

Information Retrieval Architecture and Algorithms

Gerald Kowalski

Information Retrieval
Architecture and Algorithms

1  3

ISBN 978-1-4419-7715-1â•…â•…â•…â•… e-ISBN 978-1-4419-7716-8
DOI 10.1007/978-1-4419-7716-8
Springer New York Dordrecht Heidelberg London

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Gerald Kowalski
Ashburn, VA, USA

This book is dedicated to my grandchildren,
Adeline, Bennet, Mollie Kate and Riley who
are the future
� Jerry Kowalski

vii

Preface

Information Retrieval has radically changed over the last 25Â€years. When I first
started teaching Information Retrieval and developing large Information Retrieval
systems in the 1980s it was easy to cover the area in a single semester course. Most
of the discussion was theoretical with testing done on small databases and only
a small subset of the theory was able to be implemented in commercial systems.
There were not massive amounts of data in the right digital format for search. Since
2000, the field of Information retrieval has undergone a major transformation driv-
en by massive amounts of new data (e.g., Internet, Facebook, etc.) that needs to be
searched, new hardware technologies that makes the storage and processing of data
feasible along with software architecture changes that provides the scalability to
handle massive data sets. In addition, the area of information retrieval of multime-
dia, in particular images, audio and video, are part of everyone’s information world
and users are looking for information retrieval of them as well as the traditional
text. In the textual domain, languages other than English are becoming far more
prevalent on the Internet.

To understand how to solve the information retrieval problems is no longer fo-
cused on search algorithm improvements. Now that Information Retrieval Systems
are commercially available, like the area of Data Base Management Systems, an
Information Retrieval System approach is needed to understand how to provide
the search and retrieval capabilities needed by users. To understand modern infor-
mation retrieval it’s necessary to understand search and retrieval for both text and
multimedia formats. Although search algorithms are important, other aspects of the
total system such as pre-processing on ingest of data and how to display the search
results can contribute as much to the user finding the needed information as the
search algorithms.

This book provides a theoretical and practical explanation of the latest advance-
ments in information retrieval and their application to existing systems. It takes a
system approach, discussing all aspects of an Information Retrieval System. The
system approach to information retrieval starts with a functional discussion of what
is needed for an information system allowing the reader to understand the scope
of the information retrieval problem and the challenges in providing the needed
functions. The book, starting with the Chap.Â€1, stresses that information retrieval

viiiviii

has migrated from textual to multimedia. This theme is carried throughout the book
with multimedia search, retrieval and display being discussed as well as all the
classic and new textual techniques. Taking a system view of Information Retrieval
explores every functional processing step in a system showing how decisions on
implementation at each step can add to the goal of information retrieval; providing
the user with the information they need minimizing their resources in getting the
information (i.e., time it takes). This is not limited to search speed but also how
search results are presented can influence how fast a user can locate the informa-
tion they need. The information retrieval system can be defined as four major pro-
cessing steps. It starts with “ingestion” of information to be indexed, the indexing
process, the search process and finally the information presentation process. Every
processing step has algorithms associated with it and provides the opportunity to
make searching and retrieval more precise. In addition the changes in hardware and
more importantly search architectures, such as those introduced by GOOGLE, are
discussed as ways of approaching the scalability issues. The last chapter focuses on
how to evaluate an information retrieval system and the data sets and forums that
are available. Given the continuing introduction of new search technologies, ways
of evaluating which are most useful to a particular information domain become
important.

The primary goal of writing this book is to provide a college text on Information
Retrieval Systems. But in addition to the theoretical aspects, the book maintains a
theme of practicality that puts into perspective the importance and utilization of
the theory in systems that are being used by anyone on the Internet. The student
will gain an understanding of what is achievable using existing technologies and
the deficient areas that warrant additional research. What used to be able to be
covered in a one semester course now requires at least three different courses to
provide adequate background. The first course provides a complete overview of the
Information Retrieval System theory and architecture as provided by this book. But
additional courses are needed to go in more depth on the algorithms and theoretical
options for the different search, classification, clustering and other related technolo-
gies whose basics are provided in this book. Another course is needed to focus in
depth on the theory and implementation on the new growing area of Multimedia
Information Retrieval and also Information Presentation technologies.

Gerald Kowalski

Preface

ix

Contents

1  �Information Retrieval System Functions �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 1
1.1â•…� Introduction �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 1

1.1.1â•…� Primary Information Retrieval Problems �ï¿½ â•‡â•… 3
1.1.2â•…� Objectives of Information Retrieval System �ï¿½ â•‡â•… 6

1.2â•…� Functional Overview of Information Retrieval Systems �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 10
1.2.1â•…� Selective Dissemination of Information �ï¿½ â•… 11
1.2.2â•…� Alerts �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 12
1.2.3â•…� Items and Item Index �ï¿½å°“ï¿½ â•… 13
1.2.4â•…� Indexing and Mapping to a Taxonomy �ï¿½å°“ â•… 13

1.3â•…� Understanding Search Functions �ï¿½å°“ï¿½ â•… 14
1.3.1â•…� Boolean Logic �ï¿½å°“ï¿½å°“ï¿½ï¿½ â•… 15
1.3.2â•…� Proximity �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 16
1.3.3â•…� Contiguous Word Phrases �ï¿½å°“ï¿½ â•… 17
1.3.4â•…� Fuzzy Searches �ï¿½å°“ï¿½å°“ï¿½ â•… 18
1.3.5â•…� Term Masking �ï¿½å°“ï¿½å°“ï¿½ï¿½ â•… 18
1.3.6â•…� Numeric and Date Ranges �ï¿½å°“ï¿½ â•… 19
1.3.7â•…� Vocabulary Browse �ï¿½å°“ï¿½ â•… 20
1.3.8â•…� Multimedia Search �ï¿½å°“ï¿½ â•… 20

1.4â•…� Relationship to Database Management Systems �ï¿½ â•… 20
1.5â•…� Digital Libraries and Data Warehouses �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 22
1.6â•…� Processing Subsystem Overview �ï¿½å°“ï¿½ â•… 24
1.7â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•… 25
1.8â•…� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•… 26

2  �Data Structures and Mathematical Algorithms �ï¿½å°“ï¿½ï¿½ï¿½ â•… 27
2.1â•…� Data Structures �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 27

2.1.1â•…� Introduction to Data Structures �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 27
2.1.2â•…� Inverted File Structure �ï¿½å°“ï¿½ â•… 29
2.1.3â•…� N-Gram Data Structures �ï¿½å°“ï¿½ â•… 31
2.1.4â•…� PAT Data Structure �ï¿½å°“ï¿½ â•… 34
2.1.5â•…� Signature File Structure �ï¿½å°“ï¿½ â•… 38

xx

2.1.6â•…� Hypertext and XML Data Structures �ï¿½å°“ï¿½ â•‡â•… 40
2.1.7â•…� XML �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 43

2.2â•…� Mathematical Algorithms �ï¿½å°“ï¿½ â•‡â•… 44
2.2.1â•…� Introduction �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ â•‡â•… 44
2.2.2â•…� Bayesian Mathematics �ï¿½å°“ï¿½ â•‡â•… 45
2.2.3â•…� Shannon’s Theory of Information �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 47
2.2.4â•…� Latent Semantic Indexing �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 48
2.2.5â•…� Hidden Markov Models �ï¿½å°“ï¿½ â•‡â•… 53
2.2.6â•…� Neural Networks �ï¿½å°“ï¿½ â•‡â•… 56
2.2.7â•…� Support Vector Machines �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 58

2.3â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•‡â•… 59
2.4â•…� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•‡â•… 60

3  �Ingest �ï¿½å°“ï¿½å°“ï¿½ â•‡â•… 63
3.1â•…� Introduction to Ingest �ï¿½å°“ï¿½å°“ï¿½ â•‡â•… 63
3.2â•…� Item Receipt �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 64
3.3â•…� Duplicate Detection �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ â•‡â•… 67
3.4â•…� Item Normalization �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ â•‡â•… 71
3.5â•…� Zoning and Creation of Processing Tokens �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ â•‡â•… 72
3.6â•…� Stemming �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 76

3.6.1â•…� Introduction to the Stemming Process �ï¿½ â•‡â•… 77
3.6.2â•…� Porter Stemming Algorithm �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 79
3.6.3â•…� Dictionary Look-Up Stemmers �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 80
3.6.4â•…� Successor Stemmers �ï¿½å°“ï¿½ â•‡â•… 81
3.6.5â•…� Conclusions on Stemming �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 83

3.7â•…� Entity Processing �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 84
3.7.1â•…� Entity Identification �ï¿½å°“ï¿½ â•‡â•… 85
3.7.2â•…� Entity Normalization �ï¿½å°“ï¿½ â•‡â•… 86
3.7.3â•…� Entity Resolution �ï¿½å°“ï¿½ â•‡â•… 86
3.7.4â•…� Information Extraction �ï¿½å°“ï¿½ â•‡â•… 87

3.8â•…� Categorization �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 88
3.9â•…� Citational Metadata �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ â•‡â•… 92
3.10â•‡� Summary �ï¿½å°“ï¿½å°“ï¿½ â•‡â•… 92
3.11â•‡� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•‡â•… 93

4  �Indexing �ï¿½å°“ï¿½å°“ï¿½ â•‡â•… 95
4.1â•…� What is Indexing �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 95

4.1.1â•…� History �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 96
4.1.2â•…� Objectives �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•‡â•… 97

4.2â•…� Manual Indexing Process �ï¿½å°“ï¿½ â•‡â•… 99
4.2.1â•…� Scope of Indexing �ï¿½å°“ï¿½ â•… 99
4.2.2â•…� Precoordination and Linkages �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 100

4.3â•…� Automatic Indexing of Text �ï¿½å°“ï¿½ â•… 102
4.3.1â•…� Statistical Indexing �ï¿½å°“ï¿½ â•… 105
4.3.2â•…� Natural Language �ï¿½å°“ï¿½ â•… 120
4.3.3â•…� Concept Indexing �ï¿½å°“ï¿½ â•… 125

Contents

xixi

4.4â•…� Automatic Indexing of Multimedia �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 129
4.4.1â•…� Introduction to Mutlimedia Indexing �ï¿½å°“ï¿½ â•… 130
4.4.2â•…� Audio Indexing �ï¿½å°“ï¿½ â•… 131
4.4.3â•…� Image Indexing �ï¿½å°“ï¿½ â•… 134
4.4.4â•…� Video Indexing �ï¿½å°“ï¿½ â•… 136

4.5â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•… 137
4.6â•…� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•… 139

5  �Search �ï¿½å°“ï¿½å°“ï¿½ â•… 141
5.1â•…� Introduction �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 141
5.2â•…� Similarity Measures and Ranking �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 142

5.2.1â•…� Similarity Measures �ï¿½å°“ï¿½ â•… 144
5.3â•…� Hidden Markov Models Techniques �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 152
5.4â•…� Ranking Algorithms �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ â•… 153
5.5â•…� Relevance Feedback �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ â•… 154
5.6â•…� Selective Dissemination of Information Search �ï¿½ â•… 157
5.7â•…� Weighted Searches of Boolean Systems �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 163
5.8â•…� Multimedia Searching �ï¿½å°“ï¿½å°“ â•… 167
5.9â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•… 168
5.10â•‡� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•… 170

6  �Document and Term Clustering �ï¿½å°“ï¿½ â•… 171
6.1â•…� Introduction to Clustering �ï¿½å°“ï¿½ â•… 171
6.2â•…� Thesaurus Generation �ï¿½å°“ï¿½å°“ï¿½ â•… 174

6.2.1â•…� Manual Clustering �ï¿½å°“ï¿½ â•… 175
6.2.2â•…� Automatic Term Clustering �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 176

6.3â•…� Item Clustering �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 184
6.4â•…� Hierarchy of Clusters �ï¿½å°“ï¿½å°“ï¿½ â•… 186

6.4.1â•…� Automatic Hierarchical Cluster Algorithms �ï¿½ â•… 189
6.5â•…� Measure of Tightness for Cluster �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 193
6.6â•…� Issues with Use of Hierarchical Clusters for Search �ï¿½ â•… 194
6.7â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•… 195
6.8â•…� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•… 197

7  �Information Presentation �ï¿½å°“ï¿½å°“ï¿½ â•… 199
7.1â•…� Information Presentation Introduction �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 199
7.2â•…� Presentation of the Hits �ï¿½å°“ï¿½ â•… 199

7.2.1â•…� Sequential Listing of Hits �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 200
7.2.2â•…� Cluster View �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ â•… 201
7.2.3â•…� Network View �ï¿½å°“ï¿½å°“ â•… 205
7.2.4â•…� Timeline Presentation �ï¿½å°“ï¿½ â•… 208

7.3â•…� Display of the Item �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 210
7.3.1â•…� Indicating Search Terms in Display �ï¿½å°“ï¿½ï¿½ï¿½ â•… 210
7.3.2â•…� Text Summarization �ï¿½å°“ï¿½ â•… 211

7.4â•…� Collaborative Filtering �ï¿½å°“ï¿½ â•… 213
7.4.1â•…� Page Ranking as Collaborative Filtering �ï¿½ â•… 215

Contents

xii

7.5â•…� Multimedia Presentation �ï¿½å°“ï¿½ â•… 216
7.5.1â•…� Audio Presentation �ï¿½å°“ï¿½ â•… 216
7.5.2â•…� Image Item Presentation �ï¿½å°“ï¿½ â•… 219
7.5.3â•…� Video Presentation �ï¿½å°“ï¿½ â•… 223

7.6â•…� Human Perception and Presentation �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 225
7.6.1â•…� Introduction to Information Visualization �ï¿½ â•… 226
7.6.2â•…� Cognition and Perception �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 229

7.7â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•… 233
7.8â•…� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•… 234

8  �Search Architecture �ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 235
8.1â•…� Index Search Optimization �ï¿½å°“ï¿½ â•… 235

8.1.1â•…� Pruning the Index �ï¿½å°“ï¿½ â•… 236
8.1.2â•…� Champion Lists �ï¿½å°“ï¿½ â•… 236

8.2â•…� Text Search Optimization �ï¿½å°“ï¿½ â•… 237
8.2.1â•…� Software Text Search Algorithms �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 239
8.2.2â•…� Hardware Text Search Systems �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 244

8.3â•…� GOOGLE Scalable Multiprocessor Architecture �ï¿½ â•… 249
8.4â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•… 251
8.5â•…� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•… 252

9  �Information System Evaluation �ï¿½å°“ï¿½ â•… 253
9.1â•…� Introduction to Information System Evaluation �ï¿½ â•… 253
9.2â•…� Measures Used in System Evaluations �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 259
9.3â•…� Multimedia Information Retrieval Evaluation �ï¿½ â•… 269
9.4â•…� Measurement Example: TREC Evolution �ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 271
9.5â•…� Summary �ï¿½å°“ï¿½å°“ï¿½ â•… 279
9.6â•…� Exercises �ï¿½å°“ï¿½å°“ï¿½ â•… 280

Bibliography �ï¿½å°“ï¿½å°“ï¿½ â•… 283

Index �ï¿½å°“ï¿½å°“ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ â•… 301

Contents

1

1.1  �Introduction

Information Retrieval is a very simple concept with everyone having practical ex-
perience in it’s use. The scenario of a user having an information need, translating
that into a search statement and executing that search to locate the information has
become ubiquitous to everyday life. The Internet has become a repository of any in-
formation a person needs, replacing the library as a more convenient research tool.
An Information Retrieval System is a system that ingests information, transforms
it into searchable format and provides an interface to allow a user to search and
retrieve information. The most obvious example of an Information Retrieval Sys-
tem is GOOGLE and the English language has even been extended with the term
“Google it” to mean search for something.

So everyone has had experience with Information Retrieval Systems and with a
little thought it is easy to answer the question—“Does it work?” Everyone who has
used such systems has experienced the frustration that is encountered when looking
for certain information. Given the massive amount of intellectual effort that is going
into the design and evolution of a “GOOGLE” or other search systems the question
comes to mind why is it so hard to find what you are looking for.

One of the goals of this book is to explain the practical and theoretical issues
associated with Information Retrieval that makes design of Information Retrieval
Systems one of the challenges of our time. The demand for and expectations of us-
ers to quickly find any information they need continues to drive both the theoretical
analysis and development of new technologies to satisfy that need. To scope the
problem one of the first things that needs to be defined is “information”. Twenty-
five years ago information retrieval was totally focused on textual items. That was
because almost all of the “digital information” of value was in textual form. In to-
day’s technical environment most people carry with them most of the time the capa-
bility to create images and videos of interest—that is the cell phone. This has made
modalities other than text to become as common as text. That is coupled with Inter-
net web sites that allow and are designed for ease of use of uploading and storing
those modalities which more than justify the need to include other than text as part
of the information retrieval problem. There is a lot of parallelism between the infor-

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_1, ©Â€Springer Science+Business Media, LLC 2011

Chapter 1
Information Retrieval System Functions

2

mation processing steps for text and for images, audio and video. Although maps
are another modality that could be included, they will only be generally discussed.

So in the context of this book, information that will be considered in Information
Retrieval Systems includes text, images, audio and video. The term “item” shall
be used to define a specific information object. This could be a textual document,
a news item from an RSS feed, an image, a video program or an audio program. It
is useful to make a distinction between the original items from what is processed
by the Information Retrieval System as the basic indexable item. The original item
will always be kept for display purposes, but a lot of preprocessing can occur on it
during the process of creating the searchable index. The term “item” will refer to the
original object. On occasion the term document will be used when the item being
referred to is a textual item.

An Information Retrieval System is the hardware and software that facilitates a
user in finding the information the user needs. Hardware is included in the defini-
tion because specialized hardware is needed to transform certain modalities into
digital processing format (e.g., encoders that translate composite video to digital
video). As the detailed processing of items is described it will become clear that an
information retrieval system is not a single application but is composed of many dif-
ferent applications that work together to provide the tools and functions needed to
assist the users in answering their questions. The overall goal of an Information Re-
trieval System is to minimize the user overhead in locating the information of value.
Overhead from a user’s perspective can be defined as the time it takes to locate the
needed information. The time starts when a user starts to interact with the system
and ends when they have found the items of interest. Human factors play signifi-
cantly in this process. For example, most users have a short threshold on frustration
waiting for a response. That means in a commercial system on the Internet, the user
is more satisfied with a response less than 3Â€s than a longer response that has more
accurate information. In internal corporate systems, users are willing to wait a little
longer to get results but there is still a tradeoff between accuracy and speed. Most
users would rather have the faster results and iterate on their searches than allowing
the system to process the queries with more complex techniques providing better
results. All of the major processing steps are described for an Information Retrieval
System, but in many cases only a subset of them are used on operational systems
because users are not willing to accept the increase in response time.

The evolution of Information Retrieval Systems has been closely tied to the
evolution of computer processing power. Early information retrieval systems were
focused on automating the manual indexing processes in libraries. These systems
migrated the structure and organization of card catalogs into structured databases.
They maintained the same Boolean search query structure associated with the data
base that was used for other database applications. This was feasible because all of
the assignment of terms to describe the content of a document was done by profes-
sional indexers. In parallel there was also academic research work being done on
small data sets that considered how to automate the indexing process making all of
the text of a document part of the searchable index. The only place that large sys-
tems designed to search on massive amounts of text were available was in Govern-

1 Information Retrieval System Functions

3

ment and Military systems. As commercial processing power and storage signifi-
cantly increased, it became more feasible to consider applying the algorithms and
techniques being developed in the Universities to commercial systems. In addition,
the creation of the original documents also was migrating to digital format so that
they were in a format that could be processed by the new algorithms. The largest
change that drove information technologies to become part of everyone’s experi-
ence was the introduction and growth of the Internet. The Internet became a massive
repository of unstructured information and information retrieval techniques were
the only approach to effectively locate information on it. This changed the funding
and development of search techniques from a few Government funded efforts to
thousands of new ideas being funded by Venture Capitalists moving the more prac-
tical implementation of university algorithms into commercial systems.

Information Retrieval System architecture can be segmented into four major
processing subsystems. Each processing subsystem presents the opportunity to im-
prove the capability of finding and retrieving the information needed by the user.
The subsystems are Ingesting, Indexing, Searching and Displaying. This book uses
these subsystems to organize the various technologies that are the building blocks
to optimize the retrieval of relevant items for a user. That is to say and end to end
discussion of information retrieval system architecture is presented.

1.1.1  �Primary Information Retrieval Problems

The primary challenge in information retrieval is the difference between how a
user expresses what information they are looking for and the way the author of the
item expressed the information he is presenting. In other words, the challenge is the
mismatch between the language of the user and the language of the author. When
an author creates an item they will have information (i.e., semantics) they are trying
to communicate to others. They will use the vocabulary they are use to express the
information. A user will have an information need and will translate the semantics
of their information need into the vocabulary they normally use which they present
as a query. It’s easy to imagine the mismatch of the vocabulary. There are many dif-
ferent ways of expressing the same concept (e.g. car versus automobile). In many
cases both the author and the user will know the same vocabulary, but which terms
are most used to represent the same concept will vary between them. In some cases
the vocabulary will be different and the user will be attempting to describe a concept
without the vocabulary used by authors who write about it (see Fig.Â€1.1). That is
why information retrieval systems that focus on a specific domain (e.g., DNA) will
perform better than general purpose systems that contain diverse information. The
vocabularies are more focused and shared within the specific domain.

There are obstacles to specification of the information a user needs that come
from limits to the user’s ability to express what information is needed, ambiguities
inherent in languages, and differences between the user’s vocabulary and that of the
authors of the items in the database. In order for an Information Retrieval System

1.1 Introduction

4

to return good results, it important to start with a good search statement allowing
for the correlation of the search statement to the items in the database. The inability
to accurately create a good query is a major issue and needs to be compensated for
in information retrieval. Natural languages suffer from word ambiguities such as
polesemy that allow the same word to have multiple meanings and use of acronyms
which are also words (e.g., the word “field” or the acronym “CARE”). Disambigu-
ation techniques exist but introduce system overhead in processing power and ex-
tended search times and often require interaction with the user.

Most users have trouble in generating a good search statement. The typical user
does not have significant experience with, or the aptitude for, Boolean logic state-
ments. The use of Boolean logic is a legacy from the evolution of database manage-
ment systems and implementation constraints. Historically, commercial informa-
tion retrieval systems were based upon databases. It is only with the introduction
of Information Retrieval Systems such as FAST, Autonomy, ORACLE TEXT, and
GOOGLE Appliances that the idea of accepting natural language queries is becom-
ing a standard system feature. This allows users to state in natural language what
they are interested in finding. But the completeness of the user specification is lim-
ited by the user’s willingness to construct long natural language queries. Most users
on the Internet enter one or two search terms or at most a phrase. But quite often the
user does not know the words that best describe what information they are looking
for. The norm is now an iterative process where the user enters a search and then
based upon the first page of hit results revises the query with other terms.

Multimedia items add an additional level of complexity in search specification.
Where the source format can be converted to text (e.g., audio transcription, Opti-
cal Character Reading) the standard text techniques are still applicable. They just
need to be enhanced because of the errors in conversion (e.g. fuzzy searching). But
query specification when searching for an image, unique sound, or video segment
lacks any proven best interface approaches. Typically they are achieved by grab-
bing an example from the media being displayed or having prestored examples of
known objects in the media and letting the user select them for the search (e.g.,
images of leaders allowing for searches on “Tony Blair”.) In some cases the pro-
cessing of the multimedia extracts metadata describing the item and the metadata
can be searched to locate items of interest (e.g., speaker identification, searching

Fig. 1.1â†œæ¸€ Vocabulary domains

1 Information Retrieval System Functions

5

for “notions” in images—these will be discussed in detail later). This type speci-
fication becomes more complex when coupled with Boolean or natural language
textual specifications.

In addition to the complexities in generating a query, quite often the user is not
an expert in the area that is being searched and lacks domain specific vocabulary
unique to that particular subject area. The user starts the search process with a gen-
eral concept of the information required, but does not have a focused definition of
exactly what is needed. A limited knowledge of the vocabulary associated with a
particular area along with lack of focus on exactly what information is needed leads
to use of inaccurate and in some cases misleading search terms. Even when the user
is an expert in the area being searched, the ability to select the proper search terms
is constrained by lack of knowledge of the author’s vocabulary. The problem comes
from synonyms and which particular synonym word is selected by the author and
which by the user searching. All writers have a vocabulary limited by their life ex-
periences, environment where they were raised and ability to express themselves.
Other than in very technical restricted information domains, the user’s search vo-
cabulary does not match the author’s vocabulary. Users usually start with simple
queries that suffer from failure rates approaching 50% (Nordlie-99).

Another major problem in information retrieval systems is how to effectively
represent the possible items of interest identified by the system so the user can fo-
cus in on the ones of most likely value. Historically data has been presented in an
order dictated by the order in which items are entered into the search indices (i.e.,
ordered by date the system ingests the information or the creation date of the item).
For those users interested in current events this is useful. But for the majority of
searches it does not filter out less useful information. Information Retrieval Systems
provide functions that provide the results of a query in order of potential relevance
based upon the users query. But the inherent fallacy in the current systems is that
they present the information in a linear ordering. As noted before, users have very
little patience for browsing long linear lists in a sequential order. That is why they
seldom look beyond the first page of the linear ordering. So even if the user’s query
returned the optimum set of items of interest, if there are too many false hits on the
first page of display, the user will revise their search. To optimize the information
retrieval process a non-linear way of presenting the search results will optimize the
user’s ability to find the information they are interested in. The display of the search
hits using visualization techniques allows the natural parallel processing capability
of the users mind to focus and localize on the items of interest rather than being
forced to a sequential processing model.

Once the user has been able to localize on the many potential items of interest
other sophisticated processing techniques can aid the users in finding the informa-
tion of interest in the hits. Techniques such as summarization across multiple items,
link analysis of information and time line correlations of information can reduce
the linear process of having to read each item of interest and provide an overall
insight into the total information across multiple items. For example if there has
been a plane crash, the user working with the system may be able to localize a
large number of news reports on the disaster. But it’s not unusual to have almost

1.1 Introduction

6

complete redundancy of information in reports from different sources on the same
topic. Thus the user will have to read many documents to try and find any new facts.
A summarization across the multiple textual items that can eliminate the redundant
parts can significantly reduce the user’s overhead (time) it takes to find the data the
user needs. More importantly it will eliminate the possibility the user gets tired of
reading redundant information and misses reading the item that has significant new
information in it.

1.1.2  �Objectives of Information Retrieval System

The general objective of an Information Retrieval System is to minimize the time it
takes for a user to locate the information they need. The goal is to provide the infor-
mation needed to satisfy the user’s question. Satisfaction does not necessarily mean
finding all information on a particular issue. It means finding sufficient information
that the user can proceed with whatever activity initiated the need for information.
This is very important because it does explain some of the drivers behind existing
search systems and suggests that precision is typically more important than recall-
ing all possible information. For example a user looking for a particular product
does not have to find the names of everyone that sells the product or every company
that manufactures the product to meet their need of getting that product. Of course if
they did have total information then it’s possible they could have gotten it cheaper,
but in most cases the consumer will never know what they missed. The concept that
a user does not know how much information they missed explains why in most cas-
es the precision of a search is more important than the ability to recall all possible
items of interest—the user never knows what they missed but they can tell if they
are seeing a lot of useless information in the first few pages of search results. That
does not mean finding everything on a topic is not important to some users. If you
are trying to make decisions on purchasing a stock or a company, then finding all
the facts about that stock or company may be critical to prevent a bad investment.
Missing the one article talking about the company being sued and possibly going
bankrupt could lead to a very painful investment. But providing comprehensive
retrieval of all items that are relevant to a users search can have the negative effect
of information overload on the user. In particular there is a tendency for important
information to be repeated in many items on the same topic. Thus trying to get all
information makes the process of reviewing and filtering out redundant information
very tedious. The better a system is in finding all items on a question (recall) the
more important techniques to present aggregates of that information become.

From the users perspective time is the important factor that they use to gage the
effectiveness of information retrieval. Except for users that do information retrieval
as a primary aspect of their job (e.g., librarians, research assistants), most users have
very little patience for investing extensive time in finding information they need.
They expect interactive response from their searches with replies within 3–4Â€s at
the most. Instead of looking through all the hits to see what might be of value they

1 Information Retrieval System Functions

7

will only review the first one and at most second pages before deciding they need
to change their search strategy. These aspects of the human nature of searchers have
had a direct effect on the commercial web sites and the development of commercial
information retrieval. The times that are candidates to be minimized in an Informa-
tion Retrieval System are the time to create the query, the time to execute the query,
the time to select what items returned from the query the user wants to review in
detail and the time to determine if the returned item is of value. The initial research
in information retrieval focused on the search as the primary area of interest. But to
meet the users expectation of fast response and to maximize the relevant informa-
tion returned requires optimization in all of these areas. The time to create a query
used to be considered outside the scope of technical system support. But systems
such as Google know what is in their database and what other users have searched
on so as you type a query they provide hints on what to search on. This “vocabulary
browse” capability helps the user in expanding the search string and helps in getting
better precision.

In information retrieval the term “relevant” is used to represent an item contain-
ing the needed information. In reality the definition of relevance is not a binary clas-
sification but a continuous function. Items can exactly match the information need
or partially match the information need. From a user’s perspective “relevant” and
“needed” are synonymous. From a system perspective, information could be rel-
evant to a search statement (i.e., matching the criteria of the search statement) even
though it is not needed/relevant to user (e.g., the user already knew the information
or just read it in the previous item reviewed).

When considering the document space (all items in the information retrieval sys-
tem), for any specific information request and the documents returned from it based
upon a query, the document space can be divided into four quadrants. Documents
returned can be relevant to the information request or not relevant. Documents not
returned also falls into those two categories; relevant and not relevant (see Fig.Â€1.2).

Fig. 1.2â†œæ¸€ Relevant retrieval
document space

1.1 Introduction

8

Relevant documents are those that contain some information that helps answer
the user’s information need. Non-relevant documents do not contain any useful
information. Using these definitions the two primary metrics used in evaluating
information retrieval systems can be defined. They are Precision and Recall:

The Number_Possible_Relevant are the number of relevant items in the database,
Number_Total_Retrieved is the total number of items retrieved from the query, and
Number_Retrieved_Relevant is the number of items retrieved that are relevant to
the user’s search need.

Precision is the factor that most users understand. When a user executes a search
and has 80% precision it means that 4 out of 5 items that are retrieved are of interest
to the user. From a user perspective the lower the precision the more likely the user
is wasting his resource (time) looking at non-relevant items. From a metric perspec-
tive the precision figure is across all of the “hits” returned from the query. But in
reality most users will only look at the first few pages of hit results before deciding
to change their query strategy. Thus what is of more value in commercial systems
is not the total precision but the precision across the first 20–50 hits. Typically, in
a weighted system where the words within a document are assigned weights based
upon how well they describe the semantics of the document, precision in the first
20–50 items is higher than the precision across all the possible hits returned (i.e.,
further down the hit list the more likely items are not of interest). But when compar-
ing search systems the total precision is used.

Recall is a very useful concept in comparing systems. It measures how well a
search system is capable of retrieving all possible hits that exist in the database. Un-
fortunately it is impossible to calculate except in very controlled environments. It
requires in the denominator the total number of relevant items in the database. If the
system could determine that number, then the system could return them. There have
been some attempts to estimate the total relevant items in a database, but there are
no techniques that provide accurate enough results to be used for a specific search
request. In Chap.Â€9 on Information Retrieval Evaluation, techniques that have been
used in evaluating the accuracy of different search systems will be described. But
it’s not applicable in the general case.

FigureÂ€1.3a shows the values of precision and recall as the number of items re-
trieved increases, under an optimum query where every returned item is relevant.
There are “N” relevant items in the database. FiguresÂ€1.3b, 1.3c show the optimal
and currently achievable relationships between Precision and Recall (Harman-95).
In Fig.Â€1.3a the basic properties of precision (solid line) and recall (dashed line)
can be observed. Precision starts off at 100% and maintains that value as long as
relevant items are retrieved. Recall starts off close to zero and increases as long as

Precision =
Number_Retrieved_Relevant

Number_T otal_Retrieved

Recall =
Number_Retrieved_Relevant

Number_Possible_Relevant

1 Information Retrieval System Functions

9

relevant items are retrieved until all possible relevant items have been retrieved.
Once all “N” relevant items have been retrieved, the only items being retrieved are
non-relevant. Precision is directly affected by retrieval of non-relevant items and
drops to a number close to zero. Recall is not affected by retrieval of non-relevant
items and thus remains at 100%.

