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This text is aimed at students of economics and the closely related disciplines of 
accountancy, finance and business, and provides examples and problems relevant 
to those subjects, using real data where possible. The text is at a fairly elementary 
university level and requires no prior knowledge of statistics, nor advanced math-
ematics. For those with a weak mathematical background and in need of some 
revision, some recommended texts are given at the end of this preface.

This is not a cookbook of statistical recipes: it covers all the relevant concepts 
so that an understanding of why a particular statistical technique should be used 
is gained. These concepts are introduced naturally in the course of the text as they 
are required, rather than having sections to themselves. The text can form the ba-
sis of a one- or two-term course, depending upon the intensity of the teaching.

As well as explaining statistical concepts and methods, the different schools 
of thought about statistical methodology are discussed, giving the reader some 
insight into some of the debates that have taken place in the subject. The text uses 
the methods of classical statistical analysis, for which some justification is given in 
Chapter 5, as well as presenting criticisms that have been made of these methods.

 Changes in this edition

There are limited changes in this edition, apart from a general updating of the 
examples used in the text. Other changes include:

●	 A new section on how to write statistical reports (Chapter 1)
●	 Examples of good and bad graphs, and how to improve them
●	 Illustrations of graphing regression coefficients as a means of presentation
●	 Probability chapter expanded to improve exposition
●	 More discussion and critique of hypothesis testing
●	 New Companion Website for students including quizzes to test your  knowledge 

and Excel data files
●	 As before, there is an associated blog on statistics and the teaching of the 

 subject. This is where I can comment on interesting stories and statistical 
issues, relating them to topics covered in this text. You are welcome to 
 comment on the posts and provide feedback on the text. The blog can be 
found at http://anecdotesandstatistics.blogspot.co.uk/.

For lecturers:
❍	 As before, PowerPoint slides are available containing most of the key tables, 

formulae and diagrams, which can be adapted for lecture use
❍	 Answers to even-numbered problems (not included in the text itself)
❍	 An Instructor’s Manual giving hints and guidance on some of the teaching 

issues, including those that come up in response to some of the exercises 
and problems.

Preface to the seventh edition

http://anecdotesandstatistics.blogspot.co.uk


  For students: 
  ❍	   The associated website contains numerous exercises (with answers) for the 

topics covered in this text. Many of these contained randomised values so 
that you can try out the tests several times and keep track of you progress 
and understanding.    

   Mathematics requirements and suggested texts 

 No more than elementary algebra is assumed in this text, any extensions being 
covered as they are needed in the text. It is helpful to be comfortable with manip-
ulating equations, so if some revision is needed, I recommend one of the follow-
ing books: 

   Jacques, I.,  Mathematics for Economics and Business , 8th edn, Pearson, 2015  
  Renshaw, G.,  Maths for Economists , 4th edn, Oxford University Press, 2016.     
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Statistics is a subject which can be (and is) applied to every aspect of our lives. The 
printed publication Guide to Official Statistics is, sadly, no longer produced but the 
UK Office for National Statistics website1 categorises data by ‘themes’, including 
education, unemployment, social cohesion, maternities and more. Many other 
agencies, both public and private, national and international, add to this ever-
growing volume of data. It seems clear that whatever subject you wish to investi-
gate, there are data available to illuminate your study. However, it is a sad fact that 
many people do not understand the use of statistics, do not know how to draw 
proper inferences (conclusions) from them, or misrepresent them. Even (espe-
cially?) politicians are not immune from this. As I write the UK referendum cam-
paign on continued EU membership is in full swing, with statistics being used for 
support rather than illumination. For example, the ‘Leave’ campaign claims the 
United Kingdom is more important to the European Union than the EU is to the 
UK, since the EU exports more to the UK than vice versa. But the correct statistic 
to use is the proportion of exports (relative to GDP). About 45% of UK exports go to 
the EU but only about 8% of EU exports come to the UK, so the UK is actually the 
more dependent one. Both sets of figures are factually correct but one side draws 
the wrong conclusion from them.

People’s intuition is often not very good when it comes to statistics – we did not 
need this ability to evolve, so it is not innate. A majority of people will still believe 
crime is on the increase even when statistics show unequivocally that it is decreas-
ing. We often take more notice of the single, shocking story than of statistics 
which count all such events (and find them rare). People also have great difficulty 
with probability, which is the basis for statistical inference, and hence make erro-
neous judgements (e.g. how much it is worth investing to improve safety). Once 
you have studied statistics, you should be less prone to this kind of error.

 Two types of statistics

The subject of statistics can usefully be divided into two parts: descriptive statis-
tics (covered in Chapters 1, 10 and 11 of this book) and inferential statistics 
(Chapters 4–8), which are based upon the theory of probability (Chapters 2 and 3). 
Descriptive statistics are used to summarise information which would otherwise 
be too complex to take in, by means of techniques such as averages and graphs. 
The graph shown in Figure 1.1 is an example, summarising drinking habits in the 
United Kingdom.

The graph reveals, for instance, that about 43% of men and 57% of women 
drink between 1 and 10 units of alcohol per week (a unit is roughly equivalent to 
one glass of wine or half a pint of beer). The graph also shows that men tend to 

Introduction

1https://www.ons.gov.uk/

http://www.ons.gov.uk


Introduction

2

drink more than women (this is probably no surprise to you), with higher pro-
portions drinking 11 to 20 units and over 21 units per week. This simple graph 
has summarised a vast amount of information, the consumption levels of about 
45 million adults.

Even so, it is not perfect and much information is hidden. It is not obvious from 
the graph that the average consumption of men is 16 units per week, of women 
only 6 units. From the graph, you would probably have expected the averages to be 
closer together. This shows that graphical and numerical summary measures can 
complement each other. Graphs can give a very useful visual summary of the 
information but are not very precise. For example, it is difficult to convey in words 
the content of a graph; you have to see it. Numerical measures such as the average 
are more precise and are easier to convey to others. Imagine you had data for stu-
dent alcohol consumption; how do you think this would compare to the graph? It 
would be easy to tell someone whether the average is higher or lower, but compar-
ing the graphs is difficult without actually viewing them.

Conversely, the average might not tell you important information. The prob-
lem of ‘binge’ drinking is related not to the average (though it does influence the 
average) but to extremely high consumption by some individuals. Other numeri-
cal measures (or an appropriate graph) are needed to address the issue.

Statistical inference, the second type of statistics covered, concerns the rela-
tionship between a sample of data and the population (in the statistical sense, not 
necessarily human) from which it is drawn. In particular, it asks what inferences 
can be validly drawn about the population from the sample. Sometimes the sam-
ple is not representative of the population (either due to bad sampling procedures 
or simply due to bad luck) and does not give us a true picture of reality.

The graph above was presented as fact but it is actually based on a sample of 
individuals, since it would obviously be impossible to ask everyone about their 
drinking habits. Does it therefore provide a true picture of drinking habits? We 
can be reasonably confident that it does, for two reasons. First, the government 
statisticians who collected the data designed the survey carefully, ensuring that 
all age groups are fairly represented and did not conduct all the interviews in pubs, 
for example. Second, the sample is a large one (about 10 000 households), so there 
is little possibility of getting an unrepresentative sample by chance. It would be 
very unlucky indeed if the sample consisted entirely of teetotallers, for example. 
We can be reasonably sure, therefore, that the graph is a fair reflection of reality 
and that the average woman drinks around 6 units of alcohol per week. However, 
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we must remember that there is some uncertainty about this estimate. Statistical 
inference provides the tools to measure that uncertainty.

The scatter diagram in Figure 1.2 (considered in more detail in Chapter 7) 
shows the relationship between economic growth and the birth rate in 12 devel-
oping countries. It illustrates a negative relationship – higher economic growth 
appears to be associated with lower birth rates.

Once again we actually have a sample of data, drawn from the population of all 
countries. What can we infer from the sample? Is it likely that the ‘true’ relation-
ship (what we would observe if we had all the data) is similar, or do we have an 
unrepresentative sample? In this case the sample size is quite small and the sam-
pling method is not known, so we might be cautious in our conclusions.

 Statistics and you

By the time you have finished this text you will have encountered and, I hope, mas-
tered a range of statistical techniques. However, becoming a competent statistician 
is about more than learning the techniques, and comes with time and practice. 
You could go on to learn about the subject at a deeper level and discover some of 
the many other techniques that are available. However, I believe you can go a long 
way with the simple methods you learn here, and gain insight into a wide range of 
problems. A nice quotation relating to this is contained in the article ‘Error 
Correction Models: Specification, Interpretation, Estimation’, by G. Alogoskoufis 
and R. Smith in the Journal of Economic Surveys, 1991 (vol. 5, pages 27–128), examin-
ing the relationship between wages, prices and other variables. After 19 pages 
 analysing the data using techniques far more advanced than those presented in 
this book, they state ‘. . . the range of statistical techniques utilised have not pro-
vided us with anything more than we would have got by taking the [. . .] variables 
and looking at their graphs’. Sometimes advanced techniques are needed, but 
never underestimate the power of the humble graph.

Beyond a technical mastery of the material, being a statistician encompasses a 
range of more informal skills which you should endeavour to acquire. I hope that 
you will learn some of these from reading this text. For example, you should be 
able to spot errors in analyses presented to you, because your statistical ‘intuition’ 
rings a warning bell telling you something is wrong. For example, the Guardian 
newspaper, on its front page, once provided a list of the ‘best’ schools in England, 

21.0 0.0
0

10

20

30

40

50

60

B
ir

th
 r

at
e 

(p
er

 1
00

0 
bi

rt
hs

)

1.0 2.0 3.0 4.0 5.0
Growth rate (% p.a.)

6.0 7.0 8.0

Figure 1.2
Birth rate v. growth rate



Introduction

4

based on the fact that in each school, every one of its pupils passed a national 
exam – a 100% success rate. Curiously, all of the schools were relatively small, so 
perhaps this implies that small schools get better results than large ones? Once 
you can think statistically you can spot the fallacy in this argument. Try it. The 
answer is at the end of this introduction.

Here is another example. The UK Department of Health released the follow-
ing figures about health spending, showing how planned expenditure (in £m) 
was to increase.

1998–99 1999–2000 2000–1 2001–2
Total increase over 
three-year period

Health spending 37 169 40 228 43 129 45 985 17 835

The total increase in the final column seems implausibly large, especially 
when compared to the level of spending. The increase is about 45% of the level. 
This should set off the warning bell, once you have a ‘feel’ for statistics (and, per-
haps, a certain degree of cynicism about politics). The ‘total increase’ is the result 
of counting the increase from 1998–99 to 1999–2000 three times, the increase 
from 1999–2000 to 2000–1 twice, plus the increase from 2000–1 to 2001–2. It 
therefore measures the cumulative extra resources to health care over the whole 
period, but not the year-on-year increase, which is what many people would 
interpret it to be.

You will also become aware that data cannot be examined without their con-
text. The context might determine the methods you use to analyse the data, or 
influence the manner in which the data are collected. For example, the exchange 
rate and the unemployment rate are two economic variables which behave very 
differently. The former can change substantially, even on a daily basis, and its 
movements tend to be unpredictable. Unemployment changes only slowly and if 
the level is high this month, it is likely to be high again next month. There would 
be little point in calculating the unemployment rate on a daily basis, yet this 
makes some sense for the exchange rate. Economic theory tells us quite a lot about 
these variables even before we begin to look at the data. We should therefore learn 
to be guided by an appropriate theory when looking at the data – it will usually be 
a much more effective way to proceed.

Another useful skill is the ability to present and explain statistical concepts and 
results to others. If you really understand something, you should be able to 
explain it to someone else – this is often a good test of your own knowledge. Below 
are two examples of a verbal explanation of the variance (covered in Chapter 1) to 
illustrate.

Good explanation Bad explanation
The variance of a set of observations expresses 
how spread out are the data. A low value of 
the variance indicates that the observations 
are of similar magnitude, a high value indi-
cates that they are widely spread around the 
average.

The variance is a formula for the deviations, 
which are squared and added up. The differ-
ences are from the mean, and divided by n 
or sometimes by n − 1.

The bad explanation is a failed attempt to explain the formula for the variance 
and gives no insight into what it really is. The good explanation tries to convey 
the meaning of the variance without worrying about the formula (which is best 
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written down). For a (statistically) unsophisticated audience the explanation is 
quite useful and might then be supplemented by a few examples.

Statistics can also be written well or badly. Two examples follow, concerning a 
confidence interval, which is explained in Chapter 4. Do not worry if you do not 
understand the statistics now.

Good explanation Bad explanation

The 95% confidence interval is given by

x { 1.96 * 2s2>n
Inserting the sample values x = 400, s2 = 1600 
and n = 30 into the formula we obtain

400 { 1.96 * 21600>30
yielding the interval

[385.7, 414.3]

95% interval = x - 1.962s2>n =

x + 1.962s2>n = 0.95

= 400 - 1.9621600>30 and

= 400 + 1.9621600>30

so we have [385.7, 414.3]

In good statistical writing there is a logical flow to the argument, like a written 
sentence. It is also concise and precise, without too much extraneous material. 
The good explanation exhibits these characteristics whereas the bad explanation 
is simply wrong and incomprehensible, even though the final answer is correct. 
You should therefore try to note the way the statistical arguments are laid out in 
this text, as well as take in their content. Chapter 1 contains a short section on 
how to write good statistical reports.

When you do the exercises at the end of each chapter, try to get another stu-
dent to read through your work. If they cannot understand the flow or logic of 
your work, then you have not succeeded in presenting your work sufficiently 
accurately.

 How to use this book

For students:

You will not learn statistics simply by reading through this text. It is more a case of 
‘learning by doing’ and you need to be actively involved by such things as doing 
the exercises and problems and checking your understanding. There is also mate-
rial on the website, including further exercises, which you can make use of.

Here is a suggested plan for using the book.

●	 Take it section by section within each chapter. Do not try to do too much at 
one sitting.

●	 First, read the introductory section of the chapter to get an overview of what 
you are going to learn. Then read through the first section of the chapter trying 
to follow all the explanation and calculations. Do not be afraid to check the 
working of the calculations. You can type the data into Excel (it does not take 
long) to help with calculation.

●	 Check through the worked example which usually follows. This uses small 
amounts of data and focuses on the techniques, without repeating all the 
descriptive explanation. You should be able to follow this fairly easily. If not, 
work out where you got stuck, then go back and re-read the relevant text. (This 
is all obvious, in a way, but it’s worth saying once.)
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●	 Now have a go at the exercise, to test your understanding. Try to complete the 
exercise before looking at the answer. It is tempting to peek at the answer and 
convince yourself that you did understand and could have done it correctly. 
This is not the same as actually doing the exercise – really it is not.

●	 Next, have a go at the relevant problems at the end of the chapter. Answers to 
odd-numbered problems are at the back of the book. Your tutor will have 
answers to the even-numbered problems. Again, if you cannot do a problem, 
figure out what you are missing and check over it again in the text.

●	 If you want more practice you can go online and try some of the additional 
exercises.

●	 Then, refer back to the learning outcomes to see what you have learnt and what 
is still left to do.

●	 Finally – finally – take a deserved break.

Remember – you will probably learn most when you attempt and solve (or fail 
to) the exercises and problems. That is the critical test. It is also helpful to work 
with other students rather than only on your own. It is best to attempt the exer-
cises and problems on your own first, but then discuss them with colleagues. If 
you cannot solve it, someone else probably did. Note also that you can learn a lot 
from your (and others’) mistakes – seeing why a particular answer is wrong is often 
as informative as getting the right answer.

For lecturers and tutors:

You will obviously choose which chapters to use in your own course, it is not 
essential to use all of the material. Descriptive statistics material is covered in 
Chapters 1, 10 and 11; inferential statistics is covered in Chapters 4 to 8, building 
upon the material on probability in Chapters 2 and 3. Chapter 9 covers sampling 
methods and might be of interest to some but probably not all.

You can obtain PowerPoint slides to form the basis of you lectures if you wish, 
and you are free to customize them. The slides contain the main diagrams and 
charts, plus bullet points of the main features of each chapter.

Students can practise by doing the odd-numbered questions. The even- 
numbered questions can be set as assignments – the answers are available on 
request to adopters of the book.

 Answer to the ‘best’ schools problem

A high proportion of small schools appear in the list simply because they are 
lucky. Consider one school of 20 pupils, another with 1000, where the average 
ability is similar in both. The large school is highly unlikely to obtain a 100% pass 
rate, simply because there are so many pupils and (at least) one of them will prob-
ably perform badly. With 20 pupils, you have a much better chance of getting 
them all through. This is just a reflection of the fact that there tends to be greater 
variability in smaller samples. The schools themselves, and the pupils, are of 
 similar quality.
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Introduction

The aim of descriptive statistical methods is simple: to present information in a 
clear, concise and accurate manner. The difficulty in analysing many phenom-
ena, be they economic, social or otherwise, is that there is simply too much infor-
mation for the mind to assimilate. The task of descriptive methods is therefore to 
summarise all this information and draw out the main features, without distort-
ing the picture.
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Deflating 70
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Chapter 1 • Descriptive statistics

By the end of this chapter you should be able to:

●	 recognise different types of data and use appropriate methods to summarise and anal-
yse them

●	 use graphical techniques to provide a visual summary of one or more data series

●	 use numerical techniques (such as an average) to summarise data series

●	 recognise the strengths and limitations of such methods

●	 recognise the usefulness of data transformations to gain additional insight into a set 
of data

●	 be able to write a brief report summarising the data.
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Consider, for example, the problem of presenting information about the 
wealth of British citizens (which follows later in this chapter). There are about 
18 million adults for whom data are available and to present the data in raw form 
(i.e. the wealth holdings of each and every person) would be neither useful nor 
informative (it would take about 30 000 pages of a book, for example). It would be 
more useful to have much less information, but information which is still repre-
sentative of the original data. In doing this, much of the original information 
would be deliberately lost; in fact, descriptive statistics might be described as the 
art of constructively throwing away much of the data.

There are many ways of summarising data and there are few hard-and-fast 
rules about how you should proceed. Newspapers and magazines often pro-
vide innovative (though not always successful) ways of presenting data. There 
are, however, a number of techniques which are tried and tested and these are 
the subject of this chapter. They are successful because: (a) they tell us some-
thing useful about the underlying data; and (b) they are reasonably familiar to 
many people, so we can all talk in a common language. For example, the aver-
age tells us about the location of the data and is a familiar concept to most 
people. For example, young children soon learn to describe their day at school 
as ‘average’.

The appropriate method of analysing the data will depend on a number of 
factors: the type of data under consideration, the sophistication of the audi-
ence and the ‘message’ which it is intended to convey. One would use different 
methods to persuade academics of the validity of one’s theory about inflation 
than one would use to persuade consumers that Brand X powder washes whiter 
than Brand Y. To illustrate the use of the various methods, three different topics 
are covered in this chapter. First, we look at the relationship between educa-
tional attainment and employment prospects. Do higher qualifications 
improve your employment chances? The data come from people surveyed in 
2009, so we have a sample of cross-section data giving an illustration of the situ-
ation at one point in time. We will look at the distribution of educational 
attainments amongst those surveyed, as well as the relationship to employ-
ment outcomes. In this example, we simply count the numbers of people in 
different categories (e.g. the number of people with a degree qualification who 
are employed).

Second, we examine the distribution of wealth in the United Kingdom in 
2005. The data are again cross-section, but this time we can use more sophisti-
cated methods since wealth is measured on a ratio scale. Someone with £200 000 
of wealth is twice as wealthy as someone with £100 000, for example, and there is 
a meaning to this ratio. In the case of education, one cannot say with any preci-
sion that one person is twice as educated as another. The educational categories 
may be ordered (so one person can be more educated than another, although 
even that may be ambiguous) but we cannot measure the ‘distance’ between 
them. We therefore refer to educational attainment being measured on an ordi-
nal scale. In contrast, there is not an obvious natural ordering to the three 
employment categories (employed, unemployed, inactive), so this is measured 
on a nominal scale.

Third, we look at national spending on investment over the period 1977–2009. 
This is time-series data since we have a number of observations on the variable 
measured at different points in time. Here it is important to take account of the 
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time dimension of the data: things would look different if the observations were 
in the order 1977, 1989, 1982, . . . rather than in correct time order. We also look at 
the relationship between two variables, investment and output, over that period 
of time and find appropriate methods of presenting it.

In all three cases, we make use of both graphical and numerical methods of 
summarising the data. Although there are some differences between the methods 
used in the three cases, these are not watertight compartments: the methods used 
in one case might also be suitable in another, perhaps with slight modification. 
Part of the skill of the statistician is to know which methods of analysis and pre-
sentation are best suited to each particular problem.

Summarising data using graphical techniques

 Education and employment, or, after all this, will you get a job?

We begin by looking at a question which should be of interest to you: how does 
education affect your chances of getting a job? It is nowadays clear that educa-
tion improves one’s life chances in various ways, one of the possible benefits 
being that it reduces the chances of being out of work. But by how much does it 
reduce those chances? We shall use a variety of graphical techniques to explore 
the question.

The raw data for this investigation come from the Education and Training 
Statistics for the UK 2009. Some of these data are presented in Table 1.1 and 
show the numbers of people by employment status (either in work, unem-
ployed or inactive, i.e. not seeking work) and by educational qualification 
(higher education, A levels, other qualification or no qualification). The table 
gives a cross-tabulation of employment status by educational qualification and 
is simply a count (the  frequency) of the number of people falling into each of 
the 12 cells of the table. For example, there were 9 713 000 people in work who 
had experience of higher education. This is part of a total of nearly 38 million 
people of working age. Note that the numbers in the table are in thousands, 
for the sake of clarity.

From the table, we can see some messages from the data; for example, being 
unemployed or inactive seems to be more prevalent amongst those with lower 
qualifications: 56% ( =  (382 + 2112)>4458) of those with no qualifications are 
unemployed or inactive compared to only about 15% of those with higher 
 education.

However, it is difficult to go through the table by eye and pick out these  messages. 
It is easier to draw some graphs of the data and use them to form  conclusions.

 The bar chart

The first graphical technique we shall use is the bar chart. This is shown in 
Figure 1.1. The bar chart summarises the educational qualifications of those in 
work, i.e. the data in the first row of Table 1.1. The four educational categories 
are arranged along the horizontal (x) axis, while the frequencies are measured 
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on the vertical (y) axis. The height of each bar represents the numbers in work 
for that category.

The biggest groups are those with higher education and those with ‘other qual-
ifications’ which are of approximately equal size. The graph also shows that there 
are relatively few people working who have no qualifications. It is important to 
realise what the graph does not show: it does not say anything about your likeli-
hood of being in work, given your educational qualifications. For that, we would 
need to compare the proportions of each education category in work; for the 
moment, we are only looking at the absolute numbers.

It would be interesting to compare the distribution in Figure 1.1 with those for 
the unemployed and inactive categories. This is done in Figure 1.2, which adds 
bars for these other two categories.

This multiple bar chart shows that, as for the ‘in work’ category, amongst the 
inactive and unemployed, the largest group consists of those with ‘other’ quali-
fications (which are typically vocational qualifications). These findings simply 
reflect the fact that ‘other qualifications’ is the largest category. We can also 
now begin to see whether more education increases your chance of having a 
job. For example, compare the height of the ‘in work’ bar to the ‘inactive’ bar. It 
is relatively much higher for those with higher education than for those with 

Table 1.1 Economic status and educational qualifications, 2009 (numbers in 000s)

Higher 
education A levels

Other 
qualification

No  
qualification Total

In work 9 713 5 479 10 173 1 965 27 330
Unemployed 394 432 1 166 382 2 374
Inactive 1 256 1 440 3 277 2 112 8 085

Total 11 363 7 351 14 616 4 459 37 789

Source: Adapted from Department for Children, Schools and Families, Education and Training Statistics for the UK 2009, 
http://dera.ioe.ac.uk/15353/, contains public sector information licensed under the Open Government Licence (OGL) 
v3.0. http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government
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Educational qualifications 
of people in work in the 
United Kingdom, 2009

Note: The height of each bar is determined by the associated frequency. The first bar is 
9713 units high, the second is 5479 units high and so on. The ordering of the bars could 
be reversed (‘no qualifications’ becoming the first category) without altering the message.

http://dera.ioe.ac.uk/15353
http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government
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no qualifications. In other words, the likelihood of being inactive rather than 
employed is lower for graduates. A similar conclusion arises if we compare the 
‘in work’ column with the ‘unemployed’ one. However, we have to make these 
judgements about the relative heights of different bars simply by eye, so it is 
easy to make a mistake. It would be better if we could draw charts that clearly 
highlight the differences. Figure 1.3 shows an alternative method of presenta-
tion: the stacked bar chart. In this case, the bars (for each education category) 
are stacked one on top of another instead of being placed side by side.
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Figure 1.2
Numbers employed, inac-
tive and unemployed, by 
educational qualification

Note: The bars for the unemployed and inactive categories are constructed in the same way as for those 
in work: the height of the bar is determined by the frequency.
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Figure 1.3
Stacked bar chart of edu-
cational qualifications and 
employment status

Note: The overall height of each bar is determined by the sum of the frequencies of the category, given in 
the final row of Table 1.1. Hence, for higher education, the height of the bar is 11 362, with divisions at 
9713 and at 10 107 (=  9713 + 394).
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This is perhaps slightly better, and the different overall size of each category is 
clearly brought out. However, we still have to make tricky visual judgements about 
proportions. As you may be starting to realise, we can present the same data in dif-
ferent ways depending upon our purpose. Here, we are going through different 
types of graph in turn and seeing what each can tell us. In practice, one would 
more likely identify the purpose first and then choose the type of graph most 
suited to it.

A clearer picture emerges if the data are transformed into (column) percent-
ages, i.e. the columns are expressed as percentages of the column totals (e.g. the 
proportion of graduates in work, rather than the number). This makes it easier to 
directly compare the different educational categories and to see whether gradu-
ates are more or less likely to be employed than others. These figures are shown in 
Table 1.2.

Having done this, it is easier to make a direct comparison of the different edu-
cation categories (columns). This is shown in Figure 1.4 (based on the data in 
Table 1.2), where all the bars are of the same height (representing 100%) and the 
components of each bar now show the proportions of people in each educational 
category either in work, unemployed or inactive.

Table 1.2 Economic status and educational qualifications (column percentages)

Higher  
education A levels

Other  
qualification

No  
qualification All

In work 85  75  70  44 72
Unemployed  3  6  8  9  6
Inactive 11  20  22  47 21

Totals 99 101 100 100 99

Note: The column percentages are obtained by dividing each frequency by the column total. For example, 
85% is 9713 divided by 11 362; 75% is 5479 divided by 7352, etc. Some columns do not sum to 100% due 
to rounding.
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Figure 1.4
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It is now clear how economic status differs according to education and the 
result is quite dramatic. In particular:

●	 The proportion of people unemployed or inactive increases rapidly with lower 
educational attainment.

●	 The biggest difference is between the no qualifications category and the other 
three, which have relatively smaller differences between them. In particular, A 
levels and other qualifications show a similar pattern.

Thus we have looked at the data in different ways, drawing different charts and 
seeing what they can tell us. You need to consider which type of chart is most suit-
able for the data you have and the questions you want to ask. There is no one 
graph which is ideal for all circumstances.

Can we safely conclude therefore that the probability of your being unem-
ployed is significantly reduced by education? Could we go further and argue that 
the route to lower unemployment generally is via investment in education? The 
answer may be ‘yes’ to both questions, but we have not proved it. Two important 
considerations are as follows:

●	 Innate ability has been ignored. Those with higher ability are more likely to be 
employed and are more likely to receive more education. Ideally we would like to 
compare individuals of similar ability but with different amounts of education.

●	 Even if additional education does reduce a person’s probability of becoming 
unemployed, this may be at the expense of someone else, who loses their job to 
the more educated individual. In other words, additional education does not 
reduce total unemployment but only shifts it around amongst the labour force. 
Of course, it is still rational for individuals to invest in education if they do not 
take account of this externality.

Producing charts using Microsoft Excel

You can draw charts by hand on graph paper, and this is still a very useful way of really 
learning about graphs. Nowadays, however, most charts are produced by computer soft-
ware, notably Excel. Most of the charts in this text were produced using Excel’s charting 
facility. You should aim for a similar, uncluttered look. Some tips you might find useful are:

●	 Make the grid lines dashed in a light grey colour (they are not actually part of the chart, 
and hence should be discrete) or eliminate them altogether.

●	 Get rid of any background fill (grey by default; alter to ‘No fill’). It will look much better 
when printed.

●	 On the x-axis, make the labels horizontal or vertical, not slanted – it is difficult to see 
which point they refer to.

●	 On the y-axis, make the axis title horizontal and place it at the top of the axis. It is much 
easier for the reader to see.

●	 Colour charts look great on-screen but unclear if printed in black and white. Change the 
style of the lines or markers (e.g. make some of them dashed) to distinguish them on paper.

●	 Both axes start at zero by default. If all your observations are large numbers, then this 
may result in the data points being crowded into one corner of the graph. Alter the scale 
on the axes to fix this – set the minimum value on the axis to be slightly less than the 
minimum observation. Note, however, that this distorts the relative heights of the bars 
and could mislead. Use with caution.

ST

ATISTICS

IN

PRACTI

C
E

· ·



Summarising data using graphical techniques

15

 The pie chart

Another common way of presenting information graphically is the pie chart, 
which is a good way to describe how a variable is distributed between different 
categories. For example, from Table 1.1 we have the distribution of educational 
qualifications for those in work (the first row of the table). This can alternatively 
be shown as a pie chart, as in Figure 1.5.

The area (and angle) of each slice is proportional to the respective frequency, 
and the pie chart is an alternative means of presentation to the bar chart shown in 
Figure 1.1. The numbers falling into each education category have been added around 
the chart, but this is not essential. For presentational purposes, it is best not to have too 
many slices in the chart: beyond about six the chart tends to look crowded. It might be 
worth amalgamating less important categories to make such a chart look clearer.

The chart reveals, as did the original bar chart, that ‘higher education’ and 
‘other qualifications’ are the two biggest categories. However, it is more difficult to 
compare them accurately; it is more difficult to compare angles than it is to com-
pare heights. The results may be contrasted with Figure 1.6 which shows a similar 
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Figure 1.5
Educational qualifications 
of those in work

Note: If you have to draw a pie chart by hand, the angle of each slice can be calculated as follows:

angle =
frequency

total frequency
* 360.

The angle of the first slice, for example, is

9713
27330

* 360 = 127.9°.

Higher
education

17%

Advanced level
18%

Other
qualifications

49%

No
qualifications

16%

Figure 1.6
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pie chart for the unemployed (the second row of Table 1.1). This time, we have put 
the proportion in each category in the labels (Excel has an option which allows 
this), rather than the absolute number.

The ‘other qualifications’ category is now substantially larger and the ‘no qual-
ifications’ group now accounts for 16% of the unemployed, a bigger proportion 
than for those employed. Further, the proportion with a degree approximately 
halves from 35% to 17%.

Notice that we would need three pie charts (another for the ‘inactive’ group) to 
convey the same information as the multiple bar chart in Figure 1.2. It is harder to 
look at the three pie charts than it is to look at one bar chart, so in this case the bar 
chart is the better method of presenting the data.

The following table shows the total numbers (in millions) of tourists visiting each country and 
the numbers of English tourists visiting each country:

France Germany Italy Spain

All tourists 12.4 3.2 7.5 9.8

English tourists 2.7 0.2 1.0 3.6

Adapted from data from the Office for National Statistics licensed under the Open Government Licence v.3.0. 
Source: Office for National Statistics.

(a) Draw a bar chart showing the total numbers visiting each country.

(b) Draw a stacked bar chart which shows English and non-English tourists making up the 
total visitors to each country.

(c) Draw a pie chart showing the distribution of all tourists between the four destination 
countries. Do the same for English tourists and compare results.

Experiment with the presentation of each graph to see which works best. Try a horizontal (rather 
than vertical) bar chart, try different colours, make all text horizontal (including the title of the 
vertical axis and the labels on the horizontal axis), place the legend in different places, etc.

?

Exercise 1.1

Looking at cross-section data: wealth in the United Kingdom in 2005

 Frequency tables and charts

We now move on to examine data in a different form. The data on employment 
and education consisted simply of frequencies, where a characteristic (such as 
higher education) was either present or absent for a particular individual. We now 
look at the distribution of wealth, a variable which can be measured on a ratio 
scale so that a different value is associated with each individual. For example, one 
person might have £1000 of wealth, and another might have £1 million. Different 
presentational techniques will be used to analyse this type of data. We use these 
techniques to investigate questions such as how much wealth does the average 
person have and whether wealth is evenly distributed or not.

The data are given in Table 1.3 which shows the distribution of wealth in the 
United Kingdom for the year 2005 (the latest available at the time of writing), avail-
able at http://webarchive.nationalarchives.gov.uk/+/http://www.hmrc.gov.uk/
stats/personal_wealth/archive.htm. This is an example of a frequency table. Wealth 

http://webarchive.nationalarchives.gov.uk/+/www.hmrc.gov.uk/stats/personal_wealth/archive.htm
http://webarchive.nationalarchives.gov.uk/+/www.hmrc.gov.uk/stats/personal_wealth/archive.htm
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is difficult to define and to measure; the data shown here refer to marketable wealth 
(i.e. items such as the right to a pension, which cannot be sold, are excluded) and 
are estimates for the population (of adults) as a whole based on taxation data.

Wealth is divided into 14 class intervals: £0 up to (but not including) £10 000; 
£10 000 up to £24 999, etc., and the number (or frequency) of individuals 
within each class interval is shown. Note that the widths of the intervals (the 
class widths) vary up the wealth scale: the first is £10 000, the second 
£15 000 (=  25 000 - 10 000), the third £15 000 also and so on. This will prove 
an important factor when it comes to graphical presentation of the data.

This table has been constructed from the original 18 667 000 observations on 
individuals’ wealth, so it is already a summary of the original data (note that all the 
frequencies have been expressed in thousands in the table) and much of the origi-
nal information is unavailable. The first decision to make if one had to draw up such 
a frequency table from the raw data is how many class intervals to have and how 
wide they should be. It simplifies matters if they are all of the same width, but in 
this case it is not feasible: if 10 000 were chosen as the standard width for each class, 
there would be many intervals between 500 000 and 1 000 000 (50 of them in fact), 
most of which would have a zero or very low frequency. If 100 000 were the standard 
width, there would be only a few intervals and the first of them (0 - 100 000) 
would contain 7739 observations (41% of all observations), so almost all the inter-
esting detail would be lost. A compromise between these extremes has to be found.

A useful rule of thumb is that the number of class intervals should equal the 
square root of the total frequency, subject to a maximum of about 12 intervals. 
Thus, for example, a total of 25 observations should be allocated to 5 intervals; 
100 observations should be grouped into 10 intervals and 18 667 should be 
grouped into about 12 (14 are used here). The class widths should be equal insofar 
as this is feasible but should increase when the frequencies become very small.

Table 1.3 The distribution of wealth, United Kingdom, 2005

Class interval (£) Numbers (thousands)

0–9999 1 668

10 000–24 999 1 318

25 000–39 999 1 174

40 000–49 999 662

50 000–59 999 627

60 000–79 999 1 095

80 000–99 999 1 195

100 000–149 999 3 267

150 000–199 999 2 392

200 000–299 999 2 885

300 000–499 999 1 480

500 000–999 999 628

1 000 000–1 999 999 198

2 000 000 or more 88

Total 18 667

Note: It would be impossible to show the wealth of all 18 million individuals, so it has been summarised in 
this frequency table.
Source: Adapted from HM Revenue and Customs Statistics, 2005, contains public sector information licensed under the 
Open Government Licence (OGL) v3.0. http://www.nationalarchives.gov.uk/doc/open-government-licence/
open-government

http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government
http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government
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To present these data graphically one could draw a bar chart, as in the case of 
education above, and this is presented in Figure 1.7. Note that although the origi-
nal data are on a ratio scale, we have transformed them so that we are now count-
ing individuals in each category. Hence we can make use of the bar chart again, 
although note that the x-axis has categories differentiated by the value of wealth 
rather than some characteristic such as education. Before reading on, spend some 
time looking at the figure and ask yourself what is wrong with it.

The answer is that the figure gives a completely misleading picture of the data. 
(Incidentally, this is the picture that you will get using a spreadsheet program. All 
the standard packages appear to do this, so beware. One wonders how many deci-
sions have been influenced by data presented in this incorrect manner.)

Why is the figure wrong? Consider the following argument. The diagram 
appears to show that there are few individuals around £40 000 to £50 000 (the fre-
quency is approximately 660 thousand) but many around £150 000. But this is 
just the result of the difference in the class width at these points (10 000 at £40 000 
and 50 000 at £150 000). Suppose that we divide up the £150 000-to-£200 000 class 
into two: £150 000 to £175 000 and £175 000 to £200 000. We divide the frequency 
of 2392 equally between the two classes (this is an arbitrary decision but illustrates 
the point). The graph now looks like Figure 1.8.

Comparing Figures 1.7 and 1.8 reveals a difference: the hump around £150 000 
has now gained a substantial crater. But this is disturbing: it means that the shape 
of the distribution can be altered simply by altering the class widths. The underly-
ing data are exactly the same. So how can we rely upon visual inspection of the 
distribution? What does the ‘real’ distribution look like? A better method would 
make the shape of the distribution independent of how the class intervals are 
arranged. This can be done by drawing a histogram.

 The histogram

A histogram is similar to a bar chart except that it corrects for differences in class 
widths. If all the class widths are identical, then there is no difference between a 
bar chart and a histogram. The calculations required to produce the histogram are 
shown in Table 1.4.
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The new column in the table shows the frequency density, which measures the 
frequency per unit of class width. Hence it allows a direct comparison of different 
class intervals, i.e. accounting for the difference in class widths.

The frequency density is defined as follows:

frequency density =
frequency

class width
 (1.1)

Using this formula corrects the figures for differing class widths. Thus

0.1668 =
1668

10 000
 is the first frequency density,

0.0789 =
1318

15 000
 is the second, etc.
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Table 1.4 Calculation of frequency densities

Range Frequency Class width Frequency density

0– 1668 10 000 0.1668

10 000– 1318 15 000 0.0879

25 000– 1174 15 000 0.0783

40 000– 662 10 000 0.0662

50 000– 627 10 000 0.0627

60 000– 1095 20 000 0.0548

80 000– 1195 20 000 0.0598

100 000– 3267 50 000 0.0653

150 000– 2392 50 000 0.0478

200 000– 5279 3 800 000 0.0014

Note: As an alternative to the frequency density, one could calculate the frequency per ‘standard’ class 
width, with the standard width chosen to be 10 000 (the narrowest class). The values in column 4 would 
then be 1668;  879(=  1318 , 1.5);  783, etc. This would lead to the same shape of histogram as using 
the frequency density.
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Above £200  000, the class widths are very large and the frequencies small (too 
small to be visible on a histogram), so these classes have been combined.

The width of the final interval is unknown, so it has to be estimated in order to 
calculate the frequency density. It is likely to be extremely wide since the wealthi-
est person may well have assets valued at several £m (or even £bn); the value we 
assume will affect the calculation of the frequency density and therefore of the 
shape of the histogram. Fortunately, it is in the tail of the distribution and only 
affects a small number of observations. Here we assume (arbitrarily) a width of 
£3.8m to be a ‘reasonable’ figure, giving an upper class boundary of £4m.

The frequency density, not the frequency, is then plotted on the vertical axis 
against wealth on the horizontal axis to give the histogram. One further point 
needs to be made: for clarity, the scale on the horizontal wealth axis should be 
linear as far as possible, e.g. £50 000 should be twice as far from the origin as 
£25 000. However, it is difficult to fit all the values onto the horizontal axis 
without squeezing the graph excessively at lower levels of wealth, where most 
observations are located. Therefore, the classes above £100 000 have been 
squeezed, and the reader’s attention is drawn to this. The result is shown in 
Figure 1.9.

The effect of taking frequency densities is to make the area of each block in the 
histogram represent the frequency, rather than the height, which now shows the 
density. This has the effect of giving an accurate picture of the shape of the distri-
bution. Note that it is very different from the preceding graph.

Now that all this has been done, what does the histogram show?

●	 The histogram is heavily skewed to the right (i.e. the long tail is to the right).
●	 The modal class interval is £0 to £10 000 (i.e. has the greatest density: no other 

£10 000 interval has more individuals in it).
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Figure 1.9
Histogram of the distribu-
tion of wealth in the 
United Kingdom, 2005

Note: A frequency polygon would be the result if, instead of drawing blocks for the histogram, one drew 
lines connecting the centres of the top of each block. The diagram is better drawn with blocks, in general.
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●	 Looking at the graph, it appears that more than half of all people have wealth 
of less than £100 000. However, this is misleading as the graph is squeezed 
beyond £100 000. In fact, about 41% have wealth below this figure.

The figure shows quite a high degree of inequality in the wealth distribution. 
Whether this is acceptable or even desirable is a value judgement. It should be noted 
that part of the inequality is due to differences in age: younger people have not yet 
had enough time to acquire much wealth and therefore appear worse off, although 
in lifetime terms this may not be the case. To get a better picture of the distribution 
of wealth would require some analysis of the acquisition of wealth over the life-cycle 
(or comparison of individuals of a similar age). In fact, correcting for age differences 
does not make a big difference to the pattern of wealth distribution. On this point 
and on inequality in wealth in general, see Atkinson (1983), Chapters 7 and 8.

 Relative frequency and cumulative frequency distributions

An alternative way of illustrating the wealth distribution uses the relative and 
cumulative frequencies of the data. The relative frequencies show the proportion of 
observations that fall into each class interval, so, for example, 3.5% of individuals 
have wealth holdings between £40 000 and £50 000 (662 000 out of 18 677 000 
individuals). Relative frequencies are shown in the third column of Table 1.5, cal-
culated using the following formula:

Relative frequency =
frequency

sum of  frequencies
=

f

a f
 (1.2)

Note: If you are unfamiliar with the Σ  notation, then read Appendix 1A to this 
chapter before continuing.

Table 1.5 Calculation of relative and cumulative frequencies

Range Frequency, f Relative frequency (%) Cumulative frequency, F

0– 1 668 8.9 1 668

10 000– 1 318 7.1 2 986

25 000– 1 174 6.3 4 160

40 000– 662 3.5 4 822

50 000– 627 3.4 5 449

60 000– 1 095 5.9 6 544

80 000– 1 195 6.4 7 739

100 000– 3 267 17.5 11 006

150 000– 2 392 12.8 13 398

200 000– 2 885 15.4 16 283

300 000– 1 480 7.9 17 763

500 000– 628 3.4 18 391

1 000 000– 198 1.1 18 589

2 000 000– 88 0.5 18 677

Total 18 677 100.0

Note: Relative frequencies are calculated in the same way as the column percentages in Table 1.2. Thus 
for example, 8.9% is 1668 divided by 18 667. Cumulative frequencies are obtained by cumulating, or suc-
cessively adding, the frequencies. For example, 2986 is 1668 + 1318, 4160 is 2986 + 1174, etc.
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One can immediately see the huge effect of AIDS, especially on the 40 to 60 age group 
(currently aged 30–50), for both men and women. These people would normally be in the 
most productive phase of their lives but, with AIDS, the country will suffer enormously with 
many old and young people dependent on a small working population.

The AIDS epidemic

To illustrate how descriptive statistics can be helpful in presenting information we show 
below the ‘population pyramid’ for Botswana (one of the countries most seriously affected 
by AIDS), projected for the year 2020. This is essentially two bar charts (one for men, one 
for women) laid on their sides, showing the frequencies in each age category (rather than 
wealth categories). The inner pyramid (in the darker colour) shows the projected popula-
tion given the existence of AIDS; the outer pyramid assumes no deaths from AIDS.
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Original source of data: US 
Census Bureau, World Popula-
tion Profile 2000. Graph 
adapted from the UNAIDS web-
site at http://www.unaids.org/
epidemic_update/report/ 
Epi_report.htm#thepopulation.

The sum of the relative frequencies has to be 100%, and this acts as a check on 
the calculations.

The cumulative frequencies, shown in the fourth column, are obtained by 
cumulating (successively adding) the frequencies. The cumulative frequencies 
show the total number of individuals with wealth up to a given amount; for exam-
ple, about 7.7 million people have less than £100 000 of wealth.

Both relative and cumulative frequency distributions can be drawn, in a similar 
way to the histogram. In fact, the relative frequency distribution has exactly the 
same shape as the frequency distribution. This is shown in Figure 1.10. This time 
we have written the relative frequencies above the appropriate column, although 
this is not essential.

The cumulative frequency distribution is shown in Figure 1.11, where the 
blocks increase in height as wealth increases. The simplest way to draw this is to 
cumulate the frequency densities (shown in the final column of Table 1.4) and to 
use these values as the y-axis coordinates.

http://www.unaids.org/epidemic_update/report/Epi_report.htm#thepopulation
http://www.unaids.org/epidemic_update/report/Epi_report.htm#thepopulation
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0 5010 100806040 20015025

Class widths squeezed 
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8.9%

6.3%
3.5%3.4%

5.9%
6.4%

17.5%

12.8%

28.3%

7.1%

Figure 1.10
The relative frequency dis-
tribution of wealth in the 
United Kingdom, 2005

0 5010 100806040 20015025 Wealth (£000) 

Class widths squeezed Figure 1.11
The cumulative 
frequency distribu-
tion of wealth in the 
United Kingdom, 
2005

Note: The y-axis coordinates are obtained by cumulating the frequency densities in Table 1.4. For exam-
ple, the first two y coordinates are 0.1668, 0.2547.

Worked example 1.1

There is a mass of detail in the sections above, so this worked example is 
intended to focus on the essential calculations required to produce the sum-
mary graphs. Simple artificial data are deliberately used to avoid the distrac-
tion of a lengthy interpretation of the results and their meaning. The data on ➔
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the variable X and its frequencies f are shown in the following table, with the 
calculations required:

X Frequency, f Relative frequency Cumulative frequency, F

10  6 0.17  6

11  8 0.23 14

12 15 0.43 29

13  5 0.14 34

14  1 0.03 35

Total 35 1.00

Notes:
The X values are unique but could be considered the mid-point of a range, as earlier.
The relative frequencies are calculated as 0.17 = 6>35, 0.23 = 8>35, etc. Note that these are 
expressed as decimals rather than percentages; either form is acceptable.
The cumulative frequencies are calculated as 14 = 6 + 8, 29 = 6 + 8 + 15, etc.
The symbol F usually denotes the cumulative frequency in statistical work.

The resulting bar chart and cumulative frequency distribution are:

and

, F
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Given the following data:

Range Frequency

 0–10 20

11–30 40

31–60 30

61–100 20

(a) Draw both a bar chart and a histogram of the data and compare them.

(b) Calculate cumulative frequencies and draw a cumulative frequency diagram.

?

Exercise 1.2

Improving the presentation of graphs — an example

Today we are assailed with information presented in the form of graphs, sometimes done well 
but often badly. We give an example below of how presentation might be improved for one 
particular graph, showing employers’ perceptions of economics graduates’ skills. One can learn 
a lot from looking at examples of graphs in reports and academic papers and thinking how 
they might be improved. The original graph1 is not actually a bad one, but it could be better.
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Very high
Fairly high
Not very high

How do you rate the general skills of economics graduates?

1See the original at http://www.economicsnetwork.ac.uk/projects/surveys/employers14-15. 
This is the author’s rendition, which tries to mimic the original as accurately as possible.

http://www.economicsnetwork.ac.uk/projects/surveys/employers14-15
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Problems with this graph include:

1. The category labels are difficult to read, being small and wrap-around text.
2. The vertical axis title is sideways, so difficult to read.
3. It is difficult to compare across categories. For example, which skill has the most ‘very 

high’ or ‘fairly high’ responses?
4. A subjective judgement, but the colours are not particularly harmonious.

The version below takes the same data but presents it slightly differently:
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Turning the graph on its side makes the labels much easier to read, as is the horizontal 
axis label. Using a stacked bar saves space and makes it look less cluttered. It is fairly easy 
to see that ‘interpreting quantitative data’ scores the most ‘very high’ or ‘fairly high’ 
responses – hopefully this text makes some contribution towards that. Using different 
shades of the same colour makes for a better appearance (and probably works better if 
printed in greyscale too).

You might have noticed that the categories are now in a different order. This is a quirk of 
Excel; the same data table was used for both charts. Fortunately, the ordering does not 
matter. We shall give similar examples of good practice at other places in this text.
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Summarising data using numerical techniques

Graphical methods are an excellent means of obtaining a quick overview of the 
data, but they are not particularly precise, nor do they lend themselves to further 
analysis. For this, we must turn to numerical measures such as the average. There 
are a number of different ways in which we may describe a distribution such as 
that for wealth. If we think of trying to describe the histogram, it is useful to have:

●	 A measure of location giving an idea of whether people own a lot of wealth or a 
little. An example is the average, which gives some idea of where the distribu-
tion is located along the x-axis. In fact, we will encounter three different mea-
sures of the ‘average’:
❍	 The mean
❍	 The median
❍	 The mode

●	 A measure of dispersion showing how wealth is dispersed around the average, 
whether it is concentrated close to the average or is generally far away from it. 
An example here is the standard deviation.

●	 A measure of skewness showing how symmetric the distribution is, i.e. whether 
the left half of the distribution is a mirror image of the right half. This is obvi-
ously not the case for the wealth distribution.

We consider each type of measure in turn.

 Measures of location: the mean

The arithmetic mean, commonly called the average, is the most familiar measure of 
location and is obtained simply by adding all the wealth observations and divid-
ing by the number of observations. If we denote the wealth of the ith household 
by xi (so that the index i runs from 1 to N, where N is the number of observations; 
as an example, x3 would be the wealth of the third household), then the mean is 
given by the following formula:

m =
a

i = N

i = 1
xi

N
 (1.3)

where m (the Greek letter mu, pronounced ‘myu’2) denotes the mean and a
i = N

i = 1
xi 

(read ‘sigma x i, from i = 1 to N’, Σ being the Greek capital letter sigma) means the 
sum of the x values. We may simplify this to

m = ax

N
 (1.4)

when it is obvious which x values are being summed (usually all the available 
observations). This latter form is more easily readable, and we will generally use 
this.

2Mathematicians pronounce it like this, but modern Greeks do not. For them, it is ‘mi’.
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Worked example 1.2

We will find the mean of the values 17, 25, 28, 20, 35. The total of these five 
numbers is 125, so we have N = 5 and Σx = 125. Therefore the mean is

m = ax

N
=

125
5

= 25

Formula 1.3 can only be used when all the individual x values are known. The 
frequency table for wealth does not show all 18 million observations, however, 
but only the range of values for each class interval and the associated frequency. 
In the case of such grouped data the following equivalent formula may be used:

m =
a
i = C

i = 1
fixi

a
i = C

i = 1
fi

 (1.5)

or, more simply,

m = a fx

a f
 (1.6)

In this formula:

●	 x denotes the mid-point of each class interval, since the individual x values are 
unknown. The mid-point is used as the representative x value for each class. In 
the first class interval, for example, we do not know precisely where each of the 
1668 observations lies. Hence we assume they all lie at the mid-point, £5000. 
This will cause a slight inaccuracy – because the distribution is so skewed, there 
are likely more households below the mid-point than above it in every class 
interval except, perhaps, the first. We ignore this problem here, and it is less of 
a problem for most distributions which are less skewed than this one.

●	 The summation runs from 1 to C, the number of class intervals, or mid-point x 
values. f times x gives the total wealth in each class interval. If we sum over the 
14 class intervals, we get the total wealth of all individuals.

●	 Σfi = N  gives the total number of observations, the sum of the individual 
 frequencies.

The calculation of the mean, m, for the wealth data is shown in Table 1.6.
From this we obtain:

m =
3 490 260

18 677
= 186.875

Note that the x values are expressed in £000, so we must remember that the 
mean will also be in £000; the average wealth holding is therefore £186 875. Note 
that the frequencies have also been divided by 1000, but this has no effect upon 
the calculation of the mean since f appears in both numerator and denominator 
of the formula for the mean.

The mean tells us that if the total wealth were divided up equally between all 
individuals, each would have £186 875. This value may seem surprising, since the 
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histogram clearly shows most people have wealth below this point (approximately 
two-thirds of individuals are below the mean, in fact). The mean does not seem to 
be typical of the wealth that most people have. The reason the mean has such a 
high value is that there are some individuals whose wealth is way above the figure 
of £186 875 – up into the £millions, in fact. The mean is the ‘balancing point’ of 
the distribution – if the histogram were a physical model, it would balance on a 
fulcrum placed at 186 875. The few very high wealth levels exert a lot of leverage 
and counterbalance the more numerous individuals below the mean.

Table 1.6 The calculation of average wealth

Range x f fx

0– 5.0 1 668 8 340

10 000– 17.5 1 318 23 065

25 000– 32.5 1 174 38 155

40 000– 45.0 662 29 790

50 000– 55.0 627 34 485

60 000– 70.0 1 095 76 650

80 000– 90.0 1 195 107 550

100 000– 125.0 3 267 408 375

150 000– 175.0 2 392 418 600

200 000– 250.0 2 885 721 250

300 000– 400.0 1 480 592 000

500 000– 750.0 628 471 000

1 000 000– 1 500.0 198 297 000

2 000 000– 3 000.0 88 264 000

Total 18 677 3 490 260

Note: The fx column gives the product of the values in the f and x columns (so, for example, 
5.0 * 1668 = 8340, which is the total wealth held by those in the first class interval). The sum of the fx 
values gives total wealth.

Worked example 1.3

Suppose we have 10 families with a single television in their homes, 12 families 
with two televisions each and three families with three. You can probably work 
out in your head that there are 43 televisions in total (10 + 24 + 9) owned by 
the 25 families (10 + 12 + 3). The average number of televisions per family is 
therefore 43>25 = 1.72.

Setting this out formally, we have (as for the wealth distribution, but simpler):

x f fx

1 10 10

2 12 24

3  3  9

Totals 25 43
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This gives our resulting mean as 1.72. The data are discrete values in this case 
and we have the actual values, not a broad class interval. Note that no single 
family could actually have 1.72 television sets; it is the average over all families.

 The mean as the expected value

We also refer to the mean as the expected value of x and write:

E(x) = m = 186 875 (1.7)

E(x) is read ‘E of x’ or ‘the expected value of x’. The mean is the expected value in 
the sense that if we selected a household at random from the population, we 
would ‘expect’ its wealth to be £186 875. It is important to note that this is a statis-
tical expectation, rather than the everyday use of the term. Most of the random 
individuals we encounter have wealth substantially below this value. Most people 
might therefore ‘expect’ a lower value because that is their everyday experience; 
but statisticians are different; they refer to the mean as the expected value.

The expected value notation is particularly useful in keeping track of the effects 
upon the mean of certain data transformations (e.g. dividing wealth by 1000 also 
divides the mean by 1000); Appendix 1B provides a detailed explanation. Use is 
also made of the E operator in inferential statistics, to describe the properties of 
estimators (see Chapter 4).

 The sample mean and the population mean

Very often we have only a sample of data (as in worked example 1.3), and it is 
important to distinguish this case from the one where we have all the possible 
observations. For this reason, the sample mean is given by:

x = ax

n
 or  x = a fx

a f
 for grouped data (1.8)

Note the distinctions between μ (the population mean) and x (the sample mean), 
and between N (the size of the population) and n (the sample size). Otherwise, the 
calculations are identical. It is a convention to use Greek letters, such as μ, to refer 
to the population and Roman letters, such as x, to refer to a sample.

 The weighted average

Sometimes observations have to be given different weightings in calculating the 
average, as in the following example. Consider the problem of calculating the 
average spending per pupil by an education authority. Some figures for spend-
ing on primary (ages 5–11), secondary (11–16) and post-16 pupils are given in 
Table 1.7.

Clearly, significantly more is spent on secondary and post-16 pupils (a general 
pattern throughout England and most other countries) and the overall average 
should lie somewhere between 1750 and 3820. However, taking a simple average 
of these three values would give the wrong answer, because there are different 
numbers of children in the three age ranges. The numbers and proportions of 
children in each age group are given in Table 1.8.
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Since there are relatively more primary schoolchildren than secondary, and 
relatively fewer post-16 pupils, the primary unit cost should be given greatest 
weight in the averaging process and the post-16 unit cost the least. The weighted 
average is obtained by multiplying each unit cost figure by the proportion of chil-
dren in each category and summing. The weighted average is therefore

0.444 * 1750 + 0.389 * 3100 + 0.167 * 3820 = 2620.8 (1.9)

The weighted average gives an answer closer to the primary unit cost than does 
the simple average of the three figures (2890 in this case), which would be mis-
leading. The formula for the weighted average is

xw = a
i

wixi (1.10)

where w represents the weights, which must sum to one, i.e.

a
i

wi = 1 (1.11)

and x represents the unit cost figures.
Notice that what we have done is equivalent to multiplying each unit cost by 

its frequency (8000, etc.) and then dividing the sum by the grand total of 18 000. 
This is the same as the procedure we used for the wealth calculation. The differ-
ence with weights is that we first divide 8000 by 18 000 (and 7000 by 18 000, etc.) 
to get the weights, which must then sum to one, and use these weights in for-
mula (1.10).

Table 1.7 Cost per pupil in different types of school (£ p.a.)

Primary Secondary Post-16

Unit cost 1750 3100 3820

Table 1.8 Numbers and proportions of pupils in each age range

Primary Secondary Post-16 Total

Numbers 8000 7000 3000 18 000

Proportion 44.4% 38.9% 16.7%
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Calculating your degree result

If you are a university student your final degree result will probably be calculated as a 
weighted average of your marks on the individual courses. The weights may be based on 
the credits associated with each course or on some other factors. For example, in my uni-
versity the average mark for a year is a weighted average of the marks on each course, the 
weights being the credit values of each course.

The grand mean G, on which classification is based, is then a weighted average of the 
averages for the different years, as follows:

G =
0 * Year  1 + 40 * Year  2 + 60 * Year  3

100
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i.e. the year 3 mark has a weight of 60%, year 2 is weighted 40% and the first year is not 
counted at all.

For students taking a year abroad the formula is slightly different:

G =
0 * Year  1 + 40 * Year  2 + 25 * Yabroad + 60 * Year  3

125

Note that, to accommodate the year abroad mark, the weights on years 2 and 3 are effec-
tively reduced (to 40>125 = 32% and 60>125 = 48%, respectively).

 The median

Returning to the study of wealth, the unrepresentative result for the mean sug-
gests that we may prefer a measure of location which is not so strongly affected by 
outliers (extreme observations) and skewness.

The median is a measure of location which is more robust to such extreme val-
ues; it may be defined by the following procedure. Imagine everyone in a line 
from poorest to wealthiest. Go to the individual located halfway along the line. 
Ask her what her wealth is. Her answer is the median. The median is clearly unaf-
fected by extreme values, unlike the mean: if the wealth of the richest person were 
doubled (with no reduction in anyone else’s wealth), there would be no effect 
upon the median. The calculation of the median is not so straightforward as for 
the mean, especially for grouped data. The following worked example first shows 
how to calculate the median for ungrouped data.

Worked example 1.4 The median

Calculate the median of the following values: 45, 12, 33, 80, 77.
First we put them into ascending order: 12, 33, 45, 77, 80.
It is then easy to see that the middle value is 45. This is the median. Note 

that if the value of the largest observation changes to, say, 150, the value of the 
median is unchanged. This is not the case for the mean, which would change 
from 49.4 to 63.4.

If there is an even number of observations, then there is no middle observa-
tion. The solution is to take the average of the two middle observations. For 
example:

Find the median of 12, 33, 45, 63, 77, 80.
Note the new observation, 63, making six observations. The median value is 

halfway between the third and fourth observations, i.e. (45 + 63)>2 = 54.

For grouped data there are two stages to the calculation: first we must identify 
the class interval which contains the median person, and then we must calculate 
where in the interval that person lies.

(1) To find the appropriate class interval: since there are 18 677 000 observations, 
we need the wealth of the person who is 9 338 500 in rank order. The table of 
cumulative frequencies (see Table 1.5) is the most suitable for this. There are 
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7 739 000 individuals with wealth of less than £100 000 and 11 006 000 with 
wealth of less than £150 000. The middle person therefore falls into the 
£100 000–150 000 class. Furthermore, given that 9 338 500 falls roughly half-
way between 7 739 000 and 11 006 000, it follows that the median should be 
close to the middle of the class interval. We now go on to make this state-
ment more precise.

(2) To find the position in the class interval, we can now use formula (1.12):

median = xL + (xU - xL)
eN + 1

2
- F f

f
 (1.12)

where:
 xL =  the lower limit of the class interval containing the median
 xU =  the upper limit of this class interval
 N =   the number of observations (using N + 1 rather than N in the formula is 

only important when N is relatively small)
 F =   the cumulative frequency of the class intervals up to (but not including) the 

one containing the median
 f  =  the frequency for the class interval containing the median.

For the wealth distribution we have:

 median = 100 000 + (150 000 - 100 000)
•

18 677 000
2

- 7 739 000

3 267 000
¶

 = £124 480

This alternative measure of location gives a very different impression: it is 
around two-thirds of the mean. Nevertheless, it is an equally valid statistic, despite 
having a different meaning. It demonstrates that the person ‘in the middle’ has 
wealth of £124 480 and in this sense is typical of the UK population. Before going 
on to compare these measures further we examine a third, the mode.
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Generalising the median – quantiles

The idea of the median as the middle of the distribution can be extended: quartiles divide 
the distribution into 4 equal parts, quintiles into 4, deciles into 10, and finally percentiles 
divide the distribution into 100 equal parts. Generically they are known as quantiles. We 
shall illustrate the idea by examining deciles (quartiles are covered below).

The first decile occurs one-tenth of the way along the line of people ranked from poor-
est to wealthiest. This means we require the wealth of the person ranked 1 867 700 
(=  N>10) in the distribution. From the table of cumulative frequencies, this person lies in 
the second class interval. Adapting formula (1.12), we obtain:

first decile = 10 000 + (25 000 - 10 000) * e 1 867 700 - 1 668 000
1 318 000

f = £12 273

Thus we estimate that any household with less than £12 273 of wealth falls into the bot-
tom 10% of the wealth distribution. In a similar fashion, the ninth decile can be found by cal-
culating the wealth of the household ranked 16 809 300 (=  N * 9>10) in the distribution.
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 The mode

The mode is defined as that level of wealth which occurs with the greatest fre-
quency, in other words the value that occurs most often. It is most useful and easi-
est to calculate when one has all the data and there are relatively few distinct 
observations. This is the case in the simple example below.

Suppose we have the following data on sales of dresses by a shop, according to 
size:

Size Sales

 8  7

10 25

12 36

14 11

16  3

18  1

The modal size is 12. There are more women buying dresses of this size than any 
other. This may be the most useful form of average as far as the shop is concerned. 
Although it needs to stock a range of sizes, it knows it needs to order more dresses 
in size 12 than any other size. The mean would not be so helpful in this case (it is 
x = 11.7), as it is not an actual dress size.

In the case of grouped data, matters are more complicated. The modal class 
interval is required, once the intervals have been corrected for width (otherwise a 
wider class interval is unfairly compared with a narrower one). For this, we can 
again make use of the frequency densities. From Table 1.4 it can be seen that it is 
the first interval, from £0 to £10 000, which has the highest frequency density. It 
is ‘typical’ of the distribution because it is the one which occurs most often (using 
the frequency densities, not frequencies). The wealth distribution is most con-
centrated at this level, and more people are like this in terms of wealth than any-
thing else. Once again, it is notable how different the mode is from both the 
median and the mean.

The three measures of location give different messages because of the skewness 
of the distribution: if it were symmetric, then they would all give approximately 
the same answer. Here we have a rather extreme case of skewness, but it serves to 
illustrate how the different measures of location compare. When the distribution 
is skewed to the right, as here, they will be in the order mode, median, mean; if 
skewed to the left, the order is reversed. If the distribution has more than one 
peak, then this rule for orderings may not apply.

Which of the measures is ‘correct’ or most useful? In this particular case the 
mean is not very useful: it is heavily influenced by extreme values. The median is 
therefore often used when discussing wealth (and income) distributions. Where 
inequality is even more pronounced, as in some less developed countries, the 
mean is even less informative. The mode is also quite useful in telling us about a 
large section of the population, although it can be sensitive to how the class inter-
vals are arranged. If the data were arranged such that there was a class interval of 
£5000 to £15 000, then this might well be the modal class, conveying a slightly 
different impression.
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Figure 1.12
The histogram with the 
mean, median and mode 
marked

(a) For the data in Exercise 1.2, calculate the mean, median and mode of the data.

(b) Mark these values on the histogram you drew for Exercise 1.2.
?

Exercise 1.3

 Measures of dispersion

Two different distributions (e.g. wealth in two different countries) might have the 
same mean yet look very different, as shown in Figure 1.13 (the distributions have 

Figure 1.13
Two distributions with 
different degrees of 
dispersion

Note: Distribution A has a greater degree of dispersion than B, where every-
one has similar levels of wealth.

The three different measures of location are marked on the histogram in 
Figure 1.12. This brings out the substantial difference between the measures for a 
skewed distribution, such as for wealth.
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been drawn using smooth curves rather than bars to improve clarity). In one 
country, everyone might have a similar level of wealth (curve B). In another, 
although the average is the same, there might be extremes of great wealth and 
poverty (curve A). A measure of dispersion is a number which allows us to distin-
guish between these two situations.

The simplest measure of dispersion is the range, which is the difference 
between the smallest and largest observations. It is impossible to calculate accu-
rately from the table of wealth holdings since the largest observation is not 
available. In any case, it is not a very useful figure since it relies on two extreme 
values and ignores the rest of the distribution. In simpler cases, it might be 
more informative. For example, in an exam the marks may range from a low of 
28% to a high of 74%. In this case the range is 74 - 28 = 46 and this tells us 
something useful.

An improvement is the inter-quartile range, which is the difference between the 
first and third quartiles. It therefore defines the limits of wealth of the middle half 
of the distribution and ignores the very extremes of the distribution. To calculate 
the first quartile (which we label Q 1) we have to go one-quarter of the way along 
the line of wealth holders (ranked from poorest to wealthiest) and ask the person 
in that position what their wealth is. Their answer is the first quartile. The calcula-
tion is as follows:

●	 one-quarter of 18 677 observations is 4669.25;
●	 the person ranked 4669.25 is in the £40 000–50 000 class;
●	 adapting formula (1.12):

Q 1 = 40 000 + (50 000 - 40 000)e 4669.25 - 4160
662

f = 47 692.6 (1.13)

The third quartile is calculated in similar fashion:

●	 three-quarters of 18 677 is 14 007.75;
●	 the person ranked 14 007.75 is in the £200 000 to 300 000 class;
●	 again using (1.12):

Q 3 = 200 000 + (300 000 - 200 000)e 14 007.75 - 13 398
2885

f = 221 135.1

and therefore the inter-quartile range is Q 3 - Q 1 = 221 135 - 47 693 = 173 442. 
This might be reasonably rounded to £175 000 given the approximations in our 
calculation, and is a much more memorable figure. Thus, the 50% of people in the 
middle of the distribution have wealth between £48 000 and £221 000 of wealth, 
approximately.

This gives one summary measure of the dispersion of the distribution: the 
higher the value the more spread out is the distribution. Therefore, two different 
wealth distributions might be compared according to their inter-quartile ranges, 
with the country having the larger figure exhibiting greater inequality. Note that 
the figures would have to be expressed in a common unit of currency for this com-
parison to be valid.
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 The variance

A more useful measure of dispersion is the variance, which makes use of all of the 
information available, rather than just trimming the extremes of the distribution. 
The variance is denoted by the symbol s2. s is the Greek lower-case letter sigma, 
so s2 is read ‘sigma squared’. It has a completely different meaning from Σ (capital 
sigma) used before. Its formula is:

s2 = a (x - m)2

N
 (1.14)

In this formula, x - m measures the distance from each observation to the mean. 
Squaring these makes all the deviations positive, whether above or below the 
mean. We then take the average of all the squared deviations from the mean. A 
more dispersed distribution (such as A in Figure 1.13) will tend to have larger devi-
ations from the mean and hence a larger variance. In comparing two distributions 
with similar means, therefore, we could examine their variances to see which of 

Worked example 1.5 The range and inter-quartile range

Suppose 110 children take a test, with the following results:

Mark, X Frequency, f Cumulative frequency, F

13 5 5

14 13 18

15 29 47

16 33 80

17 17 97

18 8 105

19 4 109

20 1 110

Total 110

The range is simply 20 - 13 = 7. The inter-quartile range requires calcula-
tion of the quartiles. Q 1 is given by the value of the 27.5th observation 
(=  110>4), which is 15. Q 3 is the value of the 82.5th observation (=  110 * 0.75) 
which is 17. The IQR is therefore 17 - 15 = 2 marks.

Notice that a slight change in the data (three more students getting 16 
rather than 17 marks) would alter the IQR to 1 mark (16 -  15). The result 
should therefore be treated with some caution. This is a common problem 
when there are few distinct values of the variable (eight in this example). It is 
often worth considering whether a few small changes to the data could alter 
a calculation considerably. In such a case, the original result might not be 
very robust.
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the two has the greater degree of dispersion. With grouped data the  formula 
becomes:

s2 = a f(x - m)2

a f
 (1.15)

The calculation of the variance of wealth is shown in Table 1.9, and from this 
we obtain:

s2 =
1 499 890 455.1

18 677
= 80 306.8

This calculated value is before translating back into the original units of mea-
surement, as was done for the mean by multiplying by 1000. In the case of the 
variance, however, we must multiply by 1 000 000, which is the square of 1000. 
The variance of the original data is therefore 80 306 800 000. Multiplying by the 
square of 1000 is a consequence of using squared deviations in the variance for-
mula (see Appendix 1B on E and V operators for more details of this).

One thus needs to be a little careful about the units of measurement. If the 
mean is reported at 186.875, then it is appropriate to report the variance as 
80 306.8. If the mean is reported as 186 875, then the variance should be reported 
as 80 306 800 000. Note that it is only the presentation which changes; the under-
lying facts are the same.

 The standard deviation

In what units is the variance measured? Since we have used a squaring procedure 
in the calculation we end up with something like ‘squared’ £s, which is not very 
convenient, nor does it make much sense. Because of this, it is useful to define the 

Table 1.9 The calculation of the variance of wealth

Range
Mid-point  
x (£000) Frequency, f

Deviation  
(x - m) (x - m)2 f(x - m)2

0– 5.0 1 668 –181.9 33 078.4 55 174 821.9

10 000– 17.5 1 318 –169.4 28 687.8 37 810 535.3

25 000– 32.5 1 174 –154.4 23 831.6 27 978 261.2

40 000– 45.0 662 –141.9 20 128.4 13 325 033.3

50 000– 55.0 627 –131.9 17 391.0 10 904 128.1

60 000– 70.0 1 095 –116.9 13 659.7 14 957 383.4

80 000– 90.0 1 195 –96.9 9 384.7 11 214 740.7

100 000– 125.0 3 267 –61.9 3 828.5 12 507 665.8

150 000– 175.0 2 392 –11.9 141.0 337 296.1

200 000– 250.0 2 885 63.1 3 984.8 11 496 134.1

300 000– 400.0 1 480 213.1 45 422.4 67 225 100.9

500 000– 750.0 628 563.1 317 110.0 199 145 098.5

1 000 000– 1 500.0 198 1 313.1 1 724 297.9 341 410 980.4

2 000 000– 3 000.0 88 2 813.1 7 913 673.6 696 403 275.4

Totals 18 677 1 499 890 455.1
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standard deviation as the square root of the variance, which is therefore back in £s. 
The standard deviation is therefore given by:

s = Ba (x - m)2

N
 (1.16)

or, for grouped data:

s = Ba f (x - m)2

N
 (1.17)

These are simply the square roots of (1.14) and (1.15). The standard deviation of 
wealth is therefore 280 306.8 = 283.385. This is in £000, so the standard devi-
ation is actually £283 385 (note that this is the square root of 80 306 800 000, as 
it should be). On its own the standard deviation (and the variance) is not easy 
to interpret since it is not something we have an intuitive feel for, unlike the 
mean. It is more useful when used in a comparative setting. This will be illus-
trated later on.

 The variance and standard deviation of a sample

As with the mean, a different symbol is used to distinguish a variance calculated 
from the population and one calculated from a sample. In addition, the sample 
variance is calculated using a slightly different formula from the one for the popu-
lation variance. The sample variance is denoted by s2 and its formula is given by
equations (1.18) and (1.19) below:

s2 = a (x - x)2

n - 1
 (1.18)

and, for grouped data:

s2 = a f (x - x)2

n - 1
 (1.19)

where n is the sample size. The reason n - 1 is used in the denominator rather 
than n (as one might expect) is the following. Our real interest is in the popula-
tion variance, and the sample variance is an estimate of it. The former is mea-
sured by the dispersion around μ and the sample variance should ideally be 
measured around μ also. However, μ is unknown, so x is used in the formula 
instead. But the variation of the sample observations around x tends to be smaller 
than that around μ. Using n - 1 rather than n in the formula compensates for 
this and the result is an unbiased3 (i.e. correct on average) estimate of the popula-
tion variance.

Using the correct formula is more important the smaller is the sample size, as 
the proportionate difference between n - 1 and n increases. For example, if 
n = 10, the adjustment amounts to 10% of the variance; when n = 100, the 
adjustment is only 1%.

The sample standard deviation is given by the square root of equation (1.18) 
or (1.19).

3The concept of bias is treated in more detail in Chapter 4.
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 Alternative formulae for calculating the variance  
and standard deviation

The following formulae give the same answers as equations (1.14) to (1.17) but are 
simpler to calculate, either by hand or using a spreadsheet. For the population 
variance one can use

s2 = ax2

N
- m2 (1.20)

or, for grouped data,

s2 = a f x2

a f
- m2 (1.21)

The calculation of the variance using equation (1.21) is shown in Figure 1.14.
The sample variance can be calculated using

s2 = ax2 - nx2

n - 1
 (1.22)

Worked example 1.6 The variance and standard deviation

We continue with the previous worked example, relating to students’ marks. 
The variance and standard deviation can be calculated as:

X f fx x - m (x - m)2 f(x - m)2

13 5 65 -2.81 7.89 39.45

14 13 182 -1.81 3.27 42.55

15 29 435 -0.81 0.65 18.98

16 33 528 0.19 0.04 1.20

17 17 289 1.19 1.42 24.11

18 8 144 2.19 4.80 38.40

19 4 76 3.19 10.18 40.73

20 1 20 4.19 17.56 17.56

Totals 110 1739 222.99

The mean is calculated as 1739>110 = 15.81 and from this the deviations col-
umn (x - m) is calculated (so -2.81 = 13 - 15.81, etc.).

The variance is calculated as a f(x - m)2>(n - 1) = 222.99>109 = 2.05. 
The standard deviation is therefore 1.43, the square root of 2.05. (Calculations 
are shown to 2 decimal places but have been calculated using exact values.)

For distributions which are approximately symmetric and bell-shaped (i.e. 
the observations are clustered around the mean), there is an approximate rela-
tionship between the standard deviation and the inter-quartile range. This rule 
of thumb is that the IQR is 1.3 times the standard deviation. In this case, 
1.3 * 1.43 = 1.86, close to the value calculated earlier, 2.



Summarising data using numerical techniques

41

or, for grouped data,

s2 = a f  x2 - nx2

n - 1
 (1.23)

The standard deviation may of course be obtained as the square root of these for-
mulae.

Figure 1.14
Descriptive statistics 
calculated using Excel

Using a calculator or computer for calculation

Electronic calculators and (particularly) computers have simplified the calculation of the 
mean, etc. Figure 1.14 shows how to set out the above calculations in Microsoft Excel, 
including some of the appropriate cell formulae.

The variance in this case is calculated using the formula s2 = a f x2

a f
- m2 which is the 

formula given in equation (1.21). Note that it gives the same result as that calculated in the 
text.

The following formulae are contained in the cells:

D5: = C5*B5 to calculate f times x
E5: = D5*B5 to calculate f times x2

C20: = SUM(C5:C18) to sum the frequencies, Σf
H6: = D20>C20 calculates Σfx>Σf
H7: = E20>C20 - H6^2 calculates Σfx2>Σf - m2

H8: = SQRT(H7) calculates Σ
H9: = H8>H6 calculates s>m
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 The coefficient of variation

The measures of dispersion examined so far are all measures of absolute dispersion 
and, in particular, their values depend upon the units in which the variable is 
measured. It is therefore difficult to compare the degrees of dispersion of two vari-
ables which are measured in different units. For example, one could not compare 
wealth in the United Kingdom with that in Germany if the former uses £s and the 
latter euros for measurement. Nor could one compare the wealth distribution in 
one country between two points in time because inflation alters the value of the 
currency over time. The solution is to use a measure of relative dispersion, which is 
independent of the units of measurement. One such measure is the coefficient of 
variation, defined as:

Coefficient  of  variation =
s

m
 (1.24)

i.e. the standard deviation divided by the mean. Whenever the units of mea-
surement are changed, the effect upon the mean and the standard deviation is 
the same; hence the coefficient of variation is unchanged. For the wealth 
 distribution its value is 283.385>186.875 = 1.516, i.e. the standard deviation is 
152% of the mean. This may be compared directly with the coefficient of varia-
tion of a different wealth distribution to see which exhibits a greater relative 
degree of dispersion.

 Independence of units of measurement

It is worth devoting a little attention to this idea, that some summary measures 
are independent of the units of measurement and some are not, as it occurs 
quite often in statistics and is not often appreciated at first. A statistic which is 
independent of the units of measurement is one which is unchanged, even 
when the units of measurement are changed. It is therefore more useful in 
 general than a statistic which is not independent, since one can use it to make 
comparisons, or judgements, without worrying too much about how it was 
measured.

The mean is not independent of the units of measurement. If we are told the 
average income in the United Kingdom is 30 000, for example, we need to 
know whether it is measured in pounds sterling, euros or even dollars. The 
underlying level of income is the same, of course, but it is measured differ-
ently. By  contrast, the rate of growth (described in detail shortly) is indepen-
dent of the units of measurement. If we are told it is 3% p.a., it would be the 
same whether the calculation was based on pound, euro or dollar figures. If 
told that the rate of growth in the United States is 2% p.a., we can immediately 
conclude that the United Kingdom is growing faster, and no further informa-
tion is needed.

Most measures we have encountered so far, such as the mean and variance, do 
depend on units of measurement. The coefficient of variation is one that does 
not. We now go on to describe another means of measuring dispersion that avoids 
the units of measurement problem.
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 The standard deviation of the logarithm

Another solution to the problem of different units of measurement is to use the 
logarithm4 of wealth rather than the actual value. The reason why this works can 
best be illustrated by an example. Suppose that between 1997 and 2005 each indi-
vidual’s wealth doubled, so that

X2005
i = 2X1997

i

where Xt
i indicates the wealth of individual i in year t. It follows that the standard 

deviation of wealth in 2005 is exactly twice that of 1997 (and hence the coeffi-
cient of variation is unchanged). Taking logs, we have ln X2005

i = ln 2 + ln X1997
i , 

so it follows that the distribution of ln X2005 is the same as that of ln X1997 except 
that it is shifted to the right by ln 2 units. The variances (and hence standard devi-
ations) of the two logarithmic distributions must therefore be the same, indicat-
ing no change in the relative dispersion of the two wealth distributions.

The use of logarithms in data analysis is very common, so it is worth making 
sure you understand the principles and mechanics of using them.

The standard deviation of the logarithm of wealth is calculated from the data 
in Table 1.10. The variance turns out to be:

s2 = a f x2

a f
- m2 =

417 772.5
18 677

- a848 40.9
18 677

b
2

= 1.734

and the standard deviation s = 1.317. The larger this figure is, the greater the 
dispersion. On its own the number is difficult to interpret; it is only really useful 
when compared to another such figure.

4See Appendix 1C if you are unfamiliar with logarithms. Note that we use the natural loga-
rithm here, but the effect would be the same using logs to base 10.

Table 1.10 The calculation of the standard deviation of the logarithm of wealth

Range Mid-point, x ln (x) Frequency, f fx fx squared

0– 5.0 1.609 1 668 2 684.5 4 320.6
10 000– 17.5 2.862 1 318 3 772.4 10 797.3
25 000– 32.5 3.481 1 174 4 087.0 14 227.7
40 000– 45.0 3.807 662 2 520.0 9 592.8
50 000– 55.0 4.007 627 2 512.6 10 068.8
60 000– 70.0 4.248 1 095 4 652.1 19 764.4
80 000– 90.0 4.500 1 195 5 377.3 24 196.7

100 000– 125.0 4.828 3 267 15 774.1 76 162.3
150 000– 175.0 5.165 2 392 12 354.2 63 806.6
200 000– 250.0 5.521 2 885 15 929.4 87 953.6
300 000– 400.0 5.991 1 480 8 867.4 53 128.5
500 000– 750.0 6.620 628 4 157.4 27 522.3

1 000 000– 1 500.0 7.313 198 1 448.0 10 589.7
2 000 000– 3 000.0 8.006 88 704.6 5 641.0

Totals 18 677 84 840.9 417 772.5

Notes: Use the ‘ln’ key on your calculator or the = LN() function in a spreadsheet to obtain natural 
 logarithms of the data. You should obtain ln 5 = 1.609, ln 17.5 = 2.862, etc.
The column headed ‘fx’ is the product of the f and ln(x) columns.
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For comparison, the standard deviation of log wealth in 1979 (discussed in more 
detail later on) is 1.310, so there appears to have been little change in relative dis-
persion over this time period. Thus we have found two different ways of measuring 
relative dispersion. In a later chapter we will meet a third, the Gini coefficient.

 Measuring deviations from the mean: z scores

Imagine the following problem. A man and a woman are arguing over their career 
records. The man says he earns more than she does, so he is more successful. The 
woman replies that women are discriminated against and that, relative to other 
women, she is doing better than the man is, relative to other men. Can the argu-
ment be resolved?

Suppose the data are as follows: the average male salary is £19 500 and the aver-
age female salary £16 800. The standard deviation of male salaries is £4750 and for 
women it is £3800. The man’s salary is £31 375, while the woman’s is £26 800. The 
man is therefore £11 875 above the mean, and the woman is £10 000 above. 
However, women’s salaries are less dispersed than men’s, so the woman has done 
well to get to £26 800.

One way to resolve the problem is to calculate the z score, which gives the sal-
ary in terms of the number of standard deviations from the mean. Thus for the man, 
the z score is

z =
X - m

s
=

31 375 - 19 500
4750

= 2.50 (1.25)

Thus the man is 2.5 standard deviations above the male mean salary, i.e. 
31 375 = 19 500 + 2.5 *  4 750. For the woman the calculation is

z =
268 00 - 16 800

3800
= 2.632 (1.26)

The woman is 2.632 standard deviations above her mean and therefore wins 
the argument – she is nearer the top of her distribution than is the man and so is 
more of an outlier. Actually, this probably won’t end the argument, but is the best 
the statistician can do. The z score is an important concept which will be used 
again (see Chapter 5) when we cover hypothesis testing.

 Chebyshev’s inequality

Use of the z score leads on naturally to Chebyshev’s inequality, which tells us about 
the proportion of observations that fall into the tails of any distribution, regard-
less of its shape. The theorem is expressed as follows:

At  least  (1 - 1>k2)  of  the  observation  in  any  distribution
lie  within  k  standard  deviations  of  the  mean  

(1.27)

If we take the female wage distribution given above, we can ask what propor-
tion of women lie beyond 2.632 standard deviations from the mean (in both tails 
of the distribution). Setting k = 2.632, then

a1 -
1

k2 b = a1 -
1

2.6322 b = 0.8556.
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So at least 85% of women have salaries within { 2.632 standard deviations of the 
mean, i.e. between £6800 and £26 800 (16 800 { 2.632 * 3800). Fifteen percent 
of women therefore lie outside this range.

Chebyshev’s inequality is a very conservative rule since it applies to any distri-
bution; if we know more about the shape of a particular distribution (for example, 
men’s heights follow a Normal distribution – see Chapter 3), then we can make a 
more precise statement. In the case of the Normal distribution, over 99% of men 
are within 2.632 standard deviations of the average height because there is a con-
centration of observations near the centre of the distribution.

We can also use Chebyshev’s inequality to investigate the inter-quartile range. 
The formula (1.27) implies that 50% of observations lie within 12 = 1.41 stan-
dard deviations of the mean, a more conservative value than our previous 1.3.

(a) For the data in Exercise 1.2, calculate the inter-quartile range, the variance and the stan-
dard deviation.

(b) Calculate the coefficient of variation.

(c) Check if the relationship between the IQR and the standard deviation stated in the text 
(worked example 1.6) is approximately true for this distribution.

(d) Approximately how much of the distribution lies within one standard deviation either 
side of the mean? How does this compare with the prediction from Chebyshev’s 
inequality?

?

Exercise 1.4

 Measuring skewness

The skewness of a distribution is the third characteristic that was mentioned ear-
lier, in addition to location and dispersion. The wealth distribution is heavily 
skewed to the right, or positively skewed; it has its long tail in the right-hand end of 
the distribution. A measure of skewness gives a numerical indication of how 
asymmetric is the distribution.

One measure of skewness, known as the coefficient of skewness, is

a f (x - m)3

Ns3  (1.28)

and it is based upon cubed deviations from the mean. The result of applying for-
mula (1.28) is positive for a right-skewed distribution (such as wealth), zero for a 
symmetric one, and negative for a left-skewed one. Table 1.11 shows the calcula-
tion for the wealth data (some rows are omitted for brevity).

Table 1.11 Calculation of the skewness of the wealth data

Range Mid-point x Frequency f x - m (x - m)3 f (x - m)3

0– 5.0 1 668 –181.9 –6 016 132 –10 034 907 815
10 000– 17.5 1 318 –169.4 –4 858 991 –6 404 150 553

: : : : : :
1 000 000– 1 500.0 198 1 313.1 2 264 219 059 448 315 373 613
2 000 000– 3 000.0 88 2 813.1 22 262 154 853 1 959 069 627 104

Total 18 677 3 898.8 24 692 431 323 2 506 882 551 023
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From this we obtain:

a f (x - m)3

N
=

2 506 882 551 023
18 677

= 134 222 977.5

and dividing by Σ3 gives 
134 222 977.5

22 757 714
= 5.898 which is positive, as expected.

The measure of skewness is much less useful in practical work than measures of 
location and dispersion, and even knowing the value of the coefficient does not 
always give much idea of the shape of the distribution: two quite different distri-
butions can share the same coefficient. In descriptive work, it is probably better to 
draw the histogram itself.

 Comparison of the 2005 and 1979 distributions of wealth

Some useful lessons may be learned about these measures by comparing the 2005 
distribution with its counterpart from 1979. This covers the period of Conservative 
government starting with Mrs Thatcher in 1979 and much of the following Labour 
administration. This shows how useful the various summary statistics are when it 
comes to comparing two different distributions. The wealth data for 1979 are 
given in Problem 1.5, where you are asked to confirm the following calculations.

Average wealth in 1979 was £16 399, about one-eleventh of its 2005 value. The 
average increased substantially therefore (at about 10% p.a., on average), but some 
of this was due to inflation rather than a real increase in the quantity of assets 
held. In fact, between 1979 and 2005 the retail price index rose from 52.0 to 217.9, 
i.e. it increased approximately four times. Thus the nominal5 increase (i.e. in cash 
terms, before any adjustment for rising prices) in wealth is made up of two parts: 
(a) an inflationary part which more than quadrupled measured wealth and (b) a 
real part, consisting of a 2.75-fold increase (thus 4 * 2.75 = 11, approximately). 
Price indexes are covered in Chapter 10 where it is shown more formally how to 
divide a nominal increase into price and real (quantity) components. It is likely 
that the extent of the real increase in wealth is overstated here due to the use of 
the retail price index rather than an index of asset prices. A substantial part of the 
increase in asset values over the period is probably due to the very rapid rise in 
house prices (houses form a significant part of the wealth of many households).

The standard deviation is similarly affected by inflation. The 1979 value is  
25 552 compared to 2005’s 283 385, which is about 11 times larger (as was the 
mean). The spread of the distribution appears to be about the same therefore (even 
if we take account of the general price effect). Looking at the coefficient of variation 
reveals a similar finding: the value has changed from 1.56 to 1.52, which is a modest 
difference. The spread of the distribution relative to its mean has not changed by 
much. This is confirmed by calculating the standard deviation of the logarithm: for 
1979 this gives a figure of 1.310, almost identical to the 2005 figure (1.317).

The measure of skewness for the 1979 data comes out as 5.723, only slightly 
smaller than the 2005 figure (5.898). This suggests that the 1979 distribution is 
similarly skewed to the 2005 one. Again, these two figures can be directly com-

5This is a different meaning of the term ‘nominal’ from that used earlier to denote data mea-
sured on a nominal scale, i.e. data grouped into categories without an obvious ordering. 
Unfortunately, both meanings of the word are in common (statistical) usage, though it 
should be obvious from the context which use is meant.
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pared because they do not depend upon the units in which wealth is measured. 
However, the relatively small difference is difficult to interpret in terms of how the 
shape of the distribution has changed.

The box and whiskers diagram

Having calculated these various summary statistics, we can now return to a useful 
graphical method of presentation. This is the box and whiskers diagram (sometimes 
called a box plot) which shows the median, quartiles and other aspects of a distri-
bution on a single diagram. Figure 1.15 shows the box plot for the wealth data.

Wealth is measured on the vertical axis. The rectangular box stretches (verti-
cally) from the first to third quartile and therefore encompasses the middle half of 
the distribution. The horizontal line through it is at the median and lies slightly 
less than halfway up the box. This tells us that there is a degree of skewness even 
within the central half of the distribution, though it does not appear very severe. 
The two ‘whiskers’ extend above and below the box as far as the highest and low-
est observations, excluding outliers. An outlier is defined to be any observation 
which is more than 1.5 times the inter-quartile range (which is the same as the 
height of the box) above or below the box. Earlier we found the IQR to be 173 443 
and the upper quartile to be 221 135, so an (upper) outlier lies beyond 
221 135 + 1.5 * 173 443 = 481 300. There are no outliers below the box as 
wealth cannot fall below zero. The top whisker is thus substantially longer than 
the bottom one, and indicates the extent of dispersion towards the tails of the 
 distribution. The crosses indicate the outliers and in reality extend far beyond 
those shown in the diagram.

A simple diagram thus reveals a lot of information about the distribution. 
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Other boxes and whiskers could be placed alongside in the same diagram (perhaps 
representing other countries), making comparisons straightforward. Some statis-
tical software packages, such as SPSS and STATA, can generate box plots from the 
original data, without the need for the user to calculate the median, etc. However, 
spreadsheet packages do not yet have this useful facility.

Time-series data: investment expenditures 1977–2009

The data on the wealth distribution give a snapshot of the situation at particular 
points in time, and comparisons can be made between the 1979 and 2005 snapshots. 
Often, however, we wish to focus on the time-path of a variable and therefore we use 
time-series data. The techniques of presentation and summarising are slightly dif-
ferent than for cross-section data. As an example, we use data on investment in the 
United Kingdom for the period 1977–2009. These data are available from the Office 
of National Statistics (ONS) website. However, even after its recent redesign, it is 
almost impossible to find the data that you want. To save a lot of frustration, use the 
Econstats website (http://www.econstats.com/uk/index.htm), a U.S. site which 
aggregates economic data from around the world. The data series used is total gross 
fixed capital formation (series NPQX), which is measured in current prices (i.e. not 
adjusted for inflation). We will refer to this series simply as ‘investment’.

Investment expenditure is important to the economy because it is one of the 
primary determinants of growth. Until recent years, the UK economy’s growth 
record had been poor by international standards and lack of investment may have 
been a cause. The variable studied here is total gross (i.e. before depreciation is 
deducted) domestic fixed capital formation, measured in £m. The data are shown 
in Table 1.12.

It should be remembered that the data are in current prices so that the figures 
reflect price increases as well as changes in the volume of physical investment. 
The series in Table 1.12 thus shows the actual amount of cash that was spent each 
year on investment. The techniques used below for summarising the investment 

Table 1.12 UK investment, 1977–2009 (£m)

Year Investment Year Investment Year Investment

1977 28 351 1988  97 956 1999 161 722
1978 32 387 1989 113 478 2000 167 172

1979 38 548 1990 117 027 2001 171 782
1980 43 612 1991 107 838 2002 180 551

1981 43 746 1992 103 913 2003 186 700
1982 47 935 1993 103 997 2004 200 415

1983 52 099 1994 111 623 2005 209 758
1984 59 278 1995 121 364 2006 227 234

1985 65 181 1996 130 346 2007 249 517
1986 69 581 1997 138 307 2008 240 361

1987 80 344 1998 155 997 2009 204 270

Note: Time-series data consist of observations on one or more variables over several time periods. The 
observations can be daily, weekly, monthly, quarterly or, as here, annually.

Source: Data adapted from the Office for National Statistics licensed under the Open Government Licence(OGL) v.3.0. 
http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government

http://www.econstats.com/uk/index.htm
http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government
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data could equally well be applied to a series showing the volume of investment.
First of all, we can use graphical techniques to gain an insight into the charac-

teristics of investment. Figure 1.16 shows a time-series graph of investment. The 
graph plots the time periods on the horizontal axis and the investment variable 
on the vertical.

Plotting the data in this way brings out clearly some key features of the series:

●	 The trend in investment is upwards, with only a few years in which there was 
either no increase or a decrease.

●	 There is a ‘hump’ in the data in the late 1980s/early 1990s, before the series 
returns to its trend. Something unusual must have happened around that time. 
If we want to know what factors determine investment (or the effect of invest-
ment upon other economic magnitudes), we should get some useful insights 
from this period of the data.

●	 The trend is slightly non-linear – it follows an increasingly steep curve over time. 
This is essentially because investment grows by a percentage or proportionate 
amount each year. As we shall see shortly, it grows by about 6.2% each year. 
Therefore, as the level of investment increases each year, so does the increase in 
the level, giving a non-linear graph.

●	 The years 2008 and 2009 show a significant fall in investment, reflecting the 
financial crisis that occurred in 2008. Not only is investment below its 2007 
level, it is substantially below what we might have expected, if the long-term 
trend had continued. Again, because of unusual movements in the data, we are 
likely to learn something about the causes and consequences of investment 
from what happened in these years.

●	 Successive values of the investment variable are similar in magnitude, i.e. the 
value in year t is similar to that in t - 1. Investment does not change from 
£40bn in one year to £10bn the next, and then back to £50bn, for instance. In 
fact, the value in one year appears to be based on the value in the previous year, 
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plus (in general) 6.2% or so. We refer to this phenomenon of an observation 
being related to its previous value as serial correlation, and it is one of the aspects 
of the data that we might wish to investigate. The ordering of the data matters, 
unlike the case with cross-section data where the ordering is usually irrelevant. 
In deciding how to model investment behaviour, we might focus on changes in 
investment from year to year.

●	 The series seems ‘smoother’ in some periods than others. There appear to be 
two particular periods of volatility, where investment varies more widely 
around its trend, (i.e. has a greater variance around the trend). This is known as 
heteroscedasticity; a constant variance is termed homoscedasticity.

We may gain further insight into how investment evolves over time by focusing 
on the change in investment from year to year. If we denote investment in year t by 
It then the change in investment6, ΔIt is given by It - It - 1. Table 1.13 shows the 
changes in investment each year, and Figure 1.17 provides a time-series graph.

Table 1.13 The change in investment

Year Δ Investment Year Δ Investment Year Δ Investment

1977 2 711 1988 17 612 1999 5 725
1978 4 036 1989 15 522 2000 5 450
1979 6 161 1990 3 549 2001 4 610
1980 5 064 1991 –9 189 2002 8 769
1981 134 1992 –3 925 2003 6 149
1982 4 189 1993 84 2004 13 715
1983 4 164 1994 7 626 2005 9 343
1984 7 179 1995 9 741 2006 17 476
1985 5 903 1996 8 982 2007 22 283
1986 4 400 1997 7 961 2008 –9 156
1987 10 763 1998 17 690 2009 –36 091

Note: The change in investment is obtained by taking the difference between successive observations. 
For example, 4036 is the difference between 32 387 and 28 351. The first figure of 2711 is obtained 
using the investment level for 1976 of 25 640 (not shown in Table 1.12).

6The delta symbol, Δ, is often used to indicate the change in a variable.
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Another useful way of examining the data is to look at the logarithm of invest-
ment. This transformation has the effect of straightening out the non-linear 
investment series. Table 1.14 shows the transformed values, and Figure 1.18 graphs 
the series. In this case, we use the natural (base e) logarithm.

This new series is much smoother than the original one (as is usually the case 
when taking logs) and is helpful in showing the long-run trend, although it tends 
to mask some of the volatility of investment. Even the sharp fall in 2008–9 appears 
as a gentle downturn in this graph. The slope of this graph gives an approxima-
tion to the average rate of growth of investment over the period (expressed as a 
decimal). This is calculated as follows:

slope =
change in (ln) investment

number of years
=

12.227 - 10.252
32

= 0.062 (1.29)

i.e. 6.2% p.a. Note that although there are 33 observations, there are only 32 years of 
growth. Note also that this calculation uses the two end-points of the graph; hence it 

Outliers

Graphing data also allows you to see outliers (unusual observations). Outliers might be due 
to an error in inputting the data (e.g. typing 97 instead of 970) or because something 
unusual happened (e.g. the investment figure for 2008). Either of these should be apparent 
from an appropriate graph. For example, the graph of the change in investment highlights 
the 2008 and 2009 figures. In the case of a straightforward error you should obviously cor-
rect it. If you are satisfied that the outlier is not simply a typo, you might want to think about 
the possible reasons for its existence and whether it distorts the descriptive picture you are 
trying to paint.
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This series is made up mainly of positive values, indicating that investment 
increases over time. It also shows that the increase tends to grow each year, 
although this may simply be a reflection of inflation rather than a genuine 
increase. The periods of volatility around 1990 and 2008 stand out as exceptions 
to this account, and both suggest large increases in investment before rapid and 
deep declines in the series.

Table 1.14 The logarithm of investment and the change in the logarithm

Year ln Investment Δ ln Investment Year ln Investment Δ ln Investment Year ln Investment Δ ln Investment

1977 10.252 0.101 1988 11.492 0.198 1999 11.994 0.036
1978 10.386 0.133 1989 11.639 0.147 2000 12.027 0.033
1979 10.560 0.174 1990 11.670 0.031 2001 12.054 0.027
1980 10.683 0.123 1991 11.588 –0.082 2002 12.104 0.050
1981 10.686 0.003 1992 11.551 –0.037 2003 12.137 0.033
1982 10.778 0.091 1993 11.552 0.001 2004 12.208 0.071
1983 10.861 0.083 1994 11.623 0.071 2005 12.254 0.046
1984 10.990 0.129 1995 11.707 0.084 2006 12.334 0.080
1985 11.085 0.095 1996 11.778 0.071 2007 12.427 0.094
1986 11.150 0.065 1997 11.837 0.059 2008 12.390 –0.037
1987 11.294 0.144 1998 11.958 0.120 2009 12.227 –0.163

Note: For 1977, 10.252 is the natural logarithm of 28 351, i.e. ln 28 351 = 10.252. The table also shows the changes in ln investment, 
 calculated as the difference between successive values of the logarithm of investment.
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is sensitive to changes in these two observations. For example, if we measure the aver-
age growth rate from 1977 to 2007, we get 7.25% p.a. A further word of warning: you 
must use natural (base e) logarithms, not logarithms to the base 10, for this calculation 
to work. Remember also that the growth of the volume of investment will be less than 
6.2% p.a. because part of it is due to price increases.

The logarithmic presentation is useful when comparing two different data 
series: when graphed in logs it is easy to see which is growing faster – just notice 
which series has the steeper slope.

A corollary of equation (1.29) is that the change in the natural logarithm of 
investment from one year to the next represents the percentage change in the data 
over that year. For example, the natural logarithm of investment in 1977 is 10.252, 
while in 1978 it is 10.386. The difference is 0.134, so the rate of growth is 13.4%.

Finally, we can graph the difference of the logarithm, as we graphed the differ-
ence of the level. This is shown in Figure 1.19 (the calculations are in Table 1.14) 
and presents the changes in proportionate terms.
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This is quite revealing. It shows the series fluctuating about the value of approx-
imately 0.06 (the average calculated in equation (1.29)), with a slight downward 
trend (i.e. the growth of investment is slowing down). From the graph it is easy to 
read off that investment in 2009 fell by roughly 15% from its level in 2008, which 
was itself about 5% below the figure for 2007.

 Graphing multiple series

Investment is made up of different categories: the table in Problem 1.14 presents 
investment data under five different headings: dwellings, transport, machinery, 
intangible fixed assets and other buildings. Together they make up total invest-
ment. It is often useful to show all of the series together on one graph. Figure 1.20 
shows a multiple time-series graph of these investment data.

Construction of this type of graph is straightforward; it is just an extension of 
the technique for presenting a single series. The chart shows that all investment 
categories have increased over time in a fairly similar way, including the rise then 
fall in 2008, apart from the ‘intangible fixed assets’ category. This series includes 
items such as the value of patents held by a company, which is hard to measure, 
and the estimated values are likely not to vary much from year to year.

Other noticeable features of the graph are the particularly steep decline in 
investment in dwellings in 2008–9 and the fall in machinery investment around 
2000 while other categories, particularly dwellings, continued to increase. It is 
difficult from the graph to tell which categories have increased most rapidly over 
time: the 1977 values are relatively small and hard to distinguish. In fact, it is the 
‘intangible fixed assets’ category (the smallest one) which has increased fastest in 
proportionate terms. This is easier to observe with a few numerical calculations 
(covered later in this chapter) rather than trying to read a cramped graph.
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Reading too much into a graph

It is possible to draw too many conclusions from a graph. Humans seem programmed to 
look for patterns and to find them, even when they are not there. In 1998, there was a small 
blip in investment in transport (see Figure 1.20). So what caused it? The answer is probably 
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One could also produce a multiple series graph of the logarithms of the vari-
ables and also of the change, as was done for the total investment series. Since 
the log transformation tends to squeeze the values (on the y-axis) closer 
together (compare Figures 1.16 and1.18), it might be easier to see the relative 
rates of growth of the series using this method. This is left as an exercise for the 
reader.

Another complication arises when the series are of different orders of magni-
tude and it is difficult to make all the series visible on the chart. Some lie along the 
very bottom of the chart, others at the top. In this case you can chart some of the 
series against a second vertical scale, on the right-hand axis. An example is shown 
in Figure 1.21, plotting the (total) investment data with the interest rate, which 
has much smaller numerical values. If the same axis were used for both series, the 
interest rate would appear as a horizontal line coinciding with the x-axis. This 
would reveal no useful information to the viewer.

It would usually be inappropriate to use this technique on data such as the 
investment categories graphed in Figure 1.20. Those are directly comparable to 
each other and to magnify one of the series by plotting it on a separate axis risks 
distorting the message for the reader. However, investment and interest rates are 
measured in inherently different ways and one cannot directly compare their 
sizes; hence it is acceptable to use separate axes. The graph allows one to observe 
the movements of the series together and hence perhaps infer something about the 
relationship between them. The rising investment and falling interest rate suggest 
an inverse relationship between them.

‘nothing’; it is just a random movement in the data. It is difficult to separate random move-
ments from causal effects, and the temptation is often to favour the latter.

My belief, based on practical experience, is that you rarely get more than two or three 
genuine findings from a graph and they will be pretty obvious to see. If you have a list of 10, 
you have probably imagined most of them. For the investment graphs, the findings are (i) 
the general upward trend, (ii) the hump around 1990 and (iii) the steep decline in 2008. To 
find more subtle effects in the data you need to use more sophisticated methods, many of 
which are covered in later chapters.
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The investment categories may also be illustrated by means of an area graph, 
which plots the four series stacked one on top of the other, as illustrated in 
Figure 1.22.

This shows, for example, the ‘dwellings’ and ‘machinery’ categories each take 
up about one quarter of total investment. This is easier to see from the area graph 
than from the multiple series graph in Figure 1.20.
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Overlapping the ranges of the data series

The graph below provides a nice example of how to compare different time periods on a 
single chart. The aim is to compare the recessions starting in 1973Q2, 1979Q2, 1990Q2 
and 2008Q1 and the subsequent recoveries of real gross domestic product (GDP). Instead 
of plotting time on the horizontal axis, the number of quarters since the start of each 
recession is used, so that the series overlap. To aid comparison, all the series have been set 
to a value of 100 in the initial quarter. From this, one can see that the most recent reces-
sion, starting in 2008, was deeper and longer lasting than the earlier ones.
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Given the following data:

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Profit  50  60  25 –10  10  45  60  50  20  40

Sales 300 290 280 255 260 285 300 310 300 330

(a) Draw a multiple time-series graph of the two variables. Label both axes appropriately and 
provide a title for the graph.

(b) Adjust the graph by using the right-hand axis to measure profits, the left hand axis sales. 
What difference does this make?

?

Exercise 1.5

‘Chart junk’

With modern computer software it is easy to get carried away and produce a chart that 
actually hides more than it reveals. There is a great temptation to add some 3-D effects, 
liven it up with a bit of colour, rotate and tilt the viewpoint, etc. This sort of stuff is generally 
known as ‘chart junk’. As an example, look at Figure 1.23 which is an alternative to the area 
graph in Figure 1.22. It was fun to create, but it doesn’t get the message across at all. Taste 
is, of course, personal, but moderation is usually an essential part of it.
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Improving the presentation of graphs – example 2: time series

Earlier we showed how a bar chart might be improved. Here we look at a slightly curious 
presentation of time-series data, taken from the Office for National Statistics7 and 
relating to the importance of the EU to UK trade. This chart shows the GDP of various 

7See http://www.ons.gov.uk/ons/rel/international-transactions/outward-foreign- 
affiliates-statistics/how-important-is-the-european-union-to-uk-trade-and-investment-/
sty-eu.html. This is the author’s rendition, so the colours do not quite match the more 
vivid original.

http://www.ons.gov.uk/ons/rel/international-transactions/outward-foreign-�affiliates-statistics/how-important-is-the-european-union-to-uk-trade-and-investment-/sty-eu.html
http://www.ons.gov.uk/ons/rel/international-transactions/outward-foreign-�affiliates-statistics/how-important-is-the-european-union-to-uk-trade-and-investment-/sty-eu.html
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It actually takes a while to interpret this graph; it is not at all intuitive. Among the rea-
sons are:

1. A bar chart is used to present time-series data.
2. There are actually two time series presented, summarised in the two sets of bars, one for 

EU countries, one for the rest.
3. The colours give information about individual countries, but it is difficult to go from the 

colour to the legend, and then back again to see the pattern. The author seems to have 
just used the Excel defaults for this type of graph.

How could this be improved? It presents a lot of information, so the answer is not immedi-
ately obvious. It helps to focus on what messages are being conveyed. From the text of the 
ONS document these are:

1. EU combined GDP is larger than that of any individual country, surpassing the USA in 
2003, and

2. EU growth has been slower than non-EU growth.
➔
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We therefore do not need all of the information in the original graph; for example, nothing 
is said about individual EU economies. Hence, a better version of the chart would be as 
follows:
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Now it is much easier to see the relevant features. The EU (blue line) overtakes the United 
States in 2003 (though it was also bigger pre-1999, hard to see from the original chart) and 
EU growth is slower than all non-EU territories, principally since 2008. One can also see the 
rapid growth of China, again difficult to see in the initial chart. The legend is put on the 
right-hand side, and it is very easy to match up the colours to the associated country or 
region.

This revised chart is what Excel calls a ‘combo’ chart, which shows two different types of 
chart in the same picture. The non-EU territories make up an area graph (hence filled with 
colour), while the EU is a line chart.

 Numerical summary statistics

The graphs have revealed quite a lot about the data already, but we can also calcu-
late numerical descriptive statistics as we did for the cross-section data. First, we 
consider the mean, and then the variance and standard deviation.

 The mean of a time series

We could calculate the mean of investment itself, but this would not be very infor-
mative. Because the series is trended over time, it passes through the mean at 
some point between 1977 and 2005 but never returns to it. The mean of the series 
is actually £123.1bn, achieved in 1995–6, but this is not very informative since it 
tells nothing about its value today, for instance. The problem is that the variable is 
trended, so that the mean is not typical of the series. The annual increase in 
investment is also trended (though much less so), so it is subject to similar criti-
cism (see Figure 1.17).

It is better in this case to calculate the average growth rate, since this is less likely 
to have a trend and hence more likely to be representative of the whole time 
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period. The average growth rate of investment spending was calculated in 
 equation (1.29) as 6.2% p.a. by measuring the slope of the graph of the log invest-
ment series, but this is only one way of measuring the growth rate. Furthermore, 
different methods give slightly different answers, although this is rarely impor-
tant in practice.

The growth rate may be calculated based upon annual compounding or con-
tinuous compounding principles. The former is probably the more common and 
simpler method, so we explain this first.

Calculating the growth rate based upon annual compounding

This method likens growth to the way money grows in a savings account as inter-
est is added annually. We can calculate the growth rate in the following way:

(1) Calculate the overall growth factor of the series, i.e. xT>x1 where xT  is the final 
observation and x1 is the initial observation. This is:

xT

x1
=

204 270
28 351

= 7.2050,

i.e. investment expenditure is 7.2 times larger in 2009 than in 1977.
(2) To get the annual figure, take the T - 1 root of the growth factor, where T is the 

number of observations. Since T = 33 we calculate  

3227.205 = 1.0637  (This 
can be performed on a scientific calculator by raising 7.205 to the power 
7.205(1>32) = 1.0637.)

(3) Subtract 1 from the result in the previous step, giving the growth rate as a dec-
imal. In this case we have 1.0637 - 1 = 0.0637.

Thus the average growth rate of investment is 6.4% p.a., slightly different from 
the 6.2% calculated earlier (which, as we will see, is based on continuous com-
pounding). The difference is small in practical terms, and neither is definitively 
the right answer. Both are estimates of the true growth rate. To emphasise this 
issue, note that since the calculated growth rate is based only upon the initial and 
final observations, it could be unreliable if either of these two values is an outlier 
(as in this case, the 2009 value). For example, if the growth rate is measured from 
1977 to 2007, then the answer is 7.0%. With a sufficient span of time, however, 
such outliers are unlikely to be a serious problem.
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The power of compound growth

The Economist provided some amusing and interesting examples of how a $1 investment 
can grow over time. They assumed that an investor (they named her Felicity Foresight, for 
reasons that become obvious) started with $1 in 1900 and had the foresight or luck to 
invest, each year, in the best performing asset of the year. Sometimes she invested in equi-
ties, some years in gold and so on. By the end of the century she had amassed $9.6 quintil-
lion (9.6 * 1018, more than world GDP, so impossible in practice). This is equivalent to an 
average annual growth rate of 55%. In contrast, Henry Hindsight did the same, but invested 
in the previous year’s best asset. This might be thought more realistic. Unfortunately, his $1 
turned into only $783, a still respectable annual growth rate of 6.9%. This, however, is 
beaten by the strategy of investing in the previous year’s worst performing asset (what 
goes down must come up . . .). This turned $1 into $1730, a return of 7.7%. Food for thought!

Source: Based on The Economist, 12 February 2000, p. 111.
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 The geometric mean

In calculating the average growth rate of investment we have implicitly 
 calculated the geometric mean of a series. If we have a series of n values, 
then their geometric mean is calculated as the nth root of the product of the 
values, i.e.

geometric mean = nBq
n

i = 1
xi (1.30)

The x values in this case are the growth factors in each year, as in Table 1.15 (the 
values in intermediate years are omitted). The ‘Π’ symbol is similar to the use of Σ, 
but means ‘multiply together’ rather than ‘add up’.

The product of the 32 growth factors is 7.205 (the same as is obtained by divid-
ing the final observation by the initial one – why?) and the 32nd root of this is 
1.0637. This latter figure, 1.0637, is the geometric mean of the growth factors, and 
from it we can derive the growth rate of 6.37% p.a. by subtracting 1.

Whenever one is dealing with growth data (or any series that is based on a 
multiplicative process), one should ideally use the geometric mean rather 
than the arithmetic mean to get the answer. However, using the arithmetic 
mean in this case generally gives a similar answer, as long as the growth rate is 
reasonably small. If we take the arithmetic mean of the growth factors, we 
obtain:

1.142 + 1.190 + g + 0.963 + 0.850
32

= 1.0664

giving an estimate of the growth rate of 1.0664 - 1 = 0.0664 = 6.64% p.a. – close 
to the correct value. Equivalently, one could take the average of the annual growth 
rates (0.142, 0.190, etc.), giving 0.0664, to get the same result. Use of the arithmetic 
mean is justified in this context if one needs only an approximation to the right 
answer and annual growth rates are reasonably small. It is usually quicker and eas-
ier to calculate the arithmetic rather than geometric mean, especially if one does 
not use a computer.

Table 1.15 Calculation of the geometric mean – annual growth factors

Investment Growth factors

1977 28 351

1978 32 387 1.142 (=  32387>28351)

1979 38 548 1.190 (=  38548>32387)

1980 43 612 1.131 etc.

2006 227 234 1.083

2007 249 517 1.098

2008 240 361 0.963

2009 204 270 0.850

Note: Each growth factor simply shows the ratio of that year’s investment to the previous year’s.
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Calculating the growth rate based upon continuous compounding

This method is based upon the idea that growth is a continuous process, accord-
ing to an equation such as

xT = x1eg(T- 1)

Obtaining the growth rate g as the subject of this equation requires a little math-
ematics. Taking natural logs:

 ln xT -  ln x1 * g1T - 12
and hence

g =
 ln  xT -  ln x1

T - 1

This is what was calculated earlier (equation 1.29) when we found the slope of the 
graph of the logarithm of investment. That calculation gave a result of 6.2% p.a. 
The continuous method will always provide a slightly smaller estimate of the 
growth rate than the annual compounding method.

To conclude this section we note that the two methods’ results are related and 
that one can be derived from the other. If we start with the continuous method 
estimate of 0.062 we can obtain:

e0.062 - 1 = 0.064

which gives the result calculated by the annual compounding method.
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Compound interest

The calculations we have performed relating to growth rates are analogous to computing 
compound interest. If we invest £100 at a rate of interest of 10% p.a., then the investment 
will grow at 10% p.a. (assuming all the interest is reinvested). Thus after one year the total 
will have grown to £100 * 1.1(£110), after two years to £100 * 1.12(£121) and after t 
years to £100 * 1.1t. The general formula for the terminal value St of a sum S0 invested for 
t years at a rate of interest r is

St = S011 + r2 t (1.31)

where r is expressed as a decimal. Rearranging (1.31) to make r the subject yields

r = 2t St>S0
- 1 (1.32)

which is precisely the formula for the average growth rate. To give a further example: sup-
pose an investment fund turns an initial deposit of £8000 into £13 500 over 12 years. What 
is the average rate of return on the investment? Setting S0 = 8, St = 13.5, t = 12 and 
using (1.32), we obtain

r = 212 13.5>8 - 1 = 0.045

or 4.5% p.a.
Formula (1.32) can also be used to calculate the depreciation rate and the amount of 

annual depreciation on a firm’s assets. In this case, S0 represents the initial value of the 
asset, St represents the final or scrap value and the annual rate of depreciation (as a nega-
tive number) is given by r from equation (1.32).
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 The variance of a time series

How should we interpret the variance of a time series? For cross-section data 
(wealth), the variance measured the spread of the distribution, comparing richer 
with poorer. But the spread of investment values is conceptually different. The 
 variance of the investment data can be calculated, but it would be uninformative 
in the same way as the mean. Since the series is trended, and this is likely to con-
tinue in the longer run, the variance is in principle equal to infinity. The calcu-
lated variance would be closely tied to the sample size: the larger it is, the larger 
the variance.

We can use the variance, however, to measure the volatility of a time series, 
how much it varies from year to year around the (growing) mean value. For this, it 
makes sense to calculate the variance of the growth rate, which has little trend in 
the long run.

This variance can be calculated from the formula:

s2 = a (x - x)2

n - 1
= ax2 - nx2

n - 1
 (1.33)

Where x is the rate of growth and x is its average value. The calculation is set out in 
Table 1.16 using the right-hand formula in (1.33).

The variance is therefore

s2 =
0.3230 - 32 * 0.06642

31
= 0.0059

and the standard deviation is 0.0766, the square root of the variance. The coeffi-
cient of variation is

cv =
0.0766
0.0664

= 1.15

i.e. the standard deviation of the growth rate is about 115% of the mean.
Note three things about this calculation: first, we have used the arithmetic 

mean (using the geometric mean makes very little difference); second, we 
have used the formula for the sample variance since the period 1977 to 2005 
constitutes a sample of all the possible data we could collect and third, we 
could have equally used the growth factors for the calculation of the variance 
(why?).

Table 1.16 Calculation of the variance of the growth rate

Year Investment Growth rate, x x2

1978 32 387 0.142 0.020
1979 38 548 0.190 0.036
1980 43 612 0.131 0.017

: : : :
2006 227 234 0.083 0.007
2007 249 517 0.098 0.010
2008 240 361 -0.037 0.001
2009 204 270 -0.150 0.023

Totals 2.1253 0.3230
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Worked example 1.7 

Given the following data:

Year 1999 2000 2001 2002 2003

Price of a laptop PC 1100 900 800 750 700

we can work out the average rate of price growth p.a. as follows. The overall 

growth factor is 
700

1100
= 0.6363. The fact that this number is less than 

one simply reflects the fact that the price has fallen over time. It has fallen to 
64% of its original value. To find the annual rate, we take the fourth root of 
0.6363 (four years of growth). Hence, we get 14 0.6363 = 0.893, i.e. each year 
the price falls to 89% of its value the previous year. This implies price is falling 
at 0.893 - 1 = -0.107, or approximately an 11% fall each year.

We can see if the fall is more or less the same by calculating each year’s 
growth factor. These are:

Year 1999 2000 2001 2002 2003

Laptop price 1100 900 800 750 700

Growth factor 0.818 0.889 0.9375 0.933

Price fall -19 -11 -6 -7

The price fall was larger in the earlier years, in percentage as well as in abso-
lute terms. Calculating the standard deviation of the values in the final row 
provides a measure of the variability from year to year. The variance is given by

s2 =
(19 - 11)2 + (11 - 11)2 + (6 - 11)2 + (7 - 11)2

3
= 30.7.

The standard deviation is then 5.54%. (The calculations are shown rounded, 
but the answer is accurate.)

(a) Using the data in Exercise 1.5, calculate the average level of profit over the time period 
and the average growth rate of profit over the time period. Which appears more useful?

(b) Calculate the variance of profit and compare it to the variance of sales.?

Exercise 1.6

Graphing bivariate data: the scatter diagram

The analysis of investment is an example of the use of univariate methods: only a 
single variable is involved. However, we often wish to examine the relationship 
between two (or sometimes more) variables and have to use bivariate (or 
 multivariate) methods. To illustrate the methods involved we shall examine the 
relationship between investment expenditures and gross domestic product 
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(GDP). Economics tells us to expect a positive relationship between these 
 variables; higher GDP is usually associated with higher investment. Table 1.17 
provides data on GDP for the United Kingdom.

A scatter diagram (also called an XY chart) plots one variable (in this case invest-
ment) on the y-axis, the other (GDP) on the x-axis, and therefore shows the rela-
tionship between them. For example, one can see whether high values of one 
variable tend to be associated with high values of the other. Figure 1.24 shows the 
relationship for investment and GDP.

The chart shows a strong linear relationship between the two variables, apart 
from a dip in the middle. This reflects the sharp fall in investment after 1990 
which is not matched by a fall in GDP (if it were, the XY chart would show a linear 
relationship without the dip). It is important to recognise the difference between 
the time-series plot and the XY chart. The sharp fall in investment in 2008 which 
we noted earlier is matched by a similar fall in GDP; hence the XY chart does not 
reveal this.

Table 1.17 GDP data (£m)

Year GDP Year GDP Year GDP

1977 146 973 1988 478 510 1999 928 730
1978 169 344 1989 525 274 2000 976 533
1979 199 220 1990 570 283 2001 1 021 828
1980 233 184 1991 598 664 2002 1 075 564
1981 256 279 1992 622 080 2003 1 139 746
1982 281 024 1993 654 196 2004 1 202 956
1983 307 207 1994 692 987 2005 1 254 058
1984 329 913 1995 733 266 2006 1 328 363
1985 361 758 1996 781 726 2007 1 404 845
1986 389 149 1997 830 094 2008 1 445 580
1987 428 665 1998 879 102 2009 1 394 989
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Figure 1.24
Scatter diagram of invest-
ment (vertical axis) against 
GDP (horizontal axis) 
(nominal values)

Note: The (x, y) coordinates of each point are given by the values of investment and GDP, respectively. 
Thus the first (1977) data point is drawn 28 351 units above the horizontal axis and 146 973 units from 
the vertical one.
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Because of inflation and growth, later observations tend to be towards the top 
right of the XY chart (both investment and GDP are increasing over time) but this 
does not have to happen; if both variables fluctuated up and down, later 
 observations could be at the bottom left (or centre, or anywhere). By contrast, in a 
time-series plot, later observations are always further to the right.

Note that both variables are in nominal terms, i.e. they make no correction for 
inflation over the time period. This may be seen algebraically: investment expen-
diture is made up of the volume of investment (I) times its price (PI). Similarly, nom-
inal GDP is real GDP (Y) times its price (PY). Thus the scatter diagram actually 
charts PI * I  against PY * Y. It is likely that the two prices follow a similar trend 
over time and that this might dominate the movements in real investment and 
GDP. The chart then shows the relationship between a mixture of prices and 
quantities, when the more interesting relationship is between the quantities of 
investment and output.

Figure 1.25 shows the relationship between the quantities of investment and 
output, i.e. after the strongly trending price effects have been removed. It is not so 
straightforward as the nominal graph. There is now a ‘knot’ of points in the centre 
where perhaps both (real) investment and GDP fluctuated up and down. Overall, 
it is clear that something ‘interesting’ happened around 1990 that merits addi-
tional investigation.

Chapter 10, on index numbers, explains in detail how to derive real variables 
from nominal ones, as we have done here, and generally describes how to correct 
for the effects of inflation on economic magnitudes.
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Figure 1.25
The relationship 
between real 
 investment and 
real output

(a) Once again using the data from Exercise 1.5, draw an XY chart with profits on the vertical 
axis and sales on the horizontal axis. Choose the scale of the axes appropriately.

(b) If using Excel to produce graphs, right click on the graph, choose ‘Add trendline’ and 
choose a linear trend. This gives the ‘line of best fit’ (covered in detail in Chapter 7). What 
does this appear to show?

?

Exercise 1.7
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Improving graphs – scatter plot example

Our third example of how to improve a graph starts with the following picture. You 
might want to look at it for a few moments and think how you might better present the 
data before reading on. The picture looks at life satisfaction and GDP across some OECD 
countries.

8http://www.theguardian.com/news/datablog/2015/jul/01/greece-life-satisfaction- 
rating-oecd-countries

UK

Life satisfaction and GDP, 2007–2014
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GDP per capita 2007 to 2014 (percentage difference)
Life satisfaction 2007 to 2014 (percentage difference)

Source: adapted from http://www.ons.gov.uk/ons/dcp171766_406995.pdf, Figure 2.

