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Preface

The key result obtained by Fisher and Tippett in 1928 on the possible limit laws
of the sample maximum has seemingly created the idea that extreme value theory
was something rather special, very different from classical central limit theory. In
fact, the number of publications dealing with statistical aspects of extremes dated
before 1970 is at most a dozen. The book by E. J. Gumbel, published by Columbia
University Press in 1958, has for a long time been considered as the main referential
work for applications of extreme value theory in engineering subjects. A close look
at this seminal publication shows that in the early stages one tried to approach
extreme value theory via central limit machinery. During the decade following
its appearance, no change occurred in the lack of interest among probabilists and
statisticians who contributed only a very limited number of relevant papers.

From the theoretical point of view, the 1970 doctoral dissertation by L. de
Haan On Regular Variation and its Applications to the Weak Convergence of Sample
Extremes seems to be the starting point for theoretical developments in extreme
value theory. For the first time, the probabilistic and stochastic properties of sample
extremes were developed into a coherent and attractive theory, comparable to the
theory of sums of random variables. The statistical aspects had to wait even longer
before they received the necessary attention.

In Chapter 1, we illustrate why and how one should look at extreme values in
a data set. Many of these examples will reappear as illustrations and even as case
studies in the sequel. The next five chapters deal with the univariate theory for the
case of independent and identically distributed random variables. Chapter 2 covers
the probabilistic limiting problem for determining the possible limits of sample
extremes together with the connected domain of attraction problem. The extremal
domain of attraction condition is, however, too weak to use to fully develop useful
statistical theories of estimation, construction of confidence intervals, bias reduc-
tion, and so on. The need for second order information is illustrated in Chapter 3.
Armed with this information, we attack the tail estimation problem for the Pareto
case in Chapter 4 and for the general case in Chapter 5. All the methods developed
so far are then illustrated by a number of case studies in Chapter 6.

The last five chapters deal with topics that are still in full and vigorous devel-
opment. We can only try to give a picture that is as complete as possible at the time
of writing. To broaden the statistical machinery in the univariate case, Chapter 7
treats a variety of alternative methods under a common umbrella of regression-type

xi



xii PREFACE

methods. Chapters 8 and 9 deal with multivariate extremes and repeat some of the
methodology of previous chapters, in more than one dimension. In the first of
these two chapters, we deal with the probabilistic aspects of multivariate extreme
value theory by including the possible limits and their domains of attraction; the
next chapter is then devoted to the statistical features of this important subject.
Chapter 9 gives an almost self-contained survey of extreme value methods in time
series analysis, an area where the importance of extremes has already long been
recognized. We finish with a separate and tentative chapter on Bayesian methods,
a topic in need of further and deep study.

We are aware that it is a daring act to write a book with the title Statistics of
Extremes, the same as that of the first main treatise on extremes. What is even
more daring is our attempt to cope with the incredible speed at which statistical
extreme value theory has been exploding. More than half of the references in this
book appeared over the last ten years. However, it is our sincere conviction that
over the last two decades extreme value theory has matured and that it should
become part of any in-depth education in statistics or its applications. We hope
that this slight attempt of ours gets extreme value theory duly recognized.

Here are some of the main features of the book.

1. The probabilistic aspects in the first few chapters are streamlined to quickly
arrive at the key conditions needed to understand the behaviour of sample
extremes. It would have been possible to write a more complete and rigorous
text that would automatically be much more mathematical. We felt that, for
practical purposes, we could safely restrict ourselves to the case where the
underlying random variables are sufficiently continuous. While more general
conditions would be possible, there is little to gain with a more formal
approach.

2. Under this extra condition, the mathematical intricacies of the subject are
usually quite tractable. Wherever possible, we provide insight into why and
how the mathematical operations lead to otherwise peculiar conditions. To
keep a smooth flow in the development, technical details within a chapter are
deferred to the last section of that chapter. However, statements of theorems
are always given in their fullest generality.

3. Because of the lively speed at which extreme value theory has been develop-
ing, thoroughly different approaches are possible when solving a statistical
problem. To avoid single-handedness, we therefore included alternative pro-
cedures that boast sufficient theoretical and practical underpinning.

4. Being strong believers in graphical procedures, we illustrate concepts, deriva-
tions and results by graphical tools. It is hard to overestimate the role of the
latter in getting a quick but reliable impression of the kind and quality of
data.

5. Examples and case studies are amply scattered over the manuscript, some
of them reappearing to illustrate how a more advanced technique results
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in better insight into the data. The wide variety in areas of application as
covered in the first chapter beautifully illustrates how extreme value theory
has anchored itself in various branches of applied statistics.

6. An extensive bibliography is included. This material should help the reader
find his or her way through the bursting literature on the subject. Again, as the
book is statistical in nature, many important contributions to the probabilistic
and stochastic aspects of extreme value theory have not been included.

The book has been conceived as a graduate or advanced undergraduate course
text where the instructor has the choice of including as much of the theoretical
development as he or she desires. We expect the reader to be familiar with basic
probability theory and statistics. A bit of knowledge about Poisson processes would
also be helpful, especially in the chapters on multivariate extreme value theory and
time series. We have attempted to make the book as self-contained as possible. Only
well-known results from analysis, probability or statistics are used. Sometimes they
are further explained in the technical details.

Software that was used in the calculations is available at http://www.wis.
kuleuven.ac.be/stat/extreme.html#programs
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WHY EXTREME VALUE
THEORY?

1.1 A Simple Extreme Value Problem

Many statistical tools are available in order to draw information concerning specific
measures in a statistical distribution. In this textbook, we focus on the behaviour of
the extreme values of a data set. Assume that the data are realizations of a sample
X1, X2, . . . , Xn of n independent and identically distributed random variables. The
ordered data will then be denoted by X1,n ≤ · · · ≤ Xn,n. The sample data are
typically used to study properties about the distribution function

F(x) = P (X ≤ x),

or about its inverse function, the quantile function defined as

Q(p) := inf{x : F(x) ≥ p}.
Suppose we would like to examine the daily maximal wind speed data in

the city of Albuquerque shown in Figure 1.1 (taken from Beirlant et al. (1996a)).
In the classical theory, one is often interested in the behaviour of the mean or
average. This average will then be described through the expected value E(X) of
the distribution. On the basis of the law of large numbers, the sample mean X̄

is used as a consistent estimator of E(X). Furthermore, the central limit theorem
yields the asymptotic behaviour of the sample mean. This result can be used to
provide a confidence interval for E(X) in case the sample size is sufficiently large, a
condition necessary when invoking the central limit theorem. For the Albuquerque
wind speed data, these techniques lead to an average maximum daily wind speed of
21.65 miles per hour, whereas (21.4–21.9) is a 95% confidence interval for E(X)

based on the classical theory.

Statistics of Extremes: Theory and Applications J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels
 2004 John Wiley & Sons, Ltd ISBN: 0-471-97647-4

1



2 WHY EXTREME VALUE THEORY?

10
20

30
40

50
60

D
ai

ly
 fa

st
es

t-
m

ile
 w

in
d 

sp
ee

d

(a)

Daily fastest-mile wind speed

(b)

E
m

pi
ric

al
 d

is
tr

ib
ut

io
n 

fu
nc

tio
n

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.1 (a) Boxplot and (b) empirical distribution function of the daily maxi-
mal wind speed data in the city of Albuquerque.

In case of wind speeds, it can be just as important to estimate tail probabilities.
Suppose a shed breaks down if the wind speed is larger than 30 miles per hour,
then it is interesting to estimate the tail probability p = P (X > 30). To this end,
one can use the empirical distribution function defined by

F̂n(x) = i

n
if x ∈ [xi,n, xi+1,n)
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where xi,n is the i-th ordered sample value. For the Albuquerque data, this leads
to p̂ = 1 − F̂n(30) = 0.18.

However, we should add some critical remarks to these considerations. What if
the second moment E(X2) or even the mean E(X) is not finite? Then the central
limit theorem does not apply and the classical theory, dominated by the normal
distribution, is no longer relevant. Or, what if one wants to estimate p = P (X > x),
where x > xn,n and the estimate p̂ defined above yields the value 0? Such questions
concerning the shed are important since the damage caused by extreme wind speeds
can be substantial, perhaps even catastrophical. Clearly, we cannot simply assume
that such x-values are impossible. However, the traditional technique based on the
empirical distribution function, does not yield any useful information concerning
this type of question. In terms of the empirical quantile function

Q̂n(p) := inf{x : F̂n(x) ≥ p},

problems arise when we consider high quantiles Q̂n(1 − p) with p < 1
n

.
These observations show that it is necessary to develop special techniques

that focus on the extreme values of a sample, on extremely high quantiles or on
small tail probabilities. In practical situations, these extreme values are often of
key interest. The wind speed example provides just one illustration but there are
numerous other situations where extreme value reasoning is of prime importance.

1.2 Graphical Tools for Data Analysis

Given data, a practitioner wants to use graphics that will show in a clear and effi-
cient way the features of the data that are relevant for a given research question. In
this section, we concentrate on visually oriented statistical techniques that provide
as much information as possible about the tail of a distribution. In later chapters,
these graphical tools will help us to decide on a reasonable model to describe the
underlying statistical population. Our emphasis will not be on global models that
aim at describing the data in their entirety or the distribution on its full support.
Rather, we perform statistical fits above certain (high) thresholds. Motivation for
this was provided in Section 1.1.

We will not recapitulate common statistical graphics such as histograms, smooth
density estimates and boxplots. Instead we will focus on quantile-quantile (QQ)
and mean excess (or mean residual life) plots, which are often more informative
for our purposes. Moreover, many popular estimation methods from extreme value
theory turn out to be directly based on these graphical tools.

1.2.1 Quantile-quantile plots

The idea of quantile plots, or more specifically Quantile-Quantile plots (shortly
QQ-plots), has emerged from the observation that for important classes of distri-
butions, the quantiles Q(p) are linearly related to the corresponding quantiles of
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a standard example from this class. Linearity in a graph can be easily checked by
eye and can further be quantified by means of a correlation coefficient. This tool
could therefore be ideally used when trying to answer the classical goodness-of-fit
question: does a particular model provide a plausible fit to the distribution of the
random variable at hand?

Historically, the normal distribution has provided the prime class of models
where QQ-plots constitute a powerful tool in answering this question. As will be
shown in the sequel, the exponential distribution plays a far more important role
for our purposes. The rationale for QQ-plots remains the same but the calculations
are even easier. We start by explaining and illustrating the QQ-plot idea for the
exponential model Exp(λ) (see Table 1.1). This very same methodology can then
be explored and extended in order to provide comparisons of empirical evidence
available in the data when fitting models such as the log-normal, Weibull or others.

Restricting our attention first to the Exp(λ) model, we can propose the standard
exponential distribution

1 − F1(x) := exp(−x), x > 0

as the standard example from the class of distributions with general survival
function

1 − Fλ(x) = exp(−λx).

We want to know whether the real population distribution F belongs to this class,
parametrized by λ > 0. The answer has to rely on the data x1, . . . , xn that we have
at our disposal. It is important to note that this parameter value can be considered
as a nuisance parameter here since its value is not our main point of interest at this

Table 1.1 QQ-plot coordinates for some distributions.

Distribution F(x) Coordinates

Normal
∫ x

−∞
1√

2πσ
exp

(
− (u−µ)2

2σ 2

)
du (�−1(pi,n), xi,n)

x ∈ R; µ ∈ R, σ > 0

Log-normal
∫ x

0
1√

2πσu
exp

(
− (log u−µ)2

2σ 2

)
du (�−1(pi,n), log xi,n)

x > 0; µ ∈ R, σ > 0

Exponential 1 − exp(−λx) (− log(1 − pi,n), xi,n)

x > 0; λ > 0

Pareto 1 − x−α (− log(1 − pi,n), log xi,n)

x > 1; α > 0

Weibull 1 − exp(−λxτ ) (log(− log(1 − pi,n)),

x > 0; λ, τ > 0 log xi,n)
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moment. We might even wonder whether this parameter has any relevance at all
for modelling reality since the whole parametric model itself is still at question.

The quantile function for the exponential distribution has the simple form

Qλ(p) = − 1

λ
log(1 − p), for p ∈ (0, 1).

Hence, there exists a simple linear relation between the quantiles of any exponential
distribution and the corresponding standard exponential quantiles

Qλ(p) = 1

λ
Q1(p) for p ∈ (0, 1).

Starting with a given set x1, x2, . . . , xn, the practitioner replaces the unknown
population quantile function Q by the empirical approximation Q̂n defined below.
In an orthogonal coordinate system, the points with values

(− log(1 − p), Q̂n(p))

are plotted for several values of p ∈ (0, 1). We then expect that a straight line
pattern will appear in the scatter plot if the exponential model provides a plausible
statistical fit for the given statistical population. When a straight line pattern is
obtained, the slope of a fitted line can be used as an estimate of the parameter λ−1.
Indeed, if the model is correct, then the equation

Qλ(p) = 1

λ
(− log(1 − p))

holds. Remark that the intercept for the given model should be 0 as Qλ(0) = 0.
In general,

Q̂n(p) = xi,n, for
i − 1

n
< p ≤ i

n
.

A very practical choice of values of p is given by

p ∈
{

1

n
,

2

n
, . . . ,

n − 1

n
, 1

}
.

The alternative choice

p ∈
{

1 − .5

n
,

2 − .5

n
, . . . ,

n − 1 − .5

n
,
n − 0.5

n

}

applies a continuity correction in that we compare a discontinuous function Q̂n

with the continuous function Q1(x) := − log(1 − x). Moreover, this choice avoids
overflow problems at p = 1. The same holds for the choice

p ∈
{

1

n + 1
,

2

n + 1
, . . . ,

n − 1

n + 1
,

n

n + 1

}
.
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While other choices are found in the literature, the latter option pi,n := i/(n + 1),
i = 1, 2, . . . , n, will be used in the sequel. The empirical quantiles are plotted on
the vertical axis and the standard exponential quantiles on the horizontal axis.

A straight line can be fitted through the scatter plot using a classical least-
squares algorithm. This straight line with slope a and intercept 0 is obtained from
minimizing the sum of squares

n∑
i=1

(
xi,n + a log(1 − pi,n)

)2
.

This procedure yields the well-known formula for the least-squares fit

â =
∑n

i=1 xi,nqi,n∑n
i=1 q2

i,n

where we have put

qi,n := − log(1 − pi,n), i = 1, 2, . . . , n.

The fitted straight line can then be used as a tool to visually check the linear
structure of the scatter plot. Moreover, we get an estimate of the parameter value
λ if the linearity has been satisfactorily fulfilled.

The exponential QQ-plot has a further important interpretation. The function
that is approximated when plotting

(
xi,n, − log

(
1 − pi,n

))
, i = 1, . . . , n

is given by
x �→ − log(1 − F(x)).

This is precisely the function that maps a random variable X with a continu-
ous distribution function F into the standard exponential distribution. Indeed, the
distribution function of − log(1 − F(X)) is given by

P (− log(1 − F(X)) ≤ x) = P (X ≤ Q (1 − exp(−x))) =
= F(Q(1 − exp(−x))) = 1 − exp(−x)

and so − log(1 − F(X)) ∼ Exp(1).
Often data are only available above a certain threshold t . For instance, a reinsur-

ance company might only receive information about claims larger than a priority t .
In case of an exponential model, this operation of conditioning on the event (X > t)

leads to a shifted exponential model. Evaluation of the distribution of data that are
larger than t coincides with the conditional distribution of X, given (X > t). Now,
in case of an exponential model,

P (X > x | X > t) = P (X > x)

P (X > t)
= exp(−λ(x − t)), x > t.
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Standard exponential quantiles

x 
i,n

t V

V

−log(p)

Qn (1 − p)

0

Figure 1.2 Exponential QQ-plot: estimation of extreme quantiles.

The corresponding quantile function is then equal to

Q(p) = t − 1

λ
log(1 − p), 0 < p < 1.

As a result, the exponential QQ-plot introduced above will show an intercept t at
the value p = 0.

Suppose that on the basis of an exponential QQ-plot, a global exponential
fit appears appropriate. Then we can answer a crucial question in extreme value
analysis that has been mentioned before: the estimation of an extreme quantile
Q(1 − p) with p small is given by

q̂p = t − 1

λ̂
log(p).

Conversely, a small exceedance probability p = P (X > x|X > t) will be esti-
mated by

p̂x = exp
(
−λ̂(x − t)

)
.

Here λ̂ can be obtained from the least-squares regression on the exponential QQ-
plot, or just by taking the maximum likelihood estimator λ̂ = 1/(x̄ − t). This is
illustrated in a graphical way in Figure 1.2.

Example 1.1 For a practical example of the above method, let us look at the daily
maximal wind speed measurements obtained in Zaventem, Belgium (Figure 1.3).
We restrict ourselves to data above t = 82 km/hr. We see that the histogram shows
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Figure 1.3 Daily maximal wind speed measurements in Zaventem (Belgium)
from 1985 till 1992. (a) histogram for all data, (b) conditional histogram for wind
speeds larger than 82 km/hr with fitted exponential density superimposed (λ̂ =
1/(x̄ − 82)) and (c) exponential QQ-plot for wind speeds larger than 82 km/hr.
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an exponentially decreasing form. The global exponential quantile plot shows a
straight line pattern with intercept 82. A similar behaviour but with different values
of λ has been shown to hold for most cities in Belgium.

The amount of evidence for the global goodness-of-fit can be measured by
means of the correlation coefficient

rQ =
∑n

i=1(xi,n − x̄)(qi,n − q̄)√∑n
i=1(qi,n − q̄)2

∑n
i=1(xi − x̄)2

,

where

x̄ = n−1
n∑

i=1

xi,n

and where

q̄ = n−1
n∑

i=1

qi,n.

The quantity rQ always satisfies the inequality 0 ≤ rQ ≤ 1. Indeed, since the xi,n

and the qi,n are increasing, the correlation coefficient will be non-negative. More-
over, rQ = 1 if and only if all the points lie perfectly on a straight line. Therefore,
rQ can be used as a measure of global fit of the exponential model to the data. A
formal significance test can be based on the statistic rQ and rejects the hypothesis
of exponentiality when the number obtained differs too much from the value 1.
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Equivalently, the value obtained can be compared with that of some tabulated
critical value.

We summarize our findings for the case of an exponential QQ-plot as this will
help us in pinning down our objectives for the case of general QQ-plots. We denote by
Qs the quantile function of the standard distribution from a given parametric model.

In order to accept a proposed model as a plausible population model:

(i) start from a characterizing linear relationship between (an increasing function
of) the theoretical quantiles Q(p) from the proposed distribution and the
computable quantiles Qs(p);

(ii) replace the theoretical quantiles Q(p) by the corresponding empirical quan-
tiles Q̂n(p);

(iii) plot the (increasing function of the) empirical quantiles Q̂n

(
i

n+1

) = xi,n

against the corresponding specific quantiles Qs

(
i

n+1

)
;

(iv) inspect the linearity in the plot, for instance, by performing a linear regres-
sion on the QQ-plot and by investigating the regression residuals and the
correlation coefficient.

Strong linearity implies a good fit. Quantiles and return periods can then be esti-
mated from the linear regression fit y = b̂ + âx on the QQ-plot:

â =
∑n

i=1(xi,n − x̄)Qs(pi,n)∑n
i=1(Qs(pi,n) − q̄)2

,

b̂ = x̄ − âq̄,

where q̄ = 1/n
∑n

i=1 Qs(pi,n). Indeed, q̂p = b̂ + âQs(1 − p) can be used for the
estimation of the extreme quantiles. Further, p̂x = F̄s((x − b̂)/â) with Fs , the
inverse function of Qs , serves as an estimate for the exceedance probability.

QQ-plots can be used in cases more general than the exponential distribu-
tion discussed above. In fact, they can be used to assess the fit of any statistical
model. Some other important cases are given below (see Table 1.1 for the QQ-plot
coordinates):

• The normal distribution. The coordinates of the points on a normal QQ-plot
follow immediately from the representation for normal quantiles

Q(p) = µ + σ�−1(p)

where �−1 denotes the standard normal quantile function.

• The log-normal distribution. Since log-transformed log-normal random vari-
ables are normally distributed, log-normality can be assessed by a normal
QQ-plot of the log-transformed data

(�−1(pi,n), log xi,n), i = 1, . . . , n.
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• The Pareto distribution. The coordinates of the points on a Pareto QQ-plot
follow immediately from the exponential case since a log-transformed Pareto
random variable is exponentially distributed.

• The Weibull distribution. The quantile function of the Weibull distribution
(cf. Table 1.1) is given by

Q(p) =
(

− 1

λ
log(1 − p)

) 1
τ

,

or equivalently, after a log transformation by

log Q(p) = 1

τ
log

1

λ
+ 1

τ
log(− log(1 − p)).

This then yields as coordinates for the Weibull QQ-plot(
log(− log(1 − pi,n)), log xi,n

)
, i = 1, . . . , n.

Example 1.2 Our next example deals with the Norwegian fire insurance data
already treated in Beirlant et al. (1996a). Together with the year of occurrence,
we know the values (× 1000 Krone) of the claims for the period 1972–1992. A
priority of 500 units was in force. The time plot of all the claim values is given
in Figure 1.4(a). We will concentrate on the data from the year 1976 for which
Figure 1.4(b) shows a histogram. To assess the distributional properties for 1976,
we constructed exponential and Pareto QQ-plots, see Figures 1.4(c) and (d) respec-
tively. The points in the exponential QQ-plot bend upwards and exhibit a convex
pattern indicating that the claim size distribution has a heavier tail than expected
from an exponential distribution. Apart from the last few points, the Pareto QQ-
plot is more or less linear indicating a reasonable fit of the Pareto distribution to
the tail of the claim sizes. At the three largest observations the Pareto model does
not fit so well.

The distribution functions considered so far share the property that QQ-plots
can be constructed without knowledge of the correct model parameters. In fact,
parameter estimates can be obtained as a pleasant side result. This is particularly
true for location-scale models where the intercept of the line fitted to the QQ-plot
represents location while the slope represents scale. Unfortunately, this property
does not extend to all distributions. In such cases, the construction of QQ-plots
involves parameter estimation.

To deal with this more general case, consider a random variable X with distribu-
tion function Fθ , where θ denotes the vector of model parameters. To evaluate the
fit of Fθ to a given sample X1, . . . , Xn using QQ-plots, several possibilities exist.
A straightforward approach is to compare the ordered data with the corresponding
quantiles of the fitted distribution, i.e., plotting(

F←
θ̂

(pi,n), Xi,n

)
, i = 1, . . . , n,

where θ̂ denotes an estimator for θ based on X1, . . . , Xn.
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Alternatively, one can construct probability-probability or PP-plots which refer
to graphs of the type (

Fθ̂ (Xi,n), pi,n

)
, i = 1, . . . , n,

or (
1 − Fθ̂ (Xi,n), 1 − pi,n

)
, i = 1, . . . , n.
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Figure 1.4 (a) Time plot for the Norwegian fire insurance data, (b) histogram,
(c) exponential QQ-plot and (d) Pareto QQ-plot for the 1976 data.
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For instance, a normal PP-plot then consists of(
�

(
Xi,n − µ̂

σ̂

)
, pi,n

)
, i = 1, . . . , n.

The underlying principle here is that

Fθ(Xi,n)
D= Ui,n, i = 1, . . . , n,
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where Ui,n, i = 1, . . . , n denotes the set of order statistics of a random sample of

size n from the U(0, 1) distribution and where
D= denotes equality in distribution.

One can then return to the exponential framework by transforming the data first
to the exponential case followed by a subsequent assessment of the exponential
quantile fit. The quantities

Ei,n = − log(1 − Fθ(Xi,n)), i = 1, . . . , n,

are then the order statistics associated with a random sample of size n from the
standard exponential distribution. Hence, another natural procedure to assess the
fit of Fθ to X1, . . . , Xn is to construct

(− log(1 − pi,n), − log(1 − Fθ̂ (Xi,n))
)
, i = 1, . . . , n,

and to inspect the closeness of the points to the first diagonal. Such a plot is
sometimes referred to as a W -plot. Of course, in all these plots the coordinates can
be reversed.

1.2.2 Excess plots

The probabilistic operation of conditioning a random variable X on the event
(X > t) is of major importance in actuarial practice, especially in reinsurance.
Take an excess-of-loss treaty with a retention t on any particular claim in the
portfolio. The reinsurer has to pay a random amount X − t but only if X > t .
When an actuary wants to decide on a priority level t through simulation, he needs
to calculate the expected amount to be paid out per client when a given level t

is chosen. This then is an important first step in deciding on the premium. For
instance, the net premium principle depends on the mean claim size E(X). For the
overshoot, the actuary will calculate the mean excess function or mean residual life
function e

e(t) = E(X − t | X > t)

assuming that for the proposed model, E(X) < ∞. In the whole of extreme value
methodology, it is natural to consider data above a specified high threshold.

In practice, the mean excess function e is estimated by ên on the basis of a
representative sample x1, . . . , xn. Explicitly,

ên(t) =
∑n

i=1 xi1(t,∞)(xi)∑n
i=1 1(t,∞)(xi)

− t,

where 1(t,∞)(xi) equals 1 if xi > t , and 0 otherwise. This expression is obtained
by replacing the theoretical average by its empirical counterpart, i.e., by averaging
the data that are larger than t and subtracting t .

Often the empirical function ên is plotted at the values t = xn−k,n, k = 1, . . . ,

n − 1, the (k + 1)-largest observation. Then the numerator equals
∑n

i=1 xi1(t,∞)

(xi) = ∑k
j=1 xn−j+1,n, while the number of xi larger than t equals k. The estimates
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of the mean excesses are then given by

ek,n := ên(xn−k,n) = 1

k

k∑
j=1

xn−j+1,n − xn−k,n. (1.1)

In this section, variations on the mean excess function and its empirical coun-
terparts will be examined from the viewpoint of their statistical applications. But
first we need to understand better the behaviour of the theoretical mean excess
function. This will help us link empirical shapes with specific theoretical models.
In Chapter 4, we will see how the statistic ên,log X(log Xn−k,n) with ên,log X denot-
ing the empirical mean excess function of log-transformed data, appears as the Hill
estimator.

The calculation of e for a random variable with survival function 1 − F starts
from the formula

e(t) =
∫ x+
t

(1 − F(u)) du

1 − F(t)
(1.2)

where x+ = sup{x : F(x) < 1} is the right endpoint of the support of F . The
derivation of this alternative formula goes as follows. Apply Fubini’s theorem to
write ∫ x∗

t

(x − t) dF(x) =
∫ x∗

t

∫ x

t

dy dF(x) (1.3)

=
∫ x∗

t

dy

∫ x∗

y

dF(x) =
∫ x∗

t

(1 − F(y)) dy.

One can also derive an inverse relationship, indicating how one calculates F

from e. This then shows that e uniquely determines F . Indeed, from relation (1.2)∫ t

0

1

e(u)
du =

∫ t

0

1 − F(u)∫ x∗
u

(1 − F(v)) dv
du

= −
∫ t

0
du log

∫ x∗

u

(1 − F(v)) dv

= log
∫ x∗

0
(1 − F(v)) dv − log

∫ x∗

t

(1 − F(v)) dv

= log(e(0)(1 − F(0))) − log ((1 − F(t))e(t))

so that
1 − F(t)

1 − F(0)
= e(0)

e(t)
exp

(
−

∫ t

0

1

e(u)
du

)
.

When considering the shapes of mean excess functions, again the exponential
distribution plays a central role. A characteristic feature of the exponential dis-
tribution is its memoryless property, meaning that whether the information X > t

is given or not, the outcome for the average value of X − t is the same as if
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one started at t = 0 and calculated E(X). The mean excess function e for the
exponential distribution is constant and given by

e(t) = 1

λ
for all t > 0.

When the distribution of X has a heavier tail than the exponential distribution
(HTE), then we find that the mean excess function ultimately increases, while for
lighter tails (LTE) e ultimately decreases. For example, the Weibull distribution
with 1 − F(x) = exp(−λxτ ) satisfies the asymptotic expression

e(t) = t1−τ

λτ
(1 + o(1))

yielding an ultimately decreasing (resp. increasing) e in case τ > 1 (resp. τ < 1).
Hence, the shape of e yields important information on the LTE or HTE nature of
the tail of the distribution at hand. The graphs of e for some well-known distribu-
tions are sketched in Figure 1.5.

Plots of empirical mean excess values ek,n as introduced in (1.1) can be con-
structed in two alternative ways, i.e., ek,n versus k, or ek,n versus xn−k,n. Remem-
bering the discussion in the preceding subsection, one looks for the behaviour of
the plotted ek,n values for decreasing k values or for increasing xn−k,n values. In
case of the wind speed data from Zaventem, the constant behaviour becomes appar-
ent from the plot in Figure 1.6. On the other hand, data from the 1976 Norwegian
fire insurance example show a HTE pattern (see Figure 1.7).
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Figure 1.5 Shapes of some mean excess functions.
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Figure 1.6 Mean excess plots for the daily maximal wind speed measurements
larger than 82 km/hr in Zaventem: (a) ek,n versus k and (b) ek,n versus xn−k,n.
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Figure 1.7 Mean excess plots for the 1976 data from the Norwegian fire insurance
example: (a) ek,n versus k and (b) ek,n versus xn−k,n.
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Apart from being an estimate of the function e at a specific value xn−k,n, the
quantity ek,n can also be interpreted as an estimate of the slope of the exponential
QQ-plot to the right of a reference point with coordinates

(− log
(

k+1
n+1

)
, xn−k,n

)
.

Here, we make use of the continuity correction in the QQ-plot. Indeed, this slope
can be estimated by the ratio of the differences in the vertical and horizontal
coordinates between the remaining points and the reference point itself:

Ẽk,n =
1
k

∑k
j=1 Xn−j+1,n − Xn−k,n

− 1
k

∑k
j=1 log

(
j

n+1

)
+ log

(
k+1
n+1

) .

In this expression, the denominator can be interpreted as an estimator of the mean
excess function of the type ek,n taken at − log

(
k+1
n+1

)
and based on the standard

exponential (theoretical) quantiles − log(1 − p) with p = 1 − pj,n, j = 1, . . . , k.
The denominator hence is an approximation of the mean excess function of the
standard exponential distribution Exp(1) as in (1.1) and hence is approximately
equal to 1. Using Stirling’s formula, one can even verify that this is a very precise
approximation even for small values of k. Hence we find that Ek,n constitutes an
approximation of Ẽk,n.

The above discussion explains the ultimately increasing (respectively, decreas-
ing) behaviour of the mean excess function for HTE distributions (respectively,
LTE distributions). In case of a HTE distribution, the exponential QQ-plot has a
convex shape for the larger observations and the slopes continue to increase near
the higher observations. This then leads to an increasing mean excess function. A
converse reasoning holds for LTE distributions. Illustrations for this principle are
sketched in Figure 1.8.

1.3 Domains of Applications
1.3.1 Hydrology
The ultimate interest in flood frequency analysis is the estimation of the T -year
flood discharge (water level), which is the level exceeded every T years on average.
Here, a high quantile of the distribution of discharges is sought. Usually, a time
span of 100 years is taken, but the estimation is mostly carried out on the basis
of flood discharges for a shorter period. Consequences of floods exceeding such
a level can be disastrous. For example, the 100-year flood levels were exceeded
by the American flood of 1993 and caused widespread devastation in the states in
the Mid-West. The floods in the Netherlands in 1953 were really catastrophic and
triggered the Delta Plan of dike constructions, still of interest in that country. By
law, dikes in the low-land countries, Belgium and the Netherlands, should be built
as high as the 104-year flood discharge.

Another hydrological parameter for which the tail of the corresponding dis-
tribution is of special interest is rainfall intensity. This parameter is important in
modelling water course systems, urban drainage and water runoff. Clearly, the
effective capacity of such systems is determined by the most extreme intensities.
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Quite often only periodic, even annual, maxima are available. Then, alternative
to T -year water levels, the conclusions of an extreme value analysis are requested
in terms of a return period. The latter is expressed in terms of the reciprocal of
the survival function of the periodic maxima, say Y ,

T (x) = 1

P (Y > x)
.

Later, we will describe how the concept of return period can easily be adapted to
cases where the distribution of values of Y is studied.

Case study:

Annual maximal river discharges of the Meuse river from 1911 till 1996 at
Borgharen in Holland. The time plot of the annual maximal discharges is given
in Figure 1.9(a). In order to get an idea about the tail behaviour of the annual
maxima distribution, an exponential QQ-plot was constructed, see Figure 1.9(b).
As is clear from this QQ-plot, the annual maxima distribution does not exhibit
a HTE tail behaviour. This is also confirmed by the mean excess plots given in
Figures 1.9(c) and (d).

1.3.2 Environmental research and meteorology
Meteorological data generally have no alarming aspects as long as they are situated
in a narrow band around the average. The situation changes for instance when
concentrations occur that overshoot a specific ecological threshold like with ozone
concentration. Rainfall and wind data provide other illustrations with tremendous
impact on society as they are among the most common themes for discussion. Just
recall the questions concerning global warming and climate change. Typically, one
is interested in the analysis of maximal and minimal observations and records over
time (often attributed to global warming) since these entail the negative conse-
quences.

Case studies:

(i) Wind speed database provided by NIST, Gaithersburg, consisting of daily
fastest-mile speeds measured by anemometers situated 10 m above the
ground. The data have been filed for a period of 15 to 26 years and concern
49 airports in the US over a period between 1965 and 1992. Wind speeds from
hurricanes and tornadoes have not been incorporated. We select three cities
from the study. Table 1.2 gives the length of the data and their observation
periods. Figure 1.10 represents the corresponding boxplots.

(ii) Daily maximum temperatures at Uccle, Belgium. The data plotted in
Figure 1.11 are daily maximum surface air temperatures recorded in degrees
Celsius at Uccle, Belgium. These data were gathered as part of the European
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Figure 1.9 (a) Time plot, (b) exponential QQ-plot, (c) ek,n versus k and (d) ek,n

versus xn−k,n for the annual maximal discharges of the Meuse.
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Table 1.2 Wind speed database.

City State Length Period

Albuquerque New Mexico 6939 1965–’83
Des Moines Iowa 5478 1965–’79
Grand Rapids Michigan 5478 1965–’79
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Figure 1.10 Boxplots of the daily fastest-mile wind speeds.
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Figure 1.11 Time plot of the daily maximum temperature at Uccle, Belgium.

Climate Assessment and Dataset project (Klein Tank and co-authors (2002))
and are freely available at www.knmi.nl/samenw/eca.

1.3.3 Insurance applications
One of the most prominent applications of extreme value thinking can be found
in non-life insurance. Some portfolios seem to have a tendency to occasionally
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include a large claim that jeopardizes the solvency of a portfolio or even of a
substantial part of the company. Apart from major accidents such as earthquakes,
hurricanes, airplane accidents and so on, there is a vast number of occasions where
large claims occur. Once in a while, automobile insurance leads to excessive claims.
More often, fire portfolios encounter large claims. Industrial fires, especially, cause
a lot of side effects in loss of property, temporary unemployment and lost contracts.

An insurance company will always safeguard itself against portfolio contami-
nation caused by claims that should be considered as extreme rather than average.
In an excess-of-loss reinsurance contract, the reinsurer pays for the claim amount
in excess of a given retention. The claim distribution is therefore truncated to the
right, at least from the viewpoint of the ceding company. The estimation of the
upper tail of the claim size distribution is of major interest in order to determine
the net premium of a reinsurance contract. Several new directions in extreme value
theory were influenced by methods developed in the actuarial literature.

Case studies:

(i) The Secura Belgian Re data set depicted in Figure 1.12(a) contains 371 auto-
mobile claims from 1988 till 2001 gathered from several European insurance
companies, which are at least as large as 1,200,000 Euro. These data were
corrected among others for inflation. The ultimate goal is to provide the
participating reinsurance companies with an objective statistical analysis in
order to assist in pricing the unlimited excess-loss layer above an operational
priority R. These data will be studied in detail in Chapter 6; here we use them
only to illustrate some concepts introduced above. The exponential QQ-plot of
the claim sizes is given in Figure 1.12(b). From this plot, a point of inflection
with different slopes to the left and the right can be detected. This becomes
even more apparent in the mean excess plots given in Figures 1.12(c) and
(d): behind 2,500,000, the rather horizontal behaviour changes into a pos-
itive slope. As we will see later, the mean excess function is an important
ingredient for establishing the net premium of a reinsurance contract.

(ii) The SOA Group Medical Insurance Large Claims Database. This database
records, among others, all the claim amounts exceeding 25,000 USD over the
period 1991–92 and is available at http://www.soa.org. There is no trunca-
tion due to maximum benefits. The study conducted by Grazier and G’Sell
Associates (1997), where a thorough description of these data can be found,
collects information from 26 insurers. The 171,000 claims recorded are part
of a database including about 3 million claims over the years 1991–92. Here
we deal with the 1991 data. The histogram of the log-claim amounts shown
in Figure 1.13(a) gives evidence of a considerable right-skewness. Further,
the convex shape of the exponential quantile plot (Figure 1.13(b)) and the
increasing behaviour of the mean excess plots (Figures 1.13(c) and (d)) in
the largest observations indicate a HTE nature of the claim size distribution.
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Figure 1.12 Secura Belgian Re data: (a) Time plot, (b) exponential QQ-plot,
(c) ek,n versus k and (d) ek,n versus xn−k,n.
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Figure 1.13 SOA Group Medical Insurance data: (a) histogram of log-claim
amount, (b) exponential QQ-plot, (c) ek,n versus k and (d) ek,n versus xn−k,n.
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(iii) Claim data from a fire insurance portfolio provided by the reinsurance broker
Aon Re Belgium. The data contain 1668 observations on the claim size, the
sum insured and the type of building; see Beirlant et al. (1998). Claim sizes
are expressed as a fraction of the sum insured. Figure 1.14 shows the scatter
plots of the log(claim size) versus sum insured for three types of building.
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Figure 1.14 Aon Re Belgium data: log(claim size) versus sum insured for three
types of buildings.
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For reinsurers, the possible influence of covariate information like the sum
insured and the type of building is of prime importance for premium differ-
entiation according to the risk involved.

(iv) Loss-ALAE data studied by Frees and Valdez (1998) and Klugman and Parsa
(1999). The data shown in Figure 1.15 comprise 1,500 general liability claims
(expressed in USD) randomly chosen from late settlement lags and were pro-
vided by Insurance Services Office, Inc. Each claim consists of an indemnity
payment (loss) and an allocated loss adjustment expense (ALAE). Here, ALAE
are types of insurance company expenses that are specifically attributable to
the settlement of individual claims such as lawyers’ fees and claims investi-
gation expenses. In order to price an excess-of-loss reinsurance treaty when
the reinsurer shares the claim settlement costs, the dependence between losses
and ALAE’s has to be accounted for. Our objective is to describe the extremal
dependence.

1.3.4 Finance applications

Financial time-series consist of speculative prices of assets such as stocks, foreign
currencies or commodities. Risk management at a commercial bank is intended to
guard against risks of loss due to a fall in prices of financial assets held or issued
by the bank. It turns out that returns, that is, the relative differences of consecutive
prices or differences of log-prices, are the appropriate quantities to be investigated;
see for instance, Figures 1.16(a) and (b), where we show the time plot of the
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Figure 1.15 Loss-ALAE data: scatterplot of loss vs ALAE.

Standard & Poors 500 closing values and daily percentage returns respectively,
from January 1960 up to 16 October 1987, the last market day before the big
crash of Black Monday, 19 October 1987. For more about financial applications,
we refer to the book by Embrechts et al. (1997).

The Value-at-Risk (VaR) of a portfolio is essentially the level below which the
future portfolio will drop with only a small probability. VaR is one of the important
risk measures that have been used by investors or fund managers in an attempt to
assess or predict the impact of unfavourable events that may be worse than what
has been observed during the period for which relevant data are available.

1.3.5 Geology and seismic analysis

Applications of extreme value statistics in geology can be found in the magnitudes
of and losses from earthquakes, in diamond sizes and values, in impact crater size
distributions on terrestrial planets, and so on; see for instance Caers et al. (1999a,
1999b). The importance of tail characteristics of such data can be linked to the
interpretation of the underlying geological process.

Case studies:

(i) Pisarenko and Sornette (2003) analysed shallow earthquakes (depth <70 km)
in the Harvard catalog over the period 1977–2000. In this study, the tails of
the seismic moment distributions for subduction and mid-ocean ridge zones
are compared. The database contains seismic moment measurements (in dyne-
cm) of 6458 earthquakes in subduction zones and 1665 earthquakes in mid-
ocean ridge zones. For both zones, the seismic moment distributions are of
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Figure 1.16 Time plot of the Standard & Poors 500 (a) closing values and
(b) daily % returns.
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HTE type as indicated by the exponential quantile and mean excess plots
given in Figure 1.17.

(ii) In agriculture, soil analysis is the basis of fertilizer and amendment recom-
mendations in the context of managing soil fertility and crop performance.
Fertilizers are used to meet crop demand for nutrients while amendments
are necessary to stabilize and improve both soil structure and water infiltra-
tion, and to optimize pH levels. Recently, a new concept of crop management,
called precision farming has emerged. It permits within-field variation of crop
techniques, for instance, to adjust fertilizer inputs on the basis of soil sam-
pling and soil analysis. As the development of these techniques increased the
demand for soil data, laboratories are now burdened with large datasets. In
this context, the Belgian non-profit organization REQUASUD (Réseau Qualité
Sud i.e. South Quality Network) was created in 1989 to put efficient advices
and analysis services at the practitioner’s disposal. REQUASUD developed
a centralized soil database that contains more than 150,000 soil chemical
composition (pHKCl, K, Mg, Ca, etc.) records. It also has information about
sample origin (zip code), soil texture, soil occupation, previous and recent cul-
tures. The Unit of Geopedology (Gembloux Agricultural University, Belgium)
is the reference laboratory for soil analyses and the database is centralized at
the Unit of Biometry, Data Management and Agrometeorology (Agricultural
Research Centre of Gembloux). Detailed studies of the data allow extension
services to study physical and chemical properties of agricultural soils and to
manage them according to their fertility potential and their ability to support
cultures.

The Condroz database contains calcium content and pH level measurements
of 19,516 soil samples originating from different cities in the Condroz, a geo-
graphical region in the southern part of Belgium. Figure 1.18 shows a map
of Belgium in which the area covered by the data is grey coloured. For a
detailed description of these data, we refer to Goegebeur et al. (2004). The
data have been analysed with emphasis on the development of an automatic
procedure for highlighting suspicious calcium measurements in order to guar-
antee database quality. Our focus will be on the related issue of modelling
extreme calcium measurements in terms of the covariates pH level and city. As
is clear from the calcium versus pH scatter plot given in Figure 1.19(a), both
variables are positively associated. Moreover, note that extreme calcium mea-
surements tend to occur more often at the higher pH levels, indicating the need
for describing the tail of the calcium distribution in terms of the covariate pH.
Here, we comment on the tail behaviour of the calcium content distribution
conditional on pH = 6.5. The convex shape of the exponential QQ-plot and
(hence) the increasing mean excess function near the largest observations
give evidence of a HTE-type tail behaviour, see Figures 1.19(b), (c) and (d).

(iii) Diamond data. The profitability of a diamond exploration heavily depends on
the quality of the stones found in a particular area. In turn, the overall value
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Figure 1.17 Pisarenko and Sornette data: exponential QQ-plots ((a) and (d)
respectively) and mean excess plots ((b), (c) and (e), (f) respectively) of seismic
moments for subduction respectively mid-ocean ridge zones.
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Figure 1.17 (continued)
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Figure 1.19 Condroz data: (a) scatterplot of calcium content versus pH level mea-
sured in soil samples, (b) exponential QQ-plot of the calcium levels at pH = 6.5,
(c) ek,n of the calcium levels at pH = 6.5 as a function of k and (d) ek,n of the
calcium levels at pH = 6.5 as a function of xn−k,n.



WHY EXTREME VALUE THEORY? 39

k
(c)

M
ea

n 
ex

ce
ss

0 20 40 60 80

20
0

40
0

60
0

80
0

10
00

12
00

Data

(d)

M
ea

n 
ex

ce
ss

200 300 400 500

20
0

40
0

60
0

80
0

10
00

12
00

of a diamond is influenced by factors such as carat, colour, clarity and cut.
This is illustrated in Figure 1.20 in which the value (in USD) versus size (in
carat) scatterplot is given for a sample of 1914 diamonds obtained from a
kimberlite deposit.
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Figure 1.20 Diamond data.

1.3.6 Metallurgy

An important problem from the area of metallurgy that received wide attention
is the estimation of the size of the largest inclusions in a metal as metal fatigue
typically originates at very large inclusions. See, for instance, the special issue
of Extremes, 1999, dedicated to this subject (Bomas et al. 1999, Murakami and
Beretta 1999, Svensson and de Maré 1999). Here an interesting connection exists
with Wicksell’s corpuscle problem when only the sizes of vertical sections of
such ‘grains’ are measured. Wicksell (1925) gave the integral relation between the
distribution of sizes of spheric objects and the distribution of vertical sections.

Applying a cyclic loading on a metallic component may cause its failure even
if the maximum stress is below the static strength limit of the material. This phe-
nomenon is termed fatigue. Any material has a minimum stress range—called
the fatigue strength—below which it can endure an indefinite number of cycles.
However, fatigue properties of steel are strongly influenced by the presence of
microscopic particles of oxides or foreign material known as inclusions. Fatigue
strength increases with decreasing defect size and therefore, the size of the max-
imum inclusion is an important indicator of the quality of a particular metallic
component. It is infeasible to completely destruct a component in order to find
its largest inclusion. Inference about this inclusion has to be based on a repre-
sentative sample. In general, observations are taken on polished plane surfaces of
samples of steel resulting in sizes of two-dimensional cross-sections of those inclu-
sions that intersect the surface. This raises the additional problem to infer about
three-dimensional sizes of large inclusions from data in two-dimensional surface
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Figure 1.21 (a) Histogram of surface diameters and (b) exponential QQ-plot of
surface diameters.
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sections. For recent contributions, we refer to Drees and Reiss (1992), Takahashi
and Sibuya (1996), Takahashi and Sibuya (1998), Anderson and Coles (2000) and
Beretta and Anderson (2002). As an example we use the data from Anderson and
Coles (2000). The data contain 112 surface diameters of inclusions on a polished
surface above the threshold of 5µm. The units of measurement are taken to insure
that the area of the measured surface would be 1. In Figure 1.21(a), we show
the histogram of the surface diameters with a fitted exponential density function
(λ̂ = 1/(x̄ − 5) = 1/1.548152) superimposed. The fit of the exponential distribu-
tion can be further evaluated on the basis of the exponential QQ-plot given in
Figure 1.21(b) where the straight line shows the least-squares fit.

Another important problem from metallurgy is the study of pit corrosion. Cor-
rosion can lead to the failure of metal structure such as tanks or tubes. Extreme
value analysis becomes relevant since pits of large depth are of primary interest.

1.3.7 Miscellaneous applications

Network traffic data exhibit properties that are inconsistent with traditional queue-
ing models. In fact, next to several other unusual properties, the distribution of
quantities such as transmission lengths, transmission rates, file sizes and CPU
job completion times can be well modelled by Pareto-type laws which will be dis-
cussed in Chapter 4. Some references include Guerin et al. (2000), Resnick (1997),
Resnick and Rootzén (2000).
Recently, models for old age mortality data received renewed attention. In fact,
there is a debate on whether or not there is a fixed upper limit to the length of
human life (see Thatcher (1999)).
We can also refer to Zipf’s (1941, 1949) classic study of the dynamics of com-
munity sizes where Pareto-type distributions are found again, see, for instance,
Feuerverger and Hall (1999). In fact, Pareto laws were also observed for the distri-
bution of biological genera, ranked by the number of species they contain (Willis
(1922)), and for the distribution of word usage frequencies in numerous linguistic
and literary contexts (Zipf (1935)). The book of Zipf (1941, 1949) presents an
incredible variety of phenomena, including examples from economics, business,
commerce, economical geography, industry, travel, communication, traffic, soci-
ology, psychology, music, politics and warfare. In many of these examples, an
approximate fit of Pareto distribution is rather convincing, particularly, in the tail.

1.4 Conclusion

As a conclusion, we find that the area of extreme value statistics, as statistics in
general, offers a wide variety of problems. Aside from the classical problem of
analysing the distribution of a single random variable on the basis of a random
sample, we find data structures for which time-series models, regression and multi-
variate settings are appropriate. After parametric and non-parametric approaches in
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a frequentist approach, Bayesian parameter estimation techniques are also now in
use. The goal of this text is to provide an introduction to each of those models and
methods. To reach this goal, we provide in Part I the basic theoretical probabilistic
and statistical background. In addition, we elaborate on some case studies from
the list above.
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THE PROBABILISTIC SIDE
OF EXTREME VALUE THEORY

Consider a random sample {Xi, 1 ≤ i ≤ n} from a distribution F . In the preceding
chapter, it was mentioned that in many situations, extreme value analysis is often (to
be) built on a sequence of data that are block maxima, for instance, yearly maxima.
A traditional statistical discussion on the mean is based on the central limit theorem
and hence often returns to the normal distribution as a basis for statistical inference.
The classical central limit theorem states that the distribution of

√
n

(
(X1 + · · · + Xn)/n − E(X)√

var(X)

)
= X1 + · · · + Xn − nE(X)√

n var(X)

converges for n → ∞ to a standard normal distribution. In general, the central
limit problem deals with the sum Sn := X1 + X2 + · · · + Xn and tries to find
constants an > 0 and bn such that Yn := a−1

n (Sn − bn) tends in distribution to a
non-degenerate distribution. Once the limit is known, it can be used to approximate
the otherwise cumbersome distribution of the quantity Yn.

A first question is to determine what distributions can appear in the limit.
Then comes the question for which F any such limit is attained. The answer
reveals that typically the normal distribution is attained as a limit for this sum (or
average) Sn of independent and identically distributed random variables, except
when the underlying distribution F possesses a too heavy tail; in the latter case,
a stable distribution appears as a limit. Specifically, Pareto-type distributions F

with infinite variance will yield non-normal limits for the average: the extremes
produced by such a sample will corrupt the average so that an asymptotic behaviour
different from the normal behaviour is obtained.

In this chapter, we will be mainly concerned with the corresponding problem
for the sample maximum rather than the average: we will consider both the possible
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limits and the different ways to describe the sets of distributions from which sample
maxima are converging to these limits.

2.1 The Possible Limits

In what follows, we will replace the sum Sn by the maximum

Xn,n = max{X1, X2 . . . , Xn}.
Of course, we could just as well study the minimum rather than the maximum.
Clearly, results for one of the two can be immediately transferred to the other
through the relation

X1,n = − max{−X1, −X2, . . . , −Xn}.
It is natural to consider the probabilistic problem of finding the possible limit dis-
tributions of the maximum Xn,n. Hence, the main mathematical problem posed in
extreme value theory concerns the search for distributions of X for which there exist
a sequence of numbers {bn; n ≥ 1} and a sequence of positive numbers {an; n ≥ 1}
such that for all real values x (at which the limit is continuous)

P

(
Xn,n − bn

an

≤ x

)
→ G(x) (2.1)

as n → ∞. The standardization with bn and an appears natural since otherwise
Xn,n → x∗ a.s. It is required that the limit G should be a non-degenerate distri-
bution; in fact any number can appear as the degenerate limit of (Xn,n − an)/bn

whatever the underlying distribution. Again, the problem is twofold: (i) find all
possible (non-degenerate) distributions G that can appear as a limit in (2.1);
(ii) characterize the distributions F for which there exist sequences {an; n ≥ 1}
and {bn; n ≥ 1} such that (2.1) holds for any such specific limit distribution.

The first problem is the (extremal) limit problem. It has been solved in Fisher
and Tippett (1928), Gnedenko (1943) and was later revived and streamlined by de
Haan (1970). Once we have derived the general form of all possible limit laws,
we need to solve the second part of the problem, which is called the domain of
attraction problem. This can be described more clearly in the following manner.
Assume that G is a possible limit distribution for the sequence a−1

n (Xn,n − bn).
What are the necessary and sufficient conditions on the distribution of X to get
precisely that limiting distribution function G. General and specific examples can
easily illustrate the variety of distributions attracted to the different limits. The
set of such distributions will be called the domain of attraction of G and is often
denoted by D(G).

Trying to avoid an overly mathematical treatment, we will not solve the above
problem in its full generality. We rather provide a direct and partial approach to
this problem, which works under the assumption that the underlying distribution
possesses a continuous, strictly increasing distribution function F .
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In contrast with the central limit problem, the normal distribution does not
appear as a limiting distribution owing to the inherent skewness that is observed
in a distribution of maxima. In this section, we will show that all extreme value
distributions

Gγ (x) = exp
(−(1 + γ x)−1/γ

)
, for 1 + γ x > 0,

with γ ∈ R can occur as limits in (2.1). The real quantity γ is called the extreme
value index (EVI). It is a key quantity in the whole of extreme value analysis.

In order to solve this general limit problem for extremes, we rely on a clas-
sical concept from probability theory. Suppose that {Yn} is a sequence of random
variables. Then we say that Yn converges in distribution or converges weakly to Y ,
if the distribution function of Yn converges pointwise to the distribution function

of Y , at least in all points where the latter is continuous. We write Yn
D→ Y . In

probability theory, one often proves weak convergence by looking at the corre-
sponding convergence of the characteristic functions. However, for our purposes,
we will rely on another well-known result from probability theory, that is, the
Helly-Bray theorem, see Billingsley (1995). This result transfers the convergence
in distribution to the convergence of expectations.

Theorem 2.1 Let Yn have distribution function Fn and let Y have distribution

function F . Then Yn
D→ Y iff for all real, bounded and continuous functions z,

E(z(Yn)) → E(z(Y )).

For example, the sequence {Yn} satisfies a weak law of large numbers if the

random variable Y is degenerate. Alternatively, by the Helly-Bray theorem Yn
D→ Y

degenerate in the constant c, iff E(z(Yn)) → z(c). We will then write Yn
P⇒ c.

For the case of normalized maxima, the limit laws will depend on the crucial
parameter γ . For this reason, we include that parameter into the notation. So, put

Yn := a−1
n (Xn,n − bn) and Y = Yγ . We then have that Yn

D→ Yγ iff for all real,
bounded and continuous functions z,

E
{
z
(
a−1

n (Xn,n − bn)
)} →

∫ ∞

−∞
z(v)dGγ (v)

as n → ∞ where Gγ (v) := P (Yγ ≤ v).
The idea of the above equivalence is that convergence in distribution can be

translated into the convergence of expectations for a sufficiently broad class of
functions z. We go through the derivation of the extreme value laws as some of
the intermediate steps are crucial to the whole theory of extremes. Therefore, let z

be as above, a real, bounded and continuous function over the domain of F . First,
note that

P (Xn,n ≤ x) = P (∩n
i=1(Xi ≤ x)) =

n∏
i=1

P (Xi ≤ x) = Fn(x) .
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Therefore, we find that

E
{
z
(
a−1

n (Xn,n − bn)
)} = n

∫ ∞

−∞
z

(
x − bn

an

)
Fn−1(x)dF (x).

We could restrict the domain of the distribution F to the genuine interval of support.
This is determined by the left boundary ∗x := sup{x : F(x) = 0} and the right
boundary x∗ := inf{x : F(x) = 1}. Unless this is important, we will not specify
these endpoints explicitly.

Recall that F was supposed to be continuous. Therefore, we can set F(x) =
1 − v

n
. We solve this equation for x. The solution can be put in terms of the inverse

function F←(y) = inf{x : F(x) ≥ y}, which of course equals the quantile function

Q(y), or the tail quantile function U(y) = F←
(

1 − 1
y

)
. Most often, we will use

the prescription

U(y) = Q

(
1 − 1

y

)
= x and F(x) = 1 − 1

y
. (2.2)

Note in particular that ∗x = U(1) and that x∗ = U(∞) while U is non-decreasing
over the interval [1, ∞). The integral above therefore equals

∫ n

0
z

(
U

(
n
v

) − bn

an

) (
1 − v

n

)n−1
dv.

Now observe that
(
1 − v

n

)n−1 → e−v as n → ∞ while the interval of integration
extends to the positive half-line. The only place where we still find elements of
the underlying distribution is in the argument of z. Therefore, we conclude that
a limit for E

{
z
(
a−1

n (Xn,n − bn)
)}

can be obtained when for some sequence an

we can make a−1
n (U(n/v) − bn) convergent for all positive v. It seems natural

to think of v = 1, which suggests that bn = U(n) is an appropriate choice. The
natural condition to be imposed and crucial to all that follows is that for some
positive function a and any u > 0,

lim
x→∞ {U(xu) − U(x)} /a(x) =: h(u) exists , (C)

with the limit function h not identically equal to zero.
Let us pause to prove the following basic limiting result.

Proposition 2.2 The possible limits in (C) are given by

chγ (u) = c

∫ u

1
vγ−1dv = c

uγ − 1

γ

where c ≥ 0, γ is real and where we interpret h0(u) = log u.

The case where c = 0 is to be excluded since it leads to a degenerate limit
for (Xn,n − bn)/an. Next, the case c > 0 can be reduced to the case c = 1 by
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incorporating c in the function a. Hence, we replace the condition (C) by the more
informative extremal domain of attraction condition

lim
x→∞ {U(xu) − U(x)} /a(x) =: hγ (u) for u > 0. (Cγ )

indicating that the possible limits are essentially described by the one-parameter
family hγ . If necessary, we will even explicitly refer to the auxiliary function a

by referring to Cγ (a). We will say that the underlying distribution F satisfies the
extreme value condition Cγ (a) if condition (Cγ ) holds with the auxiliary function
a. At instances, we will also assume functions other than the tail quantile function
U to satisfy Cγ (a).

Let us prove the above proposition. Let u, v > 0, then

U(xuv) − U(x)

a(x)
= U(xuv) − U(xu)

a(xu)

a(ux)

a(x)
+ U(xu) − U(x)

a(x)
. (2.3)

If we accept that the above convergence condition (C) is satisfied, then automat-
ically the ratio a(ux)/a(x) has to converge too. Let us call the limit g(u). Then
the mere existence of a limit can be translated into a condition on the function g.
Indeed, for u, v > 0, we have

a(xuv)

a(x)
= a(xuv)

a(xv)

a(xv)

a(x)

and therefore, the function g satisfies the classical Cauchy functional equation

g(uv) = g(u)g(v).

The solution of this equation follows from

Lemma 2.3 Any positive measurable solution of the equation g(uv) = g(u)g(v),
u, v > 0 is automatically of the form g(u) = uγ for a real γ .

If one writes a(x) = xγ �(x), then the limiting relation a(xu)/a(x) → uγ leads
to the condition �(xu)/�(x) → 1. This kind of condition is basic within the theory
of regular variation and will be discussed in more detail in a later section. In
particular, any measurable function �(x), positive for large enough x, that satisfies
�(xu)/�(x) → 1 will be called a function of slow variation or a slowly varying
function (s.v.). The function a(x) = xγ �(x) is then of regular variation or regularly
varying, with index of regular variation γ .

We continue our derivation of Proposition 2.2. Take g(u) = uγ . Then it seems
natural to clarify the notation in (2.3) by assuming that the right-hand side in the
limit relation is given by hγ . The latter function satisfies the functional equation

hγ (uv) = hγ (v) uγ + hγ (u) . (2.4)

When γ = 0, then we immediately find that there exists a constant c such that
h(u) = c log u. If γ �= 0, then by symmetry we find that for u, v > 1

hγ (uv) = hγ (v) uγ + hγ (u) = hγ (u) vγ + hγ (v).
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From this it follows that for some constant d, hγ (u) = d(uγ − 1). We can incor-
porate the case γ = 0 if we replace the constant d by the constant c := γ d. We
therefore have derived that the right-hand side of an expression of the form

lim
x→∞

U(ux) − U(x)

a(x)
= h(u)

is necessarily of the form h(u) = chγ (u) for some constant c, where the auxiliary
function a is regularly varying with index γ .

For the case where U is a tail quantile function, we can do even better. For, U is
monotonically non-decreasing. So if γ > 0, then the constant d is also non-negative
since hγ (u) is non-decreasing, while if γ < 0, then also d < 0. Therefore, in both
cases c = γ d > 0 and so the quantity c can be incorporated in the non-negative
auxiliary function a. This solves the equation (2.4) and proves the expression in
the statement of Proposition 2.2.

Let us return to the derivation of the explicit form of the limit laws in
Theorem 2.1. Under Cγ (a), we find that with bn = U(n) and an = a(n)

E
{
z
(
a−1

n (Xn,n − bn)
)} →

∫ ∞

0
z
(
hγ (1/v)

)
e−vdv =:

∫ ∞

−∞
z(u) dGγ (u)

as n → ∞. This in particular shows that (up to scale and location) the class of
limiting distributions is a one-parameter family, indexed by γ . To get a more
precise form, we rewrite the right-hand side of the above equation.

It is easy to derive the three standard extremal types. Put hγ (1/v) = u. Then

• if γ > 0

E
{
z
(
a−1

n (Xn,n − bn)
)} →

∫ ∞

−γ −1
z(u)d

(
exp

(−(1 + γ u)−1/γ
))

,

• if γ = 0

E
{
z
(
a−1

n (Xn,n − bn)
)} →

∫ ∞

−∞
z(u)d

(
exp(−e−u)

)
,

• if γ < 0

E
{
z
(
a−1

n (Xn,n − bn)
)} →

∫ −γ −1

−∞
z(u)d

(
exp

(−(1 + γ u)−1/γ
))

.

Note that the range of Gγ depends on the sign of γ . For γ > 0, the carrier con-
tains the positive half-line but has a negative left endpoint −1/γ . For γ < 0, the
distribution contains the whole negative half-line and has a positive right end-
point −1/γ . Finally, for the Gumbel distribution G0, for γ = 0, the range is the
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whole real line. For convenience, we will sometimes write Sγ for the range of
the extremal law Gγ . Also, we will write ηγ (u) for the solution of the equation
hγ (1/v) = u in terms of u. Explicitly

ηγ (u) = (1 + γ u)−1/γ (2.5)

with the understanding that η0(u) = e−u.
The above analysis entails that under (Cγ ), the extreme value distributions can

be obtained as limit distributions for the maximum of a simple random sample.

It suffices to take bn = U(n) and an = a(n) to have that a−1
n (Xn,n − bn)

D→ Yγ .
Another way of stating this result is to write that F ∈ D(Gγ ) if F satisfies Cγ (a). It
can also be derived that they are also the only possible limits that can be obtained.
For more details on this, we refer the reader to the work of Gnedenko (1943) and
de Haan (1970); see also Beirlant and Teugels (1995). Densities of some extreme
value distributions are sketched in Figure 2.1.

The above result implies that, after a location and scale transformation x →
(x − b)/a, the sample distribution of maxima (Y − b)/a can be approximated by
an extreme value distribution Gγ if the size n of the pure random samples from
which these maxima are computed is sufficiently large.

Now we should turn to the domain of attraction problem: for what kind of
distributions are the maxima attracted to a specific extreme value distribution, or
which satisfy the central condition (Cγ )? It will turn out that the sign of the EVI is
the dominating factor in the description of the tail of the underlying distribution F .
For that reason, we distinguish between the three cases where γ > 0, γ < 0 and
the intermediate case where γ = 0. Because of their intrinsic importance, we treat
these cases in separate sections. But before doing that, let us include a concrete
example.

2.2 An Example

We incorporate an example to illustrate the above procedure.
The annual maximal discharges of the Meuse river in Belgium consist of max-

ima Y1, . . . , Ym where m denotes the number of years available. Using a QQ-plot,
we can attempt to fit the distribution of Y = max{X1, . . . , X365} with an extreme
value distribution. In this practical example, a right-skewness is apparent from an
explorative data analysis (Figure 2.2).

The quantile function of an extreme value distribution is given by

Qγ (p) =
(

1
log(1/p)

)γ − 1

γ
, p ∈ (0, 1).

The case γ = 0 corresponds to the Gumbel distribution with quantile function

Q0(p) = log

(
1

log(1/p)

)
, p ∈ (0, 1).
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Figure 2.1 (a) Gumbel density (solid line) and two Fréchet densities for param-
eters γ = 0.28 (broken line) and γ = 0.56 (broken-dotted line) and (b) Gumbel
density (solid line) and two extreme value Weibull densities for γ = −0.28 (broken
line) and γ = −0.56 (broken-dotted line).

Note that the extreme value quantiles are obtained from standard Fréchet(1) quan-
tiles 1

log(1/p)
(see Table 2.1) by using Box-Cox transformations x → xγ −1

γ
. Except

for the special case of a Gumbel quantile plot, a quantile plot for an extreme
value distribution can only be obtained after specifying a value for γ . We start by
considering the simple case of a Gumbel QQ-plot:

(
− log

(
− log

i

n + 1

)
, xi,n

)
, i = 1, . . . , n.
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The Gumbel quantile plot for the annual maximum discharges of the Meuse river
is given in Figure 2.3(a). The plot indicates that a Gumbel distribution fits the data
quite well and supports the common use in hydrology of this simplified model
for annual river discharge maxima. Performing a least squares regression plot on
the graph given in Figure 2.3(a), we obtain an intercept value b̂ = 1247 and a
slope â = 446, which yield estimates of location and scale parameters of the fitted
Gumbel model.

When constructing an extreme value QQ-plot, we look for the value of γ in the
neighbourhood of 0, which maximizes the correlation coefficient on the QQ-plot.
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Figure 2.2 (a) Time plot, (b) boxplot, (c) histogram and (d) normal quantile plot
for the annual maximal discharges of the Meuse.
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Figure 2.2 (continued )

This is obtained for a value γ̂ = −0.034. The corresponding QQ-plot is given in
Figure 2.3(b). Here, the least squares line is fitted with b̂ = 1252 and â = 462. Of
course, γ , a and b can also be estimated by other methods. Here, we can mention
the maximum likelihood method and the method of probability-weighted moments.
In fact, these estimation methods are quite popular in this context. They will be
discussed in Chapter 5.
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Figure 2.3 Annual maximal river discharges of the Meuse: (a) Gumbel quantile
plot and (b) extreme value quantile plot.

These first estimates of γ , b and a can now be used to estimate the 100-year
return level for this particular problem. Indeed,

Û (100) = Q̂

(
1 − 1

100

)

= 1251.86 + 461.55

(− log
(
1 − 1

100

))0.034 − 1

−0.034
= 3217.348 .
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2.3 The Fréchet-Pareto Case: γ > 0

We begin with a simple example that can easily be generalized. Then we look
for the connection between the tail quantile function U and the underlying distri-
bution F . After rewriting the limiting result in its historical form, we give some
sufficient conditions. We finish with a number of examples.

2.3.1 The domain of attraction condition

As the prime example, we mention the strict Pareto distribution Pa(α) with
survival function F̄ (x) = x−α , x > 1. Here, α is a positive number, called the
Pareto index. For this distribution, Q(p) = (1 − p)−1/α and hence U(x) = xγ

with γ = 1/α. Then

{U(xu) − U(x)} /a(x) = (
(xu)γ − xγ

)
/a(x)

= xγ

a(x)

(
uγ − 1

)

so that the auxiliary function a(x) = γ xγ leads to

{U(xu) − U(x)} /a(x) = uγ − 1

γ
= hγ (u),

and hence Cγ (a) is clearly satisfied, actually with equality.
However, there is a much broader class of distributions that satisfies Cγ (a)

with γ > 0. Indeed, we can take U(x) = xγ �U(x) where �U is a slowly varying
function. Then (Cγ ) is also satisfied. Indeed, for x ↑ ∞,

{U(xu) − U(x)} /a(x) = (
(xu)γ �U(xu) − xγ �U (x)

)
/a(x)

= �U (x)xγ

a(x)

(
�U (xu)

�U (x)
uγ − 1

)

∼ (
uγ − 1

)
/γ

when choosing a(x) = γ xγ �U (x) = γU(x), or even more flexibly,

lim
x↑∞

a(x)/U(x) = γ. (2.6)

Distributions for which U(x) = xγ �U (x) are called Pareto-type distributions.
Remark that for these distributions, U is regularly varying with index γ since

lim
x→∞

U(xt)

U(x)
= lim

x→∞
(xt)γ �U (xt)

xγ �U (x)
= tγ for all t > 0.

Also note that once the domain of attraction condition Cγ (a) is satisfied, we
can choose the normalizing constants by the expressions

bn = U(n) = nγ �U (n) and an = a(n).
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Figure 2.4 Plot of P {(Xn,n − U(n))/(γU(n)) ≤ x} =
(

1 − (1+x)−1

n

)n

for n = 2

(dotted line), n = 5 (broken-dotted line), n = 10 (broken line) and its limit, for
n → ∞, exp(−(1 + x)−1) (solid line).

The convergence of (Xn,n − U(n))/(γU(n)) to its extreme value limit is illus-
trated in Figure 2.4 for the case of the strict Pareto distribution with γ = 1. Here,
the convergence appears to be quite fast. In Chapter 3, this will be shown not to
be the case overall.

2.3.2 Condition on the underlying distribution

We will show later that the condition (Cγ ) for γ > 0 is equivalent to the condition
that for w > 0,

1 − F(xw)

1 − F(x)
→ w−1/γ as x → ∞ .

This is precisely saying that x1/γ (1 − F(x)) is s.v. Hence, there exists a s.v. func-
tion �F (x) such that 1 − F(x) = x−α�F (x) where α := 1

γ
. It will then follow that

the definition of a Pareto-type distribution can be formulated in terms of the dis-
tribution F as well as in terms of the tail quantile function. The term Pareto-type
refers to the tail of the distribution, and roughly spoken, it means that as x → ∞,
the survival function 1 − F(x) tends to zero at a polynomial speed, that is, as x−α

for some unknown index α.
The link between the two s.v. functions depends on the concept of the de Bruyn

conjugate introduced in Proposition 2.5 in section 2.9.3. In its neatest form, we
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can state that there is full equivalence between the statements

1 − F(x) = x−1/γ �F (x) and U(x) = xγ �U(x) (2.7)

where the two slowly varying functions �F and �U are linked together via the
de Bruyn conjugation. Remark that with increasing value of γ the tail becomes
heavier, that is, the dispersion is larger; otherwise stated, large outliers become
even more likely. When γ > 1, the expected value E(X) of X does not exist as
can be readily checked for the strict Pareto distribution. For γ > 0.5, even the
variance is infinite. For this reason, Pareto-type distributions are often invoked to
model data with extremely heavy tails. More specifically, denoting the positive
part of X by X+, one finds that

E(Xc
+) =

{ ∞, cγ > 1,
< ∞, cγ < 1.

2.3.3 The historical approach

We remark that our approach follows a different path than in the classical theory.

From the general approach, we know that {Xn,n − U(n)}/a(n)
D→ Yγ . However,

as derived in Theorem 2.3, we also know that a(n)/U(n) → γ . If we write

Xn,n

U(n)
= a(n)

U(n)

{
Xn,n − U(n)

a(n)
+ U(n)

a(n)

}

then Xn,n

U(n)

D→ Zγ where

P {Zγ ≤ z} = P

{
γ

(
Yγ + 1

γ

)
≤ z

}
= Gγ

(
z − 1

γ

)
= exp(−z−1/γ ). (2.8)

In the early literature on the subject, the latter distribution is often abbreviated by
�1/γ (z) and called the extreme value distribution of type II. The limit law in terms
of Zγ looks simpler than the one for Yγ . We write F ∈ D(Gγ ) = D(�1/γ ). From
the statistical point of view, it is advisable to work with the condition in terms of
the quantile function U as the investigator usually does not know in advance that
γ > 0.

As the first example of (2.8) appeared in Fréchet (1927), the class D(�1/γ )

should be attributed to him. On the other hand, an equivalent description is given
by the Pareto-type distributions. We therefore opted for the Fréchet-Pareto-class
terminology.

2.3.4 Examples

Examples of distributions of Fréchet-Pareto type are given in Table 2.1. We note
that the condition in (2.7) can easily be used to derive explicit examples for the
Fréchet case.
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A well-known sufficient condition can be given in terms of the hazard function

r(x) = f (x)

1 − F(x)

where it is assumed that F has a derivative f .

Proposition 2.1 Von Mises’ theorem If x∗ = ∞ and limx↑∞ xr(x) = α > 0, then
F ∈ D(�α).

If we use Theorem 2.3 (ii) below and define ε(x) := xr(x) − α, then it easily
follows by integration that

1 − F(x) = {1 − F(1)} exp

{
−

∫ x

1

α + ε(u)

u
du

}
=: Cx−α�(x) for x ≥ 1.

The function �(x) defined in this way can easily be shown to be slowly varying.
The von Mises result is readily applied when for some β > 1, the tail of the

density f is of the form f (x) ∼ x−β�(x) for some s.v. �(x). It then follows that
also the tail of F is regularly varying. Actually,

1 − F(x) =
∫ ∞

x

f (y) dy = xf (x)

∫ ∞

1

f (xv)

f (x)
dv ∼ (β − 1)−1xf (x)

and thus xr(x) → β − 1 so that the von Mises sufficient condition is satisfied with
α = β − 1.

Examples of Pareto-type distributions are the Burr distribution, the Generalized
Pareto distribution, the log-gamma distribution and the Fréchet distribution (see
Table 2.1).

Note that all t-distributions are in the Fréchet-Pareto domain. A t-density f

with k degrees of freedom has the form

f (x) = 	
(

k+1
2

)
√

kπ	
(

k
2

)
(

1 + x2

k

)− k+1
2

, x ∈ R .

Then

1 − F(x) ∼ 1

k
√

π

	
(

k+1
2

)
	

(
k
2

)
(

1 + x2

k

)− k
2

∈ R−k.

Hence, F ∈ D(�k). In particular, the Cauchy distribution is an element of D(�1).
But also all F-distributions are in the Fréchet-Pareto domain. An F -density

with m and n degrees of freedom is given by the expression

f (x) = 	
(

m+n
2

)
	

(
m
2

)
	

(
n
2

) (m

n

)m/2
x

m
2 −1

(
1 + m

n
x
)− m+n

2
, x > 0 .
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As before 1 − F(x) ∼ Cm,nx
−n/2 as x → ∞ with Cm,n a constant and hence F ∈

D(�n/2).
Most of the above examples have a slowly varying function �U of the type

�U(x) = C
(
1 + Dx−β(1 + o(1))

)
x → ∞

for some constants C > 0, D ∈ R, β > 0. The corresponding subclass of the
Pareto-type distributions is often named the Hall class of distributions referring
to Hall (1982). This class plays an important role in the discussion of estimators
of a positive EVI γ .

2.3.5 Fitting data from a Pareto-type distribution

Here, we recall and extend some of the basic notions on QQ-plots discussed earlier
in section 1.2.1.

Case 1: The strict Pareto case

The strict Pareto distribution Pa(α) with survival function F̄ (x) = x−α (x > 1)
has quantile function Q(p) = (1 − p)−1/α . Hence, log Q(p) = − 1

α
log(1 − p). A

Pareto QQ-plot is obtained from an exponential QQ-plot after taking the logarithm
of the data:

(− log(1 − pi,n), log xi,n

)
, i = 1, . . . , n.

Indeed, taking a log-transformation from a strict Pareto random variable results in
an exponential random variable. We expect to see a linear shape with intercept zero
and slope approximately equal to 1/α in case a strict Pareto distribution fits well.

Case 2: The bounded Pareto case

We put a left bound on the Pareto distribution. To do that, we consider the con-
ditional distribution of X given X > t where the data are censored by a lower
retention level t . The conditional distribution is obtained from

F̄t (x) = P (X > x|X > t) =
(x

t

)−α

, x > t

and its quantile function is given by

Qt(p) = t (1 − p)−1/α , p ∈ (0, 1).

Hence, performing the same procedure described as for the strict Pareto case,
we plot

(− log(1 − pi,n), log xi,n

)
, i = 1, . . . , n,

and we obtain a straight line pattern with intercept log t and a slope again approx-
imately equal to 1/α.
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Case 3: Pareto-type distributions

Pareto-type distributions were introduced in 2.3.1. The effect obtained by using a
Pareto QQ-plot to a Pareto-type distribution is illustrated in Figure 2.5.

In all the examples in 2.3.4, the leading factor in the expression of the survival

function is of the form x
− 1

γ for some positive number γ . The value of γ is also

Standard exponential quantiles
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Figure 2.5 Pareto QQ-plot for simulated data of size n = 1500 from (a) the
Burr(1,2,2) distribution (γ = 0.25) and (b) the log 	(1, 2) distribution (γ = 1).
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given in Table 2.1 in terms of the model parameters. In Chapter 4, we will present
an estimation procedure for α based on the Pareto QQ-plot.

As we have shown, Pareto-type distributions were found to be the precise set of
distributions for which the sample maxima are attracted to an extreme value distri-
bution with EVI γ = 1/α > 0. However, it now appears that this set of distributions
can be used in a broader statistical setting than the one considered in section 3.1
where the statistical practitioner had only access to data from independent block
maxima. Indeed, Pareto-type distributions are characterized by the specification

U(x) = xγ �U (x)

for the tail quantile function U . Here, �U denotes an s.v. function as indicated in
(2.7). So,

Q(1 − p) = p−γ �U

(
1

p

)
, p ∈ (0, 1).

Then

log Q(1 − p) = −γ log p + log �U

(
1

p

)

and, since for every s.v. function �U

log �U

(
1
p

)
log p

→ 0, as p → 0,

(see (2.19) below) we have that

log Q(1 − p)

− log p
→ γ, as p → 0

which explains the ultimate linear appearance in a Pareto QQ-plot in case of an
underlying Pareto-type distribution. This is illustrated in Figure 2.5.

In Figure 2.5, the Pareto QQ-plot has been constructed for simulated data
sets of size n = 1500 (a) from the Burr distribution and (b) from the log-gamma
distribution. It is clear that the straight line pattern only appears at the right end
of the plot. This has been suggested by superimposing a line segment on the right
tail of the QQ-plot. The fitting of this line segment has been performed manually.
In both cases, the slope of the fitted line is set equal to the reference value 1/α.

Pareto-type behaviour can also be deduced from probability-probability plots
or PP-plots. For the strict Pareto distribution, the coordinates of the points on the
PP-plot are given by (

x
−1/γ

i,n , 1 − pi,n

)
, i = 1, . . . , n.

In case the Pareto distribution fits well, we expect the points to be close to the
first diagonal. This ‘classical’ PP-plot requires knowledge of γ , or at least of an
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estimate of γ . Alternatively, log-transforming the above coordinates and changing
signs leads to the plot

(
log xi,n, − log(1 − pi,n)

)
, i = 1, . . . , n, (2.9)

which is obtained from the Pareto QQ-plot by interchanging the coordinates. For
the strict Pareto distribution − log(1 − F(x)) = 1

γ
log x, so the Pareto probability
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Figure 2.6 Pareto PP-plot for simulated data of size n = 1500 from (a) the Pa(1)

distribution, (b) the Burr(1,0.5,2) distribution and (c) the log 	(1, 1.5) distribution.
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plot defined by (2.9) will be approximately linear with slope 1
γ

. Using arguments
similar to the ones in the discussion of the Pareto quantile plot, it is easy to
show that for Pareto-type distributions, the plot (2.9) will be ultimately linear with
slope 1

γ
. This is illustrated in Figure 2.6.

2.4 The (Extremal) Weibull Case: γ < 0

We follow the same pattern as in the previous case. It will turn out that there is a
full equivalence between the cases γ > 0 and γ < 0.

2.4.1 The domain of attraction condition

Let us again start with a simple example, slightly more complicated than the
uniform distribution. Let 0 < x∗ < ∞ and look at the survival function on (0, x∗):

1 − F(x) = (1 − x/x∗)β,

where β > 0. It follows that U(x) = x∗(1 − x−1/β) on [1, ∞). Then

{U(xu) − U(x)} /a(x) = x∗
a(x)

(
(1 − (xu)

− 1
β ) − (1 − x

− 1
β )

)

= x∗x
− 1

β

a(x)

(
1 − u

− 1
β

)

= x∗x
− 1

β

βa(x)
h− 1

β
(u) .
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Therefore, we recover the condition Cγ (a) if we make the choice γ = − 1
β

< 0 and

a(x) = (1/β)x∗x−1/β for the auxiliary function. Note that a ∈ Rγ as it should be
and that a(x) = (−γ )(x∗ − U(x)).

Again, there is a much broader class of distributions where the above reasoning
holds. Let x∗ < ∞, put 1 − F(x) = (x∗ − x)−1/γ �F (1/(x∗ − x)) as x ↑ x∗, and
put �(v) = �

γ

F (v). It then follows by Proposition 2.5 that U(y) = x∗ − yγ �U (y) as
y ↑ ∞ where �U(y) = (�∗(y−γ ))−1 with �∗ denoting the de Bruyn conjugate of �

(defined in section 2.9.3 below). Then

{U(xu) − U(x)} /a(x) = xγ �U(x)

a(x)

(
1 − uγ �U (xu)

�U (x)

)

∼ −γ
xγ �U (x)

a(x)
hγ (u)

which is of the required Cγ (a) form if we choose

a(x)

x∗ − U(x)
→ −γ . (2.10)

Figure 2.7 shows the convergence of (Xn,n − U(n))/(−γ (x+ − U(n))) to its
extreme value limit in case of the U(0, 1) distribution.

x
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Figure 2.7 Plot of P {(Xn,n − U(n))/a(n) ≤ x} = (
1 + x−1

n

)n
for n = 2 (dotted

line), n = 5 (broken-dotted line), n = 10 (broken line) and its limit, for n → ∞,
exp(−(1 − x)) (solid line).
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2.4.2 Condition on the underlying distribution

Note that again all the previous steps can be reversed so that there is full equiva-
lence between the statements

1 − F

(
x∗ − 1

x

)
= x

1
γ �F (x) , x ↑ ∞

and (2.11)

U(x) = x∗ − xγ �U (x) , x ↑ ∞ .

The proof is similar to the one given for γ > 0 in section 2.9.3.

2.4.3 The historical approach

We give an indication of the earlier derivation for the case where γ < 0. We
continue to take x∗ < ∞ and (x∗ − U(x))/a(x) → −γ −1. So, write

Xn,n − x∗
x∗ − U(n)

= a(n)

x∗ − U(n)

{
Xn,n − U(n)

a(n)
+ U(n) − x∗

a(n)

}
.

If we are in the domain of attraction D(Gγ ) for γ < 0, then also the left-hand side
of the above equation converges in distribution, say to Zγ and we have

Zγ
D= (−γ )

(
Yγ + 1

γ

)

with distribution

P (Zγ ≤ z) = exp
(
−|z|− 1

γ

)

for z < 0.
Again, the latter limit relation has been treated differently in the older literature.

One used to write for z < 0, 
α = exp(−|z|α) for the extreme value distribution of
type III. We then see that F ∈ D(Gγ ) = D(
−1/γ ). It is true that the above limit
distribution is again a bit simpler than the one using Yγ . However, usually the
statistician has no prior information on the sign of the EVI γ . Moreover, splitting
the one-parameter set of limit distributions into three apparently different subcases
spoils the unity of extreme value theory.

2.4.4 Examples

Put Y := (x∗ − X)−1. As mentioned before, the extreme value Weibull case and
the Fréchet case are easily linked through the identification:

FX ∈ D(
α) ⇔ FY ∈ D(�α) .
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This equivalence follows from simple algebra in that

1 − F

(
x∗ − 1

x

)
= P

(
X > x∗ − 1

x

)
= P

(
1

x∗ − X
> x

)
= 1 − FY (x).

Some examples of distributions in the extreme value Weibull domain are given in
Table 2.2.

Apart from the determination of the right endpoint x∗, the cases γ < 0 and
γ > 0 are fully equivalent. Note in particular that in case a density exists, fY (x) =
x−2fX(x∗ − x−1). Therefore, there exists a sufficient von Mises condition in terms
of the hazard function is r = f/(1 − F).

Proposition 2.1 Von Mises’ theorem If x∗ < ∞ and limx↑x∗(x∗ − x) r(x) = α >

0, then F ∈ D(
α).

The proof is similar to the one for the Fréchet-Pareto case. From the condition, it
follows that

f
(
x∗ − 1

t

)
1 − F

(
x∗ − 1

t

) ∼ αt

which leads to fX(x∗ − t) ∼ tα−1�(1/t) when t → 0 and where � is slowly vary-
ing.

Explicit examples are known as well. Beta-distributions are among the most
popular elements from the extreme value Weibull domain. Recall the beta-density
with parameters p and q

f (x) = 1

B(p, q)
xp−1 (1 − x)q−1 .

Here, x∗ = 1 and 1 − F(1 − x) ∼ {qB(p, q)}−1xq making the distribution an ele-
ment from D(
q). In particular, the uniform distribution is an element of D(
1).

A graphical description of tails of models with right-bounded support as a
function of the value of γ is given in Figure 2.8. Remark especially the different
shapes near the endpoint x∗ around the values γ = −1/2 and −1.

2.5 The Gumbel Case: γ = 0

This case, often called extremal type I, is more diverse than the two previous ones:
this set of tails turns out to be quite complex as can be seen from Table 2.3, which
contains a list of distributions in this domain.

2.5.1 The domain of attraction condition

The class (C0) is called the Gumbel class as here the maxima are attracted to
the Gumbel distribution function �(x) := G0(x) = exp(−e−x). The domain of
attraction is denoted by D(�).
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Figure 2.8 Tails of distributions: different cases along the value of the EVI.
(a) γ ≥ 0, no upper bound, (b) −1 < γ < 0, finite endpoint x+, zero density,
(c) γ = −1/k (k ≤ 3, integer), zero density at x+, first (k − 2) derivatives of the
density function are zero, (d) γ = −1/2, zero density, finite first derivative at
x+, (e) −1 < γ < −1/2, zero density at x+, infinite first derivative, (f) γ = −1,
non-zero finite density at x+ and (g) γ < −1, infinite density at x+.
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The most central example is the exponential distribution with survival function
1 − F(x) = e−λx , x > 0, with λ > 0. Then Q(p) = − 1

λ
log(1 − p), and so U(x) =

1
λ

log x. Then

{U(xu) − U(x)} /a(x) = 1

λ
(log(xu) − log(x)) /a(x)

= 1

λa(x)
log(u)

so that the constant function a(x) = 1/λ leads to

{U(xu) − U(x)} /a(x) = log(u),

and (C0) is satisfied.
The convergence of (Xn,n − U(n))/a(n) to the Gumbel limit is illustrated in

Figure 2.9 for the Exp(λ) distribution.
As opposed to the other two domains of attraction, the elements of D(�) cannot

be considered as being from the same type as this prime example. Validating that
all the other examples from Table 2.3 belong to (C0) can be a tedious job. We
provide some alternative conditions for D(�) next.

x
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0.
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4

0.
6

0.
8

1.
0

Figure 2.9 Plot of P {(Xn,n − U(n))/a(n) ≤ x} =
(

1 − exp(−x)

n

)n

for n = 2 (dot-

ted line), n = 5 (broken-dotted line), n = 10 (broken line) and its limit, for n → ∞,
exp(− exp(−x)) (solid line).



72 THE PROBABILISTIC SIDE OF EXTREME VALUE THEORY

Table 2.3 A list of distributions in the Gumbel domain.

Distribution 1 − F(x)

Benktander II x−(1−β) exp
(
− α

β
xβ

)
,

x > 0; α, β > 0

Weibull exp (−λxτ ),
x > 0; λ, τ > 0

Exponential exp(−λx),
exp(λ) x > 0; λ > 0

Gamma λm

	(m)

∫ ∞
x

um−1 exp(−λu)du,

x > 0; λ, m > 0

Logistic 1/(1 + exp(x)),

x ∈ R

Log-normal
∫ ∞
x

1√
2πσu

exp
(
− 1

2σ 2 (log(u) − µ)2
)

du,

x > 0; µ ∈ R, σ > 0

2.5.2 Condition on the underlying distribution

The characterization of D(�) in terms of the distribution function is also more
complex than in the other two cases. The pioneering thesis of de Haan (1970)
gave a solution to this problem, revitalizing the interest in extreme value analysis.

Proposition 2.1 The distribution F belongs to D(�) if and only if for some auxil-
iary function b for every v > 0

1 − F(y + b(y)v)

1 − F(y)
→ e−v (2.12)

as y → x∗. Then

b(y + vb(y))

b(y)
→ 1 .

This result being of quite different nature than for the Fréchet-Pareto and the
extreme value Weibull case, the question can now be raised if the formulation
in (2.12) can be generalized to the general case of (Cγ ). This will be done in
section 2.6. A sketch of proof for this general case will be given in section 2.9.4.

2.5.3 The historical approach and examples

The case γ = 0 has been responsible for the seemingly awkward treatment of the
three extreme value domains. If one tries to find the appropriate centering and
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norming constants for the most classical distribution from statistics, the normal
distribution, the calculations are by no means trivial, on the contrary.

The von Mises sufficiency condition is a bit more elaborate than before.

Proposition 2.2 Von Mises’ theorem If r(x) is ultimately positive in the neigh-
bourhood of x∗, is differentiable there and satisfies limx↑x∗

dr(x)
dx

= 0, then F belongs
to D(�).

The calculations involved in checking the attraction condition to � are often
tedious. In this respect, the von Mises criterion can be very handy, particularly
as the Gumbel domain is very wide. This can be illustrated with the normal
distribution as well as with the (classical) Weibull distribution F(x) = 1 − e−xα

with α > 0 and x > 0. Also, the logistic distribution has an explicit expression
F(x) = {1 + exp(−(x − a)/b)}−1, which is easily shown to satisfy the von Mises
condition. The calculations for the log-normal distribution are somewhat tedious.

2.6 Alternative Conditions for (Cγ )

We return to the general case. In view of statistical issues for arbitrary values of
the EVI γ , we need alternative conditions for the general domain of attraction
condition (Cγ ). The proofs of the results in this section are probably among the
most technical points in the discussion of the attraction problem for the maximum.
Then again, we do not treat the most general case since we started out from the
added restriction that F is continuous. Proofs are deferred to the end of the chapter.

(i) A first and equivalent condition is given in terms of the distribution function.
The result comes from de Haan (1970) and extends Proposition 2.1 for the case
γ = 0 to the general case. The derivation is postponed to section 2.9.4.

Proposition 2.1 The distribution F belongs to D(Gγ ) if and only if for some aux-
iliary function b and 1 + γ v > 0

1 − F(y + b(y)v)

1 − F(y)
→ (1 + γ v)−1/γ (C∗

γ ) (2.13)

as y → x∗. Then

b(y + vb(y))

b(y)
→ uγ = 1 + γ v .

As will be shown in section 2.9.4, the auxiliary function b can be taken as b(y) =
a(U←(y)).

Another equivalent condition is closely linked to the above. Instead of letting
y → ∞ in an arbitrary fashion, we can restrict y by putting 1 − F(y) = n−1 or
equivalently y = U(n).
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Proposition 2.2 The distribution F satisfies (Cγ ) if and only if

n{1 − F(U(n) + bnv)} → H(v) (2.14)

for a positive sequence bn and a positive, non-constant function H .

As before, the mere existence of the limit is enough for the explicit form (1 +
γ v)−1/γ for a real γ .

(ii) Here is a first necessary condition for (Cγ ) that will be crucial in the
statistical chapters. The condition (Cγ ) entails that for x → ∞

U(x)

a(x)
{log U(xu) − log U(x)} →




log u, if γ ≥ 0,
(C̃γ )

uγ −1
γ

, if γ < 0
provided x∗ > 0 .

(iii) The relationship between U and a as appearing in conditions (Cγ ) and (C̃γ )
is different in the three cases. This becomes clear from the following result.

Theorem 2.3 Let (Cγ ) hold.

(i) Fréchet-Pareto case: γ > 0. The ratio a(x)/U(x) → γ as x → ∞ and U is
of the same regular variation as the auxiliary function a; moreover, (Cγ ) is
equivalent with the existence of a s.v. function �U for which U(x) = xγ �U(x).

(ii) Gumbel case: γ = 0. The ratios a(x)/U(x) → 0 and a(x)/{x∗ − U(x)} → 0
when x∗ is finite.

(iii) (Extremal) Weibull case: γ < 0. Here x∗ is finite, the ratio a(x)/{x∗ − U(x)} →
−γ and {x∗ − U(x)} is of the same regular variation as the auxiliary function
a; moreover, (Cγ ) is equivalent with the existence of an s.v. function �U for
which x∗ − U(x) = xγ �U (x).

However, the function a can be linked to the mean excess function of the log-
transformed data over all cases. We first consider the case where γ > 0. In a later
section, we will see how Hill’s estimator can be motivated from the fact that

elog X(log x) : = E

{
log

X

x
|X > x

}
=

∫ ∞

x

log(u/x)

1 − F(x)
dF (u)

=
∫ ∞

x

1 − F(u)

1 − F(x)

du

u
=

∫ ∞

1

1 − F(xy)

1 − F(x)

dy

y

for x → ∞ tends to
∫ ∞

1 y−1/γ dy

y
= γ (in Theorem 2.3 we show why the limit and

integral can be interchanged).
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In the sequel, we will show that under (C̃γ )

U(x)elog X(log U(x))

a(x)
→




1, if γ ≥ 0,∫ ∞
1

uγ −1
γ

du

u2 = 1
1−γ

, if γ < 0
provided x∗ > 0,

(2.15)

when x → ∞. It then follows that the function b appearing in (C∗
γ ) can be taken as

b(t) = (1 − γ −)telog X(log t) (2.16)

where

γ − =
{

0, if γ ≥ 0,
γ , if γ < 0.

2.7 Further on the Historical Approach

As illustrated in the previous sections, the literature offers other forms that are more
customary as they refer to the distribution F rather than to the tail quantile function
U . We feel the need to formulate the result in its historic form. We include the
domain of attraction conditions as well. The next theorem contains the historical
results derived by Fisher and Tippett (1928) and Gnedenko (1943).

Distributions that differ only in location and scale are called of the same type.

Theorem 2.1 Fisher-Tippett-Gnedenko Theorem. The extremal laws are exactly
those that agree to within type with one of the following (α > 0)

(i) Fréchet-Pareto-type:

�α(x) =
{

0, if x ≤ 0,

e−x−α
, if x ≥ 0.

Moreover, F ∈ D(�α) if and only if for x → ∞
1 − F(λx)

1 − F(x)
→ λ−α, for all λ > 0 .

(ii) Gumbel-type:

�(x) = e−e−x

x ∈ R.

Moreover F ∈ D(�) if and only if for some auxiliary function b for x → ∞
1 − F(x + tb(x))

1 − F(x)
→ e−t , for all t > 0.
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(iii) (Extremal) Weibull-type:


α(x) =
{

e−|x|α , if x ≤ 0,

1, if x ≥ 0.

Moreover F ∈ D(
α) if and only if x∗ < ∞ and for x → ∞
1 − F(x∗ − 1

λx
)

1 − F(x∗ − 1
x
)

→ λ−α, for all λ > 0 .

2.8 Summary

We summarize the most important results of this chapter concerning conditions on
1 − F or the tail quantile function U(y) = Q(1 − 1/y) for a distribution to belong
to the maximum domain of attraction of an extreme value distribution.

Conditions on U Conditions on 1 − F

General case (Cγ ) (C∗
γ )

γ ∈ R

limx→∞ U(ux)−U(x)
a(x)

= hγ (u) limy→x∗
1−F(y+b(y)v)

1−F(y)
= ηγ (v)

where b(y) can be taken as
⇓ (1 − γ −)yelog X(log y)

(C̃γ )

limx→∞ U(x)
a(x)

log U(ux)
U(x)

=
{

log u, if γ ≥ 0,
uγ −1

γ
, if γ < 0,

where a(x) can be taken as
(1 − γ −)U(x)elog X(log U(x))

Pareto-type

distributions limx→∞ U(ux)
U(x)

= uγ , u > 0 limy→∞ 1−F(yv)

1−F(y)
= v

− 1
γ , v > 0

γ > 0

2.9 Background Information

In this section, we collect a number of results that provide most of the background
necessary to fully understand the mathematical derivations. Some of these results
are proved while for the proofs of other statements, we refer the reader to the
literature. We begin with information on inverse functions that is useful to see
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what kind of conditions we are actually imposing on the underlying distributions.
We then collect information on functions of regular variation: Here Bingham et al.
(1987) is an appropriate reference. In the last part, we return to alternative forms
of the condition (Cγ ) and the relation to the underlying distribution F .

2.9.1 Inverse of a distribution

Start with a general distribution F . Denote by ∗x := inf{x : F(x) > 0} the left-end
boundary of F while similarly x∗ := sup{x : F(x) < 1}. We define the tail quantile
function U by U(t) := inf{x : F(x) ≥ 1 − 1/t}. Note that the tail quantile function
U and the quantile function Q are linked via the relation U(t) = Q(1 − 1/t).

From this definition, we get the following inequalities:

(i) If z < U(t), then 1 − F(z) > 1/t ;
(ii) for all t > 0, 1 − F(U(t)) ≤ 1/t ;

(iii) for all x < x∗, U (1/(1 − F(x))) ≤ x.

Note that U(1) =∗ x while U(∞) = x∗. It is easy to prove that if F is contin-
uous, then the equality 1 − F(U(t)) = 1/t is valid while if U is continuous,
U (1/(1 − F(x))) = x. In any case, U will be left-continuous while F is right-
continuous. The easy transition from F to U and back is the main reason for
always assuming that F and U are continuous.

Even more special is the important case where F has a strictly positive deriva-
tive f on its domain of definition. For then

1 − F(U(t)) =
∫ x∗

U(t)

f (y) dy = 1

t
.

But then also U has a derivative u and both derivatives are linked by the equation

f (U(t))u(t) = t−2 (2.17)

which could help in calculating u or U if F is known through its density function f .

2.9.2 Functions of regular variation

In this section, we treat a class of functions that shows up in a vast number of appli-
cations in the whole of mathematics and that is intimately related to the class of
power functions. We first give some generalities. Then we state a number of funda-
mental properties. We continue with properties that are particularly important for us.

Definition 2.1 Let f be an ultimately positive and measurable function on R+. We
will say that f is regularly varying if and only if there exists a real constant ρ

for which

lim
x↑∞

f (xt)

f (x)
= tρ for all t > 0. (2.18)
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We write f ∈ Rρ and we call ρ the index of regular variation. In the case ρ = 0,
the function will be called slowly varying (s.v.) or of slow variation. We will reserve
the symbol � for such functions.

The class of all regularly varying functions is denoted by R.

It is easy to give examples of s.v. functions. Typical examples are

• �(x) = (log x)α+ for arbitrary α. Further on, we will always drop the + sign;
regular variation indeed is an asymptotic concept and hence does not depend
on what happens at fixed values.