Precision/Recall graphs show how values for precision and recall change within
a search results file (Hit file) assuming the hit file is ordered ranking from the most
relevant to least relevant item. As with Fig.Â€1.3a, 1.3b shows the perfect case where
every item retrieved is relevant. The values of precision and recall are recalculated

Fig. 1.3â†œæ¸€ a Ideal precision
and recall. b Ideal precision/
recall graph. c Achievable
precision/recall graph

1.1 Introduction

10

after every “n” items in the ordered hit list. For example if “n” is 10 then the first
10 items are used to calculate the first point on the chart for precision and recall.
The first 20 items are used to calculate the precision and recall for the second point
and so on until the complete hit list is evaluated. The precision stays at 100% (1.0)
until all of the relevant items have been retrieved. Recall continues to increase while
moving to the right on the x-axis until it also reaches the 100% (1.0) point. Although
Fig.Â€1.3b stops here. Continuation stays at the same y-axis location (recall never
changes and remains 100%) but precision decreases down the y-axis until it gets
close to the x-axis as more non-relevant are discovered and precision decreases.

FigureÂ€1.3c is a typical result from the TREC conferences (see Chap.Â€9) and is
representative of current search capabilities. This is called the eleven point interpo-
lated average precision graph. The precision is measured at 11 recall levels (0.0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0). Most systems do not reach recall level
1.0 (found all relevant items) but will end at a lower number. To understand the im-
plications of Fig.Â€1.3c, it’s useful to describe the implications of a particular point on
the precision/recall graph. Assume that there are 200 relevant items in the data base
and from the graph at precision of 0.3 (i.e., 30% of the items are relevant) there is
an associated recall of 0.5 (i.e., 50% of the relevant items have been retrieved from
the database). The recall of 50% means there would be 100 relevant items in the Hit
file (50% of 200 items). A precision of 30% means the user would review 333 items
(30% of 333 is 100 items) to find the 100 relevant items—thus approximately 333
items in the hit file.

1.2  �Functional Overview of Information Retrieval Systems

Most of this book is focused on the detailed technologies associated with informa-
tion retrieval systems. A functional overview will help to better place the technolo-
gies in perspective and provide additional insight into what an information system
needs to achieve.

An information retrieval system starts with the ingestion of information. Chap-
terÂ€3 describes the ingest process in detail. There are multiple functions that are
applied to the information once it has been ingested. The most obvious function is
to store the item in it’s original format in an items data base and create a searchable
index to allow for later ad hoc searching and retrieval of an item. Another operation
that can occur on the item as it’s being received is “Selective Dissemination of In-
formation” (SDI). This function allows users to specify search statements of interest
(called “Profiles”) and whenever an incoming item satisfies the search specification
the item is stored in a user’s “mail” box for later review. This is a dynamic filtering
of the input stream for each user for the subset they want to look at on a daily basis.
Since it’s a dynamic process the mail box is constantly getting new items of possible
interest. Associated with the Selective Dissemination of Information process is the
“Alert” process. The alert process will attempt to notify the user whenever any new
item meets the user’s criteria for immediate action on an item. This helps the user

1 Information Retrieval System Functions

11

in multitasking—doing their normal daily tasks but be made aware when there is
something that requires immediate attention.

Finally there is automatically adding metadata and creating a logical view of the
items into a structured taxonomy. The user can then navigate the taxonomy to find
items of interest versus having to search for them. The indexing assigns additional
descriptive citational and semantic metadata to an item. FigureÂ€ 1.4 shows these
processes.

1.2.1  �Selective Dissemination of Information

The Selective Dissemination of Information (Mail) Process (see Fig.Â€1.4) provides
the capability to dynamically compare newly received items to the information sys-
tem against stored statements of interest of users and deliver the item to those users
whose statement of interest matches the contents of the item. The Mail process is
composed of the search process, user statements of interest (Profiles) and user mail
files. As each item is received, it is processed against every user’s profile. A profile
typically contains a broad search statement along with a list of user mail files that
will receive the document if the search statement in the profile is satisfied. User
mail profiles are different than interactive user queries in that they contain signifi-
cantly more search terms (10–100 times more terms) and cover a wider range of
interests. These profiles define all the areas in which a user is interested versus an
interactive query which is frequently focused to answer a specific question. It has

Fig. 1.4â†œæ¸€ Functional overview

Ingest

Alerts Selective
Dissemination of
Information

Store index
and item

Indexing and
mapping into
a taxonomy

Alert
Profile SDI

Profile

User
Mail
file

Item
Index

Original
Copy
item

Taxonomy
and
Index Files

Alert to
User

1.2 Functional Overview of Information Retrieval Systems

12

been shown in studies that automatically expanded user profiles perform signifi-
cantly better than human generated profiles (Harman-95).

When the search statement is satisfied, the item is placed in the Mail File(s) asso-
ciated with the profile. Items in Mail files are typically viewed in time of receipt or-
der and automatically deleted after a specified time period (e.g., after one month) or
upon command from the user during display. The dynamic asynchronous updating
of Mail Files makes it difficult to present the results of dissemination in estimated
order of likelihood of relevance to the user (ranked order).

Very little research has focused exclusively on the Mail Dissemination process.
Most systems modify the algorithms they have established for retrospective search
of document (item) databases to apply to Mail Profiles. Dissemination differs from
the ad hoc search process in that thousands of user profiles are processed against
each new item versus the inverse and there is not a large relatively static database
of items to be used in development of relevance ranking weights for an item. One
common implementation is to not build the mail files as items come into the sys-
tem. Instead when the user requests to see their Mail File, a query is initiated that
will dynamically produce the mail file. This works as long as the user does not
have the capability to selectively eliminate items from their mail file. In this case a
permanent file structure is needed. When a permanent file structure is implemented
typically the mail profiles become a searchable structure and the words in each new
item become the queries against it. ChapterÂ€2 will describe n-grams which are one
method to help in creating a mail search system.

1.2.2  �Alerts

Alerts are very similar to the processing for mail items. The user defines a set of
“alert profiles” that are search statements that define what information a user wants
to be alerted on. The profile has additional metadata that may contain a list of e-
mail addresses that an alert notice should be mailed. If the user is currently logged
onto the alert system a dynamic message could also be presented to the user. Alerts
on textual items are simple in that the complete textual item can be processed for
the alerts and then the alert notifications with links to the alert item can be sent out.
Typically a user will have a number of focused alert profiles rather than the more
general Mail profiles because the user wants to know more precisely the cause of
the alert versus Mail profiles that are for collecting the general areas of interest to a
user. When processing textual items it’s possible to process the complete item be-
fore the alert profiles are validated against the item because the processing is so fast.

For multimedia (e.g., alerts on television news programs), the processing of the
multimedia item happens in real time. But waiting until the end of the complete
program to send out the alert could introduce significant delays to allowing the user
to react to the item. In this case, periodically (e.g., every few minutes or after “n”
alerts have been identified) alert notifications are sent out. This makes it necessary
to define other rules to ensure the user is not flooded with alerts. The basic concept

1 Information Retrieval System Functions

13

that needs to be implemented is that a user should receive only one alert notifica-
tion for a specific item for each alert profile the user has that the item satisfies. This
is enough to get the user to decide if they want to look at the item. When the user
looks at the item all instances within the item that has to that point meet the alert
criteria should be displayed. For example, assume a user has alert profiles on Natu-
ral Disaster, Economic Turmoil and Military Action. When the hurricane hit the US
Gulf of Mexico oil platforms, a news video could hit on both Natural Disaster and
Economic Turmoil. Within minutes into the broadcast the first hits to those profiles
would be identified and the alert sent to the user. The user only needs to know
the hits occurred. When the user displays the video, maybe 10Â€min into the news
broadcast, all of the parts of the news program to the current time that satisfied the
profiles should be indicated.

1.2.3  �Items and Item Index

The retrospective item Search Process (see Fig.Â€ 1.4) provides the capability for
a query to search against all items received by the system. The Item index is the
searchable data structure that is derived from the contents of each item. In addition
the original item is saved to display as the results of a search. The search is against
the Item index by the user entered queries (typically ad hoc queries). It is sometimes
called the retrospective search of the system. If the user is on-line, the Selective
Dissemination of Information system delivers to the user items of interest as soon
as they are processed into the system. Any search for information that has already
been processed into the system can be considered a “retrospective” search for infor-
mation. This does not preclude the search to have search statements constraining it
to items received in the last few hours. But typically the searches span far greater
time periods. Each query is processed against the total item index. Queries differ
from alert and mail profiles in that queries are typically short and focused on a
specific area of interest. The Item Database can be very large, hundreds of millions
or billions of items. Typically items in the Item Database do not change (i.e., are
not edited) once received. The value of information quickly decreases over time.
Historically these facts were used to partition the database by time and allow for
archiving by the time partitions. Advances in storage and processors now allow all
the indices to remain on-line. But for multimedia item databases, the original items
are often moved to slower but cheaper tape storage (i.e., using Hierarchical Storage
Management systems).

1.2.4  �Indexing and Mapping to a Taxonomy

In addition to the item there is additional citational metadata that can be determined
for the item. Citational metadata typically describes aspects of the item other than

1.2 Functional Overview of Information Retrieval Systems

14

the semantics of the item. For example, typical citational metadata that can go into
an index of the items received is the date it is received, it’s source (e.g. CNN news),
the author, etc. All of that information may be useful in locating information but
does not describe the information in the item. This metadata can subset the total set
of items to be searched reducing the chances for false hits. Automatic indexing can
extract the citational information and can also extract additional data from the item
that can be used to index the item, but usually the semantic metadata assigned to
describe an item is human generated (see Chap.Â€4). The index of metadata against
the entire database of items (called public index) expands the information search-
able beyond the index of each item’s content to satisfy a users search. In addition to
a public index of the items coming in, users can also generate their private index to
the items. This can be used to logically define subsets of the received items that are
focused on a particular user’s interest along with keywords to describe the items.
This subsetting can be used to constrain a user’s search, thereby significantly in-
creasing the precision of a users search at the expense of recall.

In addition to the indexing, some systems attempt to organize the items by map-
ping items received to locations within a predefined or dynamically defined tax-
onomy (e.g., Autonomy system). A Taxonomy (sometimes referred to as Ontology)
refers to a hierarchical ordering of a set of controlled vocabulary terms that describe
concepts. They provide an alternative mechanism for users to navigate to informa-
tion of interest. The user will expand the taxonomy tree until they get to the area
of interest and then review the items at that location in the taxonomy. This has the
advantage that users without an in depth knowledge of an area can let the structured
taxonomy help navigate them to the area of interest. A typical use of taxonomy is a
wine site that let you navigate through the different wines that are available. It lets
you select the general class of wines, then the grapes and then specific brands. In
this case there is a very focused taxonomy. But in general information retrieval case
there can be a large number of taxonomies on the most important conceptual areas
that the information retrieval system users care about. Taxonomies help those users
that do not have an in depth knowledge of a particular area select the subset of that
area they are interested in.

The data for the taxonomy is often discovered as part of the ingest process and
then is applied as an alternative index that users can search and navigate. Some sys-
tems as part of their display will take a hit list of documents and create taxonomy of
the information content for that set of items. This is an example of the visualization
process except the assignment of objects to locations in a static taxonomy (this is
discussed in Chap.Â€7).

1.3  �Understanding Search Functions

The objective of the search capability is to allow for a mapping between a user’s in-
formation need and the items in the information database that will answer that need.
The search query statement is the means that the user employs to communicate a de-

1 Information Retrieval System Functions

15

scription of the needed information to the system. It can consist of natural language
text in composition style and/or query terms with Boolean logic indicators between
them. Understanding the functions associated with search helps in understanding
what architectures best allow for those functions to be provided.

The search statement may apply to the complete item or contain additional pa-
rameters limiting it to a logical zone within the item (e.g., Title, abstract, referenc-
es). This restriction is useful in reducing retrieval of non-relevant items by limiting
the search to those subsets of the item whose use of a particular word is consistent
with the user’s search objective. Finding a name in a Bibliography does not nec-
essarily mean the item is about that person. Research has shown that for longer
items, restricting a query statement to be satisfied within a contiguous subset of the
document (passage searching) provides improved precision (Buckley-95, Wilkin-
son-95). Rather than allowing the search statement to be satisfied anywhere within
a document it may be required to be satisfied within a 100 word contiguous subset
of the item (Callan-94). The zoning process is discussed in Chap.Â€3 Ingest.

Based upon the algorithms used in a system many different functions are asso-
ciated with the system’s understanding the search statement. The functions define
the relationships between the terms in the search statement (e.g., Boolean, Natural
Language, Proximity, Contiguous Word Phrases, and Fuzzy Searches) and the in-
terpretation of a particular word (e.g., Term Masking, Numeric and Date Range,
Contiguous Word Phrases, and Concept/Thesaurus expansion).

One concept for assisting in the location and ordering relevant items, is the “weight-
ing” of search terms. This would allow a user to indicate the importance of search
terms in either a Boolean or natural language interface. Given the following natural
language query statement where the importance of a particular search term is indi-
cated by a value in parenthesis between 0.0 and 1.0 with 1.0 being the most important:

•	 Find articles that discuss automobile emissions (0.9) or sulfur dioxide (0.3) on
the farming industry.

The system would recognize in it’s importance ranking that items about automobile
emissions are far more important than items discussing sulfur dioxide problems
when in the context of farming (which has an implied weight of 1).

1.3.1  �Boolean Logic

Boolean logic allows a user to logically relate multiple concepts together to define
what information is needed. Typically the Boolean functions apply to processing
tokens identified anywhere within an item. The typical Boolean operators are AND,
OR, and NOT. These operations are implemented using set intersection, set union
and set difference procedures. A few systems introduced the concept of “exclusive
or” but it is equivalent to a slightly more complex query using the other operators
and is not generally useful to users since most users do not understand it. Placing
portions of the search statement in parentheses are used to overtly specify the order
of Boolean operations (i.e., nesting function). If parentheses are not used, the system

1.3 Understanding Search Functions

16

follows a default precedence ordering of operations (e.g., typically NOT then AND
then OR). In the examples of effects of Boolean operators given in Fig.Â€ 1.5, no
precedence order is given to the operators and queries are processed Left to Right
unless parentheses are included. Most commercial systems do not allow weighting
of Boolean queries. A technique to allow weighting Boolean queries is described in
Chap.Â€5. Some of the deficiencies of use of Boolean operators in information sys-
tems are summarized by Belkin and Croft (Belkin-89). Some search examples and
their meanings are given in Fig.Â€1.5.

A special type of Boolean search is called “M of N” logic. The user lists a set of
possible search terms and identifies, as acceptable, any item that contains a subset
of the terms. For example, Find any item containing any two of the following terms:
“AA,” “BB,” “CC.” This can be expanded into a Boolean search that performs
an AND between all combinations of two terms and “OR”s the results together
((AA AND BB) or (AA AND CC) or (BB AND CC)). Most Information Retrieval
Systems allow Boolean operations as well as allowing for the natural language in-
terfaces. Very little attention has been focused on integrating the Boolean search
functions and weighted information retrieval techniques into a single search result.

1.3.2  �Proximity

Proximity is used to restrict the distance allowed within an item between two search
terms. The semantic concept is that the closer two terms are found in a text the more
likely they are related in the description of a particular concept. Proximity is used
to increase the precision of a search. If the terms COMPUTER and DESIGN are
found within a few words of each other then the item is more likely to be discussing
the design of computers than if the words are paragraphs apart. The typical format
for proximity is:

TERM1 within “m” “units” of TERM2

The distance operator “m” is an integer number and units are in Characters, Words,
Sentences, or Paragraphs. Certain items may have other semantic units that would

Fig. 1.5â†œæ¸€ Use of Boolean
operators

SEARCH STATEMENT

COMPUTER OR PROCESSOR
NOT MAINFRAME

COMPUTER OR (PROCESSOR
NOT MAINFRAME)

COMPUTER AND NOT
PROCESSOR OR MAINFRAME

SYSTEM OPERATION

Select all items discussing
Computers and/or Processors
that do not discuss Mainframes

Select all items discussing
Computers and/or items that
discuss Processors and do not
discuss Mainframes

Select all items that discuss
computers and not processors
or mainframes in the item

1 Information Retrieval System Functions

17

prove useful in specifying the proximity operation. For very structured items, dis-
tances in characters prove useful. Sometimes the proximity relationship contains
a direction operator indicating the direction (before or after) that the second term
must be found within the number of units specified. The default is either direction.
A special case of the Proximity operator is the Adjacent (ADJ) operator that normal-
ly has a distance operator of one and a forward only direction. Another special case
is where the distance is set to zero meaning within the same semantic unit. Some
proximity search statement examples and their meanings are given in Fig.Â€1.6.

1.3.3  �Contiguous Word Phrases

A Contiguous Word Phrase (CWP) is both a way of specifying a query term and
a special search operator. A Contiguous Word Phrase is two or more words that
are treated as a single semantic unit. An example of a CWP is “United States of
America.” It is four words that specify a search term representing a single specific
semantic concept (a country) that can be used with other operators. Thus a query
could specify “manufacturing” AND “United States of America” which returns any
item that contains the word “manufacturing” and the contiguous words “United
States of America.”

A contiguous word phrase also acts like a special search operator that is similar
to the proximity (Adjacency) operator but allows for additional specificity. If two
terms are specified, the contiguous word phrase and the proximity operator using
directional one word parameters or the adjacent operator are identical. For contigu-
ous word phrases of more than two terms the only way of creating an equivalent
search statement using proximity and Boolean operators is via nested adjacencies
which are not found in most commercial systems. This is because Proximity and
Boolean operators are binary operators but contiguous word phrases are an “N”ary
operator where “N” is the number of words in the CWP.

Fig. 1.6â†œæ¸€ Use of proximity SEARCH STATEMENT
“Venetian” ADJ “Blind”

“United” within five words
of “American”

“Nuclear” within zero paragraphs
of “clean-up”

SYSTEM OPERATION
would find items that mention a
Venetian Blind on a window but
not items discussing a Blind
Venetian

would hit on “United States and
American interests,” “United
Airlines and American Airlines”
not on “United States of America
and the American dream”

would find items that have
“nuclear” and “clean-up” in the
same paragraph.

1.3 Understanding Search Functions

18

1.3.4  �Fuzzy Searches

Fuzzy Searches provide the capability to locate spellings of words that are similar
to the entered search term. This function is primarily used to compensate for errors
in spelling of words. Fuzzy searching increases recall at the expense of decreasing
precision (i.e., it can erroneously identify terms as the search term). In the process
of expanding a query term fuzzy searching includes other terms that have similar
spellings, giving more weight (in systems that rank output) to words in the database
that have similar word lengths and position of the characters as the entered term. A
Fuzzy Search on the term “computer” would automatically include the following
words from the information database: “computer,” “compiter,” “conputer,” “com-
putter,” “compute.” An additional enhancement may lookup the proposed alterna-
tive spelling and if it is a valid word with a different meaning, include it in the
search with a low ranking or not include it at all (e.g., “commuter”). Systems allow
the specification of the maximum number of new terms that the expansion includes
in the query. In this case the alternate spellings that are “closest” to the query term
are included. “Closest” is a heuristic function that is system specific.

Fuzzy searching has it’s maximum utilization in systems that accept items that
have been Optical Character Read (OCRed). In the OCR process a hardcopy item is
scanned into a binary image (usually at a resolution of 300 dots per inch or more).
The OCR process also applies to items that are already binary such as JPEG files
or video from television. The OCR process is a pattern recognition process that
segments the scanned in image into meaningful subregions, often considering a
segment the area defining a single character. The OCR process will then determine
the character and translate it to an internal computer encoding (e.g., ASCII or some
other standard for other than Latin based languages). Based upon the original qual-
ity of the hardcopy this process introduces errors in recognizing characters. With
decent quality input, systems achieves in the 90–99% range of accuracy. Since these
are character errors throughout the text, fuzzy searching allows location of items of
interest compensating for the erroneous characters.

1.3.5  �Term Masking

Term masking is the ability to expand a query term by masking a portion of the term
and accepting as valid any processing token that maps to the unmasked portion of
the term. The value of term masking is much higher in systems that do not perform
stemming or only provide a very simple stemming algorithm. There are two types
of search term masking: fixed length and variable length. Sometimes they are called
fixed and variable length “don’t care” functions.

Variable length “don’t cares” allows masking of any number of characters within
a processing token. The masking may be in the front, at the end, at both front and

1 Information Retrieval System Functions

19

end, or imbedded. The first three of these cases are called suffix search, prefix
search and imbedded character string search, respectively. The use of an imbedded
variable length don’t care is seldom used. FigureÂ€1.7 provides examples of the use
of variable length term masking. If “*” represents a variable length don’t care then
the following are examples of it’s use:

“*COMPUTER”	� Suffix Search
“COMPUTER*”	� Prefix Search
“*COMPUTER*”	� Imbedded String Search

Of the options discussed, trailing “don’t cares” (prefix searches) are by far the
most common. In operational systems they are used in 80–90% of the search terms
(Kracsony-81) and in many cases is a default without the user having to specify it.

Fixed length masking is a single position mask. It masks out any symbol in a
particular position or the lack of that position in a word. It not only allows any
character in the masked position, but also accepts words where the position does
not exist. Fixed length term masking is not frequently used and typically not critical
to a system.

1.3.6  �Numeric and Date Ranges

Term masking is useful when applied to words, but does not work for finding rang-
es of numbers or numeric dates. To find numbers larger than “125,” using a term
“125*” will not find any number except those that begin with the digits “125.” Sys-
tems, as part of their normalization process, characterize words as numbers or dates.
This allows for specialized numeric or date range processing against those words.
A user could enter inclusive (e.g., “125–425” or “4/2/93–5/2/95” for numbers and
dates) to infinite ranges (“>125,” “<=233,” representing “Greater Than” or “Less
Than or Equal”) as part of a query.

Fig. 1.7â†œæ¸€ Term masking SEARCH STATEMENT

multi-national

computer

comput*

comput

SYSTEM OPERATION

Matches“multi-national,” multiyna-
tional,” “multinational” but does not
match “multi national” since it is two
processing tokens.

Matches,“minicomputer” “microcompu-
ter” or “computer”

Matches “computers,” “computing,”
“computes”

Matches “microcomputers,” “minicom-
puting,” “compute”

1.3 Understanding Search Functions

20

1.3.7  �Vocabulary Browse

Vocabulary Browse was a capability used first in databases in the 1980s. The con-
cept was to assist the user in creating a query by providing the user with an alpha-
betical sorted list of terms in a field along with the number of database records the
term was found in. This helped the user in two different ways. The first was by
looking at the list surrounding the word the user was interested in, they could dis-
cover misspellings they wanted to include in their query. It also would show them
the number of records the term was found in allowing them to add additional search
terms if there were going to be too many hits.

This concept has been carried over to Information retrieval Systems recently
with the expansion capabilities provided by GOOGLE. In this case the system is
not trying to show misspellings or the number of items a search term is found in. In-
stead the system is trying to help the user determine additional modifiers (additional
terms) they can add to their query to make it more precise based upon data in the
database and what other users search on. It has the effect of dynamically showing
the user possible expansions of their search.

1.3.8  �Multimedia Search

New challenges arise when you are creating queries against multimedia items.
There are also challenges associated with the display of the hit list which will be ad-
dressed in Chap.Â€7. The ideal case for users is to enter searches in text form against
multimedia items. Historically that has been the primary interface used for search-
ing the Internet. What was being searched is not the actual multimedia item but the
text such as file name and hyperlink text that links to the multimedia item. There
have been attempts to index the multimedia, primarily images, on the internet. In
the few cases where video (television news) has been indexed the closed captioning
was used as the index. In the case of image indexing, the user can propose an image
and search for others like it. The extra user function associated with searching using
an image is the capability to specify a portion of the image and use it for the query
versus the complete image.

1.4  �Relationship to Database Management Systems

There are two major categories of systems available to process items: Informa-
tion Retrieval Systems and Data Base Management Systems (DBMS). Confusion
can arise when the software systems supporting each of these applications get

1 Information Retrieval System Functions

21

confused with the data they are manipulating. An Information Retrieval System is
software that has the features and functions required to manipulate “information”
items versus a DBMS that is optimized to handle “structured” data. Information
is fuzzy text. The term “fuzzy” is used to imply the results from the minimal stan-
dards or controls on the creators of the text items. The author is trying to present
concepts, ideas and abstractions along with supporting facts. As such, there is
minimal consistency in the vocabulary and styles of items discussing the exact
same issue. The searcher has to be omniscient to specify all search term possibili-
ties in the query.

Structured data is well defined data (facts) typically represented by tables. There
is a semantic description associated with each attribute within a table that well de-
fines that attribute. For example, there is no confusion between the meaning of “em-
ployee name” or “employee salary” and what values to enter in a specific database
record. On the other hand, if two different people generate an abstract for the same
item, they can be different. One abstract may generally discuss the most important
topic in an item. Another abstract, using a different vocabulary, may specify the
details of many topics. It is this diversity and ambiguity of language that causes the
fuzzy nature to be associated with information items. The differences in the charac-
teristics of the data is one reason for the major differences in functions required for
the two classes of systems.

With structured data a user enters a specific request and the results returned
provide the user with the desired information. The results are frequently tabulated
and presented in a report format for ease of use. In contrast, a search of “informa-
tion” items has a high probability of not finding all the items a user is looking for.
The user has to refine his search to locate additional items of interest. This process
is called “iterative search.” An Information Retrieval System gives the user capa-
bilities to assist the user in finding the relevant items, such as relevance feedback
(Chap.Â€5). The results from an information system search are presented in relevance
ranked order. The confusion comes when DBMS software is used to store “infor-
mation.” This is easy to implement, but the system lacks the ranking and relevance
feedback features that are critical to an information system. It is also possible to
have structured data used in an information system. When this happens the user has
to be very creative to get the system to provide the reports and management infor-
mation that are trivially available in a DBMS.

From a practical standpoint, the integration of DBMS’s and Information Re-
trieval Systems is very important. Commercial database companies have already
integrated the two types of systems. One of the first commercial databases to inte-
grate the two systems into a single view is the INQUIRE DBMS. The most common
example is the ORACLE DBMS that now offers an imbedded capability called
ORACLE TEXT, which is an informational retrieval system that uses a comprehen-
sive thesaurus which provides the basis to generate “themes” for a particular item.
ORACLE TEXT also provides standard statistical techniques that are described in
Chap.Â€4. The SQL query language for structured databases has been expanded to
accommodate the functions needed in information retrieval.

1.4 Relationship to Database Management Systems

22

1.5  �Digital Libraries and Data Warehouses

Two other systems frequently described in the context of information retrieval are
Digital Libraries and Data Warehouses (or DataMarts). There is significant overlap
between these two systems and an Information Storage and Retrieval System. All
three systems are repositories of information and their primary goal is to satisfy
user information needs. Information retrieval easily dates back to Vannevar Bush’s
1945 article on thinking (Bush-45) that set the stage for many concepts in this area.
Libraries have been in existence since the beginning of writing and have served as a
repository of the intellectual wealth of society. As such, libraries have always been
concerned with storing and retrieving information in the media it is created on. As
the quantities of information grew exponentially, libraries were forced to make
maximum use of electronic tools to facilitate the storage and retrieval process. With
the worldwide interneting of libraries and information sources (e.g., publishers,
news agencies, wire services, radio broadcasts) via the Internet, more focus has
been on the concept of an electronic library. Between 1991 and 1993 significant
interest was placed on this area because of the interest in U.S. Government and
private funding for making more information available in digital form (Fox-93).
During this time the terminology evolved from electronic libraries to digital librar-
ies. As the Internet continued it’s exponential growth and project funding became
available, the topic of Digital Libraries has grown. By 1995 enough research and
pilot efforts had started to support the 1st ACM International Conference on Digi-
tal Libraries (Fox-96). The effort on digitizing all library assets has continued in
both the United States and Europe. The European Digital Libraries Project (i2010
Digital Libraries plans to make all Europe’s cultural resources and scientific re-
cords—books, journals, films, maps, photographs, music, etc.—accessible to all,
and preserve it for future generations. (http://ec.europa.eu/information_society/
activities/digital_libraries/index_en.htm) The effort in the is US managed by the
National Science Foundation (NSF) with partnership with many other US Govern-
ment entities called the DIGITAL LIBRARIES INITIATIVE—PHASE 2 is not
only focusing on significantly increasing the migration of library content into ac-
cessible digital form, but also the usability of the distributed information looking
at the other functions a library should provide. (http://www.nsf.gov/pubs/1998/
nsf9863/nsf9863.htm)

There remain significant discussions on what is a digital library. Everyone starts
with the metaphor of the traditional library. The question is how does the traditional
library functions change as they migrate into supporting a digital collection. Since
the collection is digital and there is a worldwide communications infrastructure
available, the library no longer must own a copy of information as long as it can pro-
vide access. The existing quantity of hardcopy material guarantees that we will not
have all digital libraries for at least another generation of technology improvements.
But there is no question that libraries have started and will continue to expand their
focus to digital formats. With direct electronic access available to users the social
aspects of congregating in a library and learning from librarians, friends and col-

1 Information Retrieval System Functions

23

leagues will be lost and new electronic collaboration equivalencies will come into
existence (Wiederhold-95).

Indexing is one of the critical disciplines in library science and significant effort
has gone into the establishment of indexing and cataloging standards. Migration of
many of the library products to a digital format introduces both opportunities and
challenges. The full text of items available for search makes the index process a
value added effort as described in Chap.Â€4. Another important library service is a
source of search intermediaries to assist users in finding information. With the pro-
liferation of information available in electronic form, the role of search intermedi-
ary will shift from an expert in search to being an expert in source analysis. Search-
ing will identify so much information in the global Internet information space that
identification of the “pedigree” of information is required to understand it’s value.
This will become the new refereeing role of a library.

Information Storage and Retrieval technology has addressed a small subset of
the issues associated with Digital Libraries. The focus has been on the search and
retrieval of textual data with no concern for establishing standards on the contents
of the system. It has also ignored the issues of unique identification and tracking of
information required by the legal aspects of copyright that restrict functions within
a library environment. Intellectual property rights in an environment that is not con-
trolled by any country and their set of laws has become a major problem associated
with the Internet. The conversion of existing hardcopy text, images (e.g., pictures,
maps) and analog (e.g., audio, video) data and the storage and retrieval of the digital
version is a major concern to Digital Libraries. Information Retrieval Systems are
starting to evolve and incorporate digitized versions of these sources as part of the
overall system. But there is also a lot of value placed on the original source (espe-
cially printed material) that is an issue to Digital Libraries and to a lesser concern
to Information Retrieval systems. Other issues such as how to continue to provide
access to digital information over many years as digital formats change have to be
answered for the long term viability of digital libraries.

The term Data Warehouse comes more from the commercial sector than aca-
demic sources. It comes from the need for organizations to control the prolifera-
tion of digital information ensuring that it is known and recoverable. It’s goal is to
provide to the decision makers the critical information to answer future direction
questions. Frequently a data warehouse is focused solely on structured databases. A
data warehouse consists of the data, an information directory that describes the con-
tents and meaning of the data being stored, an input function that captures data and
moves it to the data warehouse, data search and manipulation tools that allow users
the means to access and analyze the warehouse data and a delivery mechanism to
export data to other warehouses, data marts (small warehouses or subsets of a larger
warehouse), and external systems.