The chart presents two data series, for life satisfaction and for GDP, and one can try to 
draw conclusions from it. GDP has grown in most countries (exception: Greece), but life 
satisfaction more often goes down rather than up. It is difficult to see if or how growth 
of GDP relates to increased satisfaction. Sometimes the bars are in the same direction 
(for a country), sometimes opposed. The Guardian turned this into an interactive info-
graphic8 which allowed you to see either GDP or satisfaction but not both together. This 
is terrible.

Since there are two variables, this really cries out for a scatter plot, as shown here.

http://www.ons.gov.uk/ons/dcp171766_406995.pdf
http://www.theguardian.com/news/datablog/2015/jul/01/greece-life-satisfaction-�rating-oecd-countries
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Data transformations

In analysing employment and investment data in the examples above, we have 
often changed the variables in some way in order to bring out the important char-
acteristics. In statistics, one usually works with data that have been transformed 
in some way rather than using the original numbers. It is therefore worth sum-
marising the main data transformations available, providing justifications for 
their use and exploring the implications of such adjustments to the original data. 
We briefly deal with the following transformations:

●	 rounding
●	 grouping
●	 dividing or multiplying by a constant
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Now one can see a lot more, more clearly (and the scatter plot actually shows more countries). 
There seems to be a positive relation between the variables, and below about 20% growth (over 
seven years, so 2.6% p.a.) satisfaction generally falls. The exception to this is Iceland, recovering 
from its severe banking crisis. Chile and Slovakia show the greatest increase in life satisfaction 
and contrast with Poland which has even higher GDP growth, yet a fall in satisfaction.

One piece of information that is missing from the improved version is the country 
names, apart from a selected few. However, the aim is to show the general relationship so 
these are not all needed. One can add individual labels (as shown) if one wants to comment 
upon a particular country.
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Rounding is a ‘trapdoor’ function: you cannot obtain the original value from the 
transformed (rounded) value. Therefore, if you are going to need the original value 
in further calculations, you should not round your answer. Furthermore, small 
rounding errors can cumulate, leading to a large error in the final answer. Therefore, 
you should never round an intermediate answer, only the final one. Even if you only 
round the intermediate answer by a small amount, the final answer could be grossly 
inaccurate. Try the following: calculate 60.29 * 30.37 - 1831 both before and 
after rounding the first two numbers to integers. In the first case you get 0.0073, and 
in the second -31.

 Grouping

When there is too much data to present easily, grouping solves the problem, 
although at the cost of hiding some of the information. The examples relating to 

Inflation in Zimbabwe

‘Zimbabwe’s rate of inflation surged to 3731.9%, driven by higher energy and food costs, and ampli-
fied by a drop in its currency, official figures show.’

BBC news online, 17 May 2007.

Whether official or not, it is impossible that the rate of inflation is known with such accu-
racy (to one decimal place), especially when prices are rising so fast. It would be more rea-
sonable to report a figure of 3700% in this case. Sad to say, inflation rose even further in 
subsequent months.
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●	 differencing
●	 taking logarithms
●	 taking the reciprocal
●	 deflating.

 Rounding

Rounding improves readability. Too much detail can confuse the message, so 
rounding the answer makes it more memorable. To give an example, the average 
wealth holding calculated earlier in this chapter is actually £186 875.766 (to three 
decimal places). It would be absurd to present it in this form, however. We do not 
know for certain that this figure is accurate (in fact, it almost certainly is not). 
There is a spurious degree of precision which might mislead the reader. How 
much should this be rounded for presentational purposes? Remember that the 
figures have already been effectively rounded by allocation to classes of width  
10 000 or more (all observations have been rounded to the mid-point of the inter-
val). However, much of this rounding is offsetting, i.e. numbers rounded up offset 
those rounded down, so the class mean is reasonably accurate. Rounding to  
£187 000 makes the figure much easier to remember, and is only a change of 0.07% 
(187 000>186 874.766 = 1.00067), so is a reasonable compromise. In a report, it 
might be best to use the figure of £187 000 therefore. In the text above, the answer 
was not rounded to such an extent since the purpose was to highlight the meth-
ods of calculation.
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education and unemployment and to wealth used grouped data. Using the raw 
data would have given us far too much information, so grouping is a first stage in 
data analysis. Grouping is another trapdoor transformation: once it’s done you 
cannot recover the original information (unless you have access to the raw data, 
of course).

 Dividing/multiplying by a constant

This transformation is carried out to make numbers more readable or to make cal-
culation simpler by removing trailing zeros. The data on wealth were divided by 
1000 to ease calculation; otherwise the fx2 column would have contained 
extremely large values. Some summary statistics (e.g. the mean) will be affected by 
the transformation, but not all (e.g. the coefficient of variation). Try to remember 
which are affected. E and V operators (see Appendix 1B) can help. The transforma-
tion is easy to reverse.

 Differencing

In time-series data there may be a trend, and it is better to describe the features of 
the data relative to the trend. The result may also be more economically meaning-
ful, e.g. governments are often more concerned about the growth of output than 
about its level. Differencing is one way of eliminating the trend (see Chapter 11 for 
other methods of detrending data). Differencing was used for the investment data 
for both of these reasons. One of the implications of differencing is that informa-
tion about the level of the variable is lost.

 Taking logarithms

Taking logarithms is used to linearise a non-linear series, in particular one that is 
growing at a fairly constant rate. It is often easier to see the important features of 
such a series if the logarithm is graphed rather than the raw data. The logarithmic 
transformation is also useful in regression (see Chapter 9) because it yields esti-
mates of elasticities (e.g. of demand). Taking the logarithm of the investment data 
linearised the series and tended to smooth it. The inverses of the logarithmic 
transformations are 10x (for common logarithms) and ex (for natural logarithms) 
so one can recover the original data.

 Taking the reciprocal

The reciprocal of a variable might have a useful interpretation and provide a 
more intuitive explanation of a phenomenon. The reciprocal transformation 
will also turn a linear series into a non-linear one. The reciprocal of turnover in 
the labour market (i.e. the number leaving unemployment divided by the num-
ber unemployed) gives an idea of the duration of unemployment. If one-half of 
those unemployed find work each year (turnover = 0.5), then the average dura-
tion of unemployment is two years (=1>0.5). If a graph of turnover shows a linear 
decline over time, then the average duration of unemployment will be rising, at a 
faster and faster rate. Repeating the reciprocal transformation recovers the origi-
nal data.
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 Deflating

Deflating turns a nominal series into a real one, i.e. one that reflects changes in 
quantities without the contamination of price changes. This is dealt with in more 
detail in Chapter 10. It is often more meaningful in economic terms to talk about 
a real variable than a nominal one. Consumers are more concerned about their 
real income than about their money income, for example.

Confusing real and nominal variables is dangerous. For example, someone’s 
nominal (money) income may be rising yet their real income falling (if prices are 
rising faster than money income). It is important to know which series you are 
dealing with (this is a common failing among students new to statistics). An 
income series that is growing at 2 to 3 p.a. is probably a real series; one that is 
growing at 10% p.a. or more is likely to be nominal.

The information and data explosion

Recent developments in technology, especially those relating to the web, have led 
to a huge increase in data availability. Data files can now have tags allowing other 
websites to query the data, provide ‘mashups’ and exhibit the data in new ways. 
This is leading to a democratisation of data – anyone can now obtain them, draw 
graphs, interpret them and so on. Most of the data manipulation is done behind 
the scenes; the user does not need to have any understanding of the formulae nor 
of the calculations involved. This has some implications for those producing and 
using statistics, which we consider here.

First, however, we take a look at some examples of such ‘data visualisation’. One 
of the most striking is Gapminder (www.gapminder.org), a site which allows you to 
construct interactive graphs of many variables. It is innovative in that it provides an 
enormous amount of information in each graph. Figure 1.26 shows a graph of CO2 
emissions against real GDP (an XY chart) for countries around the world in 1950.

As well as the two main variables, note the additional features:

●	 The data points are coloured bubbles. The colour represents the region and the 
size of the bubble represents the total emissions of the country (the variable on 
the y-axis is emissions per capita). Hence, we actually have four variables repre-
sented on the chart.

●	 Much of the graph can be customised. The axes can be linear or log scale (note 
that Gapminder has chosen a linear scale for emissions graphed against the log 
of income). The size of the bubble can be changed to represent alternative vari-
ables, e.g. an index of urbanisation.

●	 By hovering the cursor over a bubble, the country name is revealed (here, the 
United States) and the values for that observation are shown on the axes.

●	 By ‘playing’ the graph or using the slider, one can go forward through time to 
see the changes in a most vivid way. Unfortunately, this cannot be replicated in 
this text, but Figure 1.27 is the same graph for 2008.

The new graph shows how total emissions have grown (note China in particular) 
over the time period. A good feature of Gapminder is that the underlying data can 
be downloaded so that you can carry out your own further analysis if you wish to.

http://www.gapminder.org
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Figure 1.26
CO2 emissions versus real 
GDP in 1950

Source: From www.gapminder.org, Visualization formGapminder World, powered by Trendalyzer from 
www.gapminder.org.

Figure 1.27
CO2 emissions versus real 
GDP in 2008

Source: From www.gapminder.org, Visualization from Gapminder World, powered by Trendalyzer from 
www.gapminder.org.

http://www.gapminder.org
http://www.gapminder.org
http://www.gapminder.org
http://www.gapminder.org
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Google (of course) is another company developing such tools, such as Trends, 
Correlate and Fusion Tables. Some of these are still in beta, so will no doubt have 
developed by the time you read this. To locate them, use Google.

Another interesting example is the Mayor of London’s Datastore (data.london.
gov.uk/) which aims to open up London’s data to the public, for free. It contains a 
multitude of data, some of it from other sites, and unlike Gapminder it only pro-
vides the data, with the idea being that other companies will create websites, 
mobile apps, and so forth that will interpret the data for you.

Sites such as Yahoo Finance (http://uk.finance.yahoo.com/) or Google Finance 
(http://www.google.co.uk/finance) allow you to examine a large amount of finan-
cial data and draw graphs of the data simply by selecting from a few menus.

Another development is ‘data mining’, which uses artificial intelligence tech-
niques to ‘mine’ large databases of information, looking for trends and other fea-
tures. For example, it is used by supermarkets to analyse their sales data with a 
view to spotting spending patterns and exploit them. Not only does one not need 
to perform calculations on the data, one does not even need to know what ques-
tions to ask of it.

Do these developments mean that there is less need to study statistics? 
Obviously, I am unlikely to answer ‘yes’ to this! The interpretation of the results 
still requires human judgement, aided by statistical tests to ensure one is not just 
observing random variations. Furthermore, the use of pictures (which many of 
such sites rely on) can be highly informative but it is difficult to convey that to 
another person without the picture. One can look at a graph of CO2 emissions, 
but to convey the trend it is easier to pass on the average growth rate of those 
emissions. Looking at the Gapminder graphs above, how would you convey to 
another person (without showing them the graphs) how fast US emissions have 
risen? (The answer is only 0.2% p.a., somewhat surprisingly. China’s have risen by 
6.4% p.a.)

Easy access to such data also means it will be used indiscriminately by those 
unaware of its shortcomings, unsure how to correctly interpret them and eager to 
use them for support rather than illumination. It is all the more important, there-
fore, that more people are trained to understand and not be misled by statistics.

Writing statistical reports

This text presents most of the results of statistical analyses in a fairly formal way, 
since the aim is exposition and explanation of the methods. However, more often 
you might be writing or reading a short statistical report which requires a punch-
ier and more concise presentation. This will attract attention, but it is important 
to maintain the accuracy of what is said.

Here is some advice on writing such a report, organised in sections on writing, 
graphs and tables. I have drawn on two excellent documents of the UN Economic 
Commission for Europe9 on ‘making data meaningful’, and I recommend that 
you go to those sources.

9UNECE, Making Data Meaningful, parts 1 and 2, available at http://www.unece.org/stats/
documents/writing/.

http://uk.finance.yahoo.com
http://www.google.co.uk/finance
http://www.unece.org/stats/documents/writing
http://www.unece.org/stats/documents/writing
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 Writing

In a report, you should put the most important facts first, less important and 
supporting material afterwards. This is known as the ‘inverted pyramid’. The 
opening paragraph should be concise and tell the story, making little use of 
numbers if possible.

Each paragraph should focus on one or two main points, explained using short 
sentences. Aim to avoid jargon, so-called elevator statistics (“. . . this went up, that 
went down . . .”), acronyms and making the reader refer to tables in order to under-
stand the point. The text should provide interpretation and context rather than 
repeating values which are in tables.

Break up the text with sub-headings, which should include a verb (to 
encourage you to make a point with the heading). For example, “More Britons 
finding work” is better than “Employment trends in Britain”. Once you have 
completed the story, write the headline with the aim of catching the reader’s 
attention.

As an example, consider the discussion earlier on the comparison of 1979 
and 2005 wealth distributions in the United Kingdom. That was written in text-
book style for the purpose of learning, but in a report might be better presented 
as follows.

Britons becoming wealthier but inequality persists

In 2005 the average Briton had wealth of around £187,000, about 11 times greater than 
in 1979. Adjusting for inflation, wealth has grown by nearly three times, or an average 
of 4% p.a. Despite this, the gap between rich and poor has remained much the same, 
with someone in the top 10% of the distribution owning 25 times more wealth than 
someone in the bottom 10%.

 Tables

Tables in a report should be simple, sometimes called presentation tables, in 
 contrast to reference tables which are best kept to an appendix. Many of the tables 
in this text are reference tables, such as the table calculating average wealth, 
Table 1.6. These are generally too complex to put into the text of a report and would 
have to be simplified in some way, according to the point that is being made.

Tables should be comprehensible in themselves, without the reader needing to 
look for further information. One way to ensure this is to ask if the table could be 
cut and pasted into another document and still make sense. Hence the table needs 
at least an informative title.

Another useful tip is to order the categories in a table according to frequency 
where this is appropriate. Consider the table used in Exercise 1.1(b) earlier, on 
tourist destinations. There is no natural ordering of the four countries, so why not 
order the countries by the number of tourists, as follows?

Tourists (millions) visiting European countries, 2013

France Spain Italy Germany

All tourists 12.4 9.8 7.5 3.2
English tourists  2.7 3.6 1.0 0.2
Non-English tourists  9.7 6.2 6.5 3.0
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Note the difference in presentation from the exercise and how this makes it easier 
to read the table. In presentation tables it is important to keep decimal places as 
small as possible (also aligning the numbers properly) to aid readability. In this 
text, we often use more decimal places so that you can follow calculation of vari-
ous statistics. This is not necessary for presentation tables.

 Graphs

Much advice has already been given about drawing graphs already, but there are 
some additional points relevant to a report. Make sure that each graph tells a sim-
ple story with not more than one or two elements. An informative title helps with 
this, as shown below illustrating the tourism data.

France has the most tourists but the English prefer Spain
14

France Germany

English tourists Non-English tourists

ItalySpain

12

10

8

6

4

2

0

Compare this chart with the answer to Exercise 1.1, where the countries are not 
ordered by frequency. This one is easier to read, and the title spells out the essen-
tial messages.

Guidance to the student: how to measure your progress

Now you have reached the end of the chapter your work is not yet over. It is very 
unlikely that you have fully understood everything after one reading. What you 
should do now is:

●	 Check back over the learning outcomes at the start of the chapter. Do you feel 
you have achieved them? For example, can you list the various different data 
types you should be able to recognise (the first learning outcome)?

●	 Read the chapter summary below to help put things in context. You should 
recognise each topic and be aware of the main issues, techniques, etc., within 
them. There should be no surprises or gaps.

●	 Read the list of key terms. You should be able to give a brief and precise definition 
or description of each one. Do not worry if you cannot remember all the formu-
lae (though you should try to memorise simple ones, such as that for the mean).

●	 Try out the problems (most important!). Answers to odd-numbered problems 
are at the back of the text, so you can check your answers. There is more detail 
for some of the answers on the text’s website.
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From all of this, you should be able to work out whether you have really mas-
tered the chapter. Do not be surprised if you have not – it will take more than one 
reading. Go back over those parts where you feel unsure of your knowledge. Use 
these same learning techniques for each chapter.

Summary

●	 Descriptive statistics are useful for summarising large amounts of information, 
highlighting the main features but omitting the detail.

●	 Different techniques are suited to different types of data, e.g. bar charts for 
cross-section data and rates of growth for time series.

●	 Graphical methods, such as the bar chart, provide a picture of the data. These 
give an informal summary, but they are unsuitable as a basis for further analysis.

●	 Important graphical techniques include the bar chart, frequency distribution, 
relative and cumulative frequency distributions, histogram and pie chart. For 
time-series data, a time-series chart of the data is informative.

●	 Numerical techniques are more precise as summaries. Measures of location 
(such as the mean), of dispersion (the variance) and of skewness form the basis 
of these techniques.

●	 Important numerical summary statistics include the mean, median and 
mode; variance, standard deviation and coefficient of variation; coefficient of 
skewness.

●	 For bivariate data, the scatter diagram (or XY graph) is a useful way of illustrat-
ing the data.

●	 Data are often transformed in some way before analysis, e.g. by taking logs. 
Transformations often make it easier to see key features of the data in graphs 
and sometimes make summary statistics easier to interpret. For example, with 
time-series data the average rate of growth may be more appropriate than the 
mean of the series.

absolute dispersion
area graph
arithmetic mean
average growth rate
bar chart
bivariate method
box and whiskers plot
Chebyshev’s inequality
class interval
class width
coefficient of skewness
coefficient of variation
compound growth

compound interest
cross-section data
cross-tabulation
data transformation
decile
depreciation rate
elasticity
expected value
frequency
frequency density
frequency table
geometric mean
growth factor

Key terms and concepts

➔
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heteroscedasticity
histogram
homoscedasticity
inter-quartile range
logarithm
mean
measure of dispersion
measure of location
measure of skewness
median
mid-point
mode
multiple bar chart
multiple time-series graph
multivariate method
nominal scale
non-linear trend
ordinal scale
outliers
percentile
pie chart
positively skewed
presentation tables

quantile solidus quantiles
quartile
quintile
range
ratio scale
reference tables
relative and cumulative frequencies
relative dispersion
scatter diagram (XY chart)
serial correlation
skewness
stacked bar chart
standard deviation
standard width
time-series data
time-series graph
transformed data
trend
unbiased
univariate method
variance
weighted average
z score

Atkinson, A. B., The Economics of Inequality, 2nd edn, Oxford University Press, 
1983.

Reference
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Formula Description Notes

m = a x

N

Mean of a population Use when all individual observations are available. N is the 
 population size.

m = a fx

a f

Mean of a population Use with grouped data. f represents the class or group frequencies, 
x represents the mid-point of the class interval

x = a x

n

Mean of a sample n is the number of observations in the sample

x = a fx

a f

Mean of a sample Use with grouped data

m = xL + (xU - xL)
•

N + 1
2

- F

f
¶

Median (where data 
are grouped)

xL and xU represent the lower and upper limits of the interval 
 containing the median. F represents the cumulative frequency up to 
(but excluding) the interval

s2 = a (x - m)2

N

Variance of a 
 population

N is the population size.

s2 = a f(x - m)2

a f

Population variance 
(grouped data)

s2 = a (x - x)2

n - 1

Sample variance

s2 = a f(x - x)2

n - 1

Sample variance 
(grouped data)

c.v =
s

m

Coefficient of variation The ratio of the standard deviation to the mean. A measure of 
 dispersion.

z =
x - m

s

z score Measures the distance from observation x to the mean μ measured 
in standard deviations

a f(x - m)3

Ns3

Coefficient of 
 skewness

A positive value means the distribution is skewed to the right (long 
tail to the right).

g = t-1B xT

x1
- 1

Rate of growth Measures the average annual rate of growth between years 1  
and T2n Πx Geometric mean (of n 

observations on x)

1 -
1

k2

Chebyshev’s inequality Minimum proportion of observations lying within k standard 
 deviations of the mean of any distribution

Formulae used in this chapter
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Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 1.1 The following data show the education and employment status of women aged 20–29:

Higher 
education A levels

Other 
qualification

No 
qualification Total

In work 209 182 577  92 1060
Unemployed  12   9  68  32  121
Inactive  17  34 235 136  422
Sample 238 225 880 260 1603

(a) Draw a bar chart of the numbers in work in each education category (the first line of the 
table). Can this be easily compared with the similar diagram in the text, for both males and 
females (Figure 1.1)?

(b) Draw a stacked bar chart using all the employment states, similar to Figure 1.3. Comment upon 
any similarities and differences from the diagram in the text.

(c) Convert the table into (column) percentages and produce a stacked bar chart similar to 
 Figure 1.4. Comment upon any similarities and differences.

(d) Draw a pie chart showing the distribution of educational qualifications of those in work and 
compare it to Figure 1.5 in the text.

 1.2 The data below show the average hourly earnings (in £s) of those in full-time employment, by cate-
gory of education (NVQ levels. NVQ 4 corresponds to a university degree).

NVQ 4 NVQ 3 NVQ 2 Below NVQ 2 No qualification

Males 17.69 12.23 11.47 10.41 8.75
Females 14.83  9.57  9.40  9.24 7.43

(a) In what fundamental way do the data in this table differ from those in Problem 1.1?

(b) Construct a bar chart showing male and female earnings by education category. What does it 
show?

(c) Why would it be inappropriate to construct a stacked bar chart of the data? How should one 
graphically present the combined data for males and females? What extra information is neces-
sary for you to do this?

 1.3 Using the data from Problem 1.1:

(a) Which education category has the highest proportion of women in work? What is the 
 proportion?

(b) Which category of employment status has the highest proportion of women with a degree? 
What is the proportion?

Problems
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 1.4 Using the data from Problem 1.2:

(a) What is the premium, in terms of average earnings, of a degree over A levels (NVQ 3)? Does this 
differ between men and women?

(b) Would you expect median earnings to show a similar picture? What differences, if any, might 
you expect?

 1.5 The distribution of marketable wealth in 1979 in the United Kingdom is shown in the table below 
(adapted from Inland Revenue Statistics, 1981, contains public sector information licensed under 
the Open Government Licence (OGL) v3.0, http://www.nationalarchives.gov.uk/doc/open- 
government-licence/open-government:

Range Number 000s Amount £m

0– 1 606 148
1 000– 2 927 5 985
3 000– 2 562 10 090
5 000– 3 483 25 464

10 000– 2 876 35 656
15 000– 1 916 33 134
20 000– 3 425 104 829
50 000– 621 46 483

100 000– 170 25 763
200 000– 59 30 581

Draw a bar chart and histogram of the data (assume the final class interval has a width of 200 000). 
Comment on the differences between the two types of chart. Comment on any differences between 
this histogram and the latest one for 2005 given in the text of this chapter.

 1.6 The data below show the number of enterprises in the United Kingdom in 2010, arranged according 
to employment:

Number of employees Number of firms

1– 1 740 685
5– 388 990

10– 215 370
20– 141 920
50– 49 505

100– 25 945
250– 7 700
500– 2 795

1 000– 1 320

Draw a bar chart and histogram of the data (assume the mid-point of the last class interval is 2000). 
What are the major features apparent in each and what are the differences?

 1.7 Using the data from Problem 1.5:

(a) Calculate the mean, median and mode of the distribution. Why do they differ?

(b) Calculate the inter-quartile range, variance, standard deviation and coefficient of variation of 
the data.

http://www.nationalarchives.gov.uk/doc/open-�government-licence/open-government:
http://www.nationalarchives.gov.uk/doc/open-�government-licence/open-government:
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(c) Calculate the skewness of the distribution.

(d) From what you have calculated, and the data in the chapter, can you draw any conclusions about 
the degree of inequality in wealth holdings, and how this has changed?

(e) What would be the effect upon the mean of assuming the final class width to be £10m? What 
would be the effects upon the median and mode?

 1.8 Using the data from Problem 1.6:

(a) Calculate the mean, median and mode of the distribution. Why do they differ?

(b) Calculate the inter-quartile range, variance, standard deviation and coefficient of variation of 
the data.

(c) Calculate the coefficient of skewness of the distribution.

 1.9 A motorist keeps a record of petrol purchases on a long journey, as follows:

Petrol station 1 2 3

Litres purchased  33  40  25
Price per litre (pence) 134 139 137

Calculate the average petrol price for the journey.

 1.10 Demonstrate that the weighted average calculation given in equation (1.9) is equivalent to finding 
the total expenditure on education divided by the total number of pupils.

 1.11 On a test taken by 100 students, the average mark is 65, with variance 144. Student A scores 83; 
student B scores 47.

(a) Calculate the z scores for these two students.

(b) What is the maximum number of students with a score either better than A’s or worse than B’s?

(c) What is the maximum number of students with a score better than A’s?

 1.12 The average income of a group of people is £8000, and 80% of the group have incomes within the 
range £6000–10 000. What is the minimum value of the standard deviation of the distribution?

 1.13 The following data show car registrations in the United Kingdom for 1987–2010:

Year Registrations Year Registrations Year Registrations

1987 2212.6 1995 2024.0 2003 2820.7
1988 2437.0 1996 2093.3 2004 2784.7
1989 2535.2 1997 2244.3 2005 2603.6
1990 2179.9 1998 2367.0 2006 2499.1
1991 1708.5 1999 2342.0 2007 2539.3
1992 1694.4 2000 2430.0 2008 2188.3
1993 1853.4 2001 2710.0 2009 1959.1
1994 1991.7 2002 2816.0 2010 1994.6

(a) Draw a time-series graph of car registrations. Comment upon the main features of the series. (It 
looks daunting, but it will take you less than 10 minutes to type in these data.)

(b) Draw time-series graphs of the change in registrations, the (natural) log of registrations and the 
change in the ln. Comment upon the results.
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 1.14 The table below shows the different categories of investment in the United Kingdom over a series of 
years:

Year Dwellings Transport Machinery
Intangible 

fixed assets
Other 

buildings

1977 5 699 3 248 9 950 797 8 657
1978 6 325 4 112 11 709 760 9 481
1979 7 649 4 758 13 832 964 11 289
1980 8 674 4 707 15 301 1 216 13 680
1981 8 138 4 011 15 454 1 513 14 603
1982 8 920 4 489 16 734 2 040 15 730
1983 10 447 4 756 18 377 2 337 16 157
1984 11 932 5 963 20 782 2 918 17 708
1985 12 219 6 676 24 349 3 239 18 648
1986 14 140 6 527 25 218 3 219 20 477
1987 16 548 7 871 28 226 3 430 24 269
1988 21 097 9 228 32 615 4 305 30 713
1989 22 771 10 625 38 419 4 977 36 689
1990 21 048 10 572 37 776 6 298 41 334
1991 18 339 9 051 35 094 6 722 38 632
1992 18 826 8 420 35 426 6 584 34 657
1993 19 886 9 315 35 316 6 492 32 988
1994 21 155 11 395 38 426 6 702 33 945
1995 22 448 11 036 45 012 7 272 35 596
1996 22 516 12 519 50 102 7 889 37 320
1997 23 928 12 580 51 465 8 936 41 398
1998 25 222 16 113 58 915 9 461 46 286
1999 25 700 14 683 60 670 10 023 50 646
2000 27 394 13 577 63 535 10 670 51 996
2001 29 806 14 656 60 929 11 326 55 065
2002 34 499 16 314 57 152 12 614 59 972
2003 38 462 15 592 54 441 13 850 64 355
2004 44 298 14 339 59 632 14 164 67 982
2005 47 489 14 763 59 486 14 386 73 634
2006 53 331 14 855 61 497 15 531 82 020
2007 55 767 15 482 69 411 16 049 92 808
2008 50 292 14 570 67 837 16 726 90 936
2009 37 044 12 127 56 411 17 710 80 978

Use appropriate graphical techniques to analyse the properties of any one of the investment series. 
Comment upon the results. (Although this seems a lot of data, it shouldn’t take long to type in, even 
less time if two people collaborate and share their results.)

 1.15 Using the data from Problem 1.13:

(a) Calculate the average rate of growth of the series.

(b) Calculate the standard deviation around the average growth rate.

(c) Does the series appear to be more or less volatile than the investment figures used in the 
 chapter? Suggest reasons.

 1.16 Using the data from Problem 1.14:

(a) Calculate the average rate of growth of the series for dwellings.
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(b) Calculate the standard deviation around the average growth rate.

(c) Does the series appear to be more or less volatile than the investment figures used in the chap-
ter? Suggest reasons.

 1.17 How would you expect the following time-series variables to look when graphed? (e.g. Trended? Linear 
trend? Trended up or down? Stationary? Homoscedastic? Autocorrelated? Cyclical? Anything else?)

(a) Nominal national income.

(b) Real national income.

(c) The nominal interest rate.

 1.18 How would you expect the following time-series variables to look when graphed?

(a) The price level.

(b) The inflation rate.

(c) The £/$ exchange rate.

 1.19 (a)  A government bond is issued, promising to pay the bearer £1000 in five years’ time. The prevail-
ing market rate of interest is 7%. What price would you expect to pay now for the bond? What 
would its price be after two years? If, after two years, the market interest rate jumped to 10%, 
what would the price of the bond be?

(b) A bond is issued which promises to pay £200 p.a. over the next five years. If the prevailing mar-
ket interest rate is 7%, how much would you be prepared to pay for the bond? Why does the 
answer differ from the previous question? (Assume interest is paid at the end of each year.)

 1.20 A firm purchases for £30 000 a machine which is expected to last for 10 years, after which it will be 
sold for its scrap value of £3000. Calculate the average rate of depreciation p.a., and calculate the 
written-down value of the machine after one, two and five years.

 1.21 Depreciation of BMW and Mercedes cars is given in the following table of new and used car prices:

Age BMW 525i Mercedes 200E

Current 22 275 21 900
1 year 18 600 19 700
2 years 15 200 16 625
3 years 12 600 13 950
4 years 9 750 11 600
5 years 8 300 10 300

(a) Calculate the average rate of depreciation of each type of car.

(b) Use the calculated depreciation rates to estimate the value of the car after 1, 2, etc., years of 
age. How does this match the actual values?

(c) Graph the values and estimated values for each car.

 1.22 A bond is issued which promises to pay £400 p.a. in perpetuity. How much is the bond worth now, if 
the interest rate is 5%? (Hint: the sum of an infinite series of the form

1
1 + r

+
1

(1 + r)2 +
1

(1 + r)3 + g

is 1/r, as long as r 7 0.)
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 1.23 Demonstrate, using Σ notation, that E(x + k) = E(x) + k.

 1.24 Demonstrate, using Σ notation, that V(kx) = k2V(x).

 1.25 Criticise the following statistical reasoning. The average price of a dwelling is £54 150. The average 
mortgage advance is £32 760. So purchasers have to find £21 390, that is, about 40% of the pur-
chase price. On any basis, that is an enormous outlay which young couples, in particular, who are 
buying a house for the first time would find incredibly difficult, if not impossible, to raise.

 1.26 Criticise the following statistical reasoning. Amongst arts graduates, 10% fail to find employment. 
Amongst science graduates only 8% remain out of work. Therefore, science graduates are better 
than arts graduates. Hint: imagine there are two types of job: popular (hard to get, so with a low 
success rate) and unpopular (easy to get). Arts graduates tend to apply for the former, scientists for 
the latter. Try to show that arts graduates are more successful at applying for both types of job, yet 
overall they are less successful.

 1.27 Project 1: Is it true that the Conservative government in the United Kingdom, 1979–1997, lowered 
taxes, while the Labour government 1997–2007 raised them?

You should gather data which you think appropriate to the task, summarise it as necessary and 
write a brief report of your findings. You might like to consider the following points:

●	 Should one consider tax revenue, or revenue as a proportion of GNP?

●	 Should one distinguish between tax rates and the tax base (i.e. what is taxed)?

●	 Has the balance between direct and indirect taxation changed?

●	 Have different sections of the population fared differently?

You might like to consider other points and do the problem for a different country. Suitable data 
sources for the United Kingdom are: Inland Revenue Statistics, UK National Accounts, Annual 
Abstract of Statistics or Financial Statistics. Useful websites are HMRC and the UK Treasury.

 1.28 Project 2: Is the employment and unemployment experience of the UK economy worse than that of 
its competitors? Write a report on this topic in a similar manner to the project above. You might 
consider rates of unemployment in the United Kingdom and other countries, trends in unemploy-
ment in each of the countries, the growth in employment in each country, the structure of 
 employment (e.g. full-time/part-time) and unemployment (e.g. long-term/short-term).

You might use data for a number of countries, or concentrate on two in more depth. Suitable 
data sources are: OECD Main Economic Indicators; The Economic and Labour Market Review (http://
www.ons.gov.uk/ons/rel/elmr/economic-and-labour-market-review/index.html).

http://www.ons.gov.uk/ons/rel/elmr/economic-and-labour-market-review/index.html
http://www.ons.gov.uk/ons/rel/elmr/economic-and-labour-market-review/index.html
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English and non-English tourists

It is clear the English are more likely to visit Spain than are other nationalities.

Answers to exercises

Exercise 1.1
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Exercise 1.2

(a) Bar chart

Frequency

0–10

45

40
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25
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0
11–30 31–60 61–100

 Histogram

Frequency
density

0 10 30 60 100

 Once again, the histogram shows a more skewed distribution than the bar chart 
would suggest.

(b) The cumulative frequencies are 20, 60, 90, 110, and the graph of these values is as 
follows:

Cumulative Frequency

0–10

120

100

80

60

40

20

0
11–30 31–60 61–100
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 Hence the mean = 3850>110 = 35.
The median is contained in the 11 to 30 group (the 55th observation, or strictly 

the 55.5th observation but this will make little difference) and is 35/40 of the way 
through the interval (20 + 35 gets us to observation 55). Hence the median is 
11 + 35>40 * 19 = 27.625.

The mode is anywhere in the 0 to 30 range, the frequency density is the same 
throughout this range.

Frequency
density Median Mean

0 10 30 60 100

(b)

Exercise 1.4

(a) Q1 relates to observation 27.5 (=110>4) This observation lies in the 11–30 range. 
There are 20 observations in the first class interval, so Q1 will relate to observation 
7.5 in the second interval. Hence we need to go 7.5/40 of the way through the inter-
val. This gives 11 + (7.5>40) * 19 = 14.6. Similarly, Q3 is 22.5/30 of the way 
through the third interval, yielding Q3 = 31 + 22.5>30 * 29 = 52.8. The IQR is 
therefore 52.8 - 14.6 = 38.2. For the variance we obtain gfx = 3850 and gfx2 = 205 250. The variance is therefore s2 = 205 250>110 - 352 = 640.9 and 
the standard deviation 25.3.

(b) CV = 25.3>35 = 0.72.

(c) 1.3 * 25.3 = 32.9, not far from the IQR value of 38.2.

(d) One standard deviation either side of the mean takes us from 9.7 up to 60.3. This 
contains all 70 observations in the second and third intervals, plus perhaps one 
from the first interval. Thus, we get approximately 71 observations within this 
range. Chebyshev’s inequality does not help us here, as it is not defined for 
k … 1.

Exercise 1.3

(a) 
Midpoint, x Frequency, f fx

 0–10  5  20 100
11–30 20  40 800
31–60 45  30 1350
61–100 80  20 1600

110 3850
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Exercise 1.5

Profits and sales

Sales
Profit

Year
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300
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100

1990 199919981997199619951994199319921991
0

(a)

Profits and sales

Sales
ProfitP

ro
fit

s
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199919981997199619951994199319921991
0

(b)

Using the second axis brings out the variability of profits relative to sales.

Exercise 1.6

(a) The average profit is 350>10 = 35. The average rate of growth is calculated by com-
paring the end values 50 and 40 over the 10-year period. The ratio is 0.8. Taking the 
ninth root of this (nine years of growth) gives 19 0.8 = 0.976, so the annual rate of 
growth is 0.976 - 1 = -2.4.

(b) The variances are (using the sample variance formula): for profits, g(x - m)2 = 4800 
and dividing by 9 gives a variance of 533.3. For sales, the mean is 291 and g(x - m)2 = 4540. The variance is therefore 4540>9 = 504.4. This is similar in 
absolute size to the variance of profits, but relative to the mean it is much smaller.

Exercise 1.7

Profit vs sales
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 The trend line seems to show a positive relationship between the variables: higher 
profits are associated with higher sales.
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 Appendix 1A 𝚺 notation

The Greek symbol Σ  (capital sigma) means ‘add up’ and is a shorthand way of 
writing what would otherwise be long algebraic expressions. Instead of writing 
out each term in the series, we provide a template, or typical term of the series, 
with instructions about how many terms there are.

For example, given the following observations on x:

x1 x2 x3 x4 x5

3 5 6 4 8

then

a
4

i = 1
xi = x1 + x2 + x3 + x4 + x3 = 3 + 5 + 6 + 4 + 8 = 26

The template is simply x in this case, representing a number to be added in the 
series. To expand the sigma expression, the subscript i is replaced by succes-
sive integers, beginning with the one below the Σ sign and ending with the one 
above it (1 to 5 in the example above). Hence the instruction is to add the terms x1 
to x5 Similarly

a
5

i = 1
x1 = x2 + x3 + x4 = 5 + 6 + 4 = 15

The instruction tells us to add up only the second, third and fourth terms of the 
series. When it is clear what range of values i takes (usually when we are to add all 
available values), the formula can be simplified to a

i
xi or Σxi or even Σx.

When frequencies are associated with each of the observations, as in the data 
below:

i 1 2 3 4 5

xi 3 5 6 4 8
fi 2 2 4 3 1

then

a
i = 5

i = 1
fixi = f1x1 + g+  f5x5 = 2 * 3 + 2 * 5 + g+  1 * 8 = 60

And also

a fi = 2 + 2 + 4 + 3 + 1 = 12

Thus the sum of the 12 observations is 60 and the mean is

a fx

a f
=

60
12

= 5

We are not limited just to adding the x values. For example, we might wish to 
square each observation before adding them together. This is expressed as:

Σx2 = x2
1 + x2

2 + g +  x2
5 = 150
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Note that this is different from:

(ax)2 = (x1 + x2 + g +  x5)2 = 676

Part of the formula for the variance calls for the following calculation:

a fx2 = f1x2
1 + f2x2

2 + g +  f5x2
5 = 2 * 32 + 2 * 52 + g +  1 * 82 = 324

Using Σ notation we can see the effect of transforming x by dividing by 1000, as 
was done in calculating the average level of wealth. Instead of working with x we 
used kx, where k = 1>1000. In finding the mean we calculated

akx

N
=

kx1 + kx2 + g
N

=
k1x1 + x2 + g2

N
= k ax

N
 (1.34)

So to find the mean of the original variable x we had to divide by k again, i.e. 
multiply by 1000. In general, whenever each observation in a sum is multiplied 
by a constant, the constant can be taken outside the summation operator, as in 
(1.34) above.

Problems on Σ notation

 1A.1 Given the following data on xi : {4, 6, 3, 2, 5} evaluate:

Σxi, Σx2
i ,1Σxi22, Σ 1xi - 32 , Σxi - 3,a

4

i = 2
xi

 1A.2 Given the following data on xi : {8, 12, 6, 4, 10} evaluate:

Σxi, Σx2
i , 1Σxi2 2, Σ 1xi - 32 , Σxi - 3, a

4

i = 2
xi

 1A.3 Given the following frequencies, fi associated with the x values in Problem 1A.1: {5, 3, 3, 8, 5}, 
 evaluate:

Σfx, Σfx2, Σf(x - 3), Σfx - 3

 1A.4 Given the following frequencies, fi associated with the x values in Problem 1A.2: {10, 6, 6, 16, 10}, 
evaluate:

Σfx, Σfx2, Σf(x - 3), Σfx - 3

 1A.5 Given the pairs of observations on x and y,

x 4 3 6 8 12

y 3 9 1 4 3

  evaluateΣxy, Σx(y - 3), Σ(x + 2)(y - 1).

 1A.6 Given the pairs of observations on x and y,

x 3 7 4 1 9

y 1 2 5 1 2

  evaluate Σxy, Σx(y - 2), Σ(x - 2)(y + 1).
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 1A.7 Demonstrate that

Σf (x - k)

Σf
=

Σfx

Σf
- k  where  k  is  a  constant.

 1A.8 Demonstrate that

Σf (x - m)2

Σf
=

Σfx2

Σf
- m2

 Appendix 1B E and V operators

These operators are an extremely useful form of notation that we shall make use of 
later in the text. It is quite easy to keep track of the effects of data transformations 
using them. There are a few simple rules for manipulating them that allow some 
problems to be solved quickly and elegantly.

E(x) is the mean of a distribution and V(x) is its variance. We showed above in 
(1.34) that multiplying each observation by a constant k multiplies the mean by k. 
Thus we have:

E(kx) = kE(x) (1.35)

Similarly, if a constant is added to every observation, the effect is to add that 
constant to the mean (see Problem 1.23):

E(x + a) = E(x) + a (1.36)

(Graphically, the whole distribution is shifted a units to the right and hence so 
is the mean.) Combining (1.35) and (1.36):

E(kx + a) = kE(x) + a (1.37)

Similarly, for the variance operator it can be shown that:

V(x + k) = V(x) (1.38)

Proof:

V(x + k) = a((x - k) - (m + k))2

N
= a((x - m) + (k - k))2

N
= a(x - m)2

N
= V(x)

(A shift of the whole distribution leaves the variance unchanged.) Also:

V(kx) = k2V(x) (1.39)

(See Problem 1.24.) This is why, when the wealth figures were divided by 1000, 
the variance became divided by 10002. Applying (1.38) and (1.39):

V(kx + a) = k2V(x) (1.40)

Finally, we should note that V itself can be expressed in terms of E:

V(x) = E(x - E(x))2  or  E(x2) - E(x)2 (1.41)
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 Appendix 1C Using logarithms

Logarithms are less often used now that cheap electronic calculators are available. 
Formerly, logarithms were an indispensable aid to calculation. However, the loga-
rithmic transformation is useful in other contexts in statistics and economics, so 
its use is briefly set out here.

The logarithm (to the base 10) of a number x is defined as the power to which 
10 must be raised to give x. For example, 102 = 100, so the log of 100 is 2 and we 
write log10 100 = 2 or simply log 100 = 2.

Similarly, the log of 1000 is 3 1100 = 1032 , of 10 000 it is 4, etc. We are not 
restricted to integer (whole number) powers of 10, so for example 102.5 =  
316.227 766 (try this if you have a scientific calculator). So the log of 316.227 766 
is 2.5. Every number x can therefore be represented by its logarithm.

 Multiplication of two numbers

We can use logarithms to multiply two numbers x and y, based on the property10

 log  xy =  log  x +  log  y

For example, to multiply 316.227 766 by 10:

  log1316.227 766 * 102 =  log 316.227 766 +  log  10
 = 2.5 + 1
 = 3.5

The anti-log of 3.5 is given by 103.5 = 3162.27 766 which is the answer.
Taking the anti-log (i.e. 10 raised to a power) is the inverse of the log transfor-

mation. Schematically we have:

x S take  logarithms S a(=  log  x) S raise  10  to  the  power  a S x

 Division

To divide one number by another we subtract the logs. For example, to divide 
316.227 766 by 100:

  log (316.227 7766>100) =  log 316.227 766 -  log  100
 = 2.5 - 2
 = 0.5

and 100.5 = 3.16 227 766.

 Powers and roots

Logarithms simplify the process of raising a number to a power. To find the square 
of a number, multiply the logarithm by 2, e.g. to find 316.22 77662:

 log (316.27 7662) = 2 log(316.227 766) = 5

and 105 = 100 000.

10This is equivalent to saying 10x * 10y = 10x +y.
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To find the square root of a number (equivalent to raising it to the power 1
2), 

divide the log by 2. To find the nth root, divide the log by n. For example, in the 
text we have to find the 32nd root of 13.518:

 log(13.518)
32

=
1.1309

32
= 0.0353

and 100.0353 = 1.085.

 Common and natural logarithms

Logarithms to the base 10 are known as common logarithms but one can use any 
number as the base. Natural logarithms are based on the number e(=  2.71 828c), 
and we write ln x instead of log x to distinguish them from common logarithms. 
So, for example,

  ln 316.227  766 = 5.756 462 732
 since e5.756 462 732 = 316.227 766.

Natural logarithms can be used in the same way as common logarithms and 
have similar properties. Use the ‘ln’ key on your calculator just as you would the 
‘log’ key, but remember that the inverse transformation is ex rather than 10x.

Problems on logarithms

 1C.1 Find the common logarithms of: 0.15, 1.5, 15, 150, 1500, 83.7225, 9.15, -12.

 1C.2 Find the log of the following values: 0.8, 8, 80, 4, 16, -37.

 1C.3 Find the natural logarithms of: 0.15, 1.5, 15, 225, -4.

 1C.4 Find the ln of the following values: 0.3, e, 3, 33, -1.

 1C.5 Find the anti-log of the following values: -0.823 909, 1.1, 2.1, 3.1, 12.

 1C.6 Find the anti-log of the following values: -0.09 691, 2.3, 3.3, 6.3.

 1C.7 Find the anti-ln of the following values: 2.708 05, 3.708 05, 1, 10.

 1C.8 Find the anti-ln of the following values: 3.496 508, 14, 15, -1.

 1C.9 Evaluate: 12 10, 14 3.7, 41>4, 12- 3, 25- 3>2.

 1C.10 Evaluate: 13 30, 16 17, 81>4, 150, 120, 3- 1>3.
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By the end of this chapter you should be able to:

●	 understand the essential concept of the probability of an event occurring

●	 appreciate that the probability of a combination of events occurring can be calculated 
using simple arithmetic rules (the addition and multiplication rules)

●	 understand that the probability of an event occurring can depend upon the outcome of 
other events (conditional probability)

●	 know how to make use of probability theory to help make decisions in situations of 
uncertainty
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Probability theory and statistical inference

In October 1985 Mrs Evelyn Adams of New Jersey, USA, won $3.9 million in the 
State lottery at odds of 1 in 3 200 000. In February 1986 she again won, although 
this time only (!) $1.4 million at odds of 1 in 5 200 000. The odds against both 
these wins were calculated at about 1 in 17 300 billion. Mrs Adams is quoted as 
saying ‘They say good things come in threes, so . . .’.

The above story illustrates the principles of probability at work. The same prin-
ciples underlie the theory of statistical inference, which is the task of drawing 
 conclusions (inferences) about a population from a sample of data drawn from 
that population. For example, we might have a survey which shows that 30% of a 
sample of 100 families intend to take a holiday abroad next year. What can we 
conclude from this about all families? The techniques set out in this and subse-
quent chapters show how to accomplish this.

Why is knowledge of probability necessary for the study of statistical infer-
ence? In order to be able to draw inferences about a population from a sample, we 
must first understand how the sample was drawn from the population. The the-
ory of probability helps with this and can tell us, for example, whether the sample 
is representative of the population or whether it might be biased in some way.

In many cases, the sample is a random one, i.e. the observations making up the 
sample are chosen at random from the population. If a second sample were 
selected, it would almost certainly be different from the first. Each member of the 
population has a particular probability of being in the sample (in simple random 
sampling the probability is the same for all members of the population). To under-
stand sampling procedures, and the implications for statistical inference, we must 
therefore first examine the theory of probability.

As an illustration, consider estimating the wealth of a population from a sample, 
a subject covered in Chapter 1. As there is no annual wealth tax in the United 
Kingdom, there are no routine records of the wealth of all individuals, so estimates 
are based on tax records of wealth passed on by those who die in each year. This con-
stitutes a random sample of all individuals but there is no guarantee it will be repre-
sentative. Indeed, there are good reasons to believe it might not be, so various 
adjustments have to be made to obtain good estimates for the population as a whole. 
How to make these adjustments is partly based on probability considerations.

This chapter and the next therefore cover probability theory, dealing with the 
concepts and principles in a slightly abstract way before later chapters demon-
strate how we then use these ideas to address more practical issues.

The definition of probability

The first task is to define precisely what is meant by probability. This is not as easy 
as one might imagine, and there are a number of different schools of thought on 
the subject. Consider the following questions:

●	 What is the probability of ‘heads’ occurring on the toss of a coin?
●	 What is the probability of a driver having an accident in a year of driving?
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●	 What is the probability of a country such as Greece defaulting on its interna-
tional loan repayments (as Mexico did in the 1980s)?

We shall use these questions as examples when examining the different schools of 
thought on probability.

 The frequentist view

Considering the first question above, the frequentist view would be that the prob-
ability is equal to the proportion of heads obtained from tossing a coin many 
times. The first few results of such an experiment might be:

H, T, T, H, H, H, T, H, T, c

So after nine tosses we have five heads, suggesting the probability of heads is 
5/9 or 0.56. But repeating the process we might get 3/9 heads instead, suggesting a 
different probability, 0.33. If we continue to toss the coin, however, the propor-
tion of heads eventually settles down at some particular fraction and subsequent 
tosses will individually have an insignificant effect upon the value. Figure 2.1 sim-
ulates the result of tossing a coin 250 times and recording the proportion of heads 
as the experiment progresses.

This shows, after some initial fluctuations, the proportion settling down at a 
value of about 0.50, which is what we would conventionally expect of a coin. This 
value is the probability, according to the frequentist view. The obvious question to 
ask, however, is how many tosses are necessary before we get to ‘the’ probability? 
Any chosen number would be somewhat arbitrary, so the probability is defined as 
the proportion of heads obtained as the number of tosses approaches infinity. In gen-
eral, we can define Pr(H), the probability of event H (in this case heads) occurring, as

Pr(H) =
number of occurrences of H

number of trials
, as the number of trails approaches infinity

In this case, each toss of the coin constitutes a trial.
Although this approach appears attractive in theory, it does have its problems. 

One could not actually toss a coin an infinite number of times, so in practical 
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terms we cannot calculate the answer. Or, if one took a different coin, would the 
results from the first coin necessarily apply to the second?

Perhaps more seriously, the definition is of less use for the second and third 
questions posed above. Calculating the probability of an accident is not too prob-
lematic: it may be defined as the proportion of all drivers having an accident dur-
ing the year. However, this may be irrelevant for a particular driver, since drivers 
vary so much in their accident records. And how would you answer the third 
question? There is no long run to which we can appeal. We cannot rerun history 
over and over again to see in what proportion of cases the country defaults. Yet 
this probability (or risk) is what lenders want to know and credit-rating agencies 
have to assess. Maybe another approach is needed.

 The subjective view

According to the subjective view, probability is a degree of belief that someone 
holds about the likelihood of an event occurring. It is inevitably subjective, and 
therefore some argue that it should be the degree of belief that it is rational to 
hold, but this just shifts the argument to what is meant by ‘rational’. Some prog-
ress can be made by distinguishing between prior and posterior beliefs. The former 
are those held before any evidence is considered; the latter are the modified prob-
abilities in the light of the evidence. For example, one might initially believe a 
coin to be fair (the prior probability of heads is one-half), but not after seeing only 
5 heads in 50 tosses (the posterior probability would be less than a half).

Although it has its attractions, this approach (which is the basis of Bayesian statis-
tics) also has its drawbacks. It is not always clear how one should arrive at the prior 
beliefs, particularly when one really has no prior information. Also, these methods 
often require the use of sophisticated mathematics, which may account for the less 
frequent use made of them. The development of more powerful computers and 
user-friendly software may increase the popularity of the Bayesian approach.

There is not universal agreement therefore as to the precise definition of prob-
ability. We do not have space here to explore the issue further, so we will ignore 
the problem. The probability of an event occurring will be defined as a certain 
value, and we will not worry about the precise origin or meaning of that value. 
This is an axiomatic approach: we simply state what the probability is, without jus-
tifying it, and then examine the consequences.

(a) Define the probability of an event according to the frequentist view.

(b) Define the probability of an event according to the subjective view.
Exercise 2.1

For the following events, suggest how their probability might be calculated. In each case, 
consider whether you have used the frequentist or subjective view of probability (or possibly 
some mixture).

(a) The Republican Party winning the next US election.

(b) The number 5 being the first ball drawn in next week’s UK lottery. (Note that changes were 
made to the lottery rules in October 2015. You should use the new rules for the Lotto game.)

(c) A repetition of the 2004 Asian tsunami.

(d) Your train home being late.

Exercise 2.2
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Probability theory: the building blocks

We start with a few definitions, to establish a vocabulary that we will sub­
sequently use.

 An experiment

An experiment is an activity, such as flipping a coin, which has a number of 
possible outcomes, in this case heads or tails. Another example of an  experiment 
would be to roll a die, when the possible outcomes would be the numbers 
1 to 6.

 A trial

A trial is a single performance of the experiment, with a single outcome. You toss a 
coin and it comes down heads.

 The sample space

The sample space consists of all the possible outcomes of the experiment. The 
outcomes for a single toss of a coin are {heads, tails}, for example, and these con­
stitute the sample space for a toss of a coin. The outcomes in the sample space are 
 mutually exclusive, which means that the occurrence of one rules out all the oth­
ers. One cannot have both heads and tails in a single toss of a coin. As a further 
example, if a single card is drawn at random from a pack, then the sample space 
may be drawn as in Figure 2.2.

Each point represents one card in the pack and there are 52 points altogether. 
(The sample space could be set out in alternative ways. For instance, one could 
write a list of all the cards: ace of spades, king of spades, . . . , two of clubs. One can 
choose the representation most suitable for the problem at hand.)

 The probability of an outcome

With each outcome in the sample space we associate a probability, which is the 
chance of that outcome occurring. The probability of heads is one­half; the probabil­
ity of drawing the ace of spades from a pack of cards is one in 52, etc. There are restric­
tions upon the probabilities we can associate with the outcomes in the sample space. 
These are needed to ensure that we do not come up with self­contradictory results; 
for example, it would be odd to conclude that we could expect heads more than half 

A K Q J 10 9 8 7 6 5 4 3 2Figure 2.2
The sample space for 
drawing from a pack of 
cards
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the time and tails more than half the time. To ensure our results are always consis-
tent, the following rules apply to probabilities:

●	 The probability of an outcome must lie between 0 and 1, i.e.

0 … Pr(A) … 1, for any outcome A (2.1)

 The explanation is straightforward. If A is certain to occur, it occurs in 100% of 
all trials and so its probability is 1 (by the frequency definition of probability). 
Similarly, if A is certain not to occur, then its probability is 0, since it never 
 happens however many trials there are. Since one cannot be more certain 
than  certain, probabilities of less than 0 or more than 1 can never occur, and 
(2.1) follows.

●	 The sum of the probabilities associated with all the outcomes in the sample 
space is 1. Formally

gPi = 1 (2.2)

 where Pi is the probability of outcome i occurring. This follows from the fact 
that one, and only one, of the outcomes must occur, since they are mutually 
exclusive and also exhaustive, i.e. they define all the possibilities. The sum of 
the probabilities of heads and of tails is  1>2 + 1>2 = 1.

●	 Following on from (2.2) we may define the complement of an outcome as every-
thing in the sample space apart from that outcome. The complement of heads 
is tails, for example. If we write the complement of A as not-A, then it follows 
that Pr(A) + Pr(not-A) = 1 and hence

Pr(not-A) = 1 - Pr(A) (2.3)

 On occasion it is easier to calculate the probability of the complement and 
then use equation (2.3) to get to the answer desired.

Events

An event is simply a collection of outcomes within the sample space. It is more 
common that we are interested in the probability of an event than of a single out-
come. For example, the event ‘an odd number on the roll of a die’ consists of the 
outcomes 1, 3 and 5. The event ‘draw a queen from a pack of cards’ encompasses 
the four queens in the pack – spades, hearts, diamonds and clubs. The probability 
of the event can easily be calculated as the sum of the individual probabilities. The 
probability of an odd number on a roll of a die is 1>6 + 1>6 + 1>6 = 1>2, which 
seems intuitively obvious. Similarly, the probability of drawing a queen is 1/13.

Figure 2.3 gives an illustration of this latter example, where the four relevant 
outcomes are shaded in. Four of the 52 outcomes are shaded, giving the probabil-
ity of 1/13 (as all outcomes are equally likely, 1/52).

A slightly more abstract way to illustrate an event will prove useful for our pre-
sentation of principles of probability. Figure 2.4 shows the sample space as a rect-
angle, with an event E represented by a circle within it.

The circle, event E, contains the four queens. The rest of the sample space 
consists of the other 48 cards in the pack. We can then define Pr(E) as the prob-
ability that we get one of the outcomes contained in the set E, and it is obtained 



Events

99

numerically by summing the probabilities of each of those outcomes, as we 
did above.

As with individual outcomes we can define the complement of the event E as 
everything that is not in E, i.e. the white area in the sample space in Figure 4.2. 
We shall refer to this as not-E as we did for outcomes. This type of diagram is 
called a Venn diagram, and the properties of such diagrams are useful for explain-
ing probabilities.

You should note in passing that an event could consist of just a single out-
come, so there is some overlap in use of the terms. In most practical problems we 
are interested in combinations of outcomes (e.g. queens, spades, odd numbers 
on a die), so we will usually be discussing the probabilities of events.

A K Q J 10 9 8 7 6 5 4 3 2Figure 2.3
The sample space for the 
event ‘drawing a queen’

Event E
Sample space

Complement of event E

Figure 2.4
A Venn diagram illustrating 
the event E

(a) A dart is thrown at a dartboard. What numbers make up the sample space for this experi-
ment? (If you are unfamiliar with the game, google ‘dartboard’ to find a picture of the 
board.)

(b) How might you estimate the probability of a player scoring 13 with a single dart? Would 
your estimate apply to players of different abilities?

(c) How many ways can a player score 18 with a single dart?

Exercise 2.3

(a) An archer has a 30% chance of hitting the bull’s eye (centre) on the target. What is the 
complement to this event and what is its probability?

(b) Call event E the rolling of an even number on a single roll of a die. Draw a Venn diagram to 
illustrate this situation with the appropriate outcomes inside and outside of event E.

(c) What is the probability of two mutually exclusive events both occurring?

(d) A spectator reckons there is a 70% probability of an American rider winning the Tour de 
France cycle race and a 40% probability of Frenchman winning. Comment.

?

Exercise 2.4
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 Compound events

We often need to answer questions such as ‘what is the probability of event A and 
event B both occurring?’, for example the probability of my train to the airport 
being delayed and my flight leaving on time (implying that I miss the flight). This 
we call a compound event. It is not always obvious that we are dealing with a com-
pound event, sometimes it is implicit. To give some examples:

●	 Drawing the ace of spades from a pack of cards (implicitly this means drawing 
an ace and drawing a spade)

●	 Rolling two dice and getting a total of 12 (which has to be a six on the first die 
and a six on the second)

●	 Mercedes winning the next Grand Prix (which, at the time of writing, means 
Lewis Hamilton wins or Nico Rosberg wins)

It is sometimes possible to calculate the probability of a compound event by 
examining the sample space, as in the case of drawing the ace of spades above. 
Referring to Figure 2.2, it is the single point at the intersection of the ‘A’ column 
and ‘♠’ row; hence the probability is 1/52. However, in many cases this is not so 
easy, for the sample space is too complex or even impossible to write down. For 
example, the sample space for three draws (with replacement) of a card from a 
pack consists of over 140 000 points. (A typical point might represent, for exam-
ple, the 10 of spades, 8 of hearts and 3 of diamonds.) Even more complicated (and 
something we will come to later in the text) is finding the probability that the 
average height of your friends is more than 1.80 metres.

Fortunately, a few simple rules help us to calculate the probabilities of compound 
events, starting from the simple events comprising them. If the previous examples 
are examined closely, we can see that events are being compounded using the words 
‘or’ and ‘and’: ‘Hamilton or Rosberg winning’; ‘a six on the first die and a six on the 
second’. ‘And’ and ‘or’ may be termed operators, and act to combine simple events 
into compound ones. The following rules for manipulating probabilities show how 
to use these operators and thus how to calculate the probability of a compound 
event. As we go along we will make use of Venn diagrams to illustrate the process.

 The addition rule

The addition rule is associated with ‘or’. When we want the probability of one event 
or another occurring, we add the probabilities of each. More formally, the proba-
bility of A or B occurring is given by

Pr(A or B) = Pr(A) + Pr(B) (2.4)

We illustrate this in Figure 2.5 for the motor racing example. The circle labelled 
‘Event H’ represents Hamilton winning, ‘Event R’ is Rosberg winning. The rest of 
the sample space represents a win by a different driver. Note that the two circles do 
not overlap, since the events are mutually exclusive; if Hamilton wins, then Rosberg 
cannot also win and vice versa. An outcome in H or in R will mean a Mercedes 
victory, so we simply add the probabilities of each event to get the answer desired.

So, if we judge the chance of a Hamilton victory at 40% and a Rosberg victory 
at 30%, the probability of a Mercedes victory is

 Pr(Hamilton win or Rosberg win) = Pr(H wins) + Pr(R wins) (2.5)
 = 0.4 + 0.3 = 0.7 or 70%  
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To reinforce the idea, consider getting a five or a six on a roll of a die1. This is

Pr(5 or 6) = Pr(5) + Pr(6) = 1>6 + 1>6 = 1>3 (2.6)

This answer can be verified from the sample space, as shown in Figure 2.6. Each 
dot represents a simple event (one to six). The compound event is made up of two 
of the six points, shaded in Figure 2.6, so the probability is 2/6 or 1/3.

However, (2.4) is not a general solution to this type of problem, i.e. it does not 
always give the right answer, as can be seen from the following example. What is 
the probability of a queen or a spade in a single draw from a pack of cards? 
Pr(Q) = 4>52 (four queens in the pack) and Pr(A) = 13>52 (13 spades), so apply-
ing (2.4) gives

Pr(Q or S) = Pr(Q) + Pr(S) = 4>52 + 13>52 = 17>52 (2.7)

However, if the sample space is examined the correct answer is found to be 16/52, 
as in Figure 2.7.

The problem is that one point in the sample space (the one representing the 
queen of spades) is double-counted in equation (2.7), once as a queen and again as 
a spade. The event ‘drawing a queen and a spade’ is possible, and gets double-
counted. This issue can again be illustrated using a Venn diagram (see Figure 2.8). 
This is similar to Figure 2.5 except that the two circles overlap. The overlap area is 
called the intersection of the two sets Q and S and represents any card that is both 
a queen and a spade (i.e. just the queen of spades). The intersection of the sets is 
written Q y	S, the symbol ‘y’ meaning ‘intersection’.

Therefore, we wish to consider all of the outcomes within the circles, counted 
once only. Formally this is known as the union of the two sets, written Q x S. But if 

Event H Event RFigure 2.5
Mercedes winning the 
Grand Prix

1We assume each outcome is equally likely so the probability of each the six numbers 
 occurring is 1/6.

1 2 3 4 5 6Figure 2.6
The sample space for roll-
ing a die

A K Q J 10 9 8 7 6 5 4 3 2Figure 2.7
The sample space for 
drawing a queen or a 
spade
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we count all the outcomes in Q and then all those in S, we will double count those 
in the intersection. Hence, we need to subtract the intersection. In the language 
of sets we have:

Q ´ S = Q + S - (Q ¨ S)

This carries over to probabilities. Equation (2.4) has to be modified by subtract-
ing the probability of getting a queen and a spade, to eliminate this double count-
ing. The correct answer is obtained from

 Pr(Q or S) = Pr(Q) + Pr(S) - Pr(Q and S) (2.8)
 = 4>52 + 13>52 - 1>52
 = 16>52

The general rule is therefore

Pr(A or B) = Pr(A) + Pr(B) - Pr(A and B) (2.9)

Rule (2.4) worked for the earlier example because Pr(H and R) = 0 since it is 
impossible for both Hamilton and Rosberg to win the same race. The two sets, H 
and R, did not overlap. The possibility of double counting could not occur in the 
calculation of that probability.

In general, therefore, one should use (2.9), but when two events are mutually 
exclusive the rule simplifies to (2.4).

 The multiplication rule

The multiplication rule is associated with use of the word ‘and’ to combine events. 
Consider the example of a mother with two children. What is the probability that 
they are both boys? This is really a compound event: that the first child is a boy 
and the second is also a boy. It corresponds to the intersection of the two sets in a 
Venn diagram, similar to that shown in Figure 2.8. Assume that in any single birth 
a boy or girl is equally likely, so Pr(boy) = Pr(girl) = 0.5. Denote by Pr(B1) the 
probability of a boy on the first birth and by Pr(B2) the probability of a boy on the 
second. Thus the question asks for Pr(B1 and B2) and this is given by:

Pr(B1 and B2) = Pr(B1) * Pr(B2) = 0.5 * 0.5 = 0.25 (2.10)

Intuitively, the multiplication rule can be understood as follows. One-half 
of mothers have a boy on their first birth and of these, one-half will again have 
a boy on the second. Therefore, a quarter (a half of one-half) of mothers have 
two boys.

Event Q Event S

Event Q and S

Figure 2.8
Drawing the queen of 
spades
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 Tree diagrams

This is a useful point at which to introduce another helpful visual aid – the tree 
diagram. Many people (including experienced researchers) have difficulty master-
ing probabilities and are easily deceived, but it has been found that if a problem is 
expressed in the form of a tree diagram, then many find it easier to follow. 
Furthermore, many find it easier to understand an issue when it is expressed in 
terms of frequencies rather than probabilities (a tree diagram can use either 
approach).

Consider the example just above of the mother with two children. We can 
think about this problem in the following way. Start with 1000 mothers (a conve-
nient round figure) and consider the first child. We would expect 500 of them to 
be boys and 500 girls since a boy and a girl are equally likely. We can illustrate this 
as in Figure 2.9(a).

If we add the second birth, we get the extension of the diagram as in 
Figure 2.9(b). Of the 500 mothers with a boy, 250 have another boy while 250 
have a girl, etc. Hence, 250 (out of 1000) mothers have two boys, or 0.25, as found 
using probabilities. Figure 2.9(c) shows how we could use the same tree diagram 
but label it with probabilities instead of frequencies. Either form of the diagram 
will do but the version using frequencies might be more intuitive for an audience.

1000 mothers

Boy
500

500

Girl

Figure 2.9(a)
Tree diagram for first child

1000 mothers

Boy
500

500

500
Girl

Boy 250

250

250

250

Girl

Boy

Girl

Figure 2.9(b)
Tree diagram for second child

Boy

Boy Two boys, 0.5 x 0.5 = 0.25

Two girls, 0.5 x 0.5 = 0.5

Boy, girl: 0.5 x 0.5 = 0.25

Girl, boy: 0.5 x 0.5 = 0.25Boy

0.5

0.5

0.5

0.5

0.5

0.5
Girl

Girl

Girl

Figure 2.9(c)
Tree diagram using probabilities
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 The multiplication rule and independence

Like the addition rule, the multiplication rule requires slight modification 
before it can be applied generally and give the right answer in all circum-
stances. The example above assumes first and second births to be independent 
events, i.e. that having a boy on the first birth does not affect the probability 
of a boy on the second. This assumption is not always valid, so we now con-
sider this.

Write Pr(B2 �B1) to indicate the probability of the event B2 given that the event 
B1 has occurred. This is known as the conditional probability, more precisely the 
probability of B2 conditional upon B1. In words, it means the probability of hav-
ing a second boy after the first is a boy. Let us drop the independence assumption 
and suppose the following:

Pr(B1) = Pr(G1) = 0.5 (2.11)

i.e. boys and girls are equally likely on the first birth (as previously assumed), but

Pr(B2 �B1) = Pr(G2 �G1) = 0.6 (2.12)

i.e. a boy is more likely to be followed by another boy, and a girl by another girl. 
(It is easy to work out Pr(B2 �G1) and Pr(G2 �B1). What are they? Use a version of 
equation (2.2) to think about this.)

This new situation can again be usefully illustrated with a tree diagram, either 
using frequencies (Figure 2.10(a)) or probabilities (Figure 2.10(b)).

1000 mothers

Boy
500

500

500
Girl

Boy 300

200

200

300

Girl

Boy

Girl

Figure 2.10(a)
Tree diagram, non- 
independence case 
(frequencies)

Two boys, 0.5 3 0.6 5 0.3

Two girls, 0.5 3 0.6 5 0.3

One girl and one boy

Two boys

Two girls

Figure 2.10(b)
Tree diagram, non- 
independence case 
 (probabilities)
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Now what is the probability of two boys? This can be seen in Figure 2.10(b). Half 
of all mothers have a boy first, and of these, 60% have another boy. Thus 30% 
(60% of 50%) of mothers have two boys. This is obtained from the rule:

 Pr(B1 and B2) = Pr(B1) * Pr(B2 �B1) (2.13)
 = 0.5 * 0.6
 = 0.3

The frequencies can be read directly from Figure 2.10(a) which might be more 
intuitive. On the first birth 500 mothers have a boy, and of these, 300 have a sec-
ond boy (300 is 60% of 500). Hence, 30% of mothers have two boys.

Thus in general we have:

Pr(A and B) = Pr(A) * Pr(B �A) (2.14)

which simplifies to

Pr(A and B) = Pr(A) * Pr(B) (2.15)

if A and B are independent.
Independence may therefore be defined as follows: two events, A and B, are 

independent if the probability of one occurring is not influenced by the fact of 
the other having occurred. Formally, if A and B are independent, then

Pr(B �A) = Pr(B �not A) = Pr(B) (2.16)

and

Pr(A �B) = Pr(A �not B) = Pr(A) (2.17)

The concept of independence is an important one in statistics, as it usually sim-
plifies problems considerably. If two variables are known to be independent, then 
we can analyse the behaviour of one without worrying about what is happening 
to the other variable. For example, sales of computers are independent of temper-
ature, so if one is trying to predict sales next month, one does not need to worry 
about the weather. In contrast, ice cream sales do depend on the weather, so pre-
dicting sales accurately requires one to forecast the weather first.

Intuition does not always work with probabilities

Counter-intuitive results frequently arise in probability, which is why it is wise to use the 
rules to calculate probabilities in tricky situations, rather than rely on intuition. Take the fol-
lowing questions:

●	 What is the probability of obtaining two heads (HH) in two tosses of a coin?
●	 What is the probability of obtaining tails followed by heads (TH)?
●	 If a coin is tossed until either HH or TH occurs, what are the probabilities of each 

sequence occurring first?

The answers to the first two are easy: 1>2 * 1>2 = 1>4 in each case. You might therefore con-
clude that each sequence is equally likely to be the first observed, but you would be wrong.

Unless HH occurs on the first two tosses, then TH must occur first. HH is therefore the 
first sequence only if it occurs on the first two tosses, which has a probability of 1>4. The 
probability that TH is first is therefore 3>4. The probabilities are unequal, a strange result. 
Now try the same exercise but with HHH and THH and three tosses of a coin.
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 Combining the addition and multiplication rules

More complex problems can be solved by suitable combinations of the addition and 
multiplication formulae. For example, what is the probability of a mother having one 
child of each sex? This could occur in one of two ways: a girl followed by a boy or a boy 
followed by a girl. It is important to note that these are two different routes to the 
same outcome. Therefore, we have (assuming non-independence according to (2.12))

 Pr(1 girl, 1 boy) = Pr((G1 and B2) or (B1 and G2))
 = Pr(G1) * Pr(B2 �G1) + Pr(B1) * Pr(G2 �B1)
 = (0.5 * 0.4) + (0.5 * 0.4)
 = 0.4

The answer can be checked if we remember (2.2) stating that probabilities must 
sum to 1. We have calculated the probability of two boys (0.3) and of a child of 
each sex (0.4). The only other possibility is of two girls. This probability must be 
0.3, the same as two boys, since boys and girls are treated symmetrically in this 
problem (even with the non-independence assumption). The sum of the three 
possibilities (two boys, one of each or two girls) is therefore 0.3 + 0.4 + 0.3 = 1, 
as it should be. This is often a useful check to make, especially if one is unsure that 
one’s calculations are correct.

This answer can be seen in Figure 2.10(b). The two inner paths {Boy, Girl} and 
{Girl, Boy} are the relevant ones, combining to give a probability of 0.4. The same 
outcomes can also be seen in Figure 2.10(a) in terms of frequencies.

Note also that the problem would have been different if we had asked for the 
probability of the mother having one girl with a younger brother, rather than one 
girl and one boy.

Two further illustrations of conditional probability

Once again it may be helpful to illustrate our ideas using diagrams in order to gain 
a better understanding. First, we can use a Venn diagram, as in Figure 2.11. As we 
learned earlier, the (unconditional) probability of event B is given by area B rela-
tive to the whole of the sample space (the outer rectangle). But the probability of 
B conditional on A means that we can only consider outcomes in A, not in the 
whole of the sample space. Hence, the probability of B, conditional on A, is the 
intersection of the two sets (the hatched area), relative to A.

A second possibility is to draw up a cross-tabulation of the events, as in 
Figure 2.12. The four numbers in the interior of the table are those obtained in 
Figure 2.10(a), assuming a group of 1000 mothers. Thus we can see, for example, 
that there are 200 families with a girl followed by a boy (top right-hand cell). From 
this table we can work out the conditional probabilities. The probability of a boy 

Event A Event BFigure 2.11
Conditional probability
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on the second birth, conditional on a boy on the first is obtained from the first 
column of the table (outlined) which relates to only those 500 families with a boy 
born first. Here we can see that 300 of them went on to have another boy, so the 
conditional probability is 300>500 = 0.6, as presented earlier.

The figures in the ‘Total’ row and column lead us to the unconditional proba-
bilities (sometimes called the marginal probabilities because they are at the 
 margins of the table) and we can see that they give a 50:50 chance of boy or girl 
on a single birth (ignoring what might have happened on the other birth), or 
Pr(Boy) = Pr(Girl) = 0.5.

Finally, the four interior numbers we initially looked at lead us to the joint prob-
abilities. For example, the probability of a boy on the first birth followed by a girl 
on the second (upper right cell) is given by 200>1000 = 0.2. One can also see this 
value in the tree diagram in Figure 2.10(a). We have presented Figure 2.12 in the 
form of frequencies but it is just as easy to present it in the form of probabilities – 
just divide all the numbers by 1000, as in Figure 2.13.

300

200
500

200

300
500

500
Girl

Girl

Total

Total

Boy
Boy

Second child

First child

500
1000

Figure 2.12
Conditional probability

0.3

0.2
0.5

0.2

0.3
0.5

0.5
Girl

Girl

Total

Total

Boy
Boy

Second child

First child

0.5
1

Figure 2.13
Conditional probability

(a) For the archer in Exercise 2.4(a) who has a 30% chance of hitting the bull’s eye with a sin-
gle arrow, what is the probability that she/he hits the bull’s eye with one (and only one) of 
two attempts? Assume independence of the events. (You should write down the formula 
you use and evaluate it to get your answer, rather than just writing down the answer 
directly or the numbers in the calculation. It is worth developing this good practice as it 
aids your thinking and can easily be reviewed later on.)

(b) What is the probability that she hits the bull’s eye with both arrows?

(c) Explain the importance of the assumption of independence for the answers to both parts 
(a) and (b) of this exercise.

(d) What is her probability of hitting the bull’s eye with the first arrow and missing with the 
second? Compare your answer to that for part (a).

(e) If the archer becomes more confident after a successful shot (i.e. her probability of a suc-
cessful shot rises to 50%) and less confident (probability falls to 20%) after a miss, how 
would this affect the answers to parts (a) and (b)? Again, take care to write down the prob-
abilities using appropriate notation and make clear how you get your answer.

(f) Draw a tree diagram representing the case outlined in part (e). Confirm that it gives the 
same answers. What is the probability of the same outcome for both arrows (i.e. either 
both hit or both miss the bull’s eye)? How does this compare to the case where indepen-
dence is assumed?

Exercise 2.5
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 Combinations and permutations

The methods described above are adequate for solving fairly simple probability 
puzzles but fall short when more complex questions are asked. For example, 
what is the probability of three girls and two boys in a family of five children? 
The tree diagram can obviously be extended to cover third and subsequent chil-
dren, but the number of branches rapidly increases (in geometric progression). 
It takes time to draw the diagram (it has 32 end points), and identify the rele-
vant paths and associated probabilities, and it is easy to make an error. If you do 
this correctly, you will find that there are 10 relevant paths through the dia-
gram (e.g. GGGBB or GGBBG) and each individual path has a probability of 
1/32 (½ raised to the power 5), so the answer is 10/32. Note that we are once 
again assuming independent events here, so the probability of having a boy or 
a girl is always 0.5.

Far better would be to use a formula in a complex case like this. To develop this, 
we introduce the ideas of combinations and permutations. The strategy for finding 
the probability of three girls and two boys in five children is two-fold:

(1) Work out the probability of three girls and two boys in one particular order 
(e.g. GGGBB). This is 0.55 = 1>32.

(2) Use a formula to work out the number of different orderings, in this case 10.

It is this second point that we now focus on. How can we establish the number of 
ways of having three girls and two boys in a family of five children? One way 
would be to write down all the possible orderings:

GGGBB GGBGB GGBBG GBGGB GBGBG
GBBGG BGGGB BGGBG BGBGG BBGGG

This shows that there are 10 such orderings, so the probability of three girls and 
two boys in a family of five children is 10/32. In more complex problems, this 
soon becomes difficult or impossible. The record number of children born to a 
British mother is 39 (!) of whom 32 were girls. The appropriate tree diagram has 
over five thousand billion paths through it, and drawing one line (i.e. for one 
child) per second would imply 17 433 years to complete the task.

Rather than do this, we use the combinatorial formula to find the answer. 
Suppose there are n children, r of them girls, then the number of orderings, 
denoted nCr, is obtained from2

 nCr =
n!

r!(n - r)!

 =
n * (n - 1) * c *  1

{r * (r - 1) * c*  1} * {(n - r) * (n - r - 1) * c*  1}
 (2.18)

In the above example n = 5, r = 3 so the number of orderings is

5C3 =
5!

3! * 2!
=

5 * 4 * 3 * 2 * 1
{3 * 2 * 1} * {2 * 1}

= 10 (2.19)

2n! is read ‘n factorial’ and is defined as the product of all the integers up to and including n. 
Thus, for example, 3! = 3 * 2 * 1 = 6.
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If there were four girls out of five children, then the number of orderings or com-
binations would be

5C4 =
5!

4! * 1!
=

5 * 4 * 3 * 2 * 1
{4 * 3 * 2 * 1} * 1

= 5 (2.20)

This gives five possible orderings, i.e. the single boy could be the first, second, 
third, fourth or fifth born.

Why does this formula work?

(If you are happy just to accept the combinatorial formula above, you can skip this 
section and go straight to the exercises below.) Consider five empty places to fill, 
corresponding to the five births in chronological order. Take the case of three girls 
(call them Amanda, Bridget and Caroline for convenience) who have to fill three 
of the five places. For Amanda there is a choice of five empty places. Having ‘cho-
sen’ one, there remain four for Bridget, so there are 5 * 4 = 20 possibilities (i.e. 
ways in which these two could choose their places). Three remain for Caroline, so 
there are 60(=5 * 4 * 3) possible orderings in all (the two boys take the two 
remaining places). Sixty is the number of permutations of three named girls in five 
births. This is written as 5P3 or, in general, nPr. Hence

5P3 = 5 * 4 * 3

or, in general,

nPr = n * (n - 1) * g *  (n - r + 1) (2.21)

A simpler formula is obtained by multiplying and dividing by (n − r)!

 nPr =
n * (n - 1) * g *  (n - r + 1) * (n - r)!

(n - r)!
=

n!
(n - r)!

 (2.22)

What is the difference between nPr and nCr? The latter does not distinguish 
between the girls; the two cases Amanda, Bridget, Caroline, boy, boy and Bridget, 
Amanda, Caroline, boy, boy are effectively the same (three girls followed by two 
boys). So nPr is larger by a factor representing the number of ways of ordering the 
three girls. This factor is given by r! = 3 * 2 * 1 = 6 (any of the three girls could 
be first, either of the other two second, and then the final one). Thus to obtain nCr 
one must divide nPr by r!, giving (2.18).

For this exercise we extend the analysis of Exercise 2.5 to a third shot by the archer.

(a) Extend the tree diagram (assuming independence, so Pr(H) = 0.3, Pr(M) = 0.7) to a third 
arrow. Use this to mark out the paths with two successful shots out of three. Calculate the 
probability of two hits out of three shots.

(b) Repeat part (a) for the case of non-independence. For this you may assume that a hit 
raises the problem of success with the next arrow to 50%. A miss lowers it to 20%.

?

Exercise 2.6

(a) Show how the answer to Exercise 2.6(a) may be arrived at using algebra, including the use 
of the combinatorial formula.

(b) Repeat part (a) for the non-independence case.?

Exercise 2.7
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Bayes’ theorem

Bayes’ theorem is a factual statement about probabilities which in itself is uncon-
troversial. However, the use and interpretation of the result is at the heart of the 
difference between classical and Bayesian statistics. The theorem itself is easily 
derived from first principles. Equation (2.23) is similar to equation equation (2.14) 
covered earlier when discussing the multiplication rule:

Pr(A and B) = Pr(A �B) * Pr(B) (2.23)

hence,

Pr(A �B) =
Pr(A and B)

Pr(B)
 (2.24)

Expanding both top and bottom of the right-hand side,

Pr(A �B) =
Pr(B �A) * Pr(A)

Pr(B �A) * Pr(A) + Pr(B �not A) * Pr(not A)
 (2.25)

Equation (2.25) is known as Bayes’ theorem and is a statement about the probabil-
ity of the event A, conditional upon B having occurred. The following example 
demonstrates its use.

Two bags contain red and yellow balls. Bag A contains six red and four yellow 
balls, and bag B has three red and seven yellow balls. A ball is drawn at random 
from one bag and turns out to be red. What is the probability that it came from 
bag A? Since bag A has relatively more red balls to yellow balls than does bag B, it 
seems bag A ought to be favoured. The probability should be more than 0.5. We 
can check if this is correct.

Denoting:

Pr(A) = 0.5  (the probability of choosing bag A at random) = Pr(B)
Pr(R �A) = 0.6  (the probability of selecting a red ball from bag A), etc.

we have

Pr(A �R) =
Pr(R �A) * Pr(A)

Pr(R �A) * Pr(A) + Pr(R �B) * Pr(B)
 (2.26)

using Bayes’ theorem. Evaluating this gives

 Pr(A �R) =
0.6 * 0.5

0.6 * 0.5 + 0.3 * 0.5
 (2.27)

 = 2>3
As expected, this result is greater than 0.5. (You can check that Pr(B �R) = 1>3 so 
that the sum of the probabilities is 1.)

It may help us understand this if we draw another tree diagram, as Figure 2.14. 
Once again, this shows frequencies, 1000 trials of taking a ball from a bag. In 500 
of the trials we would expect to select bag A, in the other 500 trials we select bag 
B(Pr(A) = Pr(B) = 0.5). This is the first stage of the diagram. Of the 500 occasions 
we select bag A, 300 times we get a red ball (Pr(R �A) = 0.6) and 200 times we get 
yellow. From bag B we get 150 draws of a red ball (Pr(R �B) = 0.3) and 350 yellows. 



Bayes’ theorem

111

Hence, on 450 occasions we get a red ball. Two-thirds of those (300/450) came 
from bag A, which is Pr(A �R).

Bayes’ theorem can be extended to cover more than two bags: if there are five 
bags, for example, labelled A to E, then

Pr(A �R) =
Pr(R �A) * Pr(A)

Pr(R �A) * Pr(A) + Pr(R �B) * Pr(B) + g + Pr(R �E) * Pr(E)
 (2.28)

In Bayesian language, Pr(A), Pr(B), etc., are known as the prior (to the drawing 
of the ball) probabilities, Pr(R �A), Pr(R �B), etc., are the likelihoods and Pr(A �R), 
Pr(B �R), etc., are the posterior probabilities. Bayes’ theorem can alternatively be 
expressed as

posterior probability =
likelihood * prior probability

g(likelihood * prior probability)
 (2.29)

This is illustrated below, by reworking the above example in a different format.

Prior probabilities Likelihoods Prior * likelihood Posterior probabilities

A 0.5 0.6 0.30 0.30>0.45 = 2>3
B 0.5 0.3 0.15 0.15>0.45 = 1>3
Total 0.45

The general version of Bayes’ theorem may be stated as follows. If there are n 
events labelled El, . . . , En, then the probability of the event Ei occurring, given the 
sample evidence S, is

Pr(Ei � S) =
Pr(S �Ei) * Pr(Ei)

Σ(Pr(S �Ei) * Pr(Ei))
 (2.30)

As stated earlier, debate arises over the interpretation of Bayes’ theorem. In the 
above example, there is no difficulty because the probability statements can be 
interpreted as relative frequencies. If the experiment of selecting a bag at random 
and choosing a ball from it were repeated many times, then in two-thirds of those 
occasions when a red ball is selected, bag A will have been chosen. However, con-
sider an alternative interpretation of the symbols:

A: a coin is fair
B: a coin is unfair
R: the result of a toss is a head

Bag A

500

500

Bag B

Red

450 red balls,
two-thirds from
Bag A

300

200

150

350

Yellow

Red

Yellow

Figure 2.14
Bayes’ theorem
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Then, given a toss (or series of tosses) of a coin, this evidence can be used to 
calculate the probability of the coin being fair. But this makes no sense according 
to the frequentist school: either the coin is fair or not; it is not a question of prob-
ability. The calculated value must be interpreted as a degree of belief and be given 
a subjective interpretation.

(a) Repeat the ‘balls in the bag’ exercise from the text, but with bag A containing five red 
and three yellow balls, bag B containing one red and two yellow balls. The single ball 
drawn is red. Before doing the calculation, predict which bag is more likely to be the 
source of the drawn ball. Explain why. Then compare your prediction with the calculated 
answer.

(b) Bag A now contains 10 red and 6 yellow balls (i.e. twice as many as before, but in the same 
proportion). Does this alter the answer you obtained in part (a)?

(c) Set out your answer to part (b) in the form of prior probabilities and likelihoods, in order to 
obtain the posterior probability.

?

Exercise 2.8

Decision analysis

The study of probability naturally leads to the analysis of decision-making where 
risk is involved. This is the realistic situation facing most firms, and the use of 
probability can help to illuminate the problem. To illustrate the topic, we use the 
example of a firm facing a choice of three different investment projects. The 
uncertainty which the firm faces concerns the interest rate at which to discount 
the future flows of income. If the interest/discount rate is high, then projects 
which have income far in the future become less attractive relative to projects 
with more immediate returns. A low rate reverses this conclusion. The question is: 
which project should the firm select? As we shall see, there is no unique, right 
answer to the question but, using probability theory, we can see why the answer 
might vary.

Table 2.1 provides the data required for the problem. The three projects are 
imaginatively labelled A, B and C. There are four possible states of the world, i.e. 
future scenarios, each with a different interest rate, as shown across the top of the 
table. This is the only source of uncertainty; otherwise the states of the world are 
identical. The figures in the body of the table show the present value of each 
income stream at the given discount rate.

Table 2.1 Data for decision analysis: present values of three investment projects at different 
interest rates (£000)

Project Future interest rate

4% 5% 6% 7%

A 1475 1363 1200 1115
B 1500 1380 1148 1048
C 1650 1440 1200  810

Probability 0.1 0.4 0.4 0.1
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Thus, for example, if the interest rate turns out to be 4%, then project A has a 
present value of £1 475 000 while B’s is £1 500 000. If the discount rate turns out to 
be 5%, the PV for A is £1 363 000 while for B it has changed to £1 380 000. Obviously, 
as the discount rate rises, the present value of the return falls. (Alternatively, we 
could assume that a higher interest rate increases the cost of borrowing to finance 
the project, which reduces its profitability.) We assume that each project requires a 
(certain) initial outlay of £1 100 000 with which the PV should be compared.

The final row of the table shows the probabilities which the firm attaches to 
each interest rate. These are obviously someone’s subjective probabilities and are 
symmetric around a central value of 5.5%.

Present value

The present value of future income is its value today and is obtained using the interest rate. 
For example, if the interest rate is 10%, the present value (i.e. today) of £110 received in one 
year’s time is £100. In other words, one could invest £100 today at 10% and have £110 in 
one year’s time. £100 today and £110 next year are equivalent.

The present value of £110 received in two years’ time is smaller since one has to wait longer to 
receive it. It is calculated as £110>1.12 = 90.91. Again, £90.91 invested at 10% p.a. will yield 
£110 in two years’ time. After one year it is worth £90.91 * 1.1 = 100 and after a second year 
that £100 becomes £110. Notice that, if the interest rate rises, the present value falls. For exam-
ple, if the interest rate is 20%, £110 next year is worth only £110>1.2 = 91.67 today.

If we denote the interest rate by r, so r = 0.1 indicates an interest rate of 10%, the value 
now of £110 in two years’ time is £110>(1 + r)2 = £110>(1.1)2 = 90.91, as above. In gen-
eral, the present value of a sum X in t years’ time is given by X>(1 + r)t.

The present value of £110 in one year’s time and another £110 in two years’ time is 
£110>1.1 + £110>1.12 = £190.91. The present value of more complicated streams of 
income can be calculated by extension of this principle. In the example used in the text, you 
do not need to worry about how we arrive at the present value. Before reading on you may 
wish to do Exercise 2.8 to practise calculation of present value.

ST
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(a) At an interest or discount rate of 10%, what is the present value of £1200 received in one 
year’s time?

(b) If the interest rate rises to 15%, how is the present value altered? The interest rate has 
risen by 50% (from 10% to 15%): how has the present value changed?

(c) At an interest rate of 10% what is the present value of £1200 received in (i) two years’ time 
and (ii) five years’ time?

(d) An income of £500 is received at the end of years one, two and three (i.e. £1500 in total). 
What is its present value? Assume the interest rate is 10%.

(e) Project A provides an income of £300 after one year and another £600 after two years. 
Project B provides £400 and £488 at the same times. At a discount rate of 10%, which proj-
ect has the higher present value? What happens if the discount rate rises to 20%?

?

Exercise 2.9

 Decision criteria: maximising the expected value

We need to decide how a decision is to be made on the basis of these data. The first 
criterion involves the expected value of each project. Because of the uncertainty about 
the interest rate, there is no certain present value for each project. We therefore 
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 calculate the expected value, using the E operator which was introduced in Chapter 1. 
In other words, we find the expected present value of each project, by taking a 
weighted average of the PV figures, the weights being the probabilities. The project 
with the highest expected return is chosen.

The expected values are calculated in Table 2.2. The highest expected present 
value is £1 302 000, associated with project C. On this criterion, therefore, C is 
chosen. Is this a wise choice? If the business always uses this rule to evaluate 
many projects, then in the long run it will earn the maximum profits. However, 
you may notice that if the interest rate turns out to be 7%, then C would be the 
worst project to choose in this case and the firm would make a substantial loss in 
such circumstances. Project C is the most sensitive to the discount rate (it has the 
greatest variance of PV values of the three projects) and therefore the firm faces 
more risk by opting for C. There is a trade-off between risk and return. Perhaps 
some alternative criteria should be examined. These we look at next, in particular 
the maximin, maximax and minimax regret strategies.

 Maximin, maximax and minimax regret

The maximin criterion looks at the worst-case scenario for each project and then 
selects the project which does best in these circumstances. It is inevitably a pessi-
mistic or cautious view therefore. Table 2.3 illustrates the calculation. This time 
we observe that project A is preferred. In the worst case (which occurs when 
r = 7% for all projects), A does best, with a PV of £1 115 000 and therefore a slight 
profit. The maximin criterion may be a good one in business where managers 
tend towards over-optimism. Calculating the maximin may be a salutary exercise, 
even if it is not the ultimate deciding factor.

The opposite criterion is the optimistic one where the maximax criterion is 
used. In this case one looks at the best circumstances for each project and chooses 
the best-performing project. Each project does best when the interest rate is at its 
lowest level, 3%. Examining the first column of Table 2.1 shows that project 
C(PV = 1650) performs best and is therefore chosen. Given the earlier warning 
about over-optimistic managers, this may not be suitable as the sole criterion for 
making investment decisions.

Table 2.2 Expected values of the three projects

Project Expected value

A 1284.2
B 1266.0
C 1302.0

Note: 1284.2 is calculated as 1475 * 0.1 + 1363 * 0.4 + 1200
0.4 + 1115 * 0.1. This is the weighted average of the four PV 
 values. A similar calculation is performed for the other projects.

Table 2.3 The maximin criterion

Project Minimum

A 1115
B 1048
C  810
Maximum 1115
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A final criterion is that of minimax regret. If project B were chosen but the inter-
est rate turns out to be 7%, then we would regret not having chosen A, the best 
project under these circumstances. Our regret would be the extent of the difference 
between the two, a matter of 1115 - 1048 = 67. Similarly, the regret if we had 
chosen C would be 1115 - 810 = 305. We can calculate these regrets at the other 
interest rates too, always comparing the PV of a project with the best PV given that 
interest rate. This gives us Table 2.4.

The final column of the table shows the maximum regret for each project. 
The minimax regret criterion is to choose the minimum of these figures. This is 
given at the bottom of the final column; it is 150 which is associated with proj-
ect B. A justification for using this criterion might be that you don’t want to fall 
too far behind your competitors. If other firms are facing similar investment 
decisions, then the regret table shows the difference in PV (and hence profits) if 
they choose the best project while you do not. Choosing the minimax regret 
solution ensures that you won’t fall too far behind. During the internet bubble 
of the 1990s it was important to gain market share and keep up with, or surpass, 
your competitors. The minimax regret strategy might be a useful tool during 
such times.

You will probably have noticed that we have managed to find a justification for 
choosing all three projects. No one project comes out best on all criteria. 
Nevertheless, the analysis might be of some help: if the investment project is one 
of many small, independent investments the firm is making, then this would jus-
tify use of the expected value criterion. On the other hand, if this is a big, one-off 
project which could possibly bankrupt the firm if it goes wrong, then the maxi-
min criterion would be appropriate.

 The expected value of perfect information

Often a firm can improve its knowledge about future possibilities via research, 
which costs money. This effectively means buying information about the future 
state of the world. The question arises: how much should a firm pay for such infor-
mation? Perfect information would reveal the future state of the world with 
 certainty – in this case, the future interest rate. In that case you could be sure of 
choosing the right project given each state of the world. If interest rates turn out 
to be 4%, the firm would invest in C, if 7% in A, and so on.

In such circumstances, the firm would expect to earn:

(0.1 * 1650) + (0.4 * 1440) + (0.4 * 1200) + (0.1 * 1115) = 1332.5

i.e. the probability of each state of the world is multiplied by the PV of the best 
project for that state. This gives a figure which is greater than the expected value 

Table 2.4 The costs of taking the wrong decision

Project 4% 5% 6% 7% Maximum

A 175 77 0 0 175
B 150 60 52 67 150
C 0 0 0 305 305
Minimum 150

Note: The first figure in the 4% discount rate column indicates that Project A’s payoff is 175(=1650 - 1475) 
worse than that of C, the best choice in this circumstance.
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calculated earlier, without perfect information, 1302. The expected value of 
 perfect information is therefore the difference between these two, 30.5. This sets a 
 maximum to the value of information, for it is unlikely in the real world that any 
information about the future is going to be perfect.

(a) Evaluate the three projects detailed in the table below, using the criteria of expected value, 
maximin, maximax and minimax regret. The probability of a 4% interest rate is 0.3, of 6% 0.4 
and of 8% 0.3.

Project 4% 6% 8%

A 100 80 70
B 90 85 75
C 120 60 40

(b) What would be the value of perfect information about the interest rate?

?

Exercise 2.10

Summary

●	 The theory of probability forms the basis of statistical inference, the drawing of 
inferences on the basis of a random sample of data. The probability basis of 
random sampling is the reason for this.

●	 A convenient definition of the probability of an event is the number of times 
the event occurs divided by the number of trials (occasions when the event 
could occur).

●	 For more complex events, their probabilities can be calculated by combining 
probabilities, using the addition and multiplication rules.

●	 The probability of events A or B occurring is calculated according to the addi-
tion rule.

●	 The probability of A and B occurring is given by the multiplication rule.

●	 If A and B are not independent, then Pr(A and B) = Pr(A) * Pr(B �A), where 
Pr(B � A) is the probability of B occurring given that A has occurred (the 
 conditional probability). With independence, the formula simplifies to 
Pr(A and B) = Pr(A) * Pr(B).

●	 Tree diagrams are a useful technique for enumerating all the possible paths in 
series of probability trials, but for large numbers of trials the huge number of 
possibilities makes the technique impractical.

●	 For experiments with a large number of trials (e.g. obtaining 20 heads in 50 
tosses of a coin), the formulae for combinations and permutations can be used.

●	 The combinatorial formula nCr gives the number of ways of combining r simi-
lar objects among n objects, e.g. the number of orderings of three girls (and 
hence implicitly two boys also) in five children.

●	 The permutation formula nPr gives the number of orderings of r distinct objects 
among n, e.g. three named girls among five children.
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●	 Bayes’ theorem provides a formula for calculating a conditional probability, 
e.g. the probability of someone being a smoker, given they have been diag-
nosed with cancer. It forms the basis of Bayesian statistics, allowing us to calcu-
late the probability of a hypothesis being true, based on the sample evidence 
and prior beliefs. Classical statistics disputes this approach.

●	 Probabilities can also be used as the basis for decision-making in conditions of 
uncertainty, using as decision criteria expected value maximisation, maximin, 
maximax or minimax regret.

addition rule
axiomatic approach
Bayes’ theorem
Bayesian statistics
classical statistics
combinations
combinatorial formula
complement
compound event
conditional probability
degree of belief
event
exhaustive
expected value
expected value of perfect information
experiment
frequentist view
independent events
intersection
joint probabilities
likelihoods
marginal probabilities

maximax
maximin
minimax
minimax regret
multiplication rule
mutually exclusive
operator
outcome or event
perfect information
permutations
posterior probabilities
prior belief
prior probabilities
probability
proportion
sample space
states of the world
statistical inference
subjective view
tree diagram
trial
union

Key terms and concepts
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Formula Description Note

nCr =
n!

r!(n - r)!

Combinatorial formula n! = n * (n - 1) * g*  1

Formulae used in this chapter

Problems

Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 2.1 Given a standard pack of cards, calculate the following probabilities:

(a) drawing an ace;

(b) drawing a court card (i.e. jack, queen or king);

(c) drawing a red card;

(d) drawing three aces without replacement;

(e) drawing three aces with replacement.

 2.2 The following data give duration of unemployment by age.

Age Duration of unemployment (weeks) Total Economically active

"8 8–26 26–52 +52 (000s) (000s)
(Percentage figures, rows sum to 100)

16–19 27.2 29.8 24.0 19.0 273.4 1270
20–24 24.2 20.7 18.3 36.8 442.5 2000
25–34 14.8 18.8 17.2 49.2 531.4 3600
35–49 12.2 16.6 15.1 56.2 521.2 4900
50–59 8.9 14.4 15.6 61.2 388.1 2560

Ú60 18.5 29.7 30.7 21.4 74.8 1110

The ‘economically active’ column gives the total of employed (not shown) plus unemployed in each 
age category.

(a) In what sense may these figures be regarded as probabilities? What does the figure 27.2 
 (top-left cell) mean following this interpretation?

(b) Assuming the validity of the probability interpretation, which of the following statements are true?

(i) The probability of an economically active adult aged 25–34, drawn at random, being unem-
ployed is 531.4/3600.

(ii) If someone who has been unemployed for over one year is drawn at random, the probability 
that they are aged 16–19 is 19%.

(iii) For those aged 35–49 who became unemployed at least one year ago, the probability of 
their still being unemployed is 56.2%.
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(iv) If someone aged 50–59 is drawn at random from the economically active population, the 
probability of their being unemployed for eight weeks or less is 8.9%.

(v) The probability of someone aged 35–49 drawn at random from the economically active 
population being unemployed for between 8 and 26 weeks is 0.166 * 521.2>4900.

(c) A person is drawn at random from the population and found to have been unemployed for over 
one year. What is the probability that they are aged between 16 and 19?

 2.3 ‘Odds’ in horserace betting are defined as follows: 3/1 (three-to-one against) means a horse is 
expected to win once for every three times it loses; 3/2 means two wins out of five races; 4/5 (five 
to four on) means five wins for every four defeats, etc.

(a) Translate the above odds into ‘probabilities’ of victory.

(b) In a three-horse race, the odds quoted are 2/1, 6/4 and 1/1. What makes the odds different 
from probabilities? Why are they different?

(c) Discuss how much the bookmaker would expect to win in the long run at such odds (in part (b)), 
assuming each horse is backed equally.

 2.4 (a) Translate the following odds to ‘probabilities’: 13/8, 2/1 on, 100/30.

(b) In the 2.45 race at Plumpton the odds for the five runners were:

Philips Woody 1/1

Gallant Effort 5/2
Satin Noir 11/2
Victory Anthem 9/1
Common Rambler 16/1

Calculate the ‘probabilities’ and their sum.

(c) Should the bookmaker base his odds on the true probabilities of each horse winning, or adjust 
them depending upon the amount bet on each horse?

 2.5 How might you estimate the probability of Peru defaulting on its debt repayments next year? What 
type of probability estimate is this?

 2.6 How might you estimate the probability of a corporation reneging on its bond payments?

 2.7 Judy is 33, unmarried and assertive. She is a graduate in political science, and involved in union 
activities and anti-discrimination movements. Which of the following statements do you think is 
more probable?

(a) Judy is a bank clerk.

(b) Judy is a bank clerk, active in the feminist movement.

 2.8 A news item revealed that a London ‘gender’ clinic (which reportedly enables you to choose the sex 
of your child) had just set up in business. Of its first six births, two were of the ‘wrong’ sex. Assess 
this from a probability point of view.

 2.9 A newspaper advertisement reads ‘The sex of your child predicted, or your money back!’ Discuss this 
advertisement from the point of view of (a) the advertiser and (b) the client.

 2.10 ‘Roll six sixes to win a Mercedes!’ is the announcement at a fair. You have to roll six dice. If you get six 
sixes you win the car, valued at £40 000. The entry ticket costs £1. What is your expected gain or loss 
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on this game? If there are 400 people who try the game, what is the probability of the car being 
won? The organisers of the fair have to take out insurance against the car being won. This costs 
£400 for the day. Does this seem a fair premium? If not, why not?

 2.11 At another stall, you have to toss a coin numerous times. If a head does not appear in 20 tosses you 
win £1 billion. The entry fee for the game is £100.

(a) What are your expected winnings?

(b) Would you play?

 2.12 A four-engine plane can fly as long as at least two of its engines work. A two-engine plane flies as 
long as at least one engine works. The probability of an individual engine failure is 1 in 1000.

(a) Would you feel safer in a four- or two-engine plane, and why? Calculate the probabilities of an 
accident for each type.

(b) How much safer is one type than the other?

(c) What crucial assumption are you making in your calculation? Do you think it is valid?

 2.13 Which of the following events are independent?

(a) Two flips of a fair coin.

(b) Two flips of a biased coin.

(c) Rainfall on two successive days.

(d) Rainfall on St Swithin’s Day and rain one month later.

 2.14 Which of the following events are independent?

(a) A student getting the first two questions correct in a multiple-choice exam.

(b) A driver having an accident in successive years.

(c) IBM and Dell earning positive profits next year.

(d) Arsenal Football Club winning on successive weekends.

How is the answer to (b) reflected in car insurance premiums?

 2.15 Manchester United beat Liverpool 4–2 at soccer, but you do not know the order in which the goals 
were scored. Draw a tree diagram to display all the possibilities and use it to find (a) the probability 
that the goals were scored in the order L, MU, MU, MU, L, MU and (b) the probability that the score 
was 2–2 at some stage.

 2.16 An important numerical calculation on a spacecraft is carried out independently by three comput-
ers. If all arrive at the same answer, it is deemed correct. If one disagrees, it is overruled. If there is 
no agreement, then a fourth computer does the calculation and, if its answer agrees with any of the 
others, it is deemed correct. The probability of an individual computer getting the answer right is 
99%. Use a tree diagram to find:

(a) the probability that the first three computers get the right answer;

(b) the probability of getting the right answer;

(c) the probability of getting no answer;

(d) the probability of getting the wrong answer.

 2.17 The French national lottery works as follows. Six numbers from the range 0 to 49 are chosen at 
random. If you have correctly guessed all six, you win the first prize. What are your chances of 
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 winning if you are allowed to choose only six numbers? A single entry like this costs one euro. For 
210 euros you can choose 10 numbers, and you win if the 6 selected numbers are among them. Is 
this better value than the single entry?

 2.18 The UK national lottery originally worked as follows. You choose six (different) numbers in the range 
1 to 49. If all six come up in the draw (in any order), you win the first prize, generally valued at around 
£2m (which could be shared if someone else chooses the six winning numbers).

(a) What is your chance of winning with a single ticket?

(b) You win a second prize if you get five out of six right and your final chosen number matches the 
‘bonus’ number in the draw (also in the range 1–49). What is the probability of winning a sec-
ond prize?

(c) Calculate the probabilities of winning a third, fourth or fifth prize, where a third prize is won by 
matching five out of the six numbers, a fourth prize by matching four out of six and a fifth prize 
by matching three out of six.

(d) What is the probability of winning a prize?

(e) The prizes are as follows:

Prize Value

First £2 million (expected, possibly shared)
Second £100 000 (expected, for each winner)
Third £1500 (expected, for each winner)
Fourth £65 (expected, for each winner)
Fifth £10 (guaranteed, for each winner)

Comment upon the distribution of the fund between first, second, etc., prizes.

(f) Why is the fifth prize guaranteed whereas the others are not?

(g) In the first week of the lottery, 49 million tickets were sold. There were 1 150 000 winners, 
of which 7 won (a share of) the jackpot, 39 won a second prize, 2139 won a third prize 
and 76 731 a fourth prize. Are you surprised by these results or are they as you would 
expect?

 2.19 A coin is either fair or has two heads. You initially assign probabilities of 0.5 to each possibility. The 
coin is then tossed twice, with two heads appearing. Use Bayes’ theorem to work out the posterior 
probabilities of each possible outcome.

 2.20 A test for AIDS is 99% successful, i.e. if you are HIV+ , it will be detected in 99% of all tests, and if you 
are not, it will again be right 99% of the time. Assume that about 1% of the population are HIV+ . You 
take part in a random testing procedure, which gives a positive result. What is the probability that 
you are HIV+? What implications does your result have for AIDS testing?

 2.21 (a)  Your initial belief is that a defendant in a court case is guilty with probability 0.5. A witness 
comes forward claiming he saw the defendant commit the crime. You know the witness is not 
totally reliable and tells the truth with probability p. Use Bayes’ theorem to calculate the poste-
rior probability that the defendant is guilty, based on the witness’s evidence.

(b) A second witness, equally unreliable, comes forward and claims she/he saw the defendant 
commit the crime. Assuming the witnesses are not colluding, what is your posterior probability 
of guilt?

(c) If p 6  0.5, compare the answers to (a) and (b). How do you account for this curious result?
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 2.22 A man is mugged and claims that the mugger had red hair. In police investigations of such cases, the 
victim was able correctly to identify the assailant’s hair colour 80% of the time. Assuming that 10% of the 
population have red hair, what is the probability that the assailant in this case did, in fact, have red hair? 
Guess the answer first, and then find the right answer using Bayes’ theorem. What are the implications of 
your results for juries’ interpretation of evidence in court, particularly in relation to racial minorities?

 2.23 A firm has a choice of three projects, with profits as indicated below, dependent upon the state of 
demand.

Project Demand

Low Middle High

A 100 140 180
B 130 145 170
C 110 130 200
Probability 0.25 0.45  0.3

(a) Which project should be chosen on the expected value criterion?

(b) Which project should be chosen on the maximin and maximax criteria?

(c) Which project should be chosen on the minimax regret criterion?

(d) What is the expected value of perfect information to the firm?

 2.24 A firm can build a small, medium or large factory, with anticipated profits from each dependent 
upon the state of demand, as in the table below.

Factory Demand

Low Middle High

Small 300 320 330
Medium 270 400 420
Large  50 250 600
Probability 0.3 0.5  0.2

(a) Which project should be chosen on the expected value criterion?

(b) Which project should be chosen on the maximin and maximax criteria?

(c) Which project should be chosen on the minimax regret criterion?

(d) What is the expected value of perfect information to the firm?

 2.25 There are 25 people at a party. What is the probability that there are at least two with a birthday in 
common? They do not need to have been born in the same year, just the same day and month of the 
year. Also, ignore leap year dates. (Hint: the complement is (much) easier to calculate.)

 2.26 This problem is tricky, but amusing. Three gunmen, A, B and C, are shooting at each other. The prob-
abilities that each will hit what they aim at are 1, 0.75 and 0.5, respectively. They take it in turns to 
shoot (in alphabetical order) and continue until only one is left alive. Calculate the probabilities of 
each winning the contest. (Assume they draw lots for the right to shoot first.)

Hint 1: Start with one-on-one gunfights, e.g. the probability of A beating B, or of B beating C. You need 
to solve this first, and then figure out the optimal strategies in the first stage when all three are alive.

Hint 2: You’ll need the formula for the sum of an infinite series, given in Chapter 1.

Hint 3: To solve this, you need to realize that it might be in a gunman’s best interest not to aim at one 
of his opponents . . .
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 2.27 The BMAT test (see http://www.ucl.ac.uk/lapt/bmat/) is an on-line test for prospective medical 
students. It uses ‘certainty based marking’. After choosing your answer from the alternatives avail-
able, you then have to give your level of confidence that your answer is correct: low, medium or high 
confidence. If you choose low, you get one mark for the correct answer, zero if it is wrong. For 
medium confidence you get +2 or -2 marks for correct or incorrect answers. If you choose high, 
you get +3 or -6.

(a) If you are 60% confident your answer is correct (i.e. you think there is a 60% probability you are 
right), which certainty level should you choose?

(b) Over what range of probabilities is ‘medium’ the best choice?

(c) If you were 85% confident, how many marks would you expect to lose by opting for each of the 
wrong choices?

 2.28 A multiple choice test involves 20 questions, with four choices for each answer.

(a) If you guessed the answers to all questions at random, what mark out of 20 would you expect 
to get?

(b) If you know the correct answer to eight of the questions, what is your expected score out of 20?

(c) The examiner wishes to correct the bias due to students guessing answers. He/she decides to 
award a negative mark for incorrect answers (with 1 for a correct answer and 0 for no answer 
given). What negative mark would ensure that the overall mark out of 20 is a true reflection of 
the student’s ability?

 2.29 (Project) Problem 2.18 calculated the odds of winning the first, second, etc., prizes under the origi-
nal national lottery rules, where there were 49 numbers.

(a) Recalculate these probabilities where there are 59 numbers. What do you conclude about the 
probability of winning a prize and about the distribution of prizes?

(b) The prizes have also changed under the new rules. Compare the old and new lotteries consider-
ing both changes in probabilities and awards.

http://www.ucl.ac.uk/lapt/bmat
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Answers to exercises

Exercise 2.1

Answer in text.

Exercise 2.2

(a) A subjective view would have to be taken, informed by such things as opinion 
polls, the state of the economy, etc. (i.e. events which are expected to influence the 
outcome of the election).

(b) 1/59, a frequentist view. Some people do add their own subjective evaluations (e.g. 
that 5 must come up as it has not been drawn for several weeks) but these are 
unwarranted according to the frequentist approach.

(c) A mixture of objective and subjective criteria might be used here. Historical data on 
the occurrence of tsunamis might give a (frequentist) baseline figure, to which 
might be added subjective considerations such as the amount of recent seismic 
activity and its likely effect on the probability of a tsunami occurring.

(d) A mixture again. Historical data give a benchmark (possibly of little relevance) while 
immediate factors such as the weather might alter one’s subjective judgement. (As I 
write, it is snowing outside, which seems to have a huge impact on British trains.)

Exercise 2.3

(a) 1, 2, 3, . . . , 20, 21 (a triple seven), 22 (double eleven), 24, 25 (outer bull), 26, 27, 28, 
30, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 50 (bull), 51, 54, 57, 60. Or it could miss 
altogether, it depends upon the player.

(b) For a low-ability player you could assume their chance of hitting the target number 
is proportional to its area on the board. The number 13 is one of 20, so 5% of the 
total. Actually it will be less than this, since the area includes the double-13 and 
triple-13 bands. If one also counts the black space around the perimeter of the 
board, this reduces the chances further, so 3% might be a reasonable estimate. This 
assumes the player is equally likely to hit any point on the board, i.e. has no real 
skill whatsoever. A good player should do much better than this, perhaps 50% or 
better. The probability for a particular player might be estimated by observing how 
often they hit their target number when aiming at the board.

(c) Three ways: hitting 18, a double-9 and a triple-6.

Exercise 2.4

(a) The complement is missing the bull’s eye, with a 70% probability (100% – 30%).

(b) Event E

2
4

1

3

5
6

Complement of event E
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(c) Zero. By definition, mutually exclusive events cannot both occur.

(d) The ‘probabilities’ sum to 1.1, which is impossible for true probabilities.

Exercise 2.5

(a) Pr(Hit then Miss or Miss then Hit) = 0.3 * 0.7 + 0.7 * 0.3 = 0.42. This is a hit fol-
lowed by a miss or a miss followed by a hit, the two different ways of achieving the 
outcome.

(b) Pr(Hit then Hit) = 0.3 * 0.3 = 0.09.

(c) It is assumed that the probability of the second arrow hitting the target is the same 
as the first. Altering this assumption would affect both answers. Independence 
may be a dubious assumption – hitting with the first arrow might give the archer 
confidence, increasing the probability of hitting the target again.

(d) This is Pr(Hit then Miss) = 0.3 * 0.7 = 0.21. This is half the value of the answer in 
part (a). Here we have specified the ordering required, which reduces the number 
of ways of getting one hit in two shots.

(e) Part (a) becomes Pr(Hit then miss or miss then hit) = Pr(H1) * Pr(M2 �H1) +  
Pr(M1) * Pr(H2 �M1) = 0.3 * (1 - 0.5) + 0.7 * 0.2 + 0.29. Part (b) becomes 
0.3 * 0.5 = 0.15. One now has to use the conditional probabilities for the second 
shot. Hence, for example, Pr(Hit on the second shot given a hit on the first) = 0.5 
and so Pr(Miss on the second shot given a hit on the first) = 1 - 0.5.

(f) The diagram is

 Dependent case:

 The probability of the same outcome for both arrows is 0.15 + 0.56 = 0.71. For the 
independent case we have:
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 The probability of either two hits or no hits is 0.09 + 0.49 = 0.58. The effect 
of confidence on the second shot serves to increase the probability of either no or 
two hits.

Exercise 2.6

(a) 

(b) 

Exercise 2.7

(a) Pr(2 hits) = Pr(H and H and M) * 3C2 = 0.3 * 0.3 * 0.7 * 3 = 0.189.

(b) This cannot be done using the combinatorial formula, because of the non- 
independence of probabilities. Instead one has to calculate Pr(H and H and M) +  
Pr(H and M and H) + Pr(M and H and H), yielding the answer 0.175. In this case the 
different orderings alter the probabilities of hitting the target, rendering the com-
binatorial formula inappropriate.
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Exercise 2.8

(a) Bag A has proportionately more red balls than bag B; hence it should be the 
favoured bag from which the single red ball was drawn. Performing the calculation:

Pr(A �R) =
Pr(R �A) * Pr(A)

Pr(R �A) * Pr(A) + Pr(R �B) * Pr(B)
=

0.625 * 0.5
0.625 * 0.5 + 1>3 * 0.5

= 0.652

(b) The result is the same as Pr(R �A) = 0.625 as before. The number of balls does not 
enter the calculation.

Prior probabilities Likelihoods Prior * likelihood Posterior probabilities

A 0.5 0.625 0.3125 0.3125>0.5625 = 0.556
B 0.5 0.5 0.25 0.25>0.5625 = 0.444
Total 0.5625

Exercise 2.9

(a) 1200>(1 + r) - 1200>1.1 = 1090.91.

(b) 1200>1.15 = 1043.48. The PV has only changed by 4.3%. This is calculated as 
1.1>1.15 - 1 = -0.043.

(c) 1200>1.12 = 991.74; 1200>1.15 = 745.11.

(d) PV = 500>1.1 + 500>1.12 + 500>1.13 = 1243.43.

(e) At 10%: project A yields a PV of 300>1.1 + 600>1.12 = 768.6. Project B yields 
400>1.1 + 488>1.12 = 766.9. At 20% the PVs are 666.7 and 672.2, reversing the 
rankings. A’s large benefits in year 2 are penalised by the higher discount rate.

Exercise 2.10

(a) Project Expected value Minimum Maximum

A 0.3 * 100 + 0.4 * 80 + 0.3 * 70 = 83 70 100
B 0.3 * 90 + 0.4 * 85 + 0.3 * 75 = 83.5 75  90
C 0.3 * 120 + 0.4 * 60 + 0.3 * 40 = 72 40 120

The maximin is 75, associated with project B and the maximax is 120, associated 
with project C. The regret values are given by

4% 6% 8% Max

A 20 5 5 20
B 30 0 0 30
C 0 25 35 35

Min 20

 The minimax regret is 20, associated with project A.

(b) With perfect information the firm could earn 0.3 * 120 + 0.4 * 85 + 0.3 * 75 =   
92.5. The highest expected value is 83.5, so the value of perfect information is 
92.5 - 83.5 = 9.
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By the end of this chapter you should be able to:

●	 recognise that the result of most probability experiments (e.g. the score on a die) can 
be described as a random variable

●	 appreciate how the behaviour of a random variable can often be summarised by a 
 probability distribution (a mathematical formula)

●	 recognise the most common probability distributions and be aware of their uses

●	 solve a range of probability problems using the appropriate probability distribution.
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Introduction

The last chapter covered probability concepts and introduced the idea of the out-
come of an experiment being random, i.e. influenced by chance. The outcome of 
tossing a coin is random, as is the mean calculated from a random sample. We can 
refer to these outcomes as being random variables. The number of heads achieved 
in five tosses of a coin or the average height of a sample of children are both ran-
dom variables.

We can summarise the information about a random variable by using its 
 probability distribution. A probability distribution lists, in some form, all the pos-
sible outcomes of a probability experiment and the probability associated with 
each one. Another way of saying this is that the probability distribution lists (in 
some way) all possible values of the random variable and the probability that 
each value will occur. For example, the simplest experiment is tossing a coin, for 
which the possible outcomes are heads or tails, each with probability one-half. 
The probability distribution can be expressed in a variety of ways: in words, or in 
a graphical or mathematical form. For tossing a coin, the graphical form is shown 
in Figure 3.1, and the mathematical form is:

 Pr(H  ) = 1
2

 Pr(T  ) = 1
2

The different forms of presentation are equivalent but one might be more suited 
to a particular purpose.

If we want to study a random variable (e.g. the mean of a random sample) and 
draw inferences from it, we need to make use of the associated probability distribu-
tion. Therefore, an understanding of probability distributions is vital to making 
appropriate use of statistical evidence. In this chapter we first look in greater detail 
at the concepts of a random variable and its probability distribution. We then look 
at a number of commonly used probability distributions, such as the Binomial and 
Normal, and see how they are used as the basis of inferential statistics (drawing 
conclusions from data). In particular, we look at the probability distribution asso-
ciated with a sample mean because the mean is so often used in statistics.

Some probability distributions occur often and so are well known. Because of 
this they have names so we can refer to them easily; for example, the Binomial 
distribution or the Normal distribution. In fact, each of these constitutes a family of 
 distributions. A single toss of a coin gives rise to one member of the Binomial 
 distribution family; two tosses would give rise to another member of that family 

Pr(x)Figure 3.1
The probability distribu-
tion for the toss of a coin
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(where the possible outcomes are zero, one or two heads in two tosses). These 
two distributions differ in the number of tosses but are members of the same 
family. If a biased coin were tossed, this would lead to yet another Binomial dis-
tribution, but it would differ from the previous two because of the different 
probability of heads.

Members of the Binomial family of distributions are distinguished by the num-
ber of trials and by the probability of the outcome occurring. These are the two 
parameters of the distribution and tell us all we need to know about the distribution. 
Other distributions might have different numbers of parameters, with different 
meanings. Some distributions, for example, have only one parameter. We will come 
across examples of different types of distribution throughout the rest of this text.

In order to understand fully the idea of a probability distribution, we first intro-
duce a new concept, that of a random variable. As will be seen later in the chapter, 
an important random variable is the sample mean, and to understand how to 
draw inferences from the sample mean, we must recognise it as a random variable.

Random variables and probability distributions

Examples of random variables have already been encountered in the previous 
chapter, for example, the result of the toss of a coin, or the number of boys in a 
family of five children. A random variable is one whose outcome or value is the 
result of chance and is therefore unpredictable, although the range of possible 
outcomes and the probability of each outcome may be known. It is impossible to 
know in advance the outcome of a toss of a coin, for example, but it must be either 
heads or tails, each with probability one-half. The number of heads in 250 tosses 
is another random variable, which can take any value between zero and 250, 
although values near 125 are the most likely. You are very unlikely to get 250 
heads from tossing a fair coin.

Intuitively, most people would ‘expect’ to get 125 heads from 250 tosses of the 
coin, since heads comes up half the time on average. This suggests we could use the 
expected value notation introduced in Chapter 1 and write E(X ) = 125, where X 
represents the number of heads obtained from 250 tosses. This usage is indeed valid 
and we will explore this further below. It is a very convenient shorthand notation.

The time of departure of a train is another example of a random variable. It may 
be timetabled to depart at 11.15, but it probably (almost certainly) won’t leave at 
exactly that time. If a sample of 10 basketball players were taken, and their average 
height calculated, this would be a random variable. In this latter case, it is the pro-
cess of taking a sample that introduces the variability which makes the resulting 
average a random variable. If the experiment were repeated, a different sample 
and a different value of the random variable would be obtained.

The above examples can be contrasted with some things which are not random 
variables. If one were to take all basketball players and calculate their average 
height, the result would not be a random variable. This time there is no sampling 
procedure to introduce variability into the result. If the experiment were repeated, 
the same result would be obtained, since the same people would be measured the 
second time (this assumes that the population does not change, of course). Just 
because the value of something is unknown does not mean it qualifies as a  random 
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variable. This is an important distinction to bear in mind, since it is legitimate to 
make probability statements about random variables (‘the probability that the 
average height of a sample of basketball players is over 195 cm is 60%’) but not 
about parameters (‘the probability that the Pope is over 180 cm tall is 60%’). Here 
again, there is a difference of opinion between frequentist and subjective schools 
of thought. The latter group would argue that it is possible to make probability 
statements about the Pope’s height. It is a way of expressing lack of knowledge 
about the true value. The frequentists would say the Pope’s height is a fact that we 
do not happen to know; that does not make it a random variable.

The Binomial distribution

One of the simplest distributions which a random variable can have is the Binomial. 
The Binomial distribution arises whenever the underlying probability experiment 
has just two possible outcomes, e.g. heads or tails from the toss of a coin. Even if the 
coin is tossed many times (so one could end up with one, two, three, etc., heads in 
total), the underlying experiment (sometimes called a Bernoulli trial) has only two 
outcomes, so the Binomial distribution should be used. A counter-example would 
be the rolling of a die, which has six possible outcomes (in this case the Multinomial 
distribution, not covered in this text, would be used). Note, however, that if we were 
interested only in rolling a six or not, we could use the Binomial by defining the two 
possible outcomes as ‘six’ and ‘not-six’. It is often the case in statistics that by suit-
able transformation of the data, we can use different distributions to tackle the 
same problem. We will see more of this later in the chapter.

