(t)+�2
(t)2+�3 
(t)3 to the membrane potential. Then the probability that
B fires at time t given its past is given by the probit model

hence, the likelihood given the firing times of A and B is

Brillinger suggests that the parameters of this model be estimated by
maximum likelihood, which can be done using standard GLIM routines.

For the Aplysia data, Brillinger showed that the estimates of �i were all
significant, and also provided an estimate of the summation function.
Thus, a detailed study of the neuron’s recovery is possible from this
analysis. This method in principle extends to large numbers of neurons; it
can also be modified to include other effects such as adaptation. See also
Brillinger and Villa (1994) for a recent example of the use of semiparametric
modeling. The use of a linear summation function can be extended to
include higher order nonlinear terms. Such terms better model presynaptic
signals that are bursty, regular, or very fast. Such methods are the point
process versions of the Volterra expansions for Gaussian processes. For an
account of the theory, see Brillinger (1975, 1992); and for examples of its
use, see Brillinger, Bryant, and Segundo (1976).

Another example of a parametric model is motivated by Gerstein and
Mandelbrot (1964), who proposed the first random walk model for the
firing of a single neuron. Their model can be derived using the following
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argument. Let  and 
represent the excitatory and inhibitory input Poisson processes,
respectively. Suppose that  and  have rates  and  and
magnitudes  and , respectively. Then the stochastic differential
equation for V(t) is

 

In the limit that the intensities tend to infinity and the magnitudes of the
inputs tend to zero appropriately, the Poisson inputs are well approximated
by white noise dW. Thus, dV = µdt+�dW, where µ is the mean input per
unit time, and � is the standard deviation of that noisy input. Thus,
V(t)=V0+µt+ �W(t) is a Brownian motion starting at V0 with drift µ and
diffusion or variance �2. For a constant firing threshold Vf, the random
time to firing is T=inf{t>0:V(t)=Vf}. And when the net input is excitatory,
µ>0 and T is a proper random variable with the inverse Gaussian density

 

where v=µ/ � is the standardized drift and d=(Vf-V0)/� is the standardized
distance from the initial and firing potentials. For an account of other
random walk or diffusion models of single neuron activity, see Ricciardi
(1994).

lyengar (1985) extended this work to a “Zeitgeber” model, in which an
external stimulus (the “time-giver”) drives two other neurons. This model
assumes that the noise affecting each neuron is the sum of two components:
a shared component and an independent specific component. The other
assumptions for the model are similar to those of Gerstein and Mandelbrot
above, so that the parameters of this model have similar physical
interpretations. These assumptions lead to a correlated two-dimensional
Brownian motion, (X1(t), X2(t)), where the correlation is related to the noise
variance ratios thus. Let the noise variances be �2 for the shared noise and

 for the noise particular to the ith neuron. Then,

 

Here, the firing time distributions are given by the joint distribution of
, where  and ai is the distance between the

resting potential and the firing threshold for the ith neuron. The derivation
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of the joint distribution of  involves the solution of the heat equation
inside a wedge in , with specified initial and boundary conditions, and
the use of the strong Markov property. As an aside, recall that the inverse
Gaussian distribution has statistical properties that mirror those of the
Gaussian distribution, and admit easy estimation and testing procedures.
The statistical properties of this model for a bivariate inverse Gaussian
have not been studied or compared with other proposals that are in the
literature. Furthermore, extensions of this model to more neurons leading
to higher dimensional analogs of this model also have not been done.

28.4 DISCUSSION

Some of the methods above, such as the use of the cross-intensity function,
are rather generic in that they are used for point processes arising in
many areas, not just neuroscience. Other methods, such as Brillinger’s
use of a recovery function, are tailored to the biophysical details of the
neuron. Still other methods, such as Utikal’s interacting counting process
approach are flexible enough to model both neurophysiological phenomena
and other phenomena (in this case, reliability of components). All of these
methods have a role in neurophysiology. The generic methods play an
important role during the initial phase of an investigation when little is
known about the network. As more information is gathered and initial
hypotheses are refined, parametric approaches come to the fore to assess
them more precisely.

The routine gathering of such data is still relatively recent; therefore,
there are many outstanding problems. For example, the graphical methods
that have been proposed have both proved themselves to be useful screening
devices, but they do not have adequate theoretical support. That is, a
careful study of the properties of these methods to find out when they
work well and what their limitations are, along with computational
procedures to store and process the huge data sets have yet to be done.
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CHAPTER 29

SOME STATISTICAL ISSUES
INVOLVING MULTIGENERATION

CYTONUCLEAR DATA

SUSMITA DATTA

Georgia State University, Atlanta, GA

Abstract: In recent years, there has been increasing attention on studying
the association or interaction between a nuclear gene or genotype and
maternally inherited cytoplasmic components such as mitochondria.
Questions have arisen concerning whether or not these associations can
be explained without invoking neutral selection. A novel application of the
dynamics of allelic or genotypic linkage disequilibria is in the construction
of statistical tests for testing the null hypothesis of a neutral model. In
this paper, such tests are considered by comparing the paths of a collection
of disequilibria measures with their (conditional given the previous
generation) expected trajectory. Since these tests are based on the complex
nature of the interaction between genes or genotypes, they are expected to
be more capable of capturing differences in behavior from that expected
under the neutral theory than tests based on a single gene (haplotype)
frequency. Also such tests are applicable even if the population is not in
existence for a long time (so that an assumption of equilibrium is not
reasonable) provided it is observed over a few generations which is possible
in a controlled experimental setting.

As an alternative to a neutral or random drift model, researchers have
considered different types of selection models involving fertility or viability
selection. In such models it is of fundamental interest to estimate the
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selection parameters. In this paper we formulate an estimation scheme
using multi-generation genotypic counts for a multiplicative fertility
selection. Once the selection coefficients are estimated they can be used to
test any statistical hypothesis of interest that can be formulated in terms
of the selection coefficients. In particular, a test for the neutrality or no
selection can be constructed based on such estimates.

Keywords and phrases: Nuclear gene, mitochondria, neutral selection,
genotypic linkage disequilibria, viability selection, multiplicative fertility
selection

29.1 INTRODUCTION

One of the simplest and most powerful hypotheses in population genetics is
that most DNA markers are neutral [Kimura (1983)]. Under the neutral
theory, such as a random drift model or drift with mutation or migration,
precise predictions about the dynamics and equilibrium behaviors of individual
DNA markers can be made. The bulk of the neutral theory concerns prediction
about properties of individual genes like heterozygosity and rates of evolution
[Nei (1987) and Li and Graur (1991)]. In selectionist theories, on the other
hand, there is an emphasis on the epistatic interactions of genes and their
resultant associations in genomes and populations [Wright (1969), Dobzhansky
(1970) and Lewontin (1974)]. With the advent of new genome technologies it
has now become feasible to test predictions about the dynamics and equilibrium
behavior of many markers simultaneously to distinguish between neutral
and selectionist hypotheses. In particular, studies (theoretical or simulation
based) of the dynamics of various disequilibria measures are becoming
increasingly important. A genotypic/allelic disequilibrium measures association
between two (or more) genotypes/alleles in a population. Such measures provide
new inferential tools in analyzing both a single cytonuclear or nuclear system
as well as hybrid zone data.

Statistical properties such as the dynamics of the first two moments of a
gametic linkage disequilibria in a nuclear system under random union of
gametes (RUG) have been studied by Robertson (1952), Hill and Robertson
(1966), Hill and Robertson (1968), Hill and Weir (1988), among others. Some
form of an overall disequilibria in a multi-loci nuclear system has been
considered in Hill (1975), Takahata (1982) etc. Effect of selection can be
particularly important in such systems since it can produce strong correlation
among the distribution of alleles or genotypes at different loci even without
strong epistatic interactions [Franklin and Lewontin (1970)]. Hedrick and
Thomson (1986) used an overall disequilibria as a test statistic for neutrality
under the assumption that the system has reached an equilibrium.

The basic setup of the present paper differs from the above mentioned
papers in an important way in that a cytonuclear setup is considered; for
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such setup it can be argued [Fu and Arnold (1992)] that a random union of
zygote (RUZ) is more appropriate [Watterson (1972)]. However, the many
of the methods in this paper can be useful in a RUG setup also with
appropriate modification.

 

We consider a nuclear locus with possible alleles A and a and a
cytoplasmic locus with alleles M and m. The frequencies of six cytonuclear
genotypes are denoted p1,…, p6 as in Table 29.1.

Asmussen et al. (1987) introduced three disequilibria measures D1, D2

and D3 to measure association between a cytoplasmic gene and a nuclear
genotype as given in the following table.

TABLE 29.1 Frequencies in a cytonuclear system

TABLE 29.2 Genotypic disequilibria in a cytonuclear system

Only two of these three disequilibria can change independently since they
satisfy 

29.2 NEUTRALITY OR SELECTION?

One of the central tenets of evolutionary genetics is that most DNA markers
distinguishing individuals and species are neutral and have little effect on
individual fitness [Kimura (1983)]. Under this hypothesis the action of
genetic drift or genetic drift in combination with mutation or migration
can be used to describe the evolution of most DNA markers. If these
“neutrality hypotheses” are correct, then one of the consequences
(predictions) is the existence of a “molecular clock” in which differences
between two DNA sequences descended from a common ancestral DNA
sequence accumulate linearity with time on average. As a consequence,
DNA sequence difference between extant species have been used to
reconstruct the history of life.
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Evidence supporting the neutral theory of molecular evolution has usually
come from comparisons of empirical data to certain stationary equilibrium
properties of neutral models. Such asymptotic properties of neutral
populations include expected heterozygosity, variance in heterozygosity,
vanishing allelic disequilibria etc. are seen to be in reasonable agreement
with predictions from the neutral model [Fuerst, Chakraborty and Nei
(1977), Chakraborty, Fuerst and Nei (1980), Dykhuizen and Hartl (1980)
and Asmussen et al. (1989) etc.]

However such approaches of agreements based on the equilibrium
behavior under the neutral theory have been questioned in recent years.
For example, Gillespie (1979) has shown that the infinite allele neutral
model and his model of selection in a random environment have the
same stationary distribution and therefore the agreement between
empirical observations and that predicted by the infinite allelic model
noted by Fuerst, Chakraborty and Nei (1977) can be used with equal
strength to support Gillespie’s model of neutral selection. As another
example, consider the tests by Watterson (1977) based on the sampling
theory of Ewens’ (1972). Rothman and Templeton (1980) showed that
under some departure from the model assumption the underlying neutral
model can yield frequency spectra and homozygosity similar to those
expected from heterosis.

Besides the above theoretical developments, a number of researchers
have recently designed experiments to test the neutrality of mtDNA
markers [Clark and Lyckegaard (1988), MacRae and Anderson (1988),
Fos et al. 1990, Nigro and Prout (1990), Pollak (1991), Arnason (1991),
Kambhampati et al. (1992), Scribner and Avise (1994a,b), Hutter and
Rand (1995), etc.] Singh and Hale (1990) suggested that the apparent
“non-neutral” behavior may be also caused by mating preference and that
any attempt to understand the role of selection on mtDNA variants one
should first begin with simpler conspecific variants rather than with
interspecific variants; however see McRae and Anderson (1990), Jenkins
et al. (1996). Multi-locus empirical comparisons have been undertaken by
Karl and Avise (1992) [also see McDonald (1996)], Berry and Kreitman
(1993), McDonald (1994).

To remedy the criticisms of using a single generation test (assuming
that the population has reached an equilibrium), in recent years, several
tests of the neutral theory have been devised which use observations of
allelic or gametic frequencies over several generations. Tests utilizing
temporal data include Fisher and Ford (1947), Lewontin and Krakauer
(1973), Schaffer, Yardley and Anderson (1977), Wilson (1980), Watterson
(1982), Wilson et al. (1982) Williams et al. (1990). These papers considered
tests based on the expected dynamics of allelic frequencies at a given locus.
A novel approach based on the interactions of a nuclear genotype and a
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cytoplasmic marker in testing the neutrality hypothesis has recently been
presented in Datta and Arnold (1996). This approach is based on the
comparison of the observed cytonuclear disequilibria with those expected
under a neutral model of random drift. Disequilibria between an mtDNA
and a nuclear marker may prove to be more sensitive to departures from
a neutrality hypothesis than the statistics derived from a single marker
and a test based on an extensive description for the dynamics of cytonuclear
disequilibria would be more powerful than a test based only on the
equilibrium behavior.

The test of Datta and Arnold (1996) was applied to a vertebrate cage
experiment involving two species of mosquito fish [Scribner and Avise
(1994a,b)]. In this experiment an artificial hybrid zone composed of two
competing species of mosquito fish that interbreed was established.
Frequencies of cytonuclear genotypes and associated cytonuclear
disequilibria were monitored over time and compared with their expectations
under random drift.

In general, for experiments of the type described above there are two
potential sources of variation in cytonuclear frequencies, namely,
statistical sampling variation and genetic sampling variation [Weir
(1990)]. Statistical sampling variation arises from sampling individuals
from a population and using the estimated cytonuclear disequilibria from
the sample. Genetic sampling variation arises from genetic drift, the
sampling of gametes from a finite breeding pool of individual in nature to
constitute the next generation. In the experiment of Scribner and Avise
(1994a,b) in every generation, all individuals from an entire population
were sampled and as a consequence, statistical sampling variation was
eliminated. However more general cage experiment, as in Kiparsky
(unpublished), would result in both sources of variation. In Datta et al.
(1996), test statistics based on cytonuclear disequilibria were constructed
which can take both sources of variation into account. The formulation
in this case is considerably more involved. The sampling schemes are
described below.

29.2.1 Sampling Schemes for Multi-Generation Data

We consider a general sampling scheme for the experiments for
collecting relative frequencies of genotypic counts over a number of
generations.

Sometimes in kitty-pool experiments [Scribner and Avise (1994a,b)],
several independent populations are allowed to propagate in time and at
each time point one of these populations is completely sacrificed to obtain
the genotypic counts.

Usually, a complete census of the population is difficult and expensive.
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We therefore consider a broad sampling scheme for the experiment in
which at each generation only a portion (a random sample) of the population
is sacrificed to obtain the counts. Also a common population is allowed to
propagate in time.

More specifically, at each generation a portion of the adult population
is collected by simple random sampling and sent for analysis after they
form the next generation eggs by random mating. The eggs are then
collected and placed in a cage to form the next generation. Thus the
counts and hence the disequilibria measures in this case are only based
on the sample and not on the population and therefore subject to the
additional source of sampling variation. The scheme is described in Figure
29.1.

29.2.2 An Omnibus Test

With reference to the above experiments calculate the genotypic
disequilibria  at different time points t where a hat signifies
that these may be based only on the sample counts (in the second sampling
scheme). Note that these can be thought of as estimates of the expected
genotypic disequilibria μi(t)=E Di(t), where this expected value will be
calculated under a neutral model (e.g., random drift). Datta and Arnold
(1996) and Datta et al. (1996) considered a chi-squared goodness of fit type
test statistic of the form

(29.2.1)

under the sampling schemes mentioned above. Here  is the vector of
 for all the generations under study and  is its estimated

variance-covariance matrix.

FIGURE 29.1 Format of the experiment considered in Datta et al. (1996)
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It was shown in the above mentioned papers that asymptotically, as
both genetic sample size (the effective population size) as well as the
statistical sample size increase,  is asymptotically bi-variate normal
and therefore T has an approximate chi-square distribution under the
null hypothesis of random drift.

29.2.3 Application to Gambusia Data

In Scribner and Avise (1994a,b), several lines of evidence were forwarded
as demonstrations that genetic changes within replicate experimental
Gambusia hybrid zones did not result from random drift. Consistency in
the pattern and direction of change in mitochondrial and nuclear allele
frequencies, consistency in reduction in population genetic diversity owing
to loss of G. affins allele and lack of appreciable levels of inter-replicate
genetic variance implicated the importance of non-random evolutionary
forces. They compared the observed cytonuclear gene (and genotype)
frequencies from their expectations under random drift; however no explicit
overall test for cytonuclear drift was available at that time. Such a test is
necessary to correctly control the overall type 1 error probability.