• �(x) = ∏k
1(logk x)αk where log1 x = log x while for n ≥ 1, logn+1 x :=

log(logn x).

• � satisfying �(x) → c ∈ (0, ∞).

• �(x) = exp{(log x)β} where β < 1.

The class R0 has a lot of properties that will be constantly used. Some of the
proofs are easy. For others, we refer to the literature.

Proposition 2.2 Slowly varying functions have the following properties:

(i) R0 is closed under addition, multiplication and division.

(ii) If � is s.v. then �α is s.v. for all α ∈ R.

(iii) If ρ ∈ R, then f ∈ Rρ iff f −1 ∈ R−ρ .

Mathematically, the two most important results about functions in R0 are given in
the following theorem due to Karamata.

Theorem 2.3

(i) Uniform Convergence Theorem. If � ∈ R0, then the convergence

lim
x↑∞

�(xt)

�(x)
= 1

is uniform for t ∈ [a, b] where 0 < a < b < ∞.

(ii) Representation Theorem. � ∈ R0 if and only if it can be represented in the
form

�(x) = c(x) exp

{∫ x

1

ε(u)

u
du

}

where c(x) → c ∈ (0, ∞) and ε(x) → 0 as x → ∞.
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The second part of the theorem above allows direct construction of elements of
R0. For later reference, we collect some more properties in the next proposition.

Proposition 2.4 Let � be slowly varying. Then

(i)

lim
x↑∞

log �(x)

log x
= 0. (2.19)

(ii) For each δ > 0 there exists a xδ so that for all constants A > 0 and x > xδ

Ax−δ < �(x) < Axδ.

(iii) If f ∈ Rρ with ρ > 0, then f (x) → ∞, while for ρ < 0, f (x) → 0
as x ↑ ∞.

(iv) Potter Bounds. Given A > 1 and δ > 0 there exists a constant xo(A, δ) such
that

�(y)

�(x)
≤ A max

{(y

x

)δ

,
(y

x

)−δ
}

, x, y ≥ xo.

Statements (i) and (ii) follow easily from the representation theorem. Unfortu-
nately, (ii) does not characterize slow variation. For (iii) and ρ > 0, use (ii) to
see that for x large enough f (x) ∼ xρ�(x) > xρ/2 which tends to ∞ with x. Rela-
tion (iii) shows that regularly varying functions with ρ �= 0 are akin to monotone
functions. Further, Potter bounds are often employed when estimating integrals
with slowly varying functions in the integrand.

2.9.3 Relation between F and U

The link between the tail of the distribution F and its tail quantile function U

depends on an inversion result from the theory of s.v. functions. We introduce the
concept of the de Bruyn conjugate whose existence and asymptotic uniqueness is
guaranteed by the following result.

Proposition 2.5 If �(x) is s.v., then there exists an s.v. function �∗(x), the de Bruyn
conjugate of �, such that

�(x)�∗(x�(x)) → 1, x ↑ ∞.

The de Bruyn conjugate is asymptotically unique in the sense that if also �̃ is s.v.
and �(x)�̃(x�(x)) → 1, then �∗ ∼ �̃. Furthermore (�∗)∗ ∼ �.
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As a simple example, check that if � = log, then �∗ ∼ 1/ log. Let us illustrate
how (2.7) can be obtained from this proposition. Put y := 1/(1 − F(x)). Then
1 − F(x) = x−α�F (x) translates into

y = xα�−1
F (x) = (x�(x))α

where

�(x) := �
−1/α

F (x).

By Proposition 2.5, one can solve the equation y1/α = x�(x) for x yielding x =
y1/α�∗(y1/α) where �∗ is the de Bruyn conjugate of �. The direct connection
between the two functions F and U is given by U(1/(1 − F(x))) ∼ x (check
this!), or by

x ∼ U(y) = yγ �U (y) = y1/α�∗(y1/α).

This yields that indeed γ = α−1 and that �U(x) ∼ �∗(xγ ). We see how the link
between �F and �U runs through � and its de Bruyn conjugate �∗. Note that all
the previous steps can be reversed so that there is full equivalence between the
statements.

Example. Assume that �F (x) = (log x)β ; then �(x) = (log x)−β/α = (log x)−βγ

and we need to solve the equation y = (x�(x))α for x. This means that

y
1
α = x(log x)−βγ ∼ y

1
α �∗(y

1
α ){log y

1
α + log �∗(y

1
α )}−βγ .

This in turn leads to

1 ∼ �∗(y)(log y)−βγ

(
1 + log �∗(y)

log y

)−βγ

.

Now use Proposition 2.5 to deduce that �∗(y) = (log y)βγ and hence that �U (x) ∼
(γ log x)βγ .

2.9.4 Proofs for section 2.6

We start with the proof of Proposition 2.1. To this end, define k(x, u) by the
relation U(ux) − U(x) = k(x, u)a(x) where u > 0 has been fixed. By definition,
the inverse function Q(1 − 1

ux
) equals U(x) + k(x, u)a(x) where k(x, u) → hγ (u)

as x ↑ ∞. But then

1

ux
= 1 − F(U(x) + k(x, u)a(x))

while at the same time 1/x = 1 − F(U(x)). Put y = U(x). We find that

1

u
= 1 − F(y + k̃(y, u)a(U←(y)))

1 − F(y)
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where we have put k̃(y, u) = k(U←(y), u) = k(x, u). Replace a(U←(y)) by b(y).
Further change u into v by the relation v = hγ (u). Equivalently, by (2.5) u = (1 +
γ v)1/γ ; for γ = 0, v = log u immediately leads to u = exp v. Replace this u by v in
k̃(y, u) to obtain k̆(y, v). We have therefore transformed the original equation into

1 − F(y + b(y)k̆(y, v))

1 − F(y)
= (1 + γ v)−1/γ = ηγ (v).

However, when x → ∞, k(x, u) → hγ (u) translates into y ↑ x∗ and k̆(y, v) → v.
By the monotonicity of F we see that then also

1 − F(y + b(y)v)

1 − F(y)
→ (1 + γ v)−1/γ . (C∗

γ ) (2.20)

If also U is continuous, then the converse derivation holds as well.
Note that the substitutions y = U(x) and v = hγ (u) yield

b(y + vb(y))

b(y)
= a(U←(y + vb(y)))

a(U←(y))

= a(U←(U(x) + vb(U(x))))

a(x)
→ uγ = 1 + γ v .

Indeed, the last step follows again from the basic relation (Cγ ) since for x → ∞
U(x) + vb(U(x)) = U(xu) + (v − k(x, u))a(x) = U(xu) + o(1)a(x)

= U(xu)(1 + o(1))

together with the uniform convergence theorem 2.3(i).
The statement of Proposition 2.2 needs no proof in one direction as the choice

of y provides a necessary condition immediately. That the condition is also suffi-
cient is less obvious and needs interpolation type arguments as can be found in de
Haan (1970).

To prove the statement of (ii) recall that when x → 1, then log x ∼ x − 1. If
γ ≤ 0, then U(xu)/U(x) → 1 and hence log(U(xu)/U(x)) ∼ U(xu)/U(x) − 1.
Multiplying by U(x)/a(x), we can use (Cγ ) to see that

U(x)

a(x)
{log U(xu) − log U(x)} ∼ U(xu) − U(x)

a(x)
→ uγ − 1

γ
(2.21)

as x → ∞. In case γ > 0, the quantity on the left tends to log u since
U(x)/a(x) → γ −1 while U(tx)/U(x) → uγ . Combination of the two statements
leads to the condition for x → ∞

U(x)

a(x)
{log U(xu) − log U(x)} →




log u, if γ ≥ 0,
(C̃γ )

uγ −1
γ

, if γ < 0
provided x∗ > 0.
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(iii) In case γ > 0, U(x)/a(x) → 1/γ . Also, in section 2.6, it was outlined that
when γ > 0 elog X(log x) → γ and hence elog X(log U(x)) → γ as x → ∞. Indeed,
limit and integral can be interchanged there using the dominated convergence
theorem based on the Potter bounds 2.4(iv). So we find indeed that in this case

U(x)

a(x)
elog X(log U(x)) → 1.

On the other hand, when γ ≤ 0, we have

elog X(log U(x)) :=
∫ ∞

U(x)

log(y/U(x))

(1 − F)(U(x))
dF (y)

= −x

∫ ∞

U(x)

log
y

U(x)
d(1 − F(y))

= x

∫ ∞

x

log
U(v)

U(x)

dv

v2

=
∫ ∞

1
(log U(wx) − log U(x))

dw

w2
,

where a first substitution 1 − F(y) = 1
v

was followed by a second v = wx.
Now, when γ ≤ 0, apply (2.21) to see that under (C̃γ ) the requested result

follows. This final limit can be taken using the dominated convergence theorem
with the help of Potter type bounds on the (2.21), which can be found, for instance,
in Dekkers et al. (1989).
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AWAY FROM THE MAXIMUM

3.1 Introduction

We start with a simple observation. It would be unrealistic to assume that only the
maximum of a sample contains valuable information about the tail of a distribution.
Other large order statistics could do this as well. In this chapter, we investigate how
far we can move away from the maximum. If we stay close to the maximum, then
only few order statistics are used and our estimators will show large variances.
Running away from the maximum will decrease the variation as the number of
useful order statistics increases; however, as a side result, the bias will become
larger. If we plan to use the subset {Xn−k+1,n, Xn−k+2,n, . . . , Xn,n} of the order
sample values

X1,n ≤ X2,n ≤ · · · ≤ Xn−k+1,n ≤ · · · ≤ Xn−1,n ≤ Xn,n

then we need to find out how to choose the rank k in the order statistic Xn−k+1,n

optimally. What is clear is that k should be allowed to tend to ∞ together with
the sample size. But whether k/n needs to be kept small is not so obvious.

In this chapter, we offer an intuitive guideline that is developed from a closer
look at the asymptotics of the larger order statistics. Again, for a practitioner, it
would look awkward to only use the largest value in a sample to estimate tail
quantities, especially as this value may look so large that it seems hardly related
to the sample. From this analysis, it will follow that the choice of the number of
useful larger order statistics will also depend on the second-order behaviour in the
relations (Cγ ) and (C∗

γ ). These will be developed in this chapter too. Mathematical
details are deferred to a final section.

Statistics of Extremes: Theory and Applications J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels
 2004 John Wiley & Sons, Ltd ISBN: 0-471-97647-4
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3.2 Order Statistics Close to the Maximum

There is a great variety of possible limit laws for the individual order statistics. If
the index k is small, we can expect that the limit behaviour of Xn−k+1,n is similar
to that of the maximum Xn,n. We derive the corresponding theorems first.

To do anything explicit with the k-th largest order statistic, we need its distri-
bution. This can be rather easily obtained from a combinatorial argument. We look
for the probability that Xn−k+1,n does not overshoot the value x. To do that, take
any of the n elements from the sample and force it to have a value u at most x.
The remaining n − 1 values have to be distributed binomially so that k − 1 of the
other sample values lie to the right of u, while the remaining n − k values sit to
the left of u. Therefore,

P {Xn−k+1,n ≤ x} = n(n − 1)!

(k − 1)!(n − k)!

∫ x

−∞
Fn−k(u){1 − F(u)}k−1 dF(u). (3.1)

Case 1: k fixed

We follow the procedure that gave us the solution of the extremal limit problem. We
again use Theorem 2.1 and take z, a real, bounded and continuous function. Then

E{z(a−1
n (Xn−k+1,n − bn))}

= n!

(k − 1)!(n − k)!

∫ ∞

−∞
z

(
x − bn

an

)
Fn−k(x){1 − F(x)}k−1 dF(x).

The substitution F(x) = 1 − u
n

turns this into the form

E{z(a−1
n (Xn−k+1,n − bn))}

= 1

(k − 1)!

n!n−k

(n − k)!

∫ n

0
z(a−1

n (U(n/u) − bn))u
k−1

(
1 − u

n

)n−k

du.

From what we learnt about the maximum, where k = 1, the argument of z does
not depend upon k. Therefore, we still can take bn = U(n) and an = a(n) as in
the case of the maximum. Without much trouble, we see that if F satisfies Cγ (a),
then, as n → ∞

E

{
z

(
Xn−k+1,n − U(n)

a(n)

)}
→ 1

�(k)

∫ ∞

0
z(hγ (1/u))e−uuk−1 du (3.2)

since for large n and fixed k, n!/(n − k)! ∼ nk . We can interpret the right-hand
side as an expectation with respect to a gamma density. If we denote by {Ej }∞j=1
a sequence of i.i.d. exponential random variables with mean 1, then (3.2) can be
written in the form

Xn−k+1,n − U(n)

a(n)

D→ hγ





 k∑

j=1

Ej




−1

 . (3.3)
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Case 2: k → ∞, n − k → ∞

In what follows, we assume that k, n − k and therefore n all tend to ∞. Of course,
at this point, we do not know in advance what kind of centering and normal-
ization should be used. So, take a centering sequence {bn} of real numbers and
a normalizing sequence {an} of positive reals for which a−1

n (Xn−k+1,n − bn) will
converge in distribution. Recall the formula (3.1) and let z again be any real-valued
bounded and continuous function on R. Then we want to investigate the limiting
behaviour of

Zn := E

{
z

(
Xn−k+1,n − bn

an

)}

= n!

(k − 1)!(n − k)!

∫ ∞

−∞
z

(
x − bn

an

)
Fn−k(x){1 − F(x)}k−1 dF(x)

where {an} and {bn} are norming, respectively centering constants.
As happened in the previous analysis, it is not surprising that, apart from the

argument of z, all other ingredients can be controlled, regardless of the properties of
the underlying distribution. This is done by changing x into v by the transformation

1 − F(x) = k

n
+

√
k(n − k)

n3
v. (3.4)

Why this specific transformation works is fully explained in section 3.4.1. If we
solve the above equation for x and replace x = x(k, n, v) in the expression Zn,
then all we have to do is to find appropriate choices of an and bn such that

τn(v) := x(k, n, v) − bn

an

→ τ (v) (3.5)

for v bounded. Indeed, as shown in section 3.4.1, we have the following cover-
ing result.

Proposition 3.1 If (3.5) holds for v bounded, then

E

{
z

(
Xn−k+1,n − bn

an

)}
→ 1√

2π

∫ ∞

−∞
z(τ (v)) e− 1

2 v2
dv. (3.6)

Since the sum
∑k

j=1 Ej in (3.3) will be ultimately approximated by a normal
variable when k ↑ ∞, the appearance of the normal distribution should not be sur-
prising in view of the central limit theorem.

The explicit value of x(k, n, v) is easily obtained from (3.4) and is

x(k, n, v) = U




(
k

n
+

√
k(n − k)

n3
v

)−1



= U


n

k


1 −

√
1 − k

n

k
v + o

(
1√
k

)



 .
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The choice of bn in (3.5) is almost automatic, since 0 is a bounded value for v.
Therefore, we put bn = x(k, n, 0) = U(n/k). The choice of an can then be made
by requiring the convergence of

τn(v) =
U

(
n
k

(
1 −

√
1− k

n

k
v + o

(
1√
k

)))
− U

(
n
k

)
an

→ τ (v)

for v bounded. That the choice of an has to be determined by the limiting behaviour
of the ratio k/n will then become clear. Here are a few illustrations on how
conditions on the distribution F or on the tail quantile function influence the
possible choice of k and as such of an.

(i) We immediately get a weak law. Assume k/n → 0. If F satisfies Cγ (a), then
the choice an = a(n/k) yields

τn(v) =
U

(
n
k

(
1 − v√

k
(1 + o(1))

))
− U

(
n
k

)
a

(
n
k

) → 0 = τ (v).

Hence Zn → z(0) and

Xn−k+1,n − U
(

n
k

)
a

(
n
k

) P⇒ 0.

In the case γ > 0, we can go one step further. Indeed, since U(x)
a(x)

→ γ −1, we
also have

Xn−k+1,n

a
(

n
k

) P⇒ 1

γ
.

We illustrate the result that the k-th largest order statistic leads to an asymptot-
ically consistent estimator for the extreme value index. In Figure 3.1, we show
Xn−k+1,n/a(n/k) as a function of n, n = 1, . . . , 5, 000, with k = 	n0.25
 (solid
line), k = 	n0.5
 (broken line) and k = 	n2/3
 (broken-dotted line) for data gener-
ated from the Burr(1, 1, 1) distribution.

(ii) Getting a closer look at what happens around n/k, we note that the fundamental
relation (Cγ ) suggests that as k → ∞

U
(

n
k

(
1 − v√

k
(1 + o(1))

))
− U

(
n
k

)
a(n

k
)

∼ 1

γ

((
1 − v√

k

)γ

− 1

)
∼ − v√

k
.

Under appropriate continuity conditions, we expect that an = k−1/2a(n/k) is a
good choice since then τn(v) → −v. Since the normal distribution is symmetric,
this choice leads for the limiting operation k

n
→ 0 to

√
k
Xn−k+1,n − U

(
n
k

)
a

(
n
k

) D→ Y ∼ N(0, 1).
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Figure 3.1 Plot of Xn−k+1,n/a(n/k) versus n with k = 	n0.25
 (solid line), k

= 	n0.5
 (broken line) and k = 	n2/3
 (broken-dotted line) for data generated from
the Burr(1, 1, 1) distribution.

(iii) Take γ > 0. This last result is interesting since it suggests that we might be
able to construct asymptotic confidence intervals for the unknown index γ based
on this normal approximation. To try this, write the above result in the form

√
k

{
Xn−k+1,n

a( n
k
)

− 1

γ

}
−

√
k

{
U(n

k
)

a( n
k
)

− 1

γ

}
D→ Y ∼ N(0, 1). (3.7)

If we hope to get normal convergence of the random quantity on the left, then the
second quantity needs to have a limit as well. In other words, if we want normal
convergence of the estimator on the left, we need second-order information on
how fast U(x)/a(x) tends to 1/γ as x → ∞. This speed of convergence will then
tell us at what speed k is allowed to tend to ∞ with n. Let us give a simple
example from the Hall-class where U(x) = Cxγ (1 + Dx−β(1 + o(1))) for some
β > 0 and real constants C > 0 and D. Then it easily follows that a(x) = γCxγ

and the condition asks the quantity
√

k D
γ

(
n
k

)−β
to converge, or that k ∼ const ×

n2β/(1+2β). We illustrate the convergence of
√

k(Xn−k+1,n − U(n/k))/a(n/k) to
its normal limit using the Burr(η, τ, λ) distribution. This distribution belongs to
the Hall-class with γ = (λτ)−1, C = η1/τ , D = −1/τ and β = 1/λ. In Figure 3.2,
we show the histogram of

√
k(Xn−k+1,n − U(n/k))/a(n/k) with k = 	n2/3
 for

simulated data sets of size (a) n = 100, (b) n = 500, (c) n = 1000 and (d) n =
2000 from the Burr(1, 1, 1) distribution.
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(iv) Our last choice has nothing to do with extremal behaviour. Nevertheless, we
include it to show how the basic condition (Cγ ) for the extremal behaviour is
replaced by a continuity condition on the tail quantile function. In the central
part of the sample, the behaviour of Xn−k+1,n is well approximated by a normal
distribution as can be shown as follows. Assume that k tends to ∞ in such a way

−4 −2 0
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2 4

0.
0

0.
1
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Figure 3.2 Histogram of
√

k(Xn−k+1,n − U(n/k))/a(n/k) with k = 	n2/3
 for
simulated data from the Burr(1, 1, 1) distribution: (a) n = 100, (b) n = 500,
(c) n = 1000 and (d) n = 2000.
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that the ratio k/n → λ ∈ (0, 1). Since now the argument in U(n/k) ∼ bn does no
longer tend to ∞, the condition on F or U refers to finite values of the argument.
This time, we use the continuity of U . For, one can then show that if F has a
density f that is continuous and strictly positive at U(λ−1), then

√
n

λ(1 − λ)
f

(
U

(
1

λ

)) {
Xn−k+1,n − U

(
1

λ

)}
D→ N(0, 1)
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or
√

n

{
Xn−k+1,n − U

(
1

λ

)}
D→ N

(
0,

λ(1 − λ)

f 2
(
U

( 1
λ

))
)

. (3.8)

This last result can be fruitfully applied if one needs to estimate central quantiles.
However, note that there is hardly any relationship between the behaviour of the
largest order statistics and quantiles away from the tails.

What did we learn from the above analysis? That we are entitled to use more of
the larger order statistics, that asymptotic consistency is not too difficult to obtain,
but that the bias as it appears in (3.7) will only be controllable if we have some
additional second-order information on the tail of U . Alternatively, the choice of
the number of useful larger order statistics will also be decided by the second-
order behaviour of the functions F and U . In the next step, we will use more order
statistics, but the same phenomena will play a fundamental role.

3.3 Second-order Theory

This section covers second-order results on the condition (Cγ ). The discussion of
their equivalent versions for distributions is given in section 3.3.3.

3.3.1 Remainder in terms of U

Assume that F satisfies Cγ (a) where a ∈ Rγ . In this section, we derive a remainder
of the limiting operation expressed by the (Cγ )-condition. Let there exist a second
(ultimately) positive function a2(x) → 0 when x → ∞ such that

U(ux) − U(x)

a(x)
− hγ (u) ∼ a2(x)k(u), x ↑ ∞ (3.9)

for all u > 0. We know from the previous section that for some s.v. �, a(x) =
xγ �(x). Moreover, with this real value of γ we also have that hγ (u) = ∫ u

1 vγ−1 dv.
Therefore, for u, v > 0, we have the relations

hγ (uv) = uγ hγ (v) + hγ (u) = vγ hγ (u) + hγ (v), (3.10)

h−γ

(
1

u

)
= −hγ (u) (3.11)

and

uγ h−γ (u) = hγ (u). (3.12)

We first derive an equation for k in (3.9). To get the latter, we follow the usual
approach of replacing u in the equation by uv and subsequent rewriting. We get

U(uvx) − U (x) = {U (uvx) − U (ux)} + {U (ux) − U (x)}.
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A somewhat tedious calculation yields the fundamental equation

a−1
2 (x)

{
U(uvx) − U(x)

a(x)
− hγ (uv)

}

= a−1
2 (ux)

{
U(uvx) − U(ux)

a(ux)
− hγ (v)

}{
a(ux)

a(x)

a2(ux)

a2(x)

}

+a−1
2 (x)

{
U(ux)−U(x)

a(x)
−hγ (u)

}
+a−1

2 (x)

{
a(ux)

a(x)
hγ (v)+hγ (u)−hγ (uv)

}
.

The third term on the right can be simplified by using (3.10) and the fact that
a is regularly varying with index γ . It yields

a−1
2 (x)hγ (v)

{
a(ux)

a(x)
− uγ

}
= uγ a−1

2 (x)hγ (v)

{
�(ux)

�(x)
− 1

}
.

The above equation leads to an equation for k when x → ∞ since from (3.9) (in
case k is not a multiple of hγ ) we have either the convergence of a2(ux)/a2(x)

or, equivalently, the convergence of a−1
2 (x)

{
�(ux)
�(x)

− 1
}

for all u > 0.
The first implies regular variation of a2. So, we assume from now on that

a2 ∈ Rρ, ρ ≤ 0. (3.13)

The alternative condition on � can be written in the form

�(ux) − �(x)

a2(x)�(x)
→ m(u). (3.14)

However, this is precisely a limiting relation as discussed in section 2.1. Clearly, the
auxiliary function a2(x)�(x) is of ρ-regular variation and therefore m(u) = chρ(u)

for some constant c. This result is in accordance with what we know from the
theory of slow variation with remainder as it has been developed by Goldie and
Smith (1987). Alternatively, we can say that log � satisfies Cρ(a2).

Using this additional information in the fundamental equation, we arrive at the
following functional equation for the function k

k(uv) = uγ+ρk(v) + k(u) + cuγ hγ (v)hρ(u) (3.15)

which is valid for all u, v > 0. The derivation of the solution k in (3.15) is given in
the last section of this chapter. Of course, one could consider a number of subcases
resulting from the possible values of both γ and ρ. The derivation in section 3.4.3
shows this to be unnecessary. The next result is basically due to de Haan and
Stadtmüller (1996).

Theorem 3.1 Assume U satisfies Cγ (a); assume further that for all u > 0

U(ux) − U(x)

a(x)
− hγ (u) ∼ a2(x)k(u), x ↑ ∞
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where a2 → 0 belongs to Rρ with ρ ≤ 0. Then for some real constant c

a−1
2 (x)

{
a(ux)

a(x)
− uγ

}
→ c uγ hρ(u).

Furthermore, for this constant c and an arbitrary constant A ∈ R,

k(u) = A hγ+ρ(u) + c

∫ u

1
tγ−1 hρ(t) dt.

If ρ < 0, then an appropriate choice of the auxiliary function a results in a sim-
plification of the limit function.

Proposition 3.2 Under the conditions of Theorem 3.1, if ρ < 0, then

lim
x→∞

1

a2(x)

(
U(ux) − U(x)

ã(x)
− hγ (u)

)
= c̃hγ+ρ(u),

where c̃ = ρ−1c + A and ã(x) = a(x)
(
1 − ρ−1ca2(x)

)
for all x such that a2(x) <

|ρ/c|.

3.3.2 Examples

We give a couple of distributions that often appear in applications and for which
the second-order quantities can be easily derived.

Weibull distributions

A distribution that is often employed in reliability theory is the Weibull distribution
defined on R+ by the tail expression

1 − F(x) = exp{−Cxβ}
where both C and β are positive. This distribution is to be distinguished from
the extreme value Weibull type discussed in Chapter 2. For β = 1, one finds the
exponential distribution while for β = 2, one gets the Rayleigh distribution. The
tail quantile function is easily found and equals U(y) = (C−1 log y)1/β . It then
easily follows that a(x) = β−1C−1/β(log x)(1−β)/β . Hence, F satisfies C0(a).
Moreover

U(xu) − U(x)

a(x)
− log u = β log x

((
1 + log u

log x

)1/β

− 1

)
− log u

∼ 1 − β

2β

(log u)2

log x

so that ρ = 0, a2(x) = (log x)−1, c = 1−β

β
and k(u) = c

2 (log u)2. The case where
β = 1 is particularly simple as it should be.
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Hall-class

We have already hinted at the Hall-class of distributions that is defined in terms
of the tail quantile function by an expansion of the form

U(x) = Cxγ

(
1 + D1

xβ
+ D2

xη
+ · · ·

)

where C > 0, γ > 0 while 0 ≤ β ≤ η ≤ · · · . The calculations for the second-order
quantities are particularly simple and lead to a(x) = γCxγ and therefore

U(xu) − U(x)

a(x)
− hγ (u) = D1(γ − β)

γ
x−βhγ−β(u) + · · ·

so that ρ = −β, c = 0, a2(x) = x−β while k(u) = D1(γ−β)

γ
hγ−β(u).

As a special example, we look at the Burr(η, τ, λ) distribution where

1 − F(x) =
(

η

η + xτ

)λ

.

With C = η
1
τ , γ = (λτ)−1, D1 = −τ−1 and β = λ−1 this distribution turns out to

be a special case of the general Hall-class.

3.3.3 Remainder in terms of F

We transform the remainder condition that has been stated above in terms of U

towards a statement based on the distribution function F . This can sometimes be
useful in verifying such remainder condition on specific examples. Also, in the
subsequent statistical chapters, these will be of use.

Condition (3.9) can be written in the form

U(ux) = U(x) + a(x)hγ (u) + a1(x)kx(u)

where we put a1(x) = a(x)a2(x) and where kx(u) → k(u) as x → ∞.
We operate on the above equation with the function 1 − F . By continuity, the

left-hand side turns into (ux)−1. We can also replace x−1 by (1 − F)(U(x)). We
then obtain

1

u
= (1 − F)

(
U(x) + a(x)hγ (u) + a1(x)kx(u)

)
(1 − F) (U(x))

We now define y = U(x) and replace a(x) by h(U(x)). The above relation turns
into the form

1

u
= (1 − F)

(
y + h(y)hγ (u) + h(y)χ(y)κy(u)

)
(1 − F) (y)
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where we have defined

χ(y) := a2 (U←(y)) (3.16)

and

κy(u) := kU←(y)(u). (3.17)

A more transparent form of the above equation is the following

1

u
= (1 − F) (y + h(y)v(u, y))

(1 − F) (y)
(3.18)

where

v(u, y) := hγ (u) + χ(y)κy(u).

The solution of this equation is given in the final section and leads to the following
result. Here again, we use the notation ηγ (v) = (1 + γ v)−1/γ .

Theorem 3.3 Assume U satisfies Cγ (a) and is continuous. Assume further that for
all u > 0

U(ux) − U(x)

a(x)
− hγ (u) ∼ a2(x)k(u) , x ↑ ∞

where a2 → 0 belongs to Rρ with ρ ≤ 0. Then for y → x∗

1

χ(y)

{
1 − F(y + vh(y))

1 − F(y)
− ηγ (v)

}
→ ψ(v)

where χ(y) = a2(U
←(y)) and ψ(v) = η

1+γ
γ (v)k

(
1

ηγ (v)

)
.

The converse holds too since all steps can be reversed. Similarly to Proposition 3.2,
also here a simpler limit function can be obtained when replacing a by ã.

Proposition 3.4 Under the assumptions of Theorem 3.3, we have for ρ < 0

lim
y→x∗

1

χ(y)

{
1 − F(y + vh̃(y))

1 − F(y)
− ηγ (v)

}
= c̃η1+γ

γ (v)hγ+ρ

(
1

ηγ (v)

)
,

where h̃(y) = ã(U←(y)).

3.4 Mathematical Derivations

In this section, we give sketches of the proofs of the results in the previous sections.
We first prove the general auxiliary result (3.6) without reference to properties of
the underlying distribution or tail quantile function. Then we indicate why (3.8) is
valid. We then turn to the results concerning second-order theory.
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3.4.1 Proof of (3.6)

We need to rewrite the integrand in such a way that both factors Fn−k and (1 −
F)k−1 can be handled simultaneously. To achieve that, substitute 1 − F(x) :=
qn + pnv where the sequences qn and pn will be determined in due time. We also
write q̄n := 1 − qn for convenience. With this substitution, we can write

Zn = n!pn

(k − 1)!(n − k)!

∫ q̄n
pn

− qn
pn

z(τn(v))(qn + pnv)k−1(q̄n − pnv)n−k dv

:= I1(qn, pn)

∫ q̄n
pn

− qn
pn

z(τn(v))I2(qn, pn, v) dv

where we have abbreviated

τn(v) :=
U

(
1

qn+pnv

)
− bn

an

for convenience. Furthermore, we put

I2(qn, pn, v) :=
(

1 + pn

qn

v

)k−1 (
1 − pn

q̄n

v

)n−k

and

I1(qn, pn) := n!pn

(k − 1)!(n − k)!
qk−1

n q̄ n−k
n .

We first deal with I2. We take its logarithm and expand to get

log I2(qn, pn, v) = pnv

{
k − 1

qn

− n − k

q̄n

}
− v2

2
p2

n

{
k − 1

q2
n

+ n − k

q̄2
n

}
+ · · · .

It is now natural to choose qn in such a way that the first term on the right anni-
hilates. The choice of pn can then be made to make the coefficient of − 1

2v2 equal
to 1. An exact solution would lead to qn = k−1

n−1 and p2
n = (k−1)(n−k)

(n−1)3 . However, the
first term still annihilates if we stick to the simpler choice

qn = k

n
, p2

n = k(n − k)n−3.

With this choice, one can then prove that indeed I2(qn, pn, v) → e
− 1

2 v2
. With the

help of Stirling’s formula m! ∼ m
m+ 1

2 e−m
√

2π , it takes a bit of simple calculus

to verify that also I1(qn, pn) → (2π)
− 1

2 .
The reason for the above calculations is to show that, once the quantities qn and

pn are chosen as above, all information on the underlying distribution is contained
in the remaining quantity τn(v).
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It remains to show that the expression (3.6) is valid. To do that, let ε be any
positive small quantity. Choose T large enough to have that �(−T ) = 1 − �(T ) ≤
ε. That quantity T will need to satisfy some more conditions. If M is a bound for
the bounded function |z|, then∣∣∣∣∣

∫ q̄n
pn

T

I1(qn, pn)zn(v)I2(qn, pn, v) dv

∣∣∣∣∣ ≤ M

∫ q̄n
pn

T

I1(qn, pn)I2(qn, pn, v) dv.

Turning back to the expression with 1 − F(x) = qn + pnv =: s as integrating vari-
able, the integral on the right can be rewritten as

J1 :=
∫ qn

pn

T

I1(qn, pn)I2(qn, pn, v) dv = n!

(k − 1)!(n − k)!

∫ 1

qn+pnT

(1 − s)n−ksk−1 ds.

However, on the interval (qn + pnT , 1), the quantity ((s − qn)/(pnT ))2 is not
smaller than 1 and hence

J1 ≤ n!

(k − 1)!(n − k)!p2
nT

2

∫ 1

0
(s − qn)

2(1 − s)n−ksk−1 ds =
1

p2
nT

2

{
k(k + 1)

(n + 1)(n + 2)
− 2qn

k

n + 1
+ q2

n

}
= O(T −2)

which can be made smaller than ε for T large enough as long as lim sup k
n

< 1. A
similar argument holds for the other limit.

Combining the above estimates, we can write∣∣∣∣Zn − 1√
2π

∫ ∞

−∞
z(τ (v))e− 1

2 v2
dv

∣∣∣∣
≤ M

∫ T

−T

∣∣∣∣I1(qn, pn)I2(qn, pn, v) − 1√
2π

e− 1
2 v2

∣∣∣∣ dv + 4Mε.

This proves the important auxiliary result.

3.4.2 Proof of (3.8)

Remember that we take k/n → λ ∈ (0, 1). We return to the crucial quantity τn(v).
Rewrite this in the form

τn(v) =
U

(
n
k

(
1 −

√
1−(k/n)

k/n
v√
n

+ o
(

1√
n

)))
− U

(
n
k

)

an
n
k

√
1−(k/n)

k/n
v√
n

(
n

k

√
1 − (k/n)

k/n

v√
n

)
.

Part of this quantity is of the order −U ′( 1
λ
) 1

λ

√
1−λ
λ

v√
n

when the tail quantile func-

tion has a derivative at the point 1
λ

. If we choose
√

n an = 1, then under the latter
condition

τn(v) → τ (v) = −U ′
(

1

λ

)
1

λ

√
1 − λ

λ
v.
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Then τ (v) = −Cλv for some function Cλ > 0. It follows that for continuous,
bounded functions z,

E

{
z

(√
n

(
Xn−k+1,n − U

(
1

λ

)))}
→ 1

Cλ

√
2π

∫ ∞

−∞
z(y)e

− y2

2C2
λ dy.

Let us formulate the above result in terms of F .
Assume that k

n
→ λ ∈ (0, 1) and that F has a density f that is continuous and

strictly positive at U(λ−1). Then√
n

λ(1 − λ)
f

(
U

(
1

λ

)) {
Xn−k+1,n − U

(
1

λ

)}
D→ N(0, 1)

or

√
n

{
Xn−k+1,n − U

(
1

λ

)}
D→ N

(
0,

λ(1 − λ)

f 2
(
U

( 1
λ

))
)

which is (3.8) as we will now show. We have already shown that
√

n(Xn−k+1,n −
U( 1

λ
))

D→ N(0, C2
λ). However, since F has a derivative f , by the definition of

inverse function, the relation (1 − F)(U(y)) = y−1 is the same as in (2.17). But
then

Cλ = 1

λ

√
1 − λ

λ

λ2

f
(
U

( 1
λ

)) =
√

λ(1 − λ)

f
(
U

( 1
λ

))
which is equivalent to the statement (3.8). Observe that the two boundary cases
λ = 0 and λ = 1 had to be excluded.

3.4.3 Solution of (3.15)

We follow the approach by Vanroelen (2003). Define

W(x) := U(x) −
∫ x

1

a(u)

u
du.

Then it is easy to derive the following auxiliary equation for the function W :

W(xu) − W(x)

a2(x)a(x)
= 1

a2(x)

[
U(xu) − U(x)

a(x)
− hγ (u)

]

−
∫ x

1

1

a2(x)

[
a(xu)

a(x)
− uγ

]
du

u
.

The first part of the right-hand side converges to k(u) in view of our second-order
condition on the function U . By the condition on the auxiliary function a2, also
the second part of the right-hand side converges. But then the left-hand side of
the above expression converges as well. Automatically, the limit has to be of the
form as predicted in section 2.1. The auxiliary function on the left is of regular
variation with index ρ + γ and hence the limit on the left is of the form Ahρ+γ (u)

for some constant A. Solving for k(u) gives the requested expression.
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3.4.4 Solution of (3.18)

The equation has to be solved for the quantity u. Two cases arise, depending on
the value of γ .

(i) : γ �= 0 Substitute hγ (u) = 1
γ
(uγ − 1). Then

uγ = (1 + γ v)

{
1 − γχ(y)κy(u)

1 + γ v

}
.

Taking the γ -th root, we can also write this in the form

u = 1

ηγ (v)

{
1 − γχ(y)κy(u)

1 + γ v

} 1
γ

.

But then we arrive at the following expression for the remainder condition

1 − F(y + vh(y))

1 − F(y)
− ηγ (v) = ηγ (v)

{(
1 − γχ(y)κy(u)

1 + γ v

)− 1
γ

− 1

}
.

Divide both sides by χ(y) → 0 when y ↑ x∗. Apply the usual approxima-
tion on the right-hand side to see that this side is asymptotically equal to
ηγ (v)(1 + γ v)−1κy(u(v)). However, when y ↑ x∗ also u(v, y) → η−1

γ (v) so
that by the continuity of F and the condition kx(u) → k(u) we ultimately
find

1

χ(y)

{
1 − F(y + vh(y))

1 − F(y)
− ηγ (v)

}
→ η1+γ

γ (v)k

(
1

ηγ (v)

)
=: ψ(v).

(ii) : γ = 0 A similar approach applies with the equation

log u + χ(u)κy(u) = v(u, y)

that has to be solved for u. Following the same path as before, the limit
quantity ψ(v) is now equal to e−vk(ev), which coincides with the previous
limit if we straightforwardly put γ = 0.



4

TAIL ESTIMATION UNDER
PARETO-TYPE MODELS

In this chapter, we consider the estimation of the extreme value index, of extreme
quantiles and of small exceedance probabilities, in case the distribution is of Pareto-
type, that is,

F̄ (x) = x−1/γ �F (x),

or equivalently

Q(1 − 1/x) = U(x) = xγ �U (x),

where �F and �U are related s.v. functions as shown in section 2.9.3. We also
discuss inferential matters such as point estimators and confidence intervals.

Since the early eighties of the twentieth century, this problem has been studied in
great detail in the literature. Hill’s estimator (Hill (1975)), which appeared in 1975,
continues to be of great importance and constitutes the main subject of this chapter.
However, to get a better feeling for the choice of possible estimators, we start out
with a few examples of naive estimators. What they all have in common is an attempt
to avoid the unknown and irrelevant slowly varying part �. We assume from now on
that we have a sample of i.i.d. values {Xi; 1 ≤ i ≤ n} from a Pareto-type tail 1 − F .

Pareto-type tails are systematically used in certain branches of non-life insur-
ance. Also in finance (stock returns) and in telecommunication (file sizes, waiting
times), this class is appropriate. In other areas of application of extreme value
statistics such as hydrology, the use of Pareto models appears to be much less sys-
tematic. However, the estimation problems considered here are typical for extreme
value methodology and at the same time the Pareto-type model is more specific and

Statistics of Extremes: Theory and Applications J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels
 2004 John Wiley & Sons, Ltd ISBN: 0-471-97647-4
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simpler to handle. So this chapter has also an instructive purpose; the heavy-tailed
distributions are an ideal ‘playground’ for developing effective methods that are to
be extended in the general case γ ∈ R.

4.1 A Naive Approach

Let us try some easy ways to get rid of the function �U . From Proposition 2.4, we
see that for x → ∞,

log U(x) = γ log x + log �U(x) ∼ γ log x .

Hence, it looks natural to replace in the above expression the deterministic quantity
U by a random quantity whose argument goes to infinity with the sample size. For
simplicity, the argument x could be taken to be n or more generally n/k. In the
sequel, we set Ûn(x) = Q̂n(1 − 1/x) for the natural empirical estimator of U . We
then expect to have a probabilistic statement of the type

log Ûn

(n

k

)
∼ γ log

n

k
.

However, for any r ∈ {1, 2, . . . , n}, one has

Ûn

(
n

n − r

)
= Xr,n

and so we expect asymptotically that for n → ∞ that log Xn−k+1,n ∼ γ log(n/k).
From (3.3), it follows that, replacing a(n) by γU(n), when k is kept fixed,

log

(
Xn−k+1,n

U(n)

)
= OP (1),

or

log Xn−k+1,n − γ log n − log �U (n) = OP (1)

from which, with Proposition 2.4, one indeed derives that if F satisfies (Cγ ) and
γ > 0

log Xn−k+1,n/ log n
P⇒ γ.

This simple result shows that a single larger order statistic can be used to
estimate the extreme value index γ . But there are some serious drawbacks to this
naive approach. For example, it looks indeed unsatisfactory to use only one single
order statistic in the estimation procedure. Also, what does it mean to keep k

fixed? Moreover, from the derivation it follows that the rate of convergence is
logarithmically slow.
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By basic statistical intuition, we can foresee that an estimator based on more
order statistics will be more reliable. One possibility is to consider differences of
two different extreme order statistics, such as (see Bacro and Brito (1993)):

log Xn−k+1,n − log Xn−2k+1,n

log 2

or generalizations with spacings of different order than k. Using the regular vari-
ation of Pareto-type tails, it can easily be seen that this estimator is consistent
if k → ∞ and n

k
→ ∞. It turns out that this statistic improves the consistency

rate considerably with respect to the first naive estimator, but still uses only two
extreme observations. Hill’s estimator will improve on this aspect considerably.
But even then, we need to know what large order statistics can be used in the
procedure. From the derivations in the previous chapter, we could deduce that, if
the sample size tends to ∞, then also k should be allowed to do the same, albeit
at a certain rate.

4.2 The Hill Estimator

There are at least four natural ways to introduce this estimator. All of them are
inspired by the previous analysis. Moreover, the estimator enjoys a high degree of
popularity thanks to some nice theoretical properties but in spite of some serious
drawbacks.

4.2.1 Construction

(i) The quantile view. The first source of inspiration comes from the quantile
plots of the Pareto-type distributions.

(a) These distributions satisfy

log Q(1 − p)

− log p
→ γ, as p → 0.

From this, it follows that a Pareto quantile plot, that is, an exponential
quantile plot based on the log-transformed data, is ultimately linear
with slope γ near the largest observations.

(b) Moreover, the slope of an ultimately linear exponential quantile plot can
be estimated by the mean excess values of the type Ek,n as discussed
in section 1.2.2.

Combining these two observations leads to the mean excess value of the
log-transformed data, known as the Hill estimator (Hill (1975)):

Hk,n = 1

k

k∑
j=1

log Xn−j+1,n − log Xn−k,n. (4.1)
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An important question can be raised concerning the optimality of the Hill esti-
mator as an estimator of the slope of a quantile-quantile QQ-plot. In fact, the
vertical coordinates log Xn−j+1,n are not independent and do not possess the
same variance, and hence summarizing the upper part of the Pareto quantile

plot
(

log =
(

n+1
j

)
, log Xn−j+1,n

)
, j = 1, . . . , k, using a least-squares line

y = log Xn−k,n + γ (x − log((n + 1)/(k + 1))) does not seem to be efficient
since the classical Gauss-Markov conditions are not met.

Combining the information over a set of possible j -values, we can look for
the least-squares straight line that fits best to the points{(

− log
j

n + 1
, log Xn−j+1,n

)
; j = 1, . . . , k + 1

}

where we force the straight line to pass through the most left of these points.
Such a line has the form

y = log Xn−k,n + γ

(
− log

j

n + 1
− log

n + 1

k + 1

)
.

A little reflection indicates that it might be wise to give points on the right of
the above set variable weights in view of the above-mentioned problem of
heteroscedasticity. In order to find the least-squares value of γ , we therefore
minimize the quantity

k∑
j=1

wj,k

[
log Xn−j+1,n − (log Xn−k,n + γ log

k + 1

j
)

]2

where {wj,k; j = 1, . . . , k} are appropriate weights. A simple calculation
tells us that the resulting value of γ , say γ̂k , is given by

γ̂k =
k∑

j=1

αj,k log
Xn−j+1,n

Xn−k,n

where

αj,k =
wj,k log k+1

j∑k
r=1 wr,k

(
log k+1

r

)2 .

When choosing αj,k = 1/k one arrives at the Hill estimator.

(ii) The probability view. The definition of a Pareto-type tail can be rewritten as

1 − F(tx)

1 − F(t)
→ x−1/γ as t → ∞ for any x > 1.

This can be interpreted as

P (X/t > x|X > t) ≈ x−1/γ for t large, x > 1.
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Hence, it appears a natural idea to associate a strict Pareto distribution with
survival function x−1/γ to the distribution of the relative excesses Yj = Xi/t

over a high threshold t conditionally on Xi > t , where i is the index of the j -
th exceedance in the original sample and j = 1, . . . , Nt . The log-likelihood
conditionally on Nt then becomes

log L(Y1, . . . , YNt ) = −Nt log γ −
(

1 + 1

γ

) Nt∑
j=1

log Yj .

Since

d log L

dγ
= −Nt

γ
+ 1

γ 2

Nt∑
j=1

log Yj ,

the likelihood equation leads to

γ̂ = 1

Nt

Nt∑
j=1

log Yj .

Choosing for the threshold t an upper order statistic Xn−k,n (so that Nt = k),
we obtain Hill’s estimator again. For t non-random, we get the ratio estimator
of Goldie and Smith (1987).

(iii) Rényi’s exponential representation. There is an alternative way of writing
the Hill estimator by introducing the random variables

Zj := j (log Xn−j+1,n − log Xn−j,n) =: jTj

that will play a crucial role later. Through a partial summation, one finds
that

k∑
j=1

Zj =
k∑

j=1

jTj =
k∑

j=1

j∑
i=1

Tj =
k∑

i=1

k∑
j=i

Tj

which easily leads to the crucial relation

Hk,n = 1

k

k∑
j=1

Zj = Z̄k.

Thanks to a remarkable property about the order statistics of an exponential
distribution that was discovered by A. Rényi (see further in section 4.4), it
follows that in case of a strict Pareto distribution, the transformed variables
Zj are independent and exponentially distributed:

Zj
D= γEj , j = 1, . . . , k,
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with (E1, E2, . . .) being standard exponentially distributed. This exponential
representation can be interpreted as a generalized linear regression model
with Z̄k the obvious maximum likelihood estimator of γ . Expressing a tail
index estimator in terms of spacings between subsequent order statistics
follows intuition. For, samples from distributions with heavy tails will be
characterized by systematically larger gaps when the index j decreases.

(iv) Mean excess approach. Still another alternative derivation is based on the
mean excess function of the log-transformed data. If 1 − F ∈ R−1/γ with
γ > 0, then as derived in section 2.6

E{log X − log x|X > x} =
∫ ∞

x

1 − F(u)

1 − F(x)

du

u
→ γ as x → ∞.

Replace the distribution F by its empirical counterpart F̂n, defined in section
1.1, and x by the random sequence Xn−k,n that tends to ∞. It is then a
pleasant exercise to show that

Hk,n =
∫ ∞

Xn−k,n

1 − F̂n(u)

1 − F̂n(Xn−k,n)

du

u
.

4.2.2 Properties

Mason (1982) showed that Hk,n is a consistent estimator for γ (as k, n → ∞,
k/n → 0) whatever the slowly varying function �F (or �U ) may be. This is
even true for weakly dependent data (Hsing (1991)) or in case of a linear pro-
cess (Resnick and Stărică (1995)). Asymptotic normality of Hk,n was discussed
among others in Hall (1982), Davis and Resnick (1984), Csörgő and Mason (1985),
Haeusler and Teugels (1985), Deheuvels et al. (1988), Csörgő and Viharos (1998),
de Haan and Peng (1998) and de Haan and Resnick (1998). In Drees (1998)
and Beirlant et al. (2002a), variance and rate optimality of the Hill estimator was
derived for large submodels of the Pareto-type model.

However, several problems arise.

(i) For every choice of k, we obtain another estimator for γ . Usually one plots
the estimates Hk,n against k, yielding the Hill plot: {(k, Hk,n) : 1 ≤ k ≤
n − 1}. However, these plots typically are far from being constant, which
makes it difficult to use the estimator in practice without further guide-
line on how to choose the value k. This is illustrated by a simulation
from a strict Pareto distribution (Figure 4.1(a)) and from a Burr distribution
(Figure 4.1(b)).

Resnick and Stărică (1997) proposed to plot {(log k, Hk,n) : 1 ≤ k ≤
n − 1}, see also Drees et al. (2000). While this indeed focuses the graphics
on the appropriate area, this procedure does not overcome some of the other
problems that are cited next.
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(b)

Figure 4.1 (k, Hk,n) for simulated datasets of size n = 500 from (a) the Pa(1)

and (b) the Burr(1,1,1) distribution.

(ii) In many instances, a severe bias can appear. This happens when the effect
of the slowly varying part in the model disappears slowly in the Pareto
quantile plot. Stated differently within the probability view, the assumption
that the relative excesses above a certain threshold follow a strict Pareto
distribution is sometimes too optimistic. This is illustrated in Figure 4.2
where a Pareto quantile plot from a Burr(1,1,1) is put in contrast with that of
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Figure 4.2 log U(x) as a function of log x for the Burr(1,1,1) and Burr(1,0.25,4)
distributions.
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Figure 4.3 Median and quartiles of the Hill estimates Hk,n as a function of k,
k = 1, . . . , 400, obtained from 100 samples of size 500 from a |T4| distribution.

a Burr(1,0.25,4) distribution. See also Figure 4.3 for a simulation experiment
from a |T4| distribution with γ = 0.25 where only for the smallest values of
k the median of the Hill estimator touches the correct value.

A large bias leads to poor coverage probabilities of confidence intervals. In
many practical cases, systematic over- or underestimation has to be avoided.
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For instance, in the valuation of a precious stone deposit, systematic overes-
timation of the tail of the carat size distribution will lead to over-optimistic
predictions.

(iii) The Hill estimator shares a serious defect with many other common esti-
mators that are based on log-transformed data: the estimator is not invariant
with respect to shifts of the data. As mentioned by several authors, inade-
quate use of the Hill estimator in conjunction with a data shift can lead to
systematic errors as well. A location-invariant modification of the Hill esti-
mator is proposed in Fraga Alves (2001). To this end, a secondary k-value,
denoted by k0 (k0 < k), is introduced, leading to

γ̂ (H)(k0, k) = 1

k0

k0∑
j=1

log
Xn−j+1,n − Xn−k,n

Xn−k0,n − Xn−k,n

.

If one lets both k = kn and k0 = k0,n tend to infinity with n → ∞, such that
k/n → 0 and k0/k → 0, one can show that γ̂ (H)(k0, k) is consistent. An
adaptive version of the proposed estimator has been proposed from the best
theoretical k0 given by

k0 ∼ [(1 + γ )/
√

2γ ]2/(1+2γ )k2γ /(1+2γ )

departing with some initial estimate γ̂ (0) in a first step; for instance, obtained
by setting k

(0)
0 = �2k2/3	.

4.3 Other Regression Estimators

The Hill estimator has been obtained from the Pareto quantile plot using a quite
naive estimator of the slope in the ultimate right end of the quantile plot. Of course,
more flexible regression methods on the highest k points of the Pareto quantile
plot could be applied. This programme was carried out in detail in Schultze and
Steinebach (1996), Kratz and Resnick (1996) and Csörgő and Viharos (1998). We
refer to these papers for more mathematical details and confine ourselves here to
the derivation of the estimators.

(i) The weighted least-squares fit on the Pareto quantile plot as treated in
section 4.2 can be rewritten in the form

γ̂k =
∑k

i=1 Ti

∑i
j=1 wj,k log k+1

j∑k
j=1 wj,k log2 k+1

j

.

Setting K(i/k) = i−1 ∑i
j=1 wj,k log k+1

j
, this estimator can be approxi-

mated by

γ̂ +
K,k = k−1 ∑k

i=1 K(i/k)i
(
log Xn−i+1,n − log Xn−i,n

)
k−1

∑k
j=1 K(j/k)

,
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showing that weighted least-squares estimation leads to the class of kernel
estimators introduced by Csörgő et al. (1985). Here, K denotes a kernel
function associating different weights to the different order statistics. How-
ever, Csörgő et al. (1985) also consider kernel functions with support outside
(0,1]. Optimal choice of K is possible but is hard to manage in practice.
Weighting the spacings Zi has the advantage that the graphs of the estimates
as a function of k are smoother in comparison with, for instance, the Hill
estimator where adjacent values of k can lead to quite different estimates.

(ii) The problem of non-smoothness of Hill estimates as a function of k can be
solved in another way: simple unconstrained least squares with estimation of
a slope γ as well as an intercept, say δ, can already provide more smooth-
ness even without the use of a kernel function. This procedure of fitting
lines to (parts of) QQ-plots and especially double-logarithmic plots can be
traced back to Zipf from the late 1940s (see Zipf (1949)). Only recently, this
procedure has been studied in more depth.

The classical least-squares procedure minimizing

k∑
j=1

(
log Xn−j+1,n −

(
δ + γ log

n + 1

j

))2

with respect to δ and γ leads to

γ̂ +
Z,k =

1
k

∑k
j=1

(
log n+1

j
− 1

k

∑k
j=1 log n+1

j

)
log Xn−j+1,n

1
k

∑k
j=1 log2 n+1

j
−
(

1
k

∑k
j=1 log n+1

j

)2

=
1
k

∑k
j=1

(
log k+1

j
− 1

k

∑k
j=1 log k+1

j

)
log Xn−j+1,n

1
k

∑k
j=1 log2 k+1

j
−
(

1
k

∑k
j=1 log k+1

j

)2
.

This is the estimator proposed in Schultze and Steinebach (1996) and Kratz
and Resnick (1996). In Csörgő and Viharos (1998), the asymptotic properties
of this estimator are reviewed. These authors also propose a generalization
of this estimator that again can be motivated by a weighted least-squares
algorithm:

γ̂ +
WLS,k =

1
k

∑k
j=1

(∫ j/k

(j−1)/k
J (s)ds

)
log Xn−j+1,n

1
k

∑k
j=1

(∫ j/k

(j−1)/k
J (s)ds

)
log k+1

j

,

where J is a non-increasing function defined on (0,1), which integrates to 0.
Csörgő and Viharos (1998) propose to use the weight functions J of the type

Jθ (s) := θ + 1

θ
− (θ + 1)2

θ
sθ , s ∈ [0, 1]

for some θ > 0.
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4.4 A Representation for Log-spacings
and Asymptotic Results

In this section, we investigate the most important mathematical properties of the
Hill estimator and some selected generalizations as discussed above. In particu-
lar, we propose expressions for the asymptotic bias and the asymptotic variance.
These results will be helpful later when we discuss the adaptive choice of k. The
given results can also assist in providing remedies for some of the problems cited
above.

In section 4.2.1 (iii), we derived that Hill’s estimator can be written as a simple
average of scaled log-spacings:

Hk,n = 1

k

k∑
j=1

Zj with Zj = j (log Xn−j+1,n − log Xn−j,n).

We will now elaborate on these spacings. We continue the discussion as started in
4.2.1 (iii), where we found that in the case of strict Pareto distributions

Zj
D= γEj , j = 1, . . . , k,

with {Ei; 1 ≤ i ≤ n} a sample from an exponential distribution with mean 1. In
accordance with our conventions, their order statistics are then denoted by

E1,n ≤ E2,n ≤ · · · ≤ En−k+1,n ≤ · · · ≤ En,n .

Double use of the probability integral transform leads to the linking equalities

Xj,n
D= U(eEj,n), 1 ≤ j ≤ n. (4.2)

The main reason for using an exponential sample lies in a remarkable property
about the order statistics of the latter distribution, discovered by A. Rényi. Indeed,

En−j+1,n − En−k,n
D=

k∑
i=j

Ei

i
, 1 ≤ j ≤ k < n (4.3)

where {Ei, 1 ≤ i ≤ n − 1} is again an exponential sample with mean 1. From this
equation, one can, for example, derive the expectations of the exponential order
statistics in that

E(En−j,n) =
n−1∑
k=j

1

k + 1
∼ log

(
n + 1

j + 1

)

if n is large.
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We now combine the above with the second-order properties of the tail quantile
function U . From here, we assume that log �U satisfies (C−β(b)) for some β > 0
and b ∈ R−β . This means that we can write

U(ux)

U(x)
= uγ

(
1 + h−β(u) b(x) + o(b(x))

)
. (4.4)

Using the second-order condition (4.4), we expand the distribution of the scaled
spacings Zj = j (log Xn−j+1,n − log Xn−j,n), j = 1, . . . , k:

Zj = j log
Xn−j+1,n

Xn−j,n

D= j log
U
(
eEn−j+1,n−En−j,n eEn−j,n

)
U
(
eEn−j,n

)
D= j log

U
(
eEj /j eEn−j,n

)
U
(
eEn−j,n

)
= j

{
γ log eEj /j + log

[
1 + h−β

(
eEj /j

)
b
(
eEn−j,n

)
(1 + o(1))

]}
≈ γEj + j log(1 + Wn,j )

where we used (4.3) and the abbreviation

Wn,j := h−β

(
eEj /j

)
b
(
eEn−j,n

)
. (4.5)

We therefore get a stochastic representation for the spacings

Zj

D≈ γEj + j log
(
1 + Wn,j

)
. (4.6)

One way of using this result is to replace the log-term on the right by inequalities
like

y

1 + y
≤ log(1 + y) ≤ y

that yield universal, stochastic inequalities for the Hill estimator since Hk,n =
1
k

∑k
j=1 Zj . Another possibility is to look at approximations for log(1 + y) for y

small. First of all, it is easy to see that for y small, h−β(ey) = y(1 + o(1)). Next,
we need to gain a bit more insight into the behaviour of the argument of b(x)

in (4.5). As long as j/n → 0 when n → ∞, we have En−j,n/ log(n/j)
P⇒ 1 (see

section 3.2, case 2, (i)). But then b
(
eEn−j,n

) = b
(

n+1
j+1

)
(1 + oP (1)). This means

that we can approximate j log(1 + Wn,j ) in distribution by Ejb
(

n+1
j+1

)
. Hence, we

are lead to the following approximate representation:

Zj
D∼
(

γ + b

(
n + 1

j + 1

))
Ej , (4.7)
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or, using the regular variation of b with index −β,

Zj
D∼
(

γ +
(

j

k + 1

)β

b

(
n + 1

k + 1

))
Ej , j = 1, . . . , k. (4.8)

In the sequel, we use the notation bn,k = b
(

n+1
k+1

)
.

The above is just a sketch of the proof of (4.8). In Beirlant et al. (2002c), the
following result is proven. Similar results can be found in Kaufmann and Reiss
(1998) and Drees et al. (2000).

Theorem 4.1 Suppose (4.4) holds. Then there exist random variables Rj,n and
standard exponential random variables Ej (independent with each n) such that

sup
1≤j≤k

∣∣∣∣∣Zj −
(

γ + bn,k

(
j

k + 1

)β
)

Ej − Rj,n

∣∣∣∣∣ = oP (bn,k), (4.9)

as k, n → ∞ with k/n → 0, where uniformly in i = 1, . . . , k

∣∣∣∣
k∑

j=i

Rj,n/j

∣∣∣∣ = oP

(
bn,k max

(
log

(
k + 1

i

)
, 1

))
.

Let us draw some first conclusions concerning the Hill estimator.

(i) The asymptotic bias of the Hill estimator can be traced back using the expo-
nential representation. Indeed,

ABias(Hk,n) ∼ bn,k

1

k

k∑
j=1

(
j

k + 1

)β

∼ bn,k

1 + β
.

We notice that the bias will be small only if bn,k is small, which in turn
requires k to be small.

(ii) The asymptotic variance of the Hill estimator is even easier in that

AVar(Hk,n) ∼ var


γ

k

k∑
j=1

Ej


 ∼ γ 2

k
.

Notice that the variance will be small if we take k large.

(iii) Finally, the asymptotic normality of the Hill estimator can be expected when
k, n → ∞ and k/n → 0. For then, if

√
kbn,k → 0,

√
k

(
Hk,n

γ
− 1

)
D→ N(0, 1) .
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This result allows the construction of approximate confidence intervals for
γ . At the level (1 − α), this interval is given by
((

1 + �−1(1 − α/2)√
k

)−1

Hk,n ,

(
1 − �−1(1 − α/2)√

k

)−1

Hk,n

)
, (4.10)

which is an acceptable approach if the bias is not too important, that is, if
β ≥ 1. Typically, the condition

√
kbn,k → 0 severely restricts the range of

k-values where the confidence interval works.

We end this section outlining how the above exponential representation result
can be used to derive formally the above bias-variance expressions and to deduce
asymptotic normality results for kernel type statistics

1

k

k∑
j=1

K
( j

k + 1

)
Zj

as discussed earlier in this chapter. Here, we assume that the kernel K can be
written as K(t) = 1

t

∫ t

0 u(v)dv, 0 < t < 1 for some function u defined on (0, 1).
Such type of results can be found, for instance, in Csörgő et al. (1985) and Csörgő
and Viharos (1998).

Theorem 4.2 Suppose (4.4) holds. Let K(t) = 1
t

∫ t

0 u(v)dv for some function u

satisfying
∣∣∣k ∫ j/k

(j−1)/k
u(t)dt

∣∣∣ ≤ f
(

j

k+1

)
for some positive continuous function f

defined on (0, 1) such that
∫ 1

0 log+(1/w)f (w)dw < ∞ and
∫ 1

0 |K|2+δ(w)dw < ∞
for some δ > 0. Suppose

√
kbn,k = O(1) as k, n → ∞ with k/n → 0. Then with

the same notations as before, we have that

√
k


1

k

k∑
j=1

K
( j

k + 1

)
Zj − 1

k

k∑
j=1

K
( j

k + 1

)(
γ + bn,k

(
j

k + 1

)β
)


converges in distribution to a N
(

0, γ 2
∫ 1

0 K2(u)du
)

distribution.

The result follows from the Lindeberg-Feller central limit theorem after show-
ing that

√
k


 k∑

j=1

{
1

j

∫ j/k

0
u(t)dt

}
Zj

−
k∑

j=1

{
1

j

∫ j/k

0
u(t)dt

}(
γ + bn,k

(
j

k + 1

)β
)

Ej


 P⇒ 0,
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which follows from
√

kbn,k = O(1) and the above exponential representation
theorem since

k∑
j=1

{
1

j

∫ j/k

0
u(t)dt

}
Rj,n =

k∑
j=1

j∑
i=1

{∫ i/k

(i−1)/k

u(t)dt

}
Rj,n

j

=
k∑

i=1

∫ i/k

(i−1)/k

u(t)dt

k∑
j=i

Rj,n

j
,

and hence
∣∣∣∣

k∑
j=1

{
1

j

∫ j/k

0
u(t)dt

}
Rj,n

∣∣∣∣ ≤ 1

k

k∑
i=1

f

(
i

k + 1

)∣∣∣∣
k∑

j=i

Rj,n

j

∣∣∣∣.
From Theorem 4.2, we learn that the asymptotic mean squared error of kernel

estimators γ̂ +
K,k equals k−1γ 2

∫ 1
0 K2(u)du + b2

n,k(
∫ 1

0 K(u)uβdu)2. In Csörgő et al.
(1985), kernels are derived (with support possibly outside (0, 1]), which minimize
AMSE (γ̂ +

K,k). In case, log �U satisfies (C−β(b)) for some β > 0 Csörgő et al. (1985)
found the kernel

Kβ(t) = 1 + β

β

(
1 + 2β

2 + 2β

)1+β
[(

2 + 2β

1 + 2β

)β

− tβ

]
, 0 < t <

2 + 2β

1 + 2β
,

to be optimal in the sense that among all kernels satisfying
∫∞

0 K(u)du =∫∞
0 K2(u)du = 1 the asymptotic mean squared error is minimal for Kβ . Note,

however, that the optimal kernel depends on β, which makes the application of
this approach somewhat difficult. In Csörgő and Viharos (1998), a method for
implementing this approach is proposed. The estimation of β will be discussed
below.

4.5 Reducing the Bias

In many cases, the Hill estimator overestimates the population value of γ due to
slow convergence of bn,k to 0. Some proposals of bias-reduced estimators were
recently introduced, for instance, in Peng (1998), Feuerverger and Hall (1999),
Beirlant et al. (1999), Gomes et al. (2000) and Gomes and Martins (2002). The
last references make use of the exponential representation developed above. Again,
one can tackle the problem from the quantile or the probability view.

4.5.1 The quantile view

The representation (4.8) can be considered as a generalized regression model with
exponentially distributed responses. For every fixed j , the responses Zj are approx-

imately exponentially distributed with mean γ + bn,k

(
j

k+1

)β

. If bn,k > 0, then the
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Figure 4.4 Plot of Zj versus j , j = 1, . . . , 200, for a simulated sample of size
n = 500 from the Burr(1,1,2) distribution; solid horizontal line: true value of γ ;

broken horizontal line: H200,500; solid curve: γ + bn,k

(
j

k+1

)β

; broken curve: γ̂ +

b̂n,k

(
j

k+1

)β̂

.

means increase with increasing values of j while the intercept is given by γ . This
is illustrated in Figure 4.4 using a simulation from a Burr(1,1,2) distribution of
size n = 500. We show k = 200 points.

Some simple variations of (4.8) were proposed:

Zj
D∼ γ exp

(
dn,k

(
j

k + 1

)β
)

Ej , 1 ≤ j ≤ k, (4.11)

with dn,k = bn,k/γ , using the approximation

1 + dn,k

( j

k + 1

)β ∼ exp
(
dn,k

( j

k + 1

)β)
.

Alternatively, changing the generalized linear model (4.8) into a regression
model with additive noise (replacing the random factors Ej by their expected
values in the bias term), we obtain

Zj ∼ γ + bn,k

(
j

k + 1

)β

+ γ (Ej − 1), 1 ≤ j ≤ k. (4.12)



TAIL ESTIMATION UNDER PARETO-TYPE MODELS 115

Joint estimates of γ , bn,k (or dn,k) and β can be obtained for each k from (4.8)
and (4.11) by maximum likelihood, or from (4.12) by least-squares minimizing

k∑
j=1

(
Zj − γ − bn,k

(
j

k + 1

)β
)2

with respect to γ , bn,k and β. We denote the maximum likelihood estimator of γ

based on (4.8) by γ̂ +
ML.

In view of the discussion of the properties of the Hill estimator in the pre-
ceding section, we will mainly focus on the case β < 1. Remark, however, that
the regression models are not identifiable when β equals 0, for then γ and bn,k

together make up the mean response. Necessarily this fact leads to instabilities
in case β is close to 0. An algorithm was constructed in Beirlant et al. (1999)
to search for the maximum likelihood estimate of γ next to estimates b̂n,k and
β̂k under (4.8). In order to avoid instabilities in the maximization routines, the
restriction β̂k > 0.5 was introduced for sample sizes up to n = 1000. Simulation
experiments indicated that this bound can gradually be relaxed with larger sample
sizes, for instance, to β̂k > 0.25 for n = 5000. Also, to avoid instabilities arising
from the optimization procedure ending at a local maximum, some smoothness
conditions were added, linking estimates at subsequent values of k: given b̂n,k+1

and β̂k+1, we set |b̂n,k| ≤ 1.1|b̂n,k+1| and β̂k ≤ 1.1β̂k+1. A similar program can be
carried out on the basis of (4.12) using least squares. The results obtained in this
way are very similar to those obtained by maximum likelihood.

The variance of γ̂ +
ML when k → ∞ and k/n → 0 equals ((1 + β)/β)4 γ 2/k

in first order (see Beirlant et al. (2002c)) showing that the variance of these esti-
mators is much larger than in case of the Hill estimator. The asymptotic bias,
however, is zero as long as

√
kbn,k = O(1), this is in contrast to the Hill esti-

mator, where the asymptotic bias only disappears for relatively small values of k,
that is,

√
kbn,k → 0. The graphs with the resulting estimates as a function of k

are much more stable taking away a serious part of the bias of the Hill estimator.
Experience suggests that the largest values of k for which both the Hill and the
bias-reduced estimator correspond closely provide reasonable estimates for γ . The
use of the regression models to choose k adaptively will be further explored in
section 4.7. The mean squared errors find their minima at much higher values of
k in comparison with the Hill estimator; the respective minima are typically of the
same size.

Confidence intervals for γ can now be constructed on the basis of a bias-
reduced maximum likelihood estimator with the above-mentioned variance. In
contrast to the confidence interval (4.10), this leads to intervals that better approx-
imate the required confidence level 1 − α. This is illustrated in Figure 4.5 using
simulated samples of size n = 500 from a Burr(1,0.5,2) distribution, for which
β = 0.5.
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Figure 4.5 (a) Medians of the estimated standard deviations of the Hill estimator
(broken line) and the maximum likelihood estimator γ̂ +

ML (solid line) as a function
of k, k = 5, . . . , 250 and (b) corresponding coverage probabilities of confidence
intervals for k = 5, . . . , 250 based on the Hill estimator (broken line) and the
maximum likelihood estimator (solid line).
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In each of the three regression models considered above, one can also solve for
γ and bn,k, or γ and dn,k, after substituting a consistent estimator β̃ = β̃k,n for β.
For brevity, we focus on the least-squares estimators based on (4.12), leading to

γ̂ +
LS(β̃) = Z̄k − b̂+

LS(β̃)/(1 + β̃)

b̂+
LS(β̃) = (1 + β̃)2(1 + 2β̃)

β̃2

1

k

k∑
j=1

(( j

k + 1

)β̃ − 1

1 + β̃

)
Zj .

Here, we approximated k−1 ∑k
j=1(j/(k + 1))β̃ by 1/(1 + β̃) and k−1 ∑k

j=1(
(j/(k + 1))β̃ − 1/(1 + β̃)

)2
by β̃2(1 + β̃)−2(1 + 2β̃)−1. On the basis of Theo-

rem 4.2, one can show that the asymptotic variance of γ̂ +
LS equals k−1γ 2((1 + β)/

β)2. Here, the increase of the variance in comparison with the Hill estimator is
not so large as with γ̂ +

ML, but the question arises concerning an estimator of the
second-order parameter β. Drees and Kaufmann (1998) proposed the estimator

β̃k̃,n,λ = 1

log λ
log

H�λ2 k̃	,n − H�λk̃	,n
H�λk̃	,n − Hk̃,n

for some λ ∈ (0, 1) and with k̃ taken in the range
√

k̃bn,k̃ → ∞. An adaptive

choice for k̃ in this range is also given. It can also be shown that the estimators
of β based on the regression models discussed here share this consistency prop-

erty as
√

k̃bn,k̃ → ∞. For a more elaborate discussion of the estimation of β and
several other estimators of β, we refer the reader to Gomes et al. (2002), Gomes
and Martins (2002) and Fraga Alves et al. (2003).

The estimation of β is known to be difficult. Hence, some authors have pro-
posed to set β = 1 in procedures involving knowledge of β. The resulting esti-
mators yield a compromise between the bias reduction of the estimators involving
estimation of β and the smaller variance when using, for instance, the Hill estima-
tor, see, for instance, Gomes and Oliveira (2003). Guillou and Hall (2001) use the
estimator of bn,k obtained from (4.12) after setting β = 1 in the context of adaptive
selection rules for the number of extremes k. This will be discussed in section 4.7.

Finally, we mention that γ̂ +
ML and γ̂ +

LS(β̃), while not shift-invariant in the math-
ematical sense, are already much more stable under shifts than the Hill estimator.
The above-mentioned shift-invariant modification of the Hill estimator proposed
by Fraga Alves (2001) also enables for stable plots.

4.5.2 The probability view

Alternatively, Beirlant et al. (2004) propose to use a second-order refinement of
the probability view. Following the approach discussed in 4.2.1 (ii) where the Hill
estimator follows from the approximation of the conditional distribution of the
relative excesses Yj := Xn−j+1,n/Xn−k,n, j = 1, . . . , k, by a strict Pareto distribu-
tion, one can argue that the Hill estimator will break down if this approximation
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is poor. In order to describe the departure of Ft(x) = P (X/t ≤ x|X > t) from a
strict Pareto distribution, we use the assumption that �F satisfies (3.14):

1 − F(tx)

1 − F(t)
= x−1/γ (1 + h−τ (x)B(t) + o(B(t))), (4.13)

where τ > 0 and B is regularly varying at infinity with index −τ . Condition (4.13)
can be rephrased as

1 − Ft(x) = x−1/γ [1 − B(t)τ−1(x−τ − 1) + o(B(t))],

as t → ∞. Deleting the error term, this refines the original Pareto approximation
to an approximation by a mixture of two Pareto distributions. The idea is now to fit
such a perturbed Pareto distribution to the multiplicative excesses Yj , j = 1, . . . , k,
aiming for more accurate estimation of the unknown tail.

Such a perturbed Pareto distribution is then defined by the survival function

1 − G(x; γ, c, τ ) = (1 − c)x−1/γ + cx−1/γ−τ

with some c ∈ (−1/τ, 1) and x > 1. Observe that if c = 0, then this mixture coin-
cides with ordinary Pareto distribution.

For c ↓ 0, we can write

1 − G(x; γ, c, τ ) = {
x[1 + γ c(1 − x−τ )]

}−1/γ + o(c)

= {
x[(1 + γ c) − γ cx−τ )]

}−1/γ + o(c).

In practice, it turns out that

ḠPPD(x) = x−1/γ [(1 + γ c) − γ cx−τ ]−1/γ (4.14)

fits well by the maximum likelihood method, leading to estimators γ̂ +
PPD , ĉ+

PPD
and τ̂+

PPD . The likelihood surface can be seen to be rather flat in τ so that the
optimization should be handled with care, comparable to the estimation of β in the
generalized linear model (4.8).

The perturbed Pareto distribution (4.14) extends the generalized Pareto (GP)
distribution, which will be discussed in depth in Chapter 5, in the following way.
In statistics of extremes, it is common practice to approximate the distribution of
absolute exceedances of a random variable Y above a high-enough threshold u by
the generalized Pareto distribution:

P (Y − u > y|Y > u) =
(

1 + γy

σ

)− 1
γ

, y > 0; σ > 0. (4.15)

Replacing y by ux − u with x ≥ 1 transforms (4.15) into a model for relative
excesses

P (Y/u > x|Y > u) =
{
x
[γ u

σ
−
(γ u

σ
− 1

)
x−1

]}− 1
γ

,

which is clearly (4.14) with c = u/σ − 1/γ and τ = 1.
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4.6 Extreme Quantiles and Small Exceedance
Probabilities

In the previous sections on the quantile viewpoint, we fitted a straight line to
an ultimately linear part of the Pareto quantile plot. Continuing in this spirit and
following the principle for estimating large quantiles and small exceedance prob-
abilities, outlined in Figure 1.2, we are now in the position to estimate extreme
quantiles under a Pareto-type model. However, the probability view allows for an
alternative interpretation of the available methods.

4.6.1 First-order estimation of quantiles and return periods

We first discuss the simple approach proposed by Weissman (1978) based on the
Hill estimator.

We use the Pareto index estimation method based on linear regression of a
Pareto quantile plot to derive an estimator for Q(1 − p). Assuming that the ultimate
linearity of the Pareto quantile plot persists from the largest k observations on (till
infinity), that is, assuming that the strict Pareto model persist above this threshold,
we can extrapolate along the line with equation

y = log Xn−k,n + Hk,n

(
x + log

k + 1

n + 1

)

anchored at the point
(− log k+1

n+1 , log Xn−k,n

)
.

Take x = − log p to obtain an estimator q̂+
k,p of Q(1 − p) given by

q̂+
k,p = exp

(
log Xn−k,n + Hk,n log

k + 1

(n + 1)p

)

= Xn−k,n

(
k + 1

(n + 1)p

)Hk,n

.

The asymptotic characteristics of this method can be found through the follow-

ing expansion: since Q(1 − p) = p−γ �U(1/p) and Xn−k,n
D= U

−γ

k+1,n�U(U−1
k+1,n)

where Uj,n denote the order statistics from a uniform (0,1) sample, we find that

log
q̂+

k,p

Q(1 − p)

D= log

[(
Uk+1,n

p

)−γ �U (U−1
k+1,n)

�U (p−1)

(
k + 1

(n + 1)p

)Hk,n
]

= log

[(
Uk+1,n

(k + 1)/(n + 1)

)−γ (
k + 1

(n + 1)p

)Hk,n−γ �U(U−1
k+1,n)

�U (p−1)

]

D= γ

(
En−k,n − log

n + 1

k + 1

)
+ (Hk,n − γ ) log

(
k + 1

(n + 1)p

)

+ log
�U(U−1

k+1,n)

�U (p−1)
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where we used the same notation as in section 4.4. Under condition (4.4), we can
approximate the last term by

−bn,k

1 −
(

(n+1)p

k+1

)β

β
.

Using again
√

k
(
En−k,n − log n

k

) D→ N(0, 1) as k, n → ∞ and k/n → 0 (see
section 3.2, case 2 (ii)), together with the exponential representation of the scaled
spacings Zj , we find the expressions for the asymptotic variance and bias of
the Weissman estimator in the log-scale when p = pn → 0 and npn → c > 0 as
n → ∞. We denote the asymptotic expectation by E∞.

E∞

(
log

q̂+
k,p

Q(1 − p)

)
∼ ABias(Hk,n) log

(
k + 1

(n + 1)p

)
− bn,k

1 −
(

(n+1)p

k+1

)β

β

= bn,k

1 + β
log

(
k + 1

(n + 1)p

)
− bn,k

1 −
(

(n+1)p

k+1

)β

β
, (4.16)

AVar(log q̂+
k,p) ∼ γ 2

k

(
1 + log2

(
k + 1

(n + 1)p

))
. (4.17)

Furthermore, it can now be shown that when k, n → ∞ and k/n → 0 such

that
√

kE∞
(

log
q̂+
k,p

Q(1−p)

)
→ 0,

√
k

(
1 + log2

(
k + 1

(n + 1)p

))−1/2
(

q̂+
k,p

Q(1 − p)
− 1

)
D→ N(0, γ 2) . (4.18)

An asymptotic confidence interval of level 1 − α for Q(1 − p) when pn → 0 and
npn → c > 0 as n → ∞ is given by


q̂+

k,p

1 + �−1(1 − α/2)
Hk,n√

k

√
1 + log2

(
k+1

(n+1)p

) ,

q̂+
k,p

1 − �−1(1 − α/2)
Hk,n√

k

√
1 + log2

(
k+1

(n+1)p

)

 .

Alternatively, in order to estimate P (X > x) for x large, one can set the Weiss-
man estimator q̂+

k,p equal to x and solve for p:

p̂+
k,x =

(
k + 1

n + 1

)(
x

Xn−k,n

)−1/Hk,n

.
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This estimator can also be directly understood from the probability point of view.
Indeed, using the approximation 1−F(ty)

1−F(t)
= P (X > ty)/P (X > t) ∼ y−1/γ as t →

∞, we find p̂+
k,x when replacing ty by x and, when using Xn−k,n as a threshold t ,

estimating P (X > t) by the empirical estimate k+1
n+1 .

Again, one can prove asymptotic normality in that

√
k

(
1 + γ −2 log2

(
x

Xn−k,n

))1/2
(

p̂+
k,x

P (X > x)
− 1

)
D→ N(0, 1). (4.19)

This leads to an asymptotic confidence interval of level 1 − α for P (X > x):

 p̂+

k,x

1 + �−1(1 − α/2)
(
k
(

1 + H−2
k,n log2

(
x

Xn−k,n

)))−1/2
,

p̂+
k,x

1 − �−1(1 − α/2)
(
k
(

1 + H−2
k,n log2

(
x

Xn−k,n

)))−1/2


 .

4.6.2 Second-order refinements

The quantile view

Using the condition (4.4), one can refine q̂+
k,p exploiting the additional information

that is then available concerning the slowly varying function �U . Using again

Xn−k,n
D= U(1/Uk+1,n), we find that

Q(1 − p)

Xn−k,n

D= p−γ

U
−γ

k+1,n

�U (1/p)

�U (1/Uk+1,n)

∼
(

Uk+1,n

p

)γ

exp


b(1/Uk+1,n)

1 −
(

Uk+1,n

p

)−β

β




∼
(

k + 1

(n + 1)p

)γ

exp


bn,k

1 −
(

k+1
(n+1)p

)−β

β




where in the last step, we replaced Uk+1,n by its expected value k+1
n+1 . Hence, we

arrive at the following estimator for extreme quantiles with k = 3, . . . , n − 1:

q̂
(1)
k,p = Xn−k,n

(
k + 1

(n + 1)p

)γ̂ +
ML

exp


b̂n,k

1 −
(

k+1
(n+1)p

)−β̂

β̂


 (4.20)
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Figure 4.6 Median of q̂
(1)
k,p (solid line), q̂+

k,p (broken-dotted line) and q̂
(0)
k,p (bro-

ken line) with p = 0.0002 for 100 simulated samples of size n = 1000 from the
Burr(1,0.5,2) distribution, k = 5, . . . , 200. The horizontal line indicates the true
value of Q(1 − p).

where γ̂ +
ML, β̂ and b̂k,n denote the maximum likelihood estimators based on (4.8).

This estimator was studied in more detail in Matthys and Beirlant (2003). Among
others, it was proven that the asymptotic distribution of γ̂ +

ML and q̂
(1)
k,p are quite sim-

ilar. Indeed, compared to (4.18), the asymptotic variance now becomes γ 2
(

1+β

β

)4

instead of γ 2 in (4.18). Note that equation (4.20) can also be used to estimate small
exceedance probabilities. Indeed, fixing q̂

(1)
k,p at a high level, (4.20) can be solved

numerically for p. The resulting estimator for p will be denoted by p̂
(1)
k,x .

The bias-correcting effect obtained from using γ̂ +
ML and the factor

exp
(
b̂n,k[1 − ((k + 1)/(n + 1)p)−β̂]/β̂

)
is illustrated in Figure 4.6 where we show

the medians computed over 100 samples of size n = 1000 from the Burr(1,0.5,2)
distribution and p = 0.0002. Next to q̂+

k,p and q̂
(1)
k,p, we also show the estimator

q̂
(0)
k,p = Xn−k,n

(
k + 1

(n + 1)p

)γ̂ +
ML

which is in fact q̂+
k,p with Hk,n replaced by γ̂ +

ML.

The probability view

Following the approach outlined in section 4.5.2 of fitting a perturbed Pareto distri-
bution to the relative excesses Yj , j = 1, . . . , k, above a threshold Xn−k,n, results
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in the following tail estimator

p̂
(2)
k,x = k + 1

n + 1
ḠPPD(x/Xn−k,n; γ̂ +

PPD , ĉ+
PPD , τ̂+

PPD) (4.21)

where ḠPPD denotes the survival function of the perturbed Pareto distribution
(PPD) (4.14) introduced in section 4.5.2. Fixing p̂

(2)
k,x at a small value, (4.21) can

be solved numerically for x, yielding an extreme quantile estimator. This estimator
will be denoted by q̂

(2)
k,p.

An example: the SOA Group Medical Insurance data.

We illustrate the use of the above-introduced estimators for the extreme value
index and extreme quantiles with the SOA Group Medical Insurance data. In
Figure 4.7(a), we plot γ̂ +

ML (solid line), Hk,n (broken line), γ̂ +
Z,k (broken-dotted

line) and γ̂ +
PPD (dotted line) for the 1991 claim data against k. This plot indicates a

γ estimate around 0.35. Insurance companies typically are interested in an estimate
of the claim amount that will be exceeded (on average) only once in, say, 100,000
cases. We illustrate the estimation of extreme quantiles in Figure 4.7(b). In this
figure, we plot q̂

(1)
k,p (solid line), q̂+

k,p (broken line) and q̂
(2)
k,p (broken-dotted line)

for U(100,000) as a function of k.

4.7 Adaptive Selection of the Tail Sample Fraction

We now turn to the estimation of the optimal sample fraction needed to apply a
tail index estimator like the Hill estimator. It should be intuitively clear that the
estimates of bn,k , the parameter that dominates the bias of the Hill estimator as
discussed in section 4.4, should be helpful to locate the values of k for which the
bias of the Hill estimator is too large, or for which the mean squared error of
the estimator is minimal. Several methods have been proposed recently, which we
review briefly. See also Hall and Welsh (1985) and Beirlant et al. (1996b).

(i) Guillou and Hall (2001) propose to choose H
k̂,n

where k̂ is the smallest value
of k for which

√
k

12

∣∣∣b̂+
LS(−1)

∣∣∣
Hk,n

> ccrit ,

where ccrit is a critical value such as 1.25 or 1.5.

To understand this standardization, first remark that on the basis of Theorem
4.2, one can show that if

√
kbn,k → c ∈ R, then

√
k

12

1

γ
b̂+

LS(−1)
D→ N

(
cβ

√
3

γ (2 + β)(1 + β)
, 1

)
.
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Figure 4.7 SOA Group Medical Insurance data: (a) γ̂ +
ML (solid line), Hk,n (broken

line), γ̂ +
Z,k (broken-dotted line) and γ̂ +

PPD (dotted line) as a function of k and (b) q̂
(1)
k,p

(solid line), q̂+
k,p (broken line) and q̂

(2)
k,p (broken-dotted line) for U(100,000) as a

function of k.

So, after appropriate standardization of b̂+
LS(−1), the procedure given in

Guillou and Hall (2001) can be considered as an asymptotic test for zero
(asymptotic) expectation of b̂+

LS(−1): the bias in the Hill estimator is con-
sidered to be too large, and hence the hypothesis of zero bias is rejected,
when the asymptotic mean in the limit result appears significantly different
from zero.
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(ii) An important alternative, popular among statisticians, is to minimize the
mean squared error. Then we try to minimize the asymptotic mean squared
error of Hk,n, that is,

AMSE (Hk,n) = AV ar(Hk,n) + ABias2(Hk,n) = γ 2

k
+
(

bn,k

1 + β

)2

(4.22)

as derived before. So it appears natural to use the maximum likelihood
estimators discussed above and search for the value of k̂, which minimizes
this estimated mean squared error plot {(k, ÂMSE (Hk,n)); k = 1, . . . , n − 1}.
This simple method can of course also be applied to, for instance, the AMSE
of Weissman quantile estimators based on the expressions given in (4.16)
and (4.17). When estimating U(100,000) in case of the SOA Group Medical
Insurance data, we arrive in this way at the value k̂ = 486 that is to be
considered in Figure 4.7(b).

(iii) Let us restrict again to the Hall-class of distributions where the unknown
distribution satisfies

U(x) = Cxγ
(
1 + Dx−β(1 + o(1))

)
(x → ∞).

for some constants C > 0, D ∈ R. Observe that in this case, b(x) = −βDxβ

(1 + o(1)) as x → ∞. Then the asymptotic mean squared error of the Hill
estimator is minimal for

kn,opt ∼ (b2(n))−1/(1+2β)

(
γ 2(1 + β)2

2β

)1/(1+2β)

(n → ∞).

Here, because of the particular form of b, we obtain

kn,opt ∼
[
b2
(

n

k0

)]−1/(1+2β)

k
2β/(1+2β)

0

(
γ 2(1 + β)2

2β

)1/(1+2β)

(4.23)

for any secondary value k0 ∈ {1, . . . , n} with k0 = o(n). We plug in consis-
tent estimators of bn,k0 , β and γ in this expression as discussed above, all
based on the upper k0 extremes. In this way, we obtain for each value of k0

an estimator of kn,opt .

Then as k0, n → ∞, k0/n → 0 and
√

k0bn,k0
log k0

→ ∞, we have that

k̂n,k0

kn,opt

P⇒ 1.

Of course, a drawback of this approach is that in practice one needs to iden-
tify the k0-region for which

√
k0bn,k0 → ∞ in order to obtain a consistent

method. However, graphs of log k̂n,k0 as a function of k0 are quite stable,
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Figure 4.8 SOA Group Medical Insurance data: plot of log k̂n,k0 versus k0, k0 =
3, . . . , 10, 000.

except for the k0-regions corresponding to
√

k0bn,k0 → 0. This is illustrated
in Figure 4.8 for the SOA Group Medical Insurance data set. The plot of
log k̂n,k0 is stable from k0 = 3000 up to k0 = 7000, indicating a log k̂ value
around 5.3. This value corresponds to the endpoint of a stable horizontal area
in the Hill plot given in Figure 4.7(b) with height at approximately 0.36.

In order to set up an automatic method, from a practical point of view one
can use the median of the first �n/2	k̂-values as an overall estimate for kn,opt :

k̂n,med = median
{
k̂n,k0 : k0 = 3, . . . ,

⌊n

2

⌋}
. (4.24)

(iv) In Hall (1990), a novel resampling technique to estimate the mean squared
error of the Hill estimator is proposed. For this purpose, the usual bootstrap
does not work properly, especially because it seriously underestimates bias.
This problem can be circumvented by taking resamples of smaller size than
the original one and linking the bootstrap estimates for the optimal subsample
fraction to kn,opt for the full sample. However, in order to establish this link,
Hall’s method requires that β = 1, which puts a serious restriction on the
tail behaviour of the data. Moreover, an initial estimate is needed to estimate
the bias. As pointed out by Gomes and Oliveira (2001), the entire procedure
is highly sensitive to the choice of this initial value.

The idea of subsample bootstrapping is taken up in a broader method by
Danielsson et al. (1997). Instead of bootstrapping the mean squared error
of the Hill estimator itself, they use an auxiliary statistic, the mean squared
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error of which converges at the same rate and which has a known asymptotic
mean, independent of the parameters γ and β. Such a statistic is

Ak,n = H
(2)
k,n − 2H 2

k,n

with

H
(2)
k,n = 1

k

k∑
j=1

(log Xn−j+1,n − log Xn−k,n)
2.

Since both H
(2)
k,n/(2Hk,n) and Hk,n are consistent estimators for γ , Ak,n

will converge to 0 for intermediate sequences of k-values as n → ∞. Thus
AMSE (Ak,n) = E∞(A2

k,n), and no initial parameter estimate is needed to
calculate the bootstrap counterpart.

Moreover, the k-value that minimizes AMSE (Ak,n), denoted by k̄n,opt , is of
the same order in n as kn,opt :

k̄n,opt

kn,opt

→
(

1 + 1

β

) 2
1+2β

, n → ∞.

Unfortunately, the usual bootstrap estimate for k̄n,opt does not converge in
probability to the true value; it merely converges in distribution to a random
sequence owing to the characteristic balance between variance and squared
bias at the optimal threshold. A subsample bootstrap remedies this problem.
Taking subsamples of size n1 = O(n1−ε) for some 0 < ε < 1 provides a

consistent bootstrap estimate ˆ̄kn1,opt for k̄n1,opt .

Further, the ratio of optimal sample and subsample fractions for Ak,n is of
the order

k̄n,opt

k̄n1,opt

∼
(

n

n1

) 2β
2β+1

.

For n1 = O(n1−ε), 0 < ε < 0.5, this ratio can be estimated through a second
subsample bootstrap, now with subsamples of size n2 = n2

1/n, such that

k̄n,opt

k̄n1,opt

∼ k̄n1,opt

k̄n2,opt

.

Combining these results gives

kn,opt ∼ (k̄n1,opt )
2

k̄n2,opt

(
1 + 1

β

)− 2
2β+1

which leads to the estimator

k̂n,opt ∼ ( ˆ̄kn1,opt )
2

ˆ̄kn2,opt

(
1 + 1

β̂1

)− 2
2β̂+1

(4.25)
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for kn,opt , where

β̂1 := log ˆ̄kn1,opt

2 log( ˆ̄kn1,opt /n1)

is a consistent estimator for β.

Under condition (C−β(b)) for log �U , it can be shown that the resulting Hill
estimator H

k̂n,opt ,n
has the same asymptotic efficiency as Hkn,opt ,n.

The algorithm for this bootstrap procedure is summarized as follows

(a) Draw B bootstrap subsamples of size n1 ∈ (
√

n, n) from the original

sample and determine the value ˆ̄kn1,opt that minimizes the bootstrap
mean squared error of Ak,n1 .

(b) Repeat this for B bootstrap subsamples of size n2 = n2
1/n and deter-

mine ˆ̄kn2,opt where the bootstrap mean squared error of Ak,n2 is
minimal.

(c) Calculate k̂n,opt from (4.25) and estimate γ by H
k̂n,opt ,n

.

This procedure considerably extends and improves Hall’s original bootstrap
method, especially because no preliminary parameter estimate is needed.
Only the subsample size n1 and the number of bootstrap resamples B have to
be chosen. In fact, the latter is determined mainly by the available computing
time. In simulation studies reported in the literature, the number of resamples
ranges from 250 to 5000. As for the subsample size, Danielsson and de
Vries (1997) suggest varying n1 over a grid of values and using a bootstrap
diagnostic to select its optimal value adaptively. Gomes and Oliveira (2001),
however, found that the method is very robust with respect to the choice
of n1. We also refer to Gomes and Oliveira (2001) for more variations
and simulation results on the above bootstrap to choose the optimal sample
fraction and for a refined version of Hall’s method.

(v) Drees and Kaufmann (1998) present a sequential procedure to select the
optimal sample fraction kn,opt . From a law of the iterated logarithm, they
construct ‘stopping times’ for the sequence Hk,n of Hill estimators that are
asymptotically equivalent to a deterministic sequence. An ingenious combi-
nation of two such stopping times then attains the same rate of convergence
as kn,opt . However, the conversion factor to pass from this combination of
stopping times to kn,opt involves the unknown parameters γ (which requires
an initial estimate γ̂0) and β.

We refer to the original paper by Drees and Kaufmann (1998) for the theoret-
ical principles behind this procedure and immediately describe the algorithm
with the choices of nuisance parameters as proposed by these authors.
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(a) Obtain an initial estimate γ̂0 := H2
√

n,n for γ .

(b) For rn = 2.5γ̂0n
0.25 compute the ‘stopping time’

k̂n(rn) := min

{
k ∈ {1, . . . , n − 1}| max

1≤i≤k

√
i(Hi,n − Hk,n) > rn

}
.

(c) Similarly, compute k̂n(r
ε
n) for ε = 0.7.

(d) With a consistent estimator β̂ for β, calculate

k̂n,opt =
(

k̂n(r
ε
n)

[k̂n(rn)]ε

) 1
1−ε

(1 + 2β̂)
− 1

β̂ (2β̂γ̂0)
1

1+2β̂ (4.26)

and estimate γ by H
k̂n,opt ,n

.

In simulations, it was found that the method mostly performs better if a fixed
value β0 is used for β in (4.26), in particular, for β̂ ≡ β0 = 1.

In Matthys and Beirlant (2000), Beirlant et al. (2002c) and Gomes and Oliveira
(2001), these adaptive procedures have been compared on the basis of extensive
small sample simulations. While both the bootstrap method and the plug-in method
tend to give rather variable values for the optimal sample fraction, the results for
all four adaptive Hill estimators are well in line. The sequential procedure and
the method based on k̂n,med give the best results even when setting β = 1. The
influence of a wrong specification of the parameter β in these methods does not
seem to be a major problem. In comparison with other procedures, method (iii)
performs best in case of small values of β and even for distributions outside the
range of distributions considered by Hall and Welsh (1984), such as the log-gamma
distribution. The methods based on the regression models above such as (ii) and
(iii) ask most computing effort. The sequential method appears to be the fastest
overall.
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DOMAINS OF ATTRACTION

In Chapter 2, we derived the general conditions (Cγ ) and (C∗
γ ) for a non-degenerate

limit distribution of the normalized maximum of a sample of independent and
identically distributed random variables to exist:

U(xu) − U(x)

a(x)
→ uγ − 1

γ
for any u > 0 as x → ∞, (Cγ )

for some regularly varying function a with index γ , where U(x) = Q
(
1 − 1

x

)
,

respectively

F̄ (t + yb(t))

F̄ (t)
→ (1 + γy)−1/γ for any y > 0 as t ↑ x+, (C∗

γ )

for some auxiliary function b.

In the preceding chapter, we outlined the extreme value approach for tail esti-
mation in case γ > 0, that is, when F̄ is of Pareto-type. Now, in the present
chapter, we discuss statistical tail estimation methods that can serve in all cases,
whether the extreme value index (EVI) is positive, negative, or zero. The available
methods can be grouped in three sets:

• the method of block maxima, inspired by the limit behaviour of the normalized
maximum of a random sample,

• the quantile view with methods based on (versions of) (Cγ ), continuing the
line of approach started with Hill’s estimator,

Statistics of Extremes: Theory and Applications J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels
 2004 John Wiley & Sons, Ltd ISBN: 0-471-97647-4
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• the probability view, or the peaks over threshold approach (POT) with meth-
ods based on (C∗

γ ). Here, one considers the conditional distribution of the

excesses over relatively high thresholds t , interpreting F̄ (t+yb(t))

F̄ (t)
as

P
(

X−t
b(t)

> y|X > t
)

.

Next to these approaches, we also briefly mention the possibilities of exponen-
tial regression models, generalizing the exponential representations of spacings as
considered in section 4.4.

5.1 The Method of Block Maxima

5.1.1 The basic model

In Chapter 2, it was proven that the extreme value distributions are the only possible
limiting forms for a normalized maximum of a random sample, at least when a
non-degenerate limit exists. On the basis of this result, the EVI can be estimated
by fitting the generalized extreme value distribution (GEV)

G(x; σ, γ, µ) =



exp
(

− (1 + γ
x−µ

σ

)− 1
γ

)
, 1 + γ

x−µ
σ

> 0, γ �= 0,

exp
(− exp

(− x−µ

σ

))
, x ∈ R, γ = 0,

(5.1)

with σ > 0 and µ ∈ R to maxima of subsamples (Gumbel (1958)). This approach
is popular in the environmental sciences where the GEV is fitted to, for example,
yearly maximal temperatures or yearly maximal river discharges.

5.1.2 Parameter estimation

For notational convenience, we denote the maximum of a sample X1, . . . , Xn by
Y . Then when a sample Y1, . . . , Ym of independent sample maxima is available,
the parameters σ , γ and µ can be estimated in a variety of ways. In Chapter 2, we
already discussed the data-analytic method of selecting the γ value that maximizes
the correlation coefficient on the GEV quantile plot followed by a least-squares fit
to obtain estimates for µ and σ . In this section, we will focus on the maximum
likelihood (ML) method and the method of (probability weighted) moments.