Data warehouses are similar to information storage and retrieval systems in that
they both have a need for search and retrieval of information. But a data warehouse
is more focused on structured data and decision support technologies. In addition to
the normal search process, a complete system provides a flexible set of analytical
tools to “mine” the data. Data mining (originally called Knowledge Discovery in

1.5 Digital Libraries and Data Warehouses

24

Databases—KDD) is a search process that automatically analyzes data and extract
relationships and dependencies that were not part of the database design. Most of
the research focus is on the statistics, pattern recognition and artificial intelligence
algorithms to detect the hidden relationships of data. In reality the most difficult
task is in preprocessing the data from the database for processing by the algorithms.
This differs from clustering in information retrieval in that clustering is based upon
known characteristics of items, whereas data mining does not depend upon known
relationships.

1.6  �Processing Subsystem Overview

An Information Retrieval System is composed of four major processing subsys-
tems. Each processing subsystem presents the capability to improve the processing
of the information to improve the capability of finding and retrieving the informa-
tion needed by the user. Each of the processing phases will be addressed as a sepa-
rate chapter to discuss in detail the associated technologies and challenges. The four
subsystems are:

•	 Ingest (Chap.Â€3): this subsystem is concerned with the ingestion of the informa-
tion and the initial normalization and processing of the source items. This phase
begins with processes to get information into the information retrieval system. It
could be via crawling networks (or the Internet) as well as receiving items that
are “pushed” to the system. The items undergo normalization which can include
format standardization (e.g., Unicode for text, phonemes for audio), defining
processing tokens, stemming, and other such processes to get to a canonical for-
mat. Once in a standard format many additional pre-indexing analysis techniques
can be used to start defining the data that will facilitate the mapping of the user’s
search vocabulary with the item’s author’s vocabulary. This includes entity ex-
traction and normalization, categorization and other techniques.

•	 Index (Chap.Â€4): this subsystem is concerned with taking the normalized item’s
processing tokens and other normalized metadata and creating the searchable
index from it. There are many different approaches to creating the index from
Boolean to weighted and within weighted, Statistical, Concept and Natural Lan-
guage indexing.

•	 Search (Chap.Â€5): This subsystem is concerned with mapping the user search
information need to a processable form defined by the searchable index and de-
termining which items are to be returned to the user. Within this process is the
identification of the relevancy weights that are used in ordering the display.

•	 Display (Chap.Â€7): this subsystem is concerned with how the user can locate
the items of interest in the all of the possible results returned. It discusses the
options for presenting the “hit lists” of items that are identified by the search
process to the user. It will address linear review of hits versus use of visualization
techniques. Clustering technologies are core to many of the techniques in visu-

1 Information Retrieval System Functions

25

alization and are presented in Chap.Â€6 to lay a better understanding of displaying
items. In addition to the presentation of the hits for users to select which item to
review in detail, it discusses optimization techniques associated with individual
item review and ways of summarizing information across multiple items. It also
will discuss Collaborative Filtering as an augmentation to the review process
(i.e., using knowledge of other users reviewing items to optimize the review of
the current hit items.

1.7  �Summary

ChapterÂ€1 places into perspective the functions associated with an information re-
trieval system. Ten years ago commercial implementation of the algorithms be-
ing developed were not realistic, forcing theoreticians to limit their focus to very
specific areas. Bounding a problem is still essential in deriving theoretical results.
Recent advances in hardware and more importantly software architecture has pro-
vided a technical basis for providing information retrieval algorithms against mas-
sively large datasets. Advances now allow for all of the functions discussed in this
chapter to be provided and have developed heuristics to optimize the search process
discussed in Chap.Â€8. The commercialization of information retrieval functions be-
ing driven by the growth of the Internet has changed the basis of development time
from “academic years” (i.e., one academic year equals 18Â€months—the time to de-
fine the research, perform it and publish the results) to “Web years” (i.e., one Web
year equals three months—demand to get new products up very quickly to be first).
The test environment and test databases are changing from small scale academic en-
vironments to millions of records with millions of potential users testing new ideas.

The best way for the theoretician or the commercial developer to understand the
importance of problems to be solved is to place them in the context of a total vision
of a complete system. For example, understanding the differences between Digi-
tal Libraries and Information Retrieval Systems will add an additional dimension
to the potential future development of systems. The collaborative aspects of digi-
tal libraries can be viewed as a new source of information that dynamically could
interact with information retrieval techniques. For example, should the weighting
algorithms and search techniques discussed later in this book vary against a corpus
based upon dialogue between people versus statically published material? During
the collaboration, in certain states, should the system be automatically searching for
reference material to support the collaboration?

In order to have a basis for discussing algorithms and the tradeoff on alternative
approaches, a commonly accepted metric is required. In information retrieval preci-
sion and recall provide the basis for evaluating the results of alternative algorithms.
In Chap.Â€9 other evaluative approaches will be presented but precision and recall re-
main the standard. To understand how to interpret the results of precision and recall
results, they need to be placed in the context of what a user considers is important.
The understanding that from a user’s perspective minimization of the resources the

1.7 Summary

26

user expends to satisfy his information need needs to be considered in combina-
tion with precision and recall. A reduction in precision and recall with a significant
improvement in reducing the resources the user has to expend to get information
changes the conclusion on what is optimal.

1.8  �Exercises

â•‡ 1.	 The metric to be minimized in an Information Retrieval System from a user’s
perspective is user overhead. Describe the places that the user overhead is
encountered from when a user has an information need until when it is satis-
fied. Is system complexity also part of the user overhead?

â•‡ 2.	 Under what conditions might it be possible to achieve 100% precision and
100% recall in a system? What is the relationship between these measures and
user overhead?

â•‡ 3.	 Describe how the statement that “language is the largest inhibitor to good com-
munications” applies to Information Retrieval Systems.

â•‡ 4.	 What is the impact on precision and recall in the use of Stop Lists and Stop
Algorithms?

â•‡ 5.	 What is the difference between the concept of a “Digital Library” and an Infor-
mation Retrieval System? What new areas of information retrieval research
may be important to support a Digital Library?

â•‡ 6.	 Describe the rationale why use of proximity will improve precision versus use
of just the Boolean functions. Discuss it’s effect on improvement of recall.

â•‡ 7.	 Show that the proximity function can not be used to provide an equivalent to a
Contiguous Word Phrase.

â•‡ 8.	 What are the similarities and differences between use of fuzzy searches and
term masking? What are the potentials for each to introduce errors?

â•‡ 9.	 Ranking is one of the most important concepts in Information Retrieval Sys-
tems. What are the difficulties in applying ranking when Boolean queries are
used?

10.	 What problems does multimedia information retrieval introduce? What solu-
tions would you recommend to resolve the problems?

1 Information Retrieval System Functions

27

2.1  �Data Structures

2.1.1  �Introduction to Data Structures

There are usually two major data structures in any information system. One struc-
ture stores and manages the received items in their normalized form and is the ver-
sion that is displayed to the user. The process supporting this structure is called the
“document manager.” The other major data structure contains the processing tokens
and associated data (e.g., index) to support search. FigureÂ€2.1 shows the document
file creation process which is a combination of the ingest and indexing processes.
The results of a search are references to the items that satisfy the search statement,
which are passed to the document manager for retrieval. This chapter focuses on
data structures used to support the search function. It does not address the document
management function nor the data structures and other related theory associated
with the parsing of queries.

The Ingest and Indexing processes are described in Chaps.Â€3 and 4, but some of
the lower level data structures to support the indices are described in this chapter.
The most common data structure encountered in both data base and information
systems is the inverted file system (discussed in Sect.Â€2.1.2). It minimizes second-
ary storage access when multiple search terms are applied across the total database.
All commercial and most academic systems use inversion as the searchable data
structure. A variant of the searchable data structure is the N-gram structure that
breaks processing tokens into smaller string units (which is why it is sometimes
discussed under stemming) and uses the token fragments for search. N-grams have
demonstrated improved efficiencies and conceptual manipulations over full word
inversion. PAT trees and arrays view the text of an item as a single long stream ver-
sus a juxtaposition of words. Around this paradigm search algorithms are defined
based upon text strings. Signature files are based upon the idea of fast elimination
of non-relevant items reducing the searchable items to a manageable subset. The
subset can be returned to the user for review or other search algorithms may be ap-
plied to it to eliminate any false hits that passed the signature filter.

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_2, ©Â€Springer Science+Business Media, LLC 2011

Chapter 2
Data Structures and Mathematical Algorithms

28

The XML data structure is the most common structure used in sharing informa-
tion between systems and frequently how it is stored within a system. It is how
items are received by the Ingest process and it is typically used if items are ex-
ported to other applications and systems. Given the commonality of XML there has
been TREC conference experiments on how to optimize search systems whose data
structure is XML.

The hypertext data structure is the basis behind URL references on the internet.
But more importantly is the logical expansion of the definition of an item when hy-
pertext references are used and its potential impact on searches. The latest Internet
search systems have started to make use of hypertext links to expand what infor-
mation is indexed associated with items. Most commonly it is used when indexing
multimedia objects but there is a natural extension to textual items.

There are some mathematical notions that are frequently used in information
retrieval systems. Bayesian mathematics has a variety of uses in information re-

Fig. 2.1â†œæ¸€ Major data
structures

2 Data Structures and Mathematical Algorithms

29

trieval. Another important concept comes from Communications systems and In-
formation Theory based upon the work of Claude Shannon and is the basis behind
most of the commonly used weighting algorithms. Hidden Markov models are used
in both searching and also are a technical base behind multimedia information item
processing. Latent Semantic Indexing is one of the few techniques that has been
used commercially to create concept indices. Neural networks and Support Vector
Machines are the most common learning algorithms used to automatically construct
search structures from user examples used for example in Categorization.

2.1.2  �Inverted File Structure

The most common data structure used in both database management and Infor-
mation Retrieval Systems is the inverted file structure. Inverted file structures are
composed of three basic files: the document file, the inversion lists (sometimes
called posting files) and the dictionary. The name “inverted file” comes from its
underlying methodology of storing an inversion of the documents: inversion of the
documents from the perspective that instead of having a set of documents with
words in them, you create a set of words that has the list of documents they are
found in. Each document in the system is given a unique numerical identifier. It is
that identifier that is stored in the inversion list. The way to locate the inversion list
for a particular word is via the Dictionary. The Dictionary is typically a sorted list of
all unique words (processing tokens) in the system and a pointer to the location of
its inversion list (see Fig.Â€2.2). Dictionaries can also store other information used in
query optimization such as the length of inversion lists. Additional information may
be used from the item to increase precision and provide a more optimum inversion
list file structure. For example, if zoning is used, the dictionary may be partitioned
by zone. There could be a dictionary and set of inversion lists for the “Abstract”
zone in an item and another dictionary and set of inversion lists for the “Main Body”
zone. This increases the overhead when a user wants to search the complete item
versus restricting the search to a specific zone. Another typical optimization occurs
when the inversion list only contains one or two entries. Those entries can be stored
as part of the dictionary. The inversion list contains the document identifier for
each document in which the word is found. To support proximity, contiguous word

2.1 Data Structures

Fig. 2.2â†œæ¸€ Inverted file
structure

DOCUMENTS DICTIONARY INVERSION LISTS
bit (2) bit - 1, 3DOC #1, computer,

bit, byte
DOC #2, memory,
byte
DOC #3, computer,
bit, memory
DOC #4, byte,
computer

byte (3) byte - 1, 2, 4

computer (3) computer - 1, 3, 4

memory (2) memory - 2, 3

30

phrases and term weighting algorithms, all occurrences of a word are stored in the
inversion list along with the word position. Thus if the word “bit” was the tenth,
twelfth and eighteenth word in document #1, then the inversion list would appear:

bit—1(10), 1(12), 1(18)

Weights can also be stored in inversion lists. Words with special characteristics are
frequently stored in their own dictionaries to allow for optimum internal representa-
tion and manipulation (e.g., dates which require date ranging and numbers).

When a search is performed, the inversion lists for the terms in the query are
located and the appropriate logic is applied between inversion lists. The result is
a final hit list of items that satisfy the query. For systems that support ranking, the
list is reorganized into ranked order. The document numbers are used to retrieve the
documents from the Document File. Using the inversion lists in Fig.Â€2.2, the query
(bit AND computer) would use the Dictionary to find the inversion lists for “bit”
and “computer.” These two lists would be logically ANDed: (1,3) AND (1,3,4) re-
sulting in the final Hit list containing (1,3).

Rather than using a dictionary to point to the inversion list, B-trees can be used.
The inversion lists may be at the leaf level or referenced in higher level pointers.
Fig.Â€2.3 shows how the words in Fig.Â€2.1 would appear. A B-tree of order m is de-
fined as:

•	 A root node with between 2 and 2m keys
•	 All other internal nodes have between m and 2m keys
•	 All keys are kept in order from smaller to larger
•	 All leaves are at the same level or differ by at most one level.

Cutting and Pedersen described use of B-trees as an efficient inverted file storage
mechanism for data that undergoes heavy updates (Cutting-90).

The nature of information systems is that items are seldom if ever modified once
they are produced. Most commercial systems take advantage of this fact by allow-
ing document files and their associated inversion lists to grow to a certain maximum
size and then to freeze them, starting a new structure. Each of these databases of
document file, dictionary, inversion lists is archived and made available for a user’s
query. This has the advantage that for queries only interested in more recent infor-
mation; only the latest databases need to be searched. Since older items are seldom

Fig. 2.3â†œæ¸€ B-tree inversion lists

b m

computer - 1, 3, 4 memory - 2, 3byte - 1, 2, 4bit - 1, 3

m to zc to la to b

2 Data Structures and Mathematical Algorithms

31

deleted or modified, the archived databases may be permanently backed-up, thus
saving on operations overhead. Starting a new inverted database has significant
overhead in adding new words and inversion lists until the frequently found words
are added to the dictionary and inversion lists. Previous knowledge of archived
databases can be used to establish an existing dictionary and inversion structure at
the start of a new database, thus saving significant overhead during the initial add-
ing of new documents. Other more scalable inversion list techniques are discussed
in Chap.Â€8.

Inversion lists structures are used because they provide optimum performance
in searching large databases. The optimality comes from the minimization of data
flow in resolving a query. Only data directly related to the query are retrieved from
secondary storage. Also there are many techniques that can be used to optimize the
resolution of the query based upon information maintained in the dictionary.

Inversion list file structures are well suited to store concepts and their relation-
ships. Each inversion list can be thought of as representing a particular concept.
Words are typically used to define an inversion list but in Chap.Â€3 when categoriza-
tion and entities are discussed, the inversion lists can easily be extended to include
those as additional index for an item. The individual word may not be representative
of a concept but by use of a proximity search the user can combine words all within
a proximity (e.g., in the same sentence) and thus get closer to a concept. The inver-
sion list is then a concordance of all of the items that contain that concept. Finer
resolution of concepts can additionally be maintained by storing locations with an
item and weights of the item in the inversion lists. With this information, relation-
ships between concepts can be determined as part of search algorithms. Location
of concepts is made easy by their listing in the dictionary and inversion lists. For
Natural Language Processing algorithms, other structures may be more appropriate
or required in addition to inversion lists for maintaining the required semantic and
syntactic information.

2.1.3  �N-Gram Data Structures

N-Grams can be viewed as a special technique for conflation (stemming) and as a
unique data structure in information systems. N-Grams are a fixed length consecu-
tive series of “n” characters. Unlike stemming that generally tries to determine the
stem of a word that represents the semantic meaning of the word, n-grams do not
care about semantics. Instead they are algorithmically based upon a fixed number of
characters. The searchable data structure is transformed into overlapping n-grams,
which are then used to create the searchable database. Examples of bigrams, tri-
grams and pentagrams are given in Fig.Â€2.4 for the word phrase “sea colony.”

For n-grams, with n greater than two, some systems allow interword symbols to
be part of the n-gram set usually excluding the single character with interword sym-
bol option. The symbol # is used to represent the interword symbol which is anyone
of a set of symbols (e.g., blank, period, semicolon, colon, etc.). Each of the n-grams

2.1 Data Structures

32

created becomes separate processing tokens and are searchable. It is possible that
the same n-gram can be created multiple times from a single word.

2.1.3.1  �History

The first use of n-grams dates to World War II when it was used by cryptographers.
Fletcher Pratt states that “with the backing of bigram and trigram tables any cryp-
tographer can dismember a simple substitution cipher” (Pratt-42). Use of bigrams
was described by Adamson as a method for conflating terms (Adamson-74). It does
not follow the normal definition of stemming because what is produced by creating
n-grams are word fragments versus semantically meaningful word stems. It is this
characteristic of mapping longer words into shorter n-gram fragments that seems
more appropriately classified as a data structure process than a stemming process.

Another major use of n-grams (in particular trigrams) is in spelling error detec-
tion and correction (Angell-83, McIllroy-82, Morris-75, Peterson-80, Thorelli-62,
Wang-77, and Zamora-81). Most approaches look at the statistics on probability of
occurrence of n-grams (trigrams in most approaches) in the English vocabulary and
indicate any word that contains non-existent to seldom used n-grams as a potential
erroneous word. Damerau specified four categories of spelling errors (Damerau-64)
as shown in Fig.Â€2.5.

Using the classification scheme, Zamora showed trigram analysis provided a
viable data structure for identifying misspellings and transposed characters. This
impacts information systems as a possible basis for identifying potential input er-
rors for correction as a procedure within the normalization process (see Chap.Â€1).
Frequency of occurrence of n-gram patterns also can be used for identifying the
language of an item (Damashek-95, Cohen-95).

Fig. 2.4â†œæ¸€ Bigrams, trigrams
and pentagrams for “sea
colony”

se ea co ol lo on ny Bigrams
(no interword symbols)

sea col olo lon ony Trigrams
(no interword symbols)

#se sea ea# #co col olo lon ony ny# Trigrams
(with interword symbol #)

#sea# #colo colon olony lony# Pentagrams
(with interword symbol #)

Fig. 2.5â†œæ¸€ Categories of
spelling errors

Error Category Example

Single Character Insertion compuuter

Single Character Deletion compter

Single Character Substitution compiter

Transposition of two adjacent characters computer

2 Data Structures and Mathematical Algorithms

33

In information retrieval, trigrams have been used for text compression and to
manipulate the length of index terms (Schek-78, Schuegraf-76). Some implemen-
tations used a variety of different n-grams as index elements for inverted file sys-
tems. They have also been the core data structure to encode profiles for the Logicon
LMDS system (Yochum-95) used for Selective Dissemination of Information. For
retrospective search, the Acquaintance System uses n-grams to store the searchable
document file (Damashek-95, Huffman-95) for retrospective search of large textual
databases.

2.1.3.2  �N-Gram Data Structure

As shown in Fig.Â€2.4, an n-gram is a data structure that ignores words and treats
the input as a continuous data, optionally limiting its processing by interword
symbols. The data structure consists of fixed length overlapping symbol segments
that define the searchable processing tokens. These tokens have logical linkages
to all the items in which the tokens are found. Inversion lists, document vectors
(described in Chap.Â€4) and other proprietary data structures are used to store the
linkage data structure and are used in the search process. In some cases just the
least frequently occurring n-gram is kept as part of a first pass search process
(Yochum-85).

The choice of the fixed length word fragment size has been studied in many
contexts. Yochum investigated the impacts of different values for “n.” Other re-
searchers investigated n-gram data structures using an inverted file system for n = 2
to n = 26. Trigrams (n-grams of length 3) were determined to be the optimal length,
trading off information versus size of data structure. The Acquaintance System uses
longer n-grams, ignoring word boundaries. The advantage of n-grams is that they
place a finite limit on the number of searchable tokens.

The maximum number of unique n-grams that can be generated, MaxSeg, can be
calculated as a function of n which is the length of the n-grams, and  which is the
number of processable symbols from the alphabet (i.e., non-interword symbols).

Although there is a savings in the number of unique processing tokens and imple-
mentation techniques allow for fast processing on minimally sized machines, false
hits can occur under some architectures. For example, a system that uses trigrams
and does not include interword symbols or the character position of the n-gram in
an item finds an item containing “retain detail” when searching for “retail” (i.e.,
all of the trigrams associated with “retail” are created in the processing of “retain
detail”). Inclusion of interword symbols would not have helped in this example.
Inclusion of character position of the n-gram would have discovered that the n-
grams “ret,” “eta,” “tai,” “ail” that define “retail” are not all consecutively starting
within one character of each other. The longer the n-gram, the less likely this type
error is to occur because of more information in the word fragment. But the longer
the n-gram, the more it provides the same result as full word data structures since

MaxSegn = (λ)n

2.1 Data Structures

34

most words are included within a single n-gram. Another disadvantage of n-grams
is the increased size of inversion lists (or other data structures) that store the linkage
data structure. In effect, use of n-grams expands the number of processing tokens
by a significant factor. The average word in the English language is between six
and seven characters in length. Use of trigrams increases the number of processing
tokens by a factor of five if interword symbols are not included. Thus the inversion
lists increase by a factor of five.

Because of the processing token bounds of n-gram data structures, optimized
performance techniques can be applied in mapping items to an n-gram searchable
structure and in query processing. There is no semantic meaning in a particular n-
gram since it is a fragment of processing token and may not represent a concept.
Thus n-grams are a poor representation of concepts and their relationships. But the
juxtaposition of n-grams can be used to equate to standard word indexing, achiev-
ing the same levels of recall and within 85% precision levels with a significant im-
provement in performance (Adams-92). Vector representations of the n-grams from
an item can be used to calculate the similarity between items. N-grams can be very
useful when the items in the database are not typical textual items. For example a
database of software programs would be far more searchable using n-grams as the
tokenization data structure.

2.1.4  �PAT Data Structure

Using n-grams with interword symbols included between valid processing tokens
equates to a continuous text input data structure that is being indexed in contigu-
ous “n” character tokens. A different view of addressing a continuous text input
data structure comes from PAT trees and PAT arrays. The input stream is trans-
formed into a searchable data structure consisting of substrings. The original con-
cepts of PAT tree data structures were described as Patricia trees (Frakes-92) and
have gained new momentum as a possible structure for searching text and images
and applications in genetic databases. The name PAT is short for PATRICIA Trees
(PATRICIA stands for Practical Algorithm To Retrieve Information Coded In
Alphanumerics.)

In creation of PAT trees each position in the input string is the anchor point for
a sub-string that starts at that point and includes all new text up to the end of the
input. All substrings are unique. This view of text lends itself to many different
search processing structures. It fits within the general architectures of hardware text
search machines and parallel processors. A substring can start at any point in the
text and can be uniquely indexed by its starting location and length. If all strings are
to the end of the input, only the starting location is needed since the length is the
difference from the location and the total length of the item. It is possible to have a
substring go beyond the length of the input stream by adding additional null char-
acters. These substrings are called sistring (semi-infinite string). FigureÂ€2.6 shows
some possible sistrings for an input text.

2 Data Structures and Mathematical Algorithms

35

A PAT tree is an unbalanced, binary digital tree defined by the sistrings. The
individual bits of the sistrings decide the branching patterns with zeros branching
left and ones branching right. PAT trees also allow each node in the tree to specify
which bit is used to determine the branching via bit position or the number of bits to
skip from the parent node. This is useful in skipping over levels that do not require
branching.

The key values are stored at the leaf nodes (bottom nodes) in the PAT Tree. For a
text input of size “n” there are “n” leaf nodes and “nÂ€−Â€1” at most higher level nodes.
It is possible to place additional constraints on sistrings for the leaf nodes. We may
be interested in limiting our searches to word boundaries. Thus we could limit our
sistrings to those that are immediately after an interword symbol. FigureÂ€2.7 gives
an example of the sistrings used in generating a PAT tree. The example only goes
down 9 levels. It shows the minimum binary prefixes that uniquely identify each
row. If the binary representations of “h” is (100), “o” is (110), “m” is (001) and
“e” is (101) then the word “home” produces the input 100110001101…. Using the
sistrings, the full PAT binary tree is shown in Fig.Â€2.8. A more compact tree where
skip (reduced PAT tree) values are in the intermediate nodes is shown in Fig.Â€2.9.
In the compact tree, if only one branch of a tree is being extended by the sistrings,
you can skip comparisons on those levels because the values are not optional (i.e.,
cannot be a 1 or a 0—but just one of those values) and thus there are not branches
that you could take. The value in the intermediate nodes (indicated by rectangles)
is the number of bits to skip until the next bit to compare that causes differences
between similar terms. This final version saves space, but requires one additional
comparison whenever you encounter a 1 and zero optional level to validate there
were no errors in the positions that were jumped over. In the example provided it
is at the leaf level but could occur at any level within the tree (in an oval). In the

Fig. 2.6â†œæ¸€ Examples of
sistrings

Text Economics for Warsaw is complex.

sistring 1 Economics for Warsaw is complex.
sistring 2 conomics for Warsaw is complex.
sistring 5 omics for Warsaw is complex.
sistring 10 for Warsaw is complex.
sistring 20 w is complex.
sistring 30 ex.

Fig. 2.7â†œæ¸€ Sistrings for input
“0110111101101110”

2.1 Data Structures

36

reduced PAT tree the node that has “111” in it could have alternatively been shown
as a circle with a skip of 1 position.

To search, the search terms are also represented by their binary representation
and the PAT trees for the sistrings are traveled down based upon the values in the
search term to look for match(es).

Fig. 2.8â†œæ¸€ PAT Binary tree for input “0110111101101110”

2 Data Structures and Mathematical Algorithms

37

As noted in Chap.Â€1, one of the most common classes of searches is prefix search-
es. PAT trees are ideally constructed for this purpose because each sub-tree contains
all the sistrings for the prefix defined up to that node in the tree structure. Thus all
the leaf nodes after the prefix node define the sistrings that satisfy the prefix search
criteria. This logically sorted order of PAT trees also facilitates range searches since
it is easy to determine the sub-trees constrained by the range values. If the total in-
put stream is used in defining the PAT tree, then suffix, imbedded string, and fixed
length masked searches (see Sect.Â€2.1.5) are all easy because the given characters
uniquely define the path from the root node to where the existence of sistrings need
to be validated. Fuzzy searches are very difficult because large number of possible
sub-trees could match the search term.

A detailed discussion on searching PAT trees and their representation as an array
is provided by Gonnet, Baeza-Yates and Snider (Gonnet-92). In their comparison to
Signature and Inversion files, they concluded that PAT arrays have more accuracy
than Signature files and provide the ability to string searches that are inefficient in
inverted files (e.g., suffix searches, approximate string searches, longest repetition).

Fig. 2.9â†œæ¸€ Reduced PAT tree for “0110111101101110”

2.1 Data Structures

38

Pat Trees (and arrays) provide an alternative structure if string searching is the
goal. They store the text in an alternative structure supporting string manipulation.
The structure does not have facilities to store more abstract concepts and their re-
lationships associated with an item. The structure has interesting potential applica-
tions, and was the original structure used in the BrightPlanet (http://www.bright-
planet.com) system that searches the deep web (discussed in Chap.Â€3). Additionally
PAT trees have been used to index Chinese since they do not have word separators
(see Chap.Â€3).

2.1.5  �Signature File Structure

The goal of a signature file structure is to provide a fast test to eliminate the majority
of items that are not related to a query. The items that satisfy the test can either be
evaluated by another search algorithm to eliminate additional false hits or delivered
to the user to review. The text of the items is represented in a highly compressed
form that facilitates the fast test. Because file structure is highly compressed and
unordered, it requires significantly less space than an inverted file structure and new
items can be concatenated to the end of the structure versus the significant inversion
list update. Since items are seldom deleted from information data bases, it is typical
to leave deleted items in place and mark them as deleted. Signature file search is
a linear scan of the compressed version of items producing a response time linear
with respect to file size.

The surrogate signature search file is created via superimposed coding (Falout-
sos-85). The coding is based upon words in the item. The words are mapped into a
“word signature.” A word signature is a fixed length code with a fixed number of
bits set to “1.” The bit positions that are set to one are determined via a hash func-
tion of the word. The word signatures are ORed together to create the signature
of an item. To avoid signatures being too dense with “1”s, a maximum number of
words is specified and an item is partitioned into blocks of that size. In Fig.Â€2.10 the
block size is set at five words, the code length is 16 bits and the number of bits that
are allowed to be “1” for each word is five.

Fig. 2.10â†œæ¸€ Superimposed
coding

WORD Signature

Computer 0001 0110 0000 0110
Science 1001 0000 1110 0000
graduate 1000 0101 0100 0010
students 0000 0111 1000 0100
study 0000 0110 0110 0100

Block Signature 1001 0111 1110 0110

TEXT: Computer Science graduate students study
(assume block size is five words)

2 Data Structures and Mathematical Algorithms

39

The words in a query are mapped to their signature. Search is accomplished by
template matching on the bit positions specified by the words in the query.

The signature file can be stored as a signature with each row representing a
signature block. Associated with each row is a pointer to the original text block. A
design objective of a signature file system is trading off the size of the data structure
versus the density of the final created signatures. Longer code lengths reduce the
probability of collision in hashing the words (i.e., two different words hashing to
the same value). Fewer bits per code reduce the effect of a code word pattern being
in the final block signature even though the word is not in the item. For example,
if the signature for the word “hard” is 1000 0111 0010 0000, it incorrectly matches
the block signature in Fig.Â€2.10 (false hit). In a study by Faloutous and Christodou-
lakis (Faloutous-87) it was shown that if compression is applied to the final data
structure, the optimum number of bits per word is one. This then takes on the ap-
pearance of a binary coded vector for each item, where each position in the vector
represents the existence of a word in the item. This approach requires the maximum
code length but ensures that there are not any false hits unless two words hash to
the same value.

Search of the signature matrix requires O(N) search time. To reduce the search
time the signature matrix is partitioned horizontally. One of the earliest techniques
hashes the block signature to a specific slot. If a query has less than the number
of words in a block it maps to a number of possible slots rather than just one. The
number of slots decreases exponentially as the number of terms increases (Gus-
tafson-71). Another approach maps the signatures into an index sequential file,
where, for example, the first “n” bits of the signature is used as the index to the
block of signatures that will be compared sequentially to the query (Lee-89). Other
techniques are two level signatures (Sacks-Davis-83) and use of B-tree structures
with similar signatures clustered at leaf nodes (Deppisch-86).

Another implementation approach takes advantage of the fact that searches
are performed on the columns of the signature matrix, ignoring those columns
that are not indicated by hashing of any of the search terms. Thus the signature
matrix may be stored in column order versus row order (Faloutsos-88, Lin-88,
Roberts-79), called vertical partitioning. This is in effect storing the signature
matrix using an inverted file structure. The major overhead comes from updates,
since new “1”s have to be added to each inverted column representing a signature
in the new item.

Signature files provide a practical solution for storing and locating information
in a number of different situations. Faloutsos summarizes the environments that
signature files have been applied as medium size databases, databases with low
frequency of terms, WORM devices, parallel processing machines, and distributed
environments (Faloutsos-92).

One of the first steps in ingesting items is to detect duplicate and near duplicate
items (see Chap.Â€3). One way of representing the text in items is via signatures
which could be used to detect near duplicates.

2.1 Data Structures

40

2.1.6  �Hypertext and XML Data Structures

The advent of the Internet and its exponential growth and wide acceptance as a
new global information network has introduced new mechanisms for representing
information. This structure is called hypertext and differs from traditional informa-
tion storage data structures in format and use. The hypertext is stored in Hypertext
Markup Language (HTML) and eXtensible Markup Language (XML). HTML is
an evolving standard as new requirements for display of items on the Internet are
identified and implemented. Both of these languages provide detailed descriptions
for subsets of text similar to the zoning discussed previously. These subsets can be
used the same way zoning is used to increase search accuracy and improve display
of hit results.

In addition to using the HTML or XML to define zones, it also can be used to
identify metadata to be extracted and associated with that item. For example there
could be a date field or a source field. HTML also contains display information such
as “bolding”. That information is also useful to indicate the importance of a word
used in ranking (ordering) the hits from a search. Over the past few years a new
standard called XHTML has been introduced that merges the XML data description
with the HTML presentation.

2.1.6.1  �Definition of Hypertext Structure

The Hypertext data structure is used extensively in the Internet environment and
requires electronic media storage for the item. Hypertext allows one item to refer-
ence another item via an imbedded pointer. Each separate item is called a node and
the reference pointer is called a link. The referenced item can be of the same or a
different data type than the original (e.g., a textual item references a photograph).
Each node is displayed by a viewer that is defined for the file type associated with
the node.