In Datta and Arnold (1996) the above test (1) was applied to the Scribner
and Avise (1994) data at one locus; more complete results were given in
Scribner et al. (1998). The RUZ model with random drift alone was rejected
(at 5% level) for four of the five nuclear loci. Thus the simple genetic drift
model does not explain the temporal changes in composite cytonuclear
frequencies. Frequencies of parental G. holbrooki mitochondrial alleles
and nuclear genotypes exceeded expected values during most time periods
implying some selective advantage of offspring produced by G. holbrooki
females.

TABLE 29.3 Results for the Gambusia data [from Scribner et al. (1998)]
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29.2.4 Application to Drosophila Melanogaster Data

The above test procedure was applied to data from a cage experiment on
the fruit fly Drosophila Melanogaster conducted by M.Kiparsky. A PCR/
4-cutter method was developed to simultaneously score individual flies for
mtDNA haplotype and the three diploid genotypes at each of two second
chromosome loci. The significance of the above test in the context of this
data is that the decay of cytonuclear disequilibria rejects a random drift
model. See Datta et al. (1996) for the details. This non-neutral decay of
disequilibria was believed to be due to a preferential transmission in
heterozygotes of the nuclear chromosome that were from the same strain
as the mtDNA haplotype. The results for the DPP locus (with generation
2 sample missing) are given below.

29.2.5 Tests Against a Specific Selection Model

The above test is omnibus since it works against any alternative to the
neutrality hypothesis. The above applications suggest that the researcher
may have an alternative model to explain the data. In such a case it would
be desirable to see if the data shows a significant inclination towards the
alternative model. However the omnibus test does not incorporate the
specific model structure in the alternative hypothesis. In fact, it is the
lack of the use of the alternative hypothesis in the formulation of the test
statistic that may make the power of the test not very good (it is fairly
typical of omnibus test). In this subsection, we would like to address the
question ‘how to construct such a test statistic for this problem which will
perform better than the omnibus tests of Datta and Arnold (1996) and
Datta et al. (1996) in detecting a specific type of interesting selectionist
alternatives?’

TABLE 29.4 Results for the Drosophila data [from Datta et al. (1996)]

TABLE 29.5 Selection coefficients in a cytonuclear system
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 Although a number of interesting alternative selectionist hypotheses
can be considered the following general approach may be attempted in all
case. For the discussion here, we consider a viability selection mechanism..
Let us consider selection followed by random union of zygote (RUZ) in a
cytonuclear systems. Let wi, i=1, …, 6 denote the selection coefficients for
the six genotypes (Table 29.5).

We assume that wis measure the relative fitness of the genotypes for
survival from birth to adulthood (viable selection coefficient). Thus prior
to random mating the relative frequencies after selection of the six
genotypes are , with . Since it is
only possible to measure the relative fitness in this formulation there are
at the most five independent parameters in wi and the usual convention
(parametrization) is to let w*=max(wi)=1. In some cases the number of
parameters is further restricted by assuming a parametric model of the
form wi=wi(�), where � is a parameter of dimension four or less. The
advantage of this is of course a gain in efficiency in the inference procedure
provided the model is correctly specified. Below we consider three such
models.

Examples of selection schemes

Consider a cytonuclear system in which selection is determined by
phenotypes. Assume further that the mitochondrial allele M is at an induced
selective advantage over m. This gives rise to a selection scheme as follows:

A similar model in a nuclear system was considered in Ewens (1970, p.
27). In this model we may let .

Next consider a situation in which there is no dominance in fitness for
each mtDNA locus and that selection acts in opposite direction so that we
have the following selection coefficients:

When dominance is introduced, the selection scheme looks like
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In this model �=(hM, hm, sM, sm) is a four dimensional parameter. See
Ewens (1970, p.38) for such a scheme.

As a last example of a parametric viability selection model consider
hitchhiking of a neutral mitochondrial marker. Under this model, selection
operates only on the nuclear locus. The following selection model can be
used in this situation

Such models have been studied by many authors such as Thomson
(1977), Asmussen and Clegg (1981), Clark (1984), Asmussen (1986). This
model is parametrized by a two dimensional �=(s1, s2).

Construction of a test statistic

Consider viable selection followed by random union of zygotes. It can be
shown that the expected cytonuclear disequilibria in the (t+1)th generation
given the genotypic counts X(t) in the tth generation are given by

(29.2.2)

(29.2.3)

where Nt+1 is the population size at generation t+1, wi=wi (�) are the selection
coefficients,

 

and
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Owing to formulas (29.2.2) and (29.2.3) one can form an objective function
measuring the departure of the disequilibria from their one-step expected
value under selection given by

 

where m denote the number of generations for which data were collected. In
practice we need to change the population statistics such as D and p to their
sample estimates  and  which are obtained by replacing the population
zygote frequencies by the corresponding sample frequencies. Let

 

The minimum value of Q over all possible selection coefficient
combination under the model represents the “error sum of squares”

 

The corresponding quantity under the null hypothesis of neutrality or “no
selection” (which corresponds to wi=1) is given by

 

where �0 represents the parameter value for which wi(�)=1. In fact,

 

where D(t) and p(t) are the gametic disequilibrium corresponding to A/M
and p is the frequency of M in generation t. The test statistic we propose to
use to test the null hypothesis of “no selection” is given by

(29.2.4)

Note that T�0 and larger values would indicate stronger evidence of
selection. It resembles the “model sum of squares” or “model deviance”
[McCullah and Nelder (1989)]. However due to the nonlinear nature of the
formulas for expected disequilibria its large sample distribution is not
likely to be a multiple of chi-square. Thus instead of using the large sample
theory we would use a resampling procedure (parametric bootstrap; see
below) to calculate the approximate P-value for the test.
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Calculation of P-value using bootstrap

We are going to describe a resampling scheme to carry out a parametric
bootstrap procedure [Efron (1979)]. It can be implemented in any language
(C++, Fortan, Pascal) or package (S- Plus, SAS, Mathematica) which has
a random number generator. We assume that the more general sampling
scheme 2 was used in the original experiment.

Given our multi-generation data (to be referred to as the original sample
or original data in the sequel) the resampling scheme mimics the genetic
and statistical sampling procedures under the null hypothesis of random
drift (or no selection) in the computer simulation. Here is how to generate
the genotypic counts for a multi-level bootstrap sample. It is a customary
notation to denote bootstrap quantities with asterics. Start the bootstrap
chain with an initial population of genotypic frequencies as the estimated
ones from the original sample, i.e., let , i=1,…, 6. Next obtain
the bootstrap genotypic counts at the sample level from the first generation
bootstrap population via multinomial sampling 
Multinomial , where nt is the sample size at generation
t of the original data.

TABLE 29.6 �fmk

In general, having obtained the bootstrap genotypic frequencies at both
the population and sample levels for generations 1,…, t, form the next
generation of bootstrap genotypic counts via multinomial sampling under
a RUZ model with drift alone. That is, letting , 1�m, f �4,
denote the number of offspring with gametic type m from mother and type
f from father, generate the vector of counts 
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 from a multinomial distribution of total size Nt+1 and
cell probabilities , where

 

are the gametic frequencies in the bootstrap population at generation t obtained
from the genotypic frequencies at the same population. The genotypic
frequencies are then obtained as ,
1�k�6. The coefficients � and ß are given in Tables 29.6 and Table 29.7,
respectively. This completes the (recursive) description of the genetic sampling
for the generation t+1 for the bootstrap data. Next generate the bootstrap
genotypic counts at the sample level from the t+1 generation bootstrap
population via multinomial sampling  

.Denote the value of the test
statistic T in (29.2.4) calculated at the bootstrap data by T*.

TABLE 29.7 ßki

 The bootstrap resampling procedure consists of replicating the above
steps a large number B (say 5000) of times and calculating the values of
the test statistic T at each bootstrap replicate. These would result in B
values of T*, denoted . Finally, the bootstrap approximation to
the P-value of the test is given by the proportion of times T i* exceeds Tobs,
the value of the test statistic T calculated from the original multilevel
sample. Of course, a 5% level test would be to reject the null hypothesis of
“no selection” if and only if P-value <0.05.

Power and sample size

All the traditional tests of neutrality hypothesis using multi-generation
data are based on a single gene frequencies. The numerical studies in
Kilpatrick and Rand (1995) reveals overall unsatisfactory power of such
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tests. The idea in Datta and Arnold (1996) or Datta et al. (1996) was to
use cytonuclear data on genotypic frequencies through the use of
cytonuclear disequilibria in order to gain power in detecting a departure
from random drift. Indeed their simulation results show that under a
migration alternative the power of the omnibus test can be at respectable
level. For example a power of about 85% is achieved for a population size
(genetic sampling) of 200 at a mutation rate of 15% or greater. However
since this test did not make use of the alternative hypothesis in its
construction it is possible to construct selection schemes under which
this test can have undesirably low power. As shown in Datta et al. (1996),
in a heterozygous viability selection model the power curve test remains
rather flat for small to moderate level of selection before it picks up the
effect of selection. The present test is developed within a specific selection
model in which the null hypothesis is embedded (i.e., wi≡1). Therefore
this test is expected to have a better power performance in detecting
selection provided a correct (or nearly correct) premises for selection is
made. However, a determination of this fact (theoretically or by simulation)
is yet to be made.

29.3 INFERENCE FOR THE SELECTION COEFFICIENTS

Suppose one is faced with a situation where random drift alone cannot
explain the dynamics of the multi-generation cytonuclear data and a
selectionist model needs to be invoked for satisfactory description of the
system. In such a situation, it is of fundamental interest to estimate the
parameter involved in the selection coefficients of the model. Estimation of
a selection coefficient in a simpler context was considered, among others,
by Wright (1969), Dykhuizen and Hartl (1980) and Watterson (1982). For
example Watterson (1982) considered selection on a single gene frequency
and considered an approximate Gaussian likelihood for the conditional
distribution of the gene frequency in the following generation given the
data in the current generation where the effect of selection on the variance
is ignored. Here we consider estimating the selection coefficients through
the use of an approximate likelihood based on multi-generation cytonuclear
genotypic counts. The likelihood is efficient in that it captures the genetic
variation fully (which is affected by the selection coefficients). It is
approximate because we choose to use the sample genotypic frequencies
instead of the population genotypic frequencies. This seems to be a
reasonable approach since the selection is not involved at the statistical
sampling level. We explain the estimation procedure in detail in the next
subsection.
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29.3.1 A Multiplicative Fertility Selection Model

We consider a selection model in which the selection effect appears due
to difference in fertility of gametic combinations. Suppose a population is
observed over discrete generations t=1, 2,…, and let Xfm(t) be the number
of individuals in generation t receiving gamete type f from the father and
gamete type m from the mother, 1�f, m�4. Under the RUZ model
[Watterson (1970)], along with fertility selection, the probability
distribution of the counts X(t+1)=(X11(t+1),…, X44(t+1)) in generation t+1,
given the gametic combination counts up to time t, , is multinomial
and is given by

(29.3.5)

where Nt+1=�f,m xfm (t+1), and W= �f, m wfm ef (t)em (t). Here e’s denote the
(relative) frequencies of the various gametes given by ei(t)= �k ßikpk(t) and
p’s are the genotypic (relative) frequencies pk(t+1)= �f, m �fmkXfm(t+1), where
the constants � and ß are given in Tables 29.6 and 29.7, respectively. The
coefficients wfm denote the (relative) fertility of the various gametic
combinations. We would specialize to the case when the fertility selection
coefficients are of the multiplicate form wfm=wfwm, 1�f, m�4; we may
assume further that �i wi=1, which makes them identifiable.

29.3.2 An Approximate Likelihood

Let us consider cytonuclear data collected over m generation following the
sampling scheme in Figure 29.1. The experiment starts with an initial
base population. Generations are discrete and nonoverlapping. In each
generation, the individuals were allowed to mate and after the eggs were
collected the adults were frozen for genotyping. Eggs were allowed to form
the next generation. A random sample of nt individuals from the frozen
adult population of generation t were taken and genotyped to give the
sample genotypic frequencies.

Let w=(w1,…, w4) be the selection parameters described in the
multiplicative fertility selection model described in Section 29.3.1. Under
this model, it can be shown that the log-likelihood function of the population
genotypic counts over m successive generations given the initial ones
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is given by

 

where

 

and

 

Note however, that the population genotypic relative frequencies pk (and
their linear combinations ei, the gametic relative frequencies are not
observable and hence the above likelihood is not usable. We propose to
replace them by their sample estimates  (which is just the corresponding
sample proportion) to produce an approximate likelihood  that is
“consistent” for the true likelihood

(29.3.6)

The formulas for  are those for Lk with the e replaced by ê in them. Our
proposal is to estimate w by the maximizer of the approximate likelihood,
i.e., , where the maximization is to be carried out subject
to Σiwi=1.

We recommend estimating the variance-covariance matrix of the
selection parameter estimates by parametric bootstrap. Note that a
bootstrap sample can be generated following the same sampling scheme
described above (Figure 29.1) with the initial cytonuclear genotypic relative
frequencies and the selection coefficients replaced by their estimates.
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A number of simulation studies were conducted to examine the finite
(moderate) sample behavior of the approximate MLE. They show excellent
performance both in terms of bias and variance over a wide range of
parameter values. Furthermore, they reveal the asymptotic multivariate
normality of the estimator. The details are available in Datta (1999).

29.3.3 Application to Hypotheses Testing

The parametric estimates can be used to construct Wald type test statistic
[Serfling (1980)] for testing hypotheses involving the selection coefficients.
Many interesting null hypotheses, when formulated in terms of w, will be
of the form H0:Hw=c, where H and c are known matrices and constants.
As a special case, one may consider a simple null hypothesis H0:w=w0. In
particular if w0=(1/4, 1/4, 1/4, 1/4), then the resulting test would be a test
of a neutral model. A test statistic for the general linear hypothesis will be
of the form , where  is an estimated
variance covariance matrix of w∧∧∧∧∧. A simpler test statistic for the simple
null hypothesis H0:w=w0 that does not require numerical maximization is
given by the approximate Rao type score test statistic . Its
P-value can be computed via a similar parametric bootstrap as indicated
earlier with a viability selection model and a different test statistic.
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CHAPTER 30

THE PERFORMANCE OF
ESTIMATION PROCEDURES
FOR COST-EFFECTIVENESS

RATIOS

JOSEPH C.GARDINER ALKA INDURKHYA
ZHEHUI LUO

Michigan State University, East Lansing, MI

30.1 INTRODUCTION

The cost-effectiveness ratio (CER) is a widely used summary statistic for
comparing competing health care programs relative to their cost and
benefit. The CER is defined as the ratio of the incremental cost of the test
program to the incremental benefit, using the next best alternative the
referent program as the comparator. The CER is most useful when the
test intervention costs more and produces extra health benefit. When cost
is measured in dollars and effectiveness in life years the CER is then the
additional cost of the test intervention for each additional unit of health
benefit. With data on cost and benefit from samples of patients from the
two interventions, the CER can be estimated and where feasible, a confidence
interval (CI) constructed. Three parametric approaches to obtaining a CI
have been proposed. We refer to these as the Fieller, symmetric and
Bonferroni intervals. Additionally, resampling methods based on the
bootstrap have also been advocated [Chaudhary and Stearns (1996)].

The CER estimator is a ratio estimator, which often makes its
distribution skewed. Confidence intervals such as the Fieller and bootstrap
intervals account for this skewness and might be expected to have better
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performance characteristics with respect to coverage probability. They
may also be preferable in practice to the symmetric and Bonferroni intervals
when assessing power and sample size requirements for tests of hypothesis
on the CER, when the confidence interval is used to formulate the test
procedure [Gardiner et al. (1999)]. The Bonferroni interval ignores the
likely correlation between cost and health benefit. Its interval is wider
than the comparable Fieller interval [Laska, Meissner and Seigel (1997)]
which in turn is wider than the corresponding symmetric interval
[Gardiner, Bradley and Huebner (2000)] whenever this comparison can be
made. Existence of a finite length Fieller interval of confidence level 1-� is
guaranteed when the effectiveness difference is statistically significant at
level � [Gardiner, Bradley and Huebner (2000)]. The symmetric interval
exists whenever the estimate of incremental effectiveness is non zero.