The Binomial distribution can therefore be applied to the type of problem 
encountered in the previous chapter, concerning the sex of children. It provides a 
convenient formula for calculating the probability of r boys in n births or, in more 
general terms, the probability of r ‘successes’ in n trials1. We shall use it to calcu-
late the probabilities of 0, 1, . . . , 5 boys in five births.

For the Binomial distribution to apply, we first need to assume independence 
of successive events and we shall assume that, for any birth:

Pr(boy) = P = 1
2

It follows that

Pr(girl) = 1 - Pr(boy) = 1 - P = 1
2

Although we have P = 1
2 in this example, the Binomial distribution can be applied 

for any value of P between 0 and 1.
First we consider the case of r = 5, n = 5, i.e. five boys in five births. This prob-

ability is found using the multiplication rule:

Pr(r = 5) = P * P * P * P * P = P5 = (1
2 )5 = 1>32

The probability of four boys (and then implicitly one girl) is

Pr(r = 4) = P * P * P * P * (1 - P) = 1>32

1The identification of a boy with ‘success’ is a purely formal one and is not meant to be 
 pejorative.
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But this gives only one possible ordering of the four boys and one girl. Our origi-
nal statement of the problem did not specify a particular ordering of the children. 
There are five possible orderings (the single girl could be in any of five positions in 
rank order). Recall that we can use the combinatorial formula nCr to calculate the 
number of orderings, giving 5C4 = 5. Hence the probability of four boys and one 
girl in any order is 5/32. Summarising, the formula for four boys and one girl is

Pr(r = 4) = 5C4 * P 4 * (1 - P)

For three boys (and two girls) we obtain

Pr(r = 3) = 5C3 * P 3 * (1 - P )2 = 10 * 1>8 * 1>4 = 10>32

In a similar manner

 Pr(r = 2) = 5C2 * P 2 * (1 - P )3 = 10>32
 Pr(r = 1) = 5C1 * P1 * (1 - P )4 = 5>32
 Pr(r = 0) = 5C0 * P 0 * (1 - P )5 = 1>32

As a check on our calculations, we may note that the sum of the probabilities 
equals 1, as they should do, since we have enumerated all possibilities.

A fairly clear pattern emerges. The probability of r boys in n births is given by

Pr(r) = nCr * P r * (1 - P )n - r

and this is known as the Binomial formula or distribution. The Binomial distribu-
tion is appropriate for analysing problems with the following characteristics:

●	 There is a number (n) of trials.
●	 Each trial has only two possible outcomes, ‘success’ (with probability P) and 

‘failure’ (probability 1 - P) and the outcomes are independent between trials.
●	 The probability P does not change between trials.

The probabilities calculated by the Binomial formula may be illustrated in a 
diagram, as shown in Figure 3.2. This is very similar to the relative frequency 
 distribution introduced in Chapter 1. That distribution was based on empirical 
data (to do with wealth) while the Binomial probability distribution is a theoreti-
cal construction, built up from the basic principles of probability theory.

As stated earlier, the Binomial is, in fact, a family of distributions, each member 
of which is distinguished by two parameters, n and P. The Binomial is thus a distri-
bution with two parameters, and once their values are known the distribution is 
completely determined (i.e. Pr(r) can be calculated for all values of r). To illustrate 

Figure 3.2
Probability distribution of 
the number of boys in five 
children
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the difference between members of the family of the Binomial distribution, 
Figure 3.3 presents three other Binomial distributions, for different values of P 
and n. It can be seen that for the value of P = 1

2 the distribution is symmetric, 
while for all other values it is skewed to either the left or the right. Part (b) of the 
figure illustrates the distribution relating to the worked example of rolling a die, 
described below.

Since the Binomial distribution depends only upon the two values n and P, we 
can use a shorthand notation rather than the formula itself. A random variable r, 

n = 40, P = 0.5
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which has a Binomial distribution with the parameters n and P, can be written in 
general terms as

r ∼ B(n, P) (3.1)

Thus for the previous example of children, where r represents the number of boys,

r ∼ B(5, 12)

This is simply a brief and convenient way of writing down the information avail-
able; it involves no new problems of a conceptual nature. Writing

r ∼ B(n, P)

is just a shorthand for

Pr(r) = nCr * Pr * (1 - P)n - r

Teenage weapons

A story entitled ‘One in five teens carry weapon’ (link on main BBC news website 23/7/2007) 
provides a nice example of how knowledge of the binomial distribution can help our inter-
pretation of events in the news. The headline is somewhat alarming but reading the story 
reveals that this is what young teenagers report of their friends. It then reveals that some 
are only ‘fairly sure’ and that it applies to boys, not girls. By now our suspicions should be 
aroused. What is the truth?

Notice, incidentally, how the story subtly changes. The headline suggests 20% of teenag-
ers carry a weapon. The text then says this is what young teenagers report of their friends. 
It then reveals that some are only ‘fairly sure’ and that it applies to boys, not girls. By now 
our suspicions should be aroused. What is the truth?

Note that you are more likely to know someone who carries a weapon than to carry one 
yourself. Let p be the proportion who truly carry a weapon. Assume also that each person has 
10 friends. What is the probability that a person, selected at random, has no friends who carry 
a weapon? Assuming independence, this is given by [1 - p]10. Hence the probability of at least 
one friend with a weapon is 1 - [1 - p]10. This is the proportion of people who will report 
having at least one friend with a weapon. How does this vary with p? This is set out in the table:

p
p(#  1 friend with weapon) 

1 − [1 − p]10

0.0% 0%
0.5% 5%
1.0% 10%
1.5% 14%
2.0% 18%
2.5% 22%
3.0% 26%
3.5% 30%
4.0% 34%

Thus, a true proportion of just over 2% carrying weapons will generate a report suggesting 
20% know someone carrying a weapon! This is much less alarming (and newsworthy) than 
in the original story.
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 The mean and variance of the Binomial distribution

In Chapter 1 we calculated the mean and variance of a set of data, of the distribu-
tion of wealth. The picture of that distribution (Figure 1.9) looks not too dissimi-
lar to one of the Binomial distributions shown in Figure 3.3. This suggests that we 
can calculate the mean and variance of a Binomial distribution, just as we did for 
the empirical distribution of wealth. Calculating the mean would provide the 
answer to a question such as ‘If we have a family with five children, how many do 
we expect to be boys?’ Intuitively the answer seems clear, 2.5 (even though such a 
family could not exist). The Binomial formula allows us to confirm this intuition.

The mean and variance are most easily calculated by drawing up a relative fre-
quency table based on the Binomial frequencies. This is shown in Table 3.1 for the 
values n = 5 and P = 1

2. Note that r is equivalent to x in our usual notation and 
Pr(r), the relative frequency, is equivalent to f(x)>Σf(x). The mean of this distribu-
tion is given by

E(r) = a r * Pr(r)

aPr(r)
=

80>32
32>32

= 2.5 (3.2)

and the variance is given by

V(r) = a r2 * Pr(r)

aPr(r)
- m2 =

240>32
32>32

- 2.52 = 1.25 (3.3)

The mean value tells us that in a family of five children we would expect, on aver-
age, two and a half boys. Obviously no single family can be like this; it is the aver-
age over all such families. The variance is more difficult to interpret intuitively, 
but it tells us something about how the number of boys in different families will 
be spread around the average of 2.5.

You might like to test the assumptions. What happens if there are more than 10 friends 
assumed? What happens if events are not independent, i.e. having one friend with a 
weapon increases the probability of another friend with a weapon?

Update: The 2009/10 British Crime Survey estimated that 1% of 13–15-year-olds car-
ried a knife for their own protection. It also reported 13% reporting they knew someone 
who carried a knife for protection. These numbers seem entirely consistent with our calcu-
lation above, carried out well before the 2009/10 survey.

Table 3.1 Calculating the mean and variance of the Binomial distribution

r Pr(r) r : Pr(r) r2 : Pr(r)

0 1/32 0 0
1 5/32 5/32 5/32
2 10/32 20/32 40/32
3 10/32 30/32 90/32
4 5/32 20/32 80/32
5 1/32 5/32 25/32
Totals 32/32 80/32 240/32
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There is a quicker way to calculate the mean and variance of the Binomial dis-
tribution. It can be shown that the mean can be calculated as nP, i.e. the number 
of trials times the probability of success. For example, in a family with five chil-
dren and an equal probability that each child is a boy or a girl, we expect 
nP = 5 * 1>2 = 2.5 to be boys.

The variance can be calculated as nP(1 - P). This gives 5 * 1>2 * 1>2 = 1.25, as 
found above by extensive calculation.

Worked example 3.1 Rolling a die

If a die is thrown four times, what is the probability of getting two or more 
sixes? This is a problem involving repeated experiments (rolling the die) with 
but two types of outcome for each roll: success (a six) or failure (anything but a 
six). Note that we combine several possibilities (scores of 1, 2, 3, 4 or 5) together 
and represent them all as failure. The probability of success (one-sixth) does 
not vary from one experiment to another, and so use of the Binomial distribu-
tion is appropriate. The values of the parameters are n = 4 and P = 1>6. Denot-
ing by r the random variable ‘the number of sixes in four rolls of the die’, then

r ∼ B(4, 16 ) (3.4)

Hence

Pr(r) = nCr * Pr(1 - P)(n - r)

where P = 1
6 and n = 4. The probabilities of two, three and four sixes are then 

given by

Pr(r = 2) = 4C2(1
6 )2(5

6 )2 = 0.116

Pr(r = 3) = 4C3(1
6 )3(5

6 )1 = 0.115

Pr(r = 4) = 4C4(1
6 )4(5

6 )0 = 0.00077

Since these events are mutually exclusive, the probabilities can simply be 
added together to get the desired result, which is 0.132, or 13.2%. This is the 
probability of two or more sixes in four rolls of a die.

This result can be illustrated diagrammatically as part of the area under the 
appropriate Binomial distribution, shown in Figure 3.4.

Pr(x) 0.5

0.4

0.3

0.2

0.1

0

Figure 3.4
Probability of two or more 
sixes in four rolls of a die
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The Normal distribution

The Binomial distribution applies when there are two possible outcomes to an 
experiment, but not all problems fall into this category. For instance, the (ran-
dom) arrival time of a train is a continuous variable and cannot be analysed using 
the Binomial. There are many probability distributions in statistics, developed to 
analyse different types of problem. Several of them are covered in this text, and 
the most important of them is the Normal distribution, to which we now turn. It 
was discovered by the German mathematician Gauss in the nineteenth century 
(hence it is also known as the Gaussian distribution), in the course of his work on 
regression (see Chapter 7).

Many random variables turn out to be Normally distributed. Men’s (or wom-
en’s) heights are Normally distributed. IQ (the measure of intelligence) is also 
Normally distributed. Another example is of a machine producing (say) bolts with 
a nominal length of 5 cm which will actually produce bolts of slightly varying 
length (these differences would probably be extremely small) due to factors such 
as wear in the machinery, slight variations in the pressure of the lubricant, etc. 
These would result in bolts whose length varies, in accordance with the Normal 
distribution. This sort of process is extremely common, with the result that the 
Normal distribution often occurs in everyday situations.

The Normal distribution tends to arise when a random variable is the result of 
many independent, random influences added together, none of which dominates 
the others. A man’s height is the result of many genetic influences, plus environ-
mental factors such as diet, etc. As a result, height is Normally distributed. If one 
takes the height of men and women together, the result is not a Normal distribu-
tion, however. This is because one influence dominates the others: gender. Men 
are, on average, taller than women. Many variables familiar in economics are not 

The darker-shaded areas represent the probabilities of two or more sixes and 
together their area represents 13.2% of the whole distribution. This illustrates 
an important principle: that probabilities can be represented by areas under an 
appropriate probability distribution. We shall see more of this later.

(a) If the probability of a randomly drawn individual having blue eyes is 0.6, what is the prob-
ability that four people drawn at random all have blue eyes?

(b) What is the probability that two of the sample of four have blue eyes?

(c) For this particular example, write down the Binomial formula for the probability of r blue-
eyed individuals, r = 0 c4. Confirm that the calculated probabilities sum to one.

?

Exercise 3.1

(a) Calculate the mean and variance of the number of blue-eyed individuals in the previous 
exercise.

(b) Draw a graph of this Binomial distribution and on it mark the mean value and the mean 
value + >-  one standard deviation.

Having introduced the concept of probability distributions using the Binomial, we now move 
on to the most important of all probability distributions, the Normal.

?

Exercise 3.2
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Normal, however – incomes, for example (although the logarithm of income is 
approximately Normal). We shall learn techniques to deal with such circum-
stances in due course.

Now that we have introduced the idea of the Normal distribution, what does it 
look like? It is presented below in graphical and then mathematical forms. Unlike 
the Binomial, the Normal distribution applies to continuous random variables 
such as height, and a typical Normal distribution is illustrated in Figure 3.5. Since 
the Normal distribution is a continuous one, it can be evaluated for any values of 
x, not just for integers as was the case for the Binomial distribution. The figure 
illustrates the main features of the distribution:

●	 It is unimodal, having a single, central peak. If this were men’s heights, it would 
illustrate the fact that most men are clustered around the average height, with 
a few very tall and a few very short people.

●	 It is symmetric, the left and right halves being mirror images of each other.
●	 It is bell-shaped.
●	 It extends continuously over all the values of x from minus infinity to plus 

infinity, although the value of f (x) becomes extremely small as these values are 
approached (the presentation of this figure being of only finite width, this last 
characteristic is not faithfully reproduced). This also demonstrates that most 
empirical distributions (such as men’s heights) can only be an approximation 
to the theoretical ideal, although the approximation is close and good enough 
for practical purposes.

Note that we have labelled the y-axis ‘f (x)’ rather than ‘Pr(x)’ as we did for the 
Binomial distribution. This is because it is areas under the curve that represent prob-
abilities, not the heights. With the Binomial, which is a discrete distribution, one 
can legitimately represent probabilities by the heights of the bars. For the Normal, 
although f (x) does not give the probability per se, it does give an indication: you 
are more likely to encounter values from the middle of the distribution (where 
f (x) is greater) than from the extremes.

In mathematical terms, the formula for the Normal distribution is (x is the ran-
dom variable)

f (x) =
1

s12p
 e- 1

2  (x -m
s )2

 (3.5)

The mathematical formulation is not so formidable as it appears. m and s are 
the parameters of the distribution, like n and P for the Binomial (even though 
they have different meanings); p is 3.1416 and e is 2.7183. If the formula is 

Figure 3.5
The Normal distribution
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 evaluated using different values of x, the values of f (x) obtained will map out a 
Normal distribution. Fortunately, as we shall see, we do not need to use the math-
ematical formula in most practical problems.

Like the Binomial, the Normal is a family of distributions differing from one 
another only in the values of the parameters m and s. Several Normal distribu-
tions are drawn in Figure 3.6 for different values of the parameters.

Whatever value of m is chosen turns out to be the centre of the distribution. 
Since the distribution is symmetric, m is its mean. The effect of varying s is to nar-
row (small s) or widen (large s) the distribution. s turns out to be the standard 
deviation of the distribution. The Normal is another two-parameter family of dis-
tributions like the Binomial, and once the mean m and the standard deviation s 
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Figure 3.6(a)
The Normal distribution, 
m = 20, s = 5

0.00

0.10

0.20

0.30f(x)

–10 0 10 20 30 40
x

Figure 3.6(b)
The Normal distribution, 
m = 15, s = 2
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Figure 3.6(c)
The Normal distribution, 
m = 0, s = 4
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(or equivalently the variance, s2) are known, the whole of the distribution can be 
drawn. The shorthand notation for a Normal distribution is

x ∼ N(m, s2) (3.6)

meaning ‘the variable x is Normally distributed with mean m and variance s2’. 
This is similar in form to the expression for the Binomial distribution, although 
the meanings of the parameters are different.

Use of the Normal distribution can be illustrated using a simple example. The 
height of adult males is Normally distributed with mean height m = 174 cm and 
standard deviation s = 9.6 cm. Let x represent the height of adult males; then

x ∼ N(174, 92.16) (3.7)

and this is illustrated in Figure 3.7. Note that (3.7) contains the variance rather 
than the standard deviation.

What is the probability that a randomly selected man is taller than 180 cm? If 
all men are equally likely to be selected, this is equivalent to asking what propor-
tion of men are over 180 cm in height. This is given by the area under the Normal 
distribution, to the right of x = 180, i.e. the shaded area in Figure 3.7. The further 
from the mean of 174, the smaller the area in the tail of the distribution. One way 
to find this area would be to use equation (3.5), but this requires the use of sophis-
ticated mathematics.

Since this is a frequently encountered problem, the answers have been set out 
in the tables of the standard Normal distribution. We can simply look up the solu-
tion. However, since there is an infinite number of Normal distributions (one for 
every combination m and s2), it would be impossible to tabulate them all. The 
standard Normal distribution, which has a mean of zero and variance of one, is 
therefore used to represent all Normal distributions. Before the table can be con-
sulted, therefore, the data have to be transformed so that they accord with the 
standard Normal distribution.

The required transformation is the z score, which was introduced in Chapter 1. 
This measures the distance between the value of interest (180) and the mean, 
measured in terms of standard deviations. Therefore, we calculate

z =
x - m

s
 (3.8)

Figure 3.7
The height distribution 
of men
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and z is a Normally distributed random variable with mean 0 and variance 1, i.e. 
z ∼ N(0, 1).

This transformation shifts the original distribution m units to the left and then 
adjusts the dispersion by dividing through by s, resulting in a mean of 0 and vari-
ance 1. z is Normally distributed because x is Normally distributed. The transfor-
mation in (3.8) retains the Normal distribution shape, despite the changes to 
mean and variance. If x followed some other distribution, then z would not be 
Normal either.

It is easy to verify the mean and variance of z using the rules for E and V opera-
tors encountered in Chapter 1:

 E(z) = Eax - m

s
b =

1
s

 (E(x) - m) = 0 (since E(x) = m)

 V(z) = Vax - m

s
b =

1

s2 V(x) 
s2

s2 = 1

Evaluating the z score from our data, we obtain

z =
180 - 174

9.6
= 0.63 (3.9)

This shows that 180 is 0.63 standard deviations above the mean, 174, of the distri-
bution. This is a measure of how far 180 is from 174 and allows us to look up the 
answer in tables. The task now is to find the area under the standard Normal dis-
tribution to the right of 0.63 standard deviations above the mean. This answer can 
be read off directly from the table of the standard Normal distribution, included 
as Table A2 in the Appendix. An excerpt from Table A2 is presented in Table 3.2.

The left-hand column gives the z score to one place of decimals. The appropri-
ate row of the table to consult is the one for z = 0.6, which is shaded. For the 
second place of decimals (0.03) we consult the appropriate column, also shaded. 
At their intersection we find the value 0.2643, which is the desired area and 
therefore probability. In other words, 26.43% of the distribution lies to the right 
of 0.63 standard deviations above the mean. Therefore 26.43% of men are over 
180 cm in height.

Use of the standard Normal table is possible because, although there is an infi-
nite number of Normal distributions, they are all fundamentally the same, so that 
the area to the right of 0.63 standard deviations above the mean is the same for all 
of them. As long as we measure the distance in terms of standard deviations, then 
we can use the standard Normal table. The process of standardisation turns all 
Normal distributions into a standard Normal distribution with a mean of zero 
and a variance of one. This process is illustrated in Figure 3.8.

Table 3.2 Areas of the standard Normal distribution (excerpt from Table A2)

z 0.00 0.01 0.02 0.03 . . . 0.09

0.0 0.5000 0.4960 0.4920 0.4880 . . . 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 . . . 0.4247
f f f f f . . . f
0.5 0.3085 0.3050 0.3015 0.2981 . . . 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 . . . 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 . . . 0.2148
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The area in the right-hand tail is the same for both distributions. It is the stan-
dard Normal distribution in Figure 3.8(b) which is tabulated in Table A2. To dem-
onstrate how standardisation turns all Normal distributions into the standard 
Normal, the earlier problem is repeated but taking all measurements in inches. The 
answer should obviously be the same. Taking 1 inch = 2.54 cm, the figures are

x = 70.87 s = 3.78 m = 68.50

What proportion of men are over 70.87 inches in height? The appropriate 
Normal distribution is now

x ∼ N(68.50, 3.782) (3.10)

The z score is

z =
70.87 - 68.50

3.78
= 0.63 (3.11)

which is the same z score as before and therefore gives the same probability.

Figure 3.8(a)
The Normal distribution, 
m = 174, s = 9.6

–3 –2 –1 1 2 3

Figure 3.8(b)
The standard Normal 
distribution corresponding 
to Figure 3.8(a)

Worked example 3.2 

Packets of cereal have a nominal weight of 750 grams, but there is some varia-
tion around this as the machines filling the packets are imperfect. Let us assume 
that the weights follow a Normal distribution. Suppose that the standard devi-
ation around the mean of 750 is 5 grams. What proportion of packets weigh 
more than 760 grams?
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Since a great deal of use is made of the standard Normal tables, it is worth work-
ing through a couple more examples to reinforce the method. We have so far cal-
culated that Pr(z 7 0.63) = 0.2643. Since the total area under the graph equals 
one (i.e. the sum of probabilities must be one), the area to the left of z = 0.63 
must equal 0.7357, i.e. 73.57% of men are under 180 cm. It is fairly easy to manipu-
late areas under the graph to arrive at any required area. For example, what pro-
portion of men are between 174 and 180 cm in height? It is helpful to refer to 
Figure 3.9 at this point.

The size of area A is required. Area B has already been calculated as 0.2643. 
Since the distribution is symmetric, the area A + B must equal 0.5, since 174 is at 
the centre (mean) of the distribution. Area A is therefore 0.5 - 0.2643 = 0.2357. 
Therefore, 23.57% is the desired result.

Summarising our information, we have x ∼ N(750, 25) where x represents 
the weight. We wish to find Pr(x 7 760). To be able to look up the answer, we 
need to measure the distance between 760 and 750 in terms of standard devia-
tions. This is

z =
760 - 750

5
= 2.0

Looking up z = 2.0 in Table A2 reveals an area of 0.0228 in the tail of the distri-
bution. Thus 2.28% of packets weigh more than 760 grams.

140 150 160 170
174

180 190 200 210

Figure 3.9
The proportion of men be-
tween 174 cm and 180 cm 
in height

Using software to find areas under the standard Normal distribution

Using a spreadsheet program, you can look up the z-distribution directly and hence dispense 
with tables. In Excel, for example, the function ‘=  NORM.S.DIST(0.63, TRUE)’ gives the answer 
0.7357, i.e. the area to the left of the z score. The area in the right-hand tail is then obtained 
by subtracting this value from 1, i.e. 1 - 0.7357 = 0.2643. Entering the formula 
‘=  1 - NORM.S.DIST(0.63, TRUE)’ in a cell will give the area in the right-hand tail directly.
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As a final exercise consider the question of what proportion of men are between 
166 and 178 cm tall. As shown in Figure 3.10, area C + D is wanted. The only way 
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to find this is to calculate the two areas separately and then add them together. 
For area D the z score associated with 178 is:

zD =
178 - 174

9.6
= 0.42 (3.12)

Table A2 indicates that the area in the right-hand tail, beyond z = 0.42, is 
0.3372, so area D = 0.5 - 0.3372 = 0.1628. For C, the z score is

zC =
166 - 174

9.6
= -0.83 (3.13)

The minus sign indicates that it is the left-hand tail of the distribution, below 
the mean, which is being considered. Since the distribution is symmetric, it is 
the same as if it were the right-hand tail, so the minus sign may be ignored when 
consulting the table. Looking up z = 0.83 in Table A2 gives an area of 0.2033 in 
the tail, so area C is therefore 0.5 - 0.2033 = 0.2967. Adding areas C and D gives 
0.2967 + 0.1628 = 0.4595. So nearly half of all men are between 166 and 178 cm 
in height.

An alternative interpretation of the results obtained above is that if a man is 
drawn at random from the adult population, the probability that he is over 180 
cm tall is 26.43%. This is in line with the frequentist school of thought. Since 
26.43% of the population is over 180 cm in height, that is the probability of a man 
over 180 cm being drawn at random.

140 150 160 170 180 190 200 210

Figure 3.10
The proportion of men 
between 166 and 178 cm 
in height

(a) The random variable x is distributed Normally, x ∼ N(40, 36). Find the probability that 
x 7 50.

(b) Find Pr(x 6 45).

(c) Find Pr(36 6 x 6 45).

?

Exercise 3.3

The mean + >-0.67 standard deviations cuts off 25% in each tail of the Normal distribu-
tion. Hence, the middle 50% of the distribution lies within + >-0.67 standard deviations of 
the mean. Use this fact to calculate the inter-quartile range for the distribution 
x ∼ N(200, 256).

?

Exercise 3.4
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The distribution of the sample mean

One of the most important concepts in statistical inference is the probability dis-
tribution of the mean of a random sample, since we often use the sample mean to 
tell us something about an associated population. Suppose that, from the popula-
tion of adult males, a random sample of size n = 36 is taken, their heights mea-
sured and the mean height of the sample calculated. What can we infer from this 
about the true average height of the population? To do this, we need to know 
about the statistical properties of the sample mean. The sample mean is a random 
variable because of the chance element of random sampling (different samples 
would yield different values of the sample mean). Since the sample mean is a ran-
dom variable, it must have associated with it a probability distribution. We also 
refer to this as the sampling distribution of the sample mean, since the randomness 
is due to sampling.

We therefore need to know, first, what is the appropriate distribution and, sec-
ond, what are its parameters. From the definition of the sample mean we have

x =
1
n

 (x1 + x2 +  g+  xn) (3.14)

where each observation, xi, is itself a Normally distributed random variable, with 
xi ∼ N(m, s2), because each comes from the parent distribution with such char-
acteristics. (We stated earlier that men’s heights are Normally distributed.) We 
now make use of the following theorem to demonstrate first that x is Normally 
distributed:

As suggested in the text, the logarithm of income is approximately Normally distributed. Sup-
pose the log (to the base 10) of income has the distribution x ∼ N(4.18, 256). Calculate the 
inter-quartile range for x and then take anti-logs to find the inter-quartile range of income.?

Exercise 3.5

Any linear combination of independent, Normally distributed random 
variables is itself Normally distributed.

Theorem

A linear combination of two variables x1 and x2 is of the form w1x1 + w2x2 
where w1 and w2 are constants. This can be generalised to any number of x values. 
It is clear that the sample mean satisfies these conditions and is a linear combina-
tion of the individual x values (with the weight on each observation equal to 1/n). 
As long as the observations are independently drawn, therefore, the sample mean 
is Normally distributed.

We now need the parameters (mean and variance) of the distribution. For this 
we use the E and V operators once again:

 E(x) =
1
n

 (E(x1) + E(x2) +  g+  E(xn)) (3.15)

 =
1
n

 (m + m +  g+  m)

 =
1
n

 nm

 = m
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 V(x) = Va1
n

[x1 + x2 +  g+  xn]b

 =
1

n2 (V(x1) + V(x2) +  g+  V(xn))

 =
1

n2 (s2 + s2 +  g+  s2)

 =
1

n2 ns2 =
s2

n
 (3.16)

Putting all this together, we have2

x ∼ N am, 
s2

n
b  (3.17)

This we may summarise in the following theorem:

2Don’t worry if you didn’t follow the derivation of this formula, just accept that it is correct.

The mean, x of a random sample drawn from a population which has a 
Normal distribution with mean m and variance s2, has a sampling 
distribution which is Normal, with mean m and variance s2 /n, where n 
is the sample size.

Theorem

The meaning of this theorem is as follows. First, it is assumed that the popula-
tion from which the samples are to be drawn is itself Normally distributed (this 
assumption will be relaxed in a moment), with mean m and variance s2. From this 
population many samples are drawn, each of sample size n, and the mean of each 
sample is calculated. The samples are independent, meaning that the observa-
tions selected for one sample do not influence the selection of observations in the 
other samples. This gives many sample means, x1, x2, etc. If these sample means 
are treated as a new set of observations, then the probability distribution of these 
observations can be derived. The theorem states that this distribution is Normal, 
with the sample means centred around m, the population mean, and with vari-
ance s2>n. The argument is set out diagrammatically in Figure 3.11.

Intuitively this theorem can be understood as follows. If the height of adult 
males is a Normally distributed random variable with mean m = 174 cm and vari-
ance s2 = 92.16, then it would be expected that a random sample of (say) nine 
males would yield a sample mean height of around 174 cm, perhaps a little more, 
perhaps a little less. In other words, the sample mean is centred around 174 cm, or 
the mean of the distribution of sample means is 174 cm.

The larger is the size of the individual samples (i.e. the larger n), the closer the 
sample mean would tend to be to 174 cm. For example, if the sample size is only 
two, a sample of two very tall people is quite possible, with a high sample mean as 
a result, well over 174 cm, e.g. 182 cm. But if the sample size were 20, it is very 
unlikely that 20 very tall males would be selected and the sample mean is likely to 
be much closer to 174. This is why the sample size n appears in the formula for the 
variance of the distribution of the sample mean, s2>n.

Note that, once again, we have transformed one (or more) random variables, 
the xi’s, with a particular probability distribution into another random variable, 
x, with a (slightly) different distribution. This is common practice in statistics: 
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transforming a variable will often put it into a more useful form, e.g. one whose 
probability distribution is well known.

The above theorem can be used to solve a range of statistical problems. For 
example, what is the probability that a random sample of nine men will have a 
mean height greater than 180 cm? The height of all men is known to be Normally 
distributed with mean m = 174 cm and variance s2 = 92.16. The theorem can be 
used to derive the probability distribution of the sample mean. For the popula-
tion we have:

x ∼ N1m, s22 , i.e x ∼ N(174, 92.16)

Hence for the sample mean:

x ∼ N1m, s2>n2 , i.e x ∼ N(174, 92.16>9)

This is shown diagrammatically in Figure 3.12.
To answer the question posed, the area to the right of 180, shaded in Figure 3.12, 

has to be found. This should by now be a familiar procedure. First the z score is 
calculated:

z =
x - m2s2>n

=
180 - 174192.16>9 = 1.88 (3.18)

Note that the z score formula is subtly different because we are dealing with the 
sample mean x rather than x itself. In the numerator we use x rather than x and in 
the denominator we use s2>n, not s2. This is because x has a variance s2>n, not 
s2, which is the population variance. 2s2>n is known as the standard error, to 
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distinguish it from s, the standard deviation of the population. The principle 
behind the z score is the same, however: it measures how far a sample mean of 180 
is from the population mean of 174, measured in terms of standard deviations.

Looking up the value of z = 1.88 in Table A2 gives an area of 0.0311 in the 
right-hand tail of the Normal distribution. Thus, 3.11% of sample means will be 
greater than or equal to 180 cm when the sample size is nine. The desired proba-
bility is therefore 3.11%.

Since this probability is quite small, we might consider the reasons for this. 
There are two possibilities:

(a) through bad luck, the sample collected is not very representative of the popu-
lation as a whole, or

(b) the sample is representative of the population, but the population mean is 
not 174 cm after all.

Only one of these two possibilities can be correct. How to decide between them 
will be taken up in Chapter 5 on hypothesis testing.

It is interesting to examine the difference between the answer for a sample size 
of nine (3.11%) and the one obtained earlier for a single individual (26.43%). The 
latter may be considered as a sample of size one from the population. The exam-
ples illustrate the fact that the larger the sample size, the closer the sample mean is 
likely to be to the population mean. Thus larger samples tend to give better esti-
mates of the population mean.

Figure 3.12
The proportion of sample 
means greater than 
x = 180

Oil reserves

An interesting application of probability distributions is to the estimation of oil reserves. 
The quantity of oil in an oil field is not known for certain, but is subject to uncertainty. The 
proven reserve of an oil field is the amount recoverable with probability of 90% (known as 
P90 in the oil industry). One can then add up the proven oil reserves around the world to 
get a total of proven reserves.

However, using probability theory, we can see this might be misleading. Suppose we have 
50 fields, where the recoverable quantity of oil is distributed as x ∼ N[100, 81] in each. From 
tables we note that x - 1.28s cuts off the bottom 10% of the Normal distribution, 88.48 in 
this case. This is the proven reserve for a field. Summing across the 50 fields gives 4424 as 
total proven reserves. But is there a 90% probability of recovering at least this amount?
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 Sampling from a non-Normal population

The previous theorem and examples relied upon the fact that the population fol-
lowed a Normal distribution. But what happens if it is not Normal? After all, it is 
not known for certain that the heights of all adult males are exactly Normally dis-
tributed, and there are many populations which are not Normal (e.g. wealth, as 
shown in Chapter 1). What can be done in these circumstances? The answer is to 
use another theorem about the distribution of sample means (presented without 
proof). This is known as the Central Limit Theorem:

The total quantity of oil y is distributed Normally, with mean E(y) =  
E(x1) +  g+  E(x50) = 5000 and variance V(y) = V(x1) +  g+  V(x50) = 4050, assuming 
independence of the oil fields. Hence we have. y ∼ N(5000, 4050). Again, the bottom 10% 
is cut off by y - 1.28s, which is 4919. This is 11% larger than the 4424 calculated above. 
Adding up the proven reserves of each field individually underestimates the true total 
proven reserves. In fact, the probability of total proven reserves being greater than 4424 is 
almost 100%. The reason the first calculation fails is that it effectively assumes the worst 
case in every oil field. But this is very unlikely – it is much more likely that some fields will 
yield plenty of oil, some will yield little.

Note that the numbers given here are for illustration purposes and do not reflect the 
actual state of affairs. The principle of the calculation is correct, however.

The mean, x, of a random sample drawn from a population with mean m 
and variance s2, has a sampling distribution which approaches a Normal 
distribution with mean m and variance s2>n, as the sample size n 
approaches infinity.

Theorem

This is very useful, since it drops the assumption that the population is 
Normally distributed. Note that, according to this theorem, the distribution of 
sample means is only Normal as long as the sample size is infinite; for any finite 
sample size the distribution is only approximately Normal. However, the approxi-
mation is close enough for practical purposes if the sample size is larger than 25 or 
so observations. If the population distribution is itself nearly Normal, then a 
smaller sample size would suffice. If the population distribution is particularly 
skewed, then more than 25 observations might be desirable. Twenty-five observa-
tions constitute a rule of thumb that is adequate in most circumstances. This is 
another illustration of statistics as an inexact science. It does not provide abso-
lutely clear-cut answers to questions but, used carefully, helps us to arrive at sen-
sible conclusions.

As an example of the use of the Central Limit Theorem, we return to the wealth 
data of Chapter 1. Recall that the mean level of wealth was 186.875 (measured in 
£000) and the variance 80 306. Suppose that a sample of n = 50 people were 
drawn from this population. What is the probability that the sample mean is 
greater than 200 (i.e. £200 000)?

On this occasion we know that the parent distribution is highly skewed, so it 
is fortunate that we have 50 observations. This should be ample for us to justify 
applying the Central Limit Theorem. The distribution of x is therefore

x ∼ N(m, s2>n) (3.19)
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and, inserting the parameter values, this gives3

x ∼ N(186.875, 80 306>50) (3.20)

To find the area beyond a sample mean of 200, the z score is first calculated:

z =
200 - 186.875180 306>50

= 0.33 (3.21)

Referring to the standard Normal tables, the area in the tail is then found to be 
37.07%. This is the desired probability. So there is a probability of 37.07% of find-
ing a mean of £200 000 or greater with a sample of size 50. This demonstrates that 
there is quite a high probability of getting a sample mean which is relatively far 
from £186 875. This is a consequence of the high degree of dispersion in the distri-
bution of wealth.

Extending this example, we can ask: what is the probability of the sample mean 
lying within, say, £78 000 either side of the true mean of £186 875 (i.e. between 
£108 875 and £264 875)? Figure 3.13 illustrates the situation, with the desired area 
shaded. By symmetry, areas A and B must be equal, so we only need find one of 
them. For B, we calculate the z score:

z =
264.875 - 186.875180 306>50

= 1.946 (3.22)

From the standard Normal table, this cuts off approximately 2.5% in the upper 
tail,4 so area B = 0.475. Areas A and B together make up approximately 95% of the 
distribution, therefore. There is thus a 95% probability of the sample mean falling 
within the range [108 875, 264 875], and we call this the 95% probability interval for 
the sample mean. We write this:

Pr(108 875 … x … 264 875) = 0.95 (3.23)

or, in terms of the formulae we have used:5

Pr(m - 1.962s2>n … x … m + 1.962s2>n) = 0.95 (3.24)

3Note that if we used 186 875 for the mean, we would have 80 306 000 000 as the variance. 
Using £000 keeps the numbers more manageable. The z score is the same in both cases.

51.96 is the precise value cutting off 2.5% in each tail.

4The precise figure is 2.58% but it is convenient to round this down to 2.5% in the discussion.

80 984 146 984 212 984

Figure 3.13
The probability of x lying 
within £78 000 either side 
of £186 875



The relationship between the Binomial and Normal distributions

151

The 95% probability interval and the related concept of the 95% confidence 
interval (introduced in Chapter 4) play important roles in statistical inference. 
We deliberately designed the example above to arrive at an answer of 95% for 
this reason.

(a) If x is distributed as x ∼ N(50, 64) and samples of size n = 25 are drawn, what is the dis-
tribution of the sample mean x ?

(b) If the sample size doubles to 50, how is the standard error of x altered?

(c) Using the sample size of 25, (i) what is the probability that x 7 51? (ii) What is Pr(x 6 48)? 
(iii) What is Pr(49 6 x 6 50.5)?

?

Exercise 3.6

The relationship between the Binomial and Normal distributions

Many statistical distributions are related to one another in some way. This means 
that many problems can be solved by a variety of different methods (using differ-
ent distributions), although usually one is more convenient or more accurate 
than the others. This point may be illustrated by looking at the relationship 
between the Binomial and Normal distributions.

Recall the experiment of tossing a coin repeatedly and noting the number of 
heads. We said earlier that this can be analysed via the Binomial distribution. But 
note that the number of heads, a random variable, is influenced by many inde-
pendent random events (the individual tosses) added together. Furthermore, 
each toss counts equally, none dominates. These are just the conditions under 
which a Normal distribution arises, so it looks like there is a connection between 
the two distributions.

This idea is correct. Recall that if a random variable r follows a Binomial distri-
bution, then

r ∼ B(n, P) (3.1)

and the mean of the distribution is nP and the variance nP(1 - P). It turns out 
that as n gets larger, the Binomial distribution takes on approximately the same 
shape as a Normal distribution with mean nP and variance nP(1 - P). This 
approximation is sufficiently accurate as long as nP 7 5 and n(1 - P) 7 5, so 
the approximation may not be very good (even for large values of n) if P is very 
close to zero or one. For the coin tossing experiment, where P = 0.5, 10 tosses 
should be sufficient. Note that this approximation is good enough with only 10 
observations even though the underlying probability distribution is nothing like 
a Normal distribution.

To demonstrate, the following problem is solved using both the Binomial and 
Normal distributions. Forty students take an exam in statistics which is simply 
graded pass/fail. If the probability, P, of any individual student passing is 60%, 
what is the probability of at least 30 students passing the exam?

The sample data are:

 P = 0.6
 1 - P = 0.4

 n = 40
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 Binomial distribution method

To solve the problem using the Binomial distribution it is necessary to find the 
probability of exactly 30 students passing, plus the probability of 31 passing, plus 
the probability of 32 passing, etc., up to the probability of 40 passing (the fact that 
the events are mutually exclusive allows this). The probability of 30 passing is

 Pr(r = 30) = nCr * Pr(1 - P)n - r

 = 40C30 * 0.630 * 0.410

 = 0.020

(Note: This calculation assumes that the probabilities are independent, i.e. no 
copying.) This by itself is quite a tedious calculation, but Pr(31), Pr(32), etc., still 
have to be calculated. Calculating these and summing them gives the result of 
3.52% as the probability of at least 30 passing. (It would be a useful exercise for 
you to do, if only to appreciate how long it takes.)

 Normal distribution method

As stated above, the Binomial distribution can be approximated by a Normal distri-
bution with mean nP and variance. nP(1 - P). nP in this case is 24(=40 * 0.6) and 
n(1 - P) is 16, both greater than 5, so the approximation can be safely used. Thus

r ∼ N(nP, nP(1 - P))

and inserting the parameter values gives

r ∼ N(24, 9.6)

The usual methods are then used to find the appropriate area under the distribu-
tion. However, before doing so, there is one adjustment to be made (this only 
applies when approximating the Binomial distribution by the Normal). The 
Normal distribution is a continuous one while the Binomial is discrete. Thus, 30 in 
the Binomial distribution is represented by the area under the Normal distribution 
between 29.5 and 30.5. The value 31 is represented by 30.5 to 31.5, etc. Thus, it is 
the area under the Normal distribution to the right of 29.5, not 30, which must be 
calculated. This is known as the continuity correction. Calculating the z score gives

z =
29.5 - 2419.6

= 1.78 (3.25)

This gives an area of 3.75%, not far off the correct answer as calculated by the 
Binomial distribution. The time saved and ease of calculation would seem to be 
worth the slight loss in accuracy.

Other examples can be constructed to test this method, using different values 
of P and n. Small values of n, or values of nP or n(1 - P) less than 5, will give poor 
results, i.e. the Normal approximation to the Binomial will not be very good.

(a) A coin is tossed 20 times. What is the probability of more than 14 heads? Perform the cal-
culation using both the Binomial and Normal distributions, and compare results.

(b) A biased coin, for which Pr(H) = 0.7, is tossed six times. What is the probability of more 
than four heads? Compare Binomial and Normal methods in this case. How accurate is the 
Normal approximation?

(c) Repeat part (b) but for the probability of more than five heads.

?

Exercise 3.7
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The Poisson distribution

The section above showed how the Binomial distribution could be approximated 
by a Normal distribution under certain circumstances. The approximation does 
not work particularly well for very small values of P, when nP is less than 5. In 
these circumstances the Binomial may be approximated instead by a different dis-
tribution, the Poisson, which is given by the formula

Pr(x) =
mxe-m

x!
 (3.26)

The only parameter of this distribution is m, which is the mean of the distribution 
(like m for the Normal distribution and nP for the Binomial). Like the Binomial, 
but unlike the Normal, the Poisson is a discrete probability distribution and equa-
tion (3.26) is defined only for integer values of x. Furthermore, it is applicable to a 
series of trials which are independent, as in the Binomial case.

The use of the Poisson distribution is appropriate when the probability P of ‘suc-
cess’ is very small and the number of trials n is large. Because of this it is sometimes 
referred to as the ‘rare event’ distribution. Its use is illustrated by the following 
example. A manufacturer gives a two-year guarantee on the TV screens it makes. 
From past experience it knows that 0.5% of its screens will be faulty and fail within 
the guarantee period. What is the probability that, of a  consignment of 500 
screens, (a) none will be faulty, (b) more than three are faulty?

To use the Poisson, we just need its parameter, the mean. In this case it is 
m = nP = 2.5, like the Binomial. In words, we expect 0.5% of the sample to be 
faulty on average, and 0.5% of 500 is 2.5. Therefore

Pr(x = 0) =
2.50e-2.5

0!
= 0.0821 (3.27)

gives a probability of 8.2% of no failures. The answer to this problem via the 
Binomial method is

Pr(r = 0) = 0.995500 = 0.0816

Thus, the Poisson method gives a reasonably accurate answer. Using the Poisson 
approximation to the Binomial is satisfactory if nP is less than about 7.

The probability of more than three screens expiring is calculated as

 Pr(x 7 3) = 1 - Pr(x = 0) - Pr(x = 1) - Pr(x = 2) - Pr(x = 3)

 Pr(x = 1) =
2.51e- 2.5

1!
= 0.205

 Pr(x = 2) =
2.52e- 2.5

2!
= 0.256

 Pr(x = 3) =
2.53e- 2.5

3!
= 0.214

So

 Pr(x 7 3) = 1 - 0.082 - 0.205 - 0.256 - 0.214
 = 0.242
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Thus, there is a probability of about 24% of more than three failures. The 
Binomial calculation is much more tedious, but gives an answer of 24.2% also.

The Poisson distribution is also used in problems where events occur over 
time, such as goals scored in a football match (see Problem 3.25) or queuing-
type problems (e.g. arrivals at a bank cash machine). In these problems, there is 
no natural ‘number’ of trials but it is clear that, if we take a short interval of 
time, the probability of an event occurring is small. We can then consider the 
number of trials to be the number of time intervals. In such problems we can-
not identify n and P separately, and hence the Binomial distribution cannot be 
used. However, we might know the product nP, in which case the Poisson can 
be used.

This is illustrated by the following example. A football team scores, on average, 
two goals every game (you can vary the example by using your own favourite team 
plus their scoring record). We therefore have the value of m, although we do not 
know the separate values of n and P. Indeed, it is not clear to what n and P would 
refer in this context. How can we calculate the probability of the team scoring 
zero or one goal during a game?

The mean of the distribution is 2, so we have, using the Poisson distribution:

Pr(x = 0) =
20e- 2

0!
= 0.135

Pr(x = 0) =
21e- 2

1!
= 0.271

So Pr(x = 0 or 1) = 0.406. You should continue to calculate the probabilities of 2 
or more goals and verify that the probabilities sum to 1. (In principle you have to 
calculate the probabilities of 2, 3, 4, . . . 100, . . . which is impossible, but you will 
find that the probabilities soon decline to very small values which can be ignored 
for practical purposes.)

Oops!

The formula1.com website reported that ‘The (Grand Prix motor) race in Singapore has 
seen a total of five safety car deployments in three races, and carries a 100% safety car 
probability based on historical data.’

That does not sound right, and indeed it is not. We can find the right answer via the 
Poisson distribution. In this case, m = 5>3 = 1.67 deployments per race, on average. 
Hence, the probability of no safety car deployment during a race is

Pr(x = 0) =
1.670e-1.67

0!
= 0.189 or about 19%.

The correct answer is an 81% chance of a safety car period during the race.

ST

ATISTICS

IN

PRACTI

C
E

· ·

Another type of problem amenable to analysis via the Poisson distribution is 
queuing. For example, if a shop receives, on average, 20 customers per hour, what 
is the probability of no customers within a five-minute period while the owner 
takes a coffee break?
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The average number of customers per five-minute period is 20 * 5>60 = 1.67. 
The probability of a free five-minute spell is therefore

Pr(x = 0) =
1.670e1.67

0!
= 0.189

a probability of about 19%. Note again that this problem cannot be solved by the 
Binomial method since n and P are not known separately, only their product.

(a) The probability of winning a prize in a lottery is 1 in 50. If you buy 50 tickets, what is the 
probability that (i) 0 tickets win, (ii) 1 ticket wins, (iii) 2 tickets win. (iv) What is the proba-
bility of winning at least one prize?

(b) On average, a person buys a lottery ticket in a supermarket every 5 minutes. What is the 
probability that 10 minutes will pass with no buyers?

?

Exercise 3.8

Railway accidents

Andrew Evans of University College London used the Poisson distribution to examine the 
numbers of fatal railway accidents in Britain between 1967 and 1997. Since railway acci-
dents are, fortunately, rare, the probability of an accident in any time period is very small, 
and so use of the Poisson distribution is appropriate. He found that the average number of 
accidents has been falling over time and by 1997 had reached 1.25 p.a. This figure is there-
fore used as the mean m of the Poisson distribution, and we can calculate the probabilities 
of 0, 1, 2, etc., accidents each year. Using m = 1.25 and inserting this into equation (3.26), 
we obtain the following table:

Number of accidents 0 1 2 3 4 5 6

Probability 0.287 0.358 0.224 0.093 0.029 0.007 0.002

and this distribution can be graphed:

0.4Pr(x)
Poisson distribution of railway accidents

0.35

0.25

0.2

0.15

0.1

0.05

0
0 1 2 3 4 5 6

0.3

Thus the most likely outcome is one fatal accident per year, and anything over four is 
extremely unlikely. In fact, Evans found that the Poisson was not a perfect fit to the data: 
the actual variation was less than that predicted by the model.

Source: A. W. Evans, Fatal train accidents on Britain’s mainline railways, J. Royal Statistical Society, Series A, vol. 163 
(1), 2000.
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Summary

●	 The behaviour of many random variables (e.g. the result of the toss of a coin) 
can be described by a probability distribution (in this case, the Binomial 
 distribution).

●	 The Binomial distribution is appropriate for problems where there are only two 
possible outcomes of a chance event (e.g. heads/tails, success/failure) and the 
probability of success is the same each time the experiment is conducted.

●	 The Normal distribution is appropriate for problems where the random vari-
able has the familiar bell-shaped distribution. This often occurs when the vari-
able is influenced by many, independent factors, none of which dominates the 
others. An example is men’s heights, which are Normally distributed.

●	 The Poisson distribution is used in circumstances where there is a very low 
probability of ‘success’ and a high number of trials.

●	 Each of these distributions is actually a family of distributions, differing in the 
parameters of the distribution. Both the Binomial and Normal distributions 
have two parameters: n and P in the former case, m and s2 in the latter. The 
Poisson distribution has one parameter, its mean m.

●	 The mean of a random sample follows a Normal distribution, because it is influ-
enced by many independent factors (the sample observations), none of which 
dominates in the calculation of the mean. This statement is always true if the 
population from which the sample is drawn follows a Normal distribution.

●	 If the population is not Normally distributed, then the Central Limit Theorem 
states that the sample mean is Normally distributed in large samples. In this 
case ‘large’ means a sample of about 25 or more.

Binomial distribution
Central Limit Theorem
continuity correction
Normal distribution
parameters
parameters of a distribution
Poisson distribution

probability distribution
probability interval
random variable
sampling distribution
standard error
standard Normal distribution

Key terms and concepts
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Formula Description Notes

nCr =
n!

r!(n - r)!

Combinatorial formula n! = n * (n - 1) *  g*  1

Pr(r) = nCr * P r * (1 - P)n - r Binomial distribution In shorthand notation, r ∼ B(n, P)

Pr(x) =
1

s12p
 e- 1

25
x -m
s 62 Normal distribution In shorthand notation, x ∼ N(m, s2)

z =
x - m

s2>n
z score for the sample mean Used to test hypotheses about the sample mean

Pr(x) =
mxe-m

x!

Poisson distribution Used when the probability of success is very 
small. The ‘rare event’ distribution

Formulae used in this chapter

Some of the more challenging problems are indicated by highlighting the problem number in colour.

 3.1 Two dice are thrown and the sum of the two scores is recorded. Draw a graph of the resulting prob-
ability distribution of the sum and calculate its mean and variance. What is the probability that the 
sum is 9 or greater?

 3.2 Two dice are thrown and the absolute difference of the two scores is recorded. Graph the resulting 
probability distribution and calculate its mean and variance. What is the probability that the abso-
lute difference is 4 or more?

 3.3 Sketch the probability distribution for the likely time of departure of a train. Locate the timetabled 
departure time on your chart.

 3.4 A train departs every half hour. You arrive at the station at a completely random moment. Sketch the 
probability distribution of your waiting time. What is your expected waiting time?

 3.5 Sketch the probability distribution for the number of accidents on a stretch of road in one day.

 3.6 Sketch the probability distribution for the number of accidents on the same stretch of road in one 
year. How and why does this differ from your previous answer?

 3.7 Six dice are rolled and the number of sixes is noted. Calculate the probabilities of 0, 1, . . . , 6 sixes 
and graph the probability distribution.

 3.8 If the probability of a boy in a single birth is 12 and is independent of the sex of previous babies, then 
the number of boys in a family of 10 children follows a Binomial distribution with mean 5 and vari-
ance 2.5. In each of the following instances, describe how the distribution of the number of boys 
differs from the Binomial described above.

Problems
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(a) The probability of a boy is 6/10.

(b) The probability of a boy is 1
2 but births are not independent. The birth of a boy makes it more 

than an even chance that the next child is a boy.

(c) As (b) above, except that the birth of a boy makes it less than an even chance that the next child 
will be a boy.

(d) The probability of a boy is 6/10 on the first birth. The birth of a boy makes it a more than even 
chance that the next baby will be a boy.

 3.9 A firm receives components from a supplier in large batches, for use in its production process. Pro-
duction is uneconomic if a batch containing 10% or more defective components is used. The firm 
checks the quality of each incoming batch by taking a sample of 15 and rejecting the whole batch if 
more than one defective component is found.

(a) If a batch containing 10% defectives is delivered, what is the probability of its being 
accepted?

(b) How could the firm reduce this probability of erroneously accepting bad batches?

(c) If the supplier produces a batch with 3% defective, what is the probability of the firm sending 
back the batch?

(d) What role does the assumption of a ‘large’ batch play in the calculation?

 3.10 The UK record for the number of children born to a mother is 39, 32 of them girls. Assuming the 
probability of a girl in a single birth is 0.5 and that this probability is independent of previous births:

(a) Find the probability of 32 girls in 39 births (you’ll need a scientific calculator or a computer to 
help with this).

(b) Does this result cast doubt on the assumptions?

 3.11 Using equation (3.5) describing the Normal distribution and setting m = 0 and s2 = 1, graph the 
distribution for the values x = -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2.

 3.12 Repeat the previous problem for the values m = 2 and s2 = 3, Use values of x from -2 in to +6 
increments of 1.

 3.13 For the standard Normal variable z, find

(a) Pr(z 7 1.64)

(b) Pr(z 7 0.5)

(c) Pr(z 7 -1.5)

(d) Pr(-2 6 z 6 1.5)

(e) Pr(z = -0.75).

For (a) and (d), shade in the relevant areas on the graph you drew for Problem 3.11.

 3.14 Find the values of z which cut off

(a) the top 10%

(b) the bottom 15%

(c) the middle 50%

of the standard Normal distribution.
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 3.15 If x ∼ N(10, 9), find

(a) Pr(x 7 12)

(b) Pr(x 6 7)

(c) Pr(8 6 x 6 15)

(d) Pr(x = 10)

 3.16 IQ (the intelligence quotient) is Normally distributed with mean 100 and standard deviation 16.

(a) What proportion of the population has an IQ above 120?

(b) What proportion of the population has an IQ between 90 and 110?

(c) In the past, about 10% of the population went to university. Now the proportion is about 30%. 
What was the IQ of the ‘marginal’ student in the past? What is it now?

 3.17 Ten adults are selected at random from the population and their IQ measured. (Assume a population 
mean of 100 and standard deviation of 16 as in Problem 3.16.)

(a) What is the probability distribution of the sample average IQ?

(b) What is the probability that the average IQ of the sample is over 110?

(c) If many such samples were taken, in what proportion would you expect the average IQ to be 
over 110?

(d) What is the probability that the average IQ lies within the range 90 to 110? How does this 
answer compare to the answer to part (b) of Problem 3.16? Account for the difference.

(e) What is the probability that a random sample of 10 university students has an average IQ greater 
than 110?

(f) The first adult sampled has an IQ of 150. What do you expect the average IQ of the sample to be?

 3.18 The average income of a country is known to be £10 000 with standard deviation £2500. A sample of 
40 individuals is taken and their average income calculated.

(a) What is the probability distribution of this sample mean?

(b) What is the probability of the sample mean being over £10 500?

(c) What is the probability of the sample mean being below £8000?

(d) If the sample size were 10, why could you not use the same methods to find the answers to 
(a)–(c)?

 3.19 A coin is tossed 10 times. Write down the distribution of the number of heads,

(a) exactly, using the Binomial distribution,

(b) approximately, using the Normal distribution.

(c) Find the probability of four or more heads, using both methods. How accurate is the Normal 
method, with and without the continuity correction?

 3.20 A machine producing electronic circuits has an average failure rate of 15% (they are difficult to 
make). The cost of making a batch of 500 circuits is £8400 and the good ones sell for £20 each. 
What is the probability of the firm making a loss on any one batch?

 3.21 An experienced invoice clerk makes an error once in every 100 invoices, on average.

(a) What is the probability of finding a batch of 100 invoices without error?

(b) What is the probability of finding such a batch with more than two errors?
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Calculate the answers using both the Binomial and Poisson distributions. If you try to solve the prob-
lem using the Normal method, how accurate is your answer?

 3.22 A firm employing 100 workers has an average absenteeism rate of 4%. On a given day, what is the 
probability of (a) no workers, (b) one worker, (c) more than six workers being absent?

 3.23 (Computer project) This problem demonstrates the Central Limit Theorem at work. In your spread-
sheet, use the =  RAND( ) function to generate a random sample of 25 observations (I suggest 
entering this function in cells A4:A28, for example). Copy these cells across 100 columns, to gener-
ate 100 samples. In row 29, calculate the mean of each sample. Now examine the distribution of 
these sample means. (Hint: you will find the RAND( ) function recalculates automatically every time 
you perform an operation in the spreadsheet. This makes it difficult to complete the analysis. The 
solution is to copy and then use ‘Edit, Paste Special, Values’ to create a copy of the values of the 
sample means. These will remain stable.)

(a) What distribution would you expect them to have?

(b) What is the parent distribution from which the samples are drawn?

(c) What are the parameters of the parent distribution and of the sample means?

(d) Do your results accord with what you would expect?

(e) Draw up a frequency table of the sample means and graph it. Does it look as you expected?

(f) Experiment with different sample sizes and with different parent distributions to see the effect 
that these have.

 3.24 (Project) An extremely numerate newsagent (with a spreadsheet program, as you will need) is trying 
to work out how many copies of a newspaper he should order. The cost to him per copy is 40 pence, 
which he then sells at £1.20. Sales are distributed Normally with an average daily sale of 250 and vari-
ance 625. Unsold copies cannot be returned for credit or refund; he has to throw them away.

(a) What do you think the seller’s objective should be?

(b) How many copies should he order?

(c) What happens to the variance of profit as he orders more copies?

(d) Calculate the probability of selling more than X copies. (Create an extra column in the spread-
sheet for this.) What is the value of this probability at the optimum number of copies ordered?

(e) What would the price–cost ratio have to be to justify the seller ordering X copies?

(f) The wholesaler offers a sale or return deal, but the cost per copy is 45p. Should the seller take 
up this new offer?

(g) Are there other considerations which might influence the seller’s decision?

 Hints:

 Set up your spreadsheet as follows:

col. A: (cells A10:A160) 175, 176, . . . up to 325 in unit increments (to represent sales levels).

col. B: (cells B10:B160) the probability of sales falling between 175 and 176, between 176 
and 177, etc., up to 325–326. (Excel has the ‘= NORMDIST()’ function to do this – see 
the help facility.)

col. C: (cells C10:C160) total cost (=  0.40 *  number ordered. Put the latter in cell F3 so you 
can reference it and change its value).

col. D: (cells D10:D160) total revenue (‘=  MIN(sales, number ordered) *  1.20’).

col. E: profit (revenue–cost).

col. F: Profit *  probability (i.e. col. E *  col. B).

cell F161: the sum of F10:F160 (this is the expected profit).
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Now vary the number ordered (cell F3) to find the maximum value in F161. You can also calculate 
the variance of profit fairly simply, using an extra column.

 3.25 (Project) Using a weekend’s football results from the Premier (or other) League, see if the number 
of goals per game can be adequately modelled by a Poisson process. First calculate the average 
number of goals per game for the whole league, and then derive the distribution of goals per game 
using the Poisson distribution. Do the actual numbers of goals per game follow this distribution? You 
might want to take several weeks’ results to obtain more reliable results.

 3.26 (Project) A report in The Guardian newspaper (20 June 2010, http://www.guardian.co.uk/education/ 
2010/jun/20/internet-plagiarism-rising-in-schools) reports ‘Half of university students also prepared 
to submit essays bought off the internet, according to research.’ According to the article, a survey (sam-
ple size not specified) found that 45% of students were certain that a peer had cheated during an essay, 
report, test or exam in the past year. Evaluate this evidence from a statistical point of view. Find a for-
mula to calculate the true proportion, given the reported proportion (adapting the formula in the exam-
ple in this chapter) and use this to evaluate the claim in the article. Using your formula, what is the true 
proportion based on the reported figure? If the reported proportion is 100%, what is the estimated true 
figure? Does this seem right? If not, why not?

The article also reported that they (the students) ‘would be prepared to pay more than £300 for 
a first class essay’. Comment also upon this finding. What precisely does it mean?

http://www.guardian.co.uk/education/2010/jun/20/internet-plagiarism-rising-in-schools
http://www.guardian.co.uk/education/2010/jun/20/internet-plagiarism-rising-in-schools
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Answers to exercises

Exercise 3.1

(a) 0.64 = 0.1296 or 12.96%.

(b) 0.62 * 0.42 * 4C2 = 0.3456.

(c) Pr(r) = 0.6r * 0.44 - r 4Cr. The probabilities of r = 0 . . . 4 are, respectively, 0.0256, 
0.1536, 0.3456, 0.3456, 0.1296, which sum to one.

Exercise 3.2

(a) r P(r) r * P(r) r2 * P(r)

0 0.0256 0 0
1 0.1536 0.1536 0.1536
2 0.3456 0.6912 1.3824
3 0.3456 1.0368 3.1104
4 0.1296 0.5184 2.0736

Totals 1 2.4 6.72

 The mean = 2.4>1 = 2.4 and the variance = 6.72>1 - 2.42 = 0.96. Note that 
these are equal to nP and nP(1 - P).

(b)

0.4Pr(x)

0.2

0.1

0.0
0 1

Mean – 1sd Mean + 1sdMean

2 3 4

0.3

Exercise 3.3

(a) z = (50 - 40)>136 = 1.67 and from Table A2 the area beyond z = 1.67 is 4.75.

(b) z = -0.83 so area is 20.33%.

(c) This is symmetric around the mean, z = {0.67, and the area within these two 
bounds is 49.72%.

Exercise 3.4

To obtain the IQR we need to go 0.67 standard deviations above and below the mean, 
giving 200 { 0.67 * 16 = [189.28, 210.72].
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Exercise 3.5

The IQR (in logs) is within 4.18 { 0.67 * Î2.56 = [3.11,5.25]. Translated out of logs 
(using 10x) yields [1288.2, 177 827.9]. Thus, we would expect 50% of the population to 
have incomes within this range of values.

Exercise 3.6

(a) e ∼ N(50, 64>25).

(b) The standard error gets smaller. It is 1>   2 times its previous value.

(c) (i) z = (51 - 50)>  264>25 = 0.625. Hence area in tail = 26.5. (ii) z = -1.25, 
hence area = 10.56. (iii) z values are -0.625 and +0.3125, giving tail areas of 
26.5% and 37.8%, totalling 64.3%. The area between the limits is therefore 35.7%.

Exercise 3.7

(a) For this problem we have p = 0.5 and n = 20. Binomial method: Pr(r) =  
0.5r * 0.5(20 - r) * 20Cr. This gives the probabilities of 15, 16, etc., heads as 0.0148, 
0.0046, etc., which total 0.0207 or 2.1%. By the Normal approximation, 
r ∼ N(nP, Np(1 - P)). = N(10, 5) and z = (14.5 - 10)>   5 = 2.01. The area in the 
tail is then 2.22%, not far off the correct value (a 10% error). Note that 
np = 10 = n(1 - p).

(b) We have  P = 0.7, n = 6. Binomial method: Pr(5 or 6 heads) =  0.302 + 0.118 =  
0.420 or 42%. By the Normal, r ∼ N(4.2, 1.26), z = 0.267 and the area is 39.36%, 
still reasonably close to the correct answer despite the fact that n(1 - P) = 1.8.

(c) By similar methods the answers are 11.8% (Binomial) and 12.3% (Normal).

Exercise 3.8

(a) (i) m = 1 in this case (1>50 * 50) so Pr(x = 0) = mxe -m>x! = 10e - 1>0! = 0.368. 
(ii) Pr(x = 1) = 11e - 1>1! = 0.368. (iii) 12e - 1>2! = 0.184. (iv) 1 - 0.368 = 0.632.

(b) The average number of customers per 10 minutes is 2 (=10>5). Hence, 
Pr(x = 0) = 20e - 2>0! = 0.135.

Î

Î
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By the end of this chapter you should be able to:

●	 recognise the importance of probability theory in drawing valid inferences (or deriving 
estimates) from a sample of data

●	 understand the criteria for constructing a good estimate

●	 construct estimates of parameters of interest from sample data, in a variety of different 
circumstances

●	 appreciate that there is uncertainty about the accuracy of any such estimate

●	 provide measures of the uncertainty associated with an estimate

●	 recognise the relationship between the size of a sample and the precision of an  estimate 
derived from it.
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Introduction

We now come to the heart of the subject of statistical inference. Up until now the 
following type of question has been examined: given the population parameters m 
and s2, what is the probability of the sample mean x, from a sample of size n, 
being greater than some specified value or within some range of values? The 
parameters m and s2 are assumed to be known and the objective is to try to form 
some conclusions about possible values of x. However, in practice it is usually the 
sample values x and s2 that are known, while the population parameters m and s2 
are not. Thus a more interesting question to ask is: given the values of x and s2 
from a sample of size n, what can be said about m and s2? For example, if a sample 
of 50 British families finds an average weekly expenditure on food (x) of £37.50 
with a standard deviation (s) of £6.00, what can be said about the average expen-
diture (m) of all British families?

Schematically these issues can be shown as follows:

Sample information Population parameters

x, s2, n Probability statements about 
—

m, s2

x, s2, n Inferences about 
¡

m, s2

It is important to recognise the differences between making probability state-
ments about sample statistics such as x, and making inferences about unknown 
parameters such as m. We will go into this in more detail in this chapter.

This chapter covers the estimation of population parameters such as m and s2, 
while Chapter 5 describes testing hypotheses about these parameters. The two pro-
cedures are closely related, being two ways of drawing inferences about the param-
eters, but there are important differences between them.

Point and interval estimation

There are basically two ways in which an estimate of a parameter can be presented. 
The first of these is a point estimate, i.e. a single value which is in some sense the 
best estimate of the parameter of interest. The point estimate is the one which is 
most prevalent in everyday usage; for example, men spend an average of 43 min-
utes per day ogling women1. Although this is presented as a fact, it is actually an 
estimate, obtained from a survey. Since it is obtained from a sample, there must be 
some doubt about its accuracy – the sample will probably not exactly represent the 
whole population. For this reason, interval estimates are also used, giving a range of 
values which give an idea of the likely accuracy of the estimate. If the sample size is 
small, for example, then it is quite possible that the estimate is not very close to the 

1Daily Telegraph, 4 August 2009. The survey was sponsored by an optician and was used to 
encourage people to get their eyesight checked. It also claimed that women spend an aver-
age of 20 minutes per day ogling men.
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true value and this would be reflected in a wide interval estimate, for example, that 
the average man spends between 33 and 53 minutes ogling women per day2. A 
larger sample, or a better method of estimation, would allow a narrower interval to 
be derived and thus a more precise estimate of the parameter to be obtained, such 
as an average ogling time of between 40 and 46 minutes. Interval estimates are bet-
ter for the consumer of the statistics, since they not only show the estimate of the 
parameter but also give an idea of the confidence which the researcher has in that 
estimate. The following sections describe how to construct both types of estimate.

Rules and criteria for finding estimates

In order to estimate a parameter such as the population mean, a rule (or set of 
rules) is required which describes how to derive the estimate of the parameter 
from the sample data. Such a rule is known as an estimator. An example of an 
 estimator for the population mean is ‘use the sample mean’. It is important to 
 distinguish between an estimator, a rule, and an estimate, which is the value 
derived as a result of applying the rule to the data.

There are many possible estimators for any parameter, so it is important to be 
able to distinguish between good and bad estimators. The following examples 
provide some possible estimators of the population mean:

(1) the sample mean
(2) the smallest sample observation
(3) the first sample observation.

A set of criteria is needed for discriminating between good and bad estimators. 
Which of the above three estimators is ‘best’? Two important criteria by which to 
judge estimators are bias and precision.

 Bias

It is impossible to know if a single estimate of a parameter, derived by applying a 
particular rule to the sample data, gives a correct estimate of the parameter or not. 
The estimate might be too low or too high and, since the parameter is unknown, it 
is impossible to check this. What is possible, however, is to say whether an estima-
tor gives the correct answer on average. An estimator which gives the correct 
answer on average is said to be unbiased. Another way of expressing this is to say 
that an unbiased estimator does not systematically mislead the researcher away 
from the correct value of the parameter. It is important to remember, however, 
that even using an unbiased estimator does not guarantee that a single use of the 
estimator will yield a correct estimate of the parameter. Bias (or the lack of it) is a 
theoretical property.

Formally, an estimator is unbiased if its expected value is equal to the parame-
ter being estimated. Consider trying to estimate the population mean using the 

2The survey did not provide an interval estimate, so I have invented these figures to illus-
trate. The figure of 43 minutes did come from the survey, although its reliability must be 
suspect.
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three estimators suggested above. Taking the sample mean first, we have already 
learned (see equation (3.15)) that its expected value is m, i.e.

E(x) = m

which immediately shows that the sample mean is an unbiased estimator.
The second estimator (the smallest observation in the sample) can easily be 

shown to be biased, using the result derived above. Since the smallest sample 
observation must be less than the sample mean, its expected value must be less 
than m. Denote the smallest observation by xs, then

E(xs) 6 m

so this estimator is biased downwards. It underestimates the population mean. 
The size of the bias is simply the difference between the expected value of the 
estimator and the value of the parameter, so the bias in this case is

Bias = E(xs) - m (4.1)

For the sample mean x the bias is obviously zero.
Turning to the third rule (the first sample observation), this can be shown to be 

another unbiased estimator. Choosing the first observation from the sample is 
equivalent to taking a random sample of size one from the population in the first 
place. Thus, the single observation may be considered as the sample mean from a 
random sample of size one. Since it is a sample mean, it is unbiased, as demon-
strated earlier.

 Precision

Two of the estimators above were found to be unbiased, and, in fact, there are 
many unbiased estimators (the sample median is another, for example). Some 
way of choosing between the set of all unbiased estimators is therefore required, 
which is where the criterion of precision helps. Unlike bias, precision is a relative 
concept, comparing one estimator to another. Given two estimators A and B, A is 
more precise than B if the estimates A yields (from all possible samples) are less 
spread out than those of estimator B. A precise estimator will tend to give similar 
estimates for all possible samples.

Consider the two unbiased estimators found above: how do they compare on 
the criteria of precision? It turns out that the sample mean is the more precise of 
the two, and it is not difficult to understand why. Taking just a single sample 
observation means that it is quite likely to be unrepresentative of the population 
as a whole, and thus leads to a poor estimate of the population mean. The single 
observation might be an extreme value from the population, purely by chance. 
The sample mean, on the other hand, is based on all the sample observations, and 
it is unlikely that all of them are unrepresentative of the population. The sample 
mean is therefore a good estimator of the population mean, being more precise 
than the single observation estimator.

Just as bias was related to the expected value of the estimator, so precision can be 
defined in terms of the variance. One estimator is more precise than another if it 
has a smaller variance. Recall that the probability distribution of the sample mean is

x ∼ N(m, s2>n) (4.2)
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in large samples, so the variance of the sample mean is

V(x) = s2>n
As the sample size n gets larger the variance of the sample mean becomes 

smaller, so the estimator becomes more precise. For this reason, large samples give 
better estimates than small samples, and so the sample mean is a better estimator 
than taking just one observation from the sample. The two estimators can be 
compared in a diagram (see Figure 4.1) which draws the probability distributions 
of the two estimators.

It is easily seen that Estimator A (the larger sample) yields estimates which are 
on average closer to the population mean.

 Mean squared error

The two measures, bias and precision, can be combined in the mean squared error 
(MSE) of the estimate. This is defined, for an estimator u, as

MSE = E((un - u)2)

where un  is an estimate of u. The larger the value of the MSE, the further the estimate 
is likely to be from the true value and hence the poorer the estimator. It can be 
shown the MSE is equal to the variance of the estimator plus the square of the bias:

MSE = variance + bias2

The MSE therefore captures both variance and bias and estimators can be com-
pared using this new concept. The estimator with the smaller MSE is considered 
superior.

Most of the estimators covered in this text turn out to be unbiased, so the MSE 
is then simply equal to the variance. A related concept using the variance is that of 
efficiency. The efficiency of one unbiased estimator, relative to another, is given by 
the ratio of their sampling variances3. Thus, the efficiency of the first observation 
estimator, relative to the sample mean, is given by

Efficiency =
var(x)
var(x1)

=
s2>n
s2 =

1
n

 (4.3)

Estimator A

Estimator B

Figure 4.1
The sampling distributions 
of two estimators

3For biased estimators we can take the ratio of their MSEs.
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Thus the efficiency is determined by the relative sample sizes in this case. Other 
things being equal, a more efficient estimator is to be preferred.

Similarly, the variance of the median can be shown to be (for a Normal distribu-
tion) p>2 * s2>n in large samples. The efficiency of the median is therefore 
2>p ≈ 64% (compared to using the sample mean) and so on this basis the sample 
mean is a preferred estimator.

 The trade-off between bias and precision: the Bill Gates effect

It should be noted that just because an estimator is biased does not necessarily 
mean that it is imprecise. Sometimes there is a trade-off between an unbiased, but 
imprecise, estimator and a biased, but precise, one. Figure 4.2 illustrates this.

Although estimator A is biased (it is not centred around m), it will nearly always 
yield an estimate which is fairly close to the true value; even though the estimate 
is expected to be wrong, it is not likely to be far wrong. Estimator B, although 
unbiased, can give estimates which are far away from the true value, so that A 
might be the preferred estimator.

As an example of this, suppose we are trying to estimate the average wealth of 
the US population. Consider the following two estimators:

(1) Use the mean wealth of a random sample of Americans.
(2) Use the mean wealth of a random sample of Americans but, if Bill Gates is in 

the sample, omit him from the calculation.

Bill Gates, the former Chairman of Microsoft, is one of the world’s richest men. 
He is a dollar billionaire (about $50bn or more according to recent reports – it var-
ies with the stock market). His presence in a sample of, say, 30 observations would 
swamp the sample and give a highly misleading result. Assuming Bill Gates has 
$50bn and the others each have $200 000 of wealth, the average wealth would be 
estimated at about $1.6bn, which is surely wrong.

The first rule could therefore give us a wildly incorrect answer, although the 
rule is unbiased. The second rule is clearly biased but does rule out the possibility 
of such an unlucky sample. We can work out the approximate bias. It is the differ-
ence between the average wealth of all Americans and the average wealth of all 

B

A

μ

Figure 4.2
The trade-off between 
bias and precision
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Americans except Bill Gates. If the true average of all 250 million Americans is 
$200 000, then total wealth is $50 000bn. Subtracting Bill’s $50bn leaves 
$49 950bn shared amongst the rest, giving $199 800 each, a difference of 0.1%. 
This is what we would expect the bias to be.

It might seem worthwhile, therefore, to accept this degree of bias in order to 
improve the precision of the estimate. Furthermore, if we did use the biased rule, 
we could adjust the sample mean upwards by 0.1% or so to compensate (if only 
approximately).

Of course, this point applies to any exceptionally rich person, not just Bill 
Gates. It points to the need to ensure that the rich are not over- (nor under-) repre-
sented in the sample. Chapter 9 on sampling methods investigates this point in 
more detail. In the rest of this text only unbiased estimators are considered, the 
most important being the sample mean.

Estimation with large samples

For the type of problem encountered in this chapter, the method of estimation 
differs according to the size of the sample. ‘Large’ samples, by which is meant sam-
ple sizes of 25 or more, are dealt with first, using the Normal distribution. Small 
samples are considered in a later section, where the t distribution is used instead 
of the Normal. The differences are relatively minor in practical terms and there is 
a close theoretical relationship between the t and Normal distributions.

With large samples there are three types of estimation problem we will  consider.

(1) The estimation of a mean from a sample of data.
(2) The estimation of a proportion on the basis of sample evidence. This would 

consider a problem such as estimating the proportion of the population 
intending to buy an iPhone, based on a sample of individuals. Each person in 
the sample would simply indicate whether they have bought, or intend to 
buy, an iPhone. The principles of estimation are the same as in the first case 
but the formulae used for calculation are slightly different.

(3) The estimation of the difference of two means (or proportions), for example, 
a problem such as estimating the difference between men’s and women’s 
expenditure on clothes. Once again, the principles are the same, the formu-
lae different.

 Estimating a mean

To demonstrate the principles and practice of estimating the population mean, 
we shall take the example of estimating the average wealth of the UK population, 
the full data for which were given in Chapter 1. Suppose that we did not have this 
information but were required to estimate the average wealth from a sample of 
data. In particular, let us suppose that the sample size is n = 100, the sample mean 
is x = 180 (in £000) and the sample variance is s2 = 75 000. Evidently, this sam-
ple has got fairly close to the true values (see Chapter 1), but we could not know 
that from the sample alone. What can we infer about the population mean m from 
the sample data alone?
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For the point estimate of m the sample mean is a good candidate since it is unbi-
ased, and it is generally more precise than other sample statistics such as the 
median. The point estimate of m is simply £180 000, therefore.

The point estimate does not give an idea of the uncertainty associated with 
the estimate. We are not absolutely sure that the mean is £180 000 (in fact, it is not 
– it is £186 875). The interval estimate in contrast gives some idea of the uncer-
tainty. It is centred on the sample mean, but gives a range of values to express the 
uncertainty.

To obtain the interval estimate we first require the probability distribution of x, 
first established in Chapter 3 (equation (3.17)):

x ∼ N(m, s2>n) (4.4)

From this, it was calculated that there is a 95% probability of the sample mean 
lying within 1.96 standard errors of m4, i.e.

Pr(m - 1.962s2>n … x … m + 1.962s2>n) = 0.95

We can manipulate each of the inequalities within the brackets to make m the 
subject of the expression:

m - 1.962s2>n … x  implies  m … x + 1.962s2>n
Similarly

x … m + 1.962s2>n  implies  x - 1.962s2>n … m

Combining these two new expressions, we obtain

3x - 1.962s2>n … m … x + 1.962s2>n4  (4.5)

We have transformed the probability interval. Instead of saying x lies within 1.96 
standard errors of m, we now say m lies within 1.96 standard errors of x. Figure 4.3 
illustrates this manipulation. Figure 4.3(a) shows m at the centre of a probability 
interval for x. Figure 4.3(b) shows a sample mean x at the centre of an interval 
relating to the possible positions of m.

The interval shown in equation (4.5) is called the 95% confidence interval, and 
this is the interval estimate for m. In this formula the value of s2 is unknown, but 
in large (n Ú 25) samples it can be replaced by s2 from the sample. s2 is here used 
as an estimate of s2 which is unbiased and sufficiently precise in large (n Ú 25 or 
so) samples. The 95% confidence interval is therefore

3x - 1.962s2>n … m … x + 1.962s2>n4  (4.6)
= [180 - 1.96175 000>100, 180 + 1.96175 000>100]

= [126.3, 233.7]

Thus the 95% confidence interval estimate for the true average level of wealth 
ranges between £126 300 and £233 700. Note that £180 000 lies exactly at the 
centre of the interval5 (because of the symmetry of the Normal distribution).

4See equation (3.24) in Chapter 3 to remind yourself of this. Remember that ;1.96 is the 
z score which cuts off 2.5% in each tail of the Normal distribution.
5The two values are the lower and upper limits of the interval, separated by a comma. This is 
the standard way of writing a confidence interval.
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A more compact way of writing the confidence interval for m, instead of equa-
tion (4.6), is

x { 1.962s2>n (4.6b)

which highlights the interval lying between the sample mean plus and minus 
1.96 standard errors. This is easy to remember and can be used for different types 
of problem, as we show below.

By examining equation (4.6) or equation (4.6b), one can see that the confi-
dence interval is wider

(1) the smaller the sample size,
(2) the greater the standard deviation of the sample.

The greater uncertainty which is associated with smaller sample sizes is mani-
fested in a wider confidence interval estimate of the population mean. This occurs 
because a smaller sample has more chance of being unrepresentative (just because 
of an unlucky sample).

Greater variation in the sample data also leads to greater uncertainty about 
the population mean and a wider confidence interval. Greater sample variation 
suggests greater variation in the population so, again, a given sample could 
include observations which are a long way off the mean. Note that in this exam-
ple there is great variation of wealth in the population and hence in the sample 

μ

s2
1.96 s2

1.96

Figure 4.3(a)
The 95% probability 
interval for x around the 
population mean m

s2s2
1.96 1.96

Figure 4.3(b)
The 95% confidence 
interval for m around the 
sample mean x
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also. This means that a sample of 100 is not very informative (the confidence 
interval is quite wide). We would need a substantially larger sample to obtain a 
more precise estimate.

Note that the width of the confidence interval does not depend upon the popu-
lation size – a sample of 100 observations reveals as much about a population of 
10 000 as it does about a population of 10 000 000. In fact, this is not quite correct: 
if the sample were a large proportion of the population (of say 200 in this case), 
then the confidence interval should be narrower. However, in most cases this does 
not apply, and it is the sample size that really matters. This point will be discussed 
in more detail in Chapter 9 on sampling methods. This is a result that often sur-
prises people, who generally believe that a larger sample is required if the popula-
tion is larger.

Worked example 4.1 

A sample of 50 school students found that they spent 45 minutes doing home-
work each evening, with a standard deviation of 15 minutes. Estimate the aver-
age time spent on homework by all students.

The sample data are x = 45, s = 15 and n = 50. If we can assume the sample 
is representative, we may use x as an unbiased estimate of m, the population 
mean. The point estimate is therefore 45 minutes.

The 95% confidence interval is given by equation (4.6b):

x { 1.962s2>n
= 45 { 1.962152>50

= 45 { 4.2 or [40.8, 49.2]

The 95% confidence interval lies between 40.8 and 49.2 minutes. This might 
then be reasonably expressed as ‘between 41 and 49 minutes’.

(a) A sample of 100 is drawn from a population. The sample mean is 25 and the sample stan-
dard deviation is 50. Calculate the point and 95% confidence interval estimates for the 
population mean.

(b) If the sample size were 64, how would this alter the point and interval estimates?

?

Exercise 4.1

A sample of size 40 is drawn with sample mean 50 and standard deviation 30. Is it likely that 
the true population mean is 60?

?

Exercise 4.2

Precisely what is a confidence interval?

There is often confusion over what a 95% confidence interval actually means. 
This is not really surprising since the obvious interpretation turns out to be 
wrong. It does not mean that there is a 95% chance that the true mean lies within 
the interval. We cannot make such a probability statement because of our defini-
tion of probability (based on the frequentist view of a probability). That view 
states that one can make a probability statement about a random variable (such 
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as x) but not about a parameter (such as m). m either lies within the interval or it 
does not – it cannot lie 95% within it. Unfortunately, we just do not know what 
the truth is.

It is for this reason that we use the term ‘confidence interval’ rather than ‘prob-
ability interval’. Unfortunately, words are not as precise as numbers or algebra, 
and so most people fail to recognise the distinction. A precise explanation of the 
95% confidence interval runs as follows. If we took many samples (all the same 
size) from a population with mean m and calculated a confidence interval from 
each sample, we would find that m lies within 95% of the calculated intervals. Of 
course, in practice we do not take many samples, usually just one. We do not know 
(and cannot know) if our one sample is one of the 95% or one of the 5% that miss 
the mean.

Figure 4.4 illustrates the point. It shows 95% confidence intervals calculated 
from 20 samples drawn from a population with a mean of 5. As expected, we see 
that 19 of these intervals contain the true mean, while the interval calculated 
from sample 9 does not contain the true value. This is the expected result, but is 
not guaranteed. You might obtain all 20 intervals containing the true mean, or 
fewer than 19. In the long run (with lots of estimates), we would expect 95% of the 
calculated intervals to contain the true mean.

A second question is, why use a probability (and hence a confidence level) of 
95%? In fact, one can choose any confidence level, and thus confidence interval. 
The 90% confidence interval can be obtained by finding the z score which cuts off 
the outer 10% of the Normal distribution (5% in each tail). From Table A2 (see 
page 450) this is z = 1.64, so the 90% confidence interval is given by the sample 
mean plus and minus 1.64 standard errors:

x { 1.642s2>n (4.7)
= 180 { 1.64175 000>100

= 180 { 44.9 or [135.1, 224.9]
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culated from 20 samples
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Notice that this is narrower than the 95% confidence level. The greater the 
degree of confidence desired, the wider the interval has to be. Any confidence 
level may be chosen, and by careful choice of this level the confidence interval 
can be made as wide or as narrow as wished. This would seem to undermine the 
purpose of calculating the confidence interval, which is to obtain some idea of 
the uncertainty attached to the estimate. This is not the case, however, because 
the reader of the results can interpret them appropriately, as long as the confi-
dence level is made clear. To simplify matters, the 95% and 99% confidence levels 
are the most commonly used and serve as conventions. Beware of the researcher 
who calculates the 76% confidence interval – this may have been chosen in order 
to obtain the desired answer rather than in the spirit of scientific enquiry. The 
general formula for the (100 - a)% confidence interval is

x { za2s2>n (4.8)

where za is the z score which cuts off the extreme a% (in both tails, hence a>2 in 
each tail) of the Normal distribution.

Exercise 4.3 will test your understanding of what a confidence interval really is.

A study finds that the 95% confidence interval estimate for the mean of a population ranges 
from 0.1 to 0.4. Which of the following statements are true and which false?

(a) The probability that the true mean is greater than 0 is at least 95%.

(b) The probability that the true mean is 0 is less than 5%.

(c) The hypothesis that the true mean is 0 is unlikely to be correct.

(d) There is a 95% probability that the true mean lies between 0.1 and 0.4.

(e) We can be 95% confident that the true mean lies between 0.1 and 0.4.

(f) If we were to repeat the experiment many times, then 95% of the time the true mean lies 
between 0.1 and 0.4.

?

Exercise 4.3

 Estimating a proportion

It is often the case that we wish to estimate the proportion of the population that 
has a particular characteristic (e.g. is unemployed), rather than wanting an aver-
age. Given what we have already learned, this is fairly straightforward and is based 
on similar principles. Suppose that, following Chapter 1, we wish to estimate the 
proportion of educated people who are unemployed. We have a random sample of 
200 individuals, of whom 15 are unemployed. What can we infer?

The sample data are:

 n = 200, and
 p = 0.075 (=  15>200)

where p is the (sample) proportion unemployed, 7.5% in this case. We denote the 
population proportion by the Greek letter p and it is this that we are trying to 
estimate using data from the sample.

The key to solving this problem is recognising p as a random variable just like 
the sample mean. This is because its value depends upon the sample drawn and 
will vary from sample to sample. Once the probability distribution of this random 
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variable is established, the problem is quite easy to solve, using the same methods 
as were used for the mean. The sampling distribution of p is6

p ∼ N ap, 
p(1 - p)

n
b  (4.9)

This tells us that the sample proportion is centred on the true value but will vary 
around it, varying from sample to sample. This variation is expressed by the vari-
ance of p, whose formula is p(1 - p)>n. Having derived the probability distribu-
tion of p, we can use the same methods of estimation as for the sample mean. 
Since the expected value of p is p, the sample proportion is an unbiased estimate 
of the population parameter. The point estimate of p is simply p, therefore. Thus, 
it is estimated that 7.5% of all educated people are unemployed.

Given the sampling distribution for p in equation (4.9), the formula for the 
95% confidence interval for p can immediately be written down as:

p { 1.96Bp(1 - p)
n

 (4.10)

or alternatively

cp - 1.96Bp(1 - p)
n

, p + 1.96Bp(1 - p)
n

d

As usual, the 95% confidence interval limits are given by the point estimate plus 
and minus 1.96 standard errors.

Since the value of p is unknown, the confidence interval cannot yet be calcu-
lated, so the sample value of 0.075 has to be used instead of the unknown p. Like 
the substitution of s2 for s2 in the case of the sample mean above, this is accept-
able in large samples. Thus, the 95% confidence interval becomes

0.075 { 1.96B0.075(1 - 0.075)
200

 (4.11)

= 0.075 { 0.037
= [0.038, 0.112]

We say that the 95% confidence interval estimate for the true proportion of 
unemployed people lies between 3.8% and 11.2%.

It can be seen that these two cases apply a common method. The 95% confi-
dence interval is given by the point estimate plus or minus 1.96 standard errors. 
For a different confidence level, 1.96 would be replaced by the appropriate value 
from the standard Normal distribution.

With this knowledge, two further cases can be swiftly dealt with.

6See the Appendix to this chapter (page 193) for the derivation of this formula.

Worked example 4.2 Music down the phone

Do you get angry when you try to phone an organisation and you get an auto-
mated reply followed by music while you hang on? Well, you are not alone. 
Mintel (a consumer survey company) asked 1946 adults what they thought of 
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 Estimating the difference between two means

We now move on to estimating differences. In this case we have two samples and 
want to know whether there is a difference between their respective populations. 
One sample might be of men, the other of women, or we could be comparing two 
different countries, etc. A point estimate of the difference is easy to obtain, but 
once again there is some uncertainty around this figure, because it is based on 
samples. Hence, we measure that uncertainty via a confidence interval. All we 
require are the appropriate formulae. Consider the following example.

Thirty-five pupils from school 1 scored an average mark of 70% in an exam, 
with a standard deviation of 12%; 60 pupils from school 2 scored an average of 
62% with standard deviation 18%. Estimate the true difference between the two 
schools in the average mark obtained.

This is a more complicated problem than those previously treated since it 
involves two samples rather than one. An estimate has to be found for m1 - m2 
(the true difference in the mean marks of the schools), in the form of both point 
and interval estimates. The pupils taking the exams may be thought of as samples 
of all pupils in the schools who could potentially take the exams.

Notice that this is a problem about sample means, not proportions, even 
though the question deals in percentages. The point is that each observation in 
the sample (i.e. each student’s mark) can take a value between 0 and 100, and one 
can calculate the standard deviation of the marks. For this to be a problem of sam-
ple proportions, the mark for each pupil would each have to be of the pass/fail 
type, so that one could only calculate the proportion who passed.

One might think that the way to approach this problem is to derive one confi-
dence interval for each sample (along the lines set out above), and then to some-
how combine them; for example, the degree of overlap of the two confidence 
intervals could be assessed. This is not the best approach, however. It is sometimes 
a good strategy, when faced with an unfamiliar problem to solve, to translate it 
into a more familiar problem and then solve it using known methods. This 

music played to them while they were trying to get through on the phone; 36% 
reported feeling angered by the music played to them and more than one in 
four were annoyed by the automated voice response.

With these data we can calculate a confidence interval for the true propor-
tion of people who dislike the music. First, we assume that the sample is a truly 
random one. This is probably not strictly true, so our calculated confidence 
interval will only be an approximate one. With p = 0.36 and n = 1946 we 
obtain the following 95% interval:

 p { 1.96 * Bp(1 - p)
n

= 0.36 { 1.96 * B0.36(1 - 0.36)
1946

 = 0.36 { 0.021 = [0.339, 0.381]

Mintel further estimated that 2800 million calls were made by customers to call 
centres per year, so we can be (approximately) 95% confident that between 949 
million and 1067 million of those calls have an unhappy customer on the line.

Source: The Times, 10 July 2000.
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 procedure will be followed here. The essential point is to keep in mind the concept 
of a random variable and its probability distribution.

Problems involving a single random variable have already been dealt with 
above. The current problem deals with two samples and therefore there are two 
random variables to consider, i.e. the two sample means x1 and x2. Since the aim is 
to estimate m1 - m2, an obvious candidate for an estimator is the difference 
between the two sample means, x1 - x2. We can think of this as a single random 
variable (even though two means are involved) and use the methods we have 
already learned. We therefore need to establish the sampling distribution of 
x1 - x2. This is derived in the Appendix to this chapter (see page 193) and results 
in equation (4.12):

x1 - x2 ∼ N am1 - m2, 
s2

1

n1
+

s2
2

n2
b  (4.12)

This equation states that the difference in sample means will be centred on the 
difference in the two population means, with some variation around this as 
measured by the variance. One assumption behind the derivation of (4.12) is 
that the two samples are independently drawn. This is likely in this example; it 
is difficult to see how the samples from the two schools could be connected. 
However, one must always bear this possibility in mind when comparing sam-
ples. For example, if one were comparing men’s and women’s heights, it would 
be dangerous to take samples of men and their wives as they are unlikely to be 
independent. People tend to marry partners of a similar height to themselves, so 
this might bias the results. 

The distribution of x1 - x2 is illustrated in Figure 4.5. Equation (4.12) shows 
that x1 - x2 is an unbiased estimator of m1 - m2. The difference between the sam-
ple means will therefore be used as the point estimate of m1 - m2. Thus, the point 
estimate of the true difference between the schools is

x1 - x2 = 70 - 62 = 8%

The 95% confidence interval estimate is derived in the same manner as before, 
making use of the standard error of the random variable. The formula is7

(x1 - x2) { 1.96B s2
1

n1
+

s2
2

n2
 (4.13)

Since the values of s2 are unknown, they have been replaced in equation (4.13) 
by their sample values. As in the single sample case, this is acceptable in large sam-
ples. The 95% confidence interval for m1 - m2 is therefore

(70 - 62) { 1.96B122

35
+

182

60
= [1.95, 14.05]

The estimate is that school 1’s average mark is between 1.95 and 14.05 percent-
age points above that of school 2. Notice that the confidence interval does not 
include the value zero, which would imply possible equality of the two schools’ 
marks. Equality of the two schools can thus be ruled out with 95% confidence.

7The term under the square root sign is the standard error for x1 - x2.
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Figure 4.5
The distribution of 
x1 - x2
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Worked example 4.3 

A survey of holidaymakers found that on average women spent 3 hours per day 
sunbathing, men spent 2 hours. The sample sizes were 36 in each case and the 
standard deviations were 1.1 and 1.2 hours, respectively. Estimate the true dif-
ference between men and women in sunbathing habits. Use the 99% confi-
dence level.

The point estimate is simply one hour, the difference of sample means. For 
the confidence interval we have:

(x1 - x2) { 2.57B s2
1

n1
+

s2
2

n2

= (3 - 2) { 2.57B1.12

36
+

1.22

36
= 1 { 0.70 = [0.30, 1.70]

➔
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 Estimating the difference between two proportions

We move again from means to proportions. We use a simple example to illustrate 
the analysis of this type of problem. Suppose we wish to compare the market share 
of Apple Mac computers in the United States and the United Kingdom. A survey of 
1000 American computer users shows that 160 use Macs while a similar survey of 
500 Britons shows 65 using Macs. What is our estimate of the true difference 
between the two countries?

Here the aim is to estimate p1 - p2, the difference between the two population 
proportions, so the probability distribution of p1 - p2 is needed, the difference of 
the sample proportions. The derivation of this follows similar lines to those set 
out above for the difference of two sample means, so is not repeated. The probabil-
ity distribution is

p1 - p2 ∼ N ap1 - p2, 
p1(1 - p1)

n1
+

p2(1 - p2)
n2

b  (4.14)

Again, the two samples must be independently drawn for this to be correct.
Since the difference between the sample proportions is an unbiased estimate of 

the true difference, this will be used for the point estimate. The point estimate is 
therefore

 p1 - p2 = 160>1000 - 65>500
 = 0.16 - 0.13 = 0.03 or 3%.

Note that this means a three percentage point difference in market share, not 
that the US market is 3% bigger. The 95% confidence interval is given by

p1 - p2 { 1.96Bp1(1 - p1)
n1

+
p2(1 - p2)

n2
 (4.15)

p1 and p2 are unknown so have to be replaced by p1 and p2 for purposes of calcula-
tion, so the interval becomes

0.16 - 0.13 { 1.96B0.16 * 0.84
1000

+
0.13 * 0.87

500
 (4.16)

= 0.03 { 0.0372
= [-0.0072, 0.0672]

The 95% confidence interval indicates that the US market share is between -0.7 
and 6.7 percentage points larger than in the United Kingdom. Note that this 
interval includes the value of zero, so we cannot be 95% confident the US share 
is bigger.

These data are for the purpose of illustrating the methods and are not real. However, 
they are closely based on figures from StatCounter (http://gs. statcounter.com/) 

This evidence suggests women do spend more time sunbathing than men (zero 
is not in the confidence interval). Note that we might worry the samples might 
not be independent here – it could represent 36 couples. If so, the evidence is 
likely to underestimate the true difference, if anything, as couples are likely to 
spend time sunbathing together.

http://gs.�statcounter.com
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and are collected automatically based on visitor statistics to ‘more than three mil-
lion web sites’. The market shares for December 2011 are reported as 16.5% and 
13.3%. StatCounter does not give sample sizes, so what are we to make of these 
numbers?

The ‘three million’ might suggest a huge sample size and hence a much smaller 
confidence interval. (If there were one million in each country, then the width of 
the confidence interval would be {0.0005.) However, there are likely to be many 
multiple visits by the same user, so the number of users (as opposed to visits) could 
be much smaller, we simply do not know. Furthermore, we should think whether 
there might be any kind of bias to the figures, for example if more US websites 
were dedicated to Apple customers.

(a) Seven people out of a sample of 50 are left-handed. Estimate the true proportion of left-
handed people in the population, finding both point and interval estimates.

(b) Repeat part (a) but find the 90% confidence interval. How does the 90% interval compare 
with the 95% interval?

(c) Calculate the 99% interval and compare to the others.

?

Exercise 4.4

Given the following data from two samples, estimate the true difference between the means. 
Use the 95% confidence level.

 x1 = 25   x2 = 30
 s1 = 18   s2 = 25
 n1 = 36   n2 = 49

?

Exercise 4.5

A survey of 50 16-year-old girls revealed that 40% had a boyfriend. A survey of 100 16-year-
old boys revealed 20% with a girlfriend. Estimate the true difference in proportions between 
the sexes.?

Exercise 4.6

Estimation with small samples: the t distribution

So far only large samples (defined as sample sizes in excess of 25) have been dealt 
with, which means that (by the Central Limit Theorem) the sampling distribu-
tion of x follows a Normal distribution, whatever the distribution of the parent 
population. Remember, from the two theorems of Chapter 3, that

●	 if the population follows a Normal distribution, x is also Normally distributed, 
and

●	 if the population is not Normally distributed, x is approximately Normally dis-
tributed in large samples (n Ú 25).

In both cases, confidence intervals can be constructed based on the fact that

x - m2s2>n
∼ N(0, 1) (4.17)

and so the standard Normal distribution is used to find the values which cut 
off the extreme 5% of the distribution (z = {1.96). In practical examples, we 
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had to replace s by its estimate, s. Thus the confidence interval was based on 
the fact that

x - m2s2>n
∼ N(0, 1) (4.18)

in large samples. For small sample sizes, equation (4.18) is no longer true. Instead, 
the relevant distribution is the t distribution, and we have8

x - m2s2>n
∼ tn - 1 (4.19)

The random variable defined in equation (4.19) has a t distribution with n - 1 
degrees of freedom. As the sample size gets larger, the t distribution approaches 
the standard Normal, so the latter can be used for large samples.

The t distribution was derived by W.S. Gossett in 1908 while conducting tests 
on the average strength of Guinness beer (who says statistics has no impact on 
the real world?). He published his work under the pseudonym ‘Student’, since the 
company did not allow its employees to publish under their own names, so the 
distribution is sometimes also known as the Student distribution.

The t distribution is in many ways similar to the standard Normal, insofar as 
it is

●	 unimodal
●	 symmetric
●	 centred on zero
●	 bell-shaped
●	 extends from minus infinity to plus infinity.

The differences are that it is more spread out (has a larger variance) than the 
standard Normal distribution, and has only one parameter rather than two: the 
degrees of freedom, denoted by the Greek letter n (pronounced ‘nu’9). In problems 
involving the estimation of a sample mean, the degrees of freedom are given by 
the sample size minus one, i.e. n = n - 1.

The t distribution is drawn in Figure 4.6 for various values of the parameter n. 
Note that the fewer the degrees of freedom (smaller sample size), the more dis-
persed is the distribution.

To summarise the argument so far, when

●	 the sample size is small, and
●	 the sample variance is used to estimate the population variance,

then the t distribution should be used for constructing confidence intervals, not 
the standard Normal. This results in a slightly wider interval than would be 
obtained using the standard Normal distribution, which reflects the slightly 
greater uncertainty involved when s2 is used as an estimate of s2 when the sample 
size is small.

8We also require the assumption that the parent population is Normally distributed for 
(4.19) to be true.
9Once again, the Greeks pronounce this differently, as ‘ni’. They also pronounce p ‘pee’ 
rather than ‘pie’ as in English. This makes statistics lectures in English hard for Greeks to 
understand.
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Apart from this, the methods are as before and are illustrated by the examples 
below. We look first at estimating a single mean, and then at estimating the differ-
ence of two means. The t distribution cannot be used for small sample propor-
tions (explained below), so these cases are not considered.

 Estimating a mean

The following example would seem to be appropriate. A sample of 15 bottles of 
beer showed an average specific gravity (a measure of alcohol content) of 1035.6, 
with standard deviation 2.7. Estimate the true specific gravity of the brew.

The sample information may be summarised as

 x = 1035.6
 s = 2.7
 n = 15

The sample mean is still an unbiased estimator of m (this is true regardless of the 
distribution of the population) and serves as point estimate of m. The point esti-
mate of m is therefore 1035.6.

Since s is unknown, the sample size is small and it can be assumed that the 
specific gravity of all bottles of beer is Normally distributed (numerous small ran-
dom factors affect the specific gravity), we should use the t distribution. Thus

x - m2s2>n
∼ tn - 1 (4.20)

The 95% confidence interval estimate is given by

x { tn - 12s2>n (4.21)

where tn - 1 is the value of the t distribution which cuts off the extreme 5% (2.5% 
in each tail) of the t distribution with n degrees of freedom. Table A3 (see page 
451) gives percentage points of the t distribution, and part of it is reproduced in 
Table 4.1.

The structure of the t distribution table is different from that of the standard 
Normal table. The first column of the table gives the degrees of freedom. In this 
example we want the row corresponding to n = n - 1 = 14. The appropriate 

n

n

n

Figure 4.6
The t distribution drawn 
for different degrees of 
freedom
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 column of the table is the one headed ‘0.025’ which indicates the area cut off in 
each tail. At the intersection of this row and column we find the appropriate value, 
t14 = 2.145. Therefore, the confidence interval is given by

1035.6 { 2.14522.72>15
= 1035.6 { 1.5
= [1034.10, 1037.10]

We are 95% confident that the true specific gravity lies within this range. If 
the Normal distribution had (incorrectly) been used for this problem, then the 
t value of 2.145 would have been replaced by a z score of 1.96, giving a confidence 
interval of

[1034.23, 1036.97]

This underestimates the true confidence interval and gives the impression of a 
more precise estimate than is actually the case. Use of the Normal distribution 
leads to a confidence interval which is about 9% too narrow in this case.

 Estimating the difference between two means

As in the case of a single mean, the t distribution needs to be used in small samples 
when the population variances are unknown. Again, both parent populations 
must be Normally distributed, and in addition it must be assumed that the popu-
lation variances are equal, i.e. s2

1 = s2
2 (this is required in the mathematical deri-

vation of the t distribution). This latter assumption was not required in the 
large-sample case using the Normal distribution. Consider the following example 
as an illustration of the method.

A sample of 20 Labour-controlled local authorities shows that they spend an 
average of £175 per taxpayer on administration with a standard deviation of £25. 
A similar survey of 15 Conservative-controlled authorities finds an average figure 
of £158 with standard deviation of £30. Estimate the true difference in expendi-
ture between Labour and Conservative authorities.

The sample information available is

 x1 = 175   x2 = 158
 s1 = 25   s2 = 30
 n1 = 20   n2 = 15

Table 4.1 Percentage points of the t distribution (excerpt from Table A3)

Area in each tail

n 0.4 0.25 0.10 0.05 0.025 0.01 0.005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.656
2 0.289 0.816 1.886 2.920  4.303 6.965 9.925

o o o o o o o o
13 0.259 0.694 1.350 1.771  2.160 2.650 3.012
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947

Note: The appropriate t value for constructing the confidence interval is found at the intersection of the 
shaded row and column.
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We wish to estimate m1 - m2. The point estimate of this is x1 - x2 which is an 
unbiased estimate. This gives 175 - 158 = 17 as the expected difference between 
the two sets of authorities.

For the confidence interval, the t distribution has to be used since the sample 
sizes are small and the population variances unknown. It is assumed that the pop-
ulations are Normally distributed and that the samples have been independently 
drawn. We also assume that the population variances are equal, which seems jus-
tified since s1 and s2 do not differ by much (this kind of assumption is tested in 
Chapter 6). The confidence interval is given by the formula:

(x1 - x2) { tnB S2

n1
+

S2

n2
 (4.22)

where

S2 =
(n1 - 1)s2

1 + (n2 - 1)s2
2

n1 + n2 - 2
 (4.23)

is known as the pooled variance and

n = n1 + n2 - 2

gives the degrees of freedom associated with the t distribution.
S2 is an estimate of (common value of) the population variances. It would be 

inappropriate to have the differing values s1
2 and s2

2 in the formula for this t distri-
bution, for this would be contrary to the assumption that s2

1 = s2
2, which is essen-

tial for the use of the t distribution. The estimate of the common population 
variance is just the weighted average of the sample variances, using degrees of 
freedom as weights. Each sample has n - 1 degrees of freedom, and the total 
number of degrees of freedom for the problem is the sum of the degrees of free-
dom in each sample. The degrees of freedom are thus 20 + 15 - 2 = 33 and 
hence the value t = 2.042 cuts off the extreme 5% of the distribution. The t table 
in the appendix does not give the value for n = 33 so instead we used n = 30 
which will give a close approximation.

To evaluate the 95% confidence interval, we first calculate S2:

S2 =
(20 - 1) * 252 + (15 - 1) * 302

20 + 15 - 2
= 741.6

Inserting this into equation (4.22) gives

17 { 2.042B741.6
20

+
741.6

15
= [-1.99, 35.99]

Thus the true difference is quite uncertain and the evidence is even consistent 
with Conservative authorities spending more than Labour authorities. The large 
degree of uncertainty arises because of the small sample sizes and the quite wide 
variation within each sample.

One should be careful about the conclusions drawn from this test. The greater 
expenditure on administration could be either because of inefficiency or because 
of a higher level of services provided. To find out which is the case would require 
further investigation. The statistical test carried out here examines the levels of 
expenditure, but not whether they are productive or not.



Chapter 4 • Estimation and confidence intervals

186

 Estimating proportions

Estimating proportions when the sample size is small cannot be done with the t 
distribution. Recall that the distribution of the sample proportion p was derived 
from the distribution of r (the number of successes in n trials), which followed a 
Binomial distribution (see the Appendix to this chapter (page 193)). In large sam-
ples the distribution of r is approximately Normal, thus giving a Normally distrib-
uted sample proportion. In small samples it is inappropriate to approximate the 
Binomial distribution with the t distribution, and indeed is unnecessary since the 
Binomial itself can be used. Small-sample methods for the sample proportion 
should be based on the Binomial distribution, therefore, as set out in Chapter 3. 
These methods are not discussed further here, therefore.

A sample of size n = 16 is drawn from a population which is known to be Normally distributed. 
The sample mean and variance are calculated as 74 and 121. Find the 99% confidence interval 
estimate for the true mean.?

Exercise 4.7

Samples are drawn from two populations to see if they share a common mean. The sample 
data are:

 x1 = 45   x2 = 55
 s1 = 18   s2 = 21
 n1 = 15   n2 = 20

Find the 95% confidence interval estimate of the difference between the two population 
means.

?

Exercise 4.8

Summary

●	 Estimation is the process of using sample information to make good estimates 
of the value of population parameters, e.g. using the sample mean to estimate 
the mean of a population.

●	 There are several criteria for finding a good estimate. Two important ones are 
the (lack of) bias and precision of the estimator. Sometimes there is a trade-off 
between these two criteria – one estimator might have a smaller bias but be less 
precise than another.

●	 An estimator is unbiased if it gives a correct estimate of the true value on aver-
age. Its expected value is equal to the true value.

●	 The precision of an estimator can be measured by its sampling variance (e.g. 
s2/n for the mean of a sample).

●	 Estimates can be in the form of a single value (point estimate) or a range of val-
ues (confidence interval estimate). A confidence interval estimate gives some 
idea of how reliable the estimate is likely to be.

●	 For unbiased estimators, the value of the sample statistic (e.g. x) is used as the 
point estimate.
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●	 In large samples the 95% confidence interval is given by the point estimate 
plus or minus 1.96 standard errors (e.g. x { 1.962s2>n for the mean).

●	 For small samples the t distribution should be used instead of the Normal (i.e. 
replace 1.96 by the critical value of the t distribution) to construct confidence 
intervals of the mean.

95% confidence interval
bias
confidence interval
confidence level
degrees of freedom
efficiency
estimation
estimator
inference

interval estimate
mean squared error
point estimate
pooled variance
precision
proportion
testing hypothesis
unbiased

Key terms and concepts
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Formula Description Notes

x { 1.962s2>n 95% confidence interval for the mean Large samples, using Normal distribution

x { tn2s2>n 95% confidence interval for the mean Small samples, using t distribution. tv is the critical 
value of the t distribution for n = n - 1 degrees of 
freedom

p { 1.96B p(1 - p)

n 95% confidence interval for a proportion Large samples only

(x1 - x2) { 1.96B s2
1

n1
+

s2
2

n2

95% confidence interval for the difference  
of two means

Large samples

(x1 - x2) { tn B S2

n1
+

S2

n2

95% confidence interval for the difference  
of two means

Small samples. The pooled variance is given by 

S2 =
((n1 - 1)s2

1 + (n2 - 1)s2
2)

n1 + n2 - 2
,  n = n1 + n2 - 2.

Formulae used in this chapter

Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 4.1 (a) Why is an interval estimate better than a point estimate?

(b) What factors determine the width of a confidence interval?

 4.2 Is the 95% confidence interval (a) twice as wide, (b) more than twice as wide and (c) less than twice 
as wide, as the 47.5% interval? Explain your reasoning.

 4.3 Explain the difference between an estimate and an estimator. Is it true that a good estimator always 
leads to a good estimate?

 4.4 Explain why an unbiased estimator is not always to be preferred to a biased one.

 4.5 A random sample of two observations, x1 and x2, is drawn from a population. Prove that w1x1 + w2x2 
gives an unbiased estimate of the population mean as long as w1 + w2 = 1. (Hint: Prove that 
E(w1x1 + w2x2) = m.)

 4.6 Following the previous question, prove that the most precise unbiased estimate is obtained by set-
ting w1 = w2 = 1

2. (Hint: Minimise V(w1x1 + w2x2) with respect to w1 after substituting 
w2 = 1 - w1. You will need a knowledge of calculus to solve this.)

 4.7 Given the sample data

x = 40  s = 10  n = 36

Problems
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calculate the 99% confidence interval estimate of the true mean. If the sample size were 20, how 
would the method of calculation and width of the interval be altered?

 4.8 (a)  A random sample of 100 record shops found that the average weekly sale of a particular CD was 
260 copies, with standard deviation of 96. Find the 95% confidence interval to estimate the true 
average sale for all shops.

(b) To compile the CD chart it is necessary to know the correct average weekly sale to within 5% of 
its true value. How large a sample size is required?

 4.9 Given the sample data p = 0.4, n = 50, calculate the 99% confidence interval estimate of the true 
proportion.

 4.10 A political opinion poll questions 1000 people. Some 464 declare they will vote Conservative. Find 
the 95% confidence interval estimate for the Conservative share of the vote.

 4.11 Given the sample data

 x1 = 25   x2 = 22
 s1 = 12   s2 = 18
 n1 = 80   n2 = 100

estimate the true difference between the means with 95% confidence.

 4.12 (a)  A sample of 200 women from the labour force found an average wage of £26 000 p.a. with stan-
dard deviation £3500. A sample of 100 men found an average wage of £28 000 with standard 
deviation £2500. Estimate the true difference in wages between men and women.

(b) A different survey, of men and women doing similar jobs, obtained the following results:

 xW = £27 200   xM = £27 600
 sW = £2225   sM = £1750
 nW = 75   nM = 50

Estimate the difference between male and female wages using these new data. What can be con-
cluded from the results of the two surveys?

 4.13 Sixty-seven percent out of 150 pupils from school A passed an exam; 62% of 120 pupils at school B 
passed. Estimate the 99% confidence interval for the true difference between the proportions pass-
ing the exam.

 4.14 (a)  A sample of 954 adults in early 1987 found that 23% of them held shares. Given a UK adult 
population of 41 million and assuming a proper random sample was taken, find the 95% confi-
dence interval estimate for the number of shareholders in the United Kingdom.

(b) A ‘similar’ survey the previous year had found a total of 7 million shareholders. Assuming ‘simi-
lar’ means the same sample size, find the 95% confidence interval estimate of the increase in 
shareholders between the two years.

 4.15 A sample of 16 observations from a Normally distributed population yields a sample mean of 30 with 
standard deviation 5. Find the 95% confidence interval estimate of the population mean.

 4.16 A sample of 12 families in a town reveals an average income of £25 000 with standard deviation 
£6000. Why might you be hesitant about constructing a 95% confidence interval for the average 
income in the town?



Chapter 4 • Estimation and confidence intervals

190

 4.17 Two samples were drawn, each from a Normally distributed population, with the following results:

 x1 = 45   s1 = 8   n1 = 12
 x2 = 52   s2 = 5   n2 = 18

Estimate the difference between the population means, using the 95% confidence level.

 4.18 The heights of 10 men and 15 women were recorded, with the following results:

Mean Variance

Men 173.5 80
Women 162 65

Estimate the true difference between men’s and women’s heights. Use the 95% confidence level.

 4.19 (Project) Estimate the average weekly expenditure upon alcohol by students. Ask a (reasonably) 
random sample of your fellow students for their weekly expenditure on alcohol. From this, calculate 
the 95% confidence interval estimate of such spending by all students.
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Answers to exercises

Exercise 4.1

(a) The point estimate is 25 and the 95% confidence interval is 25 { 1.96 *  
50>1100 = 25 { 9.8 = [15.2, 34.8].

(b) The CI becomes larger as the sample size reduces. In this case we would have 
25 { 1.96 * 50>164 = 25 { 12.25 = [12.75, 37.25]. Note that the width of the 
CI is inversely proportional to the square root of the sample size.

Exercise 4.2

The 95% CI is 50 { 1.96 * 30>140 = 50 { 9.30 = [40.70, 59.30]. The value of 60 
lies (just) outside this CI so is unlikely to be the true mean.

Exercise 4.3

All the statements are false. The first four all make probability statements about the 
population mean, so are invalid according to the classical view of probability. State-
ment (e) sounds more plausible, but it refers to the CI for this specific sample and we 
simply do not know if the true mean lies inside or outside the CI for any individual 
sample. However, it is defensible to use this form of wording as long as we recognise the 
principles of constructing a CI. In (f), repeated experiments would have different CIs, 
so we cannot say anything about the range 0.1 to 0.4 in particular. This example comes 
from Hoekstra et al. (2014, DOI 10.3758/s13423-013-0572-3) who surveyed researchers 
and students. The respondents, on average, believed (erroneously) about 3.5 out of the 
6 statements to be true. Interestingly, there was little difference between experienced 
researchers and novice students in the results.

Exercise 4.4

(a) The point estimate is 14% (7/50). The 95% CI is given by

0.14 { 1.96 * B0.14 * (1 - 0.14)
50

= 0.14 { 0.096.

(b) Use 1.64 instead of 1.96, giving 0.14 { 0.080.

(c) 0.14 { 0.126.

Exercise 4.5

x1 - x2 = 25 - 30 = - 5 is the point estimate. The interval estimate is given by

 (x1 - x2) { 1.96B s2
1

n1
+

s2
2

n2
= -5 { 1.96B182

36
+

252

49

 = -5 { 9.14 = [-14.14, 4.14]

Exercise 4.6

The point estimate is 40 - 20 = 20% or 0.2. The interval estimate is

0.2 { 1.96 * B0.4 * 0.6
50

+
0.2 * 0.8

100
= 0.2 { 0.157 = [0.043, 0.357]



Chapter 4 • Estimation and confidence intervals

192

Exercise 4.7

The 99% CI is given by 74 { t* * 1121>16 = 74 { 2.947 * 2.75 = 74 { 8.10 =  
[65.90, 82.10].

Exercise 4.8

The pooled variance is given by

S2 =
(15 - 1) * 182 + (20 - 1) * 212

15 + 20 - 2
= 391.36

The 95% CI is therefore

(45 - 55) { 2.042 * B391.36
15

+
391.36

20
= -10 { 13.80 = [-3.8, 23.8]
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 Appendix Derivations of sampling distributions

 Derivation of the sampling distribution of p

The sampling distribution of p is fairly straightforward to derive, given what 
we have already learned. The sampling distribution of p can be easily derived 
from the distribution of r, the number of successes in n trials of an experiment, 
since p = r>n. The distribution of r for large n is approximately Normal (from 
Chapter 3):

r ∼ N(nP, nP(1 - P)) (4.24)

Knowing the distribution of r, is it possible to find that of p? Since p is simply r 
multiplied by a constant, 1/n, it is also Normally distributed. The mean and vari-
ance of the distribution can be derived using the E and V operators. The expected 
value of p is

E(p) = E(r>n) =
1
n

 E(r) =
1
n

 nP = P = p (4.25)

The expected value of the sample proportion is equal to the population propor-
tion (note that the probability P and the population proportion p are the same 
thing and may be used interchangeably). The sample proportion therefore gives 
an unbiased estimate of the population proportion.

For the variance:

V(p) = V a r
n
b =

1

n2 V(r) =
1

n2 nP(1 - P) =
p(1 - p)

n
 (4.26)

Hence, the distribution of p is given by

p ∼ N ap, 
p(1 - p)

n
b  (4.27)

 Derivation of the sampling distribution of x1 - x2

This is the difference between two random variables so is itself a random variable. 
Since any linear combination of Normally distributed, independent random vari-
ables is itself Normally distributed, the difference of sample means follows a Nor-
mal distribution. The mean and variance of the distribution can be found using 
the E and V operators. Letting

E(x1) = m1, V(x1) = s2
1>n1 and

E(x2) = m2, V(x2) = s2
2>n2

then

E(x1 - x2) = E(x1) - E(x2) = m1 - m2 (4.28)
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And

V(x1 - x2) = V(x1) + V(x2) =
s2

1

n1
+

s2
2

n2
 (4.29)

Equation (4.29) assumes x1 and x2 are independent random variables. The proba-
bility distribution of x1 - x2 can therefore be summarised as:

x1 - x2 ∼ N am1 - m2, 
s2

1

n1
+

s2
2

n2
b  (4.30)

This is equation (4.12) in the text.
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Hypothesis testing5

By the end of this chapter you should be able to:

●	 understand the philosophy and scientific principles underlying hypothesis testing

●	 appreciate that hypothesis testing is about deciding whether a hypothesis is true or 
false on the basis of a sample of data

●	 recognise the type of evidence which leads to a decision that the hypothesis is false

●	 carry out hypothesis tests for a variety of statistical problems

●	 recognise the relationship between hypothesis testing and a confidence interval

●	 recognise the shortcomings of hypothesis testing.
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Introduction

This chapter deals with issues very similar to those of the previous chapter on 
estimation, but examines them in a different way. The estimation of population 
parameters and the testing of hypotheses about those parameters are similar 
techniques (indeed they are formally equivalent in a number of respects), but 
there are important differences in the interpretation of the results arising from 
each method. The process of estimation is appropriate when measurement is 
involved, such as measuring the true average expenditure on food; hypothesis 
testing is relevant when decision-making is involved, such as whether to accept 
that a supplier’s products are up to a specified standard. Hypothesis testing is 
also used to make decisions about the truth or otherwise of different theories, 
such as whether rising prices are caused by rising wages; and it is here that the 
issues become contentious. It is sometimes difficult to interpret correctly the 
results of hypothesis tests in these circumstances. This is discussed further later 
in this chapter.

The concepts of hypothesis testing

In many ways hypothesis testing is analogous to a criminal trial. In a trial there is 
a defendant who is initially presumed innocent. The evidence against the defendant 
is then presented and, if the jury finds this convincing beyond all reasonable doubt, 
he or she is found guilty; the presumption of innocence is overturned. Of course, 
mistakes are sometimes made: an innocent person is convicted or a guilty person 
set free. Both of these errors involve costs (not only in the monetary sense), either 
to the defendant or to society in general, and the errors should be avoided if at all 
possible. The laws under which the trial is held may help avoid such errors. The 
rule that the jury must be convinced ‘beyond all reasonable doubt’ helps to avoid 
convicting the innocent, for instance.

The situation in hypothesis testing is similar. First, there is a maintained or null 
hypothesis which is initially presumed to be true. The empirical evidence, usually 
data from a random sample, is then gathered and assessed. If the evidence seems 
inconsistent with the null hypothesis, i.e. it has a low probability of occurring if 
the hypothesis were true, then the null hypothesis is rejected in favour of an alter-
native. Once again, there are two types of error one can make, either rejecting the 
null hypothesis when it is really true, or not rejecting it when in fact it is false. 
Ideally one would like to avoid both types of error.

An example helps to clarify the issues and the analogy. Suppose that you are 
thinking of taking over a small business franchise. The current owner claims the 
weekly turnover of each existing franchise averages £5000 and at this level you are 
willing to take on a franchise. You would be more cautious if the turnover is less 
than this figure. You examine the books of 26 franchises chosen at random and 
find that the average turnover was £4900 with standard deviation £280. What do 
you do?

The null hypothesis in this case is that average weekly turnover is £5000 (or 
more; that would be even more to your advantage). The alternative hypothesis is 
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that turnover is strictly less than £5000 per week. We may write these more 
 succinctly as follows:

H0: m = 5000
H1: m 6 5000

H0 is conventionally used to denote the null hypothesis, H1 the alternative. 
Initially, H0 is presumed to be true and this presumption will be tested using the 
sample evidence. Note that the sample evidence is not used in forming the null or 
alternative hypotheses.

You have to decide whether the owner’s claim is correct (H0) or not (H1). The 
two types of error you could make are as follows:

●	 Type I error – reject H0 when it is in fact true. This would mean missing a good 
business opportunity.

●	 Type II error – not rejecting H0 when it is in fact false. You would go ahead and 
buy the business and then find out that it is not as attractive as claimed. You 
would have overpaid for the business.

The situation is set out in Figure 5.1.
Obviously a good decision rule would give a good chance of making a correct 

decision and rule out errors as far as possible. Unfortunately, it is impossible to 
completely eliminate the possibility of errors. As the decision rule is changed to 
reduce the probability of a Type I error, the probability of making a Type II error 
inevitably increases. The skill comes in balancing these two types of error.

Again a diagram is useful in illustrating this. Assuming that the null hypothesis 
is true, then the sample observations are drawn from a population with mean 
5000 and some variance, which we shall assume is accurately measured by the 
sample variance. The distribution of x is then given by

x ∼ N(m, s2>n) or  (5.1)
x ∼ N(5000, 2802>26)

Under the alternative hypothesis the distribution of x would be the same 
except that it would be centred on a value less than 5000. These two situations are 
illustrated in Figure 5.2. The distribution of x under H1 is shown by a dashed curve 
to signify that its exact position is unknown, only that it lies to the left of the dis-
tribution under H0.