The ML method

In case γ �= 0, the log-likelihood function for a sample Y1, . . . , Ym of i.i.d. GEV
random variables is given by

log L(σ, γ, µ) = −m log σ −
(

1

γ
+ 1

) m∑
i=1

log

(
1 + γ

Yi − µ

σ

)

−
m∑

i=1

(
1 + γ

Yi − µ

σ

)− 1
γ

(5.2)
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provided 1 + γ
Yi−µ

σ
> 0, i = 1, . . . , m. When γ = 0, the log-likelihood function

reduces to

log L(σ, 0, µ) = −m log σ −
m∑

i=1

exp

(
−Yi − µ

σ

)
−

m∑
i=1

Yi − µ

σ
. (5.3)

The ML estimator (σ̂ , γ̂ , µ̂) for (σ, γ, µ) is obtained by maximizing (5.2)-(5.3). For
computational details, we refer to Prescott and Walden (1980), Prescott and Walden
(1983), Hosking (1985) and Macleod (1989). Since the support of G depends
on the unknown parameter values, the usual regularity conditions underlying the
asymptotic properties of maximum likelihood estimators are not satisfied. This
problem is studied in depth in Smith (1985). In case γ > −0.5, the usual proper-
ties of consistency, asymptotic efficiency and asymptotic normality hold. In fact,
for m → ∞

√
m
(
(σ̂ , γ̂ , µ̂) − (σ, γ, µ)

) D→ N(0, V1) γ > −0.5

where V1 is the inverse of the Fisher information matrix. For more details about
the Fisher information matrix, we refer to the Appendix at the end of this chapter.
This limit result in principle is valid under the assumption that Y is distributed as
a GEV. Remark, however, that the results of Chapter 2 only guarantee that Y is
approximately GEV.

The method of probability-weighted moments

In general, the probability-weighted moments (PWM) of a random variable Y with
distribution function F , introduced by Greenwood et al. (1979), are the quantities

Mp,r,s = E{Yp[F(Y )]r [1 − F(Y )]s} (5.4)

for real p, r and s. The specific case of PWM parameter estimation for the GEV
is studied extensively in Hosking et al. (1985). In case γ �= 0, setting p = 1, r =
0, 1, 2, . . . and s = 0 yields for the GEV

M1,r,0 = 1

r + 1

{
µ − σ

γ

[
1 − (r + 1)γ �(1 − γ )

]}
γ < 1. (5.5)

Assume a sample Y1, . . . , Ym of i.i.d. GEV random variables is available. The
PWM estimator (σ̂ , γ̂ , µ̂) for (σ, γ, µ) is the solution to the following system of
equations, obtained from (5.5) with r = 0, 1, 2,

M1,0,0 = µ − σ

γ
(1 − �(1 − γ )) (5.6)

2M1,1,0 − M1,0,0 = σ

γ
�(1 − γ )(2γ − 1) (5.7)

3M1,2,0 − M1,0,0

2M1,1,0 − M1,0,0
= 3γ − 1

2γ − 1
(5.8)
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after replacing M1,r,0 by the unbiased estimator (see Landwehr et al. (1979))

M̂1,r,0 = 1

m

m∑
j=1

(
r∏

�=1

(j − �)

(m − �)

)
Yj,m

or by the asymptotically equivalent consistent estimator

M̃1,r,0 = 1

m

m∑
j=1

(
j

m + 1

)r

Yj,m.

Note that to obtain γ̂ , (5.8) has to be solved numerically. Next, (5.7) can be solved
for σ , yielding

σ̂ = γ̂ (2M̂1,1,0 − M̂1,0,0)

�(1 − γ̂ )(2γ̂ − 1)
.

Finally, given γ̂ and σ̂ , µ̂ can be obtained from (5.6):

µ̂ = M̂1,0,0 + σ̂

γ̂

(
1 − �(1 − γ̂ )

)
.

To derive the limiting distribution of (σ̂ , γ̂ , µ̂), we need the limiting behaviour
of (M̂1,0,0, M̂1,1,0, M̂1,2,0). Define M = (M1,0,0, M1,1,0, M1,2,0)

′ and M̂ =
(M̂1,0,0, M̂1,1,0, M̂1,2,0)

′. Provided γ < 0.5, it can be shown that for m → ∞
√

m(M̂ − M)
D→ N(0, V )

where the elements of V are given by

vr,r =
[

σ

γ
(r + 1)γ

]2 (
�(1 − 2γ )K(r/(r + 1)) − �2(1 − γ )

)
,

vr,r+1 = 1

2

(
σ

γ

)2 {
(r + 2)2γ �(1 − 2γ )K(r/(r + 2))

+ (r + 1)γ
[
(r + 1)γ − 2(r + 2)γ

]
�2(1 − γ )

}
,

vr,r+s = 1

2

(
σ

γ

)2 {
(r + s + 1)2γ �(1 − 2γ )K(r/(r + s + 1))

−(r + s)γ �(1 − 2γ )K((r + 1)/(r + s))

+2(r + 1)γ
[
(r + s)γ − (r + s + 1)γ

]
�2(1 − γ )

}
s ≥ 2,

and K(x) =2F1(−γ, −2γ ; 1 − γ ; −x), with 2F1 denoting the hypergeometric
function.
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Table 5.1 ML and PWM estimates for
the Meuse data.

Method σ γ µ

ML 466.468 −0.092 1266.896
PWM 468.358 −0.099 1267.688

Now define θ = (σ, γ, µ)′, θ̂ = (σ̂ , γ̂ , µ̂)′ and write the solution to (5.6), (5.7)
and (5.8) as the vector equation θ = f (M). Further, let G denote the 3 × 3 matrix
with generic elements gi,j = ∂fi/∂M1,j,0, i, j = 1, 2, 3. Application of the delta
method yields the limiting distribution of θ̂ :

√
m(θ̂ − θ)

D→ N(0, V2)

where V2 = GV G′, as m → ∞ provided γ < 0.5.

Example 5.1 In Table 5.1, we show the ML and PWM estimates for the parame-
ters (σ, γ, µ) obtained from fitting the GEV to the annual maximum discharges of
the Meuse river. Note that the estimates obtained under the two estimation methods
agree quite good. The fit of the GEV to these data can be visually assessed by
inspecting the GEV quantile plot, introduced in Chapter 2. Figure 5.1 shows the
GEV quantile plot obtained with (a) ML and (b) PWM.

We still refer to some other estimation methods for the GEV that have been
discussed in literature: best linear unbiased estimation (Balakrishnan and Chan
(1992)), Bayes estimation (Lye et al. (1993)), method of moments (Christopeit
(1994)), and minimum distance estimation (Dietrich and Hüsler (1996)). In Coles
and Dixon (1999), it is shown that maximum penalized likelihood estimation
improves the small sample properties of a likelihood-based analysis.

5.1.3 Estimation of extreme quantiles

Estimates of extreme quantiles of the GEV can be obtained by inverting the GEV
distribution function given by (5.1), yielding

qY,p =
{

µ + σ
γ

[(− log(1 − p))−γ − 1], γ �= 0,

µ − σ log(− log(1 − p)), γ = 0,
(5.9)

and replacing (σ, γ, µ) by either the ML or probability-weighted moments esti-
mates. In case γ < 0, the right endpoint of the GEV is finite and given by

qY,0 = µ − σ

γ
.

The ML estimate of qY,p can also be obtained directly by a reparametrization
such that qY,p is one of the model parameters, for instance, substituting qY,p −



136 TAIL ESTIMATION FOR ALL DOMAINS OF ATTRACTION

GEV quantiles
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Figure 5.1 GEV QQ-plot of the annual maximum discharges of the Meuse river
using (a) ML and (b) PWM estimates.

σ
γ

[(− log(1 − p))−γ − 1] for µ. Note that, in case the GEV is used as an approx-
imation to the distribution of the largest observation in a sample, (5.9) yields the
quantiles of the maximum distribution. Since FXn,n = Fn ≈ H , one easily obtains
the quantiles of the original X data as

q∗
X,p =

{
µ + σ

γ
[(− log(1 − p)n)−γ − 1], γ �= 0,

µ − σ log(− log(1 − p)n), γ = 0,

where n is the block length.
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Figure 5.2 GEV-based quantile estimates for the annual maximum discharges of
the Meuse river; solid line: based on ML, broken line: based on PWM.

Example 5.1 (continued) In Figure 5.2, we illustrate the estimation of quantiles
of the annual maximum discharges of the Meuse river. The solid line (broken
line) represents quantile estimates based on the ML (PWM) estimates of the GEV
parameters.

5.1.4 Inference: confidence intervals

Confidence intervals and other forms of inference concerning the GEV parameters
(σ, γ, µ) follow immediately from the approximate normality of the ML and PWM
estimators. For instance, a 100(1 − α)% confidence interval for the tail index γ is
given by

γ̂ ± �−1(1 − α/2)

√
v̂2,2

m

where γ̂ is the ML or PWM estimate of γ and v̂2,2 denotes the second diago-
nal element of V1, or V2, after replacing the unknown parameters by their esti-
mates. Similarly, inference concerning the GEV quantiles can be based on the
normal limiting behaviour. Straightforward application of the delta method
yields

√
m(q̂Y,p − qY,p)

D→ N(0, κ ′Ṽ κ) as m → ∞
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where q̂Y,p denotes the estimator for qY,p obtained by plugging the ML or PWM
estimators into (5.9), and where Ṽ is V1, or V2, and

κ ′ =
[
∂qY,p

∂σ
,
∂qY,p

∂γ
,
∂qY,p

∂µ

]

=
[

1

γ
[(− log(1 − p))−γ − 1],

− σ

γ 2
[(− log(1 − p))−γ − 1] − σ

γ
(− log(1 − p))−γ log(− log(1 − p)), 1

]
.

Inference based on these normal limit results may be misleading as the normal
approximation to the true sampling distribution of the respective estimator may
be rather poor. In general, better approximations can be obtained by the profile
likelihood function. The profile likelihood function (Barndorff-Nielsen and Cox
(1994)) of γ is given by

Lp(γ ) = max
σ,µ|γ

L(σ, γ, µ).

Therefore, the profile likelihood ratio statistic


 = Lp(γ0)

Lp(γ̂ )

equals the classical likelihood ratio statistic for testing the hypothesis H0 : γ = γ0

versus H1 : γ �= γ0, and hence, under H0, for m → ∞,

−2 log 

D→ χ2

1 .

The special case of testing H0: γ = 0 (the so-called Gumbel hypothesis) is described
in Hosking (1984). Since H0 will be rejected at significance level α if −2 log 
 >

χ2
1 (1 − α), the profile likelihood–based 100(1 − α)% confidence interval for γ is

given by

CIγ =
{
γ : −2 log

Lp(γ )

Lp(γ̂ )
≤ χ2

1 (1 − α)

}

or equivalently

CIγ =
{
γ : log Lp(γ ) ≥ log Lp(γ̂ ) − χ2

1 (1 − α)

2

}
.

Profile likelihood–based confidence intervals for the other GEV parameters can be
constructed in a similar way.

Example 5.1 (continued) The profile likelihood–based 95% confidence intervals
for the EVI and the 0.99 quantile of the annual maximum discharges of the Meuse
river are given in Figure 5.3(a) and (b) respectively. Note that the 95% confidence
interval for γ contains the value 0, so at a significance level of 5%, the hypothesis
H0 : γ = 0 cannot be rejected. Hence, for practical purposes, the annual maximum
discharges can be adequately modelled by the Gumbel distribution.
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Figure 5.3 Profile log-likelihood function and profile likelihood–based 95% con-
fidence intervals for (a) γ and (b) q0.99.
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A major weakness with the GEV distribution is that it utilizes only the max-
imum and thus many data are wasted. Another problem is the determination of
an appropriate block size n, especially in case of time series data where the time
dependence is to be thinned out by using appropriate independent blocks from
which one extracts one maximum; this will be a topic of interest in Chapter 10 on
extreme value methods in time series analysis. To lift up the first problem threshold
methods and methods based on the k, largest order statistics have been developed.
Those are reviewed now.

5.2 Quantile View—Methods Based on (Cγ )

Several estimators based on extreme order statistics are available in order to
estimate a real-valued EVI, and correspondingly large quantiles and small tail prob-
abilities. These methods rely mainly on the conditions (Cγ ) and (C̃γ ). We discuss
here three methods: the estimator proposed by Pickands (1975) and its generaliza-
tions, the moment estimator from Dekkers et al. (1989) and the estimators based
on the generalized quantile plot proposed in Beirlant et al. (1996c) and Beirlant
et al. (2002b).

5.2.1 Pickands estimator

From (Cγ ), we obtain

1

log 2
log

{
U(4y) − U(2y)

U(2y) − U(y)

}

= 1

log 2
log

{
U(4y) − U(2y)

a(2y)

a(2y)

a(y)

a(y)

U(2y) − U(y)

}

→ 1

log 2
log{hγ (2)2γ /hγ (2)} = γ, y → ∞.

Treating the limit as an approximate equality for large y = (n + 1)/k and replacing
U(x) by its empirical version Ûn(x) = Xn−�n/x
+1,n leads to the Pickands (1975)
estimator for the EVI

γ̂P ,k = 1

log 2
log

(
Xn−�k/4
+1,n − Xn−�k/2
+1,n

Xn−�k/2
+1,n − Xn−k+1,n

)
.

for k = 1, . . . , n. Pickands original definition uses 4k rather k.
The great simplicity of the Pickands estimator γ̂P ,k is quite appealing but

unfortunately offset by its rather large asymptotic variance, equal to γ 2(22γ+1 +
1){(2γ − 1) log(2)}−2 (Dekkers and de Haan 1989), and its large volatility as a
function of k. This motivated the quest for more efficient variants.
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A recent proposal by Segers (2004) is the estimator

γ̂k(c, λ) =
∫ 1

0
log(Xn−�c�tk
�,n − Xn−�tk
,n)dλ(t)

=
k∑

j=1

{
λ

(
j

k

)
− λ

(
j − 1

k

)}
log(Xn−�cj�,n − Xn−j,n). (5.10)

Here, 0 < c < 1 while λ is a right-continuous function on [0, 1] such that λ(0) =
λ(1) = 0 and

∫ 1
0 λ(t)t−1dt = 1. The simplest example is

λv(t) =



0 if 0 ≤ t < v,

1/ log(1/v) if v ≤ t < 1,

0 if t = 1,

for some 0 < v < 1. The estimator γ̂k(c, λv) is in fact the one proposed by Yun
(2002), including as special cases the ones by Pickands (1975) [c = v = 1/2],
Pereira (1994) and Fraga Alves (1995) [c = v], and Yun (2000b) [1/4 < c < 1
and v = (4c)−1]. A more general example is

λv,µ(t) = {µ(t/v) − µ(t)}/ log(1/v), 0 ≤ t ≤ 1,

where again 0 < v < 1 and where µ is the distribution function of a probability
measure concentrated on (0, 1]. The estimator γ̂k(c, λv,µ) can be regarded as a
mixture of the estimator γ̂k(c, λv) over different values of k, encompassing thereby
the estimators of Drees (1995) and Falk (1994).

Segers (2004) establishes asymptotic normality of γ̂k(c, λ) under the conditions
of Theorem 3.1. For fixed 0 < c < 1 and γ �= −1/2, the limiting asymptotic vari-
ance, σ 2(γ, c, λ) is minimal for λ equal to λδ,c, where δ = |γ + 1/2| − 1/2 and,
for t ∈ [cj , cj−1) (positive integer j ),

λδ,c(t) =




(1 − c1+δ)
1 − cδj

1 − cδ
t, if δ �= 0,

(1 − c1+δ)j t, if δ = 0.

In this case,

σ 2(c, γ ) = σ 2(c, γ, λc,γ ) =




γ 2(1 − c1+γ )2

c(1 − cγ )2
, for γ > −1/2 and γ �= 0,

(1 − c)2

c(log c)2
, for γ = 0,

γ 2, for γ < −1/2.

The optimal choice of c is c → 1, in which case

σ 2(γ ) = lim
c↑1

σ 2(γ ) =
{

(1 + γ )2, for γ > −1/2,

γ 2, for γ < −1/2.
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Clearly, choosing c = 1 in (5.10) does not lead to an admissible estimator. This
poses no problem in practice, however, as the choice c = 0.75 already leads
to a relative efficiency of 96%. Observe that for γ > −1/2, the limiting vari-
ance σ 2(γ ) = (1 + γ )2 is that of the ML estimator for γ in the GP model
(Smith 1987).

The optimal choice for λ depends on γ , which is unknown. The solution is to
define γ̂ = γ̂k(c, λδ̃,c), where δ̃ = |γ̃ + 1/2| − 1/2 and γ̃ is an arbitrary consistent
estimator of γ based on the Xn−k+i , i = 1, . . . , k, for instance, γ̃ = γ̂k(c, λ0,c). The
asymptotic variance of this two-stage procedure is the same as when we would
use γ rather than γ̃ (Segers 2004). The estimator is illustrated for the SOA data
in Figure 5.5.

5.2.2 The moment estimator

The moment estimator has been introduced by Dekkers et al. (1989) as a direct
generalization of the Hill estimator:

Mk,n = Hk,n + 1 − 1

2

(
1 − H 2

k,n

H
(2)
k,n

)−1

,

where

H
(2)
k,n = 1

k

k∑
j=1

(
log Xn−j+1,n − log Xn−k,n

)2
.

To understand this estimator, we can proceed as follows: for any j ∈ {1, . . . , k},
we have that

log Xn−j+1,n − log Xn−k,n = log Ûn

(
n + 1

j

)
− log Ûn

(
n + 1

k + 1

)
,

and hence log Xn−j+1,n − log Xn−k,n can be seen as an estimate of

log U

(
n + 1

j

)
− log U

(
n + 1

k + 1

)

= log U

((
n + 1

k + 1

)(
k + 1

j

))
− log U

(
n + 1

k + 1

)
.

Now, choosing x = n+1
k+1 and u = k+1

j
in (C̃γ ), then for any j ∈ {1, . . . , k} as

n/k → ∞

log Xn−j+1,n − log Xn−k,n ∼




a
(

n+1
k+1

)

U
(

n+1
k+1

) log k+1
j

, if γ ≥ 0,

a
(

n+1
k+1

)

U
(

n+1
k+1

)
(

j
k+1

)−γ −1

γ
, if γ < 0.
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For k → ∞, we have the following limiting results

1

k

k∑
j=1

log
k + 1

j
→ −

∫ 1

0
log udu = 1,

1

k

k∑
j=1

(
log

k + 1

j

)2

→
∫ 1

0
(log u)2du = 2,

1

k

k∑
j=1

{(
j

k + 1

)−γ

− 1

}
→
∫ 1

0
(u−γ − 1)du = γ

1 − γ
(γ < 0),

1

k

k∑
j=1

((
j

k + 1

)−γ

− 1

)2

→
∫ 1

0
(u−γ − 1)2du = 2γ 2

(1 − γ )(1 − 2γ )
(γ < 0).

We see therefore that as k, n → ∞ and k/n → 0,

H 2
k,n

H
(2)
k,n

P⇒
{

1
2 , if γ ≥ 0,
1−2γ

2(1−γ )
, if γ < 0.

The consistency of the moment estimator now follows since

Hk,n
P⇒
{

γ , if γ ≥ 0,
0, if γ < 0,

since in the non Pareto-type case where γ ≤ 0, the slope of the Pareto quantile
plot will tend to zero near the higher observations.

5.2.3 Estimators based on the generalized quantile plot

Following (2.15), the function U(x)elog X(log U(x)) is regularly varying with index
γ since indeed also a is a regularly varying function. Therefore,

U(x)H(x) := U(x)elog X(log U(x)) = xγ �UH(x),

for some slowly varying function �UH. Hence, as in case of the Pareto quantile
plot, when x → ∞

log
(
U(x)elog X(log U(x))

)
log x

→ γ,

this is, when plotting log
(
U(x)elog X(log U(x))

)
versus log x, we obtain an ulti-

mately linear graph with slope γ . In practice, we replace x by n+1
j+1 and we estimate

elog X(log U(x)) with the Hill estimator Hj,n. We obtain that the plot(
log

(
n + 1

j + 1

)
, log(Xn−j,nHj,n)

)
, j = 1, . . . , n − 1, (5.11)

will be ultimately linear with slope γ .
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Example 5.2 In Figure 5.4, this is illustrated for the wind-speed data from three
cities in the United States, introduced in Chapter 1. These data are the daily fastest-
mile speeds measured by anemometers 10 m above the ground. The line structures
in the generalized quantile plots are the result of an inherent grouping of the data
due to loss of accuracy during the data-collecting process. For the Des Moines daily
wind-speed maxima (n = 5478), the generalized quantile plot (5.11) clearly shows
an increasing behaviour, which reflects a heavy tail for the underlying distribution.
The flattening trend in the Grand Rapids dataset (n = 5478) suggests a weaker tail
with γ = 0, while for Albuquerque (n = 6939) even a negative γ -value, resulting
in a distribution with a finite right endpoint, can be expected.

As in the previous chapter, one can now establish an estimation procedure
analogous to that induced by the Hill estimator. The slope in the generalized
quantile plot is then estimated by

γ̂ H
k,n = k−1

k∑
j=1

log UHj,n − log UHk+1,n,

where UHj,n := Xn−j,nHj,n.

Next to the above-discussed approach based on Hill-type operations on the UH
statistics, the slope of the ultimate linear part of the generalized quantile plot can
also be estimated by an unconstrained least-squares fit to the k ‘last’ points on the
generalized quantile plot, as proposed by Beirlant et al. (2002b). Minimizing

k∑
j=1

(
log UHj,n − δ − γ log

n + 1

j + 1

)2

with respect to δ and γ results in the so-called Zipf estimator:

γ̂ Z
k,n :=

1
k

∑k
j=1

(
log k+1

j+1 − 1
k

∑k
i=1 log k+1

i+1

)
log UHj,n

1
k

∑k
j=1 log2 k+1

j+1 −
(

1
k

∑k
j=1 log k+1

j+1

)2 .

An interesting property of this estimator is the smoothness of the realizations as a
function of k, which alleviates the problem of choosing k to some extent.

Example 5.3 We illustrate the above-introduced quantile-based estimators on the
SOA Group Medical Insurance claim data. In Figure 5.5, we plot γ̂P ,k (solid line),
Mk,n (broken line), γ̂ H

k,n (broken-dotted line) and γ̂ Z
k,n (dotted line) as a function of

k. The moment, generalized Hill and Zipf estimator are quite stable when plotted
as a function of k and indicate a γ value of around 0.35, a result that is consistent
with the estimates obtained in Chapter 4. Also the Pickands estimator indicates a
γ estimate of around 0.3 to 0.4 but, compared to the other estimators, shows a
much larger variability.
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Figure 5.4 Generalized quantile plot for the wind speed data set from (a) Des
Moines (n = 5478), (b) Grand Rapids (n = 5478) and (c) Albuquerque (n =
6939).
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Figure 5.4 (continued )
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Figure 5.5 SOA Group Medical Insurance data: γ̂P ,k (solid line), Mk,n (broken
line), γ̂ H

k,n (broken-dotted line), γ̂ Z
k,n (dotted line) and γ̂k(c, λδ̃,c) (broken line, short

dashes) as a function of k.
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5.3 Tail Probability View—Peaks-Over-Threshold
Method

5.3.1 The basic model

The left-hand side in the (C∗
γ ) condition can be interpreted as the conditional

survival function of the exceedances (or peaks, or excesses) Y = X − t over a
threshold t , taken at yb(t) > 0:

F̄t (yb(t)) := P (Y > yb(t)|Y > 0) = P

(
X − t

b(t)
> y|X > t

)
= F̄ (t + yb(t))

F̄ (t)
.

Hence, from (C∗
γ ), it appears a natural statistical procedure to approximate the

distribution F̄t by the distribution given by the right-hand side in (C∗
γ ):

F̄t (y) ∼
(

1 + γy

b(t)

)−1/γ

. (5.12)

Interpreting b(t) in this last expression as a scale parameter σ , we are lead to fit
the GP distribution, H , specified by




1 − (1 + γy

σ

)−1/γ
, y ∈ (0, ∞) if γ > 0,

1 − exp
(− y

σ

)
, y ∈ (0, ∞) if γ = 0,

1 − (1 + γy

σ

)−1/γ
, y ∈ (0, − σ

γ
) if γ < 0,

(5.13)

to the exceedances over a sufficiently high threshold.
The use of the GP distribution as approximate model for exceedances over high

thresholds can also be motivated on the basis of a point process characterization of
high-level exceedances. For more details about point processes we refer the reader
to section 5.9.2. Let X1, . . . , Xn be independent random variables with common
distribution function F where F satisfies (Cγ ) and consider the two-dimensional
point process

Pn =
{(

i

n + 1
,
Xi − bn

an

)
; i = 1, . . . , n

}
,

where an and bn normalize Xn,n appropriately, as discussed in Chapter 2. It can
be shown that on sets that exclude the lower boundary, Pn converges weakly to a
two-dimensional Poisson process. The intensity measure 
 of the limiting Poisson
process can be immediately derived from the Poisson property. Indeed, since

lim
n→∞ P (no points in (0, 1) × (x, ∞)) = lim

n→∞ P

(
Xn,n − bn

an

≤ x

)

= exp(−(1 + γ x)
− 1

γ ),
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Figure 5.6 Illustration of the point process characterization of high-level
exceedances.

we have that for sets A = (t1, t2) × (x, ∞), t1 < t2,


(A) = (t2 − t1) (1 + γ x)
− 1

γ . (5.14)

In Figure 5.6, a graphical illustration is provided for this point process
interpretation.

Now, for a sufficiently large u

P

(
Xi − bn

an

> u + x

∣∣∣∣ Xi − bn

an

> u

)
≈ 
((0, 1) × (u + x, ∞))


((0, 1) × (u, ∞))

=
(

1 + γ x

1 + γ u

)− 1
γ

,

which is the GP survival function with scale σ(u) = 1 + γ u. For practical pur-
poses, the unknown normalizing constants an and bn can be absorbed in the
GEV distribution. So above high thresholds, Pn can be approximated by a two-
dimensional Poisson process with intensity measure


(A) = (t2 − t1)

(
1 + γ

x − µ

σ

)− 1
γ

.

Similarly,

F̄u(x) ≈
(

1 + γ x

σ + γ (u − µ)

)− 1
γ

.
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For a detailed mathematical derivation of these point process results, we refer the
interested reader to Leadbetter et al. (1983), Falk et al. (1994) and Embrechts et al.
(1997).

5.3.2 Parameter estimation

Given a value of the threshold t and the number of data Nt from the original
sample X1, . . . , Xn exceeding t , the estimation of the parameters γ and σ can
be performed in a variety of ways. We mention the ML method, the method of
(probability-weighted) moments and the elemental percentile method (EPM). We
denote the absolute exceedances by Yj = Xi − t , provided Xi > t , j = 1, . . . , Nt ,
where i is the index of the j -th exceedance in the original sample. Often, the
threshold is taken at one of the sample points, that is, t = Xn−k,n. In this case, the
ordered exceedances are given by Yj,k = Xn−k+j,n − Xn−k,n, j = 1, . . . , k.

The ML method

The log-likelihood function for a sample Y1, . . . , YNt of i.i.d. GP random variables
is given by

log L(σ, γ ) = −Nt log σ −
(

1

γ
+ 1

) Nt∑
i=1

log

(
1 + γ Yi

σ

)

provided 1 + γYi

σ
> 0, i = 1, . . . , Nt . If γ = 0, the exponential distribution–based

log-likelihood function given by

log L(σ, 0) = −Nt log σ − 1

σ

Nt∑
i=1

Yi

has to be used. The maximization of log L(σ, γ ) can be best performed using a
reparametrization

(σ, γ ) → (τ, γ ) with τ = γ

σ

yielding

log L(τ, γ ) = −Nt log γ + Nt log τ −
(

1

γ
+ 1

) Nt∑
i=1

log(1 + τYi).

The ML estimators τ̂ML
Nt ,n

and γ̂ ML
Nt ,n

then follow from

1

τ̂ML
Nt ,n

−
(

1

γ̂ ML
Nt ,n

+ 1

)
1

Nt

Nt∑
i=1

Yi

1 + τ̂ML
Nt ,n

Yi

= 0,
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where

γ̂ ML
Nt ,n

= 1

Nt

Nt∑
i=1

log
(
1 + τ̂ML

Nt ,n
Yi

)
.

The method of probability-weighted moments

The method of moments (MOM) and the method of probability-weighted moments
(PWM) estimators for the GP distribution were introduced by Hosking and Wallis
(1987). Both methods share the basic idea that estimators for unknown parameters
can be derived from the expressions for the population moments. The r-th moment
of the GP distribution exists if γ < 1/r . Provided that they exist, the mean and
the variance of the GP distribution are given by respectively

E(Y) = σ

1 − γ
, (5.15)

var(Y ) = σ 2

(1 − γ )2(1 − 2γ )
. (5.16)

Assume a sample Y1, . . . , YNt of i.i.d. GP random variables is available. The order
statistics associated with Y1, . . . , YNt are denoted by Y1,Nt ≤ . . . ≤ YNt ,Nt . Replac-
ing E(Y) by Ȳ =∑Nt

i=1 Yi/Nt and var(Y ) by S2
Y =∑Nt

i=1(Yi − Ȳ )2/(Nt − 1) and
solving (5.15)-(5.16) for γ and σ yields the MOM estimators:

γ̂MOM = 1

2

(
1 − Ȳ 2

S2
Y

)
,

σ̂MOM = Ȳ

2

(
1 + Ȳ 2

S2
Y

)
.

We now turn to PWM estimation of the GP parameters σ and γ . In case
of the GP distribution, it is convenient to consider (5.4) with p = 1, r = 0 and
s = 0, 1, 2, . . . leading to

M1,0,s = σ

(s + 1)(s + 1 − γ )
γ < 1. (5.17)

Replacing M1,0,s by its empirical counterpart (as in case of fitting a GEV
distribution)

M̂1,0,s = 1

Nt

Nt∑
j=1

(
s∏

�=1

(Nt − j − � + 1)

(Nt − �)

)
Yj,Nt

or

M̃1,0,s = 1

Nt

Nt∑
j=1

(
1 − j

Nt + 1

)s

Yj,Nt ,
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and solving (5.17) for s = 0 and s = 1 with respect to γ and σ yields the PWM
estimators

γ̂PWM = 2 − M̂1,0,0

M̂1,0,0 − 2M̂1,0,1

,

σ̂PWM = 2M̂1,0,0M̂1,0,1

M̂1,0,0 − 2M̂1,0,1

.

Note that the PWM estimator for γ can be written as a ratio of weighted sums of
ordered exceedances. In case M̃1,0,s is used as an estimator for M1,0,s , this then
yields

γ̂PWM =
1
Nt

∑Nt

j=1

(
4 j

Nt+1 − 3
)

Yj,Nt

1
Nt

∑Nt

j=1

(
2 j

Nt+1 − 1
)

Yj,Nt

.

Application of the MOM and PWM estimators is not without problems. First,
in case γ ≥ 1, the MOM and PWM estimators do not exist. Second, the obtained
estimates may be inconsistent with the observed data in the sense that in case
γ < 0, some of the observations may fall above the estimate of the right endpoint.

The elemental percentile method

The elemental percentile method (EPM) introduced by Castillo and Hadi (1997)
overcomes some of the difficulties associated with the ML method and the method
of (probability-weighted) moments. In fact, for this method, there are no restrictions
on the value of γ . Here, we will concentrate on the estimation of γ �= 0. In case
γ = 0, the parameter σ can be estimated efficiently with the ML method. Assume a
sample Y1, . . . , YNt of i.i.d. GP random variables is available. Consider two distinct
order statistics Yi,Nt and Yj,Nt . Equating the GP cumulative distribution function
evaluated at these order statistics to the corresponding percentile values gives a
system of two equations in two unknowns:

1 − (1 + τ̂i,j Yi,Nt )
− 1

γ̂i,j = pi,n, (5.18)

1 − (1 + τ̂i,j Yj,Nt )
− 1

γ̂i,j = pj,n, (5.19)

where, as before τ = γ/σ and pi,n = i
n+1 . Elimination of γ̂i,j yields

Cj log(1 + τ̂i,j Yi,Nt ) = Ci log(1 + τ̂i,j Yj,Nt )

where Ci = − log(1 − pi,n), which can be solved numerically for τ̂i,j . Plugging
τ̂i,j into (5.18) (or (5.19)) and solving for γ̂i,j , we obtain

γ̂i,j = log(1 + τ̂i,jYi,Nt )

Ci
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and then

σ̂i,j = γ̂i,j

τ̂i,j

.

In order to use all available information, γ̂i,j and σ̂i,j are computed for all
distinct pairs of order statistics Yi,Nt < Yj,Nt leading to the final EPM estimators

γ̂EPM = median{γ̂i,j ; i < j},
σ̂EPM = median{σ̂i,j ; i < j}.

In case i = Nt

2 and j = 3Nt

4 , it is easy to show that the system of equations (5.18)
and (5.19) has a closed-form solution given by

γ̂� Nt
2 
,� 3Nt

4 
 = 1

log 2
log

Y� 3Nt
4 
,Nt

− Y� Nt
2 
,Nt

Y� Nt
2 
,Nt

, (5.20)

τ̂� Nt
2 
,� 3Nt

4 
 =
Y� 3Nt

4 
,Nt
− 2Y� Nt

2 
,Nt

Y 2
� Nt

2 
,Nt

. (5.21)

In fact, (5.20) is the Pickands (1975) estimator for γ as discussed above.

In the above discussion, we always assumed that a sample Y1, . . . , YNt of i.i.d.
GP random variables is available. If the data are not exact GP distributed, one
can rely on relation (5.12) and use the GP distribution as an approximation to
the conditional distribution of the exceedances. In this case, the GP distribution is
fitted to the excesses Yj = Xi − t , in case Xi > t , j = 1, . . . , Nt , using one of the
above described methods. Note that in the latter case, Nt is random.

Example 5.3 (continued) Applying the POT approach to the SOA Group Medical
Insurance data introduced in section 1.3.3 with a threshold of 400,000 USD, we fit
the GP distribution to the excesses yj = xi − 400,000. The ML procedure leads to
γ̂ = 0.3823 when t = 400,000. The quality of this GP fit to the empirical distribu-
tion function of the data Yi is depicted in Figure 5.7(a). Figure 5.7(b) contains the
W -plot of the GP fit to the exceedances over t = 400,000. In Table 5.2, we show
the ML, MOM, PWM and EPM estimates for the parameters σ and γ obtained
from fitting the GP distribution to the excesses over t = 400,000.

The choice of the threshold t is very much an open matter and resembles
the choice of the value of k in the previous chapter. As in the case of the Hill
estimator, a compromise has to be found between high values of t , where the bias
of the estimator will be smallest, and low values of t , where the variance will be
smallest. In the literature on the POT method, not much attention has been given to
this aspect. Davison and Smith (1990) propose to use the mean excess plot. Indeed,
the mean excess function of the GP distribution is given by the linear expression

e(t) = σ + γ t

1 − γ
, if γ < 1.
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Figure 5.7 SOA Group Medical Insurance data: (a) comparison of the fitted
excess distribution with ML estimates for γ and σ (broken line) and the empirical
one (solid line) and (b) W -plot for claim sizes exceeding t = 400,000.
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Table 5.2 ML, MOM, PWM and
EPM estimates for the SOA Group
Medical Insurance data with t =
400,000.

Method σ γ

ML 142,489 0.3823
MOM 156,841 0.3095
PWM 142,933 0.3707
EPM 139,838 0.4112
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Figure 5.8 SOA Group Medical Insurance data: ML estimate (solid line), MOM
estimate (broken line), probability-weighted moments estimate (broken-dotted line)
and elemental percentile estimate (dotted line) as a function of k.

Hence, one is lead to the graphical approach choosing t = Xn−k,n as the point
to the right of which a linear pattern appears in the plot {(Xn−k,n, Ek,n); k =
1, . . . , n − 1}.

The POT method, however, will often lead to stable plots of the estimates γ̂k

as a function of k, less volatile than for the case of the Hill plots. An illustration
is found in Figure 5.8 concerning the SOA Group Medical Insurance data.

We need to emphasize that, whereas the POT method yields more stable plots
for the estimates as a function of the threshold t , the bias can still be quite sub-
stantial.
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5.4 Estimators Based on an Exponential Regression
Model

In this section, we will discuss the approximate representation for log-ratios of
spacings of successive order statistics as derived by Matthys and Beirlant (2003).
This representation extends the exponential regression models derived in Chapter 4
in a natural way to the general case where γ ∈ R.

Let Uj,n, j = 1, . . . , n denote the order statistics of a random sample of size
n from the U(0, 1) distribution. Then, for k = 1, . . . , n − 1, (Vj,k := Uj,n/Uk+1,n;
j = 1, . . . , k) are jointly distributed as the order statistics of a random sample
of size k from the U(0, 1) distribution. As before, Ej , j = 1, . . . , n denote stan-
dard exponential random variables and Ej,n, j = 1, . . . , n, are the corresponding
ascending order statistics. The inverse probability integral transform together with
(Cγ ) imply that, for j = 1, . . . , k,

Xn−j+1,n − Xn−k,n
D= U(U−1

j,n) − U(U−1
k+1,n)

D= U(V −1
j,k U−1

k+1,n) − U(U−1
k+1,n)

∼ a(U−1
k+1,n)

V
−γ

j,k − 1

γ
,

provided k/n → 0. For a log-ratio of spacings of order statistics, we then obtain

log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

∼ log
V

−γ

j,k − 1

V
−γ

j+1,k − 1
, j = 1, . . . , k − 1.

Application of the mean value theorem with E∗
j,k ∈ (Ek−j,k, Ek−j+1,k), V ∗

j,k =
exp(−E∗

j,k) and the Rényi representation we have that

log
V

−γ

j,k − 1

V
−γ

j+1,k − 1

D= log
(
exp(γEk−j+1,k) − 1

)− log
(
exp(γEk−j,k) − 1

)

= (Ek−j+1,k − Ek−j,k)
γ exp(γE∗

j,k)

exp(γE∗
j,k) − 1

D= Ej

j

γ

1 − (V ∗
j,k)

γ
.

We now replace V ∗
j,k by j/(k + 1) to obtain the following approximate represen-

tation for log-ratios of spacings

j log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

D≈ γ

1 −
(

j

k+1

)γ Ej , j = 1, . . . , k − 1, (5.22)
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Figure 5.9 SOA Group Medical Insurance data: γ̂ RMA
k,n (solid line) and γ̂ RMB

k,n

(broken line) as a function of k.

from which γ can be estimated with the ML method. By construction, the resulting
ML estimator, denoted γ̂ RMA

k,n , is invariant with respect to a shift and a rescaling
of the data. Later on in this chapter, we will refine this estimator by imposing a
second-order tail condition on U .

Example 5.3 (continued) In Figure 5.9, we illustrate the use of γ̂ RMA
k,n (solid line)

on the SOA Group Medical Insurance claim data set. The exponential regression
model approach also indicates a γ estimate of around 0.35, a result that is consistent
with the earlier analysis.

5.5 Extreme Tail Probability, Large Quantile and
Endpoint Estimation Using Threshold Methods

5.5.1 The quantile view

On the basis of (Cγ ), we take xu = 1
p

and x = n+1
k+1 , so that U(xu) = Q(1 − p) and

Û(x) = Xn−k,n lead to the following general form of extreme quantile estimator:

Û

(
1

p

)
= Xn−k,n + â

(
n + 1

k + 1

)[(
k + 1

(n + 1)p

)γ̂

− 1

]
γ̂ −1, (5.23)
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where â
(

n+1
k+1

)
and γ̂ denote estimators of a

(
n+1
k+1

)
and γ respectively. Any one of

the estimators of γ discussed above can be used. Concerning â, it appears natural
from (2.15) to consider

â

(
n + 1

k + 1

)
= (1 − γ̂ −)UHk,n = (1 − γ̂ −)Xn−k,nHk,n.

Alternatively, following Matthys and Beirlant (2003), a(n+1
k+1 ) can also be esti-

mated on the basis of an approximate exponential regression model for spacings
of successive order statistics. On the basis of (Cγ ), for k/n → 0,

Xn−j+1,n − Xn−j,n ∼ a(U−1
k+1,n)

V
−γ

j,k − V
−γ

j+1,k

γ
, j = 1, . . . , k − 1.

Application of the mean value theorem, with the same notation for E∗
j,k and V ∗

j,k

as in section 5.4 and using the Rényi representation results in

V
−γ

j,k − V
−γ

j+1,k

γ

D= exp(γEk−j+1,k) − exp(γEk−j,k)

γ

= (Ek−j+1,k − Ek−j,k) exp(γE∗
j,k)

D= Ej

j

(
V ∗

j,k

)−γ
.

Hence, after replacing V ∗
j,k by j

k+1 , the following approximate exponential regres-
sion model for spacings of successive order statistics is obtained

j (Xn−j+1,n − Xn−j,n)
D≈ an,k+1

(
j

k + 1

)−γ

Ej , j = 1, . . . , k, (5.24)

with an,k+1 = a(n+1
k+1 ). Using straightforward derivations, the log-likelihood func-

tion of model (5.24) is maximal at

ăn,k+1 = 1

k

k∑
j=1

j (Xn−j+1,n − Xn−j,n)

(
j

k + 1

)γ

. (5.25)

Extreme quantiles can now be estimated using

ÛRMA
k,n

(
1

p

)
= Xn−k,n + ˆ̆an,k+1

(
k+1

p(n+1)

)γ̂ RMA
k,n − 1

γ̂ RMA
k,n

,

where ˆ̆an,k+1 is as in (5.25) but with γ replaced by γ̂ RMA
k,n .

Concerning the estimation of extreme tail probabilities P (X > x) condition
(C∗

γ ) similarly leads to setting U(x) + va(x) =: y,

ˆ̄F(y) = k + 1

n + 1

(
1 + γ̂

y − Xn−k,n

â
(

n+1
k+1

)
)−1/γ̂

. (5.26)
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Finally, when γ < 0, an estimation of x∗ is obtained by letting p → 0 in (5.23):

x̂+ = Xn−k,n − 1

γ̂
â

(
n + 1

k + 1

)
= Xn−k,n − 1 − γ̂

γ̂
Xn−k,nHk,n. (5.27)

5.5.2 The probability view

Extreme quantiles of the GP distribution can be estimated by inverting the GP
distribution function given by (5.13), yielding

U(
1

p
) =

{ σ
γ
(p−γ − 1) γ �= 0,

−σ log p γ = 0,
(5.28)

and replacing the unknown parameters by one of the above described estimates. In
case γ < 0, the right endpoint of the GP distribution is finite and can be obtained
by letting p → 0 in (5.28):

x̂+ = σ̂

|γ̂ | .

If the data are not exact GP distributed, relation (5.12) implies that

F̄t (y) = F̄ (t + y)

F̄ (t)
∼
(

1 + γy

σ

)−1/γ

,

so that with x = t + y

F̄ (x) ∼ F̄ (t)

(
1 + γ (x − t)

σ

)−1/γ

.

Estimating F̄ (t) by Nt/n and replacing γ and σ by their respective ML, MOM,
PWM or EPM estimates, we obtain that

ˆ̄F(x) = Nt

n

(
1 + γ̂ (x − t)

σ̂

)−1/γ̂

. (5.29)

The POT estimator for large quantiles Q(1 − p) can now be obtained from invert-
ing the right-hand side in (5.29):

Û

(
1

p

)
= t + σ̂

γ̂

((
np

Nt

)−γ̂

− 1

)
. (5.30)

Note that in case γ < 0, an estimator for the right endpoint of the support of the
distribution x∗ = Q(1) is obtained by letting p → 0 in (5.30):

x̂+ = t − σ̂

γ̂
. (5.31)
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Figure 5.10 SOA Group Medical Insurance data: Û(100,000) as a function of k.

Note further that in case the parameters of the GP distribution are estimated with the
ML method, extreme quantile estimates can be obtained directly by reparametrizing
the log-likelihood function in terms of U( 1

p
), for example, setting

σ =
γ (U( 1

p
) − t)(

np

Nt

)−γ − 1
.

Example 5.3 (continued) In Figure 5.10, we illustrate the estimation of extreme
quantiles using the POT approach. Figure 5.10 shows the estimates for U(100,000)

as a function of k. Here, Û was obtained by plugging the ML estimates for γ and σ

in (5.30). A stable region appears for k from 200 up to 500, leading to an estimate
of 4 million.

5.5.3 Inference: confidence intervals

Approximate 100(1 − α)% confidence intervals for the parameters γ and σ of the
GP distribution can be constructed on the basis of the asymptotic normality of the
ML, MOM and PWM estimators. For instance, a 100(1 − α)% confidence interval
for γ is given by

γ̂ ± �−1(1 − α/2)

√
v̂1,1

Nt

where γ̂ is either the ML, MOM or PWM estimate for γ and v̂1,1 is the first
diagonal element of respectively V1, V2 or V3 (for more information on these
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covariance matrices, we refer to section 5.6) with the unknown parameters replaced
by their estimates. Inference about return levels U( 1

p
) can be drawn in a similar

way. Straightforward application of the delta method gives

√
Nt

(
Û

(
1

p

)
− U

(
1

p

))
D→ N(0, ξ ′V ξ)

where V is either V1, V2 or V3 and

ξ ′ =
[

∂U( 1
p
)

∂γ
,
∂U( 1

p
)

∂σ

]

=
[
− σ

γ 2

(
p−γ − 1

)− σ

γ
p−γ log p,

1

γ

(
p−γ − 1

)]
,

so a 100(1 − α)% confidence interval for U( 1
p
) is given by

Û

(
1

p

)
± �−1 (1 − α/2)

√
ξ ′V ξ

Nt

.

Often, better confidence intervals can be constructed on the basis of the profile
likelihood ratio test statistic. The profile likelihood function for γ is given by

Lp(γ ) = max
σ |γ

L(σ, γ ).

Using similar arguments as in case of the GEV, the 100(1 − α)% profile likelihood
confidence interval for the parameter γ can be obtained as

CIγ =
{
γ : log Lp(γ ) ≥ log Lp(γ̂ ) − χ2

1 (1 − α)

2

}
.

The special case of testing H0 : γ = 0 is described in Marohn (1999).

Example 5.3 (continued) Figure 5.11 illustrates the profile likelihood function–
based confidence intervals using the SOA Group Medical Insurance data. In
Figure 5.11(a) and (b), we show the profile log-likelihood function of γ and
U(100,000) respectively at k = 200, together with the 95% confidence interval.

5.6 Asymptotic Results Under (Cγ )-(C∗
γ )

In order to be able to construct asymptotic confidence intervals or tests concerning
γ , we now discuss the most relevant asymptotic results and present some asymp-
totic comparisons between some of the estimators.

In case of the ML and the probability-weighted moment approach for peaks
over thresholds, one can develop asymptotic results under the assumption that the
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Figure 5.11 SOA Group Medical Insurance data: profile log-likelihood function
and profile likelihood–based 95% confidence intervals at k = 200 for (a) γ and
(b) U(100,000).
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excesses exactly follow a GP distribution ; rather than assuming (Cγ ) or, equiva-
lently, (C∗

γ ) (see also section 5.1 concerning the method of block maxima). This is
a restrictive approach that should be validated of course through some goodness-
of-fit methods that were developed above. Under this parametric approach, the
following asymptotic results can be stated concerning the POT methods:

(i) The ML estimators (γ̂ ML
Nt ,n

, σ̂ ML
Nt ,n

) are asymptotically normal: provided γ >

−1/2, for Nt → ∞
√

Nt

(
(γ̂ ML

Nt ,n
, σ̂ ML

Nt ,n
) − (γ, σ )

) D→ N (0, V1) ,

where

V1 = (1 + γ )

[
1 + γ −σ

−σ 2σ 2

]
,

while the ML estimator is superefficient when −1 > γ > −1/2; that is, the
ML estimator converges with rate of consistency N

−γ
t .

(ii) The MOM estimators (γ̂MOM, σ̂MOM) satisfy for Nt → ∞
√

Nt

(
(γ̂MOM, σ̂MOM) − (γ, σ )

) D→ N(0, V2),

where

V2 = C

[
(1 − 2γ )2(1 − γ + 6γ 2) −σ(1 − 2γ )(1 − 4γ + 12γ 2)

−σ(1 − 2γ )(1 − 4γ + 12γ 2) 2σ 2(1 − 6γ + 12γ 2)

]
,

C = (1 − γ )2

(1 − 2γ )(1 − 3γ )(1 − 4γ )
,

provided γ < 1/4.

(iii) The probability-weighted moment estimators (γ̂PWM, σ̂PWM) satisfy, provided
γ < 1/2, as Nt → ∞

√
Nt((γ̂PWM, σ̂PWM) − (γ, σ ))

D→ N(0, V3)

where

V3 = C

[
(1 − γ )(2 − γ )2(1 − γ + 2γ 2) −σ(2 − γ )(2 − 6γ + 7γ 2 − 2γ 3)

−σ(2 − γ )(2 − 6γ + 7γ 2 − 2γ 3) σ 2(7 − 18γ + 11γ 2 − 2γ 3)

]
,

C = 1

(1 − 2γ )(3 − 2γ )
.
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(iv) Likewise, the asymptotic properties of the initial estimators γ̂i,j and σ̂i,j

in the EPM can be derived. First, consider the limiting behaviour of order
statistics (Yi,Nt , Yj,Nt ). Let i = �Ntp� and j = �Ntq�, 0 < p < q < 1, and
let Q denote the GP quantile function

Q(p) = σ

γ
((1 − p)−γ − 1).

It can be shown that for Nt → ∞
√

Nt

(
(Yi,Nt , Yj,Nt ) − (Q(p), Q(q))

) D→ N(0, W)

where

W =
[

σ 2p(1 − p)−2γ−1 σ 2p(1 − p)−γ−1(1 − q)−γ

σ 2p(1 − p)−γ−1(1 − q)−γ σ 2q(1 − q)−2γ−1

]
.

Remark that these limit results for the marginal distributions were derived
in section 3.2, case 2 (iv). Straightforward application of the delta method
then yields the limiting behaviour of the initial estimators:

√
Nt

(
(γ̂i,j , σ̂i,j ) − (γ, σ )

) D→ N(0, CWC ′)

with

C = 1

η

[
1 − (1 − q)−γ (1 − p)−γ − 1

−[Q(q) + σ log(1 − q)(1 − q)−γ ] Q(p) + σ log(1 − p)(1 − p)−γ

]

and

η = log(1 − p)Q(q)(1 − p)−γ − log(1 − q)Q(p)(1 − q)−γ .

Another more general point of view recognizes that, in general, the excesses
are not exactly GP distributed, but that the POT distribution approaches a GP
distribution for high-enough thresholds as assumed under (Cγ )-(C∗

γ ). For this, one
typically adds an assumption concerning the rate of convergence of the excess dis-
tribution to the GP family. This can be found in the second-order theory discussed
in Chapter 3. The semi-parametric point of view then results in the appearance of
an asymptotic bias in the results.

Following the theory of generalized regular variation of second order outlined
in de Haan and Stadtmüller (1996), we assume the existence of a positive function
a and a second ultimately positive auxiliary function a2 with a2(x) → 0 when
x → ∞, such that

lim
x→∞

1

a2(x)

{
U(ux) − U(x)

a(x)
− hγ (u)

}
= c

∫ u

1
tγ−1hρ(t)dt + Ahγ+ρ(u). (5.32)
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In the sequel, we denote the class of generalized second order regularly varying
functions U satisfying (5.32) with GRV2(γ, ρ; a(x), a2(x); c, A).

We restrict the discussion here to the case ρ < 0, in which case a clever choice
of the auxiliary function a2 results in a simplification of the limit function in (5.32)
with c = 0.

In Appendix 5.9.3, we give an overview of possible kinds of GRV 2 functions
and the corresponding representations for U and log U as given in Vanroelen
(2003). From this list, it follows that the second-order rate in (5.32) is worse for
log U compared to U when ρ < γ < 0 and in some cases when 0 < γ < −ρ. In
these cases, this will entail asymptotic relative efficiency 0 for estimators based
on log-transformed data compared to shift invariant estimators such as the ML
estimator or the Pickands type estimators, this is if all these estimators are based
on the pertaining optimal number of order statistics.

When 0 < γ < −ρ, this rate problem for log U arises with the appearance of
the constant D in the characterization of U in that case, namely, U(x) = �+xγ { 1

γ
+

Dx−γ + A
γ+ρ

a2(x)(1 + o(1))}. When D = 0, the original a2-rate is kept for log U ,
while it is not when D �= 0, in which case a2 is replaced by a regularly function with
index −γ . Within the Hall class of Pareto-type distributions (see section 3.3.2),
the case D �= 0 occurs when β = γ . This is the case, for instance, for the Fisher
F and the GEV distributions. Also remark the special representation in case γ +
ρ = 0, where a slowly varying function L2 appears, discussed in Appendix 5.9.3.
The representations for U , respectively log U , as given in Appendix 5.9.3 can
be used to derive the asymptotic mean squared errors (AMSEs) of some well-
known estimators, see Appendix 5.9.4. In this, we assume that the slowly varying
parts of b and a2 are asymptotically equivalent to a constant. The optimal values
of k, which minimize the different expressions of the AMSEs together with the
corresponding minimal AMSE values, are found in Appendix 5.9.5. Matthys and
Beirlant (2003) and Segers (2004) contain similar asymptotic results for γ̂ RMA

k,n ,
γ̂ RMB

k,n (see section 5.7.1), respectively γ̂k(c, λ).

We end this section by specifying the asymptotic distribution of Û(1/p) as
defined in (5.23) with the moment estimator Mk,n substituted for γ̂ . Such asymp-
totic results were first proven in de Haan and Rootzén (1993) and were further
explored in Ferreira et al. (2003). Matthys and Beirlant (2003) provide analogous
results for ÛRMA

k,n (1/p).
Considering the conditions of Proposition 3.2, Ferreira et al. (2003) defined the

function

ã2(x) =




a2(x), if γ < ρ,

x∗ − a(x)/U(x), if ρ < γ ≤ 0
or 0 < γ < −ρ with D �= 0
or γ = −ρ,

ρa2(x)

γ+ρ
, if γ > −ρ

or 0 < γ < −ρ with D = 0,
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where D is as in the representations for U given in Vanroelen (2003), see also
Appendix 5.9.3.

Let an = k/(npn). Then when U(∞) > 0, and k = kn → ∞ such that n/kn →
∞, npn → c ≥ 0 (finite),

√
kã2(n/k) → 0 and (log an)/

√
k → 0 as n → ∞, we

have that as γ �= 0 and γ �= ρ

• in case γ > 0

γ
√

k

a
(

n
k

)
a

γ
n log an

(
Û

(
1

pn

)
− U

(
1

pn

))
D→ N

(
0, (1 + γ )2) ,

• while in case γ < 0√
k

a
(

n
k

)
(

Û

(
1

pn

)
− U

(
1

pn

))
D→ N

(
0,

(1 − γ )2(1 − 3γ + 4γ 2)

γ 4(1 − 2γ )(1 − 3γ )(1 − 4γ )

)
.

In case
√

kã2(n/k) → λ ∈ R an asymptotic bias appears, see, for instance, Ferreira
et al. (2003).

5.7 Reducing the Bias

In this section, we show how some of the estimators based on the first-order
condition (Cγ ) can be refined by taking into account the second-order tail behaviour.
This then is analogous to section 4.4. We confine ourselves here to the estimator
based on the exponential regression model introduced in section 5.4.

5.7.1 The quantile view

From the discussion in Chapter 2, we have that F ∈ D(Gγ ) implies the existence
of a slowly varying function � and a function d with ±d ∈ R0 and d(x) → γ as
x → ∞ such that

U(ux) − U(x)

a(x)
= 1

d(x)

(
uγ �(ux)

�(x)
− 1

)
. (5.33)

Matthys and Beirlant (2003) refined the exponential regression model (5.22) by
imposing the second-order condition (3.14) on the function �.

Using the inverse probability integral transform (5.33) and (3.14), one easily
obtains for j = 1, . . . , k,

Xn−j+1,n − Xn−k,n
D= U(U−1

k+1,nV
−1
j,k ) − U(U−1

k+1,n)

= cn,k+1

(
V

−γ

j,k

�(U−1
k+1,nV

−1
j,k )

�(U−1
k+1,n)

− 1

)

∼ cn,k+1

(
V

−γ

j,k exp

(
an,k+1

V
−ρ
j,k − 1

ρ

)
− 1

)
,
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as k/n → 0, where cn,k+1 := a(U−1
k+1,n)/d(U−1

k+1,n) and an,k+1 := ca2(U
−1
k+1,n). Tak-

ing a log-ratio of spacings results in

log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

∼ log
V

−γ

j,k exp

(
an,k+1

V
−ρ
j,k −1

ρ

)
− 1

V
−γ

j+1,k exp

(
an,k+1

V
−ρ
j+1,k

−1

ρ

)
− 1

,

j = 1, . . . , k − 1.

We now apply the mean value theorem (with the same notation for E∗
j,k and V ∗

j,k as
in section 5.4) and the Rényi representation of standard exponential order statistics
to the right-hand side of the above equation:

log
V

−γ

j,k exp

(
an,k+1

V
−ρ
j,k

−1

ρ

)
− 1

V
−γ

j+1,k exp

(
an,k+1

V
−ρ
j+1,k

−1

ρ

)
− 1

D= log
exp
(
γEk−j+1,k + an,k+1

exp(ρEk−j+1,k)−1
ρ

)
− 1

exp
(
γEk−j,k + an,k+1

exp(ρEk−j,k)−1
ρ

)
− 1

= (Ek−j+1,k − Ek−j,k)
γ + an,k+1 exp(ρE∗

j,k)

1 − exp

(
−γE∗

j,k + an,k+1
exp(ρE∗

j,k
)−1

−ρ

)

D= Ej

j

γ + an,k+1

(
V ∗

j,k

)−ρ

1 −
(
V ∗

j,k

)γ

exp

(
an,k+1

(
V ∗

j,k

)−ρ−1

−ρ

) ,

and hence, after replacing V ∗
j,k by j

k+1 , we obtain the following approximate rep-
resentation for log-ratios of spacings

j log
Xn−j+1,n − Xn−k,n

Xn−j,n − Xn−k,n

D≈
γ + an,k+1

(
j

k+1

)−ρ

1 −
(

j

k+1

)γ

exp

(
an,k+1

(
j

k+1

)−ρ−1

−ρ

)Ej ,

j = 1, . . . , k − 1. (5.34)

Note that if an,k+1 = 0 model (5.34) reduces to (5.22). The parameters γ , an,k+1

and ρ of model (5.34) can be jointly estimated with the ML method. We denote
these ML estimators by γ̂ RMB

k,n , âRMB
n,k+1 and ρ̂RMB

k,n . Since (5.34) is invariant with
respect to shifts and rescalings of the data, all estimators based on (5.34) share the
same invariance property.
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5.7.2 Extreme quantiles and small exceedance probabilities

We continue the discussion of the exponential regression model approach of
Matthys and Beirlant (2003). Using (5.33) together with condition (3.14) on �,
one easily obtains the following asymptotic representation

U(
1

p
) − Xn−k,n ∼ cn,k+1



(

k

np

)γ

exp


an,k+1

(
k
np

)ρ − 1

ρ


− 1


 , (5.35)

where, as before, cn,k+1 := a(U−1
k+1,n)/d(U−1

k+1,n) and an,k+1 := ca2(U
−1
k+1,n).

Estimating γ , an,k+1 and ρ by respectively γ̂ RMB
k,n , âRMB

n,k+1 and ρ̂RMB
k,n , cn,k+1 can be

estimated as

ĉn,k+1 = 1

k

k∑
j=1

j (Xn−j+1,n − Xn−j,n)
(

j

k+1

)γ̂ RMB
k,n

(
γ̂ RMB

k,n + âRMB
n,k+1

(
j

k+1

)−ρ̂RMB
k,n

)
exp


âRMB

n,k+1

1−
(

j
k+1

)−ρ̂RMB
k,n

−ρ̂RMB
k,n




.

Finally, replacing γ , ρ, an,k+1 and cn,k+1 by their respective estimators in (5.35)
leads to a bias corrected estimator ÛRMB

k,n ( 1
p
). As with the refined ML estimator

γ̂ RMB
k,n for γ , ÛRMB

k,n ( 1
p
) usually succeeds well in reducing the bias of ÛRMA

k,n ( 1
p
).

On the other hand, it has a higher variance and hence is often less optimal in
mean squared error (MSE) sense. Note that for a fixed high value of ÛRMB

k,n ( 1
p
), the

above equation can be solved numerically for p, yielding an exceedance probability
estimate.

5.8 Adaptive Selection of the Tail Sample Fraction

As we know from the previous chapter, successful practical application of EVI
estimators crucially depends on the selection of a good or possibly optimal k-
value. We continue the discussion along the lines of section 5.6. In that section,
we provided the theoretical optimal k-values for some of the better-known EVI
estimators. The optimal k-values clearly depend on the EVI γ and the parameters
b(n) and ρ̃ describing the second-order tail behaviour. Replacing these unknown
parameters by their respective estimates then yields an estimate for kopt . To this
aim, we take a closer look at the regression through the k ultimate points on the
generalized quantile plot.

On the basis of condition (C̃γ ), F ∈ D(Gγ ) implies UH ∈ Rγ and hence the
generalized quantile plot

(
log

(
n + 1

j + 1

)
, log UHj,n

)
, j = 1, . . . , n − 1,
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will be ultimately linear. Further, the slope of this ultimate linear part approximates
γ . Under the Hall (1982) model,

U(x) =
{

Cxγ (1 + Dxρ(1 + o(1))) (x → ∞) if γ > 0,

x+ − Cxγ (1 + Dxρ(1 + o(1))) (x → ∞) if γ < 0,

with C > 0 and D ∈ R, Beirlant et al. (2002b) derived the following approximate
model:

Zj := (j + 1) log
UHj,n

UHj+1,n

= γ + b(n/k)

(
j

k

)−ρ̃

+ εj , j = 1, . . . , k,

(5.36)
where εj are considered as zero-centred error terms. Ignoring the second term in
the right-hand side of (5.36) results in the reduced model

(j + 1) log
UHj,n

UHj+1,n

= γ + εj , j = 1, . . . , k,

for which γ̂ H
k,n is the least-squares estimator. The full model (5.36) can be exploited

directly to propose an estimator for γ using a least-squares method, thereby replac-
ing ρ̃ by an estimator ˆ̃ρ. Beirlant et al. (2002c) propose

ˆ̃ρk,λ,n = − 1

log λ
log

γ̂ H
�λ2k�,n − γ̂ H

�λk�,n
γ̂ H

�λk�,n − γ̂ H
k,n

, λ ∈ (0, 1),

as an appropriate choice, which is a consistent estimator when k is chosen such that√
kb(n/k) → ∞. For practical diagnostic purposes it can be sufficient to replace

ρ̃ by a canonical choice such as -1. For a given ˆ̃ρ-value, γ and b(n/k) can be
estimated using least squares, resulting in

γ̂LS,k( ˆ̃ρ) = Z̄k − b̂LS,k( ˆ̃ρ)/(1 − ˆ̃ρ),

b̂LS,k( ˆ̃ρ) = (1 − ˆ̃ρ)2(1 − 2 ˆ̃ρ)

ˆ̃ρ2

1

k

k∑
j=1

((
j

k

)−ˆ̃ρ
− 1

1 − ˆ̃ρ

)
Zj .

These least-squares estimators can now be used to estimate the kopt values as given
in section 5.6 in an adaptive way. For brevity, we consider the estimator γ̂ H

k,n in
case γ > 0. The procedure can, however, be applied without any problem to the
other estimators considered in that section. Because of the fact that a2 ∈ Rρ , the
AMSE of the simple estimator γ̂ H

k,n is minimal for

kopt ∼
[
b

(
n

k0

)]−2/(1−2ρ̃)

k
−2ρ̃/(1−2ρ̃)

0

(
(1 + γ 2)(1 − ρ̃)2

−2ρ̃

)1/(1−2ρ̃)

(5.37)

for any secondary value k0 ∈ {1, . . . , n − 1}. Plugging consistent estimators for
γ , b(n/k0) and ρ̃, for instance, the least-squares estimators, into (5.37) yields an
estimator for kopt . In this way, for each value of k0, an estimator of kopt is obtained.
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5.9 Appendices

5.9.1 Information matrix for the GEV

Consider a GEV-distributed random variable X. Let θ ′ = (σ, γ, µ) and denote by
g the GEV density function:

g(x; σ, γ, µ) = 1

σ

(
1 + γ

x − µ

σ

)− 1
γ −1

exp

(
−
(

1 + γ
x − µ

σ

)− 1
γ

)
.

Then the information matrix

I (θ) = −E

(
∂2 log g(X; θ)

∂θ∂θ ′

)

has as generic elements

I1,1(θ) = 1

σ 2γ 2
(1 − 2�(2 + γ ) + p) ,

I1,2(θ) = − 1

σγ 2

(
1 − γ∗ − q + 1 − �(2 + γ )

γ
+ p

γ

)
,

I1,3(θ) = − 1

σ 2γ
(p − �(2 + γ )) ,

I2,2(θ) = 1

γ 2

[
π2

6
+
(

1 − γ∗ + 1

γ

)2

− 2q

γ
+ p

γ 2

]
,

I2,3(θ) = − 1

σγ

(
q − p

γ

)
,

I3,3(θ) = p

σ 2
,

where γ∗ = 0.5772157 is Euler’s constant,

p = (1 + γ )2�(1 + 2γ ),

q = �(2 + γ )

(
ψ(1 + γ ) + 1 + γ

γ

)
,

with ψ(x) = d log �(x)/dx.

5.9.2 Point processes

The peaks-over-threshold (POT) method in section 5.3.1 relies on a parametric
model for a certain point process. Moreover, point process techniques are useful
in inference on multivariate extremes or extremes of time series. For the reader’s
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convenience, we include here a very brief and informal introduction on point
processes. For a proper study of the subject, the reader should consult books such
as Resnick (1987) or Snyder and Miller (1991), among others.

Let {Xi : i ∈ I} represent the locations of points, indexed by a set I, occurring
randomly in a state space S. A point process N counts the number of points in
regions of S:

N(A) =
∑
i∈I

1(Xi ∈ A), A ⊆ S.

The expected number of points in a set A is given by the intensity measure 
(A) =
E[N(A)]. If the state space S is Euclidean space or a subset thereof and if the
intensity measure 
 has a density function λ : S → [0, ∞), that is, if 
(A) =∫
A

λ(x)dx, then λ is called the intensity function of the process.
The most common type of point processes are Poisson processes. A point

process N with intensity measure 
 is said to be a Poisson process if the following
two conditions are fulfilled: (i) for each set A such that 
(A) < ∞ is N(A) a
Poisson random variable with mean 
(A); (ii) for all positive integer k and all
disjoint sets A1, . . . , Ak are the random variables N(A1), . . . , N(Ak) independent.
A Poisson process on a (subset of) Euclidean space is called homogenous if its
intensity function λ is constant, λ(x) ≡ λ, and inhomogenous otherwise.

More generally, a marked point process counts for each point Xi a quantity Yi

and has representation

N(A) =
∑
i∈I

Yi1(Xi ∈ A),

the marks {Yi}i∈I being identically distributed. Observe that a marked point process
with all marks equal to unity is simply a point process.

A compound Poisson process is a marked point process for which the points
Xi occur according to a Poisson process independently of the marks Yi , which are
themselves independent and identically distributed. We shall denote by CP(λ, π)

a compound Poisson process with intensity function λ and mark distribution π .
A sequence of (marked) point processes Nn on a state space S is said to

converge in distribution to a (marked) point process N , notation Nn
D→ N , if for

each positive integer k and all sets A1, . . . , Ak the vector (Nn(Ai))
k
i=1 converges

in distribution to the vector (N(Ai))
k
i=1. A typical way to establish convergence

of point processes is via convergence of Laplace functionals.
If the intensity function, λ, of a Poisson process N depends on an unknown

parameter vector, θ , then we can estimate θ by ML. In order to construct the
likelihood, we first have to choose a region A in the sample space such that

(A; θ) < ∞ for all θ . A crucial property of a Poisson process is now that the
points in a region A conditionally on their number N(A) are independent and
identically distribution with common density f (x; θ) = λ(x; θ)/
(A; θ). More-
over, N(A) has a Poisson distribution with mean 
(A; θ). Therefore, if the points
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falling in A of a realization of N can be enumerated as x1, . . . , xm, then the
likelihood is

L(θ) = exp{−
(A; θ)}
(A; θ)m

m!

m∏
i=1

λ(xi; θ)


(A; θ)

∝ exp{−
(A; θ)}
m∏

i=1

λ(xi; θ).

5.9.3 GRV2 functions with ρ < 0

We restrict to cases where a2(x) is regularly varying with index ρ < 0 and with a
slowly varying part being asymptotically equivalent to a constant. Then, without
loss of generality, this constant can be set equal to 1.

From Vanroelen (2003), we obtain the following representations of U .

• 0 < −ρ < γ : for U ∈ GRV2(γ, ρ; �+xγ , a2(x); 0, A):

U(x) = �+xγ
{ 1

γ
+ A

γ + ρ
a2(x)(1 + o(1))

}
,

• γ = −ρ: for U ∈ GRV2(γ, −γ ; �+xγ , x−γ �2(x); 0, A) with �2 some slowly
varying function:

U(x) = �+xγ
{ 1

γ
+ x−γ L2(x)

}

with L2(x) = B + ∫ x

1 (A + o(1))
�2(t)

t
dt + o(l2(t)) for some constant B,

• 0 < γ < −ρ: for U ∈ GRV2(γ, ρ; �+xγ , a2(x); 0, A):

U(x) = �+xγ
{ 1

γ
+ Dx−γ + A

γ + ρ
a2(x)(1 + o(1))

}
,

• γ = 0: for U ∈ GRV2(0, ρ; �+, a2(x); 0, A):

U(x) = �+ log x + D + A

ρ
a2(x)(1 + o(1)),

• γ < 0: for U ∈ GRV2(γ, ρ; �+xγ , a2(x); 0, A):

U(x) = U(∞) − �+xγ
{ 1

−γ
− A

γ + ρ
a2(x)(1 + o(1))

}
,

where �+ > 0, A �= 0, D ∈ R.
Concerning log U , the following results are available under these re-

presentations:

• If 0 < −ρ < γ then log U ∈ GRV2(0, ρ; γ, a2(x); 0,
ρA

γ+ρ
);
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• If γ = −ρ then log U ∈ GRV2(0, −γ ; γ, x−γ L2(x); 0, −γ );

• If 0 < γ < −ρ then log U ∈ GRV2(0, −γ ; γ, x−γ ; 0, −γD) if D �= 0, and
log U ∈ GRV2(0, ρ; γ, a2(x); 0,

ρA
γ+ρ

) if D = 0;

• If γ = 0 then log U ∈ GRV2(0, 0; a(x)
U(x)

, a(x)
U(x)

; −1, 0);

• If γ < ρ then log U ∈ GRV2(γ, ρ; [U(∞)]−1�+xγ , a2(x); 0, A);

• If ρ < γ < 0 then log U ∈ GRV2(γ, γ ; [U(∞)]−1�+xγ , �+xγ ; 0, − 1
γU(∞)

);

• If γ = ρ then log U ∈ GRV2(γ, γ ; [U(∞)]−1�+xγ , a2(x); 0, A − �+
γU(∞)

).

5.9.4 Asymptotic mean squared errors

In the statement of our results, we will use the following notations:

b(x) =




Aρ[ρ+γ (1−ρ)]
(γ+ρ)(1−ρ)

a2(x) if 0 < −ρ < γ or if 0 < γ < −ρ

with D = 0,

− γ 3

(1+γ )
x−γ L2(x) if γ = −ρ,

− γ 3D

(1+γ )
x−γ if 0 < γ < −ρ with D �= 0,

1
log2(x)

if γ = 0,

Aρ(1−γ )

(1−γ−ρ)
a2(x) if γ < ρ,

− γ

1−2γ

�+
U(∞)

xγ if ρ < γ < 0,

γ

1−2γ

[
A(1 − γ ) − �+

U(∞)

]
xγ if γ = ρ,

and

ρ̃ =




−γ if 0 < γ < −ρ with D �= 0,

ρ if 0 < −ρ ≤ γ or if 0 < γ < −ρ with D = 0,

0 if γ = 0,

ρ if γ < ρ,

γ if ρ ≤ γ < 0.

Below, we derive the AMSEs of the different estimators.

• For the estimator γ̂ H
k,n:

AMSE(γ̂ H
k,n) =




1+γ 2

k
+
(

1
1−ρ̃

b
(

n
k

))2
, if γ ≥ 0,

(1−γ )(1+γ+2γ 2)

(1−2γ )k
+
(

1
1−ρ̃

b
(

n
k

))2
, if γ < 0.
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• For the estimator γ̂ Z
k,n:

AMSE(γ̂ Z
k,n) =




2(1+γ+γ 2)

k
+
(

1
(1−ρ̃)2 b

(
n
k

))2
, if γ ≥ 0,

2(1−γ )(1+2γ+γ 2−2γ 3)

(1−2γ )(1−γ )k
+
(

1
(1−ρ̃)2 b

(
n
k

))2
, if γ < 0.

• The AMSE of the moment estimator Mk,n can be found from Dekkers et al.
(1989):

AMSE(Mk,n) =




1+γ 2

k
+
(

1
1−ρ̃

b
(

n
k

))2
, if γ > 0,

1
k

+ b
(

n
k

)
, if γ = 0,

(1−γ )2(1−2γ )(6γ 2−γ+1)

(1−3γ )(1−4γ )k
if γ < ρ,

+
(

1−2γ

1−2γ−ρ̃
b
(

n
k

))2
,

(1−γ )2(1−2γ )(6γ 2−γ+1)

(1−3γ )(1−4γ )k
if ρ < γ < 0,

+
(

1−2γ

ρ̃(1−ρ̃)
b
(

n
k

))2
,

(1−γ )2(1−2γ )(6γ 2−γ+1)

(1−3γ )(1−4γ )k
if γ = ρ.

+
(

(1−2γ )

(1−γ )(1−3γ )

A(1−γ )2− 2�+
U(∞)

A(1−γ )− �+
U(∞)

b
(

n
k

))2

,

• Drees et al. (2002) stated the following expressions for the AMSE for the
ML estimator based on a generalized Pareto fit:

AMSE
(
γ̂ ML

k,n

)
= (1+γ )2

k
+
(

ρ(γ+1)A

(1−ρ)(1−ρ+γ )
a2

(
n
k

))2

if γ > − 1
2 , ρ < 0.

5.9.5 AMSE optimal k-values

Below, the optimal values of k that minimize the different expressions of the
AMSEs are given.

• For the estimator γ̂ H
k,n:

kopt =




(
(1+γ 2)(1−ρ̃)2

−2ρ̃

) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if γ > 0,

1
4 [b(n)]−5/2(1 + o(1)), if γ = 0,

(
(1+γ+2γ 2)(1−ρ̃)2(1−γ )

(−2ρ̃)(1−2γ )

) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if γ < 0,
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• for the estimator γ̂ Z
k,n:

kopt =




(
2(1−ρ̃)4(1+γ+γ 2)

−2ρ̃

) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if γ > 0,

1
2 [b(n)]−5/2(1 + o(1)), if γ = 0,

(
2(1−ρ̃)4(1−γ )(1+2γ+γ 2−2γ 3)

(−2ρ̃)(1−2γ )(1−γ )

) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if γ < 0,

• for the estimator Mk,n:

kopt =




(
(1+γ 2)(1−ρ̃)2

−2ρ̃

) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if γ > 0,

1
2 [b(n)]−3/2(1 + o(1)) if γ = 0,

(
(1−γ )2(1−2γ−ρ̃)2(6γ 2−γ+1)

(−2ρ̃)(1−2γ )(1−3γ )(1−4γ )

) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if γ < ρ,

(
ρ̃2(1−γ )4(6γ 2−γ+1)

(−2ρ̃)(1−2γ )(1−3γ )(1−4γ )

) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if ρ < γ < 0,

(
(1−3γ )(1−γ )4(6γ 2−γ+1)

(−2ρ̃)(1−2γ )(1−4γ )

(
A(1−γ )− �+

U(∞)

A(1−γ )2− 2�+
U(∞)

)2) 1
1−2ρ̃

[b(n)]−
2

1−2ρ̃ , if γ = ρ,

• for the estimator γ̂ ML
k,n :

kopt =
(

(1 − ρ)2(γ − ρ + 1)2

ρ2(−2ρ)A2

) 1
1−2ρ

[a2(n)]−
2

1−2ρ if γ > −1

2
, ρ < 0.

The corresponding minimal AMSE values are then given by

• for the estimator γ̂ H
kopt,n

:

AMSE(γ̂ H
kopt ,n

) =




(
(−2ρ̃)ρ̃

(1+γ 2)ρ̃ (1−ρ̃)

) 2
1−2ρ̃

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃), if γ > 0,

b2(n), if γ = 0,(
(−2ρ̃)ρ̃ (1−2γ )ρ̃

(1−γ )ρ̃ (1−ρ̃)(1+γ+2γ 2)ρ̃

) 2
1−2ρ̃

if γ < 0,

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃),
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• for the estimator γ̂ Z
kopt ,n

:

AMSE(γ̂ Z
kopt ,n

) =




(
(−2ρ̃)ρ̃

2ρ̃ (1−ρ̃)2(1+γ+γ 2)ρ̃

) 2
1−2ρ̃

if γ > 0,

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃),

b2(n), if γ = 0,

(
(−2ρ̃)ρ̃ (1−2γ )ρ̃ (1−γ )ρ̃

2ρ̃ (1−ρ̃)2(1−γ )ρ̃ (1+2γ+γ 2−2γ 3)ρ̃

) 2
1−2ρ̃

if γ < 0,

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃),

• for the estimator γ̂ M
kopt ,n

:

AMSE(γ̂ M
kopt ,n

) =



(
(−2ρ̃)ρ̃

(1+γ 2)ρ̃ (1−ρ̃)

) 2
1−2ρ̃

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃), if γ > 0,

b(n), if γ = 0,

(
(−2ρ̃)ρ̃ (1−γ )−2ρ̃ (1−2γ )1−ρ̃ (1−3γ )ρ̃ (1−4γ )ρ̃

(1−2γ−ρ̃)(6γ 2−γ+1)ρ̃

) 2
1−2ρ̃

if γ < ρ,

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃),

(
(−2ρ̃)ρ̃ (1−3γ )ρ̃ (1−4γ )ρ̃

γ (1−γ )1+2ρ̃ (1−2γ )ρ̃−1(6γ 2−γ+1)ρ̃

) 2
1−2ρ̃

if ρ < γ < 0,

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃),

(
(−2ρ̃)ρ̃ (1−3γ )ρ̃−1(1−4γ )ρ̃

(1−γ )1+2ρ̃ (1−2γ )ρ̃−1(6γ 2−γ+1)ρ̃

A(1−γ )2− 2�+
U(∞)

A(1−γ )− �+
U(∞)

) 2
1−2ρ̃

if γ = ρ,

[b(n)]
2

1−2ρ̃ (1 − 2ρ̃),

• for the estimator γ̂ ML
kopt ,n

:

AMSE(γ̂ ML
kopt ,n

) =
(

(1 + γ )1−2ρ(Aρ)(−2ρ)ρ

(1 − ρ)(1 − ρ + γ )

) 2
1−2ρ

[a2(n)]
2

1−2ρ (1 − 2ρ).



6

CASE STUDIES

6.1 The Condroz Data

In this case study, we will concentrate on the Ca content (expressed in mg/100 g of
dry soil) of soil samples originating from a particular city (NIS code 61072) in the
Condroz region. Although the Ca content is clearly dependent on other factors such
as pH level, we ignore this covariate information for the moment and study the
univariate properties. Figure 6.1(a) displays a histogram of the Ca measurements
of soil samples from this city. When the main interest is in tail modelling, the
exponential quantile plot and mean excess plot (which can be considered as a
derivative plot of the former) form a good starting point. These plots are given in
Figures 6.1(b), (c) and (d). The convex shape of the exponential quantile plot and
the increasing behaviour of the mean excess plots in the largest observations give
evidence of the HT E nature of the tail of the Ca content distribution.

To assess the fit of a Pareto-type model, a Pareto quantile plot was constructed
for these data, given in Figure 6.2. Except for the last seven points, the Pareto
quantile plot is linear in the larger observations. The very largest observations that
do not follow the ultimate linearity of the Pareto quantile plot are suspect with
respect to the Pareto-type model. However, in this analysis, we conditioned on the
city but we did not take into account the possible link with other covariates such
as pH level. In fact, as can be seen from the Ca versus pH scatterplot given in
Figure 6.3, both variables appear to be dependent. Moreover, extreme Ca measure-
ments tend to occur more often at the higher pH levels, indicating the need for a
tail analysis conditional on the covariate pH. We will return to this conditioning
issue later on in this case study.

As explained in Chapter 2, the ultimate linearity of the Pareto quantile plot
can be exploited to construct estimators for the tail index γ . In Figure 6.4(a), we
show the results of the maximum likelihood procedure applied to the exponential

Statistics of Extremes: Theory and Applications J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels
 2004 John Wiley & Sons, Ltd ISBN: 0-471-97647-4
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Figure 6.1 (a) Histogram, (b) exponential quantile plot, (c) ek,n versus k and (d)
ek,n versus xn−k,n for the Ca measurements.

regression model, γ̂ +
ML (solid line), and the Hill estimates, Hk,n (broken line), as

a function of k. The maximum likelihood estimates γ̂ +
ML are stable around the

value 0.26 and this for k values between 450 and 1500, whereas the Hill esti-
mates show this stability only for k values between 250 and 500. However, the
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maximum likelihood estimator seems to be more sensitive to the seven observa-
tions considered as suspect with respect to the Pareto-type model: around k = 400,
there is an abrupt shift of the optimum found by the ML algorithm. The selec-
tion of an optimal k value for the Hill estimator is illustrated in Figure 6.4(b)
where we plot the estimated asymptotic mean squared error as a function of k. The
minimum is reached at k̂opt = 402. The vertical reference line in Figure 6.4(a) and
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Figure 6.3 Scatterplot of Ca versus pH.
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Figure 6.4 (a) γ̂ +
ML (solid line) and Hk,n (broken line) for k = 5, . . . , 1504, (b)

ÂMSE (Hk,n) as a function of k, (c) γ̂ +
ML (solid line) and Hk,n (broken line) and (d)

ÂMSE (Hk,n) as a function of k after removal of the suspect points.
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Figure 6.4 (continued)

(b) represents this estimated optimal k-value. Note that beyond k̂opt , the Hill esti-
mator diverges from the maximum likelihood estimator. In Goegebeur et al. (2004),
Burr regression models were fitted to these calcium measurements, thereby taking
the pH level as covariate. Their analysis identified six points as suspect with respect
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to the conditional Burr model. Figure 6.4(c) shows γ̂ +
ML and Hk,n, obtained after

deletion of these suspect points as a function of k. The corresponding estimated
AMSE of Hk,n is given in Figure 6.4(d); here the optimum is reached at k = 391.
Finally, the bias-corrected estimator q̂

(1)
k,p (solid line) and the Weissman estimator

q̂+
k,p (broken line) for Q(0.9995) are given as a function of k in Figure 6.5.

We now analyse the data using the extreme value techniques developed for
the general case γ ∈ R. Figure 6.6(a) gives the generalized quantile plot (log n+1

k+1 ,

log UHk,n), k = 1, . . . , n − 1, for the Ca measurements. The ultimate linear and
increasing appearance of the points on this generalized quantile plot gives again
evidence in favour of a Pareto-type model. Further, following the discussion given
in Chapter 5, the slope of the ultimate linear part of this plot can again be used to
construct estimators for γ . The generalized Hill estimator γ̂ H

k,n and the Zipf esti-
mator γ̂ Z

k,n, both slope estimators, exploit this ultimate linearity and are plotted in
Figure 6.6(b). Note that γ̂ Z

k,n (broken line) gives somewhat higher values for γ than
γ̂ H

k,n (solid line). Figure 6.6(b) also shows the moment estimates Mk,n (dotted line)
and the GP maximum likelihood estimates γ̂ ML

k,n (broken-dotted line). Unlike the
plot of Hk,n and γ̂ +

ML, Figure 6.6(b) does not really show a stable region, making
inference about the value for γ more difficult. Finally, the estimation of extreme
quantiles on the basis of the GP distribution is illustrated in Figure 6.5, where, next
to q̂

(1)
k,p and q̂+

k,p, we also show the GP estimate for Q(0.9995) (broken-dotted line).
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Figure 6.5 q̂
(1)
k,p (solid line), q̂+

k,p (broken line) and q̂POT (broken-dotted line) as
a function of k for p = 0.0005.
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Figure 6.6 (a) Generalized quantile plot of the Ca measurements and (b) γ̂ H
k,n

(solid line), γ̂ Z
k,n (broken line), γ̂ ML

k,n (broken-dotted line) and Mk,n (dotted line) as
a function of (a) k.
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We now return to the conditioning issue. Although the extreme value meth-
ods especially developed for regression problems will be described extensively in
Chapter 7, some straightforward analyses can be performed on the basis of the uni-
variate extreme value methodology discussed so far. First, the fit of a Pareto-type
model to the conditional distribution of the dependent variable, given the covari-
ate(s), can be visually assessed by inspection of Pareto quantile plots of the response
measurements within narrow bins in the covariate space. Of course, such a procedure
based on binning can only be expected to perform well when the conditional distribu-
tion of the dependent variable varies smoothly as a function of the covariate(s). This
is illustrated in Figure 6.7. Given the discrete nature of the covariate pH, binning is
not really necessary here, and all response observations at a particular pH level can
be used. The ultimate linearity of the Pareto quantile plots indicates that Pareto-type
models provide appropriate fits to the conditional distributions of Calcium, given
pH level. Note, however, that the largest observation in Figure 6.7(b) does not fol-
low the linear pattern set by the other large observations. So, even compared to a
heavy-tailed model, this point is suspicious and requires special attention.

The tail heaviness of the response distribution conditional on the covariate
information can be estimated similarly, using all response observations within a
narrow bin in the covariate space. Figure 6.8 shows the different γ estimates as
functions of k for the calcium measurements at pH = 7, see also the Pareto quan-
tile plot in Figure 6.7(c). Especially note that, compared to the other tail index
estimators, γ̂ +

ML is stable over the whole set of k values.

Standard exponential quantiles

(a)

lo
g(

C
al

ci
um

)

0 1 2 3

2
3

4
5

6
7

8

Figure 6.7 Pareto quantile plots of the calcium measurements at (a) pH = 6, (b)
pH = 6.5 and (c) pH = 7.
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Standard exponential quantiles
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Figure 6.7 (continued)
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Figure 6.8 Conditional tail index estimation for the Condroz data: (a) γ̂ +
ML (solid

line) and Hk,n (broken line) and (b) γ̂ H
k,n (solid line), γ̂ Z

k,n (broken line), γ̂ ML
k,n

(broken-dotted line) and Mk,n (dotted line) as a function of k, for k = 5, . . . , 203,
using the calcium measurements at pH=7.
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6.2 The Secura Belgian Re Data

The Secura Belgian Re data set contains automobile claims from 1988 until 2001,
which are at least as large as 1,200,000 Euro. The original claim numbers were
corrected, among others, for inflation. This data set contains n = 371 observations
and is depicted in Figure 6.9. The ultimate goal of this case study is to provide the
participating reinsurance companies with an objective statistical analysis in order to
assist in the pricing of the unlimited excess-loss layer above an operational priority R.
The analysis performed here is based on the methodology described in Beirlant et al.
(2001).

In an excess-of-loss (XL) reinsurance contract, the reinsurer pays for the claim
amount in excess over a given limit. Formally, let X denote the claim size, then, under
an XL reinsurance contract with retention level R, the intervention of the reinsurer
concerns the random amount (X − R)+. Hence, the net premium �(R) is given by

�(R) = E((X − R)+) =
∫ x∗

R

(1 − F(y))dy.

An important ingredient for establishing the net premium is the mean excess func-
tion. Indeed, since

e(R) =
∫ x∗
R

(1 − F(y))dy

1 − F(R)

we have

�(R) = e(R)F̄ (R).

Year

C
la

im
 s

iz
e

1988 1990 1992 1994 1996 1998 2000

2 
× 

10
6

4 
× 

10
6

6 
× 

10
6

8 
× 

10
6

Figure 6.9 Secura data: claim sizes as a function of the year of occurrence.
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Special emphasis will be put on the level R = 5,000,000 Euro, which is the priority
used in practice up to 2003. Remark that only 12 observations are larger than
that level. In order to estimate �(R), several possibilities are at our disposal:
purely non-parametric methods, semi-parametric methods given by extreme value
techniques and fully parametric models where the emphasis lies in trying to model
the whole outcome set from 1,200,000 Euro. In contrast to this, extreme value
methods will try to fit the tail of the distribution exclusively, from an appropriate
(statistical) threshold. Next to the estimation of a net premium, one also needs to
estimate the probability for a claim to fall in the layer above R.

6.2.1 The non-parametric approach

Given the importance of the mean excess function for premium calculations, we
examine the exponential quantile and mean excess plots first. These are given in
Figure 6.10. From the exponential quantile plot, a point of inflection with different
slopes to the left and to the right can be detected. This becomes even more apparent
in the mean excess plot (Figure 6.10(b) and (c)): behind 2,500,000 the rather
horizontal behaviour changes into a positive slope.

Of course, the simplest way to estimate the net premium �(R) is given by

1

n

n∑
i=1

(Xi − R)+, (6.1)
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Figure 6.10 (a) Exponential quantile plot of claim sizes, (b) ek,n versus k and (c)
ek,n versus xn−k,n.



190 CASE STUDIES

k
(b)

M
ea

n 
ex

ce
ss

0 100 200 300

4 
× 

10
5

8 
× 

10
6

10
6

1.
4 

× 
10

6

Data
(c)

M
ea

n 
ex

ce
ss

106 2 × 106 3 × 106 4 × 106 5 × 106 6 × 106 7 × 106

4 
× 

10
5

8 
× 

10
5

10
6

1.
4 

× 
10

6

Figure 6.10 (continued)

or equivalently, in terms of the mean excess and empirical distribution function

�̂(R) = ˆ̄Fn(R)ên(R).

In case R is fixed at one of the sample points, that is, R = Xn−k,n, the non-
parametric estimator is given by

�̂(Xn−k,n) = k

n
Ek,n. (6.2)
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Table 6.1 Non-parametric, Hill and GP-based estimates for �(R).

R Non-parametric (6.1) Hill (6.4) GP (6.5)

3,000,000 161,728.1 163,367.4 166,619.6
3,500,000 108,837.2 108,227.2 111,610.4
4,000,000 74,696.3 75,581.4 79,219.0
4,500,000 53,312.3 55,065.8 58,714.1
5,000,000 35,888.0 41,481,6 45,001.6
7,500,000 - 13,944.5 16,393.3

10,000,000 - 6,434.0 8,087.8

For large R values, this simple non-parametric estimator is of course doubtful
because of the small number of observations on which it is effectively constructed.
Table 6.1 gives the non-parametric premium estimator (6.1) for some values of R.

6.2.2 Pareto-type modelling

We now further investigate the tail behaviour of the claim size distribution. The
Pareto quantile plot given in Figure 6.11 is approximately linear in the largest
observations, indicating a good fit of the Pareto model to the tail of the claim size
distribution, though at the highest observations, the trend flattens out. Again, the
tail index γ can be estimated by measuring the slope of this ultimate linear part.
Figure 6.12(a) shows the exponential regression model-based maximum likelihood
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Figure 6.11 Pareto quantile plot.
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Figure 6.12 (a) γ̂ +
ML (solid line) and Hk,n (broken line), (b) ÂMSE (Hk,n) as a

function of k with k̂opt = 95, (c) Weissman and empirical estimate for P (X >

5, 000, 000) and (d) estimates for Q(0.999): q̂
(1)
k,p (solid line) and q̂+

k,p (broken
line).
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estimates γ̂ +
ML and the Hill estimates Hk,n as a function of k. The vertical reference

line at k = 95 represents the estimated optimal k-value, in the sense of minimum
asymptotic mean squared error, for the Hill estimator; see Figure 6.12(b). Note
that γ̂ +

ML and Hk,n are almost indistinguishable for k-values between 50 and 100;
beyond this interval, the bias of the Hill estimator becomes important while the
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maximum likelihood estimator remains stable. Next to premium estimation, special
attention has to be paid to estimating the probability of exceeding the retention
R = 5, 000, 000. The Weissman estimate for P (X > 5, 000, 000) is given as a
function of k in Figure 6.12(c). The horizontal reference line is the empirical
exceedance probability, that is, 12/371. Finally, Figure 6.12(d) contains the bias-
corrected estimate q̂

(1)
k,p (solid line) and the Weissman estimate q̂+

k,p (broken line)
for the 0.999 quantile.

We now turn to XL rating under the Pareto-type model. Recall the basic formula
for calculating the net premium of an XL contract is

�(R) = e(R)F̄ (R)

or, after dividing and multiplying the right-hand side by R,

�(R) = e(R)

R
RF̄ (R).

For Pareto-type models with γ < 1, application of Karamata’s theorem (Theorem
2.3) gives

e(R)

R
=

∫ ∞
R

u
− 1

γ �F (u)du

R
− 1

γ +1
�F (R)

→ 1
1
γ

− 1
as R → ∞,

so that

�(R) ∼ 1
1
γ

− 1
RF̄ (R), R → ∞.

When the priority R is situated within the sample, that is, R = Xn−k,n, the net
premium �(R) can be estimated by

�̂(R) = 1
1
γ̃k

− 1
Xn−k,n

k

n
(6.3)

where γ̃k denotes an estimator for γ based on k upper order statistics. If R is not
fixed at one of the sample points, extreme value formulas can be used to estimate
F̄ (R). Indeed, for Pareto-type models

P

(
X

t
> x|X > t

)
∼ x

− 1
γ as t → ∞

so that

F̄ (tx) ∼ F̄ (t)x
− 1

γ

or, replacing R = tx,

F̄ (R) ∼ F̄ (t)

(
R

t

)− 1
γ

R > t.
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Let k̂ denote an appropriate adaptive choice for the number of extreme order
statistics and set t = X

n−k̂,n
, then �(R) can be estimated as

�̂(R) = 1
1
γ̃
k̂

− 1
R

k̂

n

(
R

X
n−k̂,n

)− 1
γ̃
k̂

. (6.4)

In Table 6.1, we illustrate the use of (6.4) for some values of R.

6.2.3 Alternative extreme value methods

In this section, we apply the extreme value methodology developed for the general
case γ ∈ R to this data set. As a first step, we compare several tail index estimators;
next we discuss net premium estimation.

First, consider the estimation of the tail parameter γ . In this respect, the gener-
alized quantile plot is a good starting point as the pattern formed by the UHk,n for
small k values gives an indication about the tail behaviour. For the Secura data,
the generalized quantile plot is given in Figure 6.13(a). The ultimate linear and
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Figure 6.13 (a) Generalized quantile plot, (b) γ̂ H
k,n (solid line), γ̂ Z

k,n (broken line),
γ̂ ML

k,n (broken-dotted line) and Mk,n (dotted line) as a function of k, (c) POT (broken
line), Weissman (solid line) and empirical estimate for P (X > 5, 000, 000) and (d)
estimates for Q(0.999): POT-based (broken-dotted line), q̂

(1)
k,p (solid line) and q̂+

k,p

(broken line).
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increasing behaviour indicates a heavy-tailed or Pareto-type model for the claim
size distribution, which is in line with the previous analysis. Figure 6.13(b) shows
γ̂ H

k,n (solid line), γ̂ Z
k,n (broken line), γ̂ ML

k,n (broken-dotted line) and Mk,n as a function
of k. The estimation of P (X > 5, 000, 000) is illustrated in Figure 6.13(c) using the
Weissman estimates (solid line), the GP approach (broken line) and the empirical
exceedance probability (horizontal reference line). Finally, Figure 6.13(d) displays
some estimates for Q(0.999).

We now consider net premium calculations on the basis of the GP tail fit. Since

F̄ (x) ∼ F̄ (u)

(
1 + γ

x − u

σ

)− 1
γ

, u → ∞,

we have that for u sufficiently large, provided γ < 1,

e(R) ∼ σ

1 − γ

(
1 + γ

R − u

σ

)
, R > u.

Setting u = X
n−k̂,n

, where k̂ denotes again an appropriate choice for the number
of upper order statistics, � can be estimated as

�̂(R) = k̂

n

σ̃
k̂

1 − γ̃
k̂

(
1 + γ̃

k̂

R − X
n−k̂,n

σ̃
k̂

)− 1
γ̃
k̂
+1

(6.5)

for some σ̃
k̂

and γ̃
k̂
. In Table 6.1, we illustrate the use of (6.5) for premium calcu-

lations using the Secura data. Note that the net premiums obtained with the three
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estimators agree quite well. Compared to the estimates based on extreme value
methodology, the simple non-parametric estimator clearly does not yield sensible
results in case R is outside (or near the end of) the data range.

6.2.4 Mixture modelling of claim sizes

In the previous sections, we discussed XL rating using Pareto-type and GP mod-
elling of the tail of the claim size distributions. This resulted in estimators for
�(R) in case R exceeds some sufficiently high threshold x

n−k̂,n
. When trying to

estimate �(R) for values of R smaller than the threshold x
n−k̂,n

, one needs a global
statistical model describing the whole range of the possible claim outcomes. The
mean excess function given in Figure 6.10(c) suggests a mixture of an exponential
and a Pareto distribution:

ˆ̄F Exp−Par(u) =


1 − n−k̂
n

1−exp(−λ̂(u−1,200,000))

1−exp(−λ̂(X
n−k̂,n

−1,200,000))
if 1, 200, 000 < u < X

n−k̂,n
,

k̂
n

(
u

X
n−k̂,n

)−1/γ̂

if u > X
n−k̂,n

,

with k̂ = 95 and λ̂ = 1/955, 676.55. In Figure 6.14(a), we plot the empirical distri-
bution function (solid line) together with the fitted Exp-Par mixture model (broken
line). As is clear from this plot, the Exp-Par mixture model describes the data quite
well. The fit of the Exp-Par mixture model can be further assessed by transforming
the data to the Exp(1) framework as follows:

Ei = − log(1 − ˆ̄F Exp−Par(Xi)), i = 1, . . . , n, (6.6)

followed by a visual inspection of the exponential quantile plot, see Figure 6.14(b).
The use of the Exp-Par model for premium computations is illustrated in Table 6.2.

Table 6.2 �̂(R)

based on the Exp-Par
mixture model.

