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Preface 

This is the last book in the trilogy that began with Heating and Water 
Services Design in Buildings and continued with Energy Management 
and Operating Costs in Buildings. In this book I have endeavoured to 
provide text, problems and solutions that relate the subjects of heat 
and mass transfer to the discipline of building services engineering. 

While there is currently a shift towards making people multi-skilled, 
this does not infer that programmes of learning can become generic. 
Indeed it is increasingly the case that courses are now more specific to 
the needs of the individual at the workplace. At least one national 
awarding authority has emphasized for some time that their pro­
grammes of study should be related to workplace activities. 

This provides a particular challenge to lecturers, teachers and 
authors who deliver ancillary subjects like mathematics, engineering 
science and thermofluids. Last year was dedicated to YES, the year of 
engineering success and in his presidential address Jerome O'Hea of 
the Chartered Institution of Building Services Engineers said that in 
essence we need to convey the good news that a career in building 
services engineering is a rich and rewarding one. 

I strongly feel that as a practitioner, lecturer and author I have a 
commitment also to ensuring that the learning experience is rich and 
rewarding, and this in my view is primarily achieved through making 
ancillary subjects which underpin the primary subjects of a course of 
study, current and relevant. 
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Introduction 

This book is intended to provide, within the limits of its title, the 
underpinning knowledge for the technology subjects of space heating, 
water services, ventilation and air conditioning. 

The reader will find that it is necessary to participate and respond to 
the narrative which has been written for those with a good grounding 
in mathematics who have an interest, vested or otherwise, in the 
technology subjects. 

With the explosion of IT in the form of dedicated software for 
design purposes it is very easy not to give sufficient attention to 
fundamental theory and even design calculations. A balance in the 
process of course delivery has somehow to be struck between the 
acquisition of underpinning knowledge and developing the skills 
required to use dedicated software and computer aided design systems. 

One way to achieve a balance for the student is to ensure that the 
support subjects like heat and mass transfer are dedicated to relating 
fundamental principles to practical design applications. This will help 
to secure an interest at least in an important part of the learning 
process. 

If after reading and participating in parts or all of this book, it has 
provided a learning experience and the reader has been enthused by 
even a little, my efforts will have been rewarded. 
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unit of thermal resistance of clothing 
temperature difference (K) 
heat transfer coefficient for radiation (W/m2K) 
electromotive force (V) 
height (m) 
heat transfer coefficient for convection (W/m2K) 
mass (kg) 
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globe temperature (0C) 
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mean air velocity (m/s) 
volume (m3 ) 

This first chapter introduces you to temperature, the variations of 
which provides the motive force in heat transfer, and heat energy, the 
flow and transport of which in air, water and steam is the essence of 
much of heating, ventilating and air conditioning design. Its main 

1 

Nomenclature 

1.1 Introduction 



 

2 Thermal comfort and assessment 

1.2 Heat energy and 
temperature 

focus, however, is on the topic of thermal comfort and the assessment 
of indoor climates, in which people live and work, to establish levels of 
comfort. ASHRAE define thermal comfort as 'that condition of mind 
in which satisfaction is expressed with the thermal environment'. The 
accurate assessment of building heat losses and gains, the type of 
comfort systems selected and the regimes of control of the comfort 
systems are all directed toward achieving this definition. 

The effect that the amount of clothing which is worn has on differ­
ent levels of activity also impinges on the comfort of the individual. 
Because thermal comfort is also a subjective assessment, a minority of 
individuals may feel uncomfortable even in thermal environments 
which are well regulated. 

A definition of energy is the capacity a substance possesses which can 
result in the performance of work. It is a property of the substance. 
Heat on the other hand is energy in transition. Heat is one form of 
energy and can be expressed, for example, as a specific heat capacity in 
kJlkgK. In this form it is expressing the potential of a substance for 
storing heat which it has absorbed from its surroundings. It can also 
express the potential for the intensity of heat transfer from the sub­
stance to its surroundings. 

Up until the end of the 18th century heat energy, known as 'caloric', 
was considered as a fluid which could be made to flow for the pur­
poses of space heating among other things, or it flowed of its own 
volition as a result of friction which was generated as a result of a 
process or work done, such as boring out a cannon. The idea of heat 
being a form of energy rather than a fluid was developed by an 
American named Benjamin Thompson, subsequently known as 
Count Rumford, during the process of boring out cannons for his 
arsenal as war minister of Bavaria. His conclusions were that the 
amount of heat liberated depended upon the work done against fric­
tion by the boring device. 

A partial definition of heat energy is therefore the interaction 
between two substances which occurs by virtue of their temperature 
difference when they communicate. However, heat energy does not 
always initiate a rise in temperature as in the cases of the latent heat of 
vaporization and condensation which occur when substances change 
in state. This is a qualification of the definition. 

Heat is a transient commodity like work; it exists during commun­
ication only although like work its effect may be permanent. The 
primary need for burning fuel oil might be the generation of heat 
energy and the permanent results of the process are the products of 
combustion. The combustion products cannot return to fuel oil. The 
transient result is the generation of heat. 

A definition of temperature is a scaled measurement of relative 
hotness and coldness sensations. It can be described as an intensity 
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Figure 1.1 Scales of temperature. 

of hotness or coldness. Kelvin found that absolute coldness is reached 
when the agitation of the molecules and atoms of a substance ceases at 
-273.15°C (0 K). 

Scales of temperature have been advanced by various authorities. 
The scales now commonly in use are the Celsius scale and the Kelvin 
scale. Figure 1.1 shows these scales from absolute zero to the upper 
fixed point. 

In the 17th century it was proposed that two fixed points should be 
used to determine a temperature scale. 

1. The lower fixed point was taken as melting ice at atmospheric 
pressure; the ice being distilled water. 
The ice point is the temperature at which ice and water can exist in 
equilibrium. 

2. The upper fixed point was taken as steam generated from distilled 
water when boiling at atmospheric pressure. 

Since the temperature tends to vary depending upon geographical 
location the steam point is the temperature of boiling water and 
steam at atmospheric pressure on latitude 45°. Table 1.1 lists the 
fixed points of the International Temperature Scale at standard atmo­
spheric pressure (101 325 Pa). 

There are six main types of thermometer: 

• constant volume gas thermometer 
• resistance thermometers 

Types of thermometer 3 

1.3 Thermometry 

1.4 Types of 
thermometer 



 

4 Thermal comfort and assessment 

1.5 Heat loss from 
the human body 

Table 1.1 Fixed points of the International Temperature Scale 

Fixed points 

Boiling point of liquid oxygen 
Ice point 
Steam point 
Boiling point of sulphur 
Freezing point of silver 
Freezing point of gold 

• thermocouples 
• liquid thermometers 
• bimetallic thermometer 
• pyrometers. 

Temperature 
("C) 

-182 
o 

100 
444.6 
960.8 

1063.0 

The constant volume gas thermometer was selected in 1887 as the 
standard: it did not give a pointer reading, however. For a perfect gas 
Boyle's law states that P ex: 1/ V at constant temperature and the 
Kelvin scale (Figure 1.1) agrees exactly with the scale of a perfect gas 
thermometer. 

The resistance thermometer consists of platinum wire wound on to 
two strips of mica and the coil attached to leads connected in turn to a 
Wheatstone bridge. 

Thermocouples have the measuring element as the junction between 
two dissimilar metal wires. The emf generated at the junction results 
from its temperature and this is measured accurately on a potentio­
meter or approximately using a galvanometer. 

The liquid thermometer relies on the expansion of a liquid in a glass 
or steel tube in response to a rise in temperature. 

The bimetallic thermometer is associated with dial instruments in 
which two dissimilar metal strips soldered together in a coil expand 
differentially on a rise in temperature thus moving a pointer round the 
dial. 

Pyrometers, of which there are four types, tend to be used for 
measuring very low temperatures and temperatures up to 1400°C. 
The four types are: resistance, thermoelectric, radiation and optical. 

The core temperature of the human body is taken as 37.rc. This 
implies that humans as with all mammals must generate heat in order 
to maintain body temperature. About 80% of food intake is required 
to maintain body temperature. 

The metabolic rate refers to the rate at which energy is released from 
food into the body cells. It is affected by a person's size, body fat, sex, 
age, hormones and level of activity. Table 1.2 lists the approximate 
total heat output for different levels of activity. The Met is equal to the 
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Table 1.2 Heat emission from the human body (adult male, body surface area 2 m2 ) 

Application Sensible (s) and latent (I) heat emissions/W at the stated dry-bulb 
temperatures/oC 

Degree of activity Typical Total 15 20 22 24 26 

(s) (/) (s) (/) (s) (I) (s) (I) (s) (/) 

Seated at rest Theatre, Hotel lounge 115 100 15 90 25 80 35 75 40 65 50 
Light work Office, Restaurant* 140 110 30 100 40 90 50 80 60 70 70 
Walking slowly Store, Bank 160 120 40 110 50 100 60 85 75 75 85 
Light bench work Factory 235 150 85 130 105 115 120 100 135 80 155 
Medium work Factory, Dance hall 265 160 105 140 125 125 140 105 160 90 175 
Heavy work Factory 440 200 220 190 250 165 275 135 305 105 335 

'For restaurants serving hot meals, add 10 W sensible and 10 W latent for food. 
Reproduced from the CIBSE Guide (1986) by permission of the Chartered Institution of Building Services Engineers. 

Table 1.3 Metabol ic rate for different levels of activity 

Activity Metabolic Rate 
Met W/m2 

Lying down 0.8 45 
Seated quietly 1.0 58 
Sedentary work - seated at work 1.2 70 
Light activity - bodily movement on foot 1.6 93 
Medium activity - bodily movement including 2.0 117 

carrying 
High activity - substantial physical work 3.0 175 

metabolic rate for a seated adult at rest and is equivalent to 58 W/m2 

of body surface. Table 1.3 lists the metabolic rate in units of Met and 
W/m2 for different levels of activity. 

In order to estimate the heat loss from a person's body its surface 
area is required. A close approximation of surface area A is obtained 
from a knowledge of the person's height h and mass m usmg an 
empirical formula attributed to Dubois where: 

A = (m°.42S x hO.72S x 0.2024) m2 

Thus for a person of mass 70 kg and height 1.8 m 

A = 6.1 x 1.53 x 0.2024 = 1.89m2 

A figure of 2 m2 is frequently used for the surface area of a clothed 
adult. 

Discomfort will occur if the body temperature varies much from the 
core temperature of 37.rc. A loss of about 2.5 K for an extended 
period may induce a state of hypothermia. In the old and the young 
particularly this is a serious condition leading ultimately to death. A 
state of hypothermia means that the body cannot restore itself to its 
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Evaporation Q e 

Convection t 
Qe , 

Core temperature 37.2°C 

Conduction Qed 

Figure 1.2 Latent heat loss and sensible heat loss/gain from the body. 

normal temperature without the aid of active heating. Being put into a 
pre-warmed bed which is then maintained at a constant temperature 
for example. The intake of high calorie hot food will also be necessary 
to aid the recovery process. Wrapping the sufferer in warm and reflect­
ive clothing may be a temporary measure but not one which will 
restore the patient's body temperature. 

If body temperature rises by 4 K for an extended period a state of 
hyperpyrexia may be induced. In this condition the body is unable to 
liberate its heat sufficiently to its surroundings and unconsciousness 
may result. Hyperpyrexia can be induced internally through a fever or 
externally from high ambient temperature, high humidity and the 
effects of solar radiation incident upon the head in particular. 

A person is likely to be comfortable in the general sense of the word 
when the heat generated by the body to maintain a core temperature of 
37.2°C is equal to the heat lost to its surroundings. 

The heat generated Q can be expressed as: 

Q = ±Qe ± Qed ± Qr + Qe. See Figure 1.2. 
Heat conduction Qed takes place at points of physical contact. It 
constitutes a small proportion of the total and is usually ignored, thus: 

Q = ±Qc ± Qr + Qe 
Sensible heat gain or loss therefore includes heat convection and heat 
radiation. Latent heat loss from the body occurs at all times and results 
in evaporative cooling. It includes insensitive perspiration from the 
skin surface, moisture evaporation from the process of breathing, and 
sweating. 

Latent heat loss from the body is in three forms, namely: 

• passive moisture loss from the skin which depends upon the vapour 
pressure of the surrounding air. 
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• moisture loss from the lungs which depends upon ambient vapour 
pressure and breathing rate which in turn depends upon the degree 
of activity and thus the metabolic rate . 

• active sweating commences when sensible heat loss plus in­
sensible perspiration fall below the body's rate of heat produc­
tion. 

Sweat is secreted by the eccrine glands which lie deep in the skin tissue. 
It consists of 99% water and 1 % sodium chloride. The eccrine glands 
are activated by two control mechanisms: 

stimulus - peripheral receptors or sympathetic nerves, and 
thermoregulation - the hypothalamus which is located in the brain 
and which responds to its own temperature variations. 

The eccrine glands can be activated by heat energy resulting from 
physical work or the local climate or by physiological stimuli espe­
cially those located in the palms of the hands, the soles of the feet, the 
face and the chest. 

For men working in the heat the sweat rate can reach 1litre/h. Hard 
work in a very hot environment may increase this rate to 2.Sllh. This 
rate cannot be sustained for more than 30 min. Thus the bodily heat 
loss is restricted as the period of hard labour continues and core 
temperature is elevated. 

Refer to Table 1.2 for rates of body heat loss for different levels of 
activity. You will notice in this table that as the air temperature rises 
from 15°C to 26°C the proportions of latent to sensible heat change 
but the total body heat loss for each level of activity does not change 
with air temperature rise. Thus for light work the total heat loss is 
140 Wand the ratio of latent to sensible heat loss at an air temperature 
of 15°C is 301110 = 0.27 whereas at an air temperature of 26°C the 
ratio is 70/70 = 1.0. This represents a 3.7-fold increase in insensitive 
perspiration and sweat assuming moisture evaporation from breathing 
is unchanged. You will be able to corroborate this evidence from 
personal experience of working or even sitting in surroundings of 
relatively high air temperature. 

Figure 1.3 is a flow chart showing sensible and latent heat flows 
from the human body to the surrounding climate. Note the thermal 
criteria which trigger each mode of heat transfer. 

It was stated earlier that a heat balance can be drawn such that the 
heat generated to maintain a core temperature of 37.2°e is equal to the 
bodily heat loss to its surroundings. 

In thermally comfortable surroundings when mean radiant, air and 
comfort temperature are say 20°C, a person doing light work absorbs 
approximately 241 of oxygen per hour. For each litre of oxygen con­
sumed, 21 kJ of heat are produced. 

Thus heat generated by the person = 24 x 21 x 1000/3600 = 140W 



 

8 Thermal comfort and assessment 

LOSS/GAIN LOSS 

WET BULB TEMPERATURE 
& DRY BULB TEMPERATURE 

AIR VELOCITY 

Figure 1.3 Heat energy flows between the human body and the surrounding 
climate. 

Heat loss to the surroundings 
Q = ±Qc ± Qr ± Qe 

if the average temperature of exposed skin and clothing is 26°C and 
the surface area of the clothed body is 2m2 • 

Sensible heat loss 
Qc = hc.A.dt 
Qc = 3 x 2 x (26 - 20) = 36 W 
Qr = ehr.A.dt 
Qr = 5.7 x 2 x (26 - 20) = 68.4 W 

Latent heat loss 
If the person loses 0.051/h and the latent heat of vaporization is taken 
as 2500 kJ/kg 

Qe = (0.05/3600) x 2500 x 1000 = 34.7W 
Thus body heat loss 

Q=36+68.4+34.7 
Q = 139W 

and the heat generated by the body, calculated as 140 W, shows that 
the heat balance is maintained. 



 

You should refer to Chapters 3 and 4 for the heat transfer coeffi­
cients he and ehr for convection and radiation. 

Circulatory regulation of the blood flow is the initial response to 
thermal stress, and in the subcutaneous layer which connects the 
skin to the surface muscles is known as vasomotor regulation. Regula­
tion of the blood flow is achieved by vasodilation and vasoconstriction 
of the blood vessels. The vasomotor centre is located in part of the 
brain known as the medulla oblongata. 

The subcutaneous tissue has a high fat content and thus a high 
resistance to heat flow through the subcutaneous layer. Thus vasodila­
tion within the subcutaneous layer induces large quantities of blood 
from the core through the subcutaneous tissue to the skin giving rise to 
high heat energy rejection. Vasoconstriction within the subcutaneous 
tissue induces low blood flow from the body core to the skin. These 
regulatory effects on the flow of blood vary the resistance to heat flow 
through the subcutaneous tissue. Thus the thermal resistance of the 
subcutaneous tissue which controls the heat flow at the skin surface is 
variable and responds to the degree of activity and ambient tempera­
ture in the manner described. 

Low ambient temperature induces vasoconstriction in the subcuta­
neous tissue and hence lowers skin temperature for a person doing 
sedentary work. This inhibits excessive body heat loss to preserve core 
temperature. The sensation is the cooling of the extremities - fingers, 
nose, ears and toes. 

Vasodilation is accompanied by an increase in heart rate, an increase 
in blood flow to the skin resulting in increased body heat loss and a 
reduced blood flow to the organs and is induced by a high level of 
physical activity. 

Human thermal comfort is a subjective condition which is witnessed 
by most of us fairly regularly: witness the varying amounts of clothing 
worn by different people in the same room. It is generally accepted, 
however, that there are four criteria which have a direct influence on 
human comfort: 

• dry bulb temperature 
• wet bulb temperature 
• mean radiant temperature 
• air velocity. 
Each of these criteria can be varied within limits, and still maintain 
comfort level, to compensate for one of them having a value outside 
the comfort range. 

Many proposals for a thermal index which accounts for some or all 
of these criteria have been advanced in the last 100 years. The thermal 
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1.6 Physiological 
responses 

1.7 Thermal 
assessment 
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indices in current use are dry resultant or comfort temperature and 
environmental temperature although the latter is not now used for the 
purposes of measurement. 

Air temperature is that measured by a mercury in glass thermometer 
shielded from direct heat radiation and suspended in air. The sensing 
bulb is small and as the mercury is reflective anyway, heat radiation 
incident on the bulb surface is insignificant, allowing the bulb to 
register local air temperature. 

Wet bulb temperature is obtained by placing a muslin sock over the 
sensing bulb of mercury in a glass thermometer and saturating it by 
placing the end of the sock in a container of distilled water. If the air 
local to the sensing bulb is dry it has a low relative humidity and will 
evaporate the moisture in the sock. The rate of evaporation produces a 
cooling effect which will depress the mercury in the thermometer thus 
giving the wet bulb reading. The rate of evaporation on the sock of a 
wet bulb thermometer is proportional to the level of moisture in the 
local air, and a reading equal to the local dry bulb temperature implies 
that evaporation has ceased because the local air is saturated and 
relative humidity is therefore 100%. 

The humidity range to ensure a satisfactory level of comfort is 
between 40% and 70%. The hand-held whirling sling psychrometer 
is still a popular instrument used for measuring dry bulb and wet bulb 
temperatures. 

Mean radiant temperature can be approximately evaluated from the 
mean weighted enclosure temperature, mwet: 

mwet = (Awtw + Aftf + Artr + Agtg)/(Aw + Af + Ar + Ag) 
thus 

mwet = ~(Ats)/~A 

The suffixes refer to the surface temperature of the enclosing walls, 
floor, roof and glazing. 

You can see that it is the mean area weighted temperature of all the 
surfaces forming the enclosure. It is approximate because it is only 
most nearly a true mean radiant temperature if the point of measure­
ment is in the centre of the space. 

Mean radiant temperature can be measured with the aid of a globe 
thermometer (Figure 1.4). The matt-finished sensing surface is greatly 
enlarged and is therefore more sensitive to absorb heat radiation than 
to sense the temperature of the air local to it. As air velocity increases, 
however, this instrument becomes less effective at measuring mean 
radiant temperature. See Example 1.1. The formula for globe tem­
perature is: 
globe temperature 

tg = (tr + 2.35ta(u)O.5)/(1 + 2.35(u)O.5) 



 

Mercury in glass _______ 
thermometer 

Figure 1.4 The globe thermometer. 

from which 

___ Matt-finished globe 
150 mm diameter 

tr = tg(l + 2.35(u)o.s) - (2.35ta(u)o.s) 

when air velocity 
u = 0.1 mis, tg = 0.57tr + 0.43ta 

and 
tr = 1.75tg - 0.75ta 

You should confirm that you agree with these three equations which 
originate from the equation for globe temperature tg • 

Comfort temperature is measured by a similar instrument to that for 
globe temperature except that the sensing surface is a 100mm sphere 
(Figure 1.4). It is also known as dry resultant temperature and was 
introduced by a Frenchman in 1931. The formula for comfort tem­
perature is: 

tc = (tr + ta(10u)o.s)/(1 + (10u)0.5) 
Another formula for tc is given in the CIBSE Guide section A, 1970 
edition, as: 

tc = (tr + 3.17ta(u)o.s)/(1 + 3.17(u)0.5) 
This formula is in the same format as that for globe temperature. 
Either formula will give the same results. When air velocity 
u = O.lm/s, tc = O.5tr + 0.5ta 

Note: the above formulae for globe temperature and comfort tem­
perature are empirical and therefore subject to some error. 

Environmental temperature is not easily measured by an instrument 
and this is the main reason why it is not in common use now. For a 
cubical room in which local air velocity is around O.lm/s 

te = 0.667tr + 0.333ta 
Low air speed is measured using a Kata thermometer. The time taken 
for warmed fluid to cool and contract down a glass stem between two 
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fixed points is noted and use made of a nomogram provided by the 
manufacturer to convert the time to an air speed. 

Note: electronic instruments for measuring ta, tr, tw , tc and u are 
available. 

You will see that comfort temperature and environmental temper­
ature account for three of the four factors which influence thermal 
comfort. These are air temperature, mean radiant temperature and air 
velocity. Wet bulb temperature and hence relative humidity and 
vapour pressure is not accounted for and cannot be measured by a 
comfort temperature instrument. However, comfort temperature is 
currently the accepted thermal index in space heating design. A separ­
ate instrument is required to register relative humidity. You will 
notice from the formula that at an air speed of 0.1 m/s which is an 
acceptable value in a room not subject to forced air movement, com­
fort temperature represents the sum of 50% air temperature and 50% 
mean radiant temperature. The formula for environmental temper­
ature on the other hand is weighted towards mean radiant tempera­
ture. For higher air speeds the equations for tc and tg change by varying 
the proportions of air and mean radiant temperature. Consider the 
following example. 

Example 1.1 
Determine the equations for comfort temperature and mean radiant 
temperature when air velocity is found to be 004 m/s. 

Solution 
It was shown earlier that: 

tg = (tr + 2.35ta(u)0.5)/(1 + 2.35(u)0.5) 

substituting u = 004 m/ s 

tg = tr + 2.35ta(004)0.5)/(1 + 2.35(004)°·5) 

tg = (tr + 1.4863ta)/204863 

tg = (tr/204863) + (lo4863ta/204863) 
from which 

tg = Oo4tr + 0.6ta 

tr = (tg - 0.6ta)/004 
from which 

tr = 2.5tg - 1.5ta 
Now, from earlier in this section it was shown that: 

tc = (tr + ta(10u)0.5)/(1 + (10u)05) 



 

substituting u = 0.4 mls 
tc = (tr + 2ta)/3 

from which 

tc = 0.33tr + 0.67ta 

It is now appropriate to analyse the effects that air temperature and 
globe temperature have upon mean radiant temperature and comfort 
temperature at different air velocities. Consider the following case 
study. 

Case study 1.1 

A heated room is used for sedentary occupation. 
a) Evaluate comfort and mean radiant temperature for the room 

in which the measured globe and air temperatures are 1 rc 
and 21°C respectively for air velocities of 0.1 mls and 0.4 mls. 

b) Evaluate comfort and mean radiant temperature for the 
room in which the measured globe and air temperatures are 
21 °C and 17°C respectively for air velocities of 0.1 mls and 
0.4 mls. 

c) Summarize and draw conclusions from the results. 

SOLUTION 

a) When tg = 17°C, ta = 21 °C and u = 0.1 m/s 
tr = 1.75tg - 0.75ta = 1.75 x 17 + 0.75 x 21 = 14°C 

tc = 0.5tr + 0.5ta = 0.5 x 14 + 0.5 x 21 = 17.5°C 

when u = O.4m/s 
tr = 2.5tg - 1.5ta = 2.5 x 17 - 1.5 x 21 = 11°C 

tc = 0.33tr + 0.67ta = 0.33 x 11 + 0.67 x 21 = 17.67°C 
b) Whentg =21°C, ta =17°Candu=O.lm/s 

tr = 1.75 x 21 - 0.75 x 17 = 24°C 

tc = 0.5 x 24 + 0.5 x 17 = 20.5°C 

when u = O.4m/s 
tr = 2.5 x 21 - 1.5 x 17 = 2rc 

tc = 0.33 x 27 + 0.67 x 17 = 20.3°C 
c) The analysis is summarized in Table 1.4 

Thermal assessment 1 3 
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1.8 Thermal comfort 
criteria 

Table 1.4 Summary of case study 1.1 

Measuredu Measured Calculated Case Heat flow paths (tr - ta) 
(m/s) °C °C 

tg tr ta tc temp. diff. (K) 

0.1 17 14 21 17.5 ta tc tg tr -7 
0.4 17 11 21 17.67 2 ta tc tg tr -10 
0.1 21 24 17 20.5 3 tr tg tc ta 7 
0.4 21 27 17 20.3 4 tr tg tc ta 10 

CONCLUSIONS FROM THE SUMMARY OF CASE STUDY 1.1 

There are two comfort zones which can be applied here. 
• For mainly sedentary occupations comfort temperature tc should 

fall between 19 and 23°e. 
Cases 1 and 2 therefore fall outside this comfort zone and may 

not be conducive to thermal comfort. 
• The difference in temperature between mean radiant and air tem­

perature should be within an envelope of +8 K or -5 K for mainly 
sedentary occupations. 

Cases 1, 2 and 4 therefore fall outside this comfort zone and may 
not provide a satisfactory level of thermal comfort. 

Case 3 thus appears to be the only right solution here for seden­
tary occupation. 

Current standards of thermal insulation recommended in the 
Building Regulations along with limiting the infiltration rate of 
outdoor air will mitigate in favour of maintaining the difference 
between mean radiant temperature and air temperature within the 
+8 K, -5 K envelope. 

This matter is discussed in detail in Heating and Water Services 
Design in Buildings. 

• The ranking of the thermal indices in the heat flow paths is depend­
ent upon the type of space heating. Cases 3 and 4 indicate a mainly 
radiant system of space heaters; cases 1 and 2 indicate a mainly 
convective heating system. 

• The most acceptable level of comfort for sedentary occupations is 
achieved when the difference between mean radiant and air tem­
perature is within a +8 K, -5 K envelope and the comfort tempera­
ture zone of between 19°C and 23°C, with relative humidity 
between 40% and 70%. 

• If electronic temperature measurement equipment is used you can 
see the importance of establishing which thermal index the instru­
ment is actually measuring. 

Professor o. Fanger has spent much time both in Denmark and the 
USA researching how thermal comfort can be assessed for a variety of 
occupations. 
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The metabolic rate can vary from 30 W/m2 to 500 W/m2 depending 
upon the level of activity. One Met is equal to the metabolic rate for a 
seated person and is equivalent to 58 W/m2 • 

The thermal resistance of clothing is measured in units of 'Clo' such 
that: 

one Clo unit = 0.155 m2K/W. 
Table 1.5 gives typical insulation levels for some clothing ensembles. 
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Table 1.5 Clothing insulation levels - the relationship 
between the Cia unit and thermal resistance R 

Clothing combination Insulation level 
Cia R (m2K/\tV) 

Naked 0 0 
Shorts/bi ki n i 0.1 0.016 
Light summer clothing 0.5 0.078 
Indoor winter clothing 1.0 0.155 
Heavy suit 1.5 0.233 
Polar weather suit 3-4 0.465-0.62 
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In his research in thermal assessment Professor Fanger uses the term 
ambient temperature (which is often used as a term for outdoor 
temperature) to refer to indoor conditions when air and mean radiant 
temperature are the same in value. 

The comfort diagrams which he produced can be used by HVAC 
engineers as well as those practising occupational hygiene and by 
health and safety officers. 

Three of the diagrams are shown in Figures 1.5, 1.6 and 1.7 and the 
following examples will demonstrate their use. 

Example 1.2 
The staff occupying an office are clothed at 1 Clo and are under­
taking sedentary activities. Determine the required ambient tem­
perature when air veloctiy is 0.1 mls. 

Solution 
Ambient temperature tam = tr = ta 

Using Figure 1.5, points on the dashed diagonal line yield equal 
mean radiant and air temperature. Where the dashed line intersects 
the isovel (line of constant velocity) of 0.1 mis, tam = 23°e. 

It is not usually possible to attain equal mean radiant and air 
temperatures which are dependent upon the level of insulation of 
the building, the ventilation rate and the type of heating system. 
They should, however, be close to this ambient temperature. 

Example 1.3 
A store room is held at an air temperature of 16°C and 50% relative 
humidity. The air velocity is 0.1 m/s. A store man wearing clothing 
of 1 Clo is allocated to work in the room. 

If his activity level is 1 Met find the mean radiant temperature 
required to provide the right level of comfort. 

Solution 
From Table 1.3, 1 Met represents a person sitting quietly. It is likely 
therefore that the storeman is located at a desk or counter. 

From the comfort diagram in Figure 1.5, mean radiant temper­
ature tr = 33°e. 

This is well outside the second comfort zone used in case study 
1.1. However, the whole store does not need radiant heating to this 
level. A luminous directional radiant heater located at low level 
would be recommended. It would also be worth suggesting an 
alternative clothing combination at least to 1.5 Clo. See Table 1.5. 



 

18 Thermal comfort and assessment 

Example 1.4 
Determine the conditions that will provide thermal comfort for 
seated spectators at a sports centre swimming pool. 

Their clothing combination is 0.5 Clo and their activity level is 1 
Met. Assume that the air velocity is 0.2 mls and relative humidity is 
80%. 

Solution 
From Table 1.3, 1 Met refers to a person seated quietly and from 
Table 1.5, 0.5 Clo is equivalent to light summer clothing. 

From the comfort diagram in Figure 1.6, air and mean radiant 
temperature should be 26.2°C. 

Example 1.5 
Assistants working in a retail store have an estimated activity level 
of 2 Met. The clothing worn has an insulation level of 1 Clo. If the 
air velocity is 0.4 mls find the ambient temperature which should 
provide thermal comfort for the assistants. 

Solution 
From Table 1.3, 2 Met indicates medium activity and from Table 
1.5, 1 Clo relates to indoor winter clothing. 

From the comfort diagram in Figure 1.7, air and mean radiant 
temperature should be 17.2°C and relative humidity 50%. 

Example 1.6 
An office is staffed by personnel whose clothing insulation value is 1 
Clo and who are engaged in activity estimated at 1 Met. Relative 
humidity is 50%, air velocity 0.1 rn/s and mean radiant and air 
temperature is 23°C. Installation of new business equipment 
increases the mean radiant temperature to 26°C. 

By what amount should the air temperature controls be changed 
to maintain thermal comfort? 

Solution 
From the comfort diagram in Figure 1.5, for a mean radiant tem­
perature of 26°C, required air temperature is 21°C. 

This will mean re-setting the controls (23 - 21) = 2 K lower than 
before. 

It is likely that by doing this the mean radiant temperature of 
26°C will be lowered and therefore fine tuning may be necessary. 
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Example 1.7 
Factory operatives work in an environment in which the air velocity 
is 0.5 m/s and relative humidity is 50%. The factory overalls pro­
vide an insulation value of 1 Clo and the activity level is expected to 
be 2 Met. 

Recommend suitable ambient conditions for the factory. 

Solution 
From the comfort diagram in Figure 1.7, air and mean radiant 
temperature should be 17.5°C. 

QUANTIFYING THERMAL SATISFACTION 

ASHRAE has developed a seven-point scale of assessment for thermal 
environments and Professor Fanger has developed a method of 
predicting the level of satisfaction using the Predicted Mean Vote 
(PMV). Table 1.6 gives the ASHRAE scale and the corresponding 
PMV. 

Table 1.6 Comfort scales 

ASHRAf scale Fanger PMV index 

Hot 
Warm 
Slightly warm 
Neutral 
Slightly cool 
Cool 
Cold 

3 
2 

o 
-1 
-2 
-3 

Professor Fanger converted the PMV index to the Predicted Percent 
age of Dissatisfied (PPD) in order to show the PMVas a percentage of 
people occupying a thermal environment who would be likely to be 
dissatisfied with the level of comfort. Figure 1.8 which is a normal 
distribution shows the conversion from PMV to PPD. If, for example, 
the predicted mean vote index is -1 or + 1, the predicted percentage 
dissatisfied, from Figure 1.8, is 26%. The other 74% are likely to be 
satisfied. When the PMV is zero (Table 1.6) the PPD, from Figure 1.8, 
is 5%. This implies, for example, that out of 40 people occupying a 
room in which the PMV is zero, two people are likely to be dissatisfied. 
The other 95% or 38 people will be satisfied. 
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Figure 1.8 Predicted Percentage of Dissatisfied (PPD) as a function of Predicted 
Mean Vote (PMV). 

QUANTIFYING THE LEVEL OF DISSATISFACTION 

Clearly it is important to ensure that the level of dissatisfaction with 
the thermal environment is kept to a minimum, preferably to no more 
than 5% of the people populating a building. 

Table 1.7 allows the PMV index to be obtained for ambient tem­
peratures between 20°C and 27°C and air velocities from < 0.1 to 
1.0 mls when the relative humidity is 50%, the metabolic rate is 1 Met 
and the clothing insulation level is 1 Clo. 

Table 1.8 gives the rate of change of PMV with ambient temperature 
[d(PMV)/dtam ] and Table 1.9 gives the rate of change of PMV with 
mean radiant temperature [d(PMV)/dtr]. 

The four variables to be measured are: dry bulb temperature, rel­
ative humidity (wet bulb temperature), mean radiant temperature and 
air velocity. 

The point of measurement is normally taken as the centre in plan 
and the height above floor is normally 0.6 m for sedentary occupancy 
and 1.0 m for standing occupancy. 
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Table 1.7 Predicted Mean Vote Index 

Ambient RH = 50%, M = 1 Met, Ielo = 1 Clo 
temperature Relative air velocity (Ua) (m/s) 

(tamb 0C) < 0.1 0.1 0.15 0.20 0.30 0.40 0.5 1.00 
20 -0.85 -0.87 -1.02 -1.13 -1.29 -1.41 -1.51 -1.81 
21 -0.57 -0.60 -0.74 -0.84 -0.99 -1.11 -1.19 -1.47 
22 -0.30 -0.33 -0.46 -0.55 -0.69 -0.80 -0.88 -1.13 
23 -0.02 -0.07 -0.18 -0.27 -0.39 -0.49 -0.56 0.79 
24 0.26 0.20 0.10 0.02 -0.09 -0.18 -0.25 0.46 
25 0.53 0.48 0.38 0.13 0.21 0.13 0.07 -0.12 
26 0.81 0.75 0.66 0.60 0.51 0.44 0.39 0.22 
27 1.08 1.02 0.95 0.89 0.81 0.75 0.71 

Table 1.8 Rate of change of PMV with ambient temperature (~) 

Clothing insulation 

(lc/) Clo 
0.5 
1.0 
1.5 

RH= 50%, M= 1 Met 
Relative air velocity (Ua)(m/ s) 

<0.1 
0.350 
0.258 
0.198 

0.2 
0.370 
0.260 
0.200 

0.5 
0.435 
0.290 
0.217 

1.0 
0.490 
0.310 
0.230 

0.56 

Table 1.9 Rate of change of PMV with mean radiant temperature (T) 
Clothing insulation 

(lc/) Clo 
0.5 
1.0 
1.5 

Example 1.8 

RH = 50%, M = 1 Met 
Relative air velocity (Ua)(m/ s) 

<0.1 
0.160 
0.117 
0.090 

0.2 
0.155 
0.107 
0.080 

0.5 
0.140 
0.090 
0.067 

1.0 
0.12 
0.077 
0.055 

A factory has the thermal conditions given below. It is proposed to 
section off part of the factory for employees clothed at 1 Clo and 
engaged in sedentary work at 1 Met. 

Determine the predicted percentage of dissatisfied for the area 
and determine the value to which the mean radiant temperature 
must be raised to provide an acceptable level of thermal comfort. 

Data: air temperature 21 DC, mean radiant temperature 16DC, air 
velocity 0.2mJs, relative humidity 50%. 

21 
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1.9 Temperature 
profiles 

Solution 
From reference to the thermal comfort diagram in Figure 1.5 the 
intersection of the air and mean radiant temperatures are to the left 
of the 0.2 mls velocity isovel. The conditions therefore are too cool 
and do not produce thermal comfort. 

From Table 1.8 ambient temperature is taken as air temperature 
of 21°C and at an air velocity of 0.2 mis, PMVta = -0.84 

Since mean radiant temperature is too low [d(PMV)/dtrl from 
Table 1.9 is obtained where air velocity is 0.2 m/s and clothing 
insulation is 1 Clo. 

Thus [d(PMV)/dtrJ = 0.107 

The PMV correction factor PMVc = [d(PMV)/dtr](ta - tr ) 
= 0.107(21 - 16) = 0.535 and PMV = PMVta - PMVc = 
-0.84 - 0.535 = -1.375 

From Figure 1.8 PPD = 44% 

From the comfort diagram in Figure 1.5, given air temperature as 
21°C and air velocity as 0.2 mis, mean radiant temperature is read 
off as 29°C. 

You should now undertake the solution based upon an air velo­
city of 0.1 mls. 

The vertical temperature profile in the conditioned space will vary 
with the type of heating/cooling employed to offset the heat losses/ 
gams. 

Figure 1.9 shows temperature profiles resulting from different types 
of space heating. The ideal profile is one which is close to vertical. Low 
air and mean radiant temperatures at floor level or high temperatures 
at head level will encourage levels of discomfort. 
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Figure 1.9 Vertical temperature profiles. (Reproduced from the CIBSE Guide 
(1986) by permission of the Chartered Institution of Building Services Engineers.) 



 

This chapter has provided you with the underpinning knowledge of 
the response mechanisms of the human body to surrounding air and 
mean radiant temperatures and of the thermal comfort criteria which 
have a direct bearing upon the level of comfort. The thermal indices 
used to measure these criteria have been identified and used to analyse 
comfort levels. This should encourage you to pursue, investigate and 
analyse other situations. Personal thermal comfort is, of course, a 
subjective matter and therefore it is unlikely that all the occupants of 
a conditioned building will agree on the level of comfort provided 
within it. This should not act as a discouragement from attempts to 
ensure a thermally comfortable environment indoors for the majority 
of occupants. 
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1.10 Chapter 
closure 
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Nomenclature 

Heat conduction 

e 
ehr 
ESP 
he 
hs 
hsi 
hso 
I 
k 
L 
Q 
Q/L 
R 
Ra 
Re 
Re 
Rg 
Ri 
Rp 
Rr 
Rsi 
Rso 
Rt 

Rtl 

Rt2 
Rv 

surface area (m2 ) 
inner surface area 
logarithmic mean surface area 
outer surface area 
area weighted average thermal resistance 
emissivity of surface 
heat transfer coefficient for radiation (W/m2K) 
expanded polystyrene 
heat transfer coefficient for convection (W/m2K) 
heat conductance in the surface film (W/m2K) 
surface conductance at the inner surface (W/m2K) 
surface conductance at the outer surface (W/m2K) 
heat flux (W/m2) 
thermal conductivity (W/mK) 
thickness (m) 
heat flow (W) 
heat flow per unit length (W/m) 
thermal resistance (m2K/W) 
thermal resistance of the air cavity 
reciprocal of he 
thermal resistance (m2K/W) 
thermal resistance (m2K/W) 
thermal resistance of the added material (m2K/W) 
thermal resistance of the plaster (m2K/W) 
reciprocal of ehr 

thermal resistance at the inside surface 
thermal resistance at the outside surface 
total thermal resistance 
transform thermal resistance 
transform thermal resistance 
thermal resistance of the void 

tai indoor air temperature 
tao outdoor air temperature 
te dry resultant temperature 
tei indoor environmental temperature 
teo outdoor environmental temperature 
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tj indoor temperature 
to outdoor temperature 
tr mean radiant temperature 
ts surface temperature 
U thermal transmittance coefficient (W/m2K) 

Heat conduction can occur in solids. It can also occur in liquids and 
gases in which the vibrating molecules are unable to break free from 
each other because of the presence of boundary surfaces having a small 
temperature differential. 

The air gap in an external cavity wall of a heated building at normal 
temperatures will contain still air since the temperature difference 
between indoors and outdoors is insufficient for the air to generate 
convection currents resulting from the density difference of the air 
between the inside surface and the outside surface of the cavity. 

If the air gap is increased to more than 75 mm there is sufficient 
room for the air in the cavity to overcome its own viscosity and the 
resistance at the inside surfaces of the cavity and the difference in 
density will encourage the air to convect naturally. 

The thermal conductivity k of still air is around 0.024 W/mK mak­
ing it an excellent thermal insulation. Convected air on the other hand 
provides very poor thermal insulation. Heat conduction also takes 
place in films of fluids which occur at boundary surfaces such as in 
air at the inner and outer surface of the building envelope and on the 
inside surface of pipes and ducts in which water and air respectively 
are flowing. In these circumstances the heat conduction is considered 
either as a surface conductance h sj , hso or as a surface thermal resis­
tance R. 

The CIBSE Guide, section A3 lists typical values of thermal con­
ductivity for different materials employed in the building process. This 
is reproduced in Table 2.1. 

Thermal conductivity is one of the properties of a substance. In 
liquids and gases it is affected by changes in temperature more than 
in solids. The thermal conductivity of porous solids is affected by the 
presence of moisture. This is the reason why in Table 2.1 the outer leaf 
of a brick wall has a higher thermal conductivity than the inner leaf. 

Heat conduction can be considered as taking place radially out­
wards as in the case of an insulated pipe transporting a hot fluid; in 
two directions as in the case of a floor in contact with the ground and 
air; and in one direction as in the case of heat flow at right angles 
through the external building envelope. 

This mode of heat transfer is commonly associated with that through 
the building structure (Figure 2.1). 

2.1 Introduction 

2.2 Heat conduction 
at right angles to the 
surface 
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Table 2.1 Properties of materials used in buildings reproduced from the CIBSE Guide 
(1986) (by permission of the Chartered Institution of Building Services Engineers) 

Material Density Thermal conductivity 
(kg/m3 ) 

Walls 
(Extemal and Internal) 
Asbestos cement sheet 700 
Absestos cement decking 1500 
Brickwork (outer leaf) 1700 
Brickwork (inner leaf) 1700 
Cast concrete (dense) 2100 
Cast concrete (lightweight) 1200 
Concrete block (heavyweight) 2300 
Concrete block (mediumweight) 1400 
Concrete block (lightweight) 600 
Fibreboard 300 
Plasterboard 950 
Tile hanging 1900 

Surface Finishes 
External rendering 1300 
Plaster (dense) 1300 
Plaster (lightweight) 600 

Roofs 
Aerated concrete slab 500 
Asphalt 1700 
Felt/Bitumen layers 1700 
Screed 1200 
Stone chippings 1800 
Tile 1900 
Wood wool slab 500 

Floors 
Cast concrete 2000 
Metal tray 7800 
Screed 1200 
Timber flooring 650 
Wood blocks 650 

Insulation 
Expanded polystyrene (EPS) slab 25 
Glass fibre quilt 12 
Glass fibre slab 25 
Mineral fibre slab 30 
Phenolic foam 30 
Urea formaldehyde (UF) foam 10 

Note: 
Surface resistances have been assumed as follows: 
External walls Rso = 0.06 m2 K/W 

Rsi = 0.12 m2 K/W 
Ra = 0.18 m2 K/W 

Roofs Rso = 0.04 m2 K/W 
Rsi = 0.lOm2 K/W 

(W/mK) 

0.36 
0.36 
0.84 
0.62 
1.40 
0.38 
1.63 
0.51 
0.19 
0.06 
0.16 
0.84 

0.50 
0.50 
0.16 

0.16 
0.50 
0.50 
0.41 
0.96 
0.84 
0.10 

1.13 
50.00 
0.41 
0.14 
0.14 

0.035 
0.040 
0.035 
0.035 
0.040 
0.040 

Ra = 0.18 m2 K/W (pitched) 
Ra = 0.16 m2 K/W (flat) 

Internal walls Rso = Rsi = 0.12 m2 K/W 
Ra = 0.18m2 K/W 

Internal floors Rso = Rsi = 0.12 m2 K/W 
Ra = 0.20 m2 K/W 

Specific heat capacity 
U/kg K) 

1050 
1050 
800 
800 
840 

1000 
1000 
1000 
1000 
1000 
840 
800 

1000 
1000 
1000 

840 
1000 
1000 
840 

1000 
800 

1000 

1000 
480 
840 

1200 
1200 

1400 
840 

1000 
1000 
1400 
1400 
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Inside surface 
resistance 

Outside surface 
resistance 

Figure 2.1 Conductive heat flow through a composite wall. 

Fourier's law for one-dimensional steady-state heat flow through a 
single slab of homogeneous material at right angles to the surface is: 

1= kdt/L W/m2 
where dt = temperature difference across the faces of the slab. 
This law has its limitations because we usually work from the tem­
perature indoors to the temperature outdoors and this includes the 
inside and outside surface resistances Rsi and Rso. Furthermore there is 
frequently more than one slab of material in the building structure 
being considered. 

A more appropriate generic formula is given below in which indoor 
temperature to tai, tei and tc are for convenience considered to be equal 
in value and denoted here as ti, and outdoor temperature tao and teo are 
considered equal and are denoted here as to 

Rt = (l/hsi ) + 2)L/k) + Ra + l/hso = l/U m2K/W 

Where the thermal resistance R for each element in the composite 
structure is 

R = L/km2K/W 
In the context of heat conduction the reciprocal of the surface con­
ductance hsi , hso at the inside and outside surfaces is normally used 
thus: 

Rsi = l/hsi and Rso = l/hso 
and the generic formula becomes: 

Rt = Rsi + 2:)L/k) + Ra + Rso = l/U m2K/W (2.1) 

From which the thermal transmittance coefficient or U value for the 
composite structure which includes surface film resistances is calcu­
lated. 

It follows that the intensity of heat flow (heat flux) I will be: 

1= U(ti - to) W /m2 (2.2) 
Furthermore from equations (2.1) and (2.2) 1= dt/Rt W/m2 
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If indoor to outdoor temperature difference dt is steady the heat flux 
I will be steady. Thus dt / Rt = I = Constant, and therefore 

dt IX R 

so 

(2.3) 

This allows the determination of face and interface temperatures in a 
composite structure at steady temperatures. 