For example, Hypertext Markup Language (HTML) defines the internal structure
for information exchange across the World Wide Web on the Internet. A document is
composed of the text of the item along with HTML tags that describe how to display
the document. Tags are formatting or structural keywords contained between less-
than, greater than symbols (e.g., <title>, meaning display prominently).
The HTML tag associated with hypertext linkages is where
“a” and “/a” are an anchor start tag and anchor end tag denoting the text that the user
can activate. “href” is the hypertext reference containing either a file name if the ref-
erenced item is on this node or an address (Uniform Resource Locator—URL) and
a file name if it is on another node. “#NAME” defines a destination point other than
the top of the item to go to. The URL has three components: the access method the
client used to retrieve the item, the Internet address of the server where the item is
stored, and the address of the item at the server (i.e., the file including the directory
it is in). For example, the URL for the HTML specification appears:

http://info.cern.ch/hypertext/WWW/MarkUp/HTML.html

2 Data Structures and Mathematical Algorithms

41

“HTTP” stands for the Hypertext Transfer Protocol which is the access protocol
used to retrieve the item in HTML. Other Internet protocols are used for other
activities such as file transfer (ftp://), remote logon (telnet://) and collaborative
newsgroups (news://). The destination point is found in “info.cern.ch” which is
the name of the “info” machine at CERN with “ch” being Switzerland, and “/hy-
pertext/WWW/MarkUP/HTML.html” defines where to find the file HTML.html.
FigureÂ€2.11 shows an example of a segment of a HTML document. Most of the for-
matting tags indicated by < > are not described, being out of the scope of this text,
but detailed descriptions can be found in the hundreds of books available on HTML.
The are the previously described hypertext linkages.

An item can have many hypertext linkages. Thus, from any item there are mul-
tiple paths that can be followed in addition to skipping over the linkages to continue
sequential reading of the item. This is similar to the decision a reader makes upon
reaching a footnote, whether to continue reading or skip to the footnote. Hypertext
is sometimes called a “generalized footnote.” But that can be misleading because
quite often the link is to a major extension of the current item.

In a conventional item the physical and logical structure are closely related. The
item is sequential with imbedded citations to other distinct items or locations in the
item. From the author’s perspective, the substantive semantics lie in the sequential
presentation of the information. Hypertext is a non-sequential directed graph structure,
where each node contains its own information. The author assumes the reader can
follow the linked data as easily as following the sequential presentation. A node may
have several outgoing links, each of which is then associated with some smaller part of
the node called an anchor. When an anchor is activated, the associated link is followed
to the destination node, thus navigating the hypertext network. There is text that the
reader sees that is associated with the anchor (anchor text). This takes on importance
in Information retrieval because it is quite often used as index text for the anchor when
it is pointing to a multimedia file versus just another textual page. The organizational
and reference structure of a conventional item is fixed at printing time while hypertext
nodes and links can be changed dynamically. New linkages can be added and the in-
formation at a node can change without modification to the item referencing it.

Conventional items are read sequentially by a user. In a hypertext environment,
the user “navigates” through the node network by following links. This is the defin-
ing capability that allows hypertext to manage loosely structured information. Each

Fig. 2.11â†œæ¸€ Example of
segment of HTML

<CENTER>
<IMG SC=”/images/home_iglo.jpg” WIDTH=468 HEIGHT=107
BORDER=0 ALT=”WELCOME TO NETSCAPE>

<P>
<DL>

<DD>
The beta testing is over: please read our report and
your can find more references at
HREF=”http://www.charm.net/doc/charm/results/tests.html”>

2.1 Data Structures

42

thread through different nodes could represent a different concept with additional
detail. In a small and familiar network the navigation works well, but in a large
information space, it is possible for the user to become disoriented.

Quite often hypertext references are used to include information that is other
than text (e.g., graphics, audio, photograph, video) in a text item. During the ingest
process described in Chap.Â€3, the system can easily identify different multimedia
modalities to assist in directing those items to the appropriate ingest and indexing
software. The multiple different uses for hypertext references are evolving as more
experience is gained with them. When the hypertext is logically part of the item,
such as in a graphic, the referenced file is usually resident at the same physical
location. When other items created by other users are referenced, they frequently
are located at other physical sites. When items are deleted or moved, there is no
mechanism to update other items that reference them. Linkage integrity is a major
issue in use of hypertext linkages.

Dynamic HTML became available with Navigator 4.0 and Internet Explorer 4.0.
It is a collective term for a combination of the latest HTML tags and options, style
sheets and programming that will let you create WEB pages that are more animated
and responsive to user interaction. Some of the features supported are an object-
oriented view of a WEB page and its elements, cascading style sheets, programming
that can address most page elements add dynamic fonts. Object oriented views are
defined by the Document Object Model—DOM (Micorsoft calls this the Dynamic
HTML Object Model while Netscape calls it the HTML Object Model). For example
every heading on a page can be named and given attributes of text style and color
that can be manipulated by name in a small “program” or script included on the page.
A style sheet describes the default style characteristics (page layout, font, text size,
etc) of a document or portion of a document. Dynamic HTML allows the specifica-
tion of style sheets in a cascading fashion (linking style sheets to predefined levels
of precedence within the same set of pages). As a result of a user interaction, a new
style sheet can be applied changing the appearance of the display. Layering is the use
of alternative style sheets to vary the content of a page by providing content layers
that overlay and superimpose existing content sections. The existing HTML pro-
gramming capabilities are being expanded to address the additional data structures.

HTML prior to version 5 was based upon SGML (Standard Generalized Mark-up
Language) and was a very simplified subset of it. With the increasing use of XML to
define data structures it became sensible to define a new HTML structure that could
work well with XML data and provide Internet displays of the XML data. This lead
to XHTML (extensible hypertext mark-up language). Since it works with XML it
also inherits the “well formed” structural constraints associated with XML. This
makes the automated processing easier versus the more complex parsers needed for
HTML based upon SGML. The other advantage is XHTML documents could in-
clude XML structures from other XML based languages. At this point changes from
HTML to XHTML have been kept to a minimum primarily to adhere to the rules
of XML. Since Internet Explorer has not accepted XHTML there remains major re-
sistance to its general usage. In July 2009 W3C announced that they will stop work
on expanding XHTML and focus on HTML 5 that combines HTML and XHTML.

2 Data Structures and Mathematical Algorithms

43

2.1.6.2  �Hypertext History

Although information sciences is just starting to address the impact of the hypertext
data structure, the concept of hypertext has been around for over 50 years. In 1945
an article written by Vannevar Bush in 1933 was published describing the Memex
(memory extender) system (Bush-67). It was a microfilm based system that would
allow the user to store much of the information from the scientific explosion of the
1940s on microfilm and retrieve it at multiple readers at the user’s desk via indi-
vidual links. The term “hypertext” came from Ted Nelson in 1965 (Nelson-74). Nel-
son’s vision of all the world’s literature being interlinked via hypertext references
is part of his Xanadu System. The lack of cost effective computers with sufficient
speed and memory to implement hypertext effectively was one of the main inhibi-
tors to its development. One of the first commercial uses of a hypertext system was
the mainframe system, Hypertext Editing System, developed at Brown University
by Andres van Dam and later sold to Houston Manned Spacecraft Center where
it was used for Apollo mission documentation (van Dam-88). Other systems such
as the Aspen system at MIT, the KMS system at Carnegie Mellon, the Hyperties
system at the University of Maryland and the Notecards system developed at Xe-
rox PARC advanced the hypertext concepts providing hypertext (and hypermedia)
systems. HyperCard, delivered with Macintosh computers, was the first widespread
hypertext production product. It had a simple metalanguage (HyperTalk) that facili-
tated authoring hypertext items. It also provided a large number of graphical user
interface elements (e.g., buttons, hands,) that facilitated the production of sophisti-
cated items.

Hypertext became more available in the early 1990s via its use in CD-ROMs
for a variety of educational and entertainment products. Its current high level of
popularity originated with it being part of the specification of the World Wide Web
by the CERN (the European Center for Nuclear Physics Research) in Geneva, Swit-
zerland. The Mosaic browser, freely available from CERN on the Internet, gave
everyone who had access the ability to receive and display hypertext documents.

2.1.7  �XML

The eXtensible Markup Language (XML) is also becoming a standard encoding
structure for documents on the WEB and as a data exchange format for Web ser-
vices applications (e.g., used for web services). Its first recommendation (1.0) was
issued on February 10, 1998. It is a middle ground between the simplicities but lack
of flexibility of HTML and the complexity but richness of SGML (ISO 8879). Its
objective is extending HTML with semantic information and removing the display
specification from the data specification. The logical data structure within XML
is defined by a Data Type Description (DTD) and is not constrained to the 70 de-
fined tags and 50 attributes in the single DTD for HTML. The original DTD did
not allow for complex definition of data types within the data structure so it was

2.1 Data Structures

44

expanded to other ways of defining XML structures called schemas. The DTD is
a very restricted version of an XML schema. Some of the other more common
schemas are Schema W3C and RELAX NG. The user can create any tags needed to
describe and manipulate their structure. The W3C (World Wide Web Consortium)
is redeveloping HTML as a suite of XML tags. The following is a simple example
of XML tagging:

<company>Widgets Inc.</company>
<city>Boston</city>
<state>Mass</state>
<product>widgets</product>

The W3C is also developing a Resource Description Format (RDF) for representing
properties of WEB resources such as images, documents and relationships between
them. This will include the Platform for Internet Content Selection (PICS) for at-
taching labels to material for filtering (e.g., unsuitable for children).

Hypertext links for XML were being defined in the Xlink (XML Linking Lan-
guage) but work stopped in this area. Xpoint (XML Pointer language) specifica-
tions. This would allow for distinction for different types of links to locations within
a document and external to the document. This would allow an application to know
if a link is just a repositioning reference within an item or link to another docu-
ment that is an extension of the existing document. This would help in determining
what needs to be retrieved to define the total item to be indexed. But the standards
committees could not get a critical mass following interested in implementing this
concept.

Finally XML will include an XML Style Sheet Linking definition to define how
to display items on a particular style sheet and handle cascading style sheets. This
will allow designers to limit what is displayed to the user (saving on display screen
space) and allow expansion to the whole item if desired. Cascading Style Sheets
provide an easy way to dynamically manage the output display of XML to the user.

2.2  �Mathematical Algorithms

2.2.1  �Introduction

There are a number of mathematical concepts that form the basis behind a lot of
the weighted indexing techniques used in creating the indices for information
retrieval systems. The goal of this section is to provide a brief introduction to the
important mathematical concepts. If the student wants to use the concepts in ei-
ther research or applications they are developing then significant additional read-
ing on the concepts is required. The two most important theories are the Bayes-
ian theory and Shannon’ Information theory. Bayesian models are a conditional
model associated with probabilities that estimates the probability of one event

2 Data Structures and Mathematical Algorithms

45

given another event takes place. This directly maps into the probability that a
document is relevant given a specific query. It additionally can be used to define
clustering relationships used in automatic creation of taxonomies associated with
search results and item databases. Shannon’s information model describes the
“information value” given the frequency of occurrence of an event. In this case it
can be related to how many items contain a particular word and how that affects
its importance (if a word is found in every item in the database it does not have
much search vale).

Hidden Markov Models are the basis behind the transformation of audio into
transcribed text that is one approach to indexing audio and video. In addition it is
frequently used in the optical character processing of text in images to computer
recognized text. It also has been proposed as a basis behind indexing and search for
textual items. Latent semantic indexing is one of the best mathematical techniques
to explain how a “concept” index is created and it has been used commercially to
create concept indices. It is technique that allows for automatic mapping of millions
of words used to create items into a small number (e.g. 300) concept vectors that
represent the vocabulary of the language. The concept vectors are then like a meta-
language used to express both the items and the queries.

In addition to the algorithms used in creating the index, there is a need in in-
formation retrieval for learning algorithms that allow the system to learn what is
of interest to a user and then be able to use the dynamically created and updated
algorithms to automatically analyze new items to see if they satisfy the existing cri-
teria. This is used in techniques often labeled as “Categorization”. The two primary
techniques used for the learning algorithms are neural networks and support vector
machines.

The goal of this section is to introduce the mathematical basis behind the algo-
rithms used in information retrieval. To really understand the details on how the
algorithms are used in information retrieval you should take courses in probability
and machine learning.

2.2.2  �Bayesian Mathematics

The earliest mathematical foundation for information retrieval dates back to the
early 1700s when Thomas Bayes developed a theorem that relates the conditional
and marginal probabilities of two random events—called Baye’s Theorem. It can
be used to compute the posterior probability (probability assigned “after” relevant
evidence is considered) of random events. For example, it allows to consider the
symptoms of a patient and use that information to determine the probability of what
is causing the illness. Bayes’ theorem relates the conditional and marginal prob-
abilities of events A and B, where B cannot equal zero:

P(A|B) =
P(B|A)P(A)

P(B)
.

2.2 Mathematical Algorithms

46

P(A) is called the prior or marginal probability of A. It is called “prior” because
it does not take into account any information about B. P(A|B) is the conditional
probability of A, given B. It is sometimes named the posterior probability because
the probability depends upon the probability of B. P(B|A) is the conditional prob-
ability of B given A. P(B) is the prior or marginal probability of B, and normalizes
the result.

Putting the terms into words given our example helps in understanding the formula:

•	 The probability of a patient having the flu given the patient has a high tempera-
ture is equal to the probability that if you have a high temperature you have the
flu times the probability you will have the flu. This is then normalized by divid-
ing times the probability that you have a high temperature.

To relate Bayesian Theory to information retrieval you need only to consider the
search process. A user provides a query, consisting of words, which represent the
user’s preconceived attempt to describe the semantics needed in an item to be re-
trieved for it to be relevant. Since each user submits these terms to reflect their own
idea of what is important, they imply a preference ordering (ranking) among all of
the documents in the database. Applying this to Bayes’s Theorem you have:

The major issues with using this to determine which items are most relevant to the
query are Bayes Theorem assumes independence (i.e., each term is independent of
every other term), and how to get the probability for some of the terms in the above
formula. These issues will be discussed in Chap.Â€4 on indexing.

A Bayesian network is a directed acyclic graph in which each node represents
a random variable and the arcs between the nodes represent a probabilistic depen-
dence between the node and its parents (Howard-81, Pearl-88). FigureÂ€2.12 shows
the basic weighting approach for index terms or associations between query terms
and index terms.

The nodes C1 and C2 represent “the item contains concept Ci” and the F nodes
represent “the item has feature (e.g., words) Fij.” The network could also be inter-

P(An item is relevant/Query) =
P(Query/Relevant item) P(An item is relevant)

P(Query)

Fig. 2.12â†œæ¸€ Two-level Bayesian network

2 Data Structures and Mathematical Algorithms

47

preted as C representing concepts in a query and F representing concepts in an item.
The goal is to calculate the probability of Ci given Fij. To perform that calculation
two sets of probabilities are needed:

1.	 The prior probability P(Ci) that an item is relevant to concept C
2.	 The conditional probability P(Fij/Ci) that the features Fij where jÂ€=Â€1, m are pres-

ent in an item given that the item contains topic Ci.

The automatic indexing task is to calculate the posterior probability P(Ci/Fi1, … ,
Fim), the probability that the item contains concept Ci given the presence of features
Fij. The Bayes inference formula that is used is:

If the goal is to provide ranking as the result of a search by the posteriors, the Bayes
rule can be simplified to a linear decision rule:

where I(Fik) is an indicator variable that equals 1 only if Fik is present in the item
(equals zero otherwise) and w is a coefficient corresponding to a specific feature/
concept pair. A careful choice of w produces a ranking in decreasing order that
is equivalent to the order produced by the posterior probabilities. Interpreting the
coefficients, w, as weights corresponding to each feature (e.g., index term) and the
function g as the sum of the weights of the features, the result of applying the for-
mula is a set of term weights (Fung-95).

2.2.3  �Shannon’s Theory of Information

In the late 1940s Claude Shannon, a research mathematician at Bell Telephone
Laboratories, invented a mathematical theory of communication to be used in the
design of telephone systems. The issues to be resolved were how to design tele-
phone systems to carry the maximum amount of information and how to cor-
rect for noise on the lines. He approached the problem by defining a simple ab-
straction of human communication called the channel. Shannon’s communication
channel consisted of a sender (a source of information), a transmission medium
(with noise), and a receiver (whose goal is to reconstruct the sender’s messages).
In order to analyze the sending of the information through the channel, he de-
fined the concept of the amount of information in a message. In this concept he
considered redundant information versus unique information. In this approach a
message is very informative (has a high information value) if the chance of its oc-
currence is small because the loss of the message means the information will be
lost. If, in contrast, a message is very predictable, then it has a small amount of
information—one is not surprised to receive it and its loss is not as critical because
it will be sent again.

Of less importance to information retrieval Shannon also defined the entropy
rate that measured the production rate of information production and a measure of

P(Ci/Fi1, . . . , Fim) = P(Ci) P(Fi1, . . . , Fim/Ci)\P(Fi1, . . . , Fim).

g(Ci/Fi1, . . . , Fim) = �kI(Fik)w(Fik,Ci)

2.2 Mathematical Algorithms

48

the channel capacity to carry information. He showed that if the amount of informa-
tion you want to send exceeds the capacity you will lose information. If the amount
of information you want to send is less than the capacity you can encode the infor-
mation in a way that it will be received without errors.

Shannon adapted his theory to analyze ordinary human (written) language. He
showed that it is quite redundant, using more symbols and words than necessary to
convey messages. Presumably, this redundancy is used by us to improve our ability
to recognize messages reliably and to communicate different types of information.
The formula for the information value of an event is:

This lead to the interpretation of Shannon’s theory that the information value of a
word is inversely proportional to how often it is used. A word that is found in every
document has no information value because it will always be there. But a word that
is found in few documents has high information value when you want to retrieve
documents with that word in it. This theory is the basis for the “inverse document
formula” (IDF) weighting formula used in many informational retrieval weighting
algorithms. It is also used in many other ways such as by the Autonomy product
in how it does concept searches—by applying this as a factor on the words it finds
when it creates taxonomy for them. This will be discussed in detail in Chap.Â€4 on
Indexing.

2.2.4  �Latent Semantic Indexing

Latent Semantic Indexing (LSI) was created to support information retrieval and
solve the problem of the mismatch between a user’s vocabulary and that of the
author. Its assumption is that there is an underlying or “latent” structure represented
by interrelationships between words (Deerwester-90, Dempster-77, Dumais-95,
Gildea-99, Hofmann-99). LSI starts with a “vector/matrix view of a set of docu-
ments. Just consider a vector where every position represents one word in a lan-
guage. Thus it will be a vector that will have millions of positions. A document can
be represented by the vector by placing a “weight” in each word location as to the
weight of that word in describing the semantics of the document. If you place the
vector for each document in the database in rows you will have a matrix represent-
ing your documents.

Latent Semantic Indexing uses singular-value decomposition to model the asso-
ciative relationships between terms similar to eigenvector decomposition and factor
analysis (see Cullum-85). This is a form of factor analysis. In SVD, a rectangular
matrix is decomposed into the product of three other matrices. One matrix describes
the original row entities as vectors of derived orthogonal factor values, another
matrix describes the original column entities in the same way, and the final matrix
is a diagonal matrix containing scaling values such that when the three components
are matrix-multiplied, the original matrix is reconstructed. There is a mathematical

Infok = −log(pk)

2 Data Structures and Mathematical Algorithms

49

proof that any matrix can be so decomposed perfectly, using no more factors than
the smallest dimension of the original matrix.

When fewer than the necessary number of factors is used, the reconstructed ma-
trix is a least-squares best fit which minimizes the differences between the original
and reduced matrix. One can reduce the dimensionality of the solution simply by
deleting coefficients in the diagonal matrix, ordinarily starting with the smallest.
Values. By having the values are sorted this will be the bottom rows of the matrix.

Mathematically, the rectangular matrix can be decomposed into the product of
three matrices. Let X be a mÂ€×Â€n matrix such that:

where T0 and D0 have orthogonal columns and are mÂ€×Â€r and rÂ€×Â€n matrices, S0 is
an rÂ€×Â€r diagonal matrix and r is the rank of matrix X. This is the singular value
decomposition of X. The k largest singular values of S0 are kept along with their
corresponding columns/rows in T0 and D0 matrices, the resulting matrix:

is the unique matrix of rank k that is closest in least squares sense to the original X.
The matrix

_
X, containing the first k independent linear components of the original

X represents the major associations with noise eliminated.
If you consider X to be the term-document matrix (e.g., all possible terms being rep-

resented by columns and each item being represented by a row), then truncated singular
value decomposition can be applied to reduce the dimensionality caused by all terms to
a significantly smaller dimensionality that is an approximation of the original X:

where u1 … uk and v1… vk are left and right singular vectors and sv1 … svk are
singular values. A threshold is used against the full SV diagonal matrix to determine
the cutoff on values to be used for query and document representation (i.e., the di-
mensionality reduction). Hofmann has modified the standard LSI approach using ad-
ditional formalism via Probabilistic Latent Semantic Analysis (Hofmann-99). Chap-
terÂ€4 will relate this specifically to informational retrieval indexing with examples.

It is instructive to show how to calculate the different matrices. An example of
how to calculate the three matrices follows (an online calculator for SVD is avail-
able at http://www.bluebit.gr/matrix-calculator/):

Perform Single Value Decomposition on the given matrix A such that AÂ€=Â€USVT

X = T0 · S0 · D0
′

_
X = Tn · Sn · Dn

′

X = U · SV · V′

A =





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





2.2 Mathematical Algorithms

50

Step 1:â•‡ Calculate ATA.

Step 2:â•‡ Find the determinant such that |ATAÂ€ −Â€ CI|Â€ =Â€ 0—where I is the identity
matrix and C is a scalar—to obtain the Eigenvalues and singular values which will
be used to construct the S matrix.

AT A =




1 0 1 0 1 1 1 1 1 0 0
1 1 0 1 0 0 1 1 0 2 1
1 1 0 0 0 1 1 1 1 0 1



 ×





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





=




7 3 5
3 10 5
5 5 7





AT A − CI =




7 3 5
3 10 5
5 5 7



 −



C ∗




1 0 0
0 1 0
0 0 1









=




7 − c 3 5

3 10 − c 5
5 5 7 − c





∣∣ATA − CI
∣∣ = (7 − c)

[
(10 − c)(7 − c) − (5 ∗ 5)

]
− 3

[
3(7 − c) − (5 ∗ 5)

]

+ 5
[
(3 ∗ 5) − 5(10 − c)

]

= (7 − c)(70 − 10c − 7c + c2 − 25) − 3(21 − 3c − 25)

+ 5(15 − 50 + 5c)

= (7 − c)(c2 − 17c + 45) − 3(−3c − 4) + 5(5c − 35)

= 7c2 − 119c + 315 − c3 + 17c2 − 45c + 9c + 12 + 25c − 175

= −c3 + 24c2 − 130c + 152 = 0

c1 = 16.801
c2 = 5.577
c3 = 1.622




 Eigenvalues

|c1| > |c2| > |c3|

2 Data Structures and Mathematical Algorithms

51

The singular values would be:

Step 3:â•‡ Compute the Eigenvectors by evaluating (ATAÂ€–Â€ciI) X1Â€=Â€0—where ci cor-
responds to each of the Eigenvalues that were computed in the previous step.

Calculating the Eigenvector for the Eigenvalue c1Â€=Â€16.801

� (1)

� (2)

� (3)

By subtracting Eq.Â€(2) from Eq.Â€(1) we get:

s1 =
√

16.801 = 4.0989

s2 =
√

5.577 = 2.3616

s3 =
√

1.622 = 1.2736

S =




s1 0 0
0 s2 0
0 0 s3



 =




4.0989 0 0

0 2.3616 0
0 0 1.2736





S−1 =




0.244 0 0

0 0.4234 0
0 0 0.7852





AT A − c1I =




7 − 16.801 3 5

3 10 − 16.801 5
5 5 7 − 16.801





=




−9.801 3 5

3 −6.801 5
5 5 −9.801





(AT A − c1I)X1 =




−9.801 3 5

3 −6.801 5
5 5 −9.801



 ×




x1

x2

x3



 =




0
0
0





−9.801x1 + 3x2 + 5x3 = 0

3x1 − 6.801x2 + 5x3 = 0

5x1 + 5x2 − 9.801x3 = 0

−12.801x1 + 9.801x2 = 0 → x1 = (−9.801/−12.801) x2 → x1 = 0.7656 x2

x1 −1

x2 −1.3061

x3 −1.1765

2.2 Mathematical Algorithms

52

Normalize the vector by the length

Using similar approach for calculating the Eigenvector for the Eigenvalue c2Â€=Â€5.577
you get

Normalize the vector by the length

And calculating the Eigenvector for the Eigenvalue c3Â€=Â€1.622

Normalize the vector by the length

The Eigenvector for c1 =




−1

−1.3061
−1.1765





L =
√

(−1)2 + (−1.3061)2 + (−1.1765)2 =
√

4.0901 = 2.0224

The normalized Eigenvector for c1 =




−0.4945
−0.6458
−0.5817





The Eigenvector for c2 =




1

−1.1083
0.3805





L =
√

(1)2 + (−1.1083)2 + (0.3805)2 =
√

2.3731 = 1.5405

The normalized Eigenvector for c2 =




0.6491

−0.7194
0.247





The Eigenvector for c3 =




−1

−0.4422
1.3408





L =
√

(−1)2 + (−0.4422)2 + (1.3408)2 =
√

2.9932 = 1.7301

The normalized Eigenvector for c3 =




−0.5780
−0.2556

0.775





2 Data Structures and Mathematical Algorithms

53

Step 4:â•‡ Construct the V matrix by using the calculated Eigenvactors as columns
in V.

Step 5:â•‡ Calculate the U matrix such that UÂ€=Â€AVS−1.

V T =




0.4945 0.6491 0.5780
0.6458 −0.7194 0.2556

−0.5817 −0.247 0.775





U =





1
0
1
0
1
1
1
1
1
0
0

1
1
0
1
0
0
1
1
0
2
1

1
1
0
0
0
1
1
1
1
0
1





×




−0.4945 0.6491 −0.5780
−0.6458 −0.7194 −0.2556
−0.5817 0.247 0.775





×




0.244 0 0

0 0.4234 0
0 0 0.7852





U =





0.4202
0.2995
0.1207
0.1576
0.1207
0.2626
0.4202
0.4202
0.2626
0.3152
0.2995

0.0748
−0.2
0.2748
−0.3046
0.2748
0.3794
0.0748
0.0748

0.3794
−0.6092
−0.2

−0.0461
0.4078
−0.4539
−0.2007
−0.4539
0.1546
−0.0461
−0.0461
0.1546
−0.4014
0.4078





2.2 Mathematical Algorithms

2.2.5  �Hidden Markov Models

Hidden Markov Models (HMM) have been applied for the last 20 years to solving
problems in speech recognition and to a lesser extent in the areas locating named
entities (Bikel-97), optical character recognition (Bazzi-98) and topic identification
(Kubala-97). More recently HMMs have been applied more generally to informa-
tion retrieval search with good results. One of the first comprehensive and practi-

54

cal descriptions of Hidden Markov Models was written by Dr. Lawrence Rabiner
(Rabiner-89).

A HMM can best be understood by first defining a discrete Markov process. The
easiest way to understand it is by an example. Let’s take the example of a three state
Markov Model of the Stock Market. The states will be one of the following that is
observed at the closing of the market:

State 1 (S1): market decreased
State 2 (S2): market did not change
State 3 (S3): market increased in value

The movement between states can be defined by a state transition matrix with state
transitions (this assumes you can go from any state to any other state):

Given that the market fell on one day (State 1), the matrix suggests that the prob-
ability of the market not changing the next day is 0.1. This then allows questions
such as the probability that the market will increase for the next 4 days then fall.
This would be equivalent to the sequence of SEQÂ€=Â€{S3, S3, S3, S3, S1}. In order
to simplify our model, lets assume that instead of the current state being dependent
upon all the previous states, lets assume it is only dependent upon the last state
(discrete, first order, Markov chain.) This would then be calculated by the formula:

In the equation we also assume the probability of the initial state of S3 is S3(init)Â€=Â€1.
The Fig.Â€2.13 depicts the model. The directed lines indicate the state transition prob-
abilities ai,j. There is also an implicit loop from every state back to itself. In the
example every state corresponded to an observable event (change in the market).

A =
{
aI,i

}
=

0.5 0.3 0.4
0.1 0.6 0.3
0.6 0.7 0.5

P(SEQ) = P[S3, S3, S3, S3, S1]

= P[S3] ∗ P[S3/S3] ∗ P[S3/S3] ∗ P[S3/S3] ∗ P[S1/S3]

= S3(init) ∗ a3,3 ∗ a3,3 ∗ a3,3 ∗ a1,3

= (1.0) ∗ (.5) ∗ (.5) ∗ (.5) ∗ (.4)

= .05

Fig. 2.13â†œæ¸€ Diagram of
Markov model

S1 S2

S3

2 Data Structures and Mathematical Algorithms

55

When trying to apply this model to less precise world problems such as in speech
recognition, this model was too restrictive to be applicable. To add more flexibility
a probability function was allowed to be associated with the state. The result is
called the Hidden Markov Model. It gets its name from the fact that there are two
stochastic processes with the underlying stochastic process not being observable
(hidden), but can only be analyzed by observations which originate from another
stochastic process. Thus the system will have as input a series of results, but it will
not know the number of states that were associated with generating the results nor
the probability of the states. So part of the HMM process is in determining which
model of states best explains the results that are being observed.

A more formal definition of a discrete Hidden Markov Model is summarized by
consists of the following:

1.	 SÂ€=Â€{s0, … , sn−1} as a finite set of states where s0 always denotes the initial state.
Typically the states are interconnected such that any state can be reached from
any other state.

2.	 VÂ€=Â€{v0, … , vm−1} is a finite set of output symbols. This will correspond to the
physical output from the system being modeled.

3.	 AÂ€=Â€SÂ€×Â€S a transition probability matrix where ai,j represents the probability of
transitioning from state i to state j such that

∑n−1
j=0 ai,j = 1 for all iÂ€=Â€0, …, nÂ€−Â€1.

Every value in the matrix is a positive value between 0 and 1. For the case where
every state can be reached from every other state every value in the matrix will
be non-zero.

4.	 BÂ€=Â€SÂ€×Â€V is an output probability matrix where element bj,k is a function deter-
mining the probability and

∑m−1
k=0 bj ,k = 1 for all jÂ€=Â€0, … , nÂ€−Â€1.

5.	 The initial state distribution.

The HMM will generate an output symbol at every state transition. The transition
probability is the probability of the next state given the current state. The output
probability is the probability that a given output is generated upon arriving at the
next state.

Given the HMM definition, it can be used as both a generator of possible se-
quences of outputs and their probabilities (as shown in example above), or given a
particular out sequence it can model its generation by an appropriate HMM model.
The complete specification of a HMM requires specification of the states, the output
symbols and three probability measures for the state transitions, output probability
functions and the initial states. The distributions are frequently called A, B, and π,
and the following notation is used to define the model:

One of the primary problems associated with HMM is how to efficiently calculate
the probability of a sequence of observed outputs given the HMM model. This can
best be looked at as how to score a particular model given a series of outputs. Or
another way to approach it is how to determine which of a number of competing
models should be selected given an observed set of outputs. This is in effect uncov-

λ = (A, B, π).

2.2 Mathematical Algorithms

56

ering the hidden part of the model. They typical approach is to apply an “optimality
criterion” to select the states. But there are many such algorithms to choose from.
Once you have selected the model that you expect corresponds to the output, then
there is the issue of determining which set of state sequences best explains the out-
put. The final issue is how best to tune the  model to maximize the probability of
the output sequence given . This is called the training sequence and is crucial to
allow the models to adapt to the particular problem being solved. More details can
be found in Rabiner’s paper (Rabiner-89).