R �̂(R)

1,250,000 944,217.8
1,500,000 734,371.6
1,750,000 571,314.1
2,000,000 444,275.5
2,250,000 344,965.2
2,500,000 267,000.7
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Figure 6.14 (a) Empirical cdf (solid line) and fitted Exp-Par mixture model (bro-
ken line), (b) W -plot for the fitted Exp-Par mixture model.
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6.3 Earthquake Data

As a third case study, we analyse the earthquake data introduced in Pisarenko and
Sornette (2003). This data set is extracted from the Harvard catalog and contains
information about the seismic moment (in dyne-cm) of shallow earthquakes (dept <

70 km) over the period from 1977 to 2000. In Pisarenko and Sornette (2003), the
tails of the seismic moment distributions for subduction and midocean ridge zones
are compared by fitting the GP distribution to seismic moment exceedances over
1024 dyne-cm.

The exploratory analysis described in Chapter 1 (Figure 1.17) already indicated
for both subduction and midocean ridge zones a HTE behaviour of the seismic
moment distribution. This is further confirmed by the Pareto quantile plots shown
in Figure 6.15. Note, however, that the Pareto quantile plots bend down at the
very largest observations, indicating a weaker behaviour of the ultimate tail of the
seismic moment distribution.

In Figure 6.16(a) and (b), we show the maximum likelihood estimates γ̂ +
ML

(solid line) and the Hill estimates Hk,n (broken line) as a function of k for subduc-
tion and midocean ridge zones respectively . The subduction zone seismic moment
distribution is clearly heavier-tailed than the midocean ridge distribution, a result
that is consistent with the analysis performed in Pisarenko and Sornette (2003).
Note that only at the very smallest k values Hk,n and γ̂ +

ML agree quite well. Beyond
these small k values, both estimates tend to increase as a function of k, albeit at a
different rate. The selection of an optimal k value for the Hill estimator is illustrated
in Figure 6.16(c) and (d) where we plot the estimated asymptotic mean squared
errors as a function of k. Imposing the restriction that k should be at least 20,
the minimum is reached at k̂opt = 1157 for subduction zones and at k̂opt = 58 for
midocean ridge zones. The vertical reference lines in Figure 6.16 represent these
estimated optimal k values. The use of these estimated optimal k values is fur-
ther illustrated on the Pareto quantile plots given in Figure 6.15 by superimposing
the lines through (log

nj +1

k̂
(j)
opt +1

, log x
(j)

nj −k̂
(j)
opt ,nj

) with slopes H
k̂
(j)
opt ,nj

, j = 1, 2; where

j = 1 refers to subduction zones and j = 2 refers to midocean ridge zones. The
horizontal reference lines in Figure 6.15 represent the threshold used in Pisarenko
and Sornette (2003).

So far, the data for subduction and midocean ridge zones were considered
independently of each other. However, as described in Beirlant and Goegebeur
(2004b), combining data originating from several independent data groups may
result in improved efficiency. Of course, regression models with dummy explana-
tory variables describing the groups can be used in combination with classical
extreme value models such as the GEV or GP. This regression approach will be
further developed in Chapter 7. In this section, we concentrate on a straightforward
extension of the exponential regression model for log-spacings of successive order
statistics introduced in Chapter 4.

Consider independent and identically distributed positive random variables
X

(j)

1 , . . . , X
(j)
nj

with a common distribution function FX(j) , j = 1, . . . , G, where
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Figure 6.15 Pisarenko and Sornette data: Pareto quantile plot of seismic moment
measurements of (a) subduction zones and (b) midocean ridge zones.
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Figure 6.16 Pisarenko and Sornette data: (a) and (b) γ̂ +
ML (solid line) and Hk,n

(broken line) as a function of k for subduction and midocean ridge zones respec-
tively and (c) and (d) ÂMSE (Hk,n) as a function of k for subduction and midocean
ridge zones respectively.
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G denotes the number of groups. Assume further that the G groups are indepen-
dent of each other and that the response distributions are of Pareto-type, that is,
the tail quantile functions UX(j) , j = 1, . . . , G, satisfy

UX(j) (x) = xγj �j (x) x > 1; γj > 0 (6.7)
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where γj and �j denote the extreme value index and the slowly varying function
of group j respectively.

As in a classical one-way ANOVA situation, we introduce the parametrization
γj = β0 + βj , j = 1, . . . , G, with

∑G
j=1 βj = 0, so that the parameters βj denote

the difference of the extreme value index of group j with respect to the global aver-
age overall groups. This transformation will now be combined with the following
linear model describing the estimation problem of every γj , j = 1, . . . , G.

Under the second order condition (3.14) on the �j , j = 1, . . . , G, it can be
shown as in Beirlant et al. (1999) that the following regression model holds approx-
imately

i(log X
(j)

nj −i+1,nj
− log X

(j)

nj −i,nj
) ≈

(
γj + bj

(
nj + 1

k + 1

) (
i

k + 1

)τj
)

F
(j)

i

i = 1, . . . , k, (6.8)

with bj and τj denoting the function b and the parameter τ respectively, of group
j and the F

(j)

i , i = 1, . . . , k, independent standard exponential random variables.
The classical way to estimate the parameters γj , j = 1, . . . , G is then given

by the Hill (1975) estimates that are obtained as maximum likelihood estimates
by omitting the terms bj (

nj +1
k+1 )( i

k+1 )τj in model (6.8) (these terms tend to 0 as
nj → ∞ and k/nj → 0) leading to a simple average of the scaled log-spacings
i(log X

(j)

nj −i+1,nj
− log X

(j)

nj −i,nj
), i = 1, . . . , k, as an estimator of γj , and hence

β̂0 = 1

G

G∑
j=1

H
(j)

k,nj
and β̂j = H

(j)

k,nj
− β̂0, j = 1, . . . , G, (6.9)

in which H
(j)

k,nj
denotes the Hill estimator for group j

H
(j)

k,nj
= 1

k

k∑
i=1

log X
(j)

nj −i+1,nj
− log X

(j)

nj −k,nj
. (6.10)

Introducing � = Block-diag(γ 2
j Ik; j = 1, . . . , G) and the kG × G matrix

L =




1 1 . . . 0
1 0 . . . 0
...

...
...

1 −1 . . . −1




with 1 denoting a k-vector of ones, we find that the asymptotic covariance matrix
of β̂

′ = (β̂0, β̂1, . . . , β̂G−1) is given by

Acov(β̂) = (L′�−1L)−1. (6.11)
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On the other hand, the main term of the bias of the estimators (when nj → ∞ and
k/nj → 0) is given by

Abias(β̂0) = 1

G

G∑
j=1

bj (
nj +1
k+1 )

1 + τj

, (6.12)

Abias(β̂j ) = bj (
nj +1
k+1 )

1 + τj

− 1

G

G∑
l=1

bl(
nl+1
k+1 )

1 + τl

j = 1, . . . , G − 1. (6.13)

Application of the estimators defined by (6.9) and (6.10) involves the selection
of the number of extreme order statistics k to be used in the estimation. Remark
that we take the tail sample fraction k equal for all groups. If k is chosen too small,
the resulting estimators will have a high variance. On the other hand, for larger k

values, the estimators will perform quite well with respect to variance but will be
affected by a larger bias as observations are used that are not really informative
for the tail of FX(j) , j = 1, . . . , G. Hence, an appropriate k value should represent
a good bias-variance trade-off. Here, we will use the trace of the asymptotic mean
squared error (AMSE) matrix as optimality criterion.

Defining the AMSE matrix � of β̂ as

�(k) = (L′�−1L)−1 + κκ ′, (6.14)

with κ denoting the G-vector containing the asymptotic bias expressions given by
(6.12) and (6.13), the optimal number of extremes to be used in the estimation,
kopt , is defined as

kopt = arg min tr �(k).

Note that �(k) depends on the unknown γj , τj , j = 1, . . . , G, and bj (
nj+1
k+1 ), k =

1, . . . , nj − 1, j = 1, . . . , G, which implies that the optimal k has to be derived
from an estimate of �(k). The following algorithm is used to estimate kopt and
hence γj , j = 1, . . . , G, adaptively:

1. Obtain initial estimates of γj , τj , j = 1, . . . , G, together with estimates of

bj (
nj+1
k+1 ), k = 1, . . . , nj − 1, j = 1, . . . , G,

2. for k = 2, . . . , min{nj ; j = 1, . . . , G} − 1:
compute tr �̂(k) and let

k̂opt = arg min tr �̂(k),

3. repeat step 2 but with the parameter estimates obtained from using a common
k and obtain an update of the parameter estimates.
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Figure 6.17 Pisarenko and Sornette data: Pareto quantile plots of seismic
moments for (a) subduction zones and (b) midocean ridge zones.
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Figure 6.18 Pisarenko and Sornette data: tr �̂(k) as a function of log(k).

The initial estimates for the unknown parameters (cf. step 1) are obtained by fitting
model (6.8) to the k largest observations of each group using a maximum likelihood
method (see Beirlant et al. (1999)).

Inference about the regression vector β can be drawn using a likeli-
hood ratio test statistic. For k/nj , j = 1, . . . , G, sufficiently small, the slowly
varying nuisance part of (6.8) can be ignored and hence inference can be based on
the reduced model i(log X

(j)

nj −i+1,nj
− log X

(j)

nj −i,nj
) ≈ (β0 + βj )F

(j)

i , i = 1, . . . , k,
j = 1, . . . , G. As in a ’classical’ one-way ANOVA situation, the hypothesis of
main interest is H0 : β1 = . . . = βG−1 = 0.

We now return to the Pisarenko and Sornette (2003) earthquake data. The
procedure described above with k ≥ 20 yielded k̂opt = 97 with H

(1)
97,6458 = 1.232

and H
(2)
97,1665 = 0.821. In Figure 6.17, we show the Pareto quantile plots of the

seismic moments for (a) subduction zones and (b) midocean ridge zones on which
we superimposed the lines through (log(

nj +1

k̂opt +1
), log x

(j)

nj −k̂opt ,nj
) with slope H

(j)

k̂opt ,nj
,

j = 1, 2 (solid lines). For the hypothesis test of no difference between the tail
heaviness of the seismic moment distribution of subduction and midocean ridge
zones, a likelihood ratio statistic of 7.92 was obtained, resulting in a rejection of
H0. The GP-based approach described in Pisarenko and Sornette (2001) yielded
tail index estimates of 1.51 and 1.02 for subduction and midocean ridge zones
respectively, so our results are slightly more conservative. Likewise, these authors
found significant differences in the tail heaviness of the seismic moment distri-
butions. As mentioned before, the Pareto quantile plots bend down in the largest
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observations. Nevertheless, these largest observations still form more or less a
straight line pattern. So, also the ultimate tail could be described by a Pareto-type
law. This fact is further illustrated in Figure 6.18 where we plot tr �̂(k) as a func-
tion of log(k). Relaxation of the constraint that k should be at least 20 results
in the global optimum k̂opt = 12 with H

(1)
12,6458 = 0.541 and H

(2)
12,1665 = 0.427. In

Figure 6.17, the resulting optimal fits are plotted with dotted lines. At k̂opt , the null
hypothesis of no difference in tail behaviour cannot be rejected on the basis of the
above-described likelihood ratio test statistic.
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REGRESSION ANALYSIS

From the discussion in the previous chapters, it became clear that the literature
on the estimation of tail characteristics based on an i.i.d. sample is very elabo-
rate. However, a major statistical theme is the description of a variable of primary
interest (the dependent variable) in terms of covariates. This regression point of
view has been studied much less extensively in extreme value analysis. Further,
by using covariate information, data sets originating from different sources may
be combined, resulting in opportunities for better point estimates and improved
inference. From an extreme value point of view, interest is mainly in estimat-
ing conditional tail indices, extreme conditional quantiles and small conditional
exceedance probabilities. The available methods together with their references can
be grouped in four sets, along

• the method of block maxima, fitting the GEV to a sample of maxima, taking
one or more of the GEV parameters as a function of the covariates,

• the quantile view, extending the exponential regression models for log-
spacings of successive order statistics to handle covariate information (Beir-
lant and Goegebeur (2003)),

• the probability view, or POT method, where GP distribution–based regres-
sion models are fitted to exceedances over a high threshold (Davison and
Smith (1990)),

• non-parametric estimation procedures resulting from combining modern
smoothing techniques such as maximum penalized likelihood estimation
(Green and Silverman (1994)) and local polynomial maximum likelihood
estimation (Fan and Gijbels (1996)) with models for extreme values (Davi-
son and Ramesh (2000), Hall and Tajvidi (2000a), Chavez-Demoulin and

Statistics of Extremes: Theory and Applications J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels
 2004 John Wiley & Sons, Ltd ISBN: 0-471-97647-4

209
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Davison (2001), Pauli and Coles (2001), Chavez-Demoulin and Embrechts
(2004), Beirlant and Goegebeur (2004a)).

Before entering into the regression analysis with response distributions in maximal
domains of attraction, we recall some facts from classical regression techniques.

7.1 Introduction

The aim of regression analysis is to construct mathematical models that describe or
explain relationships that may exist between variables. In general, we are interested
in just one variable, the response or dependent variable, and we want to study how
its distribution depends on a set of variables called the explanatory or independent
variables. We denote the dependent variable by Y and the vector of covariates
by x, that is, x′ = (x1, . . . , xd). The covariates are assumed non-random. Linear
regression analysis is one of the oldest and most widely used statistical techniques.
The general linear model links the dependent variable to the covariates in an
approximate linear way:

Y = β ′x + ε,

where β denotes the vector of regression coefficients, that is, β ′ = (β1, . . . , βd),
and ε is the model error with ε ∼ N(0, σ 2), or equivalently

Y |x ∼ N(β ′x, σ 2).

Note that the response distribution depends on the covariates through its mean. The
general linear model can be extended in different ways. Various non-linear or non-
normal regression models have been studied on an individual basis for many years.
In 1972, Nelder and Wedderburn (1972) provided a unified and accessible frame-
work for a class of such models, called generalized linear models (GLMs). Within
this class of generalized linear models, the distribution of the dependent variable
is assumed to belong to the one-parameter exponential family of distributions, with
density function

f (y; θ, φ) = exp

(
θy − b(θ)

φ
+ c(y, φ)

)
.

The parameter θ is the natural parameter of the exponential family and φ is a
nuisance or scale parameter. Dependence on the covariates is modelled through
the mean of the dependent variable using a link function g:

g(E(Y |x)) = β ′x,

where the link function g is monotone and differentiable. The general linear model
is a specific member of this family of generalized linear models with a normal
response distribution and identity link function g(u) = u.
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Note that when dealing with heavy-tailed distributions, the population moments
may not be finite, and hence the above-described techniques cannot be used for
statistical analysis. Further, from an extreme value point of view, the main inter-
est is in describing conditional tail characteristics such as conditional tail indices,
extreme conditional quantiles and small conditional exceedance probabilities rather
than modelling conditional means. A straightforward approach to tail analysis
in the presence of covariate information consists of modelling one or more of
the parameters of a univariate model F , with F ∈ D(Gγ ), as a function of the
covariates. In this, parametrizations can be chosen such that the distribution of
the response variable depends on the covariates through the extreme value index.
Because of its flexibility, the Burr(η, τ, λ) distribution could, for instance, be used
to model heavy-tailed data when paying special attention to tail behaviour. Note
that for the Burr(η, τ, λ) distribution γ = 1/λτ , so in case the main interest is
in describing conditional tails λ and/or τ may be taken as a function of the
covariates (see Beirlant et al. (1998)). This approach results in fully paramet-
ric statistical models. These global models are fitted to all available data rather
than just to the tail observations and hence do not always provide sufficient flex-
ibility for accurate tail modelling. Therefore, in the subsequent sections, we will
focus on regression techniques aimed directly at describing tails of conditional
distributions.

7.2 The Method of Block Maxima
7.2.1 Model description
From Chapter 2, we know that the only possible limit distributions for a sequence
of normalized maxima are the extreme value distributions. On the basis of this
result, the extreme value index can be estimated by fitting the generalized extreme
value distribution

G(y; σ, γ, µ) =



exp

(
− (

1 + γ
y−µ

σ

)− 1
γ

)
, 1 + γ

y−µ

σ
> 0, γ �= 0,

exp
(− exp

(− y−µ

σ

))
, y ∈ R, γ = 0,

(7.1)

with µ ∈ R and σ > 0 to a sample of maxima. When covariate information is
available, it is natural to extend (7.1) to a regression model by taking one or
more of its parameters as a function of the covariates. We discuss the estimation
problem in its full generality in the sense that the GEV parameters are considered
functions of both the covariate vector and the vector of model parameters, that
is, σ(x) = h1(x; β1), γ (x) = h2(x; β2) and µ(x) = h3(x; β3), with h1, h2 and h3

completely specified functions. In the subsequent discussion, the GEV distribution
is referred to as GEV (σ, γ, µ).
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7.2.2 Maximum likelihood estimation

Consider Y1, . . . , Ym independent random variables and let xi represent the covari-
ate vector associated with Yi such that

Yi |xi ∼ GEV (σ(xi ), γ (xi ), µ(xi )), i = 1, . . . , m.

Denoting by β the complete vector of model parameters, that is, β ′ = (β ′
1, β ′

2, β ′
3),

the log-likelihood function is simply

log L(β) =
m∑

i=1

log g(Yi; σ(xi), γ (xi ), µ(xi )) (7.2)

where g is the GEV density function

g(y; σ, γ, µ) (7.3)

=



1
σ

(
1 + γ

y−µ

σ

)− 1
γ −1

exp

(
− (

1 + γ
y−µ

σ

)− 1
γ

)
, 1 + γ

y−µ

σ
> 0, γ �= 0,

1
σ

exp
(− y−µ

σ

)
exp

(− exp
(− y−µ

σ

))
, y ∈ R, γ = 0.

The maximum likelihood estimator β̂ can be obtained by maximizing (7.2) with
respect to β. Approximate asymptotic inference follows in the usual way from the
inverse information matrix or the profile likelihood function.

If the data are not exactly GEV distributed but instead we have a sample
of maxima at our disposal, then, following condition (Cγ ), the GEV can still be
used as an approximation to the true maximum distribution. The above-described
maximum likelihood procedure is then applied to a sample of maxima. Recall
that, in this case, the parameters σ and µ absorb the normalizing constants an

respectively bn in the derivation of the limit laws for maxima given in section 2.1.
Hence, the parametrization for σ and µ follows immediately from these. In prac-
tice, we usually have no knowledge about F and U , and setting up an appropriate
GEV parametrization in terms of x is often difficult. Simulation results, however,
indicate that incorrect specifications may lead to unreliable point estimates. One
possible solution for this problem is to consider a broad class of distribution func-
tions satisfying (Cγ ) followed by the determination of the appropriate µ and σ

parametrizations and the resulting limiting form. For instance, ignoring the depen-
dence on the covariates for notational convenience, in case of the Hall class (Hall
(1982)) for which

U(y) =
{

Cyγ (1 + Dyρ(1 + o(1))), γ > 0,

y+ − Cyγ (1 + Dyρ(1 + o(1))), γ < 0,
(y → ∞)

with C > 0, D ∈ R and ρ < 0, we can take, for n → ∞,

bn = U(n) ∼
{

Cnγ , γ > 0,

y+ − Cnγ , γ < 0,

an = |γ |Cnγ ,
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and hence, setting z = bn + any,

P (Yn,n ≤ z) ∼




exp

(
− (

z
Cnγ

)− 1
γ

)
, γ > 0,

exp

(
− (

y+−z

Cnγ

)− 1
γ

)
, γ < 0.

(7.4)

Clearly, for this very broad class of distribution functions, the appropriate µ and σ

parametrizations can be easily obtained. Of course, application of (7.4) still requires
to specify γ and possibly C in terms of the covariates. Note also that since µ and
σ depend on n, model (7.4) can accommodate data sets with different subsample
sizes.

Example 7.1 The Ca against pH scatterplot shown in Figure 1.19(a) gives an indi-
cation that the tail of the conditional Ca distribution may depend on the pH level
of soil samples. We analyse these data using the GEV regression approach dis-
cussed above. The Pareto quantile plots of the Ca measurements at some fixed
pH levels given in Figure 6.7 indicate that Pareto-type models provide appropriate
fits to the conditional distributions of Ca given pH. Further, following Goegebeur
et al. (2004), we model the extreme value index γ in terms of the pH level using
an exponential link function. The data set is preprocessed in the sense that obser-
vations identified as suspect or incorrect are excluded from the analysis. At each
pH level, we compute the maximum Ca value and the number of available Ca
observations, see Figure 7.1(a) and (b) respectively. The GEV-Hall model (7.4)
with γ (pH) = exp(β0 + β1pH) is fitted to these 30 subsample maxima using the
maximum likelihood method. This results in the point estimates

Ĉ = 96.4173,

β̂0 = −2.8406,

β̂1 = 0.2908.

The profile likelihood function and the profile likelihood-based 95% confidence
interval for β1 are shown in Figure 7.1(c). The confidence interval for β1 does not
include the value 0, so at a significance level of 5%, the hypothesis H0:β1 = 0
can be rejected. Hence, the tail heaviness of the conditional Ca distribution varies
significantly with the pH level of soil samples.

7.2.3 Goodness-of-fit
Having fitted a model to a data set, for instance, using maximum likelihood meth-
ods, one should evaluate how well the model describes or explains the available
data. This is especially true here since the complicated model was based on the
asymptotics of maxima. When dealing with regression models, the goodness-of-fit
typically is visually assessed by inspection of various kinds of residual plots. In
the present context, the classical residuals Yi − ξi , where ξi denotes some measure
of location, are not very useful as, in general, these are not identically distributed.



214 REGRESSION ANALYSIS

pH
(a)

m
ax

(C
a)

4.5 5.0 5.5 6.0 6.5 7.0 7.5

20
0

40
0

60
0

80
0

10
00

12
00

14
00

pH
(b)

n

4.5 5.0 5.5 6.0 6.5 7.0 7.5

0
50

10
0

15
0

20
0

Figure 7.1 Condroz data: (a) Ca-maxima versus pH level, (b) number of observa-
tions versus pH level and (c) profile log-likelihood function and profile likelihood-
based 95% confidence intervals for β1.
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Therefore, we will look for other quantities or random variables that satisfy the
i.i.d. property, and hence can be considered as generalized residuals. Consider

Yi |xi ∼ GEV (σ(xi ), γ (xi ), µ(xi )), i = 1, . . . , m.

The transformation

Ri =



1
γ (xi )

log
(

1 + γ (xi )
Yi−µ(xi )

σ (xi )

)
, γ (xi ) �= 0,

Yi−µ(xi )

σ (xi )
, γ (xi ) = 0,

(7.5)

results in a standard Gumbel distributed random variable Ri (Coles (2001)):

FRi |xi
(ri)

=
{

G
(
µ(xi ) + σ(xi )

γ (xi )
[exp(γ (xi )ri) − 1]; σ(xi ), γ (xi ), µ(xi )

)
, γ (xi ) �= 0,

G(µ(xi ) + σ(xi )ri; σ(xi ), γ (xi ), µ(xi )), γ (xi ) = 0,

= exp(− exp(−ri)). (7.6)

The resulting Gumbel distribution does not any longer depend on the covari-
ates, and hence the random variables R1, . . . , Rm are identically distributed.
If Y1, . . . , Ym are assumed independent, then R1, . . . , Rm are also independent.
Hence, analogously to the case of classical linear regression, R1, . . . , Rm can be
used to construct several kinds of residual plots. Here, we will concentrate on
residual quantile plots. The quantile function associated with (7.6) is given by

Q(p) = − log(− log p), 0 < p < 1,
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yielding the Gumbel quantile plot coordinates
(

− log

(
− log

i

m + 1

)
, Ri,m

)
, i = 1, . . . , m.

In case (7.6) provides an accurate description of the data, we expect the points on
the Gumbel quantile plot to be close to the first diagonal.

Alternatively, as discussed in Chapter 1, we can always return to the exponential
framework by transforming the data first to the exponential case followed by a
subsequent assessment of the exponential quantile fit. To do so, note that

G(Y ; σ(x), γ (x), µ(x))
D= U,

where U ∼ U(0, 1) and hence

− log(1 − G(Y ; σ(x), γ (x), µ(x)))
D= E, (7.7)

with E ∼ Exp(1). On the basis of this, the fit of the GEV regression model can
be assessed by constructing the plot

(
− log

(
1 − i

m + 1

)
, − log

(
1 − Ui,m

))
, i = 1, . . . , m,

where Ui = G(Yi; σ(xi ), γ (xi ), µ(xi )) and U1,m ≤ · · · ≤ Um,m are the correspond-
ing order statistics, and to inspect the closeness of the points to the first diagonal.

Example 7.1 (continued) We now evaluate how well the GEV-Hall model (7.4)
with γ (pH) = exp(β0 + β1pH) describes the conditional Ca-maxima using the
above-introduced quantile plots. In Figure 7.2(a), we show the Gumbel quantile
plot of the generalized residuals (7.5). Taking the small sample size and the high
variability of the subsample sizes over the pH range into account, we can con-
clude that the GEV-Hall regression model describes the conditional Ca-maxima
distribution quite well. Alternatively, we can evaluate the fit on the basis of the
exponential quantile plot of the generalized residuals (7.7), see Figure 7.2(b).

7.2.4 Estimation of extreme conditional quantiles

Extreme conditional quantile estimates can be obtained by inverting the conditional
GEV distribution function yielding

qp,x =
{

µ(x) + σ(x)
γ (x)

[
(− log(1 − p))−γ (x) − 1

]
, γ (x) �= 0,

µ(x) − σ(x) log(− log(1 − p)), γ (x) = 0,
(7.8)

and replacing the unknown parameters by their respective estimates.

Example 7.1 (continued) We continue with the analysis of the conditional Ca-
maxima. The estimated conditional 0.95 quantile of the Ca-maxima distribution is
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Figure 7.2 Condroz data: (a) Gumbel quantile plot and (b) exponential quantile
plot of the generalized residuals.
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Figure 7.3 Condroz data: conditional Ca-maxima (circles) and estimated condi-
tional 0.95 quantiles (squares).

given as a function of pH in Figure 7.3. Note that one observation exceeds the
estimated 0.95 quantile (we expect one or two observations out of 30 above the
conditional 0.95 quantile).

Note that in case the GEV regression model is used to approximate the true
conditional distribution of the largest value in a sample, (7.8) yields the quantiles
of the conditional maximum distribution. The quantiles of the original data can be
obtained from

q∗
p,x =

{
µ(x) + σ(x)

γ (x)

[
(− log(1 − p)n)−γ (x) − 1

]
, γ (x) �= 0,

µ(x) − σ(x) log(− log(1 − p)n), γ (x) = 0.

7.3 The Quantile View—Methods Based on
Exponential Regression Models

7.3.1 Model description
In this section, we extend the exponential regression model for log-spacings of
successive order statistics introduced in Chapter 4 to the regression case. This
approach has only been worked out in case of Pareto-type response distributions.

Consider Y1, . . . , Yn i.i.d. random variables according to distribution function
F , where F is of Pareto-type, that is, the tail quantile function U satisfies

U(y) = yγ �U(y), y > 1; γ > 0. (7.9)
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From section 4.4, we know that, when log �U satisfies Cρ(b) for some ρ <

0 and b ∈ Rρ , log-spacings of successive order statistics can be approximately
represented as

j (log Yn−j+1,n − log Yn−j,n)
D∼

(
γ + bn,k

(
j

k + 1

)−ρ
)

Ej ,

j = 1, . . . , k, (7.10)

where E1, . . . , Ek are independent standard exponential random variables and
bn,k = b(n+1

k+1 ). When covariate information is available, (7.9) can be extended to a
regression model by modelling γ and possibly �U as a function of the covariates. In
this case, the exponential regression model (7.10) cannot be directly applied to the
response observations as these are not identically distributed. One possible solution
is to transform the response observations into generalized residuals, thereby remov-
ing (at least partly) the dependence on the covariates. These generalized residuals
then form the basis for applying (7.10).

7.3.2 Maximum likelihood estimation
Consider independent random variables Y1, . . . , Yn with respective associated
covariate vectors x1, . . . , xn such that the conditional distribution of Y given x
is of Pareto-type, that is, for some γ (x) > 0

1 − FY |x(y) = y−1/γ (x)�F (y; x). (7.11)

As above, we set γ (x) = h(x; β), for some completely specified function h and
with β denoting a vector of regression coefficients. Note that aside of the extreme
value index γ , FY |x may also depend on the covariates through �F . Since Y1, . . . , Yn

are not identically distributed (7.10) cannot be directly applied to the raw input
data. However, by transforming the dependent variables, the dependence on the
covariates may be at least partly removed. The transformation

R = Y 1/γ (x) (7.12)

standardizes the extreme value index:

1 − FR|x(r) = r−1�F (rγ (x); x).

Next, we restrict the class of distribution functions satisfying (7.11) to the distri-
butions FY |x for which

�F (rγ (x); x) = �F (r), (7.13)

or equivalently, to the class of conditional distribution functions for which trans-
formation (7.12) removes the conditioning on x completely. The random variables
R1, . . . , Rn obtained by applying (7.12) to Y1, . . . , Yn are now clearly independent
(since the Yi are independent) and identically distributed (γ and �F no longer
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depend on x). The Ri , i = 1, . . . , n again form the basis of the statistical analysis.
We denote the order statistics associated with R1, . . . , Rn by R1,n ≤ · · · ≤ Rn,n.

In case log �U satisfies Cρ(b) for some ρ < 0 and b ∈ Rρ , using derivations
similar to the ones in section 4.4, the following approximate representation for
log-spacings of generalized residuals can be proposed

Zj
D∼

(
1 + bn,k

(
j

k + 1

)−ρ
)

Ej , j = 1, . . . , k, (7.14)

with Zj = j (log Rn−j+1,n − log Rn−j,n), bn,k = b(n+1
k+1 ) and E1, . . . , Ek denoting

independent standard exponential random variables. The regression coefficients can
be estimated jointly with bn,k and ρ using the maximum likelihood method.

The log-likelihood function for Z1, . . . , Zk is given by

log L(β, bn,k, ρ) = −
k∑

j=1

log

(
1 + bn,k

(
j

k + 1

)−ρ
)

−
k∑

j=1

Zj

1 + bn,k

(
j

k+1

)−ρ
. (7.15)

Note that the likelihood function depends on the regression coefficients through
the ordered residuals and hence is more complicated than in section 4.4. For com-
putational details concerning the numerical maximization of (7.15), we refer to
Beirlant and Goegebeur (2003). Inference about the regression coefficients can be
drawn using the profile log-likelihood ratio test statistic given by 2(log Lp(β̂(0)) −
log Lp(β∗

(0))) with log Lp(β(0)) denoting the profile log-likelihood function of some
subset β(0) of β. This statistic equals the classical likelihood ratio statistic for test-
ing the hypothesis H0:β(0) = β∗

(0). As discussed in Beirlant and Goegebeur (2003),
the classical χ2 approximation to the null distribution of the test statistic is inap-
propriate. We therefore propose to simulate the reference distribution by using
a parametric bootstrap procedure (Efron and Tibshirani (1993)). Bootstrap sam-
ples are generated from a strict Pareto distribution with parameters β∗

(0) and the
maximum likelihood estimates of the remaining regression coefficients given β∗

(0).

Example 7.2 We illustrate the proposed procedure with the diamond data intro-
duced in section 1.3.5. In a first attempt, trying to fit regression models over the
whole range of the variable size, the application of model (7.11) with Y = value

and γ (size) = exp(β0 + β1 size) does not provide an appropriate fit: the Pareto
quantile plot of the residuals R = Y exp(−β1 size) becomes horizontal for the largest
observations, that is, exp(β0) = 0 (cf infra). Rather, the extreme value index is
found to vary polynomially with size. The scatterplot of value versus log(size) is
given in Figure 7.4(a). In Figure 7.4(b), we show the profile log-likelihood function
of β1 for k = 200, 250, 300, 350, 400. These profile likelihood functions clearly
indicate a β1 estimate of approximately 0.3. Finally, Figure 7.4(c) and (d) contain
the maximum likelihood estimates of respectively β0 and β1 as a function of k.
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Figure 7.4 Diamond data: (a) value against log(size) scatterplot, (b) profile log-
likelihood function of β1 for k = 200, 250, 300, 350, 400, (c) β̂0 as a function of
k and (d) β̂1 as a function of k.
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Figure 7.4 (continued )

7.3.3 Goodness-of-fit

The fit of the conditional Pareto-type model given by (7.11) can be assessed in
several ways. Under (7.11) and (7.13), R1, . . . , Rn form an i.i.d. sample from a
Pareto-type model with γ = 1 and hence can be used to construct a Pareto quantile
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plot. Alternatively, following (7.14)

R̃j = Zj

1 + bn,k

(
j

k+1

)−ρ
, j = 1, . . . , k,

are approximately distributed as an i.i.d. sample from the standard exponential
distribution and can be used to construct an exponential quantile plot.

Example 7.2 (continued) Figure 7.5(a) shows the Pareto quantile plot of the gen-
eralized residuals log ri = size

−β1
i log valuei , i = 1, . . . , 1914. The residuals are

computed using the β1 estimate at k = 200. The Pareto quantile plot is clearly lin-
ear in the largest observations, indicating a good fit of a Pareto-type model to the
residual distribution. In a similar way, we also constructed a Pareto quantile plot
of the residuals log ri = exp(−β1sizei) log valuei , see Figure 7.5(b). The ultimate
horizontal appearance indicates that the residual distribution cannot be adequately
described by a Pareto-type model.

7.3.4 Estimation of extreme conditional quantiles
In case of an i.i.d. sample from a Pareto-type distribution, Y1, . . . , Yn, extreme
quantiles can be estimated by extrapolation along a line through the anchor point
(log n+1

k+1 , log Yn−k,n) with slope γ̂k on the Pareto quantile plot, resulting in the
estimator (see e.g. Weissman (1978))

QY,k(p) = Yn−k,n

(
k + 1

(n + 1)p

)γ̂k

, k = 1, . . . , n − 1, (7.16)

where γ̂k denotes an estimator for γ based on the k largest order statistics. When
covariate information is available (7.16) cannot be applied directly to the raw data
since the observations are not longer identically distributed. In this situation, the
observations will be first transformed to i.i.d. data using (7.12). Next, (7.16) will
be used in the extrapolation step, yielding an estimator of an extreme quantile of
the residual distribution. Finally, the quantile estimator of the generalized residuals
will be transformed back to the original observations by inverting (7.12). This
results in the following estimator for the (1 − p)-th quantile of FY |x:

QY,k(p; x) =
(

R̂n−k,n

k + 1

(n + 1)p

)γ̂k (x)

, k = d + 1, . . . , n − 1,

with γ̂k(x) denoting the estimator for γ (x) obtained by using the k largest order
statistics and R̂n−k,n representing the (k + 1)-th largest order statistic of the gen-
eralized residuals obtained by using γ̂k(x) in (7.12).

Example 7.2 (continued) In Figure 7.6, we show the value versus log(size) scat-
terplot with the estimated conditional 0.99 quantile obtained at k = 102 super-
imposed. The k value used to compute the 0.99 quantiles is selected so as to
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Figure 7.5 Diamond data: (a) Pareto quantile plot of the generalized residuals for
the regression model with log(size) as explanatory variable, (b) Pareto quantile
plot of the generalized residuals for the regression model with size as explanatory
variable (in (a) and (b), the generalized residuals are computed using the β1-
estimates at k = 200).



REGRESSION ANALYSIS 225

log(Size)

V
al

ue

−4 −2 0 2

0
20

00
40

00
60

00
80

00
10

00
0

Figure 7.6 Diamond data: scatterplot of value versus log(size) with
QY,102(0.01; log(size)) superimposed.

minimize ∣∣∣∣∣
1

1914

1914∑
i=1

I (valuei ≥ QY,k(0.01; log(sizei ))) − 0.01

∣∣∣∣∣
with respect to k.

7.4 The Tail Probability View—Peaks Over
Threshold (POT) Method

7.4.1 Model description

Consider a random variable Z with distribution function F satisfying F ∈ D(Gγ ).
Following (C∗

γ ), the conditional distribution of Y = Z − u given Z > u can be
well approximated by the GP distribution at least for threshold values that are
sufficiently large. On the basis of this, it is natural to model exceedances over a
high-specified threshold by the GP distribution with distribution function

H(y; σ, γ ) =



1 − (
1 + γ

y

σ

)− 1
γ , 1 + γ

y

σ
> 0, γ �= 0,

1 − exp
(− y

σ

)
, y > 0, γ = 0,
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where σ > 0 is the scale parameter of the GP family. Similar to the approach
followed with the GEV, we extend the GP distribution to a regression model
by taking σ and/or γ as a function of the covariate vector and the vectors of
regression coefficients, that is, σ(x) = h1(x; β1) and γ (x) = h2(x; β2), see, for
instance, Davison and Smith (1990).

7.4.2 Maximum likelihood estimation

Let Y1, . . . , Yn be independent random variables and let xi denote the covariate
vector associated with Yi such that

Yi |xi ∼ GP(σ(xi), γ (xi )), i = 1, . . . , n.

Again we denote the complete parameter vector with β, so β ′ = (β ′
1, β ′

2). The
log-likelihood function is then

log L(β) =
n∑

i=1

log h(Yi; σ(xi), γ (xi )), (7.17)

where h is the GP density function:

h(y; σ, γ ) =



1
σ

(
1 + γ

y

σ

)− 1
γ −1

, 1 + γ
y

σ
> 0, γ �= 0,

1
σ

exp
(− y

σ

)
, y > 0, γ = 0.

The maximum likelihood estimator β̂ can be obtained by maximizing (7.17) with
respect to β. Approximate inference about the regression coefficients can be drawn
on the basis of the limiting normal distribution of the maximum likelihood estimator
or using the profile likelihood approach. The profile log-likelihood function is
usually not quadratic in small and moderate samples and provides a better basis
for confidence intervals than the observed expected information (see Davison and
Smith (1990)).

We now turn to the case where the data are not exactly GP distributed. Consider
a random variable Z with associated covariate vector x such that the conditional
distribution of Z given x, FZ|x, is in the max-domain of attraction of the GEV,
FZ|x ∈ D(Gγ(x)). Here, the notation γ (x) stresses the possible dependence of the
tail index on the covariates. On the basis of (C∗

γ ), the GP distribution can be used to
approximate the conditional distribution of Z − ux given Z > ux where ux denotes
a sufficiently high threshold. Given independent random variables Z1, . . . , Zn and
associated covariate vectors x1, . . . , xn, the above-described maximum likelihood
procedure is then applied to the exceedances Yj = Zi − uxi

, provided Zi > uxi
,

j = 1, . . . , Nux , where i is the index of the j -th exceedance in the original sample
and Nux denotes the number of exceedances over the threshold ‘function’ ux. Of
course, the covariate vectors need to be re-indexed in an analogous way. Similar
to the i.i.d. case, applying the GP approach involves the selection of an appropriate
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threshold ux. In the regression case, the specification of a threshold gets even more
difficult since, in principle, the threshold can depend on the covariates in order to
take the relative extremity of the observations into account (see also Davison and
Smith (1990) and Coles (2001)). Up to now, solutions seem to be more ad hoc
and depending on the data set at hand. One possibility to a scientifically better-
founded approach is to proceed as follows. Let γ (x) and σ(x) be as defined above
and ux = u(x; θ) denotes the threshold function, depending on both the covariates
and a vector of regression coefficients θ , where θ ′ = (θ1, . . . , θd). The following
mixed-integer programming formulation allows to estimate β1, β2 and θ for the
GP regression model such that exactly k observations fall above ux:

max
β1,β2,θ,δ

n∑
i=1

{
− log σ(xi ) −

(
1

γ (xi )
+ 1

)
log

(
1 + γ (xi )

Zi − uxi

σ (xi )

)}
(1 − δi)

subject to

β1, β2, θ ∈ R
d,

Zi + Mδi ≥ uxi
, i = 1, . . . , n,∑n

i=1(1 − δi) = k,

δi ∈ {0, 1}, i = 1, . . . , n,

with M a big number. From a computational point of view, however, this approach
is very difficult. Alternatively, the Koenker and Bassett (1978) quantile regression
methodology may be used to obtain a covariate dependent threshold. Suppose the
conditional quantile function Q(p; x) associated with FZ|x can be modelled by
a completely specified function u(x; θp), that is, Q(p; x) = u(x; θp). The p-th
(0 < p < 1) quantile regression estimator θ̂p of θp is then defined as a solution to
the following optimization problem

min
θp

n∑
i=1

(
p(Zi − u(xi; θp))+ + (1 − p)(Zi − u(xi; θp))−

)
,

with x+ = max(0, x) and x− = max(0, −x). When working with the GP dis-
tribution, the threshold can be set at a particular regression quantile, that is,
ux = u(x; θp). The estimated conditional quantile function is then used to com-
pute exceedances that are in turn plugged into the maximum likelihood estimation.
This procedure may be performed for p = n−k

n+1 , k = d + 1, . . . , n − 1 and, similar
to the i.i.d. case, the point estimates plotted as a function of k.

Example 7.1 (continued) We illustrate the GP regression modelling of condi-
tional exceedances with the Condroz data. A GP regression model with γ (pH) =
exp(β0 + β1pH) is fitted to the Ca exceedances over both a constant threshold and
a covariate dependent threshold. The constant threshold is taken as the (k + 1)th
largest observation on the dependent variable, k = 5, . . . , n − 1. This is illustrated
in Figure 7.7(a) for k = 20. Alternatively, we used the Koenker and Bassett (1978)
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Figure 7.7 Condroz data: exceedances over (a) the 20th largest response obser-
vation and (b) regression quantile 0.9877 (corresponding to k = 20).

quantile regression methodology to obtain a covariate dependent threshold. Here
we set

upH = exp(θ0,p + θ1,ppH),

where θ0,p and θ1,p denote the pth regression quantile, p = (n − k)/(n + 1),
k = 5, . . . , n − 1, see Figure 7.7(b). Note that the covariate dependent threshold
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yields exceedances over the whole range of the covariate, whereas for the constant
threshold, exceedances exclusively occur at the higher pH levels. In Figure 7.8(a),
(b) and (c), we show the maximum likelihood estimates of respectively σ , β0 and
β1 for the above-described GP regression model fitted to exceedances over a con-
stant threshold (broken line) and the quantile regression threshold (solid line).
Finally, the profile log-likelihood function of β1 using k = 500 exceedances over
the covariate dependent threshold and the corresponding 95% confidence interval
are shown in Figure 7.8(d). The 95% interval does not contain the value β1 = 0,
so the hypothesis H0:β1 = 0 can be rejected at the 5% significance level.

7.4.3 Goodness-of-fit

Similar to the discussion in section 7.2.3, we focus on the use of residual quantile
plots to assess the fit of a GP regression model. Consider

Yi |xi ∼ GP(σ(xi), γ (xi )), i = 1, . . . , n. (7.18)

Since the exponential distribution is a special member of the GP family, it is natural
to apply a transformation to the exponential case. The transformation (Coles (2001))

Ri =



1
γ (xi )

log
(

1 + γ (xi )
Yi

σ (xi )

)
, γ (xi ) �= 0,

Yi

σ (xi )
, γ (xi ) = 0.

(7.19)

results in a standard exponential random variable:

FRi |xi
(ri) =

{
H

(
σ(xi )

γ (xi )
[exp(γ (xi )ri) − 1]; σ(xi ), γ (xi )

)
, γ (xi ) �= 0,

H(σ (xi )ri; σ(xi ), γ (xi )), γ (xi ) = 0,

= 1 − exp(−ri).

If Y1, . . . , Yn are independent, then R1, . . . , Rn are i.i.d. random variables, and
hence can be used to validate model (7.18), for instance, using an exponential
quantile plot (

− log

(
1 − i

n + 1

)
, Ri,n

)
, i = 1, . . . , n.

When regression model (7.18) indeed gives an accurate description of the data,
we expect the points on the exponential quantile plot to scatter around the first
diagonal.

Example 7.1 (continued) We evaluate the fit of the GP regression model with
γ (pH) = exp(β0 + β1pH) to the 500 Ca exceedances of regression quantile
0.6667 using an exponential quantile plot. This plot is shown in Figure 7.9. The
ordered residuals scatter quite well around the first diagonal, giving evidence of a
good fit of the GP regression model to the Ca exceedances.
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Figure 7.8 Condroz data: (a) σ̂ , (b) β̂0, (c) β̂1 as a function of k for GP regression
model with constant threshold (broken line) and covariate dependent threshold
(solid line) and (d) profile log-likelihood function and profile likelihood-based
95% confidence interval of β1 at k = 500 (GP regression model with covariate
dependent threshold).



REGRESSION ANALYSIS 231

k
(c)

be
ta

_1

0 500 1000 1500

−1
0

−5
0

5
10

beta_1

(d)

lo
gL

_p

1 2 3 4 5 6

−2
69

5
−2

69
4

−2
69

3
−2

69
2

−2
69

1

7.4.4 Estimation of extreme conditional quantiles

Estimates of extreme conditional quantiles can be obtained from the GP quantile
function

U

(
1

p
; x

)
=

{
σ(x)
γ (x)

(
p−γ (x) − 1

)
, γ (x) �= 0,

−σ(x) log p, γ (x) = 0,
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Figure 7.9 Condroz data: exponential quantile plot of the generalized residuals
(7.19) at k = 500.

after replacing the unknown parameter functions by their respective maximum
likelihood estimates. In case the GP distribution was used as an approximation to
the conditional distribution of Z − ux given Z > ux, then, on the basis of (C∗

γ ),
setting z := ux + y, for ux → z∗

F̄Z|x(z) ∼




F̄Z|x(ux)
(

1 + γ (x)(z−ux)

σ (x)

)− 1
γ (x)

, γ (x) �= 0,

F̄Z|x(ux) exp
(
− z−ux

σ(x)

)
, γ (x) = 0.

(7.20)

Solving (7.20) for z and replacing the unknown quantities by their respective point
estimates yields

Û∗
(

1

p
; x

)
=




ux + σ̂ (x)
γ̂ (x)

((
p

ˆ̄FZ|x(ux)

)−γ̂ (x)

− 1

)
, γ (x) �= 0,

ux − σ̂ (x) log p

ˆ̄FZ|x(ux)
, γ̂ (x) = 0.

If the covariate dependent threshold is set at a non-extreme regression quantile
obtained with, for instance, the quantile regression methodology of Koenker and
Bassett (1978), that is, ux = Û∗( n

k
; x), then the above expression reduces to

Û∗
(

1

p
; x

)
=




ux + σ̂ (x)
γ̂ (x)

((
np

k

)−γ̂ (x) − 1
)

, γ (x) �= 0,

ux − σ̂ (x) log np

k
, γ̂ (x) = 0.

(7.21)



REGRESSION ANALYSIS 233

pH

C
a

4.5 5.0 5.5 6.0 6.5 7.0 7.5

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Figure 7.10 Condroz data: Û∗(1000; pH) at k = 500 (solid line) and regression
quantile 0.6667 (broken line) as a function of pH.

Example 7.1 (continued) In Figure 7.10, we show the Ca versus pH scatterplot
together with Û∗(1000; pH) (solid line) at k = 500. The broken line represents
the threshold that is here set to regression quantile 0.6667.

7.5 Non-parametric Estimation

The methods considered so far all require the specification of a functional form
for the model parameters. In practice, this often turns out to be a hard job. More-
over, completely parametric models are often smoother than a visual inspection
of the data would suggest, and their lack of flexibility can lead to models with
large numbers of parameters still providing poor fits. As an alternative to the
parametric models discussed in the previous sections, the approach taken here is
non-parametric, that is, we let the data themselves describe the functional rela-
tionship for the model parameters. In this section, we focus on modern smoothing
techniques such as maximum penalized likelihood estimation (Green and Silver-
man (1994)) and local polynomial maximum likelihood estimation (Fan and Gijbels
(1996)) and combine these with the GP distribution as approximate model for
exceedances over high thresholds. Although we restrict the discussion to the GP
modelling of exceedances, the non-parametric procedures may be combined with
the GEV equally well. In this respect, some relevant references are Davison and
Ramesh (2000), Hall and Tajvidi (2000a) and Pauli and Coles (2001).
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Consider a random variable Z with associated covariate x such that FZ|x ∈
D(Gγ(x)). For simplicity of notation, we restrict the discussion to the single covari-
ate case. Following (C∗

γ ), the conditional distribution of Y = Z − ux given Z > ux

can be well approximated by the GP distribution, at least when the threshold ux is
set sufficiently high.

7.5.1 Maximum penalized likelihood estimation

Given independent observations Z1, . . . , Zn and associated covariates x1 < · · · <

xn, we fit a GP regression model to the exceedances Yj = Zi − uxi
, provided

Zi > uxi
, j = 1, . . . , Nux . Thereby, we do not impose a particular functional form

that describes how the parameters σ and γ depend on the covariate. Note that the
covariate is re-indexed in the sense that xi denotes the x observation associated
with exceedance Yi . Take σi = exp(s(xi)) and γi = t (xi) with s and t unknown
functions. The purpose of the notation is to stress that the σi and γi are parameters
whose similarity over the covariate space is determined by the smoothness of the
continuous functions s and t , which are assumed to be twice differentiable over
[x1, xn]. The penalized log-likelihood function is defined as

�(s, t) =
Nux∑
i=1

log g(Yi; exp(s(xi)), t (xi)) − 1

2
λ1

∫
(s ′′(x))2 dx

− 1

2
λ2

∫
(t ′′(x))2dx, (7.22)

where g is the GP density function. The penalized log-likelihood function is a
difference of two terms. The first term is the classical log-likelihood function
for the GP distribution, the second term is a penalty function whose magnitude
reflects the integrated roughness of the functions s and t . The amount of smooth-
ing is determined by the parameters λ1 and λ2. For small λ1 and λ2, the (over
parametrized) log-likelihood dominates �, leading to estimates that follow the
data closely. Increasing λ1 and λ2 results in larger penalties and hence produces
smoother fits. Computing the maximum penalized likelihood estimates involves
the maximization of � over the entire functional space of s and t . However, using
the fundamental theorems concerning natural cubic splines given in sections 2.1
and 2.2 of Green and Silverman (1994), it can be shown that the maximization of
(7.22) is equivalent to the maximization of a finite dimensional system correspond-
ing to the σi and γi , i = 1, . . . , Nux , followed by a cubic spline fit to construct the
complete s and t curves.

Using the notation of Green and Silverman (1994), define band matrices Q

and R as follows. Let hi = xi+1 − xi , i = 1, . . . , Nux − 1. Define Q as a Nux ×
(Nux − 2) matrix with elements qi,j , i = 1, . . . , Nux , j = 2, . . . , Nux − 1, given
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by

qi,j =




h−1
j−1, if i = j − 1,

−h−1
j−1 − h−1

j , if i = j,

h−1
j , if i = j + 1,

0, otherwise,

and R as a (Nux − 2) × (Nux − 2) symmetric matrix with elements ri,j , i, j =
2, . . . , Nux−1, given by

ri,j =




1
3 (hi−1 + hi), if i = j,

1
6hi, ifs i = j − 1 or i = j + 1,

0, otherwise.

Finally, define K = QR−1Q′. Maximization of (7.22) with respect to s and t is
equivalent to the maximization with respect to s and t of

�(s, t) =
Nux∑
i=1

log g(Yi; exp(s(xi)), t (xi)) − 1

2
λ1s′Ks − 1

2
λ2t′Kt,

where s′ = (s(x1), . . . , s(xNux
)) and t′ = (t (x1), . . . , t (xNux

)), followed by a cubic
spline fit to link the estimates together. The precision of the maximum penalized
likelihood estimators ŝ and t̂ can be assessed by the bootstrap (Chavez-Demoulin
(1999), Chavez-Demoulin and Davison (2001)) or on the basis of a Bayesian inter-
pretation of the penalized likelihood function (Wahba (1978), Green and Silverman
(1994), Pauli and Coles (2001)).

Example 7.1 (continued) In section 7.4, the Condroz data were analysed by fitting
the regression model GP(σ, exp(β0 + β1pH)) to the conditional Ca exceedances.
Here, maximum penalized likelihood estimation will be used to obtain a non-
parametric estimate of γ (pH). Similar to the analysis in section 7.4, we take a
constant scale parameter σ . The maximum penalized likelihood estimates σ̂ and t̂
are obtained by maximizing

�(σ, t) =
NupH∑
i=1

log g(Yi; σ, t (pHi)) − 1

2
λt′Kt

with respect to σ and t. Note that maximum penalized likelihood estimation easily
accommodates fully parametric specifications for some of the model parameters.
In Figure 7.11(a), we show the 50 exceedances over regression quantile 0.9673.
Figure 7.11(b) contains the maximum penalized likelihood estimates of γ (pH)

for three different values of λ together with the estimate obtained from fitting the
parametric GP(σ, exp(β0 + β1pH)) regression model. The corresponding results
for the 200 exceedances over regression quantile 0.866 are shown in Figure 7.11(c)
and (d). Note how increasing the parameter λ, and hence increasing the penalty
assigned to roughness, leads to smoother γ estimates.
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Figure 7.11 Condroz data: (a) exceedances over regression quantile 0.9673
(k = 50) versus pH and (b) maximum penalized likelihood estimates of γ (pH)

for λ = 0.1 (broken line), λ = 0.01 (broken-dotted line) and λ = 0.001 (dotted
line) together with the estimate obtained with the parametric regression model
GP(σ, exp(β0 + β1pH)) (solid line). Figures (c) and (d) show the results obtained
with a threshold taken as regression quantile 0.866 (k = 200).
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Similar to the parametric GP regression modelling, the fit of the maximum
penalized likelihood estimate can be assessed by a visual inspection of the expo-
nential quantile plot of the generalized residuals (7.19). Non-parametric estimates
for extreme conditional quantiles can be obtained from (7.21), thereby replacing
σ(x) and γ (x) by their maximum penalized likelihood estimates.
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Example 7.1 (continued) We evaluate the fit of the maximum penalized likelihood
estimation with λ = 0.1 at k = 200 by means of an exponential quantile plot of
the generalized residuals (7.19), see Figure 7.12(a). The residuals scatter quite well
around the first diagonal, indicating an appropriate fit of the Ca exceedances by the
maximum penalized likelihood estimates. In Figure 7.12(b), we show the Ca versus
pH scatterplot together with Û∗(1000; pH) at k = 200. Here, Û∗(1000; pH) is
obtained by plugging the maximum penalized likelihood estimates obtained with
λ = 0.1 into (7.21).

7.5.2 Local polynomial maximum likelihood estimation

Alternatively, the parameter functions σ and γ can be estimated by repeated local
fits of the GP distribution. Consider independent random variables Z1, . . . , Zn and
associated covariate observations x1, . . . , xn. Suppose we are interested in estimat-
ing σ and γ at x∗. Fix a high local threshold ux∗ and compute the exceedances
Yj = Zi − ux∗ , provided Zi > ux∗ , j = 1, . . . , Nux∗ , where i is the index of the j -
th exceedance in the original sample and Nux∗ denotes the number of exceedances
over the threshold ux∗ . Re-index the covariates in an appropriate way such that
xi denotes the covariate observation associated with exceedance Yi . Let h denote
a bandwidth parameter. Since σ and γ are unknown, we approximate them by
polynomials centred at x∗. Indeed, assuming σ and γ are p1 and p2 respectively,
times differentiable we have, for |xi − x∗| ≤ h,

σ(xi) =
p1∑

j=0

β1j (xi − x∗)j + o(hp1),

γ (xi) =
p2∑

j=0

β2j (xi − x∗)j + o(hp2),

where β1j = 1
j !

∂j σ (xi )

∂x
j
i

∣∣∣∣
xi=x∗

, j = 0, . . . , p1, and β2j = 1
j !

∂j γ (xi )

∂x
j
i

∣∣∣∣
xi=x∗

, j =
0, . . . , p2. The coefficients of these approximations can be estimated by local
maximum likelihood fits of the GP distribution. Thereby, the contribution of the
observations to the log-likelihood is governed by a kernel function K , where K is
such that observations close to x∗ receive more weight. Further, K is assumed to be
a symmetric density function on [−1, 1] and h rescales K as Kh(x) = K(x/h)/h.
Clearly, h determines the amount of smoothing. The local polynomial maximum
likelihood estimator (β̂ ′

1, β̂ ′
2) = (β̂10, . . . , β̂1p1, β̂20, . . . , β̂2p2) is the maximizer of

the kernel weighted log-likelihood function

LNux∗ (β1, β2)

= 1

Nux∗

Nux∗∑
i=1

log g


Yi;

p1∑
j=0

β1j (xi − x∗)j ,
p2∑

j=0

β2j (xi − x∗)j


Kh(xi − x∗)
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Figure 7.12 Condroz data: maximum penalized likelihood estimation with λ =
0.1 at k = 200: (a) exponential quantile plot of the generalized residuals (7.19)
and (b) Û∗(1000; pH) (solid line) and regression quantile 0.866 (broken line) as
a function of pH .
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Figure 7.13 Condroz data: local polynomial maximum likelihood estimates of
γ (pH) obtained with a normal kernel function, p1 = 0, p2 = 1, k = 75 and h =
0.3 (solid line), h = 0.5 (broken line), h = 0.7 (broken-dotted line).

with respect to (β ′
1, β ′

2) = (β10, . . . , β1p1, β20, . . . , β2p2), where g denotes the GP
density. Note that local polynomial fitting provides estimates of γ (x∗) and σ(x∗)
and their derivatives up to order p1 respectively p2. Beirlant and Goegebeur
(2004a) proved consistency and asymptotic normality of the local polynomial max-
imum likelihood estimator in case γ (x) > 0.

Example 7.1 (continued) In Figure 7.13, we show the local polynomial maximum
likelihood estimates of γ (pH) obtained with the above-described procedure with a
normal kernel function, p1 = 0, p2 = 1 and h = 0.3 (solid line), h = 0.5 (broken
line) and h = 0.7 (broken-dotted line). In this analysis, we set the local threshold
at the 76th largest response observation within each window, so k = 75.

Consistent with this local approach, Hall and Tajvidi (2000a) proposed to use
local quantile plots as a basis for the goodness-of-fit evaluation. Consider a window
centred at x∗ with length 2h and let (Y ′

1, x ′
1), . . . , (Y ′

k, x ′
k) denote the observations

(Yi, xi) for which xi ∈ [x∗ − h, x∗ + h]. Given a local polynomial fit, we trans-
form (Y ′

1, x ′
1), . . . , (Y ′

k, x ′
k) into generalized residuals (7.19), thereby replacing the

unknown parameter functions by their polynomial approximation, and use these
to construct an exponential quantile plot. Non-parametric estimates of extreme
quantiles of FZ|x∗ can be obtained from

Û∗
(

1

p
; x∗

)
= ux∗ + σ̂ (x∗)

γ̂ (x∗)

[(
n∗p
k

)−γ̂ (x∗)

− 1

]
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with n∗ the number of observations in [x∗ − h, x∗ + h], k the number of
exceedances receiving positive weight and σ̂ (x∗) and γ̂ (x∗) denoting the local
polynomial maximum likelihood estimates for respectively σ(x∗) and γ (x∗).

Example 7.1 (continued) We evaluate the local polynomial fit of the GP distribu-
tion with h = 0.5 and k = 75 at pH ∗ = 7 using a local exponential quantile plot
of the generalized residuals, see Figure 7.14(a). In Figure 7.14(b), we show the
threshold (broken line), which is set here at the 76th largest response observation
within each window of length 2h, and Û∗(1000; pH) obtained with h = 0.5 and
k = 75 as a function of pH .

7.6 Case Study

Insurance companies often use reinsurance contracts to safeguard themselves
against portfolio contaminations caused by extreme claims. In an excess-of-loss
reinsurance contract, the reinsurer pays for the claim amount in excess of a given
retention. For the reinsurer, accurate description of the upper tail of the claim
size distribution is of crucial importance for competitive price setting. In this pro-
cess, taking covariate information into account allows to differentiate premiums
according to the risks involved.

In this section, we illustrate how parametric and non-parametric GP modelling
of conditional exceedances may help in describing tails of conditional claim-
size distributions. Consider the AoN Re Belgium fire portfolio data introduced in
section 1.3.3. In Figure 7.15(a), we show the claim size versus log(sum insured)

(log(SI)) scatterplot of claims generated by the office buildings portfolio. Given
this point cloud with some really large claims for 7 < log(SI) < 10, we propose
to use the covariate dependent threshold

log(uSI ) = θ0,p + θ1,p log(SI) + θ2,p log2(SI)

where θ0,p, θ1,p and θ2,p (0 < p < 1) are estimated using the quantile regression
methodology of Koenker and Bassett (1978). Figure 7.15(b) contains the regression
quantiles p = 0.9116 (60 exceedances) and p = 0.7875 (150 exceedances). The
exceedances over these regression quantiles are shown in Figure 7.15(c) and (d).

A GP(σ(SI), γ (SI)) regression model with log(σ (SI)) = β1,0 + β1,1 log(SI)

+ β1,2 log2(SI) and log(γ (SI)) = β2,0 + β2,1 log(SI) + β2,2 log2(SI) is fitted to
both sets of exceedances. In Table 7.1 and Table 7.2, we show the resulting parame-
ter estimates together with the value of the log-likelihood function for the full model
and some reduced models. The reduced models are obtained by sequentially remov-
ing non-significant parameters. Significance is decided upon by performing a clas-
sical likelihood ratio test. For instance, at k = 60, the likelihood ratio test statistic
for testing the hypothesis H0 : β1,2 = 0 equals 2(143.8726 − 143.8677) = 0.0098.
This value is smaller than the critical value χ2

1 (0.95) = 3.8415 and hence H0 can-
not be rejected at significance level α = 0.05. In this way, removing non-significant
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Figure 7.14 Condroz data: (a) local exponential quantile plot of generalized resid-
uals at pH ∗ = 7 and (b) Û∗(1000; pH) (solid line) and threshold upH (broken
line) as a function of pH .
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Figure 7.15 AoN Re Belgium data: (a) scatterplot of claim size versus log(SI),
(b) log(claim) versus log(SI) with regression quantile 0.7875 (broken line) and
regression quantile 0.9116 (solid line) superimposed, (c) exceedances over regres-
sion quantile 0.9116 (k = 60) and (d) exceedances over regression quantile 0.7875
(k = 150).
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Figure 7.15 (continued )
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Table 7.1 AoN Re Belgium data: GP modelling at k = 60.

Model β̂1,0 β̂1,1 β̂1,2 β̂2,0 β̂2,1 β̂2,2 log L

I −4.4069 −0.0564 0.0080 −35.7814 8.7077 −0.5238 143.8726
II −5.0653 0.0927 0 −35.9648 8.7633 −0.5280 143.8677
III −4.2476 0 0 −35.7165 8.6223 −0.5150 143.5624
IV −4.2806 0 0 0.3177 −0.0479 0 141.3641

Table 7.2 AoN Re Belgium data: GP modelling at k = 150.

Model β̂1,0 β̂1,1 β̂1,2 β̂2,0 β̂2,1 β̂2,2 log L

I −13.0059 1.9757 −0.1262 −1.8591 0.3018 −0.0078 513.6545
II −13.3194 2.0426 −0.1297 −1.1827 0.1538 0 513.6464
III −14.4144 2.2034 −0.1330 0.1181 0 0 512.6212
IV −4.1386 −0.1666 0 0.1091 0 0 509.9120

parameters one by one, we finally obtain a GP regression model with log(σ (SI)) =
β1,0 and log(γ (SI)) = β2,0 + β2,1 log(SI) + β2,2 log2(SI) (model III) at k = 60
and with log(σ (SI)) = β1,0 + β1,1 log(SI) + β1,2 log2(SI) and log(γ (SI)) = β2,0

(model III) at k = 150. The final parameter functions are shown in Figure 7.16.
At k = 150, the tail dependence on the covariate SI is modelled through the scale
parameter of the GP distribution while at k = 60, that is, deeper in the conditional
tails, tail dependence goes through the extreme value index. We evaluate the fit of
both GP regression models based on an exponential quantile plot of the generalized
residuals (7.19), see Figure 7.17. Both plots show residuals that scatter quite well
around the first diagonal indicating a reasonable fit of the respective GP regression
models.

Generally, the estimation of the extreme value index is not a goal on its own and
is often performed as a kind of in-between step when ultimate interest is in extreme
conditional quantiles or small conditional exceedance probabilities. Likewise, the
primary interest of a reinsurer will not focus on the extreme value index estimates
but rather on the claim level that will be exceeded only once in, say, 1000 claims,
thereby taking into account the possible influence of covariate information. In
Figure 7.18, we show the claim size versus SI scatterplot with the estimated 0.995
conditional quantile at k = 60 (solid line) and k = 150 (broken line) superimposed.
At k = 60, the extreme value index was found to vary significantly with SI. This is
reflected here in extreme conditional quantile estimates that follow the data better
than the estimates obtained at k = 150.

As a final step, we analyse the AoN Re Belgium claim data in a non-parametric
way. We restrict the non-parametric analysis to the 60 exceedances over regres-
sion quantile 0.9116 and fit a GP(σ, γ (SI)) regression model using maximum
penalized likelihood estimation. Figure 7.19 contains the maximum penalized like-
lihood estimates of γ (SI) for λ = 0.1 (solid line), λ = 0.05 (broken-dotted line),
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Figure 7.16 AoN Re Belgium data: (a) σ(SI) and (b) γ (SI) for k = 60 (solid
line) and k = 150 (broken line).
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Figure 7.17 AoN Re Belgium data: exponential quantile plot of generalized resid-
uals at (a) k = 60 and (b) k = 150.
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Figure 7.18 AoN Re Belgium data: Û∗(200; SI) at k = 60 (solid line) and k =
150 (broken line) as a function of log(SI).
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Figure 7.19 AoN Re Belgium data: maximum penalized likelihood estimates of
γ (SI) obtained at k = 60 for λ = 0.1 (broken line), λ = 0.05 (broken-dotted line)
and λ = 0.01 (dotted line) together with the estimate obtained with the parametric
regression model GP(σ, exp(β0 + β1 log(SI) + β2 log2(SI))) (solid line).
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Figure 7.20 AoN Re Belgium data: maximum penalized likelihood estimation
at k = 60: (a) exponential quantile plot of the generalized residuals (7.19) with
λ = 0.05 and (b) Û∗(200; SI) for λ = 0.1 (broken line), λ = 0.05 (broken-dotted
line), λ = 0.01 (dotted line) and parametric estimate (solid line).
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λ = 0.01 (dotted line) and the parametric estimate obtained before (solid line).
Remark that increasing λ, and hence giving more weight to the roughness penalty,
produces smoother fits. Besides providing an alternative estimation procedure here
the penalized likelihood estimates strongly confirm the previously performed com-
pletely parametric analysis. We evaluate the fit of the non-parametric estimate on
the basis of the exponential quantile plot of the generalized residuals (7.19), see
Figure 7.20(a). Non-parametric estimates of U∗(200; SI) can be obtained from
(7.21), thereby replacing the unknown parameters by the maximum penalized
likelihood estimates. In Figure 7.20(b), we show the claim size versus log(SI) scat-
terplot with Û∗(200; SI) for the three values of λ considered before superimposed.
Again, the non-parametric analysis confirms the previously obtained completely
parametric results.



8

MULTIVARIATE EXTREME
VALUE THEORY

8.1 Introduction

Many problems involving extreme events are inherently multivariate. Gumbel and
Goldstein (1964) already investigate the maximum annual discharges of the Ocmul-
gee River in Georgia at two different stations located upstream and downstream.
Coles and Tawn (1996a) and Schlather and Tawn (2003) undertake a spatial analysis
of daily rainfall extremes in south-west England in the context of risk assessment
for hydrological structures such as reservoirs, river flood networks and drainage
systems. De Haan and de Ronde (1998) and de Haan and Sinha (1999) estimate
the probability that a storm will cause a certain sea-dike near the town of Pet-
ten, the Netherlands, to collapse because of a dangerous combination of sea level
and wave height. In a financial context, Stărică (1999) analyses the occurrence
of joint extreme returns in pairs of exchange rates of various European curren-
cies (in the pre-euro era) versus the US dollar, while Longin and Solnik (2001)
investigate the dependence between international equity markets in periods of high
volatility. Surprisingly, multivariate techniques also come into play in the analysis
of univariate time series, for instance, in the construction in Smith et al. (1997)
of a Markov model for the extremes of a series of daily minimum temperatures
recorded at Wooster, Ohio. These and many other examples demonstrate the need
for statistical methods for analysing extremes of multivariate data.

Already at a first attempt of imagining how a statistical methodology for mul-
tivariate extremes could look like, we stumble upon a fundamental difficulty: what
exactly makes a multivariate observation ‘extreme’? Is it sufficient that just a single
coordinate attains an exceptional value, or should it be extreme in all dimensions
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simultaneously? More technically, what meaning to attach in a multivariate set-
ting to concepts such as order statistics, sample maximum, tail quantiles, threshold
exceedances, which are all so useful in univariate extreme value statistics? The
answers to these questions may depend on the situation at hand.

A fundamentally new issue that arises when there is more than one variable
is that of dependence. How do extremes in one variable relate to those in another
one? What are the possible dependence structures? And how to estimate them? As
in the univariate case, one of the aims of the exercise is to extrapolate outside the
range of the data. When more than one variable is involved, we can only hope to
reliably do so if we take proper account of the possibility of extremes in several
coordinates to occur jointly.

The study of multivariate extremes, then, splits apart into two components: the
marginal distributions and the dependence structure. This distinction is reflected in
both theory and practice. Typically, first, the margins are dealt with, and second,
after a transformation standardizing the margins to a common scale, the depen-
dence. The first step merely involves the univariate techniques developed in the
previous chapters. The second step, however, is new.

We will discover that the class of possible limiting dependence structures cannot
be captured in a finite-dimensional parametric family. This is a major setback in
comparison to the univariate case, where we could rely on parametric techniques
based on the GEV or GP distributions. This time, we will either have to shift to
non-parametric techniques or construct sensible parametric models.

There exists a great variety of equivalent descriptions of extreme value depen-
dence structures, and although each of them has its own merits, this multitude of
sometimes seemingly unconnected approaches may cause confusion and hamper
the flow from theory to practice. It is one of the aims of this text to fit the pieces
together and give the reader a panoramic view of the state of the art. Some new
insights and results form a pleasant by-product of this unification exercise.

The text on multivariate extremes is divided into two chapters. In the present
chapter, we explore the probability theory on extremes of a sample of independent,
identically distributed random vectors. This forms the necessary preparation for
the statistical methodology in the next chapter. All in all, the material is vast,
and a complete coverage of the literature would have filled a book by itself. The
interested reader may find further reading in, for instance, Galambos (1978, 1987),
Resnick (1987), Kotz and Nadarajah (2000), Coles (2001), Drees (2001), Reiss
and Thomas (2001), Fougères (2004), and of course the many papers cited in the
next two chapters.

The outline of the present chapter is as follows. In the remainder of this intro-
duction, we formulate the multivariate version of the domain-of-attraction problem,
which, as in the univariate case, is a convenient starting point. In section 8.2, we
study multivariate extreme value distributions, focusing mainly on their depen-
dence structure, while section 8.3 describes their domains of attraction. Some
additional topics are briefly touched upon in section 8.4. Section 8.5 summarizes
the essential things to know before attacking the statistical issues in Chapter 9.
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Finally, the appendix (section 8.6) includes, amongst others, a directory of formu-
las connecting the various equivalent descriptions of multivariate extreme value
distributions.

The multivariate domain-of-attraction problem

The road from univariate to multivariate extreme value theory is immediately con-
fronted with an obstacle: there is no obvious way to order multivariate observations.
Barnett (1976) considers not less than four different categories of order relations
for multivariate data, each being of potential use. The most useful order relation
in multivariate extreme value theory is a special case of what is called marginal
ordering : for d-dimensional vectors x = (x1, . . . , xd) and y = (y1, . . . , yd), the
relation x ≤ y is defined as xj ≤ yj for all j = 1, . . . , d. Unlike in one dimen-
sion, not every two vectors can be ordered in this way—imagine two bivariate
vectors, one at the upper-left of the other. The component-wise maximum of x

and y, defined as

x ∨ y := (x1 ∨ y1, . . . , xd ∨ yd),

is in general different from both x and y.
Consider a sample of d-dimensional observations, Xi = (Xi,1, . . . , Xi,d) for

i = 1, . . . , n. The sample maximum, Mn, is now defined as the vector of
component-wise maxima, that is, the components of Mn = ∨n

i=1 Xi are given by

Mn,j =
n∨

i=1

Xi,j , j = 1, . . . , d.

Observe that the sample maximum need not be a sample point; in this sense, the
definition might seem artificial. Still, from its study a rich theory emanates that
leads to a broad set of statistical tools for analysing extremes of multivariate data.

Of course, we could just as well study the component-wise minimum rather
than the maximum. But clearly, just as in the univariate case, results for one of
the two can be immediately transferred to the other through the relation

n∧
i=1

Xi = −
n∨

i=1

(−Xi ).

Therefore, we can, without loss of generality, focus on maxima alone. Notations
will be greatly simplified if we adopt the following convention: unless mentioned
otherwise, all operations and order relations between vectors are understood to be
component-wise. Observe that we have already employed this convention in the
definitions above of ‘≤’ and ‘∨’ for vectors.

The distribution function of the component-wise maximum, Mn, of an inde-
pendent sample X1, . . . , Xn from a distribution function F is given by

P [Mn ≤ x] = P [X1 ≤ x, . . . , Xn ≤ x] = Fn(x), x ∈ R
d .
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Like in the univariate case, we will need to normalize Mn in some way in order
to get a non-trivial limit distribution as the sample size tends to infinity. The
domain-of-attraction problem then reads as follows: find sequences of vectors,
(an)n and (bn)n, where an > 0 = (0, . . . , 0), such that a−1

n (Mn − bn) converges
in distribution to a non-degenerate limit, that is, such that there exists a d-variate
distribution function G with non-degenerate margins such that

Fn(anx + bn)
D→ G(x), n → ∞. (8.1)

If (8.1) holds, we say that F is in the (max-)domain of attraction of G, notation F ∈
D(G). Moreover, G is called a (multivariate) extreme value distribution function.

The study of equation (8.1) then splits into two parts: (i) characterize the class
of extreme value distribution functions, and (ii) for a given extreme value distri-
bution function, characterize its domain of attraction. We will take up these parts
separately in the next two sections.

Before we start off, there is a simple but crucial observation to be made. Let
Fj and Gj denote the j th marginal distribution functions of F and G respectively.
Recall that, by assumption, Gj is non-degenerate. Since a sequence of random
vectors can only converge in distribution if the corresponding marginal sequences
do, we obtain for j = 1, . . . , d,

Fn
j (an,j xj + bn,j )

D→ Gj(xj ), n → ∞.

Therefore, each Gj is by itself a univariate extreme value distribution function and
Fj is in its domain of attraction. This has been extensively studied in Chapter 2. In
the present chapter, then, we can focus on the dependence structures of F and G.

A final remark: since the marginal distributions of G are continuous, G itself
is continuous, so that the convergence in (8.1) holds not only in distribution but
also for every x ∈ [−∞, ∞]—even uniformly.

8.2 Multivariate Extreme Value Distributions

Unlike the univariate case, multivariate extreme value distributions cannot be rep-
resented as a parametric family indexed by a finite-dimensional parameter vector.
The reason is that the class of dependence structures is too large. Instead, the fam-
ily of multivariate extreme value distributions is indexed, for instance, by a class
of convex of functions, or, in another description, by a class of finite measures.

8.2.1 Max-stability and max-infinite divisibility

Let us start from equation (8.1). From the theory on univariate extremes in
Chapter 2, we know that for positive integer k, there exist vectors αk > 0 and
βk such that a−1

n ank → αk and a−1
n (bnk − bn) → βk as n → ∞. But since, for
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positive integer k and x ∈ R
d , also Fnk(ankx + bnk) → G(x) as n → ∞ as well

as ankx + bnk = an{a−1
n ankx + a−1

n (bnk − bn)} + bn, we obtain

Gk(αkx + βk) = G(x), x ∈ R
d . (8.2)

A d-variate distribution function G such that for every positive integer k we
can find vectors αk > 0 and βk such that (8.2) holds is called max-stable. The
meaning is the same as in the univariate case: If Y , Y 1, Y 2, . . . are independent
random vectors with distribution function G, then

α−1
k

(
k∨

i=1

Y i − βk

)
D= Y , k = 1, 2, . . .

Clearly, a max-stable distribution function is in its own domain of attraction;
in particular, it must be an extreme value distribution function. This argument
together with the previous paragraph shows that the classes of extreme value and
max-stable distribution functions actually coincide.

A consequence of (8.2) is that G1/k is a distribution function for every positive
integer k, that is, G is max-infinitely divisible (Balkema and Resnick 1977). In
particular, there exists a measure, µ, on [−∞, ∞), such that

G(x) = exp{−µ([−∞, ∞) \ [−∞, x])}, x ∈ [−∞, ∞], (8.3)

whence the name exponent measure.
The exponent measure, µ, is in general not unique, and in the future we will

always use the following particular choice. For j = 1, . . . , d, let qj be the lower
end-point of the j th margin, Gj , of G, that is, qj = inf{x ∈ R : Gj(x) > 0}. Define
q = (q1, . . . , qd). Then, as G(x) = 0 for x �> q, there exists an exponent measure
µ that is concentrated on [q, ∞) \ {q}. Moreover, there is only one such exponent
measure.

8.2.2 Exponent measure

Reduction to standard Fréchet margins

To study the dependence structure of a max-stable distribution, it is convenient
to standardize the margins so that they are all the same. The precise choice of
marginal distribution itself is not so important. Still, a particularly useful choice is
that of standard Fréchet margins, as in that case the exponent measure must satisfy
a useful homogeneity property. Connections with other choices for the margins
employed in the literature are discussed in section 8.2.6.

Let G←
j denote the quantile function of Gj , the j th margin of the max-stable

distribution function G, that is, G←
j (p) = x if and only if Gj(x) = p, where

0 < p < 1. Observe that if, in the usual parametrization,

Gj(xj ) = exp

{
−
(

1 + γj

xj − µj

σj

)−1/γj

+

}
, xj ∈ R

d , (8.4)
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for some γj ∈ R, µj ∈ R and σj > 0, then

G←
j (e−1/zj ) = µj + σj

z
γj

j − 1

γj

, 0 < zj < ∞,

with appropriate interpretations if γj = 0.
Let Y be a random vector with distribution function G, and let G∗ be the

distribution function of (−1/ log G1(Y1), . . . , −1/ log Gd(Yd)), that is,

G∗(z) = G{G←
1 (e−1/z1), . . . , G←

d (e−1/zd )}, z ∈ (0, ∞). (8.5)

Then the margins of G∗ are standard Fréchet, as P [−1/ log Gj(Yj ) ≤ z] = e−1/z

for 0 < z < ∞. Conversely,

G(x) = G∗{−1/ log G1(x1), . . . , −1/ log Gd(xd)}, x ∈ R
d, (8.6)

where, taking appropriate limits, −1/ log(0) := 0 and −1/ log(1) := ∞.
Not only does G∗ have max-stable margins, it is itself max-stable as well: Since

Gk
j (αk,j xj + βk,j ) = Gj(xj ) for every j = 1, . . . , d, k = 1, 2, . . ., and xj ∈ R, it

follows that

Gk
∗(kz) = G∗(z), z ∈ R

d; k = 1, 2, . . .

In particular, Gk∗(kz) = Gm∗ (mz) for arbitrary positive integer k and m, and thus
Gr∗(rz) = G∗(z) for all positive rational r . By continuity,

Gs
∗(sz) = G∗(z), z ∈ R

d ; 0 < s < ∞. (8.7)

An extreme value distribution (function) with standard Fréchet margins is some-
times called simple.

Exponent measure

Let µ∗ be an exponent measure of the simple extreme value distribution function
G∗. Without loss of generality, we can assume that µ∗ is concentrated on [0, ∞) \
{0}, so that

V∗(z) := − log G∗(z) = µ∗([0, ∞) \ [0, z]), z ∈ [0, ∞]. (8.8)

Observe that V∗(z) = ∞ as soon as zj = 0 for some j = 1, . . . , d. Also, since the
margins of G∗ are standard Fréchet,

V∗(∞, . . . , ∞, zj , ∞, ∞) = µ∗({x ∈ [0, ∞) : xj > zj }) = z−1
j (8.9)

for all j = 1, . . . , d and 0 < zj < ∞.
The exponent measures µ and µ∗ of G and G∗ are related in the following

way. For x ∈ [q, ∞] and z ∈ [0, ∞] related by zj = −1/ log Gj(xj ),

µ([q, ∞) \ [q, x]) = − log G(x)

= − log G∗(z) = µ∗([0, ∞) \ [0, z]). (8.10)
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Equation (8.7) now implies

sµ∗(s([0, ∞) \ [0, z])) = µ∗([0, ∞) \ [0, z]), z ∈ [0, ∞); 0 < s < ∞.

By a measure-theoretic argument, this homogeneity relation actually holds for all
Borel subsets of [0, ∞) \ {0}, that is,

µ∗(s · ) = s−1µ∗( · ), 0 < s < ∞. (8.11)

Stable tail dependence function

The stable tail dependence function is defined by

l(v) = V∗(1/v1, . . . , 1/vd)

= µ∗
(
[0, ∞] \ [0, (1/v1, . . . , 1/vd)]

)
, v ∈ [0, ∞] (8.12)

(Huang 1992). In terms of the original max-stable distribution function G, it is
given by

l(v) = − log G{G←
1 (e−v1), . . . , G←

d (e−vd )}, v ∈ [0, ∞]. (8.13)

Conversely, we can reconstruct a max-stable distribution function G from its mar-
gins Gj and its stable tail dependence function l through

− log G(x) = l{− log G1(x1), . . . , − log Gd(xd)}, x ∈ R
d . (8.14)

By (8.9) and (8.11), a stable tail dependence function l has the following
properties:

(L1) l(s · ) = sl( · ) for 0 < s < ∞;

(L2) l(ej ) = 1 for j = 1, . . . , d, where ej is the j th unit vector in R
d ;

(L3) v1 ∨ · · · ∨ vd ≤ l(v) ≤ v1 + · · · + vd for v ∈ [0, ∞).

The upper and lower bounds in (L3) are itself valid stable tail dependence func-
tions: the lower bound, l(v) = v1 ∨ · · · ∨ vd , corresponds to complete dependence,
G(x) = G1(x1) ∧ · · · ∧ Gd(xd), whereas the upper bound, l(v) = v1 + · · · + vd ,
corresponds to independence, G(x) = G1(x1) · · ·Gd(xd). Moreover, from (8.23)
below it follows that

(L4) l is convex, that is, l{λv + (1 − λ)w} ≤ λl(v) + (1 − λ)l(w) for λ ∈ [0, 1].

Note that, except for the bivariate case, properties (L1) to (L4) do not char-
acterize the class of stable tail dependence functions, that is, a function l that
satisfies (L1) to (L4) is not necessarily a stable tail dependence function. As a
counter-example in the trivariate case, put l(v1, v2, v3) = (v1 + v2) ∨ (v2 + v3) ∨
(v3 + v1). Properties (L1) to (L4) are clearly fulfilled. Still, l cannot be a stable tail
dependence function, because l(1, 1, 0) = l(1, 0, 1) = l(0, 1, 1) = 2 would imply
pairwise independence and thus, as we will see in section 8.2.4, full independence,
in contradiction with l(1, 1, 1) = 2 �= 3.



258 MULTIVARIATE EXTREME VALUE THEORY

8.2.3 Spectral measure

The homogeneity property (8.11) of the exponent measure µ∗ yields a versa-
tile representation in terms of (pseudo-)polar coordinates. We start from two
arbitrary norms, ‖ · ‖1 and ‖ · ‖2, on R

d . Typical choices include the Lp-
norms ‖x‖ = (|x1|p + · · · + |xd |p)1/p for 1 ≤ p < ∞ or the max-norm ‖x‖ =
max(|x1|, . . . , |xd |), see below. Let S2 = {ω ∈ R

d : ‖ω‖2 = 1} be the unit sphere
with respect to the norm ‖ · ‖2. Define the mapping T from R

d \ {0} to (0, ∞) ×
S2 by

T (z) = (r, ω), where r = ‖z‖1 and ω = z/‖z‖2, (8.15)

that is, r is the radial part and ω the angular part of z. Observe that T is one-to-one
and onto, because T (z) = (r, ω) if and only if z = rω/‖ω‖1 = T −1(r, ω).

Now define a measure, S, on � = S2 ∩ [0, ∞) by

S(B) = µ∗
({z ∈ [0, ∞) : ‖z‖1 ≥ 1, z/‖z‖2 ∈ B}) (8.16)

for Borel subsets B of �. The measure S is called the spectral measure. It is
determined uniquely by the exponent measure µ∗ and the chosen norms by (8.16)
and (8.19) below. The homogeneity of µ∗ expressed in (8.11) implies

µ∗
({z ∈ [0, ∞) : ‖z‖1 ≥ r, z/‖z‖2 ∈ B}) = r−1S(B)

for 0 < r < ∞ and Borel subsets B of �. The interpretation is that in polar coor-
dinates (r, ω), the exponent measure µ∗ factors into a product of two measures,
one in the radial coordinate that is always equal to r−2dr , and one in the angular
coordinate, equal to the spectral measure S. This property is usually written as

µ∗ ◦ T −1(dr, dω) = r−2drS(dω), (8.17)

which is called the spectral decomposition of the exponent measure. It is essentially
due to de Haan and Resnick (1977), who considered the special case where the
two norms are equal to the Euclidean norm.

The spectral decomposition (8.17) can be used to calculate the integral of a
real-valued function g on [0, ∞) \ {0} with respect to µ∗ by

∫
[0,∞)\{0}

g(z)µ∗(dz) =
∫

�

∫ ∞

0
g(rω/‖ω‖1)r

−2dr S(dω)

=
∫

�

∫ ∞

0
g(rω)r−2dr ‖ω‖−1

1 S(dω). (8.18)

Conversely, for a real-valued, S-integrable function f on �, we have
∫

�

f (ω)S(dω) =
∫

‖z‖1≥1
f (z/‖z‖2)µ∗(dz). (8.19)
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Combining (8.8) and (8.18), we can write V∗ = − log G∗ in terms of the spectral
measure S:

V∗(z) =
∫

[0,∞)\{0}
1


 d∨

j=1

yj

zj

> 1


µ∗(dy)

=
∫

�

d∨
j=1

(
ωj

‖ω‖1

1

zj

)
S(dω), z ∈ [0, ∞]. (8.20)

The requirement that the margins of G∗ are standard Fréchet is equivalent to∫
�

ωj

‖ω‖1
S(dω) = 1, j = 1, . . . , d. (8.21)

Conversely, any positive measure S on � satisfying (8.21) is the spectral measure
of the d-variate extreme value distribution G∗ = exp(−V∗) given by (8.20). In
terms of the original max-stable distribution function G, we find, combining (8.6)
and (8.20),

log G(x) =
∫

�

d∧
j=1

{
ωj

‖ω‖1
log Gj(xj )

}
S(dω), x ∈ R

d, (8.22)

with the convention log(0) = −∞. In case the two norms are equal, then the
previous formulas simplify slightly as ‖ω‖1 = 1 for ω ∈ �. Finally, combining
(8.12) with (8.20) yields

l(v) =
∫

�

d∨
j=1

(
ωj

‖ω‖1
vj

)
S(dω), v ∈ [0, ∞]. (8.23)

A useful consequence of (8.23) is that the stable tail dependence function l is
convex.

Independence and complete dependence

Two interesting special cases are those of independence and complete dependence.
Let G be a multivariate extreme value distribution with spectral measure S as in
(8.22). Let ej denote the j th unit vector in R

d , that is, the j th coordinate of ej is
one and all other coordinates are zero. Then

G(x) =
d∏

j=1

Gj(xj ), x ∈ R
d ,

that is, the margins of G are independent, if and only if S consists of point masses
of size ‖ej‖1 at the points ej /‖ej‖2, that is, if

∫
�

f (ω)S(dω) =
d∑

j=1

‖ej‖1f (ej /‖ej‖2),
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for any real-valued, S-integrable function f on �. On the other hand, let the point
ω0 = (ω0, . . . , ω0) be the intersection of � and the line {x ∈ R

d : x1 = . . . =
xd}. Then

G(x) =
d∧

j=1

Gj(xj ), x ∈ R
d ,

that is, the margins of G are completely dependent, if and only if S collapses to a
single point mass of size ‖ω0‖1/ω0 at the point ω0, that is, if∫

�

f (ω)S(dω) = ‖ω0‖1

ω0
f (ω0),

for any real-valued, S-integrable function f on �.

Special cases

We specialize the spectral decomposition (8.20) for a number of choices of the two
norms, ‖ · ‖1 and ‖ · ‖2.

Sum-norm. The most popular choice for the two norms ‖ · ‖1 and ‖ · ‖2 is the
sum-norm, ‖x‖ = |x1| + · · · + |xd |. In that case, the spectral measure S is typically
denoted by H , and the space it is defined on, �, is equal to the unit simplex,

Sd = {ω ∈ [0, ∞) : ω1 + · · · + ωd = 1}.
Representations (8.23) and (8.22) become

l(v) =
∫

Sd

d∨
j=1

(ωjvj )H(dω), v ∈ [0, ∞], (8.24)

log G(x) =
∫

Sd

d∧
j=1

{ωj log Gj(xj )}H(dω), x ∈ R
d, (8.25)

and the requirement (8.21) on H reads∫
Sd

ωjH(dω) = 1, j = 1, . . . , d. (8.26)

In particular, the total mass of H is always H(Sd) = d. By (8.16), the measure H

can obtained from the exponent measure µ∗ through

H(B) = µ∗
({z ∈ [0, ∞) : z1 + · · · + zd ≥ 1, (z1 + · · · + zd)

−1z ∈ B}), (8.27)

for Borel subsets B of Sd . Independence occurs if and only if H consists of
unit point masses at the vertices e1, . . . , ed of the simplex Sd , while complete
dependence occurs if and only if H consists of a single point mass of size d at the
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centre point (1/d, . . . , 1/d). Representation (8.25) already appears, without proof,
in Galambos (1978).

In the bivariate case, d = 2, the unit simplex S2 is usually identified with the
unit interval [0, 1] by identifying (ω, 1 − ω) with ω. The spectral measure H is
then defined on [0, 1] and is given by

H([0, ω]) = µ∗
({(z1, z2) ∈ [0, ∞)2 : z1 + z2 ≥ 1, z1/(z1 + z2) ≤ ω}), (8.28)

for ω ∈ [0, 1]. The constraints on H are∫
[0,1]

ωH(dω) = 1 =
∫

[0,1]
(1 − ω)H(dω). (8.29)

The stable tail dependence function is given by

l(v1, v2) =
∫

[0,1]
(ωv1) ∨ {(1 − ω)v2}H(dω), (v1, v2) ∈ [0, ∞]2. (8.30)

Euclidean norm. Mainly in the bivariate case, other choices for the two norms
have been considered as well. If, as originally in de Haan and Resnick (1977),
both norms are equal to the Euclidean norm, ‖(x1, x2)‖ = (|x1|2 + |x2|2)1/2, then
by (8.22) and (8.23), identifying ω = (cos θ, sin θ) with θ ∈ [0, π/2],

l(v1, v2) =
∫

[0,π/2]
{cos(θ)v1} ∨ {sin(θ)v2}S(dθ),

log G(x1, x2) =
∫

[0,π/2]
{cos(θ) log G1(x1)} ∧ {sin(θ) log G2(x2)}S(dθ),

where S is a finite measure on [0, π/2] such that∫
[0,π/2]

cos(θ)S(dθ) = 1 =
∫

[0,π/2]
sin(θ)S(dθ),

see (8.21). By (8.16), the spectral measure S and the exponent measure µ∗ are
related through

S([0, θ ]) = µ∗
({(z1, z2) ∈ [0, ∞)2 : z2

1 + z2
2 ≥ 1, z2/z1 ≤ tan(θ)}), (8.31)

for θ ∈ [0, π/2]. Independence occurs if and only if S puts unit point masses at
the end-points 0 and π/2. On the other hand, complete dependence occurs if and
only if S puts a single point mass of size

√
2 at the mid-point π/4.

Max-norm and Euclidean norm. Einmahl et al. (1997) set the first norm equal to
the max-norm, ‖(x1, x2)‖1 = max(|x1|, |x2|) and the second norm to the Euclidean
norm, ‖(x1, x2)‖2 = (|x1|2 + |x2|2)1/2. Identifying again ω = (cos θ, sin θ) with
θ ∈ [0, π/2], we find from (8.23)

l(v1, v2) =
∫

[0,π/2]
{cot(θ ∨ π/4)v1} ∨ {tan(θ ∧ π/4)v2}S(dθ) (8.32)
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as well as from (8.22)

log G(x1, x2)

=
∫

[0,π/2]
{cot(θ ∨ π/4) log G1(x1)} ∧ {tan(θ ∧ π/4) log G2(x2)}S(dθ),

where S is a finite measure on [0, π/2] such that
∫

[0,π/2]
cot(θ ∨ π/4)S(dθ) = 1 =

∫
[0,π/2]

tan(θ ∧ π/4)S(dθ),

see (8.21). The relation between the spectral measure S and the exponent measure
µ∗ is that

S([0, θ ]) = µ∗
({(z1, z2) ∈ [0, ∞)2 : z1 ∨ z2 ≥ 1, z2/z1 ≤ tan(θ)}), (8.33)

for θ ∈ [0, π/2]. Independence occurs if and only if S puts unit point masses at
the end-points 0 and π/2. On the other hand, complete dependence occurs if and
only if S degenerates to a unit point mass at the mid-point π/4.

The spectral measure S considered in (8.32) is often connected to an alternative
exponent measure directly related to l. Let ψ denote the transformation of [0, ∞]2

into itself given by ψ(v1, v2) = (1/v1, 1/v2). Consider the measure ν = µ∗ ◦ ψ on
the space (0, ∞]2 \ {(∞, ∞)}. By (8.8) and (8.12),

l(v1, v2) = ν
(
(0, ∞]2 \ ([v1, ∞] × [v2, ∞])

)
, (v1, v2) ∈ [0, ∞]2.

The measure ν is sometimes called the exponent measure as well. By (8.11), it
satisfies the homogeneity property

ν(s · ) = sν( · ), 0 < s < ∞.

The spectral measure S of (8.32) can be found from ν through

S([0, θ ]) = ν
({(v1, v2) ∈ (0, ∞]2 : v1 ∧ v2 ≤ 1, v1/v2 ≤ tan(θ)}),

for θ ∈ [0, π/2]. Independence occurs if and only if ν is concentrated on the lines
through infinity {(v1, ∞) : 0 < v1 < ∞} and {(∞, v2) : 0 < v2 < ∞}, whereas
complete dependence occurs if and only if ν is concentrated on the diagonal.

Spectral densities

Consider the spectral measure H of (8.27) on the unit simplex Sd = {ω ∈ [0, ∞) :
ω1 + · · · + ωd = 1} for d ≥ 2. If G∗ is absolutely continuous, then we may recon-
struct the densities of H from the derivatives of the function V∗ = − log G∗. We
say “densities” and not “density” because, in general, H may have a density on
the interior of Sd and also on each of the lower-dimensional subspaces of Sd .
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More specifically, the unit simplex Sd is partitioned in a natural way in so-
called faces, with dimensions ranging from 0 (the d vertices) up to d − 1 (the
interior of Sd ). In particular, for a non-empty subset a of {1, . . . , d}, define

Sd,a = {ω ∈ Sd : ωj > 0 if j ∈ a; ωj = 0 if j �∈ a}.
For instance, if d = 2, we have

Sd,{1} = {(1, 0)},
Sd,{2} = {(0, 1)},

Sd,{1,2} = {(ω, 1 − ω) : 0 < ω < 1}.
In d = 3 dimensions, we obtain three vertices, three edges, and the interior of the
triangle. For general d, the sets Sd,a partition Sd into 2d − 1 subsets.

Now let us consider the restriction of the spectral measure H to the face Sd,a .
First, if a is a singleton, {j}, then Sd,a is just the vertex {ej }, the j th unit vector
in R

d . Even if G∗ is absolutely continuous, the spectral measure H may still
assign positive mass to these vertices; for instance, when the margins of G∗ are
independent, H({ej }) = 1 for all j = 1, . . . , d. Let us denote this mass by ha =
ha(ej ), to be thought of as the density of H with respect to the unit point mass at ej .

Next, let a be a subset of {1, . . . , d} with |a|, the number of elements of a,
at least two. Clearly, the number of free variables in Sd,a is k = |a| − 1. Now,
assume that the spectral measure H has a density ha on Sd,a , the latter set being
identified with the open region �k of R

k defined by

�k = {u ∈ (0, ∞)k : u1 + · · · + uk < 1}.
More precisely, integrals over Sd,a with respect to H may be calculated through

∫
Sd,a

f (ω)H(dω) =
∫

�k

f {Ia(u)}ha(u)du1 · · · duk;

here Ia is the map identifying u in �k with Ia(u) = ω in Sd,a , that is, if a =
{j1, . . . , jk+1}, then ωji

= ui (i = 1, . . . , k), ωjk+1 = 1 − (u1 + · · · + uk), and ωj =
0 for j �∈ a.

Coles and Tawn (1991) found a way to compute the spectral densities ha from
the partial derivatives of V∗. For a = {j1, . . . , jm} ⊂ {1, . . . , d} and (zj )j∈a such
that 0 < zj < ∞, we have

lim
zj →0
j �∈a

∂mV∗
∂zj1 · · · ∂zjm

(z)

= −r−(m+1)ha

(zj1

r
, · · · , zjm−1

r

)
where r = ∑

j∈a zj . (8.34)

A new proof of (8.34) is given in section 8.6.1.



264 MULTIVARIATE EXTREME VALUE THEORY

It is useful to spell out (8.34) explicitly in the bivariate case and to rewrite it in
terms of the stable tail dependence function, l(v1, v2) = V∗(1/v1, 1/v2). As usual,
we identify (ω, 1 − ω) in S2 with ω in [0, 1]. The point masses of H on 0 and
1 are

H({0}) = − lim
z1→0

∂V∗
∂z2

(z1, z2) = lim
v1→∞

∂l

∂v2
(v1, v2),

H({1}) = − lim
z2→0

∂V∗
∂z1

(z1, z2) = lim
v2→∞

∂l

∂v1
(v1, v2),

(8.35)

while its density on the interior of the unit interval is, for 0 < ω < 1,

h(ω) = − ∂2V∗
∂z1∂z2

(ω, 1 − ω)

= −{ω(1 − ω)}−1 ∂2l

∂v1∂v2
(1 − ω, ω). (8.36)

Example 8.1 The bivariate asymmetric logistic model (Tawn 1988a) is given by
its stable tail dependence function

l(v1, v2) = (1 − ψ1)v1 + (1 − ψ2)v2 + {(ψ1v1)
1/α + (ψ2v2)

1/α}α.