The conductive heat flow through the composite structure may be 
determined from: 

Qs = UA(ti - to) W 

Consider the conductive heat flow path through a composite structure 
having two structural elements and an air cavity, Figure 2.2. 

Equation (2.3) may be adapted as follows: 

(ti - tt}/Rsi = (ti - to)/Rt from which tlcan be determined. 

Similarly: (ti - t2)/(Rsi + RI) = (ti - to)/Rt from which t2 can be cal­
culated, and so on. The conductive heat flow through a composite 
structure may be adapted to determine the heat flow, through an 
external building envelope, for example, consisting of a number of 
different structures, e.g. walls, glazing, floor, roof and doors as follows: 

(2.4) 

It is not the purpose of this book to undertake building heat loss 
calculations which must include also the heat loss due to infiltration 
and which are conveniently done using appropriate software, the 
manual method being analysed in Heating and Water Services Design 
in Buildings. 

-------+~--~~---H----+~ 

Figure 2.2 Heat flow path through a composite structure. 



 

Radiant heating 

Convective heating 

Figure 2.3 Heat flow paths. 

However it is appropriate here to point out that in practice the 
thermal indices to to tei and tai are rarely equal in a heated building. 
This is due to the type of heating system adopted and to an extent upon 
the level of thermal insulation and natural ventilation. For example, 
the heat flow path for a building heated by radiant heaters is different 
to that heated by fan coil units or unit heaters. In the first case the 
radiant component of heat transfer may be as high as 90% of the total 
whereas in the second case the convective component of heat transfer 
will be 100% with no component of heat radiation at all. This clearly 
has an effect on the heat flow paths through the thermal indices 
(Figure 2.3). Equation (2.4) therefore will provide an approximate 
structural heat loss. A more accurate methodology involves the surface 
conductance hs• 

Heat conductance hs in the surface film combines the coefficients of 
heat transfer for convection he and radiation ehr thus: 

hs = ehr + he W/m2K 

For indoor temperatures around 20 0 e and using an average value for 
the heat transfer coefficient for convection and a typical emissivity 
with the radiation coefficient: 

hs = (0.9 x 5.7) + 3.0 = 8.13 W/m2K 

From which Rsi = l/hs = 1/8.13 = 0.123 m2K/W 
This agrees with the value for Rsi listed in Table 2.1 and assumes 

that tr and tai are equal. Since this rarely is the case the resulting 
conductive heat flow must be approximate but is considered good 
enough for most U value calculations. 

A more accurate calculation can be obtained by separating the 
components of convection and radiation thus: 

(2.5) 

Surface conductance 29 

2.3 Surface 
conductance 
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Example 2.1 
A room is held at an air temperature of 200 e when outdoor tem­
perature is -1°e and under steady conditions the inside surface 
temperature of the external wall is measured at 17.5°C. Assuming a 
wall emissivity of 0.9 determine: 

(i) the rate of conductive heat flow through the wall if tr = ts; 
(ii) the rate of heat flow through the wall when tr = tai; 
(iii) the rate of heat flow through the wall when tr = 21°C. 

Solution 
(i) 1= ehr(tr - ts) + he (tai - ts) 

1= 3(20 -17.5) = 7.5W/m2 of wall. 
(ii) 1= 0.9 x 5.7(20 - 17.5) + 3(20 - 17.5) 

I = 20.325 W /m2 of wall. 
Also 

1= hs((tr,tai) - ts) = 8.13(20 -17.5) = 20.325W/m2 

furthermore 

1= ((tr,tai) - ts)/Rsi = (20 -17.5)/0.123 = 20.325W/m2 . 

(iii) Clearly in this case the room is radiantly heated for tr > ts and 
1= 0.9 x 5.7(21- 17.5) + 3(20 -17.5) 
I = 25.455 W /m2 of wall. 

Summary for Example 2.1 
Note the variations in conductive heat flow: 

Case ta; t, ts to Heat flux in W 1m2 

(i) 20 17.5 17.5 -1 7.5 
(ii) 20 20 17.5 -1 20.325 
(iii) 20 21 17.5 -1 25.455 

In case (ii) we have the standard method for determining the U 
value which is when tr is assumed to be the same as tai, thus from 
equation (2.2): 

1= U.dt and therefore the external wall U = I/dt = 20.325/ 
(20 + 1) = 0.968 W /m2K. Clearly the heat flux in case (iii) is 
greater than in case (ii). This will have the effect of increasing 
the structural heat loss in radiantly heated buildings. The deter­
mination of plant energy output Qp accounts for this whereas 
the calculation of structural heat loss adopting equation (2.4) 
may not and therefore may only provide an approximation of 



 

structural heat flow at steady temperatures as the summary to 
Example 2.1 shows. The heat flow paths for the wall are shown 
in Figure 2.4. 

(i) NI'v ts Nv ) . . . 
ta; t, to 

t NI'v Nv (ii) : ) 
ta; ts to 

(iii) 
t, to 

Figure 2.4 Example 2.1 - heat flow paths. 

Example 2.2 
An external cavity wall is constructed from the components shown 
below. From the data determine the rate of conductive heat flux at 
right angles to the surface and calculate the temperature at each face 
and interface. 

Wall construction: inner leaf 10 mm lightweight plaster, 
110 mm lightweight concrete block lined on the cavity face with 
2Smm of glass fibre slab, air space SOmm, outer leaf 110mm 
brick. 

Data: indoor air temperature 23°C, indoor mean radiant tem-
perature 18°C, outdoor temperature -2°C; 

thermal conductivities and outside surface resistance are taken 
from Table 2.1 
inside surface convective heat transfer coefficient he = 3.0 W /m2K 
inside surface heat transfer coefficient for radiation ehr = 
S.13W/m2K. 

Solution 
If temperatures remain steady a heat balance may be drawn such 
that: heat flow from the indoor radiant and air points to the inside 
surface ts = heat flow from the inside surface ts to the outdoor 
temperature to. 

Combining equations (2.3) and (2.5) the heat balance becomes: 
ehr(tr - ts) + he(tai - ts) = (ts - to)/R from which ts may be 

determined. 

Surface conductance 31 
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Thermal resistance R is taken here from the inside surface to the 
outside to and 

R = (0.01/0.16) + (0.110/0.19) + (0.025/0.035) + 0.18 
+ (0.110/0.84) + 0.06 

R = 1.7268 m2K/W 
substituting: 5.13(18 - ts) + 3(23 - ts) = (ts + 2)/1.7268 
thus 159 - 8.86ts + 119 - 5.18ts = ts + 2 
from which ts = 18.4°C 

The remaining interface temperatures can now be determined 

(ts - td/Rp = (ts - to)/R 

substituting: (18.4 - td/0.0625 = (18.4 + 2)/1.7268 = 11.814 
from which t1 = 17.66°C 

(ts - t2)/(Rp + Rc) = (ts - to)/R 

substituting: (18.4 - t2)/(0.0625 + 0.579) = 11.814 from which 
t2 = 10.82°C 

(ts - t3)/(Rp + Rc + Ri) = (ts - to)/R 

substituting: (18.4 - t3)/(0.0625 + 0.579 + 0.714) = 11.814 from 
which t3 = 2.39°C 

(ts - t4)/(Rp + Rc + Ri + Ra) = 11.814 

substituting: (18.4 - t4)/(0.0625 + 0.579 + 0.714 + 0.18) = 11.814 
from which t4 = 0.26°C 

(t5 - to)/Rso = (ts - to)/R 

substituting: (t5 + 2)/0.06 = 11.814 from which t5 = -1.29°C 

Summary for Example 2.2 
The inside surface temperature of the external wall is obtained by 
separating the heat transfer coefficients for convection and radia­
tion since tr does not equate with tai. The heat flow path for the wall 
is shown in Figure 2.5. 

The dew point location in the wall should be checked. It should 
occur in the outer leaf where vapour can migrate to outdoors. A 
vapour barrier may be required on the hot side of the thermal 
insulation, that is at the interface of the plaster and the inner 
leaf of the wall, to inhibit vapour flow from indoors to out­
doors. 
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lB'C 
t, 

lB.4 17.66 10.B2 2.39 0.26 -1.29 -2'C 

ts 11 12 t3 14 t5 to 

Figure 2.5 Example 2.2 - the heat flow path. 

Heat loss through a solid floor in contact with the ground consists of 
two components: 

edge loss 
ground loss 

The edge loss is the more significant component and so rooms having 
ground floors with four exposed edges will have a greater heat loss 
than rooms with floors having fewer exposed edges. 

The formula for the thermal transmittance coefficient U for solid 
floors in contact with the ground is given as: 

U = (2keB)j(0.5b1l") artanh (0.5bj(0.5b + 0.5w)) W jm2K (2.6) 

where b = breadth (lesser dimension) of the floor in m 
w = thickness of surrounding wall taken to be 0.3 m 
ke = thermal conductivity of earth 

=1.4WjmK 

This depends upon the moisture content and ranges from 0.7 to 
2.1 WjmK 

B = exp(0.5bjLf) = (2.7183)(o.Sb jLf ) 

Lf = length (greater dimension) of floor in m. 

artanh is one of the logarithmic forms of the inverse hyperbolic func­
tions and is expressed in mathematical terms as: 

artanh(xja) = 0.51n((a + x)j(a - x)) 

If another material is added to the composite structure its thermal 
transmittance Un can be adjusted thus: 

(2.7) 

where R j is the thermal resistance of the added material. 

2.4 Heat conduction 
in ground floors 
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Example 2.3 
A floor in contact with the ground and having four exposed edges 
measures 20 m by 10 m. 

(a) determine the thermal transmittance for the floor; 
(b) if the floor is surfaced with 15 mm of wood block having a 

thermal conductivity of 0.14 W/mK, determine its thermal 
transmittance coefficient; 

(c) if the floor has a 25 mm thermal insulation membrane of EPS 
having a thermal conductivity of 0.035 W/mK in addition to its 
wood block finish, determine the transmittance coefficient. 

Solution (a) 

B = exp(0.5 x 10/20) = exp(0.25) = 2.7183°·25 = 1.284 
from the mathematical expression of artanh: 

artanh(5/(5 + 0.15)) = 0.5In((5.15 + 5)/(5.15 - 5)) 
= 0.5In( 67.667) = 2.1073 

substituting in equation (2.6) 

U = ((2 x 1.4 x 1.284)/(0.5 x 10 x 11")) x 2.1073 = 0.482W/m2K 

Solution (b) 
From equation (2.7) which accounts for floor finish: 

Un = l/((l/U) + Ri ) = 1/((1/0.482) + (0.015/0.14)) 
= 1/(2.0747 + 0.107) 

Un = 0.46 W /m2K 

Solution (c) 
From equation (2.7) 

Un = 1/((1/0.46) + (0.025/0.035)) = 1/(2.174 + 0.714) 
Un = 0.346W/m2K 

Summary for Example 2.3 

floor data 
basic 
plus floor finish 
plus floor finish and insulation membrane 

Note: 

U value 
0.482W/m2K 
0.46 
0.346 

(i) the floor structure does not playa part in the determination of 
the U value for floors in contact with the ground. The thermal 
conductivity of the earth ke (equation (2.6)) is accounted for. 
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(ii) the effect of reducing the number of exposed edges from four 
to two lowers the thermal transmittance by about half here. 

(iii) the determination of the heat flux I to ground in practical heat 
loss calculations is based upon the indoor to outdoor design 
temperature differential and not indoor to ground temperature. 

A suspended ground floor above an enclosed air space is exposed to air 
on both sides. The air temperature below the floor will be higher than 
outdoor air temperature when it is at winter design condition because 
of the low rate of ventilation under the floor. 

The heat flow paths are shown in Figures 2.6a and 2.6b. 
Figure 2.6b is the equivalent flow path which can assist in the 

determination of the thermal transmittance coefficient. 
The nomenclature for Figure 2.6 is as follows: 

Rg = thermal resistance through floor slab = L / k m2 K/W 
Rtl' Rt2 = transform resistances from delta to star 
Rtl = Rr.Rc/(Rr + 2Rc) 
Rt2 = Rc2/(Rr + 2Rc) 
Rr = 1/ehr = 1/(0.9 x 5.7) = 0.2 m2K/W 

Rc = 1/hc = 1/1.5 = 0.67m2K/W 

tei 

Rsi 

Floor 
Rg 

slab 

Rt1 

R, ta 

Rt2 
Re Ground 

(a) Rv 

(b) 

Rt1 

Re 

Figure 2.6 (a) Delta arrangement; and (b) star arrangement, of thermal resistance 
network through suspended ground floors (Example 2.4). 

2.5 Heat conduction 
in suspended ground 
floors 
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where the heat transfer coefficient he downwards at normal temper­
atures is 1.5W/m2K, thus Rt1 = (0.2 x 0.67)/((0.2 + (2 x 0.67)) = 
0.09m2K/W 

and Rt2 = (0.67)2/((0.2 + (2 x 0.67)) = 0.29m2K/W 
Rv = ventilation resistance = 0.63b 

Re = (l/U) - Rsi 
where the surface film resistance Rsi downwards is taken as 
0.14m2K/W. 

The thermal resistance R of the suspended ground floor following 
the heat flow path in Figure 2.6b can be shown as: 

R = Rsi + Rg + Rt1 + [(1/(Rt1 + Re)) + (1/(Rt2 + Rv))r1 (2.8) 

Example 2.4 
A suspended ground floor consists of 280 mm of cast concrete and 
measures 20 m by 10m and has four exposed edges. Determine the 
thermal transmittance coefficient for the floor. 

Solution 
Rg = L/k where the thermal conductivity of cast concrete from 
Table 2.1 is 1.4 W/mK thus: Rg = 0.28/1.4 = 0.2m2K/W 

Rr = 0.2 m2K/W from above 
Re = 0.67 m2K/W from above 
Rt1 = 0.09 m2K/W from above 

Rt2 = 0.29 m2K/W from above 

The floor in this example is the same size as that in Example 2.3 and 
without a floor finish or thermal insulation membrane that U value 
was calculated as 0.482 W /m2K. 

Make sure you have followed this procedure before continuing. 
Taking the same conditions for the suspended ground floor in this 
example to find Re: 

Re = (l/U) - Rsi = (1/0.482) - 0.14 = 1.935 m2K/W 
Rv = 0.63 x 10 = 6.3 m2K/W 

Rsi = 0.14 m2K/W from text above 

Substituting these values for the terms in equation (2.8): 
R = 0.14 + 0.2 + 0.09 + [1/(0.09 + 1.935) + 1/(0.29 + 6.3)r1 

R = 0.43 + (0.494 + 0.152)-1 
R = 0.43 + 1.55 
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R = 1.98 m2K/W 

since U = l/R = 1/1.98 = 0.505W/m2K. 

Summary for Example 2.4 
Note: 
(i) that the thermal transmittance coefficient for the floor in con­

tact with the ground must be determined first. This U value is 
then used to determine Re which is in equation (2.8) for sus­
pended ground floors. 

(ii) if the floor has a finish of 15 mm thick wood block and a 
25 mm thermal insulation membrane of EPS its thermal trans­
mittance can be found adapting equation (2.7) 

thus Un = l/((l/U) + Rw + Ri) 
and Un = 1/((1/0.505) + (0.015/0.14) + (0.025/0.035)) 

from which Un = 1/(1.98 + 0.107 + 0.714) = 0.357W /m2K. 

(iii) the comparison of the transmittance coefficients for the floor 
in contact with the ground (Example 2.3) and the suspended 
ground floor, each with four exposed edges can now be made. 

Floor structure 

no insulation or finish 
with insulation and finish 

suspended 
ground floor 

0.505 
0.357 

floor in contact 
with ground 

0.482 
0.346 

External walls may not have a thermal transmittance which is consist­
ent over the wall area. Structural columns may form thermal bridges in 
a cavity wall. At these points the rate of conductive heat flow is high 
compared with that of the wall. The joisted flat roof is another 
example where the U value for the joisted part of the roof will be 
different to that for the spaces between the joists. That part of the 
structure having the higher U value is usually considered as the ther­
mal bridge and will therefore cause the inside surface temperature to 
be at a lower value than the rest of the inner surface. Thermal bridges 
having high U values can cause discoloration of the inside surface and 
in extreme cases condensation. 

There are three types of thermal bridge: 

1. Discrete bridges. These include lintels and structural columns 
which are flush with the wall or take up part of the wall thickness. 

2. Multi-webbed bridges which include hollow building blocks. 
3. Finned element bridges where the structural column protrudes 

beyond the width of the wall. 

2.6 Thermal 
bridging and non­
standard U values 
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tl------+--' 1------,--------2------,---1 ------1f 
Heat flow ----' L Discrete thermal bridge 

Figure 2.7 A thermally bridged wall. 

For walls with discrete bridges the average thermal transmittance 

U = Pl.Ul + P2·U2 
where Pl = unbridged area/total area 
and P2 = bridged area/total area 

Refer to Figure 2.7. 
For finned element bridges the bridged area in the calculation of 

P2 includes the surface area of the protruding part of the thermal 
bridge. 

For a twin leaf wall with a discrete bridge in one of the leaves 

U = l/(Rb + Rh) 
where Rb = bridged resistance = l/((PdRd + (P2/R2 )) 

and RI = Rsi + L/k + O.SRa 
and R2 = Rsi + L/k + O.SRa (bridge) 

Rh = homogeneous resistance = O.SRa + L/k + Rso 

Refer to Figure 2.8. 

:: ::1---~ -------,-----1-2-1- - -~ -- -r - - - - - - -+-
r Heat flow I 

Thermal bridge -----' 

Figure 2.8 Cavity wall with bridge in inner leaf. 

Example 2.5 
Determine the non-standard U value for the bridged external wall 
shown in Figure 2.8. 

Data: Rsi = 0.12, Rso = 0.06, Ra = 0.18m2K/W, kb = 0.84, 
ki = 0.19, k2 = 1.4 W/mK, PI = 10%, P2 = 90%. 



 

Non-standard U values, multi-webbed bridges 39 

Solution 
The data imply an external wall with concrete columns at intervals 
on the inner leaf. 

Adopting the formulae in the text above: 

Rh = (0.5 x 0.18) + (0.1/0.84) + 0.06 = 0.269 m2K/W 
RI = 0.12 + (0.15/0.19) + (0.5 x 0.18) = 0.9995 m2K/W 
R2 = 0.12 + (0.15/1.4) + (0.5 x 0.18) = 0.317m2K/W 
Rb = 1/((0.9/0.9995) + (1/0.317)) = 0.822m2K/W 

substituting for the non-standard U value: 

U = 1/(0.822 + 0.269) = 0.917 W/m2K 

When considering the thermal transmittance for a hollow block the 
effect of lateral heat flow is significant. See Figure 2.9 An approximate 
calculation of the mean thermal resistance involves dividing the hol­
low block in two planes and employing the area weighted average 
thermal resistance (AWAR). 

Consider the hollow block shown in Figure 2.10. By dividing the 
block into horizontal sections as shown in Figure 2.10 

Ra = 2L/k 
AWAR AdRb = (A2/Rv) + (AI - A2 )/(L/k) 

from which Rb is found and 

Rc = Ra +Rb 

l[JThermal I I b,;dg, 

~ I I I II 
r-- -

Lines of conductive 
heat flow 

Figure 2.9 Non-uniform heat flow through a hollow block wall. 

I 

2.7 Non-standard U 
values, multi-webbed 
bridges 
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A1 

A2 

I 
A1 

I t: A2 

Plan of hollow block 

The hollow block cut 
horizontally 

The hollow block cut 
vertically 

Figure 2.10 Thermal resistance of the hollow block. 

By dividing the block into vertical sections as shown in Figure 2.10 

Ra = L/k 
Rb = (2L/k) + Rv 
AWARAdRd = (AI -A2)/Ra + (A2/Rb) 

from which Rd is found and 

Rm = O.S(Rc + Rd) 

and the non-standard thermal transmittance U = 1/ (Rsi + Rm + Rso) 
Clearly the hollow block will normally form part of the wall struc­

ture. If it is rendered on the outside and plastered on the inside, for 
example, the non-standard thermal transmittance will be 

U = l/(Rsi + Rp + Rm + Rr + Rso) 
Where Rp and Rr are the thermal resistances of the plaster and render­
ing respectively. 
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Example 2.6 
Figure 2.11 shows an external hollow block wall rendered on the 
outer face and plastered on the inner face. From the data determine 
the non-standard thermal transmittance coefficient for the wall and 
hence the heat flux, given indoor temperature is 20°C and outdoor 
temperature is -5°C. 

I 

50 mm ~ I 

350mm 

I 

450 x 225 mm 

~ ! 15mm 

150mm 

10mm 

Figure 2.11 Hollow block wall (Example 2.6). 

Data: External wall specification: 15 mm of external rendering, 
medium weight hollow concrete block with air cavity filled with 
EPS, 16 mm of lightweight plaster. Thermal and film properties 
taken from Table 2.1. 

Solution 
You should now refer to Figure 2.10 which shows the way in which 
the block is cut for the purposes of determining the two thermal 
resistances Rc and Rd' 

It is also important to identify the calculation procedure for the 
hollow block in the text above. 

Slicing the block horizontally we have: 

Ra = 2L/k = 2 x 0.05/0.51 = 0.196 
Hollow block dimensions and face and void surface areas: 

Al =450 x 225 = 101250thisisapproximatelyequivalentto 100 
A2 = 350 x 225 = 78750 this is approximately equivalent to 79 

thus AWAR AdRb = (A2/Ry) + (AI - A2 )/(L/k) 
Note that Ry is not a void/air cavity here as it is filled with EPS 

100/Rb = (79/(0.05/0.035)) + ((100 - 79)/(0.05/0.51)) 
from which Rb = 0.371 

now Rc = Ra + Rb = 0.196 + 0.371 = 0.567m2K/W 
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2.8 Radial conductive 
heat flow 

Slicing the block vertically we have: 

Ra = L/ k = 0.15/0.51 = 0.294 
Rb = (2L/k) + Rv = (0.1/0.51) + (0.05/0.035) = 1.6246 

Note again that Rv in this case is not a void/air cavity as it is filled 
with EPS 

AWAR AdRd = ((A1 - A2 )/Ra) + A2/Rb 
100/Rd = ((100 -79)/0.294) + (79/1.6246) 

from which Rd = 0.833 m2K/W 

now Rm = 0.5(Rc + Rd) = 0.5(0.567 + 0.833) = 0.7m2K/W 
for the composite wall R = Rsi + Rp + Rm + Rr + Rso 

R = (0.12) + (0.01/0.16) + (0.7) + (0.015/0.5) + (0.06) 
R = 0.9725 m2K/W 

The non-standard U value for the wall will therefore be: 

U = l/R = 1/0.9725 = 1.03W/m2K 
The conductive heat flux 

1= Udt = 1.03 x (20 + 5) = 25.75 W /m2 of wall 

Summary for Example 2.6 
This is an average rate of heat flow through the wall. Thermal 
bridges are formed between the cavities filled with EPS and may 
result in discoloration on the inside surface of the plaster due to 
surface temperature variations along the wall. 

A thermal bridge is a path located through a structure where the 
rate of heat flow is substantially increased as a result of the mater­
ials used. 

For plane (flat) surfaces, surface area A is constant and Q = UAdt W. 
For cylinders and spheres surface area is not constant either for multi­
ple layers of material or for single layers having a measurable thick­
ness. Thus as the radius increases through the thermal insulation 
material surrounding a pipe transporting hot or chilled water, for 
example, so does the surface area of the insulation surrounding that 
pIpe. 

If Am = the mean surface area of each layer of thermal insulation 
around the pipe, then from Fourier's equation for a single layer: 

Q = kAmdt/L W 
This can be rewritten as 

Q = dt/(L/kAm) 
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Thus for multiple layers of insulation around a pipe: 

Q = dt/2:)L/kAm)W 
Where dt = temperature differential between the inside pipe surface 
and the outside insulation surface. 

If dt is taken from the fluid flowing inside the pipe to the outside air: 

(2.9) 

Am is the logarithmic mean area of each layer of material and Ai and 
Ao are the inside and outside surface areas respectively. 

For cylinders 
(2.10) 

You can see here the similarity with the surface area of a cylinder 
A = nLd. 

Furthermore Am is approximately equal to 1r((d1 + d2 )/2)L. You 
should confirm this in Example 2.7 below. 

For spheres 
Am = 1rd1d2 for each thermal insulation layer (2.11) 

This is one of the two methodologies for introducing radial heat flow in 
pipes and circular ducts having one or more layers of thermal insulation. 

Example 2.7 
A cylindrical vessel 4 m diameter and 7 m long has hemispherical 
ends giving it an overall length of 11 m. The vessel which stores 
water for space heating at 85°C is covered with 300 mm of lagging 
which has a thermal conductivity of 0.05 W/mK. Determine the 
heat loss from the vessel to the plant room which is held at 22°C. 

Take the outside surface heat transfer coefficient as 12W /m2K 
and ignore the influence of the vessel wall and the inside heat 
transfer coefficient. 

Solution 
Since the inside heat transfer coefficient and the vessel wall thick­
ness is not accounted for, equation (2.9) for cylinders needs adapt­
ing and: 

Q = dt/(L/(kAm) + (l/hsoAo)) 
Where here dt = (85 - 22) and from equation (2.10) 

Am = 1r(4.6 -4.0)7/1n(d2/d1) = 94.38m2 

Ao = 1r X 4.6 X 7 = 101.16m2 

Substituting we have: 
Q = (85 - 22)/(0.3/0.05 X 94.38) + (1/(12 x 101.16)) 
Q = 63/(0.0636 + 0.0008) 
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You can see that the effect of the last term involving hso and Ao is 
insignificant, thus for the cylinder Q = 978 W. 

The hemispherical ends of the vessel form a sphere, for the loga­
rithmic mean area Am of which, equation (2.11) can be used and: 

Am = 7f X 4.0 X 4.6 = 57.8m2 

Ignoring the effect of hso, the heat loss from the hemispherical ends 
of the vessel will be: 

Q = dt/(L/kAm ) 

substituting: 

Q = (85 - 22)/(0.3/0.05 X 57.8) = 607 W 
The total heat loss from the vessel to the plant room = 978 + 607 = 
1585W. 

The classical methodology for developing a formula for radial heat 
flow integrates Fourier's law for one-dimensional heat flow. 

Thus: Q = -kAdt/drW for a single layer of material. 

Considering unit length of a cylinder L where A = 27frL 
Q/L = -k(27fr)dt/dr W /mrun 

If temperatures are steady Q remains steady and the temperature 
gradient from the fluid flowing in the pipe to surrounding air decreases 
with increasing radius r. 

Integrating between the limits r1 and r2, refer to Figure 2.12: 

12 (Q/L)dr/r = -12 7fkdt 

(Q/L)lnh/rI) = -27fk(t1 - t2) 
From which Q/L = -27fk(t1 - t2)/ln(r2/rI) W /m for a single layer 
of material. The minus sign indicates a heat loss and may be ignored. 

For a multilayer cylindrical wall: 

Q/L = (27fdt)/((1/r1hsi) + ((lnr2/r1)/k2) 
+ ((lnr3/r2)/ k3) ... + (l/(rnhso)) W /m run 

Homogeneous m . .::.:at=er=ial'----'..-->-~ 

Pipe in which hot fluid 
is flowing, wall 
thickness omitted 

Figure 2.12 Radial heat flow integrating between the limits Of'l and '2. 

(2.12) 
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Example 2.8 
A 50 m length of steam pipe connects two buildings and carries 
saturated steam at 29 bar gauge. The pipe has an internal diameter 
of 180 mm, a wall thickness of 19 mm and is covered by two layers 
of thermal insulation. The inner layer is 20 mm thick and the outer 
layer is 25 mm thick. The thermal effect of the outer protective 
casing to the pipe insulation can be ignored. 

Determine the rate of heat loss from the pipe. 
Data: outdoor temperature 5°C; thermal conductivity of pipe 

wall kw = 48, inner layer of insulation k i = 0.035, outer layer of 
insulation ko = 0.06W /mK; heat transfer coefficient at the pipe 
inner surface hsi = 550, heat transfer coefficient at the outer layer 
insulation surface hso = 18W/m2K. 

Solution 
Refer to Figure 2.13. r1 = 90, r2 = 109, r3 = 129 and r4 = 154mm 
from the tables of Thermodynamic and Transport Properties of 
Fluids the temperature of saturated steam at 30barabs. = 234°C. 
Substituting data into equation (2.12) 

20 mm inner 
insulation 

25 mm outer insulation 

'---- Pipe 180 mm diam 

Figure 2.13 Insulated steam pipe (Example 2.8). 

Q/L = 27f(235 - 5)/[(1/0.9 x 550) + ((ln109/90)/48) 
+ ((ln129/109)/0.035) + ((ln154/129)/0.06) 
+ (1/0.154 x 18)] 

Note the ratios of r2/r1 etc. are kept in millimetres for convenience 
without loss of integrity. 

Q/L = 1439/(0.002 + 0.004 + 4.813 + 2.952 + 0.361) 
Q/L = 1439/8.132 = 177 W /m run 

Q=177x50=8847W 

Summary for Example 2.8 
You can see that the effect of the inside heat transfer coefficient hsi 
and the pipe wall is insignificant and therefore frequently ignored in 
the solution to this type of problem. 
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Example 2.9 
Determine from the data the thickness of thermal insulation to be 
applied to a pipe conveying water over a distance of 100 m if its 
temperature is not to fall below 79°C 

Data: 
outdoor temperature 
initial water temperature 
water flow rate 
outside diameter of the pipe 
specific heat capacity of water 
thermal conductivity of the insulation 
coefficient of heat transfer at the outside 

surface of the insulation 

Solution 

-1°C 
SO°C 
1.5 kg/s 
66mm 
4200Jlkg/K 
0.07W/mK 

The effect of the heat transfer coefficient at the inside surface of the 
pipe can be ignored. The effect of the thickness of the pipe wall may 
be ignored. The temperature of the outer surface of the pipe can 
therefore be taken as SO°C at the beginning of the pipe run and 
79°C at the end of the run. 

Now the maximum heat loss from the pipe will be: 

Q/L = MCdt/L = (1.5 x 4200 x (SO - 79))/100 = 63 W/mrun 
This is equivalent to a heat loss of 63/C7rdL) W /m2 

= 63/(7r x 0.066 x 1) = 304 W/m2 
The mean temperature of the pipe surface = (SO + 79)/2 = 79.5 °C 

Let z = insulation thickness in metres 
Adopting equation (2.12) 

63 = (27r(79.5 + 1))/[ln((0.033 + z)/(0.033)/0.07) 
+ (1/10(0.033 + z)]. 

Collecting the common factors on the left hand side and inverting 
the formula: 

16l7r/63 = (In (0.033 + z)/0.07) + 1/10(0.033 + z). 
This may be written as S.03 = Y + W 

If values are now given to z then the terms Yand W in the formula 
can be reduced to numbers. The results are given in Table 2.2. 

From the tabulated results in Table 2.2 it can be observed that the 
insulation thickness lies between 16 and IS mm for the equation 
S.03 = Y + W to balance. If z and (Y + W) are plotted on a graph 
the thickness may be obtained as 17.3 mm. In practice 20 mm thick 
pipe insulation would no doubt be selected. 
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Table 2.2 Results for solution to Example 2.9 

z 0.033 + z y Z Y+W 

0.01 0.043 3.75 2.33 6.08 
0.012 0.045 4.44 2.22 6.66 
0.014 0.047 5.07 2.13 7.20 
0.016 0.049 5.65 2.04 7.69 
0.018 0.051 6.22 1.96 8.18 
0.020 0.053 6.78 1.89 8.67 

Summary for Example 2.9 
1. The maximum heat loss from the pipe is 63 W/m run. This may 

be converted to a permitted heat loss expressed in W jm2 : 

1= 63j(lrdL) = 63j(1r x 0.066 x 1.0) = 304 W jm2 

2. It is suggested that you now undertake a similar calculation to 
find the minimum thickness of thermal insulation for the pipe 
given a maximum permitted heat loss of 200 W /m2 when out­
door temperature is -1°C. 

The following start may help: 

200W/m2 = (200 x 1'0 x 0.066 x 1.0) = 41.47W/m run of pipe 
since Q/L = MCdtjL dt = ((Q/L) x L)/MC 
thus dt = (41.47 x 100)/(1.5 x 4200) = 0.66K. 

This means that the temperature of the pipelwater at the end of the 
run will be 80 - 0.66 = 79.34°C and the mean temperature will be 
(80 + 79.34)/2 = 79.67°C. This data can now be substituted into 
the formula and values given to z, the insulation thickness. The 
solution comes to 36 mm of pipe insulation. 

Example 2.10 
A sheet steel duct 600 mm in diameter carries air at -25°C through 
a room held at 20°C db and 68% saturated to a food freezing 
processor. Determine the minimum thickness of thermal insulation 
required to prevent condensation occurrence on the outer surface of 
the duct insulation. Recommend a suitable finish to the duct insula­
tion. 

Data: atmospheric pressure 101325 Pa; heat transfer coefficient 
at the outer surface 8 W jm2K; thermal conductivity of duct in­
sulation k = 0.055 W/mK. Ignore the effect of the heat transfer 
coefficient at the inner surface of the duct and the duct thick­
ness. 

47 
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2.9 Chapter closure 

Solution 
From hygrometric data dew-point temperature td of air at 20 0 e db 
and 68% saturated is 14°C. To avoid the incidence of condensation 
the outer surface of the thermal insulation must not fall below this 
temperature. 

A heat balance may be drawn up, assuming steady temperatures, 
and: 

the heat flow from the room the heat flow from the insulation 
to the outer surface of the duct = outer surface to the air in the 

insulation duct. 

Let z = minimum thickness of insulation in metres and adopting 
the classical formula (2.12) for radial heat flow and generic equa­
tion (2.3), modified for the heat balance. 

Thus: 

27r(ti - tso)/(l/hso(O.3 + z)) = 27r(tso - ta)/(ln((O.3 + z)/0.3)/k) 
simplify and substitute: 

(20 - 14)/(1/8(0.3 + z)) = (14 + 25)/(ln((0.3 + z)/0.3)/0.055) 
rearranging the equation: 6 = ((39/(ln((0.3 + z)/0.3)/0.055)) 

(1/8(0.3 + z)) 
this is a simple relationship of 6 = Y x W 

Giving values to insulation thickness z and tabulating in Table 2.3. 

Table 2.3 Results for solution to Example 2.10 

z (0.3 + z) Z Y YW 

0.02 0.32 0.391 33.23 12.99 
0.03 0.33 0.379 22.51 8.53 
0.04 0.34 0.368 17.40 6.31 
0.045 0.345 0.362 15.35 5.55 

Summary for Example 2.10 
From Table 2.3 it is seen that the minimum thickness of duct 
insulation is about 42 mm. The surface finish to the duct insulation 
must be waterproof to ensure against the migration of water or 
vapour into the thermal insulation from the surrounding air. 

You have now been introduced to the principles of conductive heat 
flow and applied these principles to practical applications relating to: 

heat flow through ground floors 
heat flow resulting from non-standard U values 
radial heat flow from thermally insulated pipes, ducts and vessels. 



 

You are familiar with the potential errors in the determination of 
building heat loss when inequalities between indoor air temperature 
and mean radiant temperature are ignored, and the fact that errors are 
most likely where buildings are not thermally insulated or sealed to 
current Building Regulation standards. 
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3 

Nomenclature 

3.1 Introduction 

Heat convection 

C 
d,d 
D 
dt 
Gr 
he 
hsi 
hso 
I 
k 
M 
Nu 
Pr 
Re 
Rf 
T 
Tl 
T2 
Ta 
tf 
Tm 
Ts 
ts 
u 
U 
V 

X,X 

f3 
f-L 
'"'I 
P 

specific heat capacity (kJlkgK) 
characteristic dimension (m) 
characteristic dimension (m) 
temperature difference (K) 
Grashof number 
heat transfer coefficient for convection (W/m2K) 
heat transfer coefficient at the inside surface (W/m2K) 
heat transfer coefficient at the outside surface (W/m2K) 
heatlcooling flux (W/m2K) 
thermal conductivity kW/mK (W/mK) 
mass flow rate (kg/s) 
Nusselt number 
Prandtl number 
Reynolds number 
fouling resistance (m2K/W) 
absolute temperature (K) 
absolute temperature (K) 
absolute temperature (K) 
absolute temperature (K) 
customary temperature (DC) 
absolute temperature (K) 
absolute temperature (K) 
customary temperature (DC) 
mean velocity (m/s) 
thermal transmission coefficient (W/m2K) 
specific volume (m3/kg) 
characteristic dimension (m) 
coefficient of cubical expansion (T-1 ) 
dynamic viscosity (kg/ms) 
kinematic viscosity (m2/s) 
(kg/m3 ) 

Heat convection can occur in liquids and gases when the molecules 
move freely and independently. This occurs as a result of cubical 
expansion or contraction of the fluid when it is heated or cooled, 



 

Panel radiator ---~ 

Free heat convection 
airflow 

Panel radiator 

Surface 
film of 
air 

Figure 3.1 Ai r flow in free convection over panel rad i ator. 

causing changes in fluid density, which initiates movement by natural 
means with the warmer fluid rising and the cooler fluid dropping, due 
to the effects of gravity upon it. This type of movement is termed free 
convection and occurs over radiators and natural draught convectors 
for example (Figure 3.1). 

Forced convection is obtained with the aid of a prime mover such as 
a pump or fan and occurs at the heat exchanger of a fan coil unit, for 
example, with pumped water flowing inside the heat exchanger pipes 
and fan assisted air flowing over the finned heat exchanger surface. See 
Figures 3.2 and 3.3. 

Turbulent~ 

waterflow ~--- Velocity profile 

"------- Film of water 

\ Fins on heat exchanger tube 

on inside surface of pipe 

Figure 3.2 Water flow inside finned tube heat exchanger providing forced con­
vection. 

.--+ __ + Turbulent air flow 

'-. ~ Finned tube heat exchanger 
"--- Prime mover - fan 

Figure 3.3 Air flow in forced convection over a finned tube heat exchanger. 
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Free convection relies on natural forces and its effectiveness in heat 
transfer relies on: 

velocity of the secondary fluid over the heat exchanger surface 
magnitude of the temperature difference between the primary and 

secondary fluids 
size and shape of heat exchanger and its position in space. Refer to 

equations (3.5) to (3.9). 

The velocity of the secondary fluid over the heat exchanger surface 
will influence: 

• type of flow whether laminar or turbulent 
• the leaving temperature of the secondary fluid off the heat exchan­

ger 
• the effect of the film at the interface of the moving secondary fluid 

and the heat exchanger surface on the convective heat transfer 
• the degree of contact between the secondary fluid and the heat 

exchanger surface. 

Forced convection on the other hand is less affected by the shape of the 
heat exchanger or its position in space. It has a positive and directional 
movement and is not so subject to natural forces. However most 
applications of forced convection rely on it as the main mode if not 
the only mode of heat transfer. In the case of unit heaters or fan coil 
units in heating mode, which are mounted at high level/ceiling level, it 
is important to account for the fact that leaving air temperatures make 
the air buoyant and this buoyancy must be overcome to ensure that it 
reaches the working plane. 

There are a number of properties of the fluid flowing which influ­
ence heat convection: 

13, f..L, ,,(, p, k, C, T. 
There are other quantities which are affected or which affect heat 
convection: 

M,dt,hc,u. 
These variables together with appropriate characteristic dimensions 
may be collected in dimensionless groups by analysis as shown here. 
Refer also to Chapter 1t. 

Reynolds number Re = pud / f..L = dM / f..LA = ud / "( 
Nusselt number Nu = hcd/k 
Prandtl number 

Grashof number 
Notes: 

Pr = f..LC/k 
Gr = j3(l) (x3 )dtg/ f..L2 

(i) cubical expansion of gases 13 = 1/Tm K-1 

where Tm = (Ts + Ta)/2 

(3.1 ) 
(3.2) 
(3.3) 

(3.4 ) 
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(ii) properties of air and water at different temperatures can be 
obtained from the tables of Thermodynamic and Transport Prop­
erties of Fluids (51 units) and include: C, k, j.L, p, v, Pr density 
p = l/v 

(iii) before adopting a formula for the purposes of solving a problem it 
is necessary to determine whether the fluid is in laminar flow or 
turbulent flow. Refer to Chapter 6 for a detailed analysis. 

The formulae given in this section have been determined by dimen­
sional analysis (Chapter 11) and the associated constants and indices 
have been determined empirically which is to say by practical experi­
ment. The solutions resulting from application of these formulae must 
therefore be treated as approximate but sufficiently accurate. 

Because of the complexity of determining the heat transfer coeffi­
cient for convection he from a surface, specific formulae have been 
developed for different shapes of surface in various positions in space. 
Some of the more appropriate of these are given here. 

The following Grashof and Reynolds numbers identify the type of 
fluid flow and associated formulae are given. 
Free convection of air over vertical plates: 

Laminar flow Gr < 108 

Turbulent flow Gr> 109 

Laminar flow (Nut = 0.36(Gr)~·25 

Turbulent flow (Nut = O.13((Pr) (Gr)J°.33 
Free convection of air over horizontal plates: 

Laminar flow 1.4 x 105 < (Gr) < 3 x 107 

Turbulent flow 3 x 107 < (Gr) < 3 x 1010 

For hot surfaces looking up and cool surfaces looking down: 

(3.5) 
(3.6) 

Laminar flow he = 1.4((ts - t£)/D)0.25 (3.7) 
For hot surfaces looking down and cool surfaces looking up: 

Laminar flow he = 0.64((ts - t£)/D)0.25 (3.8) 
where D = (length + width)/2 

For hot surfaces looking up and cool surfaces looking down: 

Turbulent flow he = 1.7(ts - t£)0.33 (3.9) 
Forced convection. 
Turbulent flow inside tubes where Re > 2500 

(Nu)d = 0.023(Re)do.8 (Pr)0.33 (3.10) 

Turbulent flow outside tube bundles where Re > 4 x 105 

3.2 Rational 
formulae for free and 
forced heat 
convection 
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3.3 Temperature 
definitions 

(NU)d = 0.44(Re)do.ss (Pr)O.31 

Turbulent flow over flat plates where Re > 1 x 105 

(Nu)x = 0.037(Re)xo.s(Pr)O.33 

Free convection over horizontal cylinders. 
Laminar flow where Gr < lOs for air and water 

(Nu)d = 0.53((Gr)d(Pr))0.2S 
Free convection over vertical cylinders. 
Turbulent flow where Gr > 109 

for air Nu = 0.1((Gr)(Pr))0.33 
for water Nu = 0.17((Gr)(Pr))o.33 

From the above text you will have seen that: 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
(3.15) 

free convection is related to the Grashof number Gr where laminar 
and turbulent flow depends upon its magnitude. 

forced convection is related to the Reynolds number Re where laminar 
and turbulent flow depends upon its magnitude. 

From the Nusselt formula the heat transfer coefficient for con­
vection he is determined and convective heat transfer is obtained 
from: 

Q = he X A X dt W (3.16) 
where dt = surface temperature ts minus fluid temperature tf 

and A = area of heat exchanger surface 

The heat transfer coefficient for convection he is dependent upon the 
magnitude of the difference between the heat exchanger surface 
temperature and the bulk fluid temperature and also upon the thick­
ness of the laminar sublayer on the heat exchanger surface. Refer to 
Chapter 6. 

Various terms are used for temperature and temperature difference in 
convective heat transfer. They include: 

• Mean bulk temperature which refers to the arithmetic mean tem­
perature of the fluid flowing. 

• Mean film temperature which refers to the mean temperature of the 
bulk plus heat exchanger temperature. 

• Mean temperature difference refers to the difference between heat 
exchanger and mean bulk temperature. 

• Log mean temperature difference (LMTD). If the temperature of 
both fluids vary, true temperature difference will be the logarithmic 
mean value. 
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Example 3.1 
Given a rise in temperature of the fluid flowing of 70°C to 80°C as a 
result of a constant heat exchange temperature of 140°C, find the 
mean bulk temperature, the mean film temperature of the fluid and 
the mean temperature difference. 

Solution 
A heat exchanger whose surface is at a constant temperature is 
usually associated with the use of steam or refrigerant which gives 
up its latent heat in the heat exchanger at constant temperature and 
in the process changes its state. 

Mean bulk temperature of the fluid flowing = (70 + 80)/2 = 75°C 
Mean film temperature of the fluid flowing = 0.5((70 + 80)/2 + 

140) = 107.5°e 

Mean temperature difference between the fluid flowing and the 
heat exchanger surface = (140 - (70 + 80)/2) = 65 K 

Example 3.2 
Given a constant fluid temperature of 20°C and a heat exchanger 
surface temperature of 110°C determine the mean bulk tempera­
ture, mean film temperature and mean temperature difference. 

Solution 
This is unusual since the heat given up by the fluid flowing must 
result in a change in state at constant temperature as it does also 
with the fluid in the heat exchanger. 

Mean bulk temperature of the fluid flowing = 20°C 
Mean film temperature ofthe fluid flowing = 0.5(20 + 110) = 65°C 
Mean temperature difference between the fluid and the heat 
exchanger = (110 - 20) = 90 K 

Example 3.3 
A counterflow heat exchanger carries high temperature hot water at 
inlet and outlet temperatures of 150D e and 110°e. The secondary 
fluid rises in temperature from 70°C to 8re. Find the logarithmic 
mean temperature difference between the primary and secondary 
fluids. 
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Solution 
This topic is considered in detail in Chapter 9. Log mean tempera­
ture difference dtm accounts for temperature variations in both the 
primary and secondary fluids and from Chapter 9: 

dtm = (dtmax - dtmin)/ln(dtmax/dtmin) 
for counterflow: primary 150 -----) 110 

secondary 82 <-- 70 
68dtmax 40dtmin 

substitute: dtm = (68 - 40)/ln (68/40) = 52.77K 

Summary for Example 3.3 
It is interesting to note that the arithmetic mean = [((150 + 
110)/2) - ((82 + 70)/2)] = (130 - 76) = 54K which is not much 
different to the logarithmic mean. 

If the high temperature return is at 120°C instead of 110°C the 
logarithmic mean temperature difference is calculated as 58.5 K 
whereas the arithmetic mean is 59 K. Here the two values are even 
closer. You should now confirm that this is so. 

If conductive heat flow is considered from the hot fluid across the 
exchanger wall to the cold fluid the overall U value for the heat 
exchanger is appropriate: 

U = (1/((1/hsi ) + Rf + (1/hso )) W /m2 K 
hence 

Q= UAdt W 

(3.17) 

(3.18) 
where dt = temperature of hot fluid minus the temperature of the 
cold fluid. 

Note: 
(i) The thermal resistance of the heat exchanger wall is ignored 

since it is insignificant. 
(ii) The overall U value is dependent upon the thickness of the 

laminar sublayer on both the inside and the outside of the 
heat exchanger and hence on the type of fluid flow. See Chap­
ter 6. 