2.2.6  �Neural Networks

An artificial neural network is based upon biological neural networks and is gen-
erally simplified to a directed multilevel network of that uses weighted additive
values coupled with non-linear transfer functions and a final output layer. One
of the first neural networks created was the Perceptron network created by Frank
Rosenblatt in 1958. It had an analogy to how the visual system works. Thus, the
first input layer was called the “retina” that distributed inputs to the second layer
composed of association units that combined the inputs with weights and triggered
a step function that would send the results to the final output layer. The output layer
would do the final combination of the inputs and output the results. This model was
a simple approximation of the neurons in the human system. But the use of a step
function, where a functions value increases in steps versus is continuous and each
step would be a different category, made the mathematics very difficult to allow the
system to train itself based upon inputs. By 1969 the problems with this model were
documented by papers by Marvin Minsky and Seymore Papert. The mathemati-
cal approach was revived in 1986 by Rumelhart, Hinton and Williames when they
expanded the concept to include a multilayer model that used nonlinear transfer
functions in lieu of the step functions.

There are many different types and approaches to neural networks. One of
the more common approaches continues with the Perceptron multilayer network
which is presented below. The simplest network is a three layer feed forward net-
work that has an input layer, middle layer (often called hidden layer) and an output
layer. FigureÂ€2.14 shows the network. In the Input Function (IF), normalizes the

Fig. 2.14â†œæ¸€ Neural network

X1

Y1

Y1

Tm(∑Ui * Wj)

Tm(∑Ui * Wj)

U1

Un

V1

V1

X1
OF(∑Vi * Zj)

OF(∑Vi * Zj)

IF(X1)

IF(Xn)

2 Data Structures and Mathematical Algorithms

57

input values by subtracting the median and dividing by the interquartile range and
presents the resultant value Ui to the middle layer. The interquartile range (IQR) is
a measure of the variability of the distribution and is less sensitive to errors, being
equal to the difference between the third and first quartiles. If you divide the sorted
list into four parts, the quartiles are the three values from the list that separate each
section—the median is the second quartile. Every value goes to very function in
the middle layer. Each value is multiplied by a weight W and then summed creat-
ing a new vaue that then has the transfer function T applied to it producing the out-
put Vi. The V values are then multiplied by a weight Z and summed. The summed
value has the Output Transfer function (OF) applied to it producing the final output
from the network, Y. This is a feed forward network because none of the values are
fed back to previous layers. All neural networks have an Input and Output layer.
The number of middle layers can vary. But in general only one middle layer is
needed for most problems.

Training is a critical aspect of a neural network. In the training process a set of
known data is used that the ideal outputs (Yi) are known. In the training process the
objective is to modify the weight values (W and Z) to match the output as closely
as possible. This leads to some of the problems that have to be monitored in the
training process. Additional middle layers may help improve the results although
as noted above usually one or two middle layers are sufficient. It may be useful to
not feed all of the outputs from one layer into all of the nodes at the next layer (the
number of nodes at one layer can be different than the previous layer—in the above
example they appear to be the same). The biggest issue is to be careful that the solu-
tion is not a local maximum versus a more general global maximum that will apply
as new inputs are processed causing over fitting of the solution.

Selecting the number of nodes (neurons) at each layer is very complex. If too few
are selected it will be difficult to model complex problems. If too many are selected
the computation time increases expontentially and the result can more likely be
overfitted to the training data. For this reason two sets of test data are used. The first
for the training and the second to validate that the system has not been overfitted to
just the original data set.

Trying to find the optimum weights is also a very difficult problem. There
can be hundreds of weights that need to be estimated. But the estimation is not
linear to produce the desired outputs. In the process of finding the weights there
will be many cases of local minima and maxima that need to be avoided. To
avoid local minima the easiest technique is to try a number of random starting
points in the estimation and choose the one that works best. A more sophisticated
technique uses widely separated random values and then gradually reduces the
widely separated to closer values to produce the weight. By starting with widely
varying values the system is more likely to avoid a particular minima that drives
to a local solution.

In a typical training scenario Backward propagation is used. The current set of
weights will produce a set of outputs. These outputs are then used with the known
expected outputs to calculate the error difference. The errors are then averaged
across the outputs and then is propagated back through the network in reverse di-
rection where the adjustments to the weights are made to minimize the error.

2.2 Mathematical Algorithms

58

2.2.7  �Support Vector Machines

Support Vector Machines (SVM) is recently becoming the technical base for learn-
ing systems. SVMs are a type of machine learning algorithms used to classify items.
A Support Vector Machine (SVM) assigns an item to a category by constructing an
N-dimensional hyperplane that optimally separates the data into two categories. The
SVM approach maps the set of attributes that make up the vector representing an
item into a set of features. The features are then used to determine the hyperplane
that distinguishes between the two categories an item could go into. One of the chal-
lenges is to find an optimal feature representation. The goal of SVM is to find the
optimal hyperplane that separates clusters of vector in such a way that items with
one category of the target variable are on one side of the plane and items with the
other category are on the other side of the plane. The vectors near the hyperplane
are the support vectors. The optimal hyperplane will have the maximum distance
from the support vectors of each category to the plane that classifies them. This will
reduce the errors in miss classifying a new item.

To understand the SVM process lets take a simple two dimensional example.
Let’s assume we have a number of items that are discussing biology and Physics.
Let’s assume that we have one feature on the X axis and another feature on the
Y axis. FigureÂ€2.15a, b shows the graphical layout of each category with circles
being Biology and squares being Physics. The SVM process tries to determine a
1-dimensional hyperplane (i.e., a line) that maximally separates the two groups of
items. This is sometimes referred to as maximizing the “fatness” and gives the best
classification since it has the maximum difference to help in determining which
class an items is assigned to. The diagram shows two options—one being a vertical
line and the other a line at an angle. It’s obvious by observation that the hyperplane

Fig. 2.15â†œæ¸€ a Vertical separator. b Optimal separator

2 Data Structures and Mathematical Algorithms

59

for the diagonal line is better in that it has the maximum distance between items
in each group and the hyperplane. The dashed lines in each figure are showing the
specific items (support vectors) from each group that are closest to the hyperplane.
The distance between the dashed lines is called the margin and the goal is to find
the hyperplane that maximizes the margin. The specific items that are closest to the
dashed lines are called the support vectors because they drive the size of the margin.
Even though they appear as points in the diagram they are called support vectors be-
cause each point defines a vector from the original to that point. As the hyperplane
changes, the support vectors (items) that drive the margin change. The Support Vec-
tor Machine finds the hyperplane that has support vectors that maximize the margin.

In the example we took the simplest case of a two dimension set of items. This
can easily expand to a multidimensional case with a multidimensional hyperplane.
The more complex case is when the items are not separated by a plane but some
sort of non-linear region (e.g. a curved line). In this case SVM uses a kernel func-
tion that maps the items into a different space where they can now be separated by a
hyperplane. In some cases additional dimensionality needs to be added in the kernel
mapping process. SVM models can be related to neural networks. A SVM model
using a sigmoid kernel function is equivalent to a two-layer, perceptron neural net-
work.

In addition to the use of mapping to higher dimensionality for the non-linear
problem, the real world problem of trying to categorize items based upon text is
never statistically pure. There will always be exceptions that come from the vari-
ances of language. This is referred to as problems due to the high dimensionality
(i.e., lots of unique processing tokens) of text categorization. The approach to solv-
ing this is called soft margin classification. In this case instead of trying to raise
the dimensionality to account for the data points that are categorized in the wrong
category, we ignore them. The way to handle them is to introduce slack variables
and by adjusting them minimize the impact by moving those points. The goal is to
tradeoff moving points to fit within the current “fat”.

2.3  �Summary

Data structures provide the implementation basis of search techniques in Informa-
tion Retrieval Systems. They may be searching the text directly, as in use of signa-
ture and possibly PAT trees, or providing the structure to hold the searchable data
structure created by processing the text in items. The most important data structure
to understand is the inverted file system. It has the greatest applicability in informa-
tion systems. The use of n-grams has also found successes in a limited number of
commercial systems. Even though n-grams have demonstrated successes in finding
information, it is not a structure that lends itself to representing the concepts in an
item. There is no association of an n-gram with a semantic unit (e.g., a word or
word stem). Judging the relative importance (ranking) of items is much harder to
accomplish under this data structure and the algorithmic options are very limited.

2.3 Summary

60

PAT and Signature data file structures have found successful implementations
in certain bounded search domains. Both of these techniques encounter significant
problems in handling very large databases of textual items. The Hypertext data
structure is the newest structure to be considered from an Information Retrieval
System perspective. It certainly can be mathematically mapped to linked lists and
networks. But the model of how dependencies between items as hyperlinks are
resolved is just being considered. The future high usage of this structure in informa-
tion systems makes its understanding important in finding relevant information on
the Internet. Marchionini and Shneiderman believe that hypertext will be used in
conjunction with full text search tools (Marchionini-88).

Information retrieval algorithms from basic indexing to learning algorithms for
categorization are based upon a number of mathematical models. A general un-
derstanding of the models and how they apply to information retrieval provide
a foundation for develop of new algorithms. Baysean conditional probabilities,
Shannon’s Information theory and Latent Semantic Indexing are useful in different
approaches to defining the ranked index for items. Hidden Marjkov Models can
be used for indices but have greater application in multimedia indexing. Neural
networks and Support vector Machines provide a foundation for categorization
algorithms and learning how to filter items based upon training examples provided
by the users.

2.4  �Exercises

1.	 Describe the similarities and differences between term stemming algorithms and
n-grams. Describe how they affect precision and recall.

2.	 a.	� Compare advantages and disadvantages of Porter Stemming algorithm, Dic-
tionary stemming algorithm and Success Variety stemming algorithm.

b.	 Create the symbol tree for the following words (bag, barn, boss, bot any, box,
bottle, botch and both). Using successor variety and the Peak and Plateau
algorithm, determine if there are any stems for the above set of words.

c.	 If there are stems created explain if they make any sense as a stem and why.
3.	 a.	� Create the PATRICIA Tree and Reduced PATRICIA for the following binary

input. Take it to 9 levels of sistrings: 011100111001111111010
b.	 Given the query 111000 show how it would be executed against each tree

with the number of decisions.
4.	 Assuming a term is on the average 6 characters long, calculate the size of the

inversion lists for each of the sources in TableÂ€1.1, Distribution of words in TREC
Database. Assume that 30% of the words in any item are unique. What is the
impact on the calculation if the system has to provide proximity versus no prox-
imity. Assume 4Â€bytes is needed for the unique number assigned to each item.

5.	 Describe how a bigram data structure would be used to search for the search
term “computer science” (NOTE: the search term is a contiguous word phrase).
What are the possible sources of errors that could cause non-relevant items to
be retrieved?

2 Data Structures and Mathematical Algorithms

61

6.	 Perform Single value decomposition on the following matrix:

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 3 1

1 0 2

0 2 3

1 2 1

2 1 1

0 1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2.4 Exercises

63

3.1  �Introduction to Ingest

Ingest is the initial process in an information retrieval systems. It is the process
that receives the items to be stored and indexed in the system and performs the
initial processing of them. The ingest process can be broken down into a number
of subprocesses. Each of the subprocesses can add value to the final index and
improve the capability of the system to get better results. The ingest subprocess
gets the items to be ingested into the system. This process can be either a “pull” or
a “catch”. A pull process has the system going out to other locations and retriev-
ing items from those locations to ingest (e.g., web/local network crawling or RSS
feeds). Catching is where other systems deliver the items by sending them to the
ingest process. This is part of an application dependent interface between systems.
This typically means that one internal system writes files into an ingest directory
or uses the “web services” application interface of the ingest process to deliver
new items. Once the item is received it goes through a normalization process for
processing purposes. The original item is usually kept as part of the document re-
pository to ensure no information is lost in the normalization process. One of the
first checks in many systems is to validate if this item has already been ingested
into their system. This is a very common check when crawling the Internet or/and
internal network. Copies of items are often distributed across many locations and
duplicate detection can save a lot of redundant processing. Next the item is pro-
cessed to determine what will be indexed in the item. This process is referred to as
generation of processing tokens. In addition some normalization can be done on
the processing tokens to map them into a canonical value—called entity identifica-
tion. The result of these steps is the data that is ready to be passed to the Indexing
process. One final process called Categorization can also be applied to expand the
processing tokens for an item.

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_3, ©Â€Springer Science+Business Media, LLC 2011

Chapter 3
Ingest

64

3.2  �Item Receipt

Item receipt is the process associated with first getting items into the system. The
major way items are received for processing is by the system actively going across
the network it has access to read items called “pulling” items. The best example
of pulling is crawling the Internet or a local network or getting items from an RSS
feed. The following describes the crawling process on the Internet or a local net-
work. Crawling a network has to start with a list of addresses that can be used as a
starting point for the crawling. This is called the “seed list” and defines the maxi-
mum subset of the network from which items can be part of the information system.
The maximum subset is not limited to the seed list but includes all of the other loca-
tions that are linked to from the items found from the initial seed. Each item (e.g.,
web page) pointed to by the seed list is retrieved from its web site to be indexed.
When the page is retrieved to be indexed, all the links (i.e., Universal Resource
Locators—URLs) on that page that link to other pages on that site or a different site
are extracted and added to the list of crawlable locations. The data structure used to
store the new URLs to be crawled is called the URL Frontier. As pages are crawled
from the URL frontier they are marked as crawled along with a date time of crawl.
The list of all items to retrieve is continually growing. At some point you will have
a list of all possible items and all those items will only point back to items already
on the list. The set of all URLs in the original seed list along with those added to the
URL Frontier is the maximum subset of the network that is indexed based upon the
initial seed list. The term “black web” is used to describe that subset of the Internet
that is not retrieved and indexed. A study by Lawrence and Giles (Lawrence and
Giles-2000) showed that no search engine indexes more than 16% of the Web. The
same can be true when crawling an internal network.

The two major approaches to crawling a network is breath first or depth first.
Depth first says you select pages from the URL Frontier following pages to the
same site to retrieve as much of the site as you can. Breath first says you significant-
ly limit the number of pages retrieved from a site, going on to other sites that you
have not retrieved—thus giving you a better sample of many sites versus in depth
of a fewer number of sites. Depth first has the possible negative aspect of hitting the
same site often in a limited interval which could cause the site administrator to lock
your crawler out. This is called “politeness” of crawling and the general rule is to
have at least two seconds before the system retrieves another page from a site. The
software that takes the URLs from the Seed list or URL Frontier and retrieves the
linked page is called a web crawler, spider or robot. The software must be scalable
allowing for many crawlers to work concurrently. They also have to communicate
in that you do not want multiple crawlers crawling the same page. There also is
required a structure that quickly identifies if a URL on a retrieved page is already
on the URL Frontier so that it is not redundantly added. Design and optimization of
the crawlers and the URL Frontier is one of the first challenges in a retrieval system.
Web sites can contain a file caller “Robot.txt” that defines what if any of the web
site the crawler is allowed to retrieve pages from.

3 Ingest

65

One technique frequently used on the internet that makes some sites appear to be
infinite is their generation of dynamic pages with dynamically generated URLs. In-
stead of having a priori statically defined pages stored that are retrieved by a URL,
many web sites dynamically generate the page when it is requested. This allows for
providing the most recent information requested and can save on storage of static
web pages. But when these dynamic pages are created they can also create slightly
different URLs to the page references on the dynamic page retrieved. Even though
it’s the same pages that were retrieved last time that page was retrieved, to the sys-
tem it will appear as new URLs. Many crawlers will not index dynamic pages for
this reason.

One issue associated with crawling a site is that the crawler cannot retrieve from
the same web site too frequently or it will alert a system administrator who could
block that crawler from future access to its site. A system design decision is how
often to retrieve web pages that have already been crawled to get latest informa-
tion. For a current event news site it might be multiple times a day where the seed
home page changes with the latest information. This decision is usually based upon
how often a web site is updated where the more often a web sites changes the more
frequent the recrawl occurs. How deep you go on a web site or if it is better to have
some data across lots of sites or go in depth on a site reflect the design and goal of an
information retrieval System. There is also a question if the pages can be stored in
the document repository or just links to the pages on the Web because of copyright
protection. Commercial systems such as Google will in most cases only visit the
same pages on a site to see if they have changed once every 30Â€days. But some sites
that have daily frequent changes (e.g., news sites) they will revisit many times a day
to get the latest information. In many cases permission is requested ahead of time
for frequent crawling of a site since it may be of value to the site to have the most
recent information on the site indexed.

Another challenge to crawling the Internet is the amount of data that is kept
in databases at web sites. When a user accesses the site, the database is used as a
source of information to be placed on dynamically generated web page. Static web
pages are pages that have been preconstructed and are resident on a web site. The
databases that are used to dynamically create web pages are often referred to as the
hidden web. The “hidden web” is estimated to be 500 times larger than the visible
“static” web. There are two ways of indexing information in the hidden web. The
first is there is an agreement with the site and that site will dynamically generate
most of the database into pages to be indexed. For example Amazon.com could
expand its content with specific commercial search engines to index the products
on its web site using a database to generate the pages for a crawler. The other way
is by employing a subsystem that is focused on crawling hidden web sites. Bright
Planet is an example of a system that focuses on this issue. In this case the software
knows the structure of the search page on the web site and will have a number of
terms that it is interested in. By entering the terms and then following the hits it is
in effect navigating a subset of the database hidden at the site.

Another pulling process for getting items is by subscribing to an RSS feeds. RSS
stands for either Really Simple Syndication or Rich Site Summary. An RSS feeds

3.2 Item Receipt

66

include a specifications on how a web site can publish information to a user. Pub-
lishes means that the user “subscribes” to the RSS feed and when requested by an
RSS client, the RSS feed will deliver a document in XML format that contains the
information that is available at the RSS site. RSS is an Internet (or internal network)
feed used to publish frequently updated works such as blog entries, news headlines,
audio, and video in a standardized format. The RSS document includes the item
plus metadata such as dates and authorship. The RSS client then can determine
which items from the RSS site to download and which ones it has already retrieved.
The RSS is designed to help the publisher get their new information quickly out to a
large group of users who are interested in it. From the user’s perspective they do not
have to constantly be manually checking for new information but will periodically
(user defines how often to check) get the all the new information as it is published
by the RSS feed.

RSS feeds are read using software called an RSS reader or an aggregator. The
RSS reader or aggregator reduces the time and effort needed to manually check
websites for updates. Once subscribed to a feed, an aggregator is able to check for
new content at user-determined intervals and retrieve the update. The content is
sometimes described as being pulled to the user. A standardized XML file format
allows the user application to easily ingest the downloaded information the user
subscribes to a feed by entering the feed’s link into the reader (aggregator) The RSS
reader checks the user’s subscribed feeds regularly for new items, downloads any
updates that it finds. An example of the XML is:

<?xml version="1.0"?>
<rss version="2.0">

<channel>
<title>Flood News</title>
<link>http://weather.nasa.gov/</link>
<description>Flood hits US.</description>
<language>en-us</language>
<pubDate>Tue, 10 Jun 2009 07:00:00 GMT</pubDate>
<lastBuildDate>Tue, 10 Jun 2009 11:41:01 GMT</lastBuildDate>
<docs>http://blogs.weather.harvard.edu/tech/rss</docs>
<generator>Weblog Editor 2.0</generator>
<managingEditor>editor@example.com</managingEditor>
<webMaster>webmaster@example.com</webMaster>
<ttl>5</ttl>

<item>
<title>Washington Flood</title>
<link>http://weather.nasa.gov/news/2009/news-washington.asp</link>
<description>The flood destroyed most of washington except the
monuments.</description>
<pubDate>Tue, 03 Jun 2009 09:39:21 GMT</pubDate>
<guid>http://weather.nasa.gov/2009/06/03.html#item573</guid>

</item>

3 Ingest

67

<item>
<title>Flood hits Baltimore</title>
<link>http://weather.nasa.gov/</link>
<description>In addition to Washington the flood hit Baltimore.
</description>
<pubDate>Fri, 30 May 2009 11:06:42 GMT</pubDate>
<guid>http://weather.nasa.gov/2003/05/30.html#item572</guid>

</item>
</channel>

</rss>

The XML lends itself to extracting the citation metadata as well as identifying the
main text of the item to process.

The “catch” process is usually associated with internal systems. Within the in-
ternal generation of new information there is a step where new items are written to
a queue that is monitored by the indexing process. In this case there is no crawling
but more a push of information to the indexer who then only needs to process the
item it has received.

So how does the architecture and decisions on crawling effect how well an in-
formation retrieval system performs. The value of an information retrieval system
is limited by the information in the system and its interest to the users. The crawler
is designed to retrieve and update a collection of pages that defines what a user can
find. The retrieved database needs to balance completeness and currency. These
two goals compete, because when a crawler completes processing its current page,
the crawler must decide between downloading a new page, not currently indexed,
or refreshing a page that is probably outdated in the index. There is a trade-off be-
tween quantity (more objects) and quality (more up-to-date objects). The same is
true of RSS feeds in determining how many feeds and if you filter what comes in
on the feed.

The first decision that affects an information retrieval systems performance in
terms of precision and recall is what data will be ingested and indexed. The more
focused on likely items of potential interest the ingest can be, the higher the per-
formance. Information retrieval Systems that focus what they retrieve to a specific
area are called “vertical” index systems. Decisions on constraining what is collected
and filtering out items that have a low chance of being of value before you start the
processing of the item can make improvements in the overall system performance
from a user’s perspective.

3.3  �Duplicate Detection

As items are received to be processed for an Information retrieval system, the first
process that can make search and retrieval more effective is to eliminate duplicate
information. Some estimates are as high as 30% of the Internet is duplicate informa-

3.3 Duplicate Detection

68

tion. For example, whenever there are multiple different sources feeding the input
to a system there is a strong possibility that duplicate information will come from
the feeds. It’s easy to see the duplicate information on the internet. For example
stories from news agencies like Reuters usually appear as copies or near-copies in
hundreds of newspapers on the Internet. If you are crawling those web sites or re-
ceiving the different news sources via RSS feeds you will be getting a large number
of duplicate items. Even in private networks there are a lot of times a copy of an
item will be made on many different locations because of sharing of information
between users. The duplicates cause a lot of wasted system overhead in indexing the
same item. But more importantly when you run a search you will get multiple hits
displaying exactly the same data wasting entries in your hit list and the time for the
user to look at the item and discover it is a duplicate of what they have seen before
(Chowdhury et al.-2002, Cho et al.-1999, Grossman and Frieder-2004).

The process of detecting a duplicate at first seems straight forward. The standard
approach is to create a signature unique key that represents the contents of an item.
The most common methodology is to create a hash for the complete file (e.g., Mes-
sage Digital Algorithm 2—MD2 or MD5). These hashes have the characteristics
most desired for hashing items of variable lengths, they have low probability of
collisions (two different items creating the same hash number), they are fast to com-
pute and can work on variable length documents. The problem with this approach
is it is a hash on every character in the item. If there is just a few characters differ-
ent (e.g., a copy is made of an article but a system assigns a unique ID it places on
the article or it places a current date on the article) you will get two different hash
values and not detect it as a duplicate. When a new item is received, the system can
determine if there already exists a previous copy by seeing if there exists a signature
is already stored. This works best when a complete copy of a file is saved by another
user such as copies of multimedia files. But if a user copies the content of an item
and places it in a new web page, then there can be minor differences in the header
information that would cause a different signature value and make it appear as if it’s
not a duplicate. It could be something as simple as the current date is dynamically
added to the top of the item. This is also why use of dynamic HTML, where small
modifications can easily be merged with the substantive data, can make it difficult
for a crawler to know if a page has really been changed.

This problem can be addressed by heuristic algorithms that try to detect when
the substantive text begins and the header information ends. It is at that point that
the text is used to create the CRC. A similar issue can be with dynamic information
at the end of an item. The generation and maintenance of the heuristic algorithms
can be very expensive.

An automated algorithm is needed to work with the ingest system to look for
items that are basically the same. This is called the “near duplicate detection” pro-
cess. There are two ways of defining near duplicate. One is where the text in the two
items is almost identical. The second is where the semantics of both items is iden-
tical but the text used to express the semantics is different. Although eliminating
items that are semantically the same could significantly reduce the number of items
that require indexing, the technology is not yet accurate enough to detect semantic

3 Ingest

69

equivalence. Thus the standard approach is to look for items that have a significant
amount of text in common. The first question is when is one document a near du-
plicate of another. Pugh used a definition that “two documents are considered near
duplicates if they have more than r features in common.” Conrad et al., avoided the
more abstract features definition and said two documents are near duplicates if they
share more than 80% terminology and their length difference is not more than +20%
(Conrad and Schriber-2004). The larger portion of text that is a copy the more likely
they are to be duplicates. This approach in duplication was proposed by Broder in
1997 using the concept of “resemblance” (Broder et al.-1997). He defined the re-
semblance between two documents as:

The formula specifies that the resemblance is measured by ratio of the intersection
of the features divided by the union of the features. So using terms as the feature
then if two documents are both 50 words in length and there are 20 words that are
common to both documents, the resemblance would be (20)/(50Â€+Â€50Â€−Â€20)Â€=Â€20/70.
Many attempts have been made to define a resemblance threshold that would find
near duplicates. The “resemblance” formula is similar to the Jaccard similarity for-
mula that is discussed in Chap.Â€5. The problems encountered when trying to use
this approach have been with the determination of which features to use and if the
algorithms are scalable to large collections of items.

The simplest definition would be based upon looking at items as “bags of words”.
If two items have almost all the same words they could be defined as near duplicates
(see Conrad’s definition above). Although a simpler process it introduces to many
errors. The second approach is to break the items up into shorter segments and cre-
ate signatures for each of the segments. The shorter segments are called “shingles”.
The idea there is if there are differences at the start or end of an item, the text in
the rest of the items will be identical. A fixed number of words is defined for each
segment and the segments partition the original item. The issue with this approach
comes if the segments don’t start on the same boundary. If one item is off by one
word from the other, then all the segments will be off by one word. The signature
codes will be different for each segment in each item. The only way this could work
is if a logical semantic boundary is defined for the segments. For example if each
sentence is selected as a segment, then once past the portions of each item that are
different, the segments will be identical and the signatures will be identical. This
technique would work but requires more sophisticated parsing to accurately define
the segments and the process would vary by language. An alternative is to define
each segment as a fixed number of words but overlap the segments to ensure the
majority of them are in both items. This is similar to the N-Gram process defined
in Chap.Â€2. But instead of using a fixed number of characters for the “n”, a fixed
number of words will be used. Thus if “n” is selected as 4 words, then the process
would be the following: the first four words of the item would be the first signature,
words 2–5 will be the second signature, words 3–7 will be the third signature and

R(D1, D2) = (S(D1) AND S(D2))

(S(D1) OR S(D2))

3.3 Duplicate Detection

70

so on. Thus there will be as many signatures created as there are words in the item.
This process is called “sliding window shingling”. Some systems simplify this by
eliminating any duplicate signatures created (i.e., where the same four words are
found more than once in an item).

There will be a very large number of signatures in each item and it will take
significant processing to compare the signatures between the current item and all
the items so far ingested into the system. The process of creating signatures inher-
ently will randomize the segments from an item since the signatures are inherently
random numbers. By having an algorithm that selects a subset of the signatures that
will be the same for each item will be selecting random subsets from each item.
Since we are looking for near duplicates, the expectation is the random subset of
segments should have significant overlap. FigureÂ€3.1 shows how this process works
using 3 word shingles.

If we then use a rule that we only compare the lowest 4 signatures from any items
we would have from Item 1 signatures: 12, 18, 22 and 24 and for Item 2 it would be
12, 24, 33, and 55. Notice also that “12” comes from close to the end of the phase
(w7 w4 w5) while 24 comes from the start (w3 w1 w7) which shows the random
selection that comes even when you use a structured rule for selecting the subset
of signatures to compare. Using Broder’s formula for resemblance which is the
number of signatures in common in the numerator and the total number of unique
signatures in the denominator:

This first technique to reduce the number of comparisons is taking the lowest “n” sig-
natures for comparison. Other examples of rules for selection of the signatures could
be all those that are divisible by “25”. This was a rule first used by Broder in the Alta
Vista search engine crawler where he also limited the number of shingles per docu-
ment to 400. He was able to process 30Â€million web pages in 10Â€days using this tech-
nique. Another approach to reduce the magnitude of the comparison problem is to take
the shingles created and create super shingles by combining a number of shingles into
larger shingles. The biggest issue with this technique is that it will get poorer results
for shorter item that do not have that many shingles to combine into bigger shingles.

To avoid the problem that comes from defining word segments, another ap-
proach is to use a similarity approach between documents as a measure if they are

Resemblance (Item1, Item2) =
2

8 − 2
=

2

6

Fig. 3.1â†œæ¸€ Shingles and
signatures

3 Ingest

71

near duplicates. The advantage is that similarity measures are looking across all of
the words in the document to determine those that add the most in defining the se-
mantics of the document. Similarity of items is discussed in detail in Chaps.Â€5 and 6
on search and clustering respectively. The problem is that it’s necessary to compare
pairwise all existing items to the latest item received to detect if it is similar and thus
may be a near duplicate. One approach around this issue is used by AURORIA that
clusters items as they are received and thus all of the items in the same cluster may
be near duplicates. But in all of the discussion of near duplicates, the process is er-
rorful enough that in general systems do not use it to select items to not be processed
and indexed. It is more used to help a user at search time.

3.4  �Item Normalization

To start the indexing process the substantive text from the non-duplicate item must
be extracted. Any of the data fielded that should be treated as metadata needs to be
extracted and placed in the appropriate metadata field associated with that item.
This could be the capture date and time that comes from the local computer time or
structured fields in the HTML/XML such as Source or Title. All of the formatting
and other HTML structure needs to be removed just leaving continuous text. In
cases such as PDF files the text needs to be separated from the other objects.

As you retrieve items from multiple sources, it’s possible that the encoding for-
mats from different sources can vary. The first step in processing the items is to
normalize the format to a standard format. This simplifies the processing of the item
since all the items will have a standard encoding. For example there are many dif-
ferent encoding formats used for a language and you can have different languages
that also have their own encoding. The first step in processing a textual item is to
detect the language(s) that the item is in. In many cases the language and encod-
ing will be part of the metadata (HTML/XML/etc.) that is at the start of an item.
In some cases the item can be in multiple languages so language detection needs
to be at a text segment level as well as the item level. You must know the language
to perform the follow-on processing (e.g., morphological rules, stemming rules,
dictionary look-up, etc. are all language dependent). Once determined, the language
should be added as a metadata field using the ISO-639 standard for language identi-
fication. Once the language is determined the text can be put into UNICODE, then
all of the different formats will be normalized to a single format. UNICODE is an
industry standard that has over 100,000 characters and all major languages map to a
subset to the Unicode characters. UTF-8 is the most common Unicode format used.
It is a variable length format that uses one byte to represent ASCII characters and up
to 4Â€bytes to represent the characters in other languages. UTF-16 may also be used
but since HTML uses UTF-8 most applications use the UTF-8 encoding. There are
convertors that convert between UTF-8 and UTF-16.

Once you have standardized the characters to a single format, then there is a
next step some systems use called character normalization. The issue is that some

3.4 Item Normalization

72

characters can be used both syntactically and semantically associated with a word.
For example, consider accented characters or the use of an apostrophe which could
mean possessive or be part of a person’s name. The character normalization process
can disambiguate these cases making sure when the character is part of a semantic
unit (person’s name) it is kept but in other cases it can be eliminated in the next
steps of normal processing. In other cases where there is both the unique character
and a transliteration, both may be made available for search. For example finding
documents containing schoen when searching for schön, diacritic removal finding
documents containing ç when searching for c or ligature expansion finding docu-
ments containing Æ when searching for ae.

For multimedia objects you may also need to normalize to a standard format to
make the development of algorithms more efficient. For example you may decide
to use MPEG-2 OR MPEG-4 as your standard processing format for video and thus
you would transcode the windows media, MPEG-1, FLASH or real media video
into MPEG-2 before processing of it to create an index. Most multimedia search
engines accept the major different formats for its modality.