In this article we examine through extensive Monte Carlo simulation
the performance of these three parametric CIs for the CER. Our primary
criterion is the coverage probability. We also comment on use of these
intervals for hypothesis testing on the CER and power assessments for
cost-effectiveness studies.

30.2 CONFIDENCE INTERVALS FOR CER

The form of the CER will depend on the measures of health benefit and
cost at the individual level, and the type of cost and health outcome data
available. For example, in longitudinal studies with life expectancy as a
measure of benefit and non sampled resource utilization, life- expectancy
restricted to a finite time horizon and present value of all resource use can
be defined in terms of the underling survival distribution [Gardiner et al.
(1995)]. In this paper we take a simpler view in which mean values for
costs and effectiveness obtained from independent samples (C0j, B0j :
1 �j �n0) on the referent intervention and (C1j, B1j:1 �j �n1) on test
intervention are used to estimate the CER. The incremental cost is
estimated by the difference in sample means,  and for the
incremental benefit by  which then yields the estimate

 for the CER(=�). The population means, variances
and correlations of (C0j, B0j) and (C1j, B1j) are in first two rows of Table 30.1
and appearing in the third row,with n1=kn0 are the theoretical mean and
standard deviation for the estimated incremental cost  and
estimated incremental benefit  and their correlation. We assume
that μc�0.
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Fieller interval

A finite length 100(1-�)% CI for � exists if, and only if the effectiveness
difference  is significant at level � [Gardiner, Bradley and Huebner
(2000)]. Moreover, if the cost difference  is significant at level � the
CI for � is displaced to the left or right of zero according as  or .
If the cost difference is not significant then the CI contains zero. The
confidence limits are

(30.2.1)

where z is the (1-1/2�)-th percentile of standard normal distribution,

(30.2.2)

In (30.2.1) and (30.2.2) the parameters �c, �e and 	 will be replaced by
estimates obtained from sample variances and correlations for ωi, 
i and 	i

(i=0, 1). Note that because of the assumed significance of the incremental
effectiveness at level a we have y<1.

Symmetric interval

The confidence limits are of the form  with an estimate
of the asymptotic variance  derived from the asymptotic variance

TABLE 30.1 Parameters in joint distributions of cost and effectiveness in
test and referent interventions
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of  and the consistency of . The confidence
limits are

(30.2.3)

with the unknown parameters �c, �e and 	 replaced by estimates. It can
be shown [Gardiner, Bradley and Huebner (2000)] that the Fieller interval
is almost surely wider than the symmetric interval. However, if the
difference in effectiveness is highly significant then the two CIs are
practically the same. The symmetric interval has also been referred to as
the Taylor series interval [O’Brien et al. 1994)] because  may be
derived from a Taylor series expansion of .

Bonferroni interval

As the name implies the CI for � is derived by applying the Bonferroni
inequality to P[Lc<μc<Uc, Le<μe<Ue] where (Lc, Uc) and (Le, Ue) are separate
CIs for μc at level 1-�c and μe at 1-�e respectively, with �c+�e��. The
confidence limits for � are functions of (Lc, Uc, Le, Ue) and will depend on
their signs [Laska, Meissner and Siegel (1997) and Wakker and Lkassen
(1995)]. If the incremental effectiveness is not significant a finite interval
does not exist. When Lc>0 and Le>0, the CI may be taken as

(30.2.4)

where  and z’ is the (1-1/4�)-th percentile of
the standard normal distribution. For this case both cost and effectiveness
are significantly higher for the test intervention than in the referent
intervention. Moreover, the corresponding Fieller interval is wholly
contained in the Bonferroni interval [Laska, Meissner and Siegel (1997)] .

30.3 COMPARISON OF INTERVALS

The symmetric interval (30.2.3) for the CER always exists provided the
estimated difference in effectiveness  is not zero. However, a finite width
1-� level CI under the Fieller method obtains if and only if the difference
in effectiveness is significant. This means that the test of H0e:μe=0 is
significant at level � based on the rule that rejects H0e if .
Because �e would generally be unknown it must be replaced by the sample
standard deviation. If the � level test of H0e is not significant then the
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Fieller interval is an unbounded interval of the form  or
the entire real line. As noted earlier the width of the Fieller interval is
almost surely wider than that of the symmetric interval, and the Bonferroni
interval wholly contains the Fieller interval.

When H0e is highly significant in the sense that 
the Fieller and symmetric intervals are approximately the same. Since
the Bonferroni interval ignores the correlation between costs and
effectiveness we may compare it to the symmetric interval when its width
is greatest with respect to 	. From (30.2.3) this half-width is proportional
to the square root of  Therefore when 	=-1 we
obtain

(30.3.5)

For the Bonferroni interval (30.2.4) assuming y is small we get
approximately the same limits in (30.3.5) with z replaced by z’. Because
z’>z the Bonferroni CI is still wider than the widest symmetric CI.

The central limit theorem for sample averages  and  ensures
the validity of the CIs (30.2.1), (30.2.3) and (30.2.4) with respect to the
stipulated coverage probability 1-�. From the consistency of sample means
we obtain the consistency of .The Bonferroni interval will be conservative
guaranteeing coverage of at least 1-�. For large sample sizes n1, n0 the
Fieller and symmetric intervals should be very similar. Although the
asymptotic distribution of  is used to obtain SD( ) for constructing the
symmetric CI, the bias of , E( ) -� does not exist. A more interesting
quantity is  where a>0 is a specified level of minimum
incremental effectiveness. The uniform integrability of sample means
ensures that  converges to �, provided μe>a. For normally
distributed samples this conditional expectation is

 

where b=(a-μe)/�e. Therefore in this situation we have

(30.3.6)

which shows that the left hand side has the opposite sign of �-	(�c/�e).
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30.4 SIMULATION STUDIES

Specifying distributions and parameters

The parameters μic, μie,ωi, 
i and 	i (i=0, 1) in Table 30.1 will be fixed for
the different distributions of cost and effectiveness. The three distributions
that we will consider make the following transformed cost and effectiveness
measures bivariate normal for both the referent (i=0) and test interventions
(i=1): [1] (Ci,Bi), [2] (logCi, Bi), and [3] (logCi, log Bi). Therefore in [2] and
[3] the costs are log normally distributed, and in [3] the effectiveness is
also log normal. In [2] the parameters of the bivariate distribution may be
specified using Lemma 30.4.1.

Lemma 30.4.1 Suppose log  and Corr(logCi, Bi)=�i.

Then

 

PROOF The first two equations follow immediately from expressions for
the mean and variance of the log normal distribution, that is

 and .

For a bivariate normal pair (X, Y) with zero means, unit variances and
correlation r we have  for any real number t. This follows
by evaluating the expectation by first conditioning on Y and using the fact
that the conditional distribution of X given Y is N(rY, 1-r2). Then
	i=  and the third equation obtains.

Similarly the parameters in [3] may be specified using the following
Lemma, the proof of which is straightforward.

Lemma 30.4.2 Suppose log , log  and
. Then

 

and

 

�
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To generate the data for our simulations we need specify the underlying
means μic, μie the correlations 	i and coefficients of variation (CV) for cost
ωi/μic, and for effectiveness 
i/μie. In practice we would expect greater
variation in costs than in effectiveness measures. Coefficients of variation
of 10–30% for costs are not uncommon. On the other hand in studies such
as randomized trials designed to demonstrate a difference in the
effectiveness of two interventions, we would expect the variation in
effectiveness to be much smaller, with greater variation in the test
intervention than in the referent (standard).

30.5 RESULTS

Each simulation was based on 1000 replications from samples drawn from
the three sets of distributions for costs and effectiveness. The means and
coefficients of variations were specified for the parent distributions and
Lemmas 30.4.1 and 30.4.2 were used to generate the data to conform to
these specifications. The sample sizes n0, n1 for the referent and test
interventions were the same: either 250, 100 or 50. In all cases (μ0c, μ0e)=(30,
5) and (μ1c, μ1e)=(40, 6). If costs are in thousands of dollars and effectiveness
in quality-adjusted life years (QALY5) the true CER is $10,000/QALY.
For each sample 95% confidence limits were computed by (1) for the Fieller
interval, by (30.2.3) for the symmetric interval and by (30.2.4) for the
Bonferroni interval, as appropriate. For the latter different expressions
for the confidence limits obtain that depend of the direction and significance
of the cost difference [Laska and Meissner (1997)]. Both the Fieller and
Bonferroni CIs are unbounded when the effectiveness difference is not
significant. The empirical coverage is the proportion of samples in which
the generated bounded CI contained the theoretical CER (=10).

Tables 30.2, 30.3 and 30.4 give the results of sample sizes of 250. Here
we expect the asymptotic properties of our estimates to clearly hold. With
normally distributed samples (Table 30.2) the coverage by the Fieller and
symmetric intervals are essentially the same across the different levels of
the CV of costs and effectiveness. The correlations 	0, 	1 have a greater
influence on the standard deviation of the CER estimate than on the
coverage probability. As expected at negative correlations there is greater
variation in the CER estimates and corresponding wider confidence
intervals. There is even greater variation in the estimates with log normal
distributions for either costs or effectiveness (Tables 30.3 and 30.4). In
these simulations because of the large sample size of 250 for all samples
the effectiveness difference was significant at the 5% level. Therefore a
finite Fieller interval was guaranteed. Also the cost difference was positive
and significant in which case the Bonferroni interval is given by (30.2.4).
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When the coefficient of variation for cost is high it is more likely that in
some samples the difference in cost between the interventions will not be
significant. A confidence interval for the CER in this case would include
zero, and the distribution of the estimated CERs could still be quite skewed.
This was seen in one set of simulations (Table 30.3) where the CER
estimates ranged from (-3.3) to 17.6. Although the mean of 9.91 was still
close to the theoretical value of 10, the average standard deviation was
relatively high. Both the Fieller and symmetric intervals provided coverage
near the targeted value of 95%.

TABLE 30.2 Normal distributions for cost and effectiveness (n0=n1=250; (μ0c,
μ0e)=(30, 5); (μ1c, μ1e)=(40, 6))

TABLE 30.3 Log normal cost and normal effectiveness distributions
(n0=n1=250; (μ0c, μ0e)=(30, 5); (μ1c, μ1e)=(40, 6))

TABLE 30.4 Log normal cost and normal effectiveness distributions
(n0=n1=250; (μ0c, μ0e)=(30, 5); (μ1c, μ1e)=(40, 6))
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With a smaller sample size it is more likely that in some samples the
effectiveness difference or cost difference might not be significant. When
the effectiveness difference is not significant the Fieller and Bonferroni
intervals will be unbounded but a finite symmetric interval can still be
computed. Some simulation results for sample sizes of 50 are given in
Table 30.5, for log normal cost and normal effectiveness, and in Table 30.6
when both measures are normally distributed. The distribution of the
CER is now markedly skewed, especially if the coefficients of variation are
high. The Fieller method gave unbounded intervals in less than 0.5% of
the 1000 simulation runs. Unbounded intervals appeared in about 1% of
the time for the Bonferroni method. All methods gave very wide confidence
intervals for the CER with the Bonferroni intervals being by far the very
widest.

TABLE 30.5 Log normal cost and normal effectiveness distributions
(n0=n1=50; (μ0c, μ0e)=(30, 5); (μ1c, μ1e)=(40, 6))

TABLE 30.6 Normal cost and normal effectiveness distributions (n0-n1=50;
(μ0c, μ0e)=(30, 5); (μ1c, μ1e)=(40, 6))

Additional simulations carried out for sample size of n0=n1=100 revealed
differences that were intermediate between the two cases discussed here
(Table 30.7). Figures 30.1 and 30.2 show the distribution of the CER for
the first and one but last entries in Table 30.7. The greater skewness is
seen with a negative correlation.
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FIGURE 30.1 Distribution of CER
(normal cost, normal effectiveness, correlation=.5)
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FIGURE 30.2 Distribution of CER
(normal cost, normal effectiveness, correlation=-.5)
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30.6 RECOMMENDATIONS

Our theoretical and empirical investigation generally favor the Fieller
method for constructing a confidence interval for the CER based on random
samples of cost and effectiveness data from two independent samples. The
Fieller method performs the best across the different scenarios we tested.
It correctly accounts for the correlation between the cost and effectiveness
measures, and provides coverage close to the desired level. The symmetric
interval, which is easier to compute than the Fieller interval, could be
used when the effectiveness difference is highly significant. Generally,
these two methods yield similar coverage probability. Although the
Bonferroni interval is the easiest to compute among the three intervals it
is generally very wide and the coverage far too conservative. The Bonferroni
method should not be used when there is a strong positive correlation
between costs and effectiveness. For sample size and power calculations
for tests of hypotheses on the CER in cost-effectiveness studies, accounting
for the positive correlation leads to higher statistical power for given sample
size,7 than when this correlation is ignored [Gardiner, Bradley and Heubner
(2000) and Briggs and Gray (1998)]. Conversely, to achieve a specified
power our sample size requirements will be smaller by accounting for this
correlation. The computation of the bias in the normal case in (30.3.6)
points to decreasing bias with increasing correlation.

The influence of the assumed distributions of cost and effectiveness on
the performance of the three methods was not discernable, at least in the
cases we considered. This is especially true for coverage probability. With
a log normal distribution for cost, the distribution of the CER was more
skewed. Theoretically we would expect the methods to perform well when
the distributions are assumed to be normal. Our study shows that the
effects of the variation in costs and effectiveness can have a pronounced
impact on the precision of the confidence interval when the sample size is
small.

TABLE 30.7 (n0=n1=100; (μ0c, μ0e)=(30, 5); (μ1c, μ1e)=(40, 6))

Copyright © 2002 Taylor & Francis



COST-EFFECTIVENESS RATIOS 559

When a specific parametric distribution is assumed for the cost and
effectiveness measures would a more specific estimation procedure for the
CER yield improved estimates? For instance if the distribution of cost is
skewed, a distribution such as the log normal could be considered appro
priate. The underlying parameters of the log normal cost distribution and
those of the distribution of effectiveness in Lemmas 30.4.1 and 30.4.2 can
be estimated [see, for example, Zhou (1998), Zhou, Melfi and Hui (1997a)
and Zhou, Gao and Hui (1997b)] by using sample means, variances and
covariances on the transformed scale. The CER is then a function of these
underlying parameters. For example, if costs are log normal, that is,

, the numerator of the CER is  If
effectiveness is normally distributed in each sample, the difference in mean
effectiveness is μ1e-μ0e� Therefore the CER is a function of these six
parameters which would be estimated by substituting the appropriate
estimates of these parameters. The distribution of this CER estimate would
involve in addition the two correlations. Because of the assumed
distributions the estimated covariance matrix of these parameter estimates
will have several zero entries. Asymptotic theory may be invoked to derive
the distribution of the CER. It is unclear whether this fully parametric
approach has an appreciable advantage in addressing the precision of the
CER estimate compared to that based on sample means and covariances.
Our simulations studies and those of other researchers [see, for example,
Chaudhary (1996) and Polsky et al. (1997)] point to the robustness of the
Fieller method.