A decision rule amounts to choosing a point or dividing line on the horizontal 
axis in Figure 5.2. If the sample mean lies to the left of this point, then H0 is 
rejected (the sample mean is too far away from H0 for it to be credible) in favour of 
H1 and you do not buy the franchise. If x lies above this decision point, then H0 is 
not rejected and you go ahead with the purchase. Such a decision point is shown 

True situation

H0 true H0 false

Accept H0

Reject H0

Decision
Correct decision

Correct decisionType I error

Type II error

Figure 5.1
The two different types 
of error
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in Figure 5.2, denoted by xD. To the left of xD lies the rejection (of H0) region; to the 
right lies the non-rejection region.

Based on this point, we can see the probabilities of Type I and Type II errors. 
The area under the H0 distribution to the left of xD, labelled I, shows the probabil-
ity of rejecting H0 given that it is in fact true: a Type I error. The area under the H1 
distribution to the right of xD, labelled II, shows the probability of a Type II error: 
not rejecting H0 when it is in fact false (and H1 is true).

Shifting the decision line to the right or left alters the balance of these proba-
bilities. Moving the line to the right increases the probability of a Type I error but 
reduces the probability of a Type II error. Moving the line to the left has the oppo-
site effect.

The Type I error probability can be calculated for any value of xD. Suppose we 
set xD to a value of 4950. Using the distribution of x given in equation (5.1), the 
area under the distribution to the left of 4950 is obtained using the z score:

z =
xD - m2s2>n

=
4950 - 500022802>26

= -0.91 (5.2)

From the tables of the standard Normal distribution we find that the probabil-
ity of a Type I error is 18.1%. Unfortunately, the Type II error probability cannot be 
established because the exact position of the distribution under H1 is unknown. 
Therefore, we cannot decide on the appropriate position of xD by some balance of 
the two error probabilities.

The convention therefore is to set the position of xD by using a Type I error 
probability of 5%, known as the significance level1 of the test. In other words, we 
are prepared to accept a 5% probability of rejecting H0 when it is, in fact, true. This 
allows us to establish the position of xD. From Table A2 (see page 450) we find that 
z = -1.64 cuts off the bottom 5% of the distribution, so the decision line should 
be 1.64 standard errors below 5000. The value -1.64 is known as the  critical value 
of the test. We therefore obtain

xD = 5000 - 1.6422802>26 = 4910 (5.3)

Since the sample mean of 4900 lies below 4910, we reject H0 at the 5% signifi-
cance level or equivalently we reject with 95% confidence. The significance level is 

H1
H0

I II

xD x

f(x )

Rejection region Non-rejection region

Figure 5.2
The sampling distributions 
of x under H0 and H1

1The term size of the test is also used, not to be confused with the sample size. We use the 
term ‘significance level’ in this text.



The concepts of hypothesis testing

199

generally denoted by the symbol a and the complement of this, given by 1 -  a, is 
known as the confidence level (as used in the confidence interval).

An equivalent procedure would be to calculate the z score associated with the 
sample mean, known as the test statistic, and then compare this to the critical 
value of the test. This allows the hypothesis testing procedure to be broken down 
into five neat steps:

(1) Write down the null and alternative hypotheses:

H0: m = 5000
H1: m 6 5000

(2) Choose the significance level of the test, conventionally a = 0.05 or 5%.
(3) Look up the critical value of the test from statistical tables, based on the cho-

sen significance level. z* = 1.64 is the critical value in this case.
(4) Calculate the test statistic:

z =
x - m2s2>n

=
-10022802>26

= -1.82 (5.4)

(5) Decision rule. Compare the test statistic with the critical value: if z 6 -z* 
reject H0 in favour of H1. Since -1.82 6 -1.64, H0 is rejected with 95% confi-
dence. Note that we use -z* here (rather than +z*) because we are dealing 
with the left-hand tail of the distribution.

Worked example 5.1 

A sample of 100 workers found the average overtime hours worked in the previ-
ous week was 7.8, with standard deviation 4.1 hours. Test the hypothesis that 
the average for all workers is 5 hours or less.

We can set out the five steps of the answer as follows:
(1) H0: m = 5
 H1: m 7 5
(2) Significance level, a = 5%.
(3) Critical value z* = 1.64.
(4) Test statistic:

 z =
x - m2s2n

=
7.8 - 524.12>100

= 6.8

(5) Decision rule: 6.8 7 1.64 so we reject H0 in favour of H1. Note that in this 
case we are dealing with the right-hand tail of the distribution (positive 
values of z and z*). Only high values of x reject H0.

 One-tail and two-tail tests

In the above example the rejection region for the test consisted of one tail of the 
distribution of x, since the buyer was only concerned about turnover being less 
than claimed. For this reason, it is known as a one-tail test. Suppose now that an 
accountant is engaged to sell the franchise and wants to check the claim about 
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turnover before advertising the business for sale. In this case he or she would be 
concerned about turnover being either below or above 5000.

This would now become a two-tail test with the null and alternative hypotheses 
being

 H0: m = 5000
H1: m ≠ 5000

Now there are two rejection regions for the test. Either a very low sample mean or 
a very high one will serve to reject the null hypothesis. The situation is presented 
graphically in Figure 5.3.

The distribution of x under H0 is the same as before, but under the alternative 
hypothesis the distribution could be either to the left or to the right, as depicted. If 
the significance level is still chosen to be 5%, then the complete rejection region 
consists of the two extremes of the distribution under H0, containing 2.5% in each 
tail (hence 5% in total). This gives a Type I error probability of 5% as before. In 
other words, we would make a Type I error if the sample mean falls too far above or 
below the hypothesised value.

The critical value of the test therefore becomes z* = 1.96, the values which cut 
off 2.5% in each tail of the standard Normal distribution. Only if the test statistic 
falls into one of the rejection regions beyond 1.96 standard errors from the mean 
is H0 rejected.

Using data from the previous example, the test statistic remains z = -1.82 so 
that the null hypothesis cannot be rejected in this case, as -1.82 does not fall 
beyond -1.96. To recap, the five steps of the test are:

(1) H0: m = 5000
 H1: m ≠ 5000
(2) Choose the significance level: a = 0.05.
(3) Look up the critical value: z* = 1.96.
(4) Evaluate the test statistic:

 z =
-10022802>26

= -1.82

(5) Compare test statistic and critical values: if z 6 -z* or z 7 z* reject H0 in 
favour of H1. In this case -1.82 7 -1.96, so H0 cannot be rejected with 95% 
confidence.

One- and two-tail tests therefore differ only at steps 1 and 3. Note that we have 
come to different conclusions according to whether a one- or two-tail test was 

H1 H1H0

Reject H0 Reject H0

x

f(x )Figure 5.3
A two-tail hypothesis test



The concepts of hypothesis testing

201

used, with the same sample evidence. There is nothing wrong with this, however, 
for there are different interpretations of the two results. If the investor always uses 
his or her rule, he or she will miss out on 5% of good investment opportunities, 
when sales are (by chance) low. He or she will never miss out on a good opportu-
nity because the investment appears too good (i.e. sales by chance are very high). 
For the accountant, 5% of the firms with sales averaging £5000 will not be adver-
tised as such, either because sales appear too low or because they appear too high.

Another way of interpreting the difference between one- and two-tail tests is to 
say that the former includes some prior information, i.e. that the true value cannot 
lie above the hypothesised value (or that we are not interested in that region). 
Hence, although the sample evidence is the same, the overall evidence is not quite 
the same due to our prior knowledge. This additional knowledge allows us to 
sometimes reject a null via a one-tail test but not via a two-sided test.

It is tempting on occasion to use a one-tail test because of the sample evidence. 
For example, the accountant might look at the sample evidence above and decide 
that the franchise operation can only have true sales less than or equal to 5000. 
Therefore, she/he uses a one-tail test. This is a dangerous practice, since the sam-
ple evidence is being used to help formulate the hypothesis, which is then tested 
on that same evidence. This is going round in circles; the hypothesis should be 
chosen independently of the evidence which is then used to test it2. Presumably 
the accountant would also use a one-tail test (with H1: m 7 5000 as the alterna-
tive hypothesis) if she/he noticed that the sample mean was above the hypothe-
sised value. Taking these possibilities together, she/he would in effect be using 
the 10% significance level, not the 5% level, since there would be 5% in each tail 
of the distribution. She/he would make a Type I error on 10% of all occasions 
rather than 5%.

It is acceptable to use a one-tail test when you have independent information 
about what the alternative hypothesis should be, or when you are not concerned 
about one side of the distribution (like the investor) and can effectively add that 
in to the null hypothesis. Otherwise, it is safer to use a two-tail test.

2Alternatively, we could say this is assuming the sample evidence provides the additional 
prior information that might justify a one-tail test. However, it is not additional evidence, 
and it would be wrong to use the sample evidence for two purposes in this way.

(a) Two political parties are debating crime figures. One party says that crime has increased 
compared to the previous year. The other party says it has not. Write down the null and 
alternative hypotheses.

(b) Explain the two types of error that could be made in this example and the possible costs of 
each type of error.

Exercise 5.1

(a) We test the hypothesis H0: m = 100 against H1: m 7 100 by rejecting H0 if our sample 
mean is greater than 108. If in fact x ∼ N(100, 900>25), what is the probability of making 
a Type I error?

(b) If we wanted a 5% Type I error probability, what decision rule (value of x) should we adopt?

(c) If we knew that m could only take on the values 100 (under H0) or 112 (under H1) what 
would be the Type II error probability using the decision rule in part (a)?

?

Exercise 5.2

Test the hypothesis H0: m = 500 versus H1: m ≠ 500 using the evidence x = 530, s = 90 
from a sample of size n = 30.

?

Exercise 5.3
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 The choice of significance level

The explanation above put hypothesis testing into a framework of decision-mak-
ing between hypotheses, balancing Type I and Type II errors. This was first devel-
oped by the statisticians Neyman and Pearson in the 1930s. It is fine for a situation 
where both null and alternative hypotheses are well defined (as, for example, in a 
court of law) but, as noted, is not helpful when the alternative hypothesis is only 
vaguely specified (‘H1: m ≠ 5000’, for instance) and we cannot calculate the 
Type II error probability.

In an ideal world we would have precisely specified null and alternative hypoth-
eses (e.g. we would test H0: m = 5000 against H1: m = 4500, these being the only 
possibilities). Then we could calculate the probabilities of both Type I and Type II 
errors, for any given decision rule. We could then choose the optimal decision 
rule, which gives the best compromise between the two types of error. This is 
reflected in a court of law. In criminal cases, the jury must be convinced of the 
prosecution’s case beyond reasonable doubt, because of the cost of committing a 
Type I error. In a civil case (libel, for example) the jury need only be convinced on 
the balance of probabilities. In a civil case, the costs of Type I and Type II error are 
more evenly balanced and so the burden of proof is lessened.

However, in statistics we usually do not have the luxury of two well-specified 
hypotheses. As in the earlier worked example, the null hypothesis is precisely 
specified (it has to be or the test could not be carried out) but the alternative 
hypothesis is imprecise (sometimes called a composite hypothesis because it 
encompasses a range of values). Statistical inference is often used not so much as 
an aid to decision-making but to provide evidence for or against a particular the-
ory, to alter one’s degree of belief in the truth of the theory. For example, a 
researcher might believe large firms are more profitable than small ones and 
wishes to test this. The null and alternative hypotheses would be:

H0: large and small firms are equally profitable
H1: large firms are more profitable

(Note that the null has to be ‘equally profitable’, since this is a precise state-
ment. ‘More profitable’ is too vague to be the null hypothesis.). Data could be 
gathered to test this hypothesis, but it is not possible to calculate the Type II error 
probability (because ‘more profitable’ is too vague). Hence we cannot find the 
optimal balance of Type I and Type II errors in order to make our decision to accept 
or reject H0. Another statistician, R.A. Fisher, proposed the use of the 5% signifi-
cance level in this type of circumstance, arguing that a researcher could justifiably 
ignore any results that fail to reach this standard. Thus our procedures today are 
actually an uncomfortable mixture of two different approaches: Fisher did not 
agree with the decision-making framework; Neyman and Pearson did not propose 
a 5% convention for the Type I error probability.

The five sigma level of certainty

In particle physics the accepted level of certainty for the results of an experiment to be con-
sidered a valid discovery is five sigma (i.e. five standard deviations). A distance of five standard 
deviations cuts off approximately 0.00003% in one tail of the Normal distribution and repre-
sents an extremely low significance level. The reason for this is two-fold: (i) scientists are very 

ST

ATISTICS

IN

PRACTI

C
E

· ·



The Prob-value approach

203

The 5% significance level really does depend upon convention; therefore, it 
cannot be justified by reference to the relative costs of Type I and Type II errors. 
The 5% convention does impose some sort of discipline upon research; it sets 
some kind of standard which all theories (hypotheses) should be measured 
against. Beware the researcher who reports that a particular hypothesis is rejected 
at the 8% significance level; it is likely that the significance level was chosen so 
that the hypothesis could be rejected, which is what the researcher was hoping for 
in the first place. As we shall see later, however, this ‘discipline upon research’ is 
not a strong one.

The Prob-value approach

Fisher later changed his mind about the 5% significance level rule. He argued that 
this was too rigid to apply mechanically in all situations. Instead, one should pres-
ent the Prob-value (also known as the P-value), which is the actual significance 
level of the test statistic. In this way one presents information (the likelihood of a 
false positive) rather than imposing a decision. The reader could then make their 
own judgement.

The Prob-value is calculated as follows. The test statistic calculated earlier for 
the investor problem was z = -1.82 and the associated Prob-value is obtained 
from Table A2 as 3.44%, i.e. -1.82 cuts off 3.44% in one tail of the standard 
Normal distribution. This means that the null hypothesis could be rejected at the 
3.44% significance level or, alternatively expressed, with 96.56% confidence.

Notice that Table A2 gives the Prob-value for a one-tail test; for a two-tail test 
the Prob-value should be doubled. Thus for the accountant, using the two-tail 
test, the significance level is 6.88%, and this is the level at which the null hypoth-
esis can be rejected. Alternatively, we could say we reject the null with 93.12% 
confidence. This does not meet the standard 5% criterion (for the significance 
level) which is most often used, so would result in non-rejection of the null. 
(Notice that, despite using P-values, we have slipped back into decision-making 
mode. It is difficult to avoid doing this.)

An advantage of using the Prob-value approach is that many statistical soft-
ware programs routinely provide the Prob-value of a calculated test statistic3. If 
one understands the use of Prob-values, then one does not have to look up tables 
(this applies to any distribution, not just the Normal), which can save time.

reluctant to accept new hypotheses which may later turn out to be false, and (ii) there is a lot 
of random noise in the results of their experiments, so it would be easy to confuse noise with 
a valid finding unless a low significance level is chosen.

At the time of writing (February 2011), physicists are getting close to uncovering the 
existence of the Higgs boson but so far their results are only significant at about the three 
sigma level.

Update: The existence of the Higgs boson has been confirmed. More data (i.e. larger 
sample) allowed this conclusion to be reached.

3It is sometimes referred to as the ‘P-value’ in the statistical results. Excel uses this notation.
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To summarise, one rejects the null hypothesis if either:

●	 (Method 1) the test statistic is greater than the critical value, i.e. z 7 z*, or
●	 (Method 2) the Prob-value associated with the test statistic is less than the sig-

nificance level, i.e. P 6 0.05 (if the 5% significance level is used).

I have found that many students initially find this confusing, because of the 
opposing inequality in the two versions (greater than and less than). For exam-
ple, a program might calculate a hypothesis test and report the result as 
‘z = 1.4 (P-value =  0.162)’. The first point to note is that most software pro-
grams report the Prob-value for a two-tail test by default. Hence, assuming a 
5% significance level, in this case we cannot reject H0 because z = 1.4 6 1.96 
or equivalently because 0.162 7 0.05, against a two-tailed alternative (i.e. H1 
contains ≠ ).

If you wish to conduct a one-tailed test, you have to halve the reported Prob-
value, becoming 0.081 in this example. This is again greater than 5%, so the 
hypothesis is still accepted, even against a one-sided alternative (H1 contains 7 
or 6). Equivalently, one could compare 1.4 with the one-tail critical value, 1.64, 
showing non-rejection of the null, but one has to look up the standard Normal 
table with this method. Computers cannot guess whether a one- or two-sided test 
is wanted, so take the conservative option and report the two-sided value. The 
correction for a one-sided test has to be done manually.

This is a useful exercise to test your understanding of hypothesis tests. You carry out a one-tail 
hypothesis test and obtain the result z = 2.3, P-value =  0.01. Which of the following state-
ments are true?

(a) You have disproved the null hypothesis.

(b) You have found the probability that the null hypothesis is true.

(c) You have proved the alternative hypothesis to be true.

(d) You can calculate the probability of the alternative hypothesis being true.

(e) If you reject the null, you know the probability of having made the wrong decision.

(f) If this experiment were repeated many times, a statistically significant result would be 
obtained in 99% of trials.

These questions are adapted from an original questionnaire in Oakes (1986).

Exercise 5.4

Significance, effect size and power

Researchers usually look for ‘significant’ results; it is the way to get attention and 
to get published. Academic papers report that ‘the results are significant’ or that 
‘the coefficient is significantly different from zero at the 5% significance level’. It 
is vital to realise that the word ‘significant’ is used here in the statistical sense and 
not in its everyday sense of being important. Something can be statistically signifi-
cant yet still unimportant.

Suppose that we have some more data about the business examined earlier. 
Data for 100 franchises have been uncovered, revealing an average weekly  turnover 
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of £4975 with standard deviation £143. Can we reject the hypothesis that the 
average weekly turnover is £5000? The test statistic is

z =
4975 - 500021432>100

= -1.75

Since this is below -z* = -1.64, the null is rejected with 95% confidence. True 
average weekly turnover is less than £5000. However, the difference is only £25 per 
week, which is 0.5% of £5000. Common sense would suggest that the difference 
may be unimportant, even if it is significant in the statistical sense. One should 
not interpret statistical results in terms of significance alone, therefore; one 
should also look at the size of the difference (sometimes known as the effect size) 
and ask whether it is important or not. Even experienced researchers make this 
mistake; a review of articles in the prestigious American Economic Review reported 
that 82% of them confused statistical significance for economic significance in 
some way (McCloskey and Ziliak, 2004).

This problem with hypothesis testing paradoxically gets worse as the sample 
size increases. For example, if 250 observations reveal average sales of 4985 with 
standard deviation 143, the null would (just) be rejected at 5% significance. In 
fact, given a large enough sample size we can virtually guarantee to reject the null 
hypothesis even before we have gathered the data. This can be seen from equa-
tion (5.4) for the z score test statistic: as n gets larger, the test statistic also inevita-
bly gets larger.

A good way to remember this point is to appreciate that it is the evidence which 
is significant, not the size of the effect or the results of your research. Strictly, it is 
better to say ‘there is significant evidence of difference between . . .’ than ‘there is 
a significant difference between . . .’.

A related way of considering the effect of increasing sample size is via the con-
cept of the power of a test. This is defined as

Power of a test = 1 - Pr( Type II error) = 1 - b (5.5)

where b is the symbol conventionally used to indicate the probability of a Type II 
error. Since a Type II error is defined as not rejecting H0 when false (equivalent to 
rejecting H1 when true), power is the probability of rejecting H0 when false (if H0 is 
false, it must be either accepted or rejected; hence these probabilities sum to one). 
This is one of the correct decisions identified earlier, associated with the lower 
right-hand box in Figure 5.1, that of correctly rejecting a false null hypothesis. 
The power of a test is therefore given by the area under the H1 distribution, to the 
left of the decision line, as illustrated (shaded) in Figure 5.4 (for a one-tail test).

H1 H0

xxD

f(x )Figure 5.4
The power of a test
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It is generally desirable to maximise the power of a test, as long as the probabil-
ity of a Type I error is not raised in the process. There are essentially three ways of 
doing this:

●	 Avoid situations where the null and alternative hypotheses are very similar, i.e. 
the hypothesised means are not far apart (a small effect size).

●	 Use a large sample size. This reduces the sampling variance of x (under both H0 
and H1) so the two distributions become more distinct.

●	 Use good sampling methods which have small sampling variances. This has a 
similar effect to increasing the sample size.

Worked example 5.2 

This example shows how a larger sample size increases the power of a test. Sup-
pose we wish to test the hypothesis H0: m = 500 versus H0: m … 500. We have a 
choice of two methods to test the hypothesis: (a) use a sample size of 100, or (b) 
use a sample size of 49. Which will give us a better test? Let us use the 5% sig-
nificance level and assume. s = 200 For test (a) we would then reject H0 if 
x 6 467.2, and for test (b) we would reject if x 6 453.1. (You can check that 
these would lead to a z score of -1.64 in both cases, which cuts of the bottom 
5% of the Normal distribution.)

Now what is the probability in each case of rejecting the null if it were false, 
i.e. what is the power of each test? Suppose the true mean were 470 (so H0 above 
is false and should be rejected). For test (a) the probability of rejecting H0 (i.e. 
x 6 467.2) given that the true mean is 470 is obtained by calculating the 
z score:

z =
467.2 - 470

200>2100
= -0.14

From Table A2, this cuts off 44% in the lower tail, so this is the power of the 
test. For test (b) the z score is -0.59, which cuts off only 28%. Hence, test (a) is 
preferred, having the greater power. Note that the same significance level is 
required for both tests.

Unfortunately, in economics and business the data (including sample size) are 
very often given in advance and there is little or no control possible over the sam-
pling procedures. This leads to a neglect of consideration of power, unlike in psy-
chology or biology, for example, where the experiment can often be designed by 
the researcher. The gathering of sample data will be covered in detail in Chapter 9.

If a researcher believes the cost of making a Type I error is much greater than the cost of a 
Type II error, should they prefer a 5% or 1% significance level? Explain why.

Exercise 5.5

(a) A researcher uses Excel to analyse data and test a hypothesis. The program reports a test 
statistic of z = 1.77 (P-value = 0.077). Would you reject the null hypothesis if carrying 
out (i) a one-tailed test (ii) a two-tailed test? Use the 5% significance level.

(b) Repeat part (a) using a 1% significance level.

?

Exercise 5.6



Further hypothesis tests

207

Further hypothesis tests

We now consider a number of different types of hypothesis test, all involving the 
same principles but differing in details of their implementation. This is similar to 
the exposition in the last chapter covering, in turn, tests of a proportion, tests of 
the difference of two means and proportions, and finally problems involving 
small sample sizes.

 Testing a proportion

A car manufacturer claims that no more than 10% of its cars should need repairs in the 
first three years of their life, the warranty period. A random sample of 50 three-year-
old cars found that 8 had required attention. Does this contradict the maker’s claim?

This problem can be handled very similarly to the methods used for a mean. 
The key, once again, is to recognise the sample proportion as a random variable 
with an associated probability distribution. From Chapter 4 equation (4.9)), the 
sampling distribution of the sample proportion in large samples is given by

p ∼ N ap, 
p(1 - p)

n
b  (5.6)

In this case p = 0.10 (under the null hypothesis, the maker’s claim). The sample 
data are

 p = 8>50 = 0.16
 n = 50

Thus 16% of the sample required attention within the warranty period. This is 
substantially higher than the claimed 10%, but is this just because of a non- 
representative sample or does it reflect the reality that the cars are badly built? The 
hypothesis test is set out along the same lines as for a sample mean:

(1) Set out the null and alternative hypotheses:
H0: p = 0.10
H1: p 7 0.10

(The only concern is the manufacturer not matching its claim; hence a one-
tail test is appropriate.)

(2) Significance level: a = 0.05.
(3) The critical value of the one-tail test at the 5% significance level is z* = 1.64, 

obtained from the standard Normal table.
(4) The test statistic is

z =
p - pBp(1 - p)

n

=
0.16 - 0.10B0.1 * 0.9

50

= 1.41

A researcher wishes to test the hypothesis H0: m = 160 versus H0: m 7 160. If the sample 
size is to be 400 and s = 50 is assumed:

(a) What value of x should be used as the cutoff for rejecting H0 at the 5% significance level?

(b) What is the power of the test if the true mean is (i) 163, (ii) 166?

?

Exercise 5.7
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(5) Since the test statistic is less than the critical value, it falls into the non-rejection 
region. The null hypothesis is not rejected by the data. The manufacturer’s claim 
is not unreasonable.

Note that for this problem, the rejection region lies in the upper tail of the dis-
tribution because of the ‘greater than’ inequality in the alternative hypothesis. 
The null hypothesis is therefore rejected in this case if z 7 z*.

Do children prefer branded goods only because of the name?

Researchers at Johns Hopkins Bloomberg School of Public Health in Maryland found young 
children were influenced by the packaging of foods. Sixty-three children were offered two 
identical meals, save that one was still in its original packaging (from McDonald’s). Seventy-
six per cent of the children preferred the branded French fries.

Is this evidence significant? The null hypothesis is H0: p = 0.5 versus H1: p 7 0.5. The 
test statistic for this hypothesis test is

z =
p - pBp(1 - p)

n

=
0.76 - 0.50B0.5 * 0.5

63

= 4.12

which is greater than the critical value of z* = 1.64. Hence we conclude children are influ-
enced by the packaging or brand name.

Source: New Scientist, 11 August 2007.
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 Testing the difference of two means

Suppose a car company wishes to compare the performance of its two factories pro-
ducing an identical model of car. The factories are equipped with the same machin-
ery but their outputs might differ due to managerial ability, labour relations, etc. 
Senior management wishes to know if there is any difference between the two facto-
ries. Output is monitored for 30 days, chosen at random, with the following results:

Factory 1 Factory 2

Average daily output 420 408
Standard deviation of daily output  25  20

Does this produce sufficient evidence of a real difference between the factories, 
or does the difference between the samples simply reflect random differences 
such as minor breakdowns of machinery? The information at our disposal may be 
summarised as

 x1 = 420   x2 = 408
 s1 = 25   s2 = 20
 n1 = 30   n2 = 30

The hypothesis test to be conducted concerns the difference between the facto-
ries’ outputs, so the appropriate random variable to examine is x1 - x2. From 
Chapter 4 (equation (4.12)), this has the following distribution, in large samples:

x1 - x2 ∼ N am1 - m2, 
s2

1

n1
+

s2
2

n2
b  (5.7)
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The population variances, s2
1 and s2

2, may be replaced by their sample estimates, s2
1 

and s2
2, if the former are unknown, as here. The hypothesis test is therefore as follows.

(1) H0: m1 - m2 = 0
 H1: m1 - m2 ≠ 0

 The null hypothesis posits no real difference between the factories. This is a 
two-tail test since there is no a priori reason to believe one factory is better 
than the other, apart from the sample evidence.

(2) Significance level: a = 1%. This is chosen since the management does not 
want to interfere unless it is really confident of some difference between the 
factories. In order to favour the null hypothesis, a lower significance level 
than the conventional 5% is set.

(3) The critical value of the test is z* = 2.57. This cuts off 0.5% in each tail of the 
standard Normal distribution.

(4) The test statistic is

 z =
(x1 - x2) - (m1 - m2)B s2

1

n1
+

s2
2

n2

=
(420 - 408) - 0B252

30
+

202

30

= 2.05

Note that this is of the same form as in the single-sample cases. The hypothe-
sised value of the difference (zero in this case) is subtracted from the sample 
difference and this is divided by the standard error of the random variable.

(5) Decision rule: z 6 z* so the test statistic falls into the non-rejection region. There 
does not appear to be a significant difference between the two factories (or, better 
expressed, there is not significant evidence of a difference between factories).

A number of remarks about this example should be made. First, it is not neces-
sary for the two sample sizes to be equal (although they are in the example); 
45 days’ output from factory 1 and 35 days’ from factory 2, for example, could 
have been sampled. Second, the values of s2

1 and s2
2 do not have to be equal. They 

are, respectively, estimates of s2
1 and s2

2, and although the null hypothesis asserts 
that m1 = m2 it does not assert that the variances are equal. Management wants to 
know if the average levels of output are the same; it is not concerned about daily 
fluctuations in output (although it might be). A test of the hypothesis of equal 
variances is set out in Chapter 6.

The final point to consider is whether all the necessary conditions for the cor-
rect application of this test have been met. The example noted that the 30 days 
were chosen at random. If the 30 days sampled were consecutive, we might doubt 
whether the observations were truly independent. Low output on one day (due to 
a mechanical breakdown, for example) might influence the following day’s out-
put (if a special effort were made to catch up on lost production, for example).

 Testing the difference of two proportions

The general method should by now be familiar, so we will proceed by example for 
this case. Suppose that, in a comparison of two holiday companies’ customers, of 
the 75 who went with Happy Days Tours, 45 said they were satisfied, while 48 of the 
90 who went with Fly by Night Holidays were satisfied. Is there a significant differ-
ence between the companies?
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This problem can be handled by a hypothesis test on the difference of two sam-
ple proportions. The procedure is as follows. The sample evidence is

 p1 = 45>75 = 0.6   n1 = 75
 p2 = 48>90 = 0.533   n2 = 90

The hypothesis test is carried out as follows

(1) H0: p1 - p2 = 0
H1: p1 - p2 ≠ 0

(2) Significance level: a = 5%.
(3) Critical value: z* = 1.96.
(4) Test statistic: The distribution of p1 - p2 is

p1 - p2 ∼ N ap1 - p2, 
p1(1 - p1)

n1
+

p2(1 - p2)
n2

b

so the test statistic is

z =
(p1 - p2) - (p1 - p2)Bp1(1 - p1)

n1
+

p2(1 - p2)
n2

 (5.8)

 However, p1 and p2 in the denominator of equation (5.8) have to be replaced 
by estimates from the samples. They cannot simply be replaced by p1 and p2 
because these are unequal; to do so would contradict the null hypothesis that 
they are equal. Since the null hypothesis is assumed to be true (for the 
moment), it makes no sense to use a test statistic which explicitly supposes 
the null hypothesis to be false. Therefore, p1 and p2 are replaced by an esti-
mate of their common value which is denoted pn  and whose formula is

pn =
n1p1 + n2p2

n1 + n2
 (5.9)

 i.e. a weighted average of the two sample proportions. This yields

pn =
75 * 0.6 + 90 * 0.533

75 + 90
= 0.564

 This, in fact, is just the proportion of all customers who were satisfied, 93 out 
of 165. The test statistic therefore becomes

z =
0.6 - 0.533 - 0B0.564 * (1 - 0.564)

75
+

0.564 * (1 - 0.564)
90

= 0.86

(5) The test statistic is less than the critical value so the null hypothesis cannot be 
rejected with 95% confidence. There is not sufficient evidence to demonstrate 
a difference between the two companies’ performance.

Are women better at multi-tasking?

The conventional wisdom is ‘yes’. However, the concept of multi-tasking originated in com-
puting and, in that domain, it appears men are more likely to multi-task. Oxford Internet 
Surveys (http://www.oii.ox.ac.uk/microsites/oxis/) asked a sample of 1578 people if they 
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Hypothesis tests with small samples

As with estimation, slightly different methods have to be employed when the sam-
ple size is small (n 6 25) and the population variance is unknown. When both of 
these conditions are satisfied, the t distribution must be used rather than the Normal, 
so a t test is conducted rather than a z test. This means consulting tables of the t dis-
tribution to obtain the critical value of a test, but otherwise the methods are similar. 
These methods will be applied to hypotheses about sample means only, since they 
are inappropriate for tests of a sample proportion, as was the case in estimation.

 Testing the sample mean

A large chain of supermarkets sells 5000 packets of cereal in each of its stores each 
month. It decides to test-market a different brand of cereal in 15 of its stores. After 
a month the 15 stores have sold an average of 5200 packets each, with a standard 
deviation of 500 packets. Should all supermarkets switch to selling the new brand?

The sample information is

x = 5200, s = 500, n =  15

From Chapter 4 the distribution of the sample mean from a small sample when 
the population variance is unknown is based upon

x - m2s2>n
∼ tn (5.10)

multi-tasked while on-line (e.g. listening to music, using the phone); 69% of men said they 
did, 57% of women did. Is this difference statistically significant?

The published survey does not give precise numbers of men and women respondents 
for this question, so we will assume equal numbers (the answer is not very sensitive to this 
assumption). We therefore have the test statistic:

z =
0.69 - 0.57 - 0B0.63 * (1 - 0.63)

789
+

0.63 * (1 - 0.63)

789

= 4.94

(0.63 is the overall proportion of multi-taskers). The evidence is significant and clearly sug-
gests this is a genuine difference: men are the multi-taskers.

A survey of 80 voters finds that 65% are in favour of a particular policy. Test the hypothesis 
that the true proportion is 50%, against the alternative that a majority is in favour.

?

Exercise 5.8

A survey of 50 teenage girls found that on average they spent 3.6 hours per week chatting 
with friends over the internet. The standard deviation was 1.2 hours. A similar survey of 
90 teenage boys found an average of 3.9 hours, with standard deviation 2.1 hours. Test if there 
is any difference between boys’ and girls’ behaviour.

?

Exercise 5.9

One gambler on horse racing won on 23 of his 75 bets. Another won on 34 out of 95. Is the 
second person a better judge of horses, or just luckier?

?

Exercise 5.10



Chapter 5 • Hypothesis testing

212

with n = n - 1 degrees of freedom. The hypothesis test is based on this formula 
and is conducted as follows:

(1) H0: m = 5000
 H1: m 7 5000
 (Only an improvement in sales is relevant.)
(2) Significance level: a = 1% (chosen because the cost of changing brands is high).
(3) The critical value of the t distribution for a one-tail test at the 1% significance 

level with n = -1 = 14 degrees of freedom is t* = 2.62.
(4) The test statistic is

t =
x - m2s2>n

=
5200 - 500025002>15

= 1.55

(5) The null hypothesis is not rejected since the test statistic, 1.55, is less than the 
critical value, 2.62. It would probably be unwise to switch over to the new 
brand of cereal.

 Testing the difference of two means

A survey of 20 British companies found an average annual expenditure on research 
and development of £3.7m with a standard deviation of £0.6m. A survey of 15 
similar German companies found an average expenditure on research and devel-
opment of £4.2m with standard deviation £0.9m. Does this evidence lend sup-
port to the view often expressed that Britain does not invest enough in research 
and development?

This is a hypothesis about the difference of two means, based on small sample 
sizes. The test statistic is again based on the t distribution, i.e.

(x1 - x2) - (m1 - m2)B S2

n1
+

S2

n2

∼ tn (5.11)

where S2 is the pooled variance (as given in equation (4.23)) and the degrees of 
freedom are given by n = n1 + n2 - 2.

The hypothesis test procedure is as follows:

(1) H0: m1 - m2 = 0
H1: m1 - m2 6 0
(a one-tail test because the concern is with Britain spending less than  Germany.)

(2) Significance level: a = 5%.
(3) The critical value of the t distribution at the 5% significance level for a one-

tail test with n = n1 + n2 - 2 = 33 degrees of freedom is approximately 
t* = 1.70.

(4) The test statistic is based on equation (5.11):

t =
(x1 - x2) - (m1 - m2)B S2

n1
+

S2

n2

=
3.7 - 4.2 - 0B0.55

20
+

0.55
15

= -1.97

where S2 is the pooled variance, calculated by

S2 =
(n1 - 1)s2

1 + (n2 - 1)s2
2

n1 + n2 - 2
=

19 * 0.62 + 14 * 0.92

33
= 0.55
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(5) The test statistic falls in the rejection region, t 6 - t*, so the null hypothesis is 
rejected. The data do support the view that Britain spends less on R&D than 
Germany.

It is asserted that parents spend, on average, £540 p.a. on toys for each child. A survey of 
24 parents finds expenditure of £490, with standard deviation £150. Does this evidence con-
tradict the assertion?

Exercise 5.11

A sample of 15 final-year students were found to spend on average 15 hours per week in the 
university library, with standard deviation 3 hours. A sample of 20 freshers found they spend 
on average 9 hours per week in the library, with standard deviation 5 hours. Is this sufficient 
evidence to conclude that finalists spend more time in the library?

Exercise 5.12

Are the test procedures valid?

A variety of assumptions underlie each of the tests which we have applied above, 
and it is worth considering in a little more detail whether these assumptions are 
justified. This will demonstrate that one should not rely upon the statistical tests 
alone; it is important to retain one’s sense of judgement.

The first test concerned the weekly turnover of a series of franchise operations. 
To justify the use of the Normal distribution underlying the test, the sample 
observations must be independently drawn. If, for example, all the sample fran-
chises were taken from vibrant and growing cities and avoided those in less fortu-
nate parts of the country, then in some sense the observations would not be 
independent, and furthermore the sample would not be representative of the 
whole. The answer to this would be to ensure the sample was properly stratified, 
representing different parts of the country. This type of sampling issue is covered 
in Chapter 9.

If one were using time-series data, as in the car factory comparison, similar issues 
arise. Do the 30 days represent independent observations or might there be an auto-
correlation problem (e.g. if the sample days were close together in time)? Suppose 
that factory 2 suffered a breakdown of some kind which took three days to fix. 
Output would be reduced on three successive days and factory 2 would almost inev-
itably appear less efficient than factory 1. A look at the individual sample observa-
tions might be worthwhile, therefore, to see if there are any irregular patterns. It 
would have been altogether better if the samples had been collected on randomly 
chosen days over a longer time period to reduce the danger of this type of problem.

If the two factories both obtain their supplies from a common, but limited, 
source, then the output of one factory might not be independent of the output of 
the other. A high output of one factory would tend to be associated with a low 
output from the other, which has little to do with their relative efficiencies. This 
might leave the average difference in output unchanged but might increase the 
variance substantially (either a very high positive value of x1 - x2 or a very high 
negative value is obtained). This would lead to a low value of the test statistic and 
the conclusion of no difference in output. Any real difference in efficiency is 
masked by the common supplier problem. If the two samples are not indepen-
dent, then the distribution of x1 - x2 may not be Normal.
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Hypothesis tests and confidence intervals

Formally, two-tail hypothesis tests and confidence intervals are equivalent. Any value 
which lies within the 95% confidence interval around the sample mean cannot be 
rejected as the ‘true’ value using the 5% significance level in a hypothesis test using 
the same sample data. For example, our by now familiar accountant could construct a 
confidence interval for the firm’s sales. This yields the 95% confidence interval

[4792, 5008] (5.12)

Notice that the hypothesised value of 5000 is within this interval and that this 
value was not rejected by the hypothesis test carried out earlier. As long as the 
same confidence level is used for both procedures, they are equivalent.

Having said this, their interpretation is different. The hypothesis test forces us 
into the reject/do not reject dichotomy, which is rather a stark choice. We have 
already seen how it becomes more likely that a null hypothesis is rejected as the 
sample size increases. This problem does not occur with estimation. As the sample 
size increases the confidence interval gets narrower (around the unbiased point 
estimate) which is entirely beneficial. The estimation approach also tends to 
emphasise importance over significance in most people’s minds. With a hypoth-
esis test one might know that turnover is significantly different from 5000 with-
out knowing how far from 5000 it actually is.

On some occasions a confidence interval is inferior to a hypothesis test, how-
ever. Consider the following case. In the United Kingdom only 72 out of 564 judges 
are women (12.8%). The Equal Opportunities Commission had earlier com-
mented that since the appointment system is so secretive, it is impossible to tell if 
there is discrimination or not. What can the statistician say about this? No dis-
crimination (in its broadest sense) would mean half of all judges would be women. 
Thus, the hypotheses are

H0: p = 0.5 (no discrimination)
H1: p 6 0.5 (discrimination against women)

The sample data are p = 0.128, n = 564. The z score is

z =
p - pBp(1 - p)

n

=
0.128 - 0.5B0.5 * 0.5

564

= -17.7

This is clearly significant (and 12.8% is a long way from 50%) so the null hypoth-
esis is rejected. There is some form of discrimination somewhere against women 
(unless women choose not to be judges). But a confidence interval estimate of the 
‘true’ proportion of female judges would be meaningless. To what population is 
this ‘true’ proportion related?

The lesson from all this is that differences exist between confidence intervals and 
hypothesis tests, despite their formal similarity. Which technique is more appropri-
ate is a matter of judgement for the researcher. With hypothesis testing, the rejec-
tion of the null hypothesis at some significance level might actually mean a small 
(and unimportant) deviation from the hypothesised value. It should be remem-
bered that the rejection of the null hypothesis based on a large sample of data is also 
consistent with the true value possibly being quite close to the hypothesised value.
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Independent and dependent samples

The following example illustrates the differences between independent samples (as 
encountered so far) and dependent samples (also known as matched or paired 
 samples) where slightly different methods of analysis are required. The example 
also illustrates how a particular problem can often be analysed by a variety of sta-
tistical methods.

Dependent samples occur, for example, when the same individuals are sampled 
twice, at two points in time. Alternatively, the observations in a first sample might 
be matched to or related in some way with the observations in the second sample. 
To ignore these facts in our analysis would be to ignore some potentially valuable 
information and hence not obtain the optimum results from the data.

To proceed via an example, suppose a company introduces a training pro-
gramme to raise the productivity of its clerical workers, which is measured by the 
number of invoices processed per day. The company wants to know if the training 
programme is effective. How should it evaluate the programme? There is a variety 
of ways of going about the task, as follows:

●	 Take two (random) samples of workers, one trained and one not trained, and 
compare their productivity. This would comprise two independent samples.

●	 Take a sample of workers and compare their productivity before and after train-
ing. This would be a paired sample.

●	 Take two samples of workers, one to be trained and the other not. Compare the 
improvement of the trained workers with any change in the other group’s per-
formance over the same time period. This would consist of two independent 
samples but we are controlling for any time effects that are unrelated to the 
training.

We shall go through each method in turn, pointing out any possible difficulties.

 Two independent samples

Suppose a group of 10 workers is trained and compared to a group of 10 non-
trained workers, with the following data being relevant:

 xT = 25.5   xN = 21.00
 sT = 2.55   sN = 2.91
 nT = 10   nN = 10

Thus, trained workers process 25.5 invoices per day compared to only 21 by 
non-trained workers. The question is whether this is significant, given that the 
sample sizes are quite small.

The appropriate test here is a t test of the difference of two sample means, as 
 follows:

H0: mT - mN = 0
H1: mT - mN 7 0

t =
25.5 - 21.0B7.49

10
+

7.49
10

= 3.68
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(7.49 is S2, the pooled variance). The t statistic leads to rejection of the null 
hypothesis; the training programme does seem to be effective.

One problem with this test is that the two samples might have other differ-
ences apart from the effect of the training programme. This could be due either to 
simple random variation or to some selection factor. Poor workers might have 
been reluctant to take part in training, departmental managers might have 
selected better workers for training as some kind of reward, or better workers may 
have volunteered. In a well-designed experiment this should not be allowed to 
happen, of course, but we do not rule out the possibility. Hence we should con-
sider ways of conducting a fairer test.

 Paired samples

If we compare the same workers before and after training, then we are controlling 
for the inherent quality of the workers. We hence rule out this form of random 
variation which might otherwise weaken our test. We should therefore obtain a 
better idea of the true effect of the training programme. This is an example of 
paired or matched samples, where we can match up and compare the individual 
observations to each other, rather than just the overall averages. Suppose the sam-
ple data are as follows:

Worker 1 2 3 4 5 6 7 8 9 10

Before 21 24 23 25 28 17 24 22 24 27
After 23 27 24 28 29 21 24 25 26 28

In this case, the observations in the two samples are paired, and this has impli-
cations for the method of analysis. One could proceed by assuming these are two 
independent samples and conduct a t test. The summary data and results of such 
a test are:

 xB = 23.50   xA = 25.5
 sB = 3.10   sA = 2.55
 nB = 10   nA = 10

The resulting test statistic is t18 = 1.58 which is not significant at the 5% level.
There are two problems with this test and its result. First, the two samples 

are not truly independent, since the before and after measurements refer to the 
same group of workers. Second, note that 9 out of 10 workers in the sample have 
shown an improvement, which is odd in view of the result found above, of no 
significant improvement. If the training programme really has no effect, then 
the probability of a single worker showing an improvement is 12. The probability 
of nine or more workers showing an improvement is, by the Binomial method, 
112210 * 10C9 + 112210, which is about one in a hundred. A very unlikely event 
seems to have occurred. Furthermore, the improvement is better measured as a 
proportion, which is 8.5% (25.5 versus 23.5), and any company would be 
pleased at such an improvement in productivity. Despite the lack of signifi-
cance, it is worth investigating further.

The t test used above is inappropriate because it does not make full use of the 
information in the sample. It does not reflect the fact, for example, that the before 
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and after scores, 21 and 23, relate to the same worker. The Binomial calculation 
above does reflect this matching. A re-ordering of the data would not affect the 
t test result, but would affect the Binomial, since a different number of workers 
would now show an improvement. Of course, the Binomial does not use all the 
sample information either – it dispenses with the actual productivity data for 
each worker and replaces it with ‘improvement’ or ‘no improvement’. It disregards 
the amount of improvement for each worker.

Better use of the sample data comes by measuring the improvement for each 
worker, as follows (if a worker had deteriorated, this would be reflected by a nega-
tive number):

Worker 1 2 3 4 5 6 7 8 9 10

Improvement 2 3 1 3 1 4 0 3 2 1

These new data can be treated by single sample methods, and account is taken 
both of the actual data values and of the fact that the original samples were depen-
dent (re-ordering of the data would produce different, and incorrect, improve-
ment figures). The summary statistics of the new data are as follows:

x = 2.00, s = 1.247, n = 10

The null hypothesis of no improvement can now be tested as follows:

H0: m = 0
H1: m 7 0

t =
2.0 - 0B1.2472

10

= 5.07

This is significant at the 5% level, so the null hypothesis of no improvement is 
rejected. The correct analysis of the sample data has thus reversed the previous 
conclusion. It is perhaps surprising that treating the same data in different ways 
leads to such a difference in the results. It does illustrate the importance of using 
the appropriate method.

Matters do not end here, however. Although we have discovered an improve-
ment, this might be due to other factors apart from the training programme. For 
example, if the before and after measurements were taken on different days of the 
week (that Monday morning feeling . . .), or if one of the days were sunnier, mak-
ing people feel happier and therefore more productive, this might bias the results. 
These may seem trivial examples but these effects do exist, for example the ‘Friday 
afternoon car’, which has more faults than the average, constructed when workers 
are thinking ahead to the weekend.

The way to solve this problem is to use a control group, so called because 
extraneous factors are controlled for, in order to isolate the effects of the factor 
under investigation. In this case, the productivity of the control group would be 
measured (twice) at the same times as that of the training group, although no 
training would be given to them. Ideally, the control group would be matched 
on other factors (e.g. age) to the treatment group to avoid other factors influenc-
ing the results. Suppose that the average improvement of the control group were 
0.5 invoices per day with standard deviation 1.0 (again for a group of 10). This 
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can be compared with the improvement of the training group via the two-sam-
ple t test, giving

t =
2.0 - 0.5B1.132

10
+

1.132

10

= 2.97

(1.132 is the pooled variance). This adds more support to the finding that the 
training programme is of value.

A group of students’ marks on two tests, before and after instruction, were as follows:

Student 1 2 3 4 5 6 7 8 9 10 11 12

Before 14 16 11  8 20 19 6 11 13 16  9 13
After 15 18 15 11 19 18 9 12 16 16 12 13

Test the hypothesis that the instruction had no effect, using both the independent sample and 
paired sample methods. Compare the two results.

Exercise 5.13

Issues with hypothesis testing

The above exposition has served to illustrate how to carry out a hypothesis test 
and the rationale behind it. However, the methodology has been subject to criti-
cisms, some of which we have already discussed:

●	 The decision-making paradigm is problematic since we are not sure what we 
are choosing between (the alternative hypothesis is vague).

●	 The 5% significance level is just a convention.
●	 The focus on ‘significance’ leads to a neglect of the effect size.
●	 The experimental (i.e. alternative) hypothesis is never itself tested. This is a pity 

as it is often the one favoured by the researcher.
●	 The process is easily and often misunderstood. People tend to confuse the prob-

ability of observing the sample data assuming that the null is true with the 
probability that the null is true given the data. More succinctly, Pr(data | H0) is 
confused with Pr(H0 | data). The significance level (P-value) relates to the for-
mer, not the latter.

There are other problems too which we have not yet discussed. It is common in 
research to be looking at several hypothesis tests rather than just one. Suppose we 
are trying to improve teaching of statistics to a group of students. We try five alter-
native approaches: smaller class sizes, regular assignments, online tests, etc. We 
test each of these with a conventional hypothesis test at the 5% significance level. 
What is our chance of a Type I error, assuming none of these innovations truly 
works? The chance that all five come up with ‘no effect’ is 0.955 = 0.77. Hence 
the overall Type I error probability is 1 - 0.77 = 0.23. There is a 23% chance that 
we (erroneously) find something significant. This reveals the danger of looking 
for things in the data – there is a good chance you will find something, but it will 
likely be a false positive.
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This problem is pervasive, and even the researcher himself herself might be 
unaware of doing it. He/she investigates whether workers are less productive on a 
Friday but finds no significant effect. So he/she wonders whether there is a Monday 
effect and tests that. Or (even worse) he/she notices in the data that productivity 
looks low on a Wednesday, so he/she tests that. The results of these tests are largely 
meaningless and the true significance level (P-value) may be much higher than 5%.

Why is it, therefore, that hypothesis testing is so frequently used? One attrac-
tion is that it provides clear guidance on what to do, which does not require too 
much thought to apply. Follow the procedures and you will obtain a result. 
Moreover, this method will be generally accepted by others and is needed if the 
researcher wishes to get published.

What can be done to avoid some of these pitfalls? Some suggestions are as 
 follows.

●	 If doing a hypothesis test, plan it in detail before obtaining the data, i.e. the null 
hypothesis (or hypotheses) to test, the significance level, how to measure the 
variables appropriately (e.g. look at wage rates or total earnings?), sample size 
and so on. Stick to these choices, do not alter them in the light of what you 
might observe in the data.

●	 Do not be overawed by significance. Look at the effect size as well. In fact, look 
at the effect size first. Your significant result could be unimportant.

●	 Calculating a confidence interval might be a better way of analysing your data 
than a hypothesis test. It gives more focus to the effect size while also telling 
you about the reliability of your finding.

●	 Do not rely only on a hypothesis test, there are lots of ways of gaining insight 
into a problem. Look at the data using descriptive statistics and charts (and 
present these results to the reader). Perhaps your significant result occurs 
because of a few outliers in the data.

If possible, validate your findings on new data. If the effect you have found is 
genuine, it ought to occur in a new sample. If your original data suggest a new 
hypothesis to you, you must get new data to test it, you cannot use the same data 
to test the hypothesis suggested by those data.

Generally, to be published in an academic journal, a study needs to reject the null hypothesis at 
the 5% significance level. Of all studies published in journals, what proportion of them are 
likely to be Type I errors, i.e. false positives?

Exercise 5.14

Studies published in journals will usually have an effect size for the subject of study, e.g. smaller 
class sizes improve pupils’ maths skills by 10% points. Would you expect a published effect size 
to be an underestimate, an accurate (unbiased) estimate, or an overestimate of the true effect 
size? Note that only ‘significant’ results get published.

Exercise 5.15

Summary

●	 Hypothesis testing is the set of procedures for deciding whether a hypothesis is 
true or false. When conducting the test, we presume the hypothesis, termed 
the null hypothesis, is true until it is proved false on the basis of some sample 
evidence.
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●	 If the null is proved false, it is rejected in favour of the alternative hypothesis. 
The procedure is conceptually similar to a court case, where the defendant is 
presumed innocent until the evidence proves otherwise.

●	 Not all decisions turn out to be correct, and there are two types of error that can 
be made. A Type I error is to reject the null hypothesis when it is in fact true. A 
Type II error is not to reject the null when it is false.

●	 Choosing the appropriate decision rule (for rejecting the null hypothesis) is a 
question of trading off Type I and Type II errors. Because the alternative hypoth-
esis is imprecisely specified, the probability of a Type II error usually cannot be 
specified.

●	 The rejection region for a test is therefore chosen to give a 5% probability of 
making a Type I error (sometimes a 1% probability is chosen). The critical value 
of the test statistic (sometimes referred to as the critical value of the test) is the 
value which separates the acceptance and rejection regions.

●	 The decision is based upon the value of a test statistic, which is calculated from 
the sample evidence and from information in the null hypothesis.

ae.g. z =
x - m

s>1n
b

●	 The null hypothesis is rejected if the test statistic falls into the rejection region 
for the test (i.e. it exceeds the critical value).

●	 For a two-tail test there are two rejection regions, corresponding to very high 
and very low values of the test statistic.

●	 Instead of comparing the test statistic to the critical value, an equivalent proce-
dure is to compare the Prob-value of the test statistic with the significance 
level. The null is rejected if the Prob-value is less than the significance level.

●	 The power of a test is the probability of a test correctly rejecting the null 
hypothesis. Some tests have low power (e.g. when the sample size is small) and 
therefore are not very useful.

alternative hypothesis
composite hypothesis
critical value
decision rule
dependent samples
effect size
independent samples
matched samples
non-rejection region
null or maintained hypothesis

one- and two-tail tests
paired samples
power
prior information
Prob-value
rejection region
significance level
test statistic
Type I and
Type II errors
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Formula Description Notes

z =
x - m2s2>n

Test statistic for H0: mean = m Large samples. For small samples,  distributed 
as t with n = n - 1 degrees of freedom

z =
p - pBp(1 - p)

n

Test statistic for H0: true proportion = p Large samples

z =
(x1 - x2) - (m1 - m2)B s2

1

n1
+

s2
2

n2

Test statistic for H0: m1 - m2 = 0 Large samples

t =
(x1 - x2) - (m1 - m2)B S2

n1
+

S2

n2

Test statistic for H0: m1 - m2 = 0 Small samples. 

S2 =
(n1 - 1)s2

1 + (n2 - 1)s2
2

n1 + n2 - 2

Degrees of freedom n = n1 + n2 - 2

z =
( p1 - p2) - (p1 - p2)Bp1(1 - p1)

n1
+

p2(1 - p2)

n2

Test statistic for H0: p1 - p2 = 0
Large samples p =

n1p1 + n2p2

n1 + n2

Formulae used in this chapter

Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 5.1 Answer true or false, with reasons if necessary.

(a) There is no way of reducing the probability of a Type I error without simultaneously increasing 
the probability of a Type II error.

(b) The probability of a Type I error is associated with an area under the distribution of x assuming 
the null hypothesis to be true.

(c) It is always desirable to minimise the probability of a Type I error.

(d) A larger sample, ceteris paribus, will increase the power of a test.

(e) The significance level is the probability of a Type II error.

(f) The confidence level is the probability of a Type II error.

 5.2 Consider the investor in the text, seeking out companies with weekly turnover of at least £5000. He 
or she applies a one-tail hypothesis test to each firm, using the 5% significance level. State whether 
each of the following statements is true or false (or not known) and explain why.

(a) 5% of his or her investments are in companies with less than £5000 turnover.

(b) 5% of the companies he fails to invest in have turnover greater than £5000 per week.

(c) He invests in 95% of all companies with turnover of £5000 or over.

Problems
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 5.3 A coin which is either fair or has two heads is to be tossed twice. You decide on the following deci-
sion rule: if two heads occur you will conclude it is a two-headed coin, otherwise you will presume it 
is fair. Write down the null and alternative hypotheses and calculate the probabilities of Type I and 
Type II errors.

 5.4 In comparing two medical treatments for a disease, the null hypothesis is that the two treatments 
are equally effective. Why does making a Type I error not matter? What significance level for the test 
should be set as a result?

 5.5 A firm receives components from a supplier, which it uses in its own production. The components 
are delivered in batches of 2000. The supplier claims that there are only 1% defective components 
on average from its production. However, production occasionally gets out of control and a batch is 
produced with 10% defective components. The firm wishes to intercept these low-quality batches, 
so a sample of size 50 is taken from each batch and tested. If two or more defectives are found in 
the sample, then the batch is rejected.

(a) Describe the two types of error the firm might make in assessing batches of components.

(b) Calculate the probability of each type of error given the data above.

(c) If, instead, samples of size 30 were taken and the batch rejected if one or more rejects were 
found, how would the error probabilities be altered?

(d) The firm can alter the two error probabilities by choice of sample size and rejection criteria. 
How should it set the relative sizes of the error probabilities

(i) if the product might affect consumer safety?

(ii) if there are many competitive suppliers of components?

(iii) if the costs of replacement under guarantee are high?

 5.6 Computer diskettes (the precursor to USB drives) which do not meet the quality required for high-
density diskettes are sold as low-density diskettes (storing less data) for 80 pence each. High-density 
diskettes are sold for £1.20 each. A firm samples 30 diskettes from each batch of 1000 and if any fail 
the quality test, the whole batch is sold as double-density diskettes. What are the types of error pos-
sible and what is the cost to the firm of a Type I error?

 5.7 Testing the null hypothesis that m = 10 against m 7 10, a researcher obtains a sample mean of 12 
with standard deviation 6 from a sample of 30 observations. Calculate the z score and the associ-
ated Prob-value for this test.

 5.8 Given the sample data x = 45, s = 16, n = 50, at what level of confidence can you reject 
H0: m = 40 against a two-sided alternative?

 5.9 What is the power of the test carried out in Problem 5.3?

 5.10 Given the two hypotheses

H0: m = 400
H1: m = 415

and s2 = 1000 (for both hypotheses):

(a) Draw the distribution of x under both hypotheses.

(b) If the decision rule is chosen to be: reject H0 if x Ú 410 from a sample of size 40, find the prob-
ability of a Type II error and the power of the test.

(c) What happens to these answers as the sample size is increased? Draw a diagram to illustrate.
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 5.11 Given the following sample data:

x = 15  s2 = 270  n = 30

test the null hypothesis that the true mean is equal to 12, against a two-sided alternative hypothesis. 
Draw the distribution of x under the null hypothesis and indicate the rejection regions for this test.

 5.12 From experience it is known that a certain brand of tyre lasts, on average, 15 000 miles with stan-
dard deviation 1250. A new compound is tried and a sample of 120 tyres yields an average life of 
15 150 miles, with the same standard deviation. Are the new tyres an improvement? Use the 5% 
significance level.

 5.13 Test H0: p = 0.5 against H0: p ≠ 0.5 using p = 0.45 from a sample of size n =  35.

 5.14 Test the hypothesis that 10% of your class or lecture group are left-handed.

 5.15 Given the following data from two independent samples:

 x1 = 115   x2 = 105
 s1 = 21   s2 = 23
 n1 = 49   n2 = 63

test the hypothesis of no difference between the population means against the alternative that the 
mean of population 1 is greater than the mean of population 2.

 5.16 A transport company wants to compare the fuel efficiencies of the two types of lorry it operates. It 
obtains data from samples of the two types of lorry, with the following results:

Type Average mpg Std devn Sample size

A 31.0 7.6 33
B 32.2 5.8 40

Test the hypothesis that there is no difference in fuel efficiency, using the 99% confidence level.

 5.17 (a)  A random sample of 180 men who took the driving test found that 103 passed. A similar sample 
of 225 women found that 105 passed. Test whether pass rates are the same for men and 
women.

(b) If you test whether the group of people who passed the driving test contained the same propor-
tion of men as the group of people who failed, what result would you expect to find? Carry out 
the test to check.

(c) Is your finding in part (b) inevitable or one that just arises with these data? Try to support your 
response with a proof.

 5.18 (a)  A pharmaceutical company testing a new type of pain reliever administered the drug to 30 vol-
unteers experiencing pain. Sixteen of them said that it eased their pain. Does this evidence 
support the claim that the drug is effective in combating pain?

(b) A second group of 40 volunteers were given a placebo instead of the drug. Thirteen of them 
reported a reduction in pain. Does this new evidence cast doubt upon your previous conclusion?

 5.19 (a)  A random sample of 20 observations yielded a mean of 40 and standard deviation 10. Test the 
hypothesis that m = 45 against the alternative that it is not. Use the 5% significance level.

(b) What assumption are you implicitly making in carrying out this test?
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 5.20 A photo processing company sets a quality standard of no more than 10 complaints per week on 
average. A random sample of 8 weeks showed an average of 13.6 complaints, with standard devia-
tion 5.3. Is the firm achieving its quality objective?

 5.21 Two samples are drawn. The first has a mean of 150, variance 50 and sample size 12. The second has 
mean 130, variance 30 and sample size 15. Test the hypothesis that they are drawn from popula-
tions with the same mean.

 5.22 (a)  A consumer organisation is testing two different brands of battery. A sample of 15 of brand A 
shows an average useful life of 410 hours with a standard deviation of 20 hours. For brand B, a 
sample of 20 gave an average useful life of 391 hours with standard deviation 26 hours. Test 
whether there is any significant difference in battery life.

(b) What assumptions are being made about the populations in carrying out this test?

 5.23 The output of a group of 11 workers before and after an improvement in the lighting in their factory 
is as follows:

Before 52 60 58 58 53 51 52 59 60 53 55

After 56 62 63 50 55 56 55 59 61 58 56

Test whether there is a significant improvement in performance

(a) assuming these are independent samples,

(b) assuming they are dependent.

 5.24 Another group of workers were tested at the same times as those in Problem 5.23, although their 
department also introduced rest breaks into the working day.

Before 51 59 51 53 58 58 52 55 61 54 55

After 54 63 55 57 63 63 58 60 66 57 59

Does the introduction of rest days alone appear to improve performance?

 5.25 Discuss in general terms how you might ‘test’ the following:

(a) astrology

(b) extra-sensory perception

(c) the proposition that company takeovers increase profits.

 5.26 (Project) Can your class tell the difference between tap water and bottled water? Set up an experi-
ment as follows: fill r glasses with tap water and n - r glasses with bottled water. The subject has to 
guess which is which. If he or she gets more than p correct, you conclude he or she can tell the dif-
ference. Write up a report of the experiment including:

(a) a description of the experimental procedure

(b) your choice of n, r and p, with reasons

(c) the power of your test

(d) your conclusions.
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 5.27 (Computer project) Use the =  RAND( ) function in your spreadsheet to create 100 samples of size 
25 (which are effectively all from the same population). Compute the mean and standard deviation 
of each sample. Calculate the z score for each sample, using a hypothesised mean of 0.5 (since the 
=  RAND( ) function chooses a random number in the range 0–1).

(a) How many of the z scores would you expect to exceed 1.96 in absolute value? Explain why.

(b) How many do exceed this? Is this in line with your prediction?

(c) Graph the sample means and comment upon the shape of the distribution. Shade in the area of 
the graph beyond z =  {1.96.

 5.28 (Project) This is similar to Problem 5.26 but concerns digital music files. There is debate about 
whether listeners can tell the difference between high-quality WAV files and compressed MP3 files. 
Obtain the same song in both formats (most music players will convert a WAV file to MP3) and see 
if a listener can discern which is which. Some of your class colleagues might be better at this than 
others. You need to consider the same issues as in Problem 5.26.

The ABX comparison procedure would be interesting to follow (see http://wiki.hydrogenaudio.
org/index.php?title=ABX) and you can download the WinABX program which automates much of 
the procedure (google ‘WinABX’ to find it).

http://wiki.hydrogenaudio.org/index.php?title=ABX
http://wiki.hydrogenaudio.org/index.php?title=ABX
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Answers to exercises

Exercise 5.1

(a) H0: crime is the same as last year, H1: crime has increased.

(b) Type I error – concluding crime has risen, when in fact it has not. Type II – conclud-
ing it has not risen, when, in fact, it has. The cost of the former might be employing 
more police officers which are not in fact warranted; of the latter, not employing 
more police to counter the rising crime level. (The Economist (19 July 2003) reported 
that 33% of respondents to a survey in the United Kingdom felt that crime had risen 
in the previous two years, only 4% thought that it had fallen. In fact, crime had 
fallen slightly, by about 2%. A lot of people were making a Type I error, therefore.)

Exercise 5.2

(a) z = (108 - 100)>Î36 = 1.33. The area in the tail beyond 1.33 is 9.18%, which is 
the probability of a Type I error.

(b) z = 1.64 cuts off 5% in the upper tail of the distribution, hence we need the deci-
sion rule to be at x + 1.64 * s>În = 100 + 1.64 * Î36 = 109.84.

(c) Under H1: m = 112, we can write x ∼ N(112, 900>25). (We assume the same vari-
ance under both H0 and H1 in this case.) Hence z = (108 - 112)>Î36 = -0.67. 
This gives an area in the tail of 25.14%, which is the Type II error probability. 
 Usually, however, we do not have a precise statement of the value of m under H1 so 
cannot do this kind of calculation.

Exercise 5.3

a = 0.05 (significance level chosen), hence the critical value is z* = 1.96 (two-tail 
test). The test statistic is z = (530 - 500)>(90>Î30) = 1.83 6 1.96 so H0 is not rejected 
at the 5% significance level.

Exercise 5.4

All of the statements are false. Any statement ‘proving’ or ‘disproving’ a hypothesis is 
wrong, as is one about the probability of a hypothesis being true. That deals with (a) to 
(d). (e) looks more plausible, but it asks the probability the hypothesis is true after you 
have rejected it. Again, this asks for a probability about a hypothesis. (f) is called the 
replication fallacy. It assumes the null is true but we do not know this from a sample.

It might help to recall that the P-value is the probability of obtaining such sample 
data, assuming the null is true. We may write this as Pr(data | H0), like a conditional 
probability. The questions ask, in different ways, for Pr(H0 | data) which is something 
quite different.

Exercise 5.5

One wants to avoid making a Type I error if possible, i.e. rejecting H0 when true. Hence, 
set a low significance level (1%) so that H0 is rejected only by very strong evidence.

Exercise 5.6

(a) (i) Reject. The Prob-value should be halved, to 0.0385, which is less than 5%. Alter-
natively, think of comparing 1.77 7 1.64, the one-tail critical value. (ii) Do not 
reject, the Prob-value is greater than 5%; equivalently 1.77 6 1.96.
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(b) In this case, the null is not rejected in both cases. In the one-tailed case, 
0.0385 7 1%, so the null is not rejected.

Exercise 5.7

(a) We need to solve z* = 1.64 =
x - 160

50>1400
 which yields x = 164.1 as the cutoff point.

(b) (i) The power of the test is obtained from the new z score: z =
164.1 - 163

50>1400
= 0.44, 

 which cuts off 33% in the upper tail, and is the power of the test. (ii) The z score is 

 now z =
164.1 - 166

50>1400
= -0.76, which cuts off 78% in the upper tail (note we have 

 a negative z score yet want the right-hand tail, so need the complement of the 
value given in Table A2).

Exercise 5.8

z =
0.65 - 0.5B0.5 * 0.5

80

= 2.68

hence the null is decisively rejected. z* = 1.64 (one-tailed test).

Exercise 5.9

We have the data: x1 = 3.6, s1 = 1.2, n1 = 50; x2 = 3.9, s2 = 2.1, n2 = 90. The null 
hypothesis is H0: m1 = m2 versus H1: m1 ≠ m2. The test statistic is

z =
(x1 - x2) - (m1 - m2)B s2

1

n1
+

s2
2

n2

=
(3.6 - 3.9) - 0B1.22

50
+

2.12

90

= -1.08

The test statistic (absolute value) does not exceed the critical value of 1.96 so the null is 
not rejected at the 5% significance level.

Exercise 5.10

The evidence is p1 = 23>75, n1 = 75, p2 = 34>95, n2 = 95. The hypothesis to be tested 
is H0: p1 - p2 = 0 versus H1: p1 - p2 6 0. Before calculating the test statistic, we must 
calculate the pooled variance as

pn =
n1p1 + n2p2

n1 + n2
=

75 * 0.3067 + 95 * 0.3579
75 + 95

= 0.3353

The test statistic is then

z =
0.3067 - 0.3579 - 0B0.3353 * (1 - 0.3353)

75
+

0.3353 * (1 - 0.3353)
95

= -0.70

This is less in absolute magnitude than 1.64, the critical value of a one tailed test, so the 
null is not rejected. The second gambler is just luckier than the first, we conclude. We 
have to be careful about our interpretation, however: one of the gamblers might prefer 
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longer-odds bets, so wins less often but gets more money each time. Hence, this may 
not be a fair comparison.

Exercise 5.11

We shall treat this as a two-tailed test, although a one-tailed test might be justified if 
there were other evidence that spending had fallen. The hypothesis is H0: m = 540 ver-
sus H1: m ≠ 540. Given the sample evidence, the test statistic is

t =
x - m2s2>n

=
490 - 54021502>24

= -1.63

The critical value of the t distribution for 23 degrees of freedom is 2.069, so the null is 
not rejected.

Exercise 5.12

The hypothesis to test is H0: mF - mN = 0 versus H1: mF - mN 7 0 (F indexes finalists, N 
the new students). The pooled variance is calculated as

S2 =
(n1 - 1)s2

1 + (n2 - 1)s2
2

n1 + n2 - 2
=

14 * 32 + 19 * 52

33
= 18.21

The test statistic is

t =
(x1 - x2) - (m1 - m2)B S2

n1
+

S2

n2

=
(15 - 9) - 0B18.21

15
+

18.21
20

= 4.12

The critical value of the t distribution with 15 + 20 - 2 = 33 degrees of freedom is 
approximately 1.69 (5% significance level, for a one-tailed test). Thus the null is deci-
sively rejected and we conclude finalists do spend more time in the library.

Exercise 5.13

For the case of independent samples, we obtain x1 = 13, x2 = 14.5, s1 = 4.29, s2 = 3.12, 
with n = 12 in both cases. The test statistic is therefore

t =
(x1 - x2) - (m1 - m2)B S2

n1
+

S2

n2

=
13 - 14.5 - 0B14.05

12
+

14.05
12

= -0.98

with pooled variance

S2 =
(n1 - 1)s2

1 + (n2 - 1)s2
2

n1 + n2 - 2
=

11 * 4.292 + 11 * 3.122

22
= 14.05

The null of no effect is therefore accepted. By the method of paired samples, we have a 
set of improvements as follows:

Student 1 2 3 4 5 6 7 8 9 10 11 12

Improvement 1 2 4 3 -1 -1 3 1 3 0 3 0

The mean of these is 1.5 and the variance is 3. The t statistic is therefore

t =
1.5 - 013>12

= 3



Answers to exercises

229

This now conclusively rejects the null hypothesis (critical value 1.8), in stark contrast 
to the former method. The difference arises because 10 out of 12 students have 
improved or done as well as before, only two have fallen back (slightly). The gain in 
marks is modest but applies consistently to nearly all candidates.

Another way to look at this question would be to ask, what is the probability of 8 
(or more) improvements out of 12 students? This is the basis of Wilcoxon’s Sign Test. 
For this we discard the two observations with zero improvement, leaving 10. If there 
were truly no improvement, we would expect 5 improvements out of 10, whereas we 
actually have 8. The probability of 8 or more improvements is given by the Binomial 
distribution with n = 10 and P = 0.5. Hence, Pr(8) + Pr(9) + Pr(10) = 0.510 *  
10C8 + 0.510 * 10C9 + 0.510 * 10C10 = 0.055 or 5.5%. This does not quite meet 
the criterion of 5% significance so we cannot reject the null hypothesis of no improve-
ment. This test fails to find improvement because it discards information about the 
extent of improvement and hence is not a very powerful test.

Exercise 5.14

You might be tempted to answer 5% to this. However, the question asks for Pr(H0 true | 
H0 rejected), or Pr(H0 | R) for short. H0 indicates there is truly no effect, R indicates that 
H0 is rejected and hence the study is published (with the wrong conclusion). Using 
Bayes’ theorem:

Pr(H0 �R) =
Pr(R �H0) * Pr(H0)

Pr(R �H0) * Pr(H0) + Pr(R �H1) * Pr(H1)

We know that Pr(R �H0) = 0.05 but we have to assume some values for Pr(H0) and Pr(R | 
H1). If we let Pr(H0) = 0.2 (20% of hypotheses tested are in fact ‘null’) and 
Pr(R �H1) = 0.6 (this is the power of the test), then we obtain Pr(H0 �R ) = 0.020, only 
2% of published studies are Type I errors. However, if we set Pr(H0) = 0.8 (researchers 
test lots of crazy ideas) and have a low-powered test, Pr(R �H1) = 0.4, then we find that 
one-third of all published studies are false positives.

Exercise 5.15

One would expect published studies to overestimate the effect size. This is because any 
study’s estimate of the effect is subject to random error. If the error is positive, the effect 
is still significant and so over-estimates will get published. If the error is negative, there 
will be an underestimate, and, if this means that the 5% significance threshold is not 
met, then the result is not published. Hence some under-estimates are not published, 
and published estimates will on average be an over-estimate of the true effect size.
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By the end of this chapter you should be able to:

●	 understand the uses of two new probability distributions: x2 and F

●	 construct confidence interval estimates for a variance

●	 perform hypothesis tests concerning variances

●	 analyse and draw inferences from data contained in contingency tables

●	 construct a simple analysis of variance table and interpret the results.
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The x2 distribution

Introduction

The final two distributions to be studied are the x2 (pronounced ‘kye-squared’) and 
F distributions. Both of these distributions have a variety of uses, the most com-
mon of which are illustrated in this chapter. These distributions allow us to extend 
some of the estimation and testing procedures covered in Chapters 4 and 5. The x2 
distribution allows us to establish confidence interval estimates for a variance, just 
as the Normal and t distributions were used in the case of a mean. Further, just as 
the Binomial distribution was used to examine situations where the result of an 
experiment could be either ‘success’ or ‘failure’, the x2 distribution also allows us to 
analyse situations where there are more than two categories of outcome. The F dis-
tribution enables us to conduct hypothesis tests regarding the equality of two vari-
ances and also to make comparisons between the means of multiple samples, not 
just two. The F distribution also arises in Chapter 7 and 8 on regression analysis.

The x2 distribution

The x2 distribution has a number of uses. In this chapter we make use of it in 
three ways:

●	 To calculate a confidence interval estimate of the population variance.
●	 To compare actual observations on a variable with the (theoretically) expected 

values.
●	 To test for association between two variables in a contingency table.

The use of the distribution is in many ways similar to the Normal and t distri-
butions already encountered. Once again, it is actually a family of distributions 
depending upon a single parameter, the degrees of freedom, in a similar fashion 
to the t distribution. The number of degrees of freedom can have slightly differ-
ent interpretations, depending upon the particular problem, but is often related 
to sample size in some way. Some typical x2 distributions are drawn in Figure 6.1 
for different values of the parameter. Note the distribution has the following 
characteristics:

●	 It is always non-negative.
●	 It is skewed to the right.
●	 It becomes more symmetric as the number of degrees of freedom increases.

n = 3

n = 6

n = 9

Figure 6.1
The x2 distribution with 
different degrees of 
freedom
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Using the x2 distribution to construct confidence intervals is done in the usual 
way, by using the critical values of the distribution (given in Table A4 (see 
page 452)) which cut off an area a/2 in each tail of the distribution. For hypothesis 
tests, a rejection region is defined which cuts off an area a in either one or both 
tails of the distribution, whichever is appropriate. These principles should be 
familiar from previous chapters, so they are not repeated in detail. The following 
examples show how this works for the x2 distribution.

 Estimating a variance

The sample variance is also a random variable like the mean; it takes on different 
values from sample to sample. We can therefore ask the usual question: given a 
sample variance, what can we infer about the true value?

To give an example, we use the data on spending by Labour boroughs in the exam-
ple in Chapter 4 (see page 164). In that sample of 20 boroughs, the average spending 
on administration was £175 (per taxpayer), with standard deviation 25 (and hence 
variance of 625). What can we say about the true variance and standard deviation?

We work in terms of variances (this is more convenient when using the x2 
 distribution), taking the square root when we need to refer to the standard devia-
tion. First of all, the sample variance is an unbiased estimator of the population 
variance1, E(s2) = s2, so we may use this as our point estimate, which is therefore 
625. To construct the confidence interval around this we need to know about the 
distribution of s2. Unfortunately, this does not have a convenient probability dis-
tribution, so we transform it to

(n - 1)s2

s2  (6.1)

which does have a x2 distribution, with n = n - 1 degrees of freedom. Again, we 
state this without a formal mathematical proof.

To construct the 95% confidence interval around the point estimate, we pro-
ceed in a similar fashion to the Normal or t distribution. First, we find the critical 
values of the x2 distribution which cut off 2.5% in each tail. These are no longer 
symmetric around zero as was the case with the standard Normal and t distribu-
tions. Table 6.1 shows an excerpt from the x2 table which is given in full in 
Table A4 in the Appendix at the end of the text (see page 452).

Like the t distribution, the first column gives the degrees of freedom, so we 
require the row corresponding to n = n - 1 = 19.

●	 For the left-hand critical value (cutting off 2.5% in the left-hand tail), we look at 
the column headed ‘0.975’, representing 97.5% in the right-hand tail. This crit-
ical value is 8.91.

●	 For the right-hand critical value, we look up the column headed ‘0.025’ (2.5% in 
the right-hand tail), giving 32.85.

The 95% confidence interval for (n - 1)s2>s2, therefore, lies between these two 
values, i.e.

c8.91 …
(n - 1)s2

s2 … 32.85 d  (6.2)

1This was stated, without proof, in Chapter 1, see page 38.



233

The x2 distribution

We actually want an interval estimate for s2 so we need to rearrange equation (6.2) 
so that s2 lies between the two inequality signs. Rearranging yields

c (n - 1)s2

32.85
… s2 …

(n - 1)s2

8.91
d  (6.3)

and evaluating this expression leads to the 95% confidence interval for s2 
which is

c 19 * 625
32.85

… s2 …
19 * 625

8.91
d = [361.5, 1332.8]

Note that the point estimate, 625, is no longer at the centre of the interval but is 
closer to the lower limit. This is a consequence of the skewness of the x2 distribution.

Table 6.1 Excerpt from Table A4 – the x2 distribution

N 0.99 0.975 . . . 0.10 0.05 0.025 0.01

1 0.0002 0.0010 . . . 2.7055 3.8415 5.0239 6.6349
2 0.0201 0.0506 . . . 4.6052 5.9915 7.3778 9.2104
f f f . . . f f f f

18 7.0149 8.2307 . . . 25.9894 28.8693 31.5264 34.8052
19 7.6327 8.9065 . . . 27.2036 30.1435 32.8523 36.1908
20 8.2604 9.5908 . . . 28.4120 31.4104 34.1696 37.5663

Note: The two critical values are found at the intersections of the shaded row and columns.  Alternatively, 
you can use Excel. Since Excel 2010 the formula = CHISQ.INV.RT (0.975, 19) gives the left-hand critical 
value, 8.91; similarly, = CHISQ.INV.RT (0.025, 19) gives the answer 32.85, the  right-hand critical value. In 
older versions of Excel, use = CHIINV (0.975, 19), etc.

Worked example 6.1 

Given a sample of size n = 51 yielding a sample variance s2 = 81, we may cal-
culate the 95% confidence interval for the population variance as follows.

Since we are using the 95% confidence level, the critical values cutting off 
the extreme 5% of the distribution are 32.36 and 71.42, from Table A4. We can 
therefore use equation (6.3) to find the interval:

c (n - 1) * s2

71.42
… s2 …

(n - 1) * s2

32.36
d

Substituting in the values gives

c (51 - 1) * 81
71.42

… s2 …
(51 - 1) * 81

32.36
d

yielding a confidence interval of [56.71, 125.15].
Note that if we wished to find a 95% confidence interval for the standard 

deviation we can simply take the square root of the result to obtain [7.53, 11.19].
The 99% CI for the variance can be obtained by altering the critical values. The 

values cutting off 0.5% in each tail of the distribution are (again from Table A4) 
27.99 and 79.49. Using these critical values results in an interval [50.95, 144.69]. 
Note that, as expected, the 99% CI is wider than the 95% interval.
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 Comparing actual and expected values of a variable

A second use of the x2 distribution provides a hypothesis test, allowing us to com-
pare a set of observed values to expected values, the latter calculated on the basis 
of some null hypothesis to be tested. If the observed and expected values differ 
significantly, as judged by the x2 test (the test statistic falls into the rejection 
region of the x2 distribution), then the null hypothesis is rejected. Again, this is 
similar in principle to hypothesis testing using the Normal or t distributions, but 
allows a slightly different type of problem to be handled.

This can be illustrated with a very simple example. Suppose that throwing a die 
72 times yields the following data:

Score on die 1 2 3 4 5 6

Frequency 6 15 15 7 15 14

Are these data consistent with the die being unbiased? Previously we might 
have investigated this problem by testing whether the proportion of (say) sixes is 
more or less than expected, using the Binomial distribution. One could still do 
this, but this does not make full use of the information in the sample, it only com-
pares sixes against all other values together. The x2 test allows one to see if there is 
any bias in the die, for or against a particular number. It therefore answers a 
slightly different and more general question than if we made use of the Binomial 
distribution.
A crude examination of the data suggests a slight bias against 1 and 4, but is this 
truly bias or just a random fluctuation quite common in this type of experiment? 
First the null and alternative hypotheses are set up:

H0: the die is unbiased
H1: the die is biased

Note that the null hypothesis should be constructed in such a way as to permit 
the calculation of the expected outcomes of the experiment. Thus the null and 
alternative hypotheses could not be reversed in this case, since ‘the die is biased’ is 
a vague statement (exactly how biased, for example?) and would not permit the 
calculation of the expected outcomes of the experiment.

On the basis of the null hypothesis, the expected values are based on the 
 uniform distribution, i.e. each number should come up an equal number of times. 
The expected values are therefore 12 (=  72>6) for each number on the die.

This gives the data shown in Table 6.2 with observed and expected frequencies 
in columns 2 and 3, respectively (ignore columns 4–6 for the moment). These are 
now compared using the x2 test statistic, constructed using the formula

x2 = a (O - E)2

E
 (6.4)

(a) Given a sample variance of 65 from a sample of size n = 30, calculate the 95% confidence 
interval for the variance of the population from which the sample was drawn.

(b) Calculate the 95% CI for the standard deviation.

(c) Calculate the 99% interval estimate of the variance.

?

Exercise 6.1
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which has a x2 distribution with n = k - 1 degrees of freedom (k is the number 
of different outcomes, here 6)2. O represents the observed frequencies and E the 
expected. If the value of this test statistic falls into the rejection region, i.e. the 
tail of the x2 distribution, then we conclude the die is biased, rejecting the null. 
The calculation of the test statistic is shown in columns 4–6 of Table 6.2, and is 
straightforward, yielding a value of the test statistic of x2 = 7.66, to be compared 
to the critical value of the distribution, for 6 - 1 = 5 degrees of freedom.

Table 6.2 Calculation of the x2 statistic for the die problem

Score Observed frequency (O) Expected frequency (E) O - E (O - E)2 (O - E )2

E

1  6 12 -6 36 3.00
2 15 12 3 9 0.75
3 15 12 3 9 0.75
4  7 12 -5 25 2.08
5 15 12 3 9 0.75
6 14 12 2 4 0.33

Totals 72 72 0 7.66

2Note that, on this occasion, the degrees of freedom are not based on the sample size.

Trap!

In my experience many students misinterpret formula (6.4) and use

x2 =
g (O - E )2

gE

instead. This is not the same as the correct formula and gives a wrong answer. Check that 
you recognise the difference between the two and that you always use the correct version.

ST

ATISTICS
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PRACTI

C
E

· ·

Looking up the critical value for this test takes a little care as one needs first to 
consider if it is a one- or two-tailed test. Looking at the alternative hypothesis sug-
gests a two-sided test, since the error could be in either direction. However, this 
intuition is wrong, for the following reason. Looking closely at equation (6.4) 
reveals that large discrepancies between observed and expected values (however 
occurring) can only lead to large values of the test statistic. Conversely, small val-
ues of the test statistic must mean that differences between O and E are small, so 
the die must be unbiased. Thus the null is only rejected by large values of the x2 
statistic or, in other words, the rejection region is in the right-hand tail only of the 
x2 distribution. It is a one-tailed test. This is illustrated in Figure 6.2.

The critical value of the x2 distribution in this case (n = 5, 5% significance 
level) is 11.1, found from Table A4. Note that we require 5% of the distribution in 
the right-hand tail to establish the rejection region. Since the test statistic is less 
than the critical value (7.66 6 11.1) the null hypothesis is not rejected. The dif-
ferences between scores are due to chance rather than to bias in the die. 
Alternatively, we could find the P-value associated with 7.66, which is 0.176 
(use =CHISQ.DIST.RT(7.66,5) in Excel to obtain this). Since this is greater than 
0.05, the null is not rejected.
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An important point to note is that the test should not be carried out on the 
proportion of occasions on which each number comes up (the expected values 
would all be 12>72 = 0.167, and the observed values 8/72, 13/72, etc.), since 
information about the ‘sample size’ (number of rolls of the die, 72) would be lost. 
As with all sampling experiments, the inferences that can be drawn depend upon 
the sample size, with larger sample sizes giving more reliable results, so care must 
be taken to retain information about sample size in the calculations. If the test 
had been incorrectly conducted in terms of proportions, all O and E values would 
have been divided by 72, and this would have reduced the test statistic by a factor 
of 72 (check the formula to confirm this), reducing it to 0.14, nowhere near sig-
nificance. It would be surprising if any data would yield significance given this 
degree of mistreatment. (See the “Oops!” box later in this chapter.)

A second, more realistic, example will now be examined to reinforce the mes-
sage about the use of the x2 distribution and to show how the expected values 
might be generated in different ways. This example looks at road accident figures 
to see if there is any variation through the year. One might reasonably expect 
more accidents in the winter months due to weather conditions, poorer light, etc. 
Quarterly data on the number of fatal accidents on British roads are used, and the 
null hypothesis is that the number does not vary seasonally.

 H0: there is no difference in fatal accidents between quarters
 H1: there is some difference in fatal accidents between quarters

Such a study might be carried out by government, for example, to try to find 
the best means of reducing road accidents.

Table 6.3 shows data on road fatalities in 2014 by quarter in Great Britain, adapted 
from data taken from the UK government’s transport data available at https://www.
gov.uk/government/statistical-data-sets/ras30-reported-casualties-in-road- 
accidents. There does appear some evidence of more accidents in the final two quar-
ters of the year, but is this convincing evidence or just random variation? Under the 
null hypothesis the total number of fatalities (1775) would be evenly split between 
the four quarters, yielding Table 6.4 and the x2 calculation that follows.

The calculated value of the test statistic is 22.42, given at the foot of the final 
column. The number of degrees of freedom is n = k - 1 = 3, so the critical value 

Figure 6.2
The rejection region for 
the x2 test

Table 6.3 Road casualties in Great Britain, 2014

Quarter I II III IV Total

Casualties 376 428 457 514 1775

https://www.gov.uk/government/statistical-data-sets/ras30-reported-casualties-in-road-accidents
https://www.gov.uk/government/statistical-data-sets/ras30-reported-casualties-in-road-accidents
https://www.gov.uk/government/statistical-data-sets/ras30-reported-casualties-in-road-accidents
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at the 5% significance level is 7.82. Since the test statistic exceeds this, the null 
hypothesis is rejected; there is a difference between seasons in the accident rate. 
Earlier editions of this text analysed data from earlier years and it is useful to com-
pare across the different years. As so often, a graph is a useful way to do this, illus-
trated in Figure 6.3.

A couple of points are worth making about this chart. First, the quarterly pat-
tern appears to be fairly consistent over time, casualties rising throughout the 
year. Second is the substantial progress made in reducing casualties since 2006, 
which is far bigger than seasonal differences.

The reason for the quarterly difference might be the increased hours of dark-
ness during winter months, leading to more accidents. This particular hypothesis 
can be tested using the same data, but combining quarters I and IV (to represent 
winter) and quarters II and III (summer). The null hypothesis is of no difference 
between summer and winter, and the calculation is set out in Table 6.5. The x2 test 
statistic is now extremely small, and falls below the new critical value (n = 1, 5% 
significance level) of 3.84, so the null hypothesis is not rejected. Thus, the varia-
tion between quarters does not appear to be a straightforward summer/winter 
effect (providing, of course, that combining quarters I and IV to represent winter 
and II and III to represent summer is a valid way of combining the quarters).

Another point which the example brings out is that the data can be examined 
in a number of ways using the x2 technique. Some of the classes were combined to 
test a slightly different hypothesis from the original one. This is a quite acceptable 
technique but should be used with caution. In any set of data (even totally  random 

Table 6.4 Calculation of the x2 statistic for road fatalities

Quarter Observed Expected O - E (O - E)2 (O - E )2

E

I 376 443.75 -67.75 4590.06 10.34
II 428 443.75 -15.75 248.06 0.56
III 457 443.75 13.25 175.56 0.40
IV 514 443.75 70.25 4935.06 11.12

Totals 1775 1775 22.42

Table 6.5 Seasonal variation in road casualties

Season Observed Expected O - E (O - E)2 (O - E )2

E

Summer 885 887.5 – 6.25 0.007
Winter 890 887.5 2.5 6.25 0.007

Totals 1775 1775 0 0.014

Figure 6.3
The seasonal pattern of 
road casualties
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data), there is bound to be some way of dividing it up such that there are signifi-
cant differences between the divisions. The point, however, is whether there is 
any meaning to the division. In the above example the amalgamation of the quar-
ters into summer and winter has some intuitive meaning, and we have good rea-
son to believe that there might be differences between them. Driving during the 
hours of darkness might be more dangerous and might have had some relevance 
to accident prevention policy (e.g. an advertising campaign to persuade people to 
check that their lights work correctly). The hypothesis is led by some prior theo-
rising and is worth testing.

Road accidents and darkness

The question of the effect of darkness on road accidents has been extensively studied, 
particularly in relation to putting the clocks forward and back in spring and autumn. A study 
by H. Green in 1980 reported the following numbers of accidents (involving death or seri-
ous injury) on the five weekday evenings before and after the clocks changed:

Spring Autumn

Year Before After Before After

1975 19 11 20 31
1976 14  9 23 36
1977 22  8 12 29

It is noticeable that accidents fell in spring after the hour change (when it becomes lighter) 
but increased in autumn (when it becomes darker). This is a better test than simply combining 
quarterly figures as in our example, so casts doubt upon our result. Evidence from other coun-
tries also supports the view that the light level has an important influence on accidents.

Source: H. Green, Some effects on accidents of changes in light conditions at the beginning and end of British Sum-
mer Time, Supplementary Report 587, Transport and Road Research Laboratory, 1980. For an update on research, 
see J. Boughton et al., Influence of light level on the incidence of road casualties, J. Royal Statistical Society, Series A, 
162 (2), 1999.
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As discussed in Chapter 5, it is dangerous to look at the data and then formu-
late a hypothesis. From Table 6.4 there appears to be a large difference between 
the first and second halves of the year. If quarters I and II were combined, and III 
and IV combined, the x2 test statistic might be significant (in fact it is, x2 = 15.7), 
but does this signify anything? It is extremely easy to look for a big difference 
somewhere in any set of data and then pronounce it ‘significant’ according to some 
test. The probability of making a Type I error (rejecting a correct null) is much 
greater than 5% in such a case. The point, as usual, is that it is no good looking at 
data in a vacuum and simply hoping that they will ‘tell you something’.

A related warning is that we should be wary of testing one hypothesis and, on 
the basis of that result, formulating another hypothesis and testing it (as we have 
done by going on to compare summer and winter). Once again we are (indirectly) 
using the data to help formulate the hypothesis, and the true significance level of 
the test is likely to be different from 5% (even though we use the 5% critical value). 
We have therefore sinned, but is difficult to do research without sometimes resort-
ing to this kind of behaviour. There are some formal methods for dealing with 
such situations, but they are beyond the scope of this text.
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 Combining classes

There is one further point to make about carrying out a x2 test, and this involves 
circumstances where classes must be combined. The theoretical x2 distribution 
from which the critical value is obtained is a continuous distribution, yet the cal-
culation of the test statistic comes from data which are divided up into a discrete 
number of classes. The calculated test statistic is therefore only an approximation 
to a true x2 variable, but this approximation is good enough as long as each 
expected (not observed) value is greater than or equal to five. It does not matter 
what the observed values are. If this condition is not satisfied, the class (or classes) 
with expected values less than five must be combined with other classes until all 
expected values are at least five. An example of this will be given below.

In all cases of x2 testing the most important part of the analysis is the calcula-
tion of the expected values (the rest of the analysis is mechanical). Therefore, it is 
always worth devoting most of the time to this part of the problem. The expected 
values are, of course, calculated on the basis of the null hypothesis being true, so 
different null hypotheses will give different expected values. Consider again the 
case of road fatalities. Although the null hypothesis (‘no differences in accidents 
between quarters’) seems clear enough, it could mean different things. Here it was 
taken to mean an equal number in each quarter; but another interpretation is an 
equal number of casualties per car-kilometre travelled in each quarter; in other 
words, accidents might be higher in a given quarter simply because there are more 
journeys in that quarter (during holiday periods, for example). Table 6.6 gives an 
index of average daily traffic flows on British roads in each quarter of the year.

The pattern of accidents might follow the pattern of road usage – the first 
quarter of the year has the fewest casualties and also the least amount of travel. 
This may be tested by basing the expected values on the average traffic flow: the 
1775 total casualties are allocated to the four quarters proportionally to the traf-
fic. This is shown in Table 6.7, along with the calculation of the x2 statistic.

The x2 test statistic is 17.24, well in excess of the critical value, 7.82. This indi-
cates that there are significant differences between the quarters, even after 
accounting for different amounts of traffic. In fact, the statistic is little changed 
from before, suggesting either that traffic flows do not affect accident probabili-
ties much or that the flows do not actually vary very much. It is evident that the 

Table 6.6 Index of road traffic flows, 2014

Q1 Q2 Q3 Q4 Total

Index 73.3 78.7 81.5 77.4 310.9

Table 6.7 Calculation with alternative pattern of expected values

Quarter Observed Expected O - E (O - E)2 (O - E )2

E

I  376 418.5 -42.5 1805.12 4.31
II  428 449.3 -21.3 454.39 1.01
III  457 465.3 -8.3 68.93 0.15
IV  514 441.9 72.1 5199.20 11.77

Totals 1775 1775 17.24

Note: The first expected value is calculated as 1775 * 95 , 400 = 753.4, the second as 
1775 * 102 , 400 = 808.9 and so on.
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variation in traffic flows is much less than the variation in casualties. One possi-
ble explanation is that increased traffic means lower speed and hence a lower 
severity of accidents.

Worked example 6.2 

One hundred volunteers each toss a coin twice and note the numbers of heads. 
The results of the experiment are as follows:

Heads 0 1 2 Total

Frequency 15 55 30 100

Can we reject the hypothesis that a fair coin (or strictly, coins) was used for 
the experiment?

On the basis of the Binomial distribution the probability of no heads is 
0.25 (=  1>2 * 1>2), of one head is 0.5 and of two heads is again 0.25, as explained 
in Chapter 2. The expected frequencies are therefore 25, 50 and 25. The calcula-
tion of the test statistic is set out below:

Number of heads O E O - E (O - E )2 (O - E )2

E

0 15 25 -10 100 4
1 55 50 5 25 0.5
2 30 25 5 25 1

Totals 100 100 5.5

The test statistic of 5.5 compares to a critical value of 5.99 (n = 2) so we cannot 
reject the null hypothesis of a fair coin being used.

Note that we could also test this hypothesis via a z test, using the methods of 
Chapter 5. There have been a total of 200 tosses, of which 115 (=  55 + 2 * 30) 
were heads, i.e. a ratio of 0.575 against the expected 0.5. We can therefore test 
H0: p = 0.5 against H1: p ≠ 0.5 using the evidence n = 200 and p = 0.575. 
This yields the test statistic

z =
0.575 - 0.5B0.5 * 0.5

200

= 2.12

Interestingly, we now reject the null as the test statistic is greater than the criti-
cal value of 1.96. How can we reconcile these conflicting results?

Note that both results are close to the critical values, so narrowly reject or 
accept the null. The x2 and z distributions are both continuous ones and in this 
case are approximations to the underlying Binomial experiment. This is the cause 
of the problem. If we alter the data very slightly, to 16, 55, 29 observed frequencies 
of no heads, one head and two heads, then both methods accept the null hypoth-
esis. Similarly, for frequencies 14, 55, 31 both methods reject the null.

The lesson of this example is to be cautious when the test statistic is close to the 
critical value. We cannot say decisively that the null has been accepted or rejected.
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 Contingency tables

Data are often presented in the form of a two-way classification as shown in 
Table 6.8, known as a contingency table, and this is another situation where the x2 
distribution is useful. It provides a test of whether or not there is an association 
between the two variables represented in the table.

The table shows the voting intentions of a sample of 200 voters, cross-classified 
by social class. The interesting question that arises from these data is whether 
there is any association between people’s voting behaviour and their social class. 
Are manual workers (social class C in the table) more likely to vote for the Labour 
Party than for the Conservative Party? The table would appear to indicate some 
support for this view, but is this truly the case for the whole population or is the 
evidence insufficient to draw this conclusion?

This sort of problem is amenable to analysis by a x2 test. The data presented in 
the table represent the observed values, so expected values need to be calculated 
and then compared to them using a x2 test statistic. The first task is to formulate a 
null hypothesis, on which to base the calculation of the expected values, and an 
alternative hypothesis. These are

H0: there is no association between social class and voting behaviour
H1: there is some association between social class and voting behaviour

As always, the null hypothesis has to be precise, so that expected values can be 
calculated. In this case it is the precise statement that there is no association 
between the two variables, they are independent.

The following data show the observed and expected frequencies of an experiment with four 
possible outcomes, A–D.

Outcome A B C D

Observed 40 60 75 90
Expected 35 55 75 100

Test the hypothesis that the results are in line with expectations using the 5% significance level.

?

Exercise 6.2

(a) Verify the claim in worked example 6.2, that both x2 and z statistic methods give the same 
qualitative (accept or reject) result when the observed frequencies are 16, 55, 29 and 
when they are 14, 55, 31.

(b) In each case, look up or calculate (using Excel) the Prob-values for the x2 and z test statis-
tics and compare.

?

Exercise 6.3

Table 6.8 Data on voting intentions by social class

Social class Labour Conservative Liberal Democrat Total

A 10 15 15 40
B 40 35 25 100
C 30 20 10 60

Totals 80 70 50 200
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Constructing the expected values

If H0 is true and there is no association, we would expect the proportions voting 
Labour, Conservative and Liberal Democrat to be the same in each social class. 
Further, the parties would be identical in the proportions of their support coming 
from social classes A, B and C. This means that, since the whole sample of 200 
splits 80:70:50 for the Labour, Conservative and Liberal Democrat parties (see the 
bottom row of the Table 6.8), each social class should split the same way. Thus of 
the 40 people of class A, 80/200 of them should vote Labour, 70/200 Conservative 
and 50/200 Liberal Democrat. This yields:

Split of social class A:

Labour 40 * 80>200 = 16
Conservative 40 * 70>200 = 14
Liberal Democrat 40 * 50>200 = 10

For class B:
Labour 100 * 80>200 = 40
Conservative 100 * 70>200 = 35
Liberal Democrat 100 * 50>200 = 25

And for C the 60 votes are split Labour 24, Conservative 21 and Liberal Democrat 15.
Both observed and expected values are presented in Table 6.9 (expected values 

are in brackets). Notice that both the observed and expected values sum to the 
appropriate row and column totals. It can be seen that, compared with the ‘no 
association’ position, Labour gets too few votes from Class A and the Liberal 
Democrats too many. However, Labour gets disproportionately many class C 
votes, the Liberal Democrats too few. The Conservatives’ observed and expected 
values are nearly identical, indicating that the propensities to vote Conservative 
are the same in all social classes.

A quick way to calculate the expected value in any cell is to multiply the appro-
priate row total by column total and divide through by the grand total (200). For 
example, to get the expected value for the class A/Labour cell:

expected value =
row total * column total

grand total
=

40 * 80
200

= 16

In carrying out the analysis care should again be taken to ensure that informa-
tion is retained about the sample size, i.e. the numbers in the table should be 
actual numbers and not percentages or proportions. This can be checked by 
ensuring that the grand total is always the same as the sample size.

As was the case before, the x2 test is only valid if the expected value in each cell 
is not less than five. In the event of one of the expected values being less than five, 
some of the rows or columns have to be combined. How to do this is a matter of 
choice and depends upon the aims of the research. Suppose for example that the 

Table 6.9 Observed and expected values (latter in brackets)

Social class Labour Conservative Liberal Democrat Total

A 10 (16) 15 (14) 15 (10) 40
B 40 (40) 35 (35) 25 (25) 100
C 30 (24) 20 (21) 10 (15) 60

Totals 80 70 50 200
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expected number of class C voting Liberal Democrat were less than five. There are 
four options open:

(1) Combine the Liberal Democrat column with the Labour column.
(2) Combine the Liberal Democrat column with the Conservative column.
(3) Combine the class C row with the class A row.
(4) Combine the class C row with the class B row.

Whether rows or columns are combined depends upon whether interest cen-
tres more upon differences between parties or differences between classes. If the 
main interest is the difference between class A and the others, option 4 should be 
chosen. If it is felt that the Liberal Democrat and Conservative parties are similar, 
option 2 would be preferred, and so on. If there are several expected values less 
than five, rows and columns must be combined until all are eliminated.

The x2 test on a contingency table is similar to the one carried out before, the 
formula being the same:

x2 = g  
(O - E)2

E
 (6.5)

with the number of degrees of freedom this time given by n = (r - 1) * (c - 1) 
where r is the number of rows in the table and c is the number of columns. In this 
case r = 3 and c = 3, so

n = (3 - 1) * (3 - 1) = 4

The reason why there are only four degrees of freedom is that once any four 
interior cells of the contingency table have been filled, the other five are con-
strained by the row and column totals. The number of ‘free’ cells can always be 
calculated as the number of rows less one, times the number of columns less one, 
as given above.

Calculation of the test statistic

The evaluation of the test statistic then proceeds as follows, cell by cell:

(10 - 16)2

16
+

(15 - 14)2

14
+

(15 - 10)2

10

+
(40 - 40)2

40
+

(35 - 35)2

35
+

(25 - 25)2

25

+
(30 - 24)2

24
+

(20 - 21)2

21
+

(10 - 15)2

15
=  2.25 + 0.07 + 2.50 + 0 + 0 + 0 + 1.5 + 0.05 + 1.67
=  8.04

This must be compared with the critical value from the x2 distribution with four 
degrees of freedom. At the 5% significance level this is 9.50 (from Table A4).

Since 8.04 6  9.50 the test statistic is smaller than the critical value, so the null 
hypothesis cannot be rejected. The evidence is not strong enough to support an 
association between social class and voting intention. We cannot reject the null 
of the lack of any association with 95% confidence. Note, however, that the test 
statistic is fairly close to the critical value, so there is some weak evidence of an 
association, but not enough to satisfy conventional statistical criteria.
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Oops!

A leading firm of chartered accountants produced a report for the UK government on edu-
cation funding. One question it asked of schools was: Is the school budget sufficient to 
provide help to pupils with special needs? This produced the following table:

Primary schools Secondary schools

Yes 34% 45%
No 63% 50%
No response 3% 5%
Totals 100% 100%
n = 137 159

x2 = 3.50 n.s.

Their analysis produces the conclusion that there is no significant difference between 
primary and secondary schools. But the x2 statistic is based on the percentage figures. 
Using frequencies (which can be calculated from the sample size figures) gives a correct x2 
figure of 5.05. Fortunately for the accountants, this is still not significant.

Source: Adapted for Local Management in School Report,1988 by Coopers and Lybrand for the UK government. 
 Contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www. 
nationalarchives.gov.uk/doc/open-government-licence/open-government
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Cohabitation

J. Ermisch and M. Francesconi examined the rise in cohabitation in the United Kingdom and 
asked whether it led on to marriage or not. One of their tables shows the relation between 
employment status and the outcome of living together. Their results, including the calcula-
tion of the x2 statistic for association between the variables, are shown in the figure.
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http://www.�nationalarchives.gov.uk/doc/open-government-licence/open-government
http://www.�nationalarchives.gov.uk/doc/open-government-licence/open-government
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The F distribution

The second distribution we encounter in this chapter is the F distribution. It has a 
variety of uses in statistics; in this section we look at two of these: testing for the 
equality of two variances and conducting an analysis of variance (ANOVA) test. 
Both of these are variants on the hypothesis test procedures which should by now 
be familiar. The F distribution will also be encountered in later chapters on regres-
sion analysis.

The F family of distributions resembles the x2 distribution in shape: it is always 
non-negative and is skewed to the right. It has two sets of degrees of freedom (these 
are its parameters, labelled n1 and n2) and these determine its precise shape. Typical 
F distributions are shown in Figure 6.4. As usual, for a hypothesis test we define an 
area in one or both tails of the distribution to be the rejection region. If a test statis-
tic falls into the rejection region, then the null hypothesis upon which the test 
statistic was based is rejected. Once again, examples will clarify the principles.

 Testing the equality of two variances

Just as one can conduct a hypothesis test on a mean, so it is possible to test the 
variance. It is unusual to want to conduct a test of a specific value of a variance, 
since we usually have little intuitive idea of what the variance should be in most 

There were 694 cohabiting women in the sample. Of the 531 who were employed, 105 
of them went on to marry their partner, 46 split up and 380 continued living together. 
Similar figures are shown for unemployed women and for students. The expected values 
for the contingency table then appear (based on the null hypothesis of no association), 
followed by the calculation of the x2 test statistic. You can see the formula for one of the 
elements of the calculation in the formula bar.

The test statistic is significant at the 5% level (critical value 9.49 for four degrees of free-
dom), so there is an association. The biggest contribution to the test statistic comes from 
the bottom right-hand cell, where the actual value is much higher than the expected. It 
appears that, unfortunately, those student romances often do not turn out to be permanent.

However, a reader of an earlier edition of this text pointed out that two of the expected 
values are less than five, so use of the x2 statistic is strictly inappropriate in this context.

Source: J. Ermisch and M. Francesconi, Cohabitation: not for long but here to stay, J. Royal Statistical Society, Series A, 
163 (2), 2000.

Suppose that the data on educational achievement and employment status in Chapter 1 were 
obtained from a sample of 999 people, as follows:

Higher education A-levels Other qualification No qualification Total

In work 257 145 269 52 723
Unemployed 10 11 31 10 62
Inactive 33 38 87 56 214

Total 300 194 387 118 999

(These values reflect the proportions in the population data.) Test whether there is an associa-
tion between education and employment status, using the 5% significance level for the test.

Exercise 6.4
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circumstances. A more likely circumstance is a test of the equality of two variances 
(across two samples). In Chapter 5 two car factories were tested for the equality of 
average daily output levels. One can also test whether the variance of output differs 
or not. A more consistent output (lower variance) from a factory might be benefi-
cial to the firm, e.g. dealers can be reassured that they are more likely to be able to 
obtain models when they require them. In the example in Chapter 5, one factory 
had a standard deviation of daily output of 25, the second of 20, both from sam-
ples of size 30 (i.e. 30 days’ output was sampled at each factory). We can now test 
whether the difference between these figures is significant or not.

Such a test is set up as follows. It is known as a variance ratio test for reasons 
which will become apparent.

The null and alternative hypotheses are

H0: s2
1 = s2

2

H1: s2
1 ≠ s2

2

or, equivalently

H0: s2
1>s2

2 = 1 (6.6)
H1: s2

1>s2
2 ≠ 1

It is appropriate to write the hypotheses in the form shown in (6.6) since the random 
variable and test statistic we shall use is in the form of the ratio of sample variances, 
s2

1>s2
2. This is a random variable which follows an F distribution with n1 = n1 - 1, 

n2 = n2 - 1 degrees of freedom. We require the assumption that the two samples 
are independent for the variance ratio to follow an F distribution. Thus we write:

s2
1

s2
2
∼ Fn1 - 1,n2 - 1 (6.7)

The F distribution thus has two parameters, the two sets of degrees of freedom, 
one (n1) associated with the numerator, the other (n2) associated with the denom-
inator of the formula. In each case, the degrees of freedom are given by the rel-
evant sample size minus one.

Note that s2
2>s2

1 is also an F distribution (i.e. it doesn’t matter which variance 
goes into the numerator) but with the degrees of freedom reversed, n1 = n2 -  1, 
n2 = n1 - 1.

The sample data are:

s1 = 25, s2 = 20
n1 = 30, n2 = 30

n1= 2

n1= 20

n1= 5

F

Figure 6.4
The F distribution, for 
 different n1(n2 = 25)
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The test statistic is simply the ratio of sample variances. In testing it is less confus-
ing if the larger of the two variances is made the numerator of the test statistic 
(you will see why soon). Therefore, we have the following test statistic:

F =
252

202 = 1.5625 (6.8)

This must be compared to the critical value of the F distribution with n1 = 29, 
n2 = 29 degrees of freedom.

The rejection regions for the test are the two tails of the distribution, cutting off 
2.5% in each tail. Since we have placed the larger variance in the denominator, 
only large values of F reject the null hypothesis so we need only consult the upper 
critical value of the F distribution, i.e. that value which cuts off the top 2.5% of 
the distribution. (This is the advantage of putting the larger variance in the 
numerator of the test statistic.)

Table 6.10 shows an excerpt from the F distribution. The degrees of freedom for 
the test are given along the top row (n1) and down the first column (n2). The num-
bers in the table give the critical values cutting off the top 2.5% of the distribution. 
The critical value in this case is 2.09, at the intersection of the row corresponding 
to n2 = 29 and the column corresponding to n1 = 30 (n1 = 29 is not given so 30 is 
used instead; this gives a very close approximation to the correct critical value). 
Since the test statistic 1.56 does not exceed the critical value of 2.09, the null 
hypothesis of equal variances cannot be rejected with 95% confidence.

Table 6.10 Excerpt from the F distribution: upper 2.5% points

n1 1 2 3 . . . 20 24 30 40
n2

 1 647.7931 799.4822 864.1509 . . . 993.0809 997.2719 1001.4046 1005.5955
 2 38.5062 39.0000 39.1656 . . . 39.4475 39.4566 39.4648 39.4730
 3 17.4434 16.0442 15.4391 . . . 14.1674 14.1242 14.0806 14.0365

 f f f f . . . f f f f

28 5.6096 4.2205 3.6264 . . . 2.2324 2.1735 2.1121 2.0477
29 5.5878 4.2006 3.6072 . . . 2.2131 2.1540 2.0923 2.0276
30 5.5675 4.1821 3.5893 . . . 2.1952 2.1359 2.0739 2.0089
40 5.4239 4.0510 3.4633 . . . 2.0677 2.0069 1.9429 1.8752

Note: The critical value lies at the intersection of the shaded row and column. Alternatively, use Excel or 
another computer package to give the answer. In Excel 2010 and later, the formula =  F.INV.RT(0.025, 29, 29) 
will give the answer 2.09, the upper 2.5% critical value of the F distribution with n1 = 29, n2 = 29 degrees 
of freedom.

Samples of 3-volt batteries from two manufacturers yielded the following outputs, measured 
in volts:

Brand A 3.1 3.2 2.9 3.3 2.8 3.1 3.2
Brand B 3.0 3.0 3.2 3.4 2.7 2.8

Test whether there is any difference in the variance of output voltage of batteries from the 
two companies. Why might the variance be an important consideration for the manufacturer 
or for customers?

?

Exercise 6.5
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Analysis of variance

In Chapter 5 we learned how to test the hypothesis that the means of two sam-
ples are the same, using a z or t test, depending upon the sample size. This type 
of hypothesis test can be generalised to more than two samples using a tech-
nique called analysis of variance (ANOVA), based on the F distribution. Although 
it is called analysis of variance, it actually tests differences in means. The reason 
for this will be explained below. Using this technique, we can test the hypothe-
sis that the means of all the samples are equal, versus the alternative hypothesis 
that at least one of them is different from the others. To illustrate the technique, 
we shall extend the example in Chapter 5 where different car factories’ outputs 
were compared.

The assumptions underlying the analysis of variance technique are essentially 
the same as those used in the t test when comparing two different means. We 
assume that the samples are randomly and independently drawn from Normally 
distributed populations which have equal variances.

Suppose there are three factories, whose outputs have been sampled, with the 
results shown in Table 6.11. We wish to answer the question whether this is evi-
dence of different outputs from the three factories, or simply random variation 
around a (common) average output level. The null and alternative hypotheses are 
therefore:

H0: m1 = m2 = m3
H1: at least one mean is different from the others

This is the simplest type of ANOVA, known as one-way analysis of variance. In this 
case there is only one factor which affects output – the factory. The factor which 
may affect output is also known as the independent variable. In more complex 
designs, there can be two or more factors which influence output. The output 
from the factories is the dependent or response variable in this case.

Figure 6.5 presents a chart of the output from the three factories, which 
shows the greatest apparent difference between factories 2 and 3. Their ranges 
scarcely overlap, which does suggest some genuine difference between them, 
but as yet we cannot be sure that this is not just due to sampling variation. 
Factory 1 appears to be mid-way between the other two and this must also be 
included in the analysis.

Table 6.11 Samples of output from three factories

Observation Factory 1 Factory 2 Factory 3

1 415 385 408
2 430 410 415
3 395 409 418
4 399 403 440
5 408 405 425
6 418 400
7 399
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To decide whether or not to reject H0, we compare the variance of output within 
factories to the variance of output between (the means of) the factories. Figure 6.6 
provides an illustration. Where the variance between factories is large relative to 
the variance within each factory (Figure 6.6(a)), one is likely to reject H0 and 
instead conclude there is a genuine difference. Alternatively, where the variance 
between factories is small relative to the within factory variance (Figure 6.6(b)), 
we are likely to accept H0. The statistical test allows us to decide when the differ-
ences are large enough to warrant a particular conclusion and not just due to ran-
dom variation.

Both between and within variance measures provide estimates of the overall true 
variance of output and, under the null hypothesis that factories make no differ-
ence, should provide similar estimates. The ratio of the variances should then be 
approximately unity. If the null is false however, the between-samples estimate 
will tend to be larger than the within-samples estimate and their ratio will exceed 
unity. This ratio has an F distribution and so if it is sufficiently large that it falls 
into the upper tail of the distribution, then H0 is rejected.

380 390 400 410

Output

420 430 440 450

Factory 1

Factory 2

Factory 3

Figure 6.5
Chart of factory output on 
sample days

Small differences between factors, large

differences within factors: accept H0 

Large differences between factors, small

differences within factors: reject H0 

395 400380 390 400 410 420 430 440 450 405 410 415 420 425 430 435

Figure 6.6
Illustration of when to reject H0
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To formally test the hypothesis, we break down the total variance of all the 
observations into

(1) the variance due to differences between factories, and
(2) the variance due to differences within factories (also known as the error 

 variance).

Initially we work with sums of squares rather than variances. Recall from Chapter 1 
that a sample variance is given by

s2 =
g(x - x)2

n - 1
 (6.9)

The numerator of the right-hand side of this expression, g(x - x)2, gives the sum 
of squares, i.e. the sum of squared deviations from the mean.

Accordingly, we work with three sums of squares:

●	 The total sum of squares measures (squared) deviations from the overall or grand 
average using all the 18 observations. It ignores the existence of the different 
factors (factories).

●	 The between sum of squares measures how the three individual factor means 
vary around the grand average.

●	 The within sum of squares is based on squared deviations of observations from 
their own factor mean.

It can be shown that there is a relationship between these sums of squares, i.e.

Time sum
of squares

=
Between sum
of squares

+
Within sum
of squares

 (6.10)

The larger is the between sum of squares relative to the within sum of squares, the 
more likely it is that the null is false.

Because we have to sum over factors and over observations within those fac-
tors, the formulae look somewhat complicated, involving double summation 
signs. It is therefore important to follow the example showing how the calcula-
tions are actually done.

The total sum of squares is given by the formula:

Total sum of squares = a
ni

j= 1
a

k

i = 1
(xij - x)2 (6.11)

where xij is the output from factory i on day j and x is the grand average of all 
observations. The index i runs from 1 to 3 in this case (there are three classes or 
groups for this factor) and the index j (indexing the observations) goes from 1 to 6, 
7, or 5 (for factories 1, 2 and 3, respectively). Note that we do not require the same 
number of observations from each factory.

Although this looks complex, it simply means that we calculate the sum of 
squared deviations from the overall mean. The overall mean of the 18 values is 
410.11 and the total sum of squares may be calculated as:

Total sum of squares = (415 - 410.11)2 + (430 - 410.11)2

+  g+  (440 - 410.11)2 + (425 - 410.11)2 = 2977.778

An alternative formula for the total sum of squares is

Total sum of squares = a
ni

j= 1
a

k

i = 1
x2

ij - nx2 (6.12)
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where n is the total number of observations. The sum of the squares of all the 
observations (gx2) is 4152 + 4302 + g+  4252 = 3 030 418 and the total sum of 
squares is then given by

a
ni

j= 1
a

k

i = 1
x2

ij - nx2 = 3 030 418 - 18 * 410.112 = 2977.778 (6.13)

as before.
The between sum of squares is calculated using the formula

Between sum of squares = a
j
a

i
(xi - x)2 (6.14)

where xi denotes the mean output of factor i. This part of the calculation effec-
tively ignores the differences that exist within factors and compares the differ-
ences between them. It does this by replacing the observations within each factor 
by the mean for that factor. Hence, all the factor 1 observations are replaced 
by 410.83, for factor 2 they are replaced by the mean 401.57 and for factor 3 by 
421.23. We then calculate the sum of squared deviations of these values from the 
grand mean:

 Between sum of squares = 6 * (410.83 - 410.11)2 + 7 * (401.57 - 410.11)2

 +  5 * (421.2 - 410.11)2 = 1128.43

Note that we take account of the number of observations within each factor in 
this calculation.

Once again there is an alternative formula which may be simpler for calcula-
tion purposes:

Between sum of squares = a
i

ni x2
i - n x2 (6.15)

Evaluating this results in the same answer as above:

 a
i

ni x2
i - n x2 = 6 * 410.832 + 7 * 401.572 + 5 * 421.22 - 18 * 410.102

 = 1128.43 (6.16)

We have arrived at the result that 37% (=  1128.43>2977.78) of the total varia-
tion (sum of squared deviations) is due to differences between factories and the 
remaining 63% is therefore due to variation (day to day) within factories. We can 
therefore immediately calculate the within sum of squares by straightforward sub-
traction as:

 Within sum of squares = Total sum of squares - Between sum of squares
 = 2977.778 - 1128.430 = 1849.348

For completeness, the formula for the within sum of squares is

Within sum of squares = a
j
a

i
(xij - xi)2 (6.17)

3Note that this is not the same as using the three factor means and calculating their variance.
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The term xij - xi measures the deviations of the observations from the factor 
mean and so the within sum of squares gives a measure of dispersion within the 
classes. Hence, it can be calculated as:

 Within sum of squares = (415 - 410.83)2 + g+  (418 - 410.83)2

 +  (385 - 401.57)2 + g+  (399 - 401.57)2

 +  (408 - 421.2)2 + g+  (425 - 421.2)2

 = 1849.348

This is the same value as obtained by subtraction.

 The result of the hypothesis test

The F statistic is based upon comparing between and within sums of squares (BSS 
and WSS) but we must also take account of the degrees of freedom for the test. The 
degrees of freedom adjust for the number of observations and for the number of 
factors. Formally, the test statistic is

F =
BSS>(k - 1)

WSS>(n - k)

which has k - 1 and n - k degrees of freedom. k is the number of factors, 3 in this 
case, and n the overall number of observations, 18. We thus have

F =
1128.43>(3 - 1)

1849.348>(18 - 3)
= 4.576

The critical value of F for 2 and 15 degrees of freedom at the 5% significance 
level is 3.682. As the test statistic exceeds the critical value, we reject the null 
hypothesis of no difference between factories.

 The analysis of variance table

ANOVA calculations are conventionally summarised in an analysis of variance 
table. Figure 6.7 shows such a table, as produced by Excel. Excel can produce the 

Figure 6.7
One-way analysis of 
 variance: Excel output
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table automatically from data presented in the form shown in Table 6.11 and there 
is no need to do any of the calculations by hand. (In Excel you need to install the 
Analysis ToolPak in order to perform ANOVA. Other software packages, such as 
SPSS or Stata, also have routines to perform ANOVA.)

The first part of the table summarises the information for each factory, in the 
form of means and variances. Note that the means were used in the calculation of 
the between sum of squares. The ANOVA section of the output then follows, giving 
sums of squares and other information.

The column of the ANOVA table headed ‘SS’ gives the sums of squares, which 
we calculated above. It can be seen that the between-group sum of squares makes 
up about 37% of the total, suggesting that the differences between factories 
(referred to as ‘groups’ by Excel) do make a substantial contribution to the total 
variation in output.

The ‘df ’ column gives the degrees of freedom associated with each sum of 
squares. These degrees of freedom are given by

Between sum of squares k - 1

Within sum of squares n - k

Total sum of squares n - 1

The ‘MS’ (‘mean square’) column divides the sums of squares by their degrees of 
freedom, and the F column gives the F statistic, which is the ratio of the two val-
ues in the MS column, i.e. 4.576 = 564.215>123.290. This is the test statistic for 
the hypothesis test, which we calculated manually above. Excel helpfully gives 
the critical value of the test (at the 5% significance level) in the final column, 
3.682. The P-value is given in the penultimate column and reveals that only 2.8% 
of the F distribution lies beyond the test statistic value of 4.576.

The test has found that the between sum of squares is ‘large’ relative to the within 
sum of squares, too large to be due simply to random variation, and this is why the 
null hypothesis of equal outputs is rejected. The rejection region for the test consists 
of the upper tail only of the F distribution; small values of the test statistic would 
indicate small differences between factories and hence non-rejection of H0.

This simple example involves only three groups, but the extension to four or 
more follows the same principles, with different values of k in the formulae, and is 
fairly straightforward. Also, we have covered only the simplest type of ANOVA, with 
a one-way classification. More complex experimental designs are possible, with a 
two-way classification, for example, where there are two independent factors affect-
ing the dependent variable. This is not covered in this text, although Chapter 8 on 
the subject of multiple regression does examine a method of modelling situations 
where two or more explanatory variables influence a dependent variable.

Worked example 6.3 

ANOVA calculations are quite complex and are most easily handled by software 
which calculates all the results directly from the initial data. However, this is a 
kind of ‘black box’ approach to learning, so this example shows all the calcula-
tions mechanically.

➔
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Suppose we have six observations on each of three factors, as follows:

A B C

44 41 48
35 36 37
60 58 61
28 32 37
43 40 44
55 59 61

(These might be, for example, scores of different groups of pupils in a test.) We 
wish to examine whether there is a significant difference between the different 
groups. We need to see how the differences between the groups compare to 
those within groups.

First, we calculate the total sum of squares by ignoring the groupings and treat-
ing all 18 observations together. The overall mean is 45.5 so the squared devia-
tions are (44 - 45.5)2, (41 - 45.5)2, etc. Summing these gives 2020.5 as the TSS.