(iii) Rf is the fouling factor measured in m2K1W. If maintenance of 
the heat exchanger is done on a regular basis it is sometimes 
ignored. It ranges from 0.00009 to 0.0002 m2K1W. 

There now follows some practical examples which adopt the formulae 
introduced in the text above. You should follow them through noting 
the solution procedure in each case. 
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Example 3.4 
Low temperature hot water flows through a single panel vertically 
mounted radiator 1 m high by 1.5 m long. The mean temperature of 
the circulating water is 60°C and the temperature of the surround­
ings air is 19°C. 

Determine the heat transferred by convection. Ignore the resist­
ance of the air and water films on each side of the radiator and the 
radiator material. Evaluate the properties at the mean film tem­
perature. 

Solution 
The first step in the solution procedure is to determine the Grashof 
number which will establish whether the air flow over the radiator 
is in the laminar or turbulent region. 

The mean film temperature = 0.5 (60 + 19) = 39.5°C = 312.5 K 

Referring to the Grashof number, equation (3.4) 

cubical expansion (3 = 1/(312.5) = 0.0032 

Interpolating from the tables of Thermodynamic and Transport 
Properties of Fluids, air density at mean absolute temperature of 
313K 

p = 1.13kg/m3 

and air viscosity J.L = 0.000019 kg/ms 
vertical height x = 1.0 m 
temperature difference between the radiator and air dt = 60 - 19 = 
41K. 
Now substituting into the Grashof number: 

Gr = 0.0032 x (1.13)2 x (1.0)3 x 41 x 9.81/(0.000019)2 

Gr = 4.55 x 109 

Note that x is the height of the panel; a lower height yields a lower 
Gr and ultimately a lower heat transfer coefficient he. A long low 
radiator will therefore give a lower convective output than a short 
tall radiator of the same area. This is caused by the increased stack 
effect of the taller radiator, which induces greater vertical air flow 
over its surface. 

From the text, turbulent flow in free convection over vertical 
plates commences when Gr > 109 and therefore applies here. The 
adopted formula will be equation (3.6). 

3.4 Convective heat 
output from a panel 
radiator 
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3.5 Heat output from 
a pipe coil freely 
suspended 

The Prandtl number can be calculated or the value interpolated 
from the tables of Thermodynamic and Transport Properties of 
Fluids at the mean air temperature of 313 K in which case 

Pr = 0.703 

Note that the tables quote the thermal conductivity k in kW/mK 
and specific heat capacity C in kJ/kgK. By interpolating p" C and k 
for dry air from the tables Pr can also be calculated from equation 
(3.3). 

from equation (3.6) (Nu)x = 0.13((Pr)(Gr)x)0.33 
substituting: (Nu)x = 0.13((0.703)(4.55 x 109))°·33 

(Nu)x = 178 

But from equation (3.2) (Nu)x = hex/k where x is a characteristic 
dimension and here x is the panel height thus x = 1.0 
and 

he = Nuk/x = 178 x 0.0273/1.0 = 4.86 W/m2K 
the surface area of the radiator is 1.0 x 1.5 x 2 = 3.0 m2 
from equation (3.16) free heat convection Q = heAdt = 4.86 x 3 x 
(60 -19) = 598W 

Summary for Example 3.4 
As already mentioned in the solution the height x of a radiator 
influences its heat transfer by free convection by affecting the 
Grashof number. The lower the radiator height the lower is the 
convective heat transfer for the same surface area. This is confirmed 
from reference to manufacturers' literature. In practical terms the 
'stack effect' of the free convection over the radiator surface 
increases with its height thus increasing convective output. 

Example 3.5 
A 100 mm bore horizontal pipe freely suspended is located at low 
level in a greenhouse to provide heating. It has a surface emissivity 
of 0.9 and is supplied with water at 85°C flow and 73°C return. The 
greenhouse is held at an air temperature of 19°C and a mean radiant 
temperature of 14°C. Evaluating the properties at the mean film 
temperature determine the heat output from the pipe given that it is 
15 m in length. Take the outside diameter as 112 mm. 
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Solution 
The Grashof number will determine the type of air flow over the 
pIpe. 

The mean film temperature= 0.5[(85 + 73)/2 + 19] = 49°C = 
322K 

Using the data for dry air from the tables for Thermodynamic and 
Transport Properties of Fluids, and the question: 

C = 1.0063 kJ/kgK, Ji, = 0.00001962 kg/ms, p = 1.086 kg/m3, 
k = 0.00002816kW/mK, dt = 79 -19 = 60K, x = d = 0.112m 
also (3 = l/Tm = 1/322 = 0.0031 
Substituting into equation (3.4) 

Gr = (0.0031 x (1.086)2 x (0.112)3 X 60 x 9.81)/(0.00001962)2 

Gr = 7.87 x 106 

This identifies laminar air flow over the pipe and from the tables at 
the mean film temperature of 322 K 

Pr = 0.701 
alternatively it can be determined from equation (3.2) 

Pr = Ji,C/k = 0.00001962 x 1.0063/0.00002816 
from which 

Pr = 0.702 
As air flow is laminar and convection is free equation (3.13) can be 
adopted thus: 

Nu = 0.53(7.87 X 106 x 0.701)°·25 = 25.7 
from equation (3.3) he = Nuk/d = 25.7 x 0.02816/0.112 = 6.46 
W/m2 K 
From equation (3.16) Q = 6.46 X (7r x 0.112 x 15)(79 - 19) = 
2046W 

The calculation of heat radiation (equation (4.12) and 1= Q/A) 
can be made from: 

substituting: 

Q = 5.67 X 10-8 x 0.9((352)4 - (287)4)(7r x 0.112 x 15) 

Q = 2307W 

The total output of the pipe coil = 2046 + 2307 = 4353 W 
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3.6 Heat transfer 
from a tube in a 
condensing secondary 
fluid 

Example 3.6 
(a) Calculate the convective heat transfer coefficient at the inside 

surface of a 24 mm diameter tube in which pumped water is 
flowing at 0.5 kgls given water flow and return temperatures of 
15°C and 25°C. Evaluate the properties at the mean bulk tem­
perature. 

(b) If ammonia vapour at a pressure of 15.54 bar is condensing on 
the outside surface of the tube which is 30 mm outside diameter, 
determine the surface area of the tube. Take the heat transfer 
coefficient at the outer surface of the tube for the condensing 
ammonia as 10 kW/m2K and ignore the temperature drop 
through the tube wall. 

Solution (a) 
To establish that the flow of water is turbulent the Reynolds num­
ber can be used and from equation (3.1) Re = dM / JiA 

The mean bulk temperature of the water flowing = (15 + 25)/2 = 
20°C 

From the tables for Thermodynamic and Transport Properties of 
Fluids the following properties of water are obtained: 

C = 4.183 kJ/kgK, f1, = 0.001002 kg/ms, k = 0.000603 kW /mK, 
Pr = 6.95 

adopting equation (3.1) 

Re = 0.024 x 0.5 x 4/0.001 0027r(0.024)2 
Re = 26473 

since Re > 2500 the water flow inside the tube is in the turbulent 
region and as the water is pumped equation (3.10) for forced 
convection can be adopted thus: 

(Nu)d = 0.023(Re)do.8 (Pr)0.33 

substitute: Nu = 0.023(26473)°·8(6.95)°·33 
from which Nu = 151 
from equation(3.2) Nu = hcd/k 
substituting: hc = 151 x 0.000603/0.024 = 3.794 kW /m2 K 
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Solution (b) 
From equation (3.17) the overall U value for the heat exchange tube 
can be determined; and U = l/((l/hsi ) + Rf + (l/hso )) assuming 
negligible fouling resistance Rf = zero. As the heat transfer 
coefficient for radiation ehr is ne~ligible at the inside surface 
of the tube hsi =hc =3.794kW/m K and hso is given here as 
10kW/m2K. 

Substitutin~ into equation (3.17) U = 1/((1/3.794) + (1/10)) = 
2.75kW/m K 

From the tables for Thermodynamic and Transport Properties of 
Fluids ammonia at 15.54 bar absolute has a saturation temperature 
of 40°C. 

Adopting the heat balance to determine the net surface area of the 
heat exchange tubes: 

heat gain to the water = the heat loss from the ammonia. 

Since the heat loss from the ammonia Q = UAdt from equation 
(3.18) 

then MCdt (water) = UAdt (ammonia) 

substituting: 

0.5 x 4.183 x (25 ~ 15) = 2.75 x A x (40 ~ 20) 

from which 

A = 0.38m2 

Now tube length L = A/7rd = 0.38/7r x 0.03 = 4.03 m of heat 
exchange tubing. 

Summary for Example 3.6 
You will have noticed the temperature differential between 
the ammonia and the bulk temperature of the water. Here it is 
20 K. The rate of heat transfer is largely influenced by this 
temperature differential. If the temperature differential between 
the primary and secondary fluids is below 15 K heat transfer is 
poor. 

The efficiency of heat exchange is also dependent upon the extent 
of the contact of the fluid with the outer surface of the heat 
exchanger. The contact factor identifies the extent of this 
contact which is, among other things, dependent upon the 
velocity of the fluid over the surface of the heat exchanger. See 
Chapter 9. 
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3.7 Cooling flux 
from a chilled ceiling 

Example 3.7 
A chilled beam ceiling operates using chilled water at a mean bulk 
temperature of 8°C in a room held at an air temperature of 20°C by 
means of a system of displacement ventilation, and mean radiant 
temperature is 1 rc. Determine the cooling flux in W/m2 of chilled 
ceiling surface which has an emissivity of 0.9. 

Solution 
The first step is to determine the Grashof number which will estab­
lish the type of air flow over the ceiling surface. 

The mean film temperature at the ceiling surface will be 0.5(20 + 8) 
= 14°C = 287K 

Interpolating the properties of dry air at 287 K from the tables for 
Thermodynamic and Transport Properties of Fluids: 

p = 1.233 kg/m3, J.L = 0.00001783 kg/ms 
(3 = l/Tm = 1/287 = 0.0035 

Let x = 1, dt = (20 - 8) 
substitute into equation (3.4) 

Gr = 0.0035 x (1.233)2 x 13 x (20 - 8) x 9.81/(0.00001783)2 
from which Gr = 1.98 x 109 

For turbulent flow 1.4 x 105 < (Gr) < 3 x 1010 and therefore 
air flow over the ceiling surface is turbulent and free, equation 
(3.9) applies and he = 1.7(ts - t£)0.33 
substituting: 

he = 1.7(20 - 8)°.33 = 3.86 W/m2K 

the convective heat transfer Q = heAdt 

thus the cooling flux by free convection Q/A = I = hedt = 3.86 x 
(20 - 8) 

from which 

I = 46.32 W /m2 of chilled ceiling surface. 
The cooling flux by heat radiation is obtained from equation (4.12) 
thus: 

I = (Tel (Tt - Ii) W /m2 
Tl = 273 + 17 = 290 K and T2 = 273 + 8 = 281 K 

and substituting 
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I = 5.67 X 10-8 x 0.9(2904 - 2814 ) 

from which 

1= 42.77 W /m2 of chilled ceiling surface. 
The total cooling flux to the chilled ceiling 1= 46.32 + 42.77 = 
89.1 W/m2. 

Summary for Example 3.7 
Dimension x was given a value of 1.0 in the solution for the Grashof 
number as the cooling flux is for an area of 1 m x 1 m of chilled 
ceiling surface. As the air flow over the ceiling is in the turbulent 
region the final solution will not be affected if the cooling flux is 
now applied to a given area of chilled ceiling. 

Had the air flow been in the laminar region equation (3.7) would 
apply in which case D = (length + width)/2 and this clearly affects 
the value of the heat transfer coefficient for convection he. The 
value of x in the determination of the Grashof number can again 
be taken as 1.0 without serious error. 

Example 3.8 
(a) Determine the heat flux from the surface of a floor in which a 

hot-water pipe coil is embedded in a room held at an air and 
mean radiant temperature of 20°e. The average floor tempera­
ture is 26°C and its emissivity is 0.9. 

(b) Calculate the conductance hs at the floor surface under the 
conditions in part (a). 

Solution 
(a) The Grashof number will be evaluated first to establish the type 
of air flow over the floor. The mean bulk temperature is 
(26 + 20)/2 = 23°C = 296K. 

From the tables for Thermodynamic and Transport Properties of 
Fluids, the following properties of dry air at 296 K are obtained: 

C = 1.0049kJ/kgK, fl = 0.00001846kg/ms, p = 1.177kg/m3, 

(3 = l/T m = 1/296 = 0.00338 
Substitute into the Grashof formula equation (3.4) 

Gr = 0.00338 x (1.177)2 x 13 x (26 - 20) 

x 9.81/(0.00001846)2 

3.8 Heat flux off a 
floor surface from an 
embedded pipe coil 
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from which Gr = 8.14 x 108 
for turbulent flow 3 x 107 < (Gr) < 3 x 1010 

Thus flow of air over the floor surface is in the turbulent region and 
free, and equation (3.9) applies: 

he = 1.7(26 - 20)°.33 = 3.071 W/m2K 

the free convective heat flux 

1= hedt = 3.071 x (26 - 20) = 18.42 W /m2 

the heat radiation flux from the floor surface, using the appropriate 
equation (4.12) 

1= O"el(Ti - Ti) = 5.67 x 10~8 x 0.9((299)4 - (293)4) 

= 31.77W/m2 

the combined heat flux from the floor 1= 18.42 + 31.77 = 
50.2W/m2. 

(b) By adapting equation (4.13) the heat transfer coefficient for 
radiation ehr at the floor surface will be: 

ehr = I/dt = 31.77/(26 - 20) = 5.295 W/m2K 
the heat transfer coefficient for free convection he at the floor sur­
face is calculated as: 

he = 3.071 W /m2K 
Since air and mean radiant temperature are equal, the coefficients 
can be combined and surface conductance hs will be: 

hs = 5.295 + 3.071 = 8.366 W/m2K. 

Summary for Example 3.8 
The solution to part (b) falls within the range of 8 to 10W/m2K of 
published values for the combined heat transfer coefficient at the 
floor surface for embedded pipe coils. The maximum floor surface 
temperature should not exceed 27°C to avoid discomfort. 

Example 3.9 
A single pass shell and tube condenser is required to condense 
refrigerant at 45°C. It contains 10 tubes each having an internal 
diameter of 24 mm and an external diameter of 30 mm. Cooling 
water is available at 10°C and total flow is 6.0 kg/so 

Given that the temperature of the cooling water leaving the con­
denser is not to exceed 20°C and ignoring the temperature drop 
through the tube wall, determine the minimum tube length required. 
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Take the heat transfer coefficient of the condensing vapour as 
6.4 kW/m2K. The water side heat transfer coefficient should be 
determined from the appropriate rational equation. 

Solution 
Fluid flow in heat exchangers is discussed in some detail in Chapter 
9. It can be assumed here that the water flow is subject to a prime 
mover and thus convection is forced. The Reynolds number Re can 
be calculated to establish turbulent flow conditions inside the tubes. 
From the tables for Thermodynamic and Transport Properties of 
Fluids, condenser water at a bulk temperature of (20 + 10)/2 = 
15°C = 288 K has the following properties: 

v = 0.001 m3/kg, C = 4.186 kJ/kgK, fJ = 0.001136 kg/ms, 
k = 0.595 W/mK, Pr = 7.99. 

From these properties p = 1/0.001 = 1000 kg/m3. 
Now volume flow rate = u x 7rd2 /4 = Mv m3/s. 

Rearranging the formula for volume flow rate in terms of mean 
velocity, then mean velocity in each tube 

u = (4Mv/7rd2 ) = 4 x (6.0/10) X 0.001/7r x (0.024)2 = 1.326 m/s 
substitute into equation (3.1) 

Re = 1000 x 1.326 x 0.024/0.001136 = 28014. 

The minimum value for Re for turbulent flow inside tubes is 2500 
and therefore flow is in the turbulent region here and equation 
(3.10) applies: 

Nu = 0.023(28014)°·8(7.99)°.33 

from which Nu = 165 
from equation (3.2) he = 165 x 0.595/0.024 = 4091 W /m2K. 

The overall heat transfer coefficient U across the tubes is obtained 
from equation (3.17) and ignoring the effect of the fouling resist­
ance Rf, 

U = 1/((1/6.4) + (1/4.09)) = 2.495kW/m2K 
The output from each tube in the condenser is calculated from 
Q = MCdt 
thus Q = (6.0/10) x 4.2 x (20 - 10) = 25.2 kW 

The overall heat transfer for each tube in the condenser is obtained 
from equation (3.18) 

thus Q = U(7rdL)dt = 2.495 x (7r x 0.03 x L) x (45 - 15). 

Using a heat balance in which: 

heat gain by condenser water = heat loss by refrigerant 
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3.9 Chapter closure 

then by substitution: 
25.2 = 2.495 x 7r x 0.03 x L x 30 

from which tube length L = 3.57 m 

Summary for Example 3.9 
No account has been taken here of the efficiency of heat exchange 
which is largely dependent upon the contact factor of the conden­
sing refrigerant on the heat exchange tubes and upon the primary to 
secondary temperature difference which here is 30 K and well above 
the minimum of 15 K. 

You now have practical skills and the underpinning knowledge relat­
ing to the application of heat transfer by free and forced convection. 
The examples and solutions will have given some insight into the 
application of the rational formulae in use for this mode of heat 
transfer at steady temperatures, and the procedure for attempting 
problem solving. Further work on heat exchangers is done in 
Chapter 9. 

Cross-referencing with Chapter 11 is required for the origins of the 
dimensionless groups employed in this mode of heat transfer, and 
Chapter 6 for a detailed analysis of laminar and turbulent flow. 
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Heat radiation 

absorbtivity 
surface area of radiator/receiver (m2) 
velocity of wave propagation (mls) 
constant (Wllm4/m2) 
constant (IlmK) 
constant (IlmK) 
emissivity 
heat transfer coefficient for radiation from a grey body 

(Wjm2K) 
(eX) 
function of 
form factor, view factor 
heat transfer coefficient for radiation from a black body 

(Wjm2K) 
heat flux, intensity of monochromatic radiation, 

intensity of heat radiation exchange, solar constant 
(Wjm2) 

plane radiant temperature (0C) 
rate of energy flow (W) 
reflectivity 
distance between radiator and receiver (m) 
transmissivity 
absolute temperature (K) 
air temperature (0C) 
dry resultant temperature/comfort temperature (0C) 
mean radiant temperature (0C) 
thermal transmittance coefficient (W jm2K) 
frequency (Hz cycles/s) 
vector radiant temperature (0C) 
wavelength (11m) 
Stefan-Boltzmann constant of proportionality 

(Wjm2K4) 

A simple definition of heat radiation would be the interchange of 
electromagnetic waves between surfaces of differing temperatures 
which can see each other. In fact the full definition is extensive and 

4 

Nomenclature 

4.1 Introduction 
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4.2 Surface 
characteristics 

complex and requires substantial initial briefing and qualification 
before recourse can be made to practical applications. 

All surfaces which are above absolute zero (-273.1SoC or 0.0 K) are 
emitting radiant heat or absorbing, reflecting and transmitting heat 
radiation depending upon whether they are emitting surfaces or receiv­
ing surfaces and upon whether the material is opaque or transparent. 
The distinction between an emitting surface and a receiving surface is 
dependent upon its temperature in relation to other surfaces it can 'see'. 

One of the major differences between heat radiation exchange and 
that of heat conduction and heat convection is that it does not require 
an exchange medium. 

The sun transfers its heat by radiation through space to the Earth's 
atmosphere through which it passes to the surface of the Earth. The 
ozone layer, atmospheric particles, condensing water vapour and dust 
act as filters to solar radiation reducing its intensity at the Earth's 
surface. The effect of dust and other particles in the air has the same 
filtering effect for radiant space heaters which results in a reduction in 
heat flux at the receiving surfaces. 

If the heat radiator cannot 'see' the surfaces to be heated the effects 
of heat radiation are not immediately apparent, if at all. 

Heat radiation is part of the spectrum of light ranging from the 
ultraviolet to the infrared region - that is from short wave to long 
wave radiation. Space heating equipment which provides heat radiation 
includes luminous heaters having temperatures up to 2200°C which 
emit short-wave radiation, and non-luminous heaters which emit invi­
sible long-wave radiation. Examples of each include the electric quartz 
heaters and radiant strip and, of course, the ubiquitous panel radiator 
both of which emit heat radiation which can be felt but not seen. 

Heat radiation travels in the same wave patterns as light - see Figure 
4.1 - and at the speed of light which is 2.98 x 108 mis, frequently 
taken as c = 3 X 108 m/s. The effectiveness of radiation exchange is 
dependent upon the texture of the radiating and receiving surfaces. 
Surface characteristics include: 

reflectivity r 
transmissivity t 
absorptivity a 
emissivitye 

If a mirror receives heat radiation it will reflect about 97%, thus 
r = 0.97 and its ability to absorb radiation will be about 3%, thus 
a = 0.03. Its surface temperature therefore will not rise by much. 

Most receivers will reflect and absorb proportions of the incident 
radiation. A perfect radiator will emit 100% of its radiation. The sun 
is a perfect radiator (known as 'black body' radiation) but most 
surfaces are not and a radiator having a matt surface for example 
will emit about 90% of its radiation thus e = 0.9. 
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1. Direction of wave motion 
2. Electric vibrations 
3. Magnetic vibrations 

, 
" 

, 
" 

Electromagnetic radiation 

2 

Figure 4.1 Transverse wave motion of electric and magnetic fields vibrating in 
phase at the same frequency at right angles in a plane perpendicular to the 
direction of travel. 

Kirchhoff established that for most surfaces the ability to emit and 
absorb heat radiation at the same absolute temperature is approxi­
mately equal, thus e = a (equation (4.4)). 

For most surfaces r = (1 - a) = (1 - e) and therefore a = (1 - r) 
and e = (1 - r). 

The transmission t of radiant heat through a material occurs by heat 
conduction resulting from the temperature rise induced by the radiant 
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Opaque 
material 

Incident 
radiation 

Incident 
radiation 

Ordinary window 
glass 

Transmittance 
fraction (delayed) 

Reflected fraction r 

Reflected fraction r 

Transmitted fraction t 
(instantaneous) 

Figure 4.2 The effects of incident heat radiation on a surface. 

heat incident upon the surface. It is therefore similar to the thermal 
transmittance coefficient U. Refer to Figure 4.2. 

If a material which is transparent like ordinary window glass, is 
irradiated the short-wave radiation will be transmitted with little 
absorption or reflection. Table 4.1 gives some typical values for emis­
sivity, absorptivity and reflectivity for some opaque surfaces. The table 
gives a general indication only since for many materials emissivity 
varies with temperature. 

Table 4.1 Surface characteristics relating to incident heat radiation 

Material/surface Emissivity Absorptivity Reflectivity 
e a r 

Brick and stone 0.9 0.9 0.1 
Aluminium, polished 0.04 0.04 0.96 
Aluminium, anodized 0.72 0.72 0.28 
Cast iron 0.8 0.8 0.2 
Copper, polished 0.03 0.03 0.97 
Copper, oxidized 0.86 0.86 0.14 
Galvanized steel 0.25 0.25 0.75 
Paint, metal based 0.5 0.5 0.5 
Paint, gloss white 0.95 0.95 0.05 
Paint, matt black 0.96 0.96 0.04 



 

Colour temperature indicators 

It is useful to have an approximate feel for the temperature of lumi­
nous radiant heaters. Table 4.2 gives a rough guide. 

Table 4.2 Colour temperature guide for luminous heaters 

Colour 

Very dull red 
Dark blood red 
Cherry red 
Bright red 
Orange 
Yellow 
Yellow/white 
White 

Temperature 
(0C) 

500-600 
600-700 
700-800 
800-900 
900-1000 

1000-1100 
1100-1200 
1200-1300 

Greenhouse glass allows the transmission of short-wave solar radia­
tion but disallows long-wave transmission. The resultant effect is 
known as the greenhouse effect. As the surfaces within the greenhouse 
warm up due to the incidence of short-wave solar radiation passing 
through the glass, they begin to emit long-wave radiation which 
cannot escape resulting in a rise in temperature within the greenhouse. 
This is used to good effect for the propagation of plants and as a means 
of passive space heating in the winter. 

The pattern of solar radiation follows a sine wave (Figure 4.3). The 
spectral proportions in which heat radiation is present are given in 
Table 4.3. 

Period t in seconds 

Wavelength f.lm 

-r 
Amplitude Wave 

I d~~ 
~+------+------~----~----

Frequency = + Hz 
Sine wave 

Figure 4.3 Heat radiation waveform. 
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4.3 The greenhouse 
effect 

4.4 Spectral wave 
forms 
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4.5 Monochromatic 
heat radiation 

Table 4.3 Spectral proportions of heat radiation 

Cosmic, gamma and X-ray wavebands, wavelength 10-11 to 10-2 11m 
9% ultraviolet, invisible short-wave, wavelength 0.29 to OAllm 
40% visible light, short-wave, wavelength OAO to 0.7 11m 
51 % invisible infrared, long-wave, wavelength 0.70 to 3.5 11m 
Radio, TV and radar wavebands, wavelength 100 11m to 105 m 

A discussion on heat radiation needs to identify three types of emit­
ting and receiving opaque surface in order to reduce the complexity of 
the subject. These are black, grey and selective. A 'black' surface is that 
of a perfect radiator in which emissivity is constant at any wavelength. 
Black body (perfect) radiation is rare. It is approached within a boiler 
furnace and with luminous radiant heaters but not often elsewhere in 
the real world. Selective surfaces are those of every day manufactured 
or natural materials. The emissivity of selective surfaces varies arbitra­
rily with wavelength. This makes it difficult to integrate the radiant 
heat flux over all the wavelengths for a given temperature of a selective 
emitter or receiver. A grey surface is an imaginary surface in which the 
emissivity varies uniformly with wavelength making it easier to inte­
grate the radiant heat flux over all the wavelengths for the given sur­
face. Since the grey surface has a constant heat flux ratio with that of a 
black body, IAjlb>.., it irons out the arbitrary nature of the selective 
surface making it easier to determine the heat flux 1. 

Heat radiation emitted at anyone wavelength is called monochro­
matic radiation. Figure 4.4 shows the variation in black body emissive 

, , 
\ 

2 

, , , , 

4 6 8 10 .. "t= · ultraviolet infrared 

vIsible light 0.3 to 0.7 11m 

11m Wavelength 

Figure 4.4 Variation of black body emissive power with wavelength and abso­
lute temperature. 
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Wavelength 

Figure 4.5 Comparison of emission from black, grey and selective surfaces at a 
fixed temperature T1 • 

power with wavelength and absolute temperature for two bodies at 
temperature Tl and T2 • Note how wavelength increases as maximum 
absolute temperature of the body decreases. This was identified by 
We in and is known as Wein's displacement law. See equation (4.5). It is 
denoted by a uniform line declining towards the right on the graph. 

The area under each of the curves at Tl and T2 represents the sum of 
the monochromatic radiations or total heat radiation from the sur­
faces. 

A comparison of emissions from black, grey and selective surfaces is 
shown in Figure 4.5. Note that the ratio of J.>..jlb).. is constant for the 
grey surface and arbitrary for the selective surface where it varies at 
each wavelength. Note also that the absolute temperature of each 
surface is the same. It is the monochromatic emissive power from 
each surface which varies with wavelength. 

The following laws apply to heat radiation from a perfect radiator: 
Kirchhoff's law and Stefan's law 

heat flux I ()( T4 W jm2 (4.1) 
The Stefan-Boltzmann constant of proportionality a = 5.67 x 10-8 

Wjm2 K4 
Thus heat radiation for the sum of the wavelengths 

1= ar Wjm2 (4.2) 

4.6 Laws of black 
body radiation 
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4.7 Laws of grey 
body radiation 

I~ 

Figure 4.6 A surface element does not radiate energy with equal intensity in all 
directions, 11> = In coscjJ. 

Planck's law shows the relationship between the monochromatic emis­
sive power I at wavelength A and absolute temperature T, thus 

1= C1A-5/exp(Cz/AT) - 1 W/m2 
Kirchhoff's law e = a 
Wein's displacement law AmaxT = C3 )lmK 
Wein's wavelength law A = c/vm 
Lambert's law for emissive }IA. I A. 

. 'I' = ncos'l' power from a flat radIator 
See Figure 4.6. 

(4.3) 
(4.4) 
(4.5) 
(4.6) 

(4.7) 

Stefan-Boltzmann law for heat radiation exchange over the sum of 
the wavelengths at temperature Tl 

1= O"(Ti - TjJ W /m2 (4.8) 
The constants above have the following numerical values: 

c = velocity of wave propagation = 3 x 108 m/s 
C1 = 3.743 X 108 W)lm4 /m2 

C2 = 1.4387 X 104 )lmK 
C3 = 2897.6 )lmK 

When radiating surfaces remain grey in a system of heat exchange, the 
emissivities of those surfaces must be accounted for as well as their 
geometric configuration. In general the heat exchange by radiation 
between two surfaces will depend upon: 

• relative areas of surfaces 
• geometry of the surfaces in relation to each other 
• the two emissivities. 
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These factors which are quite complex are identified as the form! 
view factor FI ,2 and FI ,2 = ((All A2l el, e2) 

The view factor was introduced in 1951 by H.C.Hottell as a means 
of accounting for the emissivities of the surfaces and their geometric 
configuration. The CIBSE Guide tabulates form factors for various 
surfaces' configurations in section C3. 

In view of the complexity of determining the form factor, only three 
applications will be considered here. 

Two parallel grey surfaces in which Al = A2 and TI > T2. 
A typical application here is the radiation exchange between the two 

inside surfaces of a cavity wall. 

FI ,2 = l/((l/et) + (1/e2) - 1). (4.9) 
Concentric cylindrical surfaces in which Al < A2 and TI > T2. 

A typical application is layers of thermal insulation on cylindrical 
ducts and pipes. 

(4.10) 
A small radiator contained in a large enclosure in which Al < A2 and 
TI > T2 

FI ,2 = el· 
This relationship is approximately correct for most applications of 
space heating and cooling in which A2 is the surface area of the 
enclosing space and T2 its area weighted mean surface temperature 
or mean radiant temperature. 

Thus for grey body heat radiation 

1= (FI,2)O-('ri - Ti)W/m2 (4.11) 

Clearly an imaginary surface whose characteristics iron out the varia­
tions in emissivity at different wavelengths and which follows a con­
stant heat flux ratio is more easily analysed than the random variations 
in emissivity with wavelength which occur with a selective surface. 
Consider heat radiation exchange between a small grey body radiator 
located in a grey enclosure as shown in Figure 4.7. 

Assuming the absorptivity of the enclosure is 0.9 and that the 
radiator emits 100 units of heat radiation. Of the 100 units, 99.9 are 
absorbed by the enclosure so the apparent absorptivity of the sur­
rounding enclosure boundaries is 0.999 Although this is a simplified 
analysis of the matter it can be argued that the boundary surfaces, 
initially taken as grey, approach that of a black body enclosure. 

Thus from equation (4.11) and the notes in section 4.7 

1= ael(Ti - Ti)W/m2 (4.12) 
where TI is the absolute temperature of the radiator and T2 is the 
absolute area weighted mean radiant temperature of the surrounding 

4.8 Radiation 
exchange between a 
grey body and a grey 
enclosure 
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4.9 Heat transfer 
coefficients for black 
and grey body 
radiation 
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Figure 4.7 Heat radiation exchange. If the enclosure has an absorptivity of 0.9 
then out of 100 units of radiant heat 99.9 are absorbed. 

surfaces which is approximately equal to the mean radiant tempera­
ture of the enclosure Tr • 

The heat transfer coefficient for convection he, chapter 3, equation 
(3.16), is: 

Q = he X A X dtW 
thus for heat convection I = he(tl - t2) = he(Tl - T2)W 1m2. 
For black body heat radiation exchange I = hr(Tl - T2 ) W 1m2 . 

Thus 

(4.13) 
The heat transfer coefficient for radiation can also be determined from 
above where I = hr(Tl - T2) W 1m2 

and from equation (4.8) 1= afTt - TiJ W/m2 
equating these two formulae hr = IJ(Tt - Ti)(Tl - T2)-1 

expanding hr = IJ(Ti - TiJ(Ti + Ti)(Tl - T2rl 

and hr = IJ(TI - T2 )(T1 + T2 )(Ti + Ti)(Tl - T2rl 
from which for black bodies 

hr = IJ(TI + T2 ) (Ti + Ti) W Im2K 

For grey bodies 

(F1,2)hr = IJ(Fl,2)(Tl + T2 )(Ti + Ti) 

(4.14) 

(4.15) 



 

for a small radiator in a large enclosure 
(el)hr = o-(ed(Tl + Tz)(T; + T]:) (4.16) 

Note that in equations (4.15) and (4.16) (Flz ) and (el) do not cancel 
in the determination of the heat transfer coefficient for radiation for 
grey bodies. 

As the distance S between the receiving surface and the emitting sur­
face increases, the radiation flux is less intense. This is borne out by 
varying the distance a person is with respect to a radiant heater like a 
luminous electric fire. Three applications are considered here. 

(i) Point source radiation: the direction of intensity is spherical here 
hence Az is the surface area of a sphere and Az = 411"Sz. If the radius is 
doubled - that is to say if the distance S from the point source radiator 
is doubled - the enclosing receiving area Az is quadrupled. 

Thus, if originally the distance between the point source radiator 
and the enclosing area is 3, S = 3 and Az = 411"3z = 3611" whereas if Sis 
doubled to 6, Az = 411"6z = 14411" which is four times larger. The effect 
upon radiation flux or intensity is a four-fold reduction. The total heat 
radiation received by the enclosing surface of radius 3 is the same as 
that for the enclosing surface of radius 6, however. 

Thus I oc l/Sz. 
(ii) Line source radiator: here I oc l/S 
An example might be a single ceramic luminous rod heater with no 

reflector and considering radiant heat flux in one plane only. 
(iii) A surface element: does not radiate energy with equal intensity in 

all directions and Lambert's law applies, equation (4.7). See Figure 4.6. 
It identifies the fact that the greatest radiant heat flux received 

occurs along a line normal to the radiating surface. 
If it is assumed that the lines of heat radiation from a flat panel 

radiator are not parallel but expanding as shown in Figure 4.8 then the 

Radiator 

~ 

Location 2 

Figure 4.8 Heat radiation received at locations 2 and 3. 
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4.11 Problem solving 

total heat radiation received at location 2 will be the same as at 
location 3. 

Thus IIAl = 12A2 = hA3 W where radiant heat flux I is taken as a 
mean value at both locations. 

The heat flux at each location gets progressively less in direct 
proportion to the increase in receiving areas. 

The foregoing discussion provides an introduction to the subject of 
heat radiation. 

It should, however, be sufficient to form the underpinning knowl­
edge for the building services engineer. There now follows some exam­
ples involving this mode of heat transfer. 

Example 4.1 
A luminous quartz heater has a temperature of 1200°C and an 
effective area of 0.3 m x 0.3 m 
Determine: (a) the total rate of radiant emission, 

Solution 

(b) the wavelength of maximum energy, 
(c) the monochromatic emissive power at the wave­

length of maximum energy. 

You will notice that there is no indication of the mean radiant 
temperature of the surfaces in the enclosure in which the heater is 
located so the solution will not account for radiation exchange. 

Since the heater is luminous it is assumed to be a black body. 
(a) Thus from equation (4.2) 1= 5.67 x 10-8 (1200 + 273)4 
from which 

1= 2.67 X 105 W/m2 = 267 kW/m2 
This is the radiant heat flux for the sum of all the wavelengths. The 
effective area is given as A = 0.3 x 0.3 = 0.09 m2 therefore total 
radiant emission 

= 2.67 x 105 x 0.09 = 2.4 x 104 W 
= 24kW 

(b) From equation (4.5) AmaxT = C3 
thus 

Amax = C3 /T = 2897.6/1473 = 1.97)lm 
(c) From equation (4.3): 

1= (3.743 X 108 x 1.97-s)/(exp(1.4387 x 104/1.97 x 1473) - 1) 
given that exp = eX = 2.7183X where 

x = 1.4387 x 104/1.97 x 1473 



 

1= (3.743 X 108 X 1/29.67)/(2.71834.958 ) - 1 
1= 1.2615 X 107/(142 - 1) 

1= 8.95 X 104 = 89.5 kW /m2 

This is the emissive power at the wavelength of maximum heat 
radiation. 

For the effective area of the radiator the emissive power at this 
wavelength = 89.5 X 0.09 = 8.055 kW 

Summary for Example 4.1 
The proportion of the emissive power of 89.5 kW /m2 attributed 
at the wavelength of maximum heat radiation (1.97 11m), to the 
total emissive power across all wavelengths of 267 kW /m2 is 
89.5/267 = 33.5%. Thus one-third of the luminous heater output 
is derived from the wavelength of 1.97/--lm. 

Example 4.2 
Show the effect on radiant heat flux of locating bright aluminium 
foil having an emissivity of 0.07 in the centre of the cavity of an 
external cavity wall. 

Assume that the two boundaries to the cavity are at 10°C and 1°C 
respectively, each having an emissivity of 0.9. 

Comment upon the effect that the foil will have on the thermal 
transmittance coefficient for the wall and upon its thermal 
response. 

Solution 
Figure 4.9 shows the wall cavity with the foil in place. 

Absolute temperatures are used in the solution and: 
Tl = (273 + 10) = 283K, T2 = (273 + 1) = 274K 

Equations (4.9) and (4.11) can be adopted here in which Tf is the 
absolute temperature of the foil. Thus if temperatures remain steady 
heat flow from Tl to Tf equals the heat flow from Tf to T2 and: 

a(Tt - 11)/((l/el) + (l/ed - 1) = a(11- Ti)/((l/ef) + 
(1/e2) - 1) 

Since the form factor has the same numerical value each side of 
the heat balance and the Stefan-Boltzmann constant cancels 
(Tt - Tt) = (Tt - Tn, and substituting: 

2834 - Tt = Tt - 2744 
2834 + 2744 = 211 

from which foil temperature T f = 278 K (tf = 5c). 
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Figure4.9 External wall cavity with bright aluminium foil in place (Example4.2). 

The radiant heat flux I for two parallel grey surfaces can be 
determined by combining equations (4.9) and (4.11) 

1= (F1,2)0"(Ti - Ii) W /m2 
thus: 

1= O"(Ti - Ti)/((l/el) + (1/e2) - 1) 
The radiant heat flux between surfaces 1 and 2 before the foil is 
located will be: 

1= 5.67 X 10-8 (2834 - 2744 )/((1/0.9) + (1/0.9) - 1) 

and I = 44.1/1.222 = 36.1 W/m2 

The radiant heat flux when the foil is in position can be determined 
from either one side or the other of the foil since the heat flux from 
surface 1 to the foil will equal the heat flux from the foil to surface 2 
assuming temperatures remain steady. 

Then taking the heat flux from surface 1 to the foil: 

1= 5.67 X 10-8 (2834 - 2784 )/((1/0.9) + (1/0.07) - 1) 
from which I = 25.03/14.4 = 1.74 W /m2. 

The heat transfer coefficient for radiation (Fl,2)h r can be deter­
mined from equation (4.15) and for parallel boundaries equation 
(4.9) is applicable for form factor F1,2 and therefore when the foil is 
in position, working from boundary 1 to the foil: 

(Fl,f)hr = O"(TI + Tf)(Tf + TI)/((l/el) + (l/ef) - 1) 
(Fl,f)hr = 5.67 x 10-8(283 + 278)(2832 + 2782 )/((1/0.9)+ 

(1/0.07) - 1) 

(Fl,f)h r = 0.348 W /m2K 



 

A much simpler way of finding (Fl,f)hr here, since the radiant heat 
flux I has been calculated, is to use equation (4.13). 

Thus (F1,f)hr = l/dt = 1.74/(283 - 278) = 0.348W/m2K. 

The heat transfer coefficient for radiation when the foil is not in 
place will take place between the two surfaces 1 and 2, thus using 
again equations (4.9) and (4.15): 

(F1,2)hr = 5.67 x 10-8 (283 + 274)(2832 + 2742)/((1/0.9)+ 
(1/0.9) - 1) 

(F1,2)hr = 4.01 W /m2K 

Similarly again equation (4.13) can be used here and 

(F1,2)hr = l/dt = 36.1/(283 - 274) = 4.01 W /m2K 

Summary for Example 4.2 

Condition Radiant heat flux I 

no foil 36.1 W/m2 
with foil 1.74 

Radiant heat transfer coefficient (F1,2) hr 

4.01 W/m2K 
0.348 

With the foil in place in the wall cavity the radiant heat flux is 
reduced to about 5% of its original value. If the foil is 2 mm thick 
and has a thermal conductivity of 105 W/mK its thermal resistance 
R = 0.002/105 = 0.000019 m2K/W. This will have no significant 
effect upon the thermal transmittance coefficient (U value) for 
the wall and therefore no effect upon the heat loss. However, with 
the foil reflecting back much of the radiant component of heat 
transfer towards the inner leaf of the wall, the inner leaf will heat 
up more quickly when the heating plant is started after a shut-down 
period. The foil will also assist in maintaining the temperature of 
the inner leaf, and hence indoor temperature, longer when the plant 
shuts down at the end of the day. This results in energy conserva­
tion. 

Example 4.3(a) 
(i) A vertical panel radiator, fixed to an external wall, measures 
1.8 m by 0.75 m high and has a mean surface temperature of 76°C 
and an emissivity of 0.92. 

It is intended to fix bright metal foil having an emissivity of 0.04 
directly to the wall behind the radiator having an emissivity of 0.9. 
The room is held at a mean radiant temperature of 19°C and the 
wall temperature behind the radiator stabilises at 40°C. Determine 
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the radiant heat emission from the panel before and after the foil is 
in place. 

(ii) If the room air temperature is 21°C determine the heat output 
by free convection from the radiator. Evaluate the properties at the 
mean film temperature and assume one of the following relation­
ships for the surface convection coefficient he. 

For turbulent flow Nu = 0.1 (PrGr)0.33, for laminar flow Nu = 
0.36(Gr)O.25 

Solution (i) 
Figure 4.10 shows the radiator panel fixed to the external wall. 

J 
'0 P 

~ r--. 