Acknowledgment Research supported in part by the Agency of Health
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CHAPTER 31

MODELING TIME-TO-EVENT
DATA USING FLOWGRAPH

MODELS

APARNA V.HUZURBAZAR

University of New Mexico, Albuquerque, NM

Abstract: Flowgraph models provide an innovative approach for the
analysis of time-to-event data. Time-to-event data is especially important
in two major areas of statistics: reliability and survival analysis. This
article introduces flowgraph models the context of system reliability. A
flowgraph is a graphical representation of a set of relations describing a
stochastic system. It consists of a set of nodes connected by directed line
segments (branches) that model the dependence of an output variable on
an input variable. A practical application consists of using flowgraph
methods to access the system moment generating function. This moment
generating can be inverted either exactly or approximately by using
methods such as saddlepoint approximations to give estimated densities,
cumulative distribution functions, reliability or survival, and hazard
functions. We demonstrate the viability of these methods by considering
systems in series, parallel, and with feedback loops. We also extend these
methods to phase type distributions. An application to modeling HIV/
AIDS in survival analysis using flowgraphs is also presented.

Keywords and phrases: Reliability, survival analysis, HIV/AIDS,
hydraulic pump

31.1 INTRODUCTION

Flowgraph models are useful for a wide variety of problems. The focus of
this article is on illustrating the use of flowgraph models for time-to-event
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data. Time-to-event data is especially important in both reliability and
survival analysis and this article will present one application from each
area. Flowgraph methods have recently been developed for Bayesian
survival analysis by Butler and Huzurbazar (1997). The focus of Butler
and Huzurbazar (1997) is on Bayesian prediction using flowgraphs and
the methodology presented includes models of disease progression for
kidney failure, cancer, and HIV/AIDS. Situations involving left, right, and
interval censored data are illustrated using AIDS data from the San
Francisco Men’s Health Study.

Flowgraph models also provide useful extensions to phase type
(PH) distributions. PH distributions are defined to be distributions
of absorption times in Markov processes. In survival analysis, these
distributions are used to model stages of disease progression that
lead to an absorbing end state, usually death. Aalen (1995) presents
many different PH distributions for modeling survival times in
situations where the overall survival time involves progression
through several stages. Analysis of these models is quite complicated
and requires a number of simplifying assumptions. The most common
of these is the Markovian assumption which necessitates exponential
waiting times between stages of the disease. While this may be a
reasonable assumption for many situations, it is also quite restrictive.
Flowgraph modeling extends these to generalized PH distributions
by allowing the use of any waiting time distribution with a tractable
moment generating function (MGF). Such extensions of PH
distributions using flowgraph models are discussed in Huzurbazar
(1999).

A flowgraph is a graphical representation of a set of relations
describing a stochastic system. It consists of a set of nodes connected
by directed line segments (branches) that model the dependence of
an output variable on an input variable. In a typical flowgraph
analysis, our interest is in accessing the system (MGF) for a particular
problem. This MGF can be inverted either exactly or by using
approximation methods such as saddle-point approximations [cf.
Daniels (1954)]. This gives estimated densities, cumulative
distribution functions (CDFs), reliability or survival functions, and
hazard functions. The focus of this article is on illustrating the use
of flowgraph models in accessing the MGF of the quantities of
interest. Section 31.2 provides a detailed introduction to flowgraphs.
Section 31.3 reanalyzes data from Limnios (1992) using a flowgraph
model. Section 31.4 proposes a feedforward model for HIV/AIDS with
an exact inversion of the MGF from the resulting flowgraph model.
This an alternative to a PH analysis of this model and the analysis
presented here is more general than a PH analysis. For illustrative
clarity, in this article, we focus on examples of flowgraph models
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where exact inversion of the MGF is possible. Saddlepoint methods,
which are generally used in conjunction with flowgraph models for
approximate inversion of the MGFs, are beyond the scope of this
paper. For a discussion on saddlepoint methods for problems in
survival analysis see Huzurbazar and Huzurbazar (1999).

31.2 INTRODUCTION TO FLOWGRAPH MODELING

Consider a hydraulic system with 2 pumps physically in parallel and
with appropriate valving so that the system can operate with only one
pump if necessary. Limnios (1992) analyzes this system for various
quantities of interest including mean time to total failure. The analysis
is quite complicated and requires a number of simplifying assumptions,
namely exponential waiting times so that Markov models can be used
for the analysis. Figure 31.1 is the flowgraph of the hydraulic system.
For now we assume that the pumps operate independently and that
the system can operate with only 1 pump if necessary. This is an example
of a series system with feedback. State 0 represents zero failed pumps,
state 1 represents 1 failed pump, and state 2 is the state with 2 failed
pumps. The backward transition from state 1 to state 0 represents the
repair of a failed pump. We will use portions of this flowgraph to
illustrate the basics of solving flowgraph models before analyzing the
full hydraulic system problem.

31.2.1 Flowgraph Models for Series Systems

First, we consider the system of Figure 31.1 without feedback, i.e.
removing the transition from 1→0. Flowgraphs are simplified by solving
them. In Figure 31.1 let Y1 be the random variable representing the
time for passage from state 0 to state 1 with MGF M01 (s) and Y2 represent
time for passage from state 1 to state 2 with MGF M12(s). The passage
time from state 0 to state 2 is the sum of two independent random
variables Y1 and Y2. The MGF of the total waiting time for pump failure
is M01(s)M12(s). We can now replace the flowgraph in Figure 31.1 with

FIGURE 31.1 Flowgraph model for hydraulic pump system
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an equivalent flowgraph consisting of only two nodes, 0 and 2, and one
branch labeled M01(s)M12(s), the equivalent transmittance. For finite
systems where passage from input to output is certain to occur, the is
equivalent transmittance is the overall he is equivalent transmittance
is the overall system MGF. This process of reducing a larger flowgraph
to a smaller one is called “solving” a flowgraph. This procedure is also
known as block diagram reduction in engineering. However, in
engineering, probability distributions and random variables are not
included in the modeling.

Series models lead to convolutions of random variables and hence
are quite straightforward to analyze using flowgraphs. For example a
series model with n states has an equivalent transmittance given by
the product of the MGFs of the n-1 independent waiting times involved
in the convolution. This property has been amply exploited in reliability
analysis for independent and identically distributed random variables
where the sum is tractable and leads to tractable functional forms for
expressions of system reliability. With a flowgraph model, the random
variables need only be conditionally independent, not identically
distributed.

31.2.2 Flowgraph Models for Parallel Systems

Figure 31.2 shows the flowgraph of a parallel system. These structures
are familiar to statisticians in the form of the finite mixture distributions
that they yield. Suppose state 1 represents the testing station for a
component. The component is prone to one of two types of failures which
moves the system to state 2 or state 3. Each branch is labeled with the
probability of taking that branch and the MGF of the waiting time.
This quantity, probability×MGF, is defined as the branch transmittance.
The probability of transition from 1→2 is p12 and the MGF of the waiting
time for passage is M12(s) which gives p12M12(s) as the branch
transmittance. The transition probability from 1→3 is p13=1-p12 with
M13(s) as the MGF of the waiting time for passage. The MGF of the
overall waiting time is a finite mixture distribution: with probability
p12 it is M12(s), the MGF of the waiting time distribution for 1→2 and
with probability p13 it is M13(s), the MGF of the waiting time distribution
for 1→3. Therefore, the MGF of the waiting time for first passage to
either state 2 or state 3 is given by p12M12(s)+p13M13(s). If Y1 represents
the waiting time to state 2 and Y2 represents the waiting time to state
3, this flowgraph describes the waiting time for the occurrence of min{Y1,
Y2}. If distributional assumptions about Y1 and Y2 were made then
p12=P(Y1<Y2). Note that M12(s) is not the MGF of Y1 but rather the MGF
of the actual “competitive waiting time”, the “competing risks”
distribution in survival analysis. If the competitive waiting time from
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1→2 were inverse Gaussian and from 1→3 were gamma, the overall
waiting time distribution would be the mixture of these with the mixing
parameter determined by the probabilities.

Figure 31.2 is an example of a flowgraph with two “paths”. A path
from beginning to end is any possible sequence of nodes from input to
output that does not pass through any intermediate node more than
once. In this case, the paths are 1→2 and 1→3 with no intermediate
nodes. Series and parallel components can be combined to form larger
systems.

31.2.3 Flowgraph Models with Feedback

The feedback loop, shown in Figure 31.3, is a generalization of the testing
system above where we allow a part to be repaired when the system is
in state 1. This model is useful for modeling the number of times the
part fails before passing inspection or how long it takes for the part to
successfully pass the test. From the initial state, 1, the probability of
staying in state 1, i.e. failing the inspection, is p. The waiting time for
remaining in state 1 has MGF M11(s), the waiting time for inspection
and repair. Transition from state 1 to state 2 occurs with probability 1-
p and waiting time MGF M12(s). The feedback loop can be solved for the
equivalent transmittance 1→2. The process starts over again whenever
one remains in state 1, so the equivalent transmittance is
T12(s)=pM11(s)T12(s)+(1-p)M12(s), which yields

FIGURE 31.2 Flowgraph model for a parallel system
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More complex systems such as those with numerous types of paths
and loops require the use of techniques such as Mason’s rule [see Mason
(1953)]. Mason’s Rule is an algebraic procedure that allows
computation of the equivalent transmittance of the solved flowgraph
from any node A to any node B. This requires that we identify all of
the paths and loops of the system. Loops are identified by their order.
A first-order loop is any closed path that returns to the starting node
of the loop without passing through any node more than once. The
transmittance of a first-order loop is the product of the individual
transmittances involved in its passage. Higher order loops are defined
as follows: a jth-order loop consists of j non-touching first-order loops.
Its transmittance is the product of the transmittances of the first order
loops it contains.

The general form of Mason’s rule gives the equivalent transmittance,
i.e., the MGF, from input to output as

(31.2.1)

where Pi(s) is the transmittance for the ith path, Lj(s) in the denominator
is the sum of the transmittances over the jth-order loops, and  is
the sum of the transmittances over jth-order loops sharing no common
nodes with the i path, i.e., loops not touching the path.

31.3 RELIABILITY APPLICATION: HYDRAULIC PUMP
SYSTEM

We consider the hydraulic pump system with feedback of Limnios (1992).
In the physical system, the pumps are in parallel. The system is designed
to work with 1 or 2 pumps. In Section 31.2.1 we considered this as an
equivalent series system with a flowgraph model in which the states
represent the number of failed (or functioning) pumps. In addition, we

FIGURE 31.3 Flowgraph model for a feedback loop
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now allow for a failed pump to be repaired which makes this a series
system with feedback. The equivalent flowgraph model is given in Figure
31.1. Limnios assumes that each pump operates independently and fails
according to an exp(�) waiting time distribution. Once failed, a pump is
repaired at an exp(µ) waiting time distribution. In state 0 we have two
functioning pumps and waiting time to failure is the minimum of two
independent exp(�) random variables, exp(2�). In state 1, we have one
working pump and one failed pump. The transition from state 1 occurs
to state 2 if the working pump fails before the failed pump is fixed and
transition occurs to state 0 if the failed pump is repaired before the
good pump fails. Therefore, we observe the minimum of an exp(�) with
an exp(µ), which is exp(�+µ). The corresponding transition probabilities
and waiting time MGFs are

Using (31.2.1) in conjunction with the flowgraph model readily gives
the MGF of the waiting time to total failure (TTF) as

(31.3.2)

Limnios found system parameter estimates of  and ,
and after much detailed algebra, a mean time to total failure (MTTF) of
6800. The flowgraph analysis of the same model is much simpler and
gives the correct MTTF M’(0)=6500. While the MTTF is a quantity of
interest in systems analysis and derivable from well known methods
for Markovian systems, the flowgraph model provides this in a very
simple form and gives much more than the MTTF. Flowgraph models
provide the entire waiting time distribution of the TTF as well as the
system reliability and hazard functions. We rewrite (31.3.2) as

(31.3.3)

(31.3.4)
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where �=�( �, µ) and ß=ß(�, µ) are the factors of the denominator of
(31.3.3). The estimated parameter values give  and

. Each term in (31.3.4) is the MGF of an exponential
distribution. Inverting, gives the density of T, the time to total failure
as the mixture of exponentials,

(31.3.5)

Figure 31.4 gives the maximum likelihood estimates for the density,
, and the hazard function, . If these waiting times were not

exponential, a situation where methodology for Markovian systems does
not work, the flowgraph model is still applicable. See Huzurbazar (1998)
for development of flowgraph models for complex engineering systems
such as cellular telephone networks.

31.4 SURVIVAL ANALYSIS APPLICATION: A FEED
FORWARD MODEL FOR HIV

Another type of feed forward model is useful in modeling the incubation
time for AIDS. The Markov model was suggested by Brookmeyer and
Liao (1992). Aalen (1995) proposes a phase type (PH) distribution model
for this problem.

Figure 31.5 shows the flowgraph model used to generalize Aalen’s PH
formulation. This model is similar to the series model used in Longini

FIGURE 31.4 Density and hazard function for hydraulic pump application
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(1989) but with an additional feed forward to account for treatment. The
overall waiting time MGF from the equivalent transmittance is

(31.4.6)

and . We use a Markov model with waiting time
distributions Exp(�) for 1→2, Exp(ß) for 2→3, Exp(�) for 3→5, Exp(�)
for 3→4, and Exp(��) for 4→5. Note that we use exponential distributions
only to retain comparability with previously suggested models. We can
use any other distribution with a tractable MGF in the flowgraph model
of (31.4.6). The parameter � represents the rate at which treatment can
be offered. The parameter � represents the factor with the progression
of AIDS is slowed down as an effect of treatment. The MGF of the
survival time distribution of the time to incubation is

(31.4.7)

Using a partial fraction expansion, the overall waiting time density is

FIGURE 31.5 Flowgraph model for HIV/AIDS

(31.4.8)
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a finite mixture of exponentials. This can be used to acquire the
corresponding CDF, survival, and hazard functions. The form in
(31.4.8) is equivalent to the overall survival function for this model
given as in Aalen (1995). Alternatively, symbolic algebra or numerical
inversion can be used in conjunction with the flowgraph. More
generally, for a non-Markov model with some non-exponential waiting
times, analytic inversion of the MGF using symbolic algebra can be
cumbersome or even impossible. Saddlepoint approximations remain
a viable inversion method. The flowgraph model requires only that
the waiting time MGFs exist. See Huzurbazar (1999) for
generalizations of other PH models.

31.5 CONCLUSION

Flowgraph models provide an innovative approach to the analysis of
time-to-event data. Computational aspects begin with determining a
flowgraph model for a given system. In the reliability context this is
determined by the physical system. However, in the (medical) survival
analysis setting this flowgraph must come from the subject matter
specialists. Available data on the whole or partial system must be
incorporated into the model. Estimation based on the flowgraph model
can be performed in the Bayesian framework or via maximum likelihood.
If the likelihood is intractable, flowgraph models can be used to
reconstruct likelihood [see Butler and Huzurbazar (1997)]. This situation
occurs when data is incomplete, as often happens in survival analysis.
MGFs of relevant quantities of interest are then computed from the
flowgraph model. Inversion methods such as saddlepoint approximations
can be used to convert this into a density, CDF, reliability or survival,
and hazard functions. For complex systems we strongly recommend
the use of a symbolic algebra package such as MAPLE. This paper
focused on discussing the methodology when the system MGF was
exactly invertible. Flowgraph models handle the traditional analysis of
Markovian systems but also allow the use of non-exponential waiting
times thus extending the modeling to semi-Markov processes. They also
allow analysis of systems with feedforward and feedback loops in the
presence of general waiting time distributions. These systems are
intractable by standard methods even under the Markovian assumption
of exponential waiting times. The only constraint is that the MGF of
the waiting time distributions used at each stage be tractable. This
includes a wide class of distributions commonly used to model time-to-
event data such as the exponential, gamma, Weibull, inverse Gaussian,
the compound exponential, and the Gompertz. In such cases, the overall
MGF can be quite complicated and much be inverted approximately to
recover the estimated density, CDF, reliability or survival, and hazard
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functions. Flowgraph models are applicable to a wide variety of
situations. In the medical setting, flowgraphs are useful as models for
disease progression or models of phase type. In the engineering setting,
they can be used for systems analysis and design of complex systems
such as cellular telephone networks.
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CHAPTER 32
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Abstract: Estimation of composed error frontier models is generally
conducted under certain strict assumptions. In practice, however, these
assumptions are not tested thoroughly. This is probably because simple
workable tests are not yet available for these models. This paper develops
easily computable specification tests for half-normal composed error
frontier models. The tests are based on the information matrix (IM)
and moment test principles. These tests are applied to the well-known
Cowing (1970) steam-electric data set. Our tests reveal no serious
misspecification of the cost model, while for the output model the null
hypothesis of correct specification is rejected strongly.