3.5  �Zoning and Creation of Processing Tokens

Once an item has been normalized and selected to be indexed, the next step in the
process is to zone the document and identify processing tokens for indexing. The
item is parsed into logical sub-divisions that have meaning to the user. This process,
called “Zoning,” is visible to the user and used to increase the precision of a search
and optimize the display. A typical item is sub-divided into zones, which may over-
lap and can be hierarchical, such as Title, Author, Abstract, Main Text, Conclusion,
and Bibliography. The term “Zone” was selected over field because of the vari-
able length nature of the data identified and because it is a logical sub-division of
the total item, whereas the term “fields” has a connotation of independence. There
may be other source-specific zones such as “Country” and “Keyword.” The zoning
information is passed to the processing token identification operation to store the
zone location information, allowing searches to be restricted to a specific zone. For
example, if the user is interested in articles discussing “Einstein” then the search
should not include the Bibliography, which could include references to articles writ-
ten by “Einstein.” Zoning differs for multi-media based upon the source structure.
For a television news broadcast, zones may be defined as each news story in the
input. For speeches or other programs, there could be different semantic boundar-
ies that make sense from the user’s perspective. For images the total image can be
segmented into portions that contain text, logos, etc. This could be viewed as zoning
but is more related to the internal preprocessing for the index process.

Another use of zones is when a user wants to display the results of a search.
A major limitation to the user is the size of the display screen which constrains
the number of items that are visible for review. To optimize the number of items
reviewed per display screen, the user wants to display the minimum data required

3 Ingest

73

from each item to allow determination of the possible relevance of that item. Quite
often the user will only display zones such as the Title or Title and Abstract. This
allows multiple items to be displayed per screen. The user can expand those items
of potential interest to see the complete text.

Once the standardization and zoning has been completed, information (i.e.,
words) that are used in creating the index to be searched needs to be identified in
the item. The term “processing token” is used because a “word” is not the most
efficient unit on which to base search structures. The first step in identification of
a processing token consists of determining a word. Systems determine words by
dividing input symbols into three classes: valid word symbols, inter-word symbols,
and special processing symbols. A word is defined as a contiguous set of word
symbols bounded by inter-word symbols. In most systems inter-word symbols are
non-searchable and should be carefully selected. Examples of word symbols are
alphabetic characters and numbers. Examples of possible inter-word symbols are
blanks, periods and semicolons. The exact definition of an inter-word symbol is
dependent upon the aspects of the language domain of the items to be processed by
the system. For example, an apostrophe may be of little importance if only used for
the possessive case in English, but might be critical to represent foreign names in
the database. Based upon the required accuracy of searches and language charac-
teristics, a trade off is made on the selection of inter-word symbols. There are some
symbols that may require special processing. A hyphen can be used many ways,
often left to the taste and judgment of the writer (Bernstein-84). At the end of a line
it is used to indicate the continuation of a word. In other places it links independent
words to avoid absurdity, such as in the case of “small business men.” To avoid
interpreting this as short males that run businesses, it would properly be hyphenated
“small-business men.” Thus when a hyphen (or other special symbol) is detected a
set of rules are executed to determine what action is to be taken generating one or
more processing tokens. Finally some languages that are glyph or ideogram based
(e.g., CJK—Chinese, Japanese, and Korean) do not have any interword symbols
between the characters. An ideogram is a character or symbol representing an idea
or a thing without expressing the pronunciation of a particular word or words for
it. Unlike most languages where the characters and words reflect the phonetic pro-
nunciation of the word from which the meaning is derived, for the glyph based
languages the glyph (or contiguous set of glyphs) represents the idea not the sound.
In this case special processing is used to break the contiguous characters (glyphs)
into words. These are typically one, two and three sequences of characters. Details
of how this is done can be found in many papers on the internet. They typically use
a combination of an existing dictionary and also using frequency of occurrence of
2 and 3 combinations of the glyphs. Understanding this difference is critical when
designing multimedia information retrieval systems that take the audio output and
transcribe it to words. For most languages seeing the speech to text output along
with hearing the audio is useful in understanding what is being spoken and trans-
lating it. But for the CJK languages it is very confusing for a user to concurrently
process both and only the audio or the speech to text output should be processed.
There is no correlation of the written glyphs to the spoken word.

3.5 Zoning and Creation of Processing Tokens

74

Some systems will expand the items to be indexed by also creating a translated
version of the item. This helps the users that do not have the ability to read and un-
derstand multiple different languages. This also introduces an additional processing
step that will introduce errors coming from the translation process. It’s not unusual
that multiple different translation systems are used since some are better for some
languages than others. The additional advantage of the translation process is that
when results from a search are displayed, the translated version can be displayed.
Examples of the most common machine translation systems used are Language
Weaver and Systran. But based upon the languages you are indexing, other transla-
tion software may be needed. Keeping both the vernacular index and the translated
index will double the resources required for the index. An alternative solution is
to just keep the original text as indexed and dynamically translate a user’s query
and the resultant hits (e.g., the way GOOGLE works). The disadvantage to this
process is that translating a query can be very errorful because users do not type in
complete syntactically correct search statements. Thus there can be a lot of errors in
translating the search. This is less likely to happen when translating the text which
is syntactically correct. This will be discussed in more detail in Chap.Â€5 on search.

Processing tokens for multimedia items also exist. The three modalities we will
discuss indexing are images, audio and video. Images are the most difficult because
the processing tokens are the pixels and their characteristics in an image (e.g., inten-
sity and color). Pixels and indexing images is discussed in detail in Chap.Â€4. For au-
dio the processing token is the phoneme. The phoneme is a basic, theoretical unit of
sound that can distinguish words (i.e. changing one phoneme in a word can produce
another word). Every language has a different number of phonemes and the pho-
nemes from one language are different than the phonemes from another language.
Some Native American (Indian) languages only have 3 phonemes while English
has 40–46 (there is disagreement on the actual number). Some languages spoken in
Southern Africa have as many as 141 phonemes. When processing audio the first
task is to recognize the source language and then once recognized it can be parsed
into meaningful phonemes. Audio is broken into smaller segments of audio which
are then combined to determine the phonemes. But these smaller units can first be
used to determine which language is being spoken. Because of the distribution of
the smaller sound units (which are combined to make the phonemes) are unique to
each language its possible with a very small sample of sound to first determine what
language is being spoken. Then the appropriate model can be applied to determine
the phonemes for that language. The phonemes can be used to determine what words
are spoken or used directly for indexing (see Chap.Â€4 on indexing). In addition to
determining phonemes for searching for words, other sounds can be modeled and de-
tected that might be of search interest, for example the sound of gun fire. Video is re-
ally a combination of audio and images and thus the video stream can be broken into
those two substreams and the processing token identification mentioned above can
be used. In addition there can be closed captioning or teletext in the video stream.

The next step in defining processing tokens is identification of any specific word
characteristics. The characteristic is used in systems to assist in disambiguation of

3 Ingest

75

a particular word. Morphological analysis of the processing token’s part of speech
is included here. Thus, for a word such as “plane,” the system understands that it
could mean “level or flat” as an adjective, “aircraft or facet” as a noun, or “the act
of smoothing or evening” as a verb. Other characteristics may classify a token as a
member of a higher class of tokens such as “European Country” or “Financial Insti-
tution.” Another example of characterization is if upper case should be preserved.
In most systems upper/lower case is not preserved to avoid the system having to
expand a term to cover the case where it is the first word in a sentence. For proper
names, acronyms and organizations, the upper case represents a completely differ-
ent use of the processing token versus it being found in the text. “Pleasant Grant”
should be recognized as a person’s name versus a “pleasant grant” that provides
funding. Other characterizations that are typically treated separately from text are
numbers and dates. Most of the categorized words such as proper names and orga-
nizations are excluded from the following processes to ensure their integrity. This
also helps in the process of entity identification described in Sect.Â€3.6. Numbers and
dates may also go through their own specialized processing to keep their format to
allow for searching on them.

Now that the potential list of processing tokens has been defined, some can be
removed by a Stop List or a Stop Algorithm. The objective of the Stop function is to
save system resources by eliminating from the set of searchable processing tokens
those that have little value to the system or the user. Given the significant increase in
available cheap memory, storage and processing power, the need to apply the Stop
function to processing tokens is decreasing. Nevertheless, Stop Lists are commonly
found in most systems and consist of words (processing tokens) whose frequency
and/or semantic use make them of no value as a searchable token. For example,
any word found in almost every item would have no discrimination value during a
search. Parts of speech, such as articles (e.g., “the”), have no search value and are
not a useful part of a user’s query. By eliminating these frequently occurring words
the system saves the processing and storage resources required to incorporate them
as part of the searchable data structure. Stop Algorithms go after the other class of
words, those found very infrequently.

Ziph (Ziph-49) postulated that, looking at the frequency of occurrence of the
unique words across a corpus of items, the majority of unique words are found to
occur a few times. The rank-frequency law of Ziph is:

where Frequency is the number of times a word occurs and rank is the rank or-
der of the word (i.e. number of unique words that is found with that frequency).
The law was later derived analytically using probability and information theory
(Fairthorne-69). TableÂ€1.1 shows the distribution of words in the first TREC test da-
tabase (Harman-93), a database with over one billion characters and 500,000 items.
In TableÂ€3.1, WSJ is Wall Street Journal (1986–1989), AP is AP Newswire (1989),
ZIFF—Information from Computer Select disks, FR—Federal Register (1989), and
DOE—Short abstracts from Department of Energy.

Frequency ∗ Rank = constant

3.5 Zoning and Creation of Processing Tokens

76

The highly precise nature of the words only found once or twice in the database
reduce the probability of their being in the vocabulary of the user and the terms
are almost never included in searches. Numbers are also an example of this class
of words where the number does not represent something else such as a date. Part
numbers and serial numbers are often found in items. Eliminating these words saves
on storage and access structure (e.g., dictionary) complexities. The best technique
to eliminate the majority of these words is via a Stop algorithm versus trying to list
them individually. Examples of Stop algorithms are:

•	 Stop all numbers greater than “999,999” (this was selected to allow dates to be
searchable)

•	 Stop any processing token that has numbers and characters intermixed

The algorithms are typically source specific, usually eliminating unique item identi-
fiers that are frequently found in systems and have no search value.

At this point the textual processing tokens have been identified and stemming
may be applied.

3.6  �Stemming

One of the last transformations often applied to data before placing it in the search-
able data structure is stemming. Stemming reduces the diversity of representations
of a concept (word) to a canonical morphological representation. The risk with
stemming is that concept discrimination information may be lost in the process,
causing a decrease in precision and the ability for ranking to be performed. On the
positive side, stemming has the potential to improve recall. A related operation is
called lemmatization. Lemmatization is typically accomplished via dictionary look-
up which is also one of the possible techniques for stemming. Lemmatization not
only addresses endings that can be modified or dropped as in stemming but maps
one word to another. For example it could map “eat” to “ate” or “tooth” and “teeth”.
It handles inflectional variations. It in most cases it expands the item by adding in
the variants unlike stemming which redefines the current processing token to its

Table 3.1â†œæ¸€ Distribution of words in TREC Database. (From TREC-1 Conference Proceedings,
Harmon-93)
Source WSJ AP ZIFF FR DOE
Size in MB 295 266 251 258 190
Median number terms/record 182 353 181 313 82
Average number terms/record 329 375 412 1017 89
Number unique terms 156,298 197,608 173,501 126,258 186,225
Number of terms occurring once 64,656 89,627 85,992 58,677 95,782
Average number terms

occurrencesÂ€>Â€1
199 174 165 106 159

3 Ingest

77

stemmed version. Lemmatization can take the context of the word into account
when it does its normalization, stemming does not. But stemming is usually faster
than lemmatization. There is also an option to do lemmization at query time by
expanding the query versus expanding the search index. This is similar to synonym
expansion.

The concept of stemming has been applied to information systems from their
initial automation in the 1960s. The original goal of stemming was to improve
performance and require less system resources by reducing the number of unique
words that a system has to contain. With the continued significant increase in
storage and computing power, use of stemming for performance reasons is no lon-
ger as important. Stemming should now be traded off for the potential improve-
ments it can make in recall versus its associated decline in precision. A system
designer can trade off the increased overhead of stemming in creating processing
tokens versus reduced search time overhead of processing query terms with trail-
ing “don’t cares” (see Sect.Â€2.1.5 Term Masking) to include all of their variants.
The stemming process creates one large index for the stem versus Term Masking
which requires the merging (ORing) of the indexes for every term that matches
the search term.

3.6.1  �Introduction to the Stemming Process

Stemming algorithms are used to improve the efficiency of the information system
and to improve recall. Conflation is the term frequently used to refer to mapping
multiple morphological variants to a single representation (stem). The premise is
that the stem carries the meaning of the concept associated with the word and the
affixes (endings) introduce subtle modifications to the concept or are used for syn-
tactical purposes. Languages have precise grammars that define their usage, but
also evolve based upon human usage. Thus exceptions and non-consistent variants
are always present in languages that typically require exception look-up tables in
addition to the normal reduction rules.

At first glance, the idea of equating multiple representations of a word as a
single stem term would appear to provide significant compression, with associ-
ated savings in storage and processing. For example, the stem “comput” could
associate “computable, computability, computation, computational, computed,
computing, computer, computerese, computerize” to one compressed word. But
upon closer examination, looking at an inverted file system implementation, the
savings is only in the dictionary since weighted positional information is typically
needed in the inversion lists. In an architecture with stemming, the information is
in the one inversion list for the stem term versus distributed across multiple inver-
sion lists for each unstemmed term. Since the size of the inversion lists are the
major storage factor, the compression of stemming does not significantly reduce
storage requirements. For small test databases such as the Cranfield collection,

3.6 Stemming

78

Lennon reported savings of 32% (Lennon-81). But when applied to larger data-
bases of 1.6Â€MB and 50Â€MB, the compression reduced respectively to 20% and
13.5% (Harman-91). Harman also points out that misspellings and proper names
reduce the compression even more. In a large text corpus, such as the TREC da-
tabase, over 15% of the unique words are proper nouns or acronyms that should
not be stemmed.

Another major use of stemming is to improve recall. As long as a semantically
consistent stem can be identified for a set of words, the generalization process of
stemming does help in not missing potentially relevant items. Stemming of the
words “calculate, calculates, calculation, calculations, calculating” to a single stem
(“calculat”) insures whichever of those terms is entered by the user, it is translated
to the stem and finds all the variants in any items they exist. In contrast, stemming
cannot improve, but has the potential for decreasing precision. The precision value
is not based on finding all relevant items but just minimizing the retrieval of non-
relevant items. Any function that generalizes a user’s search statement can only
increase the likelihood of retrieving non-relevant items unless the expansion guar-
antees every item retrieved by the expansion is relevant.

It is important for a system to be able to categorize a word prior to making the
decision to stem it. Certain categories such as proper names and acronyms should
not have stemming applied because their morphological basis is not related to a
common core concept. Stemming can also cause problems for Natural Language
Processing (NLP) systems by causing the loss of information needed for aggregate
levels of natural language processing (discourse analysis). The tenses of verbs may
be lost in creating a stem, but they are needed to determine if a particular concept
(e.g., economic support) being indexed occurred in the past or will be occurring
in the future. Time is one example of the type of relationships that are defined in
Natural Language Processing systems (see Chap.Â€5).

The most common stemming algorithm removes suffixes and prefixes, some-
times recursively, to derive the final stem. Other techniques such as table lookup
and successor stemming provide alternatives that require additional overheads. Suc-
cessor stemmers determine prefix overlap as the length of a stem is increased. This
information can be used to determine the optimal length for each stem from a sta-
tistical versus a linguistic perspective. Table lookup requires a large data structure.
A system such as RetrievalWare (recently purchased by the FAST system) that is
based upon a very large thesaurus/concept network has the data structure as part
of its basic product and thus uses table look-up. The Kstem algorithm used in the
INQUERY System combines a set of simple stemming rules with a dictionary to
determine processing tokens.

The affix removal technique removes prefixes and suffixes from terms leaving
the stem. Most stemmers are iterative and attempt to remove the longest prefixes
and suffixes (Lovins-68, Salton-68, Dawson-74, Porter-80 and Paice-90). The Por-
ter algorithm is the most commonly accepted algorithm, but it leads to loss of preci-
sion and introduces some anomalies that cause the user to question the integrity of
the system. Stemming is applied to the user’s query as well as to the incoming text.
If the transformation moves the query term to a different semantic meaning, the user

3 Ingest

79

will not understand why a particular item is returned and may begin questioning the
integrity of the system in general.

3.6.2  �Porter Stemming Algorithm

The Porter Algorithm is based upon a set of conditions of the stem, suffix and prefix
and associated actions given the condition. Some examples of stem conditions are:

1.	 The measure, m, of a stem is a function of sequences of vowels (a, e, i, o, u, y)
followed by a consonant. If V is a sequence of vowels and C is a sequence of
consonants, then m is:

where the initial C and final V are optional and m is the number VC repeats.

2.	 *<X>—stem ends with letter X
3.	 *v*—stem contains a vowel
4.	 *d—stem ends in double consonant
5.	 *o—stem ends with consonant-vowel-consonant sequence where the final con-

sonant is not w, x, or y

Suffix conditions take the form current_suffiÂ€=Â€=Â€pattern
Actions are in the form old_suffix -> new_suffix

Rules are divided into steps to define the order of applying the rules. The following
are some examples of the rules:

C(VC)mV

Measure Example

mÂ€=Â€0 free, why
mÂ€=Â€1 frees, whose
mÂ€=Â€2 prologue, compute

Step Condition Suffix Replacement Example

1a NULL sses ss stresses->stress
1b *v* ing NULL making->mak
1b11 Null at ate inflat(ed)->inflate
1c *v* y i happy->happi
2 mÂ€>Â€0 aliti al formaliti->formal
3 mÂ€>Â€0 icate ic duplicate->duplic
4 mÂ€>Â€1 able Null adjustable->adjust
5a mÂ€>Â€1 e Null inflate->inflat
5b mÂ€>Â€1 and *d and *<L> NULL single letter controll->control
1 1b1 rules are expansion rules to make correction to stems for proper conflation

3.6 Stemming

80

Given the word “duplicatable,” the following are the steps in the stemming
process:

duplicat	� rule 4
duplicate	� rule 1b1
duplic	� rule 3

The application of another rule in step 4, removing “ic,” cannot be applied since
only one rule from each step is allowed be applied.

3.6.3  �Dictionary Look-Up Stemmers

An alternative to solely relying on algorithms to determine a stem is to use a diction-
ary look-up mechanism. In this approach, simple stemming rules still may be ap-
plied. The rules are taken from those that have the fewest exceptions (e.g., removing
pluralization from nouns). But even the most consistent rules have exceptions that
need to be addressed. The original term or stemmed version of the term is looked up
in a dictionary and replaced by the stem that best represents it.

The INQUERY system at the University of Massachusetts used a stemming tech-
nique called Kstem. Kstem is a morphological analyzer that conflates word variants
to a root form (Kstem-95). It tries to avoid collapsing words with different meanings
into the same root. For example, “memorial” and “memorize” reduce to “memory.”
But “memorial” and “memorize” are not synonyms and have very different mean-
ings. Kstem, like other stemmers associated with Natural Language Processors and
dictionaries, returns words instead of truncated word forms. Generally, Kstem re-
quires a word to be in the dictionary before it reduces one word form to another.
Some endings are always removed, even if the root form is not found in the diction-
ary (e.g., ‘ness’, ‘ly’). If the word being processed is in the dictionary, it is assumed
to be unrelated to the root after stemming and conflation is not performed (e.g.,
‘factorial’ needs to be in the dictionary or it is stemmed to ‘factory’). For irregular
morphologies, it is necessary to explicitly map the word variant to the root desired
(for example, “matrices” to “matrix”).

The Kstem system uses the following six major data files to control and limit the
stemming process:

•	 Dictionary of words (lexicon)
•	 Supplemental list of words for the dictionary
•	 Exceptions list for those words that should retain an “e” at the end (e.g., “suites”

to “suite” but “suited” to “suit”)
•	 Direct_Conflation—allows definition of direct conflation via word pairs that

override the stemming algorithm
•	 Country_Nationality—conflations between nationalities and countries (“Brit-

ish” maps to “Britain”)
•	 Proper Nouns—a list of proper nouns that should not be stemmed.

3 Ingest

81

The strength of the FAST (previously Retrievalware) System lies in its Thesaurus/
Semantic Network support data structure that contains over 400,000 words. The
dictionaries that are used contain the morphological variants of words. New words
that are not special forms (e.g., dates, phone numbers) are located in the diction-
ary to determine simpler forms by stripping off suffixes and respelling plurals as
defined in the dictionary.

3.6.4  �Successor Stemmers

Successor stemmers are based upon the length of prefixes that optimally stem ex-
pansions of additional suffixes. The algorithm is based upon an analogy in structural
linguistics that investigated word and morpheme boundaries based upon the distribu-
tion of phonemes, the smallest unit of speech that distinguish one word from another
(Hafer-74). The process determines the successor varieties for a word, uses this in-
formation to divide a word into segments and selects one of the segments as the stem.

The successor variety of a segment of a word in a set of words is the number of
distinct letters that occupy the segment length plus one character. For example, the
successor variety for the first three letters (i.e., word segment) of a five-letter word
is the number of words that have the same first three letters but a different fourth
letter plus one for the current word. A graphical representation of successor variety
is shown in a symbol tree. FigureÂ€3.2 shows the symbol tree for the terms bag, barn,
bring, both, box, and bottle. The successor variety for any prefix of a word is the
number of children that are associated with the node in the symbol tree representing
that prefix. For example, the successor variety for the first letter “b” is three. The
successor variety for the prefix “ba” is two.

The successor varieties of a word are used to segment a word by applying one of
the following methods:

1.	 Cutoff method: a cutoff value is selected to define stem length. The value varies
for each possible set of words.

2.	 Peak and Plateau: a segment break is made after a character whose successor
variety exceeds that of the character immediately preceding it and the character
immediately following it.

3.	 Complete word method: break on boundaries of complete words.

A cutoff value is selected and a boundary is identified whenever the cutoff value
is reached. Hafer and Weiss experimented with the techniques, discovering that
combinations of the techniques performed best, which they used in defining their
stemming process. Using the words in Fig.Â€3.1 plus the additional word “boxer,” the
successor variety stemming is shown in Fig.Â€3.3.

If the cutoff method with value four was selected then the stem would be “boxe.”
The peak and plateau method can not apply because the successor variety mono-
tonically decreases. Applying the complete word method, the stem is “box.” The
example given does not have enough values to apply the entropy method. The ad-

3.6 Stemming

82

vantage of the peak and plateau and the complete word methods is that a cutoff
value does not have to be selected (Frakes-92).

After a word has been segmented, the segment to be used as the stem must be
selected. Hafer and Weiss used the following rule:

Fig. 3.2â†œæ¸€ Symbol tree for terms bag, barn, bring, box, bottle, both

b

g

e

l

th

t x

n

i

n

rg

ora

Fig. 3.3â†œæ¸€ Successor variety
stemming

Branch Letters

a, r, o
t, x
e
r
blank

Successor Variety

3
2
1
1
1

PREFIX

b
bo
box
boxe
boxer

3 Ingest

83

if (first segment occurs inÂ€<=Â€12 words in database)
first segment is stem
else (second segment is stem)

The idea is that if a segment is found in more than 12 words in the text being ana-
lyzed, it is probably a prefix. Hafer and Weiss noted that multiple prefixes in the
English language do not occur often and thus selecting the first or second segment
in general determines the appropriate stem.

3.6.5  �Conclusions on Stemming

Frakes summarized studies of various stemming studies (Frakes-92). He cautions
that some of the authors failed to report test statistics, especially sizes, making inter-
pretation difficult. Also some of the test sample sizes were so small as to make their
results questionable. Frakes came to the following conclusions:

•	 Stemming can affect retrieval(recall) and where effects were identified they were
positive. There is little difference between retrieval effectiveness of different full
stemmers with the exception of the Hafer and Weiss stemmer.

•	 Stemming is as effective as manual conflation.
•	 Stemming is dependent upon the nature of the vocabulary.

To quantify the impact of stemmers, Paice has defined a stemming performance
measure called Error Rate Relative to Truncation (ERRT) that can be used to com-
pare stemming algorithms (Paice-94). The approach depends upon the ability to
partition terms semantically and morphologically related to each other into “con-
cept groups.” After applying a stemmer that is not perfect, concept groups may still
contain multiple stems rather than one. This introduces an error reflected in the un-
der stemming Index (UI). Also it is possible that the same stem is found in multiple
groups. This error state is reflected in the Overstemming Index (OI). The worst case
stemming algorithm is where words are stemmed via truncation to a word length
(words shorter than the length are not truncated). UI and OI values can be calculated
based upon truncated word lengths. The perfect case is where UI and OI equal zero.
ERRT is then calculated as the distance from the origin to the (UI, OI) coordinate of
the stemmer being evaluated (OP) versus the distance from the origin to the worst
case intersection of the line generated by pure truncation (OT) (see Fig.Â€3.4).

The values calculated are biased by the initial grouping of the test terms. Larger
ERRT values occur with looser grouping. For the particular test runs, the UI of the
Porter Algorithm was greater than the UI of the Paice/Husk algorithms (Paice-90).
The OI was largest for the Paice and the least for Porter. Finally, the ERRT of the
Porter was greater than the Paice algorithm. These results suggest that the Paice al-
gorithm appeared significantly better than the Porter algorithm. But the differences
in objectives between the stemmers (Porter being a light stemmer—tries to avoid
overstemming leaving understemming errors and Paice being the opposite, a heavy
stemmer) makes comparison less meaningful. While this approach to stemmer
evaluation requires additional work to remove imprecisions and provide a common

3.6 Stemming

84

comparison framework, it provides a mechanism to develop a baseline to discuss
future developments.

The comparisons by Frakes and Paice support the intuitive feeling that stemming
as a generalization of processing tokens for a particular concept (word) can only
help in recall. In experiments, stemming has never been proven to significantly
improve recall (Harman-91). Stemming can potentially reduce precision. The im-
pact on precision can be minimized by the use of ranking items based upon all the
terms in the query, categorization of terms and selective exclusion of some terms
from stemming. Unless the user is very restrictive in the query, the impact of the
other search terms and those expanded automatically by the system ameliorates the
effects of generalization caused by stemming. Stemming in large databases should
not be viewed as a significant compression technique to save on storage. Its major
advantage is in the significant reduction of dictionary sizes and therefore a possible
reduction in the processing time for each search term.

3.7  �Entity Processing

As noted in Chap.Â€1 the core problem in getting good search results is the mismatch
between the vocabulary of the author and the vocabulary of the user. In addition to
basic differences in the words used to represent the same idea, there is an issue with
the many variants on how an entity can be specified. An entity can be any real world
discrete object from people to organizations, URLs, phone numbers, etc. There are
many different ways that a person’s name may be expressed as well as translitera-
tion issues on exactly how a person from one country (language group) is expressed
in the language of the index. For example the following are just a subset of the ways
of expressing Libiyan leader’s name: Muammar el Qaddafi, Ghaddafi, Kaddafi,
Muammar al-Gathafi, Col. Mu’ammar al-Qadhafi. Yet they all refer to the same
person (entity). Also within the text, pronouns are often used instead of using the
person’s name. For example a search using proximity would not find that George
Bush is from Texas because in the text of the item George Bush may be in one sen-

Fig. 3.4â†œæ¸€ Computation of
ERRT value

3 Ingest

85

tence and then a little later the text specified “he is from Texas”. The association of
an entity to a pronoun is called the coreference problem. Entity processing attempts
to disambiguate many of these issues before the searchable index is created.

3.7.1  �Entity Identification

Entity Identification can be broken down into three major processes. The first pro-
cess is identifying if a word or words belongs to an entity class. For example you
can have entity classes such as people, places, organizations, telephone numbers,
Internet URLs, etc., and this process would associate the processing token with one
or more of those classes. This in a sense “tags” some of the processing tokens with
additional metadata to help define its semantics. If the processing token “bush” is in
the text it could be a plant. But if it is identified and tagged to be in the Person Entity
category than you know it’s a person’s name.

The technical approaches of entity identification and normalization fall into
three major classes. The first is a matching enumeration process where all of the
different possible values for an entity are identified and then whenever any of those
values are found, that processing token is associated with the appropriate entity
class and single value representing that instance of an entity (normalization step).
This is in a sense a dictionary look-up type process and in most cases users can add
additional terms to the dictionary. The original SEMIO product (now owned by En-
trieva) used this approach. The second approach is a rule based approach. The user
can generate “production rules” that help identify what entity class a processing
token applies to and also which entity value to assign it to. The SRA NetOwl is an
example of a commercial product that uses production rules for entity identification
and extraction. It also uses some linguistic analysis. It comes with an extensive list
of predefined rules and the users can add additional rules. The rules are typically
regular expressions that help in identifying specific types of entities. For example
a regular expression for identifying a “Company” entity might contain the logic:

•	 Word starts with upper case and is followed by any of the following strings (Inc.,
LLC, Ltd) is a company

The final approach is a linguistic approach using the morphological rules associated
with a specific language. In this case the processing token may only be assigned to
an entity class and the normalization process may not occur. The Inxight Product
(started by Zerox PARC and currently owned by SAP AG) uses the Thingfinder en-
tity identifier. The linguistic approach is the only approach to find entities associat-
ed with the coreference problem. There are some approaches where linguistic rules
unique to a language are used to identify different variant spellings for a specific
entity. These are very useful when names from one language are being transliterated
into another language.

A special class of entity identification is for geographic references. Many entity
identification products do some level of geographic processing. But the MetaCarta

3.7 Entity Processing

86

product with its geotagger is the most commonly used product to extract geographic
entity information from text. The geotagger parses content, extracts geographic ref-
erences, and resolves the geographic meaning intended by the author. Often a gazet-
teer is used to locate the processing tokens associated with geographic locations.
This creates latitude and longitude coordinates and country code tags for places men-
tioned within documents. It also generates a confidence score for every identified
location. The confidence score is a number between zero and one that is the probabil-
ity that the author intended the geographic meaning represented by the coordinates.

3.7.2  �Entity Normalization

The second process is entity normalization. In this process different variants of the
same entity instance are mapped to a common name. As noted above in some of the
approaches to identify and entity, the normalization can also occur. For example
George Bush, President Bush, George W. Bush, and Bush might all be mapped to a
single value that represents that one person (that instance). A more complex exten-
sion is associating pronouns with specific entities. This is called coreference which
means the identification of an anaphoric relation. An anaphoric relation indicates
the relation between two textual elements that denote the same object. For example:

•	 George Bush is the president. He is from Texas

In this case George Bush and “He” refer to the same object. This also could be the
mapping of different spellings of the same name to a single value such as in the
Muammar el Qaddafi example above. In a sense you are applying two different val-
ues to the same processing token. One is the actual value in the text and the other is
the single value that represents that entity instance. The single value of the instance
becomes another processing token that maps to all the locations of the different
variants of the entity exist in the text. You can create an additional inversion list
represented by the single value that has all of the instances of all of the variants in it.
This expansion of the processing token list allows for the search a specific value or a
search for all variants of an entity. This helps resolve the difference in vocabularies
between the author and the searcher.

The products that use the enumeration method of listing all variants manually or
by linguistic rules associated with names can handle mapping various name vari-
ants. But they do not handle the issue of coreference. The products that use linguis-
tic rules are more apt to be able to handle the coreference issue—but quite often do
not because it’s not accurate enough and is too complex.

3.7.3  �Entity Resolution

The third process is entity resolution. As processing tokens are associated with an
entity instance, it’s possible they will be assigned to the wrong entity instance. As the

3 Ingest

87

processing tokens are sequentially processed and assigned, entity resolution allows
the system to reconsider some of the mappings based upon additional information as
it processes the item. For example the first time a processing token George Bush is en-
countered it might be mapped to George W. Bush. But as the item continues process-
ing it might find that all the other processing tokens are referring to George H. Bush
and thus the first processing token should also refer to George H. Bush. Entity resolu-
tion also refers to when entities and attributes about the entities are identified across
multiple items. When the entities with their attributes are merged into the searchable
database its possible that there are inconsistencies between the entities and their at-
tributes. The merging and resolution of the conflicts is also called entity resolution.