Radi 
a 

ator surface 76 C r::: 
~ 

Wall 
a 

surface 40 C r----p 
t foil r::: 

~ r::: 
0 I"--'-

Brigh 

Floor P 
~~~ 

r::: 

~ External wall 

Figure 4.10 Use of bright reflective foi I (Example 4.3). 

Absolute temperatures are: panel surface, 76 + 273 = 349 K 
wall, foil surface,40 + 273 = 313 K 
room, 19 + 273 = 292K 

Radiant heat flow from the back of the panel must account for the 
form factor for parallel surfaces, equation (4.9). 

Radiant heat flow from the front of the panel involves the form 
factor F1,2 = el. Two separate calculations therefore need to be 
considered here for each condition. 

Considering the back of the panel with no foil in place 
From equation (4.9) Fl,2 = l/((l/el) + (1/e2) - 1), substituting 
el = 0.92 and e2 = 0.9, F1,2 = 1/1.198 = 0.835. 



 

From equation (4.11) in which Tl = 349 K and T2 = 313 K, 
1= 248W/m2 and emission Q = 248 x 1.8 x 0.75 = 335W. 

Considering the front of the panel 
From equation (4.12) in which 

el = 0.92, Tl = 349 K and T2 = 292 K, 
1= 395 W /m2 and emission Q = 395 x 1.8 x 0.75 = 533 W. 

Total radiant output from the panel without the foil 
= 335 + 533 = 868W 

You should now confirm these calculations. 

Considering the back of the panel with the foil in place 
From equation (4.9) 

F1,2 = 1/((1/0.92) + (1/0.04) - 1) = 1/25.087 = 0.04, 
from equation (4.11) 

1= 5.67 X 10-8 x 0.04[(3494 ) - (3134)] = 11.88W/m2 

and emission Q=11.88 x 1.8x 0.75 = 16W. 
The front of the panel will have the same radiant emission as before 
and Q = 533W. 
The total radiant output from the panel with the foil in place 

= 533 + 16 = 549W. 

Summary for Example 4.3(i) 
With the foil in place the radiant heat output from the panel is 549 W 
compared with 868 W. The heat loss by radiation through the wall is 
868 - 549 = 319W when the foil is missing. There is therefore a 
saving in heat energy and hence fuel costs when the foil is used; there 
will also be a reduction in CO2 emission into the atmosphere. 

Solution to Example 4.3(a)(ii) 
From the chapter on heat convection the first step in the solution is 
to establish whether the free convection over the panel is laminar or 
turbulent. This is achieved by evaluating the Grashof number 

Gr = f3gx 3p2dt/J-L2 
The mean film temperature at the panel surface = (76 + 21)/2 = 
48.5°C = 321.5 K. 

The density and viscosity of the air at the mean film temperature 
is interpolated from the tables of Thermodynamic and Transport 
Properties of Fluids as p = 1.099 kg/m3, J-L = 0.00001946 kg/ms, 
Pr = 0.701 and k = 0.02789W/mK. 

The coefficient of cubical expansion of the air f3 = 1/321.5 = 
0.00311 K- 1. 

Substituting these values into the Grashof formula: 
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Gr = [(0.00311 x 9.81 x (0.75)3 x 

(1.099)2(76 - 21)l/(0.000 01946)2 = 2.27 X 109 . 

Since Gr > 109 air flow over the panel is turbulent, 
thus Nu = 0.1(0.701 x 2.27 x 109 )°.33 = 108.8 
now Nu = hex/ k from which he = Nuk/x = 108.8 x 0.02789/ 
0.75 = 4.04 W/m2K 

Free convective emission Q = heAdt = 4.04 x (1.8 x 0.75 x 2) 
(76 - 21) = 600W 

Comparison of solutions 4.3 (a)(i) with 4.3(a)(ii) 
The total ouptut from the panel with the foil in place = 549 + 
600 = 1149W. 

The total output from the panel without the foil = 868 + 
600 = 1468W. 

Example 4.3(b) 
A horizontal radiant panel located at high level in a workshop and 
insulated on its upper face has a surface temperature of 110°C, an 
emissivity of 0.9 and measures 2.7 x l.2m. 

The workshop is held at a mean radiant temperature of 19°C and 
an air temperature of 15°C. 

(i) Determine the total emission downwards. 
(ii) Determine the total emission upwards if the outer surface of 

the insulation has a temperature of 30°C and an emissivity of 
0.1. 

(iii) Calculate the thickness of thermal insulation given that its 
thermal conductivity is 0.07W/mK. 

Data: Rational formulae: 

1= (F1,2)o-[Ti - TilW/m2 equation (4.11) 

downward he = 0.64((ts - t£)/D)0.25 W / m2K equation (3.8) 

upward he = 1.7(ts - t£)0.33 W /m2K equation (3.9) 
Q = heAdtW equation (3.16) 

Solution (i) 
Now I = 5.67 X 10-8 x 0.9((3834 ) - (2924 )) 

from which I = 727W /m2 
and Qr = 727(2.7 x 1.2) = 2356W. 
Now he = 0.64((110 - 15)/((2.7 + 1.2)/2))°·25 
from which he = 1.69W/m2K 
and Qe = 1.69(2.7 x 1.2)(110 - 15), 



 

from which Qe = 520 W. 
Total downward emission Q = 2356 + 520 = 2876W 

Solution (ii) 
The upper surface of the thermal insulation is finished in aluminium 
foil, hence the low value for its emissivity. 
Now I = 5.67 X 10-8 x 0.1((303)4 - (2924)) 
from which 1= 6.57W jmZ 

and Qr = 6.57(2.7 x 1.2) = 21.3 W. 
Now he = 1.7(30 - 15)°.33 
from which he = 4.155WjmZK 
and Qe = 4.155(2.7 x 1.2)(30 - 15) 
from which Qe = 202 W. 
Total upward emission Q = 21 + 202 = 223 W 

Solution (iii) 
From equation (2.3) dtl/R1 = dtzjRz = IWjmZ 

Adapting the equation for use here where t1 = 110ae and 
tz = 30ae 

1= (tl - tZ)jRins WjmZ 

substituting: 223j(2.7 x 1.2) = (110 - 30)j(LjO.07) 
thus: 68.83 = 80j(LjO.07). 
Rearranging: 68.83 x LjO.07 = 80 
from which L = 0.081 m = 81 mm. 

Summary for Example 4.3b 
Total downward emission = 2876 W, total upward emISSIon 
= 223 W, thickness of insulation on the upper side of the panel 
= 81mm. 

Example 4.4 
(a) A steam pipe at a temperature of 200°C passes through a room 

in which the mean radiant temperature is 20°e. A short section 
of the pipe surface is uninsulated and its emissivity is 0.95. If its 
area is 0.25 mZ calculate the rate at which heat radiation will be 
lost. 

(b) How would heat emission be affected by: 

(i) painting the pipe with aluminium paint given e = 0.7, 
(ii) wrapping the pipe tightly with aluminium foil given e = 0.2, 
(iii) surrounding the pipe with a co-axial cylinder of aluminium foil 

where its outside diameter is twice the diameter of the steam 
pIpe. 

Problem solving 85 



 

86 Heat radiation 

Solution 
Absolute temperatures are used and Tl = 273 + 200 = 473 K, 
T2 = 273 + 20 = 293 K. (a) Assuming that the uninsulated pipe 
surface is small compared with the size of the room in which it is 
located equation (4.12) may be adopted in which F1,2 = e1. 

Thus 

1= 5.67 X 10-8 x 0.95(4734 - 2934 ) 

and 

1= 2299W/m2 

Q = 2299 x 0.25 = 575W 

(b) (i) As the only variable is emissivity 
Q = 575 x ratio of emissivities = 575 x 0.7/0.95 = 425W. 

(b) (ii) Q = 575 x 0.2/0.95 = 120W. 
(b) (iii) The surface area of the aluminium casing at absolute tem­
perature Ts will be twice that of the pipe. Thus the radiant heat loss 
from the casing surface to the room will be: 

Q = 0.20'(Ts4 - 2934)(2 x 0.25). 
The radiant heat transfer into the aluminium casing from the pipe 
surface from equations (4.10) and (4.11) will be: 

1= 0'(4734 - Ts4)/((1/e1) + AdA2((1/e2) -1)W/m2 

Accounting for the surface area of the pipe: 

Q = 0'(4734 - Ts4)(0.25)/((1/eI) + AdA2(1/e2) - 1) W 

substituting data: 

Q = 0'(4734 - r;)(0.25)/( (1/0.95) + 0.25/0.5(1/0.2) - 1) 
Q = 0'(4734 - r;)(0.25)/3.0526. 

A heat balance can now be drawn up if temperatures remain steady. 
Heat transfer from the pipe to the casing = heat transfer from the 

casing to the room, thus: 

0'(4734 - Ts4)(0.25)/3.0526 = 0.20'(r; - 2934 )(0.5) 
4734 - T: = 1.221(T: - 2934 ) 

5.9054 X 1010 = 2.221 T: 
from which Ts = 404K (ts = 131°C) 

Thus the radiant heat transfer from the aluminium casing to the 
room will be: 

Q = 0.2 x 5.67 x 10-8(4044 - 2934 )(0.5) = 109W. 



 

Summary for Example 4.4 

Condition of pipe 

plain 
painted with aluminium 
wrapped in foil 
encased with aluminium cylinder 

Example 4.5 

radiant heat transfer 
(W) 

575 
425 
120 
109 

A gas-fired radiant heater consumes 5.625 m3 in one and a half 
hours of natural gas which has a calorific value of 38.4 MJ/m3 • The 
heater has an effective black body temperature of 750°C in sur­
roundings at 20°C. If the area of the heater surface is 0.5 m2 
determine the radiant efficiency of the heater. 

Solution 
From equation (4.2) radiant heat flux I = aT4W/m2 
for black body radiation exchange assuming the enclosure is black: 

equation (4.8) 1= a(Ti - Ti)W/m2 

from which Q = a(T{ - Ti)A1 W 
substituting: Q = 5.67 X 10-8 (10234 - 2934) x 0.5 
from which radiant output Q = 31 kW 

gas input = (5.625/(3600 x 1.5)) x 38400 
=40kW 

Radiant efficiency = (output/input) x 100 
= (31/40) x 100 = 77.5% 

Example 4.6 
A stem thermometer 4 mm in diameter is located in a bend along the 
axis of a boiler smokepipe 200 mm in diameter. Flue gas tempera­
ture is 200°C and the reading on the thermometer is 185°C. The 
surface temperature of the smokepipe is 140°C. Determine the 
convection coefficient for heat transfer between the flue gas and 
the stem thermometer. Emissivity of the stem thermometer is 0.93 
and that of the smokepipe 0.8. 
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4.12 Asymmetric 
heat radiation 

Solution 
There is a temperature disparity here between the flue gas, the stem 
thermometer and the wall of the boiler smokepipe and the reason 
for it is presented in the summary at the conclusion of the solution. 
A heat balance may be drawn up as follows. 

Convection to the thermometer from the flue gas is equal to the 
radiation exchange between the thermometer and the wall of the 
smokepipe. 

Absolute temperatures are used and the flue gas is 473 K, the 
stem thermometer is 458 K and the smokepipe wall is 413 K. 

Considering the heat radiation exchange, the form factor for 
concentric cylinders is found in equation (4.10), 

1/F1,2 = (1/0.93) + (1f0.004.L/1f0.2L) ( (1/0.8) - 1) 
from which I/F1,2 = 1.0803 and therefore F1,2 = 0.926 
Adapting equation (4.11) Q = (Fl ,2)a(Ti - Ti)A l , 

substituting the values 

Q = 0.926 x 5.67 x 10-8 (4584 - 4134 )Al W. 
Considering the heat transfer by convection, from equation (3.16), 
Q = he.A.dtW and substituting values Q = heAl (473 - 458) W. 

Thus combining the formulae into the heat balance 

heAl(473 - 458) = 0.926 x 5.67 x 10-8(4584 - 4134 )Al 
from which 15he = 782.69 
and he = 52.18W/m2K. 

Summary for Example 4.6 
The reason why the stem thermometer, flue gas and smokepipe wall 
were not at the same temperature was because the boiler smokepipe 
at 140°C which is 60 K below the flue gas temperature must be 
rapidly loosing heat to its surroundings. The thermometer would 
register a truer reading if the smokepipe was adequately insulated. 
A well-insulated boiler flue pipe will minimize heat transfer 
between the flue gas, thermometer and smokepipe wall. This ana­
lysis applies to other similar applications and accounts for errors in 
temperature measurement. 

There are three cases of asymmetric heat radiation: 

1. Local cooling - radiation exchange with an adjacent cold surface as 
with a single glazed window. 

2. Local heating - radiation exchange with an adjacent hot surface or 
a series of point sources as with spot lamps. 
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Figure 4.11 Plan of room with an external window showing Prt contour. 

3. Intrusion of short wave radiation as with solar radiation through 
glazing. 

Unless all the inner surfaces of an enclosure are at the same tempera­
ture mean radiant temperature tr will vary throughout the space. This 
variation will produce a change in comfort temperature tc and intro­
duce asymmetry. Strong asymmetry will promote discomfort. 

To quantify the degree of discomfort it is helpful to introduce two 
concepts: 

• plane radiant temperature Prt 
• vector radiant temperature Vrt 

Prt is associated with the effects of radiant cooling which can result, for 
example, in front of an external single glazed window. Discomfort 
may result if the Prt when facing the cold window surface is 8 K below 
the room comfort temperature tc. Refer to Figure 4.11. 

An example of heating discomfort may occur if the Vrt resulting from 
solar irradiation through a glazed window is greater than 10 K above 
the room comfort temperature. In buildings which are highly inter­
mittent in use such as churches, and in factories where the air tem­
peratures are low, directional high temperature radiant heaters giving 
a Vrt well in excess of 10 K are quite acceptable since they compensate 
for the low air temperatures and low mean radiant temperatures 
resulting from the cold enclosing surfaces. 

The fraction of the Sun's energy reaching the outer atmosphere of the 
Earth may be calculated approximately if it is assumed that the Earth 
travels in a circular path around the Sun. The fraction will be the ratio 
of the Earth's disc area to that of the spherical surface area described 
by its radial path around the Sun. The surface area so described will 
receive all the Sun's radiation whereas the Earth's disc will receive the 
fraction calculated. Thus the fraction = (area of Earth's disc)/(surface 
area of described sphere). Refer to Figure 4.12. 

4.13 Solar 
irradiation and the 
solar constant 
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Figure 4.12 Sun and Earth as a disc. The Earth's motion around the 
Sun considered circular. Fraction of Sun's radiation received by the 

h _ area of Earth's disc 
Eart - surface area of described sphere' 

The Earth's radius is 6436 km and the radius of the Earth's path 
described around the Sun is (150.6 x 106) km, 

the fraction = 7r(6436)2/47r(150.6 x 106) = 4.56 X 10-10 . 
Adapting equation (4.2) the Sun's total emission Q = a(T4)A W. 
The Sun's temperature is 6000K and its radius is (6985 x 102) km 

the total emission Q = 5.67 X 10-8 (6000)4 x 47r(6985 X 105 )2 

= 4.505 X 1026 W 
Q = 4.505 X 1023 kW 

That reaching the Earth = 4.505 x 1023 x fraction received 
= 4.505 x 1023 x 4.56 X 10-10 

= 2.0543 X 1014 kW 

The solar constant I = Q/A = 2.0543 x 1014 /disc areakW/m2 

= 2.0543 x 1014 /7r( 6436 X 103)2 

1= 1.5786 kW /m2 

This compares with the measured solar constant perpendicular 
with the Sun's rays outside the Earth's atmosphere of I = 1.388 
kW/m2. 

The solar intensity on a horizontal surface at latitude 51.7 on 21 
June at 12.00 is: 1= 0.85kW/m2. 



 

The solar intensity on a vertical surface facing south at latitude 51.7 
on 22 September and 22 March at 12.00 is: 1= 0.700kW/m2. 

The solar intensities given here are the maximum values in the year 
for sky clarity of 0.95, cloudiness factor 0.0, ground reflectance factor 
0.2 and altitude 0 m to 300 m. 

There are a variety of solar collectors in use for water heating. Those 
used for domestic water heating and for heating swimming pools are 
of the fixed type. Since a typical surface can have a high absorptivity, 
from Kirchhoff's law, it will also have a high emissivity. A collector 
will have a selective surface. Refer to Example 4.7 below. If green­
house type glass is used to protect the collector surface, however, it will 
allow the passage inwards of short-wave solar radiation and assist in 
preventing the transmission of long-wave radiation from the collector 
surface outwards through the glass. 

Example 4.7 
A flat plate solar collector has a selective surface with an absorp­
tivity of 0.95 and an emissivity of 0.15. The coefficient of convec­
tive heat transfer is 3 W /m2K at the collector surface. If the area of 
the collector is 2 m2 and there are four connected to the same system 
calculate the rate of energy collection and the collection efficiency 
at a time when the irradiation is 820W/m2. Take the collector 
temperature as 65°C and outdoor air temperature as 27°C. 

Solution 
The convection loss from the outer surface of the collector adopting 
equation (3.16) 

Q = heAdt = 3 x (2 x 4) x (65 - 27) = 912 W 
The radiation loss 

Q = (J"er = 5.67 x 10-8 x 0.15 x (273 + 65)4 x 
(2x4)=888W 

The net rate of collection = (0.95 x 820 x 2 x 4) - 912 - 888 = 
4432W 

Solar irradiation = 820 x (2 x 4) = 6560 W 

The collection efficiency = net collection/incident irradiation 
= (4432/6560) x 100 = 67% 

Note: this is the collection efficiency and not the overall efficiency 
of the solar collector. 
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4.15 Chapter closure 

Example 4.8 
Calculate the rate of energy absorption on a flat plate collector 
having an area of 3 m2 and positioned normally to the Sun's rays. 
The surface temperature of the collector is 70°C and outdoor air 
temperature 21°C. Its absorptivity to solar radiation is 0.95 and the 
emissivity of the plate is 0.2. The convective heat transfer coeffi­
cient at the collector surface is 3 W Im2K. Take the solar constant as 
1.388 kW 1m2 and the transmissivity of the upper atmosphere as 
0.63. 

Solution 
Rate of collection = 0.95 x 1388 x 0.63 = 831 W 1m2 
Radiant loss = 5.67 X 10-8 x 0.2(273 + 70)4 = 157W 1m2 
Convection loss = 3 x (70 - 21) = 147W/m2 
Net rate of absorption = 831-157 -147 = 527W/m2 

Net rate of collection = 527 x 3 = 1581 W 

Summary for Examples 4.7 and 4.8 
In both the above examples the net rate of solar irradiation col­
lected is then transferred to the collecting medium which is usually 
water treated with an antifreeze agent. There is a loss of efficiency 
here and also at the point where this heated water imparts its energy 
at the heat exchanger to the water used for consumption. If an 
efficiency of 60% is taken at each of these points the overall 
efficiency of the solar collecting system in Example 4.6, and ignor­
ing losses from pipes and storage vessel, will be 0.67 x 0.6 x 0.6 = 
24%. 

You now have an underpinning knowledge of this mode of heat 
transfer and have investigated the use of luminous and non­
luminous radiant heaters. You understand the importance of the 
surface characteristics of the radiator and of its location in space 
for effective results. The concept of asymmetric radiation and dis­
comfort has also been addressed. Some work has been done in this 
chapter on saving energy by the use of bright aluminium foil. Heat 
radiation at the wavelength of maximum flux has been shown to 
represent a significant proportion of the total. You have been intro­
duced to the solar constant and use of solar collectors for water 
heating. 
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5 

Nomenclature 

5.1 Introduction 

5.2 Flow 
characteristics 

Measurement of 
fluid flow 

a cross-sectional area (m2 ) 

C constant 
Cd coefficient of discharge 
dh difference in head (m) 
dP pressure difference (Pa) 
g gravitational acceleration taken as 9.81 m/i at sea level 
h head, metres of fluid flowing (m) 
H vertical height (m) 
L length of inclined scale (mm) 
M mass flow rate (kg/s) 
m ratio of cross-sectional areas 
p density (kg/m3 ) 
P pressure (Pa) 
Ps static pressure (Pa) 
P t total pressure (Pa) 
P u velocity pressure (Pa) 
Q volume flow rate (m3 /s) 
R radius of a circle (m) 
S ratio of densities 
T absolute temperature (K) 
u mean velocity (m/s) 
x vertical height (m) 
Z height above a datum (m) 

This chapter focuses upon the traditional instruments used for 
measuring gauge pressure, differential pressure and volume flow 
rate. It also considers the calibration of pressure measuring instru­
ments. 

It is helpful to begin with some general definitions relating to the flow 
of fluids in pipes and ducts. 



 

Uniform flow 

The area of cross-section and the mean velocity of the fluid in motion 
are the same at each successive cross-section. 

Example: flow of water through a flooded pipe of uniform bore 
Volume flow rate Q = a x U m3 Is. 

Steady flow 

The area of cross-section and the mean velocity of the fluid may vary 
from one cross-section to the next but for each cross-section they do 
not change with time. 

Example: flow of water through a flooded tapering pipe 
Volume flow rate Q = alul = a2U2 m3 Is, 
thus U2 = Ul (ad a2) m/s. 

Continuity of flow 

The total amount of fluid entering and leaving a system of pipework 
or ductwork is the same. This occurs in uniform flow and steady 
flow. 

Example: air flow through a tee piece or junction. See Figure 5.1 in 
which Ql = Q2 + Q3 
Furthermore ulal = (U2a2) + (U3a3). 

r 

Figure 5.1 Continuity of flow Q1 = Q2 + Q3. 
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5.3 Conservation of 
energy in a moving 
fluid 

Mean velocity 

Mean velocity u at any cross-section of area a when the volume flow 
rate in m3 /s is Q will be u = Q/a m/s. 

In order to consider the traditional methods of fluid flow measurement 
it is necessary to introduce the Bernoulli equation which states that for 
frictionless flow: 

Potential energy 2 + Pressure energy P / pg + kinetic energy 
u2 /2g = a Constant. 

In this format each energy term in the equation has the units of 
metres of fluid flowing. Thus for frictionless flow the total energy of 
the fluid flowing remains constant; no energy is lost or gained in the 
process. 

• Potential energy is that due to a height above a datum. 
Example: water stored in a water tower has potential energy when 
ground level is taken as datum. 

• Pressure energy is that due to static pressure and pump or fan 
pressure when present. 
Example: water flowing in a heating system subject to the sum of 
the static head imposed by the feed and expansion tank, and also to 
the pressure developed by the pump. 

• Kinetic energy is that due to the velocity of the fluid in the pipe or 
duct. 

If two points are considered in a system in which fluid is flowing, one 
downstream of the other as shown in Figure 5.2, the following state­
ment, assuming frictionless flow, can be made: 

21 + (Pd pg) + (ui/2g) = 22 + (P2/ pg) + (uV2g). 

1 

_\ 
2 

- ... -
~-----() ------------------

Z1 Z2 

Datum level 

Figure 5.2 Conservation of energy in frictionless flow. 
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h 

H 

A--L-----------------

Figure 5.3 The manometer. 

Consider Figure 5.3 which shows a manometer open to atmosphere 
connected to a circular duct. At section A-A the pressures are equal in 
each limb of the manometer and therefore: 

pressure in the left-hand limb = pressure in the right-hand limb 

thus (h + H)PIg = Xp2g, gravitational acceleration g cancels and 
(h + H) = Xp2/ P1; 

if S = P2/ PI 
h = Sx - H m of fluid flowing. 

The pressure of the fluid flowing P = (Sx - H)Plg Pa (5.1) 

Example 5.1 
(a) A water-filled manometer is connected to a duct through which 
air is flowing. 

If the displacement of water levels is 43 mm determine the static 
pressure generated by the air. 

Data: water density 1000 kg/m3, air density 1.2 kg/m3, and His 
350mm. 
(b) Calibrate the manometer. 

Solution (a) 
The ratio of densities S = 1000/1.2 = 833 

substituting into equation (5.1) P = [(833 x 0.043) - 0.35] x 1.2x 
9.81 = 418 Pa 

Note: since the fluid flowing is air which has a relatively 
low density H can be ignored without loss of integrity and 
P = SXPlg Pa. 

5.4 Measurement of 
gauge pressure with 
an uncalibrated 
manometer 
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5.5 Measurement of 
pressure difference 
with an uncalibrated 
differential 
manometer 

Solution (b) 
The displacement of water of 43 mm is equivalent to a static pres­
sure of 418 Pa. 

Thus 418/43 = 9.72 Pa per mm of water displacement. 

This is a displacement of approximately 1 mm of water for 10 Pa of 
static pressure and on this basis the manometer can now be cali­
brated. 

H 

A--------------L-------~-- ---lE,--X ---A 

Figure 5.4 The differential manometer. 

Consider Figure 5.4 which shows a differential manometer connected 
to a pipe transporting fluid. At section A-A the pressures in each limb 
of the manometer are equal and pressure in the left-hand limb = 
pressure in the right-hand limb, 

thus (hI + H)PIg = (h2 + H - X)Plg + xp2g 
gravitational acceleration g cancels as does H 

and (hI - hz)Pl = XP2 - XPl 
therefore hI - h2 = X(p2/ pI) - x 
then head loss hI - h2 = (xS - x) = x(S - 1) m of fluid flowing 
or dh = x(S - 1)m of fluid flowing (5.2) 
therefore pressure loss dP = x(S - 1)PIg Pa (5.3) 

Example 5.2 
(a) A differential manometer measures the pressure drop across an 
air filter. The displacement of measuring liquid in the instrument is 
found to be 10 mm. Determine whether the filter should be replaced. 



 

Measurement of pressure difference with an uncalibrated differential manometer 99 

Data: density of measuring liquid 850 kg/m3, air density 
1.2 kg/ m3 , maximum pressure drop across the filter when it should 
be replaced 50 Pa. 

(b) Calibrate the manometer. 

Solution (a) 
The ratio of densities S = 850/1.2 = 708 

substituting the data into equation (5.3) dP = 0.010(708 - l)x 
1.2 x 9.81 = 83.23Pa. 

Note: unless the ratio of densities S has a relatively low value, 
equation (5.3) can be reduced to dP = xSplgPa without loss of 
integrity. 

Clearly the filter is in need of replacement since an excess pres­
sure drop across it implies that it is partially clogged. 

Solution (b) 
The displacement of liquid of 10 mm results in a pressure drop of 
83.23Pa. 

Thus 83.23/10 = 8.23 Pa per mm of displacement. 
This is a displacement of approximately 1 mm for 8 Pa of differen­
tial pressure and on this basis the instrument can now be calibrated. 

Inclined differential manometers 

The displacement of the measuring fluid has been considered in a limb 
of the manometer which is in the vertical position (Figure 5.4). The 
calibration can be difficult to read accurately because of the small 
scale. Incline manometers are used to ensure more accurate readings. 

If the angle of inclination of the measuring limb is changed from the 
vertical to 20 0 from the horizontal, Figure 5.5, then cosine 70 = l/L 
from which L = l/cosine and 70 = 1/0.342 = 2.92. Thus the scale 
length is now 2.9 times that of the corresponding vertical scale. Alter-

Figure 5.5 The inclined manometer, L = 1/cos70. 
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5.6 Measurement of 
flow rate using a 
venturi meter and 
orifice plate 

natively, 1 mm displacement on the vertical scale equals 2.9 mm on the 
scale inclined at 20° to the horizontal. 

In the case of the solution to Example 5.2, the displacement of water 
of 10 mm on the vertical scale of the differential manometer would 
now be extended on the inclined scale to 10 x 2.9 = 29 mm and the 
calibration would now be 83.23/29 = 2.87Pa per mm of displace­
ment. You should now confirm that this is so. 

The venturi and orifice plate are instruments specifically made for each 
application. Once installed they are permanently fixed in position. 

Consider Figure 5.6 which shows a venturi fitted in a horizontal 
pipe in which fluid is flowing. The venturi is a fixed instrument and 
purpose made for the application. 

The design of the venturi meter requires that the entry or converging 
cone has an angle of 21 0, the length of the throat is equal to its 
diameter and the diverging cone has an angle of 5° to r. The two 
tappings measure static pressure and may be bosses or piezometer 
flngs. 

Applying the Bernoulli equation for frictionless flow at sections 1 
and 2: 

21 + (Pl/ pg) + (ui;2g) = 22 + (P2 / pg) + (uV2g) , 
since the pipe is horizontal 21 = 2 2, 
rearranging the equation (PI - P2 )/ pg = (u~ - ui)/2g. 

We know the equation rearranges in this way since U2 > UI thus 
PI > P2, the equation may now be written as dh = (u~ - ui)/2g 
since dh = dP / pg. 

For continuity of flow a1u1 = a2u2 in which d1 and d2 are fixed for 
the chosen application. 

SO U2 = (al/a2) x UI. 

fi Upstream tapping 

Converging cone 
Div_er.::.gi-,ngr--co-n-e----r-___.. 

2 '------ Venturi throat diameter d2 

Figure 5.6 The venturi meter. 
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If area ratio m = alla2 = dildi, U2 = mUl 

substituting dh = [(mul)2 - uiJ/2g 
then dh = (ui/2g)(m2 - 1) m of fluid flowing. 

In units of pressure dP = (ui/2g)(m2 -1)pgPa 

dP = (pui/2)(m2 - 1) Pa 

and rearranging Ul = [(2dP) I p( m 2 - 1) JO.5 ml s 

therefore Ql = ulal = [(2dP)1 p(m2 - 1)J°.5 x al 
the formula is rearranged thus Ql = [21 p(m2 - 1)JO.5 x al x (dP)O.5 
where [21 p(m2 - 1)JO.5 x al = C, a constant for the instrument and 
based upon its physical dimensions for the chosen application and the 
density of the fluid flowing. 
Thus Q = C(dP)0.5 m3 Is 

This formula is derived from the Bernoulli equation for frictionless 
flow. Clearly there will be a small loss due to friction as fluid passes 
through it. The coefficient of discharge Cd, determined for each instru­
ment, accounts for this and for the venturi meter it varies between 0.96 
and 0.98. It is found empirically before leaving the manufacturer. 

Therefore actual flow Q = CdC(dP)0.5 m3 Is (5.4) 
The orifice plate is shown in Figure 5.7. This also is a fixed instrument 
designed for a specific application. The determination of flow rate is 

Upstream tapping ...... 
Orifice plate 

NDownstream tapping 

)L-----+-----..-- d2 -----i+--+-------+_~ 

2 

Figure 5.7 The orifice plate. 
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obtained from the same equation as that for the venturi meter. The 
coefficient of discharge for the orifice plate Cd varies between 0.6 and 
0.7. 

Venturi meters are used for measuring the flow rate of liquids. The 
orifice plate is normally used for measuring the flow rate of gases such 
as steam since it has less effect upon the compressibility of the sub­
stance. 

Example 5.3 
A venturi meter is located in a horizontal pipeline transporting 
water at 75°C and is connected to an uncalibrated differential 
manometer whose calibration limb is inclined at 20 0 to the hori­
zontal. 

From the data find the constant C for the meter. 
If the inclined manometer shows a displacement of measuring 

liquid of 70 mm determine the volume flow and hence the mass 
flow rate of water in the pipe. 

Data: pipe diameter 50 mm, venturi throat diameter 25 mm, water 
density 975 kg/m3, density of measuring liquid is 13 600 kg/m3 and 
the coefficient of discharge for the meter Cd is 0.96. 

Solution 
The manufacturer of the venturi would have requested details of the 
temperature of the water, flowing, the design flow rate and the 
diameter of the pipe. The constant C would then have been supplied 
with the instrument. Here we are asked to calculate it. 

It was established that constant C = [2/ p(m2 - 1 )]0.5 x al 
where m = dUdi = (50/25)2 = 4 
substituting: C = [2/975(16 - 1)]°·5 x ('if X 0.052/4) = 0.000023. 
Actual flow rate through the meter Q = CdC( dP)0.5 from equation 
(5.4). 

A differential manometer already calibrated in Pa or mbar would be 
used to measure the pressure drop across the tappings on the venturi 
meter. Here we have to calculate it. The differential pressure loss dP 
for the water flowing is determined from equation (5.3). 

However the vertical displacement x is required and since cosine 
70 = x/L, where L = the calibration limb at 200 to the horizontal, 
x = Lcos70, from which x = 70 x 0.342 = 24mm. 

From equation (5.3), dP = x(S - l)pg where S = 13 600/975 = 
13.95 
thus dP = 0.024(13.95 - 1) x 975 x 9.81 = 2973 Pa 
substituting into equation (5.4) 

Q = 0.96 x 0.000023 X (2973)°.5 = 0.0012 m3/s 
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or Q = 1.2l/s 
and mass flow M = Qp = 0.0012 x 975 = 1.174kg/s. 

Summary for Example 5.3 
The calibration for this differential manometer measuring water 
flowing at 75°C would be 2973/70 = 42.5 Pa for each millimetre 
displacement of measuring fluid. 

Notice the effect of temperature on the density of the fluid flow­
ing and therefore the differential pressure reading. If the water 
flowing was at 5°C its density would be 1000 kg/m3 and 
pressure loss dP = 0.024(13.6 - 1) x 1000 x 9.81 = 2967Pa, 
constant C = [2/1000(16 -1)]°.5 x (7r x 0.052/4) = 0.000022 7 
flow rate Q = 0.96 x 0.0000227(2967)°·5 = 0.001187 m3 /s and 
mass flow M = Qp = 0.001187 x 1000 = 1.187kg/s. 

Example 5.4 
An orifice plate is installed in a steam main for measuring the flow 
of steam. Determine the rate of flow given the manufacturer's 
coefficient of discharge as 0.7 and the manufacturer's constant for 
the instrument as C = 0.0046. 

The differential pressure measured at the orifice plate was 
290 mbar. Given the steam density as 3.666 kg/m3 find the mass 
flow rate of steam in the pipe. 

Solution 
The manufacturer's constant C derives from C = [2/ p(m2 - 1)]°·5 x 
al. The manufacturer must therefore be provided with the steam 
pressure and quality in order to establish its density, and the pipe 
diameter into which the orifice plate is to be fitted as a permanent 
device. 

The measured pressure drop of 290 mbar = 29000 Pa. 

From equation (5.4) Q = CdC(dP)0.5 m3 /s, substituting, the volume 
flow rate of steam Q = 0.7 x 0.0046 x (29000)°.5 = 0.548 m3 /s. 
The mass transfer of steam M = 0.548 x 3.666 = 2 kg/so 

Example 5.5 
A venturi meter is fitted into a horizontal water main and is 
intended to act as a means of recording the water flow rate to a 
process. 

To do this the pressure tappings are connected to the ends of 
a cylinder of 20 mm bore fitted with a piston which has a pen 
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Chart 
paper 
on 
roll 

t To venturi meter 

Linkage 
10 to 1 magnification 
of movement 

Pen 
Assume pen moves across the paper in 
a straight line 

1 Movement of 
chart paper 

Figure 5.8 Use of venturi meter and chart recorder, (Example 5.5). 

t 

connected to the piston rod by means of a linkage in such a way that 
each millimetre of rod movement causes the pen to move 10 mm 
across the paper. 

The system is shown diagrammatically in Figure 5.8. The rate of 
water flow may vary between 240 and 170l/s during the process 
operation. The water main is 300 mm bore and the throat of the 
venturi is 200 mm bore. 

(a) Determine the velocity of water through the pipe and the force 
on the piston at each of the two flow rates. Ignore the diameter 
ofthe piston rod. Take water density as 1000kg/m3• 

(b) If the spring extends 4mm per Newton, determine the mini­
mum width of chart paper needed to record the flow rates 
between the two limits. 

Solution (a) 
Since Q = ua, u = Q/a = 4Q/7fd2 and for a flow rate of 0.24m3 £s, 
Ul =0.24 x4/7fx (0.3)2=3.395 m/s and U2 =0.24x4/7rx (0.2) = 
7.639 m/s, similarly for a flow rate of 0.17 m3 /s, Ul = 2.405 m/s 
and U2 = 5.411 m/s. 

Adopting the Bernoulli equation in section 5.3 and taking section 
1 at the tapping on the upstream pipe and section 2 at the tapping 
on the throat of the venturi: 
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Z1 + (Pl/ pg) + (ui/2g) = Z2 + (Pd pg) + (uV2g). 
Since the venturi is horizontal Z1 = Z2. 

Since d1 > d2 , U2 > U1 and rearranging the equation: 

(P1 - P2)/ pg = (u~ - uD/2g. 
For a flow rate of 0.24m3 /s 

(P1 - P2)/ pg = [(7.639)2 - (3.395)2]/2g and dP = 23 417Pa. 
Now dP = force/area, 
so force = dP x area of piston = 23417 x 7f(0.02)2/4 = 7.357N, 
similarly for a flow rate of 0.17 m3 Is, dP is calculated as 11 749 Pa. 
You should now confirm this calculation. 
Using the above result, force = 11 749 x 7f(0.02)2/4 = 3.69 N. 

Solution (b) 
Spring movement = (7.357 - 3.69) x 4 = 14.7mm. 
Linkage = 14.7 x 10 = 147mm. 
Therefore chart width should be a minimum of 150 mm. 

The inclined venturi 

Normally the venturi meter is positioned horizontally. It is, however, 
pertinent to consider the effect upon a reading when the instrument is 
located in an inclined position. Figure 5.9 shows such a location. 

At section A-A, the head exerted in the left-hand limb = the head 
exerted in the right-hand limb. 

Thus Pl/ pg + Z1 = P2 / pg + (Z2 - x) + Sx where S is the ratio of 
densities of the measuring fluid and the fluid flowing. 

Rearranging: [(P1 - P2 )/ pg] + Z1 - Z2 = Sx - x = x(S - 1) = dh. 
This is equation (5.2) for head loss in a differential manometer. 

Z1 
x 

A~L-------~ --'-----'----A 

Figure 5.9 The inclined venturi meter. 
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5.7 Measurement of 
air flow using a pitot 
static tube 

Thus the final equation (5.4) is independent of 21 and 22 and there 
is no effect on the measurements taken from a venturi meter located in 
the inclined position. 

The pitot static tube, unlike the venturi and orifice plate, is a portable 
instrument and used to measure air flow. It consists of two tubes in a 
coaxial arrangement as shown in Figure 5.10. The inner tube con­
nected to the nose of the instrument measures total pressure in the air 
stream; the outer tube has holes in its sides which measure the static 
pressure of the air stream. By connecting each tube to a differential 
manometer the velocity pressure of the air stream is obtained. 

Consider the Bernoulli theorem for the total energy at a point in a 
system of air flow (2 + P / pg + u2 /2g) in metres of air flowing = total 
energy in the air. 2, the potential energy due to the height above a 
datum is insignificant because air density is relatively very low. If 
energy is measured in units of pressure: 

(P / pg)pg + (u2 /2g)pg = total energy of the moving air in Pa, 

thus P + (p/2)u2 = total energy. 
The first term, P is the static pressure energy generated by the fan 

working on the air and the second term is the pressure energy due to 
the velocity of the moving air. These terms are commonly called static 
pressure Ps and velocity pressure P U. Thus total pressure of the moving 
air at a point Pt = Ps + Pu Pa where Pu = (p/2)u2 Pa. 

When the pitot tube is connected to a differential manometer velo­
city pressure is obtained and P u = Pt - Ps• Figure 5.11 shows the static 
and total pressure tubes of the pitot tube separated to identify the 
equivalent readings. 

Rearranging the formula for velocity pressure P u, mean air velocity 

(5.5) 

dl2 

14d 

Figure 5.10 The pitot static tube. 
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Pu 

T Pt 

Ps 

( 0 
0 ) 

Figure 5.11 The equivalent readings from a pitot static tube. 

This is the theoretical velocity. Actual velocity = C(2P u/ p) 0.5 m/ s 
and actual flow rate Q = C(2Pu l p)o.s x a m3 Is. 

For the pitot static tube constant e = 1.0 for Reynolds numbers 
greater than 3000 and where the cross-sectional area of the pitot tube 
is insignificant compared with the cross-sectional area of the duct a. 

Thus when air flow is in the turbulent region 

(5.6) 
The accuracy of readings of velocity pressure depends very much on 
the person using the pitot tube ensuring that the nose of the instrument 
is pointing at the air stream and parallel to the duct. Readings are best 
taken on a straight section of duct where the velocity profile of the air 
is more likely to be regular. 

Air velocity distribution 

For square and rectangular ducts the cross-section is divided into a 
grid so that the velocity pressure, velocity and hence volume flow Q is 
the sum of the flow rates in each segment of the grid, thus: 

Q = aIuI + a2u2 + a3u3 + ... = ~(au) m3 Is 
and mean velocity = ~(au)/~am/s. 

For circular ducts the velocity profile on straight sections is the same 
across any diameter, therefore for an annular ring of mean radius rand 
area a 

volume flow Q = ~(urar) m3/s 
and mean velocity = ~(urar)/1fR2 m/s. 

Air density varies with temperature and pressure. Standard air 
density PI at 20 0 e and 101325 Pa is 1.2 kg/m3 and for other tempera-
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5.8 Chapter closure 

tures and pressures air density P2 can be found by applying the gas 
laws: 
thus 

(5.7) 
Air density can also be found from the tables of Thermodynamic and 
Transport Properties of Fluids at constant standard air pressure and 
different absolute temperatures. 

Example 5.6 
Air is conveyed in a duct of section 300 x 450 mm. A series of 
readings of velocity pressure are obtained with the aid of a pitot 
static tube and calibrated manometer. The mean value is deter­
mined as 65 Pa. Determine the mean air velocity in the duct and 
hence the volume flow rate. 

Data: temperature of the air flowing 35°C, barometric pressure 
748 mm mercury, density of mercury 13 600 kg/m3• 

Solution 
Local atmospheric pressure 

P = hpg = 0.748 x 13 600 x 9.81 = 99795 Pa 
absolute temperatures 

TI = 273 + 20 = 293 K, T2 = 273 + 35 = 308 K 
atmospheric pressures 

P2 = 99795 Pa, PI = 101325 Pa 
from equation (5.7) 

P2 = 1.2(293/308)(99795/101325) = 1.124kg/m3 

from equation (5.5) 
u = (2Pu / p)O.5 = (2 X 65/1.124)°·5 = 10.75 m/s 

from equation (5.6) 
Q = 10.75 x (0.3 x 0.45) = 1.45 m3 /s. 

You are now able to determine gauge pressure, differential pressure 
and flow rate using the traditional pressure measuring instruments and 
flow measuring devices. 

The working limits of the pitot static tube have been discussed. You 
can also calibrate the pressure measuring instruments described in this 
chapter and the inclined manometer has been introduced to obtain 
more accurate readings. 

This work can now be extended to other examples and problems in 
the field of measurement of pressure, differential pressure and flow rate. 
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laminar and turbulent 

flow 

A area of cross-section (m2 ) 
d characteristic dimension (m) 
d diameter m (mm) 
dP pressure drop (Pa) 
dp specific pressure drop (Palm) 
dx unit length (m) 
f frictional coefficient in turbulent flow 
g gravitational acceleration (m/s2 ) 

ks absolute roughness (mm), surface roughness 
L characteristic dimension (m) 
L length (m) 
M mass flow rate (kg/s) 
p density (kg/m3 ) 
Pw power (W) 
Q volume flow rate (m3/s) 
R radius (m) 
r radius (m) 
J-l absolute viscosity (kg/ms) 
I kinematic viscosity (m2/s) 
x characteristic dimension (m) 

Fluid viscosity is the measure of the internal resistance sustained in a 
fluid being transported in a pipe or duct as one layer moves in relation 
to adjacent layers. At ambient temperature heavy fuel oils, for exam­
ple, possess a high viscosity while the lighter oils possess a low viscos­
ity. The walls of the pipe or duct provide the solid boundaries for the 
fluid flowing and because of the friction generated between the bound­
ary and the fluid interface, which has a drag effect, and fluid viscosity, 
the velocity of flow varies across the enclosing boundaries to produce a 
velocity gradient. In a straight pipe or duct maximum fluid velocity 
would be expected to occur along the centre-line and zero velocity at 
the boundary surfaces. 

6 

Nomenclature 

6.1 Introduction 
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6.2 Laminar flow 

There are therefore two factors to consider when water, for exam­
ple, flows along a pipe, namely the viscosity of the water and the 
coefficient of friction at the pipe inside surface. 

Fluid viscosity is temperature dependent and the coefficient of fric­
tion at the inside surface of the pipe or duct is velocity dependent as 
well as being related to surface roughness and a characteristic dimen­
sion of the pipe, namely pipe diameter. 

This sets the scene for a discussion on laminar and turbulent flow. 

In about 1840 a Frenchman by the name ofPoiseuille and an American 
by the name of Hagen identified the following equation, which is 
dedicated to them, during experiments on fluid viscosity: 

(6.1) 
This formula can be rearranged in terms of pressure drop per metre 
run of pipe or duct dp 
thus: (dPjdx) = dp = 8Qj1j7fr4 

since Q = uA, u = Qj A = Qj7fyl 
substituting for Q dp = 8j1ujYl = 8j1uj(dj2)2 
thus dp = 32j1ujd2 Pajm 
and 

(6.2) 
(6.3) 

This equation can be expressed in terms of head loss dh of fluid 
flowing and since 

dP = dhpg Pa, and substituting this for dP 
dh = 32j1uxj pgd2 m of fluid flowing (6.4) 

This arrangement of the Poiseuille/Hagen formula is probably better 
known than equation (6.1). You will notice that the effect of friction 
between the fluid and the boundary interface is not accounted for. This 
is because the dominating feature resisting fluid flow is the viscosity of 
the fluid. Laminar flow is therefore sometimes referred to as viscous 
flow. It is not too clear whether Hagen or Poiseuille fully understood 
the characteristics of laminar flow during the process of establishing 
their formula which shows that head loss dh is proportional to the 
ratio of uj d2 • This is verified by their reaction to the claim by another 
Frenchman called Darcy, who in about 1857 proposed a different 
formula in which head loss due to friction is proportional to the 
ratio of u2 j d. It was left to an Englishman by the name of Osborne 
Reynolds to reconcile the dispute in 1883 at his famous presentation to 
the Royal Society. Refer to Figure 6.1. 

Reynolds established that Darcy on the one hand and Hagen/Poi­
seuille on the other were both correct and that the different formulae 
were the result of different types of fluid flow. He found that in 
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Figure 6.1 Osborne Reynolds' experiment (1883). 

Streamlines 

Figure 6.2 Streamlines in laminar flow. 

Turbulent flow, 
dye diffuses 

laminar flow the fluid moved along streamlines which are parallel to 
the pipe wall (Figure 6.2). Any disturbance in a straight pipe in which 
the fluid was moving in laminar flow would cause a disturbance along 
the streamline which would dissipate at some point downstream and 
return to a streamline. The experiment which Reynolds presented to 
the meeting of the Royal Society used coloured dye to illustrate the 
phenomenon. He was able to show that as fluid velocity increased the 
streamline could not be maintained, and the point was reached when 
the dye suddenly diffused in the water which was used for the experi­
ment and flow became turbulent. Turbulent flow therefore can be 
identified as the random movement of fluid particles in a pipe or 