Here 0 < α ≤ 1 and 0 ≤ ψj ≤ 1 for j = 1, 2. Computing the partial derivatives of
l and applying (8.35) and (8.36), we find H({0}) = 1 − ψ2, H({1}) = 1 − ψ1, and

h(ω) = (α−1 − 1)(ψ1ψ2)
1/α{ω(1 − ω)}1/α−2[{ψ1(1 − ω)}1/α + (ψ2ω)1/α]α−2

(8.37)

for 0 < ω < 1.

Change of norms

The spectral measure S of an exponent measure µ∗ depends on the choice of
norms ‖ · ‖i (i = 1, 2). This choice is basically a matter of convenience, and in
the literature, different authors use different norms, see above. Still, the transition
from one choice of norms to another only involves a simple formula.

Let ‖ · ‖i and ‖ · ‖′
i (i = 1, 2) be four norms on R

d and let S and S ′ be the
spectral measures of the exponent measure µ∗ w.r.t. ‖ · ‖i (i = 1, 2) and ‖ · ‖′

i

(i = 1, 2), respectively. The supports of S and S ′ are � = {ω ≥ 0 : ‖ω‖2 = 1}
and �′ = {ω′ ≥ 0 : ‖ω′‖′

2 = 1}. Then for a real-valued, S-integrable function f

on �, we have by (8.18) and (8.19)∫
�

f (ω)S(dω) =
∫

�′
f

(
ω′

‖ω′‖2

) ‖ω′‖1

‖ω′‖′
1

S ′(dω′).

In particular, for a Borel subset B of �, we have

S(B) =
∫

�′
1
(

ω′

‖ω′‖2
∈ B

) ‖ω′‖1

‖ω′‖′
1

S ′(dω′). (8.38)
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Spectral functions

Alternatively, a simple multivariate distribution function G∗ is max-stable if and
only if there exist non-negative, integrable functions f1, . . . , fd on [0, 1] satisfying∫ 1

0 fj (t)dt = 1 such that

− log G∗(z) =
∫ 1

0

d∨
j=1

fj (t)

zj

dt, z ∈ [0, ∞] (8.39)

(de Haan 1984). That this defines a distribution function follows from a special
point-process construction described in the same paper; see also section 9.2.1,
where this point-process construction will be used to motivate parametric mod-
els for multivariate extreme value distributions. Clearly, G∗ has standard Fréchet
margins and is max-stable.

To show that a representation (8.39) is always possible, let G∗ be a simple
multivariate extreme value distribution with spectral measure S for some equal
choice of the two norms. Let Q(·) = S(·)/S(�), which is a probability measure
on �. By a multivariate extension of the probability integral transform, there exist
non-negative functions g1, . . . , gd on [0, 1] such that, with U uniformly distributed
on (0, 1), the distribution of the random vector (g1(U), . . . , gd(U)) is Q (Skorohod
1956). Then for z ∈ [0, ∞],

− log G∗(z) = S(�)

∫
Sd

d∨
j=1

ωj

zj

Q(dω) = S(�)

∫ 1

0

d∨
j=1

gj (t)

zj

dt.

Defining fj = S(�)gj , we obtain (8.39).
In terms of the original max-stable distribution function G, we find, combining

(8.6) and (8.39),

log G(x) =
∫ 1

0

d∧
j=1

{fj (t) log Gj(xj )}dt, x ∈ R
d . (8.40)

Observe that the spectral functions fj in (8.40) are not unique. In particular,
independence arises as soon as the supports of the spectral functions are disjoint,
while total dependence arises as soon as all spectral functions are equal.

8.2.4 Properties of max-stable distributions

The fact that a max-stable distribution function G is linked to its margins
G1, . . . , Gd by means of a spectral measure H as in (8.22) has large repercussions
on its dependence structure.
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Positive association

A multivariate extreme value distribution G, in the terminology of Lehmann (1966),
is necessarily positively quadrant dependent, that is,

G(x) ≥ G1(x1) · · ·Gd(xd), x ∈ R
d, (8.41)

a property originally noted in the bivariate case by Sibuya (1960), and in the general
case by Tiago de Oliveira (1962/1963). In particular, a random variable Y with
distribution function G has cov[fi(Yi), fj (Yj )] ≥ 0 for any 1 ≤ i, j ≤ d and any
pair of non-decreasing functions fi and fj such that the relevant expectations exist.
Relation (8.41) follows from (8.14) and the fact that l(v) ≤ v1 + · · · + vd . Observe
also that (8.41) implies that G(x) > 0 as soon as Gj(xj ) > 0 for all j = 1, . . . , d.

Multivariate extreme value distributions satisfy even stronger concepts of pos-
itive dependence. Marshall and Olkin (1983) show that they are associated (Esary
et al 1967) in the sense that cov[ξ(Y ), η(Y )] ≥ 0 for every pair of non-decreasing
functions ξ and η on R

d for which the relevant expectations exist; see also Resnick
(1987) for an alternative proof. Bivariate extreme value distributions are shown to
satisfy a property called total positivity of order two by Kimeldorf and Sampson
(1987) and to be monotone regression dependent (Lehmann 1966) by Garralda
Guillem (2000).

Independence and complete dependence

Next we turn to characterizations of the two extreme cases of independence and
complete dependence. We start with the case of independence. Takahashi (1994)
showed that G(x) = G1(x1) · · · Gd(xd) for all x ∈ R

d if and only if there exists y ∈
R

d with 0 < Gj(yj ) < 1 for all j = 1, . . . , d such that G(y) = G1(y1) · · ·Gd(yd).
The ‘if’-part may be proved as follows. Denoting vj = − log Gj(yj ), we must

have
∫
Sd

{∑d
j=1(ωjvj ) − ∨d

j=1(ωjvj )}H(dω) = 0. Since the integrand is non-
negative, the H -measure of the set where it is positive must be zero. But then,
since 0 < vj < ∞ for all j = 1, . . . , d, the set {ω ∈ Sd : ∃1 ≤ i < j ≤ d : ωi >

0, ωj > 0} must have H -measure zero. Consequently, H is concentrated on the
complement of the set above, which is equal to {e1, . . . , ed}. Restriction (8.26)
forces H({ej }) = 1 for all j , which by (8.25) implies independence.

A closely related characterization of independence, going back to Berman
(1961), is in terms of the bivariate margins Gij for 1 ≤ i < j ≤ d, that is, the
bivariate distribution functions of the pairs (Yi, Yj ), where Y is a random vector
with distribution function G. We have G(x) = G1(x1) · · ·Gd(xd) for all x ∈ R

d

if and only if there exists y ∈ R
d with 0 < Gj(yj ) < 1 for all j = 1, . . . , d such

that Gij (yi, yj ) = Gi(yi)Gj (yj ) for all 1 ≤ i < j ≤ d. In words, pairwise inde-
pendence implies total independence. The proof is similar as the one of the char-
acterization above.

On the other extreme is the case of complete dependence. Takahashi (1994)
noted that G(x) = G1(x1) ∧ · · · ∧ Gd(xd) for all x ∈ R

d if and only if there exists
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y ∈ R
d with 0 < G1(y1) = · · · = Gd(yd) < 1 such that G(y) = G1(y1). The ‘if’-

part can be easily proven as follows. Denoting v = − log G1(y1) ∈ (0, ∞), we
have by (8.26) and (8.25), for i = 1, . . . , d,

∫
Sd


 d∨

j=1

ωj − ωi


H(dω) = 1

v



∫

Sd

d∨
j=1

(ωjv)H(dω) − v

∫
Sd

ωiH(dω)


 = 0.

Since the integrand on the left is non-negative, the H -measure of the set
{ω ∈ Sd : ω1 ∨ · · · ∨ ωd > ωi} must be zero for all i = 1, . . . , d. Hence H must
be concentrated on the mid-point (1/d, . . . , 1/d). Restriction (8.26) then forces
H({(1/d, . . . , 1/d)}) = d, which by (8.25) implies complete dependence.

Closure property

Finally, we mention the following closure properties of the class of max-stable
distributions. If G is a max-stable distribution function with spectral measure S

as in (8.22), then for all 0 < β < ∞, the function Gβ is a max-stable distribution
function as well, its spectral measure being again S. More generally, if G1, . . . , Gm

are d-variate max-stable distribution functions such that for each j = 1, . . . , d the
marginal distribution functions Gi,j are the same for all i = 1, . . . , m, then for all
non-negative β1, . . . , βm such that β1 + · · · + βm > 0, the distribution function

G = G
β1
1 · · · Gβm

m (8.42)

is max-stable as well (Gumbel 1962), its spectral measure being S = w1S1 + · · · +
wmSm, where wi = βi/(β1 + · · · + βm) and where Si is the spectral measure of
Gi . In particular, any convex combination of stable tail dependence functions is
again a stable tail dependence function.

8.2.5 Bivariate case

Let G be a bivariate extreme value distribution function with margins G1 and G2.
Apart from the spectral measure H or the stable tail dependence function l, various
alternative ways to describe the dependence structure of G have been proposed in
the literature.

Pickands dependence function

Quite popular is Pickands dependence function

A(t) = l(1 − t, t), t ∈ [0, 1] (8.43)

(Pickands 1981). Equation (8.43) is Pickands original definition. Later authors,
including Pickands himself, sometimes define Pickands dependence function as
l(t, 1 − t) = A(1 − t) for t ∈ [0, 1]. Pickands dependence function can be viewed
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as the restriction of the stable tail dependence function to the unit simplex. In a
higher-dimensional setting, the restriction of the stable tail dependence function to
the unit simplex is sometimes called Pickands dependence function as well.

The function A completely determines the stable tail dependence function l, as

l(v1, v2) = (v1 + v2)A

(
v2

v1 + v2

)
, (8.44)

for 0 ≤ vj < ∞ (j = 1, 2) such that v1 + v2 > 0. In particular, a bivariate max-
stable distribution G is determined by its margins, G1 and G2, and its Pickands
dependence function, A, through

G(y1, y2) = exp

[
log{G1(y1)G2(y2)}A

(
log{G2(y2)}

log{G1(y1)G2(y2)}
)]

, (8.45)

for (y1, y2) ∈ R
2.

By (L3) and (L4), a Pickands dependence function A satisfies the following
two properties:

(A1) (1 − t) ∨ t ≤ A(t) ≤ 1 for t ∈ [0, 1];

(A2) A is convex.

In (A1), the lower bound, A(t) = (1 − t) ∨ t , corresponds to complete dependence,
G(x1, x2) = G1(x1) ∧ G2(x2), whereas the upper bound, A(t) = 1, corresponds to
independence, G(x1, x2) = G1(x1, x2).

We can connect Pickands dependence function to the spectral measure H of µ∗
with respect to the sum-norm, see (8.28). Combining (8.30) with (8.43), we find

A(t) =
∫

[0,1]
{ω(1 − t)} ∨ {(1 − ω)t}H(dω) (8.46)

= t

∫
[0,t]

(1 − ω)H(dω) + (1 − t)

∫
(t,1]

ωH(dω)

Now by (8.29),∫
(t,1]

ωH(dω) = H((t, 1]) −
∫

(t,1]
(1 − ω)H(dω)

= {2 − H([0, t])} −
{

1 −
∫

[0,t]
(1 − ω)H(dω)

}

= 1 − H([0, t]) +
∫

[0,t]
(1 − ω)H(dω),

so that

A(t) =
∫

[0,t]
(1 − ω)H(dω) + (1 − t){1 − H([0, t])}.
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Moreover, since

∫
[0,t]

(1 − ω)H(dω) =
∫

[0,t]

∫ 1

ω

d uH(dω)

=
∫ 1

0

∫
[0,u∧t]

H(dω) du

=
∫ t

0
H([0, u])du + (1 − t)H([0, t]),

we obtain the convenient formula

A(t) = 1 − t +
∫ t

0
H([0, ω])dω, t ∈ [0, 1].

In particular, H can be computed from A through

H([0, ω]) =
{

1 + A′(ω) if ω ∈ [0, 1),

2 if ω = 1,
(8.47)

where A′ is the right-hand derivative of A. The point masses of H at 0 and 1 are
given by

H({0}) = 1 + A′(0), H({1}) = 1 − A′(1), (8.48)

with A′(1) = sup0≤t<1 A′(t). If A′ is absolutely continuous, then H is absolutely
continuous on the interior of the unit interval with density h = A′′. Incidentally,
equation (8.47) shows that any real-valued function A defined on [0, 1] that satisfies
the properties (A1)–(A2) is necessarily a Pickands dependence function, with the
spectral measure H given by (8.47).

Pickands dependence function A can also be linked to the spectral measure
S for a general choice of the two norms ‖ · ‖i (i = 1, 2). Combining (8.23) and
(8.43),

A(t) =
∫

�

{
(1 − t)

ω1

‖(ω1, ω2)‖1

}
∨
{
t

ω2

‖(ω1, ω2)‖1

}
S(d(ω1, ω2)). (8.49)

Retrieving S from A is more difficult. First, we need to find H in terms of A

using (8.47), and second, we need to compute S in terms of H using (8.38), which
specializes to

S(B) =
∫

[0,1]
1
{

(ω, 1 − ω)

‖(ω, 1 − ω)‖2
∈ B

}
‖(ω, 1 − ω)‖1H(dω)

for Borel subsets B of �.



270 MULTIVARIATE EXTREME VALUE THEORY

Huang’s level sets. In some sense dual to Pickands dependence function, A, are
the level sets of l,

Qc = {(v1, v2) ∈ [0, ∞)2 : l(v1, v2) = c}, 0 < c < ∞,

first studied by Huang (1992); see also de Haan and de Ronde (1998). Clearly,

Qc = {(rω, r(1 − ω)) : 0 ≤ ω ≤ 1, r = c/A(1 − ω)}, 0 < c < ∞.

The set Qc is the graph of a non-increasing, concave function through the points
(0, c) and (c, 0), and Qc = cQ1. From Qc, we can reconstruct A and hence
l. Independence occurs if Qc = {(v1, v2) ∈ [0, ∞)2 : v1 + v2 = c}, and complete
dependence occurs if Qc = {(v1, v2) ∈ [0, ∞)2 : v1 ∨ v2 = c}.

Some history

The oldest descriptions of bivariate extreme value distributions date back to Tiago
de Oliveira (1958), Sibuya (1960) and Geffroy (1958/59); see also the early
review by Gumbel (1962). Each of these authors introduced a different function
to characterize the dependence structure. However, the representation discovered
by Pickands (1981) turned out to be far more convenient than its predecessors
and reduced the popularity of the latter to virtually zero. Still, Obrenetov (1991)
studied multivariate extensions of the dependence functions of Tiago de Oliveira
and Sibuya.

Tiago de Oliveira (1958, 1962) obtained the representation

G(x1, x2) = exp

[
log{G1(x2)G2(x2)}k

(
log

{
log G1(x1)

log G2(x2)

})]
.

The dependence function k is related to Pickands dependence function A by

k(x) = A

(
1

ex + 1

)
, x ∈ R. (8.50)

Since (1 + t)k(log t) = l(t, 1) for 0 < t < ∞, necessary and sufficient conditions
for a function k on R to be a Tiago de Oliveira dependence function are (i) t ∨ 1 ≤
(1 + t)k(log t) ≤ t + 1 and (ii) (1 + t)k(log t) is a convex function of t .

Next, Geffroy (1958/59) considered the representation

G(x1, x2) = exp

[{
1 + ϕ

(
log G1(x1)

log G2(x2)

)}
log G2(x2)

]
.

In terms of the stable tail dependence function l, we have

ϕ(t) = l(t, 1) − 1, 0 < t < ∞.

Necessary and sufficient conditions for a function ϕ on (0, ∞) to be a Geffroy
dependence function are (i) 0 ∨ (t − 1) ≤ χ(t) ≤ t and (ii) χ is convex.
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Finally, Sibuya (1960) introduced the representation

G(x1, x2) = exp

[{
1 + χ

(
log G2(x2)

log G1(x1)

)}
log{G1(x1)} + log{G2(x2)}

]
.

In terms of the stable tail dependence function, l, we have

χ(t) = l(1, t) − (1 + t), 0 < t < ∞.

Hence, necessary and sufficient conditions for a function χ on (0, ∞) to be a
Sibuya dependence function are (i) −(t ∧ 1) ≤ χ(t) ≤ 0 and (ii) χ is convex.

8.2.6 Other choices for the margins

Reductions to other margins than standard Fréchet have been considered in the
literature as well, other popular distributions being the exponential, extreme value
Weibull, Gumbel, or uniform distribution. Although of course the choice of margi-
nal distribution essentially makes no difference, some properties or characteriza-
tions are most naturally seen for one particular choice. Also, different choices
sometimes motivate different statistical methods.

Exponential margins

One such choice, by Pickands (1981), is the standard exponential distribution,
which is a univariate extreme value distribution for minima rather than for maxima.
Let the random vector Y have the extreme value distribution function G. Then
(− log G1(Y1), . . . , − log Gd(Yd)) has a multivariate extreme value distribution for
minima with standard exponential margins, P [− log Gj(Yj ) ≤ v] = 1 − e−v for
v ≥ 0. Its joint survivor function is given by

P [− log G1(Y1) > v1, . . . , − log Gd(Yd) > vd ] = exp{−l(v)} (8.51)

for v ∈ [0, ∞]. In the bivariate case,

P [− log G1(Y1) > v1, − log G2(Y2) > v2] = exp

{
−(v1 + v2)A

(
v2

v1 + v2

)}
,

for (v1, v2) ∈ [0, ∞]2.

Extreme value Weibull margins

Rather than exponential margins, Falk et al. (1994) prefer extreme value Weibull
or reversed exponential margins. For w ∈ [−∞, 0], we have

P [log G1(Y1) ≤ w1, . . . , log Gd(Yd) ≤ wd ] = exp{−l(−w)},
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with marginal distribution P [log Gj(Yj ) ≤ w] = ew for w ≤ 0. In the bivari-
ate case,

P [log G1(Y1) ≤ w1, log G2(Y2) ≤ w2] = exp

{
(w1 + w2)A

(
w2

w1 + w2

)}
,

for (w1, w2) ∈ [−∞, 0]2.

Gumbel margins

In the early days of multivariate extreme value theory, it was customary to
standardize to Gumbel margins, probably by the influence of the classical
monograph by Gumbel (1958). Recall that the Gumbel distribution function
is defined by �(x) = exp(−e−x) for x ∈ R. If G is a multivariate extreme
value distribution function, then the distribution function of the random vector
(− log{− log G1(Y1)}, . . . , − log{− log Gd(Yd)}) is, with slight abuse of notation,
given by

�(x) = exp{−l(e−x1 , . . . , e−xd )}, x ∈ R
d ,

which is a multivariate extreme value distribution function with Gumbel margins.
In the bivariate case, we find

�(x1, x2) = exp
{−(e−x1 + e−x2)k(x2 − x1)

}
, (x1, x1) ∈ R

2,

where k is Tiago de Oliveira’s dependence function (8.50).

Uniform margins

A popular way to describe the dependence structure of a multivariate distribution
function is through its copula. In general, for any multivariate distribution function
F with margins F1, . . . , Fd , there exists a distribution function CF with uniform
margins on (0, 1) such that

F(x) = CF {F1(x1), . . . , Fd(xd)}, x ∈ R
d

(Sklar 1959). Such a CF is called a copula for F . If the margins, Fj , are continuous,
then the copula, CF , is unique and is given by

CF (u) = F {F←
1 (u1), . . . , F←

d (ud)}, u ∈ [0, 1]d,

so CF is the distribution function of the random vector (F1(X1), . . . , Fd(Xd)),
where X is a random vector with distribution function F . Here F←

j denotes the
quantile function of Fj , defined by F←

j (p) = inf{x ∈ R : F(x) ≥ p}.
The copula of a multivariate extreme value distribution G is the distribution

function of the random vector (G1(Y1), . . . , Gd(Yd)) and is given by

CG(u) = exp[−l{− log(u1), . . . , − log(ud)}], u ∈ [0, 1]d , (8.52)
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see (8.14). Such a copula necessarily satisfies the stability property

Cs
G(u) = CG(us

1, . . . , us
d), u ∈ [0, 1]d . (8.53)

Conversely, any copula that satisfies (8.53) is the copula of a multivariate extreme
value distribution. A bivariate extreme value copula can be written in terms of
Pickands dependence function as

CG(u, v) = exp

[
log(uv)A

{
log(v)

log(uv)

}]
, (u, v) ∈ [0, 1]2, (8.54)

see (8.44) and (8.52).

8.2.7 Summary measures for extremal dependence

The dependence structure of a max-stable distribution can be described in various
ways: the preceding paragraphs featured exponent measures, spectral measures, the
stable tail dependence function, Pickands dependence function, the copula, and so
on. These quantities are infinite-dimensional objects and therefore not always easy
to handle. A possible solution consists of choosing a finite-dimensional but hope-
fully large enough sub-class of dependence structures, that is, restricting attention
to a parametric model (section 9.2). An alternative solution is to summarize the
main properties of the dependence structure in a number of well-chosen coefficients
that give a rough but representative picture of the full dependence structure.

Extremal coefficients

Let G be a max-stable distribution function with margins G1, . . . , Gd , spectral mea-
sure S with respect to two norms ‖ · ‖i (i = 1, 2) on R

d , and stable tail dependence
function l. For a non-empty subset V of {1, . . . , d}, let eV be the d-dimensional
vector of which the j th coordinate is one or zero according to j ∈ V or j �∈ V .
For such V , the coefficients

θV = l(eV ) =
∫

�

∨
j∈V

(ωj/‖ω‖1) S(dω) (8.55)

satisfy

P [Yj ≤ G←
j (p), ∀j ∈ V ] = pθV , 0 < p < 1,

where Y is a random vector with distribution function G (Coles 1993; Smith 1991).
In particular, stronger dependence corresponds to smaller extremal coefficients
θV . Clearly, θ∅ = 0 and θ{j} = 1 for all j = 1, . . . , d, so that the only relevant
coefficients θV are those for which V has at least two elements.

Hence, in the bivariate case, the only non-trivial coefficient is

θ = θ{1,2} = l(1, 1) = 2A(1/2), (8.56)
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where A is Pickands dependence function (8.43). The coefficient θ must lie in the
interval [1, 2], and satisfies

P [Y1 ≤ G←
1 (p), Y2 ≤ G←

2 (p)] = pθ , 0 < p < 1.

In view of the conditions (A1)–(A2) on A, it is clear that θ strongly restricts the
shape of A. In particular, independence occurs if and only if θ = 2, while complete
dependence occurs if and only if θ = 1.

In the d-dimensional case, we have 1 ≤ θV ≤ |V | for non-empty V ⊂
{1, . . . , d}, where |V | denotes the number of elements of V . The upper and lower
bounds correspond to independence and complete dependence, respectively. Con-
versely, θ{1,...,d} = d implies independence, whereas θ{1,...,d} = 1 implies complete
dependence, as follows from the characterizations due to Takahashi (1994) given
earlier. Schlather and Tawn (2002, 2003) give necessary and sufficient conditions
on a collection of numbers θV indexed by the non-empty subsets V of {1, . . . , d}
to be the extremal coefficients of a multivariate extreme value distribution.

Other summary measures for bivariate dependence

Two popular distribution-free measures of dependence between the components
of a bivariate random vector are Kendall’s tau and Spearman’s rho. Applied to a
bivariate max-stable distribution, they can also be used as useful summaries of the
dependence structure.

Let F be a bivariate distribution function, and let (X1, Y1) and (X2, Y2) be inde-
pendent random vectors with distribution function F . Kendall’s tau is defined by

τ = P [(X1 − X2)(Y1 − Y2) > 0] − P [(X1 − X2)(Y1 − Y2) < 0], (8.57)

that is, the difference between the probabilities of concordance and discordance. If
the margins, FX and FY , of F are continuous, and if CF is the (necessarily unique)
copula function of F , then τ is given by

τ = 4E[CF (U, V )] − 1,

where (U, V ) = (FX(X), FY (Y )) has distribution function C (Nelsen 1999). Next,
Spearman’s rho is defined as the Pearson correlation coefficient of (U, V ), that is,

ρS = corr(U, V ) = 12E[UV ] − 3.

Tiago de Oliveira (1980) already gave expressions for Kendall’s tau and Spear-
man’s rho of a bivariate extreme value distribution G in terms of his dependence
function k, see (8.50). These expressions were rediscovered later, but then in
terms of Pickands dependence function A, see (8.54). Let A′(t) be the right-hand
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derivative of A in t ∈ [0, 1); also let A′(1) = sup0≤t<1 A′(t). Then Kendall’s tau
is given by

τ =
∫ 1

0

t (1 − t)

A(t)
dA′(t)

= 1 −
∫ 1

0

{
1 + (1 − t)

A′(t)
A(t)

}{
1 − t

A′(t)
A(t)

}
dt,

(Ghoudi et al 1998; Hürlimann 2003), and Spearman’s rho by

ρS = corr[G1(Y1), G2(Y2)] = 12
∫ 1

0

1

{1 + A(t)}2
dt − 3

(Hürlimann 2003); see also the unpublished 1995 Université Laval doctoral disser-
tation by A Khoudraji. For both τ and ρS , the extreme cases 0 and 1 correspond
to independence and complete dependence, respectively. Hürlimann (2003) also
shows that for bivariate extreme value copulas,

−1 + (1 + 3τ )1/2 ≤ ρS ≤ min

(
3

2
τ, 2τ − τ 2

)
,

thereby proving a special case of a conjecture of Hutchinson and Lai (1990).
To conclude, dependence measures for bivariate extreme value distributions

can also be obtained by studying the correlation of the two components of the
random vector for a particular choice of marginal distributions. In all cases, they
can be expressed in terms of Pickands dependence function, A. First, the reduction
to uniform margins on (0, 1) leads to Spearman’s rho, ρS . Next, choosing Gumbel
margins, Tiago de Oliveira (1980) obtains

corr[− log{− log G1(Y1)}, − log{− log G2(Y2)}] = − 6

π2

∫ 1

0

log A(t)

t (1 − t)
dt. (8.58)

Finally, Tawn (1988a), choosing standard exponential margins, mentions

corr[− log G1(Y1), − log G2(Y2)] =
∫ 1

0

1

A2(t)
dt − 1. (8.59)

For all correlation coefficients, the two extreme cases 0 and 1 correspond to inde-
pendence and complete dependence, respectively.

8.3 The Domain of Attraction

Consider again the domain-of-attraction equation

lim
n→∞ Fn(anx + bn) = G(x), x ∈ [−∞, ∞], (8.60)
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where an ∈ (0, ∞) and bn ∈ R
d . In section 8.2, we have focused on the right-hand

side of this equation, that is, on the class of multivariate extreme value distributions.
In this section, then, we will consider the left-hand side of equation (8.60). More
precisely, we will formulate a range of equivalent descriptions of the domain
of attraction, D(G), of an extreme value distribution function G. Of particular
interest will be the connection between the dependence structure at extreme levels
of a distribution function F in D(G) and the various equivalent descriptions of the
dependence structure of G. The reinforcement of (8.60) to density convergence is
briefly mentioned in section 8.4.

The domain-of-attraction conditions form the groundwork for the statistical
threshold methods in section 9.4. The conditions are always phrased as limit rela-
tions, which, taken as approximate equalities, generate approximations of F over
certain regions of its support in terms of G. These approximations then serve as a
tool to devise statistical models and corresponding inference methods. For proper
understanding, we will denote the approximations by the symbol ”≈” —not to
be confused, by the way, with the symbol ”∼”, which has the precise meaning
a(t) ∼ b(t) if and only if a(t)/b(t) → 1 as t tends to its limit value, typically 0
or ∞.

8.3.1 General conditions

The domain-of-attraction condition as stated in (8.60) is not very convenient to
work with. In itself, it does not tell us much about the distribution of a random
vector X with distribution function F given that X is in some sense extreme. To
obtain that kind of information, we have to manipulate (8.60) carefully.

Tail function

Writing Fn = [1 − n−1{n(1 − F)}]n and using the fact that (1 − n−1xn)
n → e−x ∈

[0, 1] if and only if xn → x ∈ [0, ∞] as n → ∞, we find that (8.60) holds if and
only if

lim
n→∞ n{1 − F(anx + bn)} = − log G(x), x ∈ [−∞, ∞], (8.61)

with the usual convention − log(0) = ∞. By max-stability (8.2), we may rewrite
the previous equation as

1 − F(anx + bn) ∼ − log G(αnx + βn)

∼ 1 − G(αnx + βn), n → ∞, (8.62)

for x such that 0 < G(x) < 1.
Relation (8.62) may be used as a starting point for statistical inference on

F(x) in x-regions for which each Fj (xj ) is sufficiently close to one. Let u be
such that Fj (uj ) is close to one for every j = 1, . . . , d. Equation (8.62) suggests
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the approximation

F(x) ≈ G(αna
−1
n x − αna

−1
n bn + βn) =: G̃(x), x ≥ u.

Since G and G̃ differ only in scale and location, G̃ is an extreme value distribution
as well, with the same stable tail dependence function, l, and the same extreme
value indices, γj . Hence

F(x) ≈ exp{−l(v)}, x ≥ u, (8.63)

where, for j = 1, . . . , d and xj ≥ uj ,

vj = − log G̃j (xj )

=
(

1 + γj

x − µ̃j

σ̃j

)−1/γj

+
= λj

(
1 + γj

x − uj

σj

)−1/γj

+
(8.64)

with λj = − log G̃j (uj ) and σj = σ̃j + γj (ui − µ̃i). Together, equations (8.63)
and (8.64) form a semi-parametric model for F in the region [u, ∞). If we also
assume a parametric model for l, we end up with a fully parametric model. This
is the basis for the so-called censored-likelihood approach of Ledford and Tawn
(1996), see section 9.4.2.

Multivariate-threshold exceedances

Like in the univariate case, the domain-of-attraction condition (8.60) can be cast
in terms of exceedances over a high threshold. The event {X �≤ bn} is called an
exceedance over the (multivariate) threshold bn. It entails that there is at least one
coordinate variable Xj that exceeds the corresponding threshold bn,j , although the
precise coordinate where this happens remains unspecified. Conditionally on the
exceedance X �≤ bn, the vector a−1

n (X − bn) is the vector of (scaled) excesses;
observe that some coordinates of the excess vector may be negative, although
under the conditioning event, at least one coordinate must be positive.

We are interested in the asymptotic distribution of the excess vector a−1
n (X −

bn) conditionally on X �≤ bn. Without loss of generality, assume that 0 < G(0) < 1.
For x such that G(x) > 0, we obtain after some calculation that

P [a−1
n (X − bn) ≤ x | X �≤ bn] → 1

− log G(0)
log

{
G(x)

G(x ∧ 0)

}
, n → ∞.

Now let q = (q1, . . . , qd) with qj the lower end-point of Gj , the j th margin of
G. Then the limit relation above implies

P [a−1
n (X − bn) ∨ q ∈ · | X �≤ bn]

D→ P [W ∈ · ], n → ∞, (8.65)

where W is a random vector with distribution function

P [W ≤ x] = 1

− log G(0)
log

{
G(x)

G(x ∧ 0)

}
, x > q. (8.66)
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Observe that Wj ≥ qj and
∨d

j=1 Wj > 0 with probability one, although P [Wj ≤
0] = limn→∞ P [Xj ≤ bn,j | X �≤ bn] may be positive. In view of (8.65), we may
call the distribution of W a multivariate Generalized Pareto (GP) distribution. Up to
our knowledge, it has not been studied before. It seems likely that (8.65) and (8.66)
can form the basis of new statistical procedures modelling multivariate-threshold
excesses.

From (8.65), we can also derive the asymptotic distribution of the excess vector
given that there is a threshold exceedance in a specific coordinate: for j = 1, . . . , d,
we have

P [a−1
n (X − bn) ∨ q ∈ · | Xj > bn,j ]

D→ P [W ∈ · | Wj > 0] (8.67)

as n → ∞. Observe that the distribution of Wj given Wj > 0 is univariate GP.
A closely related definition of multivariate GP distributions appears in Tajvidi

(1996). For a multivariate-threshold exceedance {X �≤ bn}, he suggested to set
every coordinate of the excess vector where the threshold is not exceeded equal to
zero. In the notation of (8.65), this gives

P [a−1
n (X − bn) ∨ 0 ∈ · | X �≤ bn]

D→ P [W ∨ 0 ∈ · ], n → ∞, (8.68)

the distribution of the limiting random vector W ∨ 0 being given by

P [W ∨ 0 ≤ x] = 1

− log G(0)
log

{
G(x)

G(0)

}
, x ≥ 0.

Observe that in two dimensions or more, the margins of this vector can be zero
with positive probability.

In the bivariate case, yet another definition of multivariate GP distributions is
proposed by Kaufmann and Reiss (1995): for a bivariate extreme value distribution
function G with stable tail dependence function l as in (8.14), define

H(x1, x2) = {1 + log G(x1, x2)}+ = [1 − l{− log G1(x1), − log G2(x2)}]+.

This H is a bivariate distribution function with translated GP margins Hi(xi) =
{1 + log Gi(xi)}+ and copula CH(u1, u2) = {1 − l(1 − u1, 1 − u2)}+. In three or
more dimensions, however, the formula H(x) = {1 + log G(x)}+ does not, in gen-
eral, lead to a valid distribution function, a counter-example being the case where
the margins of G are independent.

Equal margins

In case all margins of F are equal to, say, F1, the previous reformulations
of the domain-of-attraction condition (8.60) can be simplified somewhat. Let
x∗ = sup{x ∈ R : F1(x) < 1} be the right end-point of F1. By Pickands (1975),
F1 ∈ D(G1) for some univariate extreme value distribution function G1 with
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0 < G1(0) < 1 if and only if there exists a positive function σ(u) defined on
u < x∗ such that [1 − F1{u + σ(u)x}]/{1 − F1(u)} → − log G1(x) as u ↑ x∗, see
Chapter 2. In that case, the normalizing constants may be taken equal to an = σ(bn)

and bn = F←
1 (1 − 1/n).

Now let G be a d-variate extreme value distribution function with all margins
equal to G1. Denote the lower end-point of G1 by q; observe that q < 0 because of
our assumption G(0) > 0. Using monotonicity and continuity, we can then show
that (8.61) and hence (8.60) is equivalent to

1 − F {u + σ(u)x1, . . . , u + σ(u)xd}
1 − F1(u)

→ − log G(x), u ↑ x∗ (8.69)

for all x such that xj > q for all j = 1, . . . , d. The latter criterion is a reformulation
of results obtained by Marshall and Olkin (1983), who considered the more general
case that the extreme value indices of the margins of F all have the same sign.
For absolutely continuous distributions, Yun (1997) gives sufficient conditions for
(8.69) in terms of convergence of certain conditional densities. We will come back
to this in section 10.4 when studying the extremes of Markov chains.

When the margins are equal, criteria involving exceedances over multivariate
thresholds get simpler as well. With W as in (8.66), equation (8.65) is equivalent to

P

[(
Xj − u

σ(u)
∨ q

)d

i=1
∈ ·

∣∣∣∣∣
d∨

i=1

Xi > u

]
D→ P [W ∈ · ], u ↑ x∗,

and equation (8.67) to

P

[(
Xi − u

σ(u)
∨ q

)d

i=1
∈ ·

∣∣∣∣∣Xj > u

]
D→ P [W ∈ · | Wj > 0], u ↑ x∗,

for all j = 1, . . . , d. The latter formulation is used in Segers (2003a) to study the
extremes of univariate stationary time series.

Exponent measure

Condition (8.61) has an interesting interpretation in terms of exponent measures.
Recall from (8.3) that G has an exponent measure, µ, concentrated on [q, ∞) \ {q},
given by µ([q, ∞) \ [q, x]) = − log G(x) for x ≥ q, where qj is the lower end-
point of Gj , the j th margin of G. Observe that, by (8.41), − log G(x) is finite
if x > q and infinite otherwise, so that µ(B) is finite for Borel sets B of [q, ∞)

bounded away from q. Also, define the measures µn on [q, ∞) \ {q} by

µn( · ) = nP [X1,n ∈ · ], where Xi,n = a−1
n (Xi − bn) ∨ q. (8.70)

Since µn([q, ∞) \ [q, x]) = n{1 − F(anx + bn)} for x ∈ [q, ∞], equation (8.61)
may now be written in terms of the measures µn and µ as µn(B) → µ(B) as
n → ∞ for every set B = [q, ∞) \ [q, x] with x ≥ q. Since both µn and µ put
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zero mass on [q, ∞] \ [q, ∞), a measure-theoretic argument now yields that (8.61)
and hence (8.60) is equivalent to

µn converges vaguely to µ, notation µn
v→ µ, on [q, ∞] \ {q}, (8.71)

to be interpreted as µn(B) → µ(B) as n → ∞ for every Borel set B in [q, ∞] \
{q} with compact closure and such that µ(∂B) = 0, where ∂B denotes the topo-
logical boundary of B. Observe that B ⊂ [q, ∞] \ {q} has compact closure if and
only if there exists x > q such that B ⊂ [q, ∞] \ [q, x]. For more information on
vague convergence of measures, see Resnick (1987) or Kallenberg (1983).

Point processes

Consider the following point processes on [0, ∞) × [q, ∞):

Nn(·) =
∞∑
i=1

1{(i/n, Xi,n) ∈ · },

with Xi,n as in (8.70). See section 5.9.2 for a short introduction on point processes.
Recall from (8.71) that the domain-of-attraction condition (8.60) is equivalent to
µn

v→ µ. By Proposition 3.21 of Resnick (1987), this is in turn equivalent to

Nn
D→ Poisson process with mean measure dt µ(dx). (8.72)

A particular consequence, useful for statistical inference, is the following conver-
gence of point processes on [q, ∞):

n∑
i=1

1(Xi,n ∈ ·) D→ Poisson process with mean measure µ. (8.73)

Discrete versus continuous index

In the previous equations, the integer variable n can be replaced by a continuous
variable t tending to infinity. For instance, with �t� denoting the integer part of
the real number t , equations (8.60), (8.61) and (8.71) can be extended to

lim
t→∞ F t(a�t�x + b�t�) = G(x), (8.74)

lim
t→∞ t{1 − F(a�t�x + b�t�)} = − log G(x), (8.75)

µt( · ) = tP [X1,�t� ∈ · ]
v→ µ( · ), t → ∞, (8.76)

the argument being that t/�t� → 1 as t → ∞.
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8.3.2 Convergence of the dependence structure

When studying multivariate extremes, it is often convenient to separate the marginal
distributions from the dependence structure. The fact that we are allowed to do
so follows from the property that weak convergence of multivariate distribution
functions is equivalent to weak convergence of (i) the marginal distribution func-
tions and (ii) the copula functions, provided the margins of the limit distribution
are continuous; see, for example, Deheuvels (1984).

So let F1, . . . , Fd be the margins of F and assume that for every j = 1, . . . , d

there exist real sequences (an,j )n and (bn,j )n with an,j > 0 and an extreme value
distribution function Gj such that

Fn
j (an,j xj + bn,j ) → Gj(xj ), n → ∞. (8.77)

Then which extra condition is needed on F in order to have (8.60) for some
multivariate extreme value distribution function G with margins G1, . . . , Gd? By
the property in the previous paragraph, what is needed is convergence of the
dependence structure, to be specified next.

For convenience, we will assume that all the margins Fj are continuous. This
has the particular advantage that each Fj (Xj ) is uniformly distributed on (0, 1);
here (X1, . . . , Xd) denotes a random vector with distribution function F . Also,
for 0 ≤ uj ≤ 1, the four events {Xj ≤ F←

j (uj )}, {Xj < F←
j (uj )}, {Fj (Xj ) ≤ uj },

and {Fj (Xj ) < uj } only differ on an event of probability zero and hence can be
interchanged freely. Finally, the copula of F is unique and given by

CF (u) = F {F←
1 (u1), . . . , F←

d (ud)}, u ∈ [0, 1]d , (8.78)

that is, CF is the distribution function of (F1(X1), . . . , Fd(Xd)).

Copula convergence

Let X1, X2, . . . be a sequence of independent random vectors with distribution
function F . The copula of Fn, the distribution function of the sample maximum,
Mn = X1 ∨ · · · ∨ Xn, is

CFn(u) = Fn{(F n
1 )←(u1), . . . , (F n

d )←(ud)}
= Fn{F←

1 (u
1/n

1 ), . . . , F←
d (u

1/n

d )} = Cn
F (u

1/n

1 , . . . , u
1/n

d ),

for u ∈ [0, 1]d .
Now let G be an extreme value distribution function with margins Gj and

copula CG. We obtain that F ∈ D(G) if and only if (8.77) together with

lim
n→∞ Cn

F (u
1/n

1 , . . . , u
1/n

d ) = CG(u), u ∈ [0, 1]d . (8.79)

Since the limit copula, CG, is continuous, the above convergence holds uniformly
in u ∈ [0, 1]d . Hence, in (8.79), we can replace the discrete variable n by the
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continuous variable t :

lim
t→∞ Ct

F (u
1/t

1 , . . . , u
1/t
t ) = CG(u), u ∈ [0, 1]d . (8.80)

By the stability relation (8.53) of CG, we obtain from (8.80) the approximation
CF (u) ≈ CG(u) for u such that all uj are sufficiently close to one. Writing CG in
terms of the stable tail dependence function l as in (8.52) and substituting Fj (xj )

for uj yields the approximation

F(x) ≈ exp[−l{− log F1(x1), . . . , − log Fd(xd)}], (8.81)

for x such that all Fj (xj ) are close to unity.

Reduction to standard Fréchet or standard Pareto margins

Alternatively, we can transform the random vector X in such a way that its margins
become standard Fréchet: define the random vector X∗ with distribution function
F∗ by

X∗j = −1/ log Fj (Xj ), j = 1, . . . , d,

F∗(z) = F {F←
1 (e−1/z1), . . . , F←

d (e−1/zd )}, (8.82)

where 0 < zj < ∞ for j = 1, . . . , d. Conversely, F can be obtained from F∗ and
its margins Fj through F(x) = F∗{−1/ log F1(x1), . . . , −1/ log Fd(xd)}.

The margins of F∗ are all standard Fréchet, while its copula is the same as
the copula of F . Since the standard Fréchet distribution is in its own domain of
attraction, copula convergence as in (8.79) is equivalent to F∗ ∈ D(G∗), that is,

lim
t→∞ F t

∗(tz) = G∗(z), (8.83)

where G∗ is obtained from G after a transformation to standard Fréchet margins
as in (8.5). Alternative formulations of (8.83) are

lim
t→∞ t{1 − F∗(tz)} = − log G∗(z), z ∈ [0, ∞], (8.84)

as well as

1 − F∗(tz) ∼ − log G∗(tz)

∼ 1 − G∗(tz), 0 < z < ∞; t → ∞. (8.85)

Taking (8.85) as an approximation for large t leads again to the approximation
(8.81).

With e = (1, . . . , 1) ∈ R
d , equation (8.84) implies

lim
t→∞

1 − F∗(tz)
1 − F∗(te)

= − log G∗(z)
− log G∗(e)

, z ∈ [0, ∞], (8.86)
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that is, 1 − F∗ is multivariate regularly varying on the cone (0, ∞) (Resnick 1987);
see also section 8.4. Conversely, it is not hard to see that (8.86) also implies
F∗ ∈ D(G∗).

Finally, we could equally well have transformed to standard Pareto rather than
to standard Fréchet margins, that is, (8.79) is still equivalent with each of (8.83),
(8.84), (8.85), or (8.86) if, rather than (8.82), we would have put

X∗j = 1/{1 − F1(Xj )}, j = 1, . . . , d,

F∗(z) = F {F←
1 (1 − 1/z1), . . . , F←

d (1 − 1/zd)},
(8.87)

for 1 < zj < ∞, j = 1, . . . , d.

Tail dependence function convergence

Closely related to the copula of F is its tail dependence function

DF (u) = 1 − F {F←
1 (1 − u1), . . . , F←

d (1 − ud)}. (8.88)

Observe that DF (u) = 1 − CF (1 − u1, . . . , 1 − ud) = P [
⋃d

j=1{Fj (Xj ) > 1 −
uj }] and 1 − F(x) = DF {1 − F1(x1), . . . , 1 − Fd(xd)}. Using (8.84) and DF (u) =
1 − F∗(1/u1, . . . , 1/ud) with F∗ as in (8.87) (Pareto margins), we find that (8.79)
is equivalent to

lim
s↓0

s−1DF (sv) = l(v), v ≥ 0. (8.89)

A few equivalent formulations of (8.89) are

l(v) = lim
s↓0

s−1{1 − CF (1 − sv1, . . . , 1 − svd)} (8.90)

= lim
s↓0

s−1P [∃j = 1, . . . , d : Fj (Xj ) > 1 − svj ]

= lim
t→∞ tP [

∨d
j=1[vj /{1 − Fj (Xj )}] > t]

for v ≥ 0. Since the convergence in the previous equations is locally uniform in
v ∈ [0, ∞), we may replace 1 − svj by any function of the form 1 − svj + o(s)

as s ↓ 0, for instance, (1 − s)vj or e−svj . In the bivariate case, a necessary and
sufficient condition is

lim
s↓0

s−1[1 − CF {1 − s(1 − t), 1 − st}] = A(t), t ∈ [0, 1], (8.91)

where A(t) = l(1 − t, t) is the Pickands dependence function of G∗. A useful
consequence is

lim
s↓0

s−1{1 − CF (1 − s, 1 − s)} = 2A(1/2) = θ, (8.92)

the extremal coefficient of (8.56).
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Equation (8.89) and its reformulations point the way to non-parametric estima-
tion of l from observations from F (section 9.4.1). Moreover, since sl(v) = l(sv)

for s > 0, equation (8.89) has the interesting interpretation

1 − F(x) ≈ l{1 − F1(x1), . . . , 1 − Fd(xd)} (8.93)

provided all 1 − Fj (xj ) are sufficiently small. Approximation (8.93) is in fact a
first-order expansion of the one in (8.81). However, (8.81) is preferable over (8.93)
as the latter approximation undervalues the probability of joint exceedances in
different margins: for instance, if d = 2 and l(v1, v2) = v1 + v2 (independence),
then P [X1 > x1, X2 > x2] ≈ P [X1 > x1]P [X2 > x2] under (8.81) while P [X1 >

x1, X2 > x2] ≈ 0 under (8.93). Also, in three or more dimensions, the right-hand
side of (8.93) does in general not define a valid distribution.

Exponent and spectral measure

Let X∗ and F∗ be as in (8.82) or (8.87). The condition F∗ ∈ D(G∗) can also be
linked to the exponent measure µ∗ and the spectral measure S of G∗, see (8.8)
and (8.16). First, by (8.76), F∗ ∈ D(G∗) is equivalent to

µ∗t ( · ) = tP [t−1X∗ ∈ · ]
v→ µ∗( · ) (8.94)

on [0, ∞] \ {0}. Taking (8.94) as an approximation for large t leads to a recipe for
a non-parametric estimation of the exponent measure µ∗ in section 9.4.1.

Second, let T be the transformation to pseudo-polar coordinates as in (8.15)
determined by two norms ‖ · ‖1 and ‖ · ‖2 on R

d . Applying T to t−1X∗ in (8.94)
and using (8.17), we find that F∗ ∈ D(G∗) is equivalent to

tP [(t−1‖X∗‖1, X∗/‖X∗‖2) ∈ · ]
v→ r−2drS(dω), t → ∞, (8.95)

on (0, ∞] × �. Equation (8.95), and hence F∗ ∈ D(G∗), is equivalent to

tP [‖X∗‖1 > t, X∗/‖X∗‖2 ∈ ·] v→ S(·) (8.96)

on �, which, in turn, is equivalent to

P [‖X∗‖1 > t] ∼ t−1S(�)

P [X∗/‖X∗‖2 ∈ · | ‖X∗‖1 > t]
D→ S( · )/S(�)

}
t → ∞ (8.97)

(de Haan 1985). Equations (8.96) and (8.97) give an interpretation of the spectral
measure S in terms of the distribution of the angular component of X∗ in the region
where its radial component is large. As for the exponent measure, interpreting limits
as approximations for large t points the way to non-parametric estimators of S in
section 9.4.1.
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Point processes

In terms of point processes, we have, by (8.73), F∗ ∈ D(G∗) if and only if

n∑
i=1

1
(
n−1X∗i ∈ · ) D→ Poisson process with mean measure µ∗, (8.98)

where the Xi∗ are independent copies of X∗ (de Haan 1985). This point-process
characterization can be used for likelihood-based statistical inference on the spectral
measure S in the context of a parametric model, see section 9.4.2.

Asymptotic independence and complete dependence

The two boundary cases within the class of dependence structures of multivariate
extreme value distributions are those of independence and complete dependence.
Although the latter is merely of academic importance, the former is highly rele-
vant in practice as many multivariate distributions, including the non-degenerate
multivariate normal, lie in the domain of attraction of a multivariate extreme value
distribution with independent margins, a result dating back to Sibuya (1960); see
also Example 9.3. Because of this, section 9.5 is devoted to more refined models
in case of asymptotic independence. Here, we restrict ourselves to some character-
izations of the domains of attraction of the two cases.

Asymptotic independence. A multivariate distribution function F with copula CF

is called asymptotically independent if CF satisfies (8.79) with the independent
copula as limit, that is, CG(u) = u1 · · · ud for u ∈ [0, 1]d . In terms of the tail
dependence function D = DF defined in (8.88), asymptotic independence can be
written as

lim
s↓0

s−1D(sv) = v1 + · · · + vd, v ∈ [0, ∞), (8.99)

see (8.89). If additionally each marginal distribution Fj of F is in the domain
attraction of an extreme value distribution Gj , then F is in the domain of attraction
of the extreme value distribution G given by G(x) = G1(x1) · · ·Gd(xd).

Berman (1961) already showed that a random vector (X1, . . . , Xd) is asymp-
totically independent as soon as all pairs (Xi, Xj ) with i �= j are asymptotically
independent. Let Dij be the bivariate tail dependence function of the pair (Xi, Xj );
observe that Dij (vi, vj ) = D(v) where the kth coordinate of v is vk if k ∈ {i, j}
and zero otherwise. Elementary Bonferroni inequalities give

u1 + · · · + ud ≥ D(u) ≥ u1 + · · · + ud −
∑

1≤i<j≤d

{ui + uj − Dij (ui, uj )}.

Hence s−1Dij (svi, svj ) → vi + vj as s ↓ 0 for all i �= j and all (vi, vj ) ∈ [0, ∞)2

indeed implies asymptotic independence.
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Observe that the pair (Xi, Xj ) is asymptotically independent if

lim
s↓0

s−1P [Fi(Xi) > 1 − svi, Fj (Xj ) > 1 − svj ] = 0, (vi, vj ) ∈ [0, ∞)2.

By monotonicity, it is sufficient to have the stated convergence for a single
(vi, vj ) ∈ (0, ∞)2; in particular, the pair (Xi, Xj ) is asymptotically independent if

∃(vi, vj ) ∈ (0, ∞)2 : lim
s↓0

P [Fi(Xi) > 1 − svi | Fj (Xj ) > 1 − svj ] = 0.

Typically, this result is stated with vi = 1 = vj . In conjunction with the previ-
ous paragraph, we obtain that the random vector (X1, . . . , Xd) is asymptotically
independent if

lim
s↓0

P [Fi(Xi) > 1 − s | Fj (Xj ) > 1 − s] = 0, 1 ≤ i < j ≤ d. (8.100)

In terms of the copula Cij of the pair (Xi, Xj ), that is, Cij (ui, uj ) = P [Fi(Xi) ≤
ui, Fj (Xj ) ≤ uj ], asymptotic independence can be written as

Cij (1 − s, 1 − s) = 1 − 2s + o(s), s ↓ 0; 1 ≤ i < j ≤ d.

Takahashi (1994) also showed that asymptotic independence arises as soon as

∃v ∈ (0, ∞) : lim
s↓0

s−1D(sv) = v1 + · · · + vd. (8.101)

Necessity of (8.101) follows from (8.99). But (8.101) is also sufficient: From the
inequalities

s−1D(sv) ≤ s−1Dij (svi, svj ) +
∑

k=1,...,d
k �=i,j

vk ≤
d∑

k=1

vk, 1 ≤ i < j ≤ d,

it follows that (8.101) implies s−1Dij (svi, svj ) → vi + vj as s ↓ 0 for all 1 ≤ i <

j ≤ d, whence indeed (pairwise) asymptotic independence.

Asymptotic complete dependence. In some sense opposite to the case of asymp-
totic independence, a multivariate distribution function F with copula CF is called
asymptotically completely dependent if CF satisfies (8.79) with the completely
dependent copula as limit, that is, CG(u) = u1 ∧ · · · ∧ ud for u ∈ [0, 1]d . In terms
of the tail dependence function D = DF defined in (8.88), asymptotic complete
dependence can be written as

lim
s↓0

s−1D(sv) = v1 ∨ · · · ∨ vb, v ∈ [0, ∞),

see (8.89). If additionally each marginal distribution Fj of F is in the domain
attraction of an extreme value distribution Gj , then F is in the domain of
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attraction of the extreme value distribution G given by G(x) = G1(x1) ∧ · · · ∧
Gd(xd).

Takahashi (1994) showed that asymptotic complete dependence arises as
soon as

∃0 < w < ∞ : lim
s↓0

s−1D(sw, · · · , sw) = w. (8.102)

To see that the above condition is indeed sufficient, take v ∈ [0, ∞) \ {0} and set
v = v1 ∨ · · · ∨ vd > 0. Then

v ≤ s−1D(sv) ≤ s−1D(sv, · · · , sv)

= (v/w)(sv/w)−1D{(sv/w)w, . . . , (sv/w)w}.
Since the right-hand side converges to v, we obtain indeed s−1D(sv) → v as s ↓ 0.

Also, pairwise asymptotic complete dependence implies asymptotic complete
dependence: The pairwise case entails s−1P [Fj (Xj ) > 1 − s ≥ Fi(Xi)] → 0 as
s ↓ 0 for all 1 ≤ i < j ≤ d and thus

1 ≤ s−1D(s, . . . , s)

≤ s−1P [F1(X1) > 1 − s] +
d∑

j=2

P [Fj (Xj ) > 1 − s ≥ F1(X1)] → 1,

which by (8.102) forces asymptotic complete dependence.

8.4 Additional Topics

We collect some topics that did not find their way into the main part of the text.

Multivariate regular variation

A rather popular condition implying that a distribution is in the domain of attrac-
tion of a multivariate extreme value distribution is multivariate regular variation.
We have already encountered it in (8.86) as a necessary and sufficient condition
for the dependence structure of a distribution to be in the domain of attraction
of an extreme value dependence structure. More generally, let F be a d-variate
distribution function with support [0, ∞). Put e = (1, . . . , 1) ∈ R

d . We say that
F is regularly varying on (0, ∞) if there exists a function λ : (0, ∞) → (0, ∞)

such that

lim
t→∞

1 − F(tx)

1 − F(te)
= λ(x), x ∈ (0, ∞).

It follows that there exists a measure ν on [0, ∞) \ {0} such that λ(x) = ν([0, ∞) \
[0, x]) for all x > 0. Observe that (8.86) says that F∗ is regularly varying on (0, ∞)

with limit measure ν(·) = µ∗(·)/µ∗([0, ∞) \ [0, e]).
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Most properties we discovered for µ∗ extend also to ν. For instance, there must
exist 0 < α < ∞ such that ν(t · ) = t−αν(·) for all 0 < t < ∞. For tn such that
1 − F(tne) ∼ n−1 as n → ∞, we get Fn(tnx) → exp{−λ(x)}, an extreme value
distribution with Fréchet margins. Also, ν admits a spectral decomposition of the
same kind as we found for µ∗ in section 8.2.3. As in (8.97), the normalized spectral
measure can be interpreted as the limiting distribution of the angular component of a
random vector with distribution function F given that its radial component is large.
A detailed account of multivariate regular variation can be found in Resnick (1987)
and Mikosch (2004); see also Bingham et al. (1987). Far-stretching generalizations
are developed in the monograph by Meerschaert and Scheffler (2001).

Now suppose that F is an absolutely continuous d-variate distribution func-
tion with density f supported on [0, ∞). Sufficient conditions in terms of f

for F to be regularly varying on (0, ∞) are stated in de Haan and Resnick
(1987). These are useful as most multivariate models are defined in terms of
their densities rather than their distribution functions. Typical examples where
the conditions can be applied are the (restriction to [0, ∞) of the) multivariate
t-distribution and F-distribution. In combination with (8.86), the conditions can
serve as a tool to prove that the dependence structure of some absolutely contin-
uous distribution is in the domain of attraction of an extreme value dependence
structure.

Special classes of distributions

For certain non-parametric classes of distributions, the domain-of-attraction condi-
tions in section 8.3 can be worked out explicitly. For instance, Hult and Lindskog
(2002) study the multivariate extremes of elliptical distributions, focusing in par-
ticular on the limiting spectral measure.

Alternatively, Capéraà et al (2000) study the class of bivariate copulas given by

C(u, v) = φ−1
[
{φ(u) + φ(v)}A

{
φ(v)

φ(u) + φ(v)

}]
, (u, v) ∈ [0, 1]2.

Here A is a Pickands dependence function, φ : (0, 1] → [0, ∞) is convex and
decreasing and verifies φ(1) = 0, the function φ−1 is the inverse function of φ,
and we employed the conventions φ(0) = limu↓0 φ(u) and φ−1(s) = 0 if s ≥ φ(0).
The class unifies the families of bivariate extreme value copulas (φ = − log) and
Archimedean copulas by Genest and MacKay (1986) (A = 1), whence the name
Archimax copulas. Within the class, it is easy to construct non-trivial examples of
copulas in the domain of attraction of any given bivariate extreme value copula.

Other extreme-related quantities

Rather than the coordinate-wise maximum or the exceedances over a high multi-
variate threshold, other quantities related to the extremes of a multivariate sequence
have been studied in the literature as well.



MULTIVARIATE EXTREME VALUE THEORY 289

Cheng et al. (1995), for instance, study multivariate intermediate order statis-
tics, defined as follows. Let Xi , i = 1, . . . , n be independent, identically distributed
d-dimensional random vectors. For j = 1, . . . , d, let X(1),j ≤ · · · ≤ X(n),j be the
ascending order statistics corresponding to the observations X1,j , . . . , Xn,j . For
every j = 1, . . . , d, let (kn,j )n be an intermediate sequence of positive integers,
that is, kn,j → ∞ and kn,j /n → 0 as n → ∞. Suppose also that all kn,j grow at
the same rate. Cheng et al. (1995) then find the asymptotic distribution as n → ∞
of the sequence of vectors X(kn),n = (X(kn,1),n, . . . , X(kn,d ),n).

Records can also be studied in the multivariate case, although a natural defini-
tion of multivariate records is not obvious because of the lack of a natural ordering
for multivariate observations. The principle of marginal ordering suggests the fol-
lowing definition: Xn is a record in the sequence X1, . . . , Xn if Xn >

∨n−1
i=1 Xi ,

that is, if there is a record simultaneously in all coordinates. The asymptotic distri-
bution of the sequence of such records is the topic of Goldie and Resnick (1995)
and the references therein. Alternatively, in the context of Gaussian processes,
Habach (1997) defines Xn to be a record as soon as there is a record in one of the
coordinates, that is, if Xn,j >

∨n−1
i=1 Xi,j for some j = 1, . . . , d.

A concept that is inherently multivariate is that of concomitants or induced
order statistics. For instance, let (Xi1, Xi2), i = 1, . . . , n, be a sample of bivariate
random pairs and let X(1),1 ≤ · · · ≤ X(n),1 be the ascending order statistics in the
first coordinate. Then the value of the second coordinate of the pair of which the
first coordinate is equal to X(i),1 is called the concomitant of that order statistic and
is denoted by X[i],2. For example, X[n],2 is the second coordinate of the pair with the
largest first coordinate. The distribution of concomitants of extreme order statistics
is investigated in David (1994) and Nagaraja and David (1994). Ledford and Tawn
(1998) focus on the concomitant of the largest order statistic in case the marginal
bivariate survivor function is bivariate regularly varying, see section 9.5. In par-
ticular, they give an asymptotic expansion for the tail function of that concomitant
and find the asymptotic probability that the pair of coordinate-wise maxima is an
actual observation, that is, P [X[n],2 = X(n),2].

Rates of convergence

Recall from Chapters 4 and 5 that in one dimension, because of slow convergence
in the domain-of-attraction condition, estimators of the tail of a distribution some-
times suffer from a substantial bias. A similar problem may arise in higher dimen-
sions, an extra issue being the rate of convergence of the dependence structure.

Omey and Rachev (1991) and Falk and Reiss (2002) investigate the rate of
convergence of the copula of the sample maximum to the limiting extreme value
copula (8.79) with respect to the uniform metric, whereas de Haan and Peng (1997)
employ the stronger total variation metric. Alternatively, Kaufmann and Reiss
(1995) consider the rate of convergence of certain point processes of exceedances
to the limiting Poisson process, corollaries being rates of convergence for the
joint distributions of upper order statistics, although their error term appears to
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be sub-optimal. Finally, Nadarajah (2000) gives asymptotic expansions for the
convergence of spectral densities in (8.96).

More general settings than i.i.d. sequences

Up to now, we always started from a sequence of independent, identically dis-
tributed random vectors. This setting can be generalized in a number of ways.

A first possibility is to drop the assumption of stationarity. For instance, Hüsler
(1989b), building on work by Gerritse (1986), characterizes the class of limit
distributions of normalized maxima of sequences of independent, non-identically
distributed random vectors and states a number of properties of the dependence
structure of the possible limit laws. Moreover, Hüsler (1989a) gives conditions
under which the extremes of a general non-stationary, possibly dependent sequence
of random vectors have the same asymptotic distribution as the corresponding
sequence with independent random vectors.

Alternatively, one can drop the assumption of independence. Hsing (1989)
and Hüsler (1990) examine the asymptotic distribution of normalized maxima of
sequences of general stationary sequences of random vectors; see also section 10.5.
The asymptotic distribution of point processes of exceedances and vectors of
extreme order statistics for multivariate stationary normal sequences is the topic
of Wiśniewski (1996).

Finally, interesting results can also be obtained for a triangular array {Xin : n =
1, 2, . . . ; i = 1, . . . , n} of independent d-dimensional random vectors. Hüsler and
Reiss (1989) consider the case where every row X1n, . . . , Xnn consists of centred,
unit-variance normal random vectors with correlation matrix ρn depending on n.
For instance, in the bivariate case, they find that if (1 − ρn) log(n) → λ2 ∈ [0, ∞]
as n → ∞ then the suitably normalized maximum Mn = ∨n

i=1 Xin converges
weakly to a parametric family of multivariate extreme value distributions with
dependence structure depending on λ, see section 9.2. More general triangular
arrays are considered in Hüsler (1994).

8.5 Summary

For the reader’s convenience, we provide a summary of the essential facts to be
remembered from the theory of multivariate extremes.

We work in d-dimensional space. The distribution functions G with non-
degenerate margins that can arise as the limit in limn→∞ Fn(anx + bn) = G(x),
where F is a d-variate distribution function and an and bn are arbitrary vectors, the
entries of an being positive, are called multivariate extreme value distribution func-
tions. We say that F is in the (max-)domain of attraction of G. The interpretation
is that G is the limit distribution of the properly normalized component-wise max-
imum of an independent sample from F as the sample size tends to infinity. The
class of extreme value distributions coincides with that of max-stable distributions.
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The margins, Gj , of a max-stable distribution function G are univariate extreme
value distribution functions themselves. They have the corresponding margins, Fj ,
of F in their respective domains of attraction. In order to study the dependence
structure of G, we may, without loss of generality, standardize the margins of G

to the standard Fréchet distribution by G∗(z) = G{G←
1 (e−1/z1), . . . , G←

d (e−1/zd )}
for z ∈ [0, ∞].

The function V∗ = − log G∗ satisfies the homogeneity relation sV∗(sz) = V∗(z)
for 0 < s < ∞. Moreover, there exists a measure, µ∗, on [0, ∞) \ {0}, the expo-
nent measure, such that V∗(z) = µ∗({x ≥ 0 : x �≤ z}). The exponent measure µ∗
inherits a similar homogeneity property from V∗.

In polar coordinates, the measure µ∗ factorizes as a product measure in the
radial and angular components. More specifically, identifying z with (r, ω), where
r = z1 + · · · + zd is the ”radius” and ω = (z1/r, . . . , zd/r) is the ”angle”, we have
µ(dz) = r−2drH(dω). Here, the spectral measure H is a finite measure on the unit
simplex, Sd = {ω ≥ 0 : ω1 + · · · + ωd = 1}. The only requirement on a positive
measure H on Sd to be the spectral measure of an extreme value distribution is
that

∫
Sd

ωjH(dω) = 1 for all j = 1, . . . , d. Alternative definitions of the spectral
measure are possible, starting from a different choice of the radial and angular
components.

The stable tail dependence function l is given by l(v) = V∗(1/v1, . . . , 1/vd)

for 0 ≤ v < ∞. It satisfies the homogeneity relation l(sv) = sl(v) for 0 < s < ∞
and is connected to the extreme value distribution G and the spectral measure H

through

G(x) = exp[−l{− log G1(x1), . . . , − log Gd(xd)}],

l(v) =
∫

Sd

d∨
j=1

(ωjvj )H(dω).

The partial derivatives of l or V∗ can be used to compute the densities of the
spectral measure H on the 2d − 1 faces of the unit simplex Sd .

The two extreme cases for the dependence structure of an extreme value dis-
tribution are those of independence and complete dependence. In general, the
dependence structure lies between these cases. In particular, extreme value distri-
butions always exhibit positive association. In case of independence, the spectral
measure H consists of unit point masses at each of the d vertices of the unit sim-
plex Sd and the stable tail dependence function is given by l(v) = v1 + · · · + vd .
Independence arises as soon as all pairs are independent. In case of complete
dependence, H reduces to a single point mass of size d at the centre-point of Sd ,
and l(v) = v1 ∨ · · · ∨ vd .

In two dimensions, all information on the dependence structure is contained in
Pickands dependence function A(t) = l(1 − t, t), where t ∈ [0, 1]. It is convex and
satisfies t ∨ (1 − t) ≤ A(t) ≤ 1. These are the only restrictions for a function A

to be the Pickands dependence function of a bivariate extreme value distribution.
The lower and upper boundaries on A correspond to complete dependence and
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independence, respectively. Identifying the unit simplex S2 with the unit interval
[0, 1], we can easily obtain from A the point masses of H on 0 and 1 and its
density h on (0, 1).

For a given extreme value distribution function G, we formulate various equiv-
alent conditions for a distribution function F to lie in its domain of attraction. A
number of these conditions are in terms of the limit distribution of excesses over
a high multivariate threshold. Equally useful is to tear the domain-of-attraction
condition apart into two pieces: first, the margins of F must lie in the (univariate)
domain-of-attraction of the corresponding margins of G, and second, informally
stated, the dependence structure of F must lie in the domain of attraction of the
dependence structure of G.

A particularly useful interpretation of the domain-of-attraction condition is the
approximation

F(x) ≈ exp[−l{− log F1(x1), . . . , − log Fd(xd)}]

for x such that 1 − Fj (xj ) is small for all j = 1, . . . , d, and with l the stable tail
dependence function of the limiting extreme value distribution. Combined with
a Generalized Pareto model for the marginal tails, this leads to (semi-)parametric
models for F in the regions of the form [u, ∞) for high multivariate thresholds u. A
related, slightly less accurate approximation is 1 − F(x) ≈ l{1 − F1(x1), . . . , 1 −
Fd(xd)}. Alternatively, we find a condition in terms of convergence of certain point
processes to a non-homogeneous Poisson process with intensity measure µ∗.

8.6 Appendix

8.6.1 Computing spectral densities

We give a proof of (8.34) expressing the densities of the spectral measure H on
the faces of the unit simplex Sd in terms of the derivatives of V∗ = − log G∗. Let
z > 0. By the inclusion-exclusion formula,

V∗(z) = µ
({x ≥ 0 : xj > zj for some j = 1, . . . , d})

=
∑

∅�=b⊂{1,...,d}
(−1)|b|−1µ

({x ≥ 0 : xj > zj for all j ∈ b}).

Now let a = {j1, . . . , jm} be a non-empty subset of {1, . . . , d}, and let Da be the
differential operator ∂m/(∂zj1 · · · ∂zjm). Applying Da to both sides of the previous
equation, we only retain those terms for which b contains a, that is,

DaV∗(z)

=
∑

a⊂b⊂{1,...,d}
(−1)|b|−1Daµ

({x ≥ 0 : xj > zj for all j ∈ b}).
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Denote ac = {1, . . . , d} \ a. We can split the sum above in two parts: the term
corresponding to b = a, and the terms corresponding to b = a ∪ b′ with ∅ �= b′ ⊂
ac. We get

DaV∗(z)

= (−1)|a|−1Daµ
({x ≥ 0 : xj > zj for all j ∈ a})

+ (−1)|a|Da

∑
∅�=b′⊂ac

(−1)|b
′|−1µ

({x ≥ 0 : xj > zj for all j ∈ a ∪ b′}).

Applying the inclusion-exclusion formula again, we get

DaV∗(z)

= (−1)|a|−1Daµ
({x ≥ 0 : xj > zj for all j ∈ a})

+ (−1)|a|Daµ
({x ≥ 0 : xj > zj for all j ∈ a and some j ∈ ac})

= (−1)|a|−1Daµ
({x ≥ 0 : xj > zj for all j ∈ a; xj ≤ zj for all j ∈ ac}).

Now if we let zj → 0 for all j ∈ ac, we get

lim
zj →0
j �∈a

DaV∗(z)

= (−1)|a|−1Daµ
({x ≥ 0 : xj > zj for all j ∈ a; xj = 0 for all j ∈ ac}).

Let ha be the density of H on Sd,a . Using the spectral decomposition (8.17) and
the multivariate change-of-variables formula, we get

µ
({x ≥ 0 : xj > zj for all j ∈ a; xj = 0 for all j ∈ ac})

=
∫ ∞

zj1

· · ·
∫ ∞

zjm

ha

(
x1∑
xi

, . . . ,
xm−1∑

xi

) (∑
xi

)−(|a|+1)
dx1 · · · dxm.

Apply the operator Da on both sides of this equation to get (8.34).

8.6.2 Representations of extreme value distributions

Let G be a d-variate extreme value distribution function with margins Gj for
j = 1, . . . , d. We have seen equivalent descriptions of the dependence structure
of G in terms of, amongst others, the simple max-stable distribution function
G∗ = exp(−V∗), the exponent measure µ∗, the stable tail dependence function l,
the spectral measure S w.r.t. two norms ‖ · ‖i (i = 1, 2) on R

d , the copula CG,
and, in the bivariate case, Pickands dependence function A. For easy reference, we
collect here the connections between these various descriptions.
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Formulas for G

G(x) = G∗{−1/ log G1(x1), . . . , −1/ log Gd(xd)}
= exp

{−µ∗
(
[0, ∞] \ [0, (−1/ log G1(x1), . . . , −1/ log Gd(xd))]

)}
= exp[−l{− log G1(x1), . . . , − log Gd(xd)}]

= exp


∫

�

d∧
j=1

{
ωj

‖ω‖1
log Gj(xj )

}
S(dω)




= CG{G1(x1), . . . , Gd(xd)}

Formulas for G∗

G∗(z) = G{G←
1 (e−1/z1), . . . , G←

d (e−1/zd )}
= exp{−µ∗

(
[0, ∞] \ [0, z]

)}
= exp{−l(1/z1, . . . , 1/zd)}

= exp


−

∫
�

d∨
j=1

(
ωj

‖ω‖1

1

zj

)
S(dω)




= CG(e−1/z1, . . . , e−1/zd )

Formulas for l

l(v) = − log G{G←
1 (e−v1), . . . , G←

d (e−vd )}
= − log G∗(1/v1, . . . , 1/vd)

= µ∗
(
[0, ∞] \ [0, (1/v1, . . . , 1/vd)]

)

=
∫

�

d∨
j=1

(
ωj

‖ω‖1
vj

)
S(dω)

= − log CG(e−v1, . . . , e−vd )

Formulas for S

S(B) = µ∗
({z ∈ [0, ∞) : ‖z‖1 ≥ 1, z/‖z‖2 ∈ B})

=
∫

�′
1
(

ω′

‖ω′‖2
∈ B

) ‖ω′‖1

‖ω′‖′
1

S ′(dω′)
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Formulas for CG

CG(u) = G{G←
1 (u1), . . . , G←

d (ud)}
= G∗(−1/ log u1, . . . , −1/ log ud)

= exp{−µ∗
(
[0, ∞] \ [0, (−1/ log u1, . . . , −1/ log ud)]

)}
= exp{−l(− log u1, . . . , − log ud)}

= exp



∫

�

d∧
j=1

(
ωj

‖ω‖1
log uj

)
S(dω)




Bivariate case: Formulas in terms of A

G(x1, x2) = exp

[
log{G1(x1)G2(x2)}A

(
log{G2(x2)}

log{G1(x1)G2(x2)}
)]

G∗(z1, z2) = exp

{
−
(

1

z1
+ 1

z2

)
A

(
z1

z1 + z2

)}

l(v1, v2) = (v1 + v2)A

(
v2

v1 + v2

)

H([0, ω]) = µ∗
({(z1, z2) ∈ [0, ∞)2 : z1 + z2 ≥ 1, z1/(z1 + z2) ≤ ω})

=
{

1 + A′(ω) if ω ∈ [0, 1)

2 if ω = 1

S(B) =
∫

[0,1]
1
{

(ω, 1 − ω)

‖(ω, 1 − ω)‖2
∈ B

}
‖(ω, 1 − ω)‖1dH([0, ω])

CG(u1, u2) = exp

[
log(u1u2)A

{
log(u2)

log(u1u2)

}]

Formulas for A

A(t) = − log G[G←
1 {e−(1−t)}, G←

2 (e−t )]

= − log G∗{(1 − t)−1, t−1}
= µ∗

(
[0, ∞]2 \ [0, ((1 − t)−1, t−1)]

)
= l(1 − t, t)

=
∫

�

{
ω1

‖(ω1, ω2)‖1
(1 − t)

}
∨
{

ω2

‖(ω1, ω2)‖1
t

}
S(d(ω1, ω2))

= − log CG{e−(1−t), e−t }
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STATISTICS OF MULTIVARIATE
EXTREMES

co-authored by Björn Vandewalle

9.1 Introduction

Given a sample of multivariate observations, assumed to be generated by independent
and identically distributed random vectors, how to estimate the tail of the underlying
multivariate distribution? In particular, how to estimate with good relative accuracy
the probability of an event in a region of the sample space with none or only very few
of the observations? As for statistics of univariate extremes, this calls for generally
applicable models based on which it is justified to extrapolate outside of the sample
region. If the interest is in the occurrence of joint extremes in several coordinates,
then proper modelling of the marginal distributions should be complemented by a
correct assessment of the dependence structure at extreme levels.

A successful class of models and inference techniques is based on the multivari-
ate extreme value distributions, studied extensively in Chapter 8. The argument in
favour of these distributions is summarized by the property that, as in the univari-
ate case, the tail of a distribution in the domain of attraction of an extreme value
distribution can be approximated by the tail of that extreme value distribution itself.

As the class of multivariate extreme value distributions does not admit a finite-
dimensional parametrization, a quite popular approach is to perform inference
within a well-chosen parametric sub-model. A number of such models have been
shown in various case studies to be particularly successful in combining analytical
tractability with practical applicability. Of course, new situations may ask for new
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models, so it is useful to have tools to construct parametric families of multivariate
extreme value distributions. All this is treated in section 9.2.

As for the univariate case, historically the first statistical methods for multivariate
extremes follow the annual maximum approach (Gumbel and Goldstein 1964). The
approach consists of partitioning a sample of multivariate observations into blocks,
each typically corresponding to one year of observations, and fitting a multivariate
extreme value distribution to the sample of component-wise block maxima. The
crucial point here is to estimate the multivariate extreme value dependence structure
or copula. Section 9.3 describes both parametric and non-parametric techniques to
do this.

Reducing the sample to a single observation per year disregards the possibility
of a given year to witness several relevant events. More efficient is to use all data
that are in some sense large, for instance all observations for which at least one
coordinate exceeds a high threshold, which may differ according to the coordinate.
The modelling assumption, motivated by the domain-of-attraction conditions of
section 8.3, is that the dependence structure of the underlying distribution may at
extreme levels be approximated by a max-stable dependence structure. Again, the
choice is between parametric inference within a subclass or general non-parametric
techniques, most of which are motivated by the spectral decomposition of a mul-
tivariate extreme value distribution.

Both the annual maximum approach and the threshold approach are founded in
the paradigm of multivariate extreme value distributions, motivated by the theory
in Chapter 8. The resulting models are therefore restricted to either perfect indepen-
dence or asymptotic dependence. Neither of these may be satisfactory for cases of
asymptotic independence with positive or negative association at penultimate thresh-
olds, such as, for instance, the bivariate normal with positive or negative correlation.
This calls for more refined models for the joint survivor function of a random vector
in case of asymptotic independence, and these are presented in section 9.5.

We conclude the chapter with a number of additional topics in section 9.6 and
a summary in section 9.7.

Loss-ALAE data

We will illustrate the methods in this chapter on the Loss-ALAE data set compris-
ing 1500 liability claims in an insurance set-up, see Figure 1.15 in section 1.3.3.
Each claim consists of a loss or indemnity payment and an Allocated Loss Adjust-
ment Expense. ALAEs can be seen as additional costs for the insurance company,
such as lawyers’ fees and investigation expenses resulting from individual claim
settlements. The scatterplot of the two variables in Figure 9.1(a) suggests a strong
relationship between losses and other expenses at intermediate levels, as confirmed
by the value of the correlation coefficient, 0.4.

Starting from (Loss,ALAE) observations (xi1, xi2), i = 1, . . . , n, we can obtain
an informal, margin-free picture of dependence by transforming the data to have uni-
form (0, 1) marginal distributions using the (modified) empirical marginal distribution
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Figure 9.1 Scatterplot of ALAE versus Loss: (a) original data (log-scale), (b) data
transformed to uniform (0, 1) margins.
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functions. For i = 1, . . . , n and j = 1, 2, define

uij = 1

n + 1

n∑
k=1

1(xkj ≤ xij ). (9.1)

If we consider the (xi1, xi2) as being realizations of independent random variables
with common distribution function F , then the (ui1, ui2) can be interpreted as real-
izations from the copula, C, of F . The scatterplot of the (ui1, ui2) in Figure 9.1(b)
suggests some dependence between losses and ALAEs at levels where both are high.

The case studies in this chapter were partially performed with the R package
‘evd’ by Alec Stephenson, freely available from cran.r-project.org, includ-
ing some routines by Chris Ferro, and with routines written by Björn Vandewalle.

9.2 Parametric Models
Recall from section 8.2 that the family of d-variate extreme value distributions
is indexed by a positive measure on the unit simplex Sd satisfying a number of
moment restrictions. In particular, unlike the univariate case, the family does not
admit a finite-dimensional parametrization. As a consequence, we lose the comfort
of parametric likelihood machinery, which guarantees efficient estimation, easy
assessment of estimation uncertainty, hypothesis testing and inclusion of covariate
information. This is a major setback.

In order to be able to still enjoy the mentioned features, one can, rather than to
work in the general class, postulate a parametric subfamily. Of course, there is a price
to pay: sacrificing generality comes at the risk of model mis-specification. A good
balance then must be struck between model flexibility and analytical tractability.

This raises the issue of model construction and model choice. No model can
be expected to work well in all situations. New data may require new models.
However, because of the constraints that a dependence structure must fulfil in
order to be an extreme value dependence structure, it is not straightforward to
generate valid parametric families, let alone useful ones. In section 9.2.1, we list
a number of tools for generating multivariate extreme value models. An overview
of the most popular models is given in section 9.2.2.

9.2.1 Model construction methods

Max-stable processes

Loosely speaking, max-stable processes are stochastic processes of which all finite-
dimensional distributions are multivariate extreme value distributions. They can be
viewed as infinite-dimensional generalizations of extreme value distributions. A
spectral representation for such processes by de Haan (1984) was turned into a
versatile tool by Smith (1991) for a construction method for multivariate extreme
value distributions that allows certain characteristics of a physical process under
study to be incorporated into the model.
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Consider the following situation. A certain system V is affected by a collection
of shock events of possible different sizes and different types. Event number i has
size 0 < ri < ∞ and is of type si in some classification space S. The impact
caused to an element v of the system V by an event of size r and type s is equal
to rf (s, v), where f : S × V → (0, ∞) is the so-called event profile function. The
aggregate impact Zv to an element v caused by all events i is equal to the maximal
impact by each of the events, that is, Zv = maxi{rif (si, v)}.

Now we make the following assumption: (i) the events (ri , si) form a Poisson
process on the space (0, ∞) × S with intensity measure r−2dr ν(ds) for some
measure ν on S, and (ii) for all v ∈ V we have

∫
S
f (s, v)ν(ds) = 1. The measure

ν is called the frequency measure, as it describes the relative frequency with which
events of certain types occur. The second assumption is just a normalization.

Under this assumption, we can find the distribution of the vector (Zv : v ∈ V0),
where V0 = {v1, . . . , vd} ∈ V . For 0 < zv < ∞, we have

P [Zv ≤ zv, ∀v ∈ V0]

= P [rif (si, v) ≤ zv, ∀i, ∀v ∈ V0]

= P

[
ri max

v∈V0
{z−1

v f (si, v)} ≤ 1, ∀i

]

= exp

(
−
∫

S

∫ ∞

0
1
[
r max

v∈V0
{z−1

v f (s, v)} > 1

]
r−2dr ν(ds)

)

= exp

[
−
∫

S

max
v∈V0

{z−1
v f (s, v)}ν(ds)

]
. (9.2)

Because of the normalization assumption, we have P [Zv ≤ zv] = exp(−1/zv), that
is, the marginal distributions are standard-Fréchet. Moreover, the distribution of
the vector (Zv : v ∈ V0) satisfies the max-stability relation (8.7). All in all, we
conclude that (Zv : v ∈ V0) has a multivariate extreme value distribution with
standard-Fréchet margins.

Examples of this construction are the Gaussian model for spatial extremes of
rain storms in Smith (1991) and Coles and Tawn (1996a), and the directional model
for extreme wind speeds in Coles and Tawn (1994); see also section 9.2.2. The
extremal coefficients of the process (Zv : v ∈ V ) in the sense of (8.55) are given
by θV0 = ∫

S
maxv∈V0 f (s, v)ν(ds).

Spectral densities

Recall from Chapter 8 that one of the representations of the dependence structure
of a multivariate extreme value distribution was in terms of a so-called spectral
measure H , which in the bivariate case is the positive measure on [0, 1] given by
(8.28). Hence, assuming that H is absolutely continuous, we may construct models
for H by modelling its density h. However, we must take care that the constraint
(8.29) is fulfilled, that is, we need

∫ 1
0 ωh(ω)dω = 1 and

∫ 1
0 (1 − ω)h(ω)dω = 1.
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Coles and Tawn (1991) describe a way to modify an arbitrary non-negative
function h∗ on (0, 1) that does not satisfy the constraints to a function h that
does. Let

m1 =
∫ 1

0
uh∗(u)du, m2 =

∫ 1

0
(1 − u)h∗(u)du. (9.3)

Without loss of generality, assume m1 > 0 and m2 > 0. From Pickands (1981), we
know that

P [X1 > x1, X2 > x2] = exp

(
−
∫ 1

0
[(ux1) ∨ {(1 − u)x2}]h∗(u)du

)

is the joint survivor function of a bivariate min-stable distribution with exponential
margins with expectations E[Xj ] = 1/mj for j = 1, 2. Hence, writing P [m1X1 >

v1, m2X2 > v2] = exp{−l(v1, v2)}, we find that

l(v1, v2) =
∫ 1

0

{(
u

m1
v1

)
∨
(

1 − u

m2
v2

)}
h∗(u)du

is a stable tail dependence function, see also (8.51). Change variables u = m1ω/

{m1ω + m2(1 − ω)} to find l(v1, v2) = ∫ 1
0 [(ωv1) ∨ {(1 − ω)v2}]h(ω)dω, where

h(ω) = m1m2

{m1ω + m2(1 − ω)}3
h∗
{

m1ω

m1ω + m2(1 − ω)

}
(9.4)

for 0 < ω < 1. This h then must be the density of a spectral measure H . One can
also verify directly that the constraints are satisfied.

The procedure can be extended to accommodate for spectral measures H

with point masses at 0 or 1. More importantly, Coles and Tawn (1991) gener-
alize the argument to higher dimensions. For a non-negative function h∗ on the
unit simplex Sd such that mj = ∫

Sd
ωjh

∗(ω)λ(dω) is positive and finite [where
λ(dω) = dω1 · · · dωd−1 denotes the (d − 1)-dimensional Lebesgue measure on Sd ],

h(ω) = m1 . . . md

(m1ω1 + · · · + mdωd)d+1
h∗(u1, . . . , ud),

where uj = mjωj

m1ω1 + · · · + mdωd

(9.5)

defines the density of a measure H concentrated on the interior of Sd and satisfy-
ing (8.26).

Order restrictions

Sometimes, the variables that we want to model satisfy certain order restrictions.
For instance, if M1 and M2 denote the maxima of respectively the hourly and
two-hourly aggregated rainfall amounts during a certain period at a certain loca-
tion, then necessarily M1 ≤ M2 ≤ 2M1. Nadarajah et al. (1998) propose ways to
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construct models for bivariate extreme value distributions that can incorporate such
restrictions.

For simplicity, we restrict attention to the case where the margins are standard-
Fréchet. Let G∗ be a bivariate extreme value distribution with standard-Fréchet
margins, and let the random pair (Z1, Z2) have distribution function G∗. Let H be
the spectral measure of G∗ as in (8.28), that is

P [Z1 ≤ z1, Z2 ≤ z2] = G∗(z1, z2) = exp

{∫
[0,1]

ω

z1
∨ 1 − ω

z2
H(dω)

}
.

For 0 < m < ∞, we have

P [Z2 < mZ1] = lim
δ↓0

∞∑
k=0

P [kδ < Z1 ≤ (k + 1)δ, Z2 ≤ mkδ]

= lim
δ↓0

δ

∞∑
k=0

G∗{(k + 1)δ, mkδ} − G∗(kδ, mkδ)

δ

=
∫ ∞

0
lim
δ↓0

G∗(z + δ, mz) − G∗(z, mz)

δ
dz

=
∫ ∞

0
G∗(z, mz)z−2dz

∫
(1/(m+1),1]

ωH(dω).

Hence P [Z2 ≥ mZ1] = 1 provided H((1/(m + 1), 1]) = 0, that is, the spectral
measure is concentrated on [0, 1/(m + 1)]. Similarly, P [Z1 ≥ mZ2] = 1 provided
H([0, m/(m + 1))) = 0, that is, H is concentrated on [m/(m + 1), 1]. The require-
ments (8.29) force m ≤ 1.

All in all, we can implement order restrictions on Z1 and Z2 by letting the
spectral measure H be concentrated on a subinterval [a, b] of [0, 1], where 0 ≤
a ≤ 1/2 ≤ b ≤ 1. Observe that if a = 1/2 or b = 1/2, then in view of (8.29), H

must be concentrated on 1/2, corresponding to complete dependence. So assume
a < 1/2 < b.

Nadarajah et al. (1998) describe a method to construct such H starting from
an initial measure H ∗ with density h∗ and satisfying (8.29). For

0 ≤ γa ≤ 2b − 1

b − a
, 0 ≤ γb ≤ 1 − 2a

b − a
,

define H by its point masses on a and b and its density h on (a, b) through
H({a}) = γa , H({b}) = γb, and, for a < ω < b,

h(ω) = (b − a)(αβ)2

{α(ω − a) + β(ω − b)}3
h∗
{

α(w − a)

α(w − a) + β(b − w)

}
,

where α = 2b − 1 − (b − a)γa and β = 1 − 2a − (b − a)γb. Then H satisfies
(8.29) and is concentrated on [a, b], as desired. If γa and γb are equal to their
respective upper boundaries, then h = 0, so that H merely consists of atoms at
{a} and {b}, which is the so-called natural model, already introduced by Tiago de
Oliveira (1980, 1989b).
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9.2.2 Some parametric models

Logistic model and variations

Basic form. In its simplest form, the logistic model has stable tail dependence
function

l(v1, v2) = (v
1/α

1 + v
1/α

2 )α, vj ≥ 0, (9.6)

with parameter 0 < α ≤ 1. Introduced by Gumbel (1960a,b), it is the oldest para-
metric family of bivariate extreme value dependence structures. Because of its
simplicity, it is still the most popular one. From (8.35), we can compute easily
that the corresponding spectral measure H does not have point masses on 0 or 1,
while by (8.36), its spectral density h on (0, 1) is

h(ω) = 1 − α

α
{ω(1 − ω)}1/α−2{(1 − ω)1/α + ω1/α}α−2.

The parameter α measures the strength of dependence between the two coordi-
nates. In particular, independence and complete dependence correspond to α = 1
and α ↓ 0, respectively. An interesting interpretation of the parameter α is given
in Ledford and Tawn (1998): they show that in a random sample from a bivariate
extreme value distribution with logistic dependence structure, the probability that
the maximum values in both coordinates occur at the same pair of observations
converges to 1 − α as the sample size tends to infinity. Further, Kendall’s tau
(8.57) is given by τ = 1 − α (Oakes and Manatunga 1992), whereas the correla-
tion between the two coordinates after transformation to Gumbel or exponential
margins as in (8.58) or (8.59) is equal to 1 − α2 or α
2(α){
(2α)}−1 − 1 respec-
tively (Tawn 1988a; Tiago de Oliveira 1980). The extremal coefficient in (8.56) is
l(1, 1) = 2α . All in all, the strength of dependence increases as α decreases.

Asymmetric logistic model. The logistic model has the disadvantage that it is
symmetric in the two variables. An asymmetric extension, proposed by Tawn
(1988a), is

l(v1, v2) = (1 − ψ1)v1 + (1 − ψ2)v2 + {(ψ1v1)
1/α + (ψ2v2)

1/α}α (9.7)

for vj ≥ 0, with parameters 0 < α ≤ 1 and 0 ≤ ψj ≤ 1 for j = 1, 2. For ψ1 = ψ2,
we obtain a mixture of independence and the logistic model; in particular, for
ψ1 = ψ2 = 1, the model reduces to the logistic model (9.6). Independence arises as
soon as α = 1 or ψ1 = 0 or ψ2 = 0. If α < 1, the corresponding spectral measure
H has point masses H({0}) = 1 − ψ2 and H({1}) = 1 − ψ1, while the spectral
density h is given by (8.37). Figure 9.2(a) shows the Pickands dependence function
A(t) = l(1 − t, t) for a number of parameter values.

For α ↓ 0, we get the non-differentiable model

l(v1, v2) = max{(1 − ψ1)v1 + v2, v1 + (1 − ψ2)v2}. (9.8)
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Its spectral measure H is concentrated on three points: H({0}) = 1 − ψ2, H({ψ1/

(ψ1 + ψ2)}) = ψ1 + ψ2, and H({1}) = 1 − ψ1. If ψ1 = ψ2 in (9.8), we get a
bivariate model discovered by Marshall and Olkin (1967) in the context of sur-
vival analysis and recognized as an extreme value dependence structure by Tiago
de Oliveira (1971), who called it the Gumbel model. Also, choosing ψ1 = 1 or
ψ2 = 1 in (9.8) yields the so-called bi-extremal model (Tiago de Oliveira 1969,
1974). Complete dependence arises if ψ1 = ψ2 = 1.

Bilogistic model. In the asymmetric logistic model, the spectral measure H of
(8.30) may put non-negative mass on the boundary points 0 and 1, which com-
plicates likelihood inference in certain point-process models for high-threshold
exceedances, see section 9.4.2. Therefore, starting from the representation (8.39)
of a bivariate extreme value dependence structure in terms of spectral functions,
Joe et al. (1992) propose the model

l(v1, v2) =
∫ 1

0
max{(1 − α)t−αv1, (1 − β)(1 − t)−βv2}dt, (9.9)

where 0 ≤ α < 1 and 0 ≤ β < 1. The model is another asymmetric extension of
the logistic model (9.6) to which, it reduces if α = β. The parameter (α + β)/2
may be thought of as measuring the strength of dependence, while α − β measures
the amount of asymmetry. From (8.35) we find that the spectral measure H does
not put any mass on 0 or 1, whereas (8.36) only leads to an implicit formula for
its density h on (0, 1) in terms of the root of a certain equation.

Tajvidi’s generalized symmetric logistic model. Tajvidi (1996) proposes the fol-
lowing extension of the bivariate symmetric logistic model (9.6): for vj ≥ 0,

l(v1, v2) = {v2/α

1 + 2(1 + ψ)v
1/α

1 v
1/α

2 + v
2/α

2 }α/2

where 0 < α ≤ 1 and −1 < ψ ≤ 2(α−1 − 1). The model seems to have an iden-
tifiability problem as it reduces to (9.6) with shape parameter α for ψ = 0 and to
(9.6) with shape parameter α/2 for ψ ↓ −1. Complete dependence arises as soon
as α ↓ 0, while independence occurs as α = 1 and ψ = 0.

Multivariate extensions. With the aim of constructing spatial models for envi-
ronmental extremes, Tawn (1990) proposes the following generalization of the
asymmetric logistic model (9.7) to an arbitrary number, d, of dimensions. Let Cd

be the collection of non-empty subsets c of {1, . . . , d}. The multivariate asymmetric
logistic model is defined by

l(v) =
∑
c∈Cd

{∑
j∈c

(ψc,j vj )
1/αc

}αc

(9.10)

for v ∈ [0, ∞); here 0 < αc ≤ 1, ψc,j ≥ 0, and
∑

c
j ψc,j = 1 for j = 1, . . . , d. If
αc ↓ 0 for all c ∈ Cd , we get a model originally due to Marshall and Olkin (1967),
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Figure 9.2 Pickands dependence functions: (a) asymmetric logistic (9.7) with
(α, ψ1, ψ2) equal to (0.5, 1, 1) (——), (0.5, 0.6, 0.9) (- - - - -), (0.5, 0.8, 0.5)

(· · · · · ·); (b) negative logistic (9.13) with ψ1 = ψ2 = 1 and α equal to −2 (——),
−1 (- - - - -), −0.5 (· · · · · ·).
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while the model arising when the ψc,j do not depend on j is already studied
by McFadden (1978). Smith et al. (1990) apply a certain tri-variate sub-model to
sea-level data on the coast of England.

The spectral densities corresponding to (9.10) can be computed from (8.34)
and are given explicitly in Coles and Tawn (1991). Simulation methods for the
multivariate logistic model are developed in Stephenson (2003) and the references
therein.

A simple special case of (9.10) is

l(v) = (v
1/α

1 + · · · + v
1/α

d )α, (9.11)

the multivariate symmetric logistic distribution. Genest and Rivest (1989) charac-
terize the copulas corresponding to (9.11) as the only extreme value copulas that
are also Archimedean copulas.

Tawn (1990) also mentions an extension of (9.10) in a kind of nested structure
involving a hierarchy of levels, thereby generalizing models studied in McFadden
(1978). A special tri-variate case applied in Coles and Tawn (1991) to oceano-
graphic data is the nested logistic model,

l(v1, v2, v3) = {(v1/α

1 + v
1/α

2 )α/β + v
1/β

3 }β (9.12)

where 0 < α ≤ β ≤ 1, featuring bivariate symmetric logistic dependence with
parameter α for the first two coordinates and with parameter β for the other pairs
of coordinates. Proceeding in a recursive manner from (9.12) to higher dimensions
leads to a model described by Joe (1994).

Yet another multivariate extension of the logistic model is the time series logis-
tic model by Coles and Tawn (1991). The idea is to start from a first-order Markov
process X1, . . . , Xd for which the bivariate dependence structures of the pairs
(Xj , Xj+1) fall in the (differentiable) domain of attraction of the bivariate symmet-
ric logistic model (9.6). Then, by Markov dependence, actually the joint dependence
structure of the vector (X1, . . . , Xd) lies in the domain of attraction of a d-variate
dependence structure, coined the time series logistic model. In section 10.4, this is
implicitly used to model the extremes of time series with Markov structure.

Negative logistic models and extensions. The negative logistic model introduced
by Joe (1990) is quite similar in form to the logistic model. In its asymmetric
version, the bivariate negative logistic model is defined by

l(v1, v2) = v1 + v2 − {(ψ1v1)
1/α + (ψ2v2)

1/α}α, (9.13)

where −∞ ≤ α ≤ 0 and 0 ≤ ψj ≤ 1 for j = 1, 2. Independence arises as soon
as α → −∞ or ψ1 = 0 or ψ2 = 0. If α → 0, we rediscover the non-differentiable
model (9.8). The model is symmetric for ψ1 = ψ2. Figure 9.2(b) shows the Pickands
dependence function A(t) = l(1 − t, t) for ψ1 = ψ2 = 1 and a number of values
for α.
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We can, as usual, compute the spectral measure H from (8.35) and (8.36): we
find H({0}) = 1 − ψ2, H({1}) = 1 − ψ1, and spectral density

h(ω) = (1 − α−1)(ψ1ψ2)
1/α{ω(1 − ω)}1/α−2[{ψ1(1 − ω)}1/α + (ψ2ω)1/α]α−2

for 0 < ω < 1.
In the same way as the bilogistic model is an asymmetric extension of the

bivariate symmetric logistic model, the negative bilogistic model by Coles and
Tawn (1994) is an extension of the bivariate symmetric negative logistic model.
The stable tail dependence function is again (9.9), but now with parameter ranges
−∞ < α < 0 and −∞ < β < 0. The spectral measure H does not have point
masses on 0 or 1, although its density h on (0, 1) can only be expressed in terms
of the root of a certain equation. A little reflection shows that one could even
consider (9.9) with 0 < α < 1 and −∞ < β < 0 or vice versa, thereby obtaining
some kind of hybrid between the bilogistic and negative bilogistic model.

The general multivariate version of (9.13) is

l(v) =
d∑

j=1

vj −
∑

c∈Cd :|c|≥2

(−1)|c|



∑
j∈c

(ψc,j vj )
1/αc




αc

where Cd is the collection of non-empty subsets of {1, . . . , d}; the parameter ranges
are −∞ ≤ αc ≤ 0, ψc,j ≥ 0, and

∑
c
j,|c|≥2(−1)|c|ψc,j ≤ 1 for all j = 1, . . . , d.