For the between sum of squares we first calculate the means of each factor. 
These are 44.17, 44.33 and 48. We compare these to the grand average. The 
squared deviations are therefore (44.17 - 45.5)2, (44.33 - 45.5)2 and 
(48 - 45.5)2. Rather than sum these, we must take account of the number of 
observations in each group which in this case is 6. Hence we obtain

 Between sum of squares = 6 * (44.17 - 45.5)2 + 6 * (44.33 - 45.5)2

 +  6 * (48 - 45.5)2 = 56.33

The within sum of squares can be explicitly calculated as follows. For group A, 
the squared deviations from the group mean are (44 - 44.17)2, (35 - 44.17)2, 
etc. Summing these for group A gives 714.8. Similar calculations give 653.3 and 
596 for groups B and C. These sum to 1964.2, which is the within sum of squares. 
As a check, we note:

2020.5 = 56.3 + 1964.2

The degrees of freedom are k - 1 = 3 - 1 = 2 for the between sum of squares, 
n - k = 18 - 3 = 15 for the within sum of squares and n - 1 = 18 - 1 = 17. 
The test statistic is therefore

F =
56.33>2

1964.2>15
= 0.22

The critical value at the 5% significance level is 3.68, so we cannot reject the 
null of no difference between the factors.

The reaction times of three groups of sportsmen were measured on a particular task, with the 
following results (time in milliseconds):

Racing drivers 31 28 39 42 36 30

Tennis players 41 35 41 48 44 39 38
Boxers 44 47 35 38 51

Test whether there is a difference in reaction times between the three groups.

?

Exercise 6.6
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Summary

●	 The x2 and F distributions play important roles in statistics, particularly in 
problems relating to the goodness of fit of the data to that predicted by a null 
hypothesis.

●	 A random variable based on the sample variance, (n - 1)s2>s2, has a x2 distri-
bution with n - 1 degrees of freedom. Based on this fact, the x2 distribution 
may be used to construct confidence interval estimates for the variance s2. 
Since the x2 is not a symmetric distribution, the confidence interval is not 
symmetric around the (unbiased) point estimate s2.

●	 The x2 distribution may also be used to compare actual and expected values of 
a variable and hence to test the hypothesis upon which the expected values 
were constructed.

●	 A two-way classification of observations is known as a contingency table. The 
independence or otherwise of the two variables may be tested using the x2 dis-
tribution, by comparing observed values with those expected under the null 
hypothesis of independence.

●	 The F distribution is used to test a hypothesis of the equality of two variances. 
The test statistic is the ratio of two sample variances which, under the null 
hypothesis, has an F distribution with n1 - 1, n2 - 1 degrees of freedom.

●	 The F distribution may also be used in an analysis of variance, which tests for 
the equality of means across several samples. The results are set out in an analy-
sis of variance table, which compares the variation of the observations within 
each sample to the variation between samples.

actual and expected values
analysis of variance
ANOVA table
between sum of squares
classes or groups
contingency table
dependent or response variable
error variance
factor

grand average
independent variable
one-way analysis of variance
sums of squares
total sum of squares
uniform distribution
variance ratio test
within sum of squares

Key terms and concepts
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Formula Description Notes

c (n - 1)s2

U
… s2 …

(n - 1)s2

L
d

Confidence interval for the 
 variance

U and L are the upper and lower limits of the  
x2 distribution for the chosen confidence level, with n - 1 
degrees of freedom

x2 = a  
(O - E )2

E

Test statistic for independence 
in a contingency table

n = (r - 1) * (c - 1), where r is the number of rows, c the 
number of columns

F =
s2

1

s2
2

Test statistic for H0: s2
1 = s2

2 n = n1 - 1, n2 - 1. Place larger sample variance in the 
numerator to ensure rejection region is in right-hand tail of 
the F distribution

a
ni

j =1
a

k

i =1
 x2

ij - nx2
Total sum of squares (ANOVA) n is the total number of observations, k is the number of 

groups

a
i

ni x2
i - nx2 Between sum of squares 

(ANOVA)
A ni represents the number of observations in group i and xi is 
the mean of the group

a
j
a

i
(xij - xi)

2 Within sum of squares (ANOVA)

Formulae used in this chapter

Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 6.1 A sample of 40 observations has a standard deviation of 20. Estimate the 95% confidence interval 
for the standard deviation of the population.

 6.2 Using the data n = 70, s = 15, construct a 99% confidence interval for the true standard deviation.

 6.3 Use the data in Table 6.3 to see if there is a significant difference between road casualties in quar-
ters I and III on the one hand and quarters II and IV on the other.

 6.4 A survey of 64 families with five children found the following gender distribution:

Number of boys 0 1 2 3 4 5
Number of families 1 8 28 19 4 4

Test whether the distribution can be adequately modelled by the Binomial distribution.

 6.5 Four different holiday firms which all carried equal numbers of holidaymakers reported the follow-
ing numbers who expressed satisfaction with their holiday:

Firm A B C D

Number satisfied 576 558 580 546

Problems
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Is there any significant difference between the firms? If told that the four firms carried 600 holiday-
makers each, would you modify your conclusion? What do you conclude about your first answer?

 6.6 A company wishes to see whether there are any differences between its departments in staff turn-
over. Looking at their records for the past year, the company finds the following data:

Department Personnel Marketing Admin. Accounts

Number in post at start of year 23 16 108 57
Number leaving  3  4  20 13

Do the data provide evidence of a difference in staff turnover between the various departments?

 6.7 A survey of 100 firms found the following evidence regarding profitability and market share:

Profitability Market share

615% 15–30% 730%

Low 18  7  8
Medium 13 11  8
High  8 12 15

Is there evidence that market share and profitability are associated?

 6.8 The following data show the percentages of firms using computers in different aspects of their 
 business:

Firm size Computers used in Total numbers of firms

Admin. Design Manufacture

Small 60% 24% 20% 450
Medium 65% 30% 28% 140
Large 90% 44% 50%  45

Is there an association between the size of firm and its use of computers?

 6.9 (a) Do the accountants’ job properly for them (see the Oops! box in the text (page 244)).

(b) It might be justifiable to omit the ‘no responses’ entirely from the calculation. What happens if 
you do this?

 6.10 A roadside survey of the roadworthiness of vehicles obtained the following results:

Roadworthy Not roadworthy

Private cars 114 30
Company cars  84 24
Vans  36 12
Lorries  44 20
Buses  36 12

Is there any association between the type of vehicle and the likelihood of it being unfit for the road?

 6.11 Given the following data on two sample variances, test whether there is any significant difference. 
Use the 1% significance level.

 s2
1 = 55   s2

2 = 48
 n1 = 25   n2 = 30
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 6.12 An example in Chapter 5 compared R&D expenditure in Britain and Germany. The sample data were:

 x1 = 3.7   x2 = 4.2
 s1 = 0.6   s2 = 0.9
 n1 = 20   n2 = 15

Is there evidence, at the 5% significance level, of difference in the variances of R&D expenditure 
between the two countries? What are the implications, if any, for the test carried out on the differ-
ence of the two means, in Chapter 4?

 6.13 Groups of children from four different classes in a school were randomly selected and sat a test, 
with the following test scores:

Class Pupil

1 2 3 4 5 6 7

A 42 63 73 55 66 48 59
B 39 47 47 61 44 50 52
C 71 65 33 49 61
D 49 51 62 48 63 54

(a) Test whether there is any difference between the classes, using the 95% confidence level for 
the test.

(b) How would you interpret a ‘significant’ result from such a test?

 6.14 Lottery tickets are sold in different outlets: supermarkets, smaller shops and outdoor kiosks. Sales 
were sampled from several of each of these, with the following results:

Supermarkets 355 251 408 302

Small shops 288 257 225 299
Kiosks 155 352 240

Does the evidence indicate a significant difference in sales? Use the 5% significance level.

 6.15 (Project) Conduct a survey among fellow students to examine whether there is any association 
between:

(a) gender and political preference, or

(b) subject studied and political preference, or

(c) star sign and personality (introvert/extrovert – self-assessed: I am told that Aries, Cancer, 
 Capricorn, Gemini, Leo and Scorpio are associated with an extrovert personality), or

(d) any other two categories of interest.

 6.16 (Computer project) Use your spreadsheet or other computer program to generate 100 random 
integers in the range 0 to 9. Draw up a frequency table and use a x2 test to examine whether there 
is any bias towards any particular integer. Compare your results with those of others in your class.
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Answers to exercises

Exercise 6.1

(a) The values cutting off the outer 2.5% in each tail of the x2 distribution (df = 29) are  
16.05 and 45.72 (see Appendix Table A4). Using

c (n - 1) * s2

45.72
… s2 …

(n - 1) * 65
16.05

d  

 we therefore obtain 

c (30 - 1) * 65
45.72

… s2 …
(30 - 1) * 65

16.05
d  

 which yields the interval [41.2, 117.4] 

(b) [6.4, 10.8], by taking the square roots of the answer to part (a). 

(c) [36.0, 143.7], by similar methods but using critical values of 13.12 and 52.34

Exercise 6.2

The calculation of the test statistic is:

Outcome Observed Expected O - E (O - E )2 (O - E )2

E

A 40  35 5 25 0.714
B 60  55 5 25 0.455
C 75  75 0 0 0
D 90 100 -10 100 1
Total 2.169

This is smaller than the critical value of 7.81 (for three degrees of freedom) so the null is 
not rejected.

Exercise 6.3

The test statistics are for (16, 55, 29) x2 = 4.38 (Prob-value = 0.112) and z = 1.84 
(Prob-value = 0.066) and for (14, 55, 31) x2 = 6.78 (Prob-value = 0.038) and z = 2.40 
(Prob-value = 0.016). The two methods agree on the results (whether or not to reject 
the hypothesis), although the Prob-values are different.

Exercise 6.4

The expected values are:

Higher education A levels Other qualifications No qualifications Total

In work 217 140 280  85 723
Unemployed  19  12  24   7  62
Inactive  64  42  83  25 214
Totals 300 194 387 118 999

(These are calculated by multiplying row and column totals and dividing by the grand 
total, e.g. 217 = 723 * 3000>999.)
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The test statistic is:

7.3 + 0.2 + 0.4 + 13.1 + 4.0 + 0.1 + 2.0 + 1.0 + 15.2 + 0.3 + 0.2 + 37.3 = 81.1

This should be compared to a critical value of 12.59 (n = (3 - 1) * (4 - 1) = 6), so 
the null is rejected.

Exercise 6.5

The two variances are s2
A = 0.031 and s2

B = 0.066. We therefore form the ratio 
F = 0.066>0.031 = 2.09, which has an F distribution with 5 and 6 degrees of free-
dom. The 5% critical value is therefore 4.39 and the null is not rejected. There appears 
no difference between manufacturers. The variance is important because consumers 
want a reliable product – they would not be happy if an incorrect voltage broke their 
MP3 player.

Exercise 6.6

The answer is summarised in this Excel table:

SUMMARY

Groups Count Sum Average Variance

Racing drivers 6 206 34.333 30.667
Tennis players 7 286 40.857 17.810
Boxers 5 215 43.000 42.500

ANOVA

Source of variation SS df MS F P-value F crit

Between groups 233.421  2 116.710 4.069 0.039 3.682
Within groups 430.190 15  28.679

Totals 663.611 17

The result shows that there is a difference between the three groups, with an 
F statistic of 4.069 (P-value 3.9%). The difference appears to be largely between 
racing drivers and the other two types.



261

Appendix: Use of x2 and F distribution tables

 Appendix Use of x2 and F distribution tables

 Tables of the x2 distribution

Table A4 presents critical values of the x2 distribution for a selection of signifi-
cance levels and for different degrees of freedom. As an example, to find the criti-
cal value of the x2 distribution at the 5% significance level, for n = 20 degrees of 
freedom, the cell entry in the column labelled ‘0.05’ and the row labelled ‘20’ are 
consulted. The critical value is 31.4. A test statistic greater than this value implies 
rejection of the null hypothesis at the 5% significance level.

An Excel function can alternatively be used to find this value. The formula 
‘=CHIISQ.INV.RT(0.05, 20)’ will give the result 31.4.

 Tables of the F distribution

Table A5 (see page 454) presents critical values of the F distribution. Since there 
are two sets of degrees of freedom to be taken into account, a separate table is 
required for each significance level. Four sets of tables are provided, giving criti-
cal values cutting off the top 5%, 2.5%, 1% and 0.5% of the distribution 
(Tables A5(a), A5(b), A5(c) and A5(d) respectively). These allow both one- and 
two-tail tests at the 5% and 1% significance levels to be conducted. Its use is illus-
trated by example.

Two-tail test

To find the critical values of the F distribution at the 5% significance level for 
degrees of freedom n1 (numerator) = 10, n2 = 20. The critical values in this case 
cut off the extreme 2.5% of the distribution in each tail, and are found in 
Table A5(b):

●	 Right-hand critical value: this is found from the cell of the table corresponding 
to the column n1 = 10 and row n2 = 20. Its value is 2.77.

●	 Left-hand critical value: this cannot be obtained directly from the tables, which 
only give right-hand values. However, it is obtained indirectly as follows:
(a) Find the right-hand critical value for n1 = 20, n2 = 10 (note reversal of 

degrees of freedom). This gives 3.42.
(b) Take the reciprocal to obtain the desired left-hand critical value. This gives 

1>3.42 = 0.29.

The rejection region thus consists of values of the test statistic less than 0.29 and 
greater than 2.77.

An Excel function can alternatively be used to find these values. The formula 
‘ =F.INV.RT(0.025, 10, 20)’  will  give the result 2.77. The formula 
‘=F.INV.RT(0.975, 10, 20)’ will give 0.29, the left hand value. Note that you do not 
need to reverse the degrees of freedom in the formula, Excel understands that the 
left-hand critical value is needed from the ‘0.975’ figure.
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One-tail test

To find the critical value at the 5% significance level for n1 = 15, n2 = 25. As long 
as the test statistic has been calculated with the larger variance in the numerator, 
the critical value is in the right-hand tail of the distribution and can be obtained 
directly from Table A5(a). For n1 = 15, n2 = 25 the value is 2.09. The null hypoth-
esis is rejected, therefore, if the test statistic is greater than 2.09. Once again, in 
Excel, ‘=F.INV.RT(0.05, 15, 25)’ = 2.09.
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Correlation and regression7

By the end of this chapter you should be able to:

●	 understand the principles underlying correlation and regression

●	 calculate and interpret a correlation coefficient and relate it to an XY graph of the 
two variables
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Introduction

Correlation and regression are techniques for investigating the statistical rela-
tionship between two, or more, variables. In Chapter 1 we examined the rela-
tionship between investment and GDP using graphical methods (the XY 
chart). Although visually helpful, this did not provide any precise measure-
ment of the strength of the relationship. In Chapter 6 the x2 test did provide a 
test of the significance of the association between two category-based vari-
ables, but this test cannot be applied to variables measured on a ratio scale. 
Correlation and regression fill in these gaps: the strength of the relationship 
between two (or more) ratio scale variables can be measured and the signifi-
cance tested.

Correlation and regression are the techniques most often used by economists 
and forecasters. They can be used to answer such questions as

●	 Is there a link between the money supply and the price level?
●	 Do bigger firms produce at lower cost than smaller firms?
●	 Does spending more on advertising increase sales?

Each of these questions is about economics or business as much as about sta-
tistics. The statistical analysis is part of a wider investigation into the problem; it 
cannot provide a complete answer to the problem but, used sensibly, is a vital 
input. Correlation and regression techniques may be applied to time-series or 
cross-section data. The methods of analysis are similar in each case, although 
there are differences of approach and interpretation which are highlighted in 
this chapter and the next.

This chapter begins with the topic of correlation and simple (i.e. two variable) 
regression, using as an example the determinants of the birth rate in developing 
countries. In Chapter 8, multiple regression is examined, where a single depen-
dent variable is explained by more than one explanatory variable. This is illus-
trated using time-series data pertaining to imports into the United Kingdom. This 
shows how a small research project can be undertaken, avoiding the many possi-
ble pitfalls along the way. Finally, a variety of useful additional techniques, tips 
and traps is set out, to help you understand and overcome a number of problems 
that can arise in regression analysis.

●	 calculate the line of best fit (regression line) and interpret the result

●	 recognise the statistical significance of the results, using confidence intervals and 
hypothesis tests

●	 recognise the importance of the units in which the variables are measured and of trans-
formations to the data

●	 use computer software (Excel) to derive the regression line and interpret the computer 
output.
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What determines the birth rate in developing countries?

This example follows the analysis in Michael Todaro’s book, Economic Development 
in the Third World (3rd edn, pp. 197–200), where he tries to establish which of 
three variables (GNP per capita, the growth rate, or income inequality) is most 
important in determining a country’s birth rate. (This analysis has been dropped 
from later editions of Todaro’s book.)

The analysis is instructive as an example of correlation and regression tech-
niques in a number of ways. First, the question is an important one; it was dis-
cussed at the UN International Conference on Population and Development in 
Cairo in 1995. It is felt by many that reducing the birth rate is a vital factor in 
economic development (birth rates in developed countries average around 12 per 
1000 population, in developing countries around 30). Second, Todaro uses the 
statistical analysis to arrive at a questionable conclusion.

The data used by Todaro are shown in Table 7.1 using a sample of 12 developing 
countries. Two points need to be made initially. First, this is a very small sample 
which only includes developing countries, so the results will not give an all- 
embracing explanation of the birth rate. Different factors might be relevant to 
developed countries, for example. Second, there is the important question of why 
these particular countries were chosen as the sample and others ignored. The choice 
of country was limited by data availability, and one should ask whether countries 
with data available are likely to be representative of all countries. Data were, in fact, 
available for more than 12 countries, so Todaro was selective. You are asked to 
explore the implications of this in some of the problems at the end of the chapter.

The variables are defined as follows:

Birth rate: the number of births per 1000 population in 1981.
GNP per capita: 1981 gross national product p.c., in US dollars.
Growth rate: the growth rate of GNP p.c. p.a., 1961–81.
Income ratio:  the ratio of the income share of the richest 20% to that of the 

poorest 40%. A higher value of this ratio indicates greater 
inequality.

Table 7.1 Todaro’s data on birth rate, GNP, growth and inequality

Country Birth rate 1981 GNP p.c. GNP growth Income ratio

Brazil 30 2200 5.1 9.5
Colombia 29 1380 3.2 6.8
Costa Rica 30 1430 3.0 4.6
India 35 260 1.4 3.1
Mexico 36 2250 3.8 5.0
Peru 36 1170 1.0 8.7
Philippines 34 790 2.8 3.8
Senegal 48 430 -0.3 6.4
South Korea 24 1700 6.9 2.7
Sri Lanka 27 300 2.5 2.3
Taiwan 21 1170 6.2 3.8
Thailand 30 770 4.6 3.3
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We leave aside the concerns about the sample until later and concentrate first 
on analysing the data. The first thing to do is to graph the variables to see if any-
thing useful is revealed. XY graphs (see Chapter 1) are the most suitable in this case, 
and they are shown in Figure 7.1. From these we see a reasonably tidy relationship 
between the birth rate and the growth rate, with a negative slope; there is a looser 
relationship with the income ratio, with a positive slope; and there is little discern-
ible pattern (apart from a flat line) in the graph of birth rate against GNP.

Todaro asserts that the best relationship is between the birth rate and income 
inequality. He rejects the growth rate as an important determinant of the birth 
rate because of the four countries near the top of the chart, which have very differ-
ent growth rates, yet similar birth rates. In the following sections we shall see 
whether Todaro’s conclusions are justified.

Figure 7.1
Graphs of the birth rate 
against (a) GNP, (b) growth 
and (c) income ratio
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Correlation

The graphs are helpful, but it would be useful to have a simple numerical sum-
mary measure of each relationship. For this purpose, we use the correlation 
 coefficient between any pair of variables. We illustrate this by calculating the cor-
relation coefficient between the birth rate (B) and growth (G), although we also 
present the results for the other cases. Just as the mean is a number that sum-
marises information about a single variable, so the correlation coefficient is a 
number which summarises the relationship between two variables.

The different types of possible relationship between any two variables, X and Y, 
may be summarised as follows:

●	 High values of X tend to be associated with low values of Y and vice versa. This 
is termed negative correlation and appears to be the case for B and G.

●	 High (low) values of X tend to be associated with high (low) values of Y. This is 
positive correlation and reflects (rather weakly) the relationship between B and 
the income ratio (IR).

●	 No relationship between X and Y exists. High (low) values of X are associated 
about equally with high and low values of Y. This is zero, or the absence of, cor-
relation. There appears to be little correlation between the birth rate and per 
capita GNP.

It should be noted that positive correlation does not mean that high values of 
X are always associated with high values of Y, but usually they are. It is also the 
case that correlation only measures a linear relationship between the two vari-
ables. As a counter-example, consider the backward-bending labour supply curve, 
as suggested by economic theory (higher wages initially encourage extra work 
effort, but above a certain point the benefit of higher wage rates is taken in the 
form of more leisure). The relationship is non-linear and the measured degree of 
correlation between wages and hours of work is likely to be low, even though the 
former obviously influences the latter.

The sample correlation coefficient, r, is a numerical statistic which distinguishes 
between the types of cases shown in Figure 7.1. It has the following properties:

●	 It always lies between -1 and +1. This makes it relatively easy to judge the 
strength of an association.

●	 A positive value of r indicates positive correlation, a higher value indicating a 
stronger correlation between X and Y (i.e. the observations lie closer to a 
straight line). A value of r = 1 indicates perfect positive correlation and means 
that all the observations lie precisely on a straight line with positive slope, as 
Figure 7.2 illustrates.

Figure 7.2
Perfect positive 
 correlation
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●	 A negative value of r indicates negative correlation. Similar to the above, a 
larger negative value indicates stronger negative correlation and r = -1 signi-
fies perfect negative correlation.

●	 A value of r = 0 (or close to it) indicates a lack of correlation between X and Y.
●	 The relationship is symmetric, i.e. the correlation between X and Y is the same 

as between Y and X. It does not matter which variable is labelled Y and which is 
labelled X.

The formula1 for calculating the correlation coefficient is given in equation (7.1):

r =
naXY - aXaY2(naX2 - (aX)2)(naY 2 - (aY)2)

 (7.1)

Although this looks rather complicated, it uses just six items which are easily 
calculated from the data: n, gX, gY, gX2, gY 2 and gXY. These are shown in 
Table 7.2 for the relationship between birth rate (Y) and growth (X) variables, and 
r is then calculated in equation (7.2):

r =
12 * 1139.7 - 40.2 * 3802(12 * 184.04 - 40.22)(12 * 12 564 - 3802)

= -0.824 (7.2)

This result indicates a fairly strong negative correlation between the birth rate 
and growth, at least for this sample. Countries which have higher economic growth 
rates also tend to have lower birth rates. The result of calculating the correlation 
coefficient for the case of the birth rate and the income ratio is r = 0.35, which is 
positive as expected. Hence greater inequality (higher IR) is associated with a higher 
birth rate, although the degree of correlation is not particularly strong and less than 
the correlation with the growth rate. Between the birth rate and GNP per capita, the 
value of r is only -0.26, indicating only a modest degree of correlation. All of this 
begins to cast doubt upon Todaro’s interpretation of the data.

Table 7.2 Calculation of the correlation coefficient, r

Country Birth rate Y GNP growth X Y2 X2 XY

Brazil 30 5.1 900 26.01 153.0
Colombia 29 3.2 841 10.24 92.8
Costa Rica 30 3.0 900 9.00 90.0
India 35 1.4 1 225 1.96 49.0
Mexico 36 3.8 1 296 14.44 136.8
Peru 36 1.0 1 296 1.00 36.0
Philippines 34 2.8 1 156 7.84 95.2
Senegal 48 -0.3 2 304 0.09 -14.4
South Korea 24 6.9 576 47.61 165.6
Sri Lanka 27 2.5 729 6.25 67.5
Taiwan 21 6.2 441 38.44 130.2
Thailand 30 4.6 900 21.16 138.0
Totals 380 40.2 12 564 184.04 1 139.7

Note: In addition to the X and Y variables in the first two columns, three other columns are needed, for X2, 
Y2 and XY values.

1The formula for r can be written in a variety of different ways. The one given here is the 
most convenient for calculation.
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 Are the results significant?

These results come from a (small) sample, one of many that could have been col-
lected (either for different countries or different time periods). Once again we may 
ask the question, what can we infer about the population (of all developing coun-
tries) from the sample? Assuming the sample was drawn at random (which may 
not be justified) we can use the principles of hypothesis testing introduced in 
Chapter 5. As usual, there are two possibilities:

(1) The truth is that there is no correlation (in the population) and that our sam-
ple exhibits such a large (absolute) value by chance.

(2) There really is a correlation between the birth rate and the growth rate and 
the sample correctly reflects this.

By denoting the true but unknown population correlation coefficient by r (the 
Greek letter ‘rho’), the possibilities can be expressed in terms of a hypothesis test:

 H0: r = 0
H1: r ≠ 0

The test statistic in this case is not r itself but a transformation of it:

t =
r 1n - 221 - r2

 (7.3)

which has a t distribution with n - 2 degrees of freedom. The five steps of the test 
procedure are therefore:

(1) Write down the null and alternative hypotheses (shown above).
(2) Choose the significance level of the test: 5% by convention.
(3) Look up the critical value of the test for n - 2 = 10 degrees of freedom: 

t*
10 = 2.228 for a two-tail test.

(4) Calculate the test statistic using equation (7.3):

t =
- 0.824112 - 221 - (-0.824)2

= -4.59

(5) Compare the test statistic with the critical value. In this case t 6 - t*
10 so H0 is 

rejected. There is a less than 5% chance of the sample evidence occurring if 
the null hypothesis were true, so the latter is rejected. There does appear to be 
a genuine association between the birth rate and the growth rate.

Performing similar calculations (see Exercise 7.2) for the income ratio and for 
GNP reveals that in both cases the null hypothesis cannot be rejected at the 5% 

(a) Perform the required calculations to confirm that the correlation between the birth rate 
and the income ratio is 0.35.

(b) In Excel, use the =CORREL( ) function to confirm your calculations in part (a). (For exam-
ple, the function =CORREL(A1:A12, B1:B12) would calculate the correlation between a 
variable X in cells A1:A12 and Y in cells B1:B12.)

(c) Calculate the correlation coefficient between the birth rate and the income ratio again, 
but expressing the birth rate per 100 population and dividing the income ratio by 100. 
Your calculation should confirm that changing the units of measurement leaves the cor-
relation coefficient unchanged.

?

Exercise 7.1
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significance level. These observed associations could well have arisen by chance 
so the evidence is much less convincing.

 Are significant results important?

Following the discussion in Chapter 5, we might ask if a certain value of the corre-
lation coefficient is economically important as well as significant. We saw earlier 
that ‘significant’ results need not be important. The difficulty in this case is that we 
have little intuitive understanding of the correlation coefficient. Is r = 0.5 impor-
tant, for example? Would it make much difference if it were only 0.4?

Our understanding may be helped if we look at some graphs of variables with 
different correlation coefficients (these data were generated artificially to illus-
trate the point). Three are shown in Figure 7.3. Panel (a) of the figure graphs two 
variables with a correlation coefficient of 0.2. Visually there seems little associa-
tion between the variables, yet the correlation coefficient is (just) significant: 
t = 2.06 (n = 100 and the Prob-value is 0.046). This is a significant result which 
does not impress much.

Figure 7.3
Variables with different 
degrees of correlation

2

4

6

8

10

12

14

16

18

20
n = 100, r = 0.2, t = 2.06

0
0 20 40 60 80 100 120 140 160 180

n = 100, r = 0.5, t = 5.72

2

4

6

8

10

12

14

16

18

20

0
0 20 40 60 80 100 120 140 160 180

(a)

(b)



Correlation

271

In panel (b) the correlation coefficient is 0.5 and the association seems a little 
stronger visually, although there is still a substantial scatter of the observations 
around a straight line. Yet the t statistic in this case is 5.72, highly significant 
(Prob-value 0.000).

Finally, panel (c) shows an example where n = 1000. To the eye this looks much 
like a random scatter, with no discernible pattern. Yet the correlation coefficient is 
0.1 and the t statistic is 3.18, again highly significant (Prob-value = 0.002).

The lessons from this seem fairly clear. What looks like a random scatter on a 
chart may in fact reveal a relationship between variables which is statistically sig-
nificant, especially if there are a large number of observations. On the other hand, 
a high t statistic and correlation coefficient can still indicate a lot of variation in 
the data, revealed by the chart. Panel (b) suggests, for example, that we are unlikely 
to get a very reliable prediction of the value of y, even if we know the value of x.

n = 1000, r = 0.1, t = 3.18
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(c)Figure 7.3
(cont’d)

(a) Test the hypothesis that there is no association between the birth rate and the income 
ratio.

(b) Look up the Prob-value associated with the test statistic and confirm that it does not 
reject the null hypothesis.

?

Exercise 7.2

 Correlation and causality

It is important to test the significance of any result because almost every pair of 
variables will have a non-zero correlation coefficient, even if they are totally 
unconnected (the chance of the sample correlation coefficient being exactly zero 
is very, very small). Therefore, it is important to distinguish between correlation 
coefficients which are significant and those which are not, using the t test just 
outlined. But even when the result is significant one should beware of the danger 
of ‘spurious’ correlation. Many variables which clearly cannot be related turn out 
to be ‘significantly’ correlated with each other. One now famous example is 
between the price level and cumulative rainfall. Since they both rise year after 
year, it is easy to see why they are correlated, yet it is hard to think of a plausible 
reason why they should be causally related to each other.
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Apart from spurious correlation, there are four possible reasons for a non-zero 
value of r:

(1) X influences Y.
(2) Y influences X.
(3) X and Y jointly influence each other.
(4) Another variable, Z, influences both X and Y.

Correlation alone does not allow us to distinguish between these alternatives. 
For example, wages (X) and prices (Y) are highly correlated. Some people believe 
this is due to cost–push inflation, i.e. that wage rises lead to price rises. This is 
case (1) above. Others believe that wages rise to keep up with the cost of living (i.e. 
rising prices), which is (2). Perhaps a more convincing explanation is (3), a wage–
price spiral where each feeds upon the other. Others would suggest that it is the 
growth of the money supply, Z, which allows both wages and prices to rise. To 
distinguish between these alternatives is important for the control of inflation, 
but correlation alone does not allow that distinction to be made.

Correlation is best used therefore as a suggestive and descriptive piece of analy-
sis, rather than a technique which gives definitive answers. It is often a prepara-
tory piece of analysis, which gives some clues to what the data might yield, to be 
followed by more sophisticated techniques such as regression.

 The coefficient of rank correlation

On occasion it is inappropriate or impossible to calculate the correlation coeffi-
cient as described above and an alternative approach is helpful. Sometimes the 
original data are unavailable but the ranks are. For example, schools may be 
ranked in terms of their exam results, but the actual pass rates are not available. 
Similarly, they may be ranked in terms of spending per pupil, with actual spend-
ing levels unavailable. Although the original data are missing, one can still test for 
an association between spending and exam success by calculating the correlation 
between the ranks. If extra spending improves exam performance, schools ranked 
higher on spending should also be ranked higher on exam success, leading to a 
positive correlation.

Second, even if the raw data are available, they may be highly skewed and 
hence the correlation coefficient may be influenced heavily by a few outliers. In 
this case the hypothesis test for correlation may be misleading as it is based on the 
assumption of underlying Normal distributions for the data. In this case we could 
transform the values to ranks, and calculate the correlation of the ranks. In a simi-
lar manner to the median, described in Chapter 1, this can effectively deal with 
heavily skewed distributions.

Note the difference between the two cases. In the first, we would prefer to have 
the actual school pass rates and expenditures because our analysis would be bet-
ter. We could actually see how much extra we have to spend in order to get better 
results. In the second case we actually prefer to use the ranks because the original 
data might mislead us, through the presence of outliers for example.  Non-parametric 
statistics are those which are robust to the distribution of the data, such as the 
calculation of the median, rather than the mean which is a parametric measure. 
We do not cover many examples of the former in this text, but the rank  correlation 
coefficient is one of them.
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Spearman’s coefficient of rank correlation is a measure that is robust to the under-
lying distribution of the data. It does not matter, for example, if the data are 
skewed. (The ‘standard’ correlation coefficient described above is more fully 
known as Pearson’s product-moment correlation coefficient, to distinguish it.) The 
formula to be applied is the same as before, although there are a few tricks to be 
learned about constructing the ranks, and also the hypothesis test is conducted in 
a different manner.

Using the ranks is generally less efficient than using the original data, because 
one is effectively throwing away some of the information (e.g. by how much do 
countries’ growth rates differ?). However, there is a trade-off: the rank correlation 
coefficient is more robust, i.e. it is less influenced by outliers or highly skewed dis-
tributions. If one suspects this is a risk, it may be better to use the ranks. This is 
similar to the situation where the median can prove superior to the mean as a 
measure of central tendency.

We will calculate the rank correlation coefficient for the data on birth and 
growth rates, to provide a comparison with the ordinary correlation coefficient 
calculated earlier. It is unlikely that the distributions of birth or of growth rates are 
particularly skewed (and we have too few observations to reliably tell), so the 
Pearson measure might generally be preferred, but we calculate the Spearman 
coefficient for comparison. Table 7.3 presents the data for birth and growth rates 
in the form of ranks. Calculating the ranks is fairly straightforward, although 
there are a couple of points to note.

The country with the highest birth rate has the rank of 1, the next highest 2, 
and so on. Similarly, the country with the highest growth rate ranks 1, etc. One 
could reverse a ranking, so the lowest birth rate ranks 1, for example; the direc-
tion of ranking is somewhat arbitrary. This would leave the rank correlation coef-
ficient unchanged in value, but the sign would change, e.g. -0.691 would 
become +0.691. This could be confusing as we would now have a ‘positive’ cor-
relation rather than a negative one (though the birth rate variable would now 
have to be redefined). It is better to use the ‘natural’ order of ranking for each 
variable, i.e. rank both variables in ascending order or both in descending order. 

Table 7.3 Calculation of Spearman’s rank correlation coefficient

Country Birth rate Y Growth rate X Rank Y RY Rank X RX R2
Y R2

X RXRY

Brazil 30 5.1 7 3 49 9 21
Colombia 29 3.2 9 6 81 36 54
Costa Rica 30 3.0 7 7 49 49 49
India 35 1.4 4 10 16 100 40
Mexico 36 3.8 2.5 5 6.25 25 12.5
Peru 36 1.0 2.5 11 6.25 121 27.5
Philippines 34 2.8 5 8 25 64 40
Senegal 48 -0.3 1 12 1 144 12
South Korea 24 6.9 11 1 121 1 11
Sri Lanka 27 2.5 10 9 100 81 90
Taiwan 21 6.2 12 2 144 4 24
Thailand 30 4.6 7 4 49 16 28
Totals 78 78 647.5 650 409

Note: The country with the highest growth rate (South Korea) is ranked 1 for variable X; Taiwan, the next 
fastest growth nation, is ranked 2, etc. For the birth rate, Senegal is ranked 1, having the highest birth 
rate, 48. Taiwan has the lowest birth rate and so is ranked 12 for variable Y.
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Confusion will usually follow if you rank one variable in ascending order, the 
other descending.

Where two or more observations are the same, as are the birth rates of Mexico 
and Peru, then they are given the same rank, which is the average of the relevant 
ranking values. For example, both countries are given the rank of 2.5, which is the 
average of 2 and 3. Similarly, Brazil, Costa Rica and Thailand are all given the rank 
of 7, which is the average of 6, 7 and 8. The next country, Colombia, is then given 
the rank of 9.

Excel warning

Microsoft Excel has a rank.avg( ) function built in, which takes a variable and calculates a 
new variable consisting of the ranks, similar to the above table. This can obviously save a bit 
of work. A word of warning, however: the rank( ) and rank.eq( ) functions, also in Excel, will 
give incorrect answers if there are ties in the data. The rank.avg( ) function is new from 
Excel 2010 onwards, earlier versions of Excel only have the unreliable functions.
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We now apply formula (7.1) to the ranked data, giving:

 rs =
naXY - aXaY2(naX2 - (aX)2)(naY 2 - (aY )2)

 =
12 * 409 - 78 * 782(12 * 650 - 782)(12 * 647.5 - 782)

= -0.691

This indicates a negative rank correlation between the two variables, as with 
the standard correlation coefficient (r = -0.824), but with a slightly smaller 
absolute value.

To test the significance of the result a hypothesis test can be performed on the 
value of rs, the corresponding population parameter:

H0: rs = 0
H1: rs ≠ 0

This time the t distribution cannot be used (because we are no longer relying on 
the parent distribution being Normal), but prepared tables of the critical values 
for rs itself may be consulted; these are given in Table A6 (see page 462), and an 
excerpt is given in Table 7.4.

The critical value at the 5% significance level, for n = 12, is 0.591. Hence the 
null hypothesis is rejected if the rank correlation coefficient falls outside the range 

Table 7.4 Excerpt from Table A6: Critical values of the rank correlation coefficient

n 10% 5% 2% 1%

 5 0.900
 6 0.829 0.886 0.943
 o o o o o
11 0.523 0.623 0.763 0.794
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.746

Note: The critical value is given at the intersection of the shaded row and column.
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[-0.591,  0.591], which it does in this case. Thus the null can be rejected with 95% 
confidence; the data do support the hypothesis of a relationship between the 
birth rate and growth. This critical value shown in the table is for a two-tail test. 
For a one-tail test, the significance level given in the top row of the table should be 
halved, so we could reject the null at the 2.5% significance level or 97.5% confi-
dence level in this case.

(a) Rank the observations for the income ratio across countries (highest = 1) and calculate 
the coefficient of rank correlation with the birth rate.

(b) Test the hypothesis that rs = 0.

(c) Reverse the rankings for both variables and confirm that this does not affect the calcu-
lated test statistic.

(d) Reverse the rankings of just the income ratio variable. How would you expect this to affect 
the value of the rank correlation coefficient?

?

Exercise 7.3

Worked example 7.1 

To illustrate all the calculations and bring them together without distracting 
explanation, we work through a simple example with the following data on X 
and Y:

Y 17 18 19 20 27 18

X  3  4  7  6  8  5

An XY graph of the data reveals the following picture, which suggests posi-
tive correlation:

29Y
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Note that one point appears to be something of an outlier. All the calcula-
tions for correlations may be based on the following table:

Obs Y X Y2 X2 XY Rank Y RY Rank X RX R2
Y R2

X RX RY

1 17 3 289 9 51 6 6 36 36 36
2 18 4 324 16 72 4.5 5 20.25 25 22.5
3 19 7 361 49 133 3 2 9 4 6
4 20 6 400 36 120 2 3 4 9 6
5 27 8 729 64 216 1 1 1 1 1
6 18 5 324 25 90 4.5 4 20.25 16 18

Totals 119 33 2427 199 682 21 21 90.5 91 89.5

➔
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Regression analysis

Regression analysis is a more sophisticated way of examining the relationship 
between two (or more) variables than is correlation. The major differences 
between correlation and regression are the following:

●	 Regression can investigate the relationships between two or more variables.
●	 A direction of causality is asserted, from the explanatory variable (or variables) 

to the dependent variable.
●	 The influence of each explanatory variable upon the dependent variable is 

 measured.
●	 The significance of each explanatory variable’s influence can be ascertained.

Thus regression permits answers to such questions as:

●	 Does the growth rate influence a country’s birth rate?
●	 If the growth rate increases, by how much might a country’s birth rate be 

expected to fall?
●	 Are other variables important in determining the birth rate?

The (Pearson) correlation coefficient r is therefore:

 r =
naXY - aXaY21naX2 - 1aX2221naY 2 - 1aY222

 =
6 * 682 - 33 * 1192(6 * 199 - 332)(6 * 2427 - 1192 )

= 0.804

The hypothesis H0: r = 0 versus H1: r ≠ 0 can be tested using the t test 
 statistic:

t =
r1n - 221 - r2

=
0.804 * 16 - 221 - 0.8042

= 2.7

which is compared to a critical value of 2.776, so the null hypothesis is not 
rejected, narrowly. This is largely due to the small number of observations, and 
anyway, it may be unwise to use the t distribution on such a small sample. The 
rank correlation coefficient is calculated as (using the RX, RY  etc., values)

 r =
naXY - aXaY21naX2 - 1aX2221naY 2 - 1aY222

 =
6 * 89.5 - 21 * 212(6 * 91 - 212)(6 * 90.5 - 212)

= 0.928

The critical value at the 5% significance level is 0.886, so the rank correla-
tion coefficient is significant, in contrast to the previous result. Not too much 
should be read into this, however; with few observations the ranking process 
can easily alter the result substantially.
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In this example we assert that the direction of causality is from the growth rate 
(X) to the birth rate (Y) and not vice versa. The growth rate is therefore the explana-
tory variable (also referred to as the independent or exogenous variable) and the birth 
rate is the dependent variable (also called the explained or endogenous variable).

Regression analysis describes this causal relationship by fitting a straight line 
drawn through the data, which best summarises them. It is sometimes called ‘the 
line of best fit’ for this reason. This is illustrated in Figure 7.4 for the birth rate and 
growth rate data. Note that (by convention) the explanatory variable is placed on 
the horizontal axis, the explained on the vertical axis. This regression line is 
downward sloping (its derivation will be explained shortly) for the same reason 
that the correlation coefficient is negative, i.e. high values of Y are generally asso-
ciated with low values of X and vice versa.

Since the regression line summarises knowledge of the relationship between X 
and Y, it can be used to predict the value of Y given any particular value of X. In 
Figure 7.4 the value of X = 3 (the observation for Costa Rica) is related via the 
regression line to a value of Y (denoted2 by Yn) of 32.6. This predicted value is close 
(but not identical) to the actual birth rate of 30. The difference reflects the absence 
of perfect correlation between the two variables.

The difference between the actual value, Y, and the predicted value, Yn, is called 
the error term or residual. It is labelled ‘Error’, e, in Figure 7.43. Why should such 
errors occur? The relationship is never going to be an exact one for a variety of 
reasons. There are bound to be other factors besides growth which might affect 
the birth rate (e.g. the education of women) and these effects are all subsumed 
into the error term. There might additionally be simple measurement error (of Y) 
and, of course, people do act in a somewhat random fashion rather than follow 
rigid rules of behaviour.

All of these factors fall into the error term, and this means that the observa-
tions lie around the regression line rather than on it. If there are many of these 
factors, none of which is predominant, and they are independent of each other, 
then these errors may be assumed to be Normally distributed about the regres-
sion line.

Error

50

45

Birth rate

Growth rate

Ŷ = 32.6

40

35

30

25

20
0.0 1.0–1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Figure 7.4
The line of best fit

2A ‘hat’ (^) over a symbol is often used to indicate the estimate of that variable.
3The italic e denoting the error term should not be confused with the use of the same letter 
as the base for natural logarithms (see the Appendix to Chapter 1, page 91). The correct 
interpretation should be clear from the context.
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Why not include these factors explicitly? On the face of it this would seem to 
be an improvement, making the model more realistic. However, the costs of doing 
this are that the model becomes more complex, calculation becomes more diffi-
cult (not so important now with computers) and it is generally more difficult for 
the reader (or researcher) to interpret what is going on. If these other factors have 
only small effects upon the dependent variable, then it might be better to ignore 
them, adopt a simple model and focus upon the main relationship of interest. 
There is a virtue in simplicity, as long as the simplified model still gives an undis-
torted view of the relationship. In Chapter 10 on multiple regression the trade-off 
between simplicity and realism will be further discussed, particularly with refer-
ence to the problems which can arise if relevant explanatory variables are omitted 
from the analysis.

 Calculation of the regression line

The equation of the sample regression line may be written

Yni = a + bXi (7.6)

where Yni is the predicted value of Y for observation (country) i, Xi is the value of 
the explanatory variable for observation i, and a and b are fixed coefficients to be 
estimated; a measures the intercept of the regression line on the Y-axis, b mea-
sures its slope. This is illustrated in Figure 7.5.

The first task of regression analysis is to find the values of a and b so that the 
regression line may be drawn. To do this we proceed as follows. The difference 
between the actual value, Yi, and its predicted value, Yni, is ei, the error. Thus

Yi = Yni + ei (7.7)

Substituting equation (7.6) into equation (7.7), the regression equation can be 
written as

Yi = a + bXi + ei (7.8)

Equation (7.8) shows that observed birth rates are made up of two components:

(1) that part explained by the growth rate, a + bXi, and
(2) an error component, ei.

In a good model, part (1) should be large relative to part (2) and the regression 
line is based upon this principle. The line of best fit is therefore found by finding 

DY

DX

DY
DX

Slope b =

a

Y

X

Figure 7.5
Intercept and slope of the 
regression line
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the values of a and b which minimise the sum of squared errors (ge2
i ) from the regres-

sion line. For this reason, this method is known as ‘the method of least squares’ or 
simply ‘ordinary least squares’ (OLS). The use of this criterion will be justified later 
on, but it can be said in passing that the sum of the errors is not minimised because 
that would not lead to a unique answer for the values a and b. In fact, there is an 
infinite number of possible lines through the data which all yield a sum of errors 
equal to zero. Minimising the sum of squared errors does yield a unique answer.

The task is therefore to

minimise ge2
i  (7.9)

by choice of a and b.
Rearranging equation (7.8), the error is given by

ei = Yi - a - bXi (7.10)

so equation (7.9) becomes

minimise g(Yi - a - bXi)2 (7.11)

by choice of a and b.
Finding the solution to (7.11) requires the use of differential calculus, and is not 

presented here. The resulting formulae for a and b are

b =
naXY - aXaY

naX2 - 1aX22  (7.12)

and

a = Y - bX (7.13)

where X and Y  are the mean values of X and Y, respectively. The values neces-
sary to evaluate equations (7.12) and(7.13) can be obtained from Table 7.2 which 
was used to calculate the correlation coefficient. These values are repeated for 
 convenience:

 gY = 380   gY 2 = 12 564
 gX = 40.2     gX2 = 184.04

 gXY = 1139.70   n = 12

Using these values, we obtain

b =
12 * 1139.70 - 40.2 * 380

12 * 184.04 - 40.22 = -2.700

and

a =
380
12

- (-2.700) *
40.2
12

= 40.711

Thus the regression equation can be written, to two decimal places for clarity, as

Yi = 40.71 - 2.70Xi + ei

 Interpretation of the slope and intercept

The most important part of the result is the slope coefficient b = -0.27 since it 
measures the effect of X upon Y. This result implies that a unit increase in the 
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growth rate (e.g. from 2% to 3% p.a.) would lower the birth rate by 2.7, e.g. from 
30 births per 1000 population to 27.3. Given that the growth data refer to a 20-year 
period (1961–81), this increase in the growth rate might need to be sustained over 
such a time, not an easy task. It is unlikely that an increase in the growth rate in 
one year would have such an immediate effect on the birth rate. How big is the 
effect upon the birth rate? The average birth rate in the sample is 31.67, so a reduc-
tion of 2.7 for an average country would be a fall of 8.5% (2.7>31.67 * 100). This 
is reasonably substantial (though not enough to bring the birth rate down to 
developed country levels) but would need a considerable, sustained increase in 
the growth rate to bring it about.

The value of a, the intercept, may be interpreted as the predicted birth rate of a 
country with zero growth (since Yni = a at X = 0). This value of 40.71 is fairly close 
to that of Senegal, which actually had negative growth over the period and whose 
birth rate was 48, a little higher than the intercept value. Although a has a sensible 
interpretation in this case, this is not always so. For example, in a regression of the 
demand for a good on its price, a would represent demand at zero price, which is 
unlikely ever to be observed.

(a) Calculate the regression line relating the birth rate to the income ratio.

(b) Interpret the coefficients of this equation.
?

Exercise 7.4

 Measuring the goodness of fit of the regression line

Having calculated the regression line, we now ask whether it provides a good fit 
for the data, i.e. do the observations tend to lie close to, or far away from, the line? 
Even though we have fitted a regression line, by itself this tells us nothing about 
the closeness of the fit. If the fit is poor, perhaps the effect of X upon Y is not so 
strong after all. Note that even if X has no true effect upon Y, we can still calculate 
a regression line and its slope coefficient b. Although b is likely to be small, it is 
unlikely to be exactly zero. Measuring the goodness of fit of the data to the line 
helps us to distinguish between good and bad regressions.

We proceed by comparing the three competing models explaining the birth 
rate. Which of them fits the data best? Using the income ratio and the GNP vari-
able gives the following regressions (calculations not shown) to compare with our 
original model:

for the income ratio (IR): B = 26.44 + 1.045 * IR + e
for GNP: B = 34.72 - 0.003 * GNP + e
for growth: B = 40.71 - 2.70 * GROWTH + e

How can we decide which of these three is ‘best’ on the basis of the regression 
equations alone? From Figure 7.1 it is evident that some relationships appear 
stronger than others, yet this is not revealed by examining the regression equa-
tion alone. More information is needed. (You cannot choose the best equation 
simply by looking at the size of the coefficients. Consider why that is so.)

The goodness of fit is calculated by comparing two lines: the regression line 
and the ‘mean line’ (i.e. a horizontal line drawn at the mean value of Y). The 
regression line must fit the data better (if the mean line were the best fit, that is 
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also where the regression line would be) but the question is how much better? 
This is illustrated in Figure 7.6, which demonstrates the principle behind the 
 calculation of the coefficient of determination, denoted by R2 and usually more 
simply referred to as ‘R squared’.

The figure shows the mean value of Y, the calculated sample regression line and 
an arbitrarily chosen sample observation (Xi, Yi). The difference between Yi and Y  
(length Yi - Y) can be divided up into:

(1) That part ‘explained’ by the regression line, Yni - Y  (i.e. explained by the value 
of Xi).

(2) The error term ei = Yi - Yni.

In algebraic terms,

Yi - Y = (Y - Yni) + (Yni - Y) (7.14)

A good regression model should ‘explain’ a large part of the differences 
between the Yi values and Y , i.e. the length (Yni - Y) should be large relative to 
Yi - Y . A measure of fit could therefore be (Yni - Y)>(Yi - Y). We need to apply 
this to all observations rather than just a single one; hence we could sum this 
expression over all the sample observations. A problem with this is that some of 
the terms would take a negative value and offset the positive terms. To measure 
the goodness of fit, we do not want the positive and negative terms to cancel 
each other out. Hence, to get round this problem, we square each of the terms in 
equation (7.14) to make them all positive, and then sum over the observations. 
This gives

a (Yi - Y)2, known as the total sum of squares (TSS)

a (Yni - Y)2, the regression sum of squares (RSS), and

a (Yi - Yni)2, the error sum of squares (ESS)

The measure of goodness of fit, R2, is then defined as the ratio of the regression 
sum of squares to the total sum of squares, i.e.

R2 =
RSS
TSS

 (7.15)

Y

ei
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Xi X
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Ŷ– Ȳ

Figure 7.6
The calculation of R2
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The better the divergences between Yi and Y  are explained by the regression line, 
the better the goodness of fit, and the higher the calculated value of R2. Further, 
it is true that

TSS = RSS + ESS (7.16)

From equations (7.15) and (7.16) we can then see that R2 must lie between 0 and 
1 (note that since each term in equation (7.16) is a sum of squares, none of them 
can be negative). Thus

0 … R2 … 1

A value of R2 = 1 (and hence ESS = 0) indicates that all the sample observations 
lie exactly on the regression line (equivalent to perfect correlation). If R2 = 0, 
then the regression line is of no use at all -X does not influence Y (linearly) at all, 
and to try to predict a value of Y one might as well use the mean Y  rather than the 
value Xi inserted into the sample regression equation.

To calculate R2, alternative formulae to those above make the task easier. 
Instead we use:

 TSS = g(Yi - Y )2 = gY 2
i - nY 2 = 12 564 - 12 * 31.672 = 530.667 (7.17a)

 ESS = g(Yi - Yn)2 = gY 2
i - agYi - bgXiYi

 =  12 564 - 40.711 * 380 - (-  2.7) * 1139.70 = 170.754 (7.17b)
 RSS = TSS - ESS = 530.667 - 170.754 = 359.913  (7.17c)

This gives the result

R2 =
RSS
TSS

=
359.913
530.667

= 0.678

This is interpreted as follows. Countries’ birth rates vary around the overall 
mean value of 31.67 and 67.8% of this variation is explained by variation in coun-
tries’ growth rates. This is quite a respectable figure to obtain, leaving only 32.8% 
of the variation in Y left to be explained by other factors (or pure random varia-
tion). The regression seems to make a worthwhile contribution to explaining why 
birth rates differ. However, it does not explain the mechanism by which higher 
growth leads to a lower birth rate.
It turns out that in simple regression (i.e. where there is only one explanatory 
variable), R2 is simply the square of the correlation coefficient between X and Y. 
Thus, for the income ratio and for GNP, we have:

 for IR: R2 = 0.352 = 0.13
 for GNP: R2 = -0.262 = 0.07

This shows, once again, that these other variables are not terribly useful in 
explaining why birth rates differ. Each of them explains only a small proportion 
of the variation in Y.

It should be emphasised at this point that R2 is not the only criterion (or even 
an adequate one in all cases) for judging the quality of a regression equation and 
that other statistical measures, set out below, are also helpful.

(a) Calculate the R2 value for the regression of the birth rate on the income ratio, calculated in 
Exercise 7.4.

(b) Confirm that this result is the same as the square of the correlation coefficient between 
these two variables, calculated in Exercise 7.1.

?

Exercise 7.5
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Inference in the regression model

So far, regression has been used as a descriptive technique, to measure the rela-
tionship between the two variables. We now go on to draw inferences from the 
analysis about what the true regression line might look like. As with correlation, 
the estimated relationship is in fact a sample regression line, based upon data for 
12 countries. The estimated coefficients a and b are random variables, since they 
would differ from sample to sample. What can be inferred about the true (but 
unknown) regression equation?

The question is best approached by first writing down a true or population 
regression equation, in a form similar to the sample regression equation:

Yi = a + bXi + ei (7.18)

As usual, Greek letters denote true, or population, values. a and b are thus the 
population parameters, of which a and b are (point) estimates, using the method 
of least squares. e is the population error term. If we could observe the individual 
error terms ei, then we would be able to get exact values of a and b (even from a 
sample), rather than just estimates.

Given that a and b are estimates, we can ask about their properties: whether 
they are unbiased and how precise they are, compared to alternative estimators. 
Under reasonable assumptions (see, for example, Maddala and Lahiri (2009), 
Chapter 3) it can be shown that the OLS estimates of the coefficients are unbiased. 
Thus, OLS provides useful point estimates of the parameters (the true values a and 
b). This is one reason for using the least squares method. It can also be shown that, 
among the class of linear unbiased estimators, OLS has the minimum variance, 
i.e. the method provides the most precise estimates. This is another, powerful jus-
tification for the use of OLS.

 Analysis of the errors

So far, we have found point estimates and we have learnt they are unbiased. 
However, just because they are unbiased (correct on average) does not mean 
that we might not get an estimate which is a long way from the truth. For 
some insight into this we need, as usual, a confidence interval estimate. To find 
the  confidence intervals for a and b, we need to know which statistical distri-
bution we should be using, i.e. the distributions of a and b. These can be 
derived, based on the assumptions that the error term e in equation (7.18) is 
Normally distributed and that the errors are statistically independent of each 
other. Since we are using cross-section data from countries which are different 
geographically, politically and socially, it seems reasonable to assume the errors 
are independent.

To check the Normality assumption, we can graph the residuals calculated 
from the sample regression line. If the true errors are Normal, it seems likely that 
these residuals should be approximately Normal also. The residuals are calculated 
according to equation (7.10). For example, to calculate the residual for Brazil, we 
subtract the fitted value from the actual value. The fitted value is calculated by 
substituting the growth rate into the estimated regression equation, yielding 
Yn = 40.712 - 2.7 * 5.1 = 26.9. Subtracting this from the actual value gives 
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Yi - Yn = 30 - 26.9 = 3.1 Other countries’ residuals are calculated in similar 
manner, yielding the results shown in Table 7.5.

These residuals may then be gathered together in a frequency table (as in 
Chapter 1) and graphed. This is shown in Figure 7.7.

Although the number of observations is small (and therefore the graph is not a 
smooth curve), the chart does have the greater weight of frequencies in the centre 
as one would expect, with less weight as one moves into the tails of the distribu-
tion. The assumption that the true error term is Normally distributed does not 
seem unreasonable.

If the residuals from the sample regression equation appeared distinctly non-
Normal (heavily skewed, for example), then one should be wary of constructing 
confidence intervals using the formulae below, based on a small sample. Instead, 
one might consider transforming the data (see below) before continuing, since 
such a data transformation might make the new residuals Normally distributed. 
There are more formal tests for Normality of the residuals4, but they are beyond 
the scope of this text. Drawing a graph is an informal alternative which can be 
useful, but remember that graphical methods can be misinterpreted.

If one were using time-series data one should also check the residuals for auto-
correlation at this point. This occurs when the error in period t is dependent in 

Table 7.5 Calculation of residuals

Actual birth rate Fitted values Residuals

Brazil 30 26.9 3.1
Colombia 29 32.1 -3.1
Costa Rica 30 32.6 -2.6

f f f f
Sri Lanka 27 34.0 -7.0
Taiwan 21 24.0 -3.0
Thailand 30 28.3 1.7

5

4

3

2

1

0
below –6 –6 to –2 2 to 6 over 6–2 to +2

Figure 7.7
Bar chart of residuals from 
the regression equation

4One example is the Jarque-Bera test.
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some way on the error in the previous period(s) and implies that the method of 
least squares may not be the best way of estimating the relationship. In this exam-
ple we have cross-section data, so it is not appropriate to check for autocorrela-
tion, since the ordering of the data does not matter. The next chapter, on multiple 
regression, covers this topic.

 Confidence interval estimates of a and b

Having checked that the residuals appear reasonably Normal, we can proceed 
with inference. This means finding interval estimates of the parameters a and b 
and, later on, conducting hypothesis tests. As usual, the 95% confidence interval 
is obtained by adding and subtracting approximately two standard errors from 
the point estimate. We therefore need to calculate the standard errors of a and of b 
and we also need to look up tables to find the precise number of standard errors to 
add and subtract. The principle is just the same as for the confidence interval esti-
mate of the sample mean, covered in Chapter 4.

The estimated sampling variance of b, the slope coefficient, is given by

s2
b =

s2
e

a (Xi - X)2 (7.19)

where

s2
e = a e2

i

n - 2
=

ESS
n - 2

 (7.20)

is the estimated variance of the error term, e.
The sampling variance of b measures the uncertainty associated with the esti-

mate. Note that the uncertainty is greater (i) the larger the error variance s2
e  (i.e. 

the more scattered are the points around the regression line) and (ii) the lower the 
dispersion of the X observations. When X does not vary much (less spread out 
along the x-axis) it is then more difficult to measure the effect of changes in X 
upon Y, and this is reflected in the formula.

First we need to calculate s2
e . The value of this is

s2
e =

170.754
10

= 17.0754 (7.21)

and so the estimated variance of b is

s2
b =

17.0754
49.37

= 0.346 (7.22)

(Use a (Xi - X)2 = aX2
i - nX2 in calculating (7.22) – it makes the calculation 

easier.) The estimated standard error of b is the square root of (7.22),

sb = 10.346 = 0.588 (7.23)

To construct the confidence interval around the point estimate, b = -2.7, the 
t distribution is used (in regression this applies to all sample sizes, not just small 
ones). The 95% confidence interval is thus given by

b { tnsb (7.24)



Chapter 7 • Correlation and regression

286

where tn is the (two-tail) critical value of the t distribution at the appropriate sig-
nificance level (5% in this case), with n = n - 2 degrees of freedom. The critical 
value is 2.228. Thus the confidence interval evaluates to:

-2.7 { 2.228 * 0.588 = [-4.01, -1.39]

Thus we can be 95% confident that the true value of b lies within this range. 
Note that the interval only includes negative values: we can rule out an upward-
sloping regression line.

For the intercept a, the estimate of the variance is given by

s2
a = s2

e * a1
n

+
X2

a (Xi - X)2 b = 17.0754 * a 1
12

+
3.352

49.37
b = 5.304 (7.25)

and the estimated standard error of a is the square root of this, 2.303. The 95% 
confidence interval for a, again using the t distribution, is

40.71 { 2.228 * 2.303 = [35.57, 45.84]

The results so far can be summarised as follows:

Yi = 40.711 - 2.70Xi + ei
s.e. (2.30) (0.59)
R2 = 0.678 n = 12

This conveys, at a glance, all the necessary information to the reader, who can 
then draw the inferences deemed appropriate. Any desired confidence interval 
(not just the 95% one) can be quickly calculated with the aid of a set of t tables.

 Testing hypotheses about the coefficients

As well as calculating confidence intervals, one can use hypothesis tests as the 
basis for statistical inference in the regression model. These tests are quickly and 
easily explained given the information already assembled. Consider the following 
hypothesis:

 H0: b = 0
H1: b ≠ 0

This null hypothesis is interesting because it implies no influence of X upon Y 
at all (i.e. the slope of the true regression line is flat and Yi can be equally well 
predicted by Y). The alternative hypothesis asserts that X does in fact influence Y.

The procedure is in principle the same as in Chapter 5 on hypothesis testing. 
We measure how many standard errors separate the observed value of b from the 
hypothesised value. If this is greater than an appropriate critical value, we reject 
the null hypothesis. The test statistic is calculated using the formula:

t =
b - b

sb
=

- 2.7 - 0
0.588

= -4.59 (7.26)

Thus the sample slope coefficient b differs by 4.59 standard errors from its hypoth-
esised value b = 0. This is compared to the critical value of the t distribution, 
using n - 2 degrees of freedom. Since t 6 - t*

10(=  -2.228), in this case, the null 
hypothesis is rejected with 95% confidence. X does have some influence on Y. 
Similar tests using the income ratio and GDP to attempt to explain the birth rate 
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show that in neither case is the slope coefficient significantly different from zero, 
i.e. neither of these variables appears to influence the birth rate.

Rule of thumb for hypothesis tests

A quick and reasonably accurate method for establishing whether a coefficient is signifi-
cantly different from zero is to see if it is at least twice its standard error. If so, it is signifi-
cant. This works because the critical value (at 95%) of the t distribution for reasonable 
sample sizes is about 2.

ST
ATISTICS
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C
E
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Sometimes regression results are presented with the t statistic (as calculated 
above), rather than the standard error, below each coefficient. This implicitly 
assumes that the hypothesis of interest is that the coefficient is zero. This is not 
always appropriate: in the consumption function a test for the marginal propen-
sity to consume being equal to 1 might be of greater relevance, for example. In a 
demand equation, one might want to test for unit elasticity. For this reason, it is 
better to present the standard errors rather than the t statistics.

Note that the test statistic t = -4.59 is exactly the same result as in the case of 
testing the correlation coefficient. This is no accident, for the two tests are equiva-
lent. A non-zero slope coefficient means there is a relationship between X and Y 
which also means the correlation coefficient is non-zero. Both null hypotheses 
are rejected.

 Testing the significance of R2: the F test

Another check of the quality of the regression equation is to test whether the R2 
value, calculated earlier, is significantly greater than zero. This is a test using the F 
distribution and turns out once again to be equivalent to the two previous tests 
H0: b = 0 and H0: r = 0, conducted in previous sections, using the t distribution.

The null hypothesis for the test is H0: R2 = 0, implying once again that X does 
not influence Y (hence equivalent to b = 0). The test statistic is

F =
R2>1

(1 - R2)>(n - 2)
 (7.27)

or equivalently

F =
RSS>1

ESS>(n - 2)
 (7.28)

The F statistic is therefore the ratio of the regression sum of squares to the error 
sum of squares, each divided by their degrees of freedom (for the RSS there is 
one degree of freedom because of the one explanatory variable, for the ESS there 
are n - 2 degrees of freedom). A high value of the F statistic (i.e. RSS is large 
relative to ESS) rejects H0 in favour of the alternative hypothesis, H1: R2 7 0. 
Evaluating (7.27) gives

F =
0.678>1

(1 - 0.678)>10
= 21.078 (7.29)

The critical value of the F distribution at the 5% significance level, with n1 = 1 
and n2 = 10, is F*

1 ,10 = 4.96. The test statistic exceeds this, so the regression as a 
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whole is significant. It is better to use the regression model to explain the birth 
rate than to use the simpler model which assumes all countries have the same 
birth rate (the sample average).

As stated before, this test is equivalent to those carried out before using the t 
distribution. The F statistic is, in fact, the square of the t statistic calculated earlier 
(-4.592 = 21.078) and reflects the fact that, in general,

F1, n - 2 = t2
n - 2

The Prob-value associated with both statistics is the same (approximately 
0.001 in this case), so both tests reject the null at the same level of significance. 
However, in multiple regression with more than one explanatory variable, the 
relationship no longer holds and the tests do fulfil different roles, as we shall see 
in the next chapter.

(a) For the regression of the birth rate on the income ratio, calculate the standard errors of 
the coefficients and hence construct 95% confidence intervals for both.

(b) Test the hypothesis that the slope coefficient is zero against the alternative that it is 
not zero.

(c) Test the hypothesis H0: R2 = 0.

?

Exercise 7.6

 Interpreting computer output

Having shown how to use the appropriate formulae to derive estimates of the 
parameters, their standard errors and to test hypotheses, we now present all these 
results as they would be generated by a computer software package, in this case 
Excel. This removes all the effort of calculation and allows us to concentrate on 
more important issues such as the interpretation of the results. Table 7.6 shows 
the computer output.

The table presents all the results we have already derived, plus a few more.

●	 The regression coefficients, standard errors and t ratios are given at the bottom 
of the table, suitably labelled. The column headed ‘P-value’ gives some addi-
tional information – it shows the significance level of the t statistic. For exam-
ple, the slope coefficient is significant at the level of 0.1%5, i.e. there is this 
probability of getting such a sample estimate by chance. This is much less than 
our usual 5% criterion, so we conclude that the sample evidence did not arise 
by chance.

●	 The program helpfully calculates the 95% confidence interval for the coeffi-
cients also, which were derived above in equation (7.24).

●	 Moving up the table, there is a section headed ‘ANOVA’. This is similar to the 
ANOVA covered in Chapter 6. This table provides the sums of squares values 
(RSS, ESS and TSS, in that order) and their associated degrees of freedom in the 
‘df’ column. The ‘MS’ (‘mean square’) column calculates the sums of squares each 
divided by their degrees of freedom, whose ratio gives the F statistic in the next 
column. This is the value calculated in equation (7.29). The ‘Significance F’ value 
is similar to the P-value discussed previously: it shows the level at which the F 
statistic is significant (0.1% in this case) and saves us looking up the F tables.

5This is the area in both tails, so it is for a two-tail test.
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●	 At the top of the table is given the R2 value and the standard error of the error 
term, se, labelled ‘Standard Error’, which we have already come across. ‘Multi-
ple R’ is simply the square root of R2; ‘Adjusted R2’ (sometimes called ‘R-bar 
squared’ and written R2) adjusts the R2 value for the degrees of freedom. This is 
an alternative measure of fit, which is not affected by the number of explana-
tory variables, unlike R2. See Maddala and Lahiri (2009, Chapter 4) for a more 
detailed explanation.

 Prediction

Earlier we showed that the regression line could be used for prediction, using the 
figures for Costa Rica. The point estimate of Costa Rica’s birth rate is calculated 
simply by putting its growth rate into the regression equation and assuming a 
zero value for the error, i.e.

Yn = a + bX + 0 = 40.711 - 2.7 * 3 + 0 = 32.6

This is a point estimate, which is unbiased, around which we can build a confi-
dence interval. There are, in fact, two confidence intervals we can construct, the 
first for the position of the regression line at X = 3, the second for an individual 
observation (on Y) at X = 3. Using the 95% confidence level, the first interval is 
given by the formula

Yn { tn - 2 * seB1
n

+
(XP - X)2

a (X - X)2
 (7.30)

where XP is the value of X for which the prediction is made. tn - 2 denotes the criti-
cal value of the t distribution at the 5% significance level (for a two-tail test) with 
n - 2 degrees of freedom. This evaluates to

32.6 { 2.228 * 4.132B 1
12

+
(3 - 3.35)2

49.37
=  [29.90, 35.30]

Table 7.6 Regression output from Excel
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This means that we predict with 95% confidence that the average birth rate of all 
countries growing at 3% p.a. is between 29.9 and 35.3.

The second type of interval, for the value of Y itself at XP = 3, is somewhat 
wider, because there is an additional element of uncertainty: individual countries 
do not lie on the regression line, but around it. This is referred to as the 95% pre-
diction interval. The formula for this interval is

Yn { tn - 2 * se B1 +
1
n

+
(XP - X)2

a (X - X)2
 (7.31)

Note the extra ‘1’ inside the square root sign. When evaluated, this gives a 95% 
prediction interval of [23.01, 42.19]. Thus we are 95% confident that an individ-
ual country growing at 3% p.a. will have a birth rate within this range.

The two intervals are illustrated in Figure 7.8. The smaller confidence inter-
val is shown in a darker shade, with the wider prediction interval being about 
twice as big. Note from the formulae that the prediction is more precise (the 
interval is smaller):

●	 the closer the sample observations lie to the regression line (smaller se),
●	 the greater the spread of sample X values (larger g(X - X)2),
●	 the larger the sample size (larger n),
●	 the closer to the mean of X the prediction is made (smaller XP - X).

This last characteristic is evident in the diagram, where the intervals are narrower 
towards the centre of the diagram.

There is an additional danger of predicting far outside the range of sample X 
values, if the true regression line is not linear as we have assumed. The linear sam-
ple regression line might be close to the true line within the range of sample X 
values but diverge substantially outside. Figure 7.9 illustrates this point.

In the birth rate sample, we have a fairly wide range of X values; few countries 
grow more slowly than Senegal or faster than Korea.

Growth rate

Prediction interval

Birth rate

Confidence interval

50

40

30

20

10

0 1 2 3 4 5 6 7

Figure 7.8
Confidence and prediction 
intervals

Use Excel’s regression tool (or other software) to confirm your answers to Exercises 7.4 
to 7.6.

Exercise 7.7



Route map of calculations

291

Route map of calculations

By now we have been through a lot of formulae and calculations, and the reader 
might be a little bewildered. Hence we summarise here in Figure 7.10, and in the 
worked example below, the order in which these calculations are carried out, a 
kind of route map. It is possible to vary parts of the ordering slightly, which is not 
important.

Figure 7.9
The danger of prediction  
outside the range of 
sample data

(a) Predict (point estimate) the birth rate for a country with an income ratio of 10.

(b) Find the 95% confidence interval prediction for a typical country with IR = 10.

(c) Find the 95% confidence interval prediction for an individual country with IR = 10.?

Exercise 7.8

Calculate sums of squares
and cross-products (SX, SY,

SX2, SY2, SXY)

Calculate a and b to find the
regression line, (7.12) and (7.13)

Calculate the correlation
coefficent (formula 7.1)

Calculate TSS, ESS and RSS (7.17) Calculate the goodness of fit
measure, R2 (7.15)

Calculate the error variance, se
2

(7.20)
Calculate the F statistic, to

test the goodness of fit, (7.27)
or (7.28)

Calculate the variances and
standard errors of the coefficients,

(7.19) and (7.25)

Calculate the confidence intervals for
a and b (7.24), and conduct

hypothesis tests (7.26)

Use the regression line to
predict Y (= a + bX)

Obtain confidence
interval estimates for
the prediction, (7.30)

and (7.31)

Figure 7.10
Route map of regression 
calculations
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Worked example 7.2 

We continue the previous worked example, completing the calculations 
needed for regression. The previous table contains most of the preliminary cal-
culations. To find the regression line we use:

b =
naXY - aXaY

naX2 - 1aX22 =
6 * 682 - 33 * 119

6 * 199 - 332 = 1.57

and

a = 19.83 - 1.57 * 5.5 = 11.19

Hence we obtain the equation:

Yi = 11.19 + 1.57Xi + ei

For inference, we start with the sums of squares:

 TSS = a (Yi - Y)2 = aY 2
i - nY 2

 = 2427 - 6 * 19.832 = 66.83

 ESS = a (Yi - Yn)2 = aY 2
i - aaYi - baXiYi

 = 2427 - 11.19 * 119 - 1.57 * 682 = 23.62
 RSS = TSS - ESS = 66.83 - 23.62 = 43.21

We then get R2 = RSS>TSS = 43.21>66.83 = 0.647 or 64.7% of the variation 
in Y explained by variation in X.

To obtain the standard errors of the coefficients, we first calculate the error 
variance as s2

e = ESS>(n - 2) = 23.62>4 = 5.905 and the estimated variance of 
the slope coefficient is:

s2
b =

s2
e

a (X - X)2 =
5.905
17.50

= 0.338

and the standard error of b is therefore 10.338 = 0.581.
Similarly, for a we obtain:

s2
a = s2

e * a1
n

+
X2

a (X - X)2 b = 5.905 * a1
6

+
5.52

17.50
b = 11.19

and the standard error of a is therefore 3.34.
Confidence intervals for a and b can be constructed using the critical value 

of the t distribution, 2.776 (5%, n = 4), yielding 1.57 { 2.776 * 0.581 =  
[-0.04,  3.16] for b and [1.90, 20.47] for a. Note that zero is inside the confi-
dence interval for b. This is also reflected in the test of H0: b = 0 which is

t =
1.57 - 0

0.581
= 2.71

which falls just short of the two-tailed critical value, 2.776. Hence H0 cannot be 
rejected.

The F statistic to test H0: R2 = 0 is:

F =
RSS>1

ESS>(n - 2)
=

43.21>1
23.62>(6 - 2)

= 7.32
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Some other issues in regression

We have now completed our review of the main calculations and interpretation of 
the regression results. We now look at a few additional issues which often arise, 
and it is useful to be aware of them.

 Units of measurement

The measurement and interpretation of the regression coefficients depend upon the 
units in which the variables are measured. For example, suppose we had measured 
the birth rate in births per hundred (not thousand) of population; what would be the 
implications? Obviously nothing fundamental is changed; we ought to get the same 
qualitative result, with the same interpretation. However, the regression coefficients 
cannot remain the same: if the slope coefficient remained b = -2.7, this would 
mean that an increase in the growth rate of one percentage point reduces the birth 
rate by 2.7 births per hundred, which is clearly wrong. The right answer should be 0.27 
births per hundred (equivalent to 2.7 per thousand) so the coefficient should change 
to b = -0.27. Thus, in general, the sizes of the coefficients depend upon the units in 
which the variables are measured. This is why one cannot judge the importance of a 
regression equation from the size of the coefficients alone.

It is easiest to understand this in graphical terms. A graph of the data will look 
exactly the same, except that the scale on the Y-axis will change; it will be divided by 
10. The intercept of the regression line will therefore change to a = 4.0711 and the 
slope to b = -0.27 (i.e. both are divided by 10). Thus the regression equation becomes

Yi = 4.0711 - 0.27Xi + ei′
(ei′ = ei>10)

Since nothing fundamental has altered, any hypothesis test must yield the 
same result and, in particular, the same test statistic. Thus, t and F statistics are 
unaltered by changes in the units of measurement; nor is R2 altered. However, 
standard errors will be divided by 10 (they have to be to preserve the t statistics; 
see equation (7.26) for example). Table 7.7 sets out the effects of changes in the 

which compares to a critical value of F(1,4) of 7.71. So, again, the null cannot be 
rejected (remember that this and the t test on the slope coefficient are equiva-
lent in simple regression).

We shall predict the value of Y for a value of X = 10, yielding Yn  =  
11.19 + 1.57 * 10 = 26.90. The 95% confidence interval for this prediction is 
calculated using (7.30) which gives

26.90 - 2.776 * 2.43B1
6

+
(10 - 5.5)2

17.50
= [19.14, 34.66].

The 95% prediction interval for an actual observation at X = 10 is given by 
(7.31), resulting in

26.90 { 2.776 * 2.43B1 +
1
6

+
(10 - 5.5)2

17.50
= [16.62,  37.18].
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units of measurement (of either the X or Y variable) upon the coefficients and 
standard errors. In the table it is assumed that the variables have been multiplied 
by a constant k; in the above case k = 1>10 was used.

It is important to be aware of the units in which the variables are measured. If 
not, it is impossible to know how large is the effect of X upon Y. It may be statisti-
cally significant, but we have no idea of how important it is. This may occur if, for 
instance, one of the variables is presented as an index number (see Chapter 10) 
rather than in the original units.

 How to avoid measurement problems: calculating the elasticity

A neat way to avoid the problems of measurement is to calculate the elasticity, 
i.e. the proportionate change in Y divided by the proportionate change in X. The 
proportionate changes are the same whatever units the variables are measured 
in. The proportionate change in X is given by ∆X>X, where ∆X indicates the 
change in X. Thus if X changes from 100 to 110, the proportionate change is 
∆X>X = 10>100 = 0.1 or 10%. The elasticity, h, is therefore given by

h =
∆Y>Y
∆X>X   or  equivalently h =

∆Y
∆X

*
X
Y

 (7.32)

The second form of the equation is more useful, since ∆Y>∆X is simply the 
slope coefficient b. We simply need to multiply this by the ratio X>Y, therefore. But 
what values should be used for X and Y? The convention is to use the means, so we 
obtain the following formula for the elasticity, from a linear regression equation:

h = b *
X
Y

 (7.33)

This evaluates to -2.7 * 3.35>31.67 = -0.29. This is interpreted as follows: a 
1% increase in the growth rate would lead to a 0.29% decrease in the birth rate. 
Equivalently, and perhaps a little more usefully, a 10% rise in growth (from say 3% 
to 3.3% p.a.) would lead to a 2.9% decline in the birth rate (e.g. from 30 to 29.13). 
This result is the same whatever units the variables X and Y are measured in.

Note that this elasticity is measured at the means; it would have a different 
value at different points along the regression line. Later on we show an alternative 
method for estimating the elasticity, in this case the elasticity of demand which is 
familiar in economics.

 Non-linear transformations

So far only linear regression has been dealt with, that is fitting a straight line to the 
data. This can sometimes be restrictive, especially when there is good reason to 
believe that the true relationship is non-linear (e.g. the labour supply curve). Poor 
results would be obtained by fitting a straight line through the data in Figure 7.11, 
yet the shape of the relationship seems clear at a glance.

Table 7.7 The effects of data transformations

Factor (k) multiplying . . . Effect upon
Y X a sa b sb

k 1  all multiplied by k 
1 k unchanged divided by k
k k multiplied by k Unchanged
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Fortunately, this problem can be solved by transforming the data, so that when 
graphed a linear relationship between the two variables appears. Then a straight 
line can be fitted to these transformed data. This is equivalent to fitting a curved 
line to the original data. All that is needed is to find a suitable transformation to 
‘straighten out’ the data. Given the data represented in Figure 7.11, if Y were 
graphed against 1/X, the relationship shown in Figure 7.12 would appear.

Thus, if the regression line

Yi = a + b 
1
Xi

= ei (7.34)

were fitted, this would provide a good representation of the data in Figure 7.11. 
The procedure is straightforward. First, calculate the reciprocal of each of the X 
values and then use these new values (together with the original data for Y), using 
exactly the same methods as before. This transformation appears inappropriate 
for the birth rate data (see Figure 7.1) but serves as an illustration. The transformed 
X values are 0.196 (=1>5.1) for Brazil, 0.3125 (=1>3.2) for Colombia, etc. The 
resulting regression equation is

Yi = 31.92 - 3.96 
1
Xi

+ ei (7.35)

s.e. (1.64)  (1.56)

R2 = 0.39,  F = 6.44, n = 12

Figure 7.11
Graph of Y against X

Figure 7.12
Transformation of Figure 
7.11: Y against 1/X
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This appears worse than the original specification (the R2 is low and the slope 
coefficient is not significantly different from zero), so the transformation does 
not appear to be a good one. Note also that it is difficult to calculate the effect of 
X upon Y in this equation. We can see that a unit increase in 1/X reduces the 
birth rate by 3.96, but we do not have an intuitive feel for the inverse of the 
growth rate. This latest result also implies that a fall in the growth rate (hence, 
1/X rises) lowers the birth rate – the converse of our previous result. In the next 
chapter, we deal with a different example where a non-linear transformation 
does improve matters.

Table 7.8 presents a number of possible shapes for data, with suggested data 
transformations which will allow the relationship to be estimated using linear 
regression. In each case, once the data have been transformed, the methods and 
formulae used above can be applied.

It is sometimes difficult to know which transformation (if any) to apply. A 
graph of the data is unlikely to be as tidy as the diagrams in Table 7.8. Economic 
theory rarely suggests the form which a relationship should follow, and there are 
no simple statistical tests for choosing alternative formulations. The choice can 
sometimes be made after visual inspection of the data, or on the basis of conve-
nience. The double log transformation is often used in economics as it has some 
very convenient properties. Unfortunately, it cannot be used with the growth rate 
data here because Senegal’s growth rate was negative. It is impossible to take the 
logarithm of a negative number. We therefore postpone the use of the log trans-
formation in regression until the next chapter.

Table 7.8 Data transformations

Name Graph of relationship Original relationship Transformed relationship Regression

Double log

X

Y

b < 0
b > 1
0 < b > 1

Y = aXbe  ln  Y -  ln a + b ln X +  ln e  ln  Y on ln X

Reciprocal

X

Y

a b < 0
b > 0

Y = a + b>X + e
Y = a + b 

1
X

+ e Y on 
1
X

Semi-log eY = aXbe Y =  ln a + b ln X +  ln e Y on ln X

Exponential

b > 0
b < 0

Y = ea + bX + e  ln Y = a + bX + e  ln Y on X
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Gapminder again

It is instructive to return to Gapminder again (encountered in Chapter 1) to see 
what it can reveal with similar data but using more countries, in this case 92. This 
is a mixture of developing (mainly) and developed countries. First, we note that 
(as is often the case) it is difficult to replicate our earlier relationship between the 
birth rate and growth because (i) Gapminder has birth rate data for 1983, not 
1981, and (ii) Gapminder only has ‘Growth over the next 10 years’ readily pre-
pared for graphing, i.e. we would have to use the birth rate in 1983 and the growth 
rate over 1983 to 1993. Fortunately, one can download the underlying data and do 
the analysis6. This reveals a regression equation:

BR = 41.8 - 4.08 growth rate + error
s.e. (2.03)  (0.66)
R2 = 0.30, F1,90 = 38.4, n = 92.

The slope coefficient uncovered earlier, using just 12 countries, was -2.70 
(s.e. 0.59). Thus, the larger sample has found a much steeper relationship 
between the variables. The Gapminder data are slightly different (even for the 
same countries) from Todaro’s, so we can also use the Gapminder data for the 
original 12 countries, revealing a slope coefficient of -3.24 (s.e. 0.38) which is 
not so different from Todaro.

It is easier to examine the birth rate/income relationship, since Gapminder can 
readily do this. It gives the following graph.

6Gapminder only produces graphs, it does not perform regression analysis. For this, you 
need to download the data and do it yourself.

Source: From www.gap-
minder.org, Visualization 
from Gapminder World, pow-
ered by Trendalyzer from 
www.gapminder.org.

http://www.gap-minder.org
http://www.gapminder.org
http://www.gap-minder.org
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Note that Gapminder, by default, uses the log of income, rather than income 
itself. This makes it a little difficult to compare with Figure 7.1(b), showing Todaro’s 
data, which used income. Is it better to use income or log income? From looking at 
the Gapminder data there appears to be a curvilinear relationship between the birth 
rate and income, and a linear regression would not fit well. Also, income is highly 
skewed with some very high values (e.g. Kuwait) which will tend to have a large influ-
ence on the regression line’s position. Taking the log of income addresses this issue. 
The birth rate data are not so skewed so there is less need to transform them.

Comparing regression results, we have:

Income coefficient (s.e.) R2 N

Todaro -0.003 (0.003) 0.07 12
Gapminder -0.0006 (0.0001) 0.26 155
Gapminder (log income) -7.81 (0.56) 0.56 155

The results using log income appear best, with the highest R2 value (note the 
dependent variable is the same in all cases) and with a significant slope coefficient. 
The only tricky part is interpreting the coefficient – what does it mean? This is a use-
ful exercise to work through. The initial interpretation is that a unit increase in log 
income leads to a 7.81 fall in the birth rate. But what is a unit increase in the (natu-
ral) log? The answer is that it corresponds to a 172% increase in income (because 
 ln(2.72) = 1). This is not the easiest of results to digest. Easier would be to ask, what 
is the effect of doubling a country’s income? In this case,  ln(2) = 0.69, and this 
would be the increase in the log. This would imply a 0.69 * 7.81 = 5.4 fall in the 
birth rate. Thus, a doubling of a country’s income reduces the birth rate by about 
five births per 1000 population (approximately a 15% reduction at the mean).

(a) Calculate the elasticity of the birth rate with respect to the income ratio, using the results 
of previous exercises.

(b) Give a brief interpretation of the meaning of this figure.?

Exercise 7.9

Calculate a regression relating the birth rate to the inverse of the income ratio 1/IR.

?

Exercise 7.10

Summary

●	 Correlation refers to the extent of association between two variables. The (sam-
ple) correlation coefficient is a measure of this association, extending from 
r = -1 to r = +1.

●	 Positive correlation (r 7 0) exists when high values of X tend to be associated 
with high values of Y and low X values with low Y values.

●	 Negative correlation (r 6 0) exists when high values of X tend to be associated 
with low values of Y and vice versa.

●	 Values of r around 0 indicate an absence of correlation.

●	 As the sample correlation coefficient is a random variable, we can test for its 
significance, i.e. test whether the true value is zero or not. This test is based 
upon the t distribution.
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●	 The existence of correlation (even if ‘significant’) does not necessarily imply 
causality. There can be other reasons for the observed association.

●	 Regression analysis extends correlation by asserting a causality from X to Y and 
then measuring the relationship between the variables via the regression line, 
the ‘line of best fit’.

●	 The regression line Y = a + bX is defined by the intercept a and slope coeffi-
cient b. Their values are found by minimising the sum of squared errors around 
the regression line.

●	 The slope coefficient b measures the responsiveness of Y to changes in X.

●	 A measure of how well the regression line fits the data is given by the coeffi-
cient of determination, R2, varying between 0 (very poor fit) and 1 (perfect fit).

●	 The coefficients a and b are unbiased point estimates of the true values of the 
parameters. Confidence interval estimates can be obtained, based on the t dis-
tribution. Hypothesis tests on the parameters can also be carried out using the 
t distribution.

●	 A test of the hypothesis R2 = 0 (implying the regression is no better at predicting 
Y than simply using the mean of Y) can be carried out using the F distribution.

●	 The regression line may be used to predict Y for any value of X by assuming the 
residual to be zero for that observation.

●	 The measured response of Y to X (given by b) depends upon the units of mea-
surement of X and Y. A better measure is often the elasticity, which is the pro-
portionate response of Y to a proportionate change in X.

●	 Data are often transformed prior to regression (e.g. by taking logs) for a variety 
of reasons (e.g. to fit a curve to the original data).

autocorrelation
coefficient of determination (R2)
correlation coefficient
dependent (endogenous) variable
elasticity
error sum of squares
error term (or residual)
estimated variance of the error term
explained (endogenous) variable
explanatory variable
independent (exogenous) variable
intercept
negative correlation
non-parametric statistics

Pearson’s product-moment correlation 
coefficient

positive correlation
prediction
prediction interval
rank correlation coefficient
regression line or equation
regression sum of squares
slope
Spearman’s coefficient of rank correlation
standard error
t distribution
total sum of squares
zero correlation

Key terms and concepts
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Formula Description Notes

r =
na XY - a Xa Y21na X2 - 1a X2221na Y2 - 1a Y222

Correlation coefficient -1 … r … 1

t =
r1n - 221 - r2

Test statistic for H0: r = 0 n = n - 2

rs = 1 -
6a d2

n(n2 - 1)

Spearman’s rank correlation 
 coefficient

-1 … rs … 1. d is the difference in ranks 
between the two variables. Only works if 
there are no tied ranks. Otherwise use stan-
dard correlation formula.

b =
na XY - a Xa Y

na X2 - 1a X22

Slope of the regression line 
 (simple regression)

a = Y - bX Intercept (simple regression)

TSS = a Y2 - nY2 Total sum of squares

ESS = a Y2 - aa Y - ba XY Error sum of squares

RSS = TSS - ESS Regression sum of squares

R2 =
RSS
TSS

Coefficient of determination

s2
e =

ESS
n - 2

Variance of the error term in 
regression

Replace n - 2 by n - k - 1 in multiple 
regression

s2
b =

s2
e

a (X - X)2

Variance of the slope coefficient 
in simple regression

s2
a = s2

e = B1
n

+
X2

a (X - X)2

Variance of the intercept in simple 
regression

b { tn * sb Confidence interval estimate for b 
in simple regression

tv is the critical value of the t distribution 
with n = n - 2 degrees of freedom

t =
b - b

sb

Test statistic for H0: b = 0 n = n - 2 in simple regression, n - k - 1 
in multiple regression

F =
RSS>1

ESS>(n - 2)
Test statistic for H0: R2 = 0 n = k, n - k - 1 in multiple regression

Yn { tn * se B1
n

+
(XP - X)2

a (X - X)2

Confidence interval for a predic-
tion (simple regression) at X = XP

n = n - 2

Yn { tn * se B1 +
1
n

+
(XP - X)2

a (X - X)2

Confidence interval for an 
 observation on Y at X = XP

n = n - 2

Formulae used in this chapter
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Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 7.1 The other data which Todaro might have used to analyse the birth rate were:

Country Birth rate GNP Growth Income ratio

Bangladesh 47 140 0.3 2.3
Tanzania 47 280 1.9 3.2
Sierra Leone 46 320 0.4 3.3
Sudan 47 380 -1.3 3.9
Kenya 55 420 2.9 6.8
Indonesia 35 530 4.1 3.4
Panama 30 1910 3.1 8.6
Chile 25 2560 0.7 3.8
Venezuela 35 4220 2.4 5.2
Turkey 33 1540 3.5 4.9
Malaysia 31 1840 4.3 5.0
Nepal 44 150 0.0 4.7
Malawi 56 200 2.7 2.4
Argentina 20 2560 1.9 3.6

For one of the three possible explanatory variables (in class, different groups could examine each of 
the variables):

(a) Draw an XY chart of the data above and comment upon the result.

(b) Would you expect a line of best fit to have a positive or negative slope? Roughly, what would you 
expect the slope to be?

(c) What would you expect the correlation coefficient to be?

(d) Calculate the correlation coefficient, and comment.

(e) Test to see if the correlation coefficient is different from zero. Use the 95% confidence level.

(Analysis of this problem continues in Problem 7.5.)

 7.2 The data below show alcohol expenditure and income (both in £s per week) for a sample of 17 
families.

Family Alcohol expenditure Income Family Alcohol expenditure Income

1 26.17 487 10 13.32 370
2 19.49 574 11  9.24 299
3 17.87 439 12 47.35 531
4 16.90 367 13 26.80 506
5  4.21 299 14 33.44 613
6 32.08 743 15 21.41 472
7 30.19 433 16 16.06 253
8 22.62 547 17 24.98 374

Problems
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(a) Draw an XY plot of the data and comment.

(b) From the chart, would you expect the line of best fit to slope up or down? In theory, which way 
should it slope?

(c) What would you expect the correlation coefficient to be, approximately?

(d) Calculate the correlation coefficient between alcohol spending and income.

(e) Is the coefficient significantly different from zero? What is the implication of the result?

(The following totals will reduce the burden of calculation: gY = 137.990; gX = 7610; gY2 = 9 918.455; g X2 = 3 680 748; gXY = 181 911.250; Y is consumption, X is income. If you 
wish, you could calculate a logarithmic correlation. The relevant totals are: gy = 50.192; gx = 103.079; gy2 = 153.567; gx2 = 626.414;  gxy = 306.339, where y =  ln Y  and 
x =  ln X.)

(Analysis of this problem continues in Problem 7.6.)

 7.3 What would you expect to be the correlation coefficient between the following variables? Should the 
variables be measured contemporaneously or might there be a lag in the effect of one upon the other?

(a) Nominal consumption and nominal income.

(b) GDP and the imports/GDP ratio.

(c) Investment and the interest rate.

 7.4 As Problem 7.3, for

(a) real consumption and real income;

(b) individuals’ alcohol and cigarette consumption;

(c) UK and US interest rates.

 7.5 Using the data from Problem 7.1, calculate the rank correlation coefficient between the variables 
and test its significance. How does it compare with the ordinary correlation coefficient?

 7.6 (a)  Calculate the rank correlation coefficient between income and quantity for the data in Problem 
7.2. How does it compare to the ordinary correlation coefficient?

(b)  Is there significant evidence that the ranks are correlated?

 7.7 (a)  For the data in Problem 7.1, find the estimated regression line and calculate the R2 statistic. 
Comment upon the result. How does it compare with Todaro’s findings?

(b) Calculate the standard error of the estimate and the standard errors of the coefficients. Is the 
slope coefficient significantly different from zero? Comment upon the result.

(c) Test the overall significance of the regression equation and comment.

(d) Taking your own results and Todaro’s, how confident do you feel that you understand the deter-
minants of the birth rate?

(e) What do you think will be the result of estimating your equation using all 26 countries’ data? Try 
it. What do you conclude?

 7.8 (a)  For the data given in Problem 7.2, estimate the sample regression line and calculate the R2 sta-
tistic. Comment upon the results.

(b) Calculate the standard error of the estimate and the standard errors of the coefficients. Is the 
slope coefficient significantly different from zero?

(c) Test the overall significance of the regression and comment upon your result.
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 7.9 From your results for the birth rate model, predict the birth rate for a country with either (a) GNP 
equal to $3000, (b) a growth rate of 3% p.a., or (c) an income ratio of 7. How does your prediction 
compare with one using Todaro’s results? Comment.

 7.10 Predict alcohol consumption given an income of £700. Use the 99% confidence level for the interval 
estimate.

 7.11 (Project) Update Todaro’s study using more recent data.

 7.12 Try to build a model of the determinants of infant mortality. You should use cross-section data for 
20 countries or more and should include both developing and developed countries in the sample.

Write up your findings in a report which includes the following sections: discussion of the prob-
lem; data gathering and transformations; estimation of the model; interpretation of results. Useful 
data may be found in the Human Development Report (use Google to find it online) or on the World 
Bank website.
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Answers to exercises

Exercise 7.1

(a) The calculation is:

Birth rate Y Income ratio X Y2 X2 XY

Brazil 30 9.5 900 90.25 285
Colombia 29 6.8 841 46.24 197.2
Costa Rica 30 4.6 900 21.16 138
India 35 3.1 1 225 9.61 108.5
Mexico 36 5 1 296 25 180
Peru 36 8.7 1 296 75.69 313.2
Philippines 34 3.8 1 156 14.44 129.2
Senegal 48 6.4 2 304 40.96 307.2
South Korea 24 2.7 576 7.29 64.8
Sri Lanka 27 2.3 729 5.29 62.1
Taiwan 21 3.8 441 14.44 79.8
Thailand 30 3.3 900 10.89 99
Totals 380 60 12 564 361.26 1 964

r =
12 * 1964 - 60 * 3802(12 * 136.26 - 602)(12 * 12 564 - 3802)

= 0.355

(b) As for (a) except gX = 0.6, gY = 38, gX2 = 0.036 126, gY 2 = 125.64, gXY = 1.964. Hence

r =
12 * 1.964 - 0.6 * 382(12 * 0.036 126 - 0.62)(12 * 125.64 - 382)

= 0.355

Exercise 7.2

(a) t =
0.355112 - 221 - (0.355)2

= 1.20 6 2.228 = t* (5% significance level, two-tailed test).

(b) The Prob-value, for a two-tailed test, is 0.257 or 25%. This is greater than 5% so we 
do not reject the null of no correlation.

Exercise 7.3

(a) The calculation is:

Birth rate Y Income ratio X Rank of Y Rank of X Y2 X2 XY

Brazil 30 9.5 7 1 49 1 7
Colombia 29 6.8 9 3 81 9 27
Costa Rica 30 4.6 7 6 49 36 42
India 35 3.1 4 10 16 100 40
Mexico 36 5 2.5 5 6.25 25  12.5
Peru 36 8.7 2.5 2 6.25 4 5
Philippines 34 3.8 5 7.5 25 56.25 37.5
Senegal 48 6.4 1 4 1 16 4
South Korea 24 2.7 11 11 121 121 121
Sri Lanka 27 2.3 10 12 100 144 120
Taiwan 21 3.8 12 7.5 144 56.25 90
Thailand 30 3.3 7 9 49 81 63
Totals 78 78 647.5 649.5 569
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rs =
12 * 569 - 7822(12 * 649.5 - 782)(12 * 647.5 - 782)

= 0.438

(b) This is less than the critical value of 0.591 so the null of no rank correlation cannot 
be rejected.

(c) Reversing the rankings does not alter the result of the calculation.

(d) Reversing just the income ratio ranking changes the sign of the rank correlation 
coefficient but preserves the absolute value.

Exercise 7.4

(a) Using the data and calculations in the answer to Exercise 7.1 we obtain:

b =
12 * 1964 - 60 * 380

12 * 361.26 - 602 = 1.045

a =
380
12

- (1.045) *
60
12

= 26.443

(b) A unit increase in the measure of inequality (e.g. from four to five) leads to approxi-
mately one additional birth per 1000 mothers. This is not a very helpful interpreta-
tion as it is hard to envisage such a change in the ratio and how it would impact on 
families. The constant has no useful interpretation. The income ratio cannot be 
zero (in fact, it cannot be less than 0.5).

Exercise 7.5

(a)  TSS = g(Yi - Y)2 = gY 2
i - nY 2

  = 12 564 - 12 * 31.672 = 530.667

  ESS = g(Yi - Yn)2 = gY 2
i - agYi - bgXiYi

  = 12 564 - 26.443 * 380 - 1.045 * 1139.70 = 463.804

  RSS = TSS - ESS = 530.667 - 463.804 = 66.863

  R2 = 0.126.

 Hence only 12.6% of the variation in the birth rate is explained by variation in the 
income ratio.

(b) This is the square of the correlation coefficient, calculated earlier as 0.355.

Exercise 7.6

(a) s2
e =

463.804
10

= 46.3804

 and so

s2
b =

46.3804
61.26

= 0.757

 and

sb = 10.757 = 0.870

 For a the estimated variance is

s2
a = s2

e * a1
n

+
X2

g(Xi - X)2 b = 46.3804 * a 1
12

+
52

61.26
b = 22.793
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 and hence sa = 4.774. The 95% CIs are therefore 1.045 { 2.228 * 0.87 =  
[-0.864, 2.983] for b and 26.443 { 2.228 * 4.774 = [15.806, 37.081] for a

(b) t =
1.045 - 0

0.870
= 1.201

 Not significant. The critical value of the t statistic is again 2.228.

(c) F =
RSS>1

ESS>(n - 2)
=

66.863>1
463.804>(12 - 2)

= 1.44 6 4.96 = F*

 (5% significance level, with 1 and 10 degrees of freedom).

Exercise 7.7

Excel should give the same answers.

Exercise 7.8

(a) BR^ = 26.44 + 1.045 * 10 = 36.9.

(b) c36.9 - 2.228 * 6.81B 1
12

+
(10 - 5)2

61.26
, 36.9 + 2.228 * 6.81B 1

12
+

(10 - 5)2

61.26
d

 =  [26.3, 47.5]

(c) c36.9 - 2.228 * 6.81B1 +
1

12
+

(10 - 5)2

61.26
,

 36.9 + 2.228 * 6.81B1
1

12
+

(10 - 5)2

61.26
d

 =  [18.4, 55.4]

Exercise 7.9

(a) e = 1.045 *
5

31.67
= 0.165,

 where 5 and 31.67 are the means of X and Y, respectively.

(b) A 10% rise in the inequality measure (e.g. from 4 to 4.4) raises the birth rate by 
1.65% (e.g. from 30 to 30.49).

Exercise 7.10

 BR = 38.82 - 29.61 *
1
IR

+ e

s.e.   (19.0)

R2 = 0.19, F(1.10) = 2.43.

Note that taking the inverse is a non-linear transformation, so there is no simple rela-
tionship between the coefficient in the original regression (1.045) and the coefficient 
of this regression. For example, we do not simply get the inverse of the coefficient 
(which would be 1>1.045 = 0.957) but a very different figure. The sign of the coeffi-
cient does change however, which we would expect. In general, this regression is rather 
poor and the F statistic is not significant.
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Multiple regression8

By the end of this chapter you should be able to:

●	 understand the extension of simple regression to multiple regression, with more than 
one explanatory variable

●	 use computer software to calculate a multiple regression equation and interpret its output

●	 recognise the role of (economic) theory in deriving an appropriate regression equation

●	 interpret the effect of each explanatory variable on the dependent variable

●	 understand the statistical significance of the results

●	 judge the adequacy of the model and know how to improve it.
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Introduction

In the previous chapter we analysed the ‘simple’ regression model with just one 
explanatory variable. However, simple regression is rather limited, as it assumes 
that there is only the one explanatory factor affecting the dependent variable, 
which is unlikely to be true in most situations. Price and income affect demand, 
for example. Multiple regression, the subject of this chapter, overcomes this prob-
lem by allowing several explanatory variables (though still only one dependent 
variable) in a model. The techniques are an extension of those used in simple, or 
bivariate, regression. Multivariate regression allows more general and more help-
ful models to be estimated, although this does involve new problems as well as 
advantages.

The regression relationship now becomes

Y = b0 + b1X1 + b2X2 + g +  bkXk + e (8.1)

where there are now k explanatory variables. The principles used in multiple regres-
sion are basically the same as in the two-variable case: the coefficients b0, . . . , bk are 
found by minimising the sum of squared errors; a standard error can be calculated 
for each coefficient; R2, t ratios, etc., can be calculated and hypothesis tests per-
formed. However, there are a number of additional issues which arise, and these are 
dealt with in this chapter.

The formulae for calculating coefficients, standard errors, etc., become very 
complicated in multiple regression and are time-consuming (and error-prone) 
when done by hand. For this reason, these calculations are invariably done by 
computer nowadays. Therefore, the formulae are not given in this text: instead we 
present the results of computer calculations (which you can replicate) and con-
centrate on understanding and interpreting the results. This is as it should be; the 
calculations themselves are the means to an end, not the end in itself.

Using spreadsheet packages

Standard spreadsheet packages such as Excel can perform multiple regression analysis and 
are sufficient for most straightforward tasks. A regression equation can be calculated via 
menus and dialogue boxes and no knowledge of the formulae is required. However, when 
problems such as autocorrelation (see below) are present, specialised packages such as 
Stata or EViews are much easier to use and provide more comprehensive results.

ST

ATISTICS
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PRACTI
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E

· ·

We also introduce a new example in this chapter, estimating a demand equa-
tion for imports into the United Kingdom over the period 1973 to 2005. There are 
a number of reasons for this switch, for we could have continued with the birth 
rate example (you are asked to do this in the exercises). First, it allows us to work 
through a small ‘research project’ from beginning to end, including the gathering 
of data, data transformations, interpretation of results, etc. Second, the example 
uses time-series data, and this allows us to bring out some of the particular issues 
that arise in such cases, in contrast to the cross-section data used in the previous 
chapter. Time-series data do not generally constitute a random sample of observa-
tions such as we have dealt with in the rest of this text. This is because the observa-
tions are constrained to follow one another in time rather than being randomly 
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chosen. The proper analysis of time-series data goes far beyond the scope of this 
text; however, students often want or need to analyse such data using elementary 
techniques. This chapter therefore also emphasises the checking of the adequacy 
of the regression equation for such data. For a fuller treatment of the issues, the 
reader should consult a more advanced text such as Maddala and Lahiri (2009).

Principles of multiple regression

We illustrate some of the principles involved in multiple regression using two 
explanatory variables, X1 and X2. Since we are using time-series data, we replace 
the subscript i with a subscript t to denote the individual observations. This is not 
essential but reminds us that t represents time.

The sample regression equation now becomes

Yt = b0 + b1X1t + b2X2t + et  t = 1,  c, T  (8.2)

with three coefficients, b0, b1 and b2, to be estimated. Note that b0 now signifies 
the constant. Rather than fitting a line through the data, the task is now to fit a 
plane to the data, in three dimensions, as shown in Figure 8.1.

The plane is drawn sloping down in the direction of X1 and up in the direction 
of X2. The observations are now points dotted about in three-dimensional space 
(with coordinates X1t, X2t and Yt) and the task of regression analysis is to find the 
equation of the plane so as to minimise the sum of squares of vertical distances 
from each point to the plane. The principle is the same as in simple regression and 
the regression plane is the one that best summarises the data.

The coefficient b0 gives the intercept on the Y-axis, b1 is the slope of the plane 
in the direction of the X1-axis and b2 is the slope in the direction of the X2-axis. 
Thus, b1 gives the effect upon Y of a unit change in X1 assuming X2 remains con-
stant1. Similarly, b2 gives the response of Y to a unit change in X2, assuming no 

Figure 8.1
The regression plane in 
three dimensions

1Of course X2 does not generally remain constant, so it might be better to say that b1 shows 
the effect of a unit change in X1, adjusting for the effect on Y of any contemporaneous 
change in X2.
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change in X1. If X1 and X2 both change by 1, then the effect on Y is b1 + b2. Note 
that b1 and b2 are estimates of the (unknown) true parameters b1 and b2 and so 
standard errors and confidence intervals can be calculated, implying that we are 
not absolutely certain about the true position of the plane. In general, the smaller 
these standard errors, the better, since it implies less uncertainty about the true 
relationship between Y and the X variables.

When there are more than two explanatory variables, more than three dimen-
sions are needed to draw a picture of the data. The reader will understand that this 
is a difficult (if not impossible) task; however, it is possible to estimate such a 
model and interpret the results in a similar manner to that set out below, for the 
two explanatory variable case.

What determines imports into the United Kingdom?

To illustrate multiple regression, we suppose that we have the job of finding out 
what determines the volume of imports into the United Kingdom and whether 
there are any policy implications of the result. We are given this very open-ended 
task, which we have to carry through from start to finish. We end up by estimating 
a demand equation for imports, so the analysis serves as a model for any demand 
estimation, for example, a firm trying to find out about the demand for its product.

How should we set about this task? The project can be broken down into the 
following steps:

(1) Theoretical considerations: what can economic theory tell us about the prob-
lem and how will this affect our estimation procedures?

(2) Data gathering: what data do we need? Are there any definitional problems, 
for example?

(3) Data transformation: are the data suitable for the task? We might want to 
transform one or more variables before estimation.

(4) Estimation: this is mainly done automatically, by the computer, although 
sometimes we have to choose the method of estimation.

(5) Interpretation of the results: what do the results tell us? Do they appear satis-
factory? Do we need to improve the model? Are there any policy conclusions?

Although this appears reasonably clear-cut, in practice these steps are often 
mixed up. A researcher might gather the data, estimate a model and then not be 
happy with the results, realising he has overlooked some factors. He therefore 
goes back and gets some different data, perhaps some new variables, or maybe 
tries a different method of investigation until ‘satisfactory’ results are obtained. 
There is usually some element of data ‘fishing’ involved. These methodological 
issues are examined in more detail later on.

 Theoretical issues

What does economic theory tell us about imports? Like any market, the quantity 
transacted depends upon supply and demand. Strictly, therefore, we should esti-
mate a simultaneous equation model of both the demand and supply equations. 
Since this is beyond the scope of this text (see Maddala and Lahiri (2009), 
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Chapter  9, for analyses of such models) we simplify by assuming that, as the 
United Kingdom is a small economy in the world market, we can buy any quantity 
of imports that we demand (at the prevailing price). In other words, foreign sup-
ply is never a constraint, and the UK demand never influences the world price. 
This assumption, which seems reasonable, means that we can concentrate on esti-
mating the demand equation alone.

Second, economic theory suggests that demand depends upon income and 
relative prices, particularly the prices of close substitutes and complements. 
Furthermore, rational consumers do not suffer from money illusion, so real vari-
ables should be used throughout.

Economic theory does not tell us some things, however. It does not tell us 
whether the relationship is linear or not. Nor does it tell us whether demand 
responds immediately to price or income changes, or whether there is a lag. For 
these questions, the data are more likely to give us the answer.

 Data

The raw data are presented in Table 8.1, obtained from official UK statistics. Note 
that there is some slight rounding of the figures: imports are measured to the 
nearest £0.1bn (£100m) so there is a possible (rounding) error of up to about 0.1%. 
This is unlikely to substantially affect our estimates.

The variables are defined as follows:

●	 Imports (variable M): imports of goods and services into the United Kingdom, at 
current prices, in £bn.

●	 Income (GDP): UK gross domestic product at factor cost, at current prices, in 
£bn.

●	 The GDP deflator (PGDP): an index of the ratio of nominal to real GDP, 1985 = 
100. This is an index of general prices and may be used to transform nominal 
GDP to real GDP.

●	 The price of imports (PM): the unit value index of imports, 1990 = 100.
●	 The price of competing products (P): the retail price index (RPI), 1985 = 100.

These variables were chosen from a wide range of possibilities. To take income 
as an example, we could use personal disposable income or GDP. Since firms as 
well as consumers import goods, the wider measure is used here. Then there is the 
question of whether to use GDP or GNP, and whether to measure them at factor 
cost or market prices. Because there is little difference between these different 
magnitudes, this is not an important decision in this case. However, in a research 
project one might have to consider such issues in more detail.

 Data transformations

Before calculating the regression equation, we must transform the data in 
Table 8.1. This is because the expenditures on imports and GDP have not been 
adjusted for price changes (inflation). Part of the observed increase in the imports 
series is due to prices increasing over time, not increased consumption of imported 
goods. It is the latter we are trying to explain.

Since expenditure on any good (including imports) can be expressed as the 
quantity purchased multiplied by the price, to obtain the quantity of imports 
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(‘real’ imports) we must divide the expenditure by the price of imports. In alge-
braic terms:

 expenditure = price * quantity, hence

quantity =
expenditure

price

We therefore adjust both imports and GDP for the effect of price changes in 
this way. PM is used to deflate the imports series and PGDP used to adjust GDP. This 
process is covered in more detail in Chapter 10 on index numbers (you may wish 
to read that before proceeding with this chapter, although it is not essential for 
understanding the rest of this chapter).

We also need to adjust the import price series, which influences the demand 
for imports. People make their spending decisions by looking at the price of an 
imported good relative to prices generally. Hence, we divide the price of imports by 
the retail price index to give the relative, or real, price of imports.

Table 8.1 Original data for study of imports

Year Imports GDP GDP deflator Price of imports RPI all items

1973 18.8 74.0 24.6 21.5 25.1
1974 27.0 83.8 28.7 31.3 29.1

1975 28.7 105.9 35.7 35.6 36.1
1976 36.5 125.2 41.4 43.6 42.1
1977 42.3 145.7 47.0 50.5 48.8
1978 45.2 167.9 52.5 52.4 52.8
1979 54.2 197.4 60.6 55.8 59.9
1980 57.4 230.8 71.5 65.5 70.7
1981 60.2 253.2 79.7 71.3 79.1
1982 67.6 277.2 85.8 77.3 85.9
1983 77.4 303.0 90.3 84.2 89.8
1984 92.6 324.6 94.9 91.8 94.3
1985 98.7 355.3 100.0 96.4 100.0
1986 100.9 381.8 103.8 91.9 103.4
1987 111.4 420.2 109.0 94.7 107.7
1988 124.7 469.0 116.3 93.7 113.0
1989 142.7 514.9 124.6 97.8 121.8
1990 148.3 558.2 134.1 100.0 133.3
1991 142.1 587.1 142.9 101.3 141.1
1992 151.7 612.0 148.5 102.1 146.4
1993 170.1 642.7 152.5 112.4 148.7
1994 185.4 681.0 155.3 116.1 152.4
1995 207.2 719.7 159.4 123.6 157.6
1996 227.7 765.2 164.6 123.4 161.4
1997 232.3 811.2 169.6 115.2 166.5
1998 239.2 860.8 174.1 109.3 172.2
1999 255.2 906.6 177.8 107.6 174.8
2000 287.0 953.2 180.6 111.2 180.0
2001 299.9 997.0 184.5 110.2 183.2
2002 307.4 1048.8 189.9 107.5 186.3
2003 314.8 1110.3 195.6 106.7 191.7
2004 333.7 1176.5 201.0 106.2 197.4
2005 366.5 1224.7 205.4 110.7 202.9
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In summary, the transformed variables are derived as follows:

●	 Real imports (M/PM): this series is obtained by dividing the nominal series for 
imports by the unit value index (i.e. the import price index). The series gives 
imports at 1990 prices (in £bn). (Note that the nominal and real series are iden-
tical in 1990.)

●	 Real income (GDP/PGDP): this is the nominal GDP series divided by the GDP 
deflator to give GDP at 1990 prices (in £bn).

●	 Real import prices (PM/P): the unit value index is divided by the RPI to give this 
series. It is an index number series, with its value set to 100 in 1990. It shows the 
price of imports relative to the price of all goods. The higher this price ratio, the 
less attractive imports would be relative to domestically produced goods.

The transformed variables are shown in Table 8.2. Do not worry if you have not 
fully understood the process of transforming to real terms. You can simply begin 

Table 8.2 Transformed data

Year Real imports Real GDP Real import prices

1973 87.4 403.4 114.2
1974 86.3 391.6 143.4

1975 80.6 397.8 131.5
1976 83.7 405.5 138.0
1977 83.8 415.7 137.9
1978 86.3 428.9 132.3
1979 97.1 436.8 124.2
1980 87.6 432.9 123.5
1981 84.4 426.0 120.2
1982 87.5 433.2 120.0
1983 91.9 450.0 125.0
1984 100.9 458.7 129.8
1985 102.4 476.5 128.5
1986 109.8 493.3 118.5
1987 117.6 517.0 117.2
1988 133.1 540.8 110.5
1989 145.9 554.2 107.0
1990 148.3 558.2 100.0
1991 140.3 550.9 95.7
1992 148.6 552.7 93.0
1993 151.3 565.2 100.8
1994 159.7 588.0 101.5
1995 167.6 605.5 104.5
1996 184.5 623.4 101.9
1997 201.6 641.4 92.2
1998 218.8 663.0 84.6
1999 237.2 683.8 82.1
2000 258.1 707.8 82.3
2001 272.1 724.6 80.2
2002 286.0 740.6 76.9
2003 295.0 761.2 74.2
2004 314.2 784.9 71.7
2005 331.1 799.6 72.7
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with the data in Table 8.2, recognising them as the quantity of imports demanded, 
the level of real income or output and the price of imports relative to all goods.

We should now ‘eyeball’ the data using appropriate graphical techniques. This 
will give a broad overview of the characteristics of the data and any unusual or erro-
neous observations which may be spotted. This is an important step in the analysis.

Figure 8.2 shows a time-series plot of the three variables. The graph shows that both 
imports and GDP increase smoothly over the period, and that there appears to be a 
fairly close relationship between them. This is confirmed by the XY plot of imports 
and GDP in Figure 8.3, which shows an approximately linear relationship. One should 
take care in interpreting this however, since it shows only the partial relationship 
between two of the three variables. However, it does appear to be fairly strong.
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Figure 8.2
Time-series plot of 
imports, GDP and import 
prices (real terms)
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against GDP



What determines imports into the united kingdom?

315

The price of imports (measured on the right-hand scale in the chart) has declined 
by about 35% over the period (this is relative to all goods generally), so this might 
also have contributed to the rise in imports. Figure 8.4 provides an XY chart of these 
two variables. There appears to be a clear negative relationship between imports 
and their price. On the basis of the graphs we might expect a positive relationship 
between imports and GDP, and a negative one between imports and their price. 
Both of these expectations are in line with what economic theory would predict.

Note that one does not always (or even often) get such neat graphs in line with 
expectations. In multivariate analyses the relationships between the variables can 
be complex and are not revealed by simple bivariate graphs. One needs to do a 
multiple regression to uncover more precise detail.
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Figure 8.4
 XY chart of imports 
against import prices

For the exercises in this chapter we will be looking at the determinants of travel by car in the 
United Kingdom, which has obviously been increasing steadily and causes concern because of 
issues such as pollution and congestion. Data for these exercises are as follows:

Year
Car travel (billions of 

passenger-kilometres)
Real price 

of car travel
Real price 

of rail travel
Real price 

of bus travel
Real personal 

disposable income

1980 388 107.0 76.2 78.9 54.2
1981 394 107.1 77.8 79.3 54.0

1982 406 104.2 82.3 84.6 53.8
1983 411 106.4 83.4 85.5 54.9
1984 432 103.8 79.8 83.3 57.0
1985 441 101.7 80.4 81.6 58.9
1986 465 97.4 82.7 87.1 61.3
1987 500 99.5 84.1 88.4 63.6
1988 536 98.4 85.4 88.4 67.0
1989 581 95.9 85.7 88.6 70.2
1990 588 93.3 86.3 88.9 72.6
1991 582 96.4 89.9 92.4 74.1
1992 583 98.3 93.5 94.7 76.2
1993 584 101.6 97.6 97.3 78.3

?

Exercise 8.1

➔
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Year
Car travel (billions of 

passenger-kilometres)
Real price 

of car travel
Real price 

of rail travel
Real price 

of bus travel
Real personal 

disposable income

1994 591 101.3 99.2 99.2 79.4
1995 596 99.7 100.4 100.5 81.3
1996 606 101.4 101.1 103.1 83.3
1997 614 102.7 100.6 105.1 86.6
1998 618 102.1 101.5 106.6 86.9
1999 613 103.9 103.2 109.3 89.8
2000 618 103.7 102.2 110.0 95.3
2001 624 101.2 102.9 112.0 100.0

(a) Draw time-series graphs of car travel and its price and comment on the main features.

(b) Draw XY plots of car travel against (i) price and (ii) income. Comment upon the major fea-
tures of the graphs.

(c) In a multiple regression of car travel on its price and on income, what would you expect the 
signs of the two slope coefficients to be? Explain your answer.

(d) If the prices of bus and rail travel are added as further explanatory variables, what would 
you expect the signs on their coefficients to be? Justify your answer.

 Estimation

The model to be estimated is therefore

aM
PM
b

t
= b0 + b1aGDP

PGDP
b

t
+ b2a

PM

P
b

t
+ et (8.3)

expressed in terms of the original variables. To simplify notation, we rewrite this 
in terms of the transformed variables, as

mt = b0 + b1GDPt + b2pmt + et (8.4)

The results of estimating this equation are shown in Table 8.3, which shows the 
output using Excel. We have used the data in years 1973 to 2003 for estimation 
purposes, ignoring the observations for 2004 and 2005. Later on we will use the 
results to predict imports in 2004 and 2005.

The print-out gives all the results we need, which may be summarised as

mt = -172.61 + 0.59GDPt + 0.05pmt + et (8.5)
                               (0.06)       (0.37)
R2 = 0.96, F2,26 = 368.23, n = 31

How do we judge and interpret these results? As expected, we obtain a positive 
coefficient on income but, surprisingly, a positive one on price too. Note that it is 
difficult to give a sensible interpretation to the constant. The coefficients should 
be judged in two ways: in terms of their size and their significance.

Size

As noted earlier, the size of a coefficient depends upon the units of measurement. 
How ‘big’ is the coefficient 0.59, for income? This is the marginal propensity to 
import. It tells us that a rise in GDP, measured in 1990 prices, of £1bn would raise 
imports, also measured in 1990 prices, by £0.59bn. This is a bit cumbersome. It is 
better to interpret everything in proportionate terms, and calculate the elasticity of 
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imports with respect to income. This is the proportionate change in imports 
divided by the proportionate change in income:

hGDP =
∆m>m

∆GDP>GDP
 (8.6)

which can be evaluated (see equation (7.33)) as:

hGDP = b1 * GDP
m

= 0.59 *
536.4
146.3

= 2.16 (8.7)

which shows that imports are highly responsive to income. A 3% rise in real GDP 
(a fairly typical annual figure) leads to an approximate 6% rise in imports, as long 
as prices do not change at the same time. Thus as income rises, imports rise sub-
stantially faster. More generally we would interpret the result as showing that a 
1% rise in GDP leads to a 2.16% rise in imports.

This does seem a large response and we might consider whether this estimate 
could be true in the long run. If GDP rises by 3% p.a. while imports rise by 6% p.a., 
then this is not sustainable. Imports will grow and grow as a percentage of GDP 
and, unless exports grow similarly quickly, this is likely to lead to a balance of pay-
ments crisis. Hence we might question our statistical finding because it is incon-
sistent with long run equilibrium of the economy. We are beginning to see that 
good modelling should fit with theoretical insights as well as with the data.

A similar calculation for the price variable yields

hpm = 0.05 *
109.4
146.3

= 0.04 (8.8)

This yields the ‘wrong’ sign for the elasticity: a 10% price rise (relative to domestic 
prices) would raise import demand by 0.4%. This is an extremely small effect and 
for practical purposes can be regarded as zero.

Table 8.3 Regression results using Excel

SUMMARY OUTPUT

Regression Statistics

Multiple R  0.98
R square  0.96
Adjusted R square  0.96
Standard error 13.24
Observations 31

ANOVA

df SS MS F Significance F

Regression  2 129 031.05 64 515.52 368.23 7.82E–21
Residual 28 4 905.70 175.20
Total 30 133 936.75

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -172.61 73.33 -2.35 0.03 -322.83 -22.39
Real GDP 0.59 0.06 9.12 0.00 0.45 0.72
Real import prices 0.05 0.37 0.13 0.90 -0.70 0.79
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Significance

We can test whether each coefficient is significantly different from zero, i.e. 
whether the variable truly affects imports or not, using a conventional hypothesis 
test. For income we have the test statistic

t =
0.59 - 0

0.06
= 9.12

as shown in Table 8.3. This has a t distribution with n - k - 1 = 31 - 2 - 1 =  
28 degrees of freedom (k is the number of explanatory variables excluding the con-
stant, so k = 2). The critical value for a two-tail test at the 95% confidence level 
is 2.048. Since the test statistic comfortably exceeds this we reject H0: b1 = 0 in 
favour of H1: b1 ≠ 0. Hence, income does indeed affect imports; the sample data 
are unlikely to have arisen purely by chance. Note that this t ratio is given on the 
Excel print-out.

For price, the test statistic is

t =
0.05 - 0

0.37
= 0.13

which is smaller than 1.701 (the critical value for a one-tail test), so does not fall 
into the rejection region. H0: b2 = 0 cannot be rejected, therefore. We use a one-
tailed test in this case since it is reasonable to expect a demand curve to slope 
downwards, on theoretical grounds. So not only is the coefficient on price quan-
titatively small, it is insignificantly different from zero, i.e. there is a reasonable 
probability of this result arising simply by chance. The fact that we had a positive 
coefficient is thus revealed as unimportant; it was just a small random fluctuation 
around zero. This result arises despite the fact that the graph of imports against 
price seemed to show a strong negative relationship. That graph was in fact some-
what misleading. The regression tells us that the more important relationship 
is with income and, once that is accounted for, price provides little additional 
explanation of imports. Well, that is the story so far.

 The significance of the regression as a whole

We can test the overall significance via an F test as we did for simple regression. 
This is a test of the hypothesis that all the slope coefficients are simultaneously 
zero (equivalent to the hypothesis that R2 = 0):

H0: b1 = b2 = 0
H1: b1 ≠ b2 ≠ 0

This tests whether either income or price (or both) affects demand. Since we 
have already found that income is a significant explanatory variable, via the t test, 
it would be surprising if this null hypothesis were not rejected. The test statistic is 
similar2 to equation (7.28):

F =
RSS>k

ESS>(n - k - 1)
 (8.9)

2Note that the formula now contains n - k - 1 in the denominator, rather than n - 2, to 
reflect the fact that we now have k explanatory variables.