duct with the sum of the movements being in one direction. Refer to 
Figure 6.4. 

Laminar flow 111 
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6.3 Turbulent flow 

. .. 
A 

Velocity profile 

Figure 6.3 Laminar flow. 

Random particle movement 
( 

"""-Laminar sublayer 
(surface film) 

Figure 6.4 Fluid in turbulent flow. 

Laminar flow characteristics, Figure 6.3 

• A particle at point A at some time will be at point B after travelling 
in a straight line parallel to the tube. 

• A disturbance in the fluid generated by the insertion of a probe will 
straighten out downstream. 

• The change in velocity of the fluid across the pipe section is not 
linear but parabolic. 

• It is convenient to think of the fluid motion as a series of concentric 
layers slipping over one another, and the distances by which each 
layer is extruded represents the velocity of each layer. 

As fluid velocity is increased in the pipe or duct the flow changes from 
laminar to turbulent. This is known as the critical point. If the velocity 
of fluid through a pipe in which flow is known to be laminar is 
increased slowly until flow just becomes turbulent the higher critical 
point is reached. 



 

If now the velocity is slowly decreased, flow will at first remain 
turbulent then at a velocity lower than that at which turbulence 
commenced flow will again become laminar. This is known as the 
lower critical point. Between the higher critical point and the lower 
critical point fluid flow is unstable. The Frenchman Darcy had identi­
fied a formula for turbulent flow in 1857 which, before the work done 
by Reynolds, could not be reconciled with the formula of Poiseuille 
and Hagen. The Darcy equation is: 

dh = 4{Lu2 /2gd m of fluid flowing (6.5) 

In the Darcy formula fluid viscosity JL is not present but frictional 
coefficient f is. Here the dominant feature is the frictional resistance to 
flow at the boundary surface, and the effects of the fluid viscosity in 
terms of resistance to flow are insignificant. Turbulent flow for this 
reason is sometimes called frictional flow. 

Osborne Reynolds found that a dimensionless group of variables 
could be used to reconcile equations (6.4) and (6.5) and his name is 
used to identify the dimensionless group as the Reynolds number Re. 

Re = pudj JL (6.6) 

It can also be expressed as 

Re = dM/JLA = ud/v (6.7) 

Reynolds' experiments identified the following general guidelines. 
For pipes and circular ducts when Re < 2000 flow is said to be in 

the laminar region and equation (6.4) can be adopted. Between an Re 
of 2000 and 3500 flow is in transition and therefore unstable. Above 
an Re of 10000 flow is said to be turbulent and the Darcy equation 
(6.5) may be used. 

For practical calculations equation (6.5) is also used for Reynolds 
numbers in excess of 3500. 

The Darcy equation for turbulent flow can be expressed in terms of 
volume flow rate in a similar way to the PoiseuillelHagen equation 
(6.1) 

dh = 4{Lu2 /2gd m of fluid flowing 
since Q = uA,u = Q/A = 4Q/1fd2 , 

substituting for u in the Darcy equation: 

from which 

This is known as Box's formula. 

(6.8) 

Turbulent flow 113 
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6.4 Boundary layer 
theory 

Turbulent flow characteristics, Figure 6.4 

• When the fluid velocity is high disturbances in the fluid are not 
damped out. 

• Fluid particles as well as travelling along the pipe also travel across 
it in a random manner. 

• Fluid particles cannot pass through the pipe wall and as the pipe 
surface is approached these perpendicular movements must die out. 
Thus turbulent flow cannot exist immediately in contact with the 
solid boundary. 

• Even when the mean velocity is high resulting in a high Re number 
and the greater part of the boundary layer is turbulent there remains 
a very thin layer adjacent to the solid boundary in which flow is 
laminar. This is called the laminar sublayer. 

SUMMARY 

Most if not all fluid flow in the context of building services is in the 
turbulent region although it is well to check that this is so from 
the Reynolds number before proceeding with the solution to a 
problem. 

The velocity of a mass of fluid in motion which is subject to gravity 
and is remote from solid boundaries is uniform and streamline. There 
is no velocity gradient and hence there is no shear stress in the fluid. 
The viscosity of the fluid is therefore not affecting fluid motion and 
neither is the friction at the fluid boundary interface. Fluid in contact 
with a solid boundary is brought to rest. Further away fluid will be 
slowed but by not as much as that closer to the boundary. Thus near 
solid boundary surfaces the effects of friction and fluid viscosity result 
in a velocity gradient. Refer to Figure 6.5. For fluid flow in flooded 
pipes or ducts, the pipe/duct walls act as the solid boundary where 

u r P=uIL=zero=maximum 
velocity 

- - - - - - - - - - - - - - - - Pipe centre-line 

u 
Boundary surface 

--------~--------~-=------------------_.L 

t Zero velocity 

Figure 6.5 Velocity gradient - fluid flow in circular conduits. 
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fluid velocity is said to be zero as a result of fluid viscosity and the 
frictional resistance at the fluid/boundary interface. 

L. Prandtl, who is considered the founder of fluid mechanics, 
defined the theory of the boundary layer in a variety of applications, 
at the turn of the century in Hanover and subsequently in Gottingen 
where he founded the Kaiser Wilhelm Institute. 

The building services engineer is mainly concerned with a limited 
number of applications such as the flow of air in ducts and the flow of 
water in pipes and channels. If a flat plate is positioned in a stream of 
flowing fluid which is unaffected by solid boundaries, the develop­
ment of the boundary layer from the leading edge of the plate can be 
identified, one side being considered. Refer to Figure 6.6. 

The following points can then be observed: 

• fluid velocity under the boundary layer starts at zero at the leading 
edge of the plate and reaches a maximum at the boundary limit; 

• the thickness of the boundary layer is very small compared with its 
length L; 

• there are three discrete regions; 
• laminar and transition lengths are very short; therefore flow is often 

considered turbulent throughout the whole boundary layer; 
• during transition Re has critical values; 
• the plate imposes a resistance to flow causing a loss in fluid momen­

tum. The plate experiences a corresponding force called skin fric­
tion; 

• the boundary layer increases in thickness to a maximum value as the 
length L from the leading edge of the plate increases; 

• at points close to the solid boundary of the flat plate velocity 
gradients are large and the viscous shear mechanism is significant 
enough to transmit the shear stress to the boundary, such that the 
layer adjacent to the boundary is in laminar motion even when the 
rest of the boundary layer is turbulent. This is the laminar sublayer 
which you will notice becomes extremely thin downstream of the 
leading edge of the flat plate; 

Laminar 
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Figure 6.6 Formation of the boundary layer on one side of a flat plate. 
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Velocity profile 

Turbulent Laminar ./ -~~I'---''-''-'-''='-'-'--
Transition L 

Turbulent flow 

L 

Laminar flow 

Figure 6.7 Formation of the boundary layer in a pipe . 

Max. thickness of 
boundary layer d 

"2 

• a pipe may be considered as a flat plate wrapped round to reform 
itself. Thus fluid velocity starts at zero at the pipe wall and reaches 
a maximum value at the centre-line of a straight pipe. It then 
returns to zero velocity at the opposite wall of the pipe forming 
the velocity profile which is bullet shaped. The length L from the 
leading edge of the flat plate becomes infinite when the plate is 
reformed into a pipe since the thickness of the boundary layer is 
restricted at the pipe centre-line by the boundary layer from the pipe 
wall opposite. If the pipe or duct was very large in diameter this may 
not be so. The length L therefore for most practical applications 
becomes the straight length of the pipe or duct being considered. 

Figure 6.7 shows the formation of the boundary layer in laminar and 
turbulent flow in a straight pipe (see also Figure 6.15). 

Velocity profile for laminar and turbulent flow in straight pipes 

Due to the surface resistance at the boundary walls of the pipe and the 
viscosity of the fluid, maximum velocity occurs at the pipe centre-line 
and zero velocity at the pipe wall. The velocity gradient uJL may be 
obtained at any point P on the velocity profile, Figure 6.5. At the pipe 
centre-line the velocity profile uJL = O. Thus the boundary layer is the 
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layer of fluid contained in a velocity profile up to the point where the 
velocity gradient is zero. 

Boundary layer separation 

The separation of the boundary layer from the solid boundary 
surface does not occur in straight pipes or ducts. This is because 
there is a steady static pressure loss in the direction of flow. It does 
occur however in tees, Y junctions, bends and gradual enlargements 
and its effects on pressure losses through fittings are analysed in 
Chapter 7. It can be shown that in each of the fittings identified 
here there is a momentary gain in static pressure as the fluid passes 
through. This is most commonly noted in the gradual enlargement 
in which the gain in static pressure is held. The gain in static pressure 
is at the expense of a corresponding loss in velocity pressure whether it 
is momentary or otherwise and this causes the boundary layer to 
separate from the solid boundary surface. It rejoins at some point 
downstream. Figures 6.8, 6.9, 6.10 and 6.11 illustrate the phenom­
enon. 

'-L--___ ~ 

Figure 6.8 Boundary separation in an enlargement. 

1 
Figure 6.9 Boundary separation in a tee piece. 
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6.5 Characteristics 
of the straight pipe 
or duct 

Figure 6.10 Boundary separation in a Y junction. 

Figure 6.11 Boundary separation in a 90 0 bend. 

The coefficient of friction f appears in the Darcy equation (6.5) but 
does not figure in equation (6.4) of PoiseuillelHagen. The reason for 
the omission is because the roughness of the pipe wall is not a sig­
nificant factor in laminar flow. 

The coefficient of friction f at the fluid boundary is a function of a 
lineal measurement of the high points on the rough internal surface ks 
called surface roughness/absolute roughness and measured in milli­
metres. It is also a function of a characteristic dimension of the pipe, 
taken as its diameter d, or in the case of a rectangular section the 
shorter side, also measured in millimetres. 

The coefficient of friction therefore is dependent upon the relative 
roughness which is the ratio of absolute roughness and the internal 
pipe diameter ksjd. Table 6.1 lists the surface roughness factors ks for 
various materials. 
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Table 6.1 Surface roughness factors for conduits. (Reproduced 
from C1BSE Guide section C4 (1986) by permission of the 
Chartered Institution of Building Services Engineers.) 

Material 

Non-ferrous drawn tubing including plastics 
Black steel pipe 
Aluminium ducting 
Galvanized steel piping and ducting 
Cast-iron pipe 
Cement or plaster duct 
Fair faced brick or concrete ducting 
Rough brickwork ducting 

Laminar now • 

ks in mm 

0.0015 
0.046 
0.05 
0.15 
0.20 
0.25 
1.3 
5.0 

~ Laminar 
______ ~ --.- sublayer 

Solid (" ~~ I 
boundary \ 
surface ~ 

Solid boundary 

Boundary projections Turbulent now 

protruding thro~ • 

~~:'" ~~ -'-T Laminar 
_ _ sublayer 

Solid boundary 

Figure 6.12 Surface roughness and the laminar sublayer (surface film). 

Even with turbulent flow the effect of fluid viscosity and friction at 
the boundary surface results in a film at the boundary wall which is 
known as the laminar sublayer. Under certain conditions this may be 
sufficiently thick to obscure the high points on the boundary surface 
and flow will be as for a smooth pipe. The film thickness reduces with 
increasing velocity and at some high value of Re rough projections 
protrude, increasing turbulence (Figure 6.12) which in heat exchan­
gers, for example, assists heat transfer. 

A formula has been developed by Colebrook and White for the resolu­
tion of the frictional coefficient f in the Darcy equation (6.5) 

1/(f)°.5 = -41og((ks/3.7d) + 1.255/(Re)(f)°·5) 

6.6 Determination 
of the frictional 
coefficient in 
turbulent flow 
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6.7 Solving problems 
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Figure 6.13 The Moody chart for turbulent flow. (Reproduced from the CIBSE 
Guide (1986) by permission of the Chartered Institution of Building Services 
Engineers.) 

It can be seen that a simple solution to evaluate f using this formula 
requires a process of iteration. An alternative method of solution 
involves the use of the Moody chart of Poiseuille and Colebrook­
White. Figure 6.13 shows the Moody chart taken from section C of 
the CIBSE Guide. You will see that after evaluating the Reynolds 
number and the relative roughness ks / d for a particular application 
the coefficient of friction f can be obtained by reading off the left-hand 
axis of the chart. 

A number of problems and their solutions relating to laminar and 
turbulent flow are included in Chapter 7 which introduces and applies 
the theorem for the conservation of energy first proposed by Daniel 
Bernoulli in 1738. The problems considered here specifically relate to 
the two types of fluid flow. 

You will see that fluids with low values of absolute viscosity have 
high values for the Reynolds number at relatively low mean velocities. 
It is important to remember that absolute viscosity varies with fluid 



 

temperature. For air it increases with increase in temperature, but for 
water it decreases with temperature rise. Reference should be made to 
the tables of the Thermodynamic and Transport Properties of Fluids 
by Rogers and Mayhew. 

Example 6.1 
A horizontal galvanized steel pipe is 80 mm nominal bore and 50 m 
in length. Determine the pressure loss sustained along the pipe if 
cold water flows at a mean velocity of 1.5 m/s. Determine also the 
specific pressure loss. Take water density as 1000 kg/m3 and abso­
lute viscosity as 0.001 306 kg/ms. 

Solution 
From equation (6.6) Reynolds number Re = pud/ f-L = 1000 x 
1.5 x 0.08/0.001306 = 91884, flow is therefore turbulent. 

From Table 6.1 ks = 0.15 and relative roughness = ks/d = 
0.15/80 = 0.001875. 

By locating the Reynolds number and the relative roughness on 
the Moody chart, Figure 6.13, the coefficient of friction f = 0.0063. 

Adopting the Darcy equation for turbulent flow equation (6.5) 

dh = 4fLu2 /2gd = 4 x 0.0063 x 50 x (1.5)2/2 x 9.81 x 0.08 
= 1.806 m of water flowing 

dP = dh x p x g = 1.806 x 1000 x 9.81 = 17719Pa. 

Summary for Example 6.1 
1. The specific pressure loss dp = dP / L = 17719/50 = 354 Palm. 

Specific pressure loss in pipe sizing is regulated by the maximum 
mean water velocity to avoid the generation of noise. For steel 
pipes above 50 mm nominal bore this is 3 m/s or 4 m/s in long 
straight runs. 

2. Referring to the pipe sizing tables in the CIBSE Guide Section C, 
and given a water velocity of 1.5 mls and a calculated specific 
pressure drop of 354 Palm in 80 mm galvanized pipe at 10°C, the 
mass flow rate is interpolated as 7.22 kg/s. 

Using the data in Example 6.1: 

the volume flow} 
rate of water 

Q = u X 7r X d2 /4 = 1.5 x 7r x (0.08)2/4 

= 0.00 754m3/s 

Q = 7.541/s 

and for cold water where p = 1000 kg/m3 

M = 7.54kg/s 

Solvi ng problems 121 
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This is close to the interpolated reading from the pipe sizing table 
of M = 7.22kg/s. 

3. It is helpful to find the maximum mean water velocity attainable 
in laminar flow here. This occurs when Re < 2000 and using 
equation (6.6): 
Re = pud/ J-t then u = ReJ-t/ pd = 2000 x 0.001306/1000 x 0.08 

= 0.033m/s. 
This velocity is really too low for economic pipe sizing and hydrau­
lic regulation. In fact laminar flow rarely exists in systems of water 
distribution in building services. 

Example 6.2 
Oil is pumped through a straight pipe 150 mm nominal bore and 
80m long. It discharges 10m above the pump and neglecting all 
losses other than friction, determine: 

(a) the power required to pump 16.67 kg/s of oil along the pipeline. 
(b) the maximum flow rate of oil that the pipe can transport in 

laminar flow and the pump power required. 

Take oil density as 835 kg/m3 and viscosity as 0.12 kg/ms. 

Solution (a) 
From equation (6.6) Re = pud/ J-t where mean velocity 

u = M/ pA = 4M/ pnd2 m/s. 
Have a look at the units of the equation for u: 

(kg/s)/(kg/m3 ) (m2) = mjs 
thus u = 4 x 16.67/835 x n x (0.15)2 = 1.13mjs. 

Substituting into the Reynolds formula 
Re = 835 x 1.13x 0.15/0.12 = 1179, 

thus Re < 2000 and oil flow is laminar. 
Adopting Poiseuille's equation (6.4) dh = 32J-tux/ pgd2 m of oil 

flowing, substituting 
dh = 32 x 0.12 x 1.13 x 80/835 x 9.81 x (0.15)2 = 1.88 m 

Pump head required dh = viscous loss + elevation 
dh = 1.88 + 10 = 11.88 m of oil flowing 

Pump power P w = Mgdh W 
Having a look at the units of the terms in the equation for P w: 

(kg/s)(m/s2)(m) = (kgm/s2)(m/s) 
where (kg m/s2) are the basic SI units for force in N since Force = 
mass x acceleration. 



 

Thus the units for power Pw = N(m/s) = Nm/s = W 
therefore substituting for pump power Pw = 16.67 x 9.81 x 11.88 

= 1943W. 

Solution (b) 
Laminar flow exists up to a maximum Reynolds number Re of 
2000. 

From equation (6.6) Re = pud/JL thus maximum mean velocity 
u = JLRe/ pd 

substituting: 
u = 0.12 x 2000/835 x 0.15 = 1.916m/s 

since it was found in part (a) that u = M/ pA, then M = uApkg/s 
then 

M = 1.916 X (7f x (0.15)2/4) x 835 = 28.274kg/s 
from equation (6.4) 

dh = 32JLux/pgd2 =32 x 0.12 x 1.916 x 80/835 x 9.81 x (0.15)2 
dh = 3.19 m of oil flowing. 
Pump head required dh = viscous loss + elevation 

dh = 3.19 + 10 = 13.19 m of oil flowing. 
Pump power 

Pw = Mgdh = 28.274 x 9.81 x 13.19 = 3658W. 

Summary for Example 6.2 
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Mass flow M pipe diameterd Reynolds number Re mean velocityu pump power Pw 

16.67 kgls 
28.274 

150mm 
150 

Conclusions to Example 6.2 

1179 
2000 

1.13 m/s 
1.916 

The pump power is the output power and does not account for 
pump efficiency. 

An increase in mass flow of (28.274 - 16.67)/16.67 = 70% 
results in an increase in pump power required of (3658 - 1943)/ 
1943 = 88%. 

Fluid viscosity is temperature dependent. The viscosity of fuel oils 
is particularly sensitive to temperature and medium and heavy fuel 
oils require heating before pumping can begin. The pipeline will 
also need to be well insulated and, depending upon its viscosity, 
may require tracing to maintain the temperature and hence satis­
factory oil flow. 

Laminar flow as well as turbulent flow can occur in systems of oil 
distribution. 

1943W 
3658W 
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Example 6.3 
Given that the velocity at radius r for laminar flow is expressed as: 

u = dP(R2 - ?)/4f-LL 
where dP is the pressure drop over length Land R is the pipe 
inside radius, show that the maximum velocity is twice the mean 
velocity. 

Solution 
From Poiseuille's equation (6.4) dh = 32f-LuL/ pgd2 m of oil flowing. 
Rearranging in terms of mean velocity u: 

u = dhpgd2 /32f-LL m/s 
since dP = dhpg, mean velocity u = dPd2 /32f-LL m/s 
Actual velocity at radius r: u = dP(R2 - r2)/4f-LLm/s 
Maximum velocity will occur at the pipe centreline when r = O. 
Thus maximum velocity: u = dPR2/4f-LL. 
Since maximum velocity = twice the mean velocity 

dPR2/4f-LL = 2(dPd2/32f-LL) 
then since R2 = (d/2)2) dP(d/2)2/4f-LL = dPd2/16f-LL 
therefore 

dPd2/16f-LL = dPd2/ 16f-LL 
thus maximum velocity = twice the mean velocity in laminar flow. 

Example 6.4 
Two cold-water tanks each of 4500 litres capacity are refilled every 
two hours. 

The vertical height of the water main is 26 m and its horizontal 
distance from the water utility's main is 9 m. If the available pres­
sure is 300 kPa during peak demand calculate the diameter of the 
nsmgmam. 

Data: pressure required at the ball valve is 30 kPa, make an 
allowance for pipe fittings of 10% on straight pipe, assume initially 
that the coefficient of friction f is 0.007, the viscosity of cold water 
is 0.001306 kg/ms and the water density is 1000 kg/m3. 

Solution 
Figure 6.14 shows the arrangement in elevation. 

Flow rate required in the rising main = 4500 x 2/2 x 3600 = 
1.251/s. 



 

Cold water 
storage tanks =--=-=----:-=--=---=-=--=-=---= 

~ Utility's cold water main 

Figure 6.14 Example 6.4. 

~ Ball valve 

------

.-- Risi~g mains water 
service 

Mains pressure available for pipe sizing 
= 300 - static lift pressure - pressure at ball valve 
= 300 - hpg - 30 
= 300 - (26 x 1000 x 9.81/1000) - 30 

dP = 300 - 255 - 30 = 15 kPa 

since dP = dhpg, dh = dP / pg = 15000/1000 x 9.81 = 1.53 m of 
water. Total equivalent length of pipe and fittings = (26 + 9)1.1 = 
38.5m. 

Initially assuming turbulent flow and adopting Box's formula 
equation (6.8) 

Q = (3dhd5/fL)0.5 and rearranging in terms of pipe diameter d: 

d = (fLQ2/3dh)1/5 
Substituting: 
d = (0.007 x 38.5 x (0.00125)2/3 x 1.53) = (9.1742 x 10-8)1/5 

d = 0.039m 
thus standard pipe diameter d = 40 mm 

It is now necessary to check that water flow is turbulent and to 
verify the value of the coefficient of friction f. 
Since Q = uA = u7rd2/4 

, 2 
mean velocity u = 4Q/7rd2 = 4x 0.00 125/7r(0.04) = 1 m/s 
from equation (6.6) Re = pud/ J..l = 1000 x 1 x 0.04/0.001306 
= 30628 
thus flow is turbulent and adopting Darcy'S equation (6.5) 
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dh = 4fLu2/2gd. 
Rearranging in terms of frictional coefficient f = 2dhgd / 4 Lu2, 
substituting: 

f = 2 x 1.53 x 9.81 x 0.04/4 x 38.5 x 12 
f = 0.0078 

The frictional coefficient used in the solution was f = 0.007. The 
effect on the pipe diameter can be shown by recalculation where 
d = (fLQ2/3dh)I/5 and substituting using f = 0.0078 this time, 

d = (0.0078 x 38.5 x (0.00125)2/3 X 1.53)1/5 

pipe diameter d = 0.04m = 40mm 
Clearly the small error in the initial value for the coefficient of 

friction is insignificant here. 

Summary for Example 6.4 
The solution to this problem can be achieved by applying Bernoul­
li's theorem for the conservation of energy. This is discussed in 
Chapter 7. If the theorem is applied here taking section 1 to be at 
incoming mains level and section 2 to be at tank level: 

21 + (Pt/ pg) + (ui;2g) = 22 + (Pd pg) + (u~/2g) + losses 

((PI - P2 )/ pg) + 21 - 22 = losses 
substituting: ((300000 - 30000)/pg) + 0 - 26 = fLQ2/3d5 
thus 

1.53 = 0.007 x 38.5 x (0.00125)2 /3d5 

from which pipe diameter d can be evaluated and d = 40 mm. You 
should now confirm this solution. 

Example 6.5 
Air at 27°C flows at a mean velocity of 5 m/s in a 30 m straight 
length of galvanized sheet steel duct 400 mm diameter. Determine 
the static pressure loss along the duct due to air flow. 

Data taken from the tables of Thermodynamic and Transport 
of Fluids for dry air at 300 K: 

fL = 0.00001846kg/ms, p = 1.177kg/m3 . 

Solution 
The type of flow can be identified from the Reynolds number, 
equation (6.6): 



 

Re = pud/J-L = 1.177 x 5 x 0.4/0.00001846 = 127935 
since Re > 2000 flow is turbulent and Darcy's equation (6.5) can be 
used to find the pressure loss in the duct. However, it is first of all 
necessary to find the coefficient of friction ( in the Darcy equation 
and this can be done by using the Moody chart, Figure 6.13. From 
Table 6.1 the absolute roughness of the duct wall is 0.5 mm and 
relative roughness = ks/d = 0.15/400 = 0.000375. 

Using the calculated value of Re and relative roughness the 
coefficient of friction, from the Moody chart is ( = 0.0047. 

Substituting into the Darcy equation 

dh = 4 x 0.0047 x 30 x 52/2 x 9.81 x 0.4 
dh = 1.8 m of air flowing 

since dP = dhpg pressure loss dP = 1.8 x 1.177 x 9.81 = 20.8 Pa. 

Summary (or Example 6.5 
1. The specific pressure drop dp = dP/L = 20.8/30 = 0.7Pa/m.A 

typical rate of pressure drop in straight ducts for low pressure 
ventilation and air conditioning systems in which the maximum 
mean air velocity is around 8 m/s is around 1.0 Palm. 

2. Two pressures are present in a system of air flow namely static 
pressure and velocity pressure. This is discussed more fully in 
Chapters 5 and 7. 

3. It is assumed for the purposes of duct sizing that air behaves as 
an incompressible fluid. This is not necessarily the case at the 
prime mover or fan where its operating characteristic can show 
the effects of compression. You should refer to fan manufac­
turers' literature here. 

4. It is helpful to consider the maximum mean air velocity attain­
able in laminar flow in the duct. For laminar flow Re < 2000 
thus using equation (6.6) 

2000 = 1.177 x u x 0.4/0.00001846 
from which u = 0.08 m/s 

This velocity is too low for duct-work design; air flow is therefore 
invariably in the turbulent region. 

This chapter has provided you with the underpinning knowledge of 
the two models of fluid flow, namely laminar and turbulent, relating to 
the flow of water, oil and air in pipes and ducts. It has given you a 
methodology for identifying the type of flow in a system and proce­
dures for solving some problems. The text also defines the pressure 
losses and mean fluid velocities which one may find in systems con­
veying oil, air and water. The characteristics of laminar and turbulent 
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6.8 Chapter closure 
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Laminar 
Transition 

Turbulent flow 

L upto 200 d 

Laminar flow 

J 

Figure 6.15 Development of velocity profiles - flow in pipes. 

d 

flow are discussed in the context of containment in the solid bound­
aries of the pipe or duct. 

Further work is investigated in Chapters 5 and 7. Chapter 7 includes 
partial flow in pipes and flow in open channels. Part of Chapter 11 
focuses on the dimensionless numbers used here and elsewhere in the 
book. 
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area of cross-section (m2 ) Nomenclature 
surface area (m2 ) 

breadth (mm) (m) 
Bernoulli constant, Chezy constant 
coefficient of contraction 
diameter, depth (mm) (m) 
head loss in m of fluid flowing 
pressure loss (Pa) (kPa) 
specific pressure loss (Palm) 
energy N m (J) 
coefficient of friction 
gravitational acceleration at sea level (9.81 m/s2 ) 

hydraulic gradient (m/m) 
velocity head/pressure loss factor 
constant 
surface roughness (mm), absolute roughness 
length (m) 
mass (kg) 
hydraulic mean depth/diameter (m) 
mass transfer (kg/s) 
roughness coefficient 
pressure (Pa) (kPa) 
permeability 
volume flow rate (m3/s) (Us) 
rainfall intensity (mm/h) 
Reynolds number 
ratio of densities 
mean velocity of flow (m/s) 
displacement of measuring fluid (mm) (m) 
density (kg/m3 ) 
vertical height in relation to a datum (m) 
viscosity (kg/ms) (Ns/m2) 
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7.1 Introduction 

7.2 Solutions to 
problems in 
frictionless flow 

This chapter focuses upon the determination of mass transfer of fluids 
subject to a prime mover and to gravity. This forms a significant part 
of the design of heating, ventilating and air conditioning systems and 
hot and cold water supply. It also focuses on pressure loss resulting 
from frictional flow and on the hydraulic gradient. 

In Chapter 5 Bernoulli's conservation of energy at a point for a moving 
fluid or a stationary fluid having potential energy, was introduced and 
stated that: 

potential energy plus pressure} 1 
= tota energy = a constant 

energy plus kinetic energy 

thus Z + (P / pg) + (u2/2g) = C in metres of fluid flowing. 
In pressure units each of the terms in the Bernoulli theorem must be 

multiplied by p and g 

thus (Zpg) + P + (pu2/2) = CPa 
In energy units of joules or Nm the Bernoulli theorem in metres of fluid 
flowing must be multiplied by m and g, 

thus (Zmg) + (Pm/ p) + (mu2/2) = C] or Nm 
The dimensions of these terms can be checked to ensure integrity. This 
process is considered in detail in Chapter 10. 

Chapter 5 also introduced the Bernoulli statement that the total 
energy of a moving fluid at one point in a system is equal to the total 
energy of that fluid at some point downstream. The following example 
illustrates this statement. 

Example 7.1 
The suction pipe of a pump rises from a ground storage tank at a 
slope of 1 in 7 and cold water is conveyed at 1.8 mls. 

If dissolved air is released when the pressure in the pipe falls to 
more than 50 kPa below atmospheric pressure, find the maximum 
practicable length of pipe ignoring the effects of friction. Assume 
the water in the tank is at rest. 

Solution 
Figure 7.1 shows a diagram of the system in elevation. Applying 
the Bernoulli equation for the conservation of energy at points 1 
and 2 in the system and taking atmospheric pressure as 101325 
Pa: 

Zl + (Pd pg) + (ui;2g) = Z2 + (P2/ pg) + (uV2g) 
thus by substitution 
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Figure 7.1 Example 7.1 . 

Z1 + (101325/ pg) + 0 = Z2 + [(101325 - 50000)/ pgJ 
+ (1.8)2/2g 

rearrangmg 

Z2 - Z1 = [(101325 - 51325)/ pgJ- (1.8)2/2g 
dZ = 5.097 - 0.165 = 4.932 m 

This is the vertical length of the allowable rise from the ground 
storage tank. Since the pump is located at the upper point it is called 
suction lift. The maximum length of suction pipe for a gradient of 1 
in 7 is 

L = 7 x 4.932 
L = 34.5m 

Summary for Example 7.1 
As the gradient increases so the maximum practicable length 
decreases and for a gradient of 1 in 3, practical length 
L = 14.8 m. You should confirm that this is so. And for a vertical 
pipe, practical length L = 4.93 m. 

These practical lengths relate to a subatmospheric pressure in the 
suction pipe between sections 1 and 2 of 50 kPa, hence the term 
suction lift. The theoretical maximum vertical length (suction lift) 
for cold water in this pipe will occur when atmospheric pressure in 
the suction pipe at section 2 is zero. It can be obtained by applying 
the Bernoulli equation, thus: 

Z1 + (Ptf pg) + (ui/2g) = Z2 + (PzI pg) + (uV2g) 
substituting: Z1 + (101325/1000g) + 0 = Z2 + 0 + (1.8)2/2g 
rearranging: Z2 - Z1 = 10.33 - 0.165 = 10.164m 
and maximum theoretical vertical lift L = 10.16 m. 

This assumes a mean water velocity in the suction pipe of 1.8 mls. 
This amount of suction lift is impossible to achieve. At zero 

atmospheric pressure within the suction pipe, water vaporizes at 
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O°C and it will therefore evaporate before reaching the impeller of 
the pump which anyway is not designed to handle vapour. As the 
pump generates negative pressure in the suction pipe, water will be 
drawn up it to a point where its absolute pressure corresponds to its 
saturation temperature and partial evaporation occurs. Priming 
the pump will not assist it to achieve a suction lift of this magni­
tude. 

The maximum practical suction lift for cold water is about 5 m. 
Since the water pressure in the pipe is subatmospheric the pipe 
must not be made from collapsible material such as canvas. If 
water must be pumped from a point lower than 5 m, a submersible 
pump is employed and located in the water contained in the tank or 
well. 

Example 7.2 
A 75 mm bore siphon pipe rises 1.8 m from the surface of water in a 
tank and drops to a point 3.6 m below the water level where it 
discharges water to atmosphere. Ignoring the effects of friction, 
determine the discharge rate in lis and the absolute pressure of the 
water at the crest of the siphon. Take atmospheric pressure as 
equivalent to 10 m of water and water density as 1000 kg/m3 • 

Solution 
Figure 7.2 shows the arrangement in elevation. 

Adopting the Bernoulli equation for frictionless flow at points 1 
and 3 taking point 3 as datum: 

Zl + (Pd pg) + (ui;2g) = Z3 + (P3/ pg) + (uV2g) 
where Zl = 3.6m, Z3 = 0, U1 = 0, P1 = P3 = 10m 
substituting: 3.6 + 10 + 0 = 0 + 10 + (uV2g) 

J:' 
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Figure 7.2 Example 7.2. 
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from which u~ = 3.6 x 2g = 70.632 
and U3 = 8.4 m/s 

Rate of discharge: 
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Q = u X 7rd2 /4 = 8.4 x 7r x 0.0752/4 = 0.037 m3 /s 
Q = 371/s 

Equating points 1 and 2 and keeping point 3 as datum: 

ZI + (Pd pg) + (ui;2g) = Z2 + (PzI pg) + (uV2g) 
for uniform flow Ul = U3 = 8.4 m/s 
substituting: 3.6 + 10 + 0 = (3.6 + 1.8) + (PzI pg) + 8.42 /2g 
rearranging P2 = [(13.6 - 5.4) - (8.42 /2g)]pg 
from which P2 = (13.6 - 5.4 - 3.6)1000g = 45126 Pa 
Thus the absolute water pressure at the crest of the siphon 
= 45kPa. 
Alternatively sub-atmospheric pressure at this point is 45 kPa. 

From the summary to Example 7.1 you can see that the effect of the 
low-water pressure at the crest of the siphon may cause the water to 
separate. It is likely therefore that the discharge will be erratic. 

Example 7.3 
A 65 mm bore fire hydrant is fed from a water tank located 37 m 
vertically above. A pressure gauge and stop valve are fitted at the 
hydrant and with the valve fully open water flows at 2611s. Deter­
mine the gauge pressure reading: 

(a) with the hydrant valve fully open; 
(b) with the valve shut. 

Solution (a) 
Figure 7.3 shows the system in elevation. 

Adopting the Bernoulli equation for the conservation of energy at 
points 1 and 2 

ZI + (Pd pg) + (ui;2g) = Z2 + (PzI pg) + (uV2g) 
where water velocity in the tank Ul = O. Water velocity in the pipe 

U2 = Q/a = 0.026 x 4/7rd2 = 0.026 X 4/7r x (0.065)2 
= 7.835m/s. 

Pressure PI at the tank is atmospheric and therefore the gauge 
pressure IS zero. 
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-------

Hydrant 

Datum ) 

Figure 7.3 Example 7.3. 

substituting: 

37 + 0 + 0 = 0 + P2/ pg + [(7.835)2/2g] 
from which 

P2 = (37 - 3.13) x 1000 x 9.81 = 332226Pa 
and 

P2 = 332kPa 

Solution (b) 
With no flow Ul = U2 = 0 
substituting in the Bernoulli equation: 

37 + 0 + 0 = 0 + (P2/ pg) + 0 

from which 
P2 = 37 x 1000 x 9.81 = 362970 Pa 

and 
P2 = 363kPa 

Example 7.4 

37m 

---"1<:-- 2 

Air at 30°C flows in a horizontal circular duct and at section A 
mean velocity is 7 rn/s and the static pressure is 300 Pa. If the duct 
expands gradually from 380 mm at point A find the duct diameter 
downstream at point B where the static pressure is registered as 
320 Pa. Take standard air density at 20°C as 1.2 kg/m3 • 
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A B 

Figure 7.4 Example 7.4. 

Solution 
Figure 7.4 shows the system in elevation. Adopting the Bernoulli 
equation for frictionless flow: 

Za + (Pa/ pg) + (u;/2g) = Zb + (Pb/ pg) + (uU2g) 
As the duct is horizontal Za = Zb. 
Ignoring the effect of pressure variations on air density: 

for air at 30°C P2 = Pl(TI/T2) = 1.2(273 + 20)/(273 + 30) = 
1.16kg/m3 • 

Thus 0+ (300/1.16 x 9.81) + (72 /2g) =0 + (320/1.16 x 9.81)+ 
(uU2g) 
and 26.36 + 2.5 = 28.12 + (uU2g) 
from which u~ = 0.74 x 2 x 9.81 = 14.5 
so Ub = 3.81 m/s 
Volume flow rate Qa = U a X 7rd;/4 = 7 x 7r X 0.382/4 

= 0.794m3 /s 
For steady flow Qa = Qb 
thus 
from which 
and 

0.794 = 3.81 x 7r x dU4 
d~ = 4 x 0.794/3.81 x 7r = 0.265 
db = 0.515 m = 515 mm diameter. 

Summary for Example 7.4 
You will have seen that as the duct transformation piece is an 
expansion, mean air velocity decreases and static pressure increases. 
This is known as static regain. Refer to Example 7.13. 
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7.3 Frictional flow 
in flooded pipes and 
ducts 

Consider the following example as an introduction to frictional 
flow. 

Example 7.5 
A jet of water issuing at a velocity of 22.5 m/s is discharged through 
a fire hydrant nozzle having a diameter of 75 mm. 

(a) Determine the power of the issuing jet if the nozzle is supplied 
from a reservoir 30 m vertically above. 

(b) What is the loss of head in the pipeline and nozzle? 
(c) What is the efficiency of power transmission? 

Take the density of water as 1000 kg/m3 • 

Solution (a) 
The energy at the nozzle = Z + (PI pg) + (u2/2g) m of water flow­
mg. 

At the nozzle the potential energy is zero and the pressure energy 
is converted to kinetic energy, thus: 

energyatthe nozzle = 0 + 0 + u2/2g = 22.52/2g = 25.8 mofwater. 
Power = QdP 
where Q = ua = 22.5 x K(0.0752 )/4 = 0.0994 m3 Is 
and dP = dhpg = 25.8 x 1000 x 9.81 = 253098 Pa 
thus power = 0.0994 x 253098 = 25158 W 
and power = 25.2kW. 

Solution (b) 
The Bernoulli equation is easily adapted to frictional flow and 
applying it here to sections A and B, Figure 7.5, 

Za + (Pal pg) + (u;/2g) = Zb + (Pbl pg) + (uV2g) + loss 

substituting 30 + 0 + 0 = 0 + 0 + (uV2g) + loss 
from which frictional loss = 30 - 25.8 = 4.2 m of water. 

Solution (e) 
The efficiency of power transmission = energy at the nozzle/energy 
at the reservoir. The energy at the nozzle is in the form of kinetic 
energy and the energy in the water stored in the high level reservoir 
is in the form of potential energy. 

Thus efficiency = 25.8/30 = 0.86 = 86% 

Summary for Example 7.5 
With a pressure equivalent to 2.5 bar, you will notice the significant 
value of the power transmission. It confirms the reason why more 
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Figure 7.5 Example 7.5. 

than one fireman may be required to hold the nozzle steady when it 
is connected by canvas hose to the hydrant. The losses due to 
friction will account for the loss at the exit from the reservoir, the 
loss in straight pipe and the loss in pipe fittings. It will be shown 
below that there is no shock loss at the nozzle. 

Frictional losses in pipes, ducts and fittings 

Frictional losses in pipe and duct systems may therefore include the 
following: 

• shock losses 
• losses in the straight pipe or duct 
• losses in fittings including bends, tees, valves, volume control dam­

pers etc. 
• manufacturers of items of plant will provide the loss due to friction 

at given flow rates. 

Shock loss usually occurs at sudden enlargements and sudden contrac­
tions. The entry to and exit from a large vessel such as the flow and 
return connections on the secondary side of a hot water service calori­
fier provides one example. 

In the case of air flow, shock loss occurs across a supply air diffuser 
and a return air grille. For a sudden enlargement frictional loss 
dh = (Ul - U2)2 j2g m of fluid flowing. A special case occurs 
when water discharges into a large tank of water or air is discharged 
into a room. In these cases U2 approaches zero and therefore dh = 
ui/2g. 
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Vena contracta 

3 2 

Figure 7.6 The sudden contraction. 

A further special case occurs when water discharges into air. In this 
example Ul = U2 and therefore dh = zero. 

• For a sudden contraction, frictional loss dh = 0.5(uV2g) m of fluid 
flowing. 

• For frictional losses in straight pipes and ducts in which the fluid 
flow is turbulent the Darcy equation applies and dh = 4fLu2 j2gd m 
of fluid flowing. 

• Frictional losses in fittings dh = k(u2 j2g) m of fluid flowing. k = 
the velocity head loss factor for the fitting. Since it is dimensionless 
it has the same value as the velocity pressure loss factor. 

Typical values of k are given for a variety of pipe and duct fittings in 
Section C4 of the CIBSE Guide where it is identified as Greek letter (. 

The head loss for a sudden contraction given above is dependent 
upon the coefficient of contraction Ce at the fluid's vena contracta 
downstream of the fitting (Figure 7.6); 

Ce = a3ja2 and dh = uV2g [(ljCe) - 1]2. The term [(ljCe) - 1]2 
reduces to 0.5 when Ce = 0.585. 

It is usually assumed that Ce = 0.585 and hence dh = 0.5(uV2g) is 
taken for most sudden contractions, due to the difficulty in determin­
ing the coefficient of contraction by experiment for each fitting. Ul 
refers to the mean velocity of the fluid upstream of the fitting and U2 

refers to the mean velocity of the fluid downstream of the fitting. 
A final special case relates to the use of the bellmouth at the entry 

into or exit from a large vessel in the case of water or exit from/entry 
into a room in the case of air flow. The bellmouth replaces the sharp 
edge of the entry or exit point with a radiused 'edge'. This has the 
effect of reducing the shock loss to zero. 

There now follow some examples to which apply the rational for­
mulae introduced in this section. 

Example 7.6 
A horizontal pipe transporting water at 12l/s suddenly increases 
from 100 to 200 mm in bore. Determine the shock loss in metres of 
water flowing, in units of pressure and units of energy. 
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Take the density of water as 1000 kglm3 • 

Solution 
For a sudden enlargement dh = (U1 - U2)2/2g m of water flowing, 

U1 = Q/a = 0.012 x 4/Ti x (0.1)2 = 1.528 m/s 
U2 = 0.012 X 4/Ti x (0.2)2 = 0.382m/s 

substituting: dh = (1.528 - 0.382)2/2g = 0.067 m of water 
flowing 

in units of pressure: dP = dhpg = 0.067 x 1000 x 9.81 = 657Pa 
in units of energy: dE = dhmg = 0.067 x 12 x 9.81 = 7.89Nm (J) 

Example 7.7 
A horizontal pipe carrying oil suddenly increases from 80 mm to 
150 mm in bore. The fluid displacement in a differential manometer 
connected either side of the enlargement is 18 mm. 

(a) Determine the shock loss and flow rate of oil. 
Take the density of oil as 935 kglm3 and that for the measuring 
fluid as 13 600 kg/m3 • 

(b) What is the velocity head loss factor for the fitting? 

Solution (a) 
From Chapter 5 the equivalent displacement of oil dh = x(S - 1) = 
0.018[(13 600/935) - 1] from which dh = 0.244 m of oil flowing 
= (P2 - P1 )/ pg. Note this is not the shock loss for the enlargement; 
it is the regain in static head which results from a decrease in 
velocity. 

Section 1 is upstream and section 2 is downstream of the sudden 
enlargement, for steady flow Q1 = Q2 and therefore U1a1 = U2a2 
from which U2 = U1 x al/a2, thus U2 = U1 X (dl/d2)2; substituting 
U2 = U1 X (80/150)2 = 0.285u1. 

Adopting the Bernoulli equation for frictional flow in which 
Z1 = Z2 and the frictional loss for a sudden enlargement 
dh = (U1 - U2)2/2g 
thus 

(Pl/ pg) + (ui/2g) = (Pd pg) + (uV2g) + (U1 - U2)2/2g 
rearrangmg 

(P2 - Pl )/ pg = (uI - uD2g - (Ul - U2)2/2g. 
Remember that for an enlargement there is a gain in static head, 
known as static regain, and a loss in velocity head, thus P2 > P l 
and Ul > U2. 
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Expanding the right-hand side 
(P2 - Pt )/ pg = [(uI - u~) - (uI - 2UtU2 + u~)l/2g 

thus (P2 - Pt )/ pg = (2UtU2 - 2u~)/2g 
= 2U2(Ut - U2) /2g = regain in static head 

substituting: 
0.244 = [2 x 0.285ut (Ut - 0.285ut)l/2g 

0.244 x 2g = (0.40755 ui) 
ui = (0.244 x 2/0.040755)°.5 = 11.974 
Ut = 3.46m/s 

shock loss: dh = (3.46 - 0.285 x 3.46)2/2g = 0.312m of oil 
flowing 
flow rate: Q = 3.46 x 7r x (0.08)2/4 = 0.0174 m3/s = 17.4l/s. 

Solution (b) 
The velocity head loss factor is normally based upon the larger of 
the two fluid velocities, thus from dh = k(u2 /2g) the velocity 
adopted will be 3.46 rn/s and 

0.312 = k(3.462)/2g 
from which k = 0.511. 

Example 7.8 
A horizontal pipe carrying water suddenly contracts from 300 to 
100 mm bore. A differential manometer is connected either side of 
the sudden contraction and the pressure drop is 8.34 kPa. 

(a) Determine the shock loss and the flow rate. 
Take the density of water as 1000 kg/m3. 

(b) What is the velocity head loss factor for the fitting? 

Solution (a) 
Adopting the Bernoulli equation for frictional flow and given 
Zt = Z2: 

(Pt/ pg) + (ui/2g) = (P2/ pg) + (uV2g) + 0.5uV2g 
rearranging and remembering that Pt > P2 and U2 > Ut: 

(P t - P2)/ pg = [(u~ - ui)/2gl + 0.suV2g. 
Now U2 = ut(dt/d2)2 = ut(300/100)2 = 9ut: 
substituting: 

8340/1000g = [(9Ut)2 - uil/2g + 0.5 x (9Ut)2/2g 



 

0.85 x 2g = 80ui + 40.5ui 
16.68 = 120.5ui 

from which U1 = 0.372m/s 
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shock loss dh = 0.5(9 x 0.372)2/2g = 0.286 m of water flowing 

flow rate Q = 0.372 x 1f x (0.3)2/4 = 0.0263 m3/s 
thus Q = 26.31/s. 

Solution (b) 
The velocity head loss factor is normally based upon the larger of 
the two fluid velocities and is obtained from the equation 
dh = k(u2 /2g) m of fluid flowing. 

Substituting the shock loss: 0.286 = k(3.462 /2g) and therefore 
the velocity head loss factor k for the sudden contraction is 0.469. 

A special case 
When water flows from a supply pipe into a large tank or when air 
flows from a supply duct into a room the shock loss dh = ui/2g m 
of fluid flowing where u is the fluid velocity in the pipe or duct. 
Since the frictional loss is also expressed as dh = k(u2 /2g) then 
(ui/2g) = k(u2/2g) therefore the velocity head loss factor k must 
equal 1.0. Remember that frictional losses in pipe and duct fittings 
are expressed as fractions of the velocity head: (u2 /2g) or velocity 
pressure: (pu2 /2), thus: 

dP = k(pu2/2) Pa and dh = k(u2 /2g) m of fluid flowing. 
Since the term k is dimensionless it can be used in either of these 