There are two major approaches to entity resolution. Many applications focus
on a particular entity class and specific rules are defined to resolve conflicts against
that class. Stanford University in its SREF project is taking a more generic approach
to developing a framework for entity resolution that can be applied to a variety of
problems. In addition to the resolution process looking for conflicts it includes a
method to show the logic executed by the system that came to the entity resolution
proposal (Garcia-Molina-2007).

3.7.4  �Information Extraction

Entity identification is some times related to the more general Information Extrac-
tion process. All systems use some level of information extraction in order to extract
the “citation” metadata information about an item to augment the processing tokens
to make that searchable. There are two processes associated with information ex-
traction: determination of facts to go into structured fields in a database and extrac-
tion of text that can be used to summarize an item. In the first case only a subset of
the important facts in an item may be identified and extracted. In summarization all
of the major concepts in the item should be represented in the summary.

The process of extracting facts to go into indexes is called Automatic File Build.
Its goal is to process incoming items and extract index terms that will go into a
structured database. This differs from indexing in that its objective is to extract spe-
cific types of information versus understanding all of the text of the document. An
Information Retrieval System’s goal is to provide an in-depth representation of the
total contents of an item (Sundheim-92). An Information Extraction system only an-
alyzes those portions of a document that potentially contain information relevant to
the extraction criteria. The objective of the data extraction is in most cases to update
a structured database with additional facts. The updates may be from a controlled
vocabulary or substrings from the item as defined by the extraction rules. The term
“slot” is used to define a particular category of information to be extracted. Slots are
organized into templates or semantic frames. Information extraction requires mul-
tiple levels of analysis of the text of an item. It must understand the words and their
context (discourse analysis). The processing is very similar to the natural language
processing described under indexing.

3.7 Entity Processing

88

In establishing metrics to compare information extraction, the previously de-
fined measures of precision and recall are applied with slight modifications to their
meaning. Recall refers to how much information was extracted from an item versus
how much should have been extracted from the item. It shows the amount of cor-
rect and relevant data extracted versus the correct and relevant data in the item.
Precision refers to how much information was extracted accurately versus the total
information extracted.

Additional metrics used are overgeneration and fallout. Overgeneration mea-
sures the amount of irrelevant information that is extracted. This could be caused
by templates filled on topics that are not intended to be extracted or slots that
get filled with non-relevant data. Fallout measures how much a system assigns
incorrect slot fillers as the number of potential incorrect slot fillers increases
(Lehnert-91).

These measures are applicable to both human and automated extraction pro-
cesses. Human beings fall short of perfection in data extraction as well as auto-
mated systems. The best source of analysis of data extraction is from the Message
Understanding Conference Proceedings. Conferences (similar to TREC) were held
in 1991, 1992, 1993 and 1995. The conferences are sponsored by the Advanced Re-
search Project Agency/Software and Intelligent Systems Technology Office of the
Department of Defense. Large test databases are made available to any organization
interested in participating in evaluation of their algorithms. In MUC-5 (1993), four
experienced human analysts performed detailed extraction against 120 documents
and their performance was compared against the top three information extraction
systems. The humans achieved a 79% recall with 82% precision. That is, they ex-
tracted 79% of the data they could have found and 18% of what they extracted
was erroneous. The automated programs achieved 53% recall and 57% precision.
The other mediating factor is the costs associated with information extraction. The
humans required between 15 and 60Â€min to process a single item versus the 30Â€s
to 3Â€min required by the computers. Thus the existing algorithms are not operating
close to what a human can achieve, but they are significantly cheaper. A combina-
tion of the two in a computer-assisted information extraction system appears the
most reasonable solution in the foreseeable future.

3.8  �Categorization

The categorization process is focused on finding additional descriptors for the con-
tent of an item. It is attempting to get to the more complex issue of finding index
values that define the more abstract references for an item. In this case the process-
ing tokens for an item are expanded by the terms associated with each category
found for an item. For example, there may be a category for Environment Protec-
tion. When an item comes in that discusses oil spills, it will also have the term Envi-
ronment Protection assigned to it, even though neither those words nor any variants
of those words were included in the item.

3 Ingest

89

As discussed in Chap.Â€ 2 the primary approaches to categorization are use of
learning algorithms such as neural nets or support vector machines. The systems
allow users or system administrators to create a new category. When the category
is created the user needs to find 20–30 examples of existing items that should be
assigned to that category to be used to train the system on the category. In some sys-
tems the user is also asked to find 5–10 examples of items that are close to the topic
but which should not be assigned to the category. These examples are then used to
train the system on that particular category. When a new item is ingested it will be
processed against all of the category definitions. The result of the categorization
process is a “confidence” value that the item should be part of that category. This
is typically a value between 0 and 1 or 0 to 100. In some systems a threshold is set
and if the confidence value does not exceed it, the category value is not added to
the index. In other systems that are based upon weighting algorithms, the category
and its associated confidence level will always be added as additional processing
tokens. The confidence values created by one categorization process is unique to
that process and cannot be compared to confidence levels assigned to an item by
a different categorization tool, even if they use the same training data. Thus the
cutoff thresholds are unique to a particular system and use of multiple different
categorization processes does not improve the capability to accurately determine
what categories an item should be assigned. This is because there are heuristics and
feedback tuning parameters that are part of the configuration of each categorization
product and quite often proprietary in nature (part of the intellectual property of the
product) that ensures there is no consistency in values between products. Thus one
product may assign a value of 65 for Environmental Protection and it should be ap-
plied whereas another product may have a value of 80 which for that product may
still be too low to assign the value.

Most of the approaches allow the user to add more items to the training set as
they use the system. In some cases they allow the user to select a subset of an item
(e.g., select a subset of the text from an item) as training material. This is extremely
useful when the items have the possibility to discuss multiple topics or provide
background on a general topical area.

Another common approach to categorization uses Naïve Bayes as an algorithmic
approach. It is called Naïve because it assumes every word is independent of every
other word. But that simplification seems to not cause serious miss categorization
of items. The goal is to define which category and item belongs to and the data that
is available is a training set of documents to estimate the effects of different words
on the inclusion of the item in a particular class. Starting with a Bayesian approach
the classification problem can be defined as:

which is saying the probability of a particular Category given a particular Item
equals the probability of an Item given the Category times the probability the cat-
egory occurs divided by the probability an Item occurs. The first simplification is
that the denominator can be dropped without effecting the overall evaluation. The
goal is to select if an item should be in a category and the denominator is the same

P(C/I) = (P(I/C) ∗ P(C))/P(I)

3.8 Categorization

90

for all calculations and is just a normalization factor that does not effect the decision
information which is in the numerator. The P(C) factor is useful because if a cat-
egory does not occur very often and the conditional probability P(I/C) marginally
suggests it should be assigned to the category, then it could change the decision to
not assigning the category to the item (or vice versa).

The next step is to determine how to calculate the factor P(I/C). An item is a
set of processing tokens (words) that are meaningful (i.e., stop words need to be
eliminated). Thus the formula can be estimated to be P(set of words in I) given a
Category. The concept of using a training set is that you will have a set of Items
identified as those in the Category and those not in the Category. From the training
set an estimate for each unique word can be calculated how much that word contrib-
utes to the decision that an item should be in the category. This simply becomes the
ratio of the number of times a word occurs in the Items of the training set assigned
to the category divided by the total number of words in the category. The formula
now becomes:

Where P(tk/C) uses each word found in the Item as an independent (the assumption
noted above) estimator contributing to the decision if the Item should be assigned to
the Category. Sometimes in operational systems the Log function is used to be sure
that if a particular word would have a value close to or equal to zero it would not
zero out this function by changing it to an addition of Logs versus a multiplication
of factors.

The p(tk/C) factor is the number of times that a word is found in the training data
set for a particular Category divided by the total number of words. This approach
can lead to problems if certain terms are not found in the training set so Laplace
smoothing can be added to eliminate zeros. Thus the factor p(tk/C) is changed to:

where “N” is the number of unique processing tokens in the training set. Thus to
calculate the factor that each processing token contributes to an item being consid-
ered for a category we sum up the number of times that word is found in items in
the training set for that category plus one and divide it by total number of process-
ing tokens in the training data set plus the number of unique processing tokens in
the training set. In addition from the training set a factor the P(C) can be estimated
although this factor can be easily changed as operational Items are assigned to the
Category.

This factor from the training set of p(tk/C) for each tk is used for each occurrence
of that term in a new Item to determine if it should be assigned the Category multi-
plied times the probability the category will occur. Then to calculate the probability

P(C/I) α P(C) ∗
∏

P(tk/C)

P(C/I) α log(p(C)) +
∑

log p(tk/C)

p(tk/C) = (tk + 1)/
∑

(tk + 1) = (tk + 1)/
(∑

(tk) + N
)

3 Ingest

91

that an item is not a member of the category you use the same formula on the
training items that the category does not apply to. This then gives you an estimate
if the Item should be in the Category or if the Item should not be assigned to the
Category.

In the example from Fig.Â€3.5, given the following 6 Items in the training data
set, the factors for each of two categories are calculated. The P(computer category)
is 4/6Â€=Â€0.667 and the P(not computer is 2/6)Â€=Â€0.333 which is the number of times
Items in the training data set are in the Category or not in the Category. The issue
with that assumption is that it’s hard to get a training set that adequately reflects
what will be what is observed in the operational data for this factor. Thus this factor
is adjusted as the system assigns new Items to the Categories. Dynamic adjustments
for word frequencies and new words are part of the proprietary heuristics that each
product using this approach creates.

If a new Item is to be categorized and the system is calculating if it should be in
the “computer” category then the data above would be used. For example if a new
item is:

Item 7Â€=Â€computer physics computer mathematics
Then the P(computer/Item 7)Â€=Â€(0.667)Â€*Â€(0.526Â€*Â€0.263Â€*Â€0.526Â€*Â€0.105)Â€=Â€0.0051
and the P(not computer/Item 7)Â€=Â€(0.333)Â€*Â€(0.182Â€*Â€0.546Â€*Â€0.182Â€*Â€0.091)Â€=Â€0.0005

Thus the Item 7 would be assigned the category “computer”.

Fig. 3.5â†œæ¸€ Naïve Bayes example

Item 1 = computer physics computer computer is in computer category

Item 2 = computer mathematics physics physics

Item 3 = computer computer biology

Item 4 = computer computer computer physics

Item 5 = computer physics physics

Item 6 = physics biology physics physics

is in computer category

is in computer category

is in computer category

is not in computer category

is not in computer category

P(computer/category) = (9 + 1)/(15 + 4) = 10/19 = .526

P(physics/category) = (4 + 1)/(15 + 4) = 5/19 = .263

P(mathematics/category) = P(biology/category) = (1 + 1)/(15 + 4) = 2/19 = .105

P(computer/not category) = (1 + 1)/(7 + 4) = 2/11= .182

P(physics/not category) = (5 + 1)/(7 + 4) = 6/11 = .546

P(mathematics/not category) = (0 + 1)/(7 + 4) = 1/11 = .091

P(biology/not category) = (1 + 1)/ (7 + 4) = 2/11 = .182

3.8 Categorization

92

This example is a good opportunity to see why the term “probability” is used
often in Information Retrieval but really in almost all cases it is not a probability
because of the simplifications and the estimates used for the various data. You might
think that the P(Computer/Item 7)Â€+Â€the P(not in Computer/Item 7) should equal 1,
which it is not even close. That is because these are not real probabilities. The
concept of “confidence” or relative value is what is used in Information Retrieval
because you are getting estimates but the goal is to make a relative decision com-
pared to other items such as should it be in a Category or which should be displayed
first. In the example above the decision would be to assign Item 7 to Category
“Computer”. But given the estimates a threshold is many times applied where even
if the calculation for the assignment to a Category suggests it should be assigned, if
it is not above a threshold, it still is not assigned.

As with Entity identification, there is also a rule based approach to categori-
zation. In rule based you could have a rule like “Chicago” and “Seattle” would
classify an item talking about locations. There are likely subsets of categories that
can be defined by rules where there are clear boundaries on what should be in a cat-
egory. But the rule based approach as with the added dictionary discussed above are
techniques to enhance a more automated statistical classification scheme to either
add specific results that can be defined and are important or to define exceptions to
eliminate some recurring errors that the statistical classifier is producing.

3.9  �Citational Metadata

Most of the above discussion is focused on creating processing tokens from the con-
tent of an item. But there is additional indexable data that is associated with where
the item came from. This information can help limit the users search to a subset of
the items in the database, thereby improving precision. Examples of citational in-
formation are the date the item was ingested by the search system, the date the item
was created by the user, the source of the item (e.g., web site name, news agency
for RS feeds, etc.), author of the item, and language an item is in. The advantage of
this data is that it is more4 facts than subjective information and can help narrow a
search down if it is an aspect of what the information need of the user is.

3.10  �Summary

The Ingest process is the first process in the creation of an Information retrieval
system. It is the first level filter to try and eliminate items that would expand the
database without providing useful information to the user. The less extraneous
information the more precision will come from searches. In addition to the filter-
ing process, it performs different types of normalization. Zoning of an item is
useful to improve the precision of a search. This is accomplished by defining a

3 Ingest

93

logical subset of the item to search and in some cases assign a higher weight if a
search “hits” in a particular subset (e.g., on the Title). The stemming process helps
eliminate mismatches between the users search and the text by attempting to map
processing token to the canonical form that best represents the concept the word is
addressing. The entity identification process has the most value in disambiguating
the received processing tokens and disambiguating between different variants of
the same entity. The additional processing tokens generated by the entity identi-
fication process can be used to resolve many of the ambiguities of a search. In
most searches users are searching for specific entities and this process while keep
the resultant set focused improving both precision and recall. Categorization is
also useful in expanding the processing tokens identifying an item. Although the
author and the user use different vocabularies, use of learning algorithms driven
by examples that the user identifies is using the author’s vocabulary to learn how
to find the specific categories that the user is interested in and mapping it to the
category label.

3.11  �Exercises

1.	 Discuss the additional complexities and metadata that might be useful when you
are crawling “BLOGS” versus normal static web pages. If you were crawling
“FACEBOOK” how would you modify to optimize the ingest process (HINT:
discuss it both from a metadata perspective and a multimedia information
retrieval perspective).

2.	 Given the following two items compare how well the shingle process works
between looking at the 3 lowest signatures versus the 6 lowest signatures—use
Borders resemblance formula. Discuss the results.

Item 1: w2 w4 w2 w6 w6 w2 w7 w5 w4 w2 w6
Item 2: w5 w4 w2 w6 w2 w4 w2 w6 w6 w2 w7

3.	 Consider other types of information—images, and audio. Compare the pro-
cessing of them to create a searchable index versus the processing of text. For
example when you think of processing text you start with symbols and interword
symbols that build up to defining words. Then words are processed to defining
processing tokens. What parallels do you see for images and audio?

4.	 Describe the similarities and differences between term stemming algorithms and
n-grams. Describe how they affect precision and recall.

5.	 Apply the Porter stemming steps to the following words: irreplaceable, informa-
tive, activation, and triplicate.

6.	 Assuming the database has the following words: act, able, arch, car, court, waste,
wink, write, writer, wrinkle. Show the successor variety for the word “write-
able.” Apply the cutoff method, peak and plateau method and complete word
method to determine possible stems for the word. Explain your rationale for the
cutoff method.

3.11 Exercises

95

4.1  �What is Indexing

ChapterÂ€3 focused on the initial processing (ingest) of an item. It concluded with
having identified the processing tokens that would be used to create the searchable
index for the item. Before the specific indexing techniques are discussed it’s useful
to understand what an index is and what its goal is. One of the most critical aspects
of an information retrieval system that determines its effectiveness is how it repre-
sents concepts (semantics) in items. The transformation from the received item to
the searchable data structure is called Indexing. This process historically was manual
but is now primarily automatic, creating the basis for search of items. The index is
what really defines an item more than its original content. This is because the pri-
mary mechanism to get to an item is based upon search of the index. If information
is not in the index, then the user will never know the item exists. For example, if a
new term to describe a process is unique and found in one item, it’s possible that
the stop algorithm process will eliminate the processing token before it gets to the
indexing phase. If a user searches for that unique word it will appear as if there are
no items in the database that contain that term. Indexing is the process of mapping
from the contents of an item to the searchable structure used to find items. If there
are concepts in the item that are not reflected in the index, then a user will not find
that item when searching for those concepts. In addition to mapping the concepts to
the searchable data structure, the automatic indexing process may attempt to assign
a weight on how much that item discusses a particular concept. This is used in the
display phase for ranking the outputs, attempting to get the items more likely to be
relevant higher in the hit list. To better understand the indexing process a discussion
of manual indexing process sheds some insights into the automatic indexing process.

Once the processing tokens have been identified they can be used to create the
searchable index for the item. The index that is created defines how well an informa-
tion retrieval system will perform. Users do not browse all of the items in the database
unless there is Taxonomy and they follow the taxonomy tree. But in a sense that is
also a search where each level in the taxonomy can be defined by a search. Since the
users can only find items of interest by searching, if the semantics of what is important
within an item is not reflected in the searchable index, users will never find the item.

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_4, ©Â€Springer Science+Business Media, LLC 2011

Chapter 4
Indexing

96

Before introducing the actual indexing methodologies, reviewing the history
of indexing puts into perspective the importance of indexing and how it evolved.
Through most of the 1980s the goals of commercial Information Retrieval Systems
were constrained to facilitating the manual indexing paradigm. In the 1990s, expo-
nential growth in computer processing capabilities with a continuing decrease in
cost of computer systems has allowed Information Retrieval Systems to implement
previously theoretical functions, introducing a new information retrieval paradigm
where the text of the item could be the index. In the 2000s the technology had
evolved where it was not only scalable to billions of items being indexed, but also
other support technologies such as entity identification, duplicate removal and cat-
egorization can be used to enhance both precision and recall. But there still there
remains a place for manual indexing.

4.1.1  �History

Indexing (originally called Cataloging) is the oldest technique for identifying the
contents of items to assist in their retrieval. The objective of cataloging is to give
access points to a collection that are expected and most useful to the users of the
information. The basic information required on an item, what is the item and what
it is about, has not changed over the centuries. As early as the third-millennium,
in Babylon, libraries of cuneiform tablets were arranged by subject (Hyman-89).
Up to the nineteenth century there was little advancement in cataloging, only
changes in the methods used to represent the basic information (Norris-69). In the
late 1800s subject indexing became hierarchical (e.g., Dewey Decimal System).
In 1963 the Library of Congress initiated a study on the computerization of bib-
liographic surrogates. From 1966–1968 the Library of Congress ran its MARC I
pilot project. MARC (MAchine Readable Cataloging) standardizes the structure,
contents and coding of bibliographic records. The system became operational in
1969 (Avram-75). The earliest commercial cataloging system is DIALOG, which
was developed by Lockheed Corporation in 1965 for NASA. It became commercial
in 1978 with three government files of indexes to technical publications. By 1988,
when it was sold to Knight-Ridder, DIALOG contained over 320 index databases
used by over 91,000 subscribers in 86 countries.

Indexing (cataloging), until recently, was accomplished by creating a biblio-
graphic citation in a structured file that references the original text. These files con-
tain citation information about the item, keywording the subject(s) of the item and,
in some systems a constrained length free text field used for an abstract/summary.
The indexing process is typically performed by professional indexers associated
with library organizations. Throughout the history of libraries, this has been the
most important and most difficult processing step. Most items are retrieved based
upon what the item is about. The user’s ability to find items on a particular subject is
limited by the indexer creating index terms for that subject. But libraries and library
indexing has always assumed the availability of the library staff to act if needed
as a human intermediary for users having problems in locating information. Users

4 Indexing

97

looking for well-defined data (e.g., people by name and titles) have good success
by themselves. But when users are searching for topics they fail on 70% of single
query requests and 45% of the time they never find the data they need. But when
the users consult with a librarian the failure rates drop to 10% (Nordlie-99.) Thus li-
brary based indexing was never under significant pressure to invent user interfaces,
support material and augmented search engines that would assure users could find
the material they needed. They could rely on human interaction to resolve the more
complex information needs.

The initial introduction of computers to assist the cataloguing function did not
change its basic operation of a human indexer determining those terms to assign
to a particular item. The standardization of data structures (e.g., MARC format)
did allow sharing of the indexes between libraries. It reduced the manual overhead
associated with maintaining a card catalog. By not having to make physical copies
of the index card for every subject index term, it also encouraged inclusion of ad-
ditional index terms. Also it allowed for Boolean logic to further refine the user’s
request (e.g., author and subject). But the process still required the indexer to enter
index terms that quite often were redundant with the words in the referenced item.
The user, instead of searching through physical cards in a card catalog, now per-
formed a search on a computer and electronically displayed the card equivalents. It
allows the user to search on multiple index terms using Boolean logic allowing for
more precise retrieval.

In the 1990s, the significant reduction in cost of processing power and memory
in modern computers, along with access to the full text of an item from the publish-
ing stages in electronic form, allowed use of the full text of an item as an alternative
to the indexer-generated subject index. The searchable availability of the text of
items has changed the role of indexers and allowed introduction of new techniques
to facilitate the user in locating information of interest. The indexer is no longer re-
quired to enter index terms that are redundant with words in the text of an item. The
searcher is no longer presented a list of potential item of interest, but is addition-
ally informed of the likelihood that each item satisfies his search goal. Additional
new automated tools such as entity identification, categorization have moved the
processing closer to full automation, but manual indexing still holds value (e.g.,
Yahoo).

4.1.2  �Objectives

The objective of indexing has not changed from the earliest days of libraries. The
index needs to represent the semantics of the item that is of potential interest to us-
ers. If there are semantics (ideas) in the item that are not reflected in the index, users
will not be able to find the item. This is true from the days of using physical rooms
to index, to adding index terms in card catalogs and making copies of the index
cards to the automatic indexing algorithms discussed in this chapter.

How indexing occurs and the roles played by machines and humans have
changed with the evolution of Information Retrieval Systems. Availability of the

4.1 What is Indexing

98

full text of the item in searchable form alters the manual indexing needs historically
used in determining guidelines for manual indexing. In the new environment where
all of the processing tokens in all items are indexed, all of the words within the item
are potential index descriptors of the subject(s) of the item. ChapterÂ€3 discusses
the ingest process that takes all possible words in an item and transforms them
into processing tokens used in defining the searchable representation of an item. In
addition to determining the processing tokens, current systems have the ability to
automatically weight the processing tokens based upon their potential importance in
defining the concepts in the item and assigning items to locations in taxonomy that
describes the overall subject of the information database.

The first reaction of many people is to question the need for manual indexing
at all, given that total document indexing is available for search. If one can search
on any of the words in a document why does one need to add additional index
terms? Previously, indexing defined the source and major concepts of an item and
provided a mechanism for standardization of index terms (i.e., use of a controlled
vocabulary). A controlled vocabulary is a finite set of index terms from which all
index terms must be selected (the domain of the index). In a manual indexing en-
vironment, the use of a controlled vocabulary makes the indexing process slower,
but potentially simplifies the search process. The extra processing time comes from
the indexer trying to determine the appropriate index terms for concepts that are not
specifically in the controlled vocabulary set. Controlled vocabularies aide the user
in knowing the domain of terms that the indexer had to select from and thus which
terms best describe the information needed. Thus controlled vocabularies signifi-
cantly reduce the miss match between the vocabulary of the author and the vocabu-
lary of the searcher. Uncontrolled vocabularies have the opposite effect, making
indexing faster but the search process much more difficult.

The availability of items in electronic form changes the objectives of manual
indexing. The source information (frequently called citation data) can automatically
be extracted. The use of entity identification and availability of electronic thesauri
and other reference databases can compensate for diversity of language/vocabulary
use and thus eliminate the need for controlled vocabularies. The primary use of
manual subject indexing now shifts to abstraction of concepts and judgments on the
value of the information. The automatic text analysis algorithms cannot consistently
perform abstraction on all concepts that are in an item. They cannot correlate the
facts in an item in a cause/effect relationship to determine additional related con-
cepts to be indexed. An item that is discussing the increase in water temperatures at
factory discharge locations could also be providing information on “economic sta-
bility” of a country that has fishing as its major industry. It requires the associative
capabilities of a human being to make the connection. A computer system would
typically not be able to correlate the changes in temperature to economic stability
(e.g., use of categorization tool with economic stability as a category). The addi-
tional index terms added if manual indexing (tagging) is allowed will enhance the
recall capability of the system. For certain queries it may also increase the precision.

The words used in an item do not always reflect the value of the concepts be-
ing presented. It is the combination of the words and their semantic implications

4 Indexing

99

that contain the intelligence value of the concepts being discussed. The utility of
a concept is also determined by the user’s need. The Public File indexer needs to
consider the information needs of all users of the library system. Individual users of
the system have their own domains of interest that bound the concepts in which they
are interested. It takes a human being to evaluate the quality of the concepts being
discussed in an item to determine if that concept should be indexed. The difference
in “user need” between the library class of indexers and the individual users is why
Private Index files are an essential part of any good information system. It allows
the user to logically subset the total document file into folders of interest including
only those documents that, in the user’s judgment, have future value. It also allows
the user to judge the utility of the concepts based upon his need versus the system
need and perform concept abstraction. Selective indexing based upon the value of
concepts increases the precision of searches.

Availability of full document indexing saves the indexer from entering index
terms that are identical to words in the document. In most private corporate systems
users are given the opportunity to add additional index terms or their opinions on
the information which is available to all other users. Sometimes the index terms are
entered by professional indexers and in most other cases they are added by other us-
ers of the system. This distinction is important because the system needs to protect
the index data added by the professionals while allowing changes to that added by
the users. There is overlap between the Private and Public index terms added. One
of the changes that has come with the Internet is where some web sites are allowing
any user to enter indexing. In this case there are users responsible for the integrity
of subsets of the site that review what other users enter and make adjustments as
needed (Wikipedia). This concept of collaborative indexing has significantly ex-
panded the knowledge base available for search systems and users.

4.2  �Manual Indexing Process

When an organization with multiple indexers decides to create a public or private
index some procedural decisions on how to create the index terms assist the index-
ers and end users in knowing what to expect in the index file. The first decision is
the scope of the indexing to define what level of detail the subject index will con-
tain. This is based upon usage scenarios of the end users. The other decision is the
need to link index terms together in a single index for a particular concept.

4.2.1  �Scope of Indexing

When manual indexing is allowed to augment the automated indexing, the process
of reliably and consistently determining the bibliographic terms that represent the
concepts in an item is extremely difficult. Problems arise from interaction of two

4.2 Manual Indexing Process

100

sources: the author and the indexer. The vocabulary domain of the author may be
different than that of the indexer, causing the indexer to misinterpret the emphasis
and possibly even the concepts being presented. The indexer is not an expert on all
areas and has different levels of knowledge in the different areas being presented
in the item. This results in different quality levels of indexing. The indexer must
determine when to stop the indexing process.

There are two factors involved in deciding on what level to index the concepts
in an item: the exhaustivity and the specificity of indexing desired. Exhaustivity of
indexing is the extent to which the different concepts in the item are indexed. For
example, if two sentences of a 10-page item on microprocessors discuss on-board
caches, should this concept be indexed? Specificity relates to the preciseness of the
index terms used in indexing. For example, whether the term “processor” or the
term “microcomputer” or the term “Pentium” should be used in the index of an item
is based upon the specificity decision. Indexing an item only on the most important
concept in it and using general index terms yields low exhaustivity and specificity.
This approach requires a minimal number of index terms per item and reduces the
cost of generating the index. For example, indexing this paragraph would only use
the index term “indexing.” High exhaustivity and specificity indexes almost every
concept in the item using as many detailed terms as needed. Under these parameters
this paragraph would have “indexing,” “indexer knowledge,” “exhaustivity” and
“specificity” as index terms. Low exhaustivity has an adverse effect on both preci-
sion and recall. If the full text of the item is indexed, then low exhaustivity is used
to index the abstract concepts not explicit in the item with the expectation that the
typical query searches both the index and the full item index. Low specificity has an
adverse effect on precision, but no effect to a potential increase in recall.

Another decision on indexing is what portions of an item should be indexed. The
simplest case is to limit the indexing to the Title or Title and Abstract zones. This
indexes the material that the author considers most important and reduces the costs
associated indexing an item. This leads to loss of recall.

Weighting of index terms is not common in manual indexing systems. Weight-
ing is the process of assigning an importance to an index term’s use in an item. The
weight should represent the degree to which the concept associated with the index
term is represented in the item. The weight should help in discriminating the extent
to which the concept is discussed in items in the database.

4.2.2  �Precoordination and Linkages

Another decision on the indexing process is whether linkages are available between
index terms for an item. Linkages are used to correlate related attributes associated
with concepts discussed in an item. This process of creating term linkages at index
creation time is called precoordination. When index terms are not coordinated at
index time, the coordination occurs at search time. This is called post coordination
that is coordinating terms after (post) the indexing process. Post coordination is

4 Indexing

101

implemented by “AND”ing index terms together, which only find indexes that have
all of the search terms.

Factors that must be determined in the linkage process are the number of terms
that can be related, any ordering constraints on the linked terms, and any additional
descriptors are associated with the index terms (Vickery-70). The range of the num-
ber of index terms that can be linked is not a significant implementation issue and
primarily affects the design of the indexer’s user interface. When multiple terms
are being used, the possibility exists to have relationships between the terms. For
example, the capability to link the source of a problem, the problem and who is af-
fected by the problem may be desired. Each term must be caveated with one of these
three categories along with linking the terms together into an instance of the rela-
tionships describing one semantic concept. The order of the terms is one technique
for providing additional role descriptor information on the index terms. Use of the
order of the index terms to implicitly define additional term descriptor information
limits the number of index terms that can have a role descriptor. If order is not used,
modifiers may be associated with each term linked to define its role. This technique
allows any number of terms to have the associated role descriptor. FigureÂ€4.1 shows
the different types of linkages. It assumes that an item discusses the drilling of oil
wells in Mexico by CITGO and the introduction of oil refineries in Peru by the U.S.
When the linked capability is added, the system does not erroneously relate Peru
and Mexico since they are not in the same set of linked items. It still does not have
the ability to discriminate between which country is introducing oil refineries into
the other country. Introducing roles in the last two examples of Fig.Â€4.1 removes
this ambiguity. Positional roles treat the data as a vector allowing only one value per
position. Thus if the example is expanded so that the U.S. was introducing oil re-
fineries in Peru, Bolivia and Argentina, then the positional role technique would re-
quire three entries, where the only difference would be in the value in the “affected
country” position. When modifiers are used, only one entry would be required and
all three countries would be listed with three “MODIFIER”s.

Fig. 4.1â†œæ¸€ Linkage of index
terms

INDEX TERMS Methodology

oil, wells, Mexico, CITGO, refineries,
Peru, BP, drilling

No linking of terms

(oil wells, Mexico, drilling, CITGO)

(U.S., oil refineries, Peru, introduction)

linked (Pre-coordination)

(CITGO, drill, oil wells, Mexico)
(U.S., introduction, oil refineries, Peru)

linked (Pre-coordination)
with position indicating role

(SUBJECT: CITGO;
ACTION: drilling;
OBJECT: oil, wells
MODIFIER: in Mexico)

(SUBJECT: U.S.;
ACTION: introduces;
OBJECT: oil refineries;
MODIFIER: in Peru)

linked (Pre-coordination)
with modifier indicating role

4.2 Manual Indexing Process

102

4.3  �Automatic Indexing of Text

Automatic indexing is the capability for the system to automatically determine the
index terms to be assigned to an item. The simplest case is when all words in the
document are used as possible index terms (total document indexing). More com-
plex processing is required when the objective is to emulate a human indexer and
determine a limited number of index terms for the major concepts in the item. As
discussed, the advantages of human indexing are the ability to determine concept
abstraction and judge the value of a concept. The disadvantages of human indexing
over automatic indexing are cost, processing time and consistency. Once the initial
hardware cost is amortized, the costs of automatic indexing are absorbed as part of
the normal operations and maintenance costs of the computer system. There are no
additional indexing costs versus the salaries and benefits regularly paid to human
indexers.