What determines imports into the united kingdom?

319

which has an F distribution with k and n - k - 1 degrees of freedom. Substituting 
in the appropriate values gives

F =
129 031.05>2

4905.70>(31 - 2 - 1)
= 368.23

which is in excess of the critical value for the F2,28 distribution of 3.34 (at 5% 
significance), so the null hypothesis is rejected, as expected. The actual signifi-
cance level is given by Excel as ‘7.82E−21’, i.e. 7.82 * 10 - 21, effectively zero and 
certainly less than 5%.

Does corruption harm investment?

The World Bank examined this question in its 1997 World Development Report, using 
regression methods. There is a concern that levels of corruption in many countries harm 
investment and hence also economic growth.

The study looked at the relationship between investment (measured as a percentage of 
GDP) and the following variables: the level of corruption, the predictability of corruption, 
the level of secondary school enrolment, GDP per capita and a measure of ‘policy distor-
tion’. Both the level and predictability of corruption were based upon replies to surveys of 
businesses in the 39 countries studied, which asked questions such as ‘Do you have to 
make additional payments to get things done?’ The policy distortion variable measures how 
badly economic policy is run, based on openness to trade, the exchange rate, etc. Higher 
values of the index indicate poorer economic management.

The regression obtained was

Inv
GDP

= 19.5 - 5.8 CORR + 6.3 PRED_CORR + 2.0 SCHOOL - 1.1 GDP - 2.0 DISTORT

(s.e.) (13.5) (2.2) (2.6) (2.2) (1.9) (1.5)

R2 = 0.24

Thus only the corruption variables prove significant at the 5% level. A rise in the level of 
corruption lowers investment (note the negative coefficient, -5.8) as expected, but a rise 
in the predictability of corruption raises it. This is presumably because people learn how to 
live with corruption. Unfortunately, units of measurement are not given, so it is impossible 
to tell just how important are the sizes of the coefficients and, in particular, to find the 
trade-off between corruption and its predictability.

Adapted from: World Development Report, 1997.
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(a) Using the data from Exercise 8.1, calculate a regression explaining the level of car 
travel, using price and income as explanatory variables. Use only the observations from 
1980 to 1999. As well as calculating the coefficients you should calculate standard 
errors and t ratios, R2 and the F statistic.

(b) Interpret the results. You should evaluate the size of the effect of the explanatory variables 
as well as their significance and evaluate the goodness of fit of the model.

?

Exercise 8.2

 Are the results satisfactory?

The results so far appear reasonably satisfactory: we have found one significant 
coefficient, the R2 value is quite high at 96% (although R2 values tend to be high 
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in time-series regressions, sometimes artificially so) and the result of the F test 
proves the regression is worthwhile. Nevertheless, it is perhaps surprising to find 
no effect from the price variable; we might as well drop it from the equation and 
just regress imports on GDP.

A more stringent test is to use the equation for forecasting, since this uses out-
of-sample information for the test. So far, the diagnostic tests such as the F test are 
based on the same data that were used for estimation. A more suitable test might 
be to see if the equation can forecast imports to within (say) 4% of the correct 
value. Since real imports increased by about 4.1% p.a. on average between 1973 
and 2003, a simple forecasting rule would be to increase the current year’s figure 
by 4.1%. The regression model might be compared to this standard.

Forecasts for 2004 and 20053 are obtained by inserting the values of the explan-
atory variables for these years into the regression equation, giving

2004: mn = -172.61 + 0.59 * 784.9 + 0.05 * 71.7 = 290.0
2005: mn = -172.61 + 0.59 * 799.6 + 0.05 * 72.7 = 298.6

Table 8.4 summarises the actual and forecast values, with the error between 
them. The percentage error is about 8% in 2004, 11% in 2005. This is not very good; 
both years are under-predicted by a large amount. The simple growth rule would 
have given predictions of 295.0 * 1.04 = 306.8 and 295.0 * 1.042 = 319.1 which 
are much closer. More work needs to be done.

 Improving the model – using logarithms

There are various ways in which we might improve our model. We might try to 
find additional variables to improve the fit (although since we already have 
R2 = 0.96, this might be difficult), or we might try lagged variables (e.g. the previ-
ous year’s price) as explanatory variables, on the grounds that the effects do not 
work through instantaneously. Alternatively, we might try a different functional 
form for the equation. We have presumed that the regression should be a straight 
line, although we made no justification for this. Indeed, the graph of imports 
against income showed some degree of curvature (see Figure 8.3). Hence, we 
might try a non-linear transformation of the data, as briefly discussed at the end 
of Chapter 7.

We shall re-estimate the regression equation, having transformed all the data 
using (natural) logarithms. Remember (from Chapter 1) that logarithms are useful 
for representing multiplicative processes, such as we have here (where one year’s 
figure tends to be a multiple of the previous year’s). Not only does this method fit 
a curve to the data but has the additional advantage of giving more direct esti-
mates of the elasticities, as we shall see. Because of such advantages, estimating a 

3Remember that data from 2004 and 2005 were not used to estimate the regression 
 equation.

Table 8.4 Actual, forecast and error values

Year Actual Forecast Error

2004 314.2 290.0 24.2
2005 331.1 298.6 32.5
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regression equation in logs is extremely common in economics and analysts often 
start with the logarithmic form in preference to the linear form.

We will therefore estimate the equation

 ln  mt = b0 + b1  ln  GDPt + b2  ln  pmt + et

where ln mt indicates the logarithm of imports in period t, etc. We therefore need 
to transform our three variables into logarithms, as shown in Table 8.5 (selected 
years only).

We now use the new data for the regression, with ln m as the dependent vari-
able, ln GDP and ln pm as the explanatory variables. We also use exactly the same 
formulae as before, applied to this new data. This gives the following results:

SUMMARY OUTPUT

Regression Statistics

Multiple R  0.99
R square  0.98
Adjusted R square  0.98
Standard error 0.05
Observations 31

ANOVA

df SS MS F Significance F

Regression  2 5.309 2.655 901.43 3.83E–26
Residual 28 0.082 0.003
Total 30 5.391

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept -3.60 1.65 -2.17 0.04 -6.98 -0.21
In GDP 1.66 0.15 11.31 0.00 1.36 1.97
ln import prices -0.41 0.16 -2.56 0.02 -0.74 -0.08

The regression equation we have is therefore

lm mt = -3.60 + 1.66  ln  GDPt - 0.41  ln  pmt

Table 8.5 Data in natural logarithm form

Year Real imports ln m Real GDP ln GDP Real import prices ln pm

1973  87.4 4.47 403.4 6.00 114.2 4.74
1974  86.3 4.46 391.6 5.97 143.4 4.97
1975  80.6 4.39 397.8 5.99 131.5 4.88
1976  83.7 4.43 405.5 6.01 138.0 4.93

o o o o o o o
2001 272.1 5.61 724.6 6.59  80.2 4.38
2002 286.0 5.66 740.6 6.61  76.9 4.34
2003 295.0 5.69 761.2 6.63  74.2 4.31
2004 314.2 5.75 784.9 6.67  71.7 4.27
2005 331.1 5.80 799.6 6.68  72.7 4.29

Note: You can obtain the natural logarithm by using the ‘ln’ key on your calculator or the ‘ln’ function in 
Excel (or other software). Thus we have ln (87.4) = 4.47, etc.
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Because we have transformed the variables the slope coefficients are very differ-
ent from the values we had before, from the linear equation. However, the interpre-
tation of the log regression equation is different. A big advantage of this formulation 
is that the coefficients give direct estimates of the elasticities; there is no need to 
multiply by the ratio of the means, as with the linear form (see equation (8.7).

Hence the income elasticity of demand is estimated as 1.66 and the price elasticity 
is -0.41. These contrast with the values calculated from the linear equation, of 2.16 
and 0.04, respectively. The contrast with the previous estimate of the price elasticity 
is particularly stark. We have gone from an estimate which was positive (though very 
small and statistically insignificant) to one which is negative and significant.

It is difficult to say which is the ‘right’ answer, both are estimates of the 
unknown, true values. One advantage of the log model is that the elasticity does 
not vary along the demand curve, as it does with the linear model. With the latter 
we had to calculate the elasticity at the means of the variables, but the value inev-
itably varies along the curve. For example, taking 2003 values for imports and 
income we obtain an elasticity of

hGDP = 0.59 *
761.2
295.0

= 1.52

This is quite different from the value at the mean, 2.16. A convenient mathe-
matical property of the log formulation is that the elasticity does not change along 
the curve. Hence, we can talk about ‘the’ elasticity, which is very convenient.

 Graphing the regression coefficients

Regression results are usually presented in the form of a table, as above. However, 
this can result in complex and dense arrays of numbers which are not easy to read 
or interpret. In Chapter 1 we found that graphs were often a useful way to present 
complex information, and we will illustrate this again using our regression results.

The results of the first, linear model can be shown as follows:

-1 -.5 0 .5 1

Real GDP

Real import prices
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There is a horizontal line for each variable, showing the width of the confi-
dence interval, with the point estimate of the coefficient marked at its centre. The 
vertical line is drawn at b = 0, indicating no effect of that variable.

The implications are immediately clear. The GDP coefficient is positive, mea-
sured fairly precisely and is statistically significant (since zero is not in the confi-
dence interval). By contrast, the price effect is unclear (wide CI) and the point 
estimate is close to zero.

If we draw a similar diagram for the model with variables in logs, we obtain

-1 0 1 2

Ipm

Iy

Qualitatively, little has changed for the income variable. It is still positive, sta-
tistically significant and with a small confidence interval. The price effect is differ-
ent, however. The confidence interval is smaller than before, the coefficient is 
negative and significant. The chart might still lead us to be cautious about the 
price effect, since zero is not far outside the confidence interval.

This type of chart can therefore be useful. If making several estimates of the 
same coefficient (e.g. using different models, functional forms, etc.), one could 
draw a bar for each estimate and it would be easy to compare them, much easier 
than comparing across different tables (or columns of a table), with each estimate 
having a different standard error needed for the confidence interval.

 Comparison of models and predictions

We can compare the linear and log models further to judge which is preferable. 
The log model has a higher price elasticity and is ‘significant’ (t = -2.56), so we 
can now reject the hypothesis that price has no effect upon import demand. This 
is more in line with what economic theory would predict. The R2 value is also 
higher (0.98 versus 0.96), but this is a misleading comparison. R2 tells us how 
much of the variation in the dependent variable is explained by the explanatory 
variables. However, we have a different dependent variable now: the log of imports 
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rather than imports. Although they are both measuring imports, they are differ-
ent variables, making direct comparison of R2 invalid.

We can also compare the predictive abilities of the two models. For the log 
model we have the following predictions:

2004:  ln  mn = -3.60 + 1.66 * 6.67 - 0.41 * 4.27 = 5.73
2005:  ln  mn = -3.60 + 1.66 * 6.68 - 0.41 * 4.29 = 5.76

These are log values, so we need to take anti-logs to get back to the original units:

e5.73 = 308.2 and e5.76 = 316.0

These predictions are substantially better than from the linear equation, as we 
see below:

Year Actual Fitted Error % error

2004 314.2 308.2  6.0 1.9
2005 331.1 316.0 15.1 4.8

The errors are less than half the size they were in the linear formulation and, 
overall, the log regression is beginning to look the better. If we forecast further 
ahead, up to 2010, we get the results as illustrated in Figure 8.5.

The predictions track the actual values quite well, even up to seven years ahead. 
Note that this is not a true forecast – to obtain the prediction for 2010, for exam-
ple, we have used the values of income and prices in 2010, which would not be 
known back in 2003. This picture shows that the relationship remains fairly stable 
over time even when imports turn down around 2006 and the economy is then 
hit by a severe financial crisis.
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Figure 8.5
Chart of predictions up to 
2010

The log transformation: a subtle trap

By using the log regression, we find the expected value of ln Y for a given value of ln X, 
i.e. E(ln Y | ln X), by setting the error term to zero. For 2004 this prediction turned out to 
be 5.73. Of course, we really want the expected value of Y. How do we obtain E(Y) for a 
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Choosing between alternative models is a matter of judgement. The criteria are 
convenience, conformity with economic theory and the general statistical ‘fit’ of 
the model to the data. In this case the log model seems superior on all counts. It is 
more convenient as we get direct estimates of the elasticities. It is more in accord 
with economic theory as it suggests a significant price effect and also because the 
variables are growing over time, which is usually better represented by the log 
transformation. Finally, the model seems to fit the data better and, in particular, it 
gives better forecasts. There are more formal statistical methods for choosing 
between different models, but they are beyond the scope of this text.

The rest of this chapter looks at more advanced topics relating to the regression 
model. These are not essential as far as estimation of the regression model goes 
but are useful ‘diagnostic tools’ which allow us to check the quality of the esti-
mates in more depth.

 Testing the accuracy of the forecasts: the Chow test

There is a formal test for the accuracy of the forecasts (which can be applied to 
both linear and log forms of the equation), based on the F distribution. This is the 
Chow test (named after its inventor). The null hypothesis is that the true predic-
tion errors are all equal to zero, so the errors we do observe are just random varia-
tion from the regression line. Alternatively, we can interpret the hypothesis as 
asserting that the same regression line applies to both estimation and prediction 
periods. If the predictions lie too far from the estimated regression line, then the 
null is rejected. The alternative hypothesis is that the model has changed in some 
way and that a different regression line should be applied to the prediction period.

The test procedure is as follows:

(1) Use the first n1 observations for estimation, the last n2 observations for the 
forecast. In this case we have n1 = 31, n2 = 2.

given value of X? We simply raised e to the power ln Y: e5.73 = 308.2, but this is not 
strictly correct.

The problem lies in the fact that the logarithm is a non-linear transformation and hence 
eE(ln  Y ) ≠ E(Y). The correct formula to use is:

E(Y) = eE(ln  Y) + s2>2

where s2 is the error variance in the regression. In this example it makes very little differ-
ence, since s = 0.05 and we obtain

E(Y) = e5.73+ 0.052>2 = 308.35

which is a trivial difference. The small difference is due the very small standard error of the 
regression or equivalently the very good fit. If the regression fits less well, with a standard 
error of, say, 0.5, the estimate of E(Y) would be underestimated by about 13%.

Matters do not end here. The transformation eE(ln Y) could be defended on the grounds 
that it provides an estimate of the median level of Y and this might give a better idea of a 
‘typical’ value of Y if the original data are heavily skewed (refer back to the wealth data of 
Chapter 1). Fuller discussion is beyond our scope but does suggest that if your regression 
standard error is more than 0.5 or so, you should consider the implications of this when 
transforming back from logs.
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(2) Estimate the regression equation using the first n1 observations, as above, and 
obtain the error sum of squares, ESS1.

(3) Re-estimate the equation using all n1 + n2 observations, and obtain the 
pooled error sum of squares, ESSP.

(4) Calculate the F statistic:

F =
(ESSP - ESS1)>n2

ESS1>(n1 - k - 1)

We then compare this test statistic with the critical value of the F distribution 
with n2, n1 - k - 1 degrees of freedom. If the test statistic exceeds the critical 
value, the model fails the prediction test. A large value of the test statistic 
indicates a large divergence between ESSP and ESS1 (adjusted for the different 
sample sizes), suggesting that the model does not fit the two periods equally 
well. The bigger the prediction errors, the more ESSP will exceed ESS1, leading 
to a large F statistic.

Evaluating the test (for the log regression), we have ESS1 = 0.08246 (the Excel 
printout rounded this to 0.08). Estimating over the whole sample, 1973 to 2005, 
gives:

 ln  mt = -3.54 + 1.67  ln  GDPt - 0.42  ln  pmt
R2 = 0.99, F2,30 = 1202.52, ESSP = 0.08444

so the test statistic is

F =
(0.08444 - 0.08246)>2

0.08246>28
= 0.34

The critical value of the F distribution for 2, 28 degrees of freedom is 3.34, so 
the equation passes the test, i.e. the same regression line may be considered valid 
for both sub-periods and the errors in the forecasts are just random errors around 
the regression line. Repeating the calculation for the forecast period up till 2010 
reveals a similar result with F = 0.43 (7 and 28 degrees of freedom).

It is noticeable that the predictions are always too low (for all the models); 
the errors in both years are positive. This suggests a slight ‘boom’ in imports 
relative to what one might expect (despite the result of the Chow test). Perhaps 
we have omitted an explanatory variable which has changed markedly in 
2004 to 2005, or perhaps the errors are not truly random. Alternatively, we 
still could have the wrong functional form for the model. Since we already 
have an R2 value of 0.98, we are unlikely to find another variable which adds 
significantly to the explanatory power of the model. We have already tried 
two functional forms. Therefore, we shall examine the errors in the model to 
see if they appear random.

(a) Use the regression equation from Exercise 8.2 to forecast the level of car travel in 2000 
and 2001. How accurate are your forecasts? Is this a satisfactory result?

(b) Convert the variables to (natural) logarithms and repeat the regression calculation. Inter-
pret your result and compare to the linear equation.

(c) Calculate price and income elasticities from the linear model and compare to those 
obtained from the log model.

?

Exercise 8.3
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(d) Forecast car travel in 2000 and 2001 using the log model and compare the results to those 
from the linear model. (Use the function ex to convert the forecasts in logs back to the 
original units.)

(e) Use a Chow test to test whether the forecasts are accurate. Is there any difference 
between linear and log models?

 Analysis of the errors

Why analyse the errors, as surely they are just random? In setting out our model 
(equation 8.2) we asserted the error is random, but this does depend upon our 
formulating the correct model. Hence, if we study the errors and find they are 
not random, in some way, this suggests the model is not correct and hence could 
be improved. This is another important part of the checking procedure, to see if 
the model is adequate or whether it is mis-specified (e.g. has the wrong func-
tional form, or a missing explanatory variable). If the model is a good one, then 
the error term should be random and ideally should be unpredictable. If there are 
any predictable elements to it, then we could use this information to improve 
our model and forecasts. Unlike forecasting, this is a within-sample procedure. 
Furthermore, we expect the observed errors to be approximately Normally dis-
tributed, since this assumption underlies the t and F distributions used for 
inference. If the errors are not Normal, this would cast doubt on our use of t and 
F statistics for inference purposes.

A complete, formal, treatment of these issues is beyond the scope of this text 
(see, for example, Maddala and Lahiri (2009), Chapters 5, 6 and 12). Instead, we 
give an outline of how to detect the problems and some simple procedures which 
might overcome them. At least, if you are aware of the problem, you will know 
that you should consult a more advanced text.

First, we can quickly deal with the issue of Normality of the errors. In this 
example we have only 31 observations, which is not really sufficient to check for a 
Normal distribution. Drawing a histogram of the errors (left as an exercise) does 
not give a nice, smooth distribution because of the few observations and it is hard 
to tell if it looks Normal or not. More formal methods also require more observa-
tions to be reliable, so we will have to take the assumption of Normality on trust in 
this case.

Second, we can examine the error term for evidence of autocorrelation. This was 
introduced briefly in Chapter 1. To recapitulate: autocorrelation occurs when one 
error observation is correlated with an earlier (often the previous) one. It only 
occurs with time-series data (in cross-section, the ordering of the observations 
does not matter, so there is not a natural ‘preceding’ observation). Autocorrelation 
often occurs in time-series data: if inflation is ‘high’ this month, it is likely to be 
high next month also; if low, it is likely to be low next month also. Many eco-
nomic variables are ‘sticky’ in this way. Imports are likely to behave this way too, 
as the factors affecting imports (mainly GDP) change slowly.

This characteristic has not been incorporated into our model. If it were, we 
might improve our forecasts: noting that the actual value of imports in 2003 is 
above the predicted value (a positive error), we might expect another positive 
error in 2004. However, our forecast was made by setting the error for 2004 to zero 
(i.e. using the fitted value from the regression line). In light of this, perhaps we 
should not be surprised that the predicted value is below the actual value.
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One should therefore check for this possibility before making forecasts by 
examining the errors (up to 2003) for the presence of autocorrelation. Poor fore-
casting is not the only consequence of autocorrelation – the estimated standard 
errors can also be affected (often biased downwards in practice) leading to incor-
rect inferences being drawn.

Checking for autocorrelation

The errors to be examined are obtained by subtracting the fitted values from the 
actual observations. Using time-series data, we have:

et = Yt - Ynt = Yt - b0 - b1X1t - b2X2t (8.10)

The errors obtained from the import demand equation (for the logarithmic 
model of import demand) are shown in Table 8.6 and are graphed in Figure 8.6. 
The graph suggests a definite pattern, that of positive errors initially, followed by a 
series of negative errors, followed in turn by more positive errors. This is surely not 
a random pattern: a positive error is likely to be followed by a positive error, a neg-
ative error by another negative error. From this graph we might reasonably predict 
that the two errors for 2004 to 2005 will be positive (as in fact they are). This 
means our regression equation is inadequate in some way – we are expecting it to 
under-predict. If so, we ought to be able to improve it.

The phenomenon we have uncovered (positive errors usually following positive, 
negative following negative) is known as positive autocorrelation. In other words, 
there appears to be a positive correlation between successive errors et and et - 1. A 

Table 8.6 Calculation of residuals

Observation Actual Predicted Residual

1973 4.47 4.43 0.04
1974 4.46 4.29 0.17

1975 4.39 4.35 0.04
1976 4.43 4.36 0.07

o o o o
2000 5.55 5.50 0.05
2001 5.61 5.55 0.05
2002 5.66 5.61 0.05
2003 5.69 5.67 0.02

Note: in logs, the residual is approximately the percentage error. So, for example, the first residual 0.04 
indicates the error is of the order of 4%.
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Figure 8.6
Time-series graph of the 
errors from the import 
demand equation
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truly random series would have a low or zero correlation. Less common in eco-
nomic models is negative autocorrelation, where positive errors tend to follow nega-
tive ones, negative follow positive. We will concentrate on positive autocorrelation.

This non-randomness can be summarised and tested numerically by the 
Durbin–Watson (DW) statistic (named after its two inventors). This is routinely 
printed out by specialist software packages but, unfortunately, not by spreadsheet 
programs. The statistic is a one-tailed test of the null hypothesis of no autocorrela-
tion against the alternative of positive, or of negative, autocorrelation. The test 
statistic always lies in the range 0–4 and is compared to critical values dL and dU 
(given in Appendix Table A7, see page 463). The decision rule is best presented 
graphically, as in Figure 8.7.

Low values of DW (below dL) suggest positive autocorrelation, high values 
(above 4 - dL) suggest negative autocorrelation and a value near 2 (between dU 
and 4 - dU) suggests the problem is absent. There are also two regions where the 
test is, unfortunately, inconclusive (between the dL and dU values).

The test statistic can be calculated by the formula4

DW =
a
n

t = 2
(et - et - 1)2

a
n

t = 1
e2

t

 (8.11)

This is relatively straightforward to calculate using a spreadsheet program. 
Table 8.7 shows part of the calculation.

Hence we obtain:

DW =
0.0705
0.0825

= 0.855

4The DW statistic can also be approximated using the correlation coefficient r between et 
and et -1, and then DW ≈ 2 * (1 - r). The closer the approximation, the larger the sample 
size. It should be reasonably accurate if you have 20 observations or more.

4–dU 4–dL

Positive
autocorrelation

Absence of
autocorrelation

Negative
autocorrelation

Figure 8.7
The Durbin–Watson test 
statistic

Table 8.7 Calculation of the DW statistic

Year et et - 1 et - et - 1 (et - et - 1)2 e2
t

1973 0.0396 0.0016
1974 0.1703 0.0396 0.1308 0.0171 0.0290

1975 0.0401 0.1703 -0.1302 0.0170 0.0016
1976 0.0658 0.0401 0.0258 0.0007 0.0043

o o o o o o
2000 0.0517 0.0236 0.0281 0.0008 0.0027

2001 0.0548 0.0517 0.0031 0.0000 0.0030
2002 0.0509 0.0548 -0.0039 0.0000 0.0026

2003 0.0215 0.0509 -0.0294 0.0009 0.0005
Totals 0.0705 0.0825
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The result suggests positive autocorrelation5 of the errors. For n = 30 (close 
enough to n = 31) the critical values are dL = 1.284 and dU = 1.567 (using the 95% 
confidence level, see Table A7), so we clearly reject the null of no autocorrelation.

Consequences of autocorrelation

The presence of autocorrelation in this example causes our forecasts to be too low. 
If we took account of the pattern of errors over time, we could improve the fore-
casting performance of the model. A second general consequence of autocorrela-
tion is that the standard errors are often under-estimated, resulting in excessive t 
and F statistics. This leads us to think the estimates are ‘significant’ when they 
might not, in fact, be so. We may have what is sometimes known as a spurious 
regression – it looks good but is misleading. The bias in the standard errors and 
t statistics can be large, and this is potentially a serious problem.

This danger occurs particularly when the variables used in the analysis are 
trended (as many economic variables are) over time. Variables trending over time 
appear to be correlated with each other, but there may be no true underlying rela-
tionship. The now-famous study by Hendry6 noted a strong correlation between 
cumulative rainfall and the price level (both increase over time but are unlikely to 
be related). It has been suggested that a low value of the DW statistic (typically, 
less than the R2 value) can be a symptom of such a problem. The fact that eco-
nomic theory supports the idea of a causal relationship between demand, prices 
and income should make us a little more confident that we have found a valid 
economic relationship rather than a spurious one in this case.

This topic goes well beyond the scope of this text (once again), but it is raised 
because it is important to be aware of the potential shortcomings of simple mod-
els. If you estimate a time-series regression equation, check the DW statistic to test 
for autocorrelation. If present, you may want to seek further advice rather than 
accept the results as they are, even if they appear to be good. The cause of the auto-
correlation is often (though not always) the omission of lagged variables in the 
model, i.e. a failure to recognise that it may take time for the effect of the indepen-
dent variables to work through to the dependent variable.

(a) Using the log model explaining car travel, calculate the residuals from the regression 
 equation and draw a line graph of them. Do they appear to be random or is some time-
dependence apparent?

(b) Calculate the Durbin–Watson statistic and interpret the result.

(c) If autocorrelation is present, what are the implications for your estimates?

?

Exercise 8.4

Finding the right model

How do you know that you have found the ‘right’ model for the data? Can you be 
confident that another researcher, using the same data, would arrive at the same 
results? How can you be sure there isn’t a relevant explanatory variable out there 
that you have omitted from your model? Without trying them all it is difficult to 

6Hendry, D.F., Econometrics – Alchemy or Science? in Economica, 47 (1980), 387–406.

5The correlation between et and et -1 is, in fact, 0.494.
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be sure. Good modelling is based on theoretical considerations (e.g. models that 
are consistent with economic or business principles) and statistical ones (e.g. sig-
nificant t ratios). One can identify two different approaches to modelling:

●	 General to specific: this starts off with a comprehensive model, including all the 
likely explanatory variables, then simplifies it.

●	 Specific to general: this begins with a simple model that is easy to understand, 
then explanatory variables are added to improve the model’s explanatory 
power.

There is something to be said for both approaches, but it is not guaranteed that 
the two will end up with the same model. The former approach is usually favoured 
nowadays; it suffers less from the problem of omitted variable bias (discussed 
below), and the simplifying procedure is usually less ad hoc than that of generalis-
ing a simple model. A very general model will almost certainly initially contain a 
number of irrelevant explanatory variables. However, this is not much of a prob-
lem (and less serious than omitted variable bias): standard errors on the coeffi-
cients tend to be higher than otherwise, but this is remedied once the irrelevant 
variables are excluded.

It is rare for either of these approaches to be adopted in its pure, ideal form. For 
example, in the import demand equation we should have started out with several 
lags on the price variable, since we cannot be sure how long imports take to adjust 
to price changes. Therefore, we might have started with (assuming a maximum 
lag of one year is ‘reasonable’):

mt = b0 + b1GDPt + b2GDPt - 1 + b3pmt + b4pmt - 1 + b5mt - 1 + et (8.12)

If b4 proved to be not significantly different from zero, we would then re-
estimate the equation without pmt - 1 and obtain new coefficient estimates. If 
the new b2 proved to be not significant, we would omit GDPt - 1 and re-estimate. 
This process would continue until all the remaining coefficients had signifi-
cant t ratios. We would then have the final, simplified model. At each stage we 
would omit the variable with the least significant coefficient. Having found the 
right model, we could then test it on new data, to see if it can explain the new 
observations.

Uncertainty regarding the correct model

The remarks about finding the right model apply to many of the other techniques used in this 
text. For example, we might employ the Poisson distribution to model manufacturing faults in 
televisions, but we are assuming this is the correct distribution to use. In the example of rail-
way accidents recounted in Chapter 4, it was found that the Poisson distribution did not fit 
the data precisely – the real world betrayed less variation than predicted by the model.

Our estimates of parameters, and the associated confidence intervals, are based on the 
assumption that we are using the correct model. To our uncertainty about the estimates we 
should ideally add the uncertainty about the correct model, but unfortunately this is diffi-
cult to measure. It may be that if we used a different model we would obtain a different 
conclusion. If possible, therefore, it is a good idea to try out different models to see if the 
results are robust, and also to inform the reader about alternative methods that have been 
tried but not reported.
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In practice the procedure is not as mechanical (nor as pure) as this, and more 
judgement should be exercised. You may not want to exclude all the price vari-
ables from a demand equation even though the t ratios are small. A coefficient 
may be large in size even though it is not significant. ‘Not significant’ does not 
mean the same as ‘not important’, rather that there is a lot of uncertainty about its 
true value. In modelling imports, we used the 2004 and 2005 observations to test 
the model’s forecasts. When it failed, we revised the model and applied the fore-
cast test again. But this is no longer a strictly independent test, since we used the 
2004 to 2005 observations to decide upon revision to the model.

Interpreting the R2 coefficient

Students often worry that their R2 value is not large enough, hence their regression is a 
poor one. However, interpretation of the statistic is tricky. It is easier to ‘explain’ aggregate 
data than it is to explain individual observations, hence a regression using country level 
data typically has a higher R2 value than a similar one using individual data (the values 
might vary between 0.6 for the former but 0.1 for the latter). Also, time-series data typically 
have much higher R2 values (e.g. 0.95) than cross-section data. Estimating a regression 
using first differences of the data (i.e. explaining the change in Y by changes in the X values) 
typically lowers the R2 value substantially, even though the underlying phenomena are the 
same. The size of the R2 statistic needs to be considered in the light of the type of data 
used in the model.
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To briefly sum up a complex and contentious debate, a good model should be:

●	 consistent with theory: an estimated demand curve should not slope upwards, 
for example.

●	 statistically satisfactory: there should be good explanatory power (e.g. R2, F sta-
tistics), the coefficients should be statistically significant (t ratios) and the 
errors should be random. It should also predict well, using new data (i.e. data 
not used in the estimation procedure).

●	 simple: although a very complicated model predicts better, it might be difficult 
for the reader to understand and interpret.

Sometimes these criteria conflict and then the researcher must use his or her 
judgement and experience to decide between them.

 Testing compound hypotheses

Simplifying a general model is largely based on hypothesis testing. Usually this 
means a hypothesis of the form H0: b = 0 using a t test. Accepting this hypothesis 
would mean we can simplify by dropping that variable from the equation. 
Sometimes, however, the hypothesis is more complex, as in the following examples:

●	 You want to test the equality of two coefficients, H0: b1 = b2.
●	 You want to test if a group of coefficients are all zero, H0: b1 = b2 = 0.

A general method for testing these compound hypotheses is to use an F test, 
comparing the general (unrestricted) model with a more restricted version. An 
unrestricted model will always fit the data better (higher R2) than a restricted 



Finding the right model

333

 version. However, if the restricted version fits almost as well, we conclude that the 
restriction is valid and that the simpler restricted model is the more appropriate 
one to use.

We illustrate this by examining whether consumers suffer from money illusion 
in the import demand equation. We assumed, in line with economic theory, that 
only relative prices matter and used the real price of imports PM/P as an explana-
tory variable. But suppose consumers actually respond differently to changes in 
PM and in P? In that case we should enter PM and P as separate explanatory vari-
ables and they would have different coefficients. In other words, we should esti-
mate (using the log form7):

 ln  mt = c0 + c1  ln  GDPt + c2  ln  PMt + c3  ln  Pt + et (8.13)

rather than

 ln  mt = b0 + b1  ln  GDPt + b2  ln  pmt + et (8.14)

where PM is the nominal price of imports and P is the nominal price level. We 
would expect c2 6 0 and c3 7 0. Note that (8.14) is a restricted form of (8.13), 
with the restriction c2 = -c3 imposed. A lack of money illusion implies that 
this restriction should be valid and that (8.14) is the correct form of model. The 
hypothesis to test is therefore H0: c2 = -c3 (or alternatively H0: c2 + c3 = 0).

If the restriction is valid, (8.13) and (8.14) should fit equally well and thus have 
similar error sums of squares. Conversely, if they have very different ESS values, 
then we would reject the validity of the restriction. To carry out the test, we there-
fore do the following:

●	 Estimate the unrestricted model (8.13) and obtain the unrestricted ESS from it 
(ESSU).

●	 Estimate the restricted model (8.14) and obtain the restricted ESS (ESSR). Note 
that by definition, ESSU … ESSR.

●	 Compare the ESS values using the test statistic

F =
(ESSR - ESSU)>q

ESSU>(n - k - 1)
 (8.15)

 where q is the number of restrictions (1 in this case) and k is the number of 
explanatory variables in the unrestricted model.

●	 Compare the test statistic with the critical value of the F distribution with q 
and n - k - 1 degrees of freedom. If the test statistic exceeds the critical value, 
reject the restricted model in favour of the unrestricted one.

We have already estimated the restricted model (equation (8.14)) and from that 
we obtain ESSR = 0.08246. Estimating the unrestricted model gives

 ln  mt = -8.77 + 2.31  ln GDPt - 0.20  ln  PMt - 1 + 0.02  ln  Pt - 1 + et (8.16)

with ESSU = 0.02720. The test statistic is therefore

F =
(0.08246 - 0.02720)>1
0.02720>(31 - 3 - 1)

= 54.85 (8.17)

7Note that it is much easier to test the restriction in log form, since PM and P are entered 
additively. It would be much harder to do this in levels form.
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The critical value8 at the 95% confidence level is 4.21, so the restriction is 
rejected. Consumers do not use relative prices alone in making decisions, but are 
somehow influenced by the general rate of inflation as well. This is contrary to 
what one would expect from economic theory. Interestingly, the equation using 
nominal prices does not suffer from autocorrelation, so imposing the restriction 
(estimating with the real price of imports) induces autocorrelation, another indi-
cation that the restriction might be inappropriate.

To our earlier finding we might therefore add that consumers appear to take 
account of nominal prices. We do not have space to investigate this issue in more 
detail, but further analysis of these nominal effects would be worthwhile. There 
may be a theoretical reason for nominal prices to have an influence. Alternatively, 
there could be measurement problems with the data or inadequacies in the model 
which mask the truth that it is, after all, relative prices that matter.

Whatever the results, this method of hypothesis testing is quite general: it is 
possible to test any number of (linear) restrictions by estimating the restricted 
and unrestricted forms of the equation and comparing how well they fit the 
data. The unrestricted will always fit the data better but if the restricted model 
fits almost as well, it is preferred on the grounds of simplicity. The F test is the 
criterion by which we compare the fit of the two models, using error sums of 
squares.

 Omitted variable bias

Omitting a relevant explanatory variable from a regression equation can lead to 
serious problems. Not only is the model inadequate because there is no informa-
tion about the effect of the omitted variable but, in addition, the coefficients on 
the variables which are included are usually biased. This is called omitted variable 
bias (OVB).

We encountered an example of this in the model of import demand. Notice 
how the coefficient on income changed from 1.66 to 2.31 when nominal prices 
were included. This is a substantial change and shows that the original equa-
tion with only the real price of imports included may be misleading with 
respect to the effect of income upon imports. The coefficient on income was 
biased downwards.

The direction of OVB depends upon two things: the correlation between the 
omitted and included explanatory variables and the sign of the coefficient on the 
omitted variable. Thus, if you have to omit what you believe is a relevant explana-
tory variable (because the observations are unavailable, for example) you might 
be able to infer the direction of bias on the included variable(s). Table 8.8 sum-
marises the possibilities, where the true model is Y = b0 + b1X1 + b2X2 + e but 
the estimated model omits the X2 variable. Table 8.8 only applies to a single omit-
ted variable; when there are several, matters are more complicated (see Maddala 
and Lahiri (2009), Chapter 4).

In addition to coefficients being biased, their standard errors are biased 
upwards as well, so that inferences and confidence intervals will be incorrect. The 
best advice, therefore, is to ensure you don’t omit a relevant variable.

8Because only large values of the F statistic reject H0, we use the critical value cutting off the 
upper tail of the distribution.
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 Dummy variables and trends

These are types of artificial variable which can be very useful in regression. A dummy 
variable is one that takes on a restricted range of values, usually just 0 and 1. Despite 
this simplicity, it can be useful in a number of situations. For example, suppose we 
suspect that the United Kingdom’s import demand function shifted after the rise 
in oil prices in 1979. Ideally, we might include oil prices in our model, but suppose 
these data are unavailable. How could we then explore this possibility empirically?

One answer is to construct a variable, Dt, which takes the value 0 for the years 
1973–79, and 1 thereafter (i.e. 0, 0, . . . , 0, 1, 1, . . . , 1, the switch occurring after 
1979). We then estimate:

 ln  mt = b0 + b1  ln  GDPt + b2  ln  pmt + b3Dt + et (8.18)

The coefficient b3 gives the size of the shift in 1979. The constant in this equa-
tion is now given by b0 + b3Dt, which evaluates to b0 for 1973–79, when Dt = 0, 
and to b0 + b3 thereafter, when Dt = 1. The sign of b3 shows the direction of any 
shift, and one can also test its significance, via the t ratio. If it turns out not to be 
significant, then there was probably no shift in the relationship.

Note that we do not use the log of D – this would be impossible as ln 0 is not 
defined. In any case, a dummy variable only needs to have two different values, it 
does not matter what they are (although 0, 1 is convenient for interpretation). 
Note also that b3 will give the change in ln m, which is approximately9 the per-
centage change in m.

Table 8.8 The effects of omitted variable bias

Sign of omitted 
coefficient, b2

Correlation 
between X1 and X2

Direction 
of bias of b1

Example values of b1

True Estimated

7 0 7 0 upwards 0.5 0.9
-0.5 -0.1

7 0 6 0 downwards 0.5 0.1
-0.5 -0.9

6 0 7 0 downwards 0.5 0.1
-0.5 -0.9

6 0 6 0 upwards 0.5 0.9
-0.5 -0.1

(a) Calculate the simple correlation coefficients between price, income, the price of rail travel 
and the price of bus travel.

(b) The prices of rail and bus travel may well influence the demand for car travel. If so, the 
models calculated in previous exercises are mis-specified. What are the possible conse-
quences of this? How might the correlations calculated in part (a) help?

(c) Extend the regression equation to include these two extra prices. (Estimate in logs, using 
1980–99.) Does this change any of your conclusions?

(d) One might expect the bus and rail price variables to have similar coefficients, as they are 
both substitutes for car travel. Test the hypothesis H0: brail - bbus = 0 by comparing 
error sums of squares from restricted and unrestricted regressions.

?

Exercise 8.5

9This approximation is reasonably accurate for values of b between -0.3 and +0.3. It is 
more accurate to calculate eb - 1 to obtain the percentage change, especially outside this 
range of values.
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Estimating equation (8.18) yields the following result:

 ln  mt = -4.98 + 1.85  ln  GDPt - 0.35  ln  pmt - 0.11 Dt + et (8.19)
s.e. (0.12) (0.12) (0.02)
R2 = 0.99 F(3, 27) = 1029.1 n = 31

We note that the dummy variable has a significant coefficient and that after 
1979 imports were 11% lower than before, after taking account of any price and 
income effects. We presume the oil shock has caused this, but in fact it could be 
due to anything that changed in 1979. Figure 8.8 shows the effect of introducing 
such a dummy variable, and from the figure we can see that the effect of the 
dummy variable is to shift the regression line downwards for the years from 
1979 onwards.

Figure 8.8
The dummy variable effect

Trap!

There were, in fact, two oil shocks – in 1973 and 1979. With a longer series of data you 
might therefore be tempted to use a dummy variable {0, 0, . . . , 0, 1, . . . , 1, 2, . . . , 2}, with 
the first switch in 1973, the second in 1979 (this assumes you have some pre-1973 
observations). This is incorrect because it implicitly assumes that the two shocks had the 
same effect upon the dependent variable. The correct technique is to use two dummies, 
both using only zeros and ones. The first dummy would switch from 0 to 1 in 1973, the 
second would switch in 1979. Their individual coefficients would then measure the size 
of each shock.
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A time trend is another useful type of dummy variable used with time-series 
data. It takes the values {1, 2, 3, 4, . . . , T} where there are T observations. It is 
used as a proxy for a variable which we cannot measure and which we believe 
increases in a linear fashion. For example, suppose we are trying to model pet-
rol consumption of cars. Price and income would obviously be relevant explan-
atory variables; but in addition, technical progress has made cars more 
fuel-efficient over time. It is difficult to measure this accurately, so we use a 
time trend as an additional regressor. In this case it should have a negative coef-
ficient which would measure the annual reduction in consumption due to 
more fuel-efficient cars. Remember also that if the dependent variable is in 
logs, the coefficient on the time trend shows the percentage change per annum 
(or per time period), e.g. a coefficient of -0.05 would indicate a 5% p.a. fall in 
the dependent variable, independent of movements in other explanatory 
 variables.
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 Multicollinearity

Sometimes some or all of the explanatory variables are highly correlated (in the 
sample data), which means that it is difficult to tell which of them is influencing 
the dependent variable. This is known as multicollinearity. Since all variables are 
correlated to some degree, multicollinearity is a problem of degree also. For exam-
ple, if GDP and import prices both rise over time, it may be difficult to tell which 
of them influences imports. There has to be some independent movement of the 
explanatory variables for us to be able to disentangle their separate influences.

The symptoms of multicollinearity are:

●	 high correlation between two or more of the explanatory variables
●	 high standard errors of the coefficients leading to low t ratios
●	 a high value of R2 (and significant F statistic) in spite of the insignificance of 

the individual coefficients.

In this situation, one might conclude that a variable is insignificant because of 
a large standard error, when, in fact, multicollinearity is to blame. It may be use-
ful, therefore, to examine the correlations between all the explanatory variables 
to see if such a problem is apparent. For example, the correlation between nomi-
nal import prices and the retail price index is 0.97. Hence, it may be difficult to 
disentangle their individual effects.

The best cure is to obtain more data which might exhibit more independent 
variation of the explanatory variables. This is not always possible, however, for 
example if a sample survey has already been completed. An alternative is to drop 
one of the correlated variables from the regression equation, although the choice 
of which to exclude is somewhat arbitrary. Another procedure is to obtain alterna-
tive estimates of the effects of one of the collinear variables (for example, from 
another study). These effects can then be allowed for when estimates of the 
remaining coefficients are made.

 Measurement error

The variables in a regression equation are rarely measured without error. Chapter 9 
has an example showing that the measured balance of payments (exports minus 
imports) for 1970 varied considerably as better information became available in 
later years. The question therefore arises whether measurement error in the data is 
a problem for our estimates.

Measurement error could either affect the standard errors of the regression coef-
ficients or, worse, it could cause bias. If the measurement error is systematic rather 
than random, then biased estimates can arise. For example, if transport costs are left 
out of the measured price of imported goods, and these costs have declined over 
time, then there is systematic measurement error in the price  variable. The actual 

(a) The graph of car travel suggests a possible break in 1990. Test whether this break is sig-
nificant or not using a dummy variable with a value of 0 up to (and including) 1990, 
1 thereafter. (Estimate in logs using all three prices and income, 1980–99.)

(b) The quality of cars has improved steadily over time, perhaps leading to increased travel by 
car. Add a time trend to the regression equation in part (a) and re-estimate. Is there evi-
dence to support this idea?

?

Exercise 8.6
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price fall (as experienced by the consumer) is less than the measured fall. The esti-
mated price elasticity of imports might therefore have a bias away from zero (con-
sumers have reacted to a price fall but we attribute this to a smaller price change, 
hence we estimate that price changes have a bigger effect than they really do).

Even when the measurement error is random, this can bias coefficient esti-
mates. Such error in the explanatory variable generally biases the coefficient 
towards zero and lowers the t statistic. Hence, one might mistakenly conclude 
that X does not affect Y when in fact it does. The more severe the problem is, the 
greater is the variance of the measurement error relative to the variance of X. For 
example, if the variance of measurement error is 25% the size of the variance of X, 
then the coefficient of X will be biased downward by about 20%.

We noted in Exercise 8.5 that rail and bus prices were highly correlated. This may be why they 
both appear to be ‘insignificant’ in the regression equation. It could be the case that either of 
them could be influencing demand, but we cannot tell which. We can examine this by testing 
the hypothesis H0: brail = bbus = 0. The restricted regression therefore excludes these two 
variables, the unrestricted regression includes them. One can then use equation (8.15) with 
q = 2 restrictions to test the hypothesis. What is the result? (Do not include dummy or trend 
in the equation.)

?

Exercise 8.7

 Some final advice on regression

●	 As always, large samples are better than small. Reasonable results were obtained 
above with only 31 observations, but this is rather a small sample size on which 
to base solid conclusions.

●	 Check the data carefully before calculation. This is especially true if a computer 
is used to analyse the data. If the data are entered incorrectly, every subsequent 
result will be wrong. A substantial part of any research project should be 
devoted to verifying the data, checking the definitions of variables, etc. The 
work is tedious, but important.

●	 Do not go fishing. This is searching through the data hoping something will 
turn up. Some idea of what the data are expected to reveal, and why, allows the 
search to be conducted more effectively. It is easy to see imaginary patterns in 
data if an aimless search is being conducted. Try looking at the table of random 
numbers (Table A1, see page 448), which will probably soon reveal something 
‘significant’, like your telephone number or your credit card number.

●	 Do not be afraid to start with fairly simple techniques. Draw a graph of demand 
against price to see what it looks like, if it looks linear or log linear, if there are 
any outliers (a data error?), etc. This will give an overview of the problem which 
can be kept in mind when more refined techniques are used.

Summary

●	 Multiple regression extends the principles of simple regression to models using 
several explanatory variables to explain variation in Y.

●	 The multiple regression equation is derived by minimising the sum of squared 
residuals, as in simple regression. This principle leads to the formulae for slope 
coefficients, standard errors, etc.
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●	 The significance of the individual slope coefficients can be tested using the t dis-
tribution and the overall significance of the model is based on the F distribution.

●	 It is important to check the adequacy of the model. This can be done in various 
ways, including examining the accuracy of predictions and checking that the 
residuals appear random.

●	 One important form of non-randomness is termed autocorrelation, where the 
error in one period is correlated with earlier errors (this can occur in time-series 
data). This can lead to incorrect inferences being drawn.

●	 The Durbin–Watson statistic is one diagnostic test for autocorrelation. If there 
is a problem of autocorrelation, it can often be eliminated by including lagged 
regressors.

●	 A good model should be (i) consistent with economic (or some other) theory, 
(ii) statistically satisfactory and (iii) simple. Sometimes there is a trade-off 
between these different criteria.

●	 Complex hypothesis tests can often be performed by comparing restricted and 
unrestricted forms of the model. If the former fits the data almost as well as the 
latter, then the (simplifying) restrictions specified in the null hypothesis are 
accepted.

●	 Omitting relevant explanatory variables from the model is likely to cause bias 
to the estimated coefficients. This suggests it is often best to start off with a 
fairly general model and simplify it.

●	 Regression analysis can become very complicated (well beyond the scope of 
this text), involving issues such as multicollinearity and simultaneous equa-
tions. However, the methods given in this chapter can provide helpful insights 
into a range of problems, especially if the potential shortcomings of the model 
are appreciated.

autocorrelation
Chow test
dummy variables
Durbin–Watson statistic
measurement error
multicollinearity
negative autocorrelation

omitted variable bias
positive autocorrelation
regression coefficients
simultaneous equation model
spurious regression
time trend

Key terms and concepts

Maddala, G.S., and K. Lahiri, Introduction to Econometrics, 4th edn, Wiley, 2009.Reference
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Formula Description Notes

F =
(ESSP - ESS1)>n2

ESS1>(n1 - k - 1)

Chow test for a prediction First n1 observations used for  estimation, 
last n2 for prediction

DW = a (et - et -1)2

a e2
t

Durbin–Watson statistic for testing 
 autocorrelation

F =
(ESSR - ESSU)>q

ESSU>(n - k - 1)

Test statistic for testing q restrictions in the 
regression model

v = q, n - k - 1

Formulae used in this chapter

 Some of the more challenging problems are indicated by highlighting the problem number 
in colour.

 8.1 (a)  Using the data in Problem 7.1 (page 301), estimate a multiple regression model of the birth rate 
explained by GNP, the growth rate and the income ratio. Comment upon:

(i) the sizes and signs of the coefficients,

(ii) the significance of the coefficients,

(iii) the overall significance of the regression.

(b) How would you simplify the model?

(c) Test for the joint significance of the coefficients on growth and the income ratio.

(d) Repeat the above steps for all 26 observations. Comment.

(e) Do you feel your understanding of the birth rate is improved after estimating the multiple 
regression equation?

(f) What other possible explanatory variables do you think it might be worth investigating?

 8.2 The following data show the number of adults in each of 17 households and whether or not the 
family contains at least one person who smokes, to supplement the data in Problem 7.2 on alcohol 
spending (see page 301).

Family Adults Smoker Family Adults Smoker

1 2 0 10 2 1
2 2 0 11 1 1
3 1 1 12 4 1
4 2 0 13 2 1
5 1 0 14 2 0
6 2 1 15 3 0
7 2 0 16 1 1
8 2 0 17 2 0
9 1 0

Problems
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(a) Estimate a multiple regression model of expenditure on alcohol, using income, the number of 
adults and whether there is a smoker in the household as the three explanatory variables. Do 
the coefficients have the expected signs? Interpret your results.

(b) Test the significance of the individual coefficients and of the regression as a whole.

(c) Should the model be simplified?

(d) Calculate the elasticity of alcohol expenditure with respect to income. Do this first using the 
linear model and then one based on logarithms of these two variables (but keep ‘Adults’ and 
‘Smokers’ in linear form).

(e) Estimate the effect of one additional adult in the family on their spending on alcohol.

(f) To compare the alcohol expenditure of families with a smoker and families without, one could 
try two different methods:

(i) use a two sample t test to compare mean expenditures, or

(ii) run a regression of alcohol expenditure on the ‘Smoker’ variable, using all 17 observations.

Try both of these methods. What do you conclude?

 8.3 Using the results from Problem 8.1, forecast the birth rate of a country with the following character-
istics: GNP equal to $3000, a growth rate of 3% p.a. and an income ratio of 7. (Construct the point 
estimate only).

 8.4 (This problem continues the analysis from Problem 8.2.) Given the following data for a family:

Family Income Adults Smoker

18 700 2 1

(a) Predict the level of alcohol expenditure for this family.

(b) If their actual expenditure turned out to be 32.50, how accurate would you judge the prediction?

 8.5 How would you most appropriately measure the following variables?

(a) social class in a model of alcohol consumption

(b) crime

(c) central bank independence from political interference.

 8.6 As Problem 8.5, for

(a) the output of a car firm, in a production function equation,

(b) potential trade union influence in wage bargaining,

(c) the performance of a school.

 8.7 Would it be better to use time-series or cross-section data in the following models?

(a) the relationship between the exchange rate and the money supply

(b) the determinants of divorce

(c) the determinants of hospital costs.

Explain your reasoning.

 8.8 As Problem 8.7, for

(a) measurement of economies of scale in the production of books,
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(b) the determinants of cinema attendances,

(c) the determinants of the consumption of perfume.

 8.9 How would you estimate a model explaining the following variables?

(a) airline efficiency,

(b) infant mortality,

(c) bank profits.

You should consider such issues as whether to use time-series or cross-section data; the explana-
tory variables to use and any measurement problems; any relevant data transformations; the 
expected results.

 8.10 As Problem 8.9, for

(a) investment,

(b) the pattern of UK exports (i.e. which countries they go to),

(c) attendance at football matches.

 8.11 R. Dornbusch and S. Fischer (in R.E. Caves and L.B. Krause, Britain’s Economic Performance,  Brookings, 
1980) report the following equation for predicting the UK balance of payments:

B = 0.29 + 0.24U + 0.17 ln  Y - 0.004t - 0.10 ln  P - 0.24 ln  C
t (.56) (5.9) (2.5) (3.8) (3.2) (3.9)
R2 = 0.76, se = 0.01, n = 36 (quarterly data 1970: 1-1978: 1)

where

B: the current account of the balance of payments as a percentage of gross domestic product (a 
balance of payments deficit of 3% of GDP would be recorded as -3.0, for example)

U:  the rate of unemployment
Y: the OECD index of industrial production
t: a time trend
P: the price of materials relative to the GDP deflator (price index)
C: an index of UK competitiveness (a lower value of the index implies greater competitiveness).

(ln indicates the natural logarithm of a variable)

(a) Explain why each variable is included in the regression. Do they all have the expected sign for 
the coefficient?

(b) Which of the following lead to a higher BOP deficit (relative to GDP): (i) higher unemployment; (ii) 
higher OECD industrial production; (iii) higher material prices and (iv) greater competitiveness?

(c) What is the implied shape of the relationship between B and (i) U, (ii) Y?

(d) Why cannot a double log equation be estimated for this data? What implications does this have 
for obtaining elasticity estimates? Why are elasticity estimates not very useful in this context?

(e) Given the following values of the explanatory variables, estimate the state of the current 
account (point estimate): unemployment rate = 10, OECD index = 110, time trend = 37, 
materials price index = 100, competitiveness index = 90.

 8.12 In a cross-section study of the determinants of economic growth (National Bureau of Economic 
Research, Macroeconomic Annual, 1991), Stanley Fischer obtained the following regression equation:
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GY = 1.38 - 0.52RGDP70 + 2.51PRIM70 + 11.16INV - 4.75INF + 0.17SUR
 (-5.9) (2.69) (3.91) (2.7) (4.34)
-0.33DEBT80 - 2.02SSA - 1.98LAC
 (-0.79) (-3.71) (-3.76)
R2 = 0.60, n = 73

where

GY: growth per capita, 1970–85
RGDP: real GDP per capita, 1970
PRIM70: primary school enrolment rate, 1970
INV: investment/GNP ratio
INF: inflation rate
SUR: budget surplus/GNP ratio
DEBT80: foreign debt/GNP ratio
SSA: dummy for sub-Saharan Africa
LAC: dummy for Latin America and the Caribbean.

(a) Explain why each variable is included. Does each have the expected sign on its coefficient? Are 
there any variables which are left out, in your view?

(b) If a country were to increase its investment ratio by 0.05, by how much would its estimated 
growth rate increase?

(c) Interpret the coefficient on the inflation variable.

(d) Calculate the F statistic for the overall significance of the regression equation. Is it significant?

(e) What do the SSA and LAC dummy variables tell us?

 8.13 (Project) Build a suitable model to predict car sales in the United Kingdom. You should use 
 time-series data (at least 20 annual observations). You should write a report in a similar manner to 
Problem 7.12.
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Answers to exercises

Exercise 8.1

(a) Demand rises rapidly until around 1990, then rises more slowly

 Price falls quite quickly until 1990, then rises. This may relate to the pattern of 
travel demand, above.

(b) The cross-plot of travel (vertical axis) against price is not clear-cut. There may be a 
slight negative relationship.

 Again, there is not an obvious bivariate relationship between travel and income. 
For both graphs it looks as if a single line might not represent all of the data and 
therefore it might be that both explanatory variables are needed. The bivariate 
graphs are not very informative.
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(c) Economic theory would suggest a negative price coefficient and a positive income 
coefficient.

(d) If bus and rail are substitutes for car travel, one would expect positive coefficients 
on their prices. However, they might be complements – commuters may drive to 
the station to catch the train.

Exercise 8.2

(a) The regression is:10

 Source | SS df MS Number of obs = 20

----------+------------------------------ F( 2, 17) = 483.10

 Model | 138136.46  2 69068.23 Prob 7 F = 0.0000

 Residual | 2430.48 17 142.96 R-squared = 0.9827

 ----------+------------------------------ Adj R-squared = 0.9807

 Total | 140566.95 19 7398.26 Root MSE = 11.96

-----------------------------------------------------------------------

 car | Coef. Std. Err. t P7|t| [95% Conf. Interval]

----------+------------------------------------------------------------

 rpcar | -6.39 .76 -8.37 0.000 -8.00 -4.77

 rpdi | 6.04 .23 25.85 0.000 5.55 6.54

 _cons | 748.11 83.85 8.92 0.000 571.18 925.03

----------+------------------------------------------------------------

(b) The signs of the coefficients are as expected. A unit increase in price lowers demand 
by 6.4 units; a unit rise in income raises demand by about 6 units. Without knowl-
edge of the units of measurement it is hard to give a more precise interpretation. 
Both coefficients are highly significant, as is the F statistic. Ninety-eight per cent of 
the variation of car travel demand is explained by these two variables, a high figure.

Exercise 8.3

(a) The forecast values are 661.9 and 706.3 in 2000 and 2001. These compare with 
actual values of 618 and 624, so the errors are -6.6% and -11.7%. Assuming 2000 
and 2001 would be the same as 1999 would actually give better results.

(b) In logs the results are:

 Source | SS df MS Number of obs = 20

----------+------------------------------ F( 2, 17) = 599.39

 Model | .557417045  2 .278708523 Prob 7 F = 0.0000

 Residual | .007904751 17 .000464985 R-squared = 0.9860

----------+------------------------------ Adj R-squared = 0.9844

 Total | .565321796 19 .029753779 Root MSE = .02156

-----------------------------------------------------------------------

 lcar | Coef. Std. Err. t P7|t| [95% Conf. Interval]

----------+------------------------------------------------------------

 lrpcar | -1.19 .14 -8.45 0.000 -1.49 -.89

 lrpdi | .84 .03 28.35 0.000 .78 .90

 _cons | 8.19 .71 11.61 0.000 6.70 9.68

----------+------------------------------------------------------------

 Demand is elastic with respect to price (e = -1.19) and slightly less than elastic for 
income (e = 0.84). The coefficients are again highly significant.

10These results were produced using Stata. The layout is similar to that of Excel. Prob-values 
are indicated by ‘Prob 7 F’ and ‘P 7 � t � ’. ‘rpcar’ indicates the real price of car travel, ‘rpdi’ 
indicates real personal disposable income. Later on, an ‘l’ in front of a variable name indi-
cates it is in log form.
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(c) Price and income elasticities from the linear model are -6.4 * 101.1>526.5 = -1.23 
and 6.0 * 70.2>526.5 = 0.8. These are very similar to the log coefficients.

(d) The forecasts in logs are 6.492 and 6.561 which translate into 659.8 and 706.8. The 
predictions (and errors) are similar to the linear model.

(e) For the linear model the Chow test is

F =
(ESSP - ESS1)>n2

ESS1>(n1 - k - 1)
=

(7672.6 - 2430.5)>2
2430.5>(20 - 2 - 1)

= 18.3

 The critical value is F(2, 17) = 3.59, so there appears to be a change between esti-
mation and forecast periods. A similar calculation for the log model yields an F sta-
tistic of 13.9 (ESSP = 0.0208), also significant.

Exercise 8.4

(a) The residuals from the log regression are as follows:

 There is some evidence of positive autocorrelation and, in particular, the last two 
residuals (from the forecast period) are substantially larger than the rest.

(b) The Durbin–Watson statistic is DW = 1.52, against an upper critical value of 
dU = 1.54. The test statistic (just) falls into the uncertainty region, but the evidence 
for autocorrelation is very mild.

(c) Autocorrelation would imply biased standard errors, so inference would be dubi-
ous, but the coefficients themselves are still unbiased.

Exercise 8.5

(a) The correlations are:

  | rpcar rpdi rprail rpbus

--------+------------------------------

 rpcar | 1.0000

 rpdi | -0.3112 1.0000

 rprail | -0.1468 0.9593 1.0000

 rpbus | -0.1421 0.9632 0.9827 1.0000

 The price of car travel has a low correlation with the other variables, which are all 
highly correlated with each other (r 7 0.95).

(b) There may be omitted variable bias. Since the omitted variables are correlated with 
income, the income coefficient we have observed may be misleading. The car price 
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variable is unlikely to be affected much, as it has a low correlation with the omitted 
variables.

(c) The results are:

 Source | SS df MS Number of obs = 20

----------+------------------------------ F( 4, 15) = 285.36

 Model | .557989155 4 .139497289 Prob 7 F = 0.0000

 Residual | .007332641 15 .000488843 R-squared = 0.9870

----------+------------------------------ Adj R-squared = 0.9836

 Total | .565321796 19 .029753779 Root MSE = .02211

-----------------------------------------------------------------------

 lcar | Coef. Std. Err. t P7|t| [95% Conf. Interval]

----------+------------------------------------------------------------

 lrpcar | -1.195793 .1918915 -6.23 0.000 -1.6048 -.786786

 lrpdi | .8379483 .1372577 6.10 0.000 .5453904 1.130506

 lrprail | .3104458 .3019337 1.03 0.320 -.3331106 .9540023

 lrpbus | -.3085937 .3166891 -0.97 0.345 -.9836004 .3664131

 _cons | 8.22269 .7318088 11.24 0.000 6.662877 9.782503

----------+------------------------------------------------------------

 The new price variables are not significant, so there is unlikely to have been a seri-
ous OVB problem. Neither car price nor income coefficients have changed. The 
simpler model seems to be preferred.

(d) The restricted equation is y = b1 + b2Pcar + b3RPDI + b4(Prail + Pbus) + u (in logs) 
and estimating this yields ESSR = 0.007 901. The test statistic is therefore

F =
(0.007 901 - 0.007 333)>1

0.007 333>(20 - 4 - 1)
= 1.16

 This is not significant, so the hypothesis of equal coefficients is accepted.

Exercise 8.6

(a) The result is:

 Source | SS df MS Number of obs = 20

----------+------------------------------ F( 5, 14) = 232.28

 Model | .558588344 5 .111717669 Prob 7 F = 0.0000

 Residual | .006733452 14 .000480961 R-squared = 0.9881

----------+------------------------------ Adj R-squared = 0.9838

 Total | .565321796 19 .029753779 Root MSE = .02193

-----------------------------------------------------------------------

 lcar | Coef. Std. Err. t P7|t| [95% Conf. Interval]

----------+------------------------------------------------------------

 lrpcar | -1.107049 .2062769 -5.37 0.000 -1.549469 -.6646293

 lrpdi | .8898566 .1438706 6.19 0.000 .581285 1.198428

 lrprail | .5466294 .3667016 1.49 0.158 -.2398673 1.333126

 lrpbus | -.4867887 .3523676 -1.38 0.189 -1.242542 .2689648

 d1990 | -.0314327 .0281614 -1.12 0.283 -.091833 .0289676

 _cons | 7.352081 1.065511 6.90 0.000 5.066787 9.637375

----------+------------------------------------------------------------

 The new coefficient, -0.03, suggests car travel is 3% lower after 1990 than before, 
ceteris paribus. However, the coefficient is not significantly different from zero, so 
there is little evidence of structural break. The change in car usage appears due to 
changes in prices and income.



Chapter 8 • Multiple regression

348

(b) The result is:

 Source | SS df MS Number of obs = 20

----------+------------------------------ F( 6, 13) = 191.34

 Model | .558991816 6 .093165303 Prob 7 F = 0.0000

 Residual | .00632998 13 .000486922 R-squared = 0.9888

----------+------------------------------ Adj R-squared = 0.9836

 Total | .565321796 19 .029753779 Root MSE = .02207

-----------------------------------------------------------------------

 lcar | Coef. Std. Err. t P7|t| [95% Conf. Interval]

----------+------------------------------------------------------------

 lrpcar | -1.116536 .2078126 -5.37 0.000 -1.565488 -.6675841

 lrpdi | 1.107112 .2791366 3.97 0.002 .5040736 1.71015

 lrprail | .558322 .3691905 1.51 0.154 -.2392655 1.355909

 lrpbus | -.2707759 .4266312 -0.63 0.537 -1.192457 .6509048

 d1990 | -.036812 .0289451 -1.27 0.226 -.099344 .02572

 trend | -.0099434 .0109234 -0.91 0.379 -.033542 .0136552

 _cons | 5.553859 2.247619 2.47 0.028 .6981737 10.40954

----------+------------------------------------------------------------

 The trend is not significant. Note that the income coefficient has changed substan-
tially. This is due to the high correlation between income and the trend (r = 0.99). 
It seems preferable to keep income and exclude the trend.

Exercise 8.7

The F statistic is

F =
(0.007905 - 0.007333)>2

0.007333>(20 - 4 - 1)
= 0.59

This is less than the critical value of F(2, 15) = 3.68, so the hypothesis that both 
 coefficients are zero is accepted.
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Data collection and sampling methods9

By the end of this chapter you should be able to:

●	 recognise the distinction between primary and secondary data sources

●	 avoid a variety of common pitfalls when using secondary data

●	 make use of electronic sources to gather data
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Introduction

It may seem a little odd to look at data collection now, after several chapters cov-
ering the analysis of data. Collection of data logically comes first, but the fact is 
that most people’s experience is as a user of data, which determines their priori-
ties. Also, it is difficult to have the motivation for learning about data collection 
when one does not know what it is subsequently used for. Having spent consider-
able time learning how to analyse data, it is now time to look at its collection and 
preparation.

There are two reasons why you might find this chapter useful. First, it will 
help if you have to carry out some kind of survey yourself. Second, it will help 
you in your data analysis, even if you are using someone else’s data. Knowing 
the issues involved in data collection can help your judgement of the quality of 
the data you are using. The material in this chapter has been reorganised a little 
for this edition to reflect the fact that most data are nowadays available in elec-
tronic format and that collecting numbers from dusty tomes of statistics is now 
a rarity.

When conducting statistical research, there are two ways of obtaining data:

(1) use secondary data sources, such as from the World Bank, or
(2) collect sample data personally, a primary data source.

Using secondary data sources sounds simple, but it is easy to waste valuable 
time by making elementary errors. The first part of this chapter provides some 
simple advice to help you avoid such mistakes.

Much of this text has been concerned with the analysis of sample evidence and 
the inferences that can be drawn from it. It has been stressed that this evidence 
must come from randomly drawn samples and, although the notion of random-
ness was discussed in Chapter 2, the practical details of random sampling have 
not been set out.

The second part of this chapter is therefore concerned with the problems of 
collecting sample survey data prior to its analysis. The decision to collect the data 
personally depends upon the type of problem faced, the current availability of 
data relating to the problem and the time and cost needed to conduct a survey. It 
should not be forgotten that the first question that needs answering is whether 
the answer obtained is worth the cost of finding it. It is probably not worthwhile 
for the government to spend £50 000 to find out how many biscuits people eat, on 
average (though it may be worth biscuit manufacturers doing this). The sampling 
procedure is always subject to some limit on cost, therefore, and the researcher is 
trying to obtain the best value for money. The emergence of online surveys has 
greatly altered the cost of collecting data and allowed very large samples to be 
gathered. However, there are particular issues around such data.

●	 recognise the main types of random sample and understand their relative merits

●	 appreciate how such data are collected

●	 conduct a small sample survey yourself.
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Using secondary data sources

Much of the research in economics and finance is based on secondary data 
sources, i.e. data which the researcher did not collect himself or herself. The 
data may be in the form of official statistics such as those published in Economic 
Trends or they may come from unofficial surveys. In either case one has to use 
the data as presented; there is no control over sampling procedures. Nevertheless, 
knowing how the data were collected is likely to influence how we analyse and 
interpret the data. For example, if we know that a particular group is under- 
represented in the sample, we might want to give more weight to those observa-
tions we do have.

It may seem easy enough to look up some figures in a publication or online, but 
there are a number of pitfalls for the unwary. The following advice comes from 
experience, some of it painful, and it may help you to avoid wasting time and 
effort. I have also learned much from the experiences of my students, whom I 
have also watched suffer.

 Make sure you collect the right data

This may seem obvious, but most variables can be measured in a variety of differ-
ent ways. Suppose you want to measure the cost of labour (over time) to firms. 
Should you use the wage rate or earnings? The latter includes payment for extra 
hours such as overtime payments and reflects general changes in the length of the 
working week. Is the wage measured per hour or per week? Does it include part-
time workers? If so, a trend in the proportion of part-timers will bias the wage 
series. Does the series cover all workers, men only or women only? Again, changes 
in the composition might influence the wage series. What about tax and social 
security costs? Are they included? There are many questions one could ask.

One needs to have a clear idea, therefore, of the precise variable one needs to 
collect. This will presumably depend upon the issue in question. Economic the-
ory might provide some guidance: for instance, theory suggests that firms care 
about real wage rates (i.e. after taking account of inflation, so related to the price 
of the goods the firm sells), so this is what one should measure. Check the defini-
tion of any series you collect (this is often in a separate supplement giving explan-
atory notes and definitions, or at the back of the printed publication). Make sure 
that the definition has not changed over the time period you require: the defini-
tion of unemployment used in the United Kingdom changed about 20 times in 
the 1980s, generally with the effect of reducing measured unemployment, even if 
actual unemployment was unaffected. In the United Kingdom the geographical 
coverage of data may vary: one series may relate to the United Kingdom, another 
to Great Britain and yet another to England and Wales. Care should obviously be 
taken if one is trying to compare such series.

To illustrate how the measurement of a variable can matter, Figure 9.1 shows 
two measures of inflation, the RPI and the CPI (the retail and the consumer price 
index, respectively). The major differences are that the RPI includes housing costs, 
whereas the CPI does not, and also that the former is calculated as an arithmetic 
mean of the separate items in the index whereas the CPI is a geometric mean. The 
UK has recently switched the indexation of certain benefits, including pensions, 
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from the RPI to the CPI. This means that a pension is worth about 11% less after 
25 years, a substantial difference.

 Get the most up-to-date figures

Many macroeconomic series are revised as more information becomes available. 
The balance of payments serves as a good example. The first edition of this text 
showed the balance of payments (current balance, in £m for the United Kingdom) 
for 1970, as published in successive years, as follows:

1971 1972 1973 1974 1975 1976 1977 1978 . . . 1986

579 681 692 707 735 733 695 731 . . . 795

The difference between the largest and smallest figures is of the order of 37%, a 
wide range. In the third edition of this text the figure was (from the 1999 edition 
of Economic Trends Annual Supplement) £911m, which is 57% higher than the ini-
tial estimate. The latest figure at the time of writing is £361m. Most series are bet-
ter than this. The balance of payments is hard to measure because it is the small 
difference between two large numbers, exports and imports. A 5% increase in 
measured exports and a 5% decrease in measured imports could thus change the 
measured balance by 100% or more.

One should always try to get the most up-to-date figures, therefore, which 
often means working backwards through printed data publications, i.e. use the 
current issue first and get data back as far as is available, then get the previous 
issue to go back a little further, etc. This can be tedious but it will also give some 
idea of the reliability of the data from the size of data revisions. This should be less 
of a problem with electronic sources where you can download the latest data in 
one go.

 Keep a record of your data sources

You should always keep precise details of where you obtained each item of data. If 
you need to go back to the original source (to check on the definition of a series, 
for example), you will then be able to find it easily. It is easy to spend hours (if not 
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days) trying to find the source of some interesting numbers that you wish to 
update. For online data this means taking down the URL of the site you visit. 
Remember that some sites generate the page ‘on demand’, so the web address is 
not a permanent one and typing it in later on will not take you back to the same 
source. In these circumstances it may be better to note the ‘root’ part of the 
address (e.g. www.imf.org/data/) rather than the complete detail. You should also 
take a note of the date you accessed the site; this may be needed if you put the 
source into a bibliography.

Keeping data in Excel or another spreadsheet

Spreadsheets are ideal for keeping your data. It is often a good idea to keep the data all 
together in one worksheet and extract portions of them as necessary and analyse them in 
another worksheet. Alternatively, it is usually quite easy to transfer data from the spread-
sheet to another program (e.g. SPSS or Stata) for more sophisticated analysis. In most 
spreadsheets you can attach a comment to any cell, so you can use this to keep a record of 
the source of each observation, changes of definition, etc. Thus you can retain all the infor-
mation about your data together in one place.
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Tips on downloading data

●	 If you are downloading a spreadsheet, save it to your hard disk then include the URL of 
the source within the spreadsheet itself. You will always know where it came from. You 
can do the same with Word documents.

●	 You often cannot do this with PDF files, which are read-only, but if the document is not 
protected you can add a comment, containing the source address. Alternatively, you 
could save the file to your disk, including the URL within the file name. (Avoid putting 
extra full stops in the file name, that confuses the operating system. Replace them with 
hyphens.)

●	 You can use the ‘Text select tool’ within Acrobat to copy items of data from a PDF file 
and then paste them into a spreadsheet.

●	 Often, when pasting several columns of such data into Excel, all the numbers go into a 
single column. You can fix this using the Data, Text to Columns menu. Experimentation is 
required, but it works well.
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For printed sources you should retain the name of the publication, issue num-
ber or date, and table or page number. It also helps to keep the library reference 
number of the publication if it is obscure. It is best to take a photocopy of the data 
(but check copyright restrictions) rather than just copy it down, if possible.

Since there are now so many online sources (and they are constantly chang-
ing), a list of useful data sites rapidly becomes out of date. The following sites seem 
to have withstood the test of time so far and have a good chance of surviving 
throughout the life of this edition.

●	 The UK Office for National Statistics is at http://www.ons.gov.uk/ons/index.
html and is a source of all official statistics. However, it is hugely frustrating to 
use (even after a recent re-design) and very difficult to find what you want. The 
‘Time series explorer’ section of the site is a little better.

http://www.imf.org/data
http://www.ons.gov.uk/ons/index.html
http://www.ons.gov.uk/ons/index.html
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●	 It is easier to access time-series ONS data via the Econstats website (http://www.
econstats.com/) which puts the data into some kind of manageable order. It 
also contains similar data for a range of other countries.

●	 Another alternative is the OECD site at http://stats.oecd.org/. This is a well-
organised site which allows easy customisation of the data you want and then 
allows downloading the data in Excel or other formats.

●	 The IMF’s World Economic Database is at http://www.imf.org/ (follow the link 
to Data). It has macroeconomic series for most countries going back many 
years.

●	 The Penn World Tables are at http://cid.econ.ucdavis.edu/pwt.html and pro-
vide national accounts data on a comparable basis for most countries.

●	 The World Bank provides a lot of information, particularly relating to develop-
ing countries, at http://www.worldbank.org. It is now very easy to download 
the data into a spreadsheet or specialist software such as Stata (using the 
‘ wbopendata’ add-in, see the WB website).

●	 Bill Goffe’s Resources for Economists site (http://rfe.org) contains a data sec-
tion which is a good starting-off point for data sources.

●	 Financial and business databases are often supplied by commercial enterprises 
and hence are not freely available. One useful free (or partially free) site is Yahoo 
Finance (http://finance.yahoo.com/).

●	 Google is possibly the most useful website of all. Intelligent use of this search 
tool is often the best way to find what you want.

With the continuing development of the web there is also the ability now to 
‘scrape’ data from websites such as Amazon, Facebook, etc. Such data can be use-
ful for both businesses and academic researchers. For a useful guide see Edelman 
(2012).

 Check your data

Once you have collected your data, you must check it. Once you have done this, 
you must check it again. Better, get someone else to help with the second check. 
Note that if your data are wrong, then all your subsequent calculations could be 
incorrect and you will have wasted much time. I have known many students who 
have spent months or even years on a dissertation or thesis who have then found 
an error in the data they collected earlier.

Obtaining data electronically should avoid input errors and provide 
 consistent, up-to-date figures. However, this is not always guaranteed. For 
example, the UK Office for National Statistics (ONS) online databank provides 
plenty of information, but some of the series clearly have breaks in them, and 
there is little warning of this in the on-screen documentation. The series for 
revenue per admission to cinemas (roughly the price of admission) was 
obtained as  follows:

1963 1964 1965 1966 1967

37.00 40.30 45.30 20.60 21.80

which strongly suggests an artificial break in the series in 1966 (especially as admis-
sions fell by 12% between 1965 and 1966). Later in the series, the  observations 

http://www.econstats.com
http://www.econstats.com
http://stats.oecd.org
http://www.imf.org
http://cid.econ.ucdavis.edu/pwt.html
http://www.worldbank.org
http://rfe.org
http://finance.yahoo.com
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appear to be divided by 100. The lesson is that, even with electronic data, you 
should check the numbers to ensure they are correct1.

A useful first step to check the data is to graph it (e.g. a time-series plot). 
Obvious outliers or other unexpected features will show up and you can investi-
gate them for possible errors. Do not just rely on the graphs, however, look 
through your data and check it against the original source. It can then be useful 
to calculate some summary descriptive statistics; for example, does the average 
level of the weekly earnings data you have downloaded look approximately cor-
rect? Does the rate of growth of a time-series variable look reasonable? If not, go 
back and check. Better that you find an error in the data than someone else finds 
the error in your results.

Collecting primary data

Primary data are data that you have collected yourself from original sources, often 
by means of a sample survey. This has the advantage that you can design the ques-
tionnaire to include the questions of interest to you and you have total control 
over all aspects of data collection. You can also choose the size of the sample (as 
long as you have sufficient funds available) so as to achieve the desired width of 
any confidence intervals.

Almost all surveys rely upon some method of sampling, whether random or 
not. The probability distributions and formulae which have been used in previous 
chapters as the basis of the techniques of estimation and hypothesis testing rely 
upon the samples having been drawn at random from the population. If this is 
not the case, then the formulae for confidence intervals, hypothesis tests, etc., are 
incorrect and not strictly applicable (they may be reasonable approximations, but 
it is difficult to know how reasonable). In addition, the results about the bias and 
precision of estimators will be incorrect. For example, suppose an estimate of the 
average expenditure on servicing by car owners were obtained from a sample sur-
vey. A poor estimate would arise if only Rolls-Royce owners were sampled, since 
they are not representative of the population as a whole. These are expensive cars, 
with commensurately high servicing costs, not representative of the majority of 
cars on the road.

Thus, some form of random sampling method is needed to be able to use the 
theory of the probability distributions of random variables. Nor should it be 
believed that the theory of random sampling can be ignored if a very large sample 
is taken, as the following cautionary tale shows. In 1936 the Literary Digest tried to 
predict the result of the forthcoming US election by sending out 10 million mail 
questionnaires. Two million were returned, but even with this enormous sample 
size Roosevelt’s vote was incorrectly estimated by a margin of 19 percentage 
points, and the Digest predicted the wrong candidate winning the presidency. The 
problem here was two-fold: first, the questionnaires may have not been sent out 
to a representative sample of voters, and second, those who respond to question-
naires are not necessarily a random sample of those who receive them.

1I wrote this for a previous edition of this text. I can no longer find the same data on the ONS 
site, it seems to have disappeared into the ether.
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Random sampling

The definition of random sampling is that every element of the population should 
have a known, non-zero probability of being included in the sample. The problem 
with the sample of cars used above was that Ford cars (for example) had a zero 
probability of being included. Many sampling procedures give an equal probabil-
ity of being selected to each member of the population, but this is not an essential 
requirement. It is possible to adjust the sample data to take account of unequal 
probabilities of selection. If, for example, Rolls-Royce had a much greater chance 
of being included than Ford, then the estimate of the population mean (of servic-
ing costs) would be calculated as a weighted average of the sample observations, 
with greater weight being given to the few ‘Ford’ observations than to relatively 
abundant ‘Rolls-Royce’ observations. A very simple illustration of this is given 
below. Suppose that for the population we have the following data:

Rolls-Royce Ford

Number in population 20 000 2 000 000
Annual servicing cost £1000 £200

Then the true average repair bill is

m =
20 000 * 1000 + 2 000 000 * 200

2 020 000
= 207.92

Suppose the sample data are as follows:

Rolls-Royce Ford

Number in sample 20 40
Probability of selection 1/1000 1/50 000
Servicing cost £990 £205

To calculate the average cost from the sample data we use a weighted average, 
using the relative population sizes as weights, not the sample sizes:

x =
20 000 * 990 + 2 000 000 * 205

2 020 000
= 212.77

If the sample sizes were used as weights, the average would come out at £466.67, 
which is substantially incorrect.

As long as the probability of being in the sample is known (and hence the rela-
tive population sizes must be known), the weight can be derived; but if the prob-
ability is zero, this procedure breaks down.

Other theoretical assumptions necessary for deriving the probability distribu-
tion of the sample mean or proportion are that the population is of infinite size 
and that each observation is independently drawn. In practice the former condi-
tion is never satisfied, since no population is of infinite size, but most populations 
are large enough that it does not matter. For each observation to be independently 
drawn (i.e. the fact of one observation being drawn does not alter the probability 
of others in the sample being drawn) strictly requires that sampling be done with 
replacement, i.e. each observation drawn is returned to the population before the 
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next observation is drawn. Again in practice this is often not the case, sampling 
being done without replacement, but again this is of negligible practical impor-
tance where the population is large relative to the sample.

On occasion, the population is quite small and the sample constitutes a sub-
stantial fraction of it. In these circumstances the finite population correction (fpc) 
should be applied to the formula for the variance of x, the fpc being given by

fpc = (1 - n>N) (9.1)

where N is the population size and n the sample size. The table below illustrates 
its usage:

Variance of x 
from infinite 
population

Variance of x 
from finite 
population

Example values of fpc

n = 20 25 50 100

N = 50 100 1000 10 000

s2>n s2>n * (1 - n>N) 0.60 0.75 0.95 0.99

The finite population correction serves to narrow the confidence interval 
because a sample size of (say) 25 reveals more about a population of 100 than 
about a population of 100 000, so there is less uncertainty about population 
parameters. When the sample size constitutes only a small fraction of the popula-
tion (e.g. 5% or less) the finite population correction can be ignored in practice. If 
the whole population is sampled (n = N) then the variance becomes zero and 
there is no uncertainty about the population mean.

A further important aspect of random sampling occurs when there are two 
samples to be analysed, when it is important that the two samples are indepen-
dently drawn. This means that the drawing of the first sample does not influence 
the drawing of the second sample. This is a necessary condition for the derivation 
of the probability distribution of the difference between the sample means (or 
proportions).

 Types of random sample

The meaning and importance of randomness in the context of sampling has 
been explained. However, there are various different types of sampling, all of 
them random, but which have different statistical properties. Some methods 
lead to greater precision of the estimates, while others can lead to considerable 
cost savings in the collection of the sample data, but at the cost of lower preci-
sion. The aim of sampling is usually to obtain the most precise estimates of the 
parameter in question, but the best method of sampling will depend on the cir-
cumstances of each case. If it is costly to sample individuals, a sampling method 
which lowers cost may allow a much larger sample size to be drawn and thus 
good (precise) estimates to be obtained, even if the method is inherently not very 
precise. These issues are investigated in more detail below, as we will look at a 
number of different methods:

●	 simple random sampling – the simplest type, on which our earlier formulae for 
confidence intervals, etc., were based

●	 stratified sampling – a method which ensures the sample is more representa-
tive of the population (ruling out some forms of unrepresentative samples)
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●	 cluster sampling (a relatively cheap method of sampling, allowing a larger 
 sample size)

●	 quota sampling (a non-random method, carried out because it is cheap)
●	 multi-stage sampling (a method which combines the advantages of some of 

the above types).

 Simple random sampling

This type of sampling has the property that every possible sample that could be 
obtained from the population has an equal chance of being selected. This implies 
that each element of the population has an equal probability of being included in 
the sample, but this is not the defining characteristic of simple random sampling. As 
will be shown below, there are sampling methods where every member of the popu-
lation has an equal chance of being selected, but some samples (i.e. certain combi-
nations of population members) can never be selected.

The statistical methods in this text are based upon the assumption of simple 
random sampling from the population. It leads to the most straightforward for-
mulae for estimation of the population parameters. Although many statistical 
surveys are not based upon simple random sampling, the use of statistical tests 
based on simple random sampling is justified since the sampling process is often 
hypothetical. For example, if one were to compare annual growth rates of two 
countries over a 30-year period, a z test on the difference of two sample means (i.e. 
the average annual growth rate in each country) would be conducted. In a sense 
the data are not a sample since they are the only possible data for those two coun-
tries over that time period. Why not just regard the data as constituting the whole 
population, therefore? Then it would just be a case of finding which country had 
the higher growth rate; there would be no uncertainty about it.

The alternative way of looking at the data would be to suppose that there exists 
some hypothetical population of annual growth rates and that the data for the 
two countries were drawn by (simple) random sampling from this population. Is 
this story consistent with the data available? In other words, could the data we 
have simply arise by chance? If the answer to this is no (i.e. the z score exceeds the 
critical value) then there is something causing a difference between the two coun-
tries (it may not be clear what that something is). In this case it is reasonable to 
assume that all possible samples have an equal chance of selection, i.e. that simple 
random sampling takes place. Since the population is hypothetical, one might as 
well suppose it to have an infinite number of members, again required by sam-
pling theory.

 Stratified sampling

Returning to the practical business of sampling, one problem with simple random 
sampling is that it is possible to collect ‘bad’ samples, i.e. those which are unrepre-
sentative of the population. Suppose that we are investigating how often people 
buy a daily newspaper, where it is the case that older people tend to buy one more 
frequently (with younger people more likely to use the internet as a news source, 
for example). The situation can be illustrated in Figure 9.2.

Now suppose that we take a random sample from this population which, by 
bad luck or bad design, contains exclusively or predominately the young. It is 
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clear that average frequency of purchase would be estimated at around 120 days 
per year and that this is an underestimate for the population as a whole.

To remedy this problem, we should ensure that each of the age groups is fairly 
represented in the sample. Hence, the proportion of younger people in the sam-
ple should reflect the proportion in the population, and the same goes for the 
other groups. The age groups are referred to as strata and each should be fairly 
represented in the sample. Suppose the strata are made up as follows:

Percentage of population in age group

Elderly Middle aged Young
20% 50% 30%

Suppose a sample of size 100 is taken. With luck it would contain 20 older peo-
ple, 50 who are middle-aged and 30 young people, and thus would be representa-
tive of the population as a whole. But if, by bad luck (or bad sample design), all 
100 people in the sample were young, poor results will be obtained since newspa-
per buying differs between age groups.

To avoid this type of problem a stratified sample is taken, which ensures that all 
age groups are represented in the sample. This means that the survey would have 
to ask people about their age as well as their reading habits. The simplest form of 
stratified sampling is equiproportionate sampling, whereby a stratum which con-
stitutes (say) 20% of the population also makes up 20% of the sample. For the 
example above the sample would be made up as follows:

Class Elderly Middle-aged Young Total

Number in sample 20 50 30 100

It should be clear why stratified sampling constitutes an improvement over 
simple random sampling, since it rules out ‘bad’ samples, i.e. those not represen-
tative of the population. It is simply impossible to get a sample consisting com-
pletely of young people. In fact, it is impossible to get a sample in anything but the 

Young

Middle aged

Elderly

Purchases (days)
0 50 100 150 200 250 300 350

Figure 9.2
Differences in newspaper 
buying habits
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proportions 20:50:30, as in the population; this is ensured by the method of 
 collecting the sample.

It is easy to see when stratification leads to large improvements over simple ran-
dom sampling. If there were no difference between strata (age groups) in buying 
habits, then there would be no gain from stratification. If behaviour were the 
same regardless of age group, there would be no point in dividing up the popula-
tion according to that factor. On the other hand, if there were large differences 
between strata, but within strata reading habits were similar, then the gains from 
stratification would be large. (The fact that newspaper habits are similar within 
strata means that even a small sample from a single stratum should give an accu-
rate picture of that stratum.)

Stratification is beneficial, therefore, when

●	 the between-strata differences are large, and
●	 the within-strata differences are small.

These benefits take the form of greater precision of the estimates, i.e. narrower 
confidence intervals2. The greater precision arises because stratified sampling 
makes use of supplementary information – i.e. the proportion of the population 
in each age group. Simple random sampling does not make use of this. Obviously, 
therefore, if those proportions of the population are unknown, stratified sam-
pling cannot be carried out. However, even if the proportions are only known 
approximately, there could be a gain in precision.

In this example age is a stratification factor, i.e. a variable which is used to 
divide the population into strata. Other factors could, of course, be used, such as 
income or even height. A good stratification factor is one which is related to the 
subject of investigation. Income would probably be a good stratification factor, 
therefore, since it is likely to be related to reading habits, but height is not since 
there is probably little difference between tall and short people in newspaper 
purchases. What is a good stratification factor obviously depends upon the sub-
ject of study. A bed manufacturer might well find height to be a good stratifica-
tion factor if conducting an enquiry into preferences about the size of beds. 
Although good stratification factors improve the precision of estimates, bad fac-
tors do not make them worse; there will simply be no gain over simple random 
sampling. It would be as if there were no differences between the age groups in 
reading habits, so that ensuring the right proportions in the sample is irrelevant, 
but it has no detrimental effects.

Proportional allocation of sample observations to the different strata (as done 
above) is the simplest method but is not necessarily the best. For the optimal allo-
cation there should generally be a divergence from proportional allocation, and 
the sample should have more observations in a particular stratum (relative to pro-
portional allocation):

●	 the more diverse the stratum, and
●	 the cheaper it is to sample the stratum.

2The formulae for calculating confidence intervals with stratified sampling are not given 
here, since they merit a whole book to themselves. The classic reference is C.A. Moser and G. 
Kalton, Survey Methods in Social Investigation, Heinemann, 1971. A more recent text is Barnett, 
Sample Survey Principles and Methods, Wiley, 2002.
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Starting from the 20:50:30 proportional allocation derived earlier, suppose 
that older people are all very similar in their buying habits but that youngsters 
vary considerably in their behaviour. Then the representation of youngsters in 
the sample should be increased and that of older people reduced. If it were true 
that every elderly person bought a newspaper every day, then a single observation 
from that class would be sufficient to yield all there is to know about it. 
Furthermore, if it is cheaper to sample younger readers, perhaps because they are 
easier to contact than older people, then again the representation of youngsters 
in the sample should be increased. This is because, for a given budget, it will allow 
a larger total sample size.

Stratified sampling is also useful when it is desired to look in detail at some or 
all of the strata. For example, if one wanted to look at the variation in buying 
behaviour by the young, it would be inconvenient if one’s sample contained (by 
chance) very few young people. Stratified sampling avoids this by ensuring that 
each stratum is adequately covered.

Surveying concert-goers

A colleague and I carried out a survey of people attending a concert in Brighton (by 
 Jamiroquai – I hope they are still popular by the time you read this) to find out who they 
were, how much they spent in the town and how they travelled to the concert. The spread-
sheet gives some of the results.
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 Cluster sampling

A third form of sampling is cluster sampling which, although intrinsically ineffi-
cient, can be much cheaper than other forms of sampling, allowing a larger sam-
ple size to be collected. Drawing a simple or a stratified random sample of size 100 
from the whole of Britain would be very expensive to collect since the sample 
observations would be geographically very spread out. Interviewers would have to 
make many long and expensive journeys simply to collect one or two observa-
tions. To avoid this, the population can be divided into ‘clusters’ (for example, 
regions or local authorities), and one or more of these clusters are then randomly 
chosen. Sampling takes place only within the selected clusters, is therefore geo-
graphically concentrated and the cost of sampling falls, allowing a larger sample 
to be collected for the same expenditure of money.

Within each cluster one can have either a 100% sample or a lower sampling 
fraction, which is called multi-stage sampling (this is explained further below). 
Cluster sampling gives unbiased estimates of population parameters but, for a 
given sample size, these are less precise than the results from simple or stratified 
sampling. This arises in particular when the clusters are very different from each 
other, but fairly homogeneous within themselves. In this case once a cluster is 
chosen, if it is unrepresentative of the population, a poor (inaccurate) estimate of 
the population parameter is inevitable. The ideal circumstances for cluster sam-
pling are when all clusters are very similar, since in that case examining one clus-
ter is almost as good as examining the whole population.

Dividing up the population into clusters and dividing it into strata are similar 
procedures, but the important difference is that sampling is from one or at most a 
few clusters, but from all strata. This is reflected in the characteristics which make 
for good sampling. In the case of stratified sampling, it is beneficial if the between-
strata differences are large and the within-strata differences small. For cluster sam-
pling this is reversed: it is desirable to have small between-cluster differences but 
heterogeneity within clusters. Cluster sampling is less efficient (precise) for a 
given sample size, but is cheaper and so can offset this disadvantage with a larger 
sample size. In general, cluster sampling needs a much larger sample to be effec-
tive, so is only worthwhile where there are significant gains in cost.

The data were collected by face-to-face interviews before the concert. We did not have 
a sampling frame, so the (student) interviewers simply had to choose the sample them-
selves on the night. The one important instruction about sampling we gave them was that 
they should not interview more than one person in any group. People in the same group are 
likely to be influenced by each other (e.g. travel together) so we would not get independent 
observations, reducing the effective sample size.

From the results you can see that 41.1% either worked or studied in Brighton and that 
only one person in the sample was neither working nor studying. The second half of the 
table shows that 64.4% travelled to the show in a car (obviously adding to congestion in the 
town), about half of whom shared a car ride. Perhaps surprisingly, Brighton residents were 
just as likely to use their car to travel as were those from out of town.

The average level of spending was £24.20, predominantly on food (£7.38), drink (£5.97) 
and shopping (£5.37). The last category had a high variance associated with it – many peo-
ple spent nothing, one person spent £200 in the local shops.
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 Multi-stage sampling

Multi-stage sampling was briefly referred to in the previous section and is com-
monly found in practice. It may consist of a mixture of simple, stratified and clus-
ter sampling at the various stages of sampling. Consider the problem of selecting 
a random sample of 1000 people from a population of 25 million to find out about 
voting intentions. A nationwide simple random sample would be extremely 
expensive to collect, for the reasons given above, so an alternative method must 
be found. Suppose further that it is suspected that voting intentions differ accord-
ing to whether one lives in the north or south of the country and whether one is a 
home owner or renter. How is the sample to be selected? The following would be 
one appropriate method.

First, the country is divided up into clusters of counties or regions, and a ran-
dom sample of these taken, say one in five. This would be the first way of reducing 
the cost of selection, since only one-fifth of all counties now need to be visited. 
This one-in-five sample would be stratified to ensure that north and south were 
both appropriately represented. To ensure that each voter has an equal chance of 
being in the sample, the probability of a county being drawn should be propor-
tional to its adult population. Thus, a county with twice the population of another 
should have twice the probability of being in the sample.

Having selected the counties, the second stage would be to select a random 
sample of local authorities within each selected county. This might be a 1-in-10 
sample from each county and would be a simple random sample within each clus-
ter. Finally, a selection of voters from within each local authority would be taken, 
stratified according to tenure. This might be a 1-in-500 sample. The sampling frac-
tions would therefore be

1
5

*
1

10
*

1
500

=
1

25 000

So from the population of 25 million voters a sample of 1000 would be col-
lected. For different population sizes the sampling fractions could be adjusted so 
as to achieve the goal of a sample size of 1000.

The sampling procedure is a mixture of simple, stratified and cluster sampling. 
The two stages of cluster sampling allow the selection of 50 local authorities for 
study and so costs are reduced. The north and south of the country are both ade-
quately represented and housing tenures are also correctly represented in the 
sample by the stratification at the final stage. The resulting confidence intervals 
will be complicated to calculate and may in fact be wider than for a simple ran-
dom sample of the same size (see the discussion of the UK Time Use Survey), but 
this more complicated procedure will be much less costly to implement.

The UK Time Use Survey

The UK Time Use Survey provides a useful example of the effects of multi-stage sampling. It 
uses a mixture of cluster and stratified sampling and the results are weighted to compen-
sate for unequal probabilities of selection into the sample and for the effects of non-
response. Together, these act to increase the size of standard errors, relative to those 
obtained from a simple random sample of the same size. This increase can be measured by 
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 Quota sampling

Quota sampling is a non-random method of sampling and therefore it is impossible 
to use sampling theory to calculate confidence intervals from the sample data, or 
to find whether or not the sample will give biased results. Quota sampling simply 
means obtaining the sample information as best one can, for example, by asking 
people in the street (hence it is sometimes called ‘convenience sampling’). 
However, it is by far the cheapest method of sampling and so allows much larger 
sample sizes and can be carried out quickly. As shown above, large sample sizes 
can still give biased results if sampling is non-random; but in some cases the bud-
get is too small to afford even the smallest properly conducted random sample, so 
a quota sample is the only alternative.

Even with quota sampling, where the interviewer is simply told to go out and 
obtain (say) 1000 observations, it is worth making some crude attempt at stratifi-
cation. The problem with human interviewers is that they are notoriously non-
random, so that when they are instructed to interview every 10th person they see 
(a reasonably random method), if that person turns out to be a shabbily dressed 
tramp slightly the worse for drink, they are quite likely to select the 11th person 
instead. Shabbily dressed tramps, slightly the worse for drink, are therefore under-
represented in the sample. To combat this sort of problem the interviewers are 
given quotas to fulfil, for example, 20 men and 20 women, 10 old-age pensioners, 

the design factor, defined as the ratio of the true standard error to the one arising from a 
simple random sample of the same size. For the time use survey, the design factor is typi-
cally 1.5 or more. Thus the standard errors are increased by 50% or more, but a simple ran-
dom sample of the same size would be much more expensive to collect (for example, the 
clustering means that only a minority of geographical areas are sampled).

The following table shows the average amount of time spent sleeping by 16 to 24 year 
olds (in minutes per day):

Mean True s.e. 95% CI
Design 
factor n

Effective 
sample size

Male 544.6 6.5 [531.9, 557.3] 1.63 1090 412
Female 545.7 4.2 [537.3, 554.0] 1.14 1371 1058

The true standard error, taking account of the sample design, is 6.5 minutes for men. 
The design factor is 1.63, meaning this standard error is 63% larger than for a similar sized 
(n = 1090) simple random sample. Equivalently, a simple random sample of size 
n = 412(=  1090>1.632) would achieve the same precision (but at greater cost).

How the design factor is made up is shown in the following table:

Design factor 
(deft)

Deft due to 
stratification

Deft due to 
clustering

Deft due to 
weighting

1.63 1.00 1.17 1.26

It can be seen that stratification has no effect on the standard error, but both clustering 
and the post-sample weighting serve to increase the standard errors.

Source: The UK 2000 Time Use Survey, Technical Report 2003, HMSO.
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one shabbily dressed tramp, etc., so that the sample will at least broadly reflect the 
population under study and give reasonable results.

It is difficult to know how accurate quota samples are, since it is rare for their 
results to be checked against proper random samples or against the population 
itself. Probably the most common quota samples relate to voting intentions and 
so can be checked against actual election results. The 1992 UK general election 
provides an interesting illustration. The opinion polls predicted a fairly substan-
tial Labour victory, but the outcome was a narrow Conservative majority. An 
enquiry concluded that the erroneous forecast occurred because a substantial 
number of voters changed their minds at the last moment and that there was ‘dif-
ferential turn-out’, i.e. Conservative supporters were more likely to vote than 
Labour ones. Since then, pollsters have tried to take this factor into account when 
trying to predict election outcomes.

Unfortunately, the pollsters were caught out again in 2015, this time predicting 
a tie between the two major parties when the election resulted in a clear majority 
for the Conservative Party. This time the blame was put on unrepresentative sam-
ples, with some groups under-represented (e.g. 45–64 year olds). Attempts to cor-
rect this via weighting of the sample results proved ineffective. Interestingly, a 
proper random sample (the British Election Survey) did get the right result, but 
this was one carried out after the election and so is difficult to compare impar-
tially with the quota samples.

Can you always believe surveys?

Many surveys are more interested in publicising something than in finding out the facts. 
One has to be wary of surveys finding that people enjoy high-rise living . . . when the survey 
is sponsored by an elevator company, for example. In July 2007 a survey of 1000 adults 
found that ‘the average person attends 3.4 weddings each year’. This sounds suspiciously 
high to me. I have never attended three or more weddings in a year, nor have friends I have 
asked. Let us do some calculations. There were 283 730 weddings in the United Kingdom in 
2005. There are about 45m adults, so if they each attend 3.4 weddings, that makes 
45 * 3.4 = 153 million attendees. This means 540 per wedding. That seems excessively 
high (remember this excludes children) and probably means the sample design was poor, 
obtaining an unrepresentative result.

A good way to make a preliminary judgement on the likely accuracy of a survey is to ask 
‘who paid for this?’
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Calculating the required sample size

Before collecting sample data, it is obviously necessary to know how large the 
sample size has to be. The required sample size will depend upon two factors:

●	 the desired level of precision of the estimate, and
●	 the funds available to carry out the survey.

The greater the precision required, the larger the sample size needs to be, other 
things being equal. But a larger sample will obviously cost more to collect, and 
this might conflict with a limited amount of funds being available. There is a 
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trade-off, therefore, between the two desirable objectives of high precision and 
low cost. The following example shows how these two objectives conflict.

A firm producing sweets wishes to find out the average amount of pocket 
money children receive per week. It wants to be 99% confident that the estimate 
is within 20 pence of the correct value. How large a sample is needed?

The problem is one of estimating a confidence interval, turned on its head. 
Instead of having the sample information x, s and n, and calculating the confi-
dence interval for m, the desired width of the confidence interval is given and it is 
necessary to find the sample size n which will ensure this. The formula for the 
99% confidence interval, assuming a Normal rather than t distribution (i.e. it is 
assumed that the required sample size will be large), is

x { 2.58 * 2s2>n (9.2)

Diagrammatically this can be represented as in Figure 9.3.
The firm wants the distance between x and m to be no more than 20 pence in 

either direction, which means that the confidence interval must be 40 pence 
wide. The value of n which makes the confidence interval 40 pence wide has to be 
found. This can be done by solving the equation

20 = 2.58 * 2s2>n
and hence, by rearranging:

n =
2.582 * s2

202  (9.3)

All that is now required to solve the problem is the value of s2, the sample vari-
ance; but since the sample has not yet been taken, this is not available. There are a 
number of ways of trying to get round this problem:

●	 using the results of existing surveys if available,
●	 conducting a small, preliminary, survey, and
●	 guessing.

These may not seem very satisfactory (particularly the last), but something has 
to be done and some intelligent guesswork should give a reasonable estimate of s2. 
Suppose, for example, that a survey of children’s spending taken five years previ-
ously showed a standard deviation of 30p. It might be reasonable to expect that 
the standard deviation of spending would be similar to the standard deviation of 

Figure 9.3
The desired width of the 
confidence interval
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income, so 30p (updated for inflation) can be used as an estimate of the standard 
deviation. Suppose that five years’ inflation turns the 30p into 50p. Using s = 50, 
we obtain

n =
2.582 * 502

202 = 41.6

giving a required sample size of 42 (the sample size has to be an integer). This is 
a large (n Ú 25) sample size, so the use of the Normal distribution was justified.

Is the firm willing to pay for such a large sample? Suppose it was willing to pay 
out £1000 in total for the survey, which costs £600 to set up and then £6 per per-
son sampled. The total cost would be £600 + 42 * 6 = £852, which is within the 
firm’s budget. If the firm wished to spend less than this, it would have to accept a 
smaller sample size and thus a lower precision or a lower level of confidence. For 
example, if only a 95% confidence level were required, the appropriate z score 
would be 1.96, yielding

n =
1.962 * 502

202 = 24.01

A sample size of 24 would only cost £600 + 6 * 24 = £804. (At this sample 
size the assumption that x follows a Normal distribution becomes less tenable, so 
the results should be treated with caution. Use of the t distribution is tricky, 
because the appropriate t value depends upon the number of degrees of freedom 
which in turn depends on sample size, which is what is being looked for.)

The general formula for finding the required sample size is

n =
z2
a * s2

p2  (9.4)

where za is the z score appropriate for the (100 - a)% confidence level and p is the 
desired accuracy (20 pence in this case).

Caution should be used with this type of calculation as the result is true for a 
simple random sample only. If a different type of sampling is used (e.g. cluster 
sampling) then the sample might need to be bigger, perhaps double the size for 
simple random sample.

Collecting the sample

 The sampling frame

We now move on to the fine detail of how to select the individual observations 
which make up the sample. In order to do this, it is necessary to have some sort of 
sampling frame, i.e. a list of all the members of the population from which the sam-
ple is to be drawn. This can be a problem if the population is extremely large, for 
example the population of a country, since it is difficult to manipulate so much 
information (cutting up 65 million pieces of paper to put into a hat for a random 
draw is a tedious business). Alternatively, the list might not even exist or, if it does, 
not be in one place convenient for consultation and use. In this case there is often 
an advantage to multi-stage sampling, for the selection of regions or even local 
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authorities is fairly straightforward and not too time-consuming. Once at this 
lower level the sampling frame is more manageable (each local authority has an 
electoral register, for example) and individual observations can be relatively easily 
chosen. Thus it is not always necessary to have a complete sampling frame for the 
entire population in one place.

 Choosing from the sampling frame

There is a variety of methods available for selecting a sample of (say) 1000 obser-
vations from a sampling frame of 25 000 names, varying from the manual to the 
electronic. The oldest method is to cut up 25 000 pieces of paper, put them in a 
(large) hat, shake it (to randomise) and pick out 1000. This is fairly time-consum-
ing, however, and has some pitfalls – if the pieces are not all cut to the same size, 
is the probability of selection the same? It is much better if the population in the 
sampling frame is numbered in some way, for then one only has to select random 
numbers. This can be done by using a table of random numbers (see Table A1 on 
page 448, for example), or a computer. The use of random number tables for such 
purposes is an important feature of statistics, and in 1955 the Rand Corporation 
produced a book entitled A Million Random Digits with 100 000 Normal Deviates. 
This book, as the title promises, contained nothing but pages of random num-
bers which allowed researchers to collect random samples. Interestingly, the 
authors did not bother to fully proofread the text, since a few (random) errors 
here and there would not matter. These numbers were calculated electronically 
and nowadays every computer has a facility for rapidly choosing a set of random 
numbers. (It is an interesting question how a computer, which follows rigid rules 
of behaviour, can select random numbers which, by definition, are unpredict-
able by any rule.)

A further alternative, if a 1-in-25 sample is required, is to select a random start-
ing point between 1 and 25 and then select every subsequent 25th observation 
(e.g. the 3rd, 28th, 53rd, etc.). This is a satisfactory procedure if the sampling frame 
is randomly sorted to start with, but otherwise there can be problems. For example, 
if the list is sorted by income (poorest first), a low starting value will almost cer-
tainly give an underestimate of the population mean. If all the numbers were ran-
domly sorted, this ‘error’ in the starting value would not be important.

 Interviewing techniques

Good training of interviewers is vitally important to the results of a survey. It is 
very easy to lead an interviewee into a particular answer to a question. Consider 
the following two sets of questions:

A
(1) Do you know how many people were killed by the atomic bomb at  Hiroshima?
(2) Do you think nuclear weapons should be banned?

B
(1) Do you believe in nuclear deterrence?
(2) Do you think nuclear weapons should be banned?

A2 is almost certain to get a higher ‘yes’ response than B2. Even a different 
ordering of the questions can have an effect upon the answers (consider asking 
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A2 before A1). The construction of the questionnaire has to be done with care, 
therefore. The manner in which the questions are asked is also important, since it 
can often suggest the answer. Good interviewers are trained to avoid these prob-
lems by sticking precisely to the wording of the question and not to suggest an 
expected answer.

Telephone surveys

An article by M. Collins in the Journal of the Royal Statistical Society reveals some of the 
difficulties in conducting surveys by telephone. First, the sampling frame is incomplete 
since, although most people have a telephone, some are not listed in the directory. In the 
late 1980s this was believed to be around 12% of all numbers, but it has been growing 
since, to around 40%. (Part of this trend, of course, may be due to people getting fed up 
with being pestered by salespersons and ‘market researchers’.) Researchers have responded 
with ‘random digit dialling’ which is made easier by modern computerised equipment.

Matters are unlikely to improve for researchers in the future. The answering machine is 
often used as a barrier to unwanted calls and some residential lines connect to fax 
machines. Increasing deregulation and mobile phone use mean it will probably become 
more and more difficult to obtain a decent sampling frame for a proper survey.

Source: M. Collins, Sampling for UK telephone surveys, J. Royal Statistical Society, Series A, 162 (1), 1999.
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Even when these procedures are adhered to there can be various types of 
response bias. The first problem is of non-response, due to the subject not being at 
home when the interviewer calls. There might be a temptation to remove that 
person from the sample and call on someone else, but this should be resisted. 
There could well be important differences between those who are at home all day 
and those who are not, especially if the survey concerns employment or spending 
patterns, for example. Continued efforts should be made to contact the subject. 
One should be wary of surveys which have low response rates, particularly where 
it is suspected that the non-response is in some way systematic and related to the 
goal of the survey.

A second problem is that subjects may not answer the question truthfully for 
one reason or another, sometimes inadvertently. An interesting example of this 
occurred in the survey into sexual behaviour carried out in Britain in 1992 (see 
Nature, 3 December 1992). Amongst other things, this found the following:

●	 The average number of heterosexual partners during a woman’s lifetime is 3.4.
●	 The average number of heterosexual partners during a man’s lifetime is 9.9.

This may be in line with one’s beliefs about behaviour, but, in fact, the figures 
must be wrong. The total number of partners of all women must by definition 
equal the total number for all men. Since there are approximately equal numbers 
of males and females in the United Kingdom, the averages must therefore be about 
the same. So how do the above figures come about?

It is too much to believe that international trade holds the answer. It seems 
unlikely that British men are so much more attractive to foreign women than 
British women are to foreign men. Nor is an unrepresentative sample likely. It was 
carefully chosen and quite large (around 20 000 respondents). The answer would 
appear to be that some people are lying. Either women are being excessively 
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 modest or (more likely?) men are boasting. Perhaps the answer is to divide by 
three whenever a man talks about his sexual exploits.

For an update on this story, see the article by J. Wadsworth et al., What is a 
mean? An examination of the inconsistency between men and women in report-
ing sexual partnerships, J. Royal Statistical Society, 1996, Series A. 159 (1).

Case study: the UK Living Costs and Food Survey

 Introduction

The Living Costs and Food Survey (LCF) is an example of a large government survey 
which examines households’ expenditure patterns (with a particular focus on food 
expenditures) and income receipts. It is worth having a brief look at it, therefore, to 
see how the principles of sampling techniques outlined in this chapter are put into 
practice. The LCF succeeded the Expenditure and Food Survey in 2008, which used 
a similar design. The LCF is used for many different purposes, including the calcula-
tion of weights to be used in the UK Consumer Price Index and the assessment of 
the effects of changes in taxes and state benefits upon different households.

 Choosing the sample

The sample design which follows is known as a multi-stage, stratified random sam-
ple with clustering. This is obviously quite a complex design so will be examined in 
a little detail.

Stage 1

The primary sampling unit (PSU) is the Postcode Sector, a small geographical area. 
There are 638 of these selected at random each year (from a total of around 10,600 
sectors in the country), stratified according to

●	 region,
●	 socio-economic classification, and
●	 car ownership.

This ensures the chosen areas are representative of the country as a whole on 
these characteristics.

Stage 2

Eighteen households are drawn at random from each postcode sector, giving a 
prospective sample size of 638 * 18 = 11 484 households. To capture spending 
patterns throughout the year, interviewing takes place in approximately 53 sec-
tors each month. The response rate to the survey is approximately 50%, having 
fallen in recent years, hence the number of households providing information is 
around 5700.

 The sampling frame

The Postcode Address File, a list of all postal delivery addresses, is used as the sam-
pling frame. Previously the register of electors in each ward had been used but had 
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some drawbacks: it was under-representative of those who have no permanent 
home or who move frequently (e.g. tramps, students, etc.). The fact that many 
people took themselves off the register in the early 1990s in order to avoid paying 
the Community Charge could also have affected the sample.

 Collection of information

The data are collected by interview, and by asking participants to keep a diary in 
which they record everything they purchase over a two-week period. Highly 
skilled interviewers are required to ensure accuracy and compliance with the sur-
vey, and each participating family is visited several times. As an inducement to 
cooperate, each member of the family is paid a small sum of money – it is to be 
hoped that the anticipation of this does not distort their expenditure patterns.

 Sampling errors

Given the complicated survey design, it is difficult to calculate sampling errors 
exactly. The multi-stage design of the sample actually tends to increase the sam-
pling error relative to a simple random sample, but, of course, this is offset by cost 
savings which allow a greatly increased sample size. Overall, the results of the sur-
vey are of good quality and can be verified by comparison with other statistics, 
such as retail sales, for example.

Summary

●	 A primary data source is one where you obtain the data yourself, designed the 
questions and have access to all the original observations.

●	 A secondary data source is one collected by others, perhaps for a different pur-
pose to your own. You may have access to all the original observations (typical 
with electronic sources) or a summary, usually in the form of tables.

●	 When collecting data always keep detailed notes of the sources of all informa-
tion, how it was collected, precise definitions of the variables, etc.

●	 Most data can be obtained electronically, which saves having to type it into a 
computer, but the data still need to be checked for errors.

●	 There are various types of random sample, including simple, stratified and clus-
tered random samples. The methods are sometimes combined in multi-stage 
samples.

●	 The type of sampling affects the size of the standard errors of the sample statis-
tics. The most precise sampling method is not necessarily the best if it costs 
more to collect (since the overall sample size that can be afforded will be smaller).

●	 Quota sampling is a non-random method of sampling which has the advan-
tage of being extremely cheap. It is often used for opinion polls and surveys.

●	 The sampling frame is the list (or lists) from which the sample is drawn. If it 
omits important elements of the population, its use could lead to biased results.

●	 Careful interviewing techniques are needed to ensure reliable answers are 
obtained from participants in a survey.
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cluster sampling
design factor
finite population correction
multi-stage sampling
online data
primary data
quota sampling
random sample

sampling frame
sampling methods
secondary data
simple random sampling
strata
stratification factor
stratified sampling
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Formula Description Note

fpc = 1 - n>N Finite population correction for the  variance of x

n =
z2
a * s2

p2

Required sample size to obtain desired confidence 
interval

p is the desired accuracy (half the width of the CI), Za is the 
critical value from the Normal distribution (depends on 
 confidence level specified).

Formulae used in this chapter

Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 9.1 What issues of definition arise in trying to measure ‘output’?

 9.2 What issues of definition arise in trying to measure ‘unemployment’?

 9.3 Find the gross domestic product for both the United Kingdom and the United States for the period 
1995 to 2003. Obtain both series in constant prices.

 9.4 Find figures for the monetary aggregate M0 for the years 1995 to 2003 in the United Kingdom, in 
nominal terms.

 9.5 A firm wishes to know the average weekly expenditure on food by households to within £2, with 95% 
confidence. If the variance of food expenditure is thought to be about 400, what sample size does 
the firm need to achieve its aim?

 9.6 A firm has £10 000 to spend on a survey. It wishes to know the average expenditure on gas by busi-
nesses to within £30 with 99% confidence. The variance of expenditure is believed to be about  
40 000. The survey costs £7000 to set up and then £15 to survey each firm. Can the firm achieve its 
aim with the budget available?

 9.7 (Project) Visit your college library or online sources to collect data to answer the following ques-
tion. Have females’ earnings risen relative to men’s over the past 10 years? You should write a short 
report on your findings. This should include a section describing the data collection process, includ-
ing any problems encountered and decisions you had to make. Compare your results with those of 
other students. It might be interesting to compare your experiences of using online and offline 
sources of data.

 9.8 (Project) Do a survey to find the average age of cars parked on your college campus. (A letter or 
digit denoting the registration year can be found on the number plate (applies to the United 
 Kingdom, other countries will differ) – precise details can be obtained in various guides to used- 
car prices.) You might need stratified sampling (e.g. if administrators have newer cars than faculty 
and students, for example). You could extend the analysis by comparing the results with a public car 
park. You should write a brief report outlining your survey methods and the results you obtain. If 
several students do such a survey you could compare results.

Problems
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By the end of this chapter you should be able to:

●	 represent a set of data in index number form

●	 understand the role of index numbers in summarising or presenting data
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●	 recognise the relationship between price, quantity and expenditure index numbers

●	 turn a series measured at current prices into one at constant prices (or in volume terms)

●	 splice separate index number series together

●	 measure inequality using index numbers.

Introduction

‘Consumer price index up 3.8%. Retail price index up 4.6%.’ (UK, June 2008)

‘Vietnam reports an inflation rate of 27.04%’ (July 2008)

‘Zimbabwe inflation at 2,200,000%’ (July 2008)

The above headlines reveal startling differences between the inflation rates of 
three different countries. This chapter is concerned with how such measures are 
constructed and then interpreted. Index numbers are not restricted to measuring 
inflation, although that is one of the most common uses. There are also indexes of 
national output, of political support, of corruption in different countries of the 
world, and even of happiness (Danes are the happiest, it seems).

An index number is a descriptive statistic, in the same sense as the mean or stan-
dard deviation, which summarises a mass of information into some readily under-
stood statistic. As such, it shares the advantages and disadvantages of other 
summary statistics: it provides a useful overview of the data but misses out the 
finer detail. The retail price index (RPI) referred to above is one example, which 
summarises information about the prices of different goods and services, aggre-
gating them into a single number. We have used index numbers earlier in the text 
(for example, in the chapters on regression), without fully explaining their deriva-
tion or use. This will now be remedied.

Index numbers are most commonly used for following trends in data over time, 
such as the consumer price index (CPI) measuring the price level or the index of 
industrial production (IIP) measuring the output of industry. The CPI (or the sim-
ilar retail price index, RPI) also allows calculation of the rate of inflation, which is 
simply the rate of change of the price index; and from the IIP it is easy to measure 
the rate of growth of output. Index numbers are also used with cross-section data, 
for example, an index of regional house prices would summarise information 
about the different levels of house prices in different regions of the country at a 
particular point in time. There are many other examples of index numbers in use, 
common ones being the Financial Times All Share index, the trade weighted 
exchange rate index, and the index of the value of retail sales.

This chapter will explain how index numbers are constructed from original 
data and the problems which arise in doing this. There is also a brief discussion of 
the CPI to illustrate some of these problems and to show how they are resolved in 
practice. Finally, a different set of index numbers is examined, which are used to 
measure inequality, such as inequality in the distribution of income, or in the 
market shares held by different firms competing in a market. Constructing index 
numbers is not the most glamorous part of statistics but it is important for any 
applied researcher to understand them.
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A simple index number

We begin with the simplest case, where we wish to construct an index number 
series for a single commodity. In this case, we shall construct an index number 
series representing the price of coal. This is a series of numbers showing, in each 
year, the price of coal and how it changes over time. More precisely, we measure 
the cost of coal to industrial users, for the years 2006 to 2010 (as I wrote above, 
not the most glamorous part of statistics). Later in the chapter we will expand the 
analysis to include other fuels and thereby construct an index of the price of 
energy as a whole. The raw data for coal are given in Table 10.1 (adapted from the 
Digest of UK Energy Statistics, available on-line). We assume that the product 
itself has not changed from year to year, so that the index provides a fair repre-
sentation of costs. This means, for example, that the quality of coal has not 
changed during the period.

To construct a price index from these data, we choose one year as the reference 
year (we will use 2006 in this case) and set the price index in that year equal to 100. 
The prices in the other years are then measured relative to the reference year figure 
of 100. The index, and its construction, are presented in Table 10.2.

All we have done so far is to change the form in which the information is pre-
sented. We have perhaps gained some degree of clarity (for example, it is easy to 
see that the price in 2010 is 62.5% higher than in 2006), but we have lost the orig-
inal information about the actual level of prices. Since it is usually relative prices 
that are of interest, this loss of information about the actual price level is not too 
serious, and information about relative prices is retained by the price index. For 
example, using either the index or actual prices, we can see that the price of coal 
was 6.6% higher in 2007 than in 2006.

In terms of a formula we have calculated, for each year:

Pt =
price of coal in year t
price of coal in 2006

* 100

where Pt represents the value of the index in year t.

Table 10.1 The price of coal, 2006–10

2006 2007 2008 2009 2010

Price (£/tonne) 43.63 46.49 60.31 59.60 70.90

Table 10.2 The price index for coal, 2006 = 100

Year Price Index

2006 43.63 100.0 a =  
43.63
43.63

* 100b

2007 46.49 106.6 a =  
46.49
43.63

* 100b

2008 60.31 138.2 a =  
60.31
43.63

* 100b

2009 59.60 136.6 etc.
2010 70.90 162.5
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The choice of reference year is arbitrary and we can easily change it for a different 
year. If we choose 2008 to be the reference year, then we set the price in that year 
equal to 100 and again measure all other prices relative to it. The formula is thus

Pt =
price of coal in year t
price of coal in 2008

* 100

This calculation is shown in Table 10.3 which can be derived from Table 10.2 or 
directly from the original data on prices. You should choose whichever reference 
year is most convenient for your purposes. Whichever year is chosen, the informa-
tional content is the same. The values of the index with 2008 as reference year are 
all 72.3% of the corresponding values of the index with 2006 as reference year.

Table 10.3 The price index for coal, 2008 = 100

Year Price Index

2006 43.63 72.3 a =  
43.63
60.31

* 100b

2007 46.49 77.1 a =  
46.49
60.31

* 100b

2008 60.31 100.0 a =  
60.31
60.31

* 100b

2009 59.60 98.8 etc.
2010 70.90 117.6

(a) Average house prices in the United Kingdom for 2000–4 were:

Year 2000 2001 2002 2003 2004

Price (£) 86 095 96 337 121 137 140 687 161 940

Turn this into an index with a reference year of 2000.

(b) Recalculate the index with reference year 2003.

(c) Check that the ratio of house prices in 2004 relative to 2000 is the same for both indexes.

?

Exercise 10.1

A price index with more than one commodity

Constructing an index for a single commodity is a simple process but only of lim-
ited use, mainly for presentation purposes. Once there is more than a single com-
modity, index numbers become more useful but are a little more difficult to 
calculate. Industry uses other sources of energy as well as coal, such as gas, petro-
leum and electricity, and managers might wish to know the overall price of energy, 
which affects their costs. This is a more common requirement in reality, rather 
than the simple index number series calculated above. If the price of each fuel 
were rising at the same rate, say at 5% per year, then it is straightforward to say 
that the price of energy is also rising at 5% per year. But supposing, as is likely, that 
the prices are all rising at different rates, as shown in Table 10.4. Is it now possible 
to say how fast the price of energy is increasing? Several different prices now have 
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to be combined in order to construct an index number, a more complex process 
than the simple index number calculated above.

From the data presented in Table 10.4 we can calculate that the price of coal has 
risen by 63% over the five-year period, petroleum has risen by 81%, electricity by 
18% and gas has fallen by 4%. It is fairly clear prices are volatile and increasing at very 
different rates. How do we combine these to measure the rise in the price of energy?

 Using base-year weights: the Laspeyres index

We find the desired index by constructing a hypothetical ‘shopping basket’ of the 
fuels used by industry, and measure how the cost of this basket has risen (or fallen) 
over time. We therefore take a weighted average of the price changes of the indi-
vidual fuels, the weights being derived from the quantities of each fuel used by 
the industry (the ‘shopping basket’). Thus, if industry uses relatively more coal 
than petrol, more weight is given to the rise in the price of coal in the calculation.