formulae. It can be defined as the velocity head loss factor or the 
velocity pressure loss factor. 

Example 7.9 
The pressure loss across a globe valve located in a horizontal pipe is 
measured as 126 mbar when flow velocity is 1.9 mls. Determine the 
velocity pressure loss factor given water density as 1000 kglm3 . 

Solution 
Now dP = kpu2 /2. 
Adopting the Bernoulli equation for frictional flow taking sections 
1 and 2 as upstream and downstream of the valve respectively: 

21 + (Pl/ pg) + (ui/2g) = 22 + (P2/ pg) + (uV2g) + k(uV2g). 
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Since the valve is horizontal 21 = 2 2, water velocity either side of 
the valve is the same, thus Ul = U2. 

Thus the Bernoulli equation reduces to: (PI - P2)/ pg = 
k(u2 /2g) m of water. Note therefore that if there is no change in 
fluid velocity either side of the fitting the frictional loss through it is 
equal to the static pressure drop. This is not the case for a sudden 
enlargement or a sudden reduction where a change in velocity does 
occur either side of the fitting. See Examples 7.7 and 7.8 in which 
the fluid velocities Ul and U2 in the Bernoulli equation are not the 
same and therefore do not cancel. 

Thus for the globe valve (PI - P2)/ pg = dh = k(u2/2g) m of 
water or dP = k(pu2 /2) Pa. 

Substituting: 12600 = k x 1000 X 1.92/2 

from which the velocity pressure loss factor for the globe valve 
k = 6.98. 

Example 7.10 
The displacement of measuring fluid in a differential manometer 
connected either side of a 50 mm bore gate valve located horizon­
tally is 2 mm. If the mass flow rate of water at 75°C through the 
valve is 2.87 kg/s determine its velocity head loss factor. The density 
of measuring fluid is 13 600 kg/m3 • 

Solution 
At 75°C water density is 975 kg/m3 • (Refer to the Thermodynamic 
and Transport Properties of Fluids.) 

The corresponding displacement of water in the manometer can 
be determined from dh = x(S - 1) m of water flowing (Chapter 5), 
thus dh = 0.002[(13600/975) -1] = 0.0259m of water flowing. 

The volume flow rate of water flowing Q = 2.87/975 = 
0.00294m3/s. 

Since Q = u x a, mean velocity u = Q/a = 0.00294 x 
4/n(0.05)2 = 1.5 mls. Since the fluid velocity either side of the 
valve is the same, Ul = U2, and as the pipe is horizontal 21 = 22, 
the Bernoulli equation is reduced to: 

(PI - P2)/ pg = dh = k(u2/2g) 
and substituting 

0.0259 = k x 1.52 /2g 
from which the velocity head loss factor for the gate valve 
k = 0.226. 
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Example 7.11 
A section of a heating system in which water flows at 0.35 kg/s 
compnses: 

1 column radiator k = 5 
2 x 20 mm angle radiator valves k = 5 each 
7 x 20mm malleable cast iron bends k = 0.7 each 
8 m x 20 mm bore black mild steel pipe in which the coefficient of 
friction f = 0.0045. Determine the pressure loss due to friction 
given water density as 975 kg/m3• 

Solution 

Volume flow of water Q = 0.35/975 = 0.000359 m3/s. 

Mean water velocity u = Q/a = 0.000359 X 4/7f(0.02)2 
= 1.143mJs. 

The total velocity pressure loss factor for the fittings in the pipe 
section kt = 19.9. Assuming no change in fluid velocity in the pipe­
line and ignoring changes in height, the Bernoulli equation for the 
fittings is reduced to: dP = k(fJU2/2) Pa. Then by substitution: the 
pressure loss attributable to the fittings 

dP = 19.9 x 975 x 1.1432/2 = 12674Pa. 
Similarly for head loss in straight pipe assuming turbulent flow the 
Bernoulli equation is reduced to: dh = 4fLu2 /2gd m of water, 

substituting: dh = 4 x 0.0045 x 8 x 1.1432 /2g x 0.02 = 0.48 m 
of water flowing 
then dP = dhpg = 0.48 x 975 x 9.81 
from which the pressure loss in the straight pipe dP = 4591 Pa. 

The total hydraulic pressure loss in the pipe section dP = 12674 + 
4591 = 17265 Pa. 

Example 7.12 
Water flows at 30 kg/s in a 100 m bore straight pipe 68 m in length. 
Determine: 

(a) The head loss due to friction given water density as 1000 kg/m3 , 

the coefficient of friction f as 0.004 and viscosity J.l as 
0.00001501 kg/ms. 
Confirmation should be sought that flow is in the turbulent 
regIOn. 

(b) The gradient to which the pipe must be laid to maintain a 
constant head. 
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Solution (a) 

Volume flow Q = M/ p = 30/1000 = 0.03 m 3/s. 

Mean velocity u = Q/a = 0.03 x 4/7f x 0.12 = 3.82m/s. 

Reynolds number Re = pud/ J-l = 1000 x 3.82 x 0.1/0.00001501 
= 25466667. 

Since Re > 3500 flow is confirmed as being in the turbulent region. 
The Darcy equation for turbulent flow in straight pipes 
dh = 4fLu2/2gd, and substituting dh = 4 x 0.004 x 68 x 3.822/ 
2 x 9.81 x 0.1 = 8.09m of water. Head loss due to friction 
dh = 8.09 m of water over a straight pipe length of 68 m. 

Solution (b) 
Refer to Figure 7.7. 

Head loss dh t --=t-= I-~~:-:-::-~--=-=-=-=----L 
-t ... o-'----------------'-- Pipe laid horizontally 

~J 
-+ 

No loss in head ~ 

__ I Pipe laid to its 
68m ----'~-- hydraulic gradient 

Figure 7.7 The hydraulic gradient (Example 7.12). 

If the pipe is laid to a gradient such that it terminates at a point 
8.09 m vertically below the point from which it started the gradient 
of 8.09/68 = 0.119m/m will ensure that the head loss due to fric­
tion is offset by the gradient which is 1/0.119 = 1 in 8.4. This is 
called the hydraulic gradient of the pipe. 

Example 7.13 
Determine the regain in static pressure for the transformation piece 
shown in Figure 7.8 if the velocity pressure loss factor for the fitting 
is 0.25. 

The volume flow rate of air at a temperature of 28°C is 3 m3/s 
and the duct increases gradually in diameter from 0.6 m to 1.0 m. 

Take air density as 1.2 kglm3 at 20°e. 

Solution 
For steady flow Q = Ul.al = U2.a2. 

Ul = Q/al = 3 x 4/7f X 0.62 = 10.61 m/s 
U2 = Q/a2 = 3 x 4/7f X 12 = 3.82m/s. 
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2 

Figure 7.8 Example 7.13. 

Adopting the Bernoulli equation for frictional flow at sections 1 and 2 

(Pl/ pg) + (ui/2g) = (P2 / pg) + (uV2g) + k(ui/2g). 
Remembering that for an enlargement P2 > P1 and U1 > U2, 

rearranging: (P2 - Pdf pg = (uI - u~)/2g - k(uI/2g) 
substituting: 

(P2 - Pdf pg = [(10.612 - 3.822)/2gj- (0.25 x 10.612/2g) 
= 4.994 - 1.434 
= 3.56 m of air flowing. 

Absolute air temperature in the duct = 273 + 28 = 301 K. 

Absolute air temperature at 1.2 kg/m3 and 200 e = 273 + 20 = 
293K. 

Air density correction p = 1.2(293/301) = 1.168 kg/m3 at 28°e 
dP = 3.56 x 1.168 x 9.81 = 41 Pa. 

The static pressure regain generated by the transformation piece is 
41 Pa. This is distributed along the duct downstream of the fitting. 

Example 7.14 
A ground storage tank supplies water to a high-level tank in a 
building the vertical distance being 25 m. A multistage centrifugal 
pump is installed on the suction pipe from the low-level tank and 
discharges 2.5 kg/s of water into the 50 mm bore rising main which 
terminates with a ball valve at the high-level tank. 

Ignore the effects of pressure in the pump suction and determine 
the net pump duty and output power. 

Data: Velocity pressure loss factors: 2 bends k = 0.4 each, 2 stop 
valves k = 0.7 each, 1 recoil valve k = 8.0. 
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B 

25m 

Datum 

,J "l r 10m ~ 

Figure 7.9 Example 7.14. 

Assuming turbulent flow, the coefficient of friction in the straight 
pipe f = 0.005. Pressure required at the ball valve = 30 kPa. Den­
sity of water is 1000 kglm3 • 

Solution 
The system is shown in Figure 7.9. 

Adopting the Bernoulli equation for frictional flow and consider­
ing sections a and b 

Za + (Pal pg) + (u;/2g) = Zb + (Pbl pg) + (uV2g) + losses 
now P a = Pb = atmospheric pressure and U a approaches zero velo­
city. 

Placing all the terms remaining from the Bernoulli equation on to 
the right-hand side will represent the total energy required to move 
2.5 kgls of water from point a to point b. The net pump head dh that 
must therefore be generated will be: 

dh = (Zb - Za) + (uV2g) + losses. 

The losses include those through the fittings, that through the 
straight pipe and the discharge pressure required at the ball valve 
which can be added at the completion of the solution. 

Thus dh = (Zb - Za) + (uV2g) + k(uV2g) + 4fLuV2gd. 
The total velocity head loss factor is 10.2. You should now confirm 
that this is so. 

Mean velocity of flow Ub = Qla = 0.0025 x 4/7r x 0.052 

= 1.273 ms. 
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Substituting: 

dh = (25 - 0) + (1.273 2 /2g) + 10.2(1.2732 /2g) + [(4 x 0.005 
x 38 x 1.2732 )/(2g x 0.05)] 

from which dh = 25 + 0.0826 + 0.8425 + 1.2556 

and dh = 27.18 m of water flowing 
dP = 27.18 x 1000 x 9.81 = 266643Pa. 

Net pump pressure = 267 + 30 = 297 kPa 
and the net pump duty is 2.5 kg/s at 297 kPa. 
The pump output power = dhMg = (297000/1000 x 9.81) x 
2.5 x 9.81 = 743 W. 

Example 7.15 
Two high-level cold water storage tanks having a capacity of 4500 1 
each are refilled every two hours. The vertical height of the supply 
water main will be 26 m and its horizontal distance from the water 
utilities main is 9 m. 

If the available pressure is 300 kPa during peak demand size the 
nsmgmam. 

Data: assuming turbulent flow, the coefficient of friction 
f = 0.007, allowance for fittings is 30% on the straight pipe, pres­
sure required at the index ball valve is 30 kPa. 

Solution 
Figure 7.10 shows the system in elevation. 
The mass flow rate M = (4500 x 2) / (2 x 3600) = 1.25 kg/so 
Adopting the Bernoulli equation for frictional flow 

Za + (Pa/ pg) + (u;/2g) = Zb + (Pb/ pg) + (uV2g) + loss. 

Water company's 
main~ 

_----:l~--' 

9m 

Figure 7.10 Example 7.15. 

B 

26m 

A Datum 
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7.4 Semi-graphical 
solutions to frictional 
flow in pipes and 
ducts 

Assuming Ua = Ub and rearrangmg the equation knowing that 
Pa > Pb 

(Za - Zb) + (Pa - Pb)/ pg = loss 

From Chapter 6 Box's formula for head loss in turbulent flow in 
straight pipe can be adopted here, thus 

(Pa - Pb)/ pg + Za - Zb = fLQ2 /3ds. 

Total equivalent length of pipe including fittings L = (26 + 9) x 
1.3 = 45.5m. 
Substituting: 

[(300000 - 30000)/1000 x 9.81] + 0 - 26 = [0.007 x 45.5 
x (0.00125)2l/(3 x dS ) 

thus 27.52 - 26 = 1.6589 x 10-7 /ds 
from which dS = 1.52 x 1.6589 x 10-7 = 2.5215 X 10-7 

and d = 0.0479m = 47.9mm. 

The nearest standard pipe diameter for the rising main = 50 mm. 

Solutions to problems involving the flow of water in pipes can be 
undertaken using the Moody chart of Poiseuille and Colebrook­
White. This chart is reproduced here from the CIBSE Guide to current 
practice by kind permission of CIBSE (Figure 6.13). The calculation 
routine is as follows: determine the Reynolds number for the known 
flow conditions from Re = pud/ /l, determine the pipe roughness ratio 
ks/ d, determine the value of the frictional coefficient f from the 
Moody chart, if the flow is turbulent determine the head loss due to 
friction from the Darcy equation dh = 4fLu2/2gd. Table 7.1 lists 
values of absolute roughness ks, which is a lineal measurement of 
high points on the rough internal surface, for pipes and ducts. 

Table 7.1 Values of absolute roughness in pipes and ducts. 
(Reproduced from CIBSE Guide section C4 (1986) by permission 
of the Chartered Institution of Building Services Engineers.) 

Pipes and ducts 

Copper pipe 
Plastic pipe 
New black steel pipe 
Rusted black steel pipe 
Clean aluminium ducting 
Clean galvanized ducting 
New galvanized pipe 

ks(mm) 

0.0015 
0.003 
0.046 
2.5 
0.05 
0.15 
0.15 
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Example 7.16 
A horizontal straight pipe 32 mm bore by 25 m in length carries 
water at the rate of 1 kg/so If it is new black steel pipe determine the 
head loss in metres of water, the pressure loss in Pascals and the 
specific pressure loss in Palm. 

Data: absolute viscosity 0.000378 N s/m2, density 975 kg/m3 . 

Solution 
In order to use the Moody chart to obtain the coefficient of friction 
the relative roughness or roughness ratio and the Reynolds number 
must be found. 
Roughness ratio = ks/d = 0.046/32 = 0.00144. 
Note that pipe diameter d is left in mm since ks is measured in mm. 
From Chapter 6 the Reynolds number 

Re = dM/ /-La = [(0.032 x 1 x 4)/(0.000378 x 7r x 0.0322 )] 

= 105261 

given Re and ks/ d, the coefficient of friction f can now be found 
from the Moody chart, Figure 6.13, from which f = 0.0055. 

As the flow exceeds the Reynolds number of 3500 flow is clearly 
turbulent and Darcy's equation can be used. 

Thus dh = 4fLu2 /2gd m of water flowing 

where u = M/ pa = (1 x 4)/(975 x 7r x 0.0322 ) = 1.275 m/s 

and therefore dh = [(4 x 0.0055 x 25 x 1.2752 )/(2 x 9.81 
x 0.032)] 

dh = 1.424 m of water. 

Pressure loss dP = dhpg = 1.424 x 975 x 9.81 = 136215 Pa. 

Specific pressure loss dp = dP/L = 13 621/25 = 544Pa/m. 

Example 7.17 
Air at a temperature of 8°C flows at 1.02 m3 Is along a straight 
galvanized duct 400 mm in diameter. Determine the specific static 
pressure loss in Palm. 

Take air density at 20°C as 1.2 kg/m3 and air viscosity at 8°C as 
0.00001755 kg/ms. 

Solution 
Reynolds number Re = pud/ f1. 

The viscosity of dry air which is given here can be obtained from 
the tables of Thermodynamic and Transport Properties of Fluids. 
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7.5 Gravitational 
flow in flooded pipes 

Corrected air density p = 1.2[(273 + 20)/(273 + 8)] = 1.251 kg/m3 

mean air velocity u = Q/a = 1.02 x 4/7r x 0.42 = 8.12m1s 
from which Re = (1.251 x 8.12 x 0.4)/(0.00001755) = 232186. 
Relative roughness = ks/d = 0.15/400 = 0.000375. 
From the Moody chart, Figure 6.13, the coefficient of friction 
f = 0.0044. 
Since flow is fully turbulent, Darcy'S equation can be used and 

dh = 4fLu2/2gd where L = 1.0 m. 
Substituting: dh = (4 x 0.0044 x 1 x 8.122 )/(2 x 9.81 x 0.4) 

from which for one metre of straight duct dh = 0.1479m of air 
flowing. 

and specific pressure loss dp = hpg/L = (0.1479 x 1.251 x 
9.81)/1 = 1.815 Palm. 

Summary for Example 7.17 
An assumption is made in this solution that the air flowing in the 
duct is not subject to compression. This is acceptable in ventilation 
and air conditioning systems but the assumption cannot be made 
when working with compressed air because of the influence of 
pressure on air density. 

Water flow subject to gravity will occur, for example, from a tank 
located at high level which supplies water to a point at a lower level. It 
also occurs when a high-level reservoir supplies water to a reservoir at 
some lower level. Without a prime mover such as a pump, the gradient 
or vertical drop through which the pipe is routed offsets exactly the 
force of friction opposing fluid flow. 

Example 7.18 
A pipe with a constant gradient connects two reservoirs having a 
difference in water levels of 20 m. The upper 200 m of pipe is 
100 mm bore, the next 100 m is 200 mm bore and the final 100 m 
is 100 mm bore. The pipes all have coefficients of friction of 0.006. 
The connections to the reservoirs are bellmouthed and the changes 
in pipe bore are sudden. Determine the flow of water through the 
connecting pipe. 

Solution 
Figure 7.11 shows the system in elevation. 
Adopting the Bernoulli equation for frictional flow 
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A 

20m 

Figure 7.11 Example 7.18. 

Za + (Pal pg) + (u;/2g) = Zb + (Pbl pg) + (uV2g) + losses 
P a = Pb = atmospheric pressure, U a = Ub 

thus Za - Zb = losses = loss in pipe 1 + enlargement loss 
+ loss in pipe 2 + reduction loss + loss in pipe 1. 

Since the exit and entry to the reservoirs are bellmouthed the shock 
losses due to friction are negligible. 

Thus 20 = (4fLlui/2gdt) + [(Ul - u2)2/2g] + (4fL2uV2gd2) 
+ (0.5ui/2g) + (4fL1ui/2gd1) 

for steady flow Q = U1al = U2a2 
and U1 = (a2/a1)u2 = (d2/d1 )2u2 = (200/100)2u2 
from which Ul = 4U2 
Substituting for Ul and also the other data we have: 

20 = 39.1u~ + 0.46u~ + 0.61u~ + 0.41u~ + 19.6u~ 
20 = u~(39.1 + 0.46 + 0.61 + 0.41 + 19.6) 

20 = 60.18u~ 
from which U2 = 0.576 rn/s. 
Q = ua = 0.576 x 7r x 0.22 14 = 0.0181 m3/s 
thus the gravitational flow rate = 18.1 lis. 
Gravitational mass transfer of water = 18.1 kg/so 

Example 7.19 
Figure 7.12 shows a pipe system connecting two tanks in which the 
entry and exit losses may be ignored since the connections are 
bellmouthed. The velocity head loss factor for the bends is 0.3. 
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I A I -" 
~~-----------~~ 

18 m 
2 

I B I 
~~-----------~-l 

I 

Figure 7.12 Example 7.19. 

Determine the total flow rate from the tank at level A to the tank 
at B. 

Data: pipe 1 is 70 m long and 65 mm bore, f is 0.005 
pipe 2 is 80 m long and 50 mm bore, f is 0.006. 

Solution 
Adopting the Bernoulli equation for frictional flow, P a = Pb = 
atmospheric pressure and U a = Ub. 

Thus Za - Zb = losses in pipe 1 = losses in pipe 2 since the pipes 
are in parallel. Taking the losses in pipe 1 

Za - Zb = (4fL1Ui/2gd1) + k(ui/2g) 
rearranging: 2g(Za - Zb) = ui(4fLdd1 + k) 
rearranging in terms of Ul: 

Ul = [2g(Za - Zb)/((4fLdd1) + 2k)]0.5 

substituting: Ul = [2g x 18/((4 x 0.005 x 70/0.065) + 0.6)]°·5 
= 3.99m/s 

also U2 = [2g x 18/((4 x 0.006 x 80/0.05) + 0.9)]°.5 = 3.0m/s 
For parallel flow Q = flow in pipe 1 plus flow in pipe 2 

Ql = ulal = 3.99 x 7r x 0.0652/4 = 0.013 24 m3/s 
and 

Q2 = U2a2 = 3.0 x 7r X 0.052/4 = 0.00589 m3/s 
therefore total gravitational flow Q = Ql + Q2 = 0.01913 m3/s 

= 19.131/s. 

Gravitational mass transfer of water = 19.13 kg/so 
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Example 7.20 
Two tanks, one 15 m vertically above the other as shown in Figure 
7.13, are connected together by a 40 mm pipe. Determine the rate of 
flow of water from the upper to the lower tank. 

A 

------ -txJ-

15 m 

B 

------ -txJ-

Figure 7.13 Example 7.20. 

How long will it take to fill the lower tank, given its dimensions 
are 5 x 2 x 1 m to the water level? 

Data: head loss factors are, for bends 0.3, for stop valves 5.0. 

Solution 
Adopting the Bernoulli equation for frictional flow, P a = Pb = 
atmospheric pressure, U a and Ub are approaching zero. 

Rearranging the equation therefore Za - Zb = losses 

thus Za - Zb = loss in sudden contraction + loss in pipe 
+ loss in fittings + loss in sudden enlargement 

and Za - Zb = (0.5u2 /2g) + (4fLu2 /2gd) + (ku2 /2g) + u2 /2g. 
Note that for the sudden enlargement the water velocity in the tank 
approaches zero thus the shock loss reduces to u2 /2g. 
Thus simplifying: Za - Zb = (u2 /2g)[0.5 + (4fL/d) + Ek + 1] 
substituting: 15= (u2 /2g)[0.5+(4 x 0.005 x 15/0.04) + 10.6 + 1] 
from which u = 3.875 mls. 
Flow rate will be Q = ua = 3.875 x 1f x 0.042/4 = 0.00487 m 3/s 
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gravitational flow Q = 4.87 lis 
gravitational mass transfer of water = 4.87kgls 

time to fill the tank = volume of tank to the waterline/flow rate 
= 5 x 2 x 1/0.00487 = 2053 s = 34 min. 

Example 7.21 
Figure 7.14 shows a pipe arrangement connected to a high-level 
tank by which water is discharged to atmosphere at points C and D. 
Given that the coefficient of friction is 0.005 for all the pipes and 
that the velocity head loss factor for each bend is 0.7 and that for 
each valve is 3.0, determine the flow rate at points C and D. 

Data: A-B = 15 m of 25 mm bore pipe, B-C = 21 m of 20 mm bore 
pipe, B-D = 15 m of 15 mm bore pipe. 

A 

18 m 

B 

2 

c D 

Figure 7.14 Example 7.21. 

Solution 
From Figure 7.14 pipe sections B-C and B-D are in parallel 

thus dhb- c = dhb- d and dh1,z = dh1,3 

thus (4fLzuV2gdz) + k(uV2g) = (4fL3uV2gd3) + k(uV2g) 
simplifying by cancelling 1/2g 

(4fLzuUdz) + ku~ = (4fL3UVd3) + ku~ 
u~[(4fLz/dz) + k] = u~[(4fL3/d3) + k] 
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substituting: 

u~[(4 x 0.005 x 21/0.02) + 3.7] = u~[(4 x 0.005 x 15/.015) 
+ 3.7] 

from which 
thus 

24.7u~ = 23.7u~ 
u~ = (23.7 /24. 7)u~ 

and therefore U2 = 0.9795u3. 
For continuity of flow Ql = Q2 + Q3 
then ul7rdI/4 = (u27rdV4) + (u37rdV4) 
from which u1di = u2d~ + u3d~ 
and Ul = (1/di)(u2d~ + u3d~) 
substituting for U2: 

Ul = (1/di)(0.9795u3d~ + u3d~) 
substituting for dh d2 and d3 : 

Ul = 1600(0.000 392u3 + 0.000 225u3) 
therefore Ul = 0.9872u3. 

Now dha- c = dha- d and dh1,2 = dh1,3 since pipes 2 and 3 are in 
parallel. Working with pipe circuit consisting of sections 1 and 2 
and adopting the Bernoulli equation for frictional flow in which 
Pa = Pc = atmospheric pressure and U a approaches zero. Note also 
that the head loss due to water discharge into air at point C is zero. 
Thus Za - Zc = (u~/2g)+ [losses] 

The losses include: [sudden contraction + loss in pipe 1 
+ sudden contraction at tee + loss in pipe 2 
+ loss in bend and valve]. 

Za - Zc = (uV2g) + [(0.5ui/2g) + (4fLIUi/2gd1) + (0.5uV2g) 
+ (4fL2U~/2gd2) + k(uV2g)]. 

substituting U2 = 0.9795u3, Ul = 0.9872u3, k = 0.7 + 3 = 3.7, 
f = 0.005, Ll = 15 m, L2 = 21 m, d1 = 0.025 m, d2 = 0.02 m: 

18 = 1/2g[0.9795u~ + 0.4873u~ + 11.6948u~ + 0.4797u~ 
+ 20.1478u~ + 3.55u~] 

18 = (1/2g) x 37.3391u~ 

from which 

U3 = 3.075 m/s 
Ul = 0.9872u3 = 0.9872 x 3.075 = 3.035 m/s 
U2 = 0.9795u3 = 0.9795 x 3.075 = 3.012m/s 
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7.6 Gravitational flow 
in partially flooded 
pipes and channels 

Qc = U2·a2 = 3.012 x 7f x 0.02214 = 0.0009462 m3 Is 
= 0.95litres/s 

Qd = U3·a3 = 3.075 x 7f x 0.015214 = 0.0005434m3 Is 
= 0.54litres/s 

Gravitational mass transfer of water at points C and Dare 0.95 kg/s 
and 0.54 kg/s respectively. 

This section will consider the mass transfer of water in open channels 
and flooded and partially flooded pipes set to gradients to maintain 
flow. 

When there is no prime mover such as a pump, fluid flow relies on 
the hydraulic gradient to which the pipe or channel is laid. The 
gradient offsets exactly the forces of friction opposing flow and gen­
erated by the moving fluid. 

The Chezy formula is usually associated with this work and this is 
an adaption of the Darcy equation for turbulent flow in pipes where: 

dh = 4fLu2 /2gd metres of fluid flowing 
The formula can be rearranged in terms of mean flow velocity u thus: 

u2 = 2gddhl4fLm/s. 
It can then be separated into constituent parts: 

u = (2glf)°.5 X (dhIL)O.5 X (dI4)o.s m/s. 
The term in the Darcy equation which can vary in partial flow is (d/4). 

The constituent parts can then be identified thus: 

(2glf)°·s = C, the Chezy coefficient. 

When the coefficient of friction f = 0.0064, C = 55. 
You should confirm this value for C. 

dh I L = i = the hydraulic gradient 
d I 4 = m = the hydraulic mean diameter for full and half full bore 
flow in metres. 
The hydraulic mean diameter (d/4) will vary according to the volume 
of partial flow. 
The determination of m is given below for various flow conditions. 
m = (cross-sectional area of flow)/(length of wetted perimeter) 
for full bore flow in conduits of circular cross-section 
m = (7fd2 /4)1 7fd = dl4 
for half full bore flow in conduits of circular cross-section 
m = (7fd2 /8)/(7fdI2) = dl4 
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dt t-------------j 
~ 'I I" b '" 

Figure 7.15 Hydraulic mean depth in rectangular channels m = 2dd! b' 

for three-quarter full bore flow in conduits of circular cross-section it 
can be shown that m = d/3 
for rectangular channels (Figure 7.15) hydraulic mean depth 
m = db/(2d + b). 
The term m in the Chezy formula must therefore be selected according 
to the cross-sectional shape of the conduit and the volume of the 
partial flow. 

Thus the Chezy formula is given as u = C(mi)o.s mls. 
Invariably the Chezy coefficient is taken as C = 55. 

Example 7.22 
Determine the discharge capacity of a 160 mm drain flowing half 
full bore when it is laid to a gradient of 1:150. Take the Chezy 
coefficient C as 55. 

Solution 
The drain may be taking rainwater run off or it may be connected to 
a vertical soil stack. In either case the gradient is required to ensure 
flow to the point of discharge. 

From the Chezy formula u = 55(mi)o.s 

substituting, mean flow velocity u = 55[(0.16/4)(1/150)]°.5 = 
55 x 0.01633 = 0.898 m/s. For half full bore flow in the drain 

Q = ua = 0.898 x 7r(0.16)2/8 = 0.009 m3 /s 
Q = 9l/s. 

Gravitational mass transfer of water = 9 kg/so 

Example 7.23 
(a) Determine the gradient required for a 110 mm drain to run 

three-quarter full bore at a mean soil water velocity of 1.2 mls. 
The coefficient of friction f for the drain pipe is 0.008. 

(b) Determine the mass transfer of soil water. 



 

158 Flow of fluids in pipes, ducts and channels 

Solution (a) 
The Chezy coefficient C = (2g/f)°·5 = (2g/0.008)o.5 = 49.523. 

From the Chezy formula u2 = C2 x m x i 

rearranging: i = u2/C2m where for three-quarter full bore m = d/3 

substituting: i = 1.22 X 3/49.5232 x 0.11 = 0.016013 m/m 

now the hydraulic gradient i = db / L = 0.016013 

therefore for a fall of one metre, drain length L = db / 0.016 013 = 
1/0.016013 = 62.4. 
Thus the minimum hydraulic gradient for the drain is 1:62.4 

Alternative solution to part (a) of Example 7.23 

The solution to this problem can be done by adopting the Bernoulli 
equation for frictional flow in which the head loss sustained can be 
obtained from the Darcy equation. Consider two points along the 
drain: 

Za + (Pa/ pg) + (u;/2g) = Zb + (Pb/ pg) + (uV2g) + loss 

now P a = Pb and U a = Ub 

thus rearranging: Za - Zb = loss 

The Darcy equation for turbulent flow db = 4fLu2 /2gd m of water 
flowing, but the hydraulic mean radius for three-quarter full bore 
m = d/3 therefore db = 3fLu2/2gd and considering one metre 
length of drain pipe and substituting: Za - Zb = (3 x 0.008 x 
1.0 x 1.22)/(2g x 0.11) and the vertical fall Za - Zb = 
0.016013m. 

For a one metre vertical fall the length of the drain pipe 
L = 1/0.016013 = 62.4 m. 
Thus the minimum gradient to which the pipe must be laid to 
achieve a mean velocity of 1.2 m/s will be 1:62.4. 

Solution (b) 
Flow rate for three-quarter full bore Q = ua = 1.2 x 0.75(7r x 
0.112/4) = 0.00 855m3/s. 

Gravitational mass transfer of soil water = 8.55 kg/so 

Flow in vertical soil stacks is subject to the full impact of gravita­
tional acceleration. In such circumstances gravitational acceleration 
and opposing friction will balance and a terminal velocity is reached. 
For soil stacks which contain air and are open to atmosphere, in 
order to reduce water and air disturbance, stack loading is taken as 
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3/4 Air column 

1/4 Soil water 

Figure 7.16 Vertical soil stack - accommodation of air and water. 

about one-quarter full. Due to the coanda effect the water slides 
down the inside of the stack wall leaving a core of air in the centre 
(Figure 7.16). 
The empirical formula for sizing the vertical soil stack when flowing 
one-quarter full is Q = Kd(8/3) l/s. 

The constant K = 0.000032 for quarter full flow and 
= 0.000052 for one-third full flow. 

Soil stack diameter d is in millimetres. 

Example 7.24 
The simultaneous discharge of soil water into a vertical stack is 
estimated as 6.5 lis. Determine the size of the stack to accommodate 
the discharge. 

Solution 
From the empirical formula for flow in vertical soil stacks 

d = (Q/K)(3/8) = (6.5/0.000032)(3/8) = 97.8mm. 

The nearest standard stack diameter d = 100 mm. 

Rainwater run-off depends upon the surface on which it lands. The 
amount of water which can be expected from any given surface 
depends upon: 

• area of surface upon which rain is falling 
• surface type 
• whether the surface is level or sloping 
• the rainfall intensity 
• the rate of evaporation, which is seasonal. 

Rate of run-off Q = APR/3600 x 1000 m3 /s. 

The impermeability P of the surface depends upon its type. Refer to 
Table 7.2. 
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Table 7.2 Impermeability of different surfaces 

Type of surface average P 

Example 7.25 

Watertight 
Asphalt 
Closely jointed stone 
Macadam roads 
Lawns 
Woods 

0.9 
0.875 
0.825 
0.435 
0.15 
0.105 

A car park having an asphalt surface measures 50 m x 30 m and is 
laid to ensure adequate water run-off into a drainage channel run­
ning continuously along the length of the parking area. Determine 
the gradient and diameter of each of the main drainpipes connected 
to each end of the drainage channel assuming the high point is 
halfway along its length. 

Data: rainfall intensity is to be taken as 75 mmlh, mean water 
velocity in the drainpipes is 1.1 mls and the drains are to run three­
quarter full bore. The Chezy coefficient C = 55. 

Solution 
Rainfall run-off Q = APR/3600 x 1000 = (50 x 30) x 0.875 

x75/3600 x 1000 = 0.02734m3/s. 

Each drain must handle 0.02734/2 = 0.013 67 m3 /s 
and for each drain Q = ua. 
Substitute: 0.013 67 = 1.1 x 0.75 (Jrd2 /4) 
from which d = [(0.013 67 x 4)/(1.1 x 0.75 x Jr)]O.5 
and d = 0.145 m = 145 mm. 

If the nearest standard size of drainpipe is 160 mm, the mean water 
velocity will be: 

u = Q/a = (0.013 67 x 4)/(0.75Jr x 0.162 ) 

and mean velocity u = 0.906 mls. 
Finding the gradient to which each drainpipe must be laid can be 

done by adopting the Chezy formula u = C(mi)o.s 
from which i = u2 /C2m mlm where for three-quarter flow m = d/3 
and therefore dh/L = (0.9062 x 3)/(552 x 0.16) = 0.0050878 
from which L = 1/0.0050878 = 197 
and the hydraulic gradient is 1:197. 

Summary for Example 7.25 
The gradient of 1:197 is the minimum gradient for the drain to 
achieve a mean water velocity of 0.906 mls. If the gradient was 
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increased to 1: 1 00 the mean water velocity increases to 1.27 mls. 
You should confirm this calculation. 

The rainfall intensity of 75 mmlh is not to be considered as 
acceptable in all design solutions. Rainfall intensities equivalent to 
250 mmlh are possible in the United Kingdom although they may 
last for only a few moments or even seconds. The actual figure 
selected from Met. data will depend upon from where the run-off is 
collected. 

Example 7.26 
An open channel as shown in Figure 7.17 is laid to a gradient of 
1:80. If the maximum depth of water flowing is to be 80 mm 
determine the mass transfer of water in the channel. Take the 
Chezy coefficient as 55. 

:',,-- - - - - -7jomm 60r '\ - - - - -
-----'--

~ 150 mm 'I 
f" " 

Figure 7.17 Example 7.26. 

Solution 
The mean hydraulic depth m =(cross-sectional area of flow)/ 
(length of wetted perimeter) 

From Figure 7.17 x = 80tan30 = 80 x 0.5774 = 46mm, 
thus cross-sectional area of flow = (150 + 46) x 80 = 
15680 mm2 = 0.0157 m2 • 

From Figure 7.17 y = 80/cos 30 = 92mm 
thus the wetted perimeter = 150 + 92 + 92 = 334 mm = 0.334 m 
the hydraulic mean depth m = 0.0157/0.334 = 0.047. 
Adopting the Chezy formula for turbulent flow in open channels: 

u = C(mi)O.5 
substituting: 

u = 55(0.047 X 1/80)°.5 = 1.333 m/s 
and flow rate 
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7.7 Alternative 
rational formulae for 
partial flow 

Q = ua = 1.333 x 0.08 x 0.196 = 0.0209 m3 Is. 
The mass transfer of water in the channel = 21 kg/so 

There are three formulae which are adaptions to the Chezy formula 
and the Darcy equation. 

The Manning formula, where 

u = (lin) (mO.667 )(i0.5) mls 

where n = the roughness coefficient 
= 0.009 for glass smooth pipe 
= 0.022 for dirty cast-iron pipe 

The roughness coefficient n is not to be confused with the coefficient of 
friction f. 

The Chezy coefficient C = (2glf)°·5 = lin and when C = 55, 
n = 1/55 = 0.0182 
also 

n = (f 12g)o.5 
and 

f = n2 /2g. 
You should now confirm these relationships. 

These relationships beween n, f, and C are tabulated for four values 
of C and shown in Table 7.3. 

Table 7.3 Relationships between the coefficients 

n f C 

0.009 0.0016 111 
0.022 0.0095 45.5 
0.0182 0.0065 55 
0.012 0.0028 84 

You should confirm the relationships in Table 7.3. 
The Crimp and Bruge's formula took the roughness coefficient n as 

0.012 and adapted the Chezy equation thus: 

u = 84(mO.667 )(i0.5) m/s. 
The Darcy-Weisback formula adopts both the Darcy equation for 
turbulent flow and the Chezy equation, thus: 

u = (2gmilf)°.5 mls 
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This formula is in fact the same as the Darcy equation from which the 
Chezy formula is derived, thus u = [(2g(d/4)(dh/L)(1/f)]o.s m/s from 
which the Darcy equation dh = 4fLu2 /2gd m of fluid flowing. 

You should now confirm that the Darcy-Weisback formula is the 
same as the Darcy equation. You should also note that the Darcy 
equation and the Darcy-Weisback formula are given with the hydrau­
lic mean diameter m = d/4. This value for m only applies to full bore 
and half bore flow in circular conduits. A flow of one-third bore in a 
circular conduit for example, has m = d/3 and flow in a channel of 
rectangular cross-section has m = db/(2d + b). These substitutions 
must be made before adopting either of these formulae for partial flow. 

Example 7.27 
Determine the mean fluid velocity of flow in flooded pipes and 
pipes carrying fluid at half full bore by adopting the following 
formulae and compare the results. Take the Chezy coefficient 
as 55 and the hydraulic gradient as 1:50. Chezy formula, 
Manning formula, Crimp and Bruge's formula, Darcy-Weisback 
formula. 

Solution 
The results are tabulated and given in Table 7.4. 

You should now confirm the solutions given in Table 7.4. 
Remember that for flooded pipes and pipes carrying fluid at half 
full bore m = d/4. 

Table 7.4 Comparison of fluid velocity, Example 7.27 

Source 

Chezy 
Manning 
Crimp and Bruge 
Darcy-Weisback 

Mean fluid velocity (m/s) 

1.23 
0.664 
1.014 
1.23 

Note the similarity of solution between Chezy and Darcy­
Weisback. 

Example 7.28 
Determine and compare the mean water velocity ~nd rate of flow in 
a rectangular channel 150 mm wide and having a water depth of 
50mm when the hydraulic gradient is 1:100. Take the Chezy coef­
ficient as 45.5. 

The comparison should be taken using the rational formulae for 
partial flow. 
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7.8 Chapter closure 

Solution 
The hydraulic mean depth for rectangular channels 

m = db/(2d + b) = (0.05 x 0.15)/[(2 x 0.05) + 0.15] = 0.03. 
Adopting the Chezy formula u = C( mi) 0.5 

substituting: u = 45.5[0.03 X (1/100)]°.5 = 0.788 m/s 
partial flow Q = ua = 0.788 x 0.05 x 0.15 = 5.91l/s. 
Adopting the Manning formula u = mO.667 x iO.5 x 1/ n 

now C = (2g/f)°.5 
from which f = (2g/C2 ) = 2 X 9.81/45.52 = 0.0095 
and n = (f /2g)0.5 = (0.0095/2 X 9.81)°·5 = 0.022 

substituting u = (0.03°·667) X (1/100)°·5 x (1/0.022) 
from which u = 0.438 m/s 
partial flow Q = ua = 0.438 x 0.05 x 0.15 = 3.29l/s. 
Adopting the Crimp and Bruge's formula u = 84(m)0.667 x (i)O.5 

substituting: u = 84 X 0.03°·667 x (1/100)°.5 
from which u = 0.81 m/s 
partial flow Q = ua = 0.81 X 0.05 x 0.15 = 6.08l/s. 
Adopting the Darcy-Weisback formula u = (2gmi/f)°·5 
substituting: u = [2 x 9.81 x 0.03 X (1/100)(1/0.0095)]°·5 
from which u = 0.787m/s 
partial flow Q = ua = 0.787 x 0.05 x 0.15 = 5.91/ s. 
Summarizing solution to Example 7.28 in Table 7.5. 

Table 7.5 Comparison solutions for Example 7.28 

Rational formula Mean velocity Partial flow 

Chezy 0.788 m/s 5.91 lis 
Manning 0.438 3.29 
Crimp and Bruge 0.81 6.08 
Darcy-Weisback 0.787 5.9 

You have been introduced to the determination of the flow of fluids 
considered as non-compressible and subject to the forces of friction in 
pipes and ducts and to the partial flow of water in pipes, soil stacks 
and open channels. Successful conclusion of this chapter will enable 
you to tackle a number of practical problems for which there may be 
no alternative but to undertake manual solutions. 
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Natural ventilation 8 
in buildings 

area (m2 ) 
free area of openings (m2 ) 

free area of openings (m2 ) 
free area subject to stack effect (m2 ) 
free area subject to wind (m2 ) 
specific heat capacity (kJlkgK) 
= 0.61, coefficient of discharge 
difference in pressure coefficient 
difference in pressure (Pa) 
difference in air density (kgjm3 ) 
difference in velocity pressure (Pa) 
difference in temperature (K) 
force in Newtons 
height (m) 
heat energy (kWh) 
factor for degree of openable window 
log mean temperature difference (K) 
mass transfer (kg/s) 
air change rate per hour 
air density (kgjm3 ) 
air density indoors (kgjm3 ) 
air density outdoors (kgjm3 ) 
pressure (Pa) 
pressure of air column indoors (Pa) 
pressure of equivalent air column outdoors (Pa) 
velocity pressure (Pa) 
plant energy output (kW) 
volume flow of air due to stack effect (m3/s) 
volume flow of air due to wind (m3/s) 
absolute indoor temperature (K) 
customary indoor temperature (0C) 
mean temperature (0C) 
absolute outdoor temperature (K) 
customary outdoor temperature (DC) 
air velocity (m/s) 

Nomenclature 
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8.1 Introduction 

Uh air velocity at roof level (m/s) 
Urn mean air velocity (m/s) 
V volume (m3 ) 

The equations with the notation (*) in Sections 8.3, 8.4 and 8.5 are 
given in the CIBSE Guide (1986) section A4. 

With the improvement in standards of thermal insulation for the 
building envelope, the proportion of the plant energy output Qp 
required to offset heat loss resulting from natural infiltration of out­
door air has increased. 

Modern buildings are better sealed against the random infiltration 
of outdoor air, but the trend towards the increasing proportion of the 
building heat loss which has to account for natural infiltration is 
continuing. Adequate ventilation of the building shell is essential, 
whereas there is no limitation upon the improvement in the thermal 
insulation standards of the building envelope. 

There are a number of factors which influence the rate of natural 
ventilation in a building: 

wind speed and direction, influenced by geographical location, with 
respect to the orientation of the building, 
the buoyancy forces or stack effect which induces natural draught 
within the building and depends upon the difference between 
indoor and outdoor temperature, 
the height of the building, 
the shape and location of the building with respect to buildings in 
the vicinity, 
wind breaks, natural and artificial, 
how well the building is sealed. 

The design of the lift shaft, stairwells and atrium, particularly in tall 
buildings, can have a significant effect upon infiltration initiated by the 
wind and/or the stack effect. 

Undistributed Wind 
Flow 

WIND DIRECTION 

Figure 8.1 Air movement round a building producing +ve and -ve pressures (re­
produced with permission ofthe Heating and Venti lating Contractors' Association). 
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As air flows over and around a building it creates positive and negative 
zones of pressure. Figure 8.1 shows typical wind and pressure patterns 
in both elevation and plan. Figure 8.2 shows how the prevailing air 
flow divides over and around a building with the location of the line of 
maximum air pressure on the facade facing the windward side. Posi­
tive pressure (+ve) is created on the windward face and air flow 
separation occurs at the corners, eaves and roof ridge. Negative pres­
sures (-ve) are generated by air separation along the sides of the 
building, over the ridge and on the leeward face. Refer to a building 
in plan and elevation subject to the effects of wind in Figure 8.3. Figure 

Maximum pressure 
Approximately 
213 up building 

Figure 8.2 Typical air movement over and round a building, one-third over roof, 
two-thirds round sides (reproduced with permission ofthe Heating and Ventilating 
Contractors' Association). 

WIND DIRECTION 

ELEVATION 

Figure 8.3 Wind pressure distribution on a bUilding (reproduced with permission 
of the Heating and Ventilating Contractors' Association). 

8.2 Aerodynamics 
around a building 
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WIND DIRECTION 

8 8 

8 

Figure 8.4 Pressure distribution with wind on corner of building (reproduced 
with permission of the Heating and Ventilating Contractors' Association). 

8.4 shows the pressure effects of wind when it is incident on the corner 
of a building. 

The effect of wind pressure on a building will have a significant 
bearing upon the natural ventilation occurrence. Zones of negative 
pressure can cause pollution in some rooms on the leeward side from 
exit points of mechanical extract and from the products of combustion 
emanating from chimneys. Figure 8.5 shows a building in elevation 
and the potential zone subject to the effects of pollution from the point 

Max velocity Wind unaffected by Building 

Streamlines 
Wind profile 

Velocity at 
roof height ~ 

---------r--L~-, 

+ve -ve 
----~ 
----~ 
----~ 

Stagnant 
) 

-, Zone 
\. ... ~ .J(jo .: .. -: :. 

Upwind vortex Contaminated region 

Figure 8.5 Flow patterns over a building showing effect of building height and 
pollution emission (reproduced with permission of the Heating and Ventilating 
Contractors' Association). 
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-0.5 

-0.55 

SIDE LEEWARD 

Figure 8.6 Typical pressure distribution for an average building form. (Greatest 
pressure is at two-thirds point on windward wall.) (Reproduced with permission of 
the Heating and Ventilating Contractors' Association.) 

of extract. The wind velocity profile shown in Figure 8.5 will vary with 
the roughness of the underlying surfaces, or terrain. As indicated in 
Figure 8.2 the area of maximum wind pressure occurs at around 2/3 of 
the height of the building. Figure 8.6 shows a typical pressure distribu­
tion on a vertical wall facing the wind. 

Invariably a building is not located in isolation but forms part of a 
group of buildings which can vary in density and relative position. 
Figure 8.7 shows wind flow patterns around a group of buildings and 
Figure 8.8 shows the wind flow patterns over the same group of 
buildings. The zones of positive and negative pressures are identified 
as well as the potential zone where pollution may be a cause for 
concern. 

ZD-v~D~ 
-Y-e l~r::C--"' ~-~--- +veO tu 

~ -ve 

Ol\ tu 

--~~ 
Wind horseshoe 

~ 

Figure 8.7 Plan of building complex (reproduced with permission of the Heating 
and Ventilating Contractors' Association). 
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8.3 Effects on cross 
ventilation from the 
wind 

Wind direction -
Products of pollution 
pulled down into -ve zone 

Figure 8.8 Elevation of building complex (reproduced with permission of the 
Heating and Ventilating Contractors' Association). 

The wind flow patterns and the effects that groups of buildings have 
in the path of the wind can be developed using models in a wind­
tunnel. The factors which influence the effects of wind are: 

• building shape, size and orientation 
• location of the building with respect to other properties, including 

their shapes 
• natural and artificial wind-breaks 
• type of terrain 
• wind speed and direction 
• height above sea level. 

It is apparent from the foregoing that the effects of wind on the natural 
ventilation occurrence in buildings is a complex subject and one which 
requires the use of the wind-tunnel and computer modelling tech­
niques. However the magnitude and characteristics of natural ventila­
tion can be demonstrated by considering simplified models and by 
adopting empirical equations. 

Wind pressure which results from its velocity can be obtained from 
the velocity pressure term of the Bernoulli equation referred to in 
Chapter 7: 

thus Pu = 0.Spu2 Pa. 

If the initial wind velocity is u and the final wind velocity is zero 

dPu = 0.Spu2 Pa. 

Example 8.1 
Determine the pressure caused by the following wind speeds on the 
facade of a building: 20 kmlh, 40 kmlh, 80 kmlh. Take air density as 
1.2kg/m3 . 
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Solution 
Air speed in m/s = 20 x 1000/3600 = 5.556m/s, 11.11m/s and 
22.22m/s. 

dPu = 0.5 x 1.2 x 5.5562 = 18.52Pa, 74.1 Pa, and 296Pa. 
You will notice that since dPu ex u2 , as wind speed doubles so 
velocity pressure quadruples. It is also important to appreciate 
that for example 296 Pa = 296 N /m2 of facade and although the 
pressure on the facade of a building is not constant (Figure 8.6), the 
gross lateral force F in Newtons on a building facade measuring 
10 m by 15 m high and subject to a wind speed of 80 km/h (50 mph) 
will be: 

F = P x A = 296(10 x 15) = 44400N. 
This is equivalent to a gross lateral load of 44400/9.81 = 4526 kg 
or 4.526 t. 

Air flow through openings 
The rate of air flow subject to wind through an opening is expressed 
as: 

Qw = AwCd(2dP/p)0.5 m3/s 
or Qw = AwCdum (dCp )o.5 m3/s. 

If the openings are in series as shown in Figure 8.9 

1/A~ = [1/(Al +A2)2] + [1/(A3 +A4)2] 

u,_ 
I~----------------~ 

A1 -

A1 etc are the 
Cp2 areas of the 

individual 
openings (m 2 ) 

Figure 8.9 Cross ventilation of a simple bUilding due to wind forces only (repro­
duced with permission of the Heating and Ventilating Contractors' Association). 
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Example 8.2 
(a) Determine the minimum ventilation rate in a workshop due to a 

mean wind speed of 9 m/s on one of its facades in which there 
are two openings. The lower opening has a free area of 0.8 m2 
and the upper opening a free area of 0.3 m2. Assume that there 
are similar openings on the opposite facade. 

Take air density as 1.2 kg/m3 ) dCp = 1.0 and Cd = 0.61. 