Keywords and phrases: Frontier model, composed error, information
matrix test, moment conditions, parameter variation, heteroskedasticity,
nonnormality

32.1 INTRODUCTION

Given the technology of production and inputs bundle, a production
frontier refers to the maximum output obtainable. Its dual is the cost
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frontier which refers to the minimum cost required to produce a given
level of output. The distance by which a firm lies below its output
frontier or above its cost frontier is a measure of the firm’s inefficiency
in the frontier literature. The total inefficiency can be broken down
into two parts: allocative and technical inefficiencies. If a firm’s given
inputs allocation is optimal for some higher level of output than the
observed one (i.e., a firm operates on the expansion path), the firm is
said to be technically inefficient. On the other hand, if it operates at
any point on the isoquant for the observed output other than its optimal
one, the firm is said to be allocatively inefficient. Operation at any
point other than these two points mentioned above and the optimal
point for the observed output results in both technical and allocative
inefficiencies. It is obvious from these definitions that inefficiencies of
any sort causes a firm to deviate from its either frontiers and is costly
to the firm.

Substantial research has been done following the pioneering work of
Farrell (1957) focusing on the analysis of these inefficiencies. The
research on the frontier model received further attention following the
independent formulation of the composed error stochastic frontier model
by Aigner, Lovell and Schmidt (1977) and by Meeusen and Van den
Broeck (1977). A large number of models, both for cross-sectional and
panel data, have been fitted under different distributional assumptions
for the asymmetric error term. However, so far, not much attention has
been directed toward testing the specifications of these models. Lee
(1983) tested the half-normal and truncated normal distributional
assumptions separately for the asymmetric error term against a Pearson
family of distributions. Schmidt and Lin (1984) performed a test of the
normality of residuals. Rao’s score statistic does not exist in this
particular case because the scores vanish under the null hypothesis. As
an alternative solution, they suggested the use of the skewness
coefficient  to test for the normality of composed error against
positively skewed distribution and rejected the null for the well-known
steam-electric data set previously used by Schmidt and Lovell (1979).
To overcome the vanishing score problem, Lee and Chesher (1986)
developed an extremum test procedure based on the second-order
derivatives of the log-likelihood function. Kopp and Mullahy (1990) also
considered the test of symmetry of the error term and conducted tests
of overidentifying restrictions as a by product of their generalized method
of moments (GMM) estimation. A test of symmetry is not a specification
test for the frontier model, it is a test for the presence of inefficiency.
The GMM overidentification test is a valuable tool for checking the
validity of the maintained assumptions of the frontier model. However,
the selection of moment conditions is somewhat arbitrary. Our objective
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here is to develop straightforward tests for the frontier models that
could be routinely used in practice. The tests are based on the White
information matrix (IM) test. These are also moment tests, but now the
moments are based on a well-defined and objective principle. Under
the null hypothesis of correct specification, the IM equality holds and
the standard maximum likelihood approach leads to an asymptotically
valid inference. However, under misspecification, the IM equality fails,
and the moment conditions of the IM test are based on the difference
between the two estimates of the information matrix. Basically, we are
interested in detecting the misspecifications that lead to invalid
inference. From this point of view, the IM test principle provides a
natural selection of moment conditions. Recent applications of the IM
test to standard regression and other econometric models have resulted
in some simple and interesting specification tests, for example, see Hall
(1987), Bera and Lee (1993), White (1994), and Bera and Zuo (1996).

The plan of this paper is as follows. In Section 32.2, we find the
moment conditions on the basis of the IM test both for the output and
cost stochastic composed error models. In Section 32.3, we empirically
test the moment conditions jointly and separately for both the models
using the Cowing (1970) steam-electric data set. Finally, in Section 32.4,
we offer some concluding remarks.

32.2 INFORMATION MATRIX TESTS FOR FRONTIER
MODELS

32.2.1 The Elements of the IM Test for the Output Model

The composed error stochastic output frontier model (in logarithm form)
for Cobb-Douglas production technology  is given by

(32.2.1)

where y and x’s denote output and inputs, respectively, k=ln A and
 is the composed error term. In the composed error, the

symmetric part  is assumed to be distributed as while the
asymmetric part (the logarithm of technical efficiency) is assumed to
be distributed as half-normal  and is independent of vi. Under
these assumptions, the probability distribution of εi is given by [see
Aigner et al (1977)]
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(32.2.2)

where , with  and ,
 and  denotes

standard normal distribution function evaluated at (�εi/�). From
(32.2.2), the log-density function for the i-th observation is given by

(32.2.3)

As mentioned earlier, the frontier models are not generally tested for
their specification validity. This may be due to the fact that simple
workable tests are not yet available for these models. In the econometric
literature Newey (1985) and Tauchen (1985) type moment tests have
been found to be very useful. Under their framework, the procedure
involves testing moment conditions, like E(v(t,i) (�))=0, t=1, 2,…, N (the
number of moment conditions). These moment conditions are true when
the model is correctly specified. However, the selection of these moment
functions V(t, i)(�) is a difficult task. For our choice of v(t, i)(�), we utilize
White’s (1982) information matrix (IM) test principle. This test exploits
the IM equality that under the correct specification of the model

 holds. When this

equality holds,

 

will be a null matrix, otherwise it will have some nonzero elements.
Each element of the symmetric matrix D gives us a separate moment
condition, and there are p(p+1)/2(=N) distinct moment conditions
embedded in D, where p(=m+3) denotes the number of parameters in
(32.2.2). To derive the expression for the IM test, we stack all N distinct
moment conditions [v(1, i)(�), v(2, i) (�),…, v(N, i)(�)] of D into a single vector
µi(�) of dimension (N×1) which is given by

(32.2.4)
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where ‘vech’ stacks the upper triangular elements of the symmetric matrix
D in a column vector. To derive the IM test, let us define the following

 

If  denotes MLE, the IM test statistic is given by

(32.2.5)

where

 

with . Although the above formulation of the
IM test appears to be somewhat complicated, involving the third
derivatives of the likelihood function, the test can be implemented easily.
One way is to run a regression of unit vector on  and  and
compute the nR2 where R2 is the uncentered coefficient of determination.
Under the null hypothesis of correct specification, asymptotically nR2

is distributed as . An alternative method is to run a multivariate
regression of  on  with intercepts, and test the significance of
the intercept vector. In our case µi( �) has six broad elements
corresponding to . The elements are given below (for detail
derivation, see Equations (32.4.33)-(32.4.38) in the Appendix A):

(32.2.6)

(32.2.7)

(32.2.8)

(32.2.9)
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(32.2.10)

(32.2.11)

where si=(1, ln xi1, ln xi2,…, ln xim)’,  (the
output hazard function), and .

The first thing to note is that if we put �=0, all our moment conditions
reduce to those in Hall (1987), who applied the IM test to the standard
regression model. When �=0, we essentially have ui=0 for all i, i.e., there
is no inefficiency component. Although, the separate explanations of
each moment condition are difficult, we shall make an attempt to explain
the important ones. Under the null hypothesis of correct specification,
the moment condition in (32.2.9) tests . This could be viewed
as a test for skewness. We know  and 

 Therefore,  implies
 this together with the implication of the test with

reference to the parameter �, test indicator (32.2.6) vanishes when
 , and . Therefore, the IM test component

corresponding to �2 in (32.2.6), is testing for kurtosis. The indicator
corresponding to (32.2.11) tests moment conditions with respect to the
production function parameters vector ß, and is a symmetric matrix of
dimension , having  distinct elements.
A typical element of (32.2.11) is given by

 

and this provides a test for heteroskedasticity in the frontier model. If
we put �=0, we obtain White’s (1980) heteroskedasticity test for the
traditional linear regression model.

Lee (1983) tested the existence of half-normal and truncated normal
distributional assumptions for the asymmetric error term u against
truncated Pearson family of distributions:
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To test the null hypothesis that the correct density function for u is
half-normal, i. e.,

 

Lee (1983) tested the null H0:a=0, b1=0, and, b2=0, using Rao’s score
test. Under the null, the three nonzero elements of the score vector
corresponding to a, b1, and b2 use the differences between the conditional
(given ε) and unconditional moments of the asymmetric error term u.
When these three nonzero elements of the score vector are simplified in
our notations, for ith observation, they can be written as

 

The score principle verifies the zero expectations of the above indicators.
Two of these indicators, h2 and h3, can be closely linked with our moment
conditions (32.2.8) and (32.2.6), respectively. These two indicators test
skewness and kurtosis of the model. The first component (h1) tests the
first raw moment condition for the standardized composed error ei. By
construction the tests based on h1, h2, and h3 are concerned only with
the distributional assumption of the composed error. On the other hand,
the IM test principle, tests the overall specification of the model.

We now get the theoretical components of the IM test for the steam-
electric data set which has three inputs (m=3); capital (K), fuel (F), and
labor (L). The vector of production function parameters ß has four
elements (k, �K, �F, �L), and the parameter vector � of (32.2.2) has a
total of six elements (p=6) i. e., . This indicates,

for our data set, the information matrix IM will have twenty-one distinct
moment conditions. To avoid some notational confusion, let us number
the relative position of the elements of � by (1,2,…, 6). With these
notations, the twenty-one elements of µi(�) of (32.2.4) for i-th observation
are given in the following upper triangular matrix
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where V(t, i)(l, q) denotes the t-th (t=1, 2,…, 21) population moment
condition between the parameters l and q with l, q=1, 2,…,6.

Under the null of correct specification of true data generating process
(DGP), the expected value of these twenty-one moment conditions are
separately zero. Tauchen (1985), suggested carrying out any moment
test by running a standard regression of the test criteria (the moment
condition) on di(�) and an intercept term. In our case

 

The test is performed by checking the significance of the intercept term.
A typical regression equation for t-th population moment condition v(t,

i)(l, q) is given by

(32.2.12)

where  and �i is error term of this auxiliary
regression. Note that , and OLS estimate of �t

is , where . Therefore, testing the
significance of �t equal to zero is equivalent to testing . To
test the hypothesis of no misspecification, we run all twenty-one moment
conditions simultaneously using seemingly unrelated regression
equation (SURE) technique and perform a joint test that �t=0 for all t.
To test each moment condition separately, we run OLS of each moment
condition v(t, i)(l, q) on  and an intercept term and test intercept ( )
equals zero. The same procedure is carried out to test the moment
conditions for the cost frontier model. The moment conditions for the
cost model is derived in the following section.

32.2.2 The Elements of the IM Test for the Cost Model

The composed error cost frontier model is given by

(32.2.13)

Therefore, the corresponding regression model in logarithm form for
the cost model is

(32.2.14)
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In this formulation of the composed error cost frontier model (32.2.13),
 denotes the frontier (optimal) cost

for the observed output yi with , the returns to scale
parameter and Pij is the price of j-th input for i-th firm (i=1, 2,…, n). In
the composed error , the symmetric component

 is distributed as  while the asymmetric part
 (denotes the negative logarithm of cost efficiency) is

distributed as  and is independent of vi. Under these
assumptions, the density function of �i is given by

(32.2.15)

where , , �= �u/ �v and
F( ��i/ �) is the standard normal distribution function. The log-density
function for the i-th firm is given by

(32.2.16)

Note that we use the same notations �, ,  and �2 for both the cost
and output models but they are model specific. The elements of IM test
for the cost model are (for detail derivations, see Equations (32.4.52)–
(32.4.57), Appendix B):

(32.2.17)

(32.2.18)

(32.2.19)

(32.2.20)
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(32.2.21)

(32.2.22)

where lij=ln pij-ln �j,  (the cost hazard
function), and , with

. Here ai
 is a vector of

confounded regressors and is a function of yi input quantities’ price
vector, pi=(pi1, pi2,…, pim)’, and ß. If we compare the cost frontier model’s
moment conditions (32.2.17)–(32.2.22) with the output moment
conditions (32.2.6)–(32.2.11), we see that they are identical except that
zi is replaced by-ti and si is replaced by (ai/r). In the output model si

denotes ∂ ln yi/∂ß while (ai/r) denotes ∂ ln  in the cost model. The
interpretations of the moment conditions are also similar to those of
the output model.

32.3 EMPIRICAL RESULTS

32.3.1 Output Model Estimation

Estimation of the output model (32.2.1) maximizing the log-likelihood
function (32.2.3), for the U.S. steam electric data set with three inputs;
capital (K), fuel (F) and labor (L), consisting of 111 observations on
output, input quantities and their prices using LIMDEP software
package is given in Table 32.1.

TABLE 32.1

The total sum of squares (SST), sum of squares of errors (SSE), and
sum of residuals (TSR) for this output model at this parameters
estimate, respectively, are 108.19, 1.52, and-9.61. The estimates of
the variances for the asymmetric and symmetric errors are,
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respectively  and . These estimates provide 123.51
as the value of the log-likelihood function (LF).

We further report, at these estimates the mean value of  is
0.53, far less than the theoretical expected value of one. The vector of
average scores at these estimates provided by LIMDEP is (-8.620, -
0.005, 3.994, 67.296, 64.139, 46.401).

The MLE requires zero average value of each score at the estimates.
The average scores vector at these estimates is far from being a null
vector. Therefore, use of these estimates for testing the moment
conditions will not be appropriate. In a quest to find better estimates,
we used the simple genetic algorithm (SGA). We would like to report
here that the use of IMSL package yielded a slope vector also far from
being null, no better than what LIMDEP provided. The estimates
provided by SGA are relatively much better in terms of the slopes and
the value of the objective function (the log-likelihood function). The
estimates provided by SGA are given in Table 32.2.

TABLE 32.2

At these estimates, SSE and TSR, respectively, are 1.67 and -10.42.
The value of the log-likelihood function (LF) is 147.42, relatively much
higher than 123.51, LIMDEP provides. The estimated mean of 
is 1.0 as compared with 0.53 given by LIMDEP, which is far below the
theoretical value of 1.0. These estimates provide a discernible
improvement in the estimate of average vector of scores, which is (0.087,
-0.001, 0.004,—0.012, 0.189, 0.007). Comparing the values of the log-
likelihood function, the vector of scores, and mean of  at these estimates
with that of provided by LIMDEP, it is evident that SGA estimates are
better.