Table 10.5 gives the quantities of each fuel consumed by industry in 2006 
(again from the Digest of UK Energy Statistics) and it is this which forms the shop-
ping basket. The year 2006 is referred to as the base year since the quantities con-
sumed in this year are used to make up the shopping basket.

The cost of this basket is obtained by multiplying together the prices and quan-
tities, as shown in Table 10.6 (using information from Tables 10.4 and 10.5).

The final column of the table shows the expenditure on each of the four energy 
inputs and the total cost of the basket is 10 457.93 (this is in £m, so altogether about 
£10.5bn was spent on energy by industry). This sum may be written algebraically as:

a
4

i = 1
p0iq0i = 10 457.93

Table 10.4 Fuel prices to industry, 2006–10

Year Coal (£/tonne) Petroleum (£/tonne) Electricity (£/MWh) Gas (£/MWh)

2006 43.63 260.47 55.07 18.04
2007 46.49 269.68 54.49 14.74
2008 60.31 392.94 68.36 21.14
2009 59.60 383.22 72.70 19.06
2010 70.90 471.46 65.12 17.38

Table 10.5 Quantities of fuel used by industry, 2006

Coal (m. tonnes) 1.76
Petroleum (m. tonnes) 5.52
Electricity (m. MWh) 114.90
Gas (m. MWh) 145.00

Table 10.6 Cost of the energy basket, 2006

Price Quantity Price * quantity

Coal (£/tonne) 43.63 1.76 76.79
Petroleum (£/tonne) 260.47 5.52 1 437.79
Electricity (£/MWh) 55.07 114.90 6 327.54
Gas (£/MWh) 18.04 145.00 2 615.80

Total 10 457.93
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where the summation is calculated over all the four fuels. Here, p refers to prices, q 
to quantities. The first subscript (0) refers to the year, the second (i) to each energy 
source in turn. We refer to 2006 as year 0, 2007 as year 1, etc., for brevity of nota-
tion. Thus, for example, p01 means the price of coal in 2006, q12 the consumption 
of petroleum by industry in 2007.

We now need to find what the 2006 basket of energy would cost in each of the 
subsequent years, using the prices pertaining to those years. For example, for 2007 
we value the same 2006 basket using the 2007 prices. This calculation is shown in 
Table 10.7 and yields a cost of £9968.66bn.

Firms would therefore have to spend £489m less (=  9969 - 10 458) in 2007 to 
buy the same quantities of energy as in 2006, mainly due to the fall in the price of 
gas. This amounts to a saving of 4.7% over the expenditure in 2006. The sum of 
£9969m may be expressed as gp1iq0i, since it is obtained by multiplying the prices 
in year 1 (2007) by quantities in year 0 (2006).

Similar calculations for subsequent years produce the costs of the 2006 basket 
as shown in Table 10.8.

It can be seen that if firms had purchased the same quantities of each energy 
source in the following years, they would have had to pay more in each subse-
quent year up until another small drop in 2010.

To obtain the energy price index from these numbers we simply calculate an 
index of the values in the final column of Table 10.8. In other words, we measure 
the cost of the basket in each year relative to its 2006 cost, i.e. we divide the cost of 
the basket in each successive year by gp0iq0i and multiply by 100.

This index is given in Table 10.9 and is called the Laspeyres price index, after its 
inventor. We say that it uses base-year weights (i.e. quantities in the base year 2006 
form the weights in the basket). We have set the value of the index to 100 in 2006, 
i.e. the reference year and the base year coincide; this is convenient although not 
essential.

Figure 10.1 charts the prices of the four individual fuels over the period as well 
as the Laspeyres index just calculated. One can see that the index tracks the elec-
tricity price fairly closely, with a small influence from the other fuel prices. Later 

Table 10.7 The cost of the 2006 energy basket at 2007 prices

2007 Price 2006 Quantity Price * quantity

Coal (£/tonne) 46.49 1.76 81.82
Petroleum (£/tonne) 269.68 5.52 1488.63
Electricity (£/MWh) 54.49 114.90 6260.90
Gas (£/MWh) 14.740 145.00 2137.30

Total 9968.66

Table 10.8 The cost of the energy basket, 2006–10

Formula

2006 gp0q0 10 457.93

2007 gp1q0 9 968.66

2008 gp2q0 13 195.04

2009 gp3q0 13 337.20

2010 gp4q0 12 729.63

Note: For brevity, we have dropped the i subscript in the formula.
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we will see that about 60% of firms’ expenditure on energy goes on electricity, 
which is why the index closely tracks the electricity price.

In general, the Laspeyres index for year n with the base year as year 0 is given by 
the following formula:

Pn
L = apniq0i

ap0iq0i
* 100 (10.1)

(Henceforth we shall omit the i subscript on prices and quantities in the formu-
lae for index numbers, for brevity.) The index shows that energy prices increased 
by 21.72% over the period. This might seem slightly surprising, given the large 
increases in coal and petroleum prices noted earlier. The reason for the modest 
overall increase is that industry uses little coal and petroleum, relative to elec-
tricity and gas. The rise amounts to an average increase of 5% p.a. in the cost of 
energy. During the same period, prices in general rose by 12.9% (or 3.1% p.a.), so 
in relative terms energy became more expensive.

The choice of 2006 as the base year for the index was an arbitrary one; any year 
will do. If we choose 2007 as the base year, then the cost of the 2007 basket is 
evaluated in each year (including 2006), and this will result in a slightly different 

Table 10.9 The Laspeyres price index

Year Formula Index

2006
gp0q0gp0q0

* 100   100 a =  
10 457.93
10 457.93

* 100b

2007
gp1q0gp0q0

* 100  95.32 a =  
9968.66

10 457.93
* 100b

2008
gp2q0gp0q0

* 100 126.17 etc.

2009
gp3q0gp0q0

* 100 127.53

2010
gp4q0gp0q0

* 100 121.72
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Laspeyres index. The calculations are in Table 10.10. The final two columns of the 
table compare the Laspeyres index constructed using the 2007 and 2006 baskets, 
respectively (the former adjusted to 2006 = 100). A very small difference can be 
seen, which is due to the fact that consumption patterns were very similar, 
although not identical, in 2006 and 2007. It would not be uncommon to get a 
larger difference between the series than in this instance.

The Laspeyres price index shows the increase in the price of energy for the 
‘average’ firm, i.e. one which consumes energy in the same proportions as 
the 2006 basket overall. There are probably very few such firms: most would 
use perhaps only one or two energy sources. Individual firms may therefore 
experience price rises quite different from those shown here. For example, a 
firm depending upon coal alone would face a 63% price increase over the four 
years, significantly different from the figure of 21.7% suggested by the Laspeyres 
index.

Table 10.10 The Laspeyres price index using the 2007 basket

Year Cost of 2007 basket Laspeyres index 
2007 = 100

Laspeyres index 
2006 = 100 

(2007 basket)

Laspeyres index 
using 2006 basket

2006 10 189.58 104.60 100 100
2007 9 741.04 100 95.60 95.32
2008 12 878.54 132.21 126.39 126.17
2009 13 040.69 133.87 127.98 127.53
2010 12 464.08 127.95 122.32 121.72

Note: The quantities used in the 2007 basket can be found in Table 10.11, in the second row of data. 
These are multiplied by the relevant prices each year (see Table 10.4) to give the cost of the 2007 basket.

(a) The prices of fuels used by industry 2002–6 were:

Year Coal (£/tonne) Petroleum (£/tonne) Electricity (£/MWh) Gas (£/MWh)

2002 36.97 132.24 29.83 7.80
2003 34.03 152.53 28.68 8.09
2004 37.88 153.71 31.26 9.61
2005 44.57 204.28 42.37 13.87
2006 43.63 260.47 55.07 18.04

and quantities consumed by industry were:

Year Coal (m. tonnes) Petroleum (m. tonnes) Electricity (m. MWh) Gas (m. MWh)

2002 1.81 5.70 112.65 165.17

 Calculate the Laspeyres price index of energy based on these data. Use 2002 as the refer-
ence year.

(b) Recalculate the index making 2004 the reference year.

(c) The quantities consumed in 2003 were:

Coal (m tonnes) Petroleum (m tonnes) Electricity (m MWh) Gas (m therms)

2003 1.86 6.27 113.36 166.22

 Calculate the Laspeyres index using this basket and compare to the answer to part (a).

?

Exercise 10.2
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 Using current-year weights: the Paasche index

Firms do not of course consume the same basket of energy every year. One would 
expect them to respond to changes in the relative prices of fuels and to other fac-
tors. Technological progress means that the efficiency with which the fuels can be 
used changes, causing fluctuations in demand. Table 10.11 shows the quantities 
consumed in 2006 and later years, indicating that firms did indeed alter their pat-
tern of consumption.

Any of these annual patterns of consumption could be used as the ‘shopping 
basket’ for the purpose of constructing a Laspeyres index and each would give a 
slightly different price index, as we saw with the usage of the 2006 and 2007 bas-
kets. One cannot say that one of these is more correct than the others. One fur-
ther problem is that whichever basket is chosen remains the same over time and 
eventually becomes unrepresentative of the current pattern of consumption.

The Paasche index (denoted Pn
P to distinguish it from the Laspeyres index) over-

comes these problems by using current-year weights to construct the index; in 
other words the basket is continually changing. Suppose 2006 is to be the refer-
ence year, so P0

P = 100. To construct the Paasche index value for 2007 we use the 
2007 weights (or basket), for the 2008 value of the index we use the 2008 weights, 
and so on. An example will clarify matters.

The Paasche index for 2007 will be the cost of the 2007 basket at 2007 prices 
relative to its cost at 2006 prices, i.e.

P1
P = ap1q1

ap0q1
* 100

The cost of the 2007 basket at 2006 prices (gp0q1) has already been calculated 
in Table 10.10, as 10 189.58. The numerator of the formula, gp1q1, is calculated1 as 
46.49 * 1.9 + 269.68 * 5.53 + 54.49 * 113.8 + 14.74 * 133 = 9741.04. The 
formula therefore evaluates to:

P1
P =

9741.04
10 189.58

* 100 = 95.60

This is the value of the Paasche index for 2007, with 2006 = 100 as the refer-
ence year.

The general formula for the Paasche index in year n is given in equation (10.2).

Pn
P = apnqn

ap0qn
* 100 (10.2)

Table 10.11 Quantities of energy used, 2006–10

Year Coal (m. tonnes) Petroleum (m. tonnes) Electricity (m. MWh) Gas (m. MWh)

2006 1.76 5.52 114.90 145.00
2007 1.90 5.53 113.80 133.00
2008 1.94 5.08 114.51 139.00
2009 1.74 4.51 100.84 116.00
2010 1.72 4.53 104.50 122.00

1Prices from Table 10.4, quantities from Table 10.11.
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Table 10.12 shows the calculation of this index for all years.
The Paasche formula gives a slightly different result to the Laspeyres formula, 

as is usually the case. The Paasche should generally give a slower rate of increase 
than does the Laspeyres index. This is because one would expect profit-maximis-
ing firms to respond to changing relative prices by switching their consumption 
in the direction of the inputs which are becoming relatively cheaper. The Paasche 
index, by using the current weights, captures this change, but the Laspeyres, 
assuming fixed weights, does not. This may happen slowly, as it takes time for 
firms to switch to different fuels, even if technically possible. This is why the 
Paasche can increase faster than the Laspeyres in some years (e.g. 2007) although 
in the long run it should increase more slowly.

Is one of the indices more ‘correct’ than the other? The answer is that neither is 
definitively correct, they are different interpretations of the phrase ‘the cost of 
energy’. It can be shown theoretically that the ‘true’ value lies somewhere between 
the two, but it is difficult to say exactly where. If all the items which make up the 
index increase in price at the same rate, then the Laspeyres and Paasche indices 
would give the same answer, so it is the change in relative prices and the resultant 
change in consumption patterns which causes problems.

 Units of measurement

It is important that the units of measurement in the price and quantity tables be 
consistent. Note that in the example, the price of coal was measured in £/tonne 
and the consumption was measured in millions of tonnes. The other fuels were 
similarly treated (in the case of electricity, one MWh equals one million watt-
hours). But suppose we had measured electricity consumption in kWh instead of 
MWh (1 MWh = 1000 kWh), but still measured its price in £ per MWh? We would 
then have 2006 data of 55.07 for price as before, but 114 900 for quantity. It is as if 
electricity consumption has been boosted 1000-fold, and this would seriously dis-
tort the results. The (Laspeyres) energy price index would be (by a similar calcula-
tion to the one above):

2006 2007 2008 2009 2010

100 98.94 124.14 132.01 118.26

This gives an incorrect result. By chance it is not a large distortion because elec-
tricity prices were rising at about the same rate as the average for all fuels. If we had 
mis-measured the coal data in a similar manner, there would have been a much 
larger discrepancy.

Table 10.12 The Paasche price index

Cost of basket:

At current prices: gpnqn At 2006 prices gp0qn Index

2006 10 457.93 10 457.93 100
2007 9 741.04 10 189.58 95.60
2008 12 879.50 10 221.46 126.00
2009 11 374.05 8 896.53 127.85
2010 11 183.06 9 210.67 121.41
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The Human Development Index

One of the more interesting indices to appear in recent years is the Human Development 
Index (HDI), produced by the United Nations Development Programme (UNDP). The HDI 
aims to provide a more comprehensive socioeconomic measure of a country’s progress 
than GDP (national output). Output is a measure of how well-off we are in material terms, 
but makes no allowance for the quality of life and other factors.

The HDI combines a measure of well-being (GDP per capita) with longevity (life expec-
tancy) and knowledge (based on years of schooling). As a result, each country obtains a 
score, from 0 (poor) to 1 (good). Some selected values are given in the table.

Country HDI 1980 HDI 2008 HDI 2013 Rank (HDI) Rank (GDP)

New Zealand 0.793 0.899 0.910   7  30
United Kingdom 0.735 0.890 0.892  14  27
Hong Kong 0.698 0.877 0.891  15  10
Gabon 0.468 0.525 0.674 124  65
Senegal 0.443 0.474 0.485 163 159

One can see that there is an association between the HDI and GDP, but not a perfect 
one. New Zealand has the world’s 30th highest GDP per capita but is 7th in the HDI rank-
ings. In contrast, Gabon, some way up the GDP rankings (for a developing country), is much 
lower when the HDI is calculated.

So how is the HDI calculated from the initial data? How can we combine life expectancy 
(which can stretch from 0 to 80 years or more) with literacy (the proportion of the population 
who can read and write)? The answer is to score all of the variables on a scale from 0 to 100.

The HDI sets a range for (national average) life expectancy between 25 and 85 years. A 
country with a life expectancy of 52.9 (the case of Gabon) therefore scores 0.465, i.e. 52.9 
is 46.5% of the way between 25 and 85.

Adult literacy can vary between 0% and 100% of the population, so it needs no adjust-
ment. Gabon’s figure is 0.625. The scale used for years of schooling is 0 to 15, so Gabon’s 
very low average of 2.6 yields a score of 0.173. Literacy and schooling are then combined in 
a weighted average (with a 2>3 weight on literacy) to give a score for knowledge of 
2>3 * 0.625 + 1>3 * 0.173 = 0.473.

For income, Gabon’s average of $3498 is compared to the global average of $5185 to 
give a score of 0.636. (Incomes above $5185 are manipulated to avoid scores above 1.)

A simple average of 0.465, 0.473 and 0.636 then gives Gabon’s final figure of 0.525 
(2008 figures). One can see that its average income is brought down by the poorer scores 
in the two other categories, resulting in a poorer HDI ranking.

The construction of this index number shows how disparate information can be brought 
together into a single index number for comparative purposes. Further work by UNDP 
adjusts the HDI on the basis of gender and reveals the stark result that no country treats its 
women as well as it does its men.

 Source: http://hdr.undp.org/en/content/table-2-human-development-index-trends-1980-2013.
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It is possible to make some manipulations of the units of measurement (usually 
to make calculation easier) as long as all items are treated alike. If, for example, all 
prices were measured in pence rather than pounds (so all prices in Table 10.4 were 
multiplied by 100) then this would have no effect on the resultant index, as you 
would expect. Similarly, if all quantity figures were measured in thousands of 

http://hdr.undp.org/en/content/table-2-human-development-index-trends-1980-2013
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tonnes and thousands of MWh, there would be no effects on the index, even if 
prices remained in £/tonne, etc. But if electricity were measured in pence per 
MWh, while all other fuels were in £/tonne or £/MWh, a wrong answer would 
again be obtained. Quantities consumed should also be measured over the same 
time period, e.g. millions of MWh p.a. It does not matter what the time period is 
(days, weeks, months or years) as long as all the items are treated similarly.

Table 10.13 Expenditure shares, 2006

Prices Quantity Expenditure Share

Coal (£/tonne) 43.63 1.76 76.79 0.7%
Petroleum (£/tonne) 260.47 5.52 1 437.79 13.7%
Electricity (£/MWh) 55.07 114.9 6 327.54 60.5%
Gas (£/MWh) 18.04 145 2 615.80 25.0%
Total 10 457.93 100.0%

Note: The 0.7% share of coal, for example, is calculated as (76.79>10 457.93) * 100. Other shares are 
calculated similarly.

The quantities of energy used in subsequent years were:

Year Coal (m. tonnes) Petroleum (m. tonnes) Electricity (m. MWh) Gas (m. MWh)

2004 1.85 6.45 115.84 153.95
2005 1.79 6.57 118.52 151.44
2006 1.71 6.55 116.31 144.54

Calculate the Paasche index for 2002–6 with 2002 as reference year. Compare this to the 
Laspeyres index result.

?

Exercise 10.3

Using expenditures as weights

On occasion the quantities of each commodity consumed are not available, but 
expenditures are, and a price index can still be constructed using slightly modi-
fied formulae. It is often easier to find the expenditure on a good than to know the 
actual quantity consumed (think of housing as an example). We shall illustrate 
the method with a simplified example, using the data on energy prices and con-
sumption for the years 2006 and 2007 only.

The data for consumption are assumed to be no longer available, but only the 
expenditure on each energy source as a percentage of total expenditure. 
Expenditure is derived as the product of price and quantity consumed. The calcu-
lation of expenditure shares for 2006 is shown in Table 10.13.

The formula for the Laspeyres index can be easily manipulated to suit the data 
as presented in Table 10.13. Note that it confirms the earlier claim that 60% of 
firms’ energy expenditure goes on electricity, dominating the other fuel costs.

The Laspeyres index formula based on expenditure shares is given in equation 
(10.3):2

Pn
L = a pn

p0
* s0 * 100 (10.3)

2See the appendix to this chapter (page 419) for the derivation of this formula.
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Equation (10.3) is made up of two component parts. The first, pn>p0, is sim-
ply the price in year n relative to the base-year price for each energy source. The 
second component, s01=  p0q0>gp0q02 , is the share or proportion of total expen-
diture spent on each energy source in the base year, the data for which are in 
Table 10.13. It should be easy to see that the sum of the s0 values is 1, so that 
equation (10.3) calculates a weighted average of the individual price increases, 
the weights being the expenditure shares.

The calculation of the Laspeyres index for 2007 using 2006 as the base year is 
therefore:

 Pl
L =

46.49
43.63

* 0.007 +
269.68
260.47

* 0.137 +
54.49
55.07

* 0.605 +
14.74
18.04

* 0.250

 = 0.9532

giving the value of the index as 0.9532 * 100 = 95.32, the same value as derived 
earlier using the more usual methods. Values of the index for subsequent years are 
calculated by appropriate application of equation (10.3). This is left as an exercise 
for the reader, who may use Table 10.9 to verify the answers.

The Paasche index may similarly be calculated from data on prices and expen-
diture shares, as long as these are available for each year for which the index is 
required. The formula for the Paasche index is

Pn
P =

1

a p0

pn
 sn

* 100 (10.4)

The calculation of the Paasche index using this formula is also left as an exercise.

 Comparison of the Laspeyres and Paasche indices

The advantages of the Laspeyres index are that it is easy to calculate and that it has 
a fairly clear intuitive meaning, i.e. the cost each year of a particular basket of 
goods. The Paasche index involves more computation, and it is less easy to envis-
age what it refers to. As an example of this point, consider the following simple 
case. The Laspeyres index values for 2008 and 2009 are 126.17 and 127.53. The 
ratio of these two numbers, 1.011, would suggest that prices rose by 1.1% between 
these years. What does this figure actually represent? The 2009 Laspeyres index 
has been divided by the same index for 2008, i.e.

P3
L

P2
L

= ap3q0

ap0q0
nap2q0

ap0q0
= ap3q0

ap2q0

which is the ratio of the cost of the 2006 basket at 2009 prices to its cost at 
2008 prices. This makes some intuitive sense. Note that it is not the same as the 
Laspeyres index for 2009 with 2008 as base year, which would require using q2 
(2008 quantities) in the calculation.

If the same is done with the Paasche index numbers, a rise of 1.5% is obtained 
between 2008 and 2009, a similar result. But the meaning of this is not so clear, 
since the relevant formula is:

P3
P

P2
P

= ap3q3

ap0q3
nap2q2

ap0q2
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which does not simplify further. This is a curious mixture of 2008 and 2009 quan-
tities, and 2006, 2008 and 2009 prices.

The major advantage of the Paasche index, however, is that the weights are con-
tinuously updated, so that the basket of goods never becomes out of date. In the 
case of the Laspeyres index the basket remains unchanged over a period, becoming 
less and less representative of what is being bought by consumers. When revision is 
finally made (an updated shopping basket is used) there may therefore be a large 
change in the weighting scheme. The extra complexity of calculation involved in 
the Paasche index is less important now that computers do most of the work.

(a) Calculate the share of expenditure going to each of the four fuel types in the previous 
exercises and use this result to re-calculate the Laspeyres and Paasche indexes using 
equations (10.3) and(10.4).

(b) Check that the results are the same as calculated in previous exercises.

?

Exercise 10.4

 The story so far – a brief summary

We have encountered quite a few different concepts and calculations thus far and 
it might be worthwhile to briefly summarise what we have covered before moving 
on. In order, we have examined:

●	 A simple index for a single commodity
●	 A Laspeyres price index, which uses base year weights
●	 A Paasche price index, which uses current year weights and is an alternative to 

the Laspeyres formulation
●	 The same Laspeyres and Paasche indices, but calculated using the data in a 

slightly different form, using expenditure shares rather than quantities.

We now move on to examine quantity and expenditure indices, then look at the 
relationship between them all.

Quantity and expenditure indices

Just as one can calculate price indices, it is also possible to calculate quantity and 
value (or expenditure) indices. We first concentrate on quantity indices, which pro-
vide a measure of the total quantity of energy consumed by industry each year. The 
problem again is that we cannot easily aggregate the different sources of energy. It 
makes no sense to add together tonnes of coal and petroleum, with megawatts of 
electricity and gas. Some means has to be found to put these different fuels on a 
comparable basis. To do this, we now reverse the roles of prices and quantities: the 
quantities of the different fuels are weighted by their different prices (prices repre-
sent the value to the firm, at the margin, of each different fuel). As with price indi-
ces, one can construct both Laspeyres and Paasche quantity indices.

 The Laspeyres quantity index

The Laspeyres quantity index for year n is given by

Q n
L = aqnp0

aq0p0
* 100 (10.5)
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i.e. it is the ratio of the cost of the year n basket to the cost of the year 0 basket, 
both valued at year 0 prices. Note that it is the same as equation (10.1) but with 
prices and quantities interchanged.

Using 2006 as the base year, the cost of the 2007 basket at 2006 prices is3:

 aq1p0 = 1.90 * 43.63 + 5.53 * 260.47 + 113.80 * 55.07 + 133.00 * 18.04
 = 10 189.58

and the cost of the 2006 basket at 2006 prices is 10 457.93 (calculated earlier). The 
value of the quantity index for 2007 is therefore

Q l
L =

10 189.58
10 457.93

* 100 = 97.43

In other words, energy consumption fell by 2.57% between 2006 and 2007. If 
prices had remained at their 2006 levels firms would have spent 2.57% less on 
energy.

The value of the index for subsequent years is shown in Table 10.14, using the 
formula given in equation (10.5). Note that the quantity of energy consumed falls 
significantly, particularly in 2009. Much of this is due to the financial crisis of 
2007 and subsequent recession.

 The Paasche quantity index

Just as there are Laspeyres and Paasche versions of the price index, the same is true 
for the quantity index. The Paasche quantity index is given by

Q n
P = aqnpn

aq0pn
* 100 (10.6)

and is the analogue of equation (10.2) with prices and quantities swapped. The 
calculation of this index is shown in Table 10.15, which shows a similar trend to 
the Laspeyres index in Table 10.14. Normally one would expect the Paasche to 
show a slower increase than the Laspeyres quantity index: firms should switch 
to inputs whose relative prices fall; the Paasche gives lesser weight (current 
prices) to these quantities than does the Laspeyres (base-year prices) and thus 
shows a slower rate of increase.

3The values for the calculation can be found in Tables 10.11 and 10.4, respectively.

Table 10.14 Calculation of the Laspeyres quantity index

gp0qn Index

2006 10 457.93 100 a =  
10 457.93
10 457.93

* 100b

2007 10 189.58 97.43 a =  
10 189.58
10 457.93

* 100b

2008 10 221.46 97.74 etc.
2009 8 896.53 85.07
2010 9 210.67 88.07
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In summary, quantity indices are similar to price indices but measure the 
changes in quantity over time, combining together several different commodities 
into one overall index.

 Expenditure indices

The expenditure or value index is simply an index of the cost of the year n basket at 
year n prices and so it measures how expenditure changes over time. The formula 
for the index in year n is

E n = apnqn

ap0q0
* 100 (10.7)

There is obviously only one value index and one does not distinguish 
between Laspeyres and Paasche formulations. The index can be easily derived, 
as shown in Table 10.16. The expenditure index shows how industry’s expendi-
ture on energy is changing over time. Thus, expenditure in 2010 was 7% higher 
than in 2006, for example.

The increase in expenditure over time is a consequence of two effects: (i) changes 
in the prices of energy and (ii) changes in quantities purchased. It should therefore 
be possible to decompose the expenditure index into price and quantity effects. 
You may not be surprised to learn that these effects can be measured by the price 
and quantity indices we have already covered. We look at this decomposition in 
more detail in the next section.

 Relationships between price, quantity and expenditure indices

Just as multiplying a price by a quantity gives total value, or expenditure, the same 
is true of index numbers. The value index can be decomposed as the product of a 
price index and a quantity index. In particular, it is the product of a Paasche quan-
tity index and a Laspeyres price index, or the product of a Paasche price index and a 

Table 10.15 Calculation of the Paasche quantity index

gpnqn gpnq0 Index

2006 10 457.93 10 457.93 100
2007 9 741.04 9 968.66 97.72
2008 12 879.50 13 195.04 97.61
2009 11 374.05 13 337.20 85.28
2010 11 183.06 12 729.63 87.85

Note: The final column is calculated as the ratio of the previous two columns, then multiplied by 100.

Table 10.16 The expenditure index

gpnqn Index

2006 10 457.93 100
2007 9 741.04  93.15
2008 12 879.50 123.16
2009 11 374.05 108.76
2010 11 183.06 106.93

Note: The expenditure index is a simple index of the expenditures in the previous column.
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Laspeyres quantity index. This can be very simply demonstrated using g  notation:

E n = apnqn

ap0q0
= apnqn

apnq0
* apnq0

ap0q0
= Q n

P * Pn
L (10.8)

(Paasche quantity times Laspeyres price index)

or

E n = apnqn

ap0q0
= apnqn

ap0qn
* ap0qn

ap0q0
= Pn

P * Q n
L (10.9)

(Paasche price times Laspeyres quantity index)

Thus increases in value or expenditure can be decomposed into price and quan-
tity effects. Two decompositions are possible and give slightly different answers.

It is also evident that a quantity index can be constructed by dividing a value 
index by a price index, since by simple manipulation of (10.8) and (10.9) we obtain

Q n
P = E n>Pn

L (10.10)

and

Q n
L = E n>Pn

P (10.11)

Note that dividing the expenditure index by a Laspeyres price index gives a 
Paasche quantity index, and dividing by a Paasche price index gives a Laspeyres 
quantity index. In either case we go from a series of expenditures to one represent-
ing quantities, having taken out the effect of price changes. This is known as 
deflating a series and is a widely used and very useful technique. We shall illustrate 
this using our earlier data. Table 10.17 provides the detail. Column 2 of the table 
shows the expenditure on fuel at current prices or in cash terms. This is simply the 
total expenditures each year (see Table 10.16). Column 3 contains the Laspeyres 
price index repeated from Table 10.9 above. Deflating (dividing) column 2 by col-
umn 3 and multiplying by 100 yields column 4 which shows expenditure on fuel 
in quantity or volume terms. The final column turns the volume series in column 4 
into an index with 2006 = 100.

This final index is identical to the Paasche quantity index, as illustrated by 
equation (10.10) and can be seen by comparison with Table 10.15.

Trap!

A common mistake is to believe that once a series has been turned into an index, it is inevi-
tably in real (or volume) terms. This is not the case. One can have an index of a cash (or 
nominal) series (e.g. in Table 10.16) or of a real series (the final column of Table 10.17). An 
index number is really just a change of the units of measurement to something more useful 
for presentation purposes; it is not the same as deflating the series.
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In the example above we used the energy price index to deflate the expenditure 
series. However, it is also possible to use a general price index (such as the consumer 
price index or the GDP deflator) to deflate. This gives a slightly different result, 
both in numerical terms and in its interpretation. Deflating by a general price 
index yields a series of expenditures in constant prices or in real terms. Deflating by 
a specific price index (e.g. of energy) results in a quantity or volume series.
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An example should clarify this (see Problem 10.11 for data). The government 
spends billions of pounds each year on the health service. If this cash expendi-
ture series is deflated by a general price index (e.g. the GDP deflator), then we 
obtain expenditure on health services at constant prices, or real expenditure on 
the health service. If the NHS pay and prices index is used as a deflator, then the 
result is an index of the quantity or volume of health services provided. Since the 
NHS pay and prices index tends to rise more rapidly than the GDP deflator, 
the volume series rises more slowly than the series of expenditure at constant 
prices. This can lead to a vigorous, if pointless, political debate. The government 
claims it is spending more on the health service, in real terms, while the opposi-
tion claims that the health service is getting fewer resources. As we have seen, 
both can be right.

Table 10.17 Deflating the expenditure series

Year Expenditure at 
current prices

Laspeyres price 
index

Expenditure in 
volume terms

Index

2006 10 457.93 100 10 457.93 100
2007 9 741.04  95.32 10 219.14 97.72
2008 12 879.50 126.17 10 207.84 97.61
2009 11 374.05 127.53  8 918.59 85.28
2010 11 183.06 121.72  9 187.35 87.85

(a) Use the data from earlier exercises to calculate the Laspeyres quantity index.

(b) Calculate the Paasche quantity index.

(c) Calculate the expenditure index.

(d) Check that dividing the expenditure index by the price index gives the quantity index 
(remember that there are two ways of doing this).

?

Exercise 10.5

The real rate of interest

Another example of ‘deflating’ is calculating the ‘real’ rate of interest. This adjusts the 
actual (sometimes called ‘nominal’) rate of interest for changes in the value of money, i.e. 
inflation. If you earn a 7% rate of interest on your money over a year, but the price level rises 
by 5% at the same time, you are clearly not 7% better off. The real rate of interest in this 
case would be given by

real interest rate =
1 + 0.07
1 + 0.05

- 1 = 0.019 = 1.9% (10.12)

In general, if r is the interest rate and i is the inflation rate, the real rate of interest is 
given by

real interest rate =
1 + r
1 + i

- 1 (10.13)

A simpler method is often used in practice, which gives virtually identical results for small 
values of r and i. This is to subtract the inflation rate from the interest rate, giving 
7% - 5% = 2% in this case.
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 Chain indices

Whenever an index number series over a long period of time is wanted, it is usu-
ally necessary to link together a number of separate, shorter indices, resulting in a 
chain index. Without access to the original raw data it is impossible to construct a 
proper Laspeyres or Paasche index for the complete time period, so the result will 
be a mixture of different types of index number; but it is the best that can be done 
in the circumstances.

Suppose that the following two index number series are available. Access to the 
original data is assumed to be impossible.

Laspeyres price index for energy, 2006–10 (from Table 10.9)

2006 2007 2008 2009 2010

100 95.32 126.17 127.53 121.72

Laspeyres price index for energy, 2002–6

2002 2003 2004 2005 2006

100 101.68 115.22 161.31 209.11

The two series have different reference years and use different shopping baskets 
of consumption. The first index measures the cost of the 2006 basket in each of 
the subsequent years. The second measures the price of the 2002 basket in sub-
sequent years. There is an ‘overlap’ year which is 2006. How do we combine 
these into one continuous index covering the whole period?

The obvious method is to use the ratio of the costs of the two baskets in 2006, 
209.11>100 = 2.0911, to alter one of the series. To base the continuous series on 
2002 = 100 requires multiplying each of the post-2006 figures by 2.0911, as is 
demonstrated in Table 10.18. Alternatively, the continuous series could just as eas-
ily be based on 2006 = 100 by dividing the pre-2006 numbers by 2.0911.

The continuous series is not a proper Laspeyres index number as can be seen if 
we examine the formulae used. We shall examine the 2010 figure, 254.53, by way 
of example. This figure is calculated as 254.53 = 2.0911 * 121.72 which in terms 
of our formulae is

ap10q06

ap06q06
* ap06q02

ap02q02
n100 (10.14)

Table 10.18 A chain index of energy prices, 2002–10

‘Old’ index ‘New’ index Chain index

2002 100 100
2003 101.68 101.68
2004 115.22 115.22
2005 161.31 161.31
2006 209.11 100 209.11
2007  95.32 199.33
2008 126.17 263.84
2009 127.53 266.68
2010 121.72 254.53

Note: After 2006, the chain index values are calculated by multiplying the ‘new’ index by 2.0911; e.g. 
199.33 = 95.32 * 2.0911 for 2007.
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The proper Laspeyres index for 2010 using 2002 weights is

ap10q02

ap02q02
* 100 (10.15)

There is no way that this latter equation can be derived from equation (10.14), 
proving that the former is not a properly constructed Laspeyres index number. 
Although it is not a proper Laspeyres index number series, it should be a reason-
able approximation and it does have the advantage of the weights being revised 
(once, in 2006) and therefore more up-to-date.

Similar problems arise when deriving a chain index from two Paasche index 
number series. Investigation of this is left to the reader; the method follows that 
outlined above for the Laspeyres case.

The Consumer Price Index

To consider a real-world example, we examine the UK Consumer Price Index (CPI), 
which is one of the more sophisticated of index numbers, involving the recording 
of the prices of around 700 items each month and weighting them on the basis of 
households’ expenditure patterns (derived from the National Accounts and based 
on surveys such as the Living Costs and Food Survey, explained in more detail in 
Chapter 9 on sampling methods). The principles involved in the calculation are 
similar to those set out earlier, with a number of small complications which we 
shall discuss below.

The CPI is compiled in accordance with international standards and replaces 
the older Retail Prices Index (RPI). The CPI is the inflation measure that the UK 
government monitors and targets and is also the measure used to uprate pensions 
and benefits. There is a variant of the CPI (called CPIH) which includes some addi-
tional measures of housing costs, which we won’t consider further. Both CPI mea-
sures, and the older RPI, track each other closely over time; there is not a lot of 
difference between them, at least over a short time period.

The CPI is something of a compromise between a Laspeyres and a Paasche 
index. It is calculated monthly, and within each calendar year the weights used 
remain constant, so that it takes the form of a Laspeyres index. Each January, how-
ever, the weights are updated on the basis of household spending patterns, so that 
the index is in fact a set of chain-linked Laspeyres indices, the chaining taking 
place in January each year. Despite the formal appearance as a Laspeyres index, 
the CPI measured over a period of years has the characteristics of a Paasche index, 
due to the annual change in the weights.

Some further adjustments need to be made for the index to be accurate. A 
change in the quality of goods purchased can be problematic, as alluded to ear-
lier. If a manufacturer improves the quality of a product and charges more, is it 
fair to say that the price has gone up? Sometimes it is possible to measure 
improvement (if the power of a vacuum cleaner is increased, for example), but 
other cases are more difficult, such as if the punctuality of a train service is 
improved. By how much has quality improved? In many circumstances the stat-
istician has to make a judgement about the best procedure to adopt. The ONS 
does make explicit allowance for the increase in quality of personal computers, 
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for example, taking account of such as factors as increased memory and process-
ing speed.

Prices in the long run

Table 10.19 shows how prices have changed over the longer term. The ‘inflation-adjusted’ 
column shows what the item would have cost if it had risen in line with the overall retail 
price index. It is clear that some relative prices have changed substantially and you can try 
to work out the reasons.
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Table 10.19 Eighty years of prices: 1914–94

Item 1914 price Inflation-adjusted price 1994 price

Car £730 £36 971 £6995
London–Manchester 1st class rail fare £2.45 £124.08 £130
Pint of beer 1p 53p £1.38
Milk (quart) 1.5p 74p 70p
Bread 2.5p £1.21 51p
Butter 6p £3.06 68p
Double room at Savoy Hotel, London £1.25 £63.31 £195

The Office for National Statistics has gone back even further and shown that, since 
1750, prices have increased about 140 times. Most of this occurred after 1938: up till then 
prices had only risen by about three times (over two centuries, about half a percent per 
year on average), since then prices have risen 40-fold, or about 6% p.a.

The Laspeyres index of energy prices for the years 1999–2003 was:

1999 2000 2001 2002 2003

100 101.01 109.49 99.40 99.22

Use these data to calculate a chain index from 1999 to 2010, setting 1999 = 100.

?

Exercise 10.6

Discounting and present values

Deflating makes expenditures in different years comparable by correcting for the 
effect of inflation. The future sum is deflated (reduced) because of the increase in 
the general price level. Discounting is a similar procedure for comparing amounts 
across different years, correcting for time preference. For example, suppose that by 
investing £1000 today a firm can receive £1100 in a year’s time. To decide if the 
investment is worthwhile, the two amounts need to be compared, to see which 
the firm prefers.

If the prevailing interest rate is 12%, then the firm could simply place its £1000 
in the bank and earn £120 interest, giving it £1120 at the end of the year. Hence 
the firm should not invest in this particular project; it does better keeping money 
in the bank. The investment is not undertaken because

£1000 * (1 + r) 7 £1100
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where r is the interest rate, 12% or 0.12. Alternatively, this inequality may be 
expressed as

1000 7
1100

(1 + r)
=

1100
1 + 0.12

= 982.14

The expression on the right-hand side of the inequality sign is the present value 
(PV) of £1100 received in one year’s time, £982.14. Here, r is the rate of discount 
and is equal to the rate of interest in this example because this is the rate at which 
the firm can transform present into future income, and vice versa. In what fol-
lows, we use the terms interest rate and discount rate interchangeably. The term 
1>(1 + r) is known as the discount factor. Multiplying an amount by the discount 
factor results in the present value of the sum.

We can also express the inequality as follows (by subtracting £1000 from each 
side):

0 7 -1000 +
1100

(1 + r)
= -17.86

The right-hand side of this expression is known as the net present value (NPV) of 
the project. It represents the difference between the initial outlay and the present 
value of the return generated by the investment. Since this is negative, the invest-
ment is not worthwhile (the money would be better placed on deposit in a bank). 
The general rule is to invest if the NPV is positive.

Similarly, the present value of £1100 to be received in two years’ time is

PV =
£1100

(1 + r)2 =
£1100

(1 + 0.12)2 = £876.91

When r = 12%. In general, the PV of a sum S to be received in t years is

PV =
S

(1 + r)t

The PV may be interpreted as the amount a firm would be prepared to pay today to 
receive an amount S in t years’ time. Thus a firm would not be prepared to make an 
outlay of more than £876.91 in order to receive £1100 in two years’ time. It would 
gain more by putting the money on deposit and earning 12% interest p.a.

Most investment projects involve an initial outlay followed by a series of receipts 
over the following years, as illustrated by the figures in Table 10.20. In order to 
decide if the investment is worthwhile, the present value of the income stream 
needs to be compared to the initial outlay. The PV of the income stream is obtained 
by adding together the present value of each year’s income. Thus we calculate4

PV =
S1

(1 + r)
+

S2

(1 + r)2 +
S3

(1 + r)3 +
S4

(1 + r)4 (10.16)

or more concisely, using g  notation:

PV = a St

(1 + r)t  (10.17)

4This present value example has only four terms, but in principle there can be any number 
of terms stretching into the future.
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Columns 3 and 4 of the table show the calculation of the present value. The 
discount factors, 1>(1 + r)t, are given in column 3. Multiplying column 2 by col-
umn 3 gives the individual elements of the PV calculation (as in equation (10.16)) 
and their sum is 1034.14, which is the present value of the returns. Since the PV is 
greater than the initial outlay of 1000, the investment generates a return of at least 
12% and so is worthwhile.

 An alternative investment criterion: the internal rate of return

The investment rule can be expressed in a different manner, using the internal 
rate of return (IRR). This is the rate of discount which makes the NPV equal to 
zero, i.e. the present value of the income stream is equal to the initial outlay. 
An IRR of 10% equates £1100 received next year to an outlay of £1000 today. 
Since the IRR is less than the market interest rate (12%), this indicates that the 
investment is not worthwhile: it only yields a rate of return of 10%. The rule 
‘invest if the IRR is greater than the market rate of interest’ is similar to the rule 
‘invest if the net present value is positive, using the interest rate to discount 
future revenues’.

In general, it is mathematically difficult to find the IRR of even a simple project 
by hand – a computer needs to be used. The IRR is the value of r which sets the NPV 
equal to zero, i.e. it is the solution to

NPV = -S0 + a St

(1 + r)t = 0 (10.18)

where S0 is the initial outlay. Fortunately, most spreadsheet programs have an 
internal routine for its calculation. This is illustrated in Figure 10.2 which shows 
the calculation of the IRR for the data in Table 10.20.

Cell C13 contains the formula ‘ =  IRR(C6:C10, 0.1)’ – this can be seen just 
above the column headings – which is the function used in Excel to calculate 
the internal rate of return. The financial flows of the project are in cells 
C6:C10; the value 0.1 (10%) in the formula is an initial guess at the answer – 
Excel starts from this value and then tries to improve upon it. The IRR for this 
project is found to be 13.7% which is indeed above the market interest rate of 
12%. The final two columns confirm that the PV of the income stream, when 
discounted using this internal rate of return, is equal to the initial outlay (as it 
should be). The discount factors in the penultimate column are calculated 
using r = 13.7%.

Table 10.20 The cash flows from an investment project

Year Outlay or income Discount factor Discounted income

2005 Outlay -1000
2006 Income 300 0.893 267.86
2007 400 0.797 318.88
2008 450 0.712 320.30
2009 200 0.636 127.10

Total 1034.14

Note: The discount factors are calculated as 0.893 = 1>(1.12), 0.797 = 1>(1.12)2, etc.
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The IRR is particularly easy to calculate if the income stream is a constant mon-
etary sum. If the initial outlay is S0 and a sum S is received each year in perpetuity 
(like a bond), then the IRR is simply

IRR =
S
S0

For example, if an outlay of £1000 yields a permanent income stream of 
£120 p.a. then the IRR is 12%. This should be intuitively obvious, since invest-
ing £1000 at an interest rate of 12% would give you an annual income of £120.

Although the NPV and IRR methods are identical in the above example, this is 
not always the case in more complex examples. When comparing two investment 
projects of different sizes, it is possible for the two methods to come up with differ-
ent rankings. Delving into this issue is beyond the scope of this text but, in gen-
eral, the NPV method is the more reliable of the two.

 Nominal and real interest rates

The above example took no account of possible inflation. If there were a high rate 
of inflation, part of the future returns to the project would be purely inflationary 
gains and would not reflect real resources. Is it possible our calculation is mislead-
ing under such circumstances?
There are two ways of dealing with this problem:

(a) use the actual cash flows and the nominal (market) interest rate to discount, 
or

(b) use real (inflation-adjusted) flows and the real interest rate.

These two methods should give the same answer.
If an income stream has already been deflated to real terms, then the present 

value should be obtained by discounting by the real interest rate, not the nominal 

Figure 10.2
Calculation of the IRR 
 using Excel
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 (market) rate. Table 10.21 illustrates the principle. Column (1) repeats the income 
flows in cash terms from Table 10.20. Assuming an inflation rate of i = 7% p.a. 
gives the price index shown in column (2), based on 2005 = 100. This is used to 
deflate the cash series to real terms, shown in column (3). This is in constant 
(2005) prices. If we were presented only with the real income series and could not 
obtain the original cash flows we would have to discount the real series by the real 
interest rate rr, defined by

1 + rr =
1 + r
1 + i

 (10.19)

With a (nominal) interest rate of 12% and an inflation rate of 7% this gives

1 + rr =
1 + 0.12
1 + 0.07

= 1.0467 (10.20)

so that the real interest rate is 4.67% and in this example is the same every year. 
The one-year discount factor is therefore 1>1.0467 = 0.955, for two years it is 
1>1.04672 = 0.913, etc. The discount factors used to discount the real income 
flows are shown in column (4) of the table, based on the real interest rate; the dis-
counted sums are in column (5) and the present value of the real income series is 
£1034.14. This is the same as was found earlier, by discounting the cash figures by 
the nominal interest rate. Thus one can discount either the nominal (cash) values 
using the nominal discount rate, or the real flows by the real interest rate. Make 
sure you do not confuse the nominal and real interest rates.

The real interest rate can be approximated by subtracting the inflation rate 
from the nominal interest rate, i.e. 12% - 7% = 5%. This gives a reasonably 
accurate approximation for low values of the interest and inflation rates (below 
about 10% p.a.). Because of the simplicity of the calculation, this method is often 
preferred.

Table 10.21 Discounting a real income stream

Year Cash flows 
 

(1)

Price index 
 

(2)

Real income 
 

(3)

Real discount 
factor 

(4)

Discounted 
sums 

(5)

2005 Outlay -1000 100
2006 Income 300 107.0 280.37 0.955 267.86
2007 400 114.5 349.38 0.913 318.88
2008 450 122.5 367.33 0.872 320.30
2009 200 131.1 152.58 0.833 127.10

Total 1034.14

(a) An investment of £100 000 yields returns of £25 000, £35 000, £30 000 and £15 000 in 
each of the subsequent four years. Calculate the present value of the income stream and 
compare to the initial outlay, using an interest rate of 10% p.a.

(b) Calculate the internal rate of return on this investment.

?

Exercise 10.7

(a) An investment of £50 000 yields cash returns of £20 000, £25 000, £30 000 and £10 000 in 
each subsequent year. The rate of inflation is a constant 5% and the rate of interest is con-
stant at 9%. Use the rate of inflation to construct a price index and discount the cash flows 
to real terms.

?

Exercise 10.8
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(b) Calculate the real discount rate.

(c) Use the real discount rate to calculate the present value of the real income flows.

(d) Compare the result in part (c) to the answer obtained using the nominal cash flows and 
nominal interest rate.

Inequality indices

A separate set of index numbers is used specifically in the measurement of inequal-
ity, such as inequality in the distribution of income. We have already seen how we 
can measure the dispersion of a distribution (such as that of wealth) via the vari-
ance and standard deviation. This is based upon the deviations of the observa-
tions about the mean. An alternative idea is to measure the difference between 
every pair of observations, and this forms the basis of a statistic known as the Gini 
coefficient. This would probably have remained an obscure measure, due to the 
complexity of calculation, were it not for Konrad Lorenz, who showed that there 
is an attractive visual interpretation of it, now known as the Lorenz curve, and a 
relatively simple calculation of the Gini coefficient, based on this curve.

We start off by constructing the Lorenz curve, based on data for the UK income 
distribution in 2006 to 2007, and proceed then to calculate the Gini coefficient. 
We then use these measures to look at inequality both over time (in the United 
Kingdom) and across different countries.

We then examine another manifestation of inequality, in terms of market 
shares of firms. For this analysis we look at the calculation of concentration ratios 
and at their interpretation.

The Lorenz curve

Table 10.22 shows the data for the distribution of income in the United Kingdom 
based on data from the Family Resources Survey 2006 to 2007, published by the ONS. 
The data report the total weekly income of each household, which means that income 

Table 10.22 The distribution of gross income in the United Kingdom, 2006–7

Range of weekly 
household income

Mid-point of interval Numbers of 
households

0– 50 516
100– 150 3 095
200– 250 3 869
300– 350 3 095
400– 450 2 579
500– 550 2 063
600– 650 2 063
700– 750 1 548
800– 850 1 290
900– 950 1 032

1000– 1250 4 385

Total 25 535



Chapter 10 • Index numbers

400

is recorded after any cash benefits from the state (e.g. a pension) have been received 
but before any taxes have been paid.

The table indicates a substantial degree of inequality. For example, the poor-
est 14% ((516 + 3095)>25,535) of households earn £200 per week or less, while 
the richest 17% earn more than £1000, five times as much. Although these fig-
ures give some idea of the extent of inequality, they relate only to relatively few 
households at the extremes of the distribution. A Lorenz curve is a way of graphi-
cally presenting the whole distribution. A typical Lorenz curve is shown in 
Figure 10.3.

Households are ranked along the horizontal axis, from poorest to richest, so 
that the median household, for example, is halfway along the axis. On the verti-
cal axis is measured the cumulative share of income, which goes from 0% to 100%. 
A point such as A on the diagram indicates that the poorest 30% of households 
earn 5% of total income. Point B shows that the poorest half of the population 
earn only 18% of income (and hence the other half earn 82%). Joining up all such 
points maps out the Lorenz curve.

A few things are immediately obvious about the Lorenz curve:

●	 Since 0% of households earn 0% of income, and 100% of households earn 
100% of income, the curve must run from the origin up to the opposite corner.

●	 Since households are ranked from poorest to richest, the Lorenz curve must 
lie below the 45° line, which is the line representing complete equality. The 
further below the 45° line is the Lorenz curve, the greater is the degree of 
inequality.

●	 The Lorenz curve must be concave from above: as we move to the right we 
encounter successively richer individuals, so the cumulative income grows 
faster.

Table 10.23 shows how to generate the data points from which the Lorenz 
curve may be drawn, for the data given in Table 10.22. The task is to calculate 

Figure 10.3
A typical Lorenz curve
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the {x, y} coordinates for the Lorenz curve, where y is the percentage share of 
total income earned by the poorest x% of the population. These values are 
given in columns (6) and (8), respectively, of the table. Their calculation is as 
follows:

●	 Column (3) gives the number of households in each income class and column 
(5) gives this as a percentage of all households.

●	 Column (6) cumulates the percentage shares in column (5), giving the percent-
age of households below a given income level. Thus, for example, 29.3% of 
households have income below £300 per week. These figures are the ones used 
for the x coordinates.

●	 The total income accruing to each income class is shown in column (4), 
obtained by multiplying the number of households by the mid-point of the 
class interval. The share of total income accruing to each class is then calcu-
lated in column (7), with these shares cumulated in column (8). These are the y 
coordinates for the chart.

Using columns (6) and (8) of the table we can see, for instance, that the poorest 
2% of the population have about 0.2% of total income (one-tenth of their ‘fair 
share’); the poorer half have about 25% of income (half of their fair share); and 
the top 20% have about 46% of total income. Figure 10.4 shows the Lorenz curve 
plotted, using the data in columns (6) and (8) of Table 10.23.

Table 10.23 Calculation of the Lorenz curve coordinates

Range of 
income

Mid-point Numbers of 
households

Total 
income

% 
Households

% 
Cumulative 
households 

(x)

% 
Income

% 
Cumulative 

income 
(y)

(1) (2) (3) (4) (5) (6) (7) (8)

0– 50 516 25 792 2.0% 2.0% 0.2% 0.2%

100– 150 3 095 464 256 12.1% 14.1% 3.1% 3.3%

200– 250 3 869 967 200 15.2% 29.3% 6.5% 9.8%

300– 350 3 095 1 083 264 12.1% 41.4% 7.3% 17.1%

400– 450 2 579 1 160 640 10.1% 51.5% 7.8% 24.8%

500– 550 2 063 1 134 848 8.1% 59.6% 7.6% 32.5%

600– 650 2 063 1 341 184 8.1% 67.7% 9.0% 41.5%

700– 750 1 548 1 160 640 6.1% 73.7% 7.8% 49.3%

800– 850 1 290 1 096 160 5.1% 78.8% 7.4% 56.6%

900– 950 1 032 980 096 4.0% 82.8% 6.6% 63.2%

1000– 1 250 4 385 5 480 800 17.2% 100.0% 36.8% 100.0%

25 535 14 894 880 100.0% 100.0%

Notes:
Column (4) = column (2) * column (3)
Column (5) = column (3) , 25 535
Column (6) = column (5) cumulated
Column (7) = column (4) , 14 894 880
Column (8) = column (7) cumulated
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The Gini coefficient

The Gini coefficient is a numerical representation of the degree of inequality in a 
distribution and can be derived directly from the Lorenz curve. The Lorenz curve 
is illustrated once again in Figure 10.5 and the Gini coefficient is simply the ratio 
of area A to the sum of areas A and B.

Denoting the Gini coefficient by G, we have

G =
A

A + B
 (10.21)

and it should be obvious that G must lie between 0 and 1. When there is total 
equality the Lorenz curve coincides with the 45° line, since 10% of the population 

Figure 10.4
Lorenz curve for income 
data

Figure 10.5
Calculation of the Gini co-
efficient from the Lorenz 
curve
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earns 10% of the income, 20% earns 20%, etc. In this case, area A disappears, and 
G = 0 indicating no inequality. With total inequality (one household having all 
the income), area B disappears, and G = 1. Neither of these extremes is likely to 
occur in real life; instead one will get intermediate values, but the lower the value 
of G, the less inequality there is (though see the caveats listed below). One could 
compare two countries, for example, simply by examining the values of their Gini 
coefficients.

One interesting interpretation of the Gini is as follows. If you were to choose 
two people at random from the population, by how much would you expect their 
income to differ? Now the greater is inequality (greater G) the larger you would 
expect the difference to be. It can be shown that the expected difference is actu-
ally 2G as a proportion of the mean.

To give an example, if the Gini coefficient is 0.25 or 25%, then one would 
expect the difference between the two people to be 50% of mean income. In a 
country whose mean annual income is £30 000 (consistent with Table 10.22) one 
would expect a difference of £15 000, therefore.

The Gini coefficient may be calculated from the following rather cumbersome 
formulae for areas A and B, using the x and y coordinates from Table 10.23:

 B = 1
25(x1 - x0)  * (y1 + y0)  (10.22)

 + (x2 - x1)  * (y2 + y1)

         f

 + (xk - xk - 1) * (yk + yk - 1)6
x0 = y0 = 0 and xk = yk = 100 represent the two end-points of the Lorenz curve 
and the other x and y values are the coordinates of the intermediate points. k is 
the number of classes for income in the frequency table. Area A is then given by:5

A = 5000 - B (10.23)

and the Gini coefficient is then calculated as:

G =
A

A + B
 or 

A
5000

 (10.24)

Thus for the data in Table 10.23 we have:

B = 1
2 * (2.0 - 0) * (0.2 + 0) (10.25)
+ (14.1 - 2.0) * (3.3 + 0.2)
+ (29.3 - 14.1) * (9.8 + 3.3)
+ (41.4 - 29.3) * (17.1 + 9.8)
+ (51.5 - 41.4) * (24.8 + 17.1)
+ (59.6 - 51.5) * (32.5 + 24.8)
+ (67.7 - 59.6) * (41.5 + 32.5)
+ (73.7 - 67.7) * (49.3 + 41.5)
+ (78.8 - 73.7) * (56.6 + 49.3)
+ (82.8 - 78.8) * (63.2 + 56.6)
+ (100 - 82.8) * (100 + 63.2)

= 3210.5 

5The value 5000 is correct if one uses percentages, as here (it is 100 * 100 *  the area of the 
triangle). If one uses percentages expressed as decimals, then A = 0.5 - B.
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Therefore, area A = 5000 - 3210.5 = 1789.5 and we obtain

G =
1789.5
5000

= 0.3579 (10.26)

or approximately 36%. Based on the earlier discussion, this means that the 
expected income difference between two randomly selected people is about 70% 
of the mean, which equates to £21 000 approximately.

This method implicitly assumes that the Lorenz curve is made up of straight 
line segments connecting the observed points, which is in fact not quite true – it 
should be a smooth curve. Since the straight lines will lie inside the true Lorenz 
curve, area B is over-estimated and so the calculated Gini coefficient is biased 
downwards. The true value of the Gini coefficient is slightly greater than 36%, 
therefore. The bias will be greater (a) the fewer the number of observations and 
(b) the more concave is the Lorenz curve (i.e. the greater is inequality). The bias is 
unlikely to be substantial, however, so is best left untreated.

 Is inequality increasing?

The Gini coefficient is only useful as a comparative measure, for looking at trends 
in inequality over time or for comparing different countries or regions. Table 10.24 
shows the value of the Gini coefficient for the United Kingdom over the past 
20 years or so and shows how it was affected by the tax system. The results are 
based on equivalised income, i.e. after making a correction for differences in fam-
ily size.6 For this reason there is a slight difference from the Gini coefficient calcu-
lated above, which uses unadjusted data.

Using equivalised income appears to make little difference in this case (com-
pare the ‘gross income’ column with the earlier calculation).

The table shows essentially two things:

(1) The Gini coefficient changes little over time, suggesting that inequality is per-
sistent. This is in spite of other recent evidence which tends to show growing 
inequality at the top of the income distribution.

(2) The biggest reduction in inequality comes through cash benefits paid out by 
the state, rather than through taxes. In fact, the tax system appears to increase 
inequality rather than to reduce it, primarily because of the effects of taxes 
other than the income tax.

6This is because a larger family needs more income to have the same living standard as a 
smaller one.

Table 10.24 Gini coefficients for the United Kingdom, 1989–2009/10

Original income Gross income Disposable income Post-tax income

1989 49.7 36.3 34.4 37.8
1999/00 52.5 38.7 35.8 40.0
2009/10 52.0 37.2 33.5 37.1

Note: Gross income is original income plus certain state benefits, such as pensions. Taking off direct 
taxes gives disposable income and subtracting other taxes gives post-tax income.

Source: The effects of taxes and benefits on household income, 2009/10, Office of National Statistics, 2011.
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Recent increases in inequality are a reversal of the historical trend. The figures 
presented in Table 10.25, from L. Soltow,7 provide estimates of the Gini coeffi-
cient in earlier times. These figures suggest that a substantial decline in the Gini 
coefficient has occurred in the last century or so, perhaps related to the process of 
economic development. It is difficult to compare Soltow’s figures directly with the 
modern ones because of such factors as the quality of data and different defini-
tions of income.

Using the Gini coefficient to compare countries shows that the United Kingdom 
has one of the higher figures among advanced nations. OECD figures8 show, for 
2012, a Gini of 0.35 for the United Kingdom, 0.29 for Germany, 0.27 for Sweden and 
0.33 for Italy, for example. The United States is one country that has more inequal-
ity than the UK, its Gini being 0.39. The average for all OECD countries is 0.32.

 A simpler formula for the Gini coefficient

Kravis, Heston and Summers9 provide estimates of ‘world’ GDP by decile and 
these figures, presented in Table 10.26, will be used to illustrate another method 
of calculating the Gini coefficient.

These figures show that the poorer half of the world population earns only 
about 10% of world income and that a third of world income goes to the richest 
10% of the population. This suggests a higher degree of inequality than for a sin-
gle country such as the United Kingdom, as one might expect.

When the class intervals contain equal numbers of households (for example, 
when the data are given for deciles of the income distribution, as here) formula 
(10.22) for area B simplifies to:

B =
100
2k

 ( y0 + 2y1 + 2y2 +  g +  2yk - 1 + yk) =
100

k
 aa

i = k

i = 0
yi - 50b  (10.27)

where k is the number of intervals (e.g. 10 in the case of deciles, 5 for quintiles). 
Thus you simply sum the y values, subtract 50,10 and divide by the number 

Table 10.25 Gini coefficients in past times

Year Gini

1688 0.55
1801–3 0.56
1867 0.52
1913 0.43–0.63

Table 10.26 The world distribution of income by decile

Decile 1 2 3 4 5 6 7 8 9 10

% GDP 1.5 2.1 2.4 2.4  3.3  5.2  8.4 17.1 24.1  33.5
Cumulative % 1.5 3.6 6.0 8.4 11.7 16.9 25.3 42.4 66.5 100.0

7Long run changes in British income inequality, Economic History Review, 21, 17–29, 1968.

9Real GDP per capita for more than one hundred countries, Economic Journal, 88 (349),  
215–42, 1978.

8http://stats.oecd.org/Index.aspx?DataSetCode=IDD

10If using decimal percentages, subtract 0.5.

http://stats.oecd.org/Index.aspx?DataSetCode=IDD
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of classes k. The y values for the Kravis et al. data appear in the final row of 
Table 10.26, and their sum is 282.3. We therefore obtain

B =
100
10

 (282.3 - 50) = 2323 (10.28)

Hence

A = 5000 - 2323 = 2677 (10.29)

and

G =
2677
5000

= 0.5354 (10.30)

or about 53%. This is surprisingly similar to the figure for original income in the 
United Kingdom, but, of course, differences in definition, measurement, etc., may 
make direct comparison invalid. While the Gini coefficient may provide some 
guidance when comparing inequality over time or across countries, one needs to 
take care in its interpretation.

(a) The same data as used in the text are presented below, but with fewer class intervals:

Range of income Mid-point of interval Numbers of households

0– 100 3 611
200– 300 6 964
400– 500 4 643
600– 700 3 611
800– 900 2 321

1 000– 1250 4 385

Total 25 535

 Draw the Lorenz curve for these data.

(b) Calculate the Gini coefficient for these data and compare to that calculated earlier.

?

Exercise 10.9

Given shares of total income of 8%, 15%, 22%, 25% and 30% by each quintile of a country’s 
population, calculate the Gini coefficient.

?

Exercise 10.10

Inequality and development

Table 10.27 presents figures for the income distribution in selected countries around the 
world. They are in approximately ascending order of national income.

The table shows that countries have very different experiences of inequality, even 
for similar levels of income (compare Bangladesh and Kenya, for example). Hungary, the 
only (former) communist country, shows the greatest equality, although whether 
income accurately measures people’s access to resources in such a regime is perhaps 
debatable. Note that countries with fast growth (such as Korea and Hong Kong) do not 
have to have a high degree of inequality. Developed countries seem to have uniformly 
low Gini coefficients.
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Concentration ratios

Another type of inequality is the distribution of market shares of the firms in an 
industry. We all know that Microsoft currently dominates the software market 
with a large market share. In contrast, an industry such as bakery products has 
many different suppliers and there is little tendency towards dominance. The 
 concentration ratio is a commonly used measure to examine the distribution of 
market shares among firms competing in a market. Of course, it would be possible 
to measure this using the Lorenz curve and Gini coefficient, but the concentra-
tion ratio has the advantage that it can be calculated on the basis of less informa-
tion and also tends to focus attention on the largest firms in the industry. The 
concentration ratio is often used as a measure of the competitiveness of a particu-
lar market but, as with all statistics, it requires careful interpretation.

A market is said to be concentrated if most of the demand is met by a small num-
ber of suppliers. The limiting case is monopoly where the whole of the market is 
supplied by a single firm. We shall measure the degree of concentration by the five-
firm concentration ratio, which is the proportion of the market held by the largest 
five firms, and it is denoted C5. The larger is this proportion, the greater the degree 
of concentration and potentially the less competitive is that market. Table 10.28 
gives the (imaginary) sales figures of all the firms in a particular industry.

For convenience the firms have already been ranked by size from A (the largest) 
to J (smallest). The output of the five largest firms is 482, out of a total of 569, so 
the five-firm concentration ratio is C5 = 84.7%, i.e. 84.7% of the market is sup-
plied by the five largest firms.

Table 10.27 Income distribution figures in selected countries

Year Quintiles Top 10% Gini

1 2 3 4 5

Bangladesh 1981–82 6.6 10.7 15.3 22.1 45.3 29.5 0.36
Kenya 1976 2.6 6.3 11.5 19.2 60.4 45.8 0.51
Côte d’Ivoire 1985–86 2.4 6.2 10.9 19.1 61.4 43.7 0.52
El Salvador 1976–77 5.5 10.0 14.8 22.4 47.3 29.5 0.38
Brazil 1972 2.0 5.0 9.4 17.0 66.6 50.6 0.56
Hungary 1982 6.9 13.6 19.2 24.5 35.8 20.5 0.27
Korea, Rep. 1976 5.7 11.2 15.4 22.4 45.3 27.5 0.36
Hong Kong 1980 5.4 10.8 15.2 21.6 47.0 31.3 0.38
New Zealand 1981–82 5.1 10.8 16.2 23.2 44.7 28.7 0.37
United Kingdom 1979 7.0 11.5 17.0 24.8 39.7 23.4 0.31
Netherlands 1981 8.3 14.1 18.2 23.2 36.2 21.5 0.26
Japan 1979 8.7 13.2 17.5 23.1 37.5 22.4 0.27

Source: World Development Report 2006.

Table 10.28 Sales figures for an industry (millions of units)

Firm A B C D E F G H I J

Sales 180 115 90 62 35 25 19 18 15 10
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Without supporting evidence, it is hard to interpret this figure. Does it mean 
that the market is not competitive and the consumer being exploited? Some 
industries, such as the computer industry, have a very high concentration ratio, 
yet it is hard to deny that they are fiercely competitive. On the other hand, some 
industries with no large firms have restrictive practices, entry barriers, etc., which 
means that they are not very competitive (lawyers might be one example). A fur-
ther point is that there may be a threat of competition from outside the industry 
which keeps the few firms acting competitively.

Concentration ratios can be calculated for different numbers of largest firms, 
e.g. the three-firm or four-firm concentration ratio. Straightforward calculation 
reveals them to be 67.7% and 78.6%, respectively for the data given in Table 10.28. 
There is little reason in general to prefer one measure to the others, and they may 
give different pictures of the degree of concentration in an industry.

The concentration ratio calculated above relates to the quantity of output pro-
duced by each firm, but it is possible to do the same with sales revenue, employ-
ment, investment or any other variable for which data are available. The 
interpretation of the results will be different in each case. For example, the largest 
firms in an industry, while producing the majority of output, might not provide 
the greater part of employment if they use more capital-intensive methods of pro-
duction. Concentration ratios obviously have to be treated with caution, there-
fore, and are probably best combined with case studies of the particular industry 
before conclusions are reached about the degree of competition.

Concentration in the banking industry

A study of the banking industry by Beck et al. looked at the relationship between concen-
tration in the industry, measured by the three firm concentration ratio, and the existence of 
systemic banking crises, using data for 1980–97. A selection of their data is shown below:

Country Concentration ratio Crisis years

Germany 0.48 None
Italy 0.35 1990–95
Japan 0.24 1992–97
Sweden 0.89 1990–93
UK 0.57 None
USA 0.19 1980–92

The authors found that there was a negative relationship between the concentration 
ratio (based on a measure of banks’ assets) and crises; in other words, countries with more 
concentrated industries were generally safer (despite the evidence from Sweden, above). 
However, they found that a more competitive banking industry need not be risky, if there 
were a good system of regulation in place. Note that this study was completed before the 
major financial crisis of 2007, so the conclusions might no longer be valid.

Source: T. Beck et al., Bank concentration and fragility: impact and dynamics, NBER Working Paper 11500, http://
www.nber.org/papers/w11500.
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Total sales in an industry are $400m. The largest five firms have sales of $180m, $70m, $40m, 
$25m and $15m. Calculate the three- and five-firm concentration ratios.

?

Exercise 10.11

http://www.nber.org/papers/w11500
http://www.nber.org/papers/w11500
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Summary

●	 An index number summarises the variation of a variable over time or across 
space in a convenient way.

●	 Several variables can be combined into one index, providing an average mea-
sure of their individual movements. The consumer price index is an example.

●	 The Laspeyres price index combines the prices of many individual goods using 
base-year quantities as weights. The Paasche index is similar but uses current-
year weights to construct the index.

●	 Laspeyres and Paasche quantity indices can also be constructed, combining a 
number of individual quantity series using prices as weights. Base-year prices 
are used in the Laspeyres index, current-year prices in the Paasche.

●	 A price index series multiplied by a quantity index series results in an index of 
expenditures. Rearranging this demonstrates that deflating (dividing) an 
expenditure series by a price series results in a volume (quantity) index. This is 
the basis of deflating a series in cash (or nominal) terms to one measured in real 
terms (i.e. adjusted for price changes).

●	 Two series covering different time periods can be spliced together (as long as 
there is an overlapping year) to give one continuous chain index.

●	 Discounting the future is similar to deflating but corrects for the rate of time 
preference rather than inflation. A stream of future income can thus be dis-
counted and summarised in terms of its present value.

●	 An investment can be evaluated by comparing the discounted present value of 
the future income stream to the initial outlay. The internal rate of return of an 
investment is a similar but alternative way of evaluating an investment project.

●	 The Gini coefficient is a form of index number that is used to measure inequal-
ity (e.g. of incomes). It can be given a visual representation using a Lorenz curve 
diagram.

●	 For measuring the inequality of market shares in an industry, the concentra-
tion ratio is commonly used.

base year
base-year weights
cash terms
chain index
concentration ratio
constant prices
Consumer Price Index (CPI)
current prices
current-year weights
deflating a data series
discount factor

discounting
expenditure or value index
five-firm concentration ratio
Gini coefficient
index number
internal rate of return
Laspeyres price index
Lorenz curve
net present value
Paasche index
present value

Key terms and concepts

➔
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quantity indices
real interest rate
real terms
reference year
retail price index

time preference
value (or expenditure) indices
volume series
volume terms
weighted average

Soltow, L., Long Run Changes in British Income Inequality, Economic History 
Review, 21(1), 17–29, 1968.

Reference
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Formula Description Notes

Pn
L = a pnq0

a p0q0
* 100

Laspeyres price index for year n with base 
year 0

Pn
L = a pn

a p0
* s0 * 100

Laspeyres price index using expenditure 
weights s in base year

Pn
P = a pnq0

a p0qn
* 100

Paasche price index for year n

Pn
P =

1

a p0

pn
* sn

* 100
Paasche price index using expenditure 
weights s in current year

Qn
L = aqnp0

aq0p0
* 100

Laspeyres quantity index

Qn
P = aqnpn

aq0pn
* 100

Paasche quantity index

En = a pnqn

a p0q0
* 100

Expenditure index

PV =
S

(1 + r)t

Present value The value now of a sum S to be received in t 
years’ time, using discount rate r

NPV = -S0 + a St

(1 + r)t

Net present value The value of an investment S0 now, yielding St 
p.a., discounted at a constant rate r

Formulae used in this chapter

Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 10.1 The data below show exports and imports for the United Kingdom, 2005–10, in £bn at current 
prices.

2005 2006 2007 2008 2009 2010

Exports 331.1 379.1 374.0 422.9 395.6 440.9
Imports 373.8 419.8 416.7 462.0 421.2 477.6

(a) Construct index number series for exports and imports, setting the index equal to 100 in 2005 
in each case.

(b) Is it possible, using only the two indices constructed in part (a), to construct an index number 
series for the balance of trade (exports minus imports)? If so, do so; if not, why not?

Problems
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 10.2 The following data show the gross operating surplus of companies, 2005–10, in the United King-
dom, in £m.

2005 2006 2007 2008 2009 2010

224 811 244 309 257 995 255 260 233 436 243 036

(a) Turn the data into an index number series with 2005 as the reference year.

(b) Transform the series so that 2008 is the reference year.

(c) What increase has there been in profits between 2005 and 2010? Between 2008 and 2010?

 10.3 The following tables show energy prices and consumption in 1999–2003 (analogous to the data in 
the chapter for the years 2006–10).

Coal (£/tonne) Petroleum (£/tonne) Electricity (£/MWh) Gas (£/MWh)

1999 34.77 104.93 36.23 5.46
2000 35.12 137.9 34.69 6.06
2001 38.07 148.1 31.35 8.16
2002 34.56 150.16 29.83 7.80
2003 34.5 140 28.44 8.07

Year Coal (m. tonnes) Petroleum (m. tonnes) Electricity (m. MWh) Gas (m. MWh)

1999 2.04 5.33 110.98 176.82
2000 0.72 5.52 114.11 183.44
2001 1.69 6.6 111.34 179.84
2002 1.1 5.81 112.37 165.42
2003 0.69 6.69 113.93 172.16

(a) Construct a Laspeyres price index using 1999 as the base year.

(b) Construct a Paasche price index. Compare this result with the Laspeyres index. Do they differ 
significantly?

(c) Construct Laspeyres and Paasche quantity indices. Check that they satisfy the conditions that 
En = PL * QP etc.

 10.4 The prices of different house types in south-east England are given in the table below:

Year Terraced houses Semi-detached Detached Bungalows Flats

1991 59 844 77 791 142 630 89 100 47 676
1992 55 769 73 839 137 053 82 109 43 695
1993 55 571 71 208 129 414 82 734 42 746
1994 57 296 71 850 130 159 83 471 44 092

(a) If the numbers of each type of house in 1991 were 1898, 1600, 1601, 499 and 1702, respec-
tively, calculate the Laspeyres price index for 1991–94, based on 1991 = 100.

(b) Calculate the Paasche price index, based on the following numbers of dwellings:

Year Terraced houses Semi-detached Detached Bungalows Flats

1992 1903 1615 1615 505 1710
1993 1906 1638 1633 511 1714
1994 1911 1655 1640 525 1717

(c) Compare Paasche and Laspeyres price series.
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 10.5 (a)  Using the data in Problem 10.3, calculate the expenditure shares on each fuel in 1999 and the 
individual price index number series for each fuel, with 1999 = 100.

(b) Use these data to construct the Laspeyres price index using the expenditures shares approach. 
Check that it gives the same answer as in Problem 10.3(a).

 10.6 The following table shows the weights in the retail price index and the values of the index itself, for 
1990 and 1994.

Food Alcohol 
and 

tobacco

Housing Fuel 
and 
light

Household 
items

Clothing Personal 
goods

Travel Leisure

Weights
1990 205 111 185  50 111  69 39 152  78
1994 187 111 158  45 123  58 37 162 119
Prices
1990 121.0 120.7 163.7 115.9 116.9 115.0 122.7 121.2 117.1
1994 139.5 162.1 156.8 133.9 132.4 116.0 152.4 150.7 145.7

(a) Calculate the Laspeyres price index for 1994, based on 1990 = 100.

(b) Draw a bar chart of the expenditure weights in 1990 and 1994 to show how spending patterns 
have changed. What major changes have occurred? Do individuals seem to be responding to 
changes in relative prices?

(c) The pensioner price index is similar to the general index calculated above, except that it 
excludes housing. What effect does this have on the index? What do you think is the justifica-
tion for this omission?

(d) If consumers spent, on average, £188 per week in 1990 and £240 per week in 1994, calculate 
the real change in expenditure on food.

(e) Do consumers appear rational, i.e. do they respond as one would expect to relative price 
changes? If not, why not?

 10.7 Construct a chain index from the following data series:

1998 2006 2000 2001 2006 2010 2008

Series 1 100 110 115 122 125
Series 2 100 107 111 119 121

What problems arise in devising such an index and how do you deal with them?

 10.8 Construct a chain index for 2001–10 using the following data, setting 2004 = 100.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

87 95 100 105
98 93 100 104 110

100 106 112

 10.9 Industry is always concerned about the rising price of energy. It demands to be compensated for any 
rise over 5% in energy prices between 2007 and 2008. How much would this compensation cost? 
Which price index should be used to calculate the compensation and what difference would it 
make? (Use the energy price data in the chapter.)

 10.10 Using the data in Problem 10.6, calculate how much the average consumer would need to be com-
pensated for the rise in prices between 1990 and 1994.
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 10.11 The following data show expenditure on the National Health Service (in cash terms), the GDP defla-
tor, the NHS pay and prices index, population and population of working age:

Year NHS 
expenditure 

(£m) 
(1)

GDP 
Deflator 

1973 = 100 
(2)

NHS pay and 
price index 

1973 = 100 
(3)

Population 
(000) 

(4)

Population of 
working age 

(000) 
(5)

1987 21 495 442 573 56 930 34 987
1988 23 601 473 633 57 065 35 116
1989 25 906 504 678 57 236 35 222
1990 28 534 546 728 57 411 35 300
1991 32 321 585 792 57 801 35 467

(In all the following answers, set your index to 1987 = 100.)

(a) Turn the expenditure cash figures into an index number series.

(b) Calculate an index of ‘real’ NHS expenditure using the GDP deflator. How does this alter the 
expenditure series?

(c) Calculate an index of the volume of NHS expenditure using the NHS pay and prices index. How 
and why does this differ from the answer arrived at in (b)?

(d) Calculate indices of real and volume expenditure per capita. What difference does this make?

(e) Suppose that those not of working age cost twice as much to treat, on average, as those of 
working age. Construct an index of the need for health care and examine how health care 
expenditures have changed relative to need.

(f) How do you think the needs index calculated in (e) could be improved?

 10.12 (a) If w represents the wage rate and p the price level, what is w/p?

(b) If ∆w represents the annual growth in wages and i is the inflation rate, what is ∆w - i ?

(c) What does  ln (w) -  ln (p) represent? (ln= natural logarithm.)

 10.13 A firm is investing in a project and wishes to receive a rate of return of at least 15% on it. The stream 
of net income is:

Year 1 2 3 4

Income 600 650 700 400

(a) What is the present value of this income stream?

(b) If the investment costs £1600, should the firm invest? What is the net present value of the 
 project?

 10.14 A firm uses a discount rate of 12% for all its investment projects. Faced with the following choice of 
projects, which yields the higher NPV?

Project Outlay Income stream

1 2 3 4 5 6
A 5600 1000 1400 1500 2100 1450  700
B 6000  800 1400 1750 2500 1925 1200

 10.15 Calculate the internal rate of return for the project in Problem 10.13. Use either trial and error meth-
ods or a computer to solve.
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 10.16 Calculate the internal rates of return for the projects in Problem 10.14.

 10.17 (a)  Draw a Lorenz curve and calculate the Gini coefficient for the wealth data in Table 1.3 (Chapter 1).

(b) Why is the Gini coefficient typically larger for wealth distributions than for income distributions?

 10.18 (a)  Draw a Lorenz curve and calculate the Gini coefficient for the 1979 wealth data contained in Prob-
lem 1.5 (Chapter 1). Draw the Lorenz curve on the same diagram as you used in Problem 10.17.

(b) How does the answer compare to 2005 wealth data?

 10.19 The following table shows the income distribution by quintile for the United Kingdom in 2006–7, for 
various definitions of income:

Quintile Income measure

Original Gross Disposable Post-tax

1 (bottom)  3%  7%  7%  6%
2  7% 10% 12% 11%
3 15% 16% 16% 16%
4 24% 23% 22% 22%
5 (top) 51% 44% 42% 44%

(a) Use equation (10.27) to calculate the Gini coefficient for each of the four categories of income.

(b) For the ‘original income’ category, draw a smooth Lorenz curve on a piece of gridded paper and 
calculate the Gini coefficient using the method of counting squares. How does your answer 
compare to that for part (a)?

 10.20 For the Kravis, Heston and Summers data (Table 10.26), combine the deciles into quintiles and cal-
culate the Gini coefficient from the quintile data. How does your answer compare with the answer 
given in the text, based on deciles? What do you conclude about the degree of bias?

 10.21 Calculate the three-firm concentration ratio for employment in the following industry:

Firm A B C D E F G H

Employees 3350 290 440 1345 821 112 244 352

 10.22 Compare the degrees of concentration in the following two industries. Can you say which is likely to 
be more competitive?

Firm A B C D E F G H I J

Sales 337 384 696 321 769 265 358 521 880 334
Sales 556 899 104 565 782 463 477 846 911 227

 10.23 (Project) The World Development Report contains data on the income distributions of many coun-
tries around the world (by quintile). Use these data to compare income distributions across coun-
tries, focusing particularly on the differences between poor countries, middle-income and rich 
countries. Can you see any pattern emerging? Are there countries which do not fit into this pattern? 
Write a brief report summarising your findings.
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Answers to exercises

Exercise 10.1

(a) 100, 111.9, 140.7, 163.4, 188.1.

(b) 61.2, 68.5, 86.1, 100, 115.1.

(c) 115.1>61.2 = 1.881.

Exercise 10.2

2002 2003 2004 2005 2006

(a) 2002 = 100 100 100.52 110.68 151.92 196.49
(b) 2004 = 100 90.35 90.83 100 137.26 177.53
(c) Using 2003 basket 100 100.71 110.75 151.94 196.48

Exercise 10.3

The Paasche index is:

2002 2003 2004 2005 2006

100 100.71 110.48 151.18 195.31

Exercise 10.4

(a) Expenditure shares in 2002 are:

Expenditure Share

Coal 66.92 1.2%
Petroleum 753.77 13.8%
Electricity 3360.35 61.4%
Gas 1288.33 23.6%

 giving the Laspeyres index for 2003 as

 Pn
1 =

34.03
36.97

* 0.012 +
152.53
132.24

* 0.138 +
28.68
29.83

* 0.614 +
8.09
7.80

* 0.236

 = 1.0052 or 100.52.

 The expenditure shares in 2003 are 0.3%, 8.9%, 46.3% and 44.4% which allows the 
2003 Paasche index to be calculated as

 Pn
1 =

1
36.97
34.03

* 0.012 +
132.24
152.53

* 0.149 +
29.83
28.68

* 0.606 +
7.80
8.09

* 0.233
* 100

 = 1.0071 or 100.71.

 Later years can be calculated in similar fashion.
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Exercise 10.5

(a/b) The Laspeyres and Paasche quantity indexes are:

Laspeyres index Paasche index

2002 100 100
2003 101.95 102.14
2004 101.98 101.80
2005 103.33 102.83
2006 101.04 100.43

(c) The expenditure index is 100, 102.67, 112.67, 156.22 and 197.34.

(d) The Paasche quantity index times Laspeyres price index (or vice versa) gives the 
expenditure index.

Exercise 10.6

The full index is (using Laspeyres indexes):

Chain index

1999 100 100
2000 101.01 101.01
2001 109.49 109.49
2002  99.40 100  99.40
2003  99.22 100.52  99.22
2004 110.68 109.25
2005 151.92 149.95
2006 196.49 100 193.95
2007  95.32 184.88
2008 126.17 244.71
2009 127.53 247.35
2010 121.72 236.08

Exercise 10.7

(a) The discounted figures are:

Year Investment/yield Discount factor Discounted yield

0 -100 000
1 25 000 0.9091 22 727.3
2 35 000 0.8264 28 925.6
3 30 000 0.7513 22 539.4
4 15 000 0.6830 10 245.2

Total 84 437.5

 The present value is less than the initial outlay.

(b) The internal rate of return is 2.12%.
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Exercise 10.8

(a) Deflating to real income gives:

Year Investment/yield Price index Real income

0 -50 000 100 -50 000.0
1 20 000 105 19 047.6
2 25 000 110.250 22 675.7
3 30 000 115.763 25 915.1
4 10 000 121.551 8 227.0

(b) The real discount rate is 1.09>1.05 = 1.038 or 3.8% p.a.

(c/d) Nominal 
values

Discount 
factor

Discounted 
value

Real 
values

Discount 
factor

Discounted 
value

-50 000 -50 000.0
20 000 0.917 18 348.6 19 047.6 0.963 18 348.6
25 000 0.842 21 042.0 22 675.7 0.928 21 042.0
30 000 0.772 23 165.5 25 915.1 0.894 23 165.5
10 000 0.708 7 084.3 8 227.0 0.861 7 084.3

Totals 69 640.4 69 640.38

The present value is the same in both cases and exceeds the initial outlay.

Exercise 10.9

(b) Range of 
income

Mid- 
point

Number of 
households

Total 
income

% 
Households

% 
Cumulative 
households 

x

% 
Income

% 
Cumulative 

Income 
y

(1) (2) (3) (4) (5) (6) (7) (8)
0– 100 3 611 361 100 14.1% 14.1% 2.4% 2.4%

200– 300 6 964 2 089 200 27.3% 41.4% 14.1% 16.5%
400– 500 4 643 2 321 500 18.2% 59.6% 15.6% 32.1%
600– 700 3 611 2 527 700 14.1% 73.7% 17.0% 49.1%
800– 900 2 321 2 088 900 9.1% 82.8% 14.0% 63.1%

1000– 1 250 4 385 5 481 250 17.2% 100.0% 36.9% 100.0%

Totals 25 535 14 869 650 100.0% 100.0%

 The Gini coefficient is then calculated as follows: B = 0.5 * {14.1 * (2.4 + 0) +  
27.3 * (16.5 + 2.4) + 18.2 * (32.1 + 16.5) + 14.1 * (49.1 + 32.1) + 9.1 * (63.1 +  
49.1) + 17.2 * (100 + 63.1) = 3201.} Area A = 5000 - 3301 = 1799. Hence 
Gini = 1799>5000 = 0.360, very similar to the value in the text using more cate-
gories of income.

Exercise 10.10

Using formula (10.28) we obtain B = 100>5 * (246 - 50) = 3920. Hence A = 1080 
and Gini = 0.216. The sum of the cumulative y values is 246.

Exercise 10.11

C3 = 290>400 = 72.5% and C5 = 82.5%.
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 Appendix  Deriving the expenditure share form of the Laspeyres 
price index

We can obtain the expenditure share version of the formula from the standard 
formula given in equation (10.1):

 Pn
L = apnq0

ap0q0
=

a pn

p0
 p0q0

a p0

p0
 p0q0

 =
a pn

p0
 

p0q0

ap0q0

a p0

p0
 

p0q0

ap0q0

= a pn

p0
 

p0q0

ap0q0

 = a pn

p0
* s0

which is equation (10.3) in the text (apart from the ‘*  100’, omitted for simplicity 
in the derivation).
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By the end of this chapter you should be able to:

●	 recognise the different elements that make up a time series

●	 isolate the trend from a series, by either the additive or multiplicative method, or by 
using linear regression

●	 find the seasonal factors in a series

●	 use the seasonal factors to seasonally adjust the data

●	 forecast the series, taking account of seasonal factors

●	 appreciate the issues involved in the process of seasonal adjustment.
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Introduction

‘Economists noticed some signs in the data that suggest a turning point may be in 
the offing. The claimant count, although down, also showed February’s figure had 
been revised to show a rise of 600 between January and February, the first occasion 
in 17 months that there had been an increase.’

The Guardian, 17 April 2008.

The quote above describes economists trying to spot a ‘turning point’ in the 
unemployment data, early in 2008. This is an extremely difficult task for several 
reasons:

●	 By definition, a turning point is a point at which a previous trend changes.
●	 Data are ‘noisy’, containing a lot of random movements.
●	 There may be seasonal factors involved (e.g. perhaps February’s figures are usu-

ally considerably higher than January’s, so what are we to make of a small 
increase?).

This chapter is concerned with the interpretation of time-series data, such as 
unemployment, retail sales, stock prices, etc. Agencies such as government, busi-
nesses and trade unions are interested in knowing how the economy is changing 
over time. Government may want to lower interest rates in response to an eco-
nomic slowdown, businesses may want to know how much extra stock they need 
for Christmas, and trade unions will find pay bargaining more difficult if eco-
nomic conditions worsen. For all of them, an accurate picture of the economy is 
important.

In this chapter we will show how to decompose a time series such as unemploy-
ment into its component parts: trend, cycle, seasonal and random. We then use 
this breakdown to seasonally adjust the original data, i.e. to remove any variation 
due solely to time of year effects (a vivid example would be the Christmas season 
in the case of retail sales). This allows us to more easily see any changes to the 
underlying data. Knowing the seasonal pattern to data also helps with forecast-
ing: knowing that unemployment tends to be above trend in September can aid us 
in forecasting future levels in that month.

The methods used in this chapter are relatively straightforward compared to 
other, more sophisticated, methods that are available. However, they do illustrate 
the essential principles and give similar answers to the more advanced methods. 
Later in the chapter we discuss some of the more complex issues that can arise.

The components of a time series

Unemployment data will be used to illustrate the methods involved in decompos-
ing a time series into its component parts. A similar analysis could be carried out 
for other time-series data, common examples being monthly sales data for a firm 
or quarterly data on the money supply. As always, one should begin by looking at 
the raw data, and the best way of doing this is via a time-series chart.

Table 11.1 presents the monthly unemployment figures for the period January 
2012 to December 2014, and Figure 11.1 shows a plot of the data. The chart shows 
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a downward trend to unemployment, particularly after mid-2013, around which 
there also appears to be a cycle of some kind.

Any time series such as this is made up of two types of elements:

(1) systematic components, such as a trend, cycle and seasonals, and
(2) random elements, which are by definition unpredictable.

It would be difficult to analyse a series which is completely random (such as the 
result of tossing a coin, see Figure 2.1 in Chapter 2). A look at the unemployment data, 
however, suggests that the series is definitely non-random – there is evidence of a 
downward trend and there does appear to be a seasonal component. The latter can be 
seen better if we superimpose each year on the same graph, as shown in Figure 11.2.

Note: 2011 and 2015 are also shown on the graph to provide more comparisons 
of the seasonal pattern.

The series generally show peaks around February and August/September, with 
dips around May and December time. The autumn peak occurs a little earlier in 
2013. The other feature to note is that unemployment is generally falling over 
time, the lines for later years being below those for earlier years. If one wished to 

Table 11.1 UK unemployment 2012–14

2012 2013 2014

January 2612 2536 2220
February 2611 2509 2191

March 2565 2460 2105
April 2458 2407 2001
May 2472 2449 1992
June 2561 2495 2003
July 2584 2563 2013
August 2586 2558 2015
September 2573 2470 1998
October 2512 2325 1888
November 2442 2271 1771
December 2432 2245 1750

Note: The data are in 000s, so there were 2 612 000 people unemployed in January 2012.

Source: Adapted from data from the Office for National Statistics, UK unemployed aged over 16, not seasonally adjusted, 
licensed under the Open Government Licence v.1.0
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predict unemployment for February 2016, the trend would be projected forward 
and account also taken of the fact that unemployment tends to be slightly above 
the trend in February. This also sheds some light upon the Guardian quote at the 
top of the chapter. A slight rise in unemployment in February is not surprising 
and may not indicate a longer-term increase in unemployment (though note the 
quote refers to the claimant count measure of unemployment, slightly different 
from the measure used in Table 11.1).

A time series can be decomposed into four components, three of them system-
atic and one random. These are:

(1) A trend: many economic variables are trended over time, as noted in  Chapter 1 
(the investment series). This measures the longer-term direction of the series, 
whether increasing, decreasing or unchanging.

(2) A cycle: most economies tend to progress unevenly, mixing periods of rapid 
growth with periods of relative stagnation. This business cycle can vary in 
length, which makes it difficult to analyse. Consequently, it is often ignored 
or combined together with the trend.

(3) A seasonal component: this is a regular, short-term (one year) cycle. Sales of ice 
cream vary seasonally, for obvious reasons. Since it is a regular cycle, it is rela-
tively easy to isolate.

(4) A random component: this is what is left over after the above factors have been 
taken into account. By definition it cannot be predicted.

These four elements can be combined in either an additive or multiplicative 
model. The additive model of unemployment is

Xt = T + C + S + R (11.1)

where X represents unemployment, T the trend component, C the cycle, S the 
seasonal component and R the random element.

The multiplicative model is

Xt = T * C * S * R (11.2)

There is little to choose between the two alternatives; the multiplicative formu-
lation will be used in the rest of this chapter. This is the method generally used by 
the Office of National Statistics in officially published series.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1400

1600

1800

2000

2200

2400

2600

2800

Unemployment (000s)

2011 2012 2013 2014 2015

Figure 11.2
Superimposed time-series 
graphs of unemployment
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also been graphed to 
 emphasise the similarity 
across several years.
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The analysis of unemployment proceeds as follows:

(1) First the trend is isolated from the original data by the method of moving 
 averages.

(2) Second, the actual employment figures are then compared to the trend to see 
which months tend to have unemployment above trend. This allows seasonal 
factors to be extracted from the data.

(3) Finally, the seasonal factors are used to seasonally adjust the data, so that the 
underlying movement in the figures can be observed.

 Isolating the trend

There is a variety of methods for isolating the trend from time-series data. The 
method used here is that of moving averages, one of several methods of smoothing 
the data. These smoothing methods iron out the short-term fluctuations in the 
data by averaging successive observations. For example, to calculate the 
 three-month moving average figure for the month of July, one would take the aver-
age of the unemployment figures for June, July and August. The three-month 
moving average for August would be the average of the July, August and September 
figures. The figures are therefore as follows (for 2012):

July:  
2561 + 2584 + 2586

3
= 2577

August:  
2584 + 2586 + 2573

3
= 2581

Note that two values (2584 and 2586) are common to the two calculations, so 
that the two averages tend to be similar and the data series is smoothed out. Thus 
the moving average is calculated by moving month by month through the data 
series, taking successive three-month averages.

The choice of the three-month moving average was arbitrary, it could just as eas-
ily have been a 4-, 5- or 12-month moving average process. How should the appro-
priate length of the moving average process be chosen? This depends upon the 
degree of smoothing of the data which is desired, and upon the nature of the fluc-
tuations. The longer the period of the moving average process, the greater the 
smoothing of the data, since the greater is the number of terms in the averaging 
process. In the case of unemployment data, the fluctuations are probably fairly con-
sistent from year to year since, for example, school leavers arrive on the unemploy-
ment register at the same time every year, causing a jump in the figures. A 12-month 
moving average process would therefore be appropriate to smooth this data series.

Table 11.2 shows how the 12-month moving average series is calculated. The 
calculation is the same in principle as the three-month moving average, but 
there is one slight complication, that of centring the data. The unemployment 
column (1) of the table repeats the raw data from Table 11.1. In column (2) is cal-
culated the successive 12-month totals. Thus the total of the first 12 observations 
(Jan–Dec 2012) is 30 408 and this is placed in the middle of 2012, between the 
months of June and July. The sum of observations 2 to 13 is 30 332 and falls 
between July and August, and so on. Notice that it is impossible to calculate any 
total before June/July by the moving average process, using the data from the 
table. A similar effect occurs at the end of the series, in the second half of 2014. 
Values at the beginning and end of the period in question are always lost by this 
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Table 11.2 Calculation of the moving average series

Month Unemployment 
(1)

12-month total 
(2)

Centred 12-month total 
(3)

Moving average 
(4)

2012 Jan 2612
2012 Feb 2611
2012 Mar 2565
2012 Apr 2458
2012 May 2472
2012 Jun 2561 30 408
2012 Jul 2584 30 332 30 370.0 2530.8
2012 Aug 2586 30 230 30 281.0 2523.4
2012 Sep 2573 30 125 30 177.5 2514.8
2012 Oct 2512 30 074 30 099.5 2508.3
2012 Nov 2442 30 051 30 062.5 2505.2
2012 Dec 2432 29 985 30 018.0 2501.5
2013 Jan 2536 29 964 29 974.5 2497.9
2013 Feb 2509 29 936 29 950.0 2495.8
2013 Mar 2460 29 833 29 884.5 2490.4
2013 Apr 2407 29 646 29 739.5 2478.3
2013 May 2449 29 475 29 560.5 2463.4
2013 Jun 2495 29 288 29 381.5 2448.5
2013 Jul 2563 28 972 29 130.0 2427.5
2013 Aug 2558 28 654 28 813.0 2401.1
2013 Sep 2470 28 299 28 476.5 2373.0
2013 Oct 2325 27 893 28 096.0 2341.3
2013 Nov 2271 27 436 27 664.5 2305.4
2013 Dec 2245 26 944 27 190.0 2265.8
2014 Jan 2220 26 394 26 669.0 2222.4
2014 Feb 2191 25 851 26 122.5 2176.9
2014 Mar 2105 25 379 25 615.0 2134.6
2014 Apr 2001 24 942 25 160.5 2096.7
2014 May 1992 24 442 24 692.0 2057.7
2014 Jun 2003 23 947 24 194.5 2016.2
2014 Jul 2013 23 517
2014 Aug 2015
2014 Sep 1998
2014 Oct 1888
2014 Nov 1771
2014 Dec 1750

Note: In column (2) are the 12-month totals, e.g. 30 408 is the sum of the values from 2612 to 2432. In 
column (3) these totals are centred on the appropriate month, e.g. 30 177.5 = (30 230 + 30 125)>2 
The final column is column (3) divided by 12.

method of smoothing. The greater the length of the moving average process the 
greater the number of observations lost.

It is inconvenient to have this series falling between the months, so it is  centred 
in column (3). This is done by averaging every two consecutive months’ figures, so 
the June/July and July/August figures are averaged to give the July figure, as follows:

30 408 + 30 332
2

= 30 370

This centring problem always arises when the length of the moving average 
process is an even number. An alternative to having to centre the data is to use a 
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13-month moving average. This gives virtually identical results, but it seems more 
natural to use a 12-month average for monthly data.

Column (4) of Table 11.2 is equal to column (3) divided by 12, and so gives the 
average of 12 consecutive observations, and this is the moving average series.

Comparison of the original data with the smoothed series shows the latter to be 
free of the short-term fluctuations present in the former. The two series are graphed 
together in Figure 11.3. Note that for this chart, we have used data from late 2011 and 
early 2015 (not shown in Table 11.2) to derive the moving average values at the begin-
ning and end of the period, i.e. we have filled in the missing values in Table 11.2.

The chart shows the downward trend clearly, starting around January 2013, 
and also reveals how this trend appears to level off towards the end of 2014. Note 
that actual unemployment is still decreasing quite rapidly at that point. Actual 
unemployment stops falling in 2015 (not shown) and the moving average antici-
pates the movements in unemployment. This is not really so surprising since 
future values of unemployment are used in the calculation of the moving average 
figure for each month.

The moving average captures the trend and the cycle. How much of the cycle is 
included is debatable – the longer the period of the moving average, the less the 
cycle is captured (i.e. the smoother the series), in general. The difficulty of disen-
tangling the cyclical element is that it is unclear how long the cycle is, or even 
whether it exists in the data. For the sake of argument, we will assume that our 
moving average fully captures both trend and cycle.
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Figure 11.3
Unemployment and its 
moving average

Use the quarterly data below to calculate the (four quarter) moving average series and draw a 
graph of the two series for 2009–12:

Q1 Q2 Q3 Q4

2008 – – 152 149
2009 155 158 155 153
2010 159 166 160 155
2011 162 167 164 160
2012 170 172 172 165
2013 175 179 — —

Exercise 11.1
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 Isolating seasonal factors

Having obtained the trend-cycle (henceforth we refer to this as the trend, for 
brevity), the original data may be divided by the trend values (from Table 11.2, 
column (4)) to leave only the seasonal and random components. This can be 
understood by manipulating equation (11.2). Ignoring the cyclical component, 
we have

X = T * S * R (11.3)

Dividing the original data series X by the trend values T therefore gives the sea-
sonal and random components:

X
T

= S * R (11.4)

Table 11.3 gives the results of this calculation where, once again, we have 
filled in the trend values for early 2012 and late 2014 using data from 2011 and 
2015 for the calculation (calculation not shown but analogous to that used in 
Table 11.2).

The final column of the table shows the ratio of the actual unemployment level 
to the trend value. The value for January 2012, 1.005, shows the unemployment 
level in that month to be 0.5% above the trend. The July 2012 figure is 1.021, 2.1% 
above trend, etc. Other months’ figures can be interpreted in the same way. Closer 
examination of the table shows that unemployment tends to be above its trend in 
the summer months (July to September), below trend in winter (November to 
January) and around the trend line during April to May. These figures reflect the 
seasonal pattern observed in Figure 11.2 earlier.

The next task is to disentangle the seasonal and random components which 
together make up the ‘Ratio’ value in the final column of the table. We make the 
assumption that the random component has a mean value of zero. Then, if we 
average the ‘Ratio’ values for a particular month, the random components should 
approximately cancel out, leaving just the seasonal component.

Hence the seasonal factor S can be obtained by averaging the three S * R com-
ponents (for 2012, 2013, 2014) for each month. For example, for January, the sea-
sonal component is obtained as follows:

S =
1.005 + 1.015 + 0.999

3
= 1.006 (11.5)

The more years we have available entering this averaging process, the more 
accurate is the estimate of the seasonal component. The seasonal component in 
this case for January is therefore 1.006 - 1 = 0.006 = 0.6%, so January is typi-
cally 0.6% above trend. The random components are therefore (virtually) zero, 
positive and negative in 2012, 2013 and 2014, respectively.

Table 11.4 shows the calculation of the seasonal components for each month 
using the method described above.

Previous editions of this text calculated seasonal factors for earlier time periods, 
and Table 11.5 provides a comparison of four time periods. First, it should be stated 
that the definition and measurement of unemployment changed between pre- 
and post-2000 figures so one has to be wary of the comparison. It is noticeable, 
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Table 11.3 Isolating seasonal and random components

Unemployment Trend Ratio

Jan 2012 2612 2600.3 1.005
Feb 2012 2611 2591.6 1.007
Mar 2012 2565 2579.6 0.994
Apr 2012 2458 2565.6 0.958
May 2012 2472 2551.7 0.969
Jun 2012 2561 2539.6 1.008
Jul 2012 2584 2530.8 1.021
Aug 2012 2586 2523.4 1.025
Sep 2012 2573 2514.8 1.023
Oct 2012 2512 2508.3 1.001
Nov 2012 2442 2505.2 0.975
Dec 2012 2 432 2501.5 0.972
Jan 2013 2536 2497.9 1.015
Feb 2013 2509 2495.8 1.005
Mar 2013 2460 2490.4 0.988
Apr 2013 2407 2478.3 0.971
May 2013 2449 2463.4 0.994
Jun 2013 2495 2448.5 1.019
Jul 2013 2563 2427.5 1.056
Aug 2013 2558 2401.1 1.065
Sep 2013 2470 2373.0 1.041
Oct 2013 2325 2341.3 0.993
Nov 2013 2271 2305.4 0.985
Dec 2013 2245 2265.8 0.991
Jan 2014 2220 2222.4 0.999
Feb 2014 2191 2176.9 1.006
Mar 2014 2105 2134.6 0.986
Apr 2014 2001 2096.7 0.954
May 2014 1992 2057.7 0.968
Jun 2014 2003 2016.2 0.993
Jul 2014 2013 1977.7 1.018
Aug 2014 2015 1943.3 1.037
Sep 2014 1998 1911.8 1.045
Oct 2014 1888 1886.0 1.001
Nov 2014 1771 1866.1 0.949
Dec 2014 1750 1849.2 0.946

Note: The ‘Ratio’ column is simply unemployment divided by its trend value, e.g. 1.005 = 2612>2600.3.

Table 11.4 Calculating the seasonal factors

2012 2013 2014 Average

January 1.005 1.015 0.999 1.006
February 1.007 1.005 1.006 1.006
March 0.994 0.988 0.986 0.989
April 0.958 0.971 0.954 0.961
May 0.969 0.994 0.968 0.977
June 1.008 1.019 0.993 1.007
July 1.021 1.056 1.018 1.032
August 1.025 1.065 1.037 1.042
September 1.023 1.041 1.045 1.036
October 1.001 0.993 1.001 0.999
November 0.975 0.985 0.949 0.970
December 0.972 0.991 0.946 0.970
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however, that the apparent seasonal pattern has become more pronounced 
 post-2000. This demonstrates that a seasonal pattern is not necessarily fixed for all 
time but can be altered by factors such as changes in the law (unemployment 
 benefit entitlements, school leaving age, etc.) and the changing pattern of the 
labour market in general.

Table 11.5 Comparison of seasonal factors in different decades

1982–84 1991–93 2004–6 2012–14

January 1.042 1.028 0.979 1.006
February 1.033 1.028 0.992 1.006
March 1.019 1.022 0.988 0.989
April 1.009 1.021 0.972 0.961
May 0.983 0.997 0.980 0.977
June 0.963 0.980 1.008 1.007
July 0.982 1.006 1.032 1.032
August 0.983 1.018 1.036 1.042
September 1.001 1.006 1.033 1.036
October 0.992 0.979 1.013 0.999
November 0.997 0.982 0.985 0.970
December 1.002 1.004 0.969 0.970

Using the data from Exercise 11.1, calculate the seasonal factors for each quarter.

?

Exercise 11.2

 Seasonal adjustment

Having found the seasonal factors, the original data can now be seasonally 
adjusted. This procedure eliminates the seasonal component from the original 
series leaving only the trend, cyclical and random components. It therefore 
removes the regular, month by month, differences and makes it easier to directly 
compare one month with another. Seasonal adjustment is now simple – the origi-
nal data are divided by the seasonal factors shown in Table 11.4. Equation (11.6) 
demonstrates the principle:

X
S

= T * C * R (11.6)

Table 11.6 shows the calculation of the seasonally adjusted figures.
The final column of the table adds the official seasonally adjusted figures avail-

able from Eurostat. Although that uses slightly more sophisticated methods of 
adjustment, the results are similar to those we have calculated. Figure 11.4 graphs 
unemployment and the seasonally adjusted series.

Note that in some months the two series move in opposite directions. For 
example, in November 2013 the unadjusted series showed a fall in unemployment 
(of about 2.3%) yet the adjusted series rose slightly (by about 0.6%). In other 
words, the fall in unemployment was discounted as unemployment usually falls 
in November (compare October and November seasonal factors) and this observed 
fall was relatively small and expected.
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Table 11.6 Seasonally adjusted unemployment

Unemployment Seasonal factor
Seasonally 

adjusted series
S.A. series 

from Eurostat

Jan 2012 2612 1.006 2596 2619
Feb 2012 2611 1.006 2594 2596
Mar 2012 2565 0.989 2592 2590
Apr 2012 2458 0.961 2557 2535
May 2012 2472 0.977 2530 2518
Jun 2012 2561 1.007 2543 2548
Jul 2012 2584 1.032 2505 2518
Aug 2012 2586 1.042 2481 2499
Sep 2012 2573 1.036 2483 2498
Oct 2012 2512 0.999 2516 2499
Nov 2012 2442 0.970 2518 2491
Dec 2012 2432 0.970 2508 2488
Jan 2013 2536 1.006 2520 2542
Feb 2013 2509 1.006 2493 2494
Mar 2013 2460 0.989 2486 2484
Apr 2013 2407 0.961 2504 2481
May 2013 2449 0.977 2507 2493
Jun 2013 2495 1.007 2478 2482
Jul 2013 2563 1.032 2485 2498
Aug 2013 2558 1.042 2454 2468
Sep 2013 2470 1.036 2383 2393
Oct 2013 2325 0.999 2328 2315
Nov 2013 2271 0.970 2342 2322
Dec 2013 2245 0.970 2315 2299
Jan 2014 2220 1.006 2206 2229
Feb 2014 2191 1.006 2177 2182
Mar 2014 2105 0.989 2127 2132
Apr 2014 2001 0.961 2082 2073
May 2014 1992 0.977 2039 2033
Jun 2014 2003 1.007 1989 1989
Jul 2014 2013 1.032 1951 1949
Aug 2014 2015 1.042 1933 1926
Sep 2014 1998 1.036 1928 1921
Oct 2014 1888 0.999 1891 1877
Nov 2014 1771 0.970 1826 1821
Dec 2014 1750 0.970 1805 1805

Note: The adjusted series is obtained by dividing the ‘Unemployment’ column by the ‘Seasonal factor’  column.
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The Excel method appears much less satisfactory: it is always lagging behind the actual 
series, in contrast to the centred method. However, it has the advantage that the trend 
value for the latest month can always be calculated.

Fitting a moving average to a series using Excel

Many software programs can automatically produce a moving average of a data series. Micro-
soft Excel does this using a 12-period moving average which is not centred but located at the 
end of the averaged values. For example, the average of the Jan–Dec 2012 figures is placed 
against December 2012, not between June and July as was done above. This cuts off 11 obser-
vations at the beginning of the period but none at the end.  Figure 11.5 compares the moving 
averages calculated by Excel and by the centred moving average method described earlier.
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Figure 11.5
Excel version of moving 
average
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Again using the data from Exercise 11.1, construct the seasonally adjusted series for 2009–12 
and graph the unadjusted and adjusted series.

Exercise 11.3

 An alternative method for finding the trend

Chapter 9 on regression showed how a straight line could be fitted to a set of data as 
a means of summarising it. This offers an alternative means of smoothing data and 
finding a trend line. The dependent variable in the regression is unemployment, 
which is regressed on a time trend variable. This is simply measured by the values 
1, 2, 3, . . . 36 and is denoted by the letter t. January 2012 is therefore represented by 
1, February 2012 by 2, etc. Since the trend appears to be non-linear however, a fit-
ted linear trend is unlikely to be accurate for forecasting. The regression equation 
can be made non-linear by including a t2 term, for example. For January 2012 this 
would be 1, for February 2012 it would be 4, etc. The equation thus becomes

Xt = a + bt + ct2 + et (11.7)

where et is the error term which, in this case, is composed of the cyclical, seasonal 
and random elements of the cycle. The trend component is given by a + bt + ct2. 
The calculated regression equation is (calculation not shown)

Xt = 2527.2 + 10.84t - 0.90t2 + e (11.8)
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The trend values for each month can easily be calculated from this equation, by 
inserting the values t = 1, 2, 3, etc., as appropriate. January 2012, for example, is 
found by substituting t = 1 and t2 = 12 into equation (11.8), giving

Xt = 2527.2 + 10.84 * 1 - 0.90 * 12 = 2537.14 (11.9)

which compares to 2595.82 using the moving average method. For July 2012 
(t = 7) we obtain

Xt = 2527.2 + 10.84 * 7 - 0.90 * 72 = 2559.06 (11.10)

compared to the moving average estimate of 2504.93. The two methods give 
slightly different results, but not by a great deal.

The rest of the analysis can then proceed as before. The seasonal factors are cal-
culated for each month and year by first dividing the actual value by the estimated 
trend value (hence 2612>2537.14 = 1.030 for January 2012) and then averaging 
the January values across the three years gives the January seasonal factor. This is 
left as an exercise (see Exercise 11.4 and Problem 11.5) and gives similar results to 
the moving average method. One final point to note is that the regression method 
has the advantage of not losing observations at the beginning and end of the sam-
ple period.

(a) Using the data from Exercise 11.1, calculate a regression of X on t and t2 (and a constant) to 
find the trend cycle series. Use observations for 2009–12 only for the regression  equation.

(b) Graph the original series and the calculated trend line.

(c) Use the new trend line to calculate the seasonal factors.

?

Exercise 11.4

Forecasting

It is possible to forecast future levels of unemployment based on the methods out-
lined above. Each component of the series is forecast separately and the results 
multiplied together. As an example the level of unemployment for January 2015 
will be forecast.

The trend can only be forecast using the regression method, since the moving 
average method requires future values of unemployment, which is what is being 
forecast. January 2015 corresponds to time period t = 37 so the forecast of the 
trend by the regression method is

Xt = 2527.2 + 10.84 * 37 - 0.90 * 372 = 1698.73 (11.11)

The seasonal factor for January is 1.010 so the trend figure is multiplied by this, 
giving

1796.9 * 0.988 = 1776.2  1698.73 * 1.010 = 1715.71 (11.12)

The cyclical component is ignored and the random component set to a value of 
1 (in the multiplicative model, zero in the additive model). This leaves 1715.71 as 
the forecast for January 2015. In the event the actual figure was 1790, so the 
 forecast is not very good, with an error of approximately 4.2%. A chart of 
 unemployment, the trend (using the regression method) and the forecast for the 
first six months of 2015 reveals the problem (see Figure 11.6).
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The forecast relentlessly follows the trend line downwards. Because it is only a 
quadratic trend (i.e. involving terms up to t2) it cannot predict another turning 
point, which seems to have occurred around the end of 2014. Nevertheless, the 
error in the forecast for January 2015 would alert observers to the likelihood that 
some kind of change has occurred and that unemployment is no longer following 
its downward trend.
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Figure 11.6
Forecasting unemploy-
ment

Use the results of Exercise 11.4 to forecast the values of X for 2013Q1 and 2013Q2. How do 
they compare to the actual values?

Exercise 11.5

Further issues

As stated earlier, official methods of seasonal adjustment are more sophisticated 
than those shown here, although with similar results. The main additional fea-
tures that we have omitted are as follows:

●	 Ad hoc adjustments – the original data may be ‘incorrect’ for an obvious reason. 
A strike, for example, might lower output in a particular month. This not only 
gives an atypical figure for the month but will also affect the calculation of the 
seasonal factors. Hence, such an observation might be corrected in some way 
before the seasonal factors are calculated.

●	 Calendar effects – months are not all of the same length so retail sales, for exam-
ple, might vary simply because there are more shopping days (especially if a 
month happens to have five weekends). Overseas trade statistics are routinely 
adjusted for the numbers of days in each month. Easter is another problem, 
because it is not on a regular date and so can affect monthly figures in different 
ways, depending where it falls.

●	 Forecasting methods – the trend is calculated by a mixture of regression and 
moving average methods, avoiding some of the problems exhibited above 
when forecasting.

The above analysis has taken a fairly mechanical approach to the analysis of 
time series, and has not sought the reasons why the data might vary seasonally. 
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The seasonal adjustment factors are simply used to adjust the original data for 
regular monthly effects, whatever the cause. Further investigation of the causes 
might be worthwhile as they might improve forecasting. For example, unem-
ployment varies seasonally because of (among other things) greater employment 
opportunities in summer (e.g. deck chair attendants) and school leavers entering 
the unemployment register in September. The availability of summer jobs might 
be predictable (based on forecasts of the number of tourists, weather, etc.), and 
the number of school leavers next year can presumably be predicted by the num-
ber of pupils at present in their final year. These sorts of considerations should 
provide better forecasts rather than slavishly following the rules set out above.

 Using adjusted or unadjusted data

Seasonal adjustment can also introduce problems into data analysis as well as 
resolve them. Although seasonal adjustment can help in interpreting figures, if the 
adjusted data are then used in further statistical analysis, they can mislead. It is well 
known, for example, that seasonal adjustment can introduce a cyclical component 
into a data series which originally had no cyclical element to it. This occurs because 
a large (random) deviation from the trend will enter the moving average process for 
12 different months (or whatever is the length of the moving average process), and 
this tends to turn occasional, random disturbances into a cycle. Note also that the 
adjusted series will start to rise before the random shock in these circumstances.

The question then arises as to whether adjusted or unadjusted data are best 
used in, say, regression analysis. Use of unadjusted data means that the coefficient 
estimates may be contaminated by the seasonal effects; using adjusted data runs 
into the kind of problems outlined above. A suitable compromise is to follow the 
method outlined in Chapter 10: use unadjusted data with seasonal dummy vari-
ables. In this case the estimation of parameters and seasonal effects is dealt with 
simultaneously and generally gives the best results.

A further advantage of this regression method is that it allows the significance 
of the seasonal variations to be established. An F test for the joint significance of 
the seasonal coefficients will tell you whether any of the seasonal effects are sta-
tistically significant. If not, seasonal dummies need not be included in the regres-
sion equation.

Finally, it should be remembered that decomposing a time series is not a clear-
cut procedure. It is often difficult to disentangle the separate effects, and different 
methods will give different results. The seasonally adjusted unemployment fig-
ures given by Eurostat are slightly different from the series calculated here, due to 
slightly different techniques being applied. The differences are not great and the 
direction of the seasonal effects are the same even if the sizes are slightly different.

Summary

●	 Seasonal adjustment of data allows us to see some of the underlying features, 
shorn of the distraction of seasonal effects (such as the Christmas effect on 
retail sales).

●	 The four components of a time series are the trend, the cycle, the seasonal 
 component and the random residual.
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●	 These components may be thought of either as being multiplied together or 
added together to make up the series. The former method is more common.

●	 The trend (possibly mixed with the cycle) can be identified by the method of 
moving averages or by the use of a regression equation.

●	 Removing the trend cycle values from a series leaves only the seasonal and 
 random components.

●	 The residual component can then be eliminated by averaging the data over 
 successive years (e.g. take the average of the January seasonal and random 
 component over several years).

●	 Having isolated the seasonal effect in such a manner, it can be eliminated from 
the original series, leaving the seasonally adjusted series.

●	 Knowledge of the seasonal effects can be useful in forecasting future values of 
the series.

additive model
calendar effects
cycle
forecasting
moving average
multiplicative model
random component
random elements

random residual
seasonal adjustment
seasonal component
seasonal factor
smoothing
systematic components
three-month moving average
trend

Key terms and concepts



Chapter 11 • Seasonal adjustment of time-series data

436

Some of the more challenging problems are indicated by highlighting the problem number in 
colour.

 11.1 The following table contains data for consumers’ non-durables expenditure in the United Kingdom, 
in constant 2003 prices.

(a) Graph the series and comment upon any apparent seasonal pattern. Why might it occur?

(b) Use the method of centred moving averages to find the trend values for 2000–14.

(c) Use the moving average figures to find the seasonal factors for each quarter (use the multipli-
cative model).

(d) By approximately how much does expenditure normally increase in the fourth quarter?

(e) Use the seasonal factors to obtain the seasonally adjusted series for non-durable expenditure.

(f) Were retailers happy or unhappy at Christmas in 2000? How about 2014?

Q1 Q2 Q3 Q4

1999 — — 153 888 160 187
2000 152 684 155 977 160 564 164 437
2001 156 325 160 069 165 651 171 281
2002 161 733 167 128 171 224 176 748
2003 165 903 172 040 176 448 182 769
2004 171 913 178 308 182 480 188 733
2013 175 174 180 723 184 345 191 763
2014 177 421 183 785 187 770 196 761
2007 183 376 188 955 — —

Source: Data adapted from the Office for National Statistics licensed under the Open Government Licence v.1.0.

 11.2 Repeat the exercise using the additive model. (In Problem 11.1(c), subtract the moving average fig-
ures from the original series. In (e), subtract the seasonal factors from the original data to get the 
adjusted series.) Is there a big difference between this and the multiplicative model?

 11.3 The following data relate to car production in the United Kingdom (not seasonally adjusted).

2003 2004 2005 2006 2007

January — 141.3 136 119.1 124.2
February — 141.1 143.5 131.2 115.6
March — 163 153.3 159 138
April — 129.6 139.8 118.6 120.4
May — 143.1 132 132.3 127.4
June — 155.5 144.3 139.3 137.5
July 146.3 140.5 130.2 117.8 129.7
August  91.4  83.2  97.1  73 —
September 153.5 155.3 149.9 122.3 —
October 153.4 135.1 124.8 116.1 —
November 142.9 149.3 149.7 128.6 —
December 112.4 109.7  95.3  84.8 —

Source: Data adapted from the Office for National Statistics licensed under the Open Government Licence v.1.0.

(a) Graph the data for 2004–14 by overlapping the three years (as was done in Figure 11.2) and 
comment upon any seasonal pattern.

Problems
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(b) Use a 12-month moving average to find the trend values for 2004–14.

(c) Find the monthly seasonal factors (multiplicative method). Describe the seasonal pattern that 
emerges.

(d) By how much is the August production figure below the July figure in general?

(e) Obtain the seasonally adjusted series. Compare it with the original series and comment.

(f) Compare the seasonal pattern found with that for consumers’ expenditure in Problem 11.1.

 11.4 Repeat Problem 11.3 using the additive model and compare results.

 11.5 (a)  Using the data of Problem 11.1, fit a regression line through the data, using t and t2 as explana-
tory variables (t is a time trend 1–36). Use only the observations from 2000 to 2014. Calculate 
the trend values using the regression.

(b) Calculate the seasonal factors (multiplicative model) based upon this trend. How do they com-
pare to the values found in Problem 11.1?

(c) Predict the value of consumers’ expenditure for 2007 Q4.

(d) Calculate the seasonal factors using the additive model and predict consumers’ expenditure for 
2007 Q4.

 11.6 (a)  Using the data from Problem 11.3 (2004–14 only), fit a linear regression line to obtain the trend 
values. By how much, on average, does car production increase per year?

(b) Calculate the seasonal factors (multiplicative model). How do they compare to the values in 
Problem 11.3?

(c) Predict car production for April 2007.

 11.7 A computer will be needed to solve this and the next problem.

(a) Repeat the regression equation from Problem 11.5 but add three seasonal dummy variables (for 
quarters 2, 3 and 4) to the regressors. (The dummy for quarter 2 takes the value 1 in Q2, 0 in the 
other quarters. The Q3 dummy takes the value 1 in Q3, 0 otherwise, etc.) How does this affect 
the coefficients on the time trend variables? (Use data for 2000–14 only.)

(b) How do the t ratios on the time coefficients compare with the values found in Problem 11.5? 
Account for the difference.

(c) Compare the coefficients on the seasonal dummy variables with the seasonal factors found in 
Problem 11.5(d). Comment on your results.

 11.8 (a)  How many seasonal dummy variables would be needed for the regression approach to the data 
in Problem 11.3?

(b) Do you think the approach would bring as reliable results as it did for consumers’ expenditure?

 11.9 (Project) Obtain quarterly (unadjusted) data for a suitable variable (some suggestions are given 
below) and examine its seasonal pattern. Write a brief report on your findings. You should:

(a) Say what you expect to find, and why.

(b) Compare different methods of adjustment.

(c) Use your results to try to forecast the value of the variable at some future date.

(d) Compare your results, if possible, with the ‘official’ seasonally adjusted series. Some suitable 
variables are: the money stock, retail sales, rainfall, interest rates, house prices, corporate 
 profits.
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Answers to exercises

Exercise 11.1

The calculations are as follows:

Quarter X 4th quarter total Centred Moving average

2008 Q3 152 — — —
2008 Q4 149 — — —

2009 Q1 155 614 615.5 153.875
2009 Q2 158 617 619.0 154.750
2009 Q3 155 621 623.0 155.750
2009 Q4 153 625 629.0 157.250
2010 Q1 159 633 635.5 158.875
2010 Q2 166 638 639.0 159.750
2010 Q3 160 640 641.5 160.375
2010 Q4 155 643 643.5 160.875
2011 Q1 162 644 646.0 161.500
2011 Q2 167 648 650.5 162.625
2011 Q3 164 653 657.0 164.250
2011 Q4 160 661 663.5 165.875
2012 Q1 170 666 670.0 167.500
2012 Q2 172 674 676.5 169.125
2012 Q3 172 679 681.5 170.375
2012 Q4 165 684 687.5 171.875
2013 Q1 175 691 693.0 173.250
2013 Q2 179 — — —

The chart of these data is:
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Exercise 11.2

The seasonal factors are calculated as follows:

X Moving average Ratio Seasonal factor

2009 Q1 155 153.875 1.007 1.007
2009 Q2 158 154.750 1.021 1.026

2009 Q3 155 155.750 0.995 1.000
2009 Q4 153 157.250 0.973 0.965
2010 Q1 159 158.875 1.001 1.007
2010 Q2 166 159.750 1.039 1.026
2010 Q3 160 160.375 0.998 1.000
2010 Q4 155 160.875 0.963 0.965
2011 Q1 162 161.500 1.003 1.007
2011 Q2 167 162.625 1.027 1.026
2011 Q3 164 164.250 0.998 1.000
2011 Q4 160 165.875 0.965 0.965
2012 Q1 170 167.500 1.015 1.007
2012 Q2 172 169.125 1.017 1.026
2012 Q3 172 170.375 1.010 1.000
2012 Q4 165 171.875 0.960 0.965

Note: The first seasonal factor, 1.007, is calculated as the average of 1.007, 1.001, 1.003 and 1.015.