(b) If the workshop measures 50 m x 28 m x 5 m high determine 
the infiltration rate of air resulting from the wind. 

Solution (a) 
For openings in series 1/A~ = [1/(0.8 + 0.3)2 + 1/(0.8 + 0.3)2] 

from which 1/A~ = 0.8264 + 0.8264 = 1.653 
and 
therefore 

A~ = 0.605 
Aw = 0.778m2 

and Qw = Aw Cdum (dCp )0.5 

If dCp = 1.0 and Cd = 0.61, Qw = 0.778 x 0.61 x 9 x 1.0 and 
Qw = 4.27m3 Is. 

Now adopting the equation Qw = Aw Cd(2dP / p)O.5. 

If the pressure drop dP across the building is taken as the drop in 
velocity pressure dP u where final velocity is taken as zero then 
dP = dPu 

thus 

dP = dPu = 0.5pu2 = 0.5 x 1.2 x 92 = 48.6Pa. 
Substituting: 

Qw = 0.778 x 0.61 x (2 x 48.6/1.2)°·5. 

therefore Qw = 4.27 m3 /s. 

Solution (b) 
Air change rate N can be obtained from Qw = NV /3600 m3/s 

rearrangmg N = 3600Qw/V 
N = 3600 x 4.27/(50 x 28 x 5) 
N = 2.2 air changes per hour 

Summary for Example 8.2 
The wind speed is quite high; 9 m/s is equivalent to 20 mph. This is 
the reason for the high rate of air change. Note that no account has 



 

been taken of natural ventilation due to temperature difference 
between indoors and outdoors. 

If the wind speed is reduced to 3 m/s which is a more normal 
value for a less exposed site, the volume flow rate Qw attributable 
to wind speed will be 1.424 m3/s and the air change rate N will be 
0.732 per hour. You should now confirm these solutions. 

The difference in temperature between inside a building and outside 
creates thermal forces called stack effect. The more extreme the tem­
perature difference the greater is the potential for outdoor air to enter 
the building thus forcing the warm air inside, outside. The resulting 
stack effect is caused by the difference in density between indoor air 
and air outdoors and the effect is most noticeable during the winter 
when the greatest temperature difference will be apparent for a heated 
building. 

Figure 8.10 illustrates the stack effect by showing the column of 
warm air inside the building and a corresponding column of cold air 
outside. The pressure at the base of the column of outdoor air will be 
Po = hpogPa and the pressure at the base of the column of warm air 
indoors Pi = hpig Pa. The air densities are taken as mean values over 
the height of the column h. The pressure difference dP provides the 
driving force for air movement from indoors to outdoors. 

Thus dP = h(dp)gPa. 

-_-_ Po 

_ - _-Cold stack 
h i 

7 
Pi 

Effective height Neutral plane equal to 
atmospheric pressure. 

Pressure 
distribution ~ 

Figure 8.10 Thermal forces. (Stack effect.) (Reproduced with permission of the 
Heating and Ventilating Contractors' Association.) 
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Figure 8.10 also shows the pressure distribution such that at low 
level the air movement into the building is subject to suction or 
negative pressure (-ve) due to its buoyancy and the exit point of the 
air from the building at high level is subject to positive pressure (+ve). 
The neutral point occurs at a horizontal plane where the negative air 
pressure changes to positive pressure. The neutral point is at atmo­
spheric pressure. 

There are two methodologies for the determination of the stack 
effect. 

1. Air density at 20°C and 101325 Pa is 1.2 kg/m3, and frequently 
this is taken as the mean density of the air indoors. Since air density 
is inversely proportional to its absolute temperature and atmo­
spheric pressure is considered constant both indoors and outdoors, 
the density of outdoor air can then be obtained from Po = Pi (TdTo) 
from which dP = h(dp)gPa. 

Alternatively air densities can be obtained from the Thermody­
namic and Transport Properties of Fluids. 

2. However it is more convenient to determine the pressure drop 
caused by the stack effect from a knowledge of the mean tempera­
ture of each column of air. 

From the equation dP = h(dp)g, the pressure difference can be 
expressed as: 

dP = hg(po - Pi) Pa. 
The density of outdoor air at ooe, 273 K is 1.293 kg/m3 

This air density can be put in the form Po = (1.293 x 273)/(273 + to). 
The density of the air indoors will therefore be 

Pi = (1.293 x 273)/(273 + ti)' 
Substituting these two equations into the formula for dP: 

dP = hg[(1.293 x 273)/(273 + to) - (1.293 x 273)/(273 + ti)] 
thus dP = (1.293 x 273)hg[(1/(273 + to)) - (1/(273 + ti))] 
from which dP = 3463h[(1/(273 + to)) - (1/(273 + ti))]. (*) 

Example 8.3 
A building is 15 storeys high and held at a temperature of 20°e. 
Determine the potential stack effect when outdoor temperature is 
-4°C given that the floor to ceiling height is 3 m. 

Solution 
Assuming that the stack effect extends to the full height of the 
building 



 

dP = 3463 x 15 x 3[(1/268) - (1/293)] = 49.6Pa. 
Now try dP = h(dp)gPa 

Cross ventilation through openings 
The rate of air flow subject to stack effect through an opening is: 

Qs = CdAs[(2(dt)hg)/(tm + 273)]°·5 m3/s 
where for apertures in series as shown in Figure 8.11: 

I H/ out at high level 

------. - A3 

h 

A2 ------. +---- - A4 
I I ~ 
'---------------' Cold air in at low level 

Figure 8.11 Cross ventilation of a simple building due to temperature difference 
only (reproduced with permission of the Heating and Ventilating Contractors' 
Association). 

Note the difference in this equation for As compared with the equation 
for Aw. 

Example 8.4 
Determine the ventilation rate due to stack effect for the building in 
Example 8.3 given that the lower and upper openings on one facade 
are 0.5 and 0.3 m2 with similar openings on the facade opposite to 
it. Take Cd as 0.61. 

Solution 

Substituting: l/As = [(1/(0.8)2) + (1/(0.82))] 
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8.5 Natural 
ventilation to internal 
spaces with openings 
in one wall only 

from which As = 0.32m2 

thus Qs = 0.61 x 0.32[(2(20 + 4)(3 x IS) x 9.81)/(12 + 273)]°.5 

Qs = 1.683 m3 /s. 

Summary for Examples 8.2 and 8.4 
These examples deal with uninhibited cross ventilation where there 
are no internal partitions. For these simple applications the actual 
ventilation rate may be taken as the larger of that due to the wind or 
stack effect. It is likely that in the summer the building will be 
subject to moderate natural ventilation since wind speed will nor­
mally be low with a small difference between indoor and outdoor 
temperature. If the building is air conditioned with indoor tempera­
ture lower than outdoor temperature at times during the summer, 
the stack effect will be reversed. This means that the cooler air from 
the building will emanate from openings at low level. 

Figure 8.12 refers to the effect of wind incident upon a facade having one 
opening where the approximate volume flow Qw = 0.02SAuh m3 /s.( *) 
The velocity of the wind tends to increase with height above ground level 
(Figure8.S). 

Figure 8.13 refers to the effect of indoor to outdoor temperature 
difference for one opening in the facade where the approximate 
volume flow 

Qs = Cd (A/3)][((dt)hg)/(tm + 273)]°.5 m3/s. 

-----+ A 

Figure 8.12 Internal space subject to wind. 
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A 

Figure 8.13 Internal space subject to temperature difference. 

Table 8.1 Values of} for two types of window. (Reproduced 
from CIBSE Guide section A4 (1986) by permission of the 
Chartered Institution of Building Services Engineers.) 

Angle of opening Type of window } 

30 side mounted casement 0.6 
60 side mounted casement 0.9 
90 side mounted casement 1.1 
30 centre pivoted window 0.7 
60 centre pivoted window 0.92 
90 centre pivoted window 0.95 

The value of ] depends upon the angle of opening for the window. 
Table 8.1 lists some typical values. 

Example 8.5 
Determine the volume flow rate of outdoor air into an internal 
space having an opening on the windward side whose equivalent 
area is 6400 mm2 . The mean wind speed at the building height of 
10 m is 9 mls. 

Solution 
Substituting into the formula we have 

Qw = 0.025 x (6400/1000000) x 9 = 0.00144 m3 / s 
Qw = 1.441/s. 
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8.6 Ventilation for 
cooling purposes 

Example 8.6 
(a Determine the volume flow rate of air exchange through a side­

mounted casement window to an internal space given that the 
angle of opening is 60°. Indoor temperature is 25°C, outdoor 
temperature is lOoC and the height of the casement is 0.8 m by 
0.5m wide. 

(b Determine the air change rate for the room as a consequence of 
the opened window given that it measures 5 x 4 x 2.7 m high. 

Solution (a) 

The value of J, from Table 8.1 is 0.9 and tm = (25 + 10)/2 = 
12.5°C. 

Substituting the data into the equation for Qs for natural ventila­
tion due to temperature difference: 

Qs = (0.61 x (0.8 x 0.5)/3) x 0.9[(25 - 10) x 0.8x 

9.81)/(12.5 + 273)]°·5 

Qs = 0.047m3/s 
Qs = 471/s. 

Solution (b) 

From the equation Q = NV /3600 m3/s, 
the air change rate N = 3600Q/V = 3600 x 0.047/(5 x 4 x 2.7) 

= 3.13 per hour. 

Current design favours the use of natural or fan-assisted ventilation of 
the building shell for maintaining comfort conditions in preference to 
the use of air conditioning plant. The building envelope must be 
designed and orientated in order to take advantage of the wind and 
the stack effect caused by indoor to outdoor differences in tempera­
ture. A number of articles relating to buildings designed in this manner 
have appeared in Building Services, the monthly journal of the Char­
tered Institution of Building Services Engineers. 

Where air conditioning plant is required and even in place of it, 
advantage can be made for night-time cooling of the building shell 
using natural ventilation. Again the design of the building must 
account for the flow paths for the ventilating outdoor air to ensure 
cooling of the building structure and exfiltration of the resultant 
warmed air. This involves analysis of the building's thermal response 
to summer outdoor temperatures and solar heat gains to ensure a 



 

Naturallfan 
assisted 
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+-- Prevailing wind 

Figure 8.14 Section through a building designed for cooling by ventilation. 

thermally stabilized building structure at the commencement of occu­
pation at the beginning of the day. 

Figure 8.14 shows a section through a building designed for cooling 
by ventilation. 

Case study 8.1 

A five-storey building measures 30 x 15 m and has floor to ceil­
ing heights of 3 m. It is to be structurally cooled in the summer 
months during the evening and night by natural ventilation to 
provide a total of 42 air changes during the unoccupied period 
which extends from 1800 hours to 0800 hours. 

Determine the free area of each of the two openings on the 
leeward side of the building: 

(a) given design mean indoor and outdoor air temperatures dur­
ing the unoccupied period are 25°C and 15°C respectively. 

(b) for a wind speed of 5 mls. 

Data: The two openings on the windward side of the building 
have free area of 1.5 m2 at low level and 1.8 m2 at high level. 
Take Cd = 0.61, h = 13.5 m. 
Assume the openings are in series. 
(c) Estimate the rate of free cooling from the natural ventilation 

of the building when indoor temperature is 25°C and out­
door temperature is 15°C. 

(d) Estimate the daily cooling energy extraction by natural ven­
tilation between the hours of 1800 and 0800. 
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SOLUTION (A) 

The required air change rate per hour = 42/(1800 hours to 
0800 hours) = 42/14 = 3 

From Q = NV /3600 

Q = 3 x (30 x 15 x 3 x 5)/3600 = 5.625 m3/s. 
Estimating for temperature difference 

Qs = CdAs[(2(dt)hg)/(tm + 273)]°·5 m3/s 
where tm = (15 + 25)/2 = 20°C 

Substituting: 5.625 = 0.61As[(2(25 - 15) x 13.5 

x 9.81)/(20 + 273)]°·5 
from which 5.625 = 0.61As x 3.0066 

and As = 3.07 m2 . 

For apertures in series 1/ A; = [(I/(Al + A3)2) + (1/(A2 + A4)2] 

Substituting: 1/3.072 = [(1/(1.8 + A3)2) + (1/(1.5 + A4)2]. 
Assuming A3 = A4 = A 

0.1061 = [(1/1.8 + A)2) + (1/(1.5 + A)2]. 
To solve the equation it can be expressed as z = x + y where 
z = 0.1061 and with values allocated for A, the free area of 
openings A3 and A4. 

The solution is tabulated and given in Table 8.2. 

Table 8.2 Solution to openings for free areas A3 
and A4t case study 8.1 a 

A 

2 
2.5 
2.7 

x 

0.06925 
0.05408 
0.04938 

y 

0.8163 
0.0625 
0.05669 

z 
0.1509 
0.1166 
0.10607 

From Table 8.2 the free area for apertures A3 and A4 is approxi­
mately 2.7m2 each since z is almost equal to 0.1061. 

SOLUTION (B) 

For ventilation resulting from wind Qw = CdAw (2dP / p)0.5 m3/s 

now dP = dPu = 0.5pu2 . 

At a mean temperature tm = 20°C,p = 1.2kg/m3 



 

thus dP = 0.5 x 1.2 x 52 = 15Pa 

and Qw = 0.61Aw(2 X 15/1.2)°·5 = 3.05Aw 
substituting for Qw: 5.625 = 3.05Aw 
from which Aw = 1.844m2. 
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For apertures in series 1/ A~ = [(1/(Al + A2)2) + (1/(A3 + A4)2)] 
substituting: 1/1.8442 = [(1/1.5 + 1.8)2) + (1/(A3 + A4)2)]. 
If A3 = A4 1/3.4 = [(1/10.89) + (1/(2A))2] 
rearrangmg 0.294 - 0.0918 = 1/(2A)2 
from which 0.2022 = 1/(2A)2 
and 4.946 = (2A)2 
thus 2.224 = 2A 
and A = 1.112m2 

Therefore the free area of each of apertures A3 and A4 IS 

1.112m2. 

SOLUTION (C) 

The building structure will absorb heat by solar radiation and 
conduction during the hours of daylight. With the ventilation 
system in use during occupation this will help to ensure against 
excessive indoor temperatures. 

The mass transfer of air through the building by natural venti­
lation 

M = Qp = 5.625 x 1.2 = 6.75 kg/so 
The maximum rate of cooling between 1800 hours and 
0800 hours can be determined from: 
rate of cooling = MCdt kW 
where for air C = 1.025 kJ/kgK 
substituting: the rate of free cooling = 6.75 x 1.025x 
(25 - 15) = 69 kW. 

SOLUTION (D) 

The estimated daily cooling energy extracted by natural ventila­
tion can be determined by taking log mean temperature differ­
ence between indoors and outdoors between 1800 hours and 
0800 hours. Log mean temperature difference accounts for 
there being a change both in outdoor temperature and a change 
in indoor temperature and the need to find the true mean differ­
ence between these two temperature changes. 
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At the beginning of the unoccupied period when cooling of the 
building is considered at 1800 hours, it is possible that indoor 
temperature and outdoor temperature will be equal at 25°C and 
no cooling takes place. At some point during the night outdoor 
temperature drops to 15°C and with indoor temperature still at 
or near 25°C, the maximum cooling rate will be 69 kW and the 
maximum temperature difference is (25 - 15) = 10 K. The mini­
mum temperature difference will occur at 0800 hours when 
indoor temperature will be about 18°C and outdoor temperature 
15°C. Thus minimum temperature difference (18 - 15) = 3 K. 
The log mean temperature difference will be 

LMTD = dtmax - dtmin)/ln (dtmax/dtmin) 
thus LMTD = (10 - 3)/ In(10/3) = 5.814K. 

Note: the arithmetic (less accurate) mean temperature difference 
= (10 + 3)/2 = 6.5 K. 
Now the daily energy extracted H = MCdt x time kWh. 
The units of the terms are: H = (kg/s)(kJ/kgK)(K)(hours) 

= (kJ/s)(hours) = kWh 
substituting: daily energy extracted = 6.75 x 1.025 x 5.814 

x (1800 - 0800) 
= 563 kWh. 

SUMMARIZING THE SOLUTIONS TO CASE STUDY 8.1 

Maximum rate of cooling by natural ventilation at night 
69kW. 

Estimated daily cooling energy from natural ventilation 
563 kWh. 

Conditions 

Stack effect, t; = 25°C, to = 15°C 
Wind effect, U = 5 mls 

Al 

1.8m2 

1.B 
2.7m2 

1.112 
2.7m2 

1.112 

There is a substantial difference in free area for apertures A3 and 
A4 between the stack effect and the effect of the wind. You 
should now consider the effect of a wind speed of 3 mfs upon 
size of apertures A3 and A4 as air movement at night can be quite 
low in the summer. The prevailing conditions will be a combina­
tion of wind and stack effect. However the larger apertures 
determined from either wind or temperature difference would 
be considered appropriate. 



 

QUALIFYING REMARKS RELATING TO CASE STUDY 8.1 

There have been a number of assumptions made in the solution 
to case study 8.1 and the following qualifying remarks must be 
made. 

• It is assumed cross-ventilation takes place with no internal 
partitions. 

• Recourse should be made to establish minimum summertime 
outdoor temperatures which normally occur at night-time. 
This will depend upon geographical location. 

• The building's thermal capacity and orientation including the 
ventilation pathways need analysing to ensure that peak 
indoor temperature normally occurs at the end of, or after, 
the occupation period of 1800 hours. 

• Peak indoor temperature will also need to be set as a design 
parameter in the modelling process. 

• Four apertures in series have been considered, two on the 
windward and two on the leeward side of the offices. 

If the building is located in a sheltered position, the use of extract fans 
can provide a positive air displacement for the building. They can also 
be used to advantage when the indoor to outdoor temperature differ­
ence is small thus reducing the influence of the stack effect. The extract 
fans can be controlled by wind speed and direction and indoor tem­
perature so that they are only used when necessary to aid in capturing 
the heat energy absorbed by the building during the day. Refer again to 
Figure 8.14. 

You now have knowledge of the forces and factors affecting the 
natural ventilation of buildings with respect to stack effect and wind. 
You have the skills required to undertake simple modelling processes 
relating to the size and location of apertures in the building envelope 
and to the mass transfer of air through the building. An approximate 
methodology to estimate the cooling effect of night-time ventilation of 
the building structure has been investigated. 

For realistic assessment of natural ventilation as a means of structu­
rally cooling a building at night, recourse must be made to computer­
ized modelling techniques. 
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8.7 Fan assisted 
ventilation 

8.8 Chapter closure 
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Nomenclature 

Regimes of fluid flow 
in heat exchangers 

A 
Ce 
Ch 
CR 
dt 
dtm 
dtmax 
dtmin 
E 
exp 
f 
h 
hf 
hfg 
hsi 
hso 
HVAC 
hw 
k 
L 
LMTD 
Me 
Mh 
NTU 
Q 
q 
Tt, T2 
Re 
Rf 
Rt 

tel, te2 
tht, th2 
tm 
U 
UL 
Zt, Z2 

heat exchange surface (m2 ) 
specific heat capacity of cold fluid (kJ/kgK) 
specific heat capacity of hot fluid (kJ/kgK) 
capacity ratio 
temperature difference (K) 
true mean temperature difference (K) 
maximum temperature difference (K) 
minimum temperature difference (K) 
effectiveness 
exponential 
correction for cross flow 
specific enthalpy of the superheated vapour (kJ/kg) 
specific enthalpy of the saturated liquid (kJ/kg) 
latent heat of evaporation (kJlkg) 
inside heat transfer coefficient (kW/m2K) 
outside heat transfer coefficient (kW/m2K) 
heating ventilation and air conditioning 
specific enthalpy of the wet vapour (kJlkg) 
thermal conductivity (kW/mK) 
length (m) 
log mean temperature difference (K) 
mass flow of cold fluid (kg/s) 
mass flow of hot fluid (kg/s) 
number of transfer units 
output (kW) 
dryness fraction 
radius for radial heat transfer (m) 
Reynolds number 
fouling thermal resistance (m2K1kW) 
total thermal resistance (m2K1kW) 
inlet and outlet temperatures of the secondary fluid (0C) 
inlet and outlet temperatures of the primary fluid (0C) 
mean temperature (K) 
overall heat transfer coefficient (kW/m2) 
overall heat transfer coefficient (kW/mK) 
temperature ratios for cross flow 
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There are many different types of heat exchanger available to the 
building services industry. Plate heat exchangers and heat pipes 
which have been in use in other industries for many years are now 
used in HVAC systems for extracting low-grade heat from return air in 
ventilation and air conditioning systems, for example. The thermal 
wheel is also used for this purpose. The cooling tower employed for 
cooling condenser water in an air conditioning plant allows the two 
fluids, atmospheric air and condenser water, to come into direct con­
tact for heat transfer to take place. 

This chapter focuses on heat exchangers having a solid boundary 
between the two fluids. The function of this type of heat exchanger is 
to allow the transfer of heat energy between two fluids at different 
temperatures across the solid boundary. It is used to ensure that the 
two fluids do not come into direct contact. 

An ideal heat exchanger of this type should achieve maximum rate 
of heat exchange using the minimum heat exchange space and the 
minimum pressure drop on both sides of the solid boundary. In prac­
tice if the solid boundary is a plain straight tube a comparatively large 
heat exchange space will be required although the pressure drop will 
be relatively low. Alternatively a solid boundary in the form of a coiled 
tube with finning extends the heat transfer surface in a small space but 
the pressure loss inside and outside the tube bundle will be compara­
tively high. 

Inevitably a compromise is usually made in heat exchanger design 
for specific applications. Table 9.1 lists some of the heat exchangers 
used in the building services industry. You should familiarize yourself 
with the construction of the various heat exchangers on the market 
from manufacturers' current literature. 

Table 9.1 Examples of heat exchangers in the building services industry 

Heat exchanger 

Double pipe 
Shell and tube 
Plate 
Run around coils 
Pipe coils 
Heat pipes 
Regenerator (thermal wheel) 
Spray condenser/desuperheater/flash 

steam recovery/cooling tower 

Media 

Water 
Water/condensing/evaporating fluids 
Water/air, water/water 
Water/air 
Water/air 
Water/air 
Air/air 

Water/air, condense/steam, air/water 

Figure 9.1 shows a parallel flow heat exchanger with its accompanying 
temperature distribution assuming both fluids vary in temperature. th1 
being the initial temperature of the hot fluid and tel the initial tem­
perature of the cold fluid. Figure 9.2 shows a heat exchanger in 

9.1 Introduction 

9.2 Parallel flow and 
counterflow heat 
exchangers 
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Length of heat exchanger 

th1 ---+~ ------. th2 

----.-----Iltr--I. 

Figure 9.1 Parallel flow. 

counterflow with its accompanying temperature distribution, assum­
ing both fluids vary in temperature on their passage through the heat 
exchanger. Again thi is the initial temperature of the hot fluid and tel 
the initial temperature of the cold fluid. 

For practical reasons, for a heat exchanger in parallel flow the final 
temperatures th2 and te2 can never be equal and clearly te2 cannot 
exceed th2' However, for a heat exchanger in counterflow te2 can exceed 
th2' Refer to Figure 9.2. Therefore parallel flow has a limitation on the 
relationship between the primary and secondary leaving temperatures. 

In cases where both the primary and secondary fluids vary in tem­
perature the arithmetic mean temperature difference which provides 
the motive force in the heat exchange does not always register the true 
mean temperature difference and the log meari temperature difference 
between the two fluids is adopted. 

LMTD dtm = (dtmax - dtmin)/(ln(dtmax/dtmin) K 
If however dtmax = dtmin, LMTD dtm = zero and the arithmetic mean 
temperature difference is used. 



 

Parallel flow and counterflow heat exchangers 187 

tc2 

Length of heat exchanger 

Figure 9.2 Counterflow. 

For heat exchangers in parallel flow primary temperatures thl --+ th2 

secondary temperatures tel --+ te2 

from which dtmax = thl - tel and dtmin = th2 - te2' 

For heat exchangers in counterflow primary temperatures thl --+ th2 

secondary temperatures te2 --+ tel 

from which dtmax = thl - te2 and dtmin = th2 - tel. 
For both types of flow dtmax and dtmin can be reversed. 
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9.3 Heat transfer 
equations 

Example 9.1 
Determine the true temperature difference for the primary and 
secondary fluids for a heat exchanger in counterflow. 

(a) Primary fluid inlet temperature 120°C outlet temperature 90°C. 
Secondary fluid inlet temperature lODe outlet temperature 
80°C. 

(b) Primary fluid 100°C inlet temperature 80°C outlet temperature. 
Secondary fluid 10°C inlet temperature 30°C outlet tempera­
ture. 

Solution 
(a) Primary temperatures 120---+90 

Secondary temperatures 80---10 
tmax,min dtmin40 - dtmax80 

and LMTD dtm = (80 - 40)/ln(80/40) = S7.7K 

(b) Primary temperatures 100---+80 
Secondary temperatures 30---10 
tmax,min dtmin 70 - dtmax 70 
and LMTD dtm = zero. 

The arithmetic mean temperature difference must therefore be used 
here and will be: 

Primary mean temperature (100 + 80)/2 = 90 
Secondary mean temperature (30 + 10)/2 = 20 
Arithmetic mean temperature difference dtm = 90 - 20 = 70 K. 

BOILING AND CONDENSING IN PARALLEL AND COUNTERFLOW 

It is possible for one of the fluids to remain at constant temperature 
during the process of heat exchange across the solid boundary. The 
evaporator is an example in which the fluid being cooled causes the 
cool fluid to evaporate at constant temperature. Figure 9.3 shows the 
heat exchanger and the accompanying process. 

The condenser is another example in which the fluid being con­
densed at constant temperature causes the cool fluid to rise in tem­
perature. Figure 9.4 shows the heat exchanger and the accompanying 
process. 

The rate of heat transfer may be expressed in various ways: 
Q = UAdtmkW 

where U = 1/Rt kW/m2K 
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cool fluid fc2 

Length of heat exchanger 

Figure 9.3 Boiling in a shell and tube exchanger, cool fluid boiling. 

and Rt = (l/hsi ) + Rf + (l/hso ) m2K/kW. 

hsi and hso derive from the laminar sublayers either side of the solid 
boundary, see Chapter 6. The thermal resistance of the solid boundary 
is not significant and therefore sometimes ignored. 

Q = M cCc (tc2 - tel) kW 
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th1 hot fluid th2 
~'------~~~~~~~~4---------4' 

Length of heat exchanger 

Figure 9.4 Condensing in a shell and tube exchanger, hot fluid condensing. 

Q = MhCh(thl - th2) kW 
Q = Mhh fg = Mh(qh fg ) kW 
Q = Mh(h - hr) = Mh(hw - hf) kW. 

Ignoring the inefficiency of heat exchange a heat balance may be 
drawn such that: heat lost by the primary fluid = heat gained by the 
secondary fluid. 
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For example: 

MhCh(thl - th2) = Mc Cc(tc2 - tel) 

from which one unknown can be evaluated. 

FOULING FACTORS 

The overall heat transfer coefficient U for the solid boundary between 
the primary and secondary fluids, introduced above, should account 
for a layer of dirt or scale on the heat exchanger surface in contact with 
the fluid. Expressed as a thermal resistance Rf to heat flow, it will be at 
a minimum value at commissioning and reach a maximum resistance 
at the point when cleaning and descaling is scheduled. In practice it is 
difficult to evaluate and depends upon: 

fluid properties 
fluid temperatures 
fluid velocities 
heat exchanger material and materials used elsewhere in the system 
heat exchanger configuration. 

Two approaches to accounting for fouling resistance include making a 
correction to the overall heat transfer coefficient for the heat exchan­
ger or alternatively calculating the fouling resistance from various 
trials thus: 

Rf = (ljUdirty) - (ljUclean) 

Clearly the effects of scale and dirt, if not dealt with under a regulated 
planned maintenance, may have a significant effect upon the perfor­
mance of the heat exchanger. Key issues would include the need for 
water treatment, inspection, cleaning and flushing out. 

There now follows two examples relating to the subject matter set 
out above. 

Example 9.2 
A hot fluid is cooled from 118°C to 107°C in a double pipe heat 
exchanger. Assuming the overall heat transfer coefficient to remain 
constant, compare the advantage of counterflow over parallel flow 
in the amount of heat transfer area required when a cold fluid is to 
be heated from: 

(a) sre to 104°C. 
(b) 30°C to 77°C. 
(c) lOoe to 57°C. 
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Solution 
You should note that the temperature rise of the secondary fluid is 
47 K in each case. Examples of double pipe heat exchangers are 
shown in Figures 9.1 and 9.2. 

Consider counterflow: 

primary fluid 
secondary fluid 

dtmax,min 

(a) 
118 ----+ 107 
104 f- 57 

14 50 

(b) 

118 ----+ 107 
77 f- 30 

41 77 

LMTD dtm = (50 - 14)/ln(50/14) = 28.3 K 
dtm = (77 - 41)/ln(77 /41) = 57.1 K 
dtm = (97 - 61) /In(97 / 61) = 77.6 K 

Consider parallel flow: 

primary fluid 
secondary fluid 

(a) 

118 ----+ 107 
57 ----+ 104 

(b) 

118 ----+ 107 
30 ----+ 77 

(c) 
118 ----+ 107 
57 f- 10 

61 97 

(c) 

118 ----+ 107 
10 ----+ 57 

dtmax,min 61 3 88 30 108 50 

LMTD dtm = (61- 3)/ln(61/3) = 19.3K 
dtm = (88 - 30/ln(88/30) = 53.9K 

dtm = (108 - 50)/ln(108/50) = 75.3 K 

Since the overall heat transfer coefficient remains constant the true 
mean temperature differences can now be used to show the advan­
tage of counterflow over parallel flow in relation to the amount of 
heat transfer surface required. 

(a) 28.3/19.3 = 1.466, (b) 57.1/53.9 = 1.059, (c) 77.6/75.3 = 
1.031. 

Analysis of Example 9.2 
Although the secondary fluid has the same temperature rise in each 
case the advantage of counterflow diminishes as the inlet tempera­
ture of the secondary fluid is reduced. Thus as (th2 - te2) increases 
the inefficiency of parallel flow decreases. 

Example 9.3 
A shell and tube heat exchanger is required to raise 0.5 kg/s of 
LTHW from 70°C to 85°C. 
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a) Determine the heating surface required if 0.0158 kg/s of steam at 
4 bar absolute and 0.9 dry is used as the primary medium in 
parallel flow. 
Data: overall heat transfer coefficient U = 1.2 kW /m2K, 
specific heat capacity for water C = 4.18 k]/kgK 

b) What effect does counterflow have upon the surface area? 

Solution (a) 
Use will be made of the tables of Thermodynamic and Transport 
Properties of Fluids in the solution. 

The output of the heat exchanger can be obtained from the 
secondary side and 

Q = McCcdt = 0.5 x 4.18 x (85 - 70) = 31.35 kW. 
Also Q = Mh(hw - hf ) kW 
and from the tables hw = (h f + qhfg ) = 605 + 0.9 x 2134 = 
2526kJ/kg. 
Substituting: 31.35 = 0.01583(2526 - hf ) 

from which hf = 546 kJ /kg 
from the tables therefore ts = th2 = 130°C. 
For parallel flow: primary fluid (steam) 

secondary fluid (water) 

dtmax,min 

LMTD dtm = (73.6 - 45)/ln(73.6/45) = 58 K 
since Q = UAdtm kW 

143.6 ~ 130 
70 ~ 85 

73.6 45 

then heat exchange surface A = Q/Udtm = 31.35/1.2 x 58 = 
0.45m2. 

Solution (b) 
Considering counterflow: primary fluid (steam) 

secondary fluid (water) 

tmin,max 

143.6 ~ 130 
85 f- 70 

58.6 60 
Since these mean temperatures are closely similar the arithmetic 
mean can be taken and: 
for the primary fluid tm = (143.6 + 130)/2 = 136.8°C 
for the secondary fluid tm = (85 + 70)/2 = 77.5°C 
from which dtm = 136.8 - 77.5 = 59.3 K. 
You should now determine the LMTD to confirm that it agrees with 
this arithmetic mean. This closely corresponds to the LMTD of 
58 K for parallel flow and therefore will have little influence over 
the heat exchanger surface. 
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Example 9.4 
Tetrafluoroethane (refrigerant 134a) leaves a compressor at 7.7bar 
absolute with 20 K of superheat and enters a condenser at the rate 
of 0.025 kg/so The coolant temperature at entry is 12°C at a mass 
flow rate of 0.08 kg/so Assuming counterflow determine the heat 
exchange surface and the output of the condenser. 

Data: fouling factor 0.0002 m2K/W, 
specific heat capacity of the coolant 4.18 kJlkgK, 
heat transfer coefficient at the inside surface 850 W/m2K, 
heat transfer coefficient at the outside surface 600 W/m2K 

Solution 
Use will be made of the tables of Thermodynamic and Transport 
Properties of Fluids for data relating to the refrigerant. 

Considering the primary fluid Q = Mh(h - hf) W. 

From the tables the following data is obtained for refrigerant 134a: 
h = 435.44kJ/kg,hf = 241.69kJ/kg 

thus at 7.7bar absolute Q=0.025(435.44-241.69) =4.844 kW. 
Now considering the secondary fluid Q = MeCedt. 
Substituting: 4.844 = 0.08 x 4.18(te2 - 12) 
from which te2 = 26.5°C. 
From the tables the following data is obtained for refrigerant 134a 
at 7.7 bar absolute: 
the superheat temperature is 50°C and the saturation temperature is 
30°C: 

for counterflow: primary fluid 50 ----+ 30 
secondary fluid 26.5;-- 12 

dtmax,min 23.5 18 

LMTD dtm = (23.5 -18)/ln(23.5/18) = 20.63K. 
The overall heat transfer coefficient U = 1/Rt kW/m2K 
and Rt = (1/hsi ) + Rf + (1/hso ) = (1/0.85) + 0.0002 + (1/0.6) = 
2.8433 m2K/kW 
and therefore U = 1/2.8433 = 0.3517kW /m2K. 
Given Q = UAdtmkW 
heating surface 
A = Q/Udtm = 4.844/0.3517 x 20.63 = 0.668m2. 
The output of the condenser is calculated as 4.844 kW. 
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The performance of heat exchangers with a solid boundary between 
the primary and secondary fluids depends upon the overall heat trans­
fer coefficient U, which acts as the interface between the two fluids. 
This interface consists of three elements plus the fouling resistance: 

the hot side laminar sublayer 
the solid interface or boundary 
the cold side laminar sublayer. 

The main sources of thermal resistance are the two laminar sub­
layers. In streamline or laminar flow the laminar sublayers offer 
appreciable thermal resistance because they have significant thickness 
through which heat must be conducted. Turbulent flow reduces this 
thickness and baffles are sometimes employed to increase turbulence. 
Turbulence can be induced in this way in a fluid when Re > 2000. The 
overall heat transfer coefficient is therefore dependent upon fluid 
velocity on both sides of the solid boundary and upon the fouling 
resistance. The laminar sublayer in turbulent flow is considered in 
Chapter 6. 

The outside surface of the heat exchanger may be exposed to a fluid 
which has a lower specific heat capacity than that of the primary 
fluid. An example would be in the case of an air heater battery 
supplied from a low temperature hot water heating system. The pri­
mary fluid is water having a specific heat capacity of about 4.2 kJ/kgK 
compared to that of air which has a specific heat capacity of around 
1.0kJlkgK. 

In order to increase the heat transfer potential, extended finning is 
adopted on the air side of the battery. This increases the surface area to 
compensate for the lower specific heat capacity of air. The surface area 
of the heat exchanger should be a maximum within the limits of cost 
and size. 

Consider a calandria consisting of: 

(i) 20 tubes with an inside diameter of 40 mm, 
(ii) 80 tubes with an inside diameter of 20 mm. 

Both tube bundles will fit into the same size shell of 2.5 m in length. 
The respective surface areas are: 

(i) A = 207r x 0.04 x 2.5 = 6.283 m2 

(ii) A = 807r x 0.02 x 2.5 = 12.567 m2. 

Clearly (ii) surface is to be preferred. The true temperature difference 
between fluids also has a direct influence upon the output of the 
calandria since it is the motive force in heat transfer. The minimum 
true temperature difference should not be less than 20 K for good heat 
exchange. 

There are a number of terms used in relation to heat exchangers 
which describe their performance and allow comparisons to be made. 
They include: 

9.4 Heat exchanger 
performance 
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Capacity ratio - CR 
Effectiveness - E 
Number of transfer units - NTU. 

Capacity ratio is the ratio of the products of mass flow and specific 
heat of each of the primary and secondary fluids. The product MC is 
the thermal capacity of the moving fluid, the units of the terms being: 
(kg/s) x (kJ/kgK) = kJ/sK = kW /K. 

Capacity ratio is the ratio of the smaller product to that of the larger 
and therefore CR < 1.0. 

If (MhCh) > (MeCe) CR = (MeCc)/(MhCh), 
if (MeCe) > (MhCh) CR = (MhCh)/(MeCe), 

where CR, being a ratio, is dimensionless. 
There are two special cases to consider: 

(i) The capacity ratio becomes zero for both boiling and condensing 
where the units for Care kJ/kgK and if the evaporation or con­
densation of the fluid occurs at constant temperature the tempera­
ture drop is 0 K. 

(ii) The capacity ratio becomes unity (1.0) for equal thermal capaci-
ties of the primary and secondary fluids. 

Effectiveness is the ratio of energy actually transferred to the max­
imum theoretically possible. Again it depends upon the product of 
mass flow and specific heat capacity of the primary and secondary 
fluids in kWIK. 

If MhCh > MeCe E = (te2 - tet)/(thl - tet), 
if MeCe > MhCh E = (th1 - th2)/(thl - tet) 

where E, being a ratio, is dimensionless. 
In parallel flow te2 approaches th2 but can never exceed it whereas in 

counterflow te2 can exceed th2 and hence heat exchange in counterflow 
can be more effective. Refer to Figures 9.1 and 9.2. 

Number of transfer units is the ratio of the product of the overall heat 
transfer coefficient and heat exchange area, and the thermal capacity 
MC of either the primary or secondary fluid. The units of the product 
of the terms UA are (kW /m2K) x m2 = kW /K and since these are the 
same as the product of the terms MC, the number of transfer units, like 
CR and E, is a dimensionless quantity. The ratio NTU was developed 
by W. M. Kays and A.L. London and published in 1964. 

If MhCh > MeCe NTU = UA/MeCe 
if MeCe > MhCh NTU = UA/MhCh 
Capacity ratio, effectiveness and number of transfer units provide a 
straightforward route in the determination of the leaving temperatures 
of the primary and secondary fluids th2 and te2, and in the heat 
exchanger output Q. 
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For counterflow heat exchangers: 
E = [1 - exp( -NTU(1 - CR))]j[1 - CRexp( -NTU(1 - CR))] 

when CR = 0, E = [1 - exp( -NTU)] 
when CR = 1,E = NTU/(NTU + 1). 

For parallel heat exchangers: 
E = [1 - exp(-NTU(1 + CR))]j(1 + CR) 

when CR = 0, E = [1 - exp( -NTU)] 
when CR = 1, E = [1 - exp( -2NTU)]/2. 

There now follows some examples using the heat exchanger indices 
described above. 

Example 9.5 
(a) Determine the effectiveness and fluid outlet temperatures of an 

economizer handling 0.8 kg/s of flue gas at an inlet temperature 
of 280°C. The mean specific heat capacity is 1.02 kJ/kgK and 
boiler feed water entering at 0.6 kg/s and 60°C passes in paral­
lel flow. The heat transfer surface is 1.8 m2 and the overall heat 
transfer coefficient is known to be 1.85 kW/m2K. Take the 
mean specific heat capacity of the feed water as 4.24 kJlkgK. 

(b) What likely effect would a counterflow heat exchanger have on 
the flue gas? 

Solution (aJ 
Figure 9.5 shows a typical arrangement in which the economizer is 
used to extract heat from the boiler flue gases for heating the boiler 
feed water. By determining the NTU and the CR for the economizer, 
the effectiveness (E) of its parallel flow heat exchanger can be 
evaluated. First of all, however, the products of mass flow and 
specific heat capacity of the primary and secondary fluids must be 
calcula ted. 

------~ .. 

Steam boiler 

Boiler feed water pump 

Boiler flue 

Economizer 

Feed water 
from hotwel! 

Figure 9.5 Location of the economizer for Example 9.5. 
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MhCh = 0.8 x 1.02 = 0.816kW/K 
MeCe = 0.6 x 4.24 = 2.544kW /K 

therefore since the capacity ratio is the smaller thermal capacity 
over the greater 

CR = 0.816/2.544 = 0.32 
and NTU = 1.85 x 1.8/0.816 = 4.081. 
Effectiveness E can now be evaluated and 

E = [1- exp(-4.081(1 + 0.32))l/(1 + 0.32) 
from which E = (1 - 0.00458)/1.32 = 0.754. 
Note: exp( -4.081(1 + 0.32)) = 2.7183-5.3869 = 0.00458. 
Since E = (thl - th2)/(thl - tet) 
then 0.754 = (280 - th2)/(280 - 60) 
from which th2 = 114°e. 
Using the heat balance: heat lost by flue gas = heat gain by feed water 

0.816(280 -114) = 2.544dt 
from which the temperature rise in the feed water dt = 53 K 
and therefore te2 = 53 + 60 = 113°e. 

Solution (b) 
For counterflow 
E = [1 - exp( -4.081(1 - 0.32))l/[1 - 0.32exp( -4.081(1 - 0.32))] 
from which E = (1 - 0.0623)/(1 - 0.01995) 
and E = 0.957. 

This shows that counterflow is more effective than parallel flow 
where E = 0.754. 

Since MeCe > MhCh E = (280 - th2)/(280 - 60) 
from which th2 = 70°e. 
Adopting the heat balance: heat lost by flue gas = heat gain by feed 
water 

0.816(280 - 70) = 2.544 dt 
from which the temperature rise in the boiler feed water dt = 67 K, 
and the leaving temperature te2 = 67 + 60 = 127°e. 

Summary for Example 9.5 
Clearly the counterflow heat exchanger is more effective. However, 
too much heat may be being extracted from the flue gas as th2 at 
70°C is likely to be below the dew point of the flue gas and corro­
sion would have to be accounted for in the chimney. 



 

Heat exchanger performance 199 

Example 9.6 
0.18 kg/s of steam at 3.5 bar absolute, 0.9 dry enters a counterflow 
heat exchanger serving an HWS storage calorifier and condensate 
leaves at a temperature of 138.9°C. Feed water enters the calorifier 
at lOOC at the rate of 1.5 kg/s to satisfy the simultaneous HWS 
demand. 

The heat transfer coefficients at the inside and outside surfaces of 
the heat exchanger are 13 kW/m2K and 10 kW/m2K respectively. 
Fouling resistance and the thermal resistance of the solid boundary 
between the primary and secondary fluids may be ignored. 

Given the specific heat capacity of water as 4.2 kJ/kgK, determine, 
for the heat exchanger in the HWS calorifier, its capacity ratio, 
effectiveness, number of transfer units and heat exchange surface. 

Solution 
The tables of Thermodynamic and Transport Properties of Fluids 
will be needed for the solution. From the tables it can be seen that 
there is no change in temperature of the primary steam which gives 
up its latent heat only in the heat exchanger. The larger thermal 
capacity (where for C here in kJlkgK, temperature difference K 
being zero) is infinite. Therefore the capacity ratio CR = O. 

Using the heat balance to evaluate the leaving temperature of the 
secondary water te2 heat lost by the primary steam = heat gain by 
the secondary water 

Mh(qhfg ) = MeCe dt. 

Note from the tables that the heat lost by the steam takes place at a 
constant temperature of 138.9°C. This therefore is a case of con­
densation at constant temperature. Refer to Figure 9.4. 

Substituting from the tables and the data in the question: 
0.18 x (0.9 x 2148) = 1.5 x 4.2(tc2 - 10) 

from which the secondary outlet temperature te2 = 65.23°C. 
Since the primary fluid is at constant temperature the arithmetic 
mean temperature difference between the fluids is the true mean 
value and 

dtm = 138.9 - (65.23 + 10)/2 = 101.29 K 
The overall heat transfer coefficient U = 1/ Rt k W 

where Rt = (l/hsi ) + (l/hso ) = (1/13) + 1/10) = 0.1769m2K/W 
and U = 1/0.1769 = 5.652kW/m2K. 
Now the rate of heat transfer at the heat exchanger can be obtained 
from either side of the heat balance, 
thus Q = 0.18 x (0.9 x 2148) = 348 kW. 
Since Q = UAdt 
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9.5 Cross flow 

heat exchanger surface 
A = Q/Udt = 348/5.652 x 101.29 = 0.608m2. 

NTU = UA/McCc since the secondary water has the lower thermal 
capacity as the thermal capacity of the primary steam is zero, 

so NTU = 5.652 x 0.608/1.5 x 4.2 = 0.545. 

Since capacity ratio CR = 0, the effectiveness of the heat exchanger 

E = 1 - exp( -NTU) = 1 - 2.7183(-0.545) = 0.42. 

Summary for Example 9.6 
Capacity ratio CR = 0, effectiveness E = 0.42, number of transfer 
units NTU = 0.545 and the heat exchange surface A = 0.608 m2. 

Figure 9.6 shows a typical air heater battery through which the pri­
mary fluid is constrained within the heat transfer tubes and over which 

/ 
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Figure 9.6 A cross flow air heater battery. 
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Figure 9.7 LMTD correction factor for cross flow, one fluid mixed, one fluid 
unmixed. 



 

air flows freely. The primary fluid is unmixed as it is contained within 
the tube boundary walls while the air which is the secondary fluid is 
considered as mixed flow. This requires the introduction of a correc­
tion factor f in the equation for the heat transfer across the heat 
exchanger. Thus Q = UAfdtmkW. 

The LMTD dtm is calculated for cross flow in the same way as for 
counterflow. Figure 9.7 shows how correction f can be evaluated for a 
cross flow heat exchanger with one fluid mixed and the other 
unmixed. When applying the factor it does not matter whether the 
hotter fluid is mixed or unmixed. 

Example 9.7 
An air heater battery is supplied with water at 1.0 kg/s and 82°C 
with return water at 72°e. Air enters the heater at 1.86 m3/s and 
20°e. 

(a) Assuming cross flow determine correction factor f from Figure 
9.7 and hence calculate the heat exchanger surface. 

(b) Determine the capacity ratio, effectiveness and the number of 
transfer units for the heater battery. 

Data: specific heat capacities for water and air are 4.2 and 