32.3.2 Moments Test for the Output Model

Here, we test all twenty-one different possible moment conditions listed
in (32.2.6)–(32.2.11) with respect to different elements of �, using the
estimates provided by SGA. To test that they are jointly zero for all
twentyone conditions, we run these twenty-one regressions by SURE
technique and test that all intercepts are zero. The numerical value of
Wald’s statistic is 20, 794.08. This high value of the test statistic
indicates that the hypothesis of correct specification of the model does
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not hold. Since the value of the Wald’s statistic is so high, we tested the
zero intercept of each moment condition on the basis of separate
regressions. The numerical values of t-ratios for testing the intercept
term for these regressions are presented in the following upper
triangular matrix

 

Elements with an asterisk (*) are significant at 5% level of significance.
Focusing our attention on the elements of the matrix, all the t-ratios of
the first row are insignificant, indicating that we cannot reject the
moment conditions (32.2.6)–(32.2.8). The second diagonal element
representing the t-ratio with respect to the parameter �, tests the
moment condition (32.2.9) and is highly significant, indicating the
skewness of the model. The elements of rows 3–6 are the t-ratios
corresponding to the moment condition (32.2.11). These moment
conditions are related to the different parameters of the production
technology and therefore, are of prime importance. These indicators
(32.2.11) test the heteroskedasticity of the composed error term. Of these
ten t-ratios only two are insignificant. This indicates that the proposition
of constant variance of the composed error term for this model is not
true. On the basis of joint and separate tests of all the moment conditions,
we may conclude that the null hypothesis of no misspecification cannot
be accepted for the output composed error model for this data set. There
is another way to interpret the IM test results. Chesher (1983)
demonstrated that the IM test is equivalent to testing the randomness
of the parameters. Since the IM test components corresponding to the
regression parameters are significant, it implies that the parameters,
in particular αK and αF, cannot be taken as fixed across firms. Similarly,
the strong significance of the indicator relating to the parameter �,
reveals that the inefficiency parameter � could also be varying across
firms. There has been recent attempt in the literature to capture the
varying nature of inefficiency [for example, see, Battese and Coelli (1988)
and Kumbhakar (1990)] and heteroscedasticity [Caudill, Ford and
Gropper (1995)].
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32.3.3 Cost Model Estimation

The observed cost model (32.2.14), has the parameters restriction that
the sum of the coefficients of In pij is unity. This restriction imposes a
problem in the estimation of the model by maximizing the log-likelihood
function (15). To avoid this restriction, Schmidt and Lovell (1979)
addressed the problem a little differently. The frontier minimum cost

  is a homogeneous function of degree

one in input prices. Therefore, in deriving the cost frontier model, they
scaled both sides of the deterministic part of equation (13) by the price
of any one input (price of labor for this steam electric data set). Then,
the revised cost frontier model becomes

(32.3.23)

where  and . They estimated
this reduced form of the cost model (32.3.23). It is to be noted that the
above model (32.3.23), still has the parameters restriction of

. The LIMDEP estimate of the composed error cost frontier
model (32.3.23) reconfirms the results of Schmidt and Lovell (1979) for
this data set. Since the model (32.3.23) is a reduced form model and
still has the parameters restriction, and the slope functions are not
easily derivable, we estimated the model (32.2.14) incorporating all
restrictions by SGA. The parameters estimate together with their
respective t-ratio are given in Table 32.3.

TABLE 32.3

The total sum of squares (SST), residual sum of squares (SSE), and
sum of residuals (TRS) are, respectively, 82.42, 3.04, and 14.15. The
log-likelihood function (LF) evaluated at this estimate is 119.49. The
mean of  is 1.0. The estimate of the average scores vector of
the log-likelihood function for this cost model evaluated at these
estimates is (0.041, -0.0, 0.008, -0.06, -0.01, 0.037).

32.3.4 Moments Test for the Cost Model

Using the parameters estimate of Table 32.3, we test all twenty-one
moment conditions (32.2.17)–(32.2.22), jointly as well as separately,
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following the same method as in the output model. The joint test of all
intercepts terms are zero also give a high value of Wald test statistic X2,
rejecting the null of no misspecification. However, the separate test of
each moment condition gives somewhat encouraging results toward
accepting the null hypothesis of no misspecification. The t-ratios for testing
the null hypothesis of zero intercept terms of all twenty-one distinct
regressions are provided in the following upper triangular matrix

 

Based on the entries in the matrix, we see all the moment conditions are
accepted except the two identified by an asterisk (*). These two t-ratios
test the moment conditions (32.2.17) and (32.2.22) with respect to the
parameter �2 and k are significant. We see that for the same data set the
parameters estimates derived from the cost and the output models differ
markedly and the test conclusions are also are quite different.

Comparing the production function parameter estimates derived from
the output and cost frontier models estimations listed, respectively, in
Table 32.2 and Table 32.3, we see, for the same data set, the estimates
differ substantially. Also our tests conclusions on the null hypothesis of
no misspecifications of the cost and output models, are quite different.
Schmidt and Lovell (1979) find that the parameter estimates derived
from the cost model estimation is economically more meaningful than
its counterpart obtained from the output model. Our empirical results
also substantiate their findings. But these findings are not in a clear
agreement with the well-known Shephard’s duality theorem which
states that the estimates derived from the estimation of the cost and
output models should be identical for the Cobb-Douglas production
function. In this regards, Chung (1994) reports, “The rationale for this
modern approach to the theory of production is that a production
technology is identically represented by either the production function
or the corresponding cost function.” All the empiricai findings in the
frontier literature do not substantiate this important theorem and seem
to advocate the cost model over its output counterpart. We would like
to offer possible explanations of this issue. The formulation of output
frontier model assumes that the observed output y is allocatively efficient
and may be only technically inefficient (i.e., a firm knows and operates
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on the expansion path). Under this strict assumption of no allocative
inefficiency (no human error),  is a technically (hence

perfectly) efficient output for the observed cost  If there
is no allocative inefficiency, the observed input xj=xj(p, ß, C) for all j=1,
2,…, m [see Chung (1994, pp. 201–202)] and substitution of which makes
f=f(p, ß, C). Therefore, use of  or its counterpart f(p, ß, C)

should render identical parameter estimates otherwise the assumption
of allocative efficiency is not appropriate. On the other hand, derivation
of the cost composed error frontier model takes the endogenously
determined optimal cost C=C(p, ß, y) and takes care of both inefficiencies
(allocative and technical) and therefore, yields more meaningful
parameter estimates. Mallick (1995), considering both allocative and
technical inefficiencies of a production process, formulates the
alternative cost and output frontier models using f =f(p, ß, C) and finds
the identical parameter estimates for both the models substantiating
the duality theorem. In summary, we can conclude that formulation of
frontier model of any type (cost or output) uses the optimal cost or output
as the case may be and the at the optimal level the bivariate nature
between cost and output cannot be ignored on the ground that price
vector p and cost C cannot be used as exogenous variables in formulating
the output frontier model.

32.4 CONCLUSION

Following the Aigner et al. (1977) formulation of the frontier models,
we tested the model assuming the half-normal distribution for the
asymmetric error term. The test for no misspecification of frontier models
is carried out using White’s IM test principle. We perform the test
following Tauchen’s (1985) suggestion, by running joint regressions of
all the moment conditions on the score vector and an intercept term by
SURE technique. We also ran OLS of each moment condition on the
same set of explanatory variables. In each case, we test the null
hypothesis of zero intercept term to test the overall null hypothesis of
no misspecification of the models. Our empirical evidence of this test
on the Cowing (1970) steam electric data both for the cost and output
composed error frontier models leads to contradictory inferences. The
null hypothesis of no misspecification is rejected for both the models on
the basis of the joint test of all intercept terms. Based on testing
individual moment conditions, the correct specification of the cost model
was found to be acceptable, while the correct specification of the output
frontier model was rejected strongly. Our test reveals some other
features. We strongly suspect that the assumption of fixed parameters
set for all the firms in the data set may not be true. We should note that
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the results of this paper are all based on asymptotic tests, and, therefore,
their finite sample properties cannot be guaranteed from their
asymptotic distributions. Finally, the tests we have developed are
specific to the particular models and distributions that we have
considered; different information matrix test will result under different
model and distributional assumptions.

APPENDIX A

Derivations of the elements of IM test for the output model

The log-likelihood (log-density) function for i-th observation is

 

For a better understanding and quick derivations of the components of
IM test mentioned in Section 32.2, we derive the following results first
that we will refer to repeatedly:

 

where si=(1, ln xi1, ln xi2,…, ln xim)’, fi is standard normal density evaluated
at  To derive the second-order derivatives we shall
also use the following results:

 

where  Using these, the first-order
derivatives (scores d(�)) with respect to each element of the parameters
vector (�2, �, ß’) are given by

(32.4.24)

(32.4.25)

(32.4.26)
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The second-order derivatives are

(32.4.27)

(32.4.28)

(32.4.29)

(32.4.30)

(32.4.31)

(32.4.32)

Using these results, the elements for the IM (the moment functions or
indicators) test can be written as

(32.4.33)

(32.4.34)

(32.4.35)

(32.4.36)

(32.4.37)

(32.4.38)

Copyright © 2002 Taylor & Francis



ANIL K.BERA and NARESH C.MALLICK592

APPENDIX B

Derivations of the elements of the IM test for the cost model

The observed cost model in logarithm form that incorporates the overall
efficiency is

 

where . The probability
density function of �i and its log-likelihood function are, respectively,

 

To find the first-order condition of the log-likelihood function we shall
use the following results:

 

where fi is the standard normal density evaluated at (��i/�), lij=ln pij–
In �j, and ei=�i/�. The score functions (first-order conditions) for the
cost model are:

(32.4.39)

(32.4.40)

(32.4.41)
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where 
(the cost hazard function). To derive the second-order derivatives of the
log-likelihood function for the cost model we make use of the following
results:

 

The second-order derivatives of the log-likelihood function are:

(32.4.42)

(32.4.43)

(32.4.44)

(32.4.45)

(32.4.46)

(32.4.47)

(32.4.48)

(32.4.49)

(32.4.50)

Now if we take the expectation of all the second-order derivatives, the
expectations of (32.4.49) and (32.4.50) simplify further. Using the first-
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order conditions, (32.4.39)–(32.4.41), the second term of (32.4.49) and
(32.4.50) can be, respectively, written as:

 

The expectations of these two terms evaluated at MLE are zero. Using
these results, (32.4.47)–(32.4.50) can be written in a matrix notation as

(32.4.51)

Using the above results, the elements for the IM test (the moment
functions or indicators) are:

(32.4.52)

(32.4.53)

(32.4.54)

(32.4.55)

(32.4.56)

(32.4.57)
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CHAPTER 33

GENERALIZED ESTIMATING
EQUATIONS FOR PANEL DATA

AND MANAGERIAL
MONITORING IN ELECTRIC

UTILITIES

H.D.VINOD R.R.GEDDES

Fordham University, Bronx, NY

Abstract: Vinod (1997, 1998) discuss the Godambe-Durbin theory of
estimating functions (EFs) and its potential in econometrics. Here we
consider a popular application of EFs called generalized estimating
equations (GEE). It is typically applied to panel data, where the
heteroscedasticity is analytically related to ß, the regression parameter,
and where the dependent variable is binary. Geddes (1997) studies panel
data on regulated electric utilities with exclusive geographic franchises,
and the turnover of the chief executive officer (CEO) on the job. Our
GEE estimates reverse his somewhat counterintuitive result that firm
performance variables do not affect the turnover of the CEO. We test
the empirical validity of predictions of (i) regulatory slack, (ii) rent
seeking, and (iii) political pressure hypotheses, and reject the first.

Keywords and phrases: Estimating functions, panel data logits,
econometrics, GLM, managerial turnover

33.1 THE INTRODUCTION AND MOTIVATION

Vinod (1997, 1998) discuss applications of Godambe-Durbin EFs in
econometrics. This paper provides a new panel data application of EFs
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called GEE, which is popular in biostatistics [Dunlop (1994), Diggle et
al. (1994) and Liang and Zeger (1995)]. We provide an explanation of
why GEE is popular by showing that it is simpler and theoretically
superior to its competition: least squares (LS) and maximum likelihood
(ML). Since econometricians rarely use anything other than LS or ML,
this explanation is novel. Although the underlying results are known
in the EF literature [Godambe and Kale (1991) and Heyde (1997)], their
application to the panel data case clarifies and highlights the advantages
of EFs.

We consider a typical logit-type specification and apply GEE to panel
data with limited (binary) dependent variables. This application of EF
theory will explain why EFs yield simpler and superior estimators here.
Consider T real variables yi (i=1,2,…, T):

(33.1.1)

where IND suggests an independently (not necessarily identically)
distributed random variable (r.v.) with mean µi(ß), variance �2�i(ß) and
�2 does not depend on ß. Let y=yi be a T×1 vector and V=Var(y)=�2

Var(µ(ß)) denote the T×T covariance matrix. The IND assumption
implies that V(µ) is a diagonal matrix depending only on the i-th
component µi of the T×1 vector µ.

The common parameter vector of interest is ß that measures how µ
depends on covariates x. The heteroscedastic variances vi(ß) are somewhat
unusual. We emphasize that µi(ß) and vi(ß) in (33.1.1) are functionally
related to each other through ß, implying a “special” kind of
heteroscedasticity. If yi are discrete stochastic processes, (time series data)
then µi and vi are conditional on past data. The usual log-likelihood is:

(33.1.2)

where . The
first order condition (FOC) for generalized LS (or GLS) is �(S2)/�ß=0.
The FOC for maximizing the LnL (ML estimator) is

 

using �S1/�µi=0. Thus

 

In our context, the quasi score function (QSF) equals the first term
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Its expectation,

 

since vi>0 and Eyi=µi are assumed. Thus the QSF defined this way alone
yields an unbiased EF. Since (�vi/�ß)≠0 is assumed, the inclusion of the
remaining two terms of the FOC for ML would obviously lead to a biased
EF.

Wedderburn (1974) was motivated by applications to the generalized
linear model (GLM), where one is unwilling to specify any more than
mean and variance properties. His quasi-likelihood function (QLF) is
a hypothetical integral of the QSF. The true integral (i.e., the likelihood
function) can fail to exist when the “integrability condition” of
symmetric partials is violated, McCullagh and Nelder (1989, p. 333).
The EFs are defined as functions of data and parameters, g(y,ß).
Unbiased EFs satisfy E(g)=0. Godambe’s (1960) optimal EFs minimize
[Var(g)]/(E�g/�ß)2.

Godambe (1985) proved that the optimal EF is the quasi-score
function (QSF). The optimal EFs (QSFs) are computed from the means
and variances, without assuming further knowledge of higher moments
(skewness, kurtosis) or the form of the density. The methods based on
QLFs are generally regarded as “more robust.” For example, Liang et
al. (1992, p. 11) show that the traditional likelihood requires additional
restrictions.

In matrix notation write (33.1.1) as: 
. If D={�µi/�ßj} is a T×p matrix, McCullagh and Nelder (1989,

p. 327) show that the QSF(µ, v) is:

(33.1.3)

The optimal EF estimator of ß is obtained by solving the (nonlinear)
equation QSF=0 for ß. The following three key properties of the QSFs
lead to optimality of EF estimators:

(i) Since E(y-µ)=0, E(QSF)=0, implying that QSF is an unbiased EF.

(ii) Cov(QSF)=D’�-1D/�2=IF, the Fisher information matrix.

(iii) Since -E(�QSF/�ß)=Cov(QSF)=IF, its variance reaches the Cramer-
Rao lower bound.

These statements do not require V to be diagonal as in (33.1.3), only
that V be symmetric positive definite having known functions of ß. Vinod
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(1997) gives examples where the EF estimator coincides with the least
squares (LS) and maximum likelihood (ML) estimators. Our panel data
logit example here is more interesting, because the EF estimator is
distinct from both LS and ML estimators. While the LS and ML solve
FOCs similar to (33.1.4) below, the EF estimator solves QSF=0. The
chain rule on the FOC requires a second term involving (�vi/�ß), which
is nonzero from (33.1.1) due to the special heteroscedasticity. Hence
the FOC’s of LS and ML are unnecessarily complicated. Our arguments
in favor of EFs are (a) that FOCs can be biased EFs and (b) that LS and
ML can fail to reach the Cramer-Rao bound, i.e., property (iii) above.
We summarize this as:

Result 33.1.1 The first order conditions for ML imply a superfluous
second term in:

(33.1.4)

where QSF(µ, v) is from (33.1.3). The FOCs for GLS are similar to
(33.1.4), except that the S1 term is absent. For both ML and GLS, the
second term of (33.1.4) is nonzero under special heteroscedasticity
conditions. Only when (�vi/�ß)=0, i.e., when the heteroscedasticity does
not depend on ß, FOCs lead to unbiased EFs, proved to be desirable in
EF theory, Heyde (1997).