Processing time of an item by a human indexer varies significantly based upon
the indexer’s knowledge of the concepts being indexed, the exhaustivity and speci-
ficity guidelines and the amount and accuracy of preprocessing via Automatic File
Build. Even for relatively short items (e.g., 300–500 words) it normally takes at
least 5Â€min per item. A significant portion of this time is caused by the human inter-
action with the computer (e.g., typing speeds, cursor positioning, correcting spell-
ing errors, and taking breaks between activities). Automatic indexing requires only
a few seconds or less of computer time based upon the size of the processor and the
complexity of the algorithms to generate the index.

Another advantage to automatic indexing is the predictably of algorithms. If the
indexing is being performed automatically, by an algorithm, there is consistency
in the index term selection process. Human indexers typically generate different
indexing for the same document. In an experiment on consistency in TREC-2, there
was, on the average, a 20% difference in judgment of the same item’s topics be-
tween the original and a second independent judge of over 400 items (Harman-95).
Since the judgments on relevance are different, the selection of index terms and
their weighting to reflect the topics is also different. In automatic indexing, a so-
phisticated researcher understands the automatic process and be able to predict its
utility and deficiencies, allowing for compensation for system characteristics in a
search strategy. Even the end user, after interacting with the system, understands
for certain classes of information and certain sources, the ability of the system to
find relevant items is worse than other classes and sources. For example, the user
may determine that searching for economic issues is far less precise than political
issues in a particular newspaper based information system. The user may also de-
termine that it is easier to find economic data in an information database containing
Business Weekly than the newspaper source.

Automatic indexing is the process of analyzing an item to extract the information
to be permanently kept in an index. This process is associated with the generation
of the searchable data structures associated with an item. The first step in automatic
indexing is associated with the Ingest process described in Chap.Â€3 where the struc-

4 Indexing

103

ture of the item (e.g., zoning) and the processing tokens to be used in the indexing
process are determined. In addition to the structure that is associated the document,
in order to improve precision some systems automatically divide the document up
into fixed length passages or localities, which become the item unit that is indexed
(Kretser-99.) Having shorter logical documents limits the number of words that are
associated with that item and thus avoids false hits that come from words separated
by distances (e.g., paragraphs apart) that are unrelated still causing the retrieval of
an item. The shorter items are only for search purposes in all cases the original item
is retrieved. FigureÂ€4.2 shows the indexing process and the associated search and
retrieval process. After the searchable index is created the user will issue a search
statement. The Hit List generated from the search will have pointers to the original
documents so they can be displayed upon request from the user.

4.3 Automatic Indexing of Text

Fig. 4.2â†œæ¸€ Index and search processing flow

104

Indexes resulting from automated indexing fall into two classes: weighted and
unweighted. In an unweighted indexing system, the existence of an index term in a
document and sometimes its word location(s) are kept as part of the searchable data
structure. No attempt is made to discriminate between the values of the index terms
in representing concepts in the item (i.e., they are all the same weight). Looking at
the index, it is not possible to tell the difference between the main topics in the item
and a casual reference to a concept. This architecture is typical of the commercial
systems through the 1980s. Queries against unweighted systems are based upon
Boolean logic and the items in the resultant Hit file are considered equal in value.
The last item presented in the Hit file is as likely as the first item to be relevant to
the user’s information need.

To understand how automatic weighting occurs the first thing to consider is what
information is available to the system to do the automatic indexing. There are three
things available; the current item and the processing tokens in it, there is the data-
base so far built and there could be other databases of reference information (e.g.,
in-link/out-links of web sites to judge a sites importance). In a weighted indexing
system, an attempt is made to place a value on the index term’s representation of its
associated concept in the document. The most direct evidence to be used in weight-
ing an item is the item itself and the frequency of occurrence of words in the item.
Luhn, one of the pioneers in automatic indexing, introduced the concept of the
“resolving power” of a term. Luhn postulated that the significance of a concept in
an item is directly proportional to the frequency of use of the word associated with
the concept in the document (Luhn-58, Salton-75). This is reinforced by the studies
of Brookstein, Klein and Raita that show “content bearing” words are not randomly
distributed (i.e., Poisson distributed), but that their occurrence “clump” within items
(Brookstein-95). Typically, values for the index terms are normalized between zero
and one. The higher the weight, the more the term represents a concept discussed
in the item. The weight can be adjusted to account for other information such as
the number of items in the database that contain the same concept. Although this
process was initially applied to each processing token as if each was independent
of its neighbors, some systems also consider word phases (i.e., Contiguous Word
Phrases) as a searchable unit and apply similar techniques to weighting them. This
initial weight is then adjusted by information across the database (such as how
often the word occurs in other items and/or the other external databases of support
information).

The query process uses the weights along with any weights assigned to terms in
the query to determine a scalar value (rank value) used in predicting the likelihood
that an item satisfies the query. Thresholds or a parameter specifying the maximum
number of items to be returned is used to bind the number of items returned to a
user. The results are presented to the user in order of the rank value from highest
number to lowest number.

There are three major approaches to generation of the searchable index; statisti-
cal, natural language, and concept.

Statistical strategies cover the broadest range of indexing techniques and are the
most prevalent in commercial systems. The basis for a statistical approach is use of

4 Indexing

105

frequency of occurrence of events. The events usually are related to occurrences of
processing tokens (words/phrases) within documents and within the database. The
words/phrases are the domain of searchable values. The statistics that are applied
to the event data are probabilistic, Bayesian, and vector space. The static approach
stores a single statistic, such as how often each word occurs in an item that is used
in generating relevance scores after a standard Boolean search. Probabilistic index-
ing stores the information that are used in calculating a probability that a particular
item satisfies (i.e., is relevant to) a particular query. Bayesian and vector approaches
store information used in generating a relative confidence level of an item’s rel-
evance to a query. In addition the Bayesian approach is probabilistic, but to date the
developers of this approach are more focused on a good relative relevance value
than producing and absolute probability. Neural networks are dynamic learning
structures that are also discussed under concept indexing where they are used to
determine concept classes.

Natural Language approaches perform similar processing token identification as
in statistical techniques, but then additionally perform varying levels of natural lan-
guage parsing of the item. This parsing disambiguates the context of the processing
tokens and generalizes to more abstract concepts within an item (e.g., present, past,
future actions). This additional information is stored within the index to be used to
enhance the search precision.

Concept indexing uses the words within an item to correlate to concepts dis-
cussed in the item. This is a mapping of the specific words to a new set of “concept
words” used to index the item. When generating the concept words automatically,
there is not a name applicable to the concept but just a statistical significance.

Finally, there is an extension of what is being indexed associated with the ex-
istence of hypertext linkages. These linkages provide virtual threads of concepts
between items versus directly defining the concept within an item.

4.3.1  �Statistical Indexing

Statistical indexing uses frequency of occurrence of events to calculate a number
that is used to indicate the potential relevance of an item. One approach used in
search of older systems does not use the statistics to aid in the initial selection, but
uses them to assist in calculating a relevance value of each item for ranking. The
documents are found by a normal Boolean search and then statistical calculations
are performed on the Hit file, ranking the output (e.g., term frequency algorithms).

Probabilistic systems attempt to calculate a probability value that should be in-
variant to both calculation method and text corpora. This allows easy integration of
the final results when searches are performed across multiple databases and use dif-
ferent search algorithms. A probability of 50% would mean that if enough items are
reviewed, on the average one half of the reviewed items are relevant. The Bayesian
and Vector approaches calculate a relative relevance value (i.e., confidence level)
that a particular item is relevant. Quite often term distributions across the search-

4.3 Automatic Indexing of Text

106

able database are used in the calculations. An issue that continues to be researched
is how to merge results, even from the same search algorithm, from multiple data-
bases. The problem is compounded when an attempt is made to merge the results
from different search algorithms. This would not be a problem if true probabilities
versus confidence levels were calculated.

4.3.1.1  �Probabilistic Weighting

The probabilistic approach is based upon direct application of the theory of prob-
ability to information retrieval systems. This has the advantage of being able to
use the developed formal theory of probability to direct the algorithmic develop-
ment. It also leads to an invariant result that facilitates integration of results from
different databases. The use of probability theory is a natural choice because it is
the basis of evidential reasoning (i.e., drawing conclusions from evidence). This is
summarized by the Probability Ranking Principle (PRP) and its Plausible Corollary
(Cooper-94):

•	 HYPOTHESIS: If a reference retrieval system’s response to each request is a
ranking of the documents in the collection in order of decreasing probability
of usefulness to the user who submitted the request, where the probabilities are
estimated as accurately as possible on the basis of whatever data is available for
this purpose, then the overall effectiveness of the system to its users is the best
obtainable on the basis of that data.

•	 PLAUSIBLE COROLLARY: The most promising source of techniques for esti-
mating the probabilities of usefulness for output ranking in IR is standard prob-
ability theory and statistics.

There are several factors that make this hypothesis and its corollary difficult (Gor-
don-92, Gordon-91, Robertson-77). Probabilities are usually based upon a binary
condition; an item is relevant or not. But in information systems the relevance of
an item is a continuous function from non-relevant to absolutely useful. A more
complex theory of expected utility (Cooper-78) is needed to address this character-
istic. Additionally, the output ordering by rank of items based upon probabilities,
even if accurately calculated, may not be as optimal as that defined by some do-
main specific heuristic (Stirling-77). The domains in which probabilistic ranking
are suboptimal are so narrowly focused as to make this a minor issue. But these
issues mentioned are not as compelling as the benefit of a good probability value
for ranking that would allow integration of results from multiple sources. There is
an assumption in probability theory that terms are independent of each other, but
proximity of terms in textual items affects their potential aggregate weight in repre-
senting a concept which is the ultimate goal.

The source of the problems that arise in application of probability theory come
from a lack of accurate data and simplifying assumptions that are applied to the
mathematical model. If nothing else, these simplifying assumptions cause the re-
sults of probabilistic approaches in ranking items to be less accurate than other ap-
proaches. The advantage of the probabilistic approach is that it can accurately iden-

4 Indexing

107

tify its weak assumptions and work to strengthen them. In many other approaches,
the underlying weaknesses in assumptions are less obvious and harder to identify
and correct. Even with the simplifying assumption, results from comparisons of
approaches in the TREC conferences have shown that the probabilistic approaches,
while not scoring highest, are competitive against all other approaches.

There are many different areas in which the probabilistic approach may be ap-
plied. The method of logistic regression is described as an example of how a proba-
bilistic approach is applied to information retrieval (Gey-94). The approach starts
by defining a “Model 0” system which exists before specific probabilistic models
are applied. In a retrieval system there exist query terms qi and document terms
di, which have a set of attributes (v1, …, vn) from the query (e.g., counts of term
frequency in the query), from the document (e.g., counts of term frequency in the
document) and from the database (e.g., total number of documents in the database
divided by the number of documents indexed by the term).

The logistic reference model uses a random sample of query-document-term tri-
ples for which binary relevance judgments have been made from a training sample.
Log O is the logarithm of the odds (logodds) of relevance for term tk which is pres-
ent in document Dj and query Qi:

The logarithm that the ith Query is relevant to the jth Document is the sum of the
logodds for all terms:

where O(R) is the odds that a document chosen at random from the database is
relevant to query Qi. The coefficients c are derived using logistic regression which
fits an equation to predict a dichotomous independent variable as a function of inde-
pendent variables that show statistical variation (Hosmer-89). The inverse logistic
transformation is applied to obtain the probability of relevance of a document to a
query:

The coefficients of the equation for logodds is derived for a particular database
using a random sample of query-document-term-relevance quadruples and used to
predict odds of relevance for other query-document pairs.

Gey applied this methodology to the Cranfield Collection (Gey-94). The collec-
tion has 1,400 items and 225 queries with known results. Additional attributes of
relative frequency in the query (QRF), relative frequency in the document (DRF)
and relative frequency of the term in all the documents (RFAD) were included,
producing the following logodds formula:

log(O(R|Qi, Dj, tk)) = c0 + c1v1 + · · · + cnvn

log(O(R|Qi, Dj)) =
q∑

k=1

[log(O(R|Qi, Dj, tk)) − log(O(R))]

P
(
R|Qi, Dj

)
= 1\

(
1 + e−log (O(R|Qi,Dj))

)

Zj = log(O(R|tj)) = c0 + c1log(QAF) + c2log(QRF) + c3log(DAF)

+ c4log(DRF) + c5log(IDF) + c6log(RFAD)

4.3 Automatic Indexing of Text

108

where QAF, DAF, and IDF were previously defined, QRFÂ€=Â€QAF\(total number
of terms in the query), DRFÂ€=Â€DAF\(total number of words in the document) and
RFADÂ€=Â€ (total number of term occurrences in the database)\(total number of all
words in the database). Logs are used to reduce the impact of frequency informa-
tion; then smooth out skewed distributions. A higher maximum likelihood is at-
tained for logged attributes.

The coefficients and log (O(R)) were calculated creating the final formula for
ranking for query vector �Q, which contains q terms:

The logistic inference method was applied to the test database along with the Cor-
nell SMART vector system which uses traditional term frequency, inverse docu-
ment frequency and cosine relevance weighting formulas (see Sect.Â€5.2.2). The lo-
gistic inference method outperformed the vector method.

Thus the index that supports the calculations for the logistic reference model con-
tains the O(R) constant value (e.g., −5.138) along with the coefficients c0 through c6.
Additionally, it needs to maintain the data to support DAF, DRF, IDF and RFAD.
The values for QAF and QRF are derived from the query.

Attempts have been made to combine the results of different probabilistic tech-
niques to get a more accurate value. The objective is to have the strong points of
different techniques compensate for weaknesses. To date this combination of prob-
abilities using averages of Log-Odds has not produced better results and in many
cases produced worse results (Hull-96).

The Okapi weighting model that started with TREC in the 1990s tries to adjust
the standard probability models to account for the variances in textual documents
that were causing many of the errors in a probabilistic approach. It is probably the
best developed probabilistic approach to information retrieval.

4.3.1.2  �Baysean Indexing

Another Probabilistic model that has been most successful in this area is the Bayes-
ian approach. This approach is natural to information systems and is based upon the
theories of evidential reasoning (drawing conclusions from evidence). One way of
overcoming the restrictions inherent in a vector model is to use a Bayesian approach
to maintaining information on processing tokens. The Bayesian model provides a
conceptually simple yet complete model for information systems. In its most gen-
eral definition, the Bayesian approach is based upon conditional probabilities (e.g.,
Probability of Event 1 given Event 2 occurred). This general concept can be applied
to the search function as well as to creating the index to the database. The objective
of information systems is to return relevant items. Thus the general case, using the
Bayesian formula, is P (REL/DOCi, Queryj) which is interpreted as the probability
of relevance (REL) to a search statement given a particular document and query.

log(O(R| �Q)) = −5.138 +
q∑

k=1

(
Zj + 5.138

)

4 Indexing

109

In addition to search, Bayesian formulas can be used in determining the weights
associated with a particular processing token in an item. The objective of creating
the index to an item is to represent the semantic information in the item. A Bayesian
network can be used to determine the final set of processing tokens (called topics)
and their weights. FigureÂ€4.3 shows a simple view of the process where Ti represents
the relevance of topic “i” in a particular item and Pj represents a statistic associated
with the event of processing token “j” being present in the item.

The “m” topics would be stored as the final index to the item. The statistics as-
sociated with the processing token are typically frequency of occurrence. But they
can also incorporate proximity factors that are useful in items that discuss multiple
topics. There is one major assumption made in this model:

•	 Assumption of Binary Independence: the topics and the processing token statis-
tics are independent of each other. The existence of one topic is not related to the
existence of the other topics. The existence of one processing token is not related
to the existence of other processing tokens.

In most cases this assumption is not true. Some topics are related to other topics and
some processing tokens related to other processing tokens. For example, the topics of
“Politics” and “Economics” are in some instances related to each other (e.g., an item
discussing Congress debating laws associated with balance of trade) and in many
other instances totally unrelated. The same type of example would apply to process-
ing tokens. There are two approaches to handling this problem. The first is to assume
that there are dependencies, but that the errors introduced by assuming the mutual in-
dependence do not noticeably effect the determination of relevance of neither an item
nor its relative rank associated with other retrieved items. This is the most common
approach used in system implementations. A second approach can extend the network
to additional layers to handle interdependencies. Thus an additional layer of Inde-
pendent Topics (ITs) can be placed above the Topic layer and a layer of Independent
Processing Tokens (IPs) can be placed above the processing token layer. FigureÂ€4.4
shows the extended Bayesian network. Extending the network creates new process-
ing tokens for those cases where there are dependencies between processing tokens.
The new set of Independent Processing Tokens can then be used to define the attri-
butes associated with the set of topics selected to represent the semantics of an item.

Fig. 4.3â†œæ¸€ Bayesian term weighting

T2

Pn

TMT1

PnP1 Pn P1P1

4.3 Automatic Indexing of Text

110

To compensate for dependencies between topics the final layer of Independent
Topics is created. The degree to which each layer is created depends upon the error
that could be introduced by allowing for dependencies between Topics or Process-
ing Tokens. Although this approach is the most mathematically correct, it suffers
from losing a level of precision by reducing the number of concepts available to
define the semantics of an item.

4.3.1.3  �Vector Weighting

One of the earliest systems that investigated statistical approaches to information
retrieval was the SMART system at Cornell University (Buckley-95, Salton-83).
The system is based upon a vector model. The semantics of every item are rep-
resented as a vector. A vector is a one-dimensional set of values, where the order/
position of each value in the set is fixed and represents a particular domain. In
information retrieval, each position in the vector typically represents a process-

Fig. 4.4â†œæ¸€ Extended Bayesian network

ITS

T2

IPR

TMT1

IPRIP1
IPR

IP1

P1PNP1

IP1

PN

4 Indexing

111

ing token. There are two approaches to the domain of values in the vector: binary
and weighted. Under the binary approach, the domain contains the value of one or
zero, with one representing the existence of the processing token in the item. In the
weighted approach, the domain is typically the set of all real positive numbers. The
value for each processing token represents the relative importance of that process-
ing token in representing the semantics of the item. FigureÂ€4.5 shows how an item
that discusses petroleum refineries in Mexico would be represented. In the example,
the major topics discussed are indicated by the index terms for each column (i.e.,
Petroleum, Mexico, Oil, Taxes, Refineries and Shipping).

Binary vectors require a decision process to determine if the degree that a par-
ticular processing token represents the semantics of an item is sufficient to include
it in the vector. In the example for Fig.Â€4.5, a five-page item may have had only one
sentence like “Standard taxation of the shipment of the oil to refineries is enforced.”
For the binary vector, the concepts of “Tax” and “Shipment” are below the threshold
of importance (e.g., assume threshold is 1.0) and they not are included in the vector.

A weighted vector acts the same as a binary vector but it provides a range of
values that accommodates a variance in the value of the relative importance of a
processing token in representing the semantics of the item. The use of weights also
provides a basis for determining the rank of an item.

The vector approach allows for a mathematical and a physical representation
using a vector space model. Each processing token can be considered another di-
mension in an item representation space. In Chap.Â€5 it is shown that a query can be
represented as one more vector in the same n-dimensional space. FigureÂ€4.6 shows a

Fig. 4.5â†œæ¸€ Binary and vector representation of an item

Petroleum Taxes Refineries Shipping

Binary 1 , , 0 , 1 , 0

Weighted 2.8 ,

Mexico

1

1.6

,

,

Oil

1

3.5 , .3 , 3.1 , .1

4.3 Automatic Indexing of Text

Fig. 4.6â†œæ¸€ Vector
representation

Mexico

1.6

3.5
Oil

2.8
Petroleum

112

three-dimensional vector representation assuming there were only three processing
tokens, Petroleum, Mexico and Oil.

The original document vector is typically extended by additional information such
as citations/references and some times categorization and entity extracted values to
add more information for search and clustering purposes. The citation information is
not weighted because it’s more like database facts (e.g., date of publication).

There are many algorithms that can be used in calculating the weights used to
represent a processing token. Part of the art in information retrieval is deriving
changes to the basic algorithms to account for normalization (e.g., accounting for
variances in number of words in items). The following subsections present the ma-
jor algorithms starting with the most simple term frequency algorithm.

Simple Term Frequency Algorithm

An automatic indexing process implements an algorithm to determine the weight to
be assigned to a processing token for a particular item. Looking at a typical textual
item, the data elements that are potentially available for calculating a weight are
the frequency of occurrence of the processing token in an existing item (i.e., term
frequency—TF), the frequency of occurrence of the processing token in the existing
database (i.e., total frequency—TOTF) and the number of unique items in the data-
base that contain the processing token (i.e., item frequency—IF, frequently labelled
in other publications as document frequency—DF). As discussed previously, the
premises by Luhn and later Brookstein that the resolving power of content-bearing
words is directly proportional to the frequency of occurrence of the word in the item
is used as the basis for most automatic weighting techniques. Weighting techniques
usually are based upon positive weight values.

All algorithms start with the approach to have the weight equal to the term fre-
quency. This approach emphasizes the use of a particular processing token within
an item. Thus if the word “computer” occurs 15 times within an item it has a weight
of 15. The simplicity of this technique encounters problems of normalization be-
tween items and use of the processing token within the database. The longer an item
is, the more often a processing token may occur within the item. Use of the absolute
value biases weights toward longer items, where a term is more likely to occur with
a higher frequency. One normalization typically used in weighting algorithms com-
pensates for the number of words in an item.

An example of this normalization in calculating term-frequency is the algorithm
used in the SMART System at Cornell (Buckley-96). The term frequency weighting
formula used in TREC 4 was:

where slope was set at 0.2 and the pivot was set to the average number of unique
terms occurring in the collection (Singhal-95). In addition to compensating for doc-

(1 + log(TF))/1 + log(average (TF))

(1 − slope) ∗ pivot + slope ∗ number of unique terms

4 Indexing

113

ument length, they also want the formula to be insensitive to anomalies introduced
by stemming or misspellings.

Although initially conceived of as too simple, experiments by the SMART sys-
tem using the large databases in TREC demonstrated that use of the simpler algo-
rithm with proper normalization factors is far more efficient in processing queries
and return hits similar to more complex algorithms.

There are many approaches to account for different document lengths when
normalizing the value of Term Frequency to use (e.g., an items that is only 50
words may have a much smaller term frequency then and item that is 1,000
words on the same topic). In the first technique, the term frequency for each
word is divided by the maximum frequency of the word in any item. This nor-
malizes the term frequency values to a value between zero and one. This tech-
nique is called “maximum term frequency”. The problem with this technique is
that the maximum term frequency in just one item in the database can be so large
that it decreases the value of term frequency in short items to too small a value
and loses significance. Additionally as new items are added to the database there
is a question what to do with all of the currently processed items if one of them
has a new larger maximum term frequency. A simpler version of this takes the
maximum term frequency of any word within an item and divides all the term
frequencies in the item by it—thus getting relative values between zero and one.
Once again this can be distorted if on word has a very large term frequency
within an item.

Another option is to use logaritmetic term frequency. In this technique the log
of the term frequency plus a constant is used to replace the term frequency. The
log function will perform the normalization when the term frequencies vary sig-
nificantly due to size of documents. Along this line the COSINE function used as
a similarity measure (see Chap.Â€5) can be used to normalize values in a document.
This is accomplished by treating the index of a document as a vector and divide the
weights of all terms by the length of the vector. This will normalize to a vector of
maximum length one. This uses all of the data in a particular item to perform the
normalization and will not be distorted by any particular term. The problem occurs
when there are multiple topics within an item. The COSINE technique will normal-
ize all values based upon the total length of the vector that represents all of topics.
If a particular topic is important but briefly discussed, its normalized value could
significantly reduce its overall importance in comparison to another document that
only discusses the topic.

Another approach recognizes that the normalization process may be over penal-
izing long documents (Singhal-95). Singhal did experiments that showed longer
documents in general are more likely to be relevant to topics then short documents.
Yet normalization was making all documents appear to be the same length. To com-
pensate, a correction factor was defined that is based upon document length that
maps the Cosine function into an adjusted normalization function. The function
determines the document length crossover point for longer documents where the
probability of relevance equals the probability of retrieval. (given a query set). This
value called the “pivot point” is used to apply an adjustment to the normalization

4.3 Automatic Indexing of Text

114

process. The theory is based upon straight lines so it is a matter of determining slope
of the lines.

K is generated by the rotation of the pivot point to generate the new line and the old
normalizationÂ€=Â€the new normalization at that point. The slope for all higher values
will be different. Substituting pivot for both old and new value in the above formula
we can solve for K at that point. Then using the resulting formula for K and substi-
tuting in the above formula produces the following formula:

Slope and pivot are constants for any document/query set. Another problem is that
the Cosine function favors short documents over long documents and also favors
documents with a large number of terms. This favoring is increased by using the
pivot technique. If log(TF) is used instead of the normal frequency then TF is not
a significant factor. In documents with large number of terms the Cosine factor is
approximated by the square root of the number of terms. This suggests that using
the ratio of the logs of term frequencies would work best for longer items in the
calculations:

This leads to the final algorithm that weights each term by the above formula di-
vided by the pivoted normalization:

Singhal demonstrated the above formula works better against TREC data then TF/
MAX(TF) or vector length normalization. The effect of a document with a high
term frequency is reduced by the normalization function by dividing the TF by the
average TF and by use of the log function. The use of pivot normalization adjusts
for the bias towards shorter documents increasing the weights of longer documents.

Inverse Document Frequency

Once the frequency within an item has been normalized the weighting can be im-
proved by taking into consideration the frequency of occurrence of the processing
token in the database. One of the objectives of indexing an item is to discriminate
the semantics of that item from other items in the database. If the token “computer”
occurs in every item in the database, its value representing the semantics of an item
may be less useful compared to a processing token that occurs in only a subset of
the items in the database. The term “computer” represents a concept used in an item,
but it does not help a user find the specific information being sought since it returns
the complete database. This leads to the general statement enhancing weighting

New normalization = (slope) ∗ (old normalization) + K

Pivoted function = (slope) ∗ (old normalization) + (1.0 − slope) ∗ (pivot)

(1 + log(TF))/(1 + log(average(TF)))

(1 + log(TF))/(1 + log(average(TF)))/(slope)

(No. unique terms) + (1 − slope) ∗ (pivot)

4 Indexing

115

algorithms that the weight assigned to an item should be inversely proportional to
the frequency of occurrence of an item in the database. This is referred to as Shan-
non’s information theory law. The algorithm based upon this idea is called inverse
document frequency (IDF). The un-normalized weighting formula is:

where WEIGHTij is the vector weight that is assigned to term “j” in item “i,” TFij
(term frequency) is the frequency of term “j” in item “i”, “n” is the number of items
in the database and IFj (item frequency or document frequency) is the number of
items in the database that have term “j” in them. A negative log is the same as divid-
ing by the log value, thus the basis for the name of the algorithm. FigureÂ€5.4 dem-
onstrates the impact of using this weighting algorithm. The term “refinery” has the
highest frequency in the new item (10 occurrences). But it has a normalized weight
of 20 which is less than the normalized weight of “Mexico.” This change in relative
importance between “Mexico” and “refinery” from the unnormalized to normalized
vectors is due to an adjustment caused by “refinery” already existing in 50% of the
database versus “Mexico” which is found in 6.25% of the items.

The major factor of the formula for a particular term is (Log2(n)Â€−Â€Log2(IFj)).
The value for IF can vary from “1” to “n.” At “n,” the term is found in every item
in the database and the factor becomes (Log2(n)Â€−Â€Log2(n))Â€=Â€1. As the number of
items a term is found in decreases, the value of the denominator decreases eventu-
ally approaching the value Log2(1) which is close to 1. The weight assigned to the
term in the item varies from Tfi,jÂ€∗Â€(1Â€+Â€1) to Tfi,jÂ€∗Â€(∼Log2(n)). The effect of this
factor can be too great as the number of items that a term is found in becomes small.
To compensate for this, the INQUERY system at the University of Massachusetts
normalizes this factor by taking an additional log value.

The value of “n” and IFi vary as items are added and deleted from the database.
To implement this algorithm in a dynamically changing system, the physical index
only stores the frequency of occurrence of the terms in an item (usually with their
word location) and the IDF factor is calculated dynamically at retrieval time. The
required information can easily be determined from an inversion list for a search
term that is retrieved and a global variable on the number of items in the database.
The following example shows how inverse document frequency works.

Assume that the term “oil” is found in 128 items, “Mexico” is found in 16 items and “refin-
ery” is found in 1,024 items. If a new item arrives with all three terms in it, “oil” found 4
times, “Mexico” found 8 times, and “refinery” found 10 times and there are 2,048 items in
the total database, Fig.Â€5.4 shows the weight calculations using inverse document frequency.

Using a simple unnormalized term frequency, the item vector is (4, 8, 10)
Using inverse document frequency the following calculations apply:

with the resultant inverse document frequency item vectorÂ€=Â€(20, 64, 20)

WEIGHTij = TFij ∗ [Log2(n) − Log2(IFj) + 1]

Weightoil = 4 ∗ (Log2(2048) − Log2(128) + 1) = 4 ∗ (11 − 7 + 1) = 20

WeightMexico = 8 ∗ (Log2(2048) − Log2(16) + 1) = 8 ∗ (11 − 4 + 1) = 64

Weightref inery = 10 ∗ (Log2(2048) − Log2(1024) + 1) = 10 ∗ (11 − 10 + 1) = 20

4.3 Automatic Indexing of Text

116

Signal Weighting

Inverse document frequency adjusts the weight of a processing token for an item based
upon the number of items that contain the term in the existing database. What it does
not account for is the term frequency distribution of the processing token in the items
that contain the term. The distribution of the frequency of processing tokens within
an item can affect the ability to rank items. For example, assume the terms “SAW”
and “DRILL” are found in 5 items with the following frequencies defined in Fig.Â€4.7.

Both terms are found a total of 50 times in the five items. The term “SAW”
does not give any insight into which item is more likely to be relevant to a search
of “SAW”. If precision is a goal (maximizing relevant items shown first), then the
weighting algorithm could take into consideration the non-uniform distribution of
term “DRILL” in the items that the term is found, applying even higher weights
to it than “SAW.” The theoretical basis for the algorithm to emphasize precision is
Shannon’s work on Information Theory (Shannon-51).

In Information Theory, the information content value of an object is inversely
proportional to the probability of occurrence of the item. An instance of an event
that occurs all the time has less information value than an instance of a seldom oc-
curring event. This is represented as INFORMATIONÂ€=Â€−log2(p), where p is the
probability of occurrence of event “p.” The information value for an event that oc-
curs 0.5% of the time is:

The information value for an event that occurs 50% of the time is:

If there are many independent occurring events then the calculation for the average
information value across the events is:

INFORMATION = −Log2(.005)

= −(−7.64)

= 7.64

INFORMATION = −Log2(.50)

= −(−1)

= 1

AVE_INFO = −
n∑

k=1

pk Log 2

(
pk

)

Fig. 4.7â†œæ¸€ Item distribution for
SAW and DRILL

4 Indexing

117

The value of AVE_INFO takes its maximum value when the values for every pk is
the same. Its value decreases proportionally to increases in variances in the values
of pk. The value of pk can be defined as TFik/TOTFk, the ratio of the frequency of
occurrence of the term in an item to the total number of occurrences of the item in
the data base. Using the AVE_INFO formula, the terms that have the most uniform
distribution in the items that contain the term have the maximum value. To use this
information in calculating a weight, the formula needs the inverse of AVE_INFO,
where the minimum value is associated with uniform distributions and the maxi-
mum value is for terms that have large variances in distribution in the items con-
taining the term. The following formula for calculating the weighting factor called
Signal can be used:

producing a final formula of:

An example of use of the weighting factor formula is given for the values in Fig.Â€5.5:

The weighting factor for term “DRILL” that does not have a uniform distribution is
larger than that for term “SAW” and gives it a higher weight.

This technique could be used by itself or in combination with inverse docu-
ment frequency or other algorithms. The overhead of the additional data needed
in an index and the calculations required to get the values have not been dem-
onstrated to produce better results than other techniques and are not used in any
systems at this time. It is a good example of use of Information Theory in devel-
oping information retrieval algorithms. Effectiveness of use of this formula can be
found in results from Harman and also from Lockbaum and Streeter (Harman-86,
Lochbaum-89).

Signalk = Log2(TOTF) − AVE_INFO

Weightik = TFik ∗ Signalk