Also for this model, formula (8.34) can be used to find the spectral densities
of the corresponding spectral measure H , see Coles and Tawn (1991). A related
multivariate extension is proposed in Joe (1994); see also Kotz and Nadarajah
(2000), p. 130.

Polynomial Pickands dependence function

Klüppelberg and May (1999) describe the class of Pickands dependence functions
A that have a polynomial form,

A(t) = ψ0 + ψ1t + ψ2t
2 + · · · + ψmtm, 0 ≤ t ≤ 1, (9.14)

with m a positive integer. The conditions A(0) = 1, A(1) = 1, 0 ≥ A′(0) ≥ −1,
0 ≤ A′(1) ≤ 1, A′′(0) ≥ 0 and A′′(1) ≥ 0 imply the necessary restrictions



ψ0 = 1
ψ1 = −(ψ2 + · · · + ψm)

0 ≤ ψ2 + · · · + ψm ≤ 1
ψ2 ≥ 0
0 ≤ ψ2 + 2ψ3 + · · · + (m − 1)ψm ≤ 1
ψ2 + 3ψ3 + · · · + (m2)ψm ≥ 0

(9.15)

which, however, are not sufficient, in general, to guarantee that A(t) in (9.14) is a
Pickands dependence function [for instance, the function A(t) = 1 − t3 + t4 does
satisfy (9.15) but is not convex].
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The spectral measure H can be easily computed from A through (8.47). In par-
ticular, H({0}) = 1 − (ψ2 + · · · + ψm) and H({1}) = 1 − {ψ2 + 2ψ + · · · + (m −
1)ψm}, while its density on (0, 1) is h = A′′. Since A is a polynomial, complete
dependence, A(t) = max(t, 1 − t), can only be attained as m → ∞. The linear
case, m = 1, admits as only solution A(t) = 1, corresponding to independence.
Most relevant for statistical purposes are the quadratic and the cubic case, corre-
sponding to the mixed and asymmetric mixed model, respectively.

Quadratic case: mixed model. If m = 2 in (9.14), then we must have −ψ1 =
ψ = ψ2 ∈ [0, 1], leading to the (symmetric) mixed model

A(t) = 1 − ψt + ψt2, 0 ≤ t ≤ 1, (9.16)

appearing already in Gumbel (1962). Observe that this model also arises as a
special case of the negative logistic: in (9.13), take α = −1 and ψ1 = ψ2 = ψ .
Independence arises for ψ = 0, but complete dependence is not possible in this
model. For a random pair with dependence structure (9.16), the correlation coef-
ficient is 6π−2{arccos(1 − ψ/2)}2 ∈ [0, 2/3] if the margins are transformed to the
Gumbel distribution as in (8.58) (Tiago de Oliveira 1980), and an even more com-
plicated expression if the margins are transformed to the exponential distribution
as in (8.59) (Tawn 1988a; Tiago de Oliveira 1989b).

Cubic case: asymmetric mixed model. If m = 3 in (9.14), the Pickands depen-
dence function takes the form

A(t) = 1 − (ψ2 + ψ3)t + ψ2t
2 + ψ3t

3, 0 ≤ t ≤ 1, (9.17)

see Figure 9.3(a). The conditions (9.15) reduce to

ψ2 ≥ 0, ψ2 + 3ψ3 ≥ 0, ψ2 + ψ3 ≤ 1, ψ2 + 2ψ3 ≤ 1,

which are also sufficient to guarantee that A(t) in (9.17) is a Pickands dependence
function. Independence occurs at ψ2 = ψ3 = 0, a corner of the parameter space,
while, again, complete dependence is not possible.

Gaussian model

The Gaussian model is defined by its stable tail dependence function

l(v1, v2) = v1
{λ + (2λ)−1 log(v1/v2)} + v2
{λ + (2λ)−1 log(v2/v1)} (9.18)

with parameter λ ∈ [0, ∞], and with 
 the standard normal distribution function,
see Figure 9.3(b). The cases λ = 0 and λ = ∞ correspond to complete dependence
and independence, respectively. The extremal coefficient in (8.56) is l(1, 1) =
2
(λ), that is, dependence decreases as λ increases. By (8.35), the spectral measure
H does not put mass on 0 or 1, while its density on (0, 1) can be easily computed
from (8.36).
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Figure 9.3 Pickands dependence functions: (a) asymmetric mixed (9.17) with
(ψ2, ψ3) equal to (1, −0.2) (——), (0.6, 0.1) (- - - - -), (0.2, 0.2) (· · · · · ·); (b) Gaus-
sian (9.18) with λ equal to 1.25 (——), 0.83 (- - - - -), 0.5 (· · · · · ·).
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Hüsler and Reiss (1989) characterized the model as the limit dependence struc-
ture of the suitably normalized component-wise maximum in a triangular array
X1n, . . . , Xnn of independent, centred, unit-variance bivariate normal random pairs
with correlation ρn such that (1 − ρn) log(n) → λ2 as n → ∞. Hooghiemstra and
Hüsler (1996) prove a related characterization in terms of projections of standard
normal pairs in directions in the neighbourhood of a given fixed direction. Coles
and Pauli (2001) find comparable results for a class of bivariate Poisson distribu-
tions, the heuristic being that a Poisson distribution with a large intensity can be
approximated well by a normal distribution.

The model can also be obtained by the method of max-stable processes as in
(9.2), incidentally yielding a generalization to higher dimensions. Let both the index
set V and classification space S be R, the frequency measure ν be the Lebesgue
measure, and the event profile function fσ (s, v) be the probability density function
in s of the normal distribution with mean v and variance σ 2. Then the stable tail
dependence function of the pair (Zv, Zv′) is equal to (9.18) with λ = |v − v′|/(2σ).
A further extension of the model to V = R

2 is used in Smith (1991) to describe
spatial dependence between storms in function of the distance between the storm
locations; see also Coles and Tawn (1996a) and Schlather and Tawn (2003). An
alternative multivariate extension is proposed in Joe (1994).

Circular model

Using the technique of max-stable processes in (9.2), Coles and Walshaw (1994)
construct a model for describing dependence between annual maxima of wind
speeds recorded at a fixed location across continuous directional space. A typical
storm has a principal direction s ∈ S = (0, 2π ] and strength 0 < r < ∞. Its relative
strength at direction v ∈ V = (0, 2π ] is rfζ (s, v), where

fζ (s, v) = 1

2πI0(ζ )
exp{ζ cos(s − v)},

with 0 = ζ < ∞ and I0(ζ ) = (2π)−1
∫ 2π

0 exp{ζ cos(s)}ds the modified Bessel
function of order 0. The function fζ (·, v) is the von Mises circular density with
location and concentration parameters v and ζ respectively.

By (9.2), the joint distribution of the maximal wind speeds (Zv : v ∈ V0)

recorded in a given year at a collection V0 ⊂ (0, 2π ] of directions and transformed
to standard-Fréchet margins is then given by

P [Zv ≤ zv, ∀v ∈ V0] = exp

[
−
∫ 2π

0
max
v∈V0

{z−1
v fζ (s, v)}ds

]

for 0 < zv < ∞. Large values of ζ correspond to profiles that are highly concen-
trated around a single direction, the limit ζ → ∞ being that of independent Zv .
On the other hand, ζ = 0 gives a constant profile and complete dependence.
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Dirichlet model

The following model is an example of the construction of (9.4). For positive
numbers α1 and α2, let

h∗(u) = 
(α1 + α2)


(α1)
(α2)
uα1−1(1 − u)α2−1, 0 < u < 1;

observe that this is the probability density function of a Beta distribution. We have
mj = αj/(α1 + α2) for j = 1, 2 in (9.3), so that by (9.4), we obtain after some
calculation,

h(ω) = α
α1
1 α

α2
2 
(α1 + α2 + 1)


(α1)
(α2)

ωα1−1(1 − ω)α2−1

{α1ω + α2(1 − ω)}α1+α2+1
.

for 0 < ω < 1, the density of a measure H on (0, 1) satisfying (8.29).
In d dimensions, we start from the Dirichlet density

h∗(u) = 
(α1 + · · · + αd)


(α1) · · ·
(αd)
u

α1−1
1 · · · uαd−1

d

on u ∈ Sd , with parameters αj > 0 for j = 1, . . . , d. As its j th moment is mj =
αj/(α1 + · · · + αd), we obtain from (9.5) the spectral density

h(ω) = 
(α1 + · · · + αd + 1)

α1ω1 + · · · + αdωd

d∏
j=1

α
αj

j


(αj )

ω
αj −1
j

(α1ω1 + · · · + αdωd)
αj

for ω ∈ Sd , which is called the Dirichlet model in Coles and Tawn (1991).

Piecewise algebraic spectral density

For the bivariate case, Nadarajah (1999) proposes a spectral measure H in (8.28)
with point masses at 0, 0 < θ < 1, and 1, and with spectral density h on (0, θ)

and (θ, 1):

H({x}) = γx, x ∈ {0, θ, 1},

h(ω) =
{

αωr if 0 < ω < θ ,
β(1 − ω)s if θ < ω < 1.

The parameter ranges are α ≥ 0, β ≥ 0, r > −1, s > −1, and γx ≥ 0 for x ∈
{0, θ, 1}. The condition αθr = β(1 − θ)s ensures that h can be continuously
extended in θ , whereas the requirement (8.29) is met as soon as γθ ≤ 1/
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{θ ∨ (1 − θ)} and

γ0 = 1 − (1 − θ)γθ − β

s + 2
(1 − θ)s+2 + αθr+1

(
θ

r + 2
− 1

r + 1

)
,

γ1 = 1 − θγθ − α

r + 2
θr+2 + β(1 − θ)s+1

(
1 − θ

s + 2
− 1

s + 1

)
.

In total, the number of free model parameters is five. The model can accommodate
for a wide range of characteristics of bivariate extremal dependence structures.

9.3 Component-wise Maxima
Let {Y 1, . . . , Y k} be an independent sample from a d-variate extreme value dis-
tribution function G. In this section, we explain how to estimate G. We also
consider the more general situation where the dependence structure of G is that of
a multivariate extreme value distribution, whereas the margins are arbitrary, that is,

G(y) = exp[−l{− log G1(y1), . . . , − log Gd(yd)}],
for some stable tail dependence function l and arbitrary continuous distribution
functions Gj .

These estimation problems may arise in a number of situations. The most
typical one is where the Y i can be viewed as component-wise maxima over blocks
of variables of some underlying series, {X1, . . . , Xn}, that is,

Y i =
im∨

r=(i−1)m+1

Xr , i = 1, . . . , k, (9.19)

where km = n. The Xr may be observed or not. For instance, suppose Xrj denotes
the maximal water height at day r = 1, . . . , n on location j = 1, . . . , d of a cer-
tain river. If blocks correspond to years (m = 365), then Yij is the maximal water
height in year i at location j . With yj the height of a dike or dam at location j ,
the probability that there will not be a flood in year i at any of the d locations
is G(y) = P [Y i ≤ y]. This methodology is in fact the multivariate generaliza-
tion of the annual maximum approach already advocated by Gumbel (1958); see
also section 5.1. Historically, it marks the beginning of multivariate extreme value
statistics based on the probabilistic theory of multivariate extremes (Gumbel and
Goldstein 1964).

In (9.19), the Xr need not be independent or identically distributed. In the
water height example, the Xr will certainly feature within-year seasonality as well
as temporal dependence, with high water levels persisting for a number of days in a
row. Still, in the absence of long-range dependence, the operation of taking maxima
over observations aggregated over a whole year may be reasonably expected to
produce an approximately independent sample from a multivariate extreme value
distribution, see section 8.4.
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The problem of estimating a multivariate extreme value dependence structure
may be relevant outside extreme value statistics as well. Specifically, extreme value
copulas form a large, non-parametric but still manageable subclass of the class of
copulas with positive association. In this sense, they may be useful in modelling the
dependence structure of random vectors for which positive association is a reasonable
assumption.

Of course, retaining only the component-wise maxima over large blocks of obser-
vations, is, like in the univariate case, rather wasteful of data. In the multivariate
set-up, the additional problem arises that the vector of component-wise maxima is
typically not an observation itself as the maximal observations in each of the vari-
ables need not occur at the same moment. In section 9.4, we will therefore consider
the more realistic problem of estimating a multivariate extreme value distribution
based on a random sample from a distribution in its domain of attraction, thereby
extending the familiar threshold approaches in the univariate case of Chapters 4 and
5 to the multivariate case.

Broadly speaking, there are two approaches: non-parametric (section 9.3.1) and
parametric (section 9.3.2). In the non-parametric approach, we focus on the bivariate
case, the estimation problem usually being formulated as how to estimate the Pickands
dependence function A, introduced in section 8.2.5. In the parametric approach,
the unknown copula is assumed to belong to a certain parametric family, usually
one of the families described in section 9.2. In section 9.3.3, we will illustrate both
approaches with the Loss-ALAE data of Figure 9.1.

In both approaches, the complication arises that, in practice, the margins of G are
unknown. One option is to model the margins by univariate extreme value distribu-
tions. If, on the other hand, we do not want to make any assumptions on the margins,
then the alternative consists of estimating the margins by the empirical distributions.
In any case, proper credit should be given to the statistical uncertainty arising from
having to estimate the margins, although it is not clear how to do this in a semi- or
non-parametric context.

9.3.1 Non-parametric estimation

Let the random pair (Y1, Y2) have distribution function G with continuous margins
G1 and G2 and with extreme value dependence structure, that is,

G(y1, y2) = exp

[
log{G1(y1)G2(y2)}A

(
log{G2(y2)}

log{G1(y1)G2(y2)}
)]

, (9.20)

where A is a Pickands dependence function, see section 8.2.5. The joint survival
function of the pair ξ = − log G1(Y1) and η = − log G2(Y2) is

P [ξ > x, η > y] = exp

{
−(x + y)A

(
y

x + y

)}
, x ≥ 0, y ≥ 0. (9.21)

Observe that ξ and η have a standard exponential distribution.
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How to estimate A from a random sample {(ξi, ηi) : i = 1, . . . , k} from (9.21)?
We will consider two families of estimators. The first one consists of refinements of
and improvements over an estimator due to Pickands (1981), while the second one
originates in a more recent proposal by Capéraà et al. (1997). A third approach,
not discussed further in this section, consists of an estimator by Tiago de Oliveira
(1989a), elaborated upon in Deheuvels and Tiago de Oliveira (1989) and Tiago
de Oliveira (1992), the convergence rate of which is too slow to be practically
applicable.

In practice, we do not observe the (ξi, ηi) but merely the (Yi1, Yi2). We cannot
perform the required transformation as the margins are unknown. Hence, we have
to replace the (ξi, ηi) by ξ̂i = − log Ĝ1(Yi1) and η̂i = − log Ĝ2(Yi2); here Ĝj is an
estimate of Gj , for instance, the (modified) empirical distribution function Ĝj (y) =
(k + 1)−1∑k

i=1 1(Yij ≤ y) or a member of a certain parametric family, typically
that of the univariate extreme value distributions.

Pickands estimator

Let the random pair (ξ, η) be as in (9.21). For t ∈ [0, 1],

P

[
min

(
ξ

1 − t
,
η

t

)
> x

]
= P [ξ > (1 − t)x, η > tx]

= exp{−xA(t)}, x ≥ 0.

In words, the random variable min{ξ/(1 − t), η/t} has an exponential distribu-
tion with mean 1/A(t). Pickands (1981, 1989) proposed to estimate A(t) by the
reciprocal of the sample mean of the min{ξi/(1 − t), ηi/t},

1

ÂP
k (t)

= 1

k

k∑
i=1

min

(
ξi

1 − t
,
ηi

t

)
, t ∈ [0, 1]. (9.22)

The Pickands estimator, ÂP
n, is conceptually simple and easy to compute, but has

the drawback of not satisfying the necessary constraints to be itself a Pickands
dependence function. This was the motivation for a number of modifications of
the estimator. Denote the sample means of the ξi and the ηi by ξ̄k = k−1∑k

i=1 ξi

and η̄k = k−1∑k
i=1 ηi , respectively. Deheuvels (1991) proposed the variant

1

ÂD
k (t)

= 1

k

k∑
i=1

min

(
ξi

1 − t
,
ηi

t

)
− (1 − t)ξ̄k − t η̄k + 1, t ∈ [0, 1], (9.23)

while Hall and Tajvidi (2000b) suggested

1

ÂHT
k (t)

= 1

k

k∑
i=1

min

(
ξi/ξ̄k

1 − t
,
ηi/η̄k

t

)
, t ∈ [0, 1]. (9.24)
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The estimator of Deheuvels verifies ÂD
k (0) = ÂD

k (1) = 1, and the estimator of Hall
and Tajvidi satisfies ÂHT

k (0) = ÂHT
k (1) = 1 as well as ÂHT

k (t) ≥ max(t, 1 − t).
Still, neither of the three estimators satisfies the constraint that a Pickands

dependence function is convex. An obvious remedy is to replace an initial estimator
Âk by its convex minorant, that is, the largest convex function on the interval [0, 1]
that is bounded by Âk . Only in case of the Hall–Tajvidi estimator does the resulting
modification satisfy all the constraints of a Pickands dependence function; for the
Pickands and Deheuvels estimators, some further modifications are required to
meet the constraint max(t, 1 − t) ≤ A(t) ≤ 1 for t ∈ [0, 1].

A final method that has been investigated to improve estimation is through
smoothing. This might be a particularly good idea if the objective is to estimate
the second derivative of A, which, in case of a differentiable model, is equal to the
density of the spectral measure H on the interior of the unit interval, see (8.47).
Smith et al. (1990) investigate various kinds of kernel estimators based on the
original Pickands estimator, but conclude that this offers little gain over the usual
finite-difference approximation of the second derivative based on the Pickands
estimator itself. Alternatively, Hall and Tajvidi (2000b) suggest to approximate
an arbitrary initial estimator by a polynomial smoothing spline of degree three or
more, the knots being equally spaced on the unit interval. For the choice of the
smoothing parameter, they suggest a cross-validation method. They illustrate by
means of a small simulation study that this form of smoothing may lead to better
estimation of A, although they do not mention the effect of smoothing on estimat-
ing the second derivative of A. Finally, the ideas of smoothing and taking convex
minorants can be combined, in either order.

Deheuvels (1991) showed convergence of the stochastic processes

δP
k (t) = k1/2[{ÂP

k (t)}−1 − {A(t)}−1],

δD
k (t) = k1/2[{ÂD

k (t)}−1 − {A(t)}−1],

in t ∈ [0, 1] to centred Gaussian processes with covariance structures depending on
A. On the basis of this result, Deheuvels and Martynov (1996) proposed to use the
Cramér-von Mises type statistic Tk = ∫ 1

0 {δP
k (t)}2dt to test the hypothesis of inde-

pendence, A ≡ 1. To implement the test, they compute and tabulate the critical
values of the limit distribution of the test statistic, Tk, under the null hypothesis.
The use of the convergence results and the proposed test are hampered in practice
because the fact is ignored that, prior to the estimation of A, the marginal distri-
butions have to be estimated as well. Although it seems reasonable to conjecture
that this preliminary marginal estimation will not affect the root-k consistency of
the proposed estimators for A, it seems equally probable that the asymptotic dis-
tribution of the estimators will be different from when the marginal distributions
are known.
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Capéràa–Fougères–Genest estimator

Another type of estimator of A was proposed by Capéraà et al. (1997). The moti-
vation and description we give here differ greatly from those in the cited paper
and are intended to be slightly simpler.

Let (ξ, η) be a bivariate standard exponential pair with joint survival function
given by (9.21). Then

P [max{tξ, (1 − t)η} > x]

= P [ξ > x/t] + P [η > x/(1 − t)] − P [ξ > x/t, η > x/(1 − t)]

= exp(−x/t) + exp{−x/(1 − t)} − exp[−xA(t)/{t (1 − t)}]

for t ∈ [0, 1] and x > 0, so that

E[log max{tξ, (1 − t)η}] = log A(t) +
∫ ∞

0
log(x)e−xdx.

This suggests estimating A(t) by the empirical version of the previous equation,
that is,

log Âk(t) = 1

k

k∑
i=1

log max{tξi, (1 − t)ηi} −
∫ ∞

0
log(x)e−xdx.

However, Âk does not satisfy the constraints A(0) = 1 = A(1). This is the moti-
vation for the following modification, leading to the estimator of Capéraà et al.
(1997):

log ÂC
k (t) (9.25)

= log Âk(t) − t log Âk(1) − (1 − t) log Âk(0)

= 1

k

k∑
i=1

log max{tξi , (1 − t)ηi} − t
1

k

k∑
i=1

log ξi − (1 − t)
1

k

k∑
i=1

log ηi.

If required, further modifications are possible to make the estimator meet the
constraints of convexity and max(t, 1 − t) ≤ A(t) ≤ 1. One such modification is
proposed by Jiménez et al. (2001), although it leads to a consistent estimator only
if A is also log-convex.

Capéraà et al. (1997) also conduct an extensive simulation study comparing ÂP,
ÂD and ÂC for a wide range of dependence structures. Their results strongly indi-
cate that in general, ÂC performs better than ÂD, which in turn is preferable over
ÂP. In a more restricted simulation study, Hall and Tajvidi (2000b) demonstrate
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that further improvements can be made by taking the convex hull of either ÂC or
ÂHT and applying constrained spline smoothing.

9.3.2 Parametric estimation
Let l(·; θ) be a parametric family of d-variate stable tail dependence functions
indexed by the parameter vector θ ; see section 9.2 for a list of popular paramet-
ric families. Assume that the d-variate distribution function G has an extreme
value dependence structure with stable tail dependence function l(·; θ) for some
unknown θ :

G(y) = exp[−l{− log G1(y1), . . . , − log Gd(yd); θ}]. (9.26)

How can we estimate θ from an independent sample {Y i : i = 1, . . . , k} from G?
The answer differs according to the nature of our assumptions on the margins of G.

If the Y i arise as component-wise maxima over large blocks of variables, it
is natural to model the margins Gj (j = 1, . . . , d) as generalized extreme value
(GEV) distributions

Gj(yj ) = exp

{
−
(

1 + γj

yj − µj

σj

)−1/γj

+

}
. (9.27)

Here, γj is the extreme value index, while µj and σj > 0 are location and scale
parameters, respectively. The combination of (9.26) and (9.27) now leads to a
fully parametric model for G. The marginal and dependence parameters can be
estimated simultaneously by maximum likelihood. Moreover, such joint modelling
allows transfer of information from one margin to the other (Barão and Tawn 1999).
Recall from section 5.1 that for the margin parameters, the estimation problem is
regular for γj > −1/2. For the dependence parameter θ , complications may arise
for parameter values corresponding to independence, and these have to be dealt
with on a case-by-case basis, see below.

However, jointly modelling the margins and the dependence structure may not
always be desirable. For instance, goodness-of-fit tests may cast doubts on the
hypothesis of extreme value margins, although we may still believe in (9.26).
Conversely, Dupuis and Tawn (2001) show that mis-specifying the dependence
structure may have large adverse effects on the estimates of the margin parameters.

A more prudent approach, then, consists of the following. Write (9.26) as

G(y; θ) = C{G1(y1), . . . , Gd(yd); θ}, (9.28)

where

C(u; θ) = exp[−l{− log(u1), . . . , − log(ud); θ}]
is the extreme value copula corresponding to l(·; θ). The copula density is

c(u; θ) = ∂d

∂u1 · · · ∂ud

C(u; θ).
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If we would know the margins Gj , then (9.28) would specify a parametric model
for the distribution of the vector (G1(Y1), . . . , Gd(Yd)). Now, as we do not know
the margins, we replace them by the (modified) empirical distribution functions:

Ĝj (y) = 1

k + 1

k∑
i=1

1(Yij ≤ y).

Acting as if the Ĝj were the true margins, we can estimate θ by maximizing the
pseudo-likelihood

L(θ) =
k∏

i=1

c{Ĝ1(Yi1), . . . , Ĝd(Yid); θ}. (9.29)

The resulting estimator for θ is in fact a special case of the one considered in
Genest et al. (1995). They establish asymptotic normality of the pseudo-maximum
likelihood estimator for the parameter of a family of copulas in case the margins are
unknown and are estimated by the empirical distribution functions. In particular,
they show that the estimator is efficient in case the true parameter corresponds to
independence. They also give an explicit expression for the variance-covariance
matrix and propose a consistent estimator.

Specific models

Logistic model. Despite the large number of ad hoc methods for statistical infer-
ence on the parameter α ∈ (0, 1] in the symmetric bivariate logistic model (9.6)
(Gumbel and Mustafi 1967; Hougaard 1986; Shi 1995b; Tiago de Oliveira 1980,
1984, 1989b; Yue 2001), maximum likelihood estimation is nevertheless the most
efficient. In case 0 < α < 1, the estimation problem is regular. Oakes and Man-
atunga (1992) compute the information matrix in case of two-parameter Weibull
margins, whereas Shi (1995a) computes the information matrix in case of gen-
eralized extreme value margins and symmetric multivariate logistic dependence
structure (9.11). Robust estimation within the bivariate logistic model is considered
in Dupuis and Morgenthaler (2002).

In the special case α = 1, corresponding to independence, the estimation prob-
lem is non-regular because of two reasons: the parameter is on the boundary
of the parameter space, and the variance of the score statistic is infinite. Tawn
(1988a) investigates this case more closely and comes to the following conclusions.
Assume first that the margins are known. Then we can transform the observations
to standard exponential margins with joint survival function as in (8.51) for l as in
(9.6); denote the transformed sample by (ξi, ηi), i = 1, . . . , k. The score statistic
at α = 1 is equal to

Uk =
k∑

i=1

u(ξi, ηi), (9.30)

where u(ξ, η) = ξ log ξ + η log η − log(ξη)

−(ξ + η − 2) log(ξ + η) − (ξ + η)−1,



320 STATISTICS OF MULTIVARIATE EXTREMES

that is, u(ξ, η) is the derivative of the log-likelihood evaluated at α = 1. The
asymptotic distribution of the score statistic is

(
2−1k log k

)−1/2
Uk

D→ N(0, 1), k → ∞. (9.31)

Large negative values of the score statistic lead to rejection of the null hypoth-
esis α = 1 versus the alternative α < 1; in particular, the asymptotic p-value
is p = 
{(2−1k log k)−1/2Uk}, with 
 the standard normal distribution function.
Unfortunately, the convergence in (9.31) is rather slow, so that the asymptotic p-
value may be far from the true one; therefore, Tawn (1988a) suggests to compute
small sample critical values at the desired significance levels by simulation. Alter-
natively, if λk denotes the likelihood ratio, that is, the ratio between the likelihoods
at the maximum likelihood estimate α̂k and at α = 1, then

lim
k→∞

P [2 log λk ≤ x] =
{


(x1/2), if x ≥ 0,
0, if x < 0,

(9.32)

leading to a likelihood ratio test for α = 1 versus α < 1.
Typically, the marginal distributions are unknown and have to be estimated.

Suppose that the margins follow an extreme value distribution and that the shape
parameters are such that the maximum likelihood estimators are regular, that is,
the extreme value indices are larger than −1/2, see section 5.1. Tawn (1988a)
shows that if α = 1, then the maximum likelihood estimator for α is asymptotically
independent from the maximum likelihood estimators for the margin parameters. In
particular, having to estimate the margin parameters does not change the asymptotic
behaviour of the score and likelihood ratio tests for independence.

In the asymmetric bivariate logistic model (9.7), the problems already encoun-
tered for the symmetric bivariate logistic model are aggravated by the fact that
the parameters ψj are non-identifiable when α = 1. Tawn (1988a) pragmatically
suggests to accept independence in the asymmetric model if it is accepted in the
symmetric case.

In the multivariate case, testing for independence is certainly not simpler
than in the bivariate case. By way of example, Tawn (1990) mentions the rather
non-standard asymptotic behaviour of the score statistics at independence for the
multivariate symmetric model (9.11) and the nested model (9.12). As pairwise
independence implies independence, a simpler approach consists of applying just
the relevant bivariate tests.

Finally, choosing between all the different logistic models is not easy. A proper
understanding of the physical process generating the data should assist in identi-
fying the appropriate structure, see, for instance, Tawn (1990).

Mixed model. Also for the mixed model (9.16), despite the abundance of ad
hoc methods for statistical inference on ψ (Gumbel and Mustafi 1967; Posner
et al. 1969; Tiago de Oliveira 1980, 1989b; Yue 2000; Yue et al. 1999), maximum
likelihood estimation is the most efficient. The estimation problem is regular if
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0 < ψ < 1, while at independence, ψ = 0, the situation is completely parallel
with the one for the bivariate symmetric logistic model (9.6) at independence, the
only differences being that now the score function at ψ = 0 is

u(ξ, η) = ξη

ξ + η
+ 2

ξη

(ξ + η)3
− ξ 2 + η2

(ξ + η)2
,

the asymptotic distribution of the score statistic Uk =∑k
i=1 u(ξi, ηi) is

(
15−1k log k

)−1/2
Uk

D→ N(0, 1), k → ∞,

and the null hypothesis ψ = 0 can be rejected in favour of the alternative ψ > 0
in case of large positive values of Uk , with p-value 1 − 
{(15−1k log k)−1/2Uk};
see Tawn (1988a), who also proposes a method to discriminate between the mixed
and logistic model.

For the asymmetric mixed model (9.17), Tawn (1988a) reports that the score
vector at independence converges to a bivariate normal distribution, although he
does not give any details.

9.3.3 Data example

We applied the methods of this section to the 1500 Loss-ALAE data of Figure 9.1.
As the data do not arise from a time series, there seems no obvious way to parti-
tion the data into groups. Therefore, we randomly permutated the data and formed
k = 50 groups of size m = 30, seeking a compromise between the conflicting crite-
ria of large group sizes and a large number of groups. Figure 9.4(a) shows, on a log-
scale base 10, a scatterplot of the original data with, superimposed, the component-
wise group maxima (yi1, yi2) (i = 1, . . . , k) computed in (9.19). We transformed
the block maxima to standard exponential margins by ξi = − log Ĝ1(yi1) and
ηi = − log Ĝ2(yi2), where Ĝj (y) = (k + 1)−1∑k

i=1 1(yij ≤ y) for j = 1, 2 are the
(modified) empirical distribution functions, see Figure 9.4(b).

Next, we estimated Pickands dependence function by the various parametric and
non-parametric estimators of this section. Figure 9.5(a) shows the non-parametric
estimators by Pickands (9.22), Deheuvels (9.23), Hall–Tajvidi (9.24), and Capéràa–
Fougères–Genest (9.25). The Pickands estimator does not satisfy the requirements
A(0) = A(1) = 1; the estimators of Deheuvels and Hall–Tajvidi are modifications
of the Pickands estimator to enforce this constraint. All estimators are clearly
below the upper boundary of the triangle corresponding to independence. There
also seems some evidence of asymmetry. Unfortunately, none of the estimators
is convex, as a Pickands dependence function should be. A possible remedy (not
shown) would be to replace the estimators by their convex minorants.

Estimates that do satisfy all requirements of a Pickands dependence function
result from fitting parametric models as in section 9.3.2. We decided to employ
the semi-parametric likelihood of (9.29) with margins estimated by the empirical
distribution functions rather than to fit the fully parametric model consisting of
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Figure 9.4 Loss-ALAE data: (a) Scatterplot of the data with, superimposed, the
component-wise maxima corresponding to a random partition of the data in 50
blocks of size 30. (b) Scatterplot of these 50 component-wise maxima transformed
to standard exponential margins.
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Figure 9.5 Loss-ALAE data: Pickands dependence function estimates based on
block maxima of Figure 9.4. (a) Non-parametric estimates by Pickands (· · · · · ·),
Deheuvels (- - - - -), Hall–Tajvidi (– · – · –), and Capéràa–Fougères–Genest (——).
(b) Semi-parametric estimates based on (9.29) for asymmetric logistic (——), logis-
tic (- - - - -), and bilogistic (– · – · –) models together with non-parametric estimate
by Capéràa–Fougères–Genest (· · · · · ·).
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(9.26) and (9.27) because the fit of the GEV to the margins was unsatisfactory
(not shown). For simplicity, we only considered the logistic (9.6), asymmetric
logistic (9.7), and bilogistic (9.9) models, although of course the other models in
section 9.2 might have been tried as well. Since A′(1) = ψ1 for the asymmetric
logistic model, the non-parametric estimates in Figure 9.5 strongly suggest ψ1 = 1,
and indeed, imposing this constraint did not lead to a significant decrease in like-
lihood. The parameter estimates are given in Table 9.1, and the corresponding
Pickands functions are shown in Figure 9.5(b). For comparison, we also show
the Capéràa–Fougéres–Genest estimate, which is close to the asymmetric logis-
tic one.

The p-value of Tawn’s score statistic for independence (9.30) is equal to 0.005,
clearly rejecting independence. The likelihood ratio test of the logistic against the
bilogistic model gives a p-value of 0.12, showing only weak evidence against
symmetry. Alternatively, in the case of the asymmetric logistic model with ψ1 = 1,
symmetry corresponds to the boundary value ψ2 = 1. This time, the likelihood
ratio statistic should be compared with a one-half chi-squared distribution with one
degree of freedom (Tawn 1988a), also resulting in the p-value P [χ2 > 1.37]/2 =
0.12. Note that in all these similar tests and confidence intervals, the estimation
uncertainty arising from having to estimate the margins is not taken into account.

An interesting way to visualize the estimated distribution function of
component-wise maxima

Ĝ(y1, y2) = exp

[
log{Ĝ1(y1)Ĝ2(y2)}Â

(
log{Ĝ2(y2)}

log{Ĝ1(y1)Ĝ2(y2)}

)]

is by quantile curves,

Q(Ĝ, p) = {(y1, y2) : Ĝ(y1, y2) = p}, 0 < p < 1. (9.33)

Table 9.1 Loss-ALAE data: Parameter estimates, standard
errors, and negative log-likelihoods for semi-parametric likeli-
hood (9.29) with logistic, asymmetric logistic (constrained at
ψ1 = 1) and bilogistic models fitted to the block maxima of
Figure 9.4.

Model Parameter (Standard error) NLLH

Logistic α = 0.73 (0.08) 92.55

Asymmetric logistic α = 0.61 (0.13) 91.87
ψ2 = 0.58 (0.30)

Bilogistic α = 0.23 (0.23) 91.38
β = 0.90 (0.06)
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Figure 9.6 Loss-ALAE data: Estimated quantile curves Q(F̂ , p) (9.34) for p =
0.98, 0.99, 0.995 based on block maxima of Figure 9.4(a) (non-parametric esti-
mates for margins and Capéràa–Fougéres–Genest estimate for Pickands dependence
function).

As Ĝ(y1, y2) = p if and only if there exists w ∈ [0, 1] such that Ĝ1(y1) =
p(1−w)/Â(w) and Ĝ2(y2) = pw/Â(w), the above quantile curve consists of the points

Q(Ĝ, p) =
{(

Ĝ←
1 {p(1−w)/Â(w)}, Ĝ←

2 {pw/Â(w)}
)

: w ∈ [0, 1]
}

.

Exploiting the relationship Fm ≈ G, with m the block size (m = 30 for the Loss-
ALAE data), quantile curves of Ĝ can be interpreted as quantile curves of F̂

by

Q(F̂ , p) := Q(Ĝ, pm). (9.34)

Figure 9.6 shows the quantile curves Q(F̂ , p) for p = 0.98, 0.99, 0.995 with the
margins estimated non-parametrically and with Pickands dependence function esti-
mated by the Capéràa–Fougères–Genest estimator (9.25).

9.4 Excesses over a Threshold

Let F be a d-variate distribution function and let X1, . . . , Xn be an independent
sample from F . Let x ∈ R

d be such that 1 − Fj (xj ) is of the order 1/n for all
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j . How to estimate 1 − F(x)? Because we want to control the relative estimation
error, the empirical distribution function is hardly of any use here. For example,
for x = xn such that 1 − F(xn) = 1/n and with F̂n the empirical distribution
function of the sample, the asymptotic distribution of {1 − F̂n(xn)}/{1 − F(xn)}
is Poisson(1), whereas in fact we want it to converge to 1.

In order to make any progress, we need to make some regularity assumptions
on F that will allow us to extrapolate from within the sample region to its border
or even beyond. Of course, we could assume a parametric model for F , but this
assumption comes at a high price: how reliable do you believe the model to be
outside the sample region? What we need instead is a more flexible assumption
that still allows us to make the necessary jump out of the data.

Therefore, we will assume that F is in the domain of attraction of a d-
variate extreme value distribution function G, the dependence structure of which
is described by the stable tail dependence function l, see (8.14). Observe that this
assumption is much more realistic than the one of section 9.3, where we assumed
the data to come from a multivariate extreme value distribution itself, rather than
from a distribution in its domain of attraction.

Recall that the condition F ∈ D(G) motivates the approximation (8.81). There-
fore, basically our estimator will take the form

F̂ (x) = exp[−l̂{− log F̂1(x1), . . . , − log F̂d(xd)}]. (9.35)

Here, the F̂j (xj ) are estimators for the marginal tails, typically by one of the
methods of Chapters 4–5. So the task considered in this section is the estimation
of the stable tail dependence function l, or, equivalently, of the exponent measure
µ∗, of the spectral measure S w.r.t. any two norms on R

d , or, in the bivariate case,
of Pickands dependence function A, amongst others.

We have seen that there does not exist a finite-dimensional parametrization of
the class of dependence structures for multivariate extreme value distributions. To
facilitate statistical inference, we may still assume a parametric model, preferably
one that combines parsimony, analytical tractability and flexibility, and, if possible,
is motivated from the data; see section 9.4.2. But first, we consider in section 9.4.1
the more principled approach of not making such an assumption at all and estimat-
ing the extreme value dependence structure in its full generality. In section 9.4.3,
we will apply the techniques to the Loss-ALAE data of Figure 9.1.

9.4.1 Non-parametric estimation

Estimation principle

In order to estimate the stable tail dependence function, l, we treat the limit relation
(8.90) connecting l and CF , the copula of F , as an approximate equality for small
enough s. Denote the coordinates of Xi by Xij for j = 1, . . . , d. Setting s = k/n
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with k = kn → ∞ and k/n → 0 leads to an estimator of the form

l̃(v) = 1

k

n∑
i=1

1{∃j = 1, . . . , d : F̂j (Xij ) > 1 − (k/n)vj }

= 1

k

n∑
i=1

1
{

k

n
X̂∗i �≤ (1/v1, . . . , 1/vd)

}
. (9.36)

Here, F̂j is an estimator of the marginal distribution Fj (see below), whereas

X̂∗ij = 1/{1 − F̂j (Xij )}, j = 1, . . . , d.

As we will see later, the estimator l̃ of (9.36) is not directly suited to be substituted
in (9.35), and will have to be modified. Still, formula (9.36) contains the gist of
all estimators to come.

Since the convergence in (8.90) is locally uniform in v ∈ [0, ∞), we may
replace 1 − svj by any function of the form 1 − svj + o(s) as s ↓ 0. Taking empir-
ical versions leads to variants of the estimators considered. For instance, the choice
e−svj leads to l̃ as in (9.36) but with X̂∗ij = −1/ log F̂j (Xij ), see, for instance,
Capéraà and Fougères (2000a). Alternatively, Abdous et al. (1999) prefer (1 − s)vj .
Also, rather than taking a single s, Abdous et al. (1999) propose to integrate over
s > 0 with respect to a suitable kernel, thereby replacing the problem of how to
choose s by how to choose the kernel and, more importantly, the bandwidth.

Estimating the margins

We still have to specify the F̂j (Xij ) in the definition of X̂∗ij . There are two options:
non-parametric or parametric. In the first option, we estimate F̂j by the empirical
distribution function or a variant of it. Denote the rank of Xij among X1j , . . . , Xnj

by Rij =∑n
s=1 1(Xsj ≤ Xij ), that is, Rij = r if and only if Xij = X(r),j , where

X(1),j ≤ · · · ≤ X(n),j denote the order statistics of X1j , . . . , Xnj . Then possible
estimators are

F̂j (Xij ) =
{

n−1(Rij − α), for α ∈ {0, 1/2, 1},
(n + 1)−1Rij .

(9.37)

For instance, the choice α = 1 leads to the so-called tail empirical dependence
function

l̃(v) = 1

k

n∑
i=1

1{∃j = 1, . . . , d : Rij > n + 1 − kvj } (9.38)

(Drees and Huang 1998; Huang 1992). The motivation to modify the ordinary empiri-
cal distribution function F̂j (Xij ) = n−1Rij in the way described is to improve the rel-
ative estimation accuracy of 1 − Fj evaluated at high order statistics: for instance, if
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Fj is continuous, then E[1 − Fj (X(n),j )] = 1/(n + 1), whereas 1 − F̂j (X(n),j ) = 0
in case F̂j is the ordinary empirical distribution function.

The second option of estimating F̂j (Xij ) starts from the Generalized Pareto
(GP) approximation to the tail function 1 − Fj (Pickands 1975), see Chapter 5.
Choose the threshold uj = X(n−k),j , the (k + 1)th largest observation in the j th
variable, and set

1 − F̂j (Xij ) = k

n

(
1 + γ̂j

Xij − uj

σ̂j

)−1/γ̂j

+
(9.39)

where (γ̂j , σ̂j ) are estimators of the parameters of the approximating GP distribu-
tion to the excess distribution over the threshold uj . In that case,

l̃(v) = 1

k

n∑
i=1

1

{
∃j = 1, . . . , d :

(
1 + γ̂j

Xij − uj

σ̂j

)1/γ̂j

+
>

1

vj

}
. (9.40)

The GP parameters can, for instance, be estimated by

γ̂j = M1j + 1 − 1

2

(
1 − M2

1j

M2j

)−1

, (9.41)

σ̂j = uj

(3M2
1j − M2j )

1/2

1 + (γ̂j )−

(
1 + 4(γ̂j )−
1 + 2(γ̂j )−

)1/2

, (9.42)

where

Mrj = 1

k

k−1∑
i=0

{log X(n−i),j − log X(n−k),j }r , r = 1, 2,

(γ̂j )− = (−γ̂j ) ∨ 0

(de Haan and Resnick 1993). These estimators can only be used if the data are
positive; in particular, they are not translation invariant. An alternative that does
not share these drawbacks consists of estimating the GP parameters by maximum
likelihood like in Smith (1987), see section 5.3.

Whereas the marginal distributions do not influence the non-parametric version
of F̂j (Xij ), the performance of the parametric version (9.39) strongly depends on
the quality of the GP approximation to the excess distribution and also on the
performance of the estimators of the GP parameters. The estimator (9.40) may
perform poorly even if the convergence in (8.90) is fast.

Exponent and spectral measure

The estimator l̃ of (9.36) with margins specified as in (9.37) or (9.39) leads to
estimators of the exponent measure µ∗, the spectral measure S w.r.t. two arbitrary
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norms ‖ · ‖i (i = 1, 2) on R
d , and, in the bivariate case, Pickands dependence

function A. First of all,

l̃(v) = µ̃∗
(
[0, ∞] \ [0, (1/v1, . . . , 1/vd)]

)
, (9.43)

where

µ̃∗(·) = 1

k

n∑
i=1

1
(

k

n
X̂∗i ∈ ·

)
(9.44)

is the empirical version of (8.94), treated as an equality at t = n/k. Important
special cases are the tail empirical measure

µ̃∗(·) = 1

k

n∑
i=1

1

{(
k

n + 1 − Rij

)d

j=1

∈ ·
}

, (9.45)

derived from (9.38), and its semi-parametric variant

µ̃∗(·) = 1

k

n∑
i=1

1



({

1 + γ̂j

Xij − uj

σ̂j

}1/γ̂j

+

)d

j=1

∈ ·

 , (9.46)

derived from (9.40), see de Haan and Resnick (1993).
Second, by (8.16), we can turn µ̃∗ into an estimator of the spectral measure

S: set

S̃(·) = 1

k

n∑
i=1

1(R̂i > n/k, Ŵ i ∈ · ), (9.47)

where, with T as in (8.15),

(R̂i , Ŵ i ) = T (X̂∗i ) = (‖X̂∗i‖1, X̂∗i/‖X̂∗i‖2). (9.48)

A useful choice of the two norms is the sum-norm, ‖x‖ = |x1| + · · · + |xd |, in
which case the transformation T simplifies to

R̂i = X̂∗i1 + · · · + X̂∗id and Ŵij = X̂∗ij /R̂i . (9.49)

The estimator of the spectral measure in (9.47) is based on all observations for
which the radial component exceeds n/k. Their number is random, although by
(8.97), there must be approximately kS(�) such observations. If we want to have
exactly k observations involved in the estimation, we could choose s = 1/R̂(n−k),
the (k + 1)th largest of the R̂i , rather than s = k/n as we did until now, giving

S̃(·) = R̂(n−k)

1

n

n∑
i=1

1{R̂i > R̂(n−k), Ŵ i ∈ · }, (9.50)
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or equivalently

S̃(�) = k

n
R̂(n−k), (9.51)

S̃(·)/S̃(�) = 1

k

n∑
i=1

1{R̂i > R̂(n−k), Ŵ i ∈ · }. (9.52)

The above estimator of S̃(�) may be rather volatile in k, and a good idea is to
take the average over a range of k-values (Capéraà and Fougères 2000a).

However, an even better idea might be to choose the two norms equal to the
sum-norm: in that case, the total mass of the spectral measure (denoted now by H )
on the unit simplex Sd is by (8.26) always equal to the number of dimensions, d.
Replacing the estimate H̃ (Sd) by its true value d in (9.52) leads to the estimator

Ĥ (·) = d

k

n∑
i=1

1{R̂i > R̂(n−k), Ŵ i ∈ · }, (9.53)

with R̂i and Ŵij as in (9.49). If needed, the estimator of H can be turned into an
estimator of the spectral measure w.r.t. two general norms through (8.38).

Pickands dependence function

In the bivariate case, we can transform the above estimators into estimators of
Pickands dependence function A. Starting from (9.36), we get

Ã(t) = l̃(1 − t, t) = 1

k

n∑
i=1

1[max{(1 − t)X̂∗i1, tX̂∗i2} > n/k]. (9.54)

In particular, the extremal coefficient θ = 2A(1/2) in (8.56) may be estimated by
setting t = 1/2: replacing k by 2k and letting l̃ be the tail empirical dependence
function (9.38) yields

θ̃ = 1

k

n∑
i=1

1{max(Ri1, Ri2) > n − k},

variants of which are considered in Falk and Reiss (2001, 2003). Alternatively,
since A(t) = t l{(1 − t)/t, 1} we could use t l̃{(1 − t)/t, 1} to estimate A(t) (Joe
et al. 1992), although this estimator has the drawback of vanishing at t = 0,
whereas in fact A(0) = 1.

The above estimator for A is not convex, and this property can be ensured if
we start from an estimate of the spectral measure rather than from the stable tail
dependence function. If S̃ denotes the denotes the estimator (9.47) of the spectral
measure S, we obtain from (8.49),

Â(t) = 1

k

n∑
i=1

1(R̂i > n/k)R̂−1
i max{(1 − t)X̂∗i1, tX̂∗i2}, (9.55)
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with R̂i as in (9.48). Estimator Ã was proposed by Capéraà and Fougères (2000a)
in case both norms are equal to the sum-norm. Finally, the estimator Ĥ in (9.53)
leads via (8.46) to

Â(t) = 2

k

n∑
i=1

1{R̂i > R̂(n−k)} max{(1 − t)Ŵi1, tŴi2}, (9.56)

with R̂i and Ŵij as in (9.49).
The estimator of the extremal coefficient θ = 2A(1/2) corresponding to (9.56) is

θ̂ = 2

k

n∑
i=1

1{R̂i > R̂(n−k)} max(Ŵi1, Ŵi2). (9.57)

Observe that this estimator is always smaller than two, that is, even if the margins
are perfectly independent, the estimator will still point to asymptotic dependence.
The origin of this deficiency can be traced back to the approximation (8.93) where-
upon the estimator is based: as discussed already, the approximation tends to
undervalue the true probability of joint occurrences of extremes, the consequence
of which is an inherent bias towards stronger asymptotic dependence for estimators
that are based on it.

Finally, observe that the estimators Â in (9.55) and (9.56) do not satisfy the con-
straint max(t, 1 − t) ≤ A(t) ≤ 1. A possible solution consists in the modification

Ā(t) = max{t, 1 − t, Â(t) + 1 − (1 − t)Â(0) − tÂ(1)}. (9.58)

Via the usual transformation formulae, for instance, (8.44) or (8.47), we can turn
Ā into estimators of the stable tail dependence function or the spectral measure
that satisfy all the relevant constraints as well. Still, the modification (9.58) is
rather ad hoc, and it is not clear what the consequences are for the performance of
the estimator. Moreover, the procedure cannot be generalized to higher dimensions.
The problem of constructing truly non-parametric estimators of the spectral measure
that satisfy all the necessary constraints remains open.

Estimating F

Now let us return to the problem of estimating 1 − F(x) for large xj as in (9.35).
Typically, the marginal tail probabilities 1 − Fj (xj ) will be of the order O(1/n) or
even smaller, so that the estimator l̃ given in (9.36) is not suited to be substituted
into (9.35), basically for the same reason why the empirical distribution is not
a very good estimator in the first place: the estimator would involve a region
of the sample space with (almost) no data. A possible remedy is to exploit the
homogeneity of l: since l(tv) = t l(v) for t ≥ 0 and v ≥ 0, we can put

l̂(v) = ‖v‖l̃(v/‖v‖), v ∈ [0, ∞) \ {0}, (9.59)
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with l̃ as in (9.36), while ‖ · ‖ denotes an arbitrary norm on R
d . Typical choices

for the norm are the Euclidean norm ‖v‖ = (v2
1 + · · · + v2

2)
1/2 (de Haan and de

Ronde 1998) and the max-norm ‖v‖ = |v1| ∨ · · · ∨ |vd | (Drees 2001).
The estimator l̂(v) of (9.59) has the advantage that for any non-zero v, the

number of observations used is of the order k. It also inherits the homogeneity
property of l. However, l̂ in (9.59) is not connected in a natural way to an exponent
measure µ̂∗ or a spectral measure Ŝ like l̃ is connected to µ̃∗ and S̃ in (9.43)
and (9.47).

An alternative is to start from S̃ in (9.47) and exploit the connection between
l and S in (8.23) to define instead, for v ≥ 0,

l̂(v) = 1

k

n∑
i=1

1(R̂i > n/k)R̂−1
i

d∨
j=1

(vj X̂∗ij ), (9.60)

with R̂i = ‖X̂∗i‖1. Similarly, from (8.17), we can define µ̂∗ from S̃ by

µ̂∗ ◦ T −1(dr, dω) = r−2drS̃(dω),

with T the mapping (8.15). Both l̂ from (9.60) and µ̂∗ above satisfy the required
homogeneity properties; moreover, l̂ is convex.

Alternatively, taking both norms equal to the sum-norm, we can estimate l

starting from the estimator Ĥ of (9.53) rather than from S̃, leading to

l̂(v) = d

k

n∑
i=1

1{R̂i > R̂(n−k)}
d∨

j=1

(vj Ŵij ), (9.61)

with R̂i and Ŵij as in (9.49).
In the bivariate case, we can combine (9.35) with the definition of Pickands

dependence function to find the estimator

F̂ (x1, x2) = exp

[
log{F̂1(x1)F̂2(x2)}Â

(
log{F̂2(x2)}

log{F̂1(x1)F̂2(x2)}

)]
. (9.62)

This estimator coincides with the one of (9.35) if we set Â(t) = l̂(1 − t, t) for one
of the choices of l̂ above. Observe that this Â is the same as the one in (9.55) or
(9.56) for l̂ as in (9.60) or (9.61), respectively.

Literature overview

The tail empirical dependence function (9.38) and tail empirical measure (9.45)
were introduced by DM Mason in an unpublished 1991 manuscript and Huang
(1992). Drees and Huang (1998) showed that the tail empirical dependence function
attains the optimal rate of convergence for estimators of the stable tail dependence
function.
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The estimator (9.46) of the exponent measure was first considered by de Haan
and Resnick (1993). They proposed to estimate the Generalized Pareto parameters
as in (9.41) and (9.42). The paper is one of the few ones in the literature on
multivariate extremes that is written down for arbitrary dimension.

For bivariate data, the estimator (9.47) of the spectral measure has been con-
sidered in a number of papers. The first hint was given in de Haan (1985) for
both norms equal to the Euclidean norm as in (8.31). The idea was taken up fur-
ther by Einmahl et al. (1993) under the simplifying assumption that the marginal
distributions are the same and heavy-tailed. The restriction of identical margins
was removed in Einmahl et al. (1997), who, for the combination of max-norm and
Euclidean norm (8.33), proposed S̃ as in (9.47) with µ̃∗ being the estimator (9.46)
of de Haan and Resnick (1993). This estimator for S was modified into a fully
non-parametric one in Einmahl et al. (2001) by choosing for µ̃∗ the tail empirical
measure (9.45). Alternatively, Capéraà and Fougères (2000a) considered the case
where both norms are equal to the sum-norm; their estimator is computed as in
(9.47) and (9.49) and with margins transformed to the standard Fréchet distribu-
tion. Still in the bivariate case, Abdous et al. (1999) replaced 1 − svj by (1 − s)vj

in (8.90) and consider kernel variants of (9.36).
The asymptotic theory for estimators of the dependence structure of extremes is

rather involved, a major difficulty being the fact that the margins are unknown and
are to be estimated as well. Useful tools in the area of local empirical processes
can be found in Stute (1984) and Einmahl (1997).

Estimation of 1 − F(x) can be paraphrased as estimation of the probability of
the ‘failure region’ R

d \ (∞, x]. More general regions are considered in de Haan
and de Ronde (1998) and de Haan and Sinha (1999). In de Haan and Huang (1995),
estimators of 1 − F(x) are turned into estimators of quantile curves Q(F, p) =
{x ∈ R

d : 1 − F(x) = p} for small failure probabilities p.

9.4.2 Parametric estimation

We consider again the setting of d-variate observations x1, . . . , xn that can be
assumed to be realizations of independent random vectors with common distribu-
tion F , the aim being to estimate F(x) for x such that Fj (xj ) is close to one. We
assume that F is in the domain of attraction of some extreme value distribution
function G, of which the stable tail dependence function belongs to some paramet-
ric family, l(· ; θ), indexed by a parameter (vector) θ , usually one of the families
described in section 9.2.

The domain-of-attraction condition together with the parametric specification
of the stable tail dependence function leads by the theory in section 8.3 to para-
metric models for F in regions of its support where all coordinates are large. The
model parameters can be estimated by maximum likelihood, leading then to the
desired estimates of F(x). Still, different formulations of the domain-of-attraction
condition lead to different models and hence to different estimators. The two most
popular methods are the so-called point-process method (Coles and Tawn 1991;
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Joe et al. 1992) and the censored-likelihood method (Ledford and Tawn 1996;
Smith 1994; Smith et al. 1997), which we will discuss in turn in this section. For
completeness, we mention that Tajvidi (1996) developed a procedure based on
multivariate generalized Pareto distributions as in (8.68).

Point-process method

Coles and Tawn (1991) and Joe et al. (1992) found a way to turn the point pro-
cess characterizations (8.73) and (8.98) into an estimation method. The method
was applied to oceanographic data in Coles and Tawn (1994) and Morton and
Bowers (1996). We present a derivation of the point-process likelihood by a quite
different but simpler argument than the above authors, incidentally avoiding the
point-process machinery.

By (8.93), we find

F(x) ≈ 1 − l{1 − F1(x1), . . . , 1 − Fd(xd); θ}, (9.63)

provided all 1 − Fj (xj ) are sufficiently small. Univariate theory suggests to model
the margins by generalized Pareto distributions: for j = 1, . . . , d and a high thresh-
old uj , we model Fj on [uj , ∞) by

Fj (xj ) ≈ 1 − λj

(
1 + γj

xj − uj

σj

)−1/γj

+
, xj ≥ uj . (9.64)

with λj = 1 − Fj (uj ). In terms of the function V∗ of (8.8), we arrive at the model

F(x) ≈ 1 − V∗{z; θ), x ∈ R
d \ (−∞, u], (9.65)

zj = zj (xj ) =




λ−1
j

(
1 + γj

xj − uj

σj

)1/γj

+
if xj > uj ,

1/{1 − Fj (xj )} if xj ≤ uj .

Since λj is close to zero, one can use the asymptotically equivalent marginal
transformations

zj =



−1
/

log
{

1 − λj

(
1 + γj

xj − uj

σj

)−1/γj

+

}
if xj > uj ,

−1/ log Fj (xj ) if xj ≤ uj .

We use (9.65) to jointly estimate the marginal and dependence parameters
from a sample x1, . . . , xn. First, we simply estimate Fj on the region (−∞, uj ]
by the marginal empirical distribution function and assume it to be known in
the subsequent analysis. Then, we estimate the parameters (γj , σj ), j = 1, . . . , d,
and θ by maximum likelihood, the likelihood contribution of an observation xi

depending on whether xi ≤ u or not. On the one hand, if xi ≤ u, then the likelihood
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contribution is simply

L(xi ) = F(u) ≈ 1 − l(λ; θ).

On the other hand, if xi �≤ u, then the likelihood contribution is

L(xi ) = ∂d

∂x1 · · · ∂xd

F (xi )

∝ − ∂d

∂z1 · · · ∂zd

V∗(zi; θ)
∏

j : xij >uj

dzij

dxj

where zij = zj (xij ). Defining ri = zi1 + · · · + zid and wi = r−1
i zi , we can use

(8.34) to rewrite the latter likelihood as

L(xi ) ∝ r
−(d+1)
i h(wi; θ)

∏
j : xij >uj

dzij

dxj

where h(· ; θ) is the spectral density of the spectral measure H(· ; θ) on the interior
of the unit simplex Sd . With N = {i = 1, . . . , n : xi �≤ u}, the total likelihood of
the parameters given the sample is then

L{(x)ni=1; (γj , σj )
d
j=1, θ}

∝ {1 − l(λ; θ)}n−|N |∏
i∈N

r
−(d+1)
i h(wi; θ)

∏
j : xij >uj

dzij

dxj

.

Since l(λ; θ) ≤ λ1 + · · · + λd is small and since |N | is small in comparison to n,
we can approximate the former by the simpler

L{(x)ni=1; (γj , σj )
d
j=1, θ}

∝ exp{−l(nλ; θ)}
∏
i∈N

r
−(d+1)
i h(wi; θ)

∏
j : xij >uj

dzij

dxj

. (9.66)

This is indeed the likelihood obtained in Coles and Tawn (1991) and Joe et al.
(1992).

Optimization of the above likelihood is to be done numerically. A good ini-
tial guess for the optimizers can be found as follows. First estimate each pair of
marginal parameters (γj , σj ) separately by maximum likelihood from (9.64). For
these estimates, compute zi , and from zi compute ri and wi . Now by (8.97), the
probability density function of those wi for which the corresponding ri exceeds
some high threshold is approximately d−1h(· ; θ). Maximum likelihood estimation
then yields an initial guess for θ .

Unfortunately, the point-process method suffers from a number of defects. First
of all, it uses (9.63) for x such that some 1 − Fj (xj ) are small, whereas in fact
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the stated approximation is valid only if all 1 − Fj (xj ) are small. This improper
use of (9.63) might corrupt the estimates of dependence parameters that are related
to mass of the spectral measure not in the interior but on the lower-dimensional
faces of the unit simplex. Joe et al. (1992) suggest a possible modification of the
likelihood that should remedy the problem but do not pursue the issue further.

A second defect of the above method is that approximation (9.63) itself is
not without its own worries: in the text following equation (8.93), we explained
already that the right-hand side of (9.63) need not define a proper distribution and
that it tends to undervalue the probability of joint extremes in several coordinates
simultaneously. The result of this undervaluation is that estimates of dependence
parameters will show a tendency to be biased towards stronger dependence. In
particular, asymptotic independence will be rejected too often. All these drawbacks
are avoided by the censored-likelihood method, to be discussed next.

Censored-likelihood method

Let u be a multivariate threshold such that Fj (uj ) = exp(−λj ) for some small,
positive λj . Equations (8.63) and (8.64) suggest the following parametric model
for F on the region [u, ∞):

F(x) ≈ exp{−l(v; θ)}, x ≥ u, (9.67)

vj = λj

(
1 + γj

xj − uj

σj

)−1/γj

+
, j = 1, . . . , d.

Observe that (9.67) entails the following model for the margin Fj on the region
[uj , ∞), j = 1, . . . , d:

Fj (xj ) ≈ exp

{
−λj

(
1 + γj

xj − uj

σj

)−1/γj

+

}
, xj ≥ uj . (9.68)

For small λj , this is approximately the same as the Generalized Pareto model (9.64)
for the excess distribution over the threshold uj .

The marginal parameters (λj , γj , σj ), j = 1, . . . , d, and dependence parame-
ters θ can be estimated jointly by maximum likelihood. Observe that model (9.67)
is only specified on the region [u, ∞), and hence does not apply directly to obser-
vations outside that region. The solution consists of considering the observation in
a coordinate j that is smaller than uj to be censored from below at uj , hence the
name ‘censored likelihood’.

So, the likelihood of the parameters given a sample x1, . . . , xn is

L{(xi )
n
i=1; (λj , γj , σj )

d
j=1, θ} =

n∏
i=1

L(xi ), (9.69)
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with the form of the likelihood contribution, L(x), of an observation x, depending
on which of its coordinates exceed the corresponding threshold coordinates. For
J ⊂ {1, . . . , d}, let RJ be the region in R

d of all x such that xj > uj for j ∈ J

and xj ≤ uj for the other j . Then for J = {j1, . . . , jm}, the likelihood contribution
of an observation x in the region RJ is proportional to

L(x) ∝ P [Xj ∈ dxj , j ∈ J ; Xj ≤ uj , j �∈ J ]

∝ ∂mF

∂xj1 · · · ∂xjm

(x ∨ u)

with F as in the right-hand side of (9.67). For instance, in the bivariate case, the
plane is partitioned into four regions, depending on whether xj (j = 1, 2) exceeds
uj or not. The likelihood contributions are

L(x1, x2) ∝




F(u1, u2) if x1 ≤ u1, x2 ≤ u2,

∂F

∂x1
(x1, u2) if x1 > u1, x2 ≤ u2,

∂F

∂x2
(u1, x2) if x1 ≤ u1, x2 > u2,

∂2F

∂x1∂x2
(x1, x2) if x1 > u1, x2 > u2,

(9.70)

with F and its partial derivatives computed according to the right-hand side
of (9.67).

Joint estimation of the marginal and dependence parameters has several advan-
tages: transfer of information between variables, leading to better inference of the
marginal parameters; proper assessment of the estimation uncertainty of the depen-
dence parameters because of having to estimate the marginal parameters; possibility
to incorporate connections between marginal parameters over different margins,
for instance, a common shape parameter γj = γ . A drawback of the method is the
computational complexity, growing worse as the dimension increases. A good idea
might therefore be to include a preliminary step, estimating marginal and depen-
dence parameters separately, and then using these estimates as starting values for
the optimization procedure leading to the joint estimates.

The censored-likelihood method is first mentioned in Smith (1994). Ledford
and Tawn (1996) give it its full development, focusing especially on testing for
independence in the bivariate symmetric logistic model (9.6), for which the point-
process method of the previous paragraph is known to perform badly for the reasons
mentioned there. The method is useful as well in the analysis of extremes of
univariate Markov chains (Smith et al. 1997), see section 10.4.5.
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9.4.3 Data example

We continue the study of the Loss-ALAE data described in section 9.1. Whereas
in section 9.3.3 we artificially partitioned the sample into blocks of equal size and
extracted from each block the pair of component-wise maxima, now we will use
all bivariate observations which are in some sense large.

To apply the non-parametric techniques of section 9.4.1, we transform the data
to standard Fréchet margins by

x∗ij = −1/ log uij , i = 1, . . . , n, j = 1, 2,

with uij as in (9.1), the alternative consisting of transforming to standard Pareto
margins by x∗ij = 1/(1 − uij ). The transformation (9.49) of the pair (x∗i1, x∗i2)

to pseudo-polar coordinates with both norms equal to the sum-norm takes the
simple form

ri = x∗i1 + x∗i2, wij = x∗ij /ri,

for i = 1, . . . , n and j = 1, 2. Let r(1) ≤ · · · ≤ r(n) be the radial coordinates ri in
ascending order.

If we are to construct estimates from the observations corresponding to the
k largest ri , then a sensible choice of k might be found by inspecting the plot
of (k/n)r(n−k) as function of k = 1, . . . , n − 1, see Figure 9.7(a). Recall that the
estimator (9.50) of the spectral measure H may be written as

H̃ (·) = r(n−k)

n

n∑
i=1

1{ri > r(n−k), wi1 ∈ · }.

Hence, H̃ ([0, 1]) = (k/n)r(n−k) is an estimator of H([0, 1]) = 2. Therefore, we
propose to choose the largest k for which (k/n)r(n−k) is close to two. Obviously,
this is not more than a heuristic and should be formalized in some way. Also, it is
not known if it leads to an optimal choice according to some criterion. Anyway,
the plot suggests k0 = 337 as a reasonable choice. Replacing H̃ ([0, 1]) by its true
value then leads to the estimator

Ĥ (·) = 2

k0

n∑
i=1

1{ri > r(n−k0), wi1 ∈ · }, (9.71)

see (9.53). Figure 9.7(b) shows a plot of Ĥ ([0, w]) as a function of w ∈ [0, 1].
The Pickands dependence function corresponding to Ĥ is

Â(t) = 2

k0

n∑
i=1

1{ri > r(n−k0)} max{(1 − t)wi1, twi2}, (9.72)

see (9.56). As in (9.58), Â can be modified into Ā to obtain an estimate satisfying
all the requirements to be a Pickands dependence function, although in this case
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Figure 9.7 Loss-ALAE data: (a) Choice of k0 = 337 via plot of (k/n)r(n−k) as
function of k. (b) Plot of Ĥk0([0, w]) in (9.71) as function of w ∈ [0, 1].
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Figure 9.8 Loss-ALAE data: (a) Estimates of Pickands dependence function:
asymmetric logistic model via censored likelihood (——), bilogistic model via cen-
sored likelihood (– · – · –) and point-process likelihood (- - - - -), and non-parametric
estimate (· · · · · ·) obtained by modification of (9.72) via (9.58). (b) Quantile curves
Q(F̂ , p) of (9.73) for p = 0.98, 0.99, 0.995, 0.999 for asymmetric logistic model
and GP margins estimated jointly via censored likelihood.
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the difference between Â and Ā turned out to be negligible. The function Ā is
represented by the dotted line in Figure 9.8(a).

Alternatively, we may fit one of the parametric models of section 9.2 via the
point-process or censored likelihoods of section 9.4.2. For both losses and ALAEs,
we need to choose a threshold so that the approximations (9.65) and (9.67) are valid.
Recall that the approximations entail that the marginal distributions of excesses
above the corresponding thresholds are modelled by a GP or GEV distribution as
in (9.64) or (9.68) and the dependence structure by that of a multivariate extreme
value distribution. Sometimes, marginal and dependence considerations point to
different thresholds; the required modifications of the methods are described Dixon
and Tawn (1995).

For the Loss-ALAE data, we propose to choose the thresholds (u1, u2) in such
a way that the total number of observations for which there is an exceedance in at
least one coordinate is approximately k0 = 337, the k-value found in Figure 9.7(a).
Simplifying further, we propose uj = x(n−k1),j for k1 = �(k + 1)/2� = 169; here
x(1),j ≤ · · · ≤ x(n),j denote the observations in the j th coordinate in ascending
order. The resulting thresholds are u1 = 88 803 for Loss and u2 = 23 586 for
ALAE. Marginally fitting the GP by maximum likelihood to the threshold excesses
led to (σ̂1, γ̂1) = (79 916, 0.52) for Loss and (σ̂2, γ̂2) = (20 897, 0.47) for ALAE.
The goodness-of-fit was confirmed by W -plots (not shown) as in section 5.3.2.

We fitted the asymmetric logistic model (9.7) with the censored likeli-
hood (9.69)–(9.70) and the bilogistic model (9.9) with the censored likelihood
and the point-process likelihood (9.66). As for the component-wise maxima in
section 9.3.3, imposing the constraint ψ1 = 1 did not significantly decrease the
likelihood. The parameter estimates are summarized in Table 9.2 and the Pickands
dependence functions are shown in Figure 9.8(a).

Comparing the estimated Pickands dependence functions in Figure 9.8(a) with
those in Figure 9.5(b) confirms our earlier findings about the inaccuracy of the

Table 9.2 Loss-ALAE data: Estimates (standard errors – ** if observed infor-
mation matrix was near-singular) for marginal and dependence parameters for
asymmetric model (ψ1 = 1) with censored likelihood and bilogistic model with
censored and point-process likelihoods.

Loss ALAE
Model σ̂1/1000 γ̂1 σ̂2/1000 γ̂2 Dependence

Asymmetric logistic 82 0.58 23 0.51 α = 0.66 (0.04)
(Censored) (1.3) (0.10) (0.4) (0.09) ψ2 = 0.89 (0.15)

Bilogistic 84 0.59 25 0.47 α = 0.55 (0.09)
(Censored) (2.1) (0.10) (2.5) (0.10) β = 0.76 (0.05)

Bilogistic 84 0.79 25 0.64 α = 0.54 (**)
(Point-process) (**) (**) (**) (**) β = 0.57 (**)
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approximation 1 − F(x1, x2) ≈ l{1 − F1(x1), 1 − F2(x2)}. Recall that this approx-
imation underlies both the non-parametric methods as well as the point-process
likelihood. It appears now that the non-parametric estimate (9.72), as well as the
one from the bilogistic model fitted with the point-process likelihood, is biased
towards stronger dependence. This is a consequence of the undervaluation of the
probability of joint extremes by the mentioned approximation, see the explana-
tion after (8.93). On the other hand, the censored likelihood is based on the more
accurate approximation F(x1, x2) ≈ exp[−l{− log F1(x1), − log F2(x2)}], and the
resulting estimates, both with the asymmetric logistic and the bilogistic models,
are much closer to the ones obtained from component-wise maxima. The standard
errors of the censored-likelihood estimates are much smaller than their component-
wise maxima counterparts, reflecting the more efficient use of information of the
threshold approach.

We conclude with a picture of the quantile curves

Q(F̂ , p) = {(x1, x2) : F̂ (x1, x2) = p}, 0 < p < 1, (9.73)

with F̂ as in the model (9.67) underling the censored likelihood and with asymmet-
ric logistic dependence structure. The quantile curves are shown in Figure 9.8(b)
for p = 0.98, 0.99, 0.995, 0.999. Since the model (9.67) can be written as

F̂ (x1, x2) = exp

[
log{F̂1(x1)F̂2(x2)}Â

(
log{F̂2(x2)}

log{F̂1(x1)F̂2(x2)}

)]

with marginal estimates F̂j (xj ) as in (9.68) and with Â(w) = A(w, θ̂), the Pickands
dependence function corresponding to the estimated dependence parameter vector
θ̂ , we have F̂ (x1, x2) = p if and only if there exists w ∈ [0, 1] such that F̂1(x1) =
p(1−w)/Â(w) and F̂2(x2) = pw/Â(w). Therefore, the quantile curve can be computed
from

Q(F̂ , p) =
{(

F̂←
1 {p(1−w)/Â(w)}, F̂←

2 {pw/Â(w)}
)

: w ∈ [0, 1]
}

.

For fixed w ∈ [0, 1], point-wise confidence intervals could be added (not shown)
to the quantile curves from the observed information matrix and the delta method.

9.5 Asymptotic Independence
Everything so far in this chapter was based on multivariate extreme value distri-
butions. The justification is to be found in the theory of Chapter 8. Still, within
the class of max-stable distributions, the only possible type of asymptotic indepen-
dence is, in fact, perfect independence. This makes the class rather inappropriate
for modelling data that exhibit positive or negative association that only gradually
disappears at more and more extreme levels. To properly handle such cases, we
are obliged to leave the by-now familiar framework of extreme value distributions
and look for a class of models describing the tails of asymptotically independent
distributions in a more refined way.
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In section 9.5.1, we introduce a number of coefficients of extremal dependence
useful in assessing whether a bivariate distribution is asymptotically dependent and,
within each case, in giving a relative measure of strength of dependence (Coles
et al. 1999). In particular, we find that the so-called coefficient of tail dependence
(Ledford and Tawn 1996) is most useful in distinguishing asymptotic dependence
from asymptotic independence and, within the class of asymptotically independent
distributions, positive from negative association. Several methods to estimate this
coefficient are described in section 9.5.2. Finally, section 9.5.3 describes a general
model, due to Ledford and Tawn (1997), for the joint survivor function of a bivari-
ate distribution, encompassing both asymptotic dependence as well as various types
of asymptotic independence. We also discuss a number of inference techniques for
this joint tail model, some of which are new.

9.5.1 Coefficients of extremal dependence
Asymptotic dependence

Let (X1, X2) be a bivariate random vector with distribution function F and marginal
distribution functions F1 and F2. For simplicity, we will assume throughout that F1

and F2 are continuous. Assuming first that F1 and F2 are identical, a quite natural
coefficient of extremal dependence between X1 and X2 at extreme levels is

χ = lim
x↑x∗

P [X2 > x | X1 > x], (9.74)

provided the limit exists; here, x∗ denotes the right end-point of the common
marginal distribution (Coles et al. 1999). Definition (9.74) can be generalized to
the case where the marginal distribution functions F1 and F2 are non-identical.
The variables Uj = Fj (Xj ) (j = 1, 2) are uniformally distributed on (0, 1). Now
define

χ = lim
u↑1

P [U2 > u | U1 > u], (9.75)

again provided that the limit exists. Observe that (9.74) is indeed a special case
of (9.75).

The number χ can be interpreted as the tendency for one variable to be extreme
given that the other is extreme. When χ = 0, the variables are said to be asymp-
totically independent, whereas if 0 < χ ≤ 1, they are said to be asymptotically
dependent. Observe that the condition for asymptotic independence, that is, χ = 0,
coincides with the necessary and sufficient condition (8.100) for F to be asymp-
totically independent in the sense described there. Hence, if F1 and F2 are in the
domain of attraction of univariate extreme value distributions G1 and G2 respec-
tively, then χ = 0 if and only if F is in the domain of attraction of the bivariate
extreme value distribution G(x, y) = G1(x)G2(y).

Recall from section 8.2.6 that the copula function of F , denoted by C = CF ,
is equal to the distribution function of the pair (U1, U2), that is,

C(u1, u2) = P [U1 ≤ u1, U2 ≤ u2] = F {F←
1 (u1), F←

2 (u2)} (9.76)
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for (u1, u2) ∈ [0, 1]2, where, as usual, the arrow denotes the left-continuous inverse
of a function. As the copula contains all information about the joint distribution
of X1 and X2 except for the marginal information, it can be interpreted as the
dependence structure associated with X1 and X2.

Now, defining

χ(u) = 2 − log C(u, u)

log u
, 0 < u < 1, (9.77)

we have

χ(u) = 2 − 1 − C(u, u)

1 − u
+ o(1) = P [U2 > u | U1 > u] + o(1), u → 1,

whence

lim
u→1

χ(u) = χ. (9.78)

In general, the function χ(u) is bounded from below and above by

2 − log{max(2u − 1, 0)}
log u

≤ χ(u) ≤ 1, 0 < u < 1. (9.79)

These bounds follow from the respective bounds

max(2u − 1, 0) ≤ C(u, u) ≤ u, 0 < u < 1, (9.80)

the left-hand side corresponding to perfect negative dependence and the right-hand
side to perfect positive dependence.

Next to providing the limit χ , the function χ(u) also provides some insight
in the dependence structure of the variables at lower quantile levels. In particular,
χ(u) is less than, equal to or greater than 0 if and only if C(u, u) is less than,
equal to or greater than u2 respectively. Since C(u, u) = u2 corresponds to the
case of exact independence, we find that the sign of χ(u) determines whether the
variables are positively or negatively associated at quantile level u.

In the special case that C is a bivariate extreme value copula with Pickands
dependence function A as in (8.54), we have C(u, u) = uθ with θ = 2A(1/2) ∈
[1, 2] the extremal coefficient of (8.56). In particular, χ(u) = 2 − θ ∈ [0, 1], con-
stant in 0 < u < 1. As a consequence, estimates of χ(u) can be used not only to
gain information on the limiting behaviour as u → 1 or the dependence structure
at lower quantile levels but also as a diagnostic for membership to the bivari-
ate extreme value class. More generally, if C is in the domain of attraction of a
bivariate extreme value copula in the sense of (8.80), then by (8.92) we also have
χ = 2 − θ .

Asymptotic independence

Within the class of asymptotically dependent variables (0 < χ ≤ 1) the value of
χ increases with increasing degree of dependence at extreme levels. The measure
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fails, however, to discriminate between the degrees of relative strength of depen-
dence for asymptotically independent variables (χ = 0). For that purpose, a quite
natural alternative measure of dependence χ̄ has been defined, analogous to χ ,
but based on a comparison of joint and marginal survivor functions of U1 and U2

(Coles et al. 1999).
With the copula survivor function defined as

C̄(u1, u2) = P [U1 > u1, U2 > u2] = 1 − u1 − u2 + C(u1, u2)

for (u1, u2) ∈ [0, 1]2, let

χ̄(u) = 2 log(1 − u)

log C̄(u, u)
− 1, 0 < u < 1, (9.81)

the precise definition being chosen for scaling convenience. From (9.80), we get

2 log(1 − u)

log{max(1 − 2u, 0)} − 1 ≤ χ̄(u) ≤ 1, 0 < u < 1. (9.82)

Then, as a second limiting dependence measure, we define

χ̄ = lim
u→1

χ̄ (u), (9.83)

provided the limit exists. By (9.82), we have −1 ≤ χ̄ ≤ 1.
For asymptotically dependent variables, we have χ̄ = 1; for asymptotically

independent variables, we have −1 ≤ χ̄ < 1, and χ̄ provides a limiting measure
that increases with relative dependence strength within this class. As a result,
the pair (χ̄, χ) can be used as a one-dimensional summary of extremal depen-
dence: if χ̄ = 1 and 0 < χ ≤ 1, the variables are asymptotically dependent and
χ is a measure for strength of dependence within the class of asymptotically
dependent distributions; if −1 ≤ χ̄ < 1 and χ = 0, the variables are asymptoti-
cally independent, and χ̄ is a measure for strength of dependence within the class
of asymptotically independent distributions.

The coefficient of tail dependence

Rather than to transform the original random variables X1 and X2 to uniform
margins, it is also convenient to transform them to standard Fréchet margins by
Zj = −1/ log Uj for j = 1, 2. Clearly, this leaves the copula invariant and hence
does not affect the discussed dependence measures. The joint survival function of
(Z1, Z2) can be found in terms of C̄ through

P [Z1 > z1, Z2 > z2] = C̄(e−1/z1, e−1/z2) (9.84)

for 0 < zj < ∞ (j = 1, 2). Since P [Zj ≤ z] = exp(−1/z) for z > 0 and j = 1, 2,
we have P [Zj > z] ∼ 1/z as z → ∞.
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Next to χ and χ̄ , Ledford and Tawn (1996) introduce a third dependence
coefficient by assuming that the joint survivor function of Z1 and Z2 is a regularly
varying function:

P [Z1 > z, Z2 > z] = L(z)z−1/η, z > 0. (9.85)

Here, η is a positive constant, called the coefficient of tail dependence, and L is a
slowly varying function, that is, L(xz)/L(z) → 1 as z → ∞ for all 0 < x < ∞.
The rate of decay in (9.85) is primarily controlled by η. Since P [Z1 > z, Z2 >

z] ≤ 1 − exp(−1/z) ∼ 1/z, we must have η ≤ 1. Exploiting the fact that P [Z1 >

z, Z2 > z] = P [min(Z1, Z2) > z], we can identify η as the tail index of the uni-
variate variable T = min(Z1, Z2). Ledford and Tawn (1996) motivate their model
through examples. The wide applicability of (9.85) is demonstrated by the extensive
list of examples in Heffernan (2000). Still, the (somewhat pathological) counterex-
amples in Schlather (2001) show that (9.85) neither implies nor is implied by the
familiar domain-of-attraction condition.

In (9.85), if L(z)z1−1/η ∼ P [Z2 > z | Z1 > z] converges as z → ∞, the limit
is equal to χ . Moreover, from (9.84), it follows that

C̄(u, u) = L(−1/ log u)(− log u)1/η, 0 < u < 1,

and thus, by (9.81),

χ̄ = lim
u→1

χ̄(u) = 2η − 1.

As a consequence, if η = 1 and limz→∞ L(z) = c for some 0 < c ≤ 1, then χ̄ = 1
and the variables are asymptotically dependent of degree χ = c. On the other hand,
if 0 < η < 1 or if η = 1 and limz→∞ L(z) = 0, then χ = 0 and the variables are
asymptotically independent of degree χ̄ = 2η − 1.

Within the class of asymptotically independent variables, three types of inde-
pendence can be identified according to the sign of χ̄ = 2η − 1 (Heffernan 2000).
First, when 1/2 < η < 1 or η = 1 and L(z) → 0 as z → ∞, observations for which
both Z1 and Z2 exceed a large threshold z occur more frequently than under exact
independence (positive association). Second, when η = 1/2, extremes of Z1 and
Z2 are near independent and even exactly independent in case L(z) = 1. Finally,
when 0 < η < 1

2 , observations for which both Z1 and Z2 exceed a large threshold
z occur less frequently than under exact independence (negative association). All
in all, the degree of dependence between large values of Z1 and Z2 is determined
by η, with increasing values of η corresponding to stronger association. For a given
η, the relative strength of dependence is characterized by L.

Finally, remark that the whole story can be repeated if we transform the
variables Xj to standard Pareto margins by Zj = 1/{1 − Fj (Xj )} rather than to
standard Fréchet margins. The joint survivor of (Z1, Z2) is then given by

P [Z1 > z1, Z2 > z2] = C̄(1 − 1/z1, 1 − 1/z2). (9.86)
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The only difference will be that the slowly varying function L corresponding to
Pareto margins will have a different second-order behaviour than the one corre-
sponding to Fréchet margins.

Example 9.1 The bivariate extreme value copula with logistic dependence struc-
ture (9.6) is given by

C(u1, u2) = exp[−{(− log u1)
1/α + (− log u2)

1/α}α]

with parameter 0 < α ≤ 1. Perfect independence arises as α = 1, while 0 < α < 1
leads to asymptotic dependence. The bivariate survivor function corresponding to
standard Fréchet margins (9.84) satisfies

P [Z1 > z, Z2 > z] = (2 − 2α)z−1 + (22α−1 − 1)z−2 + o(z−2) (9.87)

as z → ∞, while transforming to standard Pareto margins (9.86) gives

P [Z1 > z, Z2 > z] = (2 − 2α)z−1 + (22α−1 − 2α−1)z−2 + o(z−2) (9.88)

as z → ∞. If 0 < α < 1, then in both cases we find, as expected, a coefficient of
tail dependence η = 1 and a slowly varying function L converging to χ = 2 − 2α .

Example 9.2 The bivariate Farlie-Gumbel-Morgenstern copula is given by

C(u1, u2) = u1u2{1 + α(1 − u1)(1 − u2)},
with parameter −1 ≤ α ≤ 1. For α = 0, α > 0, and α < 0, we get exact inde-
pendence, positive dependence, and negative dependence, respectively. Complete
dependence cannot be achieved under this model. As

χ(u) = 2 − log[u2{1 + α(1 − u)2}]
log u

, 0 < u < 1,

we get χ(u) → χ = 0 as u → 1, that is, all distributions in this family are asymp-
totically independent. Examining the relative strength of dependence within the
class of asymptotically independent variables, we notice that

χ̄(u) = 2 log(1 − u)

log[1 − 2u + u2{1 + α(1 − u)2}] − 1, 0 < u < 1,

so χ̄ equals 0 for α > −1 (near independence) and −1/3 for α = −1 (negative
association). Transforming to standard Fréchet margins leads to the joint survivor
function (9.84)

P [Z1 > z, Z2 > z] = α + 1

z2
− 3α + 1

z3
+ 55α + 7

12z4
+ o

(
1

z4

)
, z → ∞.

This expansion allows us to identify η and L in (9.85) as a function of α. In case
α > −1, we have η = 1/2 and L(z) = (α + 1) − (3α + 1)z−1 + o(z−1) as z → ∞
(near independence); in case α = −1, we have η = 1/3 and L(z) = 2 − 4z−1 +
o(z−1) as z → ∞ (negative association). Notice that χ = limz→∞ L(z)z1−1/η and
χ̄ = 2η − 1, as expected.
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Example 9.3 The bivariate normal distribution with correlation ρ < 1 is a prime
example of asymptotic independence (Sibuya 1960). The joint survivor function
(9.84) for margins transformed to the standard Fréchet distribution satisfies

P [Z1 > z, Z2 > z] ∼ cρ(log z)−ρ/(1+ρ)z−2/(1+ρ), z → ∞,

where cρ = (1 + ρ)3/2(1 − ρ)−1/2(4π)−ρ/(1+ρ) (Reiss 1989). In particular, the dis-
tribution is asymptotically independent (χ = 0) with χ̄ = ρ and η = (1 + ρ)/2.
Within the class of asymptotic independence, the cases of positive association,
near independence, and negative association arise as ρ > 0, ρ = 0, and ρ < 0,
respectively.

The bivariate normal distribution with correlation 0 < ρ < 1 illustrates that
dependence at intermediate levels, however strong, does not necessarily imply
asymptotic dependence. This may lead to problems when we apply techniques
based on bivariate extreme value dependence structures, where choices are limited
to asymptotic dependence or exact independence. For instance, Ledford and Tawn
(1996) show that the score test for independence using the censored likelihood
(9.69)–(9.70) with logistic model will nearly always reject independence in case
data are generated from a bivariate normal distribution with positive correlation.
Still, extrapolating from an asymptotically dependent model fitted to the tail of the
bivariate normal distribution will lead to overestimation of the probability of the
occurrence of joint extremes.

Data example

For the Loss-ALAE data of Figure 9.1, an informal picture of the dependence
functions χ(u) and χ̄(u) can be created simply by plugging in empirical estimates

Ĉ(u, u) = 1

n

n∑
i=1

1{ui1 < u, ui2 < u}

ˆ̄C(u, u) = 1

n

n∑
i=1

1{ui1 > u, ui2 > u}

in expressions (9.77) and (9.81) (Coles et al. 1999). Analyzing the behaviour of the
empirical versions of χ(u) and χ̄ (u) as u tends to 1 can give an idea of the form
of extremal dependence between the variables. Figure 9.9 shows estimates and
95% point-wise confidence intervals for χ(u) and χ̄ (u). The confidence intervals
are based on bootstrap samples obtained by sampling with replacement from the
original data (xi1, xi2), i = 1, . . . , n, as suggested in Fermanian et al. (2004). Also
shown are the cases of perfect positive dependence, exact independence and perfect
negative dependence.

As χ(u) > 0 for u < 1, there is evidence for dependence of the variables at
lower quantile levels. It appears that χ(u) ≈ 0.4 for all u, even for u close to 1,
suggesting an asymptotically dependent distribution that is possibly of the bivariate
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Figure 9.9 Loss-ALAE data: dependence measures (a) χ(u) and (b) χ̄ (u). Esti-
mates (——), 95% point-wise confidence intervals (– · – · –) and cases correspond-
ing to perfect positive dependence, exact independence and perfect negative depen-
dence (- - - - -).
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extreme value type. However, notice that for u close to 1, the point-wise confi-
dence intervals cover a large range of possible limits, including 0. Moreover, χ̄(u)

seems to be smaller than 1, which is in contradiction with the hypothesis of an
asymptotically dependent distribution. As a result, on the basis of the above infor-
mal analysis only, it is difficult to make a decision between asymptotic dependence
and asymptotic independence for the insurance data. This shows the need for more
formal diagnostics.

9.5.2 Estimating the coefficient of tail dependence

The coefficient of tail dependence, η, was found to be most useful in distinguishing
between asymptotic dependence or asymptotic independence, and, within the latter
class, between positive association, near independence, or negative association.
This makes the problem of estimating η, the topic of this section, a particularly
relevant one.

Hill estimator and maximum likelihood estimator

Assumption (9.85) entails that the univariate variable T = min(Z1, Z2) has a regu-
larly varying tail with index −1/η; here, Zj can be either −1/ log Fj (Xj ) (standard
Fréchet margins) or 1/{1 − Fj (Xj )} (standard Pareto margins). Therefore, η and
hence χ̄ = 2η − 1 can be estimated as the tail index of T , for instance, by the
univariate techniques in Chapters 4–5. Notice also that, subject to convergence of
L(z) as z → ∞ and η being equal to 1, the dependence parameter χ can be esti-
mated as the scale parameter of T for large values of z, as in that case L(z) is
approximately constant and equal to χ .

Given a sample of independent observations (Xi1, Xi2), i = 1, . . . , n, Ledford
and Tawn (1996) propose transforming the data to have approximate standard
Fréchet margins by

Zij = −1/ log F̂j (Xij ), i = 1, . . . , n, j = 1, 2, (9.89)

with F̂j estimates of the marginal distribution functions Fj , typically by empiri-
cal marginal distribution functions and incorporating extreme value estimators for
the marginal tails. Alternatively, we may transform to standard Pareto margins by
Zij = 1/{1 − F̂j (Xij )}. In any case, the Ti = min(Zi1, Zi2), i = 1, . . . , n, approx-
imately form an independent sample distributed like T . Denote the order statistics
of the Ti by T1,n ≤ · · · ≤ Tn,n.

We can use the Ti to estimate η, for example, by the Hill (1975) estimator (see
section 4.2)

η̂ = 1

k

k∑
i=1

log Tn−k+i,n − log Tn−k,n (9.90)
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or by the maximum likelihood estimator in a peaks-over-threshold setting, where
exceedances of T above a high-enough threshold u are assumed to follow a
GP distribution

P [T > u + z | T > u] = (1 + ηz/σ )−1/η , 0 ≤ z < ∞, (9.91)

with shape parameter 0 < η ≤ 1 and scale parameter σ = σ(u) > 0.
Under the model (9.91), Ledford and Tawn (1996) suggest to test for asymp-

totic independence (χ = 0) by testing η = 1 against the alternative 0 < η < 1. As
mentioned before, observe that under model (9.85), the hypothesis η = 1 is implied
by, but is not equivalent to, asymptotic dependence. Note, however, that the special
case η = 1 and L(z) → 0 as z → ∞ tends only to have theoretical value, so that,
in practice, it is safe to assume that η = 1 is equivalent to asymptotic dependence.

So, let L1 be the maximized likelihood for (9.91) for a given threshold u and
L0 be the corresponding maximized likelihood under the restriction η = 1. Since
the null hypothesis corresponds to a boundary value of the parameter space, the
likelihood ratio statistic D = 2(log L1 − log L0) should be compared to a one-
half chi-squared distribution with one degree of freedom (Self and Liang 1987),
resulting in the p-value P [χ2 > D]/2. Still, it is likely that the true estimation
uncertainty is larger than the one reflected in the likelihood ratio tests or profile
likelihood-based confidence intervals as we falsely assumed that the Ti are inde-
pendent, that each marginal distribution is estimated exactly and that the parametric
specification of model (9.85) is correct.

Estimators of Peng (1999) and Draisma et al. (2002)

In order to avoid underestimation of the true uncertainty in the estimates of η as
a consequence of the uncertainty introduced by possible marginal transformations,
which is, for example, not accounted for in the above procedure, Peng (1999) and
Draisma et al. (2004) propose estimating η in (9.85) through certain non-parametric
alternatives that do not depend on the marginal distributions.

Assumption (9.85) formulated for standard Pareto Zj = 1/{1 − Fj (Xj )} implies

lim
t→0

P [X1 > F←
1 (1 − ts), X2 > F←

2 (1 − ts)]

P [X1 > F←
1 (1 − t), X2 > F←

2 (1 − t)]
= s1/η (9.92)

for s > 0. In both Peng (1999) and Draisma et al. (2004), this limiting relation is
used to construct a non-parametric estimator for η on the basis of the empirical
distribution function of the original observations (Xi1, Xi2), i = 1, . . . , n. With
X(i,n),j the ith ascending order statistic of the j th coordinate sample (Xij )

n
i=1

(j = 1, 2), define

Sn(k) =
n∑

i=1

1{Xi1 > X(n−k,n),1, Xi2 > X(n−k,n),2} (9.93)
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for k = 0, . . . , n − 1. Notice that Sn(k) depends on the data through their ranks
only and that Sn(k)/n can be seen as the empirical counterpart of P [X1 > F←

1 (1 −
k/n), X2 > F←

2 (1 − k/n)].
Taking logarithms on both sides of (9.92) with s = 2 leads quite naturally to

the estimator

η̂1 = log 2

log{Sn(2k)/Sn(k)} (9.94)

proposed by Peng (1999). Integrating both sides of (9.92) with respect to s from
0 to 1 gives the estimator

η̂2 =
∑k

j=1 Sn(j)

kSn(k) −∑k
j=1 Sn(j)

(9.95)

as introduced by Draisma et al. (2004). Note that η̂1 is based on Sn(k) and Sn(2k),
while η̂2 is constructed from the Sn(j) for j only up to k.

Peng (1999) and Draisma et al. (2004) establish asymptotic normality of their
estimators under certain second-order conditions on the limiting behaviour of
P [Z1 > x1z, Z2 > x2z] for 0 < xj < ∞ as z → ∞. The second-order conditions
by Peng (1999) prohibit the slowly varying function L(z) in (9.85) to converge
to zero as z → ∞, so that the hypothesis of asymptotic independence (χ = 0)
is equivalent to η < 1. A drawback is that the distributions such as the bivariate
normal (Example 9.3) are excluded. The second-order conditions by Draisma et
al. (2004) are less restrictive in that they do allow for L(z) → 0 as z → ∞.

Draisma et al. (2004) prove asymptotic normality not only for their estimator
η̂2 (9.95) but also for the estimator η̂1 (9.94) by Peng (1999), the Hill estimator η̂3

(9.90), and the maximum likelihood estimator η̂4 arising from (9.91) with threshold
u = Tn−k,n. They transform the data to standard Pareto margins by

Zij = 1

1 − F̂j (Xij )
where F̂j (x) = 1

n + 1

n∑
i=1

1(Xij ≤ x). (9.96)

Observe that the Zij depend on the original data Xij through the ranks only.
Draisma et al. (2004) show that under certain growth conditions for k = kn, the
standardized estimators {Sn(k)}1/2(η̂i − η) (i = 1, 2) and k1/2(η̂i − η) (i = 3, 4)
are asymptotically normal with mean 0 and certain asymptotic variances σ 2

i (i =
1, . . . , 4). The expressions for the σi are rather complicated, but Draisma et al.
(2004) propose a way to estimate them from the Zij as well. Denoting such esti-
mates by σ̂i , asymptotic confidence intervals for η can easily be constructed, and
η = 1 can be tested against the alternative η < 1. For instance, denoting by σ̂(i)

the estimated root variances {Sn(k, k)}−1/2σ̂i (i = 1, 2) and k−1/2σ̂i (i = 3, 4) in
case η = 1, we can reject η = 1 in favour of η < 1 if η̂i ≤ 1 − zασ̂(i), with zα the
(1 − α)-quantile of the standard normal distribution.
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Estimator of Beirlant and Vandewalle (2002)

The bias of estimators as introduced by Ledford and Tawn (1996), Peng (1999)
and Draisma et al. (2004) depends heavily on the underlying bivariate distribution.
If, for instance, the dependence parameter α in the logistic model of Example 9.1
is close to, but smaller than, one, the first-order terms in (9.87) and (9.88) will
be small and dominated by the second-order terms unless z is large (note that the
situation is worse for Pareto margins (9.88) than for Fréchet margins (9.87), as the
second-order terms are smaller in the latter than in the former, although for other
distributions the situation may be reversed). As a result, thresholds will need to
be chosen high enough in order not to get estimates of η that are biased towards
asymptotic independence. In view of the critical difference between asymptotic
dependence and asymptotic independence regarding out-of-sample inference, it is
therefore highly desirable to have available estimation methods for η that can
cope with a slow rate of convergence in the model assumption L(xz)/L(z) → 1
as z → ∞.

In this respect, Beirlant and Vandewalle (2002) suggest an estimator based on
scaled log-ratios

Ỹj = j log

(
Tn−j+1,n − Tn−k,n

Tn−j,n − Tn−k,n

)
, j = 1, . . . , k − 1,

of excesses over a large threshold Tn−k,n; here, the Ti are defined as above, con-
structed from the data transformed to either standard Pareto or standard Fréchet
margins. The coefficient of tail dependence, η, is then estimated by maximum
likelihood from the exponential regression model

Ỹj
D= η

1 − (j/k)η
Ej , j = 1, . . . , k − 1, (9.97)

with Ej independent standard exponential random variables, see section 5.4.
Beirlant and Vandewalle (2002) prove asymptotic normality of this estimator

under the same second-order conditions as in Draisma et al. (2004) but restricted to
the case of asymptotic independence (χ = 0). The estimator has a smaller bias than
other well-known estimators, whatever the marginal transformations and underly-
ing distribution. Under a second-order refinement of (9.97), minimization of the
estimated asymptotic mean squared error leads to a diagnostic for selecting the
optimal k to be used in estimating η.

Data example

We transform the Loss-ALAE data of Figure 9.1 to approximate standard Fréchet
margins by

zij = −1/ log uij i = 1, . . . , n, j = 1, 2,

with uij as in (9.1). The sample of minima, ti = min(zi1, zi2), serves to construct
maximum likelihood estimates and profile likelihood confidence intervals for η
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based on the GP likelihood derived from (9.91), see Figure 9.10(a). Here, the
threshold varies along the entire range of threshold probabilities for T . Transform-
ing to standard Pareto margins by zij = 1/(1 − uij ) gives the same qualitative
results, see Figure 9.10(b).

In view of the probable underestimation of the estimation uncertainty as reflected
in the confidence intervals, we notice that although estimates of η for almost all
threshold probabilities between 0.5 and 0.9 seem to be close to 0.9, correspond-
ing to a strongly positively associated form of asymptotic independence, the value
η = 1, consistent with asymptotic dependence, is still covered by almost all con-
fidence intervals. Neither do likelihood ratio tests consistently permit us to reject
asymptotic dependence against asymptotic independence.

Alternatively, Figure 9.11 shows point-wise estimates for η using the estimator
(9.94) of Peng (1999), together with critical values under which η = 1 is rejected in
favour of η < 1 based on a 5% one-sided test (left) and two-sided 95% confidence
intervals (right). Again, we cannot consistently reject asymptotic dependence.