1.0 kJ/kgK respectively, the heat transfer coefficients at the inside 
and outside surfaces of the exchanger tubes are 3.72 and 
2.0 kW /m2K, fouling resistance is 0.0002 m2K/W. 

Solution (a) 
The horizontal axis of Figure 9.7, Zl = (th2 - thd/(tel - thl) = 
(70 - 82)/(20 - 82), thus ZI = (-12)/(-62), from which the 
temperature ratio ZI = 0.19. 

From the same figure Z2 = (tel - tc2)/(th2 - thl) = (20 - 50)/ 
(70 - 82) = (-30)/(-12) 
from which Z2 = 2.5. 

Adopting the values for temperature ratios ZI and Z2, from Figure 
9.7 the correction factor f = 0.96. 

The overall heat transfer coefficient U = 1/ Rt k W, 
and Rt = (1/3.72) + 0.0002 + (1/2) = 0.769m2K/kW, 
then U = 1/0.769 = 1.3 kW /m2K. 

Taking cross flow as counterflow to obtain LMTD without loss of 
integrity: 

primary fluid: water 82--+70 
secondary fluid: air 50+----20 
dtmax,min 32 50 

Cross flow 201 
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9.6 Further examples 

LMTD dtm = (50 - 32)/ln(50/32) = 40.3 K 
From Q = UAdtm(, A = Q/Udtm( 

where Q = MhChdt = 1.0 x 4.2 x (82 - 70) = 50.4kW 

and substituting: 

heating surface A = 50.4/1.3 x 40.3 x 0.96 = 1.0021 m2. 

Solution (b) 
Now Mh Ch = 1.0 x 4.2 = 4.2 kW /K 
and McCc = (1.86 x 0.9) x 1.0 = 1.674 kW /k. 
The capacity ratio CR = 1.674/4.2 = 0.399 
Number of transfer units NTU = UA/McCc = 1.3 x 1.0021/ 
1.674 = 0.778. 

The determination of effectiveness for a cross flow heat exchan­
ger, one fluid mixed, one fluid unmixed, is derived from the rela­
tionship between capacity ratio and number of transfer units. An 
approximate value for effectiveness here may be calculated assum­
ing counterflow. Approximate effectiveness, taking cross flow as 
counterflow, 

E = [1 - exp( -0.778(1 - 0.399))]/[1 - 0.399 
exp( -0.788(1 - 0.399))] = (1 - 0.6198)/(1 - 0.2473) = 0.505. 

The actual answer is E = 0.484. 

Summarizing Example 9.7 
(a) heating surface A = 1.0021 m2. 
(b) CR = 0.399, E = 0.505, NTU = 0.778. 

The solution must be qualified to the extent that the true tempera­
ture difference between fluids and the effectiveness was determined 
for counterflow. 

Example 9.8 
A shell and tube non-storage heating calorifier operates in counter­
flow. The primary medium is high temperature hot water at 
temperatures of 1600 e and 130°e. The secondary medium is 
low temperature hot water operating at 82°e and 70°e. The 
heat exchange tube bundle consists of four copper tubes each 
20 mm inside diameter, 25 mm outside diameter having a thermal 



 

conductivity of 0.35 kW /mK and heat transfer coefficients of 5 and 
3 kW /m2K respectively. Ignoring the effects of fouling on the heat 
exchange surfaces, determine the mass flow of the secondary med­
ium and the length of the tube bundle. Take the specific heat 
capacities of the primary and secondary mediums at the appropri­
ate mean water temperature and the mass flow of high temperature 
hot water as 0.349 kg/so 

Solution 
The shell and tube heat exchanger is shown in Figure 9.8. 

t 

t 
Figure 9.8 Non-storage calorifier (Example 9.8). 

The mean water temperature of the primary medium = (160 + 
130)/2 = 145°C. 
The mean water temperature of the secondary medium = (82 + 
70)/2 = 76°C. 

From the tables of Thermodynamic and Transport Properties of 
Fluids the specific heat capacities at these mean water temperatures 
are: 

primary medium, 4.3 kJ/kgK and secondary medium, 4.194 kJ/kgK. 

Adopting the heat balance: 

heat lost by the primary medium = heat gain by the secondary 
medium 

substituting: 
0.349 x 4.3 x (160 -130) = M x 4.194 x (82 - 70) 

from which the mass flow of low temperature hot water IS 

0.895 kg/so 
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For counterflow, primary fluid: 160-->130 
secondary fluid: 82--- 70 
dtmax,min 78 60 

LMTD dtm = (78 - 60)/ln(78/60) = 68.6K. 

Since the surface of the heat exchanger is identified as four copper 
tubes it is convenient to determine the overall heat transfer co­
efficient for radial conductive heat flow which is introduced in 
Chapter 2. 
Thus from Chapter 2: Q/L = (21fdt)/[(1/r1hsi ) + ((lnr2/rd/kl) + 
(1/r2hso)] W /m 
Slllce Q/L = ULdtW/m therefore UL = (Q/L)/dtW/mK 
then UL = (21f)/[(1/r1hsi ) + ((In(rz!rl)/k1) + (1/r2hso)W/mK. 
Note the different units for the overall heat transfer coefficient which 
is in per metre run of pipe and not per square metre of plane surface. 
substituting: UL = (21f)/[(1/0.01 x 5) + (In (0.0125/0.01)/ 
0.35) + (1/0.0125 x 3)] 
from which UL = (21f)/[20 + 0.6376 + 26.667] 
thus UL = 0.133kW/mK. 
The output of the heat exchanger can be obtained from either side 
of the heat balance: 
thus Q = 0.349 x 4.3 x (160 - 130) = 45 kW 
now Q/L = UdtW/m and therefore Q = UdtL W, 
therefore 
tube bundle length L = (Q/ULdtm ) x 1/4 = (45/0.133 x 68.6)x 
1/4 = 1.233 m. 

Summary for Example 9.8 
The mass flow of low temperature hot water is 0.85 kg/s and the 
length of the tube bundle is 1.233 m which does not account for the 
inefficiency of heat exchange. Note the low thermal resistance of 
the copper tubes relative to the heat transfer coefficients at the inner 
and outer surfaces. This is the reason why the thermal resistance of 
the solid boundary is often ignored. If mild steel heat exchange 
tubes were used the thermal conductivity of the material would be 
in the region of 0.05 kW /mK and the thermal resistance of the solid 
boundary would be: 

R = (In(0.0125/0.01)/0.05) = 4.463m2K/W. This compares 
with that for copper tubes of R = 0.6376 m2K/W. You can see 
why copper is favoured as the heat exchange material. The effect 
on the length of the tube bundle if steel tube is employed for the heat 
exchanger is L = 1.333 m compared with L = 1.233 m for copper. 
You should now confirm the length of the tube bundle for steel. 



 

Example 9.9 
Tetrafluoroethane is discharged from a compressor at 14.91 bar 
absolute having 20 K of superheat and enters a condenser at 
0.3 kgj s. It leaves the condenser sub-cooled by 5 K. The coolant 
flow rate is 0.794 kgjs and the inlet temperature is 16°e. Assuming 
counterflow determine the condenser output, the leaving tempera­
ture of the coolant and the length of the tube bundle. 

Data: the tube bundle consists of 8 x 15 mm nominal bore tubes 
having an outer diameter of 20 mm, the overall heat transfer coeffi­
cient is 3.2 kW jm2K and the specific heat capacity of the coolant is 
2.8 kJjkgK. 

Solution 
Reference should be made to the tables of Thermodynamic and 
Transport Properties of Fluids. From the tables Refrigerant 134a 
at 14.91 bar absolute has a specific enthalpy of 449.45 kJjkgK at 
20° of superheat. The temperature of the superheated vapour is 
75°C and at saturated conditions it is 55°e. Thus since it is sub­
cooled by 5 K on leaving the condenser the leaving temperature of 
the refrigerant will be 55 - 5 = 50°e. The specific enthalpy of the 
refrigerant leaving the condenser will therefore be 271.61 kJjkgK. 
You should now confirm these data from the tables. 

The condenser output Q = M(h - hf) kW 
substituting: Q = 0.3(449.45 - 271.61) = 53.35 kW. 

Adopting the heat balance: 

heat lost by refrigerant = heat gain by coolant 
substituting: 53.35 = 0.794 x 2.8dt 
from which the temperature rise of the coolant dt = 24 K 
therefore the leaving temperature of the coolant te2 = 16 + 24 = 
40°e. 
For counterflow: primary fluid 75----+50 

secondary fluid 40+--16 
dtmax,min 35 34 

LMTD dtm = (35 - 34)jln(35j34) = 34.5 K. 

Note: since the maximum and minimum temperature differences 
are almost equal the arithmetic mean temperature difference can be 
taken and equals (62.5 - 28) = 34.5K. 

For the determination of tube bundle length Q = ULLdtm kW 
where UL has the units kW jm.runK. 
Now the overall heat transfer coefficient U = 3.2 kW jm2K. 
One metre of 20 mm outside diameter tube has an area of: 
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9.7 Chapter closure 

a = 'ITD x 1.0 = 'IT x 0.02 x 1.0 = 0.0628 m2 

therefore UL = 0.0628 x U = 0.0628 x 3.2 = 0.2 kW /mK 
thus from Q = ULLdtm kW, L = Q/ULdtm m. 

If there are eight tubes in the bundle 

L = (Q/ULdtm ) x 1/8 = (53.35/0.2 x 34.5) x 1/8 = 0.966m. 

Summary for Example 9.9 
Condenser output 53.35 kW, leaving temperature of the coolant 
40°C, length of the tube bundle 0.966 m. 

The heat exchanger will be similar to Figure 9.8 but would have 
eight tubes in the bundle instead of the four shown in the diagram. 

This completes the work on heat exchangers only a few of which have 
been considered in detail here. However, the principles of heat exchan­
ger design and performance have been introduced from which you will 
appreciate that the subject is very specialized and largely in the domain 
of the manufacturer. It is important though for the student in building 
services to have some knowledge of this work and you should now 
extend it by undertaking market research into the types of heat 
exchanger available. 



 
A 
C 
d 
dt 
f 
g 
h 
I 
L 
LHS 
M 
p 
Q 
RHS 
T 
TE 
U 
u 
() 

f1 
P 
IJ 

area (m2) 

Verifying the form 
of an equation by 

dimensional analysis 

specific heat capacity (kJ/kgK) 
diameter (m) 
temperature difference (K) 
frictional coefficient 
gravitational acceleration (m/s2) 
head (m) 
flux density (W/m2) 
length (m), dimension for length (m) 
left-hand side 
mass flow (kg/s), dimension for mass (kg) 
pressure (Pa) 
rate of heat flow (W), volume flow (m3/s) 
right-hand side 
dimension for time (s) 
total energy, metres of fluid flowing 
thermal transmittance coefficient (W /m2K) 
velocity (m/s) 
dimension for thermodynamic temperature (K) 
absolute viscosity (kg/ms) 
density (kg/m3 ) 
Stefan-Boltzmann constant (W /m2K4) 

The process of checking the units of the terms in an equation is 
relatively straightforward and a common strategy for ensuring that 
its form is correct. For example the formula Q = UAdt has the units of 
watts. This unit for the term Q can be checked if the units of the other 
terms are known, thus the product of the terms UAdt has the units 
(W /m2K) x (m2) x (K) and by the process of cancellation the unit of 
watts is confirmed. 

10 

Nomenclature 

10.1 Introduction 
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Dimensions on the other hand are properties (of a term) which can 
be measured. For example, density has the units kg/m3. Its dimensions 
are ML -3 where M is mass and L is length. 

Units are the elements by which numerical values of these dimen­
sions describe the term quantitatively. That is to say the units of 
density are kg/m3 where mass is quantified in kg and volume is 
quantified in m3 • Thus the units of a term define in addition the system 
of units being used. A term's dimensions on the other hand are not 
confined to any system of units and therefore dimensional analysis is 
universal and common to all systems of units. 

There are three systems of units in use in the western world namely: 
Systeme International SI, FPS or foot-pound-second system and 
MKS or metre-kilogram-second system. The UK has for some years 
adopted the Systeme International. The United States of America 
currently uses the FPS system and Germany the MKS system of mea­
surement. 

Dimensional analysis is adopted to undertake three discrete tasks 
which are: 

• to check that an equation has been correctly formed 
• to establish the form of an equation relating a number of variables 
• to assist in the analysis of empirical formulae in experimental work. 

This chapter will focus on checking some equations used in this book 
by dimensional analysis to show that they are correctly formed. 

10.2 Dimensions in use It is necessary to identify the dimensions which will be used in validat­
ing a formula. There are four dimensions which are basic to heat and 
mass transfer and they are those for mass M, length L, time T and 
thermodynamic temperature e. 

The dimensions for force, for example, may now be established and 
since Force = mass x acceleration, the units of the terms are: 
force = kg x m/s2. The dimensions of the terms are: force = 
M x L X T-2 = MLT-2 • The unit of force in the Systeme Interna­
tional is the newton. thus the dimensions of the newton are MLT-2 • 

The newton is called a derived unit since it is made up from more 
than one basic unit. There are six basic units in the Systeme Inter­
national and the dimensions of four of them, M, L, T and e, will be 
used to define the dimensions of terms in this chapter. You can see the 
importance of knowing the basic units in a derived unit such as the 
newton before identifying its dimensions. There are a number of 
derived units of terms commonly used in heat and mass transfer. 
They are listed in Table 10.1 and you should confirm the units and 
dimensions of each one. 

There now follow some examples in which the forms of some 
equations used in this book are checked by dimensional analysis. 



 

Table 10.1 Dimensions of some derived units used in heat and mass transfer 

Term Name 

Force newton 
Energy joule (Nm) 
Power watt 
Pressure pascal 
Gravitational acceleration 
Density 
Mass flow 
Volume flow 
Absolute viscosity 
Kinematic viscosity 
Specific heat capacity 
Specific enthalpy 
Cubical expansion 
Thermal conductivity 
Heat flux 
Speed of rotation 
Heat transfer coefficient 
Mean velocity 
Area 

Example 10.1 
P = hpgPa. 

Solution 
Refer to Table 10.1. 

Symbol 

F 
H 
Pw,Q 
P 
g 
p 
M 
Q 
/-l 
v 
C 
h 
(3 
k 
I 
N 
h 
u 
A 

Units, definitions Dimensions 

kg x m/s2 MLT-2 
force x distance moved ML2T- 2 

energy /ti me ML2T-3 
force/area ML-1 T-2 
m/s2 LT-2 

kg/m3 ML-3 

kg/s MT-1 

m3 /s L3 T- 1 

kg/ms ML-1 T-1 

absolute viscosity/density L2 T 
J/kgK L2 T-2e- 1 

kJ/kg L2T-2 

l/e e-1 

W/mK MLT-3e- 1 

W/m2 MT-3 
rev /s T- 1 

W/m2K MT-3e- 1 

m/s LT-1 

m2 L2 

The right-hand side of the equation has the dimensions 
(L)(ML -3)(LT-2), these reduce to ML -IT-2 which agrees with 
the dimensions for pressure in Table 10.1. 

Example 10.2 
h = (4fLu2 )/(2gd) m of fluid flowing. 

Solution 
Refer to Table 10.l. 

The right-hand side of the formula has the dimensions 
[(L)(L2/T2)/(L/T2)(L)J. Note that the pure numbers do not have 
dimensions. It is assumed for the moment that the coefficient of 
friction f is dimensionless. 

The dimensions on the RHS of the formula reduce to L. This 
shows that the form of the Darcy formula is correct and confirms 
that the coefficient of friction is dimensionless. 
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Example 10.3 
Show by dimensional analysis that the Reynolds number is dimen­
sionless. 

Solution 
Now Re = (pud)/0 

Referring to Table 10.1 and substituting the dimensions on the 
RHS of the equation: (ML -3)(LT-1 )(L)/(ML -1T-1) = (ML -3) 
(LT- 1)(L)(M-1LT) from which all the dimensions on the RHS 
cancel and therefore the Reynolds number is dimensionless. 

Example lOA 
Check the form of Box's formula for head loss in turbulent flow in 
straight pipes where: h = (fLQ2)/(3dS) m of fluid flowing. 

Solution 
Referring to Table 10.1 and substituting the dimensions on the RHS 
of the formula: 

(L)(L3T-1)2(L -s) = (L)(L6T-2)(L -s) 

the RHS reduces to: (L2)(T-2). 
The RHS should reduce to dimension (L) to equate with the LHS 

of the formula. This leaves the dimensions (L)(T-2) and from Table 
10.1 the term which will cancel these dimensions is the inverse of 
gravitational acceleration which is (T2)(L -1). The conclusion 
therefore is that the constant (1/3) in the formula must include 
the term gravitational acceleration in its denominator. 

From Chapter 7, in the derivation of Box's formula, 
h = (64/2~g)(fLQ2 Ids) metres of fluid flowing, 

and gravitational acceleration g appears in the denominator of the 
constant which is enclosed by the first set of brackets. If g is taken as 
9.81 mls2 the constant evaluates to 1/3. The analysis of dimensions 
therefore has shown that the form of Box's formula is correct. It 
also identifies the fact that the constant in the formula of (1 13) does 
have dimensions which are (T2)(L -1). 

Example 10.5 
Show that the equation for the determination of mass flow of water 
Q = MCdt, is formed correctly. 

Solution 
From Table 10.1 the dimensions of Q which is the rate of heat flow 
in watts are: ML 2T-3 . 



 

The dimensions of the terms on the RHS of the equation are, 
where specific heat capacity from Table 10.1 has the dimensions 
(L2T-2(}-1): (MT- 1 )(L2T-2(}-1 )(()) = (ML2T-3) which agrees 
with the LHS of the equation and therefore the form of the equation 
is correct. 

Example 10.6 
Show that the formula TE = Z + (Ppg) + (u2 /2g) metres of fluid 
flowing is formed correctly. 

Solution 
Refer to Table 10.1. Total energy 

TE = (L) + (ML -IT-2 )I(ML -3)(LT-2 ) + (L2T-2 )ILT-2 ), 

from which TE = (L) + (L) + (L) and the formula for total energy 
is shown to be formed correctly. 

Example 10.7 
Adopting dimensional analysis verify the dimensions of the Stefan­
Boltzmann constant for heat radiation. 

Solution 
The equation is flux density I = a-T4 W 1m2• 

Referring to Table 10.1, the dimensions of heat flux on the LHS 
of the equation are: MT-3 • 

The RHS of the formula is the product of a numerical constant 
and thermodynamic temperature to the fourth power thus: a-T4. 

In order for the right-hand side of the formula to be dimension­
ally similar to the left-hand side the product of the Stefan-Boltz­
mann constant and thermodynamic temperature to the fourth 
power must have the dimensions: (MT-3(}-4) ((}4). This will then 
reduce the RHS of the formula to MT-3 which is dimensionally 
similar to the LHS. Thus the dimensions of the Stefan-Boltzmann 
constant will be: MT-3(}-4. 

You will note that not all numerical constants in formulae are 
dimensionless. Example lOA is another case in point. 

You have now been introduced to the dimensions of terms in common 
use and undertaken one of the applications to which dimensional 
analysis can be put. Clearly it is easier to check the form of an equation 
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by using the units of the terms within it as shown in section 10.1, 
rather than by using the dimensions of the terms. However it is 
important to persevere with using the dimensions of terms since they 
are used exclusively in Chapter 11. 

This chapter has sought to illustrate the way the dimensions of terms 
are expressed and provides a grounding for the next chapter which is 
where dimensional analysis has a major role in establishing the form of 
an equation relating a number of variables and in assisting the analysis 
of experimental work. 



 

Solving problems by 
dimensional analysis 

Some of the nomenclature used in this chapter is given in Table 10.1 of 
Chapter 10 to which reference will need to be made. The remainder is 
listed here. 

B constant of proportionality 
d diameter, distance from leading edge (m) 
dh difference in head (m of fluid flowing) 
dP pressure drop (Pa) 
f frictional coefficient for turbulent flow 
Gr Grashof number 
L length (m) 
m number of dimensions 
n number of variables 
Nu Nusselt number 
Pr Prandtl number 
Re Reynolds number 
¢ function of 
T shear stress (Pa) 

Chapter 10 introduces one of the three applications of dimensional 
analysis. The two remaining applications include: establishing the 
form of an equation relating a number of variables and assisting in 
establishing empirical formulae in experimental work. 

The dimensions which will be used in this chapter continue to be 
those for mass M, length, L, time Tand thermodynamic temperature (). 
The dimension for heat energy H is used in Example 11. 7. 

A formula which is well known to building services will be used now 
to demonstrate this use of dimensional analysis. 

Case study 11.1 

Consider the Darcy equation for turbulent flow which may be 
written as: 

11 

Nomenclature 

11.1 Introduction 

11.2 Establishing the 
form of an equation 
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dh = (4fLu2) /2gd m of fluid flowing. 
This formula may be in terms of units of pressure and since 

dP = dhpg Pa the Darcy equation can be expressed as 

dP = [(4fLu2)/2gd]pgPa 
thus dP = (4fLu2p)/2dPa. 
If it is required to express the formula in terms of a rate of 
pressure loss per metre: 

then dP/L = (4fu2p)/2dPa/m. 
We will now use dimensional analysis to find the form of an 

equation for turbulent flow using a number of variables. 
With turbulent flow of a fluid in a flooded pipe, pressure loss 

per unit length is likely to be related to the variables u, p, J.l and a 
characteristic dimension of the pipe or duct, say diameter d, 
thus dP/L = ¢(u,p,J.l,d). 
The term ¢ means 'a function of'. 
If an exponential relationship is assumed 

dP/L = B[uapbJ.lcdd] (11.1) 
where B is taken as a constant of proportionality and the indices 
a, b, c and d may need to be evaluated empirically. 

The expression is now changed to the dimensions of the 
terms within it and using Table 10.1 to assist in defining the 
terms: 

(ML -2T-2) = B[(LT-1 t(ML -3)b(ML -IT-1 )c(L)d] 
Now forming equations from the indices and remembering, for 
example, that the dimension M is in fact Ml: 

for dimension M: 1 = b + c 
for dimension L: -2 = a - 3b + c + d 
for dimension T: -2 = -a - c 
from which b = 1 - c, a = 2 - c and d = -1 - c. 

Substituting the expressions for a, c and d into equation (11.1) 
dP /L = B[u(2-c) p(l-c) J.lcd(-l-c)l. 

Inspecting this statement identifies from the indices that there are 
two groups of variables on the RHS of the equation namely one 
with a numerical index and one with the index -c. Putting the 
terms into these two groupings we have: 

dP/L = B[(u2p/d) (pud/J.l(Cl· 
You will notice that the last group of terms (pud / J.l) -c is in fact 
the Reynolds number Re, and it is found by experiment that the 
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constant of proportionality B = unity, thus we have dP /L = 
(u2 p/d)¢(Re), the term ¢ accounting for the index -c. 

Now the Darcy equation may be expressed in the form: 

dP/L = 4fLu2 p/2d = (u2 p/d)(4f/2) 
from which therefore ¢( Re) = 4f /2. 

The frictional coefficient f is obtained from the Moody dia­
gram which has a scale of Reynolds numbers as one of its axes. 
Refer to Chapter 6, Figure 6.13. 

SUMMARY FOR CASE STUDY 11.1 

It is evident from the result of the analysis of the dimensions of 
the selected variables that the equation so derived is comparable 
with the Darcy formula for turbulent flow. 

BUCKINGHAM'S PI THEOREM 

This states that if there are n variables in a problem with m 
dimensions there will be (n - m) dimensionless groups in the 
solution. Applying this theorem to case study 11.1, from equa­
tion (11.1) there are n = 5 variables. The term (dP / L) which is 
the subject of the expression is taken as one variable, the others 
are u, p, fL and d. 

Subsequently three dimensions (M, L, T) were used in the 
analysis. Thus (n - m) = (5 - 3) = 2 dimensionless groups. 

The Reynolds number has been identified as one of the groups. 
The other group can now be found thus: 

dP/L = (u2 p/d)()(Re) 
then ()(Re) = (dP/L)(d/u2 p) 
and the second dimensionless group must be (dPd/u2 pL), in 
order to keep the equation in balance. You should now check 
these dimensions of the terms to establish that this group is 
dimensionless. 

Where full-scale experiments cannot be conducted because of the 
problem of size, information can be obtained by experiments on 
models provided that the model is related properly to the full-size 
counterpart. The relationship is simple if fluid flow, for example, is 
geometrically and dynamically similar in each case. 

GEOMETRICAL SIMILARITY 

This is achieved when one system is the scale model of the other; that is 
the ratio of corresponding lengths is constant. 

11.3 Dimensional 
analysis in 
experimental work 
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DYNAMICAL SIMILARITY 

This is achieved when several forces acting on corresponding fluid 
elements have the same ratio to one another in both systems. For 
example, in turbulent flow in flooded pipes, the value of the Reynolds 
number must be identical in the scale model and its full-size counter­
part. In case study 11.1 both dimensionless groups would need to 
satisfy this condition if a model of a full-size version of a system 
involving turbulent flow in horizontal straight pipes was being built, 

thus (Re)m = (Re)fs and (dPd/u2pL)m = (dPd/u2pL)fs 
where subscript m refers to the model and subscript fs refers to the full­
size version. 

These dimensionless groups will now be used in the case study 
which follows. 

Case study 11.2 

The pressure loss in a pipe 150 mm bore and 33 m long is 20 kPa 
when water flows at a mean velocity of 2.5 rn/s. Determine the 
pressure loss when sludge flows at the corresponding speed 
through a pipe 600 mm bore and 400 m long. 

Data: density of water and sludge is 1000 kg/m3 and 
2000 kg/m3 respectively, 
absolute viscosity for water and sludge is 0.001 kg/ms and 
0.003 kg/ms respectively. 

SOLUTION 

The formula appropriate to this solution is the one analysed in 
case study 11.1, 

(dPd/u2pL) = ¢(Re). 
For geometric similarity it is assumed that the water system and 
the sludge system are to scale. 

For dynamic similarity: (Re)m = (Re)fs and (dPd/u2pL)m = 
(dPd/u2pL)fs· 
For equality of Reynolds numbers 

substituting: (1000 x 2.5 x 0.15/0.001)m = (2000 x u 
x 0.6/0.003)fs 

from which the corresponding mean velocity of the sludge 
u = 0.9375 m/s. 

For equality of the second dimensionless group 
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substituting: (20 x 0.15/2.52 x 1000 x 33)m 
= (dP x 0.6/0.93752 x 2000 x 400)£s 

from which the corresponding pressure drop = 17 kPa. 

Example 11.1 
The laws for centrifugal pumps and fans are: Q ex N, P ex N 2 and 
P w ex N3. Verify these laws using dimensional analysis and identify 
the dimensions of the numerical constant B. 

Solution 
Let Q = ¢(N) (11.2) 
then Q = B(Na) where B and a are numerical constants 

from Table 10.1 the dimensions of the terms are: (L3T-l) = (T-l) 

then (L3T- 1 ) = T-a 

for L 3 = 0 
for T - 1 = -a therefore a = 1 
substituting into equation (11.2) Q = ¢(N) = B(N) 
if B is the constant of proportionality, Q ex N. 

Identifying the dimensions of the constant B from Q = B(N), 
thus (L3T-l) = B(T-l) 
from which the dimensions of the numerical constant B = L3. 

Let P = ¢(N) 
then P = B(Na). 

(11.3) 

From Table 10.1 the dimensions of the terms are: (ML -IT-2 ) = 
(T-1) 

then (ML -IT-2 ) = T-a 

for M 1 = 0 
for L - 1 = 0 
for T - 2 = -a from which a = 2 
substituting into equation (11.3): P = ¢(N2) = B(N2), 
if B is the constant of proportionality, P ex N 2 • 

Identifying the dimensions of the constant B from P = B(N2), 
thus (ML -IT-2 ) = B(T-2 ) 

11.4 Examples in 
dimensional analysis 
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from which the dimensions of the numerical constant B = (ML -1). 
Let Pw = ¢(N) (11.4) 

then Pw = B(Na ). 

From Table 10.1 the dimensions of the terms are: 
(ML2T-3) = B(T-1) 
then (ML 2T-3) = T-a 

for M 1 = 0 
for L 2 = 0 
for T - 3 = -a from which a = 3. 
Substituting into equation (11.4): Pw = ¢(N3) = B(N3), 
if B is the constant of proportionality, P w ex N 3 • 

Identifying the dimensions of the constant B from Pw = B(N3) 
thus ML2T-3 = B(T-3) 
from which the dimensions of the numerical constant B = (ML2 ). 

Summarizing Example 11.1 
Table 11.1 confirms the relationship between the variables in 
Example 11.1 and identifies the dimensions of B, the numerical 
constants in the solutions. In order to remove the dimensions of B it 
is necessary to consider what other variables may contribute to each 
of the three equations for Q, P and Pw • There are a number of 
possibilities when considering prime movers such as centrifugal 
pumps and fans. They include: 

impeller diameter d 
impeller speed N 
fluid density p 
absolute viscosity of the fluid J..l 
kinematic viscosity 'Y. 

By analysing the dimensions of each of these variables from Table 
10.1 (the dimension for impeller diameter d being L) it is possible to 
deduce the term or terms whose dimensions will equate with the 
numerical constant B. These are shown in the third column of Table 

Table 11.1 Summary of Example 11.3; the laws for pumps and fans. 

Relationship 
between 
variables 

Dimensions of Equivalent terms 
numerical constant 

B 

L3 d3 

ML-1 pd2 

ML2 pd5 

Relationship when 
constant B is 

dimensionless 

Q ex Nd3 

P ex N2 d2 p 
Pwex N3d5 p 
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11.1. You should confirm that the equivalent terms under column 
three in Table 11.1 have dimensions which will cancel the dimen­
sions of the numerical constant in column two of the table. 

Thus the numerical constant B is now reduced to a dimensionless 
number in each case and therefore: Q = (B)Nd3,P = (B)N2d2p 
and Pw = (B)N3dS p. 

Example 11.2 
(a) Show by dimensional analysis that the power Pw required by a 

fan of diameter d rotating at speed N and delivering a volume 
per unit time Q of a fluid density p and viscosity fL is given by: 
Pw = (pN3dS), ¢[(Nd3 /Q), (pNd2 / fL)]· 

(b) Identify the dimensionless groups in the formula. 

Solution (a) 
Following the procedure in case study 11.1 

Pw = B[(da)(Nb)(QC)(pd)(fLe)]. (11.5) 
Assuming an exponential relationship and substituting dimensions 
for the variables: 

MLT- 3 = B[(Lt(T- i )b(L3T- i ),(ML -3)d(ML -iT-in 
for M 1 = d+ e 
for L 2 = a + 3c - 3d - e 
for T - 3 = - b - c - e 
thus d = 1 - e 
and a = 2 - 3c + 3 (1 - e) + e 
from which a = 5 - 3c - 2e 
also b = 3 - c - e 
Substituting the indicia I equations for a, b, and d into equation 
(11.5): 

Pw = B[(d(S-3c-2e))(N(3-c-e))(Qc)(p(1-e))(fLe)] 

The indices identify three groups: numerical, -c and -e. 
Putting the terms into these groupings, we have: 

Pw = B[(pN3ds), (Nd3/Q)-C, (pNd2/fLre]. 
Note that in the last group which has the index -e, fL goes in the 
denominator since its index is +e. This is also the case for Q in the 
second group. Also note that the constant B and the indices -c and 
-e can be replaced with the 'function of' term ¢. 

Thus Pw = (pN3dS),¢[(Nd3 /Q), (pNd2/fL)]. 
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Solution (b) 
Applying Buckingham's Pi theorem, there are six variables and 
three dimensions, thus there are (n - m) = (6 - 3) = 3 dimension­
less groups. By analysing the dimensions of the second and third 
group on the right-hand side of the formula these are found to be 
dimensionless. You should now confirm that this is so. The remain­
ing dimensionless group must therefore be (Pw / pN3dS). You should 
now confirm that this also is the case. 

Example 11.3 
The performance of a fan is to be estimated using a scale model. The 
prototype fan duty is 4 m3/s at 8 rev/s and the power absorbed is 
1450W whereas the model absorbs 800W for a flow of 1.3 m3/s. 
Determine: 
(i) the scale of the model 
(ii) the corresponding speed of the model. 
Assume the density and viscosity of the air are constant. 

Solution (i) 
Adopting the formula for power P w required by the fan in Example 
11.2 and using the dimensionless groups identified in part (b) of the 
solution. 

(d3N/Q)m = (d3N/Q)fs 
thus Nm = (Qm/Qfs)Nfs(dVd~) 
Substituting: Nm = (1.3/4) x 8(dVd~) 
from which Nm = 2.6(dts/d~). 

Also (Pw /dsN 3 )m = (Pw /dsN3 )fs 
then (Pm/Pfs)Nts = N~(d~/dis)' 
Substituting: (800/1450) x 83 = N~(d~/dis) 

substituting for Nm 282.48 = (2.6dts/ d~)3 (d~/ dis) 
from which 282.48/17.576 = (dfs/d~)(d~/di.) 

and therefore 16.072 = (dis/d!) 
thus 2 = (dfs/dm) 
and the prototype is therefore twice the size of the model. 

Solution (ii) 

From Nm = 2.6(dVd~) 

N = 2.6(2/1)3 = 20.8 rev Is. 
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Example 11.4 
For a fluid flowing in a pipe, the wall shear stress 'T is considered 
dependent upon the following variables: pipe diameter d, fluid 
density p, fluid viscosity J1, the mean fluid velocity u and the mean 
height of the roughness projections on the pipe wall ks• 

(a) Show by dimensional analysis that ('T / pu2) = ¢[(pud/ p,), 
(ks/d)]. 

(b) Identify the dimensionless groups in the formula. 

Solution (a) 
Assuming an exponential relationship where B is the constant of 
proportionality and the indices a, b, c, d and e are numerical 
constants: 

(11.6) 

Shear stress 'T = (force/area) and therefore has the same dimensions 
as pressure. Refer to Table 10.1 for this and the dimensions of the 
other terms. Substituting the dimensions of the variables and the 
appropriate indices into equation (11.6): 
(ML ~lT~2) = B[(U)(MhL ~3h)(MCL ~CT~C)(L dT~d)(Le)]. 

The indicial equations are: 

for M 1 = b+c 
for L - 1 = a - 3b - c + e + d 
for T - 2 = -c - d 
from which b = 1 - c 
and d = 2 - c 

now a = 3(1 - c) + c - e - d - 1 
= 3 - 3c + c - e - d - 1 
= 3 - 2c - e - (2 - c) - 1 
=3-2c-e-2+c-l 

and finally a = -c - e. 

Substituting the indicial equations for a, band d into equation 
(11.6): 

'T = B[(d(~c~e)), (p(1~c)), (p,C) , (u(2~c)), (k~)]. 

There are three indices here: numerical, c and e and therefore three 
groups of variables 

thus 'T = B[(u2p), (pud/p,)~C, (ks/dn 

and 'T = ¢[(u2p), (pud/ p,), (ks/d)]. 
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From this expression you will recognise the middle group as the 
Reynolds number and the last group as relative roughness (see 
section 6.5 of Chapter 6 for the introduction of this last term), 
both of which are dimensionless. The formula for shear stress can 
therefore be written as: 

T = (U2 p), ¢[pud/ It), (k s/ d)] 

Solution (b) 
Since the second and third groups are dimensionless the remaining 
dimensionless group will be: (T / u2 p). 

Buckingham's Pi theorem of (n - m) = (6 - 3) = 3 and therefore 
agrees with this solution. You should now confirm that the three 
groups of terms are dimensionless. 

Example 11.5 
The heat transfer by forced convection from a fluid transported in a 
long straight tube is governed by the variables h, d, It, p, k, C, and u 
such that: 

h = ¢(d, It, p, k, C, u). Using dimensional analysis determine the 
form of the equation and the dimensionless grouping. 

Solution 
If an exponential relationship is assumed in which B is the constant 
of proportionality and the indices a, b, c, e, f and g are numerical 
constants, 

(11. 7) 
Introducing dimensions to each of the terms using Table 10.1 and 
including the indices as appropriate: 

(MT-3(}-1) = B[(U), (MbL -bT-b), (MCL -3c), (MeUT-3e(}-e) , 

(L2fT2f(}-f) , (LgT-g) 

Collecting the indices: 

for M 1 = b + c + e 
for L 0 = a - b - 3c + e + 2f + g 
for T - 3 = - b - 3e - 2f - g 
for () - 1 = -e - f 

(11.7a) 
(11.7b) 
(11.7c) 
(11.7d) 

There are six unknown indices and four indicial equations. Evalu­
ating in terms of the unknown indices c and f. 
from equation (11.7d) e = 1 - f (11.7e) 
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substitute equation (11.7e) into equation (11.7a) 
l=b+c+l-f 

from which b = f - c (11.7f) 
Substitute equations (11.7e) and (11.7f) into equation (11.7c) 

-3 = -(f - c) - 3(1 - f) - 2f - g 
-3 = -f + c - 3 + 3f - 2f - g 

from which g = c (11.7g) 
Substitute equations (11.7e), (11.7f) and (11.7g) into equation 
(11.7b) 

o = a - (f - c) - 3c + (1 - f) + 2f + c 
o = a - f + c - 3c + 1 - f + 2f + c 

from which a = c - 1 
Substituting the indicial equations for a, b, g and e into equation 

(11.7) 

h = B[(d(c-l)), (J-l(f-c)) , (P'), (k(l-f)), (Cf ), (UC)]. 

The variables are now related to the unknown indices c and f and 
index 1.0. There are therefore three groups of variables. 

Thus h = B[(kjd), (dpujJ-l)', (J-lCjk)f]. 

Adopting Buckingham's Pi theorem there are (n - m) = 
(7 - 4) = 3 dimensionless groups here, thus by rearranging the 
equation: 

(hdjk) = B[(dpujJ-l)', (J-lCjk/]. 
The group (hdjk) is known as the Nusselt number Nu; 
the group (dpuj J-l) is the Reynolds number Re; 

and the group (J-lCjk) is known as the Prandtl number Pro 
The value of the numerical constants B, c and f are found empir­

ically (by experiment). It has been established that the values of B, c 
and f are constant for a very wide range of Re and Pr numbers and 
B = 0.023, c = 0.8 and f = 0.33. 

The heat transfer correlation for flow of a fluid through a long 
tube is therefore: 

Nu = 0.023(Re)O.8(Pr)0.33. 

This formula is introduced in Chapter 3 as equation (3.10). 
You should now confirm that the Nusselt, Reynolds and Prandtl 

numbers are dimensionless. 
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Example 11.6 
Heat transfer by free convection in turbulent flow over vertical 
plates is governed by the variables h, dt, /3, g, d, p, IL, k, and C such 
that: 

h = ¢( dt, /3, g, d, p, IL, k, C). Using dimensional analysis determine 
the form of the equation and the dimensionless groups. 

Solution 
If an exponential relationship is assumed in which B is the constant 
of proportionality and the indices a, b, e, f, j and n are numerical 
constants, 

(11.8) 

Introducing dimensions to each of the terms using Table 10.1, with 
the exception of the terms dt, /3 and g which are combined as shown 
in equation (11.8) to ensure that the unknown indices are limited to 
six, and including the indices as appropriate: 

MT- 3e-1 = B[(UT-2a ), (Lb), (MeL -3e), (MfL -fT-f), 
(Mi LiT-3ie-i), (L 2nT-2ne-n). 

Collecting the indices 

for M 1 = e + f + j 
for L 0 = a + b - 3e - f + j + 2n 
for T - 3 = -2a - f - 3j - 2n 
for e - 1 = -j - n 

(l1.8a) 
(l1.8b) 
(l1.8c) 
(11.8d) 

There are six unknown indices and four indicia I equations. Evalu­
ating in terms of the unknown indices a and n. 
from equation (11.8a) f = 1 - e - j 
from equation (11.8d) j = 1 - n 

(l1.8e) 
(11.8f) 

substitute equations (l1.8e) and (11.8f) into equation (l1.8c) 
- 3 = - 2a - (n - e) - 3 (1 - n) - 2n 

thus - 3 = -2a - n + e - 3 + 3n - 2n 
and e = 2a (11.8g) 
substitute equations (11.8f) and (11.8e) into equation (11.8b) 

o = a + b - 3e - (1 - e - j) + (1 - n) + 2n 
thus 0 = a + b - 3e - 1 + e + j + 1 - n + 2n 
substitute equation (11.8f) 0 = a + b - 2e + (1 - n) + n 
substitute equation (l1.8g) 0 = a + b - 4a + 1 
from which b = 3a - 1 
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substitute equations (11.8f) and (11.8g) into equation (11.8e) 
f = 1 - 2a - (1 - n) 

from which f = 1 - 2a - 1 + n 
and therefore f = n - 2a 

Substituting the indicial equations for b, e, f and j into equation 
(11.8) 

h = B[((dt;3g)a), (d(3a-l)), (p2a) , (JL(n-2a)), (k(l-n)), (CU)]. 

The variables are now related to the unknown indices a and nand 
numerical index 1.0. There are therefore three groups of variables. 

thus: h = B[(kjd), (dt;3gd3 p2 j JL2t, (JLCjktJ. 
Adopting Buckingham's Pi theorem there are (n - m) = 

(7 - 4) = 3 dimensionless groups here, 

thus: (hdjk) = B[(dt;3gd3 p2 j JL2t, (JLCjktJ, 
where 

(hdjk) is the Nusselt number Nu, 
(dt;3gd3 / j JL2) is the Grashof number Gr, 

and 
(JLCjk) is the Prandtl number Pro 

The value of the numerical constants B, a and n are found empiri­
cally. 

From Chapter 3, equation (3.6) for air uses the constants 
B = 0.13, a = 0.33 and n = 0.33 when Gr > 109 , 

thus Nu = 0.1[(Pr)(Gr)]O.33. 

You will notice that the number of variables n in Buckingham's 
Pi theorem assumes that the variables dt,;3 and g are kept together 
as one, as they are so designated at the commencement of this 
solution. You should now confirm that the Nusselt, Prandtl and 
Grashof numbers are dimensionless. 

Summary for Examples 11.5 and 11.6 
In both of these solutions you can see that the formulae for forced 
convection inside long tubes and free turbulent convection over 
vertical plates only require experimental work to evaluate the 
numerical constants. Dimensional analysis therefore can provide a 
fast track methodology for deriving empirical formulae in which 
the variables have been identified. 

The following example relates to heat flow into a wall. 
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Example 11.7 
A cavity wall constructed from two leaves of brick is subjected to 
a heat flux of 1W /m2 for time T seconds. The temperature rise dO 
at the inside surface depends upon the physical properties of the 
lining which are its thermal conductivity k, density p and specific 
heat capacity C. The formula is likely to be in the form 
dO = 4>[(1, T, k, p, q. 
(a) By employing dimensional analysis find the form of the equa­

tion which will determine the rise in surface temperature of the 
wall after time T seconds. 

(b) By adopting Buckingham's Pi theorem establish the dimension­
less groups in the formula. 

(c) Given that the numerical constant of proportionality B is 
(2/1[0.5), determine how long it will take to raise the inner 
surface temperature of the wall by 4 K. The width of the inner 
brick leaf is 100 mm and the temperature drop between its 
inner and outer surface is 3 K. 

Take the thermal conductivity of the inner brick leaf of the wall as 
0.62 W/mK, density 1700 kg/m3 and specific heat capacity 800 
JlkgK. 

Solution (a) 
If an exponential relationship is assumed where B is the constant of 
proportionality and the indices a, b, c, d and e are numerical 
constants, 

(11.9) 
The dimensions of the variables in the proposed formula can be 
obtained from Table 10.1. In this solution, however, the additional 
dimension H for heat energy in joules will be used. Thus heat flux in 
J/sm2 will have the dimensions (HT-1 L -2). 

Likewise thermal conductivity in JlsmK will have the dimensions 
(HT-1 L -10-1), and specific heat capacity in J/kgK will have the 
dimensions (HM-IT-l). 

There will now be five dimensions used in this solution, namely 
H, M, L, T, O. Introducing dimensions to each of the terms in equa­
tion (11.9) and including the indices where appropriate: 
dO=B[(HaT-aL -2a), (Tb), (HCT-CL -CO-C), (MdL -3d), (HeM-eo-e)]. 

Collecting the indices: 
for H, 0 = a + c + e 
for M, 0 = d - e 
for L, 0 = -2a - c - 3d 
for T, 0 = -a + b - c 

(11.9a) 
(11.9b) 
(11.9c) 
(11.9d) 
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for (), 1 = -c - e 
from equation (11.9b) d = e 
from equation (11.9d) a = b - c 

(11.ge) 
(11.9f) 
(11.9g) 

From equation (11.ge) e = -1 - c; substitute this and equations 
(11.9g) into equation (11.9a) 

0=b-c+c-1-c 
from which 1 = b - c (11.9h) 
substitute equation (11.9h) into equation (11.9d): 0 = -a + 1 
from which a = 1 (11.9i) 
Add equations (11.9a) and (11.9c): 0 = -a - 3d + e 
substitute equation (11.9f): 0 = -a - 3e + e 

0= -a - 2e 
substitute equation (11.9i): 0 = -1 - 2e 
from which e = -0.5 = d (11.9j) 
substitute equation (11.9j) in equation (11.ge): 1 = -c - ( -0.5) 
from which c = -0.5 (11.9k) 
substitute equations (11.9i) and (11.9k) into equation (11.9d): 

o = -1 + b - (-0.5) 
from which b = 0.5 (11.91) 
The indices a, b, c, d and e each have numerical values as identified 
in equations (11.9i), (11.91), (11.9k) and (11.9j). 

Substituting these indicial values into equation (11.9): 
d() = B(ITo.5 k-O.5 p-O.5 C-O.5 ) 

thus d() = B[(I)(T /kpC)°.5]. 
In this solution the only numerical value which must be found 

empirically is the constant B since the numerical values of the 
indices a, b, c, d and e have been evaluated during the process of 
analysis. 

Solution (b) 
From Buckingham's Pi theorem (n - m) = (6 - 5) = 1 dimension­
less group. Rearran~ing the formula derived in part (a): 
1 = B[(I/d()) (T/kpC) .5] (11.10) 

The dimensions of the terms are now analysed: 
the dimensions of the terms (I/d()) are: (HT-1 L -2()-1), 

the dimensions of the terms (T / kpC) 0.5 are: 
(TH-1TL()M-1 L3 H-1M())0.5, 

this reduces to: 
(T2 H-2 L 4()2) 0.5 
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11.5 Chapter closure 

accountin§ for the index of 0.5, the dimensions of the terms 
(T/kpC)°· are: 

(TH-IVO). 

Now combining the dimensions of the terms: (I/dO)(T/kpC)°.5 we 
have: 

(HT-1 L -20-1TH-1 L20) from which this group is dimensionless. 

Summary of parts (a) and (b) of Example 11.7 
You can see by a process of cancellation, the combined group of 
terms in equation (11.10) is dimensionless and Buckingham's Pi 
theorem confirms this. The numerical constant B is also dimension­
less. The index of 0.5 in the formula is accounted for in the deter­
mination of the dimensionless group since it was evaluated during 
the process of deriving the equation. In the case of Examples 11.5 
and 11.6 the indices have to be found empirically and therefore do 
not form part of the analysis of the dimensionless groups. 

Solution (c) 
Adoptin~/he form~la obtained. in. part (a): .dO = \2/7[.o·5)(I) 
(T / kpC) .. Rearrangmg the equatIOn m terms of time T m seconds 
by first of all squaring both sides: 

(dO)2 = (4/n)(I)2(T/kpC). 
thus T = [(dO)2nkpC]/(4I2). 

Heat flux I, from Fourier's equation (section 2.2, Chapter 2) will be: 

1= kdt/d = (0.62 x 3)/0.1 = 18.6W /m2 . 

Substituting: T = (42n x 0.62 x 1700 x 800)/(4 x 18.62 ) 

from which T = 30628 s 

and the time taken to raise the inner surface temperature of the 
inner brick leaf of the wall by 4K will be 8 h 30 min. 

Successful completion of this chapter provides you with underpinning 
knowledge in respect of some of the formulae employed in fundamen­
tal calculations relating to the design processes in heat and mass 
transfer in the subjects of heating, ventilating and air conditioning. 
Dimensional analysis is not a wonder tool. Perhaps you will have 
noticed in the examples selected that a knowledge of the processes to 
be analysed is essential when it comes to finding the form of an 
equation relating to a number of variables. 
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