Depending on how complicated (�vi/�ß) is, the second term in (33.1.4)
obviously complicates the derivation of ML (normal) equations. Our
discussion surrounding Result 33.2.1 of the following section will explain
why similarly complicated second terms are present in the so-called
‘panel logit/probit’ models in econometrics. Econometric literature
surveyed in Hajivassiliou and Ruud (1994) uses ingenuity and
simulations to surmount the complications. Unfortunately, these
attempts ignore the deeper fault of the first order conditions causing
biased and/or inefficient equations. We emphasize that QSF=0 is always
unbiased and its variance always reaches the Cramer-Rao bound. By
contrast the first order conditions defining the ML (or GLS) estimators
can be biased equations and their variance may not reach the lower
bound whenever �vi/�ß values are nonzero.

A lesson of the EF-theory is that biased estimators can be acceptable
but biased and inefficient EFs should be avoided. This is why the EF
estimator obtained by solving QSF=0 cannot be worse than the full-
blown ML estimator. Although counter-intuitive, the simpler QSF=0 is
actually superior to ML whenever the heteroscedastic variance vi(ß)
depends on ß, in light of (33.1.4) above. The following section provides
further details regarding the GEE model for panel data logits and
probits.
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33.2 GLM, GEE & PANEL LOGIT/PROBIT (LDV) MODELS

This section provides an introduction to general linear model (GLM)
and to the EF literature leading to GEE models. It may be skipped by
statisticians familiar with the GLM and the GEE. We include it because
even recent econometric literature dealing with logit, probit and limited
dependent variable (LDV) models continues to ignore GLM and GEE
models. For example, Baltagi (1995), Hajivassiliou and Ruud (1994)
and Bertschek and Lechner (1998) and their references do not even
mention GLM or GEE.

The econometric context of this paper is a limited dependent
variable model for panel data (time series of cross sections) typically
estimated by the logit or probit. These LDV models are well known in
biostatistics since the 1930s. GEE models generalize the LDV models
by incorporating time dependence among repeated measurements for
an individual subject. When the biometric panel is of laboratory
animals having a common heritage, the time dependence is sometimes
called the “litter effect.” The GEE models incorporate different kinds of
litter effects characterized by serial correlation matrices R(�)defined
later as functions of a parameter vector �. This section ends with a
statement of the formulas for the GEE estimator and its variance. We
have included a limited discussion of the economic issues regarding our
application to CEO turnover, although the details are postponed till
the next section.

In light of Result 33.1.1 above, to show that a quasi-ML (or GEE)
estimator for panel data logit models is superior to the ML and LS, we
have to establish that it has a special kind of heteroscedasticity. This is
done in Result 33.2.1 of this section. In preparation for that result and
for a better understanding of GEE, we include some discussion of the
generalized linear model (GLM) literature, McCullagh and Nelder
(1989). This literature shows that the logit is not merely convenient,
but implies a “canonical link” for which a “sufficient” statistic exists.
Since EF theory and GLM modeling terminology is not well known in
econometrics, we begin by placing this material in the familiar context
of a regression model with T (t=1,…, T) observations and p regressors:

(33.2.5)

The generalized least squares estimator (GLS) minimizes the error sum
of squares. If  is a known diagonal matrix which is not a
function of ß, GLS is obtained by solving the normal equations: g(y,X,�)=
X’O-1Xß-X’�-1y=0, for ß. Under normality of errors, the GLS co-incides
with the maximum likelihood estimator. Here the EF estimator defined
by QSF=0 leads to the same normal equations. If the diagonals of � are
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functions of ß as in panel logit models, the QSF=0 equations are called
GEE and are developed as (33.2.10), (33.2.15) and (33.2.16) after we
explain the link functions of GLM.

Remark 33.2.1 The GLS is extended into the general linear model
(GLM) in three steps, McCullagh and Nelder (1989).

(i) Instead of y~N(µ, s2�) we allow non-normal distributions with
various relations between mean and variance functions. Non-
normality permits the expectation E(y)=µ to take on values only
in a meaningful restricted range (e.g., nonnegative integer counts
or binary outcomes).

(ii) Define the systematic component , where 
, is a linear predictor.

(iii) A monotonic differentiable link function �=h(µ) relates E(y) to the
systematic component Xß. The t-th observation satisfies �t=h(µt).
For GLS, the link function is identity, or �=µ, since .
When y data are counts of something, we need a link function
which makes sure that Xß=µ>0. Similarly, for y as binary (dummy
variable) outcomes, , we need a link function h(µ) which
maps the interval [0,1] for y on  for Xß. In the CEO example
below, we use a binary dummy dependent variable.

Remark 33.2.2 To obtain generality, the normal distribution is often
replaced by a member of the exponential family of distributions, which
includes Poisson, binomial, gamma, inverse-Gaussian, etc. It is well
known that “sufficient statistics” are available for the exponential family.
In our context, X’y which is a p×1 vector similar to ß, is a sufficient
statistic. A”canonical” link function is one for which a sufficient statistic
of p×1 dimension exists. Some well known canonical link functions for
distributions in the exponential family are: h(µ)=µ for Normal, h(µ)=logµ
for Poisson, h(µ)=log[µ/(1-µ)] for Binomial, and h(µ)=-1/µ is negative for
gamma distributions.

Remark 33.2.3 Since h(µ)=-1/µ, based on the gamma distribution, is
rarely used in econometrics, it is useful to remark on the special features
of this link function. The gamma density is:

(33.2.6)

Its mean is a/�, variance is a/�2, and the coefficient of variation defined
as the (standard deviation)/mean is a-0.5, which is a constant, since a is
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a constant parameter. Thus in applications where the variance
increases with the mean, keeping the coefficient of variation constant,
the gamma distribution with a fixed a is attractive. Since the support
of the gamma density is [0, ∞), rather than the (–∞, ∞), this is
restrictive. However, for many economic variables, including our CEO
example in the following section, this may be a desirable restriction.
A competitor of the gamma model is the Log-Normal. Firth (1988)
supports the gamma over the Log-Normal under mutually reciprocal
misspecifications.

Now we state and prove the known result that when y is binary,
heteroscedasticity measured by , the variance of , depends on
the regression coefficients ß. This dependence result also holds true
for the more general case, where y is a categorical variable (e.g., poor,
good and excellent as three categories) and to panel data where we
have a time series of cross sections. The general cases tend to be tedious
and are discussed in the EF literature.

Result 33.2.1 The heteroscedastic  is a function of the regression
coefficients ß for a special case where yt is a binary (dummy) variable
from time series (or cross sectional) data (up to a possibly unknown
scale parameter).

PROOF. Let Pt denote the probability that yt=1. Our interest is in
relating this probability to various regressors at time t, or Xt. If the
binary dependent variable yt in (33.2.5) can assume only two values (1
or 0), then regression errors �t also can and must assume only two
values: 1-Xtß or -Xtß. The corresponding probabilities are: Pt and (1-Pt)
respectively, which can be viewed as realizations of a binomial process.
Note that

(33.2.7)

Hence the assumption that  itself implies that Pt=Xtß. Thus
we have the result that Pt is a function of the regression parameters ß.
Since , the  is simply the square of the two values of 
weighted by the corresponding probabilities. After some algebra, thanks
to certain cancelations, we have .
This proves the key result that both the mean and variance depend on
ß, where EFs have superior properties.     �

We can extend the above result to other situations with limited
dependent variables. In econometrics, the canonical link function
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terminology of Remark 33.2.2 is rarely used. Econometricians typically
replace yt by unobservable (latent) variables and write the regression
model as:

 

where the observable

(33.2.8)

Now write , which
implies that:

(33.2.9)

where we have used the fact that  is a symmetric random variable
defined over an infinite range with density . In terms of cumulative
distribution functions (CDF) we can write the last integral in (33.2.9)
as . Hence  is guaranteed. It is obvious that if
we choose a density which has an analytic CDF, the Pt expressions will
be convenient. For example, F(Xtß)=[1+exp(-Xtß)]-1 is the analytic CDF
of the standard logistic distribution. From this, econometric texts derive
the logit link function h(Pt)=log[Pt/(1-Pt)] somewhat arduously. Since
Pt/(1-Pt) is the ratio of the odds of yt=1 to the odds of yt=0, the practical
implication of the logit link function is to regress the log odds ratio on
Xt· Clearly, as Pt in [0,1], the logit is defined by . The
probit model is similar and also popular in econometrics. It was first
used for bioassay in 1935 and uses the inverse of the CDF of the unit
normal distribution as the link function: h(Pt)=	-1(Pt).

Remark 33.2.4 The normality assumption is obviously unrealistic when
the variable assumes only a few values, or when the researcher is
unwilling to assume precise knowledge about skewness, kurtosis, etc.
Recall that QSF of (33.1.3) is the optimum EF and satisfies three key
properties. Econometricians generally use a “feasible GLS” estimator,
where the heteroscedasticity problem is solved by simply replacing

 by its sample estimates. In the present context of binary data,
 is a function of ß and minimizing the S2 with respect to (wrt) ß

would have to allow for the dependence of  on ß. See (33.1.4)
and Result 33.1.1 above. In the 1970’s some biostatisticians simply
ignored such dependence on ß for computational convenience. The EF-
theory proves the surprising result that it would be suboptimal to
incorporate the dependence of  on ß by including the extra term
in the FOCs of (33.1.4). An initial appeal of EF-theory in biostatistics
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was that it provided a formal justification for the quasi-ML estimator
used since the 1970’s. We shall see that GEE goes beyond quasi-ML by
offering more flexible correlation structures for panel data.

As in McCullagh and Nelder (1989), we denote the log of the quasi-
likelihood by Q(µ;y) y) for µ based on the data y. For the Normal
distribution Q(µ; y)=-0.5(y-µ)2, the variance function Var(µ)=1 and the
canonical link is h(µ)=µ. For the binomial, Q(µ; y)=ylog[µ/ (1-µ)]+log(1-
µ), Var(µ)=µ(1-µ), h(µ)=log[µ/(1-µ)]. For the gamma, Q(µ; y)= -y/µ–logµ,
Var(µ)=µ2 and h(µ)=-1/µ. Since the link function of the gamma has a
negative sign, the signs of all regression coefficients are reversed if the
gamma distribution is used. The quasi-score functions (QSFs) become
our EFs as in (33.1.3):

(33.2.10)

where µ=h-1(Xß) and D={�µt/�ßj} is a T×p matrix of partials and � is
T×T diagonal matrix with entries Var(µt) as noted above. The GLM
estimate of ß is given by solving (33.2.10) for ß. Thus the complication
arising from a binary (or limited range) dependent variable is solved by
using the GLM method.

33.2.1 GLM for Panel Data

The panel data involve an additional complication from three possible
subscripts i, j and t. There are (i=1,…, N) individuals about which
cross sectional data are available in addition to the time series over
(t=1,…, T) on the dependent variable yit and p regressors xijt, with
j=1,…p. We avoid subscript j by defining xit as a p×1 vector. Geddes
(1997) estimates a logit model for panel data from electric utilities
focusing on the tenure of the chief executive officer (CEO) relating it
to age, salary, job performance, price charged for electricity, etc. His
logit model estimates suggest the somewhat counterintuitive result
that CEO job performance variables do not have a statistically
significant effect on the survival of the CEO. This paper reviews that
result from the GEE perspective.

Let yit represent a binary choice variable such that yit=1, if the CEO
is removed and yit=0, otherwise. Let Pi,t denote the probability of turnover
of ith CEO (i=1,…, N) at time t(t=1,…, T) and note that:

(33.2.11)

Now, we remove the time subscript by collecting elements of Pi,t and yit

into T×1 vectors and write E(yi)=Pi, as a vector of turnover probabilities
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for the i-th individual CEO. Let Xi be a T×p matrix of data on regressors
for ith individual. As before, let ß be a p×1 vector of regression
parameters. If the method of latent variables is used, the decision to
remove a CEO is assumed to be based on latent unobservable positive
dissatisfaction  by the board of directors with the CEO’s performance.
Thus

(33.2.12)

where yit=1 if the board is dissatisfied with the CEO and yit=0 if the
board is satisfied.

Following the GLM terminology of link functions, we may write the
panel data model as:

(33.2.13)

Now the logit link has h(Pi)=log(Pi/(1-Pi)], probit link has h(Pi)= Φ-1 (Pi)
and the gamma density of (33.2.6) implies reciprocal link h(µ)= -1/µ.

33.2.2 Random Effects Model from Econometrics

Instead of N separate ßi parameters for each CEO as in (33.2.13),
econometricians often pool the data for all CEOs and split the errors as

, where vit represents “random effects” and Mi denotes the
“individual effects.” Using the logit link, the log-odds ratio in a so-called
random effects model is written as:

(33.2.14)

The random effects model also assumes that  and
 are independent of each other and also independent of

the regressors xit. It is explained in the panel data literature, Baltagi
(1995, p. 178), that these individual effects complicate matters
significantly. Note that under the random effects assumptions in
(33.2.13), covariance over time is nonzero, . Hence
independence is lost and the joint likelihood (probability) cannot be
rewritten as a product of marginal like-lihoods (probabilities). Since
the only feasible maximum likelihood implementation involves
numerical integration, we may consider a less realistic “fixed effects”
model where the likelihood function is a product of marginals.
Unfortunately, the fixed effects model still faces the so-called “problem
of incidental parameters” (the number of parameters Mi increases
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indefinitely as N→
). Some other solutions from the econometrics
literature referenced by Baltagi include Chamberlain’s (1980) suggestion
to maximize a conditional likelihood function. These ML or LS methods
continue to suffer from unnecessary complications arising from the extra
term (See Eq.. 33.1.4), which would make their FOCs (See Eq.. 33.1.3)
biased and inefficient.

33.2.3 Derivation of GEE, the Estimator for ß and Standard
Errors

Next, we describe how panel data GEE methods can avoid the difficult
and inefficient LS or ML solutions in the econometrics literature. We
shall write a quasi score function justified by the EF-theory as our GEE.
We achieve a fully flexible choice of error covariance structures by using
link functions of the GLM. Since GEE is based on the QSF (See Eq..
33.1.3), only the mean and variance are assumed to be known. The
distribution itself can be any member of the exponential family with
almost arbitrary skewness and kurtosis—not just the normal
distribution assumed in the literature. Denoting the log likelihood for
i-th individual by Li we construct a T×1 vector ∂Li/∂ß. Similarly, we
construct yi and  as T×1 vectors and suppress the time
subscripts. Denote a T×p matrix of partial derivatives by Di={∂µi/∂ßj}
for j=1,…p. When there is heteroscedasticity but no autocorrelation, V
ar(yi)=Ωi=diag(Ωt) is T×T diagonal matrix of variances of yi over time.
Using these notations, the i-th QSF similar to (33.2.10) above is:

(33.2.15)

When panel data are available with repeated N measurements over
T time units, GEE methods view this as an opportunity to allow for
both autocorrelation and heteroscedasticity. The pooling over i leads to
an aggregate QSF from (33.2.15) called generalized estimating equation
(GEE):

(33.2.16)

where  is a T×T matrix of serial correlations viewed as a function of
a vector of parameters . The sandwiching of  autocorrelations
between two matrices of (heteroscedasticity) standard deviations in
(33.2.16) makes Vi a proper covariance matrix. The GEE user can simply
specify the general nature of the autocorrelations by choosing  from
the following list, stated in increasing order of flexibility. The list contains
common abbreviations used by authors of software.
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(i) ‘Independence’ means  is the identity matrix.

(ii) ‘Exchangeable’  means that all intertemporal correlations
defined by , are constant.

(iii) ‘AR(1)’ or first order autoregressive model implies that  or
corr(yit, yis) simply equals .

(iv) ‘Unstructured’ correlations in  means that 
with T(T-1)/2 distinct values for all pairwise correlations.

Finally, solving (33.2.16) for ß gives the GEE estimator, which is usually
iteratively estimated. Liang and Zeger (1986) suggest a “modified Fisher
scoring” algorithm for these iterations. The initial choice of  is
usually the identity matrix and standard GLM is first estimated. The
GEE algorithm then estimates  from the residuals of the GLM and
iterates until convergence. We use Smith (1996) software in S-PLUS
language on an IBM compatible computer. The theoretical justification
for iterations exploits the property that a QML estimate is consistent
even if  is misspecified, [Zeger and Liang (1986) and McCullagh
and Nelder (1989, p. 333)]. Denoting by R the estimates of R, the
asymptotic covariance matrix of GEE estimator is:

 

and

(33.2.17)

This expression yields the robust standard errors reported in our
numerical work in the next section. See Zeger and Liang (1986) and
Dunlop (1994) for further discussion and references.