9.5.3 Joint tail modelling

Modelling the tail of a multivariate distribution by an extreme value distribution
as in section 9.4 limits the options for the extremal dependence structure to either
asymptotic dependence or exact independence. In the bivariate case, this means that
the probability P [X1 > F←

1 (1 − 1/z), X2 > F←
2 (1 − 1/z)] of joint exceedances

of the respective 1/z tail quantiles in the two margins is of the order O(z−1)

(asymptotic dependence) or O(z−2) (exact independence) as z → ∞. However, for
asymptotically independent distributions with positive association, that is, 1/2 <

η < 1 in (9.85), this probability is in fact of the order O(z−1/η). Hence, for such
distributions, the probability of joint extremes will be evaluated either too large,
in case of an asymptotically dependent model, or too small, in case of the exactly
independent model.

The model of Ledford and Tawn (1997)

A versatile model bridging the gap between asymptotic dependence and exact
independence was introduced by Ledford and Tawn (1997). Before we can describe
their model, we need some technical preliminaries.

A function L : (0, ∞)2 → (0, ∞) is called bivariate slowly varying if there
exists a function g : (0, ∞)2 → (0, ∞) such that

lim
t→∞

L(tz1, tz2)

L(t, t)
= g(z1, z2), 0 < zj < ∞ (j = 1, 2) (9.98)

and if this function g is homogenous of order zero, that is,

g(sz1, sz2) = g(z1, z2), 0 < s < ∞, 0 < zj < ∞ (j = 1, 2)
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Figure 9.10 Loss-ALAE data: Point-wise maximum likelihood estimates (——)
and profile likelihood–based confidence intervals (- - - - -) for η based on (9.91) with
data transformed to (a) standard Fréchet margins and (b) standard Pareto margins.
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Figure 9.11 Loss-ALAE data: Point-wise η estimates (——) using (9.94) by Peng
(1999) as function of 2k with (a) critical values (- - - - -) under which η = 1 is
rejected in favour of η < 1 based on a 5% one-sided test and (b) 95% confidence
intervals (- - - - -) (Draisma et al. 2004).
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(Bingham et al. 1987). The homogeneity of g implies that there exists a function
g∗ : (0, 1) → (0, ∞) such that g(z1, z2) = g∗{z1/(z1 + z2)} for all 0 < zj < ∞
(j = 1, 2). We call L ray independent if g∗ is constant and ray dependent otherwise.
Furthermore, L is called quasi-symmetric if the function g∗(w)/g∗(1 − w) is slowly
varying at w → 0 and w → 1.

Now as in the previous sections, let (X1, X2) be a random pair with distribution
function F and continuous marginal distribution functions F1 and F2. Transform the
vector to standard Fréchet margins by Zj = −1/ log Fj (Xj ) for j = 1, 2. Ledford
and Tawn (1997) propose to model the joint survivor function of (Z1, Z2) as

P [Z1 > z1, Z2 > z2] = L(z1, z2)z
−c1
1 z

−c2
2 , (9.99)

with cj > 0 for j = 1, 2 and L a quasi-symmetric, bivariate slowly varying func-
tion. Clearly, (9.99) implies (9.85) with 1/η = c1 + c2. In this sense, the model of
Ledford and Tawn (1997) provides an extension of the one of Ledford and Tawn
(1996). All in all, (9.99) provides a smooth family of dependence models, incor-
porating asymptotically dependent distributions as well as positively or negatively
associated asymptotically independent distributions.

The quasi-symmetry condition on L is imposed to identify c1 and c2. For,
denoting c2 − c1 = κ , we also have

P [Z1 > z1, Z2 > z2] = L̃(z1, z2)(z1z2)
−1/(2η) (9.100)

for 0 < zj < ∞ (j = 1, 2), where the function

L̃(z1, z2) = (z1/z2)
κ/2L(z1, z2) (9.101)

is bivariate slowly varying with limit function g̃(z1, z2) = (z1/z2)
κ/2g(z1, z2) and

ray dependence function g̃∗(w) = {w/(1 − w)}κ/2g∗(w) for 0 < w < 1. As g∗(w)/

g∗(1 − w) is slowly varying at 0 and 1, the function g̃∗(w)/g̃∗(1 − w) is regularly
varying at 0 and 1 with indices −κ and κ , respectively. Observe that an alternative
and perhaps simpler and less restrictive way to define the joint tail model is via
(9.100) but without imposing regular variation of g̃∗(w)/g̃∗(1 − w) at 0 or 1. This
is in fact the approach taken in Ramos (2003).

Exponent measure

If the joint tail model (9.99) holds, then there exist proper analogues of the exponent
and spectral measures of a max-stable distribution. Starting point is the simple
observation that

lim
t→∞

P [Z1 > tz1, Z2 > tz2]

P [Z1 > t, Z2 > t]
= g∗{z1/(z1 + z2)}z−c1

1 z
−c2
2 , (9.102)

for 0 < zj < ∞ (j = 1, 2). This shows that g(z, z) = g∗(1/2) = 1 for 0 < z < ∞.
Now for 0 < t < ∞, define a positive measure �t(·) on (0, ∞)2 by

�t(B) = P [t−1(Z1, Z2) ∈ B]

P [Z1 > t, Z2 > t]
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for Borel sets B in (0, ∞)2. Then (9.102) states convergence of �t {(z1, ∞) ×
(z2, ∞)} as t → ∞. Now by similar arguments as those leading to (8.71) or (8.94),
this implies that there exists a positive measure � on (0, ∞)2 given by

�{(z1, ∞) × (z2, ∞)} = g∗{z1/(z1 + z2)}z−c1
1 z

−c2
2 (9.103)

for 0 < zj < ∞ (j = 1, 2) and such that

�t(·) v→ � as t → ∞ in (0, ∞] × (0, ∞], (9.104)

with ‘
v→’ denoting vague convergence (Kallenberg 1983; Resnick 1987). Observe

that in (9.104), the coordinate axes are excluded, in contrast to (8.94). The reason is
that in case η < 1, the normalizing factor 1/P [Z1 > t, Z2 > t] = {L(t, t)}−1t1/η

in the definition of �t is of larger order than the factor t in the definition of µ∗t in
(8.94). In other words, for sets B hugging one or both of the axes, �t(B) may blow
up to infinity if η < 1. Finally, observe that (9.104) suggests the approximation

P [(Z1, Z2) ∈ · ] ≈ P [Z1 > t, Z2 > t]�(t−1 · ) (9.105)

for large enough 0 < t < ∞. This approximation forms the basis of statistical
inference procedures on the bivariate tail of (Z1, Z2), see below.

Clearly, equation (9.103) implies that

�{(sz1, ∞) × (sz2, ∞)} = s−1/η�{(z1, ∞) × (z2, ∞)},
for 0 < s < ∞ and 0 < zj < ∞ (j = 1, 2). Since rectangles of the kind (z1, ∞) ×
(z2, ∞) form a measure-determining class in (0, ∞)2, we obtain

�(s · ) = s−1/η�( · ), 0 < s < ∞. (9.106)

Property (9.106) should be compared with the corresponding homogeneity property
(8.11) of the exponent measure µ∗.

Spectral measure

Define the measure H� on (0, 1) by

H�(B) = �

({
(z1, z2) ∈ (0, ∞)2 : z1 + z2 > 1,

z1

z1 + z2
∈ B

})
(9.107)

for Borel sets B in (0, 1). By homogeneity in (9.106),

�

({
(z1, z2) ∈ (0, ∞)2 : z1 + z2 > r,

z1

z1 + z2
∈ B

})
= r−1/ηH�(B) (9.108)

for 0 < r < ∞ and Borel sets B in (0, 1). Equation (9.108) implies that the measure
� factorizes as a product measure when expressed in pseudo-polar coordinates
T (z1, z2) = (r, w) with r = z1 + z2 and w = z1/(z1 + z2), that is,

� ◦ T −1(dr dw) = η−1r−1/η−1dr H�(dw). (9.109)
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This is the spectral decomposition of �, to be compared with the spectral decom-
position for the exponent measure µ∗ in (8.17). The measure H� is the spectral
measure of �.

The spectral decomposition (9.109) implies for 0 < zj < ∞ (j = 1, 2),

�{(z1, ∞) × (z2, ∞)}

=
∫

(0,1)

∫ ∞

0
1{rw > z1, r(1 − w) > z2}η−1r−1/η−1dr H�(dw)

=
∫

(0,1)

{
min

(
w

z1
,

1 − w

z2

)}1/η

H�(dw). (9.110)

Comparing this with (9.103) gives

g∗(w)w−c1(1 − w)−c2 =
∫

(0,1)

{
min

(
v

w
,

1 − v

1 − w

)}1/η

H�(dv), (9.111)

for 0 < w < 1. As g∗(1/2) = 1, we find that the spectral measure H� must satisfy
the constraint ∫

(0,1)

{min(w, 1 − w)}1/ηH�(dw) = 1. (9.112)

If � is absolutely continuous with density λ(z1, z2), then H� is absolutely
continuous as well, and its density h� can be calculated from g∗ and (c1, c2) as
follows. The Jacobian of the transformation (z1, z2) �→ (r, w) = (z1 + z2, z1/(z1 +
z2)) is equal to r−1. Therefore, by the multivariate changes-of-variable formula,

λ(z1, z2) = η−1r−2−1/ηh�(w).

Since moreover λ(z1, z2) = ∂2�{(z1, ∞) × (z2, ∞)}/∂z1∂z2, we obtain

h�(w) = c1c2g∗(w) + w(1 − w)g′∗(w)(2w − 1 + c1 − c2) − g′′∗(w)w2(1 − w)2

(c1 + c2)w1+c1(1 − w)1+c2

(9.113)

for 0 < w < 1. This derivation shows that when specifying parametric models for
L in (9.99) and hence for g∗, care has to be taken that the resulting spectral density
h� is indeed positive.

A simpler way to specify parametric models satisfying (9.99) is directly via
the spectral measure (Ramos 2003). If 0 < η ≤ 1 and if H is a positive measure
on (0, 1) satisfying (9.107), then we can define a probability distribution with joint
survivor function as in the right-hand side of (9.110) restricted to 1 ≤ zj < ∞
(j = 1, 2). This survivor function can be written as in (9.100) with bivariate slowly
varying function

L̃η,H (z1, z2) =
∫

(0,1)

[
min

{
z

1/2
2 w

z
1/2
1

,
z

1/2
1 (1 − w)

z
1/2
2

}]1/η

H(dw)
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for 1 ≤ zj < ∞ (j = 1, 2), whose limit function, g̃η,H , is equal to the expression in
the right-hand side of the above equation extended to all 0 < zj < ∞ (j = 1, 2). If,
moreover, the corresponding ray dependence function g̃∗η,H is regularly varying
at 0 and 1 with indices κ and −κ , then we can define Lη,H by turning around
(9.101), leading finally to the representation (9.100).

By (9.104), the spectral measure H� can be related to the distribution of
Z1/(Z1 + Z2) given that both Z1 and Z2 are large in the sense that

P [Z1 + Z2 > t, Z1/(Z1 + Z2) ∈ · ]

P [Z1 > t, Z2 > t]
v→ H�( · ), t → ∞, (9.114)

in the open interval (0, 1). In particular, if H� is absolutely continuous with spectral
density h�, then

lim
t→∞

P [Z1 + Z2 > t, w0 ≤ Z1/(Z1 + Z2) ≤ w1]

P [Z1 > t, Z2 > t]
=
∫ w1

w0

h�(w)dw (9.115)

for all 0 < w0 ≤ w1 < 1. Observe that we do not allow the wj to be 0 or 1, as in
case η < 1 the limit would be infinity.

Example 9.4 If L is ray independent, that is, if g∗ = 1, then the exponent measure
is �{(z1, ∞) × (z2, ∞)} = z

−c1
1 z

−c2
2 , while by (9.113), the spectral density is given

simply by

h(w; c1, c2) = c1c2

c1 + c2

1

w1+c1(1 − w)1+c2
, 0 < w < 1.

If, moreover, c1 = c2, then, as c1 + c2 = 1/η,

h(w; η) = 1

4η{w(1 − w)}1+1/(2η)
, 0 < w < 1. (9.116)

It is not hard to check (9.112) directly for h(w; c1, c2).

Example 9.5 If Z1 and Z2 are independent standard Fréchet random variables,
then

P [Z1 > z1, Z2 > z2] = {1 − exp(−1/z1)}{1 − exp(−1/z2)}
= L(z1, z2)(z1z2)

−1,

where L(z1, z2) is a ray independent, bivariate slowly varying function. In par-
ticular, c1 = c2 = 1 and η = 1/2. By (9.116), the spectral density is given by
h(w; 1/2) = 2−1{w(1 − w)}−2.

Example 9.6 Let the random pair (X1, X2) have a bivariate normal distribution
with standard normal margins and correlation −1 < ρ < 1. Transform the margins
to the standard Fréchet distribution by Zj = −1/ log 
(Xj) for j = 1, 2, where 
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is the standard normal distribution function. Ledford and Tawn (1997) show that
the bivariate survivor function of (Z1, Z2) can be written as

P [Z1 > z1, Z2 > z2] = L(z1, z2; ρ)(z1z2)
−1/(1+ρ),

with L(z1, z2; ρ) a ray independent, bivariate slowly varying function. Hence c1 =
c2 = 1/(1 + ρ), η = (1 + ρ)/2, and the spectral density is given by h{w; (1 +
ρ)/2} as in (9.116).

Example 9.7 Let (Z1, Z2) have a bivariate extreme value distribution with stan-
dard Fréchet margins and exponent measure µ∗, that is, P [Z1 ≤ z1, Z2 ≤ z2] =
exp{−V∗(z1, z2)} with V∗(z1, z2) = µ∗{[0, ∞)2 \ [0, z1] × [0, z2]} for 0 < zj < ∞
(j = 1, 2), see (8.8). The joint survivor function of (Z1, Z2) is given by

P [Z1 > z1, Z2 > z2] = 1 − exp(−1/z1) − exp(−1/z2) + exp{−V∗(z1, z2)}.
Assume that the Z1 and Z2 are not independent, that is, χ = 2 − V∗(1, 1) > 0.
Recalling from (8.11) that µ∗ is homogenous of order −1, we obtain

P [Z1 > t, Z2 > t] ∼ t−1χ, t → ∞,

and hence, for 0 < zj < ∞ (j = 1, 2),

lim
t→∞

P [Z1 > z1t, Z2 > z2t]

P [Z1 > t, Z2 > t]
= χ−1{z−1

1 + z−1
2 − V∗(z1, z2)}

= χ−1µ∗{(z1, ∞) × (z2, ∞)}. (9.117)

Therefore

P [Z1 > z1, Z2 > z2] = L(z1, z2)(z1z2)
−1/2,

where the function L(z1, z2) = (z1z2)
1/2P [Z1 > z1, Z2 > z2] is bivariate slowly

varying with limit function

g(z1, z2) = χ−1(z1z2)
1/2µ∗{(z1, ∞) × (z2, ∞)}.

The function g is homogenous of order zero, and g(z1, z2) = g∗{z1/(z1 + z2)} with

g∗(w) = χ−1{w(1 − w)}1/2µ∗{(w, ∞) × (1 − w, ∞)}

= 1 − A(w)

χ{w(1 − w)}1/2
, 0 < w < 1,

where A(w) = V∗{(1 − w)−1, w−1} is Pickands dependence function. Denoting the
spectral measure of µ∗ by H as in (8.28), we have by (8.48),

g∗(w)

g∗(1 − w)
= 1 − A(w)

1 − A(1 − w)
→ −A′(0)

A′(1)
= H((0, 1])

H([0, 1))
, w → 0,

confirming that g∗(w)/g∗(1 − w) is slowly varying at 0 and 1, that is, L is quasi-
symmetric and c1 = c2 = 1/2. From (9.117), we obtain that the exponent measure
� is � = χ−1µ∗ with spectral measure H� = χ−1H , indeed satisfying (9.107).
In the special case of complete dependence, H� degenerates to a point mass of
size two at w = 1/2.
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Point processes

Convergence of point processes as in (8.98) under the domain-of-attraction con-
dition can be formulated in the joint tail model (9.99) too. Let (Zn1, Zn2), n =
1, 2, . . . be an independent sequence of random pairs distributed as (Z1, Z2) in
(9.99). Define the sequence of point processes

Nn( · ) =
n∑

i=1

1{t−1
n (Zi1, Zi2) ∈ · }.

Rather than normalizing by n−1 as in (8.98), we normalize here by a sequence (tn)n
of positive numbers such that P [Z1 > tn, Z2 > tn] ∼ 1/n as n → ∞. Since the
function 0 < t �→ P [Z1 > t, Z2 > t] = L(t, t)t−1/η is regularly varying at infinity
with index −1/η, we must have tn = nηL�(n) for some slowly varying function
L� (Bingham et al. 1987). In particular, if η < 1, then tn = o(n) as n → ∞.

Since, by (9.104),

nP [t−1
n (Z1, Z2) ∈ · ]

v→ �(·), n → ∞

in (0, ∞]2, Proposition 3.21 of Resnick (1987) implies that

Nn
D→ N, n → ∞, (9.118)

where N is a non-homogenous Poisson process on (0, ∞]2 with intensity measure
�. Note again that we excluded the coordinate axes from the state space. The
reason is that if η < 1, the normalization by tn is too weak and can only control
the (Zi1, Zi2) for which both coordinates are large (recall that the maximum of
n independent standard Fréchet variables is of order n). Therefore, the number of
points in Nn close to the axes will converge to infinity. Normalizing, on the other
hand, by n rather than by tn would indeed control the points near the axes, but
since the limiting measure in case of asymptotic independence is concentrated on
the axes, there would remain in the limit no points in the interior.

By (9.118), for 0 < zj < ∞ (j = 1, 2),

P [∀i = 1, . . . , n : Zi1 ≤ tnz1 or Zi2 ≤ tnz2]

= P [Nn{(z1, ∞) × (z2, ∞)} = 0]

→ exp[−�{(z1, ∞) × (z2, ∞)}] = exp

{
−g∗

(
z1

z1 + z2

)
z
−c1
1 z

−c2
2

}

as n → ∞. This relation can also be obtained directly from (9.99). More interest-
ingly, we can find the limit distribution of the component-wise maximum of the
sub-sample consisting of those pairs (Zi1, Zi2), i = 1, . . . , n, that fall in the region
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(tn, ∞)2: for 1 < zj < ∞ (j = 1, 2),

P [max{(Zi1, Zi2) : i = 1, . . . , n with (Zi1, Zi2) > (tn, tn)} ≤ (tnz1, tnz2)]

= P
[
Nn

({(1, ∞) × (1, ∞)} \ {(1, z1] × (1, z2]}) = 0
]

→ exp
[− �

({(1, ∞) × (1, ∞)} \ {(1, z1] × (1, z2]})]
= exp{−g(z1, 1)z

−c1
1 − g(1, z2)z

−c2
2 + g(z1, z2)z

−c1
1 z

−c2
2 }

as n → ∞.

Statistical inference

The joint tail model (9.99) may be used for statistical inference on a bivariate dis-
tribution in that region of its support where both components are large. As before,
the analysis splits into inference on the margins and inference on the joint depen-
dence structure. Estimates F̂j (j = 1, 2) of the marginal distributions Fj are used
to transform the original data (Xi1, Xi2) to approximate standard Fréchet margins
by Ẑij = −1/ log F̂j (Xij ), and these transformed data are then assumed to follow
the joint tail model (9.99). The margins may be estimated non-parametrically or
semi-parametrically as explained in section 9.4.1. Alternatively, under a paramet-
ric specification of (9.99), marginal and dependence parameters may be estimated
jointly by maximum likelihood. In the text, we assume for simplicity that the mar-
gins are known, so that we dispose of independent, identically distributed random
pairs (Zi1, Zi2) following the joint tail model (9.99).

We will not apply the methods to the Loss-ALAE data, since in section 9.5.2
we found insufficient proof for asymptotic independence. However, multivariate
extreme value methods will come into play in section 10.4.6 again when we analyse
the extremes of certain Markov processes. There we will illustrate some paramet-
ric techniques for asymptotic independence with suitable adaptations to Markov
processes as in Bortot and Tawn (1998).

Non-parametric inference. Combining (9.106) and (9.104), we find that the dis-
tribution of (Z1, Z2) satisfies the following scaling relation: For a Borel set B in
(t, ∞)2 with t large and for 0 < s < ∞, we have by successive applications of
(9.105),

P [(Z1, Z2) ∈ B] ≈ P [Z1 > t, Z2 > t]�(t−1B)

= P [Z1 > t, Z2 > t]s1/η�(st−1B)

≈ s1/ηP [(Z1, Z2) ∈ sB]. (9.119)

[For the approximations to work, B needs to be a continuity set of �, that is,
�(∂B) = 0, with ∂B the topological boundary of B.] Hence, if the set B does not
contain any or only very few of the observations (Zi1, Zi2), i = 1, . . . , n, we can
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still estimate the probability p = P [(Z1, Z2) ∈ B] by

p̂ = s1/η̂ 1

n

n∑
i=1

1{(Zi1, Zi2) ∈ sB}.

Here η̂ is an estimator of the coefficient of tail dependence as in section 9.5.2,
and 0 < s < 1 is a scaling factor to be chosen such as to meet the two conflicting
criteria of sufficiently scaling down the failure set B (small s) and keeping the
approximation (9.119) sufficiently accurate (large s). The asymptotic properties of
p̂ are discussed in Draisma et al. (2004).

Alternatively, we may estimate the tail of (Z1, Z2) by first estimating the expo-
nent measure � and secondly using the approximation (9.105). A naive estimator
for the exponent measure � arises from replacing probabilities by empirical counts
in that same approximation,

�̃(·) =
∑n

i=1 1{t−1(Zi1, Zi2) ∈ ·}∑n
i=1 1{min(Zi1, Zi2) > t} . (9.120)

Here, t acts as a threshold, the choice of which should strike a balance between a
close approximation in (9.104) and a sufficient number of observations in the region
(t, ∞)2. The estimator �̃(·) does not satisfy the homogeneity property (9.106) and
is therefore not directly suited to approximate the tail of (Z1, Z2) through (9.105).
However, we can turn �̃ into an estimator for the spectral measure,

Ĥ�(·) = �̃
({

(z1, z2) ∈ (0, ∞)2 : z1 + z2 > 1, z1/(z1 + z2) ∈ · })

=
∑n

i=1 1{Zi1 + Zi2 > t, Zi1/(Zi1 + Zi2) ∈ · }∑n
i=1 1{min(Zi1, Zi2) > t}

Observe that replacing probabilities by empirical counts in (9.114) leads to Ĥ� as
well. Now, combine this Ĥ� with an estimate η̂ of the coefficient of tail dependence
to find an estimator of � that does satisfy the required homogeneity property:

�̂{(z1, ∞) × (z2, ∞)}

=
∫

(0,1)

{
min

(
w

z1
,

1 − w

z2

)}1/η̂

Ĥ�(dw)

=
∑n

i=1 1(Zi1 + Zi2 > t)(Zi1 + Zi2)
−1/η̂{min(Zi1/z1, Zi2/z2)}1/η̂∑n

i=1 1{min(Zi1, Zi2) > t} .

The finite-sample or asymptotic properties of this estimator remain to be investi-
gated.

Parametric inference. Another possibility to perform statistical inference on the
joint tail model (9.99) is within a parametric sub-model, analytically tractable but still



STATISTICS OF MULTIVARIATE EXTREMES 365

sufficiently flexible. As for models based on multivariate extreme value distributions,
inference can be done by the censored-likelihood approach, see section 9.4.2. The
case for asymptotic dependence or asymptotic independence is not always clear-cut,
however, making it useful to quantify the uncertainty in a Bayesian set-up through the
posterior distribution on the parameters of a model that allows for both asymptotic
dependence and independence (Coles and Pauli 2002).

It is not completely trivial to construct useful parametric models for the joint
tail model (9.99). The modelling strategy adopted in Ledford and Tawn (1997)
and Bruun and Tawn (1998) is to take a specification of the form L(z1, z2) =
L∗{z1/(z1 + z2)}, where L∗(w) = Kg∗(w) for a positive constant K and a quasi-
symmetric ray dependence function g∗, see section 10.4.6. As a model selection
diagnostic, one can first estimate � by the non-parametric estimator �̃ given in
(9.120) and then identify g∗ and (c1, c2) by evaluating (9.103) at (w, 1 − w) and
(w − 1, w) and assuming that g∗ is symmetric around 1/2. It is not always obvious
that a certain parametric form for g∗ leads to a valid distribution; in particular, the
spectral density h� in (9.113) should be checked to be non-negative over its whole
range. A more natural approach, therefore, is to specify a parametric form for the
spectral density h� itself (Ramos 2003).

9.6 Additional Topics

Only some components are extreme

Until now, we have only considered the tail function 1 − F(x) for x such that all
marginal tail probabilities 1 − Fj (xj ) are small. In practice, however, we might
want to perform estimation and extrapolation in a region of the support of the
distribution where some, but not all, components are large. This, however, falls
outside the scope of both the traditional approach based on extreme value distri-
butions and the more recent approach of asymptotic independence in section 9.5.
All in all, there seems to be a huge gap in the theory and practice of multivariate
extremes in dire need of being filled in.

This need was already recognized in Maulik et al. (2002) in the analysis of
certain internet traffic data. The size of a transmitted file is equal to the product
of the transmission rate and the transmission time. The distributions of both the
transmission rate and the transmission time are heavy-tailed, the first one having
the heavier tail, and their joint distribution is asymptotically independent. However,
this information is insufficient to characterize the tail of the distribution of the file
length. To tackle the problem, the authors develop a more refined model, implicitly
assuming a limit distribution for one variable given that the other one is large.

Heffernan and Tawn (2004) develop a comparable approach in a general d-
variate setting. In Gumbel coordinates, they assume that conditionally on one
variable being extreme, the distribution of the d − 1 other variables, properly
centred and scaled, converges to a limit. Inductively proceeding from a num-
ber of analytical examples, they propose a parametric model for the normalizing
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constants. In this way, they end up with a multivariate semi-parametric regres-
sion model, which they then apply to five-dimensional air quality monitoring data
recorded at the city centre of Leeds, UK.

Spatial extremes

In most studies of multivariate extremes, the number of variables is small, often just
two. Many environmental phenomena, however, have a spatial dimension, and the
aim is then to model the spatial dependence within extreme events in continuous
space based on observations recorded at a grid. The basic modelling tool is formed
by so-called max-stable processes (de Haan 1984), stochastic processes of which
all finite-dimensional distributions are multivariate extreme value distributions.

In the context of coastal flood prevention, Coles and Tawn (1990) consider sea-
level annual maxima along the British coast, assuming a bivariate logistic model
for neighbouring sites. Coles (1993) constructs models for the spatial dependence
of daily rainfall amounts recorded at 11 sites in the south-west of England; see
also Coles (1994). The same data are considered again in Coles and Tawn (1996a),
who extend the analysis to the aggregated rainfall over the whole region, and
in Schlather and Tawn (2003), who construct non-parametric estimators for the
extremal dependence between sites as a function of the inter-site distance. The issue
of asymptotic dependence versus asymptotic independence in spatial processes is
explored in Ancona-Navarrete and Tawn (2002).

A new impetus is the work by de Haan and Lin (2001). They develop an exten-
sion of the classical multivariate extreme value theory as developed in Chapter 8
to component-wise maxima of independent, identically distributed stochastic pro-
cesses of a continuous variable. Within the same framework, Einmahl and Lin
(2003) treat the simultaneous estimation of the tails of the marginal distributions.

9.7 Summary

Analysing multivariate extremes involves a number of choices: parametric models
or not, block maxima or multivariate-threshold exceedances, asymptotic depen-
dence or asymptotic independence, just to mention the most important ones. Unfor-
tunately, the current state of the art does not seem developed far enough to provide
the user with a fully automatic, universally applicable methodology. Rather than
that, intelligent judgement of the user is, and probably will always be, necessary.
To assist the reader in making wise decisions, we provide here an overview of
all the methods, together with their drawbacks and benefits. We also sketch some
avenues for further research.

Statistical inference on the class of multivariate extreme value distributions
is hampered by the lack of a finite-dimensional parametrization for the depen-
dence structure. A natural option then is to construct parametric sub-families
that are, on the one hand, sufficiently flexible to satisfactorily approximate any
given member from the general class and, on the other hand, still analytically and
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computationally tractable. The benefits of parametric modelling are easier statistical
inference through likelihood machinery, joint estimation of marginal and depen-
dence parameters, the possibility to tackle complex high-dimensional problems
through careful model building and natural ways to include covariate information.
Main drawback of course is the inherent risk of model mis-specification.

Like in the univariate case, historically, the first and conceptually the sim-
plest multivariate extreme value method is based on block maxima. Observations
are partitioned into blocks, each block is reduced to the vector of component-
wise maxima, and the collection of block maxima is modelled as an independent
sample from a common multivariate extreme value distribution. In the bivari-
ate case, there is a range of direct non-parametric estimators for the Pickands
dependence function to choose from. The efficiency of these estimators is still
an open issue. The alternative consists of postulating a parametric model for the
spectral measure and estimating the parameters by maximum likelihood, possi-
bly jointly with the marginal parameters. A common critique to block maxima
methods, univariate or multivariate, is that they throw away many relevant obser-
vations.

More efficient are so-called thresholds methods, as these employ all observa-
tions for which at least one coordinate exceeds a corresponding high threshold.
The aim is now to estimate a distribution in a region where there are almost no
observations. Starting point is the approximate relation

F(x) ≈ exp[−l{− log F1(x1), . . . , − log Fd(xd)}] (9.121)

where F is a distribution function in the domain of attraction of an extreme value
distribution with stable tail dependence function l, and where x is such that 1 −
Fj (xj ) is small for all j = 1, . . . , d. The task therefore can be torn apart into
estimating the marginal tails and estimating the stable tail dependence function.

Non-parametric methods are essentially based on the tail empirical dependence
function, which arises if we take the empirical version of the related approxi-
mation F(x) ≈ 1 − l{1 − F1(x1), . . . , 1 − Fd(xd)}. The tail empirical dependence
function forms the starting point for fully non-parametric estimators for the spec-
tral measure and the Pickands dependence function. We conjecture that existing
non-parametric methods can still be improved if they take as a starting point the
more accurate approximation (9.121).

Alternatively, the above approximations can be turned into fully parametric
models for F by assuming a parametric model for l and by modelling the marginal
tails by GP or GEV distributions. Marginal and dependence parameters can now
be estimated jointly by maximum likelihood, benefits being transfer of informa-
tion between coordinates, correct assessment of the global estimation uncertainty,
possibility to exploit common features in the different marginal tails, and natural
extensions to include covariate information. Some care needs to be taken, how-
ever, in the construction of the likelihood, as the model only specifies the form of
F in a certain region of its support. Two possible ways to deal with this are the
so-called point-process method and the censored-likelihood method. We prefer the
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latter as it yields the more accurate estimates of dependence parameters in case the
dependence structure is close to asymptotic independence.

Methods derived from multivariate extreme value distributions only allow for
models in which the components at extreme levels are either exactly independent
or asymptotically dependent in the sense that joint extremes occur with a probabil-
ity of the same order of magnitude as a single extreme. This is unsatisfactory for
asymptotically independent distributions for which the components are still posi-
tively or negatively associated at extreme levels, as quantified by the coefficient of
tail dependence. The deficiency is overcome by a model for the bivariate survivor
function that bridges the gap between exact independence and asymptotic indepen-
dence. The merits of the few available parametric and non-parametric inference
techniques remain to be assessed.

A common feature of all models for multivariate extremes is that they describe
the distribution only in that part of its support where all coordinates are extreme.
The case where only some coordinates are extreme is relatively unexplored.
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EXTREMES OF STATIONARY
TIME SERIES

co-authored by Chris Ferro

10.1 Introduction

The extremes of time series can be very different to those of independent sequences.
Serial dependence affects not only the magnitude of extremes but also their qual-
itative behaviour. This necessitates both a modification of standard methods for
analysing extremes and a development of additional tools for describing these new
features. In this chapter, we present mathematical characterizations for the extremes
of stationary processes and statistical methods for their estimation.

The effect of serial dependence on extremes can be illustrated with a simple
example. The moving-maximum process (Deheuvels 1983) is defined by

Xi = max
j≥0

αjZi−j , i ∈ Z, (10.1)

where the coefficients αj ≥ 0 satisfy
∑

j≥0 αj = 1 and the Zi are indepen-
dent, standard Fréchet random variables, that is, P [Z ≤ x] = exp(−1/x) for
0 < x < ∞; the marginal distribution of {Xi}i≥1 is also standard Fréchet. A par-
tial realization of the process when α0 = α1 = 1/2 (Newell 1964) is reproduced
in Figure 10.1. The serial dependence causes large values to occur in pairs; more
general clustering is possible with other choices for the coefficients. This affects
the distribution of order statistics —for example, the two largest order statistics
have the same asymptotic distribution—while the presence of clusters of extremes
is a phenomenon that is not experienced for independent sequences.

Statistics of Extremes: Theory and Applications J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels
 2004 John Wiley & Sons, Ltd ISBN: 0-471-97647-4

369



370 EXTREMES OF STATIONARY TIME SERIES

0 20 40 60 80 100

0
10

20
30

40

i

X
_i

Figure 10.1 A partial realization of the moving-maximum process Xi =
max(Zi, Zi−1)/2.

Extreme events in the physical world are often synonymous with clusters of
large values: for example, a flood might be caused by several days with heavy rain-
fall. A single extreme event such as a flood can impact the environment, man-made
structures and public health and generate a spate of insurance claims. It is therefore
of great interest to know the rate at which such events can be expected to occur
and what they might look like when they do.

There are two approaches to analysing the extremes of time series. One is to
choose a time-series model for the complete process, fit it to the data and then
determine its extremal behaviour either analytically or by simulation. This topic
has been well treated elsewhere, by Embrechts et al. (1997), for instance, and we
shall touch on it only briefly in section 10.6. The second approach is to choose
a model for the process at extreme levels only and fit it to the extremes in the
data. This alternative is attractive because, as we have seen elsewhere in this book,
models for extremes can be derived under very weak conditions on the process. It
is on this approach that we shall concentrate.

We begin in section 10.2 by considering the sample maximum, which can be
modelled, as for independent sequences, with the generalized extreme value (GEV)
distribution. In section 10.3, we achieve a characterization for all exceedances over
a high threshold, which supplies a point-process model for clusters of extremes.
Models for the extremes of Markov processes are established in section 10.4. Up
to this point, we shall deal with only stationary (in the strict sense) univariate
sequences, for which both theory and methods are well developed. In section 10.5,
we summarize some key results for the extremes of multivariate processes. Finally,
in section 10.6, we provide the reader with some key references about additional
topics that, despite their importance, did not make it to the core of the chapter.

Many of the statistical methods are illustrated for a series of daily max-
imum temperatures recorded at Uccle, Belgium; see also section 1.3.2. The
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data analysis was performed using R (version 1.6.1), freely available from
www.r-project.org/. The code can be downloaded from Chris Ferro’s home-
page on www.met.rdg.ac.uk/~sws02caf/software.html/ and from
www.UCS_Software.be. [JS: URL to be completed.]

10.2 The Sample Maximum

Let X1, X2, . . . be a (strictly) stationary sequence of random variables with
marginal distribution function F . The assumption entails that integer h ≥ 0 and
n ≥ 1, the distribution of the random vector (Xh+1, . . . , Xh+n) does not depend
on h. For the maximum Mn = maxi=1,...,n Xi , we seek the limiting distribution
of (Mn − bn)/an for some choice of normalizing constants an > 0 and bn. In
Chapter 2, it was shown that for independent random variables, the only pos-
sible non-degenerate limits are the extreme value distributions. We shall see in
section 10.2.1 that this remains true for stationary sequences if long-range depen-
dence at extreme levels is suitably restricted. However, the limit distribution need
not be the same as for the maximum M̃n = maxi=1,...,n X̃i of the associated, inde-
pendent sequence {X̃i} with the same marginal distribution as {Xi}. The distinction
is due to the extremal index, introduced in section 10.2.3, which measures the
tendency of extreme values to occur in clusters.

10.2.1 The extremal limit theorem

For a set J of positive integers, let M(J) = maxi∈J Xi . For convenience, also
set M(∅) = −∞. We shall partition the integers {1, . . . , n} into disjoint blocks
Jj = Jj,n and show that the block maxima M(Jj ) are asymptotically independent.
Since Mn = maxj M(Jj ), it follows as in Chapter 2 that the limit distribution of
(Mn − bn)/an, if it exists, must be an extreme value distribution.

Let (rn)n be a sequence of positive integers such that rn = o(n) as n → ∞,
and put kn = �n/rn�. Partition {1, . . . , n} into kn blocks of size rn,

Jj = Jj,n = {(j − 1)rn + 1, . . . , jrn}, j = 1, . . . , kn, (10.2)

and, in case knrn < n, a remainder block, Jkn+1 = {knrn + 1, . . . , n}. Now define
thresholds un increasing at a rate for which the expected number of exceedances
over un remains bounded: lim sup nF̄ (un) < ∞, with of course F̄ = 1 − F . We
shall see that, under an appropriate condition,

P [Mn ≤ un] =
kn∏

j=1

P [M(Jj ) ≤ un] + o(1)

= (P [Mrn ≤ un])kn + o(1), n → ∞. (10.3)

This is precisely the desired representation of Mn in terms of independent random
variables, Mrn .
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To find out when (10.3) holds, observe that

P [Mn ≤ un] = P


kn+1⋂

j=1

{M(Jj ) ≤ un}

 .

Since P [M(Jj ) > un] ≤ rnF̄ (un) → 0, the remainder block can be omitted:

P [Mn ≤ un] = P


 kn⋂

j=1

{M(Jj ) ≤ un}

+ o(1), n → ∞

A crucial point is that the events {Xi > un} are sufficiently rare for the probability
of an exceedance occurring near the ends of the blocks Jj to be negligible. Let
(sn)n be a sequence of positive integers such that sn = o(rn) as n → ∞, and let
J ′

j = J ′
j,n = {jrn − sn + 1, . . . , jrn} be the sub-block of size sn at the end of Jj .

The sub-blocks are asymptotically unimportant, as

P


 kn⋃

j=1

{M(J ′
j ) > un}


 ≤ knsnF̄ (un) → 0, n → ∞.

This leaves us with

P [Mn ≤ un] = P


 kn⋂

j=1

{M(J ∗
j ) ≤ un}


+ o(1), n → ∞,

where the J ∗
j = {(j − 1)rn + 1, . . . , jrn − sn} are separated from one another by

a distance sn. If the events {M(J ∗
j ) ≤ un} are approximately independent then we

would obtain, as required,

P [Mn ≤ un] =
kn∏

j=1

P [M(J ∗
j ) ≤ un] + o(1)

=
kn∏

j=1

P [M(Jj ) ≤ un] + o(1), n → ∞,

using again knP [M(J ′
j ) > un] ≤ knsnF̄ (un) → 0 as n → ∞.

A mixing condition known as the D(un) condition (Leadbetter 1974) suf-
fices for the events {M(J ∗

j ) ≤ un} to become approximately independent as n

increases. Let

Ij,k(un) = {{M(I) ≤ un} : I ⊆ {j, . . . , k}}
be the set of all intersections of the events {Xi ≤ un}, j ≤ i ≤ k.
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Condition 10.1 D(un). For all A1 ∈ I1,l(un), A2 ∈ Il+s,n(un) and 1 ≤ l ≤ n − s,

|P (A1 ∩ A2) − P (A1)P (A2)| ≤ α(n, s)

and α(n, sn) → 0 as n → ∞ for some positive integer sequence sn such
that sn = o(n).

The D(un) condition says that any two events of the form {M(I1) ≤ un} and
{M(I2) ≤ un} can become approximately independent as n increases when the
index sets Ii ⊂ {1, . . . , n} are separated by a relatively short distance sn = o(n).
Hence, the D(un) condition limits the long-range dependence between such events.

Now if the events A1, . . . , Ak ∈ I1,n(un) are such that the corresponding index
sets are separated from each other by a distance s, then, by induction on k, we get

∣∣∣∣∣∣P

 k⋂

j=1

Aj


−

k∏
j=1

P (Aj )

∣∣∣∣∣∣ ≤ kα(n, s).

Therefore, if sn = o(rn) and knα(n, sn) → 0, then∣∣∣∣∣∣P

 kn⋂

j=1

{M(J ∗
j ) ≤ un}


−

kn∏
j=1

P [M(J ∗
j ) ≤ un]

∣∣∣∣∣∣ ≤ knα(n, sn) → 0,

as n → ∞. When α(n, sn) → 0 for some sn = o(n), it is indeed possible to find
rn = o(n) such that sn = o(rn) and knα(n, sn) → 0; take, for instance, rn to be
the integer part of [n max{sn, nα(n, sn)}]1/2. Together, we obtain the following
fundamental result.

Theorem 10.2 (Leadbetter 1974) Let {Xn} be a stationary sequence for which
there exist sequences of constants an > 0 and bn and a non-degenerate distribution
function G such that

P

[
Mn − bn

an

≤ x

]
D→ G(x), n → ∞.

If D(un) holds with un = anx + bn for each x such that G(x) > 0, then G is an
extreme value distribution function.

Note that the D(un) condition is required to hold for all sequences un = anx +
bn for which G(x) > 0. The necessity of this requirement is shown by the process
Xi ≡ X1, for which D(un) holds as soon as F(un) → 1 as n → ∞. Nevertheless,
the condition is weak as it concerns events of the form {Xi ≤ un} only. Compare
this with strong mixing (Loynes 1965), for example, which requires Condition 10.1
to hold for classes of sets Ij,k = σ(Xi : j ≤ i ≤ k), the σ -algebra generated by the
random variables Xj, . . . , Xk . For Gaussian sequences with auto-correlation ρn at
lag n, the D(un) condition is satisfied as soon as ρn log n → 0 as n → ∞ (Berman
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1964). This is much weaker than the geometric decay assumed by auto-regressive
models, for example.

In fact, Theorem 10.2 holds true for even weaker versions of the D(un) con-
dition as may be evident from our discussion. One example (O’Brien 1987) is
asymptotic independence of maxima (AIM), which requires Condition 10.1 to
hold when

Ij,k(un) = {{M(I) ≤ un} : I = {i1, . . . , i2} ⊆ {j, . . . , k}},
comprising block maxima over intervals of integers rather than arbitrary sets of
integers. This weakening admits a class of periodic Markov chains.

Example 10.3 The max-autoregressive process of order one, or ARMAX in short,
is defined by the recursion

Xi = max{αXi−1, (1 − α)Zi}, i ∈ Z, (10.4)

where 0 ≤ α < 1 and where the Zi are independent standard Fréchet random vari-
ables. A stationary solution of the recursion is

Xi = max
j≥0

αj (1 − α)Zi−j , i ∈ Z,

showing that the ARMAX process is a special case of the moving-maximum pro-
cess of the introduction; in particular, the marginal distribution of the process is
standard Fréchet. Furthermore, the D(un) condition can be shown to hold for gen-
eral moving-maximum processes, so we expect the limit distribution of Mn/n to
be an extreme value distribution. Indeed, for 0 < x < ∞, we have

P [Mn ≤ x] = P [X1 ≤ x, (1 − α)Z2 ≤ x, . . . , (1 − α)Zn ≤ x]

= P [X1 ≤ x]{P [(1 − α)Z1 ≤ x]}n−1

= exp[−{1 + (1 − α)(n − 1)}/x] (10.5)

so that

P [Mn/n ≤ x] → exp{−(1 − α)/x} =: G(x), n → ∞.

Compare this with the limit distribution G̃(x) = exp(−1/x) of M̃n/n. We shall
discover in section 10.2.3 that the relationship G(x) = G̃(x)1−α is no coincidence.

If Theorem 10.2 holds, then we can fit the GEV distribution to block maxima
from stationary sequences. For large n, we have

P [Mn ≤ anx + bn] ≈ exp

[
−
{

1 + γ

(
x − µ0

σ0

)}−1/γ

+

]
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say. Therefore

P [Mn ≤ x] ≈ exp

[
−
{

1 + γ

(
x − µ

σ

)}−1/γ

+

]
,

where the parameters µ = anµ0 + bn and σ = anσ0 assimilate the normalizing
constants. The parameters (µ, σ, γ ) can be estimated by maximum likelihood, for
example, as in the following section.

10.2.2 Data example

The data plotted in Figure 10.2 are daily maximum temperatures recorded in
degrees Celsius at Uccle, Belgium, during the years from 1901 to 1999. All days
except those in July, which is generally the warmest month, have been removed
in order to make our assumption of stationarity more reasonable. These data are
freely available at www.knmi.nl/samenw/eca as part of the European Climate
Assessment and Data set project (Klein Tank et al. 2002).

We begin our analysis of these data by fitting the GEV distribution to the July
maxima. The maximum-likelihood estimates of the parameters, with standard errors
in brackets, are µ̂ = 30.0 (0.3), σ̂ = 3.0 (0.2) and γ̂ = −0.34 (0.07). The diag-
nostic plots in Figure 10.3 indicate a systematic discrepancy due perhaps to mea-
surement error or non-stationary meteorological conditions, but the most extreme
maxima are modelled well. The estimate of the upper limit for the distribution
of July maximum temperature obtained from the GEV fit is µ̂ − σ̂ /γ̂ = 38.7◦C,
with profile-likelihood 95% confidence interval (37.3, 43.9). The estimated 100,
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Figure 10.2 Daily maximum temperatures in July at Uccle from 1901 to 1999.
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Figure 10.3 Quantile and return level plots for the generalized extreme value
distribution fitted to July maximum temperatures.

1000 and 10,000 July return levels are 36.9 (36.2, 38.6), 37.9 (36.9, 40.5) and 38.3
(37.2, 41.8). We shall investigate other features of these data in later sections.

10.2.3 The extremal index

Theorem 10.2 shows that the possible limiting distributions for maxima of station-
ary sequences satisfying the D(un) condition are the same as those for maxima of
independent sequences. Dependence can affect the limit distribution, however, as
illustrated by Example 10.3. We investigate the issue further in this section. First
note that approximation (10.3) is also true for independent sequences. The effect
of dependence is therefore to be found in the distribution of block maxima, Mrn .

Choose thresholds un such that nF̄ (un) → τ for some 0 < τ < ∞. For the
associated, independent sequence,

P [M̃n ≤ un] = {F(un)}n =
{

1 − 1

n
nF̄ (un)

}n

→ exp(−τ ), n → ∞.

For a general stationary process, however, P [Mn ≤ un] need not converge and, if
it does, the limit need not be exp(−τ ).

Suppose that un and vn are two threshold sequences and that

nF̄ (un) → τ, P [Mn ≤ un] → exp(−λ),

nF̄ (vn) → υ, P [Mn ≤ vn] → exp(−ψ),

as n → ∞, where τ, υ ∈ (0, ∞) and λ, ψ ∈ [0, ∞). We show that if D(un) holds,
then λ/τ = ψ/υ =: θ . In other words, P [Mn ≤ un] → exp(−θτ) and the effect
of dependence is expressed by the scalar θ , independently of τ .
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Without loss of generality, assume that τ ≥ υ and define n′ = �(υ/τ)n�.
Clearly n′F̄ (un) → υ so that

|P [Mn′ ≤ un] − P [Mn′ ≤ vn′]| ≤ n′|F(un) − F(vn′)| → 0

and thus P [Mn′ ≤ un] → exp(−ψ) as n → ∞. Now suppose as in section 10.2.1
that (rn)n and (sn)n are positive integer sequences such that rn = o(n), sn = o(rn),
and (n/rn)α(n, sn) → 0 as n → ∞. Since n′ ≤ n, we have by (10.3)

P [Mn′ ≤ un] = P [Mrn ≤ un]�n
′/rn� + o(1),

P [Mn ≤ un] = P [Mrn ≤ un]�n/rn� + o(1),

and thus

n′

rn

P [Mrn > un] → ψ,
n

rn

P [Mrn > un] → λ,

as n → ∞. Since n′ ∼ (υ/τ)n, we must have λ/τ = ψ/υ, as required, and

θ = λ

τ
= lim

n→∞
P [Mrn > un]

rnF̄ (un)
. (10.6)

This argument is the basis for the following theorem.

Theorem 10.4 (Leadbetter 1983) If there exist sequences of constants an > 0 and
bn and a non-degenerate distribution function G̃ such that

P

[
M̃n − bn

an

≤ x

]
D→ G̃(x), n → ∞,

if D(un) holds with un = anx + bn for each x such that G̃(x) > 0 and if P [(Mn −
bn)/an ≤ x] converges for some x, then

P

[
Mn − bn

an

≤ x

]
D→ G(x) := G̃θ (x), n → ∞,

for some constant θ ∈ [0, 1].

The constant θ is called the extremal index and, unless it is equal to one, the
limiting distributions for the independent and stationary sequences are not the same.
If θ > 0, then G is an extreme value distribution, but with different parameters
than G̃. In particular, if (µ, σ, γ ) are the parameters of G and (µ̃, σ̃ , γ̃ ) are the
parameters of G̃, then their relationship is

γ = γ̃ , µ = µ̃ − σ̃
1 − θγ

γ
, σ = σ̃ θγ , (10.7)

or, if γ = 0, taking the limits µ = µ̃ + σ log θ and σ = σ̃ . Observe that the extreme
value index γ remains unaltered.



378 EXTREMES OF STATIONARY TIME SERIES

Example 10.5 The derivation in Example 10.3 shows that the extremal index of
the ARMAX process is θ = 1 − α. More generally, for the moving-maximum
process (10.1), we have

P (Mn ≤ nx)

= P

[
max
j≥0

(αjZ1−j ) ≤ nx, . . . , max
j≥0

(αjZn−j ) ≤ nx

]

= P

[
max
i≥0

max
1≤j≤n

(αi+jZ−i ) ≤ nx, max
1≤i≤n

max
0≤j≤n−i

(αjZi) ≤ nx

]

= exp


− 1

x


1

n

∑
i≥0

max
1≤j≤n

αi+j + 1

n

n−1∑
i=0

max
0≤j≤i

αj




 .

We treat both sums separately. The first sum can, for positive integer m, be
bounded by

1

n

∑
i≥0

max
1≤j≤n

αi+j ≤ m

n
+ 1

n

∑
i≥m

max
1≤j≤n

αi+j ≤ m

n
+
∑

i≥m+1

αi.

Let m tend to infinity to obtain that n−1∑
i≥0 max1≤j≤n αi+j → 0 as n → ∞. For

the second sum, let α(1) = maxj≥0 αj . Since max0≤j≤i aj → a(1) as i → ∞, we
have n−1∑n−1

i=0 max0≤j≤i αj → α(1) as n → ∞. Together, we obtain θ = α(1).

Asymptotic independence

The case θ = 1 is true for independent processes, but it can be true for dependent
processes too. The following condition (Leadbetter 1974) is sufficient when allied
with D(un).

Condition 10.6 D′(un).

lim
k→∞

lim sup
n→∞

n

�n/k�∑
j=2

P [X1 > un, Xj > un] = 0.

To see the effect of D′(un), apply the inclusion-exclusion formula to the event
{Mrn > un} =⋃rn

i=1{Xi > un} to obtain

rn∑
i=1

F̄ (un) ≥ P [Mrn > un] ≥
rn∑

i=1

F̄ (un) −
∑

1≤i<j≤rn

P [Xi > un, Xj > un].

Therefore, P [Mrn > un] ∼ rnF̄ (un) and θ = 1 by (10.6) if
∑

1≤i<j≤rn

P [Xi > un, Xj > un] = o{rnF̄ (un)} = o(rn/n)
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as n → ∞. Since the sum is not greater than rn

∑rn
j=2 P (X1 > un, Xj > un), this

is satisfied if D′(un) holds. In contrast to the D(un) condition, which controls
the long-range dependence, the D′(un) condition limits the amount of short-range
dependence in the process at extreme levels. In particular, it postulates that the
probability of observing more than one exceedance in a block is negligible.

Example 10.7 When α = 0, the ARMAX process (10.4) is independent and the
D′(un) condition holds. On the other hand,

P [X1 > un, X2 > un]

= 1 − P [X1 ≤ un] − P [X2 ≤ un] + P [X1 ≤ un, X2 ≤ un]

= 1 − 2 exp(−1/un) + P [X1 ≤ un, (1 − α)Z2 ≤ un]

= 1 − 2 exp(−1/un) + exp{(α − 2)/un}
so that nP [X1 > un, X2 > un] → α/x when un = nx for some 0 < x < ∞, that
is, D′(un) fails if α > 0.

Positive extremal index

The case θ = 0 is pathological, although not impossible, see Denzel and O’Brien
(1975) or Leadbetter et al. (1983), p. 71. It entails that sample maxima Mn of the
process are of smaller order than sample maxima M̃n of the associated independent
sequence. Also, the expected number of exceedances in a block with at least one
exceedance converges to infinity, see (10.10) below. For purposes of statistical
inference, it will turn out to be convenient to assume that 0 < θ ≤ 1. A sufficient
condition is that the influence of a large value X1 > un reaches only finitely far
over time, as in Condition 10.8 below. For integers 0 ≤ j ≤ k, we denote Mj,k =
max{Xj+1, . . . , Xk} (with max ∅ = −∞) and Mk = M0,k .

Condition 10.8 The thresholds un and the integers rn are such that F(un) < 1,
F̄ (un) → 0, rn → ∞ and

lim
m→∞ lim sup

n→∞
P [Mm,rn > un | X1 > un] = 0. (10.8)

For integer m ≥ 1, by decomposing the event {Mrn > un} according to the time of
the last exceedance,

P [Mrn > un] ≥
�rn/m�∑

i=1

P [X(i−1)m+1 > un, Mim,rn ≤ un]

≥ �rn/m�F̄ (un)P [Mm,rn ≤ un | X1 > un].

For large-enough m, therefore, Condition 10.8 guarantees that

lim inf
n→∞

P [Mrn > un]

rnF̄ (un)
≥ lim inf

n→∞
1

m
P [Mm,rn ≤ un | X1 > un] > 0. (10.9)
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Hence, if also rn = o(n) and nα(n, sn) = o(rn) for some sn = o(rn), then θ must
indeed be positive by (10.6).

Blocks and runs

The extremal index has several interpretations. For example, θ = lim θB
n (un), where

1

θB
n (un)

= rnF̄ (un)

P [Mrn > un]
= E

[
rn∑

i=1

1(Xi > un)

∣∣∣∣∣Mrn > un

]
(10.10)

is the expected number of exceedances over un in a block containing at least one
such exceedance. Therefore, the extremal index is the reciprocal of the limiting
mean number of exceedances in blocks with at least one exceedance.

Another interpretation of the extremal index is due to O’Brien (1987). Assume
again Condition 10.8 and let the integers 1 ≤ sn ≤ rn be such that sn → ∞ and
sn = o(rn) as n → ∞; for instance, take sn the integer part of r

1/2
n . On the one

hand, we have

P [Mrn > un] =
rn∑

i=1

P [Xi > un, Mi,rn ≤ un]

≥ rnF̄ (un)P [M1,rn ≤ un | X1 > un],

and on the other hand,

P [Mrn > un] ≤ snF̄ (un) + (rn − sn)F̄ (un)P [M1,sn ≤ un | X1 > un].

Moreover by (10.8)

0 ≤ P [M1,sn ≤ un | X1 > un] − P [M1,rn ≤ un | X1 > un]

≤ P [Msn,rn > un | X1 > un] → 0.

Writing

θR
n (un) = P [M1,rn ≤ un | X1 > un] (10.11)

we see that the upper and lower bounds on P [Mrn > un] give

θR
n (un) = θB

n (un) + o(1).

Therefore, θ = lim θR
n (un) represents the limiting probability that an exceedance

is followed by a run of observations below the threshold. Both interpretations
identify θ = 1 with exceedances occurring singly in the limit, while θ < 1 implies
that exceedances tend to occur in clusters. Yet another interpretation of the extremal
index, in terms of the times between exceedances over a high threshold, is given
in section 10.3.4.
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Example 10.9 For the ARMAX process of Example 10.3, we can derive the
extremal index θ = 1 − α by combining (10.5) with the block (10.10) or run
(10.11) definitions, where un = nx for some 0 < x < ∞ and rn is such that
rn → ∞ but rn = o(n). Regarding the run definition (10.11), observe that by
stationarity,

θR
n (un) = {P [Mrn−1 ≤ un] − P [Mrn ≤ un]}/F̄ (un).

Statistical relevance

Theorem 10.4 shows how the extremal index characterizes the change in the distri-
bution of sample maxima due to dependence in the sequence. Suppose 0 < θ ≤ 1.
If G̃←(p) is the quantile function for the limit G̃, then the quantile function for G is
G←(p) = G̃←(p1/θ ) ≤ G̃←(p). This inequality has implications for the estimation
of quantiles from dependent sequences.

Suppose that we estimate the parameters (µ, σ, γ ) of G by fitting, for example,
an extreme value distribution to a sample of block maxima Mn. As before, the nor-
malizing constants are assimilated into the location and scale parameters so that
P [Mn ≤ x] ≈ {F(x)}nθ ≈ G(x), the latter being a GEV distribution with parame-
ters (γ, µ, σ ). We can exploit this relationship as in section 5.1.3 to approximate
marginal quantiles by

F←(1 − p) ≈ G←{(1 − p)nθ }

=




µ + σ
{−nθ log(1 − p)}−γ − 1

γ
, if γ �= 0,

µ − σ log {−nθ log(1 − p)} , if γ = 0.

If we neglect the extremal index, then we risk underestimating the marginal quan-
tiles. Conversely, suppose that we have an estimate of the tail of the marginal
distribution F . Then the mn-observation return level is approximated by

G←(1 − 1/m) ≈ F←{(1 − 1/m)1/(nθ)}.
If we neglect θ here, then we risk overestimating the return level. These two
examples show why it is important to be able to estimate the extremal index. We
discuss this problem in section 10.3.4, where the different interpretations that we
have already seen for θ will motivate different estimators.

Finally, note that the frequency at which a process is sampled has consequences
for the distribution of maxima. For example, let M ′

n be the maximum from the
sequence sampled every m ≥ 2 time steps, with corresponding extremal index
θm. Then

P [Mn ≤ x] ≈ {F(x)}nθ ≈ {P [M ′
n ≤ x]}mθ/θm .

Robinson and Tawn (2000) develop methods based on this approximation that
enable inference for the distribution of Mn from data collected at the frequency
of M ′

n.
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10.3 Point-Process Models

In this section, we broaden our outlook from the sample maximum to encompass
all large values in the sequence, where ‘large’ means exceeding a high threshold.
A particularly elegant and useful description of threshold exceedances is in terms
of point processes. We shall see that these models are related to the distribution
of large order statistics, describe the clustering of extremes and motivate statistical
methods for the analysis of stationary processes at extreme levels. A brief and
informal introduction to point processes is given in section 5.9.2; more detailed
introductions focusing on relevant aspects for extreme value theory may be found
in the appendix of Leadbetter et al. (1983), in Chapter 3 of Resnick (1987) and in
Chapter 5 of Embrechts et al. (1997).

10.3.1 Clusters of extreme values

Let us seek the limit of the point process

Nn(·) =
∑
i∈I

1(i/n ∈ · ), I = {i : Xi > un, 1 ≤ i ≤ n}, (10.12)

which counts the times, normalized by n, at which the sample {Xi}ni=1 exceeds a
threshold un. This process is related to order statistics by the relationship

P [Xn−k,n ≤ un] = P [Nn((0, 1]) ≤ k]. (10.13)

If we can find the limit process of Nn, then we shall be able to derive the limiting
distribution of the large order statistics.

Let the thresholds un be such that the expected number of exceedances remains
finite, with nF̄ (un) → τ ∈ (0, ∞), and reconsider the partition (10.2) of {1, . . . , n}
into kn = �n/rn� blocks Jj of length rn = o(n). The exceedances in a block are
said to form a cluster. Now, because of the time normalization in Nn, the length
of a block, rn/n, converges to zero as n → ∞, so that points in Nn making up
a cluster converge to a single point in (0, 1]. In the limit, therefore, the points in
Nn represent the positions of clusters and form a marked point process with marks
equal to the number of exceedances in the cluster.

The distribution of the cluster size in Nn is given by

πn(j) = P

[
rn∑

i=1

1(Xi > un) = j

∣∣∣∣∣Mrn > un

]
, j = 1, 2, . . . , (10.14)

and the mark distribution of the limit process, if it exists, will be π = lim πn. Recall
that the events {M(Jj ) ≤ un} are approximately independent under D(un), Condi-
tion 10.1. If we can say the same for the random variables 1{M(Jj ) ≤ un}, then
the number of clusters occurring in Nn during an interval I ⊆ (0, 1] of length |I |
is approximately binomial, with probability pn = P [Mrn > un] and mean pnkn|I |.
If the process also has extremal index θ > 0, then by (10.6), pn ∼ θrnF̄ (un) → 0
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and pnkn → θτ > 0 as n → ∞. Therefore, the number of clusters in I approaches
a Poisson random variable with mean θτ |I |. We might expect clusters to form a
Poisson process with rate θτ and Nn to converge to a compound Poisson process
CP(θτ, π).

Convergence in distribution of Nn to a CP(θτ, π) process N is equiv-
alent to convergence in distribution, for all integer m ≥ 1 and disjoint
intervals I1, . . . , Im ⊂ (0, 1], of the random vector (Nn(I1), . . . , Nn(Im)) to
(N(I1), . . . , N(Im)). A convenient way to check the latter is by proving con-
vergence of Laplace transforms, that is, by showing that

Ln(t1, . . . , tm) = E

[
exp

{
−

m∑
i=1

tiNn(Ii)

}]
(10.15)

converges for all 0 ≤ ti < ∞ (i = 1, . . . , m) to

L(t1, . . . , tm) =
m∏

i=1

exp


−θτ |Ii |


1 −

∑
j≥1

π(j)e−j ti




 . (10.16)

The limiting factorization of Ln is achieved in much the same way as the factor-
ization (10.3) of P [Mn ≤ un] except that a mixing condition stronger than D(un)

is required (Hsing et al. 1988). Let Fj,k(un) = σ({Xi > un} : j ≤ i ≤ k).

Condition 10.10 �(un). For all A1 ∈ F1,l(un), A2 ∈ Fl+s,n(un) and
1 ≤ l ≤ n − s,

|P (A1 ∩ A2) − P (A1)P (A2)| ≤ α(n, s)

and α(n, sn) → 0 as n → ∞ for some sn = o(n).

The �(un) condition is more stringent than the D(un) condition only in the number
of events for which the long-range independence is required to hold; it is still
weaker than strong mixing, for example. Lemma 2.1 of Hsing et al. (1988) tells us
that we also have, for all 1 ≤ l ≤ n − s, sup |E(B1B2) − E(B1)E(B2)| ≤ 4α(n, s),
where the supremum is over all random variables 0 ≤ B1 ≤ 1 measurable with
respect to F1,l(un) and 0 ≤ B2 ≤ 1 measurable with respect to Fl+s,n(un). This is
precisely what we need to handle the Laplace transform (10.15).

Fix an interval I ⊆ (0, 1] with positive length |I |. Let (rn)n be a sequence
of positive numbers such that rn/n → 0 as n → ∞. Consider the partitioning
I =⋃mn+1

i=1 Ji of I into disjoint, contiguous intervals Ji with lengths |Ji | = rn/n

for i = 1, . . . , mn and |Jmn+1| < rn/n. In particular, mn ∼ (n/rn)|I |. Now, assume
there exists a sequence (sn)n of positive numbers such that sn = o(rn) and
nα(n, sn) = o(rn) as n → ∞. Repeating the block-clipping technique that led to
Theorem 10.2 yields

E exp{−tNn(I )} = [E exp{−tNn(J1)}](n/rn)|I | + o(1), n → ∞.
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Repeating a similar procedure for the Laplace transform (10.15), we obtain

Ln(t1, . . . , tm) =
m∏

i=1

[E exp{−tiNn(J1)}](n/rn)|Ii | + o(1), n → ∞.

It remains to check that each term in the product converges to the corresponding
factor in the Laplace transform (10.16). If πn(j) → π(j) for each integer j ≥ 1,
then the desired convergence is a consequence of

E exp{−tNn(J1)} = P [Mrn ≤ un] +
∑
j≥1

πn(j)P [Mrn > un]e−j t

= 1 − (rn/n)θτ


1 −

∑
j≥1

π(j)e−j t + o(1)


 .

Theorem 10.11 (Hsing et al. 1988) Let {Xi} be stationary with extremal index
θ > 0. Let there exist a sequence of thresholds un for which �(un) holds and
nF̄ (un) → τ ∈ (0, ∞). Let there exist positive sequences sn and rn and a distri-
bution π such that sn = o(rn), rn = o(n), nα(n, sn) = o(rn) and πn(j) → π(j) for

all integer j ≥ 1 as n → ∞. Then Nn
D→ N , where N is CP(θτ, π).

A similar result was also obtained by Rootzén (1988). The rate of convergence
for Nn and other point processes presented in this section has been investigated by
Barbour et al (2002) and Novak (2003) among others, where bounds are given for
metrics such as total variation distance.

Theorem 10.11 tells us that θτ clusters occur in (0, 1] on average and that the
cluster sizes are independent with distribution π . Since the expected number of
exceedances in (0, 1] is τ , this means that the average cluster size should be 1/θ .
This was noted by Leadbetter (1983) and follows from our definition (10.10) of
θB
n (un) since

θ−1 = lim
n→∞ E

[
rn∑

i=1

1(Xi > un)

∣∣∣∣∣Mrn > un

]
= lim

n→∞
∑
j≥1

jπn(j). (10.17)

By Fatou’s lemma, we have θ−1 ≥∑j≥1 jπ(j), the mean of the limiting cluster
size distribution. Smith (1988) shows by counterexample that not necessarily θ−1 =∑

j≥1 jπ(j), although Hsing et al. (1988) give mild extra assumptions under which
this is actually true. Note also that π(1) = 1 if θ = 1.

Example 10.12 The cluster-size distribution of the ARMAX process (10.4) may
be found intuitively as follows. Let Xi > un be the first exceedance in a block.
Subsequent values in the sequence will be αXi, α2Xi, . . . with high probability,
and the probability of observing another such run in the same block is negligible.
With high probability, the number of exceedances in a block will therefore be j
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provided αjXi ≤ un < αj−1Xi . Hence

πn(j) = P
[
αjX1 ≤ un < αj−1X1 | X1 > un

]+ o(1)

= exp
(−αj/un

)− exp
(−αj−1/un

)
1 − exp(−1/un)

+ o(1)

→ (1 − α)αj−1, n → ∞,

that is, the limiting cluster-size distribution is geometric with mean
(1 − α)−1 = θ−1.

Order statistics

Relation (10.13) allows us to derive from Theorem 10.11 the limiting distribution
of order statistics; see Hsing et al. (1988) and Hsing (1988), for example. First,
for blocks Jj in (10.2), let N∗

n be the point process of cluster positions,

N∗
n (·) =

∑
j∈I

δjrn/n(·), I = {j : M(Jj ) > un, 1 ≤ j ≤ kn}, (10.18)

and let P [Mn ≤ un] → G(x) = exp(−θτ). It follows from Theorem 10.11 that

N∗
n

D→ N∗, where N∗ is a Poisson process on (0, 1] with rate θτ = − log G(x). If
K1, K2, . . . are independent random variables with distribution π , then the limit
of P [Xn−k,n ≤ un] is

P [N((0, 1]) ≤ k]

= P [N∗((0, 1]) = 0] +
k∑

j=1

P [N∗((0, 1]) = j ]P

[
j∑

l=1

Kl ≤ k

]

= G(x)


1 +

k∑
j=1

k∑
i=j

{− log G(x)}j
j !

P

[
j∑

l=1

Kl = i

]
 . (10.19)

For example,

P [Xn−1,n ≤ un] → G(x){1 − π(1) log G(x)},

P [Xn−2,n ≤ un] → G(x)

[
1 − {π(1) + π(2)} log G(x) + 1

2
{π(1) log G(x)}2

]
.

Setting π(1) = 1 and π(j) = 0 for j ≥ 2 yields the limit distributions for the
associated, independent sequence as in section 3.2.

The joint distribution of Xn,n and Xn−k,n for any k ≥ 1, and indeed of any
arbitrary set of extreme order statistics, can also be derived (Hsing 1988) although
the class of limit distributions does not admit a finite-dimensional parametrization.
Simpler characterizations are possible if stricter mixing conditions are imposed
(Ferreira 1993).
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10.3.2 Cluster statistics

Various properties of a cluster of exceedances may be of interest, such as the
cluster size, the peak excess, or the sum of all excesses. In this section, we define
a generic cluster statistic and give a characterization of its distribution that will be
useful in section 10.4. We shall investigate point processes that focus on specific
cluster statistics in the next section.

We study cluster statistics c{(Xi − un)
rn
i=1} for the following family of func-

tions c.

Definition 10.13 (Yun 2000a) A measurable map c : R ∪ R
2 ∪ R

3 ∪ · · · → R is
called a cluster functional if for all integers 1 ≤ j ≤ k ≤ r and for all
(x1, . . . , xr ) such that xi ≤ 0 whenever i = 1, . . . , j − 1 or i = k + 1, . . . , r we
have c(x1, . . . , xr) = c(xj , . . . , xk).

Example 10.14 Most cluster functionals of practical interest are of the form

c(x1, . . . , xr) =
r∑

i=−m+2

φ(xi, . . . , xi+m−1),

where φ is a measurable function of m variables (m = 1, 2, . . .) and xi = 0 when-
ever i ≤ 0 or i ≥ r + 1; the function φ should be such that φ(x1, . . . , xm) = 0
whenever xi ≤ 0 for all i = 1, . . . , m. Consider the following examples:

• m = 1 and φ(x) = 1(x > 0) gives the number of exceedances;

• m = 1 and φ(x) = max(x, 0) gives the sum of all excesses;

• m = 2 and φ(x1, x2) = 1(x1 ≤ 0 < x2) gives the number of up-crossings
over the threshold;

• m = 1, 2, . . . and φ(x1, . . . , xm) = 1(x1 > 0, . . . , xm > 0) gives the number
of times, counting overlaps, there are m consecutive exceedances.

A cluster functional that is not of this type is the cluster duration

c(x1, . . . , xr )

=
{

max{j − i + 1 : 1 ≤ i ≤ j ≤ r, xi > 0, xj > 0} if max xi > 0
0 otherwise.

For general stationary processes, it turns out that the distribution of a cluster
statistic can approximately be written in terms of the distribution of the process
conditionally on the event that the first variable exceeds the threshold.

Proposition 10.15 (Segers 2003b) Let {Xi} be stationary. If the thresholds un and
the positive integers rn are such that Condition 10.8 holds, then, for every sequence
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of cluster functionals cn and Borel sets An ⊂ R,

P [cn{(Xi − un)
rn
i=1} ∈ An

∣∣Mrn > un] (10.20)

= θ−1
n

{
P [cn{(Xi − un)

rn
i=1} ∈ An

∣∣X1 > un]

− P [cn{(Xi − un)
rn
i=2} ∈ An, M1,rn > un

∣∣X1 > un]
}

+ o(1)

as n → ∞, where θn can be either θR
n (un) or θB

n (un).

Specifying the cn and An in (10.20) leads to interesting formulae, illustrating the
usefulness of Proposition 10.15. For instance, with cn(x1, . . . , xr ) =∑r

i=1 1(xi >

0) and An = [j, ∞) for some integer j ≥ 1, we obtain an approximation of the
cluster-size distribution:

P

[
rn∑

i=1

1(Xi > un) ≥ j

∣∣∣∣∣Mrn > un

]

= θ−1
n P

[
rn∑

i=2

1(Xi > un) = j − 1

∣∣∣∣∣X1 > un

]
+ o(1).

This formula can be used to give a formal derivation of the limiting cluster-size
distribution of the ARMAX process (Example 10.12).

Formula (10.20) also shows that the cluster maximum asymptotically has
the same distribution as an arbitrary exceedance. For, setting cn(x1, . . . , xr) =∑r

i=1 1(xi > anx) and An = [1, ∞), we obtain

P

[
Mrn − un

an

> x

∣∣∣∣Mrn > un

]

= θ−1
n P

[
X1 − un

an

> x,
M1,rn − un

an

≤ x

∣∣∣∣X1 > un

]
+ o(1)

= θR
n (un + anx)

θR
n (un)

P

[
X1 − un

an

> x

∣∣∣∣X1 > un

]
+ o(1).

Hence, if lim θR
n (un + anx) = lim θR

n (un) = θ > 0, then indeed

P

[
Mrn − un

an

> x

∣∣∣∣Mrn > un

]
= P

[
X1 − un

an

> x

∣∣∣∣X1 > un

]
+ o(1). (10.21)

This notion is less surprising once it is realized that clusters with large maxima
tend to contain other large exceedances.

10.3.3 Excesses over threshold

We have already seen a point process (10.12) with a limit that involves the cluster
size. This corresponds to the first example of a cluster statistic in the previous
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section. The second example, concerning excesses over threshold, motivates the
marked point process

Zn(·) =
∑
i∈I

Xi − un

an

δi/n(·), I = {i : Xi > un, 1 ≤ i ≤ n},

where each exceedance is marked with its excess. The normalizing constant an is
used to ensure a non-degenerate limit for the distribution of the aggregate excess
within a cluster,

π ′
n(x) = P

[
a−1

n

rn∑
i=1

(Xi − un)+ ≤ x

∣∣∣∣∣Mrn > un

]
. (10.22)

In order to obtain limits for processes based on excesses, we require limiting
independence of (Xi − un)+ instead of 1(Xi > un). Therefore define �′(un) to be
the same as Condition 10.10 but with Fj,k(un) = σ {(Xi − un)+ : j ≤ i ≤ k} and
write α′(n, s) for the corresponding mixing coefficients.

Theorem 10.16 (Leadbetter 1995) Let {Xi} be stationary with extremal index θ >

0. Let there exist a sequence of thresholds un for which �′(un) holds and nF̄ (un) →
τ ∈ (0, ∞). Let there exist positive integer sequences sn and rn = o(n) and a dis-

tribution π ′ such that sn = o(rn), rn = o(n), nα′(n, sn) = o(rn) and π ′
n

D→ π ′ as

n → ∞. Then Zn
D→ Z, where Z is CP(θτ, π ′)l.

The limit process here is the same as that in Theorem 10.11 except that the
mark distribution now describes the cluster excess; the method of proof is also
similar. Results with different marks may be obtained analogously (Rootzén et al.
1998) as long as the appropriate mixing condition holds and the limiting mark
distribution exists. One case is more substantial, that of the excess of just the
cluster maximum, or peak, leading to the marked point process

Z∗
n(·) =

∑
j∈I

M(Jj ) − un

an

δjrn/n(·), I = {j : M(Jj ) > un, 1 ≤ j ≤ kn},

for the blocks Jj in (10.2). The peak-excess distribution is

π∗
n (x) = P

[
Mrn − un

an

≤ x

∣∣∣∣Mrn > un

]

and, unlike π and π ′ above, here we are able to specify the form of π∗ = lim π∗
n

when it exists. If θ > 0, then, by (10.21), we have

π∗
n (x) = P

[
X1 − un

an

≤ x

∣∣∣∣X1 > un

]
+ o(1), n → ∞.
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By Pickands (1975), the domain-of-attraction condition implies that the limit of
the latter distribution is the Generalized Pareto (GP) distribution, that is,

π∗
n (x) → π∗(x) = 1 −

(
1 + γ x

σ

)−1/γ

+
, x > 0, (10.23)

for a suitable choice of constants an; see also section 5.3.1.

Theorem 10.17 (Leadbetter 1991) Let {Xi} be stationary with extremal index θ >

0. Let there exist a sequence of thresholds un for which �′(un) holds and nF̄ (un) →
τ ∈ (0, ∞). Let there exist positive integer sequences rn and sn such that sn = o(rn),

rn = o(n), and nα′(n, sn) = o(rn) as n → ∞. Then Z∗
n

D→ Z∗, where Z∗ is CP(θτ ,
π∗) and π∗ is the GP distribution.

Theorem 10.17 is the mathematical foundation of the so-called peaks-over-
threshold (POT) method to be discussed in the next section.

10.3.4 Statistical applications

We have seen that the behaviour over high thresholds of certain stationary processes
can be described by compound Poisson processes, where events corresponding to
clusters occur at a rate υ = θτ and the cluster statistics follow a mark distribution
π . For a realization {xi}ni=1, suppose that there are nc clusters at times {t∗j }nc

j=1 in
(0,1] and with marks {y∗

j }nc

j=1. We could fit the model by maximizing the likelihood,

L(υ, π ; t∗, y∗) = e−υυnc

nc∏
j=1

π(y∗
j ), (10.24)

see, for example, section 4.4 of Snyder and Miller (1991). The form of the like-
lihood means that υ̂ = nc independently of π . If we have a parametric model
for π , then its maximum-likelihood estimate can be found, and it depends on the
marks only. But the asymptotic theory specifies π only when the mark is the peak
excess (Theorem 10.17), in which case π is the GP distribution. For other cluster
statistics, we can either choose a parametric model for π or estimate it with the
empirical distribution function of {y∗

j }nc

j=1.
Estimating υ and π relies on being able to identify clusters in the data. This

problem, known as declustering, is not trivial because we observe only a finite
sequence, and so clusters will not be defined at single points in time; rather, they
will be slightly spread out and it may not always be clear whether a group of
exceedances should form a single cluster or be split into separate clusters. Declus-
tering is intrinsically linked to the extremal index, which we have seen is important
also for its influence on marginal tail quantiles and return levels (section 10.2.3)
and for its interpretation as the inverse mean cluster size (section 10.3.1). We
continue this section by first discussing estimators for the extremal index and
then exploring the connection with declustering before returning to estimation
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of the compound Poisson process. An alternative method for estimating cluster
characteristics, which does not use the compound Poisson model, is described in
section 10.4, where the evolution of the process over high thresholds is modelled
by a class of Markov chains.

Estimating the extremal index

Our first characterization (10.10) of the extremal index was as the limiting ratio
of P [Mrn > un] to rnF̄ (un). If we choose a threshold u and a block length r ,
then natural estimators for the quantities P [Mr > u] and F̄ (u) lead to the blocks
estimator for the extremal index:

θ̄B
n (u ; r) = k−1∑k

j=1 1{M(j−1)r,jr > u}
rn−1

∑n
i=1 1(Xi > u)

, (10.25)

where k = �n/r�. This can be improved by permitting overlapping blocks, giving
the sliding-blocks estimator,

θ̃B
n (u ; r) = (n − r + 1)−1∑n−r

i=0 1(Mi,i+r > u)

rn−1
∑n

i=1 1(Xi > u)
.

Our second characterization (10.11) was in terms of the probability that an
exceedance is followed by a run of observations below the threshold. If we choose
a threshold u and a run length r , then we can estimate the quantities P [X1 >

u, M1,r+1 ≤ u] and F̄ (u) to obtain the runs estimator for the extremal index:

θ̄R
n (u ; r) = (n − r)−1∑n−r

i=1 1(Xi > u, Mi,i+r ≤ u)

n−1
∑n

i=1 1(Xi > u)
. (10.26)

The extremal index is also related to the times between threshold exceedances.
We saw in Theorem 10.11 that the point process of exceedance times normalized
by 1/n has a compound Poisson limit. Therefore, the corresponding times between
consecutive exceedances are either zero, representing times between exceedances
within the same cluster, or exponential with rate θτ , representing times between
exceedances in different clusters. Since we expect τ = lim nF̄ (un) exceedances in
total but only θτ clusters, the proportion of interexceedance times that are zero
should be 1 − θ .

Formally, for u such that F(u) < 1, define the random variable T (u) to be the
time between successive exceedances of u, that is,

P [T (u) > r] = P [M1,1+r ≤ u | X > u].

Ferro and Segers (2003) showed that, under a slightly stricter mixing condition
than D(un), for t > 0,

P [F̄ (un)T (un) > t] = P [M1,1+�t/F̄ (un)� ≤ un | X1 > un]

= P [M1,rn ≤ un | X1 > un]P [M�nt/τ� ≤ un] + o(1)
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= θR
n (un)P [Mrn ≤ un]knt/τ + o(1)

→ θ exp(−θt), n → ∞. (10.27)

In other words, interexceedance times normalized by F̄ (un) converge in distribution
to a random variable Tθ with mass 1 − θ at t = 0 and an exponential distribution
with rate θ on t > 0. The reason that the rate is now θ and not θτ is that we have
normalized by F̄ (un) ∼ τ/n instead of 1/n. In fact, the result also holds under
D(un), see Segers (2002).

The coefficient of variation, ν, of a non-negative random variable is defined as
the ratio of its standard deviation to its expectation. For Tθ ,

1 + ν2 = E[T 2
θ ]/{E[Tθ ]}2 = 2/θ. (10.28)

The interexceedance times are overdispersed compared to a Poisson process, that
is, ν > 1 and exceedances occur in clusters in the limit, if and only if θ < 1. The
case of underdispersion (ν < 1), in which exceedances tend to repel one another
requires long-range dependence and is prevented by the D(un) condition.

Suppose that we observe N = Nu =∑n
i=1 1(Xi > u) exceedances of u at

times 1 ≤ S1 < · · · < SN ≤ n. The interexceedance times are Ti = Si+1 − Si for
i = 1, . . . , N − 1. Replacing the theoretical moments of Tθ in the ratio (10.28)
with their empirical counterparts yields another estimator for the extremal index:

θ̂n(u) =
2
(∑N−1

i=1 Ti

)2

(N − 1)
∑N−1

i=1 T 2
i

.

Since the limiting distribution (10.27) models the small interexceedance times as
zero, while the observed interexceedance times are always positive, a bias-adjusted
version,

θ̂∗
n (u) =

2
{∑N−1

i=1 (Ti − 1)
}2

(N − 1)
∑N−1

i=1 (Ti − 1)(Ti − 2)
,

is preferable when max{Ti : 1 ≤ i ≤ N − 1} > 2. Unlike the blocks and runs esti-
mators, these two estimators are not guaranteed to lie in [0, 1] so that the constraint
must be imposed artificially. Doing so yields the intervals estimator for the extremal
index:

θ̄ I
n (u) =

{
1 ∧ θ̂n(u) if max{Ti : 1 ≤ i ≤ N − 1} ≤ 2,

1 ∧ θ̂∗
n (u) if max{Ti : 1 ≤ i ≤ N − 1} > 2.

(10.29)

The blocks and runs estimators are used by Leadbetter et al. (1989) and Smith
(1989); a variant of the blocks estimator is proposed by Smith and Weissman
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(1994). Calculations of asymptotic bias by Smith and Weissman (1994) and Weiss-
man and Novak (1998) suggest, however, that the runs estimator should be pre-
ferred. Asymptotic normality has been established under appropriate conditions by
Hsing (1993) and Weissman and Novak (1998). The choice of auxiliary parameter,
r , for both the blocks and runs estimators is largely arbitrary. It may be guided by
physical reasoning about the likely range of dependence in the underlying process
(Tawn 1988b) or parametric modelling of the evolution of extremes (Davison and
Smith 1990). Alternatively, estimates with different r may be combined (Smith
and Weissman 1994). The attraction of the intervals estimator (Ferro and Segers
2003) is its freedom from any auxiliary parameter.

Still more estimators can be found in the literature. For example, Ancona-
Navarrete and Tawn (2000) derive estimators from Markov models fitted to the
data (see also section 10.4). Gomes (1993) constructs an independent sequence by
randomizing the data and then fits GEV distributions to sample maxima from both
this and the original sequence. Since the parameters (10.7) of the two distributions
are related by the extremal index, an estimator for θ may be obtained as a combina-
tion of the parameter estimates. A comparative study is made by Ancona-Navarrete
and Tawn (2000).

The estimator of Gomes (1993) has the merit that it does not require the selec-
tion of a threshold, although it does require the selection of a block length to obtain
a sample of maxima Mn. Threshold choice is a fundamental issue: the estimators
presented in this section estimate a quantity θ(u) rather than θ = lim θ(u). Hsing
(1993) considers threshold selection for the runs estimator and proposes an adap-
tive scheme to minimize mean square error under a model for the bias. A more
common approach is simply to estimate the extremal index using several high
thresholds and then assume that stability of estimates over a range of thresholds
indicates that the limit has been reached.

Declustering the data

Recall that to estimate the limiting compound Poisson process, we need to decluster
the data. Several schemes have been proposed in the literature, three of which relate
to the blocks, runs and intervals estimators for the extremal index.

Blocks declustering (Leadbetter et al. 1989) is a natural application of the
definition of clusters given in section 10.3.1. The data are partitioned into blocks of
length r and exceedances of a threshold u are assumed to belong to the same cluster
if they fall within the same block. The number of clusters identified in this way
is the number of blocks with at least one exceedance. The example in Figure 10.4
identifies two clusters using block length r = 6. The number of clusters is precisely
the quantity that appears in the numerator of the blocks estimator (10.25) for the
extremal index, which is therefore the ratio of the number of clusters to the total
number of exceedances, that is, the reciprocal of the average size of clusters found
by blocks declustering.

The runs estimator (10.26) for the extremal index may also be interpreted as the
ratio of the number of clusters to the number of exceedances, but where clusters
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u

Figure 10.4 An illustration of blocks declustering with threshold u and block
length r = 6.

are identified by runs declustering (Smith 1989). With this scheme, exceedances
separated by fewer than r non-exceedances are assumed to belong to the same
cluster; if r = 0, then each exceedance forms a separate cluster. In Figure 10.4,
three clusters are identified if the run length is r = 3, but only two clusters are
identified if r = 4.

As with the corresponding estimators for the extremal index, the troublesome
issue for blocks and runs declustering is the choice of the auxiliary parameter,
r . Diagnostic tools for selecting r have been proposed by Ledford and Tawn
(2003), while the following scheme, intervals declustering (Ferro and Segers 2003),
provides an alternative solution.

Recall that a proportion θ of normalized interexceedance times are non-zero in
the limit (10.27), and that these represent times between clusters. If θ̄ is an estimate
of the extremal index, then it is natural to take the largest nc − 1 = �(N − 1)θ̄� of
the interexceedance times Ti , 1 ≤ i ≤ N − 1, to be these intercluster times. This
defines a partition of the remaining interexceedance times into sets of intracluster
times. Note also that, because the point process of exceedance times is compound
Poisson, the intercluster times are independent of one another, and the sets of
intracluster times are independent both of one another and of the intercluster times.
To be precise, if T(nc) is the ncth largest interexceedance time and Tij is the j th

interexceedance time to exceed T(nc), then {Tij }nc−1
j=1 is a set of approximately

independent intercluster times. In the case of ties, decrease nc until T(nc−1) is strictly
greater than T(nc). Let also Tj = {Tij−1+1, . . . , Tij−1}, where i0 = 0, inc = N and
Tj = ∅ if ij = ij−1 + 1. Then {Tj }nc

j=1 is a collection of approximately independent
sets of intracluster times. Furthermore, each set Tj has associated with it a set of
threshold exceedances Xj = {Xi : i ∈ Sj }, where Sj = {Sij−1+1, . . . , Sij } is the set
of exceedance times. If we estimate θ with the intervals estimator (10.29), then this
approach declusters the data into nc clusters without requiring an arbitrary selection
of auxiliary parameter. In fact, the scheme is equivalent to runs declustering but
with run length r = T(nc) estimated from the data and justified by the limiting
theory.
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Estimating the compound Poisson process

Once we have identified clusters Xj = {xi : i ∈ Sj } for j = 1, . . . , nc over a high
threshold u, we can compute the cluster statistics y∗

j = c{(xi − u)i∈Sj
} correspond-

ing to the marks of the limiting compound Poisson process. We have remarked
already that υ̂ = nc, while π may be estimated by the empirical distribution func-
tion of the cluster statistics, if the theory does not supply a parametric model.

In the case of the peak excess, π is the GP distribution (Theorem 10.17) and
may be estimated by maximum likelihood. This is known as POT modelling. Esti-
mation methods, diagnostics and extensions of the model to handle seasonality and
other regressors are described by Davison and Smith (1990); see also Chapter 7.
An alternative POT approach is to fit the GP distribution to all of the excesses,
not only those of the cluster maxima. The idea is justified by the fact (10.21)
that, in the limit, the distribution of the excess of a cluster maximum is the same
as that of an arbitrary exceedance, although the correspondence is often poor at
finite thresholds. By fitting to all of the excesses, we avoid having to decluster the
exceedances; on the other hand, the excesses can no longer be treated as though
they were independent, which necessitates a modification of the estimation pro-
cedure. One approach is to adopt the estimation methods appropriate when the
excesses are independent and adjust the standard errors, which will otherwise be
underestimated. Several methods for obtaining standard errors in this case have
been proposed: see Smith (1990a), Buishand (1993) and Drees (2000).

For any cluster statistic, a bootstrap scheme (Ferro and Segers 2003) that
exploits the independence structure of the compound Poisson process may be used
to obtain confidence limits on estimates of υ, π and derived quantities, ζ , such as
the mean of π .

(i) Resample with replacement nc − 1 intercluster times from {Tij }nc−1
j=1 .

(ii) Resample with replacement nc sets of intracluster times, some of which may
be empty, and associated exceedances from {(Tj ,Xj )}nc

j=1.

(iii) Intercalate these interexceedance times and clusters to form a bootstrap repli-
cation of the process.

(iv) Compute N for the bootstrap process, estimate θ , and decluster accordingly.

(v) Estimate υ, π and ζ for the declustered bootstrap sample.

Forming B such bootstrap samples yields collections of estimates that may be used
to approximate the distributions of the original point estimates. In particular, the
empirical α- and (1 − α)-quantiles of each collection define (1 − 2α)-confidence
intervals. Note that, when applied with intervals declustering, this scheme accounts
for uncertainty in the run length used to decluster the data, as it is re-estimated for
each sequence at step (iv).

Alternative confidence limits for the extremal index (Leadbetter et al. 1989)
rely on the asymptotic normality and variance of the blocks estimator, which may
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be estimated (Hsing 1991; Smith and Weissman 1994) by

{θ̄B
n (u ; r)}3V̂s∑n
i=1 1(Xi > u)

, (10.30)

where V̂s is the sample variance of the cluster sizes, {∑jr

i=(j−1)r+1 1(Xi > u) :
M(j−1)r,jr > u, 1 ≤ j ≤ �n/r�}.

10.3.5 Data example

The intervals estimator for the extremal index of the Uccle temperature data (see
section 10.2.2) is plotted against threshold in Figure 10.5. In this and subsequent
plots, thresholds range from the 90% to the 99.5% empirical quantiles, and boot-
strapped confidence intervals are based on the intervals declustering scheme of
section 10.3.4 with 500 resamples. Note that in Figure 10.5, the lower confidence
limits estimated by the bootstrap and the normal approximation (10.30) are similar,
while the upper limits are higher with the bootstrap. The point estimates of the
extremal index are stable up to the 97% threshold, with values just below 0.5. The
increase of the estimates above the 97% threshold might indicate that the limit
has not been reached, and possibly θ = 1, or could be due to sampling variability.
We shall return to this question in section 10.4.7; for now, we assume that the
perceived stability indicates that the limit has been reached and that the limiting
cluster characteristics of the data can be estimated by fixing a suitable threshold.
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Figure 10.5 The intervals estimator for the extremal index (—◦—) against thresh-
old with 95% confidence intervals estimated by the bootstrap (· · · · · ·) and the
normal approximation (- - - - -). The threshold is marked on the upper axis in degrees
Celsius.
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A cluster of hot days can have serious implications for public health and agri-
culture. By declustering the data, we can obtain estimates for the rate at which
clusters occur and for the severity of clusters, which can be usefully measured
with the distributions of statistics such as the cluster maximum, cluster size and
cluster excess. We have seen already that the mean cluster size is 1/θ ≈ 2.

The intervals declustering scheme, applied with the above estimates of the
extremal index, enables the identification of clusters at different thresholds. The
Poisson process rate at which clusters occur is approximately linearly decreas-
ing with threshold exceedance probability according to the approximation nc ≈
θnF̄ (u). On average, about 1.3 clusters occur over the 90% quantile every July,
and the rate decreases by about 0.12 for every decrease of 0.01 in the threshold
exceedance probability. Estimates of the declustering run length r are close to 4
for all thresholds, indicating that exceedances separated by about four days for
which the temperature is below the threshold can be taken as independent.

For the POT model, we describe the excesses of cluster maxima by the GP
distribution (10.23). The maximum-likelihood estimates of the GP parameters at
different thresholds are represented in Figure 10.6. The model is fitted twice:
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Figure 10.6 Parameter estimates (—◦—) against threshold for the GP distribution
fitted to cluster maxima (a) and all exceedances (b) with bootstrapped 95% con-
fidence intervals (· · · · · ·). The scale parameters have been normalized to σ − γ u.
The estimate (- - - - -) of the shape parameter from the GEV model is also indicated,
and the threshold is marked on the upper axes in degrees Celsius.
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Figure 10.7 Quantile plots for excesses of cluster maxima (a) and for the nor-
malized interexceedance times (b) over the 96% threshold with 95% confidence
intervals obtained by simulating from the fitted models. For the interexceedance
times, the continuous line has gradient 1/θ̂ and breakpoint − log θ̂ , where θ̂ = 0.49.

first to only the cluster maxima, and second, to all exceedances. As there is
some disparity between the two fits, we should be wary of using the latter to
model peaks. Note also that the estimate of the shape parameter is close to −0.5,
below which the usual asymptotic properties of maximum-likelihood estimators
do not hold (Smith 1985). Moment estimators give similar point estimates, how-
ever, and the bootstrap confidence intervals do not rely on asymptotic normality.
For both fits, the parameter estimates are quite stable, perhaps with some bias
below the 96% threshold, 31◦C, at which there are 120 exceedances and 59 iden-
tified clusters. The quantile plots in Figure 10.7 show that the GP model is a
satisfactory fit at the 96% threshold and that the interexceedance times at this
threshold are well modelled by their limit distribution (10.27). Furthermore, the
mean-excess plot is approximately linear above the 96% threshold. We take the
fit to cluster maxima at the 96% threshold, σ̂ = 3.7 and γ̂ = −0.59, for our POT
model.

The marginal distribution of the temperature data is captured better by the fit
to all exceedances, so we use the corresponding GP parameter estimates, σ̂ =
2.8 and γ̂ = −0.42, to describe the marginal tail. The 99%, 99.9% and 99.99%
marginal quantiles, with bootstrapped 95% confidence intervals, are 33.9 (33.4,
34.3), 36.2 (35.6, 36.6) and 37.1 (36.2, 37.8). Compare the first two with the
empirical quantiles, 33.7 and 36.2. Combining the estimate of the extremal index,
0.49, at the 96% threshold with this estimate of the GP distribution yields estimates
of the 100, 1000 and 10 000 July return levels: 36.5 (35.7, 36.9), 37.2 (36.2, 38.1)
and 37.5 (36.3, 38.7). The confidence intervals are obtained by bootstrapping the
extremal index and GP parameters with the scheme described in section 10.3.4.
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The estimate of the upper end-point is 37.7 (36.4, 39.6). These estimates are lower,
and the confidence intervals are narrower than the direct estimates from the GEV
model of section 10.2.2. Bootstrapped confidence intervals have been preferred
here to methods relying on asymptotic normality or profile likelihoods because
they easily account for the dependence between threshold exceedances and for the
uncertainty in the declustering scheme.

In addition to the cluster maxima, other statistics of interest are the numbers of
exceedances and the sum of all excesses during a cluster. The empirical estimate
of the cluster-excess distribution appears later in Figure 10.11. Estimates of the
cluster-size distribution are presented in Figure 10.8. These appear stable, but again
there is a hint that π(1) → 1 as threshold increases. The point estimates at the
96% threshold are π̂ (1) = 0.61, π̂(2) = 0.15, π̂(3) = 0.07 and π̂ (4) = 0.08; 8%
of clusters have more than four exceedances. These estimates can be combined
with the GEV model to determine distributions (10.19) of large order statistics
for July.

Inspecting the data reveals that clusters tend to comprise only consecutive
exceedances, maximizing public health and agricultural impacts. This is reflected
in the distribution, κ , of the maximum number of consecutive exceedances within a
cluster: at the 96% threshold, the estimate is κ̂(1) = 0.64, κ̂(2) = 0.17, κ̂(3) = 0.05
and κ̂(4) = 0.08, which is very similar to the cluster-size distribution. The mean
number of up-crossings per cluster is 1.17, with bootstrapped 95% confidence
interval (1.00, 1.43).
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Figure 10.8 Cluster-size distribution estimates (—◦—) against threshold for sizes
1 (a) and 2 (b) with bootstrapped 95% confidence intervals. The threshold is marked
on the upper axes in degrees Celsius.
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10.3.6 Additional topics
Two-dimensional point processes

In this section, we have considered one-dimensional point processes in which
exceedance times are associated with marks defined by the exceeding random
variables Xi . Another instructive approach is to consider two-dimensional processes
recording time in the first dimension and Xi in the second. The process

Vn(·) =
n∑

i=1

δ(i/n,(Xi−bn)/an)(·)

was studied by Hsing (1987), extending work of Pickands (1971) on independent
sequences and Mori (1977) on strong-mixing sequences. When the normalizing
constants are such that (Mn − bn)/an has a GEV limit, G, with lower and upper
end-points ∗x and x∗, and the �(un) condition holds simultaneously at different
thresholds, Hsing (1987) shows that any limit of Vn has the form

V (·) =
∑
i≥1

Ki∑
j=1

δ(Si ,Xi,j )(·),

where Si represents the occurrence time of a cluster of points Xi,1 ≥ · · · ≥ Xi,Ki
.

The times and heights, {(Si, Xi,1)}i≥1, of cluster maxima occur according to a two-
dimensional, nonhomogeneous Poisson process η on (0, 1] × (∗x, x∗) with intensity
measure −(b − a) log G(x) on (a, b) × [x, x∗). This corresponds to our discussion
of the process (10.18) of cluster maxima over a single threshold; see also section
5.3.1. Further insight is provided by the relationship between cluster maxima and
the remaining points in a cluster. For each cluster, the points

Yi,j = − log G(Xi,j )

− log G(Xi,1)
, 1 ≤ j ≤ Ki,

occur according to an arbitrary point process ηi on [1, ∞) with atom Yi,1 = 1, and
these point processes are independent, identically distributed and independent of η.

More general normalizations than linear ones are considered in Novak (2002).