Exercise 11.3

The adjusted series is calculated as follows:

Quarter X Seasonal factor Seasonally adjusted figure

2009 Q1 155 1.007 153.994
2009 Q2 158 1.026 153.995

2009 Q3 155 1.000 154.967
2009 Q4 153 0.965 158.507
2010 Q1 159 1.007 157.968
2010 Q2 166 1.026 161.792
2010 Q3 160 1.000 159.966
2010 Q4 155 0.965 160.579
2011 Q1 162 1.007 160.949
2011 Q2 167 1.026 162.767
2011 Q3 164 1.000 163.965
2011 Q4 160 0.965 165.759
2012 Q1 170 1.007 168.897
2012 Q2 172 1.026 167.640
2012 Q3 172 1.000 171.963
2012 Q4 165 0.965 170.939
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Exercise 11.4

(a) The regression equation is X = 153.9 + 0.85t + 0.01t2 (note the coefficient on t2 
is very small, so this is virtually a straight line).

(b) 

And the series are graphed as follows:
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Exercise 11.5

Substituting t = 17 and t = 18 into the regression equation gives predicted values of 
171.302 and 172.513, for Q1 and Q2 respectively. Multiplying by the relevant seasonal 
factors (1.006 and 1.026) gives 172.304 and 177.005. These are close to, but slightly 
below, the actual values. The errors are 1.6% and 1.1%, respectively.

(c) The seasonal factors are calculated as follows:

Quarter X Predicted X Ratio Seasonal factor

2009 Q1 155 154.737 1.002 1.006
2009 Q2 158 155.617 1.015 1.026

2009 Q3 155 156.518 0.990 1.001
2009 Q4 153 157.440 0.972 0.967
2010 Q1 159 158.382 1.004 1.006
2010 Q2 166 159.345 1.042 1.026
2010 Q3 160 160.329 0.998 1.001
2010 Q4 155 161.333 0.961 0.967
2011 Q1 162 162.358 0.998 1.006
2011 Q2 167 163.404 1.022 1.026
2011 Q3 164 164.470 0.997 1.001
2011 Q4 160 165.557 0.966 0.967
2012 Q1 170 166.665 1.020 1.006
2012 Q2 172 167.793 1.025 1.026
2012 Q3 172 168.942 1.018 1.001
2012 Q4 165 170.112 0.970 0.967
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Formula Description Notes

m = ax

N

Mean of a 
population

Use when all individual 
observations are available. N 
is the population size.

m = a fx

a f

Mean of a 
population

Use with grouped data. f 
represents the class or group 
frequencies, x represents the 
midpoint of the class 
interval.

x = ax

n

Mean of a sample n is the number of 
observations in the sample.

x = a fx

a f

Mean of a sample Use with grouped data.

m = xL + (xU - xL)
•

N + 1
2

- F

f
¶

Median (where data 
are grouped)

xL and xU represent the lower 
and upper limits of the 
interval containing the 
median. F represents the 
cumulative frequency up to 
(but excluding) the interval.

s2 = a 1x - m2 2

N

Variance of a 
population

N is the population size.

s2 = a f1x - m2 2

a f

Population 
variance (grouped 
data)

s2 = a 1x - x2 2

n - 1

Sample variance

s2 = a f(x - x)2

n - 1

Sample variance 
(grouped data)

c.v. =
s

m
Coefficient of 
variation

The ratio of the standard 
deviation to the mean. A 
measure of dispersion.

Formulae
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Formula Description Notes

z =
x - m

s

z score Measures the distance from 
observation x to the mean μ 
measured in standard 
deviations.

a f1x - m2 3

Ns3

Coefficient of 
skewness

A positive value means the 
distribution is skewed towards 
the right (long tail to the right).

g = T-1B xT

x1
- 1

Rate of growth Measures the average annual 
rate of growth between years 
1 and T.2n Πx Geometric mean (of 

n observations on x)

1 -
1

k2
Chebyshev’s 
inequality

Minimum proportion of 
observations lying within k 
standard deviations of the 
mean of any distribution.

nCr =
n!

r!(n - r)!
Combinatorial 
formula

n! = n * (n - 1) *  g*  1

Pr(r) = nCr * Pr * (1 - P)n - r Binomial 
distribution

In shorthand notation, 
r ~ B(n, P).

Pr(x) =
1

s32p
e- 1

25
x -m
s 62 Normal distribution In shorthand notation, 

x ~ N(m, s2).

z =
x - m3s2>n

z score for the 
sample mean

Used to test hypotheses 
about the sample mean.

Pr(x) =
mxe -m

x!

Poisson 
distribution

Used when the probability of 
success is very small. The 
‘rare event’ distribution.

x { 1.962s2>n 95% confidence 
interval for the mean

Large samples, using Normal 
distribution.

x { tn3s2>n 95% confidence 
interval for the 
mean

Small samples, using t 
distribution. tv is the critical 
value of the t distribution for 
n = n - 1 degrees of freedom.

p { 1.96Bp(1 - p)
n

95% confidence 
interval for a 
proportion

Large samples only.
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Formula Description Notes

(x1 - x2) { 1.96B s2
1

n1
+

s2
2

n2

95% confidence 
interval for the 
difference of two 
means

Large samples.

(x1 - x2) { tnB S2

n1
+

S2

n2

95% confidence 
interval for the 
difference of two 
means

Small samples. The pooled 
variance is given by 

S2 =
(n1 - 1)s2

1 + (n2 - 1)s2
2

n1 + n2 - 2
, 

n = n1 + n2 - 2.

z =
x - m3s2>n

Test statistic for H0: 
mean = m

Large samples. For small 
samples, distributed as t with 
n = n - 1 degrees of 
freedom.

z =
p - pBp(1 - p)

n

Test statistic for H0: 
true proportion
= p

Large samples.

z =
1x1 - x22 - 1m1 - m22B s2

1

n1
+

s2
2

n2

Test statistic for 
H0:m1 - m2 = 0

Large samples.

t =
(x1 - x2) - (m1 - m2)B S2

n1
+

S2

n2

Test statistic for 
H0:m1 - m2 = 0

Small samples. S2 as defined 
above. Degrees of freedom 
v = n1 + n2 - 2.

z =
(p1 - p2) - (p1 - p2)Bpn(1 - pn)

n1
+

pn(1 - pn)
n2

Test statistic for 
H0:p1 - p2 = 0

Large samples. 

pn =
n1p1 + n2p2

n1 + n2

x2 = a (O - E)2

E

Test statistic for 
independence in a 
contingency table

n = (r - 1) * (c - 1), where 
r is the number of rows, c the 
number of columns.

F =
s2

1

s2
2

Test statistic for H0:  
s2

1 = s2
2

n = n1 - 1, n2 - 1. Place 
larger sample variance in the 
numerator to ensure 
rejection region is in right-
hand tail of the F 
distribution.

a
ni

j= 1
a

k

i = 1
x2

ij - nx2
Total sum of 
squares (ANOVA)

n is the total number of 
observations, k is the number 
of groups.
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Formula Description Notes

a
i

nix2
i - nx2 Between sum of 

squares (ANOVA)
A ni represents the number of 
observations in group i and xi 
is the mean of the group.

a
j
a

i
(xij - xi)2 Within sum of 

squares (ANOVA)

r =
naXY - aXaY2(naX2 - (aX)2)(naY 2 - (aY )2)

Correlation 
coefficient

- 1 … r … 1.

t =
r2n - 221 - r2

Test statistic for 
H0:r = 0

v = n - 2.

rs = 1 -
6ad2

n1n2 - 12
Spearman’s rank 
correlation 
coefficient

- 1 … rs … 1. d is the 
difference in ranks between 
the two variables. Only works 
if there are no tied ranks. 
Otherwise use standard 
correlation formula.

b =
naXY - aXaY

naX2 - (aX)2

Slope of the 
regression line 
(simple regression)

a = Y - bX Intercept (simple 
regression)

TSS = aY 2 - nY 2 Total sum of squares

ESS = aY 2 - aaY - baXY Error sum of squares

RSS = TSS - ESS Regression sum of 
squares

R2 =
RSS
TSS

Coefficient of 
determination

s2
e =

ESS
n - 2

Variance of the 
error term in 
regression

Replace n - 2 by n - k - 1 
in multiple regression.

s2
b =

s2
e

a (X - X)2

Variance of the 
slope coefficient in 
simple regression

s2
a = s2

e * B1
n

+
X2

a (X - X)2

Variance of the 
intercept in simple 
regression
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Formula Description Notes

b { tv * sb Confidence interval 
estimate for b in 
simple regression

tv is the critical value of the t 
distribution with v = n - 2 
degrees of freedom.

fpc = 1 - n>N Finite population 
correction for the 
variance of x

n =
Z2
a * S2

p2

Required sample 
size to obtain 
desired confidence 
interval

p is the desired accuracy (half 
the width of the CI), Za is the 
critical value from the 
Normal distribution 
(depends on confidence level 
specified).

Pn
L = apnq0

ap0q0
* 100

Laspeyres price 
index for year n 
with base year 0

Pn
L = apn

ap0
* s0 * 100

Laspeyres price 
index using 
expenditure weights 
s in base year

Pn
P = apnqn

ap0qn
* 100

Paasche price index 
for year n

Pn
P =

1

a p0

pn
* sn

* 100
Paasche price index 
using expenditure 
weights s in current 
year

Q n
L = aqnp0

aq0p0
* 100

Laspeyres quantity 
index

Q n
P = aqnpn

aq0pn
* 100

Paasche quantity 
index

E n = apnqn

ap0q0
* 100

Expenditure index

PV =
S

(1 + r)t
Present value The value now of a sum S to 

be received in t years’ time, 
using discount rate r
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Formula Description Notes

NPV = - S0 + a St

(1 + r)t

Net present value The value of an investment 
S0 now, yielding St per 
annum, discounted at a 
constant rate r.

t =
b - b

sb

Test statistic for 
H0: b = 0

n = n - 2 in simple 
regression, n - k - 1 in 
multiple regression.

F =
RSS>1

ESS>(n - 2)

Test statistic for 
H0: R2 = 0

n = k, n - k - 1 in multiple 
regression.

Yn { tn * se B1
n

+
(XP - X)2

a (X - X)2

Confidence interval 
for a prediction 
(simple regression) 
at X = XP

n = n - 2.

Yn { tn * se B1 +
1
n

+
(XP - X)2

a (X - X)2

Confidence interval 
for an observation 
on Y at X + XP

n = n - 2.

F =
1ESSP - ESS12 >n2

ESS1>(n1 - k - 1)

Chow test for a 
prediction

First n1 observations used for 
estimation, last n2 for 
prediction.

DW = a (et - et - 1)2

a e2
t

Durbin–Watson 
statistic for testing 
autocorrelation

F =
1ESSR - ESSU2 >q
ESSU>(n - k - 1)

Test statistic for 
testing q 
restrictions in the 
regression model

n = q, n - k - 1.
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Table A1 Random number table

This table contains 1000 random numbers within the range 0 to 99. Each number within the range has an 
equal probability of occurrence. The range may be extended by combining successive entries in the table. 
Thus 7399 becomes the first of 500 random numbers in the range 0 to 9999. To obtain a sample of ran-
dom numbers, choose an arbitrary starting point in the table and go down the columns collecting succes-
sive values until the required sample is obtained. If the population has been numbered, this method can be 
used to select a random sample from the population. Alternatively, the method can simulate sampling 
experiments such as the tossing of a coin (an even number representing a head and an odd number a tail).

73 23 41 53 38 87 71 79 3 55 24 7 7 17 19 70
99 13 91 13 90 72 84 15 64 90 56 68 38 40 73 78
97 16 58 2 67 3 92 83 50 53 59 60 33 75 44 95
73 10 29 14 9 92 35 47 21 47 82 25 71 68 87 53
99 79 29 68 44 90 65 33 55 85 7 57 77 84 83 5
71 97 98 60 62 18 49 80 4 51 8 74 81 64 29 45
41 26 41 30 82 38 52 81 89 64 17 10 49 28 72 99
60 87 77 81 91 57 6 1 30 47 93 82 81 67 4 3
95 84 74 92 15 10 37 52 8 10 96 38 69 9 65 41
59 19 2 61 40 67 80 25 31 18 1 36 54 31 100 27

35 3 54 83 62 28 21 23 91 46 73 85 11 63 63 49
66 18 31 17 72 15 8 46 10 3 64 22 100 62 85 16

3 4 42 8 4 6 40 73 97 0 37 34 91 56 48 98
28 20 23 98 86 41 41 13 53 61 16 92 95 31 79 36
74 49 86 5 74 82 12 58 80 14 94 4 88 95 9 32
80 80 2 47 91 100 76 84 0 57 17 69 87 29 52 39
65 67 0 39 11 10 54 80 74 56 55 91 94 52 32 18
67 44 89 50 7 73 70 52 18 28 89 43 54 60 20 10
48 33 61 66 2 71 74 91 31 45 63 2 97 62 30 90

3 18 54 19 17 87 3 91 41 64 78 10 99 24 1 20

69 35 12 53 97 30 96 69 59 55 65 64 30 3 100 17
15 0 33 86 93 73 52 57 77 77 83 10 64 54 85 18
87 79 51 68 5 23 50 15 68 67 14 59 42 61 83 2
69 52 34 86 34 34 78 51 48 65 57 91 8 74 72 36
11 1 11 43 51 85 6 47 72 43 34 54 20 56 31 81
59 14 78 32 94 24 19 44 16 49 65 16 30 86 0 65
18 86 62 47 96 46 73 67 79 40 45 82 96 61 34 60
99 63 2 81 58 93 81 37 53 20 64 87 3 27 19 55
34 55 14 29 10 59 7 69 13 8 54 97 56 7 57 16
88 90 6 98 32 55 37 17 35 93 31 66 67 84 15 14

78 30 30 78 41 59 79 77 21 89 76 59 30 9 64 9
67 10 37 14 62 3 85 2 16 74 40 85 30 83 29 5
93 50 83 76 42 86 92 41 27 73 31 70 25 40 11 88

Tables
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35 68 98 18 67 22 95 34 19 27 21 90 66 20 32 48
32 52 29 78 68 96 94 44 38 95 27 85 53 76 63 78
92 100 75 77 26 39 61 33 88 66 77 76 25 67 90 1
40 73 28 5 50 73 92 32 82 23 78 30 26 52 28 94
57 41 64 50 78 35 12 60 25 4 5 82 82 57 68 43
82 41 67 79 30 43 15 72 98 48 6 22 46 92 43 41

100 11 21 44 43 51 76 89 4 90 48 31 19 89 97 45

94 8 20 67 32 42 39 6 38 25 97 10 18 85 9 60
21 59 27 39 13 81 2 47 83 12 17 54 84 68 56 29
63 62 36 6 57 96 6 36 24 13 70 32 90 92 81 86
91 42 57 99 55 31 58 21 21 65 70 4 37 28 59 9
91 27 61 86 36 57 11 35 92 15 79 30 19 85 39 49
97 39 12 28 35 37 90 93 88 20 99 76 81 61 95 70
64 89 32 80 9 66 73 71 84 69 70 12 10 56 59 56
45 34 1 32 80 99 39 52 25 87 76 91 22 26 46 67
21 65 14 1 78 35 35 63 21 66 34 3 47 51 24 37
85 64 69 93 47 82 55 87 22 56 53 85 43 66 23 66

21 37 62 29 44 39 4 4 99 3 6 82 67 53 14 0
23 8 62 9 19 31 81 92 63 10 65 78 79 96 65 33
84 14 92 85 9 16 51 70 26 60 7 7 55 66 5 51
70 37 11 7 93 63 48 12 35 95 32 5 64 5 63 28
80 27 32 92 81 27 55 98 71 22 66 64 78 79 34 73
66 13 16 48 74 51 78 83 42 31 97 72 25 75 34 40

1 51 47 84 82 27 77 40 99 13 66 52 56 27 2 19
84 26 0 38 55 30 45 80 50 20 17 78 87 4 88 86
95 28 57 33 51 39 18 12 37 100 89 63 22 50 10 22
45 76 48 43 18 24 19 1 65 93 16 48 8 60 32 76

Table A1 Continued
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Table A2 The standard Normal distribution

The table shows the area in the upper tail of the standard  
Normal distribution, for the z score shown in the margins.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681

1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233

2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
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Table A3 Percentage points of the t distribution

The table gives critical values of the t distribution cutting off an 
area a in each tail, shown by the top row of the table.

Area (A) in each tail

v 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.320 318.310 636.620
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.214 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
ˆ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291
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Table A4 Critical values of the X2 distribution

The values in the table give the critical values of x2 which cut off the area in the  
right-hand tail given at the top of the column.

Area in right-hand tail

v 0.995 0.990 0.975 0.950 0.900 0.750 0.500

1 392704.10-10 157088.10-9 982069.10-9 393214.10-8 0.0157908 0.1015308 0.454936

2 0.0100251 0.0201007 0.0506356 0.102587 0.210721 0.575364 1.38629
3 0.0717218 0.114832 0.215795 0.351846 0.584374 1.212534 2.36597
4 0.206989 0.297109 0.484419 0.710723 1.063623 1.92256 3.35669
5 0.411742 0.554298 0.831212 1.145476 1.61031 2.67460 4.35146

6 0.675727 0.872090 1.23734 1.63538 2.20413 3.45460 5.34812
7 0.989256 1.239043 1.68987 2.16735 2.83311 4.25485 6.34581
8 1.34441 1.64650 2.17973 2.73264 3.48954 5.07064 7.34412
9 1.73493 2.08790 2.70039 3.32511 4.16816 5.89883 8.34283

10 2.15586 2.55821 3.24697 3.94030 4.86518 6.73720 9.34182

11 2.60322 3.05348 3.81575 4.57481 5.57778 7.58414 10.3410
12 3.07382 3.57057 4.40379 5.22603 6.30380 8.43842 11.3403
13 3.56503 4.10692 5.00875 5.89186 7.04150 9.29907 12.3398
14 4.07467 4.66043 5.62873 6.57063 7.78953 10.1653 13.3393
15 4.60092 5.22935 6.26214 7.26094 8.54676 11.0365 14.3389

16 5.14221 5.81221 6.90766 7.96165 9.31224 11.9122 15.3385
17 5.69722 6.40776 7.56419 8.67176 10.0852 12.7919 16.3382
18 6.26480 7.01491 8.23075 9.39046 10.8649 13.6753 17.3379
19 6.84397 7.63273 8.90652 10.1170 11.6509 14.5620 18.3377
20 7.43384 8.26040 9.59078 10.8508 12.4426 15.4518 19.3374

21 8.03365 8.89720 10.28293 11.5913 13.2396 16.3444 20.3372
22 8.64272 9.54249 10.9823 12.3380 14.0415 17.2396 21.3370
23 9.26043 10.19567 11.6886 13.0905 14.8480 18.1373 22.3369
24 9.88623 10.8564 12.4012 13.8484 15.6587 19.0373 23.3367
25 10.5197 11.5240 13.1197 14.6114 16.4734 19.9393 24.3266

26 11.1602 12.1981 13.8439 15.3792 17.2919 20.8434 25.3365
27 11.8076 12.8785 14.5734 16.1514 18.1139 21.7494 26.3363
28 12.4613 13.5647 15.3079 16.9279 18.9392 22.6572 27.3362
29 13.1211 14.2565 16.0471 17.7084 19.7677 23.5666 28.3361
30 13.7867 14.9535 16.7908 18.4927 20.5992 24.4776 29.3360

40 20.7065 22.1643 24.4330 26.5093 29.0505 33.6603 39.3353
50 27.9907 29.7067 32.3574 34.7643 37.6886 42.9421 49.3349
60 35.5345 37.4849 40.4817 43.1880 46.4589 52.2938 59.3347
70 43.2752 45.4417 48.7576 51.7393 55.3289 61.6983 69.3345
80 51.1719 53.5401 57.1532 60.3915 64.2778 71.1445 79.3343
90 59.1963 61.7541 65.6466 69.1260 73.2911 80.6247 89.3342

100 67.3276 70.0649 74.2219 77.9295 82.3581 90.1332 99.3341
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v 0.250 0.100 0.050 0.025 0.010 0.005 0.001

1 1.32330 2.70554 003.84146 5.02389 6.63490 7.87944 10.828
2 2.77259 4.60517 5.99146 7.37776 9.21034 10.5966 13.816
3 4.10834 6.25139 7.81473 9.34840 11.3449 12.8382 16.266
4 5.38527 7.77944 9.48773 11.1433 13.2767 14.8603 18.467
5 6.62568 9.23636 11.0705 12.8325 15.0863 16.7496 20.515

6 7.84080 10.6446 12.5916 14.4494 16.8119 18.5476 22.458
7 9.03715 12.0170 14.0671 16.0128 18.4753 20.2777 24.322
8 10.2189 13.3616 15.5073 17.5345 20.0902 21.9550 26.125
9 11.3888 14.6837 16.9190 19.0228 21.6660 23.5894 27.877

10 12.5489 15.9872 18.3070 20.4832 23.2093 25.1882 29.588

11 13.7007 17.2750 19.6751 21.9200 24.7250 26.7568 31.264
12 14.8454 18.5493 21.0261 23.3367 26.2170 28.2995 32.909
13 15.9839 19.8119 22.3620 24.7356 27.6882 29.8195 34.528
14 17.1169 21.0641 23.6848 26.1189 29.1412 31.3194 36.123
15 18.2451 22.3071 24.9958 27.4884 30.5779 32.8013 37.697

16 19.3689 23.5418 26.2962 28.8454 31.9999 34.2672 29.252
17 20.4887 24.7690 27.5871 30.1910 33.4087 35.7185 40.790
18 21.6049 25.9894 28.8693 31.5264 34.8053 37.1565 42.312
19 22.7178 27.2036 30.1435 32.8523 36.1909 38.5823 43.820
20 23.8277 28.4120 31.4104 34.1696 37.5662 39.9968 45.315

21 24.9348 29.6151 32.6706 35.4789 38.9322 41.4011 46.797
22 26.40393 30.8133 33.9244 36.7807 40.2894 42.7957 48.268
23 27.1413 32.0069 35.1725 38.0756 41.6384 44.1813 49.728
24 28.2412 33.1962 36.4150 39.3641 42.9798 45.5585 51.179
25 29.3389 34.3816 37.6525 40.6465 44.3141 46.9279 52.618

26 30.4346 35.5632 38.8851 41.9232 45.6417 48.2899 54.052
27 31.5284 36.7412 40.1133 43.1945 46.9629 49.6449 55.476
28 32.6205 37.9150 41.3371 44.4608 48.2782 50.9934 56.892
29 33.7109 39.0875 42.5570 45.7223 49.5879 52.3356 58.301
30 34.7997 40.2560 43.7730 46.9792 50.8922 53.6720 59.703

40 45.6160 51.8051 55.7585 59.3417 63.6907 66.7660 73.402
50 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900 86.661
60 66.9815 74.3970 79.0819 83.2977 88.3794 91.9517 99.607
70 77.5767 85.5270 90.5312 95.0232 100.425 104.215 112.317
80 88.1303 96.5782 101.879 106.629 112.329 116.321 124.839
90 98.6499 107.565 113.145 118.136 124.116 128.299 137.208

100 109.141 118.498 124.342 129.561 135.807 140.169 149.449
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Table A5(a) Critical values of the F distribution (upper 5% points)

The entries in the table give the critical values of F cutting off 5% in the  
right-hand tail of the distribution. v1 gives the degrees of freedom in the  
numerator, v2 those in the denominator.

v1

1 2 3 4 5 6 7 8 9
v2

1 161.45 199.50 215.71 224.58 230.16 230.99 236.77 238.88 240.54
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385
3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8867 8.8452 8.8123
4 7.7086 6.9443 6.5914 6.3882 6.2561 6.1631 6.0942 6.0410 5.9988
5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725

6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2067 4.1468 4.0990
7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767
8 5.3177 4.4590 4.0662 3.8379 3.6875 3.5806 3.5005 3.4381 3.3881
9 5.1174 4.2565 3.8625 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789

10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204

11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480 2.8962
12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964
13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144
14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458
15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876

16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377
17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480 2.4943
18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563
19 4.3807 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768 2.4227
20 4.3512 3.4928 2.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928

21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3660
22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419
23 4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748 2.3201
24 4.2597 3.4028 3.0088 2.7763 2.6307 2.5082 2.4226 2.3551 2.3002
25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821

26 4.2252 3.3690 2.9752 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655
27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501
28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.2360
29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2783 2.2229
30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107

40 4.0847 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240
60 4.0012 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401

120 3.9201 3.0718 2.6802 2.4472 2.2899 2.1750 2.0868 2.0164 1.9588
ˆ 3.8415 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799
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v1

10 12 15 20 24 30 40 60 120 ˆ
v2

1 241.88 243.91 245.95 248.01 249.05 250.10 251.14 252.20 253.25 254.31
2 19.396 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496
3 8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.5720 8.5494 8.5264
4 5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.7170 5.6877 5.6581 5.6281
5 4.7351 4.6777 4.6188 4.5581 4.5272 4.4957 4.4638 4.4314 4.3985 4.3650

6 4.0600 3.9999 3.9381 3.8742 3.8415 3.8082 3.7743 3.7398 3.7047 3.6689
7 3.6365 3.5747 3.5107 3.4445 3.4105 3.3758 3.3404 3.3043 3.2674 3.2298
8 3.3472 3.2839 3.2184 3.1503 3.1152 3.0794 3.0428 3.0053 2.9669 2.9276
9 3.1373 3.0729 3.0061 2.9365 2.9005 2.8637 2.8259 2.7872 2.7475 2.7067

10 2.9782 2.9130 2.8450 2.7740 2.7372 2.6996 2.6609 2.6211 2.5801 2.5379

11 2.8536 2.7876 2.7186 2.6464 2.6090 2.5705 2.5309 2.4901 2.4480 2.4045
12 2.7534 2.6866 2.6169 2.5436 2.5055 2.4663 2.4259 2.3842 2.3410 2.2962
13 2.6710 2.6037 2.5331 2.4589 2.4202 2.3803 2.3392 2.2966 2.2524 2.2064
14 2.6022 2.5342 2.4630 2.3879 2.3487 2.3082 2.2664 2.2229 2.1778 2.1307
15 2.5437 2.4753 2.4034 2.3275 2.2878 2.2468 2.2043 2.1601 2.1141 2.0658

16 2.4935 2.4247 2.3522 2.2756 2.2354 2.1938 2.1507 2.1058 2.0589 2.0096
17 2.4499 2.3807 2.3077 2.2304 2.1898 2.1477 2.1040 2.0584 2.0107 1.9604
18 2.4117 2.3421 2.2686 2.1906 2.1497 2.1071 2.0629 2.0166 1.9681 1.9168
19 2.3779 2.3080 2.2341 2.1555 2.1141 2.0712 2.0264 1.9795 1.9302 1.8780
20 2.3479 2.2776 2.2033 2.1242 2.0825 2.0391 1.9938 1.9464 1.8963 1.8432

21 2.3210 2.2504 2.1757 2.0960 2.0540 2.0102 1.9645 1.9165 1.8657 1.8117
22 2.2967 2.2258 2.1508 2.0707 2.0283 1.9842 1.9380 1.8894 1.8380 1.7831
23 2.2747 2.2036 2.1282 2.0476 2.0050 1.9605 1.9139 1.8648 1.8128 1.7570
24 2.2547 2.1834 2.1077 2.0267 1.9838 1.9390 1.8920 1.8424 1.7896 1.7330
25 2.2365 2.1649 2.0889 2.0075 1.9643 1.9192 1.8718 1.8217 1.7684 1.7110

26 2.2197 2.1479 2.0716 1.9898 1.9464 1.9010 1.8533 1.8027 1.7488 1.6906
27 2.2043 2.1323 2.0558 1.9736 1.9299 1.8842 1.8361 1.7851 1.7306 1.6717
28 2.1900 2.1179 2.0411 1.9586 1.9147 1.8687 1.8203 1.7689 1.7138 1.6541
29 2.1768 2.1045 2.0275 1.9446 1.9005 1.8543 1.8055 1.7537 1.6981 1.6376
30 2.1646 2.0921 2.0148 1.9317 1.8874 1.8409 1.7918 1.7396 1.6835 1.6223

40 2.0772 2.0035 1.9245 1.8389 1.7929 1.7444 1.6928 1.6373 1.5766 1.5089
60 1.9926 1.9174 1.8364 1.7480 1.7001 1.6491 1.5943 1.5343 1.4673 1.3893

120 1.9105 1.8337 1.7505 1.6587 1.6084 1.5543 1.4952 1.4290 1.3519 1.2539
ˆ 1.8307 1.7522 1.6664 1.5705 1.5173 1.4591 1.3940 1.3180 1.2214 1.0000
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Table A5(b) Critical values of the F distribution (upper 2.5% points)

The entries in the table give the critical values of F cutting off 2.5% in the right-hand tail of  
the distribution. v1 gives the degrees of freedom in the numerator, v2 in the denominator.

v1

1 2 3 4 5 6 7 8 9
v2

1 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28
2 38.506 39.000 39.165 39.248 39.298 39.331 39.355 39.373 39.387
3 17.443 16.044 15.439 15.101 14.885 14.735 14.624 14.540 14.473
4 12.218 10.649 9.9792 9.6045 9.3645 9.1973 9.0741 8.9796 8.9047
5 10.007 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6811

6 8.8131 7.2599 6.5988 6.2272 5.9876 5.8198 5.6955 5.5996 5.5234
7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8993 4.8232
8 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4333 4.3572
9 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.1970 4.1020 4.0260

10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.7790

11 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 3.7586 3.6638 3.5879
12 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 3.6065 3.5118 3.4358
13 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.3880 3.3120
14 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853 3.2093
15 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987 3.1227

16 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248 3.0488
17 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.0610 2.9849
18 5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 3.0999 3.0053 2.9219
19 5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563 2.8801
20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365

21 5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.8740 2.7977
22 5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392 2.7628
23 5.7498 4.3492 3.7505 3.4083 3.1835 3.0232 2.9023 2.8077 2.7313
24 5.7166 4.3187 3.7211 3.3794 3.1548 2.9946 2.8738 2.7791 2.7027
25 5.6864 4.2909 3.6943 3.3530 3.1287 2.9685 2.8478 2.7531 2.6766

26 5.6586 4.2655 3.6697 3.3289 3.1048 2.9447 2.8240 2.7293 2.6528
27 5.6331 4.2421 3.6472 3.3067 3.0828 2.9228 2.8021 2.7074 2.6309
28 5.6096 4.2205 3.6264 3.2863 3.0626 2.9027 2.7820 2.6872 2.6106
29 5.5878 4.2006 3.6072 3.2674 3.0438 2.8840 2.7633 2.6686 2.5919
30 5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.7460 2.6513 2.5746

40 5.4239 4.0510 3.4633 3.1261 2.9037 2.7444 2.6238 2.5289 2.4519
60 5.2856 3.9253 3.3425 3.0077 2.7863 2.6274 2.5068 2.4117 2.3344

120 5.1523 3.8046 3.2269 2.8943 2.6740 2.5154 2.3948 2.2994 2.2217
ˆ 5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136



Appendix: Tables

457

v1

10 12 15 20 24 30 40 60 120 ˆ
v2

1 968.63 976.71 984.87 993.10 997.25 1001.4 1005.6 1009.8 1014.0 1018.3
2 39.398 39.415 39.431 39.448 39.456 39.465 39.473 39.481 39.400 39.498
3 14.419 14.337 14.253 14.167 14.124 14.081 14.037 13.992 13.947 13.902
4 8.8439 8.7512 8.6565 8.5599 8.5109 8.4613 8.4111 8.3604 8.3092 8.2573
5 6.6192 6.5245 6.4277 6.3286 6.2780 6.2269 6.1750 6.1225 6.069? 6.0153

6 5.4613 5.3662 5.2687 5.1684 5.1172 5.0652 5.0125 4.9589 4.9044 4.8491
7 4.7611 4.6658 4.5678 4.4667 4.4150 4.3624 4.3089 4.2544 4.1989 4.1423
8 4.2951 4.1997 4.1012 3.9995 3.9472 3.8940 3.8398 3.7844 3.7279 3.6702
9 3.9639 3.8682 3.7694 3.6669 3.6142 3.5604 3.5055 3.4493 3.3918 3.3329

10 3.7168 3.6209 3.5217 3.4185 3.3654 3.3110 3.2554 3.1984 3.1399 3.0798

11 3.5257 3.4296 3.3299 3.2261 3.1725 3.1176 3.0613 3.0035 2.9441 2.8828
12 3.3736 3.2773 3.1772 3.0728 3.0187 2.9633 2.9063 2.8478 2.7874 2.7249
13 3.2497 3.1532 3.0527 2.9477 2.8932 2.8372 2.7797 2.7204 2.6590 2.5955
14 3.1469 3.0502 2.9493 2.8437 2.7888 2.7324 2.6742 2.6142 2.5519 2.4872
15 3.0602 2.9633 2.8621 2.7559 2.7006 2.6437 2.5850 2.5242 2.4611 2.3953

16 2.9862 2.8890 2.7875 2.6808 2.6252 2.5678 2.5085 2.4471 2.3831 2.3163
17 2.9222 2.8249 2.7230 2.6158 2.5598 2.5020 2.4422 2.3801 2.3153 2.2474
18 2.8664 2.7689 2.6667 2.5590 2.5027 2.4445 2.3842 2.3214 2.2558 2.1869
19 2.8172 2.7196 2.6171 2.5089 2.4523 2.3937 2.3329 2.2696 2.2032 2.1333
20 2.7737 2.6758 2.5731 2.4645 2.4076 2.3486 2.2873 2.2234 2.1562 2.0853

21 2.7348 2.6368 2.5338 2.4247 2.3675 2.3082 2.2465 2.1819 2.1141 2.0422
22 2.6998 2.6017 2.4984 2.3890 2.3315 2.2718 2.2097 2.1446 2.0760 2.0032
23 2.6682 2.5699 2.4665 2.3567 2.2989 2.2389 2.1763 2.1107 2.0415 1.9677
24 2.6396 2.5411 2.4374 2.3273 2.2693 2.2090 2.1460 2.0799 2.0099 1.9353
25 2.6135 2.5149 2.4110 2.3005 2.2422 2.1816 2.1183 2.0516 1.9811 1.9055

26 2.5896 2.4908 2.3867 2.2759 2.2174 2.1565 2.0928 2.0257 1.9545 1.8781
27 2.5676 2.4688 2.3644 2.2533 2.1946 2.1334 2.0693 2.0018 1.9299 1.8527
28 2.5473 2.4484 2.3438 2.2324 2.1735 2.1121 2.0477 1.9797 1.9072 1.8291
29 2.5286 2.4295 2.3248 2.2131 2.1540 2.0923 2.0276 1.9591 1.8861 1.8072
30 2.5112 2.4120 2.3072 2.1952 2.1359 2.0739 2.0089 1.9400 1.8664 1.7867

40 2.3882 2.2882 2.1819 2.0677 2.0069 1.9429 1.8752 1.8028 1.7242 1.6371
60 2.2702 2.1692 2.0613 1.9445 1.8817 1.8152 1.7440 1.6668 1.5810 1.4821

120 2.1570 2.0548 1.9450 1.8249 1.7597 1.6899 1.6141 1.5299 1.4327 1.3104
ˆ 2.0483 1.9447 1.8326 1.7085 1.6402 1.5660 1.4835 1.3883 1.2684 1.0000
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Table A5(C) Critical values of the F distribution (upper 1% points)

The entries in the table give the critical values of F cutting off 1% in the right-hand tail of  
the distribution. v1 gives the degrees of freedom in the numerator, v2 in the denominator.

v1

1 2 3 4 5 6 7 8 9
v1

1 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5
2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388
3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345
4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659
5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158

6 13.745 10.925 9.7795 9.1483 8.7459 8.4661 8.2600 8.1017 7.9761
7 12.246 9.5466 8.4513 7.8466 7.4604 7.1914 6.9928 6.8400 6.7188
8 11.259 8.6491 7.5910 7.0061 6.6318 6.3707 6.1776 6.0289 5.9106
9 10.561 8.0215 6.9919 6.4221 6.0569 5.8018 5.6129 5.4671 5.3511

10 10.044 7.5594 6.5523 5.9943 5.6363 5.3858 5.2001 5.0567 4.9424

11 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 4.8861 4.7445 4.6315
12 9.3302 6.9266 5.9525 5.4120 5.0643 4.8206 4.6395 4.4994 4.3875
13 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 4.4410 4.3021 4.1911
14 8.8618 6.5149 5.5639 5.0354 4.6950 4.4558 4.2779 4.1399 4.0297
15 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 4.1415 4.0045 3.8948

16 8.5310 6.2262 5.2922 4.7726 4.4374 4.2016 4.0259 3.8896 3.7804
17 8.3997 6.1121 5.1850 4.6690 4.3359 4.1015 3.9267 3.7910 3.6822
18 8.2854 6.0129 5.0919 4.5790 4.2479 4.0146 3.8406 3.7054 3.5971
19 8.1849 5.9259 5.0103 4.5003 4.1708 3.9386 3.7653 3.6305 3.5225
20 8.0960 5.8489 4.9382 4.4307 4.1027 3.8714 3.6987 3.5644 3.4567

21 8.0166 5.7804 4.8740 4.3688 4.0421 3.8117 3.6396 3.5056 3.3981
22 7.9454 5.7190 4.8166 4.3134 3.9880 3.7583 3.5867 3.4530 3.3458
23 7.8811 5.6637 4.7649 4.2636 3.9392 3.7102 3.5390 3.4057 3.2986
24 7.8229 5.6136 4.7181 4.2184 3.8951 3.6667 3.4959 3.3629 3.2560
25 7.7698 5.5680 4.6755 4.1774 3.8550 3.6272 3.4568 3.3439 3.2172

26 7.7213 5.5263 4.6366 4.1400 3.8183 3.5911 3.4210 3.2884 3.1818
27 7.6767 5.4881 4.6009 4.1056 3.7848 3.5580 3.3882 3.2558 3.1494
28 7.6356 5.4529 4.5681 4.0740 3.7539 3.5276 3.3581 3.2259 3.1195
29 7.5977 5.4204 4.5378 4.0449 3.7254 3.4995 3.3303 3.1982 3.0920
30 7.5625 5.3903 4.5097 4.0179 3.6990 3.4735 3.3045 3.1726 3.0665

40 7.3141 5.1785 4.3126 3.8283 3.5138 3.2910 3.1238 2.9930 2.8876
60 7.0771 4.9774 4.1259 3.6490 3.3389 3.1187 2.9530 2.8233 2.7185

120 6.8509 4.7865 3.9491 3.4795 3.1735 2.9559 2.7918 2.6629 2.5586
ˆ 6.6349 4.6052 3.7816 3.3192 3.0173 2.8020 2.6393 2.5113 2.4073
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v1

10 12 15 20 24 30 40 60 120 ˆ
v2

1 6055.8 6106.3 6157.3 6208.7 6234.6 6260.6 6286.8 6313.0 6339.4 6365.9
2 99.399 99.416 99.433 99.449 99.458 99.466 99.474 99.482 99.491 99.499
3 27.229 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125
4 14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463
5 10.051 9.8883 9.7222 9.5526 9.4665 9.3793 9.2912 9.2020 9.1118 9.0204

6 7.8741 7.7183 7.5590 7.3958 7.3127 7.2285 7.1432 7.0567 6.9690 6.8800
7 6.6201 6.4691 6.3143 6.1554 6.0743 5.9920 5.9084 5.8236 5.7373 5.6495
8 5.8143 5.6667 5.5151 5.3591 5.2793 5.1981 5.1156 5.0316 4.9461 4.8588
9 5.2565 5.1114 4.9621 4.8080 4.7290 4.6486 4.5666 4.4831 4.3978 4.3105

10 4.8491 4.7059 4.5581 4.4054 4.3269 4.2469 4.1653 4.0819 3.9965 3.9090

11 4.5393 4.3974 4.2509 4.0990 4.0209 3.9411 3.8596 3.7761 3.6904 3.6024
12 4.2961 4.1553 4.0096 3.8584 3.7805 3.7008 3.6192 3.5355 3.4494 3.3608
13 4.1003 3.9603 3.8154 3.6646 3.5868 3.5070 3.4253 3.3413 3.2548 3.1654
14 3.9394 3.8001 3.6557 3.5052 3.4274 3.3476 3.2656 3.1813 3.0942 3.0040
15 3.8049 3.6662 3.5222 3.3719 3.2940 3.2141 3.1319 3.0471 2.9595 2.8684

16 3.6909 3.5527 3.4089 3.2587 3.1808 3.1007 3.0182 2.9330 2.8447 2.7528
17 3.5931 3.4552 3.3117 3.1615 3.0835 2.0032 2.9205 2.8348 2.7459 2.6530
18 3.5082 3.3706 3.2273 3.0771 2.9990 2.9185 2.8354 2.7493 2.6597 2.5660
19 3.4338 3.2965 3.1533 3.0031 2.9249 2.8442 2.7608 2.6742 2.5839 2.4893
20 3.3682 3.2311 3.0880 2.9377 2.8594 2.7785 2.6947 2.6077 2.5168 2.4212

21 3.3098 3.1730 3.0300 2.8796 2.8010 2.7200 2.6359 2.5484 2.4568 2.3603
22 3.2576 3.1209 2.9779 2.8274 2.7488 2.6675 2.5831 2.4951 2.4029 2.3055
23 3.2106 3.0740 2.9311 2.7805 2.7017 2.6202 2.5355 2.4471 2.3542 2.2558
24 3.1681 3.0316 2.8887 2.7380 2.6591 2.5773 2.4923 2.4035 2.3100 2.2107
25 3.1294 2.9931 2.8502 2.6993 2.6203 2.5383 2.4530 2.3637 2.2696 2.1694

26 3.0941 2.9578 2.8150 2.6640 2.5848 2.5026 2.4170 2.3273 2.2325 2.1315
27 3.0618 2.9256 2.7827 2.6316 2.5522 2.4699 2.3840 2.2938 2.1985 2.0965
28 3.0320 2.8959 2.7530 2.6017 2.5223 2.4397 2.3535 2.2629 2.1670 2.0642
29 3.0045 2.8685 2.7256 2.5742 2.4946 2.4118 2.3253 2.2344 2.1379 2.0342
30 2.9791 2.8431 2.7002 2.5487 2.4689 2.3860 2.2992 2.2079 2.1108 2.0062

40 2.8005 2.6648 2.5216 2.3689 2.2880 2.2034 2.1142 2.0194 1.9172 1.8047
60 2.6318 2.4961 2.3523 2.1978 2.1154 2.0285 1.9360 1.8363 1.7263 1.6006

120 2.4721 2.3363 2.1915 2.0346 1.9500 1.8600 1.7628 1.6557 1.5330 1.3805
ˆ 2.3209 2.1847 2.0385 1.8783 1.7908 1.6964 1.5923 1.4730 1.3246 1.0000



Appendix: Tables

460

Table A5(d) Critical values of the F distribution (upper 0.5% points)

The entries in the table give the critical values of F cutting off 0.5% in the right-hand tail of  
the distribution. v1 gives the degrees of freedom in the numerator, v2 in the denominator.

v1

1 2 3 4 5 6 7 8 9
v1

1 16211 20000 21615 22500 23056 23437 23715 23925 24091
2 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39
3 55.552 49.799 47.467 46.195 45.392 44.838 44.434 44.126 43.882
4 31.333 26.284 24.259 23.155 22.456 21.975 21.622 21.352 21.139
5 22.785 18.314 16.530 15.556 14.940 14.513 14.200 13.961 13.772

6 18.635 14.544 12.917 12.028 11.464 11.073 10.786 10.566 10.391
7 16.236 12.404 10.882 10.050 9.5221 9.1553 8.8854 8.6781 8.5138
8 14.688 11.042 9.5965 8.8051 9.3018 7.9520 7.6941 7.4959 7.3386
9 13.614 10.107 8.7171 7.9559 7.4712 7.1339 6.8849 6.6933 6.5411

10 12.826 9.4270 8.0807 7.3428 6.8724 6.5446 6.3025 6.1159 5.9676

11 12.226 8.9122 7.6004 6.8809 6.4217 6.1016 5.8648 5.6821 5.5368
12 11.754 8.5096 7.2258 6.5211 6.0711 5.7570 5.5245 5.3451 5.2021
13 11.374 8.1865 6.9258 6.2335 5.7910 5.4819 5.2529 5.0761 4.9351
14 11.060 7.9216 6.6804 5.9984 5.5623 5.2574 5.0313 4.8566 4.7173
15 10.798 7.7008 6.4760 5.8029 5.3721 5.0708 4.8473 4.6744 3.5364

16 10.575 7.5138 6.3034 5.6378 5.2117 4.9134 4.6920 4.5207 4.3838
17 10.384 7.3536 6.1556 5.4967 5.0746 4.7789 4.5594 4.3894 4.2535
18 10.218 7.2148 6.0278 5.3746 3.9560 4.6627 4.4448 3.2759 4.1410
19 10.073 7.0935 5.9161 5.2681 4.8526 4.5614 4.3448 4.1770 4.0428
20 9.9439 6.9865 5.8177 5.1743 4.7616 4.4721 4.2569 4.0900 3.9564

21 9.8295 6.8914 5.7304 5.0911 4.6809 4.3931 4.1789 4.0128 3.8799
22 9.7271 6.8064 5.6524 5.0168 4.6088 4.3225 4.1094 3.9440 3.8116
23 9.6348 6.7300 5.5823 4.9500 3.5441 4.2591 4.0469 3.8822 3.7502
24 9.5513 6.6609 5.5190 4.8898 4.4857 4.2019 3.9905 3.8264 3.6949
25 9.4753 6.5982 5.4615 4.8351 4.4327 4.1500 3.9394 3.7758 3.6447

26 9.4059 6.5409 5.4091 4.7852 4.3844 4.1027 3.8928 3.7297 3.5989
27 9.3423 6.4885 5.3611 4.7396 4.3402 4.0594 3.8501 3.6875 3.5571
28 9.2838 6.4403 5.3170 4.6977 4.2996 4.0197 3.8110 3.6487 3.5186
29 9.2297 6.3958 5.2764 4.6591 4.2622 3.9831 3.7749 3.6131 3.4832
30 9.1797 6.3547 5.2388 4.6234 4.2276 3.9492 3.7416 3.5801 3.4504

40 8.8279 6.0664 4.9758 4.3738 3.9860 3.7129 3.5088 3.3498 3.2220
60 8.4946 5.7950 4.7290 4.1399 3.7599 3.4918 3.2911 3.1344 3.0083

120 8.1788 5.5393 4.4972 3.9207 3.5482 3.2849 3.0874 2.9330 2.8083
ˆ 7.894 5.2983 4.2794 3.7151 3.3499 3.0913 2.8968 2.7444 2.6210
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v1

10 12 15 20 24 30 40 60 120 ˆ
v2

1 24224 24426 24630 24836 24940 25044 25148 25253 25359 25464
2 199.40 199.42 199.43 199.45 199.46 199.47 199.47 199.48 199.49 199.50
3 43.686 43.387 43.085 42.778 42.622 42.466 42.308 42.149 41.989 41.828
4 20.967 20.705 20.438 20.167 20.030 19.892 19.752 19.611 19.468 19.325
5 13.618 13.384 13.146 12.903 12.780 12.656 12.530 12.402 12.274 12.144

6 10.250 10.034 9.8140 9.5888 9.4742 9.3582 9.2408 9.1219 9.0015 8.8793
7 8.3803 8.1764 7.9678 7.7540 7.6450 7.5345 7.4224 7.3088 7.1933 7.0760
8 7.2106 7.0149 6.8143 6.6082 6.5029 6.3961 6.2875 6.1772 6.0649 5.9506
9 6.4172 6.2274 6.0325 5.8318 5.7292 5.6248 5.5186 5.4104 5.3001 5.1875

10 5.8467 5.6613 5.4707 5.2740 5.1732 5.0706 4.9659 4.8592 4.7501 4.6385

11 5.4183 5.2363 5.0489 4.8552 4.7557 4.6543 4.5508 4.4450 4.3367 4.2255
12 5.0855 4.9062 4.7213 4.5299 4.4314 4.3309 4.2282 5.1229 4.0149 3.9039
13 4.8199 4.6429 4.4600 4.2703 4.1726 4.0727 3.9704 3.8655 3.7577 3.6465
14 4.6034 4.4281 4.2468 4.0585 3.9614 3.8619 3.7600 3.6552 3.5473 3.4359
15 4.4235 4.2497 4.0698 3.8826 3.7859 3.6867 3.5850 3.4803 3.3722 3.2602

16 4.2719 4.0994 3.9205 3.7342 3.6378 3.5389 3.4372 3.3324 3.2240 3.1115
17 4.1424 3.9709 3.7929 3.6073 3.5112 3.4124 3.3108 3.2058 3.0971 2.9839
18 4.0305 3.8599 3.6827 3.4977 3.4017 3.3030 3.2014 3.0962 2.9871 2.8732
19 3.9329 3.7631 4.5866 3.4020 3.3062 3.2075 3.1058 3.0004 2.8908 2.7762
20 3.8470 3.6779 3.5020 3.3178 3.2220 3.1234 3.0215 2.9159 2.8058 2.6904

21 3.7709 3.6024 3.4270 3.2431 3.1474 3.0488 2.9467 2.7408 2.7302 2.6140
22 3.7030 3.5350 3.3600 3.1764 3.0807 2.9821 2.8799 2.7736 2.6625 2.5455
23 3.6420 3.4745 3.2999 3.1165 3.0208 2.9221 2.8197 2.7132 2.6015 2.4837
24 3.5870 3.4199 3.2456 3.0624 2.9667 2.8679 2.7654 2.6585 2.5463 2.4276
25 3.5370 3.3704 3.1963 3.0133 2.9176 2.8187 2.7160 2.6088 2.4961 2.3765

26 3.4916 3.3252 3.1515 2.9685 2.8728 2.7738 2.6709 2.5633 2.4501 2.3297
27 3.4499 3.2839 3.1104 2.9275 2.8318 2.7327 2.6296 2.5217 2.4079 2.2867
28 3.4117 3.2460 3.0727 2.8899 2.7941 2.6949 2.5916 2.4834 2.3690 2.2470
29 3.3765 3.2110 3.0379 2.8551 2.7594 2.6600 2.5565 2.4479 2.3331 2.2102
30 3.3440 3.1787 3.0057 2.8230 2.7272 2.6278 2.5241 2.4151 2.2998 2.1760

40 3.1167 2.9531 2.7811 2.5984 2.5020 2.4015 2.2958 2.1838 2.0636 1.9318
60 2.9042 2.7419 2.5705 2.3872 2.2898 2.1874 2.0789 1.9622 1.8341 1.6885

120 2.7052 2.5439 2.3727 2.1881 2.0890 1.9840 1.8709 1.7469 1.6055 1.4311
ˆ 2.5188 2.3583 2.1868 1.9998 1.8983 1.7891 1.6691 1.5325 1.3637 1.0000
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Table A6 Critical values of Spearman's rank correlation coefficient

Entries in the table show critical values of Spearman's rank  
correlation coefficient. The value at the top of each column  
shows the significance level for a two-tailed test. For a one-tailed  
test, the significance level is half that shown.

N 10% 5% 2% 1%

5 0.900 – – –
6 0.829 0.886 0.943 –
7 0.714 0.786 0.893 –
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.745 0.818

11 0.523 0.623 0.763 0.794
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.746
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689

16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591

21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526

26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Source: Annals of Statistics, 1936 and 1949.
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Table A7 Critical values for the Durbin–Watson test at 5% significance level

Sample
size

Number of explanatory variables

1 2 3 4 5

n dL dU dL dU dL dU dL dU dL dU

10 0.879 1.320 0.697 1.641 0.525 2.016 0.376 2.414 0.243 2.822
11 0.927 1.324 0.758 1.604 0.595 1.928 0.444 2.283 0.316 2.645

  12 0.971 1.331 0.812 1.579 0.658 1.864 0.512 2.177 0.379 2.506
  13 1.010 1.340 0.861 1.562 0.715 1.816 0.574 2.094 0.445 2.390
  14 1.045 1.350 0.905 1.551 0.767 1.779 0.632 2.030 0.505 2.296
  15 1.077 1.361 0.946 1.543 0.814 1.750 0.685 1.977 0.562 2.220
  20 1.201 1.411 1.100 1.537 0.998 1.676 0.894 1.828 0.792 1.991
  25 1.288 1.454 1.206 1.550 1.123 1.654 1.038 1.767 0.953 1.886
  30 1.352 1.489 1.284 1.567 1.214 1.650 1.143 1.739 1.071 1.833
  35 1.402 1.519 1.343 1.584 1.283 1.653 1.222 1.726 1.160 1.803
  40 1.442 1.544 1.391 1.600 1.338 1.659 1.285 1.721 1.230 1.786
  50 1.503 1.585 1.462 1.628 1.421 1.674 1.378 1.721 1.335 1.771
100 1.654 1.694 1.634 1.715 1.613 1.736 1.592 1.758 1.571 1.780
200 1.758 1.778 1.748 1.789 1.738 1.799 1.728 1.810 1.718 1.820
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Answers and Commentary on Problems

Answers to Chapter 1

Problem 1.1

(a) 
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qualification

 Comparison is complicated because the data for women only are from a survey, 
hence the absolute numbers are much smaller. Also, we compare women here with 
the total for men and women in the text. We have to infer what the difference 
between men and women is. The major difference apparent is that there are rela-
tively more women in the ‘Other qualification’ category, and relatively fewer in 
the higher education category.

 There is not a great difference apparent between this graph and the one in the text. 
Closer inspection of the figures suggests a higher proportion of women are ‘inac-
tive’ and a lower proportion in work, but this detail is difficult to discern from the 
graph alone.

(b) 
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(c) 
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 This chart brings out a little more clearly that there is a slightly higher degree of 
inactivity amongst women, particularly in the lower education categories.

(d) 

20%

17%

54%

9%

Higher education

A levels 

Other qualification

No qualification

 This again brings out the higher proportion with ‘other’ qualifications and the 
fewer with higher education.

Problem 1.3

(a) Higher education, 88%.

(b) Those in work, 20%.

Problem 1.5
Bar chart
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Histogram

Histogram

0 53 10 15

Frequency
density

10 53 10 151

The difference between bar chart and histogram is similar to that for the 2005 distribu-
tion. The overall shape of the histogram is similar (heavily skewed to right). Compari-
son is difficult because of different wealth levels (due to inflation), and grouping into 
classes can affect the precise shape of the graph.

Problem 1.7

(a) Mean 16.399 (£000); median 8.92; mode 0–1 (£000) group has the greatest fre-
quency density. They differ because of skewness in the distribution.

(b) Q1 = 3.295, Q3 = 18.399, IQR = 15.044; variance = 652.88; s.d. = 25.552; coef-
ficient of variation = 1.56.

(c) 95,469.32>25.553 = 5.72 7 0 as expected. Ask your class whether this number is 
revealing to them. Is there any intuition?

(d) Comparison in text.

(e) This would increase the mean substantially (to 31.12), but the median and mode 
would be unaffected.

Problem 1.9
(33 * 134 + 40 * 139 + 25 * 137)>(33 + 40 + 25) = 136.8 pence>litre

Problem 1.11

(a) z = 1.5 ( = (83 - 65)>Î144) and -1.5( = (47 - 65>Î144) respectively.

(b) Using Chebyshev’s theorem with k = 1.5, we have that at least (1 - 1>1.52) =  
0.56 (56%) lies within 1.5 standard deviations of the mean, so at most 0.44  
(44 students) lies outside the range.

(c) As Chebyshev’s theorem applies to both tails, we cannot answer this part. You 
cannot halve 0.44 as the distribution may be skewed.
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Problem 1.13

(a) 
Car registrations
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 The series shows an initial peak in 1989, then a slow recovery from 1991 to 2003. 
After this the market turns down again. The series is quite volatile with long upward 
and downward swings.

(b) Change in registrations
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Change in registrations
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 This form of the graphs shows that recessions can be quite severe for the vehicle 
market, while upswings show smaller per annum increases. The log graphs are very 
similar to the levels graphs. There is not always an advantage in drawing these.

Problem 1.15

(a) (1994.6>2212.6)1>23 = -0.0045 or -0.45% p.a. (note that this is not particularly 
representative – most years had positive growth but there were sharp falls at the 
beginning and end of the period).

(b) 0.084 (around the geometric mean).

(c) The standard deviations of the two growth rates are similar (it was 0.0766 for 
investment), so this suggests a similar level of volatility. Note that, since the means 
are very different (6.37% p.a. for investment) and for registrations is actually nega-
tive, there is a big difference in volatility if one relies upon the coefficient of varia-
tion. This latter is misleading in this case, however – it reflects differences in the 
means rather than in volatility.

Problem 1.17

(a) Non-linear, upward trend. It is likely to be positively autocorrelated. Variation 
around the trend is likely to grow over time (heteroscedasticity).
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(b) Similar to (a), except that the trend would be shallower after deflation. Probably 
there will be less heteroscedasticity because price variability has been removed, 
which may also increase the autocorrelation of the series.

(c) Unlikely to show a trend in the very long run, but there might be one over, say, five 
years, if inflation is increasing. Likely to be homoscedastic, with some degree of 
autocorrelation.

Problem 1.19

(a) Rearranging St = S0(1 + r)t, we can obtain S0 = St>(1 + r)t. Setting St = 1000, 
r = 0.07, and t = 5 gives S0 = 712.99. Price after two years: 816.30 (use t = 3  
to obtain this). If r rose after two years to 10%, the bond would fall to 
1000>(1 + 0.10)3 = 751.31

(b) The income stream should be discounted to the present using 

 
200

1 + r
+

200

(1 + r)2 +
200

(1 + r)3 +
200

(1 + r)4 +
200

(1 + r)5 = 820.04,  

 so the bond should sell for £820.04. It is worth more than the previous bond 
because the return is obtained earlier.

Problem 1.21

(a) 17.9% p.a. for BMW, 14% p.a. for Mercedes

(b) Depreciated values are as shown in this table,

BMW 525i 22 275 18 284 15 008 12 319 10 112 8 300

Merc 200E 21 900 18 833 16 196 13 928 11 977 10 300

 which are close to actual values. Depreciation is initially slower than the average, 
then speeds up, for both cars.

Problem 1.23

E(x + k) = a (x + k)

n
= ax + nk

n
= ax

n
+ k = E(x) + k

Problem 1.25
The mistake is comparing non-comparable averages. A first-time buyer would have an 
above-average mortgage and purchase a below-average priced house, hence the amount 
of buyer’s equity would be small. The original argument came from the Morning Star 
newspaper many years ago. With reasoning like this, no wonder communism failed.

Answers to exercises on Σ  notation

Problem 1A.1
20, 90, 400, 5, 17, 11.

Problem 1A.2
40, 360, 1600, 25, 37, 22.

Problem 1A.3
88, 372, 16, 85.

Problem 1A.4
352, 2976, 208, 349.



Answers and Commentary on Problems

470

Problem 1A.5
113, 14, 110.

Problem 1A.6
56, 8, 48.

Problem 1A.7

a f(x - k)

a f
= a fx - ka f

a f
= a fx

a f
- k

Problem 1A.8

 a f(x - m)2

a f
= a f(x2 - 2mx + m2)

a f
= a fx2 - 2ma fx + m2a f

a f

 = a fx2

a f
- 2m2 + m2 = a fx2

a f
- m2

Answers to exercises on logarithms

Problem 1C.1
-0.8239, 0.17609, 1.17609, 2.17609, 3.17609, 1.92284, 0.96142, impossible.

Problem 1C.2
-0.09691, 0.90309, 1.90309, 0.60206, 1.20412, impossible.

Problem 1C.3
-1.89712, 0.40547, 2.70705, 5.41610, impossible.

Problem 1C.4
01.20397, 1, 1.09861, 3.49651, impossible.

Problem 1C.5
0.15, 12.58925, 125.8925, 1258.925, 1012

Problem 1C.6
0.8, 199.5262, 1995.2623, 1995262.3

Problem 1C.7
15, 40.77422, 2.71828, 22026.4658

Problem 1C.8
33, 1,202,604.284, 3,269,017.372, 0.36788

Problem 1C.9
3.16228, 1.38692, 1.41421, 0.0005787, 0.008

Answers to Chapter 2

Problem 2.1

(a) 4/52 or 1/13. (There are four aces in a pack of 52 cards.)
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(b) 12>52 or 3>13. Again, this is calculated simply by counting the possibilities,  
12 court cards (three in each suit)

(c) 1>2.

(d) 4>52 * 3>52 * 2>52 = 3>17576(0.017).

(e) (4>52)3 = 0.000455.

Problem 2.3

(a) 0.25 (three to one against means one win for every three losses, so one win in four 
races), 0.4, 5>9.

(b) ‘Probabilities’ are 0.33, 0.4, 0.5, which sum to 1.23. These cannot be real probabili-
ties, therefore. The difference leads to a (expected) gain to the bookmaker.

(c) Suppose the true probabilities of winning are proportional to the odds, i.e. 
0.33>1.23, 0.4>1.23,0.5>1.23, or 0.268, 0.325, 0.407. If £1 was bet on each horse, 
then the bookie would expect to pay out 0.268 * 3 + 0.325 * 1.5 + 0.407 *  
0.8 = 1.6171, plus one of the £1 stakes i.e., £2.62 in total. He would thus gain 38 
pence on every £3 bet, or about 12.7%.

Problem 2.5
A number of factors might help: statistical ones such as the ratio of exports to debt 
interest, the ratio of GDP to external debt, the public sector deficit, etc., and political 
factors such as the policy stance of the government. More insight could be gained by 
looking at the current interest rate on the debt. A high interest rate suggests investors 
believe there is a greater chance of default, other things equal.

Problem 2.7

(a) Is the more probable, since it encompasses her being active or not active in the 
feminist movement. Many people get this wrong, which shows how one’s precon-
ceptions can mislead. People tend to read part (a) as ‘Judy is a bank clerk, not active 
in the feminist movement’. A simple way of stating this mathematically is 
Pr(B) Ú Pr(B and A) where B indicates a bank clerk and A indicates and activist. It 
has to be true since Pr(A) … 1.

Problem 2.9
The advertiser is a trickster and guesses at random. Every correct guess (P = 0.5) nets a 
fee, every wrong one costs nothing except reimbursing the fee. The trickster would 
thus keep half the money sent in. You should be wary of such advertisements!

Problem 2.11

(a) E(winning) = 0.520 * £1 billion + (1 - 0.520) * - £100 = £853.67

(b) Despite the positive expected value, most would not play because of their aversion 
to risk. Would you? The size of the prize is also not credible – would they actually 
pay up?

Problem 2.13
(a), (b) and (d) are independent, though legend says that rain on St Swithin’s Day 
means rain for the next 40 days, so (d) is arguable according to legend.

Problem 2.15

(a) There are 15 ways where a 4–2 score could be arrived at, of which this is one. Hence 
the probability is 1>15.
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(b) Six of the routes through the tree diagram involve a 2–2 score at some stage, so the 
probability is 6>15.

Problem 2.17
Pr(guessing  all  six) = 6>50 * 5>49 * g1>45 = 1>15 890 700.

Pr(six from 10 guesses) = 10>50 * 9>49 * g * 5>45 = 151 200>11 441 304  000. This 
is exactly 210 times the first answer, so there is no discount for bulk gambling.

Problem 2.19

Prior Likelihood Prior : likelihood Posterior

Fair coin 0.5 0.25 0.125 0.2
Two heads 0.5 1.00 0.500 0.8

0.625

Problem 2.21

(a) Write the initial probability of guilt as Pr(G) = 1>2. The probability the witness 
says the defendant is guilty, given they are guilty, is Pr(W �G) = p. Using Bayes’ 
theorem, the probability of guilt, given the witness’s statement, Pr(G �W) is

Pr(W �G) * Pr(G)

Pr(W �G) * Pr(G) + Pr(W �not-G) * Pr(not-G)
=

p * 0.5
p * 0.5 + (1 - p) * 0.5

= p

(b) Again using Bayes’ theorem, and writing Pr(2W �G) for the probability that both 
witnesses claim the defendant is guilty, etc., we obtain Pr(G �2W) as

Pr(2W �G) * Pr(G)

Pr(2W �G) * Pr(G) + Pr(2W �not-G) * Pr(not-G)

=  
p2 * 0.5

p2 * 0.5 + (1 - p)2 * 0.5
=

p2

p2 + (1 - p)2

(c) If p 6 0.5, then the value in part (b) is less than the value in (a). The agreement of 
the second witness reduces the probability that the defendant is guilty. Intuitively, 
this seems unlikely. The fallacy is that they can lie in many different ways, so Bayes’ 
theorem is not applicable here.

Problem 2.23

(a) Expected Values are 142, 148.75 and 146, respectively. Hence B is chosen.

(b) The minima are 100, 130, 110, so B has the greatest minimum. The maxima are 
180, 170, 200, so C is chosen.

(c) The regret table is

low middle high Max

A 30   5 20 30
B   0   0 30 30
C 20 15   0 20

 so C has the minimax regret figure.

(d) The EV assuming perfect information is 157.75, against an EV of 148.75 for project 
B, so the value of information is 9.
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Problem 2.25
The probability of no common birthday is 365>365 * 364>365 * 363>365 * g*  
341>365 = 0.43. (This is obtained by noting that the probability of the second person 
having a birthday on a different day from the first is 364>365, the probability that the 
third has a birthday different from the first two is 363>365, etc.) Hence the probability 
of at least one birthday in common is 0.57, or greater than one-half. Most people under-
estimate this probability by a large amount. (This result could form the basis of a useful 
source of income at parties.)

Problem 2.27

(a) Choose low confidence. The expected score is 0.6 * 1 + 0.4 * 0 = 0.6. For medium 
confidence the score would be 0.6 * 2 + 0.4 * -2 = 0.4, and for high confidence 
0.6 * 3 + 0.4 * -6 = -0.6.

(b) Let p be the probability desired. We require E(score �medium) = p * 2 +  
(1 - p) * - 2 7 p = E(score � low)—the payoff to medium confidence should be 
greater than low confidence. Hence 4p - 2 7 p 1 p 7 2>3. Similarly, we also 
require p * 2 + (1 - p) * -2 7 p * 3 + (1 - p) * -6 (the payoff to medium 
has to exceed the payoff to high). This implies p 6 4>5. Hence 2>3 6 p 6 4>5.

(c) Given p = 0.85, the expected scores are p = 0.85 (low), 2p - 2(1 - p) = 1.4 
(medium) and 3p - 6(1 - p) = 1.65. Hence the expected loss would by 
1.65 - 1.4 = 0.25 if opting for medium confidence and 1.65 - 0.85 = 0.8 if opt-
ing for low confidence.

Answers to Chapter 3

Problem 3.1
The graph looks like a pyramid, centred on the value of 7, which is the mean of the 
distribution. The probabilities of scores of 2,3, c,12 are (out of 36): 1, 2, 3, 4, 5, 6, 5, 4, 
3, 2, 1, respectively. The probability that the sum is nine or greater is therefore 
10>36(4 + 3 + 2 + 1, divided  by 36). The variance is 5.83.

Problem 3.3
The distribution should be sharply peaked (at or just after the departure time as shown 
in the time table) and should be skewed to the right.

Problem 3.5
Similar to the train departure time, except it is a discrete distribution. The mode would 
be zero accidents, and the probability above one accident per day very low indeed.

Problem 3.7
The probabilities are 0.33, 0.40, 0.20, 0.05, 0.008, 0.000, 0.000 of 0–6 sixes, respec-
tively, using the Binomial formula. For example, 0.33 is calculated as (5>6)6.

Problem 3.9

(a) Pr(0) = 0.915 = 0.21, Pr(1) = 15 * 0.914 * 0.1 = 0.34, hence Pr(0 or 1) = 0.55.

(b) By taking a larger sample or tightening the acceptance criteria, e.g. only accepting 
if the sample is defect free.

(c) Pr(0  or  1) = 0.9715 + 15 * 0.9714 * 0.03 = 0.927 so the probability of sending 
it back is 7.3%.



Answers and Commentary on Problems

474

(d) The assumption of a large batch means that the probability of a defective compo-
nent being selected does not alter significantly as the sample is drawn.

Problem 3.11
The y-axis coordinates are:

0.05 0.13 0.24 0.35 0.40 0.35 0.24 0.13 0.05

This gives the outline of the central part of the Normal distribution.

Problem 3.13

(a) 5%

(b) 30.85%

(c) 93.32%

(d) 91.04%

(e) Zero. (You must have an area for a probability.)

Problem 3.15

z =
12 - 1019

= 0.67, area = 25%; z = -1, area = 15.87%, ZL = - 0.67, ZU = 1.67, 

area = 70.11%, zero again.

Problem 3.17

(a) IQ ∼ N(100,162>10);

(b) z = 1.98, Pr = 2.39%.

(c) 2.39% (same as (b)).

(d) 95.22%. It is much greater than the previous answer. This question refers to the 
distribution of sample means, which is less dispersed than the population.

(e) Since the marginal student has an IQ of 108 (see previous question), nearly all uni-
versity students will have an IQ above 110 and so, to an even greater extent, the 
sample mean will be above 110. Note that the distribution of students’ IQ is not 
Normal but skewed to the right, since it is taken from the upper tail of a Normal 
distribution. The small sample size means we cannot safely use the Central Limit 
Theorem here.

(f) 105, not 100. The expected value of the last nine is 100, so the average is 105.

Problem 3.19

(a) r ∼ B(10, 1>2).

(b) r ∼ N(5, 2.5).

(c) Binomial: Pr = 0.828; Normal: 73.57% (82.9% using the continuity correction).

Problem 3.21

(a) By the Binomial, Pr(no errors) = 0.99100 = 36.6%. By the Poisson, nP = 1, so

Pr(x = 0) =
10e - 1

0!
= 36.8%

(b) Pr(r = 1) = 100 * 0.9999 * 0.01 = 0.370; Pr(r = 2) = 100C2 * 0.9998 * 0.012 =  
0.185. Hence Pr(r … 2) = 0.921. Poisson method: Pr(x = 1) = 11 * e - 1>1. = 0.368; 
Pr(x = 2) = 12 * e - 1>2. = 0.184. Hence Pr(x … 2) = 0.920. Hence the probability 
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of more than two errors is about 8% using either method. Using the Normal 
method, we would have x ∼ N(1,0.99). So, the probability of x 7 2.5 (taking 
account of the continuity correction) is given by z = (2.5 - 1)>10.99 = 1.51, giv-
ing an answer of 6.55%, a significant underestimate of the true value.

Problem 3.23

(a) Normal.

(b) Uniform distribution between zero and one (look up the = RAND() function in 
your software documentation).

(c) mean = 0.5, variance = 5>12 = 0.42 for parent, mean = 0.5, variance = 0.42>5 
for sample means (Normal distribution)

Problem 3.25
Looking at goals scored in the English Premier League 2010–11 (http://en.wikipedia.
org/wiki/2010%E2%80%9311_Premier_League#Scoring) reveals the following fre-
quency table:

Goals Actual Expected

0   25   23.17
1   54   64.81
2   95   90.65
3   93   84.53
4   61   59.11
5   26   33.07
6   19   15.42
7      4      6.16
8      3      2.15
9      0      0.67

Totals 380 379.75

Thus 25 games saw no goals, 54 had one goal, etc. The ‘Expected’ column gives the 
expected frequency based on the Poisson formula (3.26). The expected values reveal a 
close match to the actual numbers.

Answers to Chapter 4

Problem 4.1

(a) It gives the reader some idea of the reliability of an estimate, around the point value 
of the estimate.

(b) The population variance (or its sample estimate) and the sample size.

Problem 4.3
An estimator is the rule used to find the estimate or a parameter. A good estimator does 
not guarantee a good estimate, only that it is correct on average (if the estimator is 
unbiased) and close to the true value (if precise).

http://en.wikipedia.org/wiki/2010%E2%80%9311_Premier_League#Scoring
http://en.wikipedia.org/wiki/2010%E2%80%9311_Premier_League#Scoring
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Problem 4.5
E(w1x1 + w2x2) = w1E(x1) + w2E(x2) = w1m + w2m = m if w1 + w2 = 1.

Problem 4.7
40 { 2.57 * 2102>36 = [35.71, 44.28]. If n = 20, the t distribution should be used, 
giving 40 { 2.861 * 2102>20 = [33.60, 46.40]

Problem 4.9
0.4 { 2.57 * 10.4 * 0.6>50 = [0.22, 0.58]

Problem 4.11
(25 - 22) { 1.96 * 2122>80 + 182>100 = [-1.40, 7.40]

Problem 4.13

(0.67 - 0.62) { 2.57 * A0.67 * 0.33
150

+
0.62 * 0.38

120
= [-0.10, 0.20]

Problem 4.15
30 { 2.131 * 252>16 = 327.34, 32.664 .

Problem 4.17
(45 - 52) { 2.048 * 140.32>12 + 40.32>18 = [-2.15, - 11.85].
40.32 is the pooled variance.

Answers to Chapter 5

Problem 5.1

(a) False. You can alter the sample size. Increasing n will reduce the probability of 
both types of error by shrinking the width of the distributions under H0 and H1.

(b) True.

(c) False. You need to consider the Type II error probability also. Reducing the Type I 
error probability will increase the Type II probability (for a given sample size).

(d) True. The probability of a Type II error falls, therefore increasing power.

(e) False. The significance level is the probability of a Type I error.

(f) False. The confidence level is one – Pr(Type I error) or the probability of accepting 
H0 when true.

Problem 5.3
H0: fair coin, (Pr(H) = 1>2), H1: two heads (Pr(H) = 1). A Type I error is two heads from a 
fair coin, so Pr(Type I error) = (1>2)2 = 1>4; A Type II error is less than two heads from a 
two-headed coin, which is impossible, so Pr(Type II error) = 0.

Problem 5.5

(a) Rejecting a good batch or accepting a bad batch.
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(b) H0: m = 0.01 and H1: m = 0.10 are the hypotheses. Under H0, Pr(zero or one 
defective in sample) = 0.9950 * 0.9949 * 0.01 * 50 = 0.911 = 91.1%, hence an 
8.9% chance of rejecting a good batch. Under H1, Pr(0 or 1) = 0.9050 * 0.9049 *
0.10 * 50 = 0.034, hence a 3.4% chance of accepting a bad batch. One could also 
use the Normal approximation to the Binomial, giving probabilities of 7.78% 
and 4.95%.

(c) Pr(Type I error) = 26%; Pr(Type II error) = 4.2%.

(d) (i) Try to avoid faulty batches, hence increase the risk of rejecting good batches, the 
significance level of the test. (ii) Since there are alternative suppliers, it can again 
increase the risk of rejecting good batches (which upsets its supplier). (iii) Avoid 
accepting bad batches.

Problem 5.7
z = (12 - 10)>(6>Î30) = 1.83, hence Prob-value is 3.36%

Problem 5.9
Power is 1 – Pr(Type II error). The Type II error probability is zero (see the answer to 5.3 
above), so the power of this test is 100%. You will always reject H0 when false.

Problem 5.11
z = (15 - 12)>Î(270>30) = 1 6 1.96, the critical value at the 95% confidence level. 
The hypothesis is not rejected. The rejection region is the area in the right hand tail, 
beyond z = 1.

Problem 5.13
z = (0.45 - 0.5)>Î(0.5 * (1 - 0.5)>35) = 0.59 6 1.96, not significant, so do not 
reject H0.

Problem 5.15
z = (115 - 105)>2212>49 + 232>63 = 2.4 7 1.64, the critical value, hence reject 
with 95% confidence.

Problem 5.17

(a) z =
0.57 - 0.47A0.513 * (1 - 0.513)

180
+ 0.513 * (1 - 0.513)

225

= 2.12.

 This is significant using either a one- or a two-tail test. The pooled variance in this 
case is calculated using pn = 0.513 = 208>405, the overall proportion of people 
who pass. Whether you used a one- or a two-tail test reveals something about your 
prejudices. In the United Kingdom, the proportions passing are the actual ones for 
1992, on the basis of 1.85 million tests altogether. You might have an interesting 
class discussion about what these statistics prove. Insurance statistics, on the other 
hand, suggest women are safer drivers.

(b) You should get the same t statistic. The proportion of men in the ‘Pass’ group is 
49.5% and in the ‘Fail’ group is 39.1%. The overall proportion of men is 44.4%. 
Putting these values into the same formula as in part (a) gives the same t value. The 
same result is obtained if you use the proportion of women in each group.

(c) This result is inevitable. This can be demonstrated algebraically, though it is 
lengthy and not included here.
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Problem 5.19

(a) t = -52102>20 = -2.24 6 -2.093, the critical value, hence reject H0.

(b) The parent distribution is Normal.

Problem 5.21

S2 =
(12 - 1) * 50 + (15 - 1) * 30

12 + 15 - 2
= 38.8, and t =

150 - 130A38.8
12

+
38.8
15

= 8.29,

so H0 is rejected. The critical value is t* = 2.060 (95% confidence, 25 degrees of 
freedom).

Problem 5.23

(a) For the ‘Before’ sample, the mean is 55.5 and the variance 12.3. For the ‘After’ sam-
ple, the mean is 57.5 with variance 14.1. Hence the pooled variance is 13.16 and 
the test statistic is t20 = 1.18.

(b) Measuring the differences between the before and after figures, the mean is 1.8 
and the variance 13.8. This gives a test statistic of t10 = 1.63. Neither is signifi-
cant at the 5% level, though the latter is closer. Note that only one worker 
performs worse, but this one does substantially worse, perhaps because of 
other factors.

Problem 5.25

(a) It would be important to check all the predictions of the astrologer. Too often, cor-
rect predictions are highlighted ex-post and incorrect ones ignored.

(b) Like astrology, a fair test is important, in which it is possible to pass or fail, with 
known probabilities. Then performance can be judged.

(c) Samples of both taken-over companies and independent companies should 
be compared, with as little difference in other respects between samples  
as possible.

Problem 5.27

(a) The sample means should be Normally distributed so approximately 5% of the 
z scores should lie beyond {1.96.

(b) Your outcome should be similar to that described in part (a). You might get a 
slightly different result due the vagaries of random sampling.

(c) Your graph should look approximately like a Normal distribution.

Answers to Chapter 6

Problem 6.1

The 95% c.i. for the variance is 
39 * 202

59.34
… s2 …

39 * 202

24.43
 in which 24.43 and 59.34 

are the limits cutting off 2.5% in each tail of the x2 distribution with 40 degrees of free-
dom (close to the correct 39), so the c.i. for s is [16.21, 25.29].
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Problem 6.3
Observed values are 833 and 942 with expected values of 887.5 in each case. Hence we 
obtain x2 = 6.69 7 3.84, the 95% critical value, and there is an apparent difference 
between quarters I/III and II/IV. (Note that the previous edition of this book used data 
from 2006, which found a different result.)

Problem 6.5
Using the data as presented, with expected values of 565 (the average of the four num-
bers), yields x2(3) = 1.33, not significant. However, with the additional information, 
adding the dissatisfied customers (24, 42, 20, 54) and constructing a contingency table 
yields x2(3) = 22.94, highly significant. The differences between the small numbers of 
dissatisfied customers adds most to the test statistic. The former result should be treated 
with suspicion since it is fairly obvious that there would be small numbers of dissatis-
fied customers.

Problem 6.7
x2(4) = 8.12 which is not significant at the 5% significance level. There appears no 
relationship between size and profitability.

Problem 6.9

(a) The correct observed and expected values are

47.0 (54.9) 72.0 (64.1)
86.0 (76.6) 80.0 (89.4)

4.0 (5.5) 8.0 (6.5)

 and this yields a x2 value of 5.05 against a critical value of 5.99 (5% significance 
level, 2 degrees of freedom).

(b) Omitting the non-responses leads to a 2 * 2 contingency table with a test statistic 
of 4.22, against a critical value of 3.84, yielding a significant result. It is debatable 
whether it is better to omit the non-responses. The real problem here is that the test 
statistic is close to the critical value, so it is easy for our decision to change with 
small changes to the data.

Problem 6.11
F = 55>48 = 1.15 6 2.76, the 1% critical value for 24 and 29 degrees of freedom. 
There is no significant difference, therefore.

Problem 6.13

(a) Between Sum of Squares = 335.8, Within Sum of Squares = 2088, Total Sum of 
Squares = 2424. F = (335.8>3)>(2088>21) = 1.126 6 3.07, the critical value for 
3, 21 degrees of freedom. There appears to be no significant difference between 
classes.

(b) A significant result would indicate some difference between the classes, but 
this could be because of any number of factors which have not been controlled 
for, e.g. different teachers, different innate ability, different gender ratios and 
so on.
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Answers to Chapter 7

Problem 7.1

(a) 
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(b) We would expect similar slopes to those using Todaro’s data, but the graphs for 
growth and the income ratio do not look promising. It is difficult to discern any 
relationship between them. The GNP graph suggests a negative relationship.

(c) There seems to exist a psychological propensity to overestimate the degree of cor-
relation when viewing a graph. See (d) below to see if you did so.

(d) r = -0.73,-0.25,-0.22 for GNP, growth and the income ratio, respectively. Note 
that r 6 0 for the income ratio, in contrast with the result in the text.

(e) t = -3.7,-0.89,-0.78, so only the first is significant. The critical value is 1.78 (for 
a one-tail test) or 2.18 if using a two-tail test.

Problem 7.3

(a) Very high and positive. This is because (i) income is a major determinant of peo-
ple’s consumption, (ii) measuring the variables at national level means a great deal 
of smoothing of individual variation and (iii) the effects of inflation have not been 
corrected for.

(b) A medium degree of negative correlation (bigger countries can provide a greater 
variety of goods and services for themselves so need to import less).

(c) Theoretically negative, but empirically the association tends to be weak, especially 
using the real interest rate.

 There might be lags in (a) and (c). (b) would best be estimated in cross section.
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Problem 7.5
Rank correlations are:

birth rate

GNP -0.77
Growth -0.27
Inc 
ratio

-0.37

These are similar to the ordinary r values. Only, the first is significant at 5%.

Problem 7.7

(a) The regression results for the three equations are:

GNP growth income ratio

a 47.18 42.88 45.46
b -0.006 -1.77 -1.40

R2 0.53 0.061 0.047

These results are quite different from what was found before. GNP appears the best, not 
worst, explanatory variable, using the R2 value as a guide.

(b)–(c)

GNP growth income ratio

Se 7.83 11.11 11.20
Sb 0.0017 1.99 1.82
 t -3.71 -0.89 -0.77
 F 13.74 0.78 0.59

Only in the case of GNP is the t ratio significant. Same is true for the F statistic.

(d) You should be starting to have serious doubts. Two samples produce quite different 
results. We should think more carefully about how to model the birth rate and 
about what data to apply it to.

(e) Using all 26 observations gives:

GNP growth IR

a 42.40 43.06 36.76
b -0.01 -2.77 -0.20
R 0.31 0.28 0.002
F 11.02 9.52 0.04
sb 0.00 0.90 1.01
t -3.32 -3.08 -0.20

The results seem quite sensitive to the data employed; they are not very robust. This 
suggests something is missing from our model(s). Perhaps we need to take account of 
each country’s cultural context or geographical location, or something.

Problem 7.9

(a) 27.91 (34.71)

(b) 37.58 (32.61)

(c) 35.67 (33.76)
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(predictions in brackets obtained from Todaro’s data). Again, different samples, differ-
ent results, which does not inspire confidence. The predictions from this set of data are 
more diverse than from those using Todaro’s data.

Problem 7.11
A good source of data for this project is the World Bank (http://data.worldbank.org/
topic). From this, the following relationship between the birth rate and GDP per capita 
was found (data for 182 countries, for 2009):
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with regression

BR = 25.6 - 0.00027 GDPpc + e

t(31.5) (-7.78)

R2 = 0.25.

Although demonstrating a negative relationship and highly significant, it is evident 
from the graph that the wrong functional form has been used. Taking logs of both var-
iables, we obtain:

2.0

2.5

3.0
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4.0 6.0 8.0 10.0 12.0

ln GDP pc

ln BR

with regression

ln BR = 5.05 - 0.25 ln GDPpc + e

t(43.2) (-18.0)

R2 = 0.64.

This seems a better characterisation of the data. Analyses with the other explanatory 
variables should be done in similar manner and might yield better results, perhaps 
not.

http://data.worldbank.org/topic
http://data.worldbank.org/topic
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Answers to Chapter 8

Problem 8.1

(a) B = 46.77 - 0.0064 GNP - 0.55 GROWTH + 0.34 IR

 s.e.     (0.002)    (1.66)      (1.54)

 R2 = 0.54, F = 3.91

(i) Calculating elasticities: GNP: - 0.0064 * 17050>551 = -0.19; growth: 
-0.55 * 27.9>551 = -0.03; IR -0.34 * 61.1>551 = 0.04. All seem quite 
small, although the first suggests a 10% rise in GNP should lower the birth rate 
by 2%.

(ii) Only GNP appears significant. Note that the R2 value is only just greater than 
in the simple regression on GNP.

(iii) The F statistic is just significant at the 5% level (3.71 is the critical value).

(b) It looks like the growth and income ratio variables should be dropped.

(c) We need to compare the regression in part (a) above with the restricted regres-
sion B = b0 + b1GNP (i.e. the coefficients on GROWTH and IR are both equal to 
zero). From the former, we obtain error sum of squares of ESSU = 726.96; from 
the latter (equation estimated as part of problem 7.7), ESSR = 736.17. The 
restricted model seems to fit almost as well. To check this, we conduct an F test: 

F =
(736.17 - 726.96)>2

726.96>10
= 0.063, less than the critical value (F*(2, 10) = 4.10) so 

the variables can be omitted.

(d) B = 43.61 - 0.005 GNP - 2.026 GROWTH + 0.69  IR

                             (0.0017)           (0.845)                          (0.81)

 R2 = 0.48, F = 6.64, n = 26.

 The GNP and IR coefficients are of similar orders of magnitude and significance 
levels. The GROWTH coefficient changes markedly and is now significant. The 
F–statistic for exclusion is 3.365, against a critical value of 3.44 at 5%, suggest-
ing both could be excluded, in spite of the significant t-ratio on the growth 
variable.

(e) Not much progress has been made. More planning of the research is needed.

(f) Women’s education, religion and health expenditures are possibilities.

Problem 8.3
28.29 from 14 countries; 27.93 from all 26 countries.

Problem 8.5

(a) A set of dummy variables, one for each class.

(b) Difficult, because crime is so heterogeneous. One could use the number of recorded 
offences, but this would equate a murder with bicycle theft. It would be better to 
model the different types of crime separately.

(c) A proxy variable could be constructed, using such factors as the length of time 
for which the bank governor is appointed, whether appointed by the govern-
ment, and so on. This would be somewhat arbitrary, but possibly better than 
nothing.



Answers and Commentary on Problems

484

Problem 8.7

(a) Time-series data, since the main interest is in movements of the exchange rate in 
response to changes in the money supply. The relative money stock movements in 
the two countries might be needed.

(b) Cross-section (cross-country) data would be affected by enormous cultural and 
social differences, which would be hard to measure. Regional (within country) data 
might not yield many observations and might simply vary randomly. Time series 
data might be better, but it would still be difficult to measure the gradual change in 
cultural and social influences. Best would be cross-section data on couples (both 
divorced and still married).

(c) Cross-section data would be of more interest. There would be many observations, 
with substantial variation across hospitals. This rich detail would not be so easily 
observable in time-series data.

Problem 8.9
Suitable models would be:

(a) C = b0 + b1P + b2F + b3L + b4W where C: total costs, P: passenger miles flown; F: 
freight miles flown; L: % of long haul flights; W: wage rates faced by the firm. This 
would be estimated using cross-section data, each airline constituting an observa-
tion. P2 and F2 terms could be added, to allow the cost function to be non-linear. 
Alternatively, it could be estimated in logs to get elasticity estimates. One would 
expect b1, b2, b4 7 0, b3 6 0.

(b) IM = b0 + b1 GNP + b2 FEMED + b3 HLTHEXP where IM: infant mortality 
(deaths per thousand births); FEMED: a measure of female education (e.g. the 
literacy rate); HLTHEXP: health expenditure (ideally on women, as % of GNP). 
One would expect b1, b2, b3 6 0. This would be a cross-country study. There is 
likely to be a ‘threshold’ effect of GNP, so a non-linear (e.g. log) form should be 
estimated.

(c) BP = b0 + b1 ∆GNP + b2 R where BP: profits; ∆GNP: growth; R: the interest rate. 
This would be estimated on time-series data. BP and growth should be measured 
in real terms, but the nominal interest rate might be appropriate. Bank profits 
depend upon the spread of interest rates, which tends to be greater when the rate 
is higher.

Problem 8.11

(a) Higher U reduces the demand for imports; higher OECD income raises the demand 
for UK exports; higher materials prices (the UK imports materials) lowers demand, 
but the effect on expenditure (and hence the BOP) depends upon the elasticity. 
Here, higher P leads to a greater BoP deficit, implying inelastic demand; higher C 
(lower competitiveness) worsens the BoP.

(b) (iii) higher material prices.

(c) U: linear, Y: non-linear

(d) Since B is sometimes negative, a log transformation cannot be performed. 
This means elasticity estimates cannot be obtained directly. Since B is some-
times positive, sometimes negative, an elasticity estimate would be hard to 
interpret.

(e) 1.80, a surplus.
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Problem 8.13
Suitable explanatory variables might be: personal disposable income, company profits 
(because of company cars), car price index (ideally adjusted for quality), interest rates, 
petrol prices and lagged sales. Sales might follow a cycle if, for example, firms tend to 
replace their cars after three years.

Answers to Chapter 9

Problem 9.1
Should you use: GNP or GDP; gross or net national product; measured at factor cost or 
market prices; coverage (United Kingdom, Great Britain, England and Wales); and cur-
rent or constant prices are some of the issues.

Problem 9.3
The following are measures of UK and US GDP, both at year 2000 prices. The UK figures 
are in £bn, the US figures are in $bn. Your own figures may be slightly different but 
should be highly correlated with these numbers.

1995 1996 1997 1998 1999 2000 2001 2002 2003

UK 821.4 843.6 875.0 897.7 929.7 961.9 979.2 997.5 1 023.2
US 8 031.7 8 328.9 8 703.5 9 066.9 9 470.3 9 817.0 9 890.7 10 074.8 10 381.3

Problem 9.5
n = 1.962 * 400>22 = 385

Answers to Chapter 10

Problem 10.1

(a)

Year 2005 2006 2007 2008 2009 2010

Exports 100.0 114.5 113.0 127.7 119.5 133.2
Imports 100.0 112.3 111.5 123.6 112.7 127.8

(b) No. Using the indices, information about the levels of imports and exports is lost.

Problem 10.3

(a)–(c)

Year E PL PP QL QP

1999 100 100 100 100 100
2000 104.28 101.99 102.03 102.20 102.24
2001 106.83 103.07 104.04 102.68 103.64
2002 98.87 99.01 98.76 100.10 99.86
2003 99.53 96.14 96.48 103.16 103.52
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Problem 10.5

(a) 

Year Coal Petroleum Electricity Gas

1999 100 100 100 100
2000 101.01 131.42 95.75 110.99
2001 109.49 141.14 86.53 149.45
2002 99.40 143.10 82.34 142.86
2003 99.22 133.42 78.50 147.80
Shares 1.3% 10.0% 71.6% 17.2%

(b) Answer as in Problem 10.3(a).

Problem 10.7
The chain index is 100, 110, 115, 123.1, 127.7, 136.9, 139.2, using 2000 as the common 
year. Using one of the other years to chain yields a slightly different index. There is no 
definitive right answer because series 1 and 2 are likely to based on slightly different 
baskets of goods, rising in price at different rates. Hence the date at which they are 
spliced will make a slight difference to the chained index.

Problem 10.9
Expenditure on energy in 2007 was £9741.04m. The Laspeyres price index increased 
from 95.32 to 126.17 between 2007 and 2008, an increase of 32.4%. Hence compensa-
tion of 32.4% of £9741.04 is needed, amounting to £3156.10m. The Paasche index rose 
by 31.8% over that period, implying compensation of 31.8% of £9741.04m, i.e. 
£3097.65m. This is about £58m cheaper than using the Laspeyres index.

Problem 10.11
The index number series are as follows:

Cash 
expenditure

Real 
expenditure

Volume of 
expenditure

Real 
expenditure 

per capita

Volume of 
expenditure 

per capita

Needs 
index

Spending 
deflated 
by need.

(a) (b) (c) (d) (e) (f) (g)

1987 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1988 109.8 102.6   99.4 102.4   99.2 100.2   99.2
1989 120.5 105.7 101.9 105.1 101.3 100.5 101.4
1990 132.7 107.5 104.5 106.6 103.6 100.8 103.6
1991 150.4 113.6 108.8 111.9 107.1 101.6 107.1

(a) 109.8 = 23 601>21 495 * 100; 120.5 = 25 906>21 495 * 100; and so on.

(b) This series is obtained by dividing column 1 by column 2 (and setting 1987 as the 
reference year). Clearly, much of the increase in column 1 is because of inflation.

(c) This series is column 1 divided by column 3. Since the NHS price index rose faster than 
the GDP deflator, the volume of expenditure rises more slowly than the real figure.

(d) Per capita figures are obtained by dividing by the population in column 4.

(e) A Needs index can be calculated as working population + 2 * non-working popu-
lation, and then set to 100 in 1987. Once the needs index is calculated, it can be 
used to deflate the volume expenditure, giving the final column above. This shows 
little difference to the per capita series.

(f) Needs index could be improved by finding the true cost of treating people of dif-
ferent ages.
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Problem 10.13

(a) 1702.20.  (b) Yes, 102.20.

Problem 10.15
18.3%. There can be multiple solutions to the Internal Rate of Return calculation, 
which can be problematic and students should be aware of this. It should not be a prob-
lem if there is a single initial outlay followed by a stream of returns – in this case a 
unique solution occurs.

Problem 10.17

(a) The x and y co-ordinate values for the Lorenz curve are:

Households 8.9 16.0 22.3 25.8 29.2 35.0 41.4 58.9 71.7 87.2 95.1 98.5 99.5 100.0

Income 0.2 0.9 2.0 2.8 3.8 6.0 9.1 20.8 32.8 53.5 70.4 83.9 92.4 100.0

and from this we can calculate:

Area A = 0.227, B = 0.273, Gini = 0.546.

(b) The elderly have had a lifetime to accumulate wealth, whereas the young have not. 
This does not apply to income. Also, via inheritance, some families can build up 
wealth over time, increasing the disparity.

Problem 10.19

(a) The Gini coefficients are 45.2%, 33.2%, 33.2% and 36.0%, respectively.

(b) These differ from the values given in Table 10.24 of the text, substantially so in the 
case of original and gross. The figures based on quintiles are all lower than the fig-
ures in Table 10.24, as expected, although the bias is large in some cases.

Problem 10.21
79.3%.

Answers to Chapter 11

Problem 11.1

(a) 
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There is an obvious increase throughout each year, followed by a fall in the subsequent 
Q1. High spending in Q4 is likely a Christmas effect, followed by a lack of spending 
afterwards, in Q1.
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(b) and (c) The calculations are:

Non-durable 
expenditure

4-qtr 
total

Centred 
4-qtr total

Moving 
average

 
Ratio

Seasonal 
factor

Adjusted 
series

2000 Q1 152 684 629 412 626 074 156 519 0.976 0.967 157 967
2000 Q2 155 977 633 662 631 537 157 884 0.988 0.990 157 607
2000 Q3 160 564 637 303 635 483 158 871 1.011 1.008 159 291
2000 Q4 164 437 641 395 639 349 159 837 1.029 1.037 158 576
2001 Q1 156 325 646 482 643 939 160 985 0.971 0.967 161 733
2001 Q2 160 069 653 326 649 904 162 476 0.985 0.990 161 741
2001 Q3 165 651 658 734 656 030 164 008 1.010 1.008 164 337
2001 Q4 171 281 665 793 662 264 165 566 1.035 1.037 165 176
2002 Q1 161 733 671 366 668 580 167 145 0.968 0.967 167 329
2002 Q2 167 128 676 833 674 100 168 525 0.992 0.990 168 874
2002 Q3 171 224 681 003 678 918 169 730 1.009 1.008 169 866
2002 Q4 176 748 685 915 683 459 170 865 1.034 1.037 170 448
2003 Q1 165 903 691 139 688 527 172 132 0.964 0.967 171 643
2003 Q2 172 040 697 160 694 150 173 537 0.991 0.990 173 837
2003 Q3 176 448 703 170 700 165 175 041 1.008 1.008 175 049
2003 Q4 182 769 709 438 706 304 176 576 1.035 1.037 176 254
2004 Q1 171 913 715 470 712 454 178 114 0.965 0.967 177 861
2004 Q2 178 308 721 434 718 452 179 613 0.993 0.990 180 171
2004 Q3 182 480 724 695 723 065 180 766 1.009 1.008 181 033
2004 Q4 188 733 727 110 725 903 181 476 1.040 1.037 182 006
2005 Q1 175 174 728 975 728 043 182 011 0.962 0.967 181 235
2005 Q2 180 723 732 005 730 490 182 623 0.990 0.990 182 611
2005 Q3 184 345 734 252 733 129 183 282 1.006 1.008 182 883
2005 Q4 191 763 737 314 735 783 183 946 1.042 1.037 184 928
2006 Q1 177 421 740 739 739 027 184 757 0.960 0.967 183 559
2006 Q2 183 785 745 737 743 238 185 810 0.989 0.990 185 705
2006 Q3 187 770 751 692 748 715 187 179 1.003 1.008 186 281
2006 Q4 196 761 756 862 754 277 188 569 1.043 1.037 189 748

(d) From the table above, the seasonal factor for Q4 is 1.037, so Q4 is approximately 
3.7% above the rest of the year.

(e) See table above, final column.

(f) Christmas 2000 was a poor one (SA figure declines from the previous quarter) 
whereas 2006 proved a good year.

Problem 11.3

50
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2004
2005
2006

70

90

Car production

110

130
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(a) There are obvious troughs in production in August (summer holidays) and 
December (Christmas break).

(b) and (c) The calculations are:

Production 12-month 
total

Centred 
12-month total

Moving 
average

Ratio Seasonal 
factor

Adjusted 
series

Jan-04 141.3 1667.7 1670.6 139.2 1.015 0.984 143.6
Feb-04 141.1 1659.5 1663.6 138.6 1.018 1.039 135.8
Mar-04 163.0 1661.3 1660.4 138.4 1.178 1.196 136.3
Apr-04 129.6 1643.0 1652.2 137.7 0.941 0.981 132.1
May-04 143.1 1649.4 1646.2 137.2 1.043 1.037 138.0
Jun-04 155.5 1646.7 1648.1 137.3 1.132 1.122 138.5
Jul-04 140.5 1641.4 1644.1 137.0 1.026 0.996 141.1
Aug-04 83.2 1643.8 1642.6 136.9 0.608 0.652 127.5
Sep-04 155.3 1634.1 1639.0 136.6 1.137 1.105 140.5
Oct-04 135.1 1644.3 1639.2 136.6 0.989 0.978 138.1
Nov-04 149.3 1633.2 1638.8 136.6 1.093 1.115 133.9
Dec-04 109.7 1622.0 1627.6 135.6 0.809 0.757 144.9
Jan-05 136.0 1611.7 1616.9 134.7 1.009 0.984 138.2
Feb-05 143.5 1625.6 1618.7 134.9 1.064 1.039 138.2
Mar-05 153.3 1620.2 1622.9 135.2 1.134 1.196 128.2
Apr-05 139.8 1609.9 1615.1 134.6 1.039 0.981 142.5
May-05 132.0 1610.3 1610.1 134.2 0.984 1.037 127.3
Jun-05 144.3 1595.9 1603.1 133.6 1.080 1.122 128.6
Jul-05 130.2 1579.0 1587.5 132.3 0.984 0.996 130.7
Aug-05 97.1 1566.7 1572.9 131.1 0.741 0.652 148.8
Sep-05 149.9 1572.4 1569.6 130.8 1.146 1.105 135.6
Oct-05 124.8 1551.2 1561.8 130.2 0.959 0.978 127.6
Nov-05 149.7 1551.5 1551.4 129.3 1.158 1.115 134.2
Dec-05 95.3 1546.5 1549.0 129.1 0.738 0.757 125.9
Jan-06 119.1 1534.1 1540.3 128.4 0.928 0.984 121.0
Feb-06 131.2 1510.0 1522.1 126.8 1.034 1.039 126.3
Mar-06 159.0 1482.4 1496.2 124.7 1.275 1.196 133.0
Apr-06 118.6 1473.7 1478.1 123.2 0.963 0.981 120.9
May-06 132.3 1452.6 1463.2 121.9 1.085 1.037 127.5
Jun-06 139.3 1442.1 1447.4 120.6 1.155 1.122 124.1
Jul-06 117.8 1447.2 1444.7 120.4 0.979 0.996 118.3
Aug-06 73.0 1431.6 1439.4 120.0 0.609 0.652 111.9
Sep-06 122.3 1410.6 1421.1 118.4 1.033 1.105 110.7
Oct-06 116.1 1412.4 1411.5 117.6 0.987 0.978 118.7
Nov-06 128.6 1407.5 1410.0 117.5 1.095 1.115 115.3
Dec-06 84.8 1405.7 1406.6 117.2 0.723 0.757 112.0

(d) 0.652>0.996 = 0.655, about a 35% decline.

(e) See table above, final column, for the adjusted series. This is much smoother than 
the original series.

(f) It is obviously a monthly seasonal pattern, rather than the quarterly one for con-
sumer expenditure. Consumer expenditure shows no decline in summer, unlike 
car production, and the Christmas effect is negative for cars, but positive for con-
sumer expenditures.
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Problem 11.5

(a) The regression equation is C = 153 420.6 + 1603.011t - 11.206t2. (The t2 term is 
not significant in the regression, so a simpler regression using t only might suffice 
instead.). Fitted values (abridged) are:

2000q1 155 012.5
2000q2 156 581.8
2000q3 158 128.8
2000q4 159 653.4
2001q1 161 155.5
f f

2005q4 185 438.2
2006q1 186 492.1
2006q2 187 523.6
2006q3 188 532.7
2006q4 189 519.4

(b) Seasonal factors are:

Q1 Q2 Q3 Q4
0.967 0.990 1.008 1.036

(c) For 2007 Q4 (t = 32) we have: C = (153 420.6 + 1603.011 * 32 - 11.206 * 322) *  
1.036 = 200 154.65. (The actual value in that quarter was 202 017.)

(d) For the additive model we use the same regression equation, but subtract the pre-
dicted values from the actual ones. Averaging by quarter then gives the following 
seasonal factors:

Q1 Q2 Q3 Q4
-5769.78 -1802.08 1270.17 6301.69

The predicted value from the regression line for 2007 Q4 is 193 242.0 and adding 
6301.69 to this gives 199 543.69. The actual value is 202 017, so there is an error  
of -1.2%.

Problem 11.7

(a) The regression equation is:

Coef. Std. Err. T-ratio

trend 1 528.55 129.89 11.77
trendsq -11.28 4.34 -2.60
Q2 4 044.27 716.40 5.65
Q3 7 193.25 718.40 10.01
Q4 12 301.66 721.91 17.04
cons 148 637.1 903.60 164.49

 The coefficients on t and t2 are similar to the previous values. This is because the 
additional dummy variables are not correlated with the trend or its square (the cor-
relation coefficient is less than 0.05).
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(b) The t ratios are bigger in this equation. The seasonal dummies take care of seasonal 
effects and allows more precise estimates of the coefficients on trend and trend 
squared.

 The t ratios in the equation without quarterly dummies are 3.39 and -0.71, com-
pared with the values 11.77 and -2.60 when the quarterly dummies are included.

(c) The seasonal factors from 11.5(d) above are:

Q1 Q2 Q3 Q4

-5769.78 -1802.08 1270.17 6301.69

 If we adjust these so that Q1 is set as zero (as is effectively done in the regression, by 
adding 5769.78) we get:

Q1 Q2 Q3 Q4

-5 769.78 -1 802.08 1 270.17 6 301.69
0.00 3 967.70 7 039.95 12 071.47

 These values are very close to the coefficients in the regression equation in part (a) 
above.
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Index

absolute dispersion 42
actual values, expected values comparison with 

234–8
addition rule 100–2
additive model 423
adjusted R2 289
AIDS 22
alternative hypothesis 196–7, 200, 202
analysis of variance (ANOVA) 245, 248–54

one-way 248
analysis of variance table 252–4
area graph 55
arithmetic mean (average) 27–9, 35, 60
autocorrelation 284–5, 327–30

checking 328–30
consequences of 330
negative 329
positive 328

average (arithmetic mean) 27–9, 35, 60
average growth rate 58–9, 61
axiomatic approach 96

bar charts 10–14
base year 378
base-year weights 378–81
Bayes’ theorem 110–12
Bayesian statistics 96, 110
between sum of squares 250, 251, 445
bias 166–7

and precision, trade-off between 169–70
Bill Gates effect 169–70
Bill Goffe’s Resources for Economists 354
Binomial distribution 129–30, 131–7, 444

mean and variance of 135–7
and Normal distribution, relationship  

between 151–2
parameters 132–4

birth rate in developing countries 265–93
correlation 267–76
inference in regression model 283–93
regression analysis 276–82

bivariate data, graphing 63–5
box and whiskers diagram 47–8
branded goods 208

calendar effects 433
cash terms 390
causality, correlation and 271–2
Central Limit Theorem 149–50
chain index 392–3
‘chart junk’ 56
Chebyshev’s inequality 44–5, 443
checking data 354–5
chi-squared (x2) distribution 231–45

actual values vs. expected values 234–8
constructing expected values 242–3
contingency tables 241
tables of 261, 453–4
test statistic, calculation of 243–5
variance, estimation of 232–4

Chow test 325–7, 448
class intervals 17
class widths 17, 18–20
classical statistics 110
cluster sampling 358, 362
coefficient of determination (R2)  

281–2, 332, 446
adjusted 289
testing significance of 287–8

coefficient of rank correlation 272–6
coefficient of skewness 45–6, 443
coefficient of variation 42, 442
cohabitation 244–5
column percentages 13
combinations 108–9
combinatorial formula 108, 444
common logarithms 92
complement, of outcome 98
composite hypothesis 202
compound event 100
compound growth 59
compound hypotheses 332–4

492
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decision analysis 112–16
decision criteria 113–14
decision rule 197–8
deflating, data series 70, 390
degree of belief 96
degrees of freedom 182, 185, 231
demand estimation 310–30
dependent samples 215, 216–18
dependent variable 248, 277
depreciation rate 61
descriptive statistics 1–2, 7–87

box and whiskers diagram 47–8
cross-section data 9, 16–26
data transformations 13, 67–70
E and V operators 90
graphical techniques 1–2, 10–26
graphing bivariate data 63–5
logarithm 41–2, 51–2, 69, 91–2
numerical techniques 2, 27–47
overview 8–9
sigma (π) notation 88–90
time-series data 9–10, 48–63, 308–9

design factor 364
differences

of two means 177–80, 184–5, 208–9,  
212–13

of two proportions 180–1, 209–10
differencing 69
discount factor 395
discounting 394–6
dispersion, measure of 27, 35–45
division

by constant 69
using logarithms 91

double log transformation 296
dummy variables 335–7
Durbin–Watson (DW) statistic 329, 464

for testing autocorrelation 448

E operator 30, 90, 141
education, and employment 10–14
effect size 205
efficiency 168–9
elasticities 69, 294
electronic data sources 70–2, 297–8, 350
employment, education and 10–14
endogenous variable 277
equiproportionate sampling 359–60
error sum of squares (ESS) 281, 446

compound interest 61
concentration ratios 399, 407–8
conditional probability 104, 106–7
confidence interval 5, 171–81

calculating required sample size 365–7
for difference of two means 177–80, 184–5
hypothesis tests and 214
for observation 448
for prediction 289, 290, 448
for sample mean 183–4
for sample proportion 175–6

confidence level 174, 199
constant prices 390
Consumer Price Index (CPI) 351–2, 375, 392–3
contingency tables 241
continuity correction 152
control group 217
correlation 264, 267–76

and causality 271–2
coefficient of rank correlation 272–6
negative 267, 268
positive 267

correlation coefficient 267–75, 276, 446
corruption 319
critical value 198
cross-section data 9, 16–26

frequency tables 16–18
histograms 18–21
relative and cumulative frequency distributions 

21–6
cross-tabulation 10
cumulative frequency distribution 21–6
current prices 390
current-year weights 382–3
cycle 423, 427

data collection 350–5
electronic data sources 70–2, 297–8, 350
primary data 350, 355
record of data sources 352–4
secondary data sources 350, 351–5

data mining 72
data smoothing 424

moving average 424–6
data transformations 13, 67–70

multiple regression 311–16
non-linear 294–6, 325

data visualization 70–2, 297–8
deciles 33
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F distribution 231, 245–7
ANOVA 248–54
multiple regression 318
tables of 261–2, 455–62
testing equality of two variances 245–7
testing the significance of R2 287–8

Family Resources Survey 399
finite population correction (fpc) 357, 445, 447
five-firm concentration ratio 407
forecasting see prediction
frequency 10, 17
frequency density 19
frequency polygon 20
frequency tables 16–18
frequentist view 95–6

Gapminder 70–2, 297–8
Gaussian distribution see Normal distribution
general to specific approach 331
geometric mean 60, 443
Gini coefficient 399, 402–7
goodness of fit see coefficient of  

determination (R2)
Google 72, 354
grand average 250
graphical methods 1–2, 10–26

bar charts 10–14
box and whiskers diagram 47–8
histograms 18–21
pie charts 15–16
scatter diagrams 63–5

grouping 68–9
growth factor 59, 60
growth rate 58–61, 443

heteroscedasticity 50
histograms 18–21
homoscedasticity 50
Human Development Index (HDI) 384
hypothesis testing 195–229

chi-squared (x2) distribution see chi-squared (x2) 
distribution

compound hypotheses 332–4
concept of 196–203
and confidence intervals 214
correlation 269
independent and dependent samples 215–18
inference in regression model 286–7
issues with 218–19

error term/residual
estimated variance 285, 446
regression 277, 285

error variance 250
estimated variance of the error term 285
estimation 164–92

confidence intervals 171–81
derivations of sampling distributions  

193–4
interval 165–6
large samples 170–3
multiple regression 316–18
point 165–6
rules and criteria for finding 166–70
small samples 181–6

estimators 166–9
events 98–9

compound 100
exhaustive 98
independent 104
mutually exclusive 100

Excel
analysis of variance table 252–4
correlation coefficient 274
descriptive statistics 41
downloading spreadsheet 353
moving average 431
producing charts using 14
record of data sources 353
regression analysis using 289, 308
standard Normal distribution 143

exhaustive event 98
exogenous variable 277
expected value

comparison with actual values  
234–8

constructing 242–3
maximising 113–14
mean as 30
of perfect information 115–16

Expenditure and Food Survey (EFS) see Living 
Costs and Food Survey (LCF)

expenditure index 389, 443, 447
price index/quantity index and 389–91

expenditures, as weights 385–7
experiment, probability 97
explained variable 277
explanatory variable 277
exponential transformation 296
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intercept 278, 446
interpretation of 280
variance of 446

interest rate, real 397–8
internal rate of return (IRR) 396–7
intersection, of sets 101
interval estimates 165–6
interviewing techniques 355–6, 371
investment, corruption and 319
investment expenditures 9–10, 48–63

joint probabilities 107

large samples, estimation with 170–3
Laspeyres price index 378–81, 443, 447

based on expenditure shares 385–6
chain index 392–3
expenditure share form of 419
Paasche index vs. 383, 386–7

Laspeyres quantity index 387–8, 443, 447
least squares method 279, 283
likelihoods 111
Living Costs and Food Survey (LCF) 370–1
location, measure of 27–35
logarithm 69, 91–2

investment expenditures 51–2
multiple regression 320–2
standard deviation of 43–4

Lorenz curve 399–402

maintained hypothesis see null hypothesis
marginal probabilities 107
matched samples see paired samples
maximax criterion 114–15
maximin criterion 114–15
Mayor of London’s Datastore 72
mean

arithmetic 27–9, 35, 60
of Binomial distribution 135–7
estimating difference between 177–80, 184–5, 

208–9, 212–13
as expected value 30
geometric 60, 443
population 30, 442
sample 30, 145–51, 442
of time series 58–9

mean squared error 168–9
measurement error 337–8
measurement problems 294

multiple regression 318
Prob-value 203–4, 288
proportion testing 207–8
validity of test procedures 213
result of 252
significance, effect size and power 204–7
with small samples 211–13
testing difference of two means 208–9,  

212–13
testing difference of two proportions 209–10

IMF World Economic Database 354
imports into United Kingdom 310–30

data 311
data transformations 311–16
errors, analysis of 327–30
estimation 316–18
forecasts, testing accuracy of 325–7
satisfactory results 319–20
significance of regression as whole 318–19
theoretical issues 310–11

independence
multiplication rule and 104–5
of units of measurement 42

independent events 104
independent samples 215–16
independent variable 248, 277
index numbers

consumer price index 351–2, 375,  
393–4

defined 375
discounting 394–6
expenditure index see expenditure index
expenditure weights 385–7
inequality indices 399–407
price index 46, 377–85
quantity index 387–9
retail price index 351–2, 375
simple 376–7

inequality indices 399–407
concentration ratios 407–8
Gini coefficient 399, 402–7
Lorenz curve 399–402

inference 1, 2, 165
probability theory and 94
in regression model 283–93

inflation 46
Zimbabwe 68

inter-quartile range 36–7
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Office of National Statistics (ONS) 48, 353, 354
oil reserves 148–9
omitted variable bias (OVB) 331, 334–5
one-tail test 199–201, 204, 262
one-way analysis of variance 248
online data 353

sources of 70–2, 297–8, 350
operators 100

E 30, 90, 141
V 90, 141

ordinal scale 9
ordinary least squares (OLS) 279, 283
outcomes, of experiment 97
outliers 47, 51

Paasche price index 382–3, 443, 447
Laspeyres index vs. 383, 386–7

Paasche quantity index 388–9, 443, 447
paired samples 215, 216–18
parameters, of distribution 130

Binomial distribution 132–4
Normal distribution 138–9

Pearson’s product-moment correlation  
coefficient 273

Penn World Tables 354
percentage 13, 49
percentiles 33
perfect information

defined 115
expected value of 116

permutations 108–9
pie charts 15–16
point estimate 165–6
Poisson distribution 153–5
pooled variance 185
population mean 30, 442
population variance 39, 40, 442
positive autocorrelation 328
positive correlation 267
positively skewed 45
posterior beliefs 96
posterior probabilities 111
power, of test 205
powers 91–2
precision 166, 167–8

bias and, trade-off between 169–70
prediction 289–93
prediction interval 290
present value 113, 395, 444, 447

median 32–3, 34, 442
Microsoft Excel see Excel
mid-point 28
minimax regret criterion 114–15
modal class interval 20
mode 34–5
model selection 330–8
moving averages 424–6
multi-stage sampling 358, 363, 370
multi-tasking 210–11
multicollinearity 337
multiple bar chart 11–12
multiple regression 307–48

determinants of imports into United Kingdom 
308, 310–30

finding right model 330–8
principles of 309–10

multiple time-series graph 53–6
multiplication

by constant 69
using logarithms 91

multiplication rule 102
combining addition rule and 106–7

multiplicative model 423
mutually exclusive 97
mutually exclusive events 100

natural logarithms 92
negative autocorrelation 329
negative correlation 267, 268
net present value (NPV) 395, 444, 447
95% confidence interval 171–81, 444
nominal scale 9
non-linear 49
non-linear transformation 294–6, 325
non-parametric statistics 272
non-rejection region 198
Normal distribution 129–30, 137–45, 444

and Binomial distribution, relationship between 
151–2

parameters 138–9
of sample mean 145–51
standard 140, 451

null hypothesis 196, 200,  
202, 204

numerical techniques 2, 27–47
measure of dispersion 27, 35–45
measure of location 27–35
measure of skewness 27, 45–6
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R2 see coefficient of determination
railway accidents 155
random component 423
random elements 422
random number tables 368, 449–50
random residual 434
random sampling 356–65

cluster sampling 358, 362
multi-stage sampling 358, 363, 370
quota sampling 358, 364–5
simple 357, 358
stratified sampling 357, 358–61, 370

random variables 129, 130–1
range 36–7
rank correlation coefficient 272–6
ratio scale 9, 16
real interest rate 390, 397–8
real terms 390

transforming to 313
reciprocal transformation 69, 296
record of data sources 353
reference tables 73
reference year 376
regression analysis 264, 276–82

analysis of errors 283–5
confidence interval estimates 285–6, 446
F test 287–8
hypothesis testing for coefficients 286–7
inference in regression model 283–93
interpreting computer output 288–9
measurement problems 294
multiple see multiple regression
non-linear transformations 294–6
prediction 289–93
units of measurement 293–4

regression line 277–82
calculation 278–9
interpretation of slope and intercept  

279–80
measuring goodness of fit 280–2

regression plane 309–10
regression sum of squares (RSS) 281, 446
rejection region 198, 232, 234
relative dispersion 42
relative frequency distribution 21–6
residual see error term/residual
response variable 248
retail price index (RPI) 351–2, 375
road accidents 237–40

presentation tables 73
price index 46, 377–85

CPI 351–2, 375, 393–4
current-year weights 378–81
expenditure weights 385–7
Laspeyres index see Laspeyres price index
Paasche index 382–3, 386–7, 443, 447
quantity index/expenditure index and 389–91
RPI 351–2, 375
units of measurement 383–5

primary data 350, 355
prior beliefs 96
prior information 201
prior probability 111
Prob-value 203–4, 288
probability distributions 128–63

Binomial distribution 129–30, 131–7, 151–2
defined 129
Normal distribution 129–30, 137–45, 151–2
Poisson distribution 153–5
random variables 129, 130–1
sample mean distribution 145–51

probability interval 150–1
probability/probability theory 93–127

Bayes’ theorem 110–12
building blocks 97–8
conditional 104, 106–7
decision analysis 112–16
defined 94–6
frequentist view 95–6
joint 107
marginal 107
of outcome 97–8
posterior 111
prior 111
statistical inference 94
subjective view 96

proportion 13–14, 49, 95
estimating 175–6, 180–1, 186,  

209–10
testing 207–8

quantiles 33
quantity index 387–9

price index/expenditure indiex and 389–91
quantity series 390
quartiles 33
quintiles 33
quota sampling 358, 364–5
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estimation 181–6
hypothesis testing with 211–13

smoothing data 424
moving average 424–6

Spearman’s coefficient of rank correlation 273, 
445, 462

specific to general approach 331
spreadsheet packages 308 

see also Excel
spurious regression 330
stacked bar chart 12
standard deviation 38–9

alternative formulae for calculating 40–1
of logarithm 43–4
sample 39

standard errors 147, 285, 289
standard Normal distribution 140, 451
standard width 17
states of the world 112
statistical inference see inference
statistical reports 72–5

graphs in 74
tables in 73–4
writing 73

statistical significance 204–5
strata 359
stratification factor 360
stratified sampling 357, 358–61, 370
student distribution see t distribution
subjective view 96
sums of squares 250–2
surveys

Family Resources Survey 399
interviewing techniques 355–6
Living Costs and Food Survey 370–1
telephone 369
UK Time Use Survey 363–4

systematic components 422

t distribution 285
estimation with small samples 181–6
percentage points of 452
test for paired examples 216–18
testing difference of two means 212–13

teenage weapons 134–5
telephone surveys 369
test statistic 445, 448

calculation of 243–5
correlation 269

roots 91–2
rounding 68

sample mean 30, 442
estimating difference between 177–80, 184–5, 

208–9, 212–13
estimation for large sample 170–3
estimation for small sample 183–5
hypothesis testing 196–203, 211–13
sampling distribution of 145–51

sample space 97, 101
sample variance 39, 40, 442
sampling 356–70

collecting sample 367–70
methods 358–65
from non-Normal population 149–51
random 356–65
sample size calculation 365–7

sampling distributions 145–51, 176, 178
derivation of 193–4

sampling errors 371
sampling frame 367, 368, 370–1
scatter diagrams 2–3, 63–5, 314–15
seasonal adjustment, time-series data 421–35

components of time series 421–32
forecasting 432–3
using adjusted or unadjusted data 434

seasonal component 423
seasonal dummy variables 335–7
seasonal factors 424
seasonally adjust 424
secondary data sources 350, 351–5

checking data 354–5
collecting right data 351–2
up-to-date figures 352

semi-log transformation 296
serial correlation 50
sigma (π) notation 88–90
significance level 198

choice of 202–3
simple random sampling 357, 358
simultaneous equation model 310
skewness 20

coefficient of 45–6, 443
defined 45
measures of 27, 45–6

slope of regression line 446
interpretation of 279–80

small samples



Index

499

value index see expenditure index
variance 4, 37–8, 90

alternative formulae for calculating 40–1
of Binomial distribution 135–7
error 250
of error term 446
estimation with x2 distribution 232–4
of intercept 446
pooled 185
population 39, 40, 442
sample 39, 40, 442
of slope coefficient 446
testing equality of two 245–7
of time series 62–3

variance ratio test 246
Venn diagram 101, 102
volume series 390
volume terms 390

wage-price spiral 272
wealth distribution 9, 16–64

comparison of 2005 and 1979  
distributions 46–7

frequency tables and charts 16–18
histograms 18–21
measure of dispersion 27
measure of location 27–35
measure of skewness 27, 45–6
relative and cumulative frequency  

distributions 21–6
weighted average 30–1, 365
Wilcoxon’s Sign Test 229
within sum of squares 250, 251–2, 445
World Bank 319, 354
World Economic Database 354

XY charts (scatter diagrams) 2–3, 63–5, 314–15

Yahoo Finance 72

z score 44, 140–1, 443, 444
zero correlation 267

difference of two means 209
proportion testing 207–8
sample mean 199, 212

testing hypotheses 165
time preference 394
time series, components of 421–32
time-series data 9–10, 48–63, 308–9

geometric mean 60
mean 58–9
seasonal adjustment of see seasonal adjustment, 

time-series data
variance 62–3

time-series graph 49, 50
multiple 53–6

time trends 336
Todaro, M. 265–6
total sum of squares (TSS) 281, 446

ANOVA 250, 445
tree diagrams 103
trend 49, 336, 423

isolating 424–6
trial 97
two-tail tests 199–201, 204, 261
Type I and Type II errors 197, 198, 202–3

UK Living Costs and Food Survey 370–1
UK Time Use Survey 363–4
unbiased estimate, of population variance 39
unbiased estimator 166
unemployment

forecasting 432–3
seasonal adjustment of time-series  

data 421–32
uniform distribution 234
union, of sets 101
units of measurement

independence of 42
price index 383–5
regression coefficients 293–4

V operator 90, 141
validity of test procedures 213
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