In the following section we use the gamma family to fix the relation
between the mean and variance, instead of the traditional binomial or
Poisson family. This is mainly because the gamma family gives better
fits as measured by the lowest residual sum of squares (RSS) than other
families of distributions. Remark 33.2.3 above notes other reasons why
the gamma family and its canonical link may be appropriate. McCullagh
and Nelder (1989, p. 290) suggest a deviance function as the difference
between two log likelihoods instead of RSS. We do not use deviances,
since they need artificial truncation to avoid computing log of a near
zero number for the gamma family. A proof of consistency of the GEE
estimator is given by Li (1997). Heyde (1997, p. 89) gives the necessary
and sufficient conditions under which GEE are fully efficient
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asymptotically. Lipsitz et al. (1994) report simulations showing that
GEE are more efficient than ordinary logistic regressions. In conclusion,
this section has shown that the GEE estimator is practical with
attractive properties for the type of data studied here.

33.3 GEE ESTIMATION OF CEO TURNOVER AND THREE
HYPOTHESES

In this section, we discuss the motivation for examining managerial
turnover using GEE. An important way to align the interests of
managers with those of owners is by linking managerial turnover to
firm performance. Removal of a manager by a board of directors for
performance reasons is a negative signal to the managerial labor market.
If boards remove managers when a firm performs poorly, an inverse
relationship between managerial turnover and performance will result.
Using a variety of data sets, performance measures and empirical
techniques, researchers have confirmed this relationship in many
industries. Salancik and Pfeffer (1980) report that when outsiders own
stock there is a positive and significant correlation between profit margin
and managerial tenure. Warner, Watts, and Wruck (1988) and Coughlan
and Schmidt (1985) find that the probability of managerial turnover is
inversely related to abnormal stock price performance. Weisbach (1988)
finds that, given the behavior of stock returns, the probability of
managerial turnover is negatively related to accounting performance.
Barro and Barro (1990) report a negative relationship between turnover
and performance for bank CEOs. The evidence is thus strongly
supportive of the hypothesis that performance and managerial turnover
are negatively related, consistent with an incentive-alignment view of
CEO turnover. There are a number of reasons to believe that the
performance-turnover relationship described above may be affected by
utility regulation. Investor-owned utilities are typically regulated by
state public utility commissions, which administer rate-of-return
regulation under exclusive geographic franchises. Two fundamental
managerial functions, investment and financing, are determined
through the regulatory process. Hence regulation is crucial for
managerial decisions.

Regulation supplants decisions normally made by firm owners and
their managers with the administrative process. The significance of
this control has been the subject of considerable debate. Some
researchers suggest that rate-of-return regulation allows managers to
incur high “agency costs” with little fear of removal by owners. After
all, the return to managerial efficiency, given that the maximum rate-
of-return is achieved, is zero. In their classic article, Alchian and Kessel
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(1962) state: “If regulated monopolists are able to earn more than the
permissible pecuniary rate of return, then “inefficiency” is a free good,
because the alternative to inefficiency is the same pecuniary income
and no “inefficiency.” This is essentially a “regulatory slack” view of
regulation, which takes regulation as exogenous: if the firm is earning
at least the allowed rate-of-return then managers need not be concerned
with operating in owners’ interests, and managerial inefficiency has
zero opportunity cost in the alternative use of maximizing firm value.
Regulation leads to a situation where monitoring by owners has a low
return, and owners engage in little of it.

Others suggest that regulatory “rent-seeking” behavior will lead to
managerial monitoring by owners. For example, Crain and Zardkoohi
(1978, 1980) rely on a rent-seeking hypothesis to arrive at the conclusion
that managerial control mechanisms operate in regulated firms. They
submit that there are potential monopoly rents available through
regulation, which can be obtained via rent-seeking activity by managers,
and that private owners monitor on this basis. Firm resources, rather
than being devoted to profit-enhancing activities such as product
development and marketing, are directed at influencing the allowed
rate-of-return and other regulated variables that affect economic profits,
making regulatory outcomes endogenous to managerial behavior. Such
rent-seeking activities include political contributions and public
relations programs, as well as payments to lawyers and consultants.
Here managerial inefficiency carries a non-zero opportunity cost,
providing an incentive for owners to monitor managers.

In a third view, commentators suggest that the regulatory process
exposes managerial behavior to political forces. In Stigler’s (1971)
immortal words, the regulatory process “automatically admits powerful
outsiders to industry’s councils,” or as Joskow, Rose and Shepard (1993)
state, “Economic regulation imposes political outcomes in place of some
private decisions or market outcomes.” This view implies that the
regulatory process provides organized pressure groups with a
mechanism for translating their interests into outcomes. One important
party likely to obtain greater control over the regulatory process is the
consumer. In many regulatory processes, consumers are granted avenues
by which they can organize and are given a special say in proceedings.
The political power of consumers relative to shareholders is expected to
increase under a “political pressure” hypothesis. The variable that best
measures consumer wealth is the real price of electricity, and we expect
consumers to monitor managers on that basis. As applied to turnover,
this implies that the political forum in which regulated CEOs operate
results in turnover that responds positively to increases in electricity
prices.

Our data set, described below, allows us to compare the predictions
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of (i) regulatory-slack, (ii) rent-seeking, and (iii) political pressure
hypotheses in the case of US electric utilities. In testing these alternative
hypotheses, we are able to show how the GEE approach represents an
improvement over standard limited dependent variable techniques.
Below, we describe our data sources, variables, and present summary
statistics. We show how our data allow tests of these hypotheses. We
then present estimates of managerial turnover using GEE.

33.3.1 Description of Data

A sample of 95 investor-owned electric utilities (IOUs) was taken from
those listed in the Statistics of Privately Owned Electric Utilities in the
United States, for which financial and managerial data were available.
The test years run from 1966 through 1988. We used numerous data
sources to compile a large data set on managerial turnover and variables
potentially affecting turnover; see Geddes (1997) for details. The
variables in the data set are briefly described below. Due to our need
for data on CEO age, salary, and performance measures, the ultimate
number of observations in the data set was 790 in variable groups
discussed below.

Turnover measure

The focus of this study is on the probability of a change in the senior
manager of an electric utility. Senior managers are defined as the
president or CEO of an IOU. If a change in the president or CEO was
observed but actually the individual moved into the chairman’s position
this was not counted as a turnover. Our measure of managerial turnover,
TURN=1 if the CEO left the firm, and zero otherwise. Data on reasons
for departure (firing, quits or illness) are unavailable.

Managerial characteristics

We control for three important managerial characteristics. AGE, the
age of the senior manager, is expected to affect turnover positively since
managers are more likely to change as they approach retirement age.
This effect is more explicitly studied by a dummy variable: RETIRE=1,
if the manager is aged 63 through 66. A non-trivial number of managerial
changes occur around normal retirement age, and are likely to be
unrelated to performance. TENURE is the number of years served as
the CEO, and is also expected to positively affect turnover. SALARY is
the annual real compensation including bonus of the CEO and we expect
that it will be negatively related to turnover, if higher paid CEOs are
less likely to leave.
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Firm characteristics

We include SIZE as measured by the annual real sales of the firm in
dollars. It is often alleged that larger firms have a higher rate of CEO
turnover [Warner, Watts, and Wruck (1988)]. We also examine the
responsiveness of CEO turnover at regulated firms to shareholder
wealth, as measured by accounting returns. Despite the problems with
using earnings data to measure economic profits [Fisher and McGowan
(1983)], accounting returns do measure short-term profits, rather than
the discounted present value of the expected future cash flows of the
firm, as measured by the stock price. Since stock prices are forward-
looking, they incorporate the possibility that the board will remove
the CEO after poor performance [Weisbach (1988)]. The use of stock
prices may therefore understate the effects of managerial monitoring.
Also, Joskow, Rose and Shepard (1996) note that accounting returns
are likely to be relatively more important in electric utilities, which
are regulated. Changes in accounting returns are thus the best
available measure of changes in owner wealth when examining
managerial turnover in electricals. The two measures used here are
ROA and ROE. ROA is the firm’s realized return-on-assets=(gross
income)/(total assets). ROE is the realized return on equity=(gross
income)/(total stockholder’s equity).

Regional variables

These dummy variables control for the area or region of the country in
which the firm operates. They are a proxy for such diverse factors as
different federal air pollution standards, availability of cheap
hydroelectric power, age of the capital stock, different population
densities, weather, etc. To create these variables, the country was divided
into seven regions. Northeast (NEDUM), Mid-Atlantic (MADUM),
Southeast (SEDUM), South-central (SCDUM), Northwest (NWDUM),
Midwest (MWDUM), and the Southwest (SWDUM). The suffix DUM is
for dummy variable, i.e., they equal unity if the electric utility operated
in that region and zero otherwise. The omitted category was the
Southwest. Table 33.1 summarizes the predictions of the three
hypotheses and the variables used to test them. Table 33.2 reports the
GEE estimation results using the gamma density and assuming that
the correlation structure over time is unrestricted [compare to Table 2
of Geddes (1997)]. Since the likely sign of the coefficient is known from
the theories discussed above, we use one-sided tests.
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33.3.2 Shareholder and Consumer Wealth Variables for
Hypothesis Testing

Shareholder wealth

Shareholder wealth comes from accounting returns. Since it is unlikely
that managers would respond to the level of shareholder wealth, the
year-toyear changes in ROA and ROE were used to construct two new
variables, ∆ROA and ∆ROE. These variables measure the change in
shareholder wealth prior to a particular observed firm-year. The
regulatory slack hypothesis predicts that managerial turnover will be
unrelated to changes in returns, while the rent-seeking hypothesis
predicts that turnover will be negatively related to changes in returns.
An alternative test of the rent-seeking hypothesis involves “allowed”
returns. Since regulatory rent-seeking activity includes attempts by
managers to influence the return allowed by the regulatory commission
it may result in a greater deviation of the realized rate-of-return from
that allowed by the commission. That is, managers may devote resources
to maximizing the deviation between the realized and allowed return,
and may be monitored by owners on that basis.

The rent-seeking hypothesis is further tested by relating managerial
turnover in IOUs to differences between the actual and allowed returns,
and to changes in allowed returns. Two new variables were created,
∆DEVROA and ∆DEVROE, which are the year-to-year deviations
between the return allowed by the regulatory commission and the
realized return for ROA and ROE respectively. The rent-seeking
hypothesis predicts that the probability of turnover will decrease as
∆DEVROA and ∆DEVROE increase.

Customer wealth

To test the political pressure hypothesis, a measure of the change in
customer wealth was developed. A variable called ∆PRICE was created,
which is the year-to-year change in the real price of electricity sold by
the firm. If consumers exercise power via the political process, then
managerial turnover will be positively related to changes in price. That
is, managers will be removed when the real price of electricity rises,
and conversely.
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TABLE 33.1 Tested hypotheses and predictions

33.3.3 Empirical Results

Firm performance measures

Table 33.2 presents GEE estimates of the effects of firm performance
on managerial turnover. It is important to note that the gamma function
reverses the signs of the coefficients relative to the logit. In Table 33.2,
most variables have the expected effect on turnover. For example,
RETIRE, TENURE and In(SIZE) significantly increase the probability
of managerial change. With retirement effects controlled for by RETIRE,
it does not appear that AGE affects CEO turnover. SALARY significantly
decreases turnover, as predicted. Most regional variables have little
effect, with the exception of the Southeast dummy, which decreases the
turnover probability. Importantly, both ∆ROA and ∆ROE decrease the
probability of managerial turnover, with ∆ROE significant at the 2
percent level. This is strongly at odds with logit estimates reported in
Table 33.2 of Geddes (1997, p. 275). These GEE estimates provide
support for the rent-seeking hypothesis over the regulatory slack
hypothesis, as discussed above.

Turnover and allowed returns

The rent-seeking hypothesis can also be tested by examining the effect
managers have on differences between allowed and realized rates of
return. That is, managers may be monitored by owners on the basis of
their ability to achieve a return higher than that allowed by the
regulatory commission. Here, the rent-seeking hypothesis predicts that
the probability of turnover will be negatively related to the deviation
between actual and allowed returns, �DEVROA and �DEVROE. GEE
parameter estimates including �DEVROA and �DEVROE are reported
in Columns 2 and 3 of Table 33.3.
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The reduced number of observations available here is due to lack of
data on allowed returns for certain firm-years. Here, �DEVROA is
significant at approximately the 6 percent level, with greater deviations
of the realized return from the allowed decreasing the probability of
managerial turnover. These tests do not provide support for a regulatory
slack hypothesis, but are consistent with a rent-seeking hypothesis.
They suggest that owners do monitor managers on the basis of deviations
from allowed returns.

Managerial turnover and electricity price changes

GEE estimates incorporating ∆PRICE are reported in column 1 of Table
33.3. These estimates support an important conclusion: managerial
turnover in IOUs is sensitive to increases in price. This is consistent
with estimates reported in Geddes (1997), but levels of significance are
higher here. It appears that managers in electric utilities are also
monitored on the basis of price changes, consistent with a “political
pressure” hypothesis.

TABLE 33.2 Generalized estimating equations
estimates of the effects of firm performance on
managerial turnover in investor-owned utilities

Note: Robust Z-statistics are in parenthesis. * Significant
at the .10 level; ** Significant at the .05 level, one-tailed
test. The Variance-to-mean relation is gamma. The link
function is reciprocal. Signs are reversed when using
gamma.
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33.4 CONCLUDING REMARKS

This paper reviews recent developments in the estimating function
literature and explains why estimation problems involving limited
dependent variables are particularly promising for applications of
the EF theory. Our Result 33.1.1 shows that whenever
heteroscedasticity is related to ß the traditional LS or ML estimators
have an unnecessary extra term leading to biased and inefficient
EFs. We note that recent econometric literature, surveyed in
Hajivassiliou and Ruud (1994) or Baltagi (1995) while ignoring the
simpler GEE methods, is suggesting computer intensive
nonparametric and simulation based method of moments estimators.
These estimators are obviously suboptimal, since they fail to remove
the extra term mentioned above. Our Result 33.2.1 shows why binary
dependent variables have such heteroscedasticity.

The panel data GEE estimator in (33.2.16) is implemented by
Liang and Zeger’s (1986) “modified Fisher scoring” algorithm with
variances given in (33.2.17). The flexibility of the GEE estimator
arises from its ability to specify the matrix of autocorrelations R(�)

TABLE 33.3 GEE estimates of the effects of output price and allowed returns
on managerial turnover in investor-owned utilities

Note: Robust Z-statistics are in parenthesis. * Significant at the .10 level; **
Significant at the .05 level, one-tailed test. The Variance-to-mean relation is
gamma. The link function is reciprocal. Signs are reversed when using gamma.
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as a function of a set of parameters �. We use unstructured R(�)
with minimum prior assumptions to achieve robustness and use a
“canonical link” function satisfying “sufficiency” properties available
for all distributions from the exponential family. It is well known
that this family includes many of the familiar distributions
including Normal, binomial, Poisson, exponential, gamma, etc. Our
Remark 33.2.3 explains the advantages of the gamma family with
its canonical link used here, which is almost never used in
econometrics.

The regression results reported here are consistent with the “rent-
seeking” hypothesis regarding the intensity of managerial monitoring
of firm managers by owners in the electric utility industry. The GEE
estimates imply rejection of the “monopoly slack” view. This reverses
the conclusions suggested by logit tests in Geddes (1997). There is also
evidence that managers are monitored by consumers on the basis of
price changes, which is consistent with a “political pressure” hypothesis.
Overall, this suggests that the GEE estimation technique represents
an improvement over standard binary dependent variable techniques,
especially for panel data.
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