Tail array sums

Sometimes, we are interested in summaries of not just characteristics of individual
clusters but also the cumulative effect of all exceedances over a longer-time period.
Useful measures for such cumulative effects are tail array sums (Leadbetter 1995;
Rootzén et al. 1998),

Wn =
n∑

i=1

φ(Xi − un), (10.31)
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for functions φ satisfying φ(x) = 0 when x ≤ 0 as in section 10.3.2. Note that we
can decompose Wn as

Wn =
kn∑

j=1

Wn(Jj ),

where Jj are the blocks in (10.2) and Wn(Jj ) =∑i∈Jj
φ(Xi − un) are the

block sums.
The tail array sum is related by Wn = �n(0, 1] to the point process

�n(·) =
∑
i∈I

φ(Xi − un)δi/n(·), I = {i : Xi > un, 1 ≤ i ≤ n},

of which we have seen examples in sections 10.3.1 and 10.3.3. Therefore, whenever
�n has a compound Poisson limit with mark distribution πφ determined by the
distribution of Wn(J1) conditional on M(J1) > un, Wn will converge in distribution
to
∑Nc

j=1 Wj , where Nc is a Poisson random variable representing the number of
clusters and the Wj are independent random variables with distribution πφ . The
compound Poisson model does not provide a finite-parameter characterization for
the limit distribution of Wn, except in cases where πφ is known.

Previously, the number of clusters had a Poisson limit because its expectation
was controlled by nF̄ (un) → τ < ∞. If, however, the thresholds are such that
nF̄ (un) → ∞, then we might hope to obtain a central limit theorem for Wn as
the sum of a large number of block sums. To obtain non-degenerate limits, we
normalize using

σ 2
n = knvar{Wn(J1)} (10.32)

and restrict the dependence with �φ(un), defined to be the same condition as
�(un) but with Fj,k(un) = σ {φ(Xi − un)+ : j ≤ i ≤ k} and mixing coefficients
αφ(n, s). With the usual moment conditions, we obtain the following result.

Theorem 10.18 (Leadbetter 1995) Let there exist a sequence of thresholds un

for which �φ(un) holds, nF̄ (un) → ∞ and E[φ2(Xi − un)] < ∞. Let there
exist a positive integer sequences rn and sn such that sn = o(rn), rn = o(n),
and nαφ(n, sn) = o(rn) as n → ∞ and such that the Lindeberg condition,
knE{W̃ 2

n11(|W̃n1| > ε)} → 0 as n → ∞ for all ε > 0, holds with W̃n1 = [Wn(J1) −
E{Wn(J1)}]/σn and kn = �n/rn�. Then,

σ−1
n {Wn − E(Wn)} D→ W,

where W has a standard normal distribution.

Theorem 10.18 says that we may model Wn by a normal distribution, reducing
inference to estimation of its mean and variance. The mean may be estimated by
the observed value of Wn and the variance by substituting the sample variance of
the Wn(Jj ) into expression (10.32).
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10.4 Markov-Chain Models

In the previous sections, we did not make any assumptions at all on the form of
dependence among the variables Xi , except for a restriction on long-range depen-
dence at extreme levels. This generality is of course attractive from a mathematical
point of view, but leaves us with little means to analyse, for instance, the structure
of clusters of high-threshold exceedances except for the usual empirical estimates
obtained after application of a declustering scheme. As we saw earlier, the choice
of such a scheme may be subjected to large uncertainty (which was quantified by
our bootstrap scheme) and, moreover, if there are only a few clusters of extremes,
then the empirical estimates are not very informative.

A possible way out of this problem is to make more detailed assumptions
about the dependence structure in the series, for instance, by assuming some kind
of (semi-)parametric model. In the present section, we focus on Markov chains
for which the joint distribution of a pair of consecutive variables satisfies some
regularity at extreme levels. Other time-series models are considered briefly in
section 10.6.

The Markov-chain approach is successful because, under weak assumptions,
the distribution of the chain given that it started at an extreme level, the so-
called tail chain, can be represented in terms of a certain random walk, while the
extremal index and, more generally, the distribution of clusters of extreme values
can be written in terms of this tail chain (Perfekt 1994; Smith 1992). Moreover,
an approximate likelihood can be constructed from which the Markov chain can
be estimated, and the tail chain subsequently derived, given a set of data (Smith
et al. 1997).

10.4.1 The tail chain

Let {Xn}n≥1 be a stationary Markov chain. We assume that the joint distribu-
tion function F(x1, x2) of (X1, X2) is absolutely continuous with joint density
f (x1, x2). Denote the marginal density of the chain by f (x) and the marginal
distribution function by F(x), and let x∗ = sup{x ∈ R : F(x) < 1} be its right
end-point. The Markov property entails that for every positive integer n, the joint
density of the vector (X1, . . . , Xn) is equal to

f (x1, . . . , xn) = f (x1)

n∏
i=2

f (xi | xi−1)

=
n∏

i=2

f (xi−1, xi)

/ n−1∏
i=2

f (xi). (10.33)

We shall model the extremes of the chain under the assumption that the joint
distribution of (X1, X2) is in the domain of attraction of a bivariate extreme value
distribution G(x1, x2). Without loss of generality, we take the identical margins of
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G to be the standard extreme value distribution with shape parameter γ ∈ R:

Gγ (x) = exp{−(1 + γ x)−1/γ }, 1 + γ x > 0.

If the distribution of (X1, X2) is in the domain of attraction of G, then, by Pickands
(1975) and Marshall and Olkin (1983), there exists a positive function σ(u), u < x∗,
such that for x, x1, x2 with 1 + γ x > 0 and 1 + γ xi > 0 (i = 1, 2) we have

1 − F {u + σ(u)x}
1 − F(u)

→ (1 + γ x)−1/γ , (10.34)

1 − F {u + σ(u)x1, u + σ(u)x2}
1 − F(u)

→ V (x1, x2), (10.35)

as u ↑ x∗, where V (x1, x2) = − log G(x1, x2); see also equation (8.69).
Our model for the extremes of the chain and the methods of inference will

be based on the limiting distribution of the vector {(Xi − u)/σ (u)}mi=1 condi-
tionally on X1 > u, where m is a positive integer. We shall show now that a
non-trivial limit indeed exists provided we enforce conditions (10.34)–(10.35) to
density convergence.

As a preliminary, we take a closer look at the extreme value distribution G.
From section 8.2, we recall the following facts. The function

G∗(z1, z2) = G

(
z
γ

1 − 1

γ
,
z
γ

2 − 1

γ

)
, 0 < zi < ∞ (i = 1, 2)

is a bivariate extreme value distribution with standard Fréchet margins, and there
exists a positive measure H on the unit interval [0, 1] so that

V∗(z1, z2) = − log G∗(z1, z2) =
∫

[0,1]
max{w/z1, (1 − w)/z2}H(dw). (10.36)

The measure H is called the spectral measure, and it necessarily satisfies the
constraints ∫

[0,1]
wH(dw) = 1 =

∫
[0,1]

(1 − w)H(dw). (10.37)

For the sake of simplicity, we make the following assumption.

Condition 10.19 The spectral measure H is absolutely continuous with continuous
density function h(w) for 0 < w < 1.

This condition poses a restriction indeed. For instance, it prohibits the margins
of G to be independent, in which case H is concentrated on 0 and 1. Some
parametric models, such as the asymmetric logistic (Tawn 1988a) in Example 8.1,
also allow H to have non-zero mass at 0 and 1. The arguments below can be
extended to cover these cases as well (Perfekt 1994; Yun 1998).
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Under Condition 10.19, the function V∗ is twice differentiable, and, denoting
partial derivatives by appropriate subscripts, we have by equation (8.36)

V∗12(z1, z2) = −(z1 + z2)
−3h{z1/(z1 + z2)} (10.38)

for 0 < zi < ∞ (i = 1, 2). As for (x1, x2) such that 1 + γ xi > 0 (i = 1, 2),

V (x1, x2) = V∗(z1, z2), zi = (1 + γ xi)
1/γ (i = 1, 2), (10.39)

the function V is twice differentiable too, and we can formulate an assumption
extending conditions (10.34)–(10.35) to densities.

Condition 10.20 The function V is twice differentiable, and for x, x1, x2 such that
1 + γ x > 0 and 1 + γ xi > 0 (i = 1, 2) we have as u ↑ x∗

σ(u)f {u + σ(u)x}
1 − F(u)

→ (1 + γ x)−1/γ−1,

σ (u)2f {u + σ(u)x1, u + σ(u)x2}
1 − F(u)

→ −V12(x1, x2).

Under Condition 10.20, we can find the limit of the joint density of the vector
{(Xi − u)/σ (u)}mi=1 conditionally on X1 > u. For x1 and x2 such that 1 + γ xi > 0
for i = 1, 2, we find

σ(u)f {u + σ(u)x2 | u + σ(u)x1}

= σ 2(u)f {u + σ(u)x1, u + σ(u)x}/F̄ (u)

σ (u)f {u + σ(u)x1}/F̄ (u)

→ −(1 + γ x1)
1/γ+1V12(x1, x2), u ↑ x∗. (10.40)

Hence by (10.33), the joint density of {(Xi − u)/σ (u)}mi=1 conditionally on X1 > u

in (x1, . . . , xm) such that x1 > 0 and 1 + γ xi > 0 for i = 1, . . . , m satisfies

σm(u)f {u + σ(u)x1, . . . , u + σ(u)xm}/F̄ (u)

→ (1 + γ x1)
−1/γ−1

m∏
i=2

(1 + γ xi−1)
1/γ+1{−V12(xi−1, xi)}, (10.41)

as u ↑ x∗.
Now let T be a standard Pareto random variable, P [T > t] = 1/t for 1 ≤ t <

∞, and let {Ai}i≥1 be independent, positive random variables, independent of T ,
and with common marginal distribution

P [A ≤ a] =
∫ 1

1/(1+a)

wh(w)dw = −V∗1(1, a), 0 ≤ a < ∞. (10.42)



404 EXTREMES OF STATIONARY TIME SERIES

Let {Yn}n≥1 be the Markov chain given by the recursion

Y1 = T γ − 1

γ

Yn = (1 + γ Yn−1)A
γ

n−1 − 1

γ
, n ≥ 2,

(10.43)

or explicitly

Yn =
(
T
∏n−1

i=1 Ai

)γ − 1

γ
, n ≥ 2. (10.44)

The random variable Y1 has a GP distribution with shape parameter γ . For n ≥ 2
and (xn−1, xn) such that 1 + γ xi > 0 (i = n − 1, n), the density of Yn conditionally
on Yn−1 = xn−1 is, denoting zi = (1 + γ xi)

1/γ , equal to

d

dxn

P [Yn ≤ xn | Yn−1 = xn−1]

= d

dxn

P [An−1 ≤ zn/zn−1]

= (1 + zn/zn−1)
−3h{(1 + zn/zn−1)

−1}z−1
n−1

dzn

dxn

= −V∗12(zn−1, zn)z
2
n−1

dzn

dxn

= −(1 + γ xn−1)
1/γ+1V12(xn−1, xn) (10.45)

where we used subsequently (10.43), (10.42), (10.38), and (10.39).
Combining (10.41) with (10.45), we obtain that under Conditions 10.19

and 10.20, for all positive integer m,

P

[(
X1 − u

σ(u)
, . . . ,

Xm − u

σ(u)

)
∈ ·
∣∣∣∣X1 > u

]
D→ P [(Y1, . . . , Ym) ∈ · ], (10.46)

as u ↑ x∗. The process {Yn} is called the tail chain of the Markov chain {Xn}. It
describes the behaviour of the latter when started at a high value X1 > u. Recall
that the tail chain is completely determined by the extreme value index γ and the
distribution of A; to find the approximate distribution of (X1, . . . , Xm) conditional
on X1 > u, we also need the scaling parameter σ(u). Finally, observe that (10.40)
and (10.45) yield a convenient interpretation of the distribution of A in that

lim
n→∞ P

[{
1 + γ

X2 − u

σ(u)

}1/γ

≤ a

∣∣∣∣∣X1 = u

]
D→ P [A ≤ a], u ↑ x∗. (10.47)
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Example 10.21 A popular parametric model for V∗ is the logistic model

V∗(z1, z2) =
(
z
−1/α

1 + z
−1/α

2

)α

, 0 < zj < ∞ (j = 1, 2)

with parameter 0 < α ≤ 1, see (9.6). The case α = 1 corresponds to independent
margins, in which case the spectral measure H puts unit mass on 0 and 1, violating
Condition 10.19. If 0 < α < 1, however, direct computation reveals that

P [A ≤ a] = −V∗1(1, a) = (1 + a−1/α)−(1−α), 0 < a < ∞.

Without extra assumptions, we can find the limit behaviour of Yn as n → ∞.
Observe first that by (10.42) and (10.37), we have

E(A) =
∫ ∞

0
P [A > a]da =

∫ ∞

0

∫ 1/(1+a)

0
wh(w)dwda

=
∫ 1

0

(
1

w
− 1

)
wh(w)dw = 1.

By Jensen’s inequality, −∞ ≤ E{log(A)} < 0. Therefore, if A1, A2, . . . are inde-
pendent copies of A, then by the law of large numbers

∑n
i=1 log(Ai) → −∞ and

thus
∏n

i=1 Ai → 0 as n → ∞. We obtain that

lim
n→∞ Yn =

{ −1/γ if γ > 0
−∞ if γ ≤ 0

(10.48)

with probability one. In particular, only a finite number of the Yn are positive.
The interpretation is that clusters of exceedances over a high threshold necessarily
remain of finite length.

As mentioned before, Conditions 10.19 and 10.20 are not really necessary. A
more general theory, formulated directly in terms of the transition kernel of the
chain, is developed in Perfekt (1994). The main conclusions of this section remain
valid in the more general framework: the representation (10.42) of the distribution
of A in terms of V∗, the representation (10.43) of the tail chain {Yn}, and the
limit distribution (10.46). What changes is that the distribution of A need not be
absolutely continuous anymore. In particular, A may have a point mass at zero,
in which case an absorbing state for the tail chain is −1/γ if γ > 0 and −∞
if γ ≤ 0. Also, it can happen that P [A = 1] = 1, corresponding to asymptotic
complete dependence of the distribution of (X1, X2) (section 8.3.2), in which case
Yn = Y1 for all n ≥ 1, violating (10.48).

10.4.2 Extremal index

Suppose as in section 10.4.1 that {Xn} is a stationary Markov chain with tail chain
{Yn} satisfying (10.46). We want to express the extremal index θ of the Markov
chain, provided it exists, in terms of the tail chain. This will allow us at a later
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stage to estimate the extremal index when we have estimated the tail chain from
the data.

Recall our notation Mj,k = max{Xj+1, . . . , Xk} (with max ∅ = −∞) and Mk =
M0,k for integers 0 ≤ j ≤ k. In section 10.2.3, we saw that under suitable assump-
tions, the extremal index θ is the limit of θR

n (un) = P [M1,rn ≤ un | X1 > un]. We
shall find now that the limit of θR

n (un) is determined by the tail chain. Throughout,
we assume Condition 10.8.

For m = 2, 3, . . ., we have
∣∣∣∣θR

n (un) − P

[
max
i≥2

Yi ≤ 0

]∣∣∣∣
≤ P [Mm,rn > un | X1 > un] + P

[
max
i>m

Yi > 0

]

+
∣∣∣∣P [M1,m ≤ un | X1 > un] − P

[
max

2≤i≤m
Yi ≤ 0

]∣∣∣∣ . (10.49)

By (10.46), the last term on the right converges to zero as n → ∞. Hence,

lim sup
n→∞

∣∣∣∣θR
n (un) − P

[
max
i≥2

Yi ≤ 0

]∣∣∣∣
≤ lim sup

n→∞
P [Mm,rn > un | X1 > un] + P

[
max
i>m

Yi > 0

]
.

Since m was arbitrary, we can let m → ∞ to obtain, by (10.8) and (10.48),

θ = lim
n→∞ θR

n (un) = P

[
max
i≥2

Yi ≤ 0

]
. (10.50)

Observe that θ is indeed determined solely by the dependence structure in the
chain: by (10.44),

θ = P


max

i≥1

i∏
j=1

Ai ≤ U


 (10.51)

(Perfekt 1994), where U, A1, A2, . . . are independent random variables with U

uniformly distributed on (0, 1) and the Ai distributed like A in (10.42).

10.4.3 Cluster statistics

Let c be a cluster functional (Definition 10.13) that is continuous almost every-
where. All the examples in section 10.3.2 satisfy this requirement. By Proposi-
tion 10.15, the distribution of the cluster statistic c{(Xi − un)/σ (un)}rni=1 condi-
tional on Mrn > un converges to a limit that can be expressed in terms of the tail
chain {Yi}.
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Using a similar decomposition as in (10.49), we obtain from (10.8), (10.48)
and (10.20)

P

[
c

{
Xi − un

σ (un)

}rn

i=1
∈ ·
∣∣∣∣Mrn > un

]
(10.52)

D→ θ−1
{
P [c(Y1, Y2, . . .) ∈ · ] − P [c(Y2, Y3, . . .) ∈ · , max

i≥2
Yi > 0]

}

(Yun 2000a). Here we have extended the domain of c to sequences x1, x2, . . . with
only a finite number of positive members by setting c(x1, x2, . . .) = c(x1, . . . , xr )

where r is such that xi ≤ 0 for all i > r .

10.4.4 Statistical applications

In a practical data analysis, we might want to estimate the extremal index, for
instance, to estimate high return levels as in section 10.2.3, or the distribution of
a cluster statistic, for instance, the probability that the total amount of rainfall
during a storm exceeds a high level. If we are willing to assume that the data
(x1, . . . , xn) are a realization of a sample (X1, . . . , Xn) from a stationary Markov
chain satisfying the conditions of the previous sections, then we can use (10.51)
and (10.52) to solve these problems.

Consider first the expression (10.51) for the extremal index. Given the bivariate
extreme value distribution G, we can compute the distribution of the Ai , and then
find θ in (10.51) by simulation or some other numerical technique. A fast method to
compute the extremal index based on (10.51) that does not rely on direct simulation
from the tail chain, but on the fast Fourier transform, is described in Hooghiemstra
and Meester (1997).

For cluster statistics, we are usually interested in c{(Xi − un)}rni=1 without the
normalizing σ(un). If c is invariant to scale, for example, if it depends only on
1(Xi > un), then we can estimate the distribution of the cluster statistic by simulat-
ing the tail chain {Yi} for 1 ≤ i ≤ max{j ≥ 1 : Yj > 0} according to the definition
(10.43). In practice, we simulate Y1, . . . , Yr , with r large enough such that the
probability of a cluster being longer than r is negligible. Alternatively, if the dis-
tribution of the Ai has mass at {0}, an absorbing state, we can generate r − 1
from a geometric distribution with mean 1/P [A = 0]. Simulating a large number
of realizations of the tail chain allows the limit (10.52) to be approximated by a
Monte Carlo average.

In cases where the normalization is needed, we must fix a threshold u and then,
by (10.46), we can approximate the distribution of the cluster statistic conditional
on the cluster maximum exceeding u by

θ−1
{
P [c(σY1, σY2, . . .) ∈ · ] − P [c(σY2, σY3, . . .) ∈ · , max

i≥2
Yi > 0]

}
,

where σ = σ(u).
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A remarkable feature of these applications of the tail chain, which were invented
by Yun (2000a), is that it requires knowledge of only the limiting forward transition
probabilities. The sampling scheme of Smith et al. (1997) works differently: (1)
generate a cluster maximum from the appropriate GP distribution as in (10.23);
(2) generate the part of the cluster following the cluster maximum from the forward
tail chain, rejecting samples that exceed the cluster maximum; (3) generate the part
of the cluster preceding the cluster maximum from the backward tail chain, again
rejecting those that exceed the cluster maximum. The backward tail chain, defined
analogously to the forward tail chain, has transitions Ai with distribution function

P [A ≤ a] = lim
u→x∗

P

[{
1 + γ

X1 − u

σ(u)

}1/γ

≤ a

∣∣∣∣∣X2 = u

]
= −V∗2(a, 1).

Although this scheme is intuitively straightforward, it is clearly less efficient than
Yun’s scheme, which only requires the forward tail chain and, in which no samples
need to be rejected. On the other hand, a benefit of the Smith et al. (1997) scheme
is that it generates clusters directly, the empirical distribution of which can be used
immediately as an estimate of the cluster distribution. A theoretical justification of
the scheme is provided in Segers (2003b).

10.4.5 Fitting the Markov chain

It remains to estimate the marginal parameters, γ and σ = σ(u), and the distribu-
tion of the Ai or, equivalently, the function V∗ in (10.42). The estimation procedure
basically consists of the censored-likelihood approach (section 9.4.2) as in Ledford
and Tawn (1996), but now adapted to the Markov likelihood (10.33) as in Smith
et al. (1997).

First we define our models for the marginal and joint distribution functions
F(x) and F(x1, x2) in the regions x > u and xi > u (i = 1, 2) for a sufficiently
high threshold u. Denote λ = λ(u) = 1 − F(u) and σ = σ(u). Equation (10.34)
suggests the approximation

F(x) ≈ 1 − λ

(
1 + γ

x − u

σ

)−1/γ

+
,

while from (10.35), using (10.39) and (10.36),

F(x1, x2) ≈ 1 − λV

(
x1 − u

σ
,
x2 − u

σ

)
= 1 − V∗(z1, z2), (10.53)

with zi = λ−1
(

1 + γ
xi − u

σ

)1/γ

+
, i = 1, 2. (10.54)

Slightly more accurate would be to use the tail equivalent models (9.67) and (9.68),
but for simplicity we stick to the models above as in Smith et al. (1997).
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As the models above are specified only for observations exceeding the thresh-
old u, we must treat observations below the threshold as being censored at that
threshold. Specifically, the marginal likelihood for a single observation x is set
equal to

fu(x) =



λ

σ

(
1 + γ

x − u

σ

)−1/γ−1

+
if x > u,

1 − λ if x ≤ u,

and the joint likelihood of a pair (x1, x2) is set equal to

fu(x1, x2)

=




∂2

∂x1∂x2
F(x1, x2) ≈ − ∂z1

∂x1

∂z2

∂x2
V∗12(z1, z2) if x1 > u, x2 > u

∂

∂x1
F(x1, u) ≈ − ∂z1

∂x1
V∗1(z1, λ−1) if x1 > u ≥ x2

∂

∂x2
F(u, x2) ≈ − ∂z2

∂x2
V∗2(λ

−1, z2) if x1 ≤ u < x2

F(u, u) ≈ 1 − V∗(λ−1, λ−1) if x1 ≤ u, x2 ≤ u,

subscripts on V∗ denoting partial derivatives and with (z1, z2) as in (10.54). Finally,
the censored likelihood of a sample (x1, . . . , xn) is defined by replacing f with fu

in (10.33).
Usually we assume that the function V∗ belongs to some parametric family,

V∗(· | θ) say, and estimate the unknown parameters (γ, σ, θ) by maximizing the
censored likelihood; λ can be set equal to the ratio of the number of exceedances
to n. Four such models for V∗ are listed below; see section 9.2 for a more exten-
sive list. Once we have estimated the model, we can implement the simulation
schemes of the previous section to obtain estimates of the extremal index and prop-
erties of cluster statistics. Confidence intervals can be obtained by bootstrapping
the observed Markov chain according to the scheme described in section 10.3.4
and refitting the model to each sequence. An alternative, more crude, approach
could be to resample the maximum-likelihood parameter estimates from their esti-
mated asymptotic multivariate normal distribution, assuming the usual properties
of maximum-likelihood estimators hold.

Parametric models

For easy reference, we repeat here a couple of parametric models for V∗ together
with the corresponding distribution for A as in (10.42).

Asymmetric logistic model (Tawn 1988a,b)

V∗(z1, z2) = (1 − ψ1)z
−1
1 + (1 − ψ2)z

−1
2 + {(ψ1/z1)

1/α + (ψ2/z2)
1/α}α
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for 0 ≤ ψi ≤ 1 (i = 1, 2) and 0 < α ≤ 1, see (9.7). The logistic model arises as a
special case, if ψ1 = ψ2 = 1. If 0 < α < 1, the associated transition distribution
has P [A = 0] = 1 − ψ1 and

P [A ≤ a] = 1 − ψ1 + ψ
1/α

1 (ψ
1/α

1 + ψ
1/α

2 a−1/α)α−1, a > 0.

In case α = 1, we have P [A = 0] = 1 regardless of the ψi .

Asymmetric negative logistic model (Joe 1990)

V∗(z1, z2) = z−1
1 + z−1

2 − {(z1/ψ1)
r + (z2/ψ2)

r}−1/r

for 0 ≤ ψ1 ≤ 1 (i = 1, 2) and r > 0, see (9.13) where α = −1/r . The associated
transition distribution has P [A = 0] = 1 − ψ1 and

P [A ≤ a] = 1 − ψ−r
1 (ψ−r

1 + ψ−r
2 ar)−1/r−1, a > 0.

In the limiting case r = 0, again P [A = 0] = 1.

Bilogistic model (Smith 1990b)

V∗(z1, z2) = z−1
1 q1−α + z−1

2 (1 − q)1−β

for 0 < α < 1, 0 < β < 1, and where q = q(z1, z2) solves

(1 − α)z−1
1 (1 − q)β = (1 − β)z−1

2 qα, (10.55)

see (9.9). The associated transition distribution is

P [A ≤ a] = q1−α, a > 0,

where q solves (10.55) when z1 = 1 and z2 = a.

Negative bilogistic model (Coles and Tawn 1994)

V∗(z1, z2) = z−1
1 + z−1

2 − {z−1
1 q1+α + z−1

2 (1 − q)1+β}
for α > 0, β > 0, and where q solves

(1 + α)z−1
1 qα = (1 + β)z−1

2 (1 − q)β. (10.56)

The associated transition distribution is

P [A ≤ a] = 1 − q1+α, a > 0,

where q solves (10.56) when z1 = 1 and z2 = a.
Symmetric models are obtained from the first two models when ψ1 = ψ2 or

from the last two models when α = β.
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10.4.6 Additional topics

Threshold dependence

Model (10.53) for the Markov chain assumes that the dependence between consec-
utive exceedances of a high threshold does not change as the threshold is increased.
This is acceptable if we really are interested in the asymptotic properties of the
process. Typically, however, we are interested in high, but finite, levels at which
the process may behave very differently. For example, if the joint distribution of
(X1, X2) is in the domain of attraction of an extreme value distribution with inde-
pendent margins, that is, X1 and X2 are asymptotically independent, then θ = 1 and
there is no clustering in the limit. Clustering may occur at finite levels, however,
and inferences such as return-level estimation can be improved, if we recognize
that θ(u) < 1. The asymptotically dependent model (10.53) is particularly inad-
equate in this situation because θ = 1 can be achieved only if X1 and X2 are
completely independent. In this section, we obtain threshold-dependent estimates
of the extremal index and cluster statistics by extending the model (10.53) and using
a penultimate approximation to the tail chain (10.43); see Bortot and Tawn (1998).

The model for the distribution of (X1, X2) in the joint-tail region xi ≥ u (i =
1, 2) is taken from Ledford and Tawn (1997); see also section 9.5. Specifically,

F̄ (x1, x2) := P [X1 > x1, X2 > x2]

≈ (1 − z−1
1 ) + (1 − z−1

2 ) − 1 + L(z1, z2)z
−c1
1 z

−c2
2 , (10.57)

where zi ≈ 1/F̄ (xi) is the transformation (10.54), L is a bivariate slowly vary-
ing function, and c1 and c2 are positive parameters satisfying c1 + c2 ≥ 1. The
coefficient of tail dependence, η, defined by the limit

lim
t→∞ F̄ (tx, tx)/F̄ (t, t) = x−1/η, 0 < x < ∞, (10.58)

is η = 1/(c1 + c2). If c1 + c2 > 1 then η < 1 and thus P [X2 > x | X1 > x] → 0
as x → x∗, that is, the pair (X1, X2) is asymptotically independent. In that case,
we obtain P [A = 0] = 1 in (10.42), and the extremal index (10.51) is equal to
unity, that is, there is no clustering in the limit.

Estimation proceeds with the censored likelihood of section 10.4.5 adapted to
the new model, a possible parametric form for L being

L(z1, z2) = a0 + (z1z2)
−1/2{z1 + z2 − z1z2V∗(z1, z2)}, (10.59)

with a0 ≥ 0 and where V∗ is one of the parametric models listed in section 10.4.4.
The special case c1 = c2 = 1/2 and a0 = 0 leads back to the previous
model (10.53).

Suppose now that we want to find the extremal index or the distribution of
a cluster statistic at some finite threshold u1 ≥ u. We can still use the tail-chain
approximation (10.46), replacing u with u1, and where {Yn} are defined by (10.43).
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However, instead of simulating the Ai from their degenerate limit distribution, we
use (10.47) to simulate from the penultimate form

FA(a; v) = P

[{
1 + γ

X2 − v

σ (v)

}1/γ

≤ a

∣∣∣∣∣X1 = v

]

≈ 1 − λc1+c2−1a−c2{c1L(aλ−1, λ−1) − λ−1L1(aλ−1, λ−1)},

with λ = F̄ (v). Since this distribution depends on the particular value of the con-
ditioning variable, v, the Ai are no longer identically distributed: given Yi , we
simulate Ai from FA{·; u1 + σ(u1)Yi}. The tail chain can be simulated either for a
fixed time r , as in section 10.4.4, or stopped when Xi = u1 + σ(u1)Yi falls below
u, at which point the justification for the model is lost.

Non-parametric estimation

It is not necessary to fit a bivariate parametric model to obtain the distribution of
the transitions Ai . The transitions satisfy

Ai =
(

1 + γZi+1

1 + γZi

)1/γ

, i = 1, 2, . . . ,

where Zi approximates (Xi − u)/σ (u) when X1 > u. In the special case that the
Xi are standard exponentially distributed, we have γ = 0, σ(u) = 1, and Ai =
exp(Xi+1 − Xi). For data {xj }1≤j≤n, therefore, we can define the empirical values
of Ai to be

{
exp

(
x̃j+i − x̃j+i−1

)
: xj > u, 1 ≤ j ≤ n − i

}
, (10.60)

where x̃j are the data transformed to standard exponential margins, for instance,
by the empirical distribution function. The transition distribution can be estimated
with a kernel density estimator based on these empirical values (Bortot and Coles
2000). Such an estimate also provides a method for assessing the fit of parametric
models.

Higher-order Markov chains

Extremes of d-order Markov chains, d ≥ 1, were considered in Yun (1998, 2000a).
The ideas remain the same, but the appropriate higher-order transition probabilities
lead to a tail chain that also has order d. Statistical modelling requires a (d + 1)-
variate extreme value distribution, suitably restricted to ensure stationarity and
fitted with the appropriate extension of the likelihood in section 10.4.5. To select
between models of different order, it is advantageous for the lower-order model to
be nested within the higher-order model. In this case, the models can be compared
by evaluating both of them for the higher-order likelihood: the form of the censored
likelihood means that likelihoods of different orders are not necessarily comparable.
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10.4.7 Data example

In this section, we fit first-order Markov models to the Uccle data of section 10.2.2,
consider the issue of asymptotic independence and compare the simulated cluster
characteristics to the empirical estimates of section 10.3.5.

We fit Markov chains with the six asymptotic dependence structures listed in
Table 10.1 at thresholds ranging from the 90% to the 99.5% empirical quantile. As
with the compound Poisson models of section 10.3.5, parameter estimates are stable
above the 96% threshold, and constraining the asymmetric logistic and asymmetric
negative logistic models to ψ2 = 1 causes almost no change in the maximum
likelihood. The model fits at the 96% threshold are summarized in Table 10.1.

Symmetry corresponds to the hypothesis α = β in the case of the bilogistic and
negative bilogistic models. Under this hypothesis, the models reduce to the logistic
and negative logistic, and a likelihood-ratio test gives no indication of asymmetry.
Note that we assume here and elsewhere that standard likelihood properties hold
even though the censored likelihood is an approximation to the joint density. Simu-
lating test statistics under the null hypothesis is an alternative, but computationally
expensive, approach. In the case of the asymmetric logistic and asymmetric neg-
ative logistic models with ψ2 = 1, symmetry corresponds to the boundary value
ψ1 = 1. This is one example of the nonregular problems encountered in multivari-
ate extremes (Tawn 1988a, 1990); the likelihood-ratio statistic should be compared
to a one-half chi-squared distribution with one degree of freedom. For the asym-
metric logistic model, the statistic is 2.12 with p-value P [χ2

1 ≥ 2.12]/2 = 0.073,

Table 10.1 Parameter estimates, standard errors, negative log-likelihoods
and extremal indices for six asymptotically dependent Markov models. The
asymmetric logistic and asymmetric negative logistic models are constrained
to ψ2 = 1, with as special cases for ψ1 = 1 the logistic and negative logistic
models, respectively.

Model σ γ Dependence NLLH θ

Logistic 2.8 −0.30 α = 0.67 (0.04) 597.15 0.54
(0.4) (0.11)

Bilogistic 2.7 −0.29 α = 0.74 (0.05) 595.89 0.55
(0.4) (0.11) β = 0.58 (0.08)

Asymmetric logistic 2.8 −0.30 α = 0.62 (0.06) 596.09 0.56
(0.4) (0.12) ψ1 = 0.76 (0.14)

Negative logistic 2.7 −0.28 r = 0.77 (0.09) 597.63 0.54
(0.4) (0.11)

Negative bilogistic 2.7 −0.27 α = 0.89 (0.04) 596.71 0.54
(0.07) (0.04) β = 1.81 (0.07)

Asymmetric 2.7 −0.28 r = 0.92 (0.16) 596.51 0.55
Negative logistic (0.4) (0.11) ψ1 = 0.75 (0.14)
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and for the asymmetric negative logistic model, the statistic is 2.24 with p-value
0.067. We conclude that there is only weak evidence for asymmetry and we proceed
with the symmetric logistic model.

We can assess how well the model fits the data with some diagnostic plots. The
estimated shape parameter is greater than that obtained from the marginal analysis
(γ̂ = −0.42) and the quantile plot for threshold excesses is poor. That there is
little to choose between the models featured in Table 10.1 is exemplified by the
similarity of the estimates of the Pickands dependence function A in Figure 10.9.
Recall from (8.54) that the Pickands dependence function of a bivariate extreme
value distribution is defined by A(w) = V∗{(1 − w)−1, w−1} for 0 < w < 1. In
addition, the parametric estimates are close to the non-parametric one by Capéraà
and Fougères (2000a); see also section 9.4.1.

We also investigate how closely the data follow the asymptotic tail chain {Yn}
of the model by comparing the empirical values (10.60) of the transitions with
their estimated distribution in Figure 10.10. The joint density plot shows that the
empirical values are negatively correlated, so we would need a higher threshold
to find the independence structure of the tail chain. On the other hand, the dis-
crepancies between the empirical and model marginal distributions are sufficiently
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Figure 10.9 Estimates of the Pickands dependence function of the bivariate
Markov model: non-parametric (——), logistic (- - - - -), asymmetric logistic
(· · · · · ·) and bilogistic (– · – · –).
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Figure 10.10 Diagnostic plots for the tail-chain transitions. The joint density plot
shows the empirical transitions with model contours; the density plot shows the
model estimate (——) and a kernel density estimate (- - - - -); the probability and
quantile plots refer to the transitions A1.

small that an empirical version of the tail chain could be obtained by simulating
independent transitions from the kernel density estimate in Figure 10.10.

Extremal characteristics of the fitted logistic model are found from 10 000
simulations of the model tail chain with length r = 100. The extremal index is
0.54 with bootstrapped 95% confidence interval (0.42, 0.69), the mean cluster size
is 1.84 (1.45, 2.37) and the mean number of up-crossings per cluster is 1.09 (1.04,
1.17). The cluster-size distribution is π̂(1) = 0.60, π̂ (2) = 0.20, π̂(3) = 0.10 and
π̂(4) = 0.05. Figure 10.11 exhibits the estimate of the distribution of the aggregate
cluster excess that deviates from the empirical estimate mainly around 1◦C–4◦C.
The Markov model produces clusters that are smaller than, but in general agreement
with, those found empirically at the same threshold. The choice of parametric model
in fact has little influence on the extremal characteristics: witness the extremal
indices from all six models displayed in Table 10.1.

The estimates of the 100, 1 000 and 10 000 July return levels with bootstrapped
95% confidence intervals are 37.6 (36.3, 39.0), 38.9 (37.0, 41.9) and 39.6 (37.2,
44.2); the estimated upper end-point is 40.3 (37.2, 53.9). These are larger than
the estimates from the marginal analysis in section 10.2.2, due principally to the
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Figure 10.11 Empirical distribution function (- - - - -) and estimate from the
Markov model (——) of cluster excess at the 96% threshold.

different shape parameters, and intimate a deficiency in this Markov model. This
is in line with findings of Dupuis and Tawn (2001) that misspecification of the
dependence model may corrupt estimates of marginal parameters.

We have noted some evidence for asymptotic independence, such as the empir-
ical estimates of the extremal index in Figure 10.5 that increase at high thresholds.
To assess this evidence more formally, we test η = 1, where η is the coeffi-
cient of tail dependence (10.58); see also section 9.5. First we transform the
data X1, . . . , Xn to approximate standard Pareto margins by Zi = 1/{1 − F̂n(Xi)},
where F̂n is the empirical distribution function; an alternative is to transform to
standard Fréchet margins. Next, define

Ti = min(Zi, Zi+1) for i ∈ {j : Xj and Xj+1 fall in the same year}.

In view of (10.58), the tail function of Ti is regularly varying with index η. Hence,
if T(1) > T(2) > . . . are the Ti in descending order, then Hill’s estimator for η is

η̂ = 1

k − 1

k−1∑
i=1

log T(i) − log T(k)

see, for instance, Ledford and Tawn (2003). Values of η̂ for different k are repro-
duced in Figure 10.12, with bootstrapped 95% confidence intervals constructed by
resampling the data blocked by year. The estimates are about 0.8 and are signifi-
cantly less than 1 for all values of k. There is some evidence, therefore, that the
series is asymptotically independent and we should be wary of extrapolating the
results obtained from the previous Markov-chain model.
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Figure 10.12 Hill’s estimates (——) of the coefficient of tail dependence, η,
against the number of order statistics, with bootstrapped 95% confidence intervals.

Asymptotic independence can be handled by model (10.57) and supports cluster
characteristics that can change with threshold. We choose again the symmetric
logistic model for V∗ in (10.59) and find that parameter estimates are stable above
the 96% threshold, although a0 is poorly estimated. At the 96% threshold, η̂ =
0.84 and the p-value for the nonregular, likelihood-ratio test of η = 1 (Bortot and
Tawn 1998) is 0.03, confirming our earlier conclusion of asymptotic independence.
A likelihood-ratio test does not reject c1 = c2 so we refit the model with this
constraint, obtaining σ̂ = 2.7 (0.4), γ̂ = −0.35 (0.10), ĉ1 = ĉ2 = 0.59 (0.07), â0 =
0.2 (0.3) and α̂ = 0.53 (0.10).

The estimates of the extremal index from this model, obtained by simulating
tail chains of length r = 20 and truncating once the chain falls below the model
threshold, are reproduced in Figure 10.13. Other cluster characteristics were sim-
ulated too: the mean cluster size decreased from 1.73 at the 96% threshold to 1.47
by the 99.5% threshold; the mean number of up-crossings per cluster rose from
1.00 to 1.06; and π̂(1) increased from 0.60 to 0.69, which is consistent with the
empirical estimates in Figure 10.8.

When the extremal index changes with threshold, return-level estimation is
improved if the approximation P [Mn ≤ x] ≈ {F(x)}nθ is used with θ = θ(x). The
return levels obtained in this way from our model are 37.1 (36.2, 38.0), 38.1 (36.8,
40.0) and 38.5 (37.0, 41.4), with upper end-point 38.8 (37.1, 44.7). These are
close to the return levels estimated from the GEV model, principally because of
the similar shape parameters.

This concludes our analysis of the Uccle data. We have found evidence for
asymptotic independence, which means that cluster characteristics change with
threshold. Within the data, the empirical estimates of section 10.3.5 provide a
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Figure 10.13 Extremal index estimates against threshold on complementary log-
log scale: empirical (—◦—) with bootstrapped 95% confidence intervals (· · · · · ·)
and from the asymptotically independent Markov model (- - - - -).

valuable description, but if inference is required for levels at which we have no
data then the asymptotic independent Markov model of this section can be used.

Return levels from the different models are summarized in Table 10.2. Of the
marginal models, we prefer the GP model for threshold exceedances to the GEV
model for block maxima because the estimates are more precise. In section 10.3.5,
the GP return levels were estimated with θ = 0.49. In light of asymptotic inde-
pendence, we should use θ = 1, which yields estimates that are closer to the GEV
estimates. The asymptotically dependent model is inconsistent with the other results
because of its larger shape parameter. The asymptotically independent model, how-
ever, produces estimates similar to the GEV estimates and with similar confidence
intervals. We can conclude with some confidence, therefore, that the point estimates
from the GEV model are good estimates of the true July return levels.

Table 10.2 Return levels (◦C) with 95% confidence intervals and shape
parameters from five models: GP with θ = 0.49, GP; with θ = 1, GP1;
GEV; asymptotically independent Markov chain, MCI; asymptotically
dependent Markov chain, MCD.

Model 100 1 000 10 000 γ

GP 36.5 (35.7, 36.9) 37.2 (36.2, 38.1) 37.5 (36.3, 38.7) −0.42
GP1 36.8 (35.9, 37.2) 37.3 (36.3, 38.3) 37.5 (36.4, 38.9) −0.42
GEV 36.9 (36.2, 38.6) 37.9 (36.9, 40.5) 38.3 (37.2, 41.8) −0.34
MCI 37.1 (36.2, 38.0) 38.1 (36.8, 40.0) 38.5 (37.0, 41.4) −0.35
MCD 37.6 (36.3, 39.0) 38.9 (37.0, 41.9) 39.6 (37.2, 44.2) −0.30
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10.5 Multivariate Stationary Processes

Up to now the setting of this chapter consisted of a univariate stationary time series.
Complementarily, the framework of Chapters 8 and 9 was that of independent
multivariate observations. In this section, we join both lines to the study of extremes
of multivariate stationary time series. Although this area is relatively unexplored,
some theory is already available, mainly on the vector of component-wise maxima.
In particular, we shall encounter an appropriate generalization of the extremal limit
theorem (ELT) in section 10.5.1 and of the extremal index in section 10.5.2. These
results, however, have so far hardly led to any practical statistical procedures. It is
our hope, therefore, that the present overview of the theory might stimulate further
research in the area.

10.5.1 The extremal limit theorem

Let Xn = (Xn,1, . . . , Xn,d), n ≥ 1, be a stationary sequence of random vectors in
R

d with distribution function F . We seek to model the extremes of the process. A
natural starting point is the sample maximum, defined as the vector of component-
wise maxima,

Mn =
(

max
i=1,...,n

Xi,1, . . . , max
i=1,...,n

Xi,d

)
.

We shall investigate the asymptotic distribution of a−1
n (Mn − bn), where an >

0 = (0, . . . , 0) and bn are d-dimensional vectors. By convention, operations on
and relations between such vectors are to be read component-wise.

The case of independent vectors Xn was treated in Chapter 8. A central problem
there was to characterize the class of distribution functions G with non-degenerate
margins that can arise as the limit in

P [a−1
n (Mn − bn) ≤ x]

D→ G(x), n → ∞. (10.61)

This gave rise to the class of multivariate extreme value distributions that were
described in detail. In the stationary case now, we shall seek conditions so that
any limit distribution G in (10.61) must be a d-variate extreme value distribu-
tion as well. This will provide a proper generalization of the univariate ELT
(Theorem 10.2). As in the univariate case, the long-range dependence in the process
will need to be restricted in some way.

At this stage it pays off to reflect a little on the structure of the arguments in the
univariate case. Let {Xn} be a stationary sequence of univariate random variables
and recall the notation of section 10.2. For a sequence of thresholds un consider
the events An,i = {Xi ≤ un}. Observe that for fixed n the sequence of indicator
variables {1(An,i)}i≥1 is stationary.

The crucial step in the proof of Theorem 10.2 is the decomposition (10.3)
P [Mn ≤ un] = {P [Mrn ≤ un]}�n/rn� + o(1) for a positive integer sequence rn tend-
ing to infinity but at a slower rate than n. It is a useful exercise to rewrite the whole
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argument leading to (10.3) in terms of the events An,i . Explicitly, for a set I of
positive integers we can write

P [M(I) ≤ un] = P

[⋂
i∈I

{Xi ≤ un}
]

= P

[⋂
i∈I

An,i

]
.

The D(un) condition required in the theorem can be expressed in terms of the
events An,i as well since

α(n, s) = max
1≤l≤n−s

max
I,J

∣∣∣∣∣P
[ ⋂

i∈I∪J

An,i

]
− P

[⋂
i∈I

An,i

]
P

[⋂
i∈J

An,i

]∣∣∣∣∣ (10.62)

the second maximum ranging over all I ⊆ {1, . . . , l} and J ⊆ {l + s, n}.
How does this help us in the multivariate case? Let un be a sequence of d-

dimensional thresholds and consider the events An,i = {Xi ≤ un}, the ordering of
vectors being component-wise. Clearly, the translated version of the univariate
argument goes through without change. In particular, define α(n, s) as in (10.62)
and say that Condition D(un) holds if α(n, sn) → 0 for some positive integer
sequence sn such that sn = o(n). We arrive at the multivariate version of the ELT,
due to Hsing (1989) and Hüsler (1990).

Theorem 10.22 Let {Xn} be a stationary sequence for which there exist sequences
of constant vectors an > 0 and bn, and a distribution function G with non-degenerate
margins such that

P [a−1
n (Mn − bn) ≤ x]

D→ G(x), n → ∞.

If D(un) holds with un = anx + bn for each x such that G(x) > 0, then G is a
d-variate extreme value distribution function.

The dependence may affect the limiting distribution G in the sense that it can be
different from the corresponding limit G̃ for the associated, independent sequence
X̃n, n ≥ 1, of random vectors with the same marginal distribution as X1. So what
is the connection between G and G̃ and when are they the same?

The latter question is the easier one to answer. Condition D′(un) holds if

lim
k→∞

lim sup
n→∞

n

�n/k�∑
i=1

P [X1 �≤ un, Xi �≤ un] = 0.

Observe that this is the direct translation of Condition D′(un) via the An,i . The
arguments in the univariate case go through here as well: the inclusion-exclusion
formula and D′(un) give

P [Mrn �≤ un] = rnF̄ (un) + o(rn/n)
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whenever rn = o(n), so that

P [Mn ≤ un] = {P [Mrn ≤ un]}�n/rn� + o(1) = {F(un)}n + o(1),

provided nα(n, sn) = o(rn) for some sn = o(rn). We obtain the following result.

Theorem 10.23 Let G be a d-variate extreme value distribution and let an > 0
and bn be d-dimensional vectors such that D(un) and D′(un) hold for every un =
anx + bn with x ∈ R

d such that G(x) > 0. Then

P [a−1
n (Mn − bn) ≤ x]

D→ G(x), n → ∞,

if and only if

Fn(anxn + bn)
D→ G(x), n → ∞.

10.5.2 The multivariate extremal index

Recall that under the D′(un) condition the asymptotic distribution of Mn is
the same as in the case of an independent sequence. The reason is that
the D′(un) condition prevents local clustering of extremes, so that the tem-
poral dependence becomes negligible at high-levels. Things become differ-
ent, however, if we allow for local dependence at such high levels as well.
Whereas in the univariate case, the effect of local dependence was sum-
marized by a single number, the extremal index, the multivariate setting is
more difficult: the analogue of the extremal index turns out to be a function
(Nandagopalan 1994; Perfekt 1997; Smith and Weissman 1996).

Let again {Xn} be a stationary sequence of random vectors in R
d with dis-

tribution function F . Assume that there are vectors an > 0 and bn and d-variate
extreme value distributions G and G̃ such that

P [a−1
n (Mn − bn) ≤ x]

D→ G(x),

F n(anx + bn)
D→ G̃(x),

as n → ∞. Assume also that the j th marginal series {Xn,j }n has extremal index
0 < θj ≤ 1, so that the margins of G and G̃ are related by Gj(x) = {G̃j (x)}θj for
j = 1, . . . , d. The θj need not be the same, showing that the connection between
G and G̃ may be more complicated than in the univariate case. We will also need
the stable tail dependence functions l and l̃ of G and G̃, defined by

G(x) = exp[−l{− log G1(x1), . . . , − log Gd(xd)}],
G̃(x) = exp[−l̃{− log G̃1(x1), . . . , − log G̃d(xd)}],

see (8.12).
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Definition

To define the multivariate extremal index, it is convenient to make abstraction of
the margins. For v ∈ [0, ∞) \ {0}, let x = x(v) be such that vj = − log G̃j (xj ) =
−θ−1

j log Gj(xj ) for j = 1, . . . , d. In case vj = 0, we set xj = sup{x ∈ R :

G̃j (x) < 1}. Let xn = xn(v) be a sequence in R
d such that xn → x as n → ∞

and let un = anxn + bn. Clearly

lim
n→∞ nP [X1,j > un,j ] = vj , j = 1, . . . , d, (10.63)

together with

lim
n→∞ P [Mn ≤ un] = G(x), lim

n→∞ Fn(un) = G̃(x).

Now define the extremal index function, or extremal index in short, of the
sequence {Xn} by

θ(v) = log G(x)

log G̃(x)
, v ∈ [0, ∞) \ {0}. (10.64)

This is a straightforward extension of the definition in the univariate case
(Theorem 10.4). In terms of the stable tail dependence functions, we have

θ(v) = l(θ1v1, . . . , θdvd)

l̃(v1, . . . , vd)
, v ∈ [0, ∞) \ {0}. (10.65)

Properties

The multivariate extremal index satisfies a number of properties.

(i) θ(v) is a continuous function in v.

(ii) θ(cv) = θ(v) for 0 < c < ∞ and v ∈ [0, ∞) \ {0}.
(iii) for j = 1, . . . , d we have θ(ej ) = θj where ej is the j th unit vector.

(iv) 0 ≤ θ(·) ≤ 1.

Properties (i–iii) are immediate consequences of (10.65) and properties of sta-
ble tail dependence functions. To prove (iv), observe first that, with x = x(v) and
un = anxn + bn as above,

P [Mn ≤ un] = 1 − P [Mn �≤ un] ≥ 1 − n{1 − F(un)}

so that

G(x) = lim
n→∞ P [Mn ≤ un] ≥ lim

n→∞[1 − n{1 − F(un)}] = 1 + log G̃(x),
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and thus exp{−l(θ1v1, . . . , θdvd)} ≥ 1 − l̃(v). This inequality and property
(ii) imply

θ(v) = lim
s↓0

l(sθ1v1, . . . , sθdvd)

l̃(sv)
≤ lim

s↓0

− log{1 − l̃(sv)}
l̃(sv)

= 1,

whence (iv).
Property (iii) can be extended to a univariate characterization of the multivariate

extremal index (Smith and Weissman 1996). Consider the random variables

Yn(v) = max
j=1,...,d

vj

1 − Fj (Xn,j )
, v ∈ [0, ∞) \ {0}. (10.66)

Denoting the quantile function of Fj by F←
j (p) = inf{x ∈ R : Fj (x) ≥ p} (0 <

p < 1), we have, assuming for simplicity that Fj is continuous,

P

[
max

i=1,...,n
Yi(v) ≤ n

]
= P

[
max

i=1,...,n
Fj (Xi,j ) ≤ 1 − vj

n
, ∀j = 1, . . . , d

]

= P
[
Mn,j ≤ F←

j

(
1 − vj

n

)
, ∀j = 1, . . . , d

]

→ G(x), n → ∞,

by (10.63). Similarly, {P [Y1(v) ≤ n]}n → G̃(x) as n → ∞. Hence

(v) θ(v) is the (univariate) extremal index of the sequence {Yn(v)}.
Finally, we mention that the multivariate extremal index admits similar inter-

pretations as the univariate one. For instance, under condition D{un(v)} and for
suitable integers rn = o(n) we have θ(v) = lim θB

n (v) = lim θR
n (v) where

1

θB
n (v)

= rn{1 − F(un)}
P [∃k = 1, . . . , rn : Xk �≤ un]

= E

[
rn∑

k=1

1(Xk �≤ un)

∣∣∣∣∣ ∃k = 1, . . . , rn : Xk �≤ un

]
,

θR
n (v) = P

[
max

k=2,...,rn
Xk ≤ un

∣∣∣∣X1 �≤ un

]
.

The arguments are perfectly analogous to the univariate case and are omitted. In
effect, the multivariate extremal index summarizes temporal dependence at extreme
levels, but the strength of dependence can vary with direction.

Example 10.24 Let Zi , i ∈ Z, be independent, standard Fréchet random variables.
Also, let αjk, j = 1, . . . , d and k = 0, 1, 2, . . . be non-negative constants such that∑

k≥0 αjk = 1 for j = 1, . . . , d. The multivariate moving-maximum process {Xn}
is defined by

Xn,j = max
k≥0

αjkZn−k, j = 1, . . . , d.
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Observe that the margins of Xn are standard Fréchet, and recall from Example 10.5
that the marginal extremal indices are θj = maxk≥0 ajk . Let F be the distribution
function of Xn. For v ∈ [0, ∞) \ {0}, we have

Fn(n/v1, . . . , n/vd) = exp


−

∑
k≥0

max
j=1,...,d

αjkvj


 .

Similarly to the univariate case, for v ∈ [0, ∞) \ {0},

P [Mn,j ≤ n/vj , ∀j = 1, . . . , d]

= exp


− 1

n


n−1∑

l=0

max
k=0,...,l

max
j=1,...,d

ajkvj +
∑
l≥0

max
k=l+1,...,l+n

max
j=1,...,d

ajkvj






→ exp

(
− max

k≥0
max

j=1,...,d
ajkvi

)
, n → ∞.

We conclude that the multivariate extremal index of {Xn} is

θ(v) = maxk≥0 maxj=1,...,d ajkvj∑
k≥0 maxj=1,...,d ajkvj

, v ∈ [0, ∞) \ {0}.

Estimation

How to estimate the multivariate extremal index? Observe that the blocks, runs and
intervals estimators of the univariate extremal index can all be written in terms of
the indicator variables 1(Xk ≤ u). In the multivariate case, then, we can choose
a vector of thresholds, u, compute v̂ where v̂j =∑n

i=1 1(Xi,j > uj ) estimates
vj = nP [X1,j > uj ], and construct blocks, runs or intervals estimators of θ(v̂)

from the indicator variables 1(Xi ≤ u), i = 1, . . . , n. A related method would be
to first compute Ŷi (v) (i = 1, . . . , n) by plugging in estimates of the unknown Fj

into (10.66) and next to estimate the (ordinary) extremal index of this sequence.
Unfortunately, to estimate a function rather than a number is markedly more

difficult: thresholds need to be chosen for every v, and the point-wise estimates
θ̂ (v) need not necessarily satisfy (i to iv). Up to our knowledge, there is no literature
yet on estimation of the multivariate extremal index, except for a manuscript of
Smith and Weissman (1996), in which a less direct method based on Pickands
dependence function is proposed.

10.5.3 Further reading

The multivariate extremal index was proposed in Nandagopalan (1994). The same
paper also discusses multivariate extensions of some point-process results in the
spirit of section 10.3.
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Smith and Weissman (1996) and Zhang (2002) introduced a class of pro-
cesses called multivariate maxima of moving maxima, or M4 in short. These pro-
cesses constitute a generalization of the multivariate moving-maximum processes
of Example 10.24. The multivariate extremal indices of M4 processes turn out to
form a rich subclass of those of general multivariate stationary processes. In this
sense, the problem of modelling extremes of multivariate stationary processes can
be stylized to the study of extremes of M4 processes.

Extremes of multivariate Markov chains are treated in Perfekt (1997). The mul-
tivariate extremal index is studied first for general multivariate stationary processes
and next for multivariate Markov chains, with special attention to a multivariate
version of the tail chain.

A few declustering schemes have been proposed for multivariate sequences
(Coles and Tawn 1991; Nadarajah 2001). These schemes are designed to extract
independent observations from a multivariate, stationary sequence: clusters are
identified and then summarized by a single value, such as the component-wise
maximum of the observations in the cluster. The approach of Coles and Tawn
(1991) is a multivariate version of blocks declustering; that of Nadarajah (2001) is
a complicated extension of runs declustering. Both methods require the choice of
one or more declustering parameters. The intervals declustering scheme (Ferro and
Segers 2003) can be applied without arbitrary choice of declustering parameters
by considering the return times to a ‘failure set’, membership of which defines
an observation as extreme. Such a general formulation, already alluded to by
Nandagopalan (1994), is developed in Segers (2002).

10.6 Additional Topics

Heavy-tailed time series

Efforts to model financial time series have led to the development of various time-
series models, extending the classical framework of linear processes (Brockwell
and Davis 1991)

Xt =
∞∑
i=1

ψiZt−i , t ∈ Z,

in particular, of auto-regressive moving-average (ARMA) processes; here the inno-
vations Zt are independent, identically distributed with finite second moment, while
the parameters ψi satisfy a certain summability constraint. Deficiencies of these
ARMA processes are that they do not satisfactorily model the more extreme obser-
vations of financial time series with respect to both the magnitude and the serial
dependence of such extremes. For a financial risk manager, such shortcomings are
particularly grave because the financial risk involved in holding a certain portfolio
may be underestimated.
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A natural extension of the classical framework is to allow the innovations Zt

to be heavy-tailed, leading to heavy-tailed linear time series. Extremal character-
istics of such processes, like the extreme value index, the extremal index, and the
limiting distribution of clusters of extremes, can be expressed in terms of the tail
of the innovation distribution and the parameters ψi . Moreover, for ARMA(p, q)
processes

Xt −
p∑

i=1

φiXt−i = Zt +
q∑

j=1

θjZt−j , t ∈ Z,

with innovation distribution in the domain of attraction of a stable distribution, it
is known how to estimate the coefficients φi and θj (Mikosch et al. 1995). This
allows reconstruction of the innovations, leading, after estimation of the innovation
distribution, to estimates of characteristics of clusters of extremes. A recommend-
able overview with numerous references of extreme value theory for heavy-tailed
linear time series is Chapter 7 of Embrechts et al. (1997).

Particularly popular in finance are the auto-regressive conditionally het-
eroscedastic (ARCH) process (Engle 1982) and its numerous ramifications, in
particular, generalized ARCH or GARCH (Bollerslev 1986). Not surprisingly,
their extremal properties have been thoroughly investigated (Basrak et al. 2002;
Borkovec 2000; Borkovec and Klüppelberg 2003; de Haan et al. 1989; Mikosch
and Stărică 2000), even for multivariate versions (Stărică 1999).

Finally, replacing sums by maxima in the definition of linear time series and
requiring the innovation distribution to be Fréchet leads to max-stable processes,
in particular, max-ARMA processes, of which the ARMAX and moving-maximum
processes considered in this chapter are special cases. The probability theory for
such processes is well developed (Alpuim 1989; Alpuim et al. 1995; Davis and
Resnick 1989, 1993; Deheuvels 1983; de Haan 1984; de Haan and Pickands 1986),
although statistical applications have appeared only recently (Hall et al. 2002;
Zhang 2002; Zhang and Smith 2001).

Tail estimation for the marginal distribution

How to estimate the tail of the marginal distribution of a random sample was the
topic of Chapters 4 and 5. Unfortunately, the assumption of independence is all
too often not very reasonable: hot summer days group together in heat waves,
and large positive or negative returns of financial assets occur in periods of high
volatility. Two questions arise: Are these estimation procedures still applicable?
And what is the effect of dependence on estimation uncertainty?

The answer to the first question is affirmative: all familiar tail estimators, be it the
Hill estimator (Hill 1975) or the maximum likelihood estimator in the POT model
(Smith 1987) or indeed any other estimator, are consistent and even asymptotically
normal provided the dependence between observations that are far apart in time is
small. The second question, unfortunately, is more difficult to answer. Still, we can
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assert that typically, the effect of dependence is to increase the asymptotic variances
of tail estimators, although it is not easy to say by how much. In particular, confidence
intervals based on theory for independent variables risk being too narrow.

Broadly speaking, two strategies are conceivable: (1) Proceed with estimation
as if the data were independent, but adapt the standard errors; (2) Extract from the
original sample a new, approximately independent series, on which the inference
procedures can then be applied as usual. The simplest example of the second
strategy is the method of annual maxima, in which data are grouped in blocks
and a GEV distribution is fitted to the block maxima. Recall from section 10.2
that under D(un) type conditions such block maxima are indeed approximately
independent. Alternatively, in the POT method we fit a GP distribution not to
all excesses over a high threshold but only to the cluster maxima, a procedure
motivated by the point process results of Section 10.3.

Which of the two strategies is the better one depends on the model assumptions
one is willing to make, perhaps motivated by the problem at hand. In general,
the more information one has about the model, the easier it becomes to extract
approximately independent residuals, and the more successful will the second
method become. For instance, Resnick and Stărică (1997) considered an auto-
regressive model

Xt =
p∑

i=1

φiXt−i + Zt , t ∈ Z,

with independent, identically distributed innovations Zt with positive extreme value
index γ . They showed that to estimate γ with the Hill estimator on the sample
X1, . . . , Xn is inferior to first estimating the coefficients φi (for instance, as in
Mikosch et al. (1995)) and second, applying the Hill estimator to the estimated
residuals Ẑt = Xt −∑p

i=1 φ̂iXt−i , the latter procedure attaining the efficiency of
the case of independent data. Similarly, when studying extremes of a financial
return series, McNeil and Frey (2000) propose to fit a GARCH model to the series
and apply standard tail estimators to the estimated innovation sequence.

However, if there is no clear indication as to which model to use, basically the
only approximately independent series to be extracted are, as mentioned already,
block maxima or peaks over high thresholds. In both cases, potentially useful infor-
mation is thrown away, rendering these methods less attractive. A more promising
road then is to apply an appropriate estimator directly to the data and estimate
its asymptotic variance. This presupposes that the asymptotic distribution of the
estimator is known for dependent data as well.

Not surprisingly, the first tail estimator for which this program was carried
out is the classical Hill estimator. Hsing (1991) proved asymptotic normality of
the Hill estimator for stationary sequences satisfying certain mixing conditions
and gave explicit estimators for its asymptotic variance. Also Resnick and Stărică
(1995, 1998) gave general consistency results, with specializations to various spe-
cific models such as infinite order moving averages, bilinear processes, solutions



428 EXTREMES OF STATIONARY TIME SERIES

of stochastic difference equations, and hidden semi-Markov models. Related to the
Hill estimator is the ratio estimator (Goldie and Smith 1987), which was investi-
gated in the setting of dependent variables by Novak (1999).

Unfortunately, all these methods are somewhat ad hoc in the sense that it is
not clear how to generalize them to other estimators like, for instance, the popular
maximum-likelihood estimator for the GP distribution fitted to excesses over a
high threshold. A real breakthrough was achieved by Drees (2000, 2002, 2003).
He established powerful convergence results for tail empirical quantile processes
for certain stationary time series. Since most tail estimators can be written as
smooth functionals of such processes, the classical delta-method immediately leads
to asymptotic normality for a wide variety of estimators of the extreme value
index and high quantiles. Moreover, the resulting expressions for the asymptotic
variance lend themselves to data-driven methods for the construction of confidence
intervals, the actual coverage probability of which improves considerably upon that
of intervals constructed under the (false) assumption of independence.

Still, these methods deal only with the problem of estimating the marginal
tail. But often, it is also the aggregate effect of extreme observations occurring
one after the other that is of interest: although a single day with a large amount
of rainfall may not cause much trouble, the succession of several such days defi-
nitely will. Therefore, we need to estimate appropriate summaries of the strength of
temporal dependence as well. To assess the uncertainty on estimates of these sum-
maries together with the marginal tail, we have in this chapter relied on bootstrap
techniques motivated by point-process theory.

Non-stationary processes

In this chapter, we have relaxed the assumption of independent, identically dis-
tributed random variables to that of a stationary sequence. In practice, however, data
are seldom stationary: meteorological data typically have a strong seasonal compo-
nent, tick-by-tick financial data exhibit a clear daily pattern, while macro-economic
data often show an upward or downward trend. For the Uccle temperature data,
our solution, which was, by the way, only partially successful, was to extract from
the whole series the July data. In other applications, however, the non-stationarity
itself of extremes may be of interest. This was treated in Chapter 7 in case there
is no serial dependence.

Exceedances of a non-stationary sequence X1, X2, . . . above a boundary func-
tion un,1, un,2, . . . define a point process,

Nn(·) =
∑
i∈I

δi/n(·), I = {i : Xi > un,i, 1 ≤ i ≤ n}.

Like in the stationary case (Section 10.3), Nn converges, under mild mixing condi-
tions and assumptions on the marginal distributions, to a certain compound Poisson
process (Hüsler 1993; Hüsler and Schmidt 1996). This result hints at the possibility
of extending regression analysis for extremes to allow for serial dependence and
clustering.
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BAYESIAN METHODOLOGY
IN EXTREME VALUE
STATISTICS

co-authored by Daan de Waal

11.1 Introduction

The Bayesian paradigm provides a set of interesting additional statistical tools when
carrying out an extreme value analysis. There are several good reasons for that.

• Given the low amount of information often available in extreme value anal-
ysis, it is natural to consider other sources of knowledge; these can occur in
the form of known constraints, whether from physical, economical or other
origin. For instance, an economist may want to specify a maximum value for
a quantity or variable under study. There are, however, several other possible
ways in which an expert with knowledge of the processes behind the data
may deliver information that is relevant to extremal behaviour and which is
independent of the available data.

• Prediction is also naturally incorporated in a Bayesian setting. The concept
of posterior prediction matches with the fact that the principal inferential
objective of an extreme value analysis is of predictive nature.

• Bayesian analysis is not dependent on regularity assumptions required by, for
instance, the maximum likelihood and probability weighted moments methods.
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As with the Pickands type estimators, the moment estimator and others dis-
cussed in Chapter 5, Bayesian inference provides a viable alternative in cases
when maximum likelihood and probability weighted moments break down.

At the other side, many statisticians argue that the problem of prior elicitation leads
to subjectiveness. Without taking part in the discussion for and against Bayesian
methodology, we aim at showing that a practical statistical analysis can indeed
gain from this approach. Some important contributions to this subject are found in
Pickands (1994), Coles and Powell (1996), Coles and Tawn (1996b), Smith (2000),
Smith and Goodman (2000) and Coles (2001) (Chapter 9). Bayesian inference of
extremes has only quite recently been discovered because of the availability of
Markov Chain Monte Carlo (MCMC) techniques. These computer-intensive meth-
ods have opened up the field of extremes to complicated settings involving large
parameter sets. So the methods described in this chapter appear to be alternatives
that are of full value or even preferable to more conventional ones.

We will briefly review some of the basic characteristics of a Bayesian analysis
here. Then we go over the statistical problems raised in Part I (see Chapters 4 and
5), to end with a more complex application from environmetrics.

11.2 The Bayes Approach
Let y = (y1, . . . , ym) denote the observed data of a random variable Y distributed
according to a distribution with density function f (y|θ). For instance, y can rep-
resent a random sample of m independent observations consisting of maxima. θ

denotes the vector of parameters. Let π(θ) denote the density of the prior distri-
bution for θ . We write the likelihood for θ as f (y|θ), which equals �m

i=1f (yi |θ)

in case of independence. According to Bayes’ theorem,

π(θ |y) = f (y|θ)π(θ)∫
�

f (y|θ)π(θ)dθ
∝ f (y|θ)π(θ), (11.1)

where the integral is taken over the parameter space �. This well-known prob-
abilistic result provides a framework for statisticians to convert an initial set of
beliefs about θ , represented by the prior π(θ), into a posterior distribution π(θ |y)

of θ that is proportional to the product of the likelihood and the prior. Estimates of
θ will then be obtained through the mode or mean of the posterior, while the accu-
racy of an inference is described by the posterior distribution itself, for instance,
through a highest posterior density (hpd) region according to a certain probability
1 − α, which is the region of values that contains 100(1 − α)% of the posterior
probability and also has the characteristic that the density within the region is never
lower than that outside. Here, there is no need to fall back to asymptotic theory.

Ease of prediction is another attractive characteristic of the Bayesian approach.
If Ym+1 denotes a future observation with density function f (ym+1|θ), then the
posterior predictive density of a future observation Ym+1 given y is given by

f (ym+1|y) =
∫

�

f (ym+1|θ)π(θ |y)dθ . (11.2)



BAYESIAN METHODOLOGY IN EXTREME VALUE STATISTICS 431

Compared to other approaches to prediction, the predictive density has the advantage
that it reflects uncertainty in the model through π(θ |y) ánd uncertainty due to
variability in future observations through f (ym+1|θ). The posterior predictive prob-
ability of Yn+1 exceeding some high threshold y is accordingly given by

P (Ym+1 > y| y) =
∫

�

P (Ym+1 > y| θ)π(θ |y)dθ . (11.3)

The posterior predictive distribution (11.3) most of the time is difficult to obtain
analytically. However, it can be approximated if the posterior distribution has been
estimated by simulation as discussed further on. Given a sample θ1, . . . , θ r from
π(θ |y), then we can use the approximation

P (Ym+1 > y|y) ∼ 1

r

r∑
i=1

P (Ym+1 > y|θ i ), (11.4)

where P (Ym+1 > y|θ i ) follows immediately from the postulated density function
f (y|θ). A posterior predictive (1 − p) quantile is obtained by solving

P (Ym+1 > y|y) = p. (11.5)

Most often, this solution cannot be found analytically, and then the solution y of
(11.5) can be found using a standard numerical solver.

11.3 Prior Elicitation
The main objection against the use of Bayesian analysis is the need for spec-
ifying a prior π(θ). When available information is minimal, one can start an
updating scheme with an objective prior distribution. Uniform priors are the sim-
plest examples of this kind. Other proposals, for instance, are Jeffreys’ prior and
the maximal data information (MDI) prior. Advantages of using objective prior
distributions are found in the fact that objective priors are sometimes used as a
benchmark that will not reflect the particular biases of the analyst and that the use
of such priors will yield statistical procedures that are analogous to those devel-
oped using classical (frequentist) procedures. In multiple parameter situations, the
parameters should not be taken to be independent, which is sometimes the case
with objective priors. Another point of concern is the invariance under certain
groups of transformations and different parametrizations.

Jeffreys’ prior
Jeffreys’ prior (Jeffreys (1961)) is defined as J (θ) ∝

√
|I (θ)| where I (θ) is

Fisher’s information matrix with (i, j)–th element

Iij (θ) = E

{
−∂2 log f (Y |θθθ)

∂θi∂θj

}
, i, j = 1, . . . , p,
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where p denotes the dimension of θθθ . Jeffreys’ prior is considered to be the standard
starting rule for an objective Bayesian analysis. It is invariant under one-to-one
transformations and takes the dependence between the parameters into account.
When applied to the models appearing in extreme value methodology, Jeffreys’
prior leads to the same restrictions on the parameter set as with the maximum
likelihood approach. See, for instance, Bernardo and Smith (1994), Chapter 4, for
more details.

MDI prior
Zellner (1971) defined the MDI prior to provide maximal average data informa-
tion on θ . These priors are not invariant under reparametrization, but are usu-
ally easy to implement, however. The MDI prior for θ is defined as π(θ) ∝
exp E {log f (Y |θ)}. Constraints on the parameters can be built into the prior. We
refer to Zellner (1971) for more details.

On the other hand, subjective prior distributions represent an attempt to bring
prior knowledge about the phenomenon under study into the problem. This always
leads to proper priors, which means that they integrate to 1, and these priors are
typically well behaving analytically. However, it is not always easy to translate
the prior knowledge into a meaningful probability distribution. Also, the results of
a Bayesian analysis that used a subjective prior are meaningful to the particular
analyst whose prior distribution was used, but not necessarily to other researchers.
Families of subjective distributions are the natural conjugate families, exponential
power distributions and mixture prior distributions. Natural conjugates are most
popular possibly due to their mathematical convenience: it is the class of distribu-
tions that is closed under transformation from prior to posterior; that is, the implied
posterior distribution with respect to a natural conjugate prior is in the same family
as the prior distribution.

Specifically in an extreme value context, authors have rather systematically
advocated the specification of priors in terms of extreme quantiles of the underly-
ing process rather than the extreme value model parameters themselves, see, for
instance, Coles and Tawn (1996b). Of course, subject to self-consistency, a prior
distribution on a set of two or three parameters can always be transformed to a
prior distribution on the original model parameters themselves. An example in
insurance comes from the fact that finite right end-points are sometimes specified
to loss distributions, while the claim data appear to be of Pareto-type on the basis
of the data analytic methods described in the first part of this book. Alternatively,
in some specific contents, a prior can be designed so that the analysis can meet
requirements set by experts. A well-known example of this kind is the requirement
in reinsurance applications that the EVI γ should not to be larger than 1, or even
0.5, for the most common premium calculation methods to be valid. We will give
some examples of this kind using conjugate priors, but mostly we will restrict
ourselves to the use of objective priors. In this way, we hope to convince more
people of the possible added value of a Bayesian approach to an extreme value
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analysis. Of course, the question of sensitivity of tail estimations to changes in
prior specification should be posed.

11.4 Bayesian Computation

The main obstacle to the widespread use of Bayesian techniques for a long time
was the difficulty of computation of the different integrals involved with posterior
inference. Appropriate choice of prior families for certain models can avoid the
necessity to calculate, for instance, the normalizing integral in (11.1) but this is
rather exceptional, certainly in multi-parameter settings. This difficulty has been
lifted with the development of simulation-based techniques. MCMC methods have
popularized the use of Bayesian techniques to a great extent. We discuss here briefly
two of the more popular MCMC methods: the Gibbs sampler and the Metropolis–
Hastings algorithm. More details can, for instance, be found in Chapter 5 of Carlin
and Louis (2000).

The Metropolis–Hastings algorithm
The basic idea of the Metropolis–Hastings algorithm is particularly simple. One
simulates a sequence θ1, θ2, . . . in the following way: starting with an initial point
θ1, the next state θ (i+1) is chosen by first sampling a candidate point θ∗ from
a proposal density q(θ∗|θ (i)) that depends on the current state θ (i). Examples of
proposal densities can be the multivariate normal distribution with mean θ (i) and
a suitable chosen covariance matrix. The candidate θ∗ is accepted with probability
αi where

αi = min

{
π(θ∗|y)q(θ (i)|θ∗)
π(θ (i)|y)q(θ∗|θ (i))

, 1

}
(11.6)

If the candidate is accepted, the next state becomes θ (i+1) = θ∗, otherwise the
chain remains at θ (i+1) = θ (i). Both rejection and acceptance count as an iteration
of the algorithm. When a candidate is sampled for which the posterior (11.1)
is 0, we must continue sampling until we have a candidate with f (y|θ∗) > 0.
Remarkably, under some regularity conditions, the stationary distribution is exactly
the posterior distribution π(θ |y), called the target distribution of the Markov chain.
Although the proposal density can be arbitrarily chosen, the convergence largely
depends on the proposal density. On the one hand, a proposal density with large
jumps to places far from the support of the posterior has low acceptance rate and
causes the Markov chain to stand still most of the time. On the other hand, a
proposal density with small jumps and high acceptance rate may cause the chain
to move slowly and to get stuck in one state. A great advantage, though, of this
algorithm is that it only depends on the posterior density through ratios of the form
π(θ∗|y)/π(θ (i)|y). Hence, the posterior density only needs to be known up to a
proportionality constant.
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The Gibbs sampler
The Gibbs sampler, introduced by Geman and Geman (1984), is an alternating con-
ditional MCMC algorithm. It can be regarded as a special case of the Metropolis–
Hastings algorithm as follows. Consider a parametric vector θ = (θ1, . . . , θp).
One iteration of the Gibbs sampler consists of cycling through the p coordinates
θ1, . . . , θp by drawing a sample of one coordinate conditional on the values of all
the others. For every iteration step, say i, there are p steps. With a predetermined
ordering of the p coordinates, each θ

(i)
j is sampled from the conditional distribution

given all the other components of θ . So given a set of values {θ(i)
1 , . . . , θ

(i)
p }, the

algorithm proceeds as follows:

Draw θ
(i+1)
1 ∼ π(θ1|θ(i)

2 , . . . , θ
(i)
p , y)

Draw θ
(i+1)
2 ∼ π(θ2|θ(i+1)

1 , θ
(i)
3 , . . . , θ

(i)
p , y)

...

Draw θ
(i+1)
p ∼ π(θp|θ(i+1)

1 , . . . , θ
(i+1)
p−1 , y).

It can be proven that the corresponding acceptance probability is equal to unity
so that every jump is therefore accepted for Gibbs sampling. We also mention
the possibility of Gibbs sampling combined with some Metropolis steps; see, for
instance, Chapter 11 in Gelman et al (1995).

11.5 Univariate Inference

In this section, we revisit the most important models considered in Part I, namely,
the fit of the GEV based on block maxima, followed by the different methods
considering peaks over threshold data. At the end of the chapter, we also consider
some extensions of these basic models that can be used to provide good global fits
in addition to appropriate tail fits.

11.5.1 Inference based on block maxima

To illustrate the use of the Bayesian methodology described above when block
maxima are available, we consider again the annual maximal discharges of the
Meuse river in Belgium, which were already considered in sections 2.2 and 5.1.
The likelihood model is

Yi |σ, γ, µ ∼ GEV (σ, γ, µ), i = 1, . . . , 85,

where Yi denotes the maximum for the year indexed by i. Here, θ = (σ, γ, µ) and

f (y|θ) = 1

σ

(
1 + γ

y − µ

σ

)−1/γ−1

exp

(
−

(
1 + γ

y − µ

σ

)−1/γ
)

.
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As a prior distribution, we choose here the MDI prior

π(θ) = exp E {log f (Y |θ)} ∝ 1

σ
e−ψ(1)(1+γ )

where ψ(1) denotes Euler’s constant. Jeffreys’ prior in case of the GEV is quite
complicated and only exists when γ > −0.5.

We use the Metropolis–Hastings algorithm with the proposal density q taken as
a multivariate normal on (log σ, µ, γ ) with independent components and respective
standard deviations (0.01, 10, 0.01):

log σ ∗ = log σ (i) + 0.01ε1

µ∗ = µ(i) + 10ε2

γ ∗ = γ (i) + 0.01ε3

where (ε1, ε2, ε3) denote independent standard normally distributed random vari-
ables. The values of the variances in the specification of q were chosen after a
little trial and error in order to make the algorithm work more efficient. Initializ-
ing with (σ, µ, γ ) = (500, 1200, 0.01), the values generated by 15,000 iterations
of the chain are plotted in Figure 11.1. The convergence can be speeded up if
instead q is taken to be a trivariate normal distribution with the covariance matrix
determined by the information matrix from the log-posterior. In Figure 11.2, we
show the estimated posterior densities of the GEV parameters (in the original scale
for σ ) and the 100-year return level qY,0.01. The estimated posterior density of the
100-year return level is obtained from the GEV quantile function

qY,p = µ + σ

γ

[
(− log(1 − p))−γ − 1

]

replacing σ , γ and µ by their respective posterior realizations. The mean posterior
estimates together with the 95% hpd confidence regions are given by

µ̂ = 1264 (1156, 1385), σ̂ = 471 (400, 547), γ̂ = −0.075 (−0.200, 0.072),

q̂0.01 = 3109 (2711, 3809).

In Figure 11.3, we show the estimated posterior predictive distribution of a future
observation Ym+1 given y and the corresponding posterior predictive 0.99 quantile.
These estimates are obtained along (11.4) and (11.5) respectively.

11.5.2 Inference for Fréchet-Pareto-type models

As in the first part of the book, we again consider the estimation of extreme events
within the Fréchet-Pareto-type framework, that is, 1 − F(x) = x−1/γ �F (x) with
�F some slowly varying function at infinity. Recall that here there are mainly two
approaches possible.
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Figure 11.1 Annual maximal river discharges of the Meuse: Metropolis–Hastings
realizations of (a) σ , (b) µ, (c) γ and (d) qY,0.01.
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First, one can consider the relative excesses Yj = X/t (X > t) for some appro-
priate threshold t and fit a strict Pareto distribution with distribution function
1 − y−1/γ (y > 1). As with Hill’s estimator for γ , we choose t = Xn−k,n so that
the ordered excesses are given by Yj = Xn−j+1,n/Xn−k,n, j = 1, . . . , k. Here, the
likelihood model is given by

Yj |γ ∼ Pa(1/γ ), j = 1, . . . , k,
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Figure 11.2 Annual maximal river discharges of the Meuse: estimated posterior
density of (a) σ , (b) µ, (c) γ and (d) qY,0.01.

for some fixed k. So θ = γ and

f (y|γ ) = 1

γ
y−1−1/γ , y > 1.

Here, Jeffreys’ prior turns out to be particularly simple, namely, π(γ ) ∝ 1/γ , while
the MDI prior is proportional to (1/γ ) exp(−γ ). Continuing with Jeffreys’ prior,
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the posterior is given by

π(γ |y) ∝ γ −k−1�k
j=1y

−1−1/γ

j

∝ e
− 1

γ

∑k
j=1 log yj γ −k−1
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Figure 11.3 Annual maximal river discharges of the Meuse: P (Ym+1 ≤ ym+1|y)

and qYm+1,0.01.

leading to the posterior mode estimator

1

k + 1

k∑
j=1

log Yj = 1

k + 1

k∑
j=1

(log Xn−j+1,n − log Xn−k,n) = k

k + 1
Hk,n

which is almost identical to the Hill estimator itself. Remark that when normalizing
the posterior π(γ |y), one obtains

π(γ |y) = (kHk,n)
k

(k − 1)!
e
− 1

γ kHk,nγ −k−1, (11.7)

which is an inverse gamma distribution.
The posterior predictive density (11.2) of a future excess Ỹ when using Jeffreys’

prior is given by

f (ỹ|y) = (kHk,n)
k

ỹ(k − 1)!

∫ ∞

0
γ −k−2e−(log ỹ+kHk,n)/γ dγ

= (kHk,n)
k

ỹ(k − 1)!

∫ ∞

0
wke−(log ỹ+kHk,n)wdw

= k(kHk,n)
k

ỹ
(log ỹ + kHk,n)

−k−1
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where, in the second step, we use the substitution w = 1/γ . This entails that the
posterior predictive density of log Ỹ =: Ṽ is given by

f (ṽ|y) = 1

Hk,n

(
1 + ṽ

kHk,n

)−k−1

which turns out to be a GP distribution with scale equal to Hill’s statistic Hk,n and
shape equal to 1/k. This then leads to an interesting objective Bayesian alternative
to the Weissman estimator (see section 4.6.1) for small tail probabilities of Pareto-
type distributions through (11.3):

P (X > x|y) = k

n

(
1 + log(x/Xn−k,n)

kHk,n

)−k

. (11.8)

The results of this estimator in case of the Secura Belgian Re insurance data set
introduced in section 1.3.3 (i) with x = 10,000,000 are plotted in Figure 11.4 as
a function of k together with the result of the original Weissman estimator.

Simulating γ -values from the inverse gamma distribution (11.7) and substi-
tuting them in the expression (k/n)(x/Xn−k,n)

−1/γ as suggested in (11.4) leads
to an alternative approach and yields the possibility of calculating a 95% hpd
region. The results at k = 95 are shown in Figure 11.5. The 95% hpd region is
(0.00041, 0.00208).
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Figure 11.4 Secura data: P (X > 10 Mio|y) (solid line) and p̂+
k,10 Mio (broken

line) as a function of k.
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Figure 11.5 Secura data: simulated posterior density of (a) γ and (b)
(95/371)(10,000,000/2,580,025)−1/γ .

Setting (11.8) equal to p and solving for x leads to the estimator

qX,p = Xn−k,ne
kHk,n((np/k)−1/k−1) (11.9)

of extreme posterior predictive quantiles.
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Figure 11.6 Secura data: qX,p (broken line) and posterior median and 95% hpd
region of Q(1 − p) (solid lines) at k = 95 as a function of p.

Besides the posterior predictive quantile function qX,p , interest is often in the
posterior distribution of the quantile function Q(1 − p) associated with f (y|θ).
Let us consider the estimation of Q(1 − p) with p ∈ [0.001, 0.01] in the insurance
example using the threshold t = x276,371 or equivalently k = 95. Substituting γi-
values obtained by MCMC from the posterior into the expression t (np/k)−γ allows
to construct a 95% hpd region for Q(1 − p). In Figure 11.6, we show qX,p (broken
line) and the posterior median and 95% hpd region of Q(1 − p) (solid lines) at
k = 95 as a function of p.

From a subjective Bayesian point of view, inverse gamma priors provide more
possibilities to incorporate an expert’s view. Inspired by Hsieh (2001), we consider
here a three-parameter inverse gamma prior IG(λ, η, τ ) as a prior for γ , defined by

π(γ ) = λη

�(η)
e−λ(γ −1−τ)(γ −1 − τ )η−1γ −2, 0 < γ < 1/τ, (11.10)

with λ, η > 0 and τ ≥ 0. In case τ = 0, we obtain back the classical inverse gamma
distribution. The truncation parameter τ can be used to bound the possible values
of γ . For instance, in insurance applications, the value τ = 1 is an appropriate
choice, since values γ ≥ 1 (or rv’s X possessing infinite mean) are not acceptable
to (most) actuaries. Some would even argue for γ < 1/2 and hence τ = 2, since in
many insurance branches, variances are believed to be finite. The parameters λ and
η together can be used to reflect the degree of uncertainty of an expert concerning
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the specification of γ . Further, the prior mode of γ is given by

γ̂ = λτ + η + 1 − D

4τ

where

D =
√

(λτ + η + 1)2 − 8λτ .

Now the posterior for γ is given by

π(γ |y) ∝ γ −k−2e−kHk,n/γ e−λ(γ −1−τ)(γ −1 − τ )η−1

∝ γ −k−2e−(λ+kHk,n)(γ −1−τ)(γ −1 − τ )η−1. (11.11)

The posterior mode can be found analytically:

γ̂ = 1

2τ

(
1 + 1

k + 2
[τ (λ + kHk,n) + η − 1] − D

)
(11.12)

where

D =
√

(1 + 1

k + 2
[τ (λ + kHk,n) + η − 1])2 − 4

τ

k + 2
(λ + kHk,n)).

The Bayesian estimator (11.12) of a positive EVI γ constitutes an interesting
alternative compared to the Hill estimator.

The exact normalization of the posterior (11.11) can be found using the sub-
stitution γ −1 − τ = u

∫ 1/τ

0
γ −k−2e−(λ+kHk,n)(γ −1−τ)(γ −1 − τ )η−1dγ

=
∫ ∞

0
(u + τ )ke−(λ+kHk,n)uuη−1du

=
k∑

j=0

(
k

j

)
τ k−j

∫ ∞

0
uη+j−1e−(λ+kHk,n)udu

=
k∑

j=0

(
k

j

)
τ k−j�(η + j)(λ + kHk,n)

−(η+j).

Since the m-th inverse moment of a random variable with density given by (11.10)
equals

E(�−m(λ, η, τ )) := 1

�(η)

m∑
j=0

(
m

j

)
τm−j�(η + j)λ−j ,



BAYESIAN METHODOLOGY IN EXTREME VALUE STATISTICS 445

the posterior is given by

π(γ |y) = (λ + kHk,n)
η

�(η)E(�−k(λ + kHk,n, η, τ ))
γ −k−2e−(γ −1−τ)(λ+kHk,n)(γ −1 − τ )η−1.

The posterior predictive distribution of a future excess Ỹ with a bounded gen-
eralized inverse gamma prior (11.10), is found to be, using again the substitution
γ −1 − τ = u

f (ỹ|y) =
∫ 1/τ

0
γ −1ỹ−1−γ −1

π(γ |y)dγ

= ỹ−τ−1 E(�−(k+1)(log ỹ + λ + kHk,n, η, τ ))

E(�−k(λ + kHk,n, η, τ ))

(
log ỹ + λ + kHk,n

λ + kHk,n

)−η

= ỹ−τ−1

∑k+1
j=0

(
k + 1

j

)
τ k+1−j�(η + j)(log ỹ + λ + kHk,n)

−η−j

∑k
j=0

(
k

j

)
τ k−j�(η + j)(λ + kHk,n)−η−j

,

while

P (X > x|y) = k

n

(
x

Xn−k,n

)−τ

×
∑k

j=0

(
k

j

)
τ−j�(η + j)(log( x

Xn−k,n
) + λ + kHk,n)

−η−j

∑k
j=0

(
k

j

)
τ−j�(η + j)(λ + kHk,n)−η−j

.

(11.13)

We apply (11.11) and (11.13) with x = 10 Mio Euro to the insurance data from
section 1.3.3 (i) with τ = 1 and τ = 2, and (λ, η) = (8, 4), see Figure 11.7. The
95% hpd region for γ is (0.31489, 0.40361) in case τ = 1 and (0.30110, 0.38417) in
case τ = 2. The corresponding hpd regions for 95/371(10,000,000/2,580,025)−1/γ

are respectively (0.00155, 0.00526) and (0.00121, 0.00422). Note that the posterior
mode of γ is slightly larger than the Hill estimate obtained in section 6.2 (H95,371 =
0.27109), which can be understood from the values of the prior modes, γ̂ = 0.68826
when (λ, η, τ ) = (8, 4, 1), respectively γ̂ = 0.41352 when (λ, η, τ ) = (8, 4, 2).

11.5.3 Inference for all domains of attractions

Considering now the estimation of extreme events within a general extreme value
(GEV) context as discussed in Chapter 5, and hence considering GP fits to the
excesses Yj = Xi − t (Xi > t) for some appropriate threshold t . Choosing t again
in an observation Xn−k,n, then the model

F(y|σ, γ ) = 1 −
(

1 + γ
y

σ

)−1/γ
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Figure 11.7 Secura data: simulated posterior density of γ for (a) τ = 1 and (b)
τ = 2 and simulated posterior density of 95/371(10, 000, 000/2, 580, 025)−1/γ for
(c) τ = 1 and (d) τ = 2.
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is fitted to the excesses Yj = Xn−j+1,n − Xn−k,n, j = 1, . . . , k. Jeffreys’ prior for

the GP distribution π(σ, γ ) = 1

σ(1 + γ )
√

1 + 2γ
, which is finite for γ > − 1

2 , is

given in Smith (1984). The MDI prior, however, is given by

π(σ, γ ) ∝ 1

σ
e−γ .
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Figure 11.8 Secura data: Metropolis–Hastings realizations of (a) σ and (b) γ and
simulated posterior density of (c) σ and (d) γ .
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Using the MDI prior in the insurance example with t set at the 96th-largest
observation, and setting up the Metropolis–Hastings algorithm with the proposal
density q taken as a multivariate normal on (log σ, γ ) with independent components
and respective standard deviations (0.04, 0.04), that is,

log σ ∗ = log σ (i) + 0.04ε1

γ ∗ = γ (i) + 0.04ε2
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Figure 11.9 Secura data: (a) Metropolis–Hastings realizations of q0.01 and (b)
simulated posterior density of q0.01.
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where (ε1, ε2) denote independent standard normally distributed random variables,
we obtain the estimated posterior densities of σ and γ given in Figure 11.8(c)
and (d) respectively. Initializing with (σ, γ ) = (570000, 1) the values generated
by 10000 iterations of the chain are plotted in Figure 11.8(a) and (b). The mean
posterior estimates together with the 95% hpd confidence regions are given by

σ̂ = 664, 221.3 (449, 704.8; 917, 847.3), γ̂ = 0.32339 (0.07401, 0.68992),

The posterior distribution of the quantile function of the original X-distribution
can be simulated on the basis of

qp = t + σ

γ
((np/k)−γ − 1)

replacing σ and γ by their respective posterior realizations. In the insurance
example with t set at the 96th-largest observation and p = 0.01, we obtain Figure
11.9. The posterior predictive distribution of a future claim given the past claims
is given in Figure 11.10.

In a hydrological context, Coles and Tawn (1996a) consider prior elicitation on
the basis of annual return levels rather than in terms of the GEV or GP parameters.
It can indeed be argued that hydrological experts are probably more familiar with
quantile specification rather than parameter specification. Then, in case of GEV
modelling of maxima, one specifies prior information in terms of (qp1, qp2, qp3)

with p1 > p2 > p3 where

qp = µ + σ

γ

([− log(1 − p)
]−γ − 1

)
. (11.14)
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Figure 11.10 Secura data: P (Ỹ ≤ ỹ|y) as a function of ỹ at k = 95.
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Since the quantiles qp1 , qp2, qp3 have to be ordered, Coles and Tawn considered
independent gamma (αi, βi) (i = 1, 2, 3) priors on

q̃1 = qp1, q̃2 = qp2 − qp1 , q̃3 = qp3 − qp2 .

The hyperparameters αi, βi were determined by measures of location and variability
in prior belief. The experts were asked to specify the median and 90% quantiles
of each of the q̃i , from which the gamma parameter estimates were obtained. In
the rainfall example considered in Coles and Tawn (1996a), the values p1 = 0.1,
p2 = 0.01 and p3 = 0.001 were chosen. From the prior specification, the joint
prior for the qpi

is obtained as

π(qp1, qp2, qp3) ∝ �3
i=1(qpi

− qpi−1)
αi−1 exp(−βi(qpi

− qpi−1))

where qp0 = 0 and with 0 ≤ qp1 ≤ qp2 ≤ qp3 . Substituting the quantile expression
(11.14) in this prior for (qp1 , qp2, qp3) and multiplying by the Jacobian of the
transformation (qp1 , qp2, qp3) → θ = (µ, σ, γ ) leads directly to an expression for
the prior in terms of the GEV parameters.

11.6 An Environmental Application

We end by illustrating the use of Bayesian modelling of extreme values with
an example from an environmental context. It concerns the Bayesian modelling
of wind-speed measurements from three different locations in Cape Town (South
Africa). Figure 11.11 contains the boxplots of the monthly maximal wind gust
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Figure 11.11 Monthly maximal wind gust measurements at Cape Town.
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Figure 11.12 Metropolis–Hastings realizations of γi : (a) harbour, (b) airport, (c)
Robben Island.
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Figure 11.12 (continued )

measurements at Cape Town harbour, airport and Robben Island respectively. Let
Yi,j denote the maximum wind gust measurement of month j , j = 1, . . . , 70, at
location i, i = 1, 2, 3. Following condition (Cγ )

Yi,j |σi, γi, µi ∼ GEV (σi, γi, µi), j = 1, . . . , 70, i = 1, 2, 3.

The parameter vectors (σi, γi, µi), i = 1, 2, 3, are assumed to be i.i.d. according to

(log σ, log γ, µ) ∼ N3(φ, �),

with φ′ = (3, −2, 40) and � = 10I3. The proposed prior distribution reflects the
beliefs of the harbour master. We use the Metropolis–Hastings algorithm to sim-
ulate the posterior distribution of the model parameters. The proposal density is
taken as a multivariate normal on (log σi, log γi, µi), i = 1, 2, 3, with independent
components and respective standard deviations (0.03, 0.03, 0.03). Initializing with
(log σi, log γi, µi) = (3, −2, 40), i = 1, 2, 3, the values generated by 10,000 itera-
tions of the chain are plotted in Figures 11.12-11.14. Note that the three locations
are quite similar with respect to the tail index γ . The (heavy-tailed) posterior dis-
tributions of γ1, γ2 and γ3 have a median around 0.135. The differences between
the monthly maximal wind gust distributions manifest themselves through the pos-
terior distributions of the parameters µ and σ . Finally, in Figure 11.15, we show
the posterior median and 95% hpd region of qY,p as a function of p for the three
locations. The quantiles of the maximal wind gust distribution clearly tend to be
largest at the harbour.
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Figure 11.13 Metropolis–Hastings realizations of µi : (a) harbour, (b) airport, (c)
Robben Island.
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Figure 11.14 Metropolis–Hastings realizations of σi : (a) harbour, (b) airport, (c)
Robben Island.
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Figure 11.15 Posterior median and 95% hpd region of qY,p as a function of p:
(a) harbour, (b) airport and (c) Robben Island.
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I), pp. 205–220. Kluwer.

Dupuis DJ and Morgenthaler S 2002 Robust weighted likelihood estimators with an appli-
cation to bivariate extreme value problems. The Canadian Journal of Statistics 30,
17–36.

Dupuis DJ and Tawn JA 2001 Effects of mis-specification in bivariate extreme value prob-
lems. Extremes 4, 315–330.



466 BIBLIOGRAPHY

Efron B and Tibshirani RJ 1993 An Introduction to the Bootstrap. Chapman & Hall.
Einmahl JHJ 1997 Poisson and Gaussian approximation of weighted local empirical pro-

cesses. Stochastic Processes and their Applications 70, 31–58.
Einmahl JHJ, de Haan L and Huang X 1993 Estimating a multidimensional extreme-value

distribution. Journal of Multivariate Analysis 47, 35–47.
Einmahl JHJ, de Haan L and Piterbarg VI 2001 Nonparametric estimation of the spectral

measure of an extreme value distribution. The Annals of Statistics 29, 1401–1423.
Einmahl JHJ, de Haan L and Sinha AK 1997 Estimating the spectral measure of an extreme

value distribution. Stochastic Processes and their Applications 70, 143–171.
Einmahl JHJ and Lin T 2003 Asymptotic normality of extreme value estimators on C[0, 1].

Center Discussion Paper 2003–132.
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J and Reiss RD), pp. 234–245. Lecture Notes in Statistics 51, Springer-Verlag, Berlin.
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Svensson T and Maré J de 1999 Random features of the fatigue limit. Extremes 2, 165–176.
Tajvidi N 1996 Characterization and Some Statistical Aspects of Univariate and Multivari-

ate Generalized Pareto Distributions. PhD Thesis, University of Göteborg. Available at
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Probabilitá dell’ Universitá degli Studi di Roma), pp. 437–449. Tipografia Oderisi.

Tiago de Oliveira J 1974 Regression in the nondifferentiable bivariate extreme models.
Journal of the American Statistical Association 69, 816–818.

Tiago de Oliveira J 1980 Bivariate extremes: foundations and statistics. In Multivariate
Analysis V (ed Krishnaiah PR), pp. 349–366. North Holland.

Tiago de Oliveira J 1984 Bivariate models for extremes; statistical decision. In Statistical
Extremes and Applications (ed Tiago de Oliveira J), pp. 131–153. Reidel.

Tiago de Oliveira J 1989a Intrinsic estimation of the dependence structure for bivariate
extremes. Statistics & Probability Letters 8, 213–218.

Tiago de Oliveira J 1989b Statistical decision for bivariate extremes. In Extreme Value The-
ory: Proceedings, Oberwolfach 1987 (eds Hüsler J and Reiss RD), pp. 246–261. Lecture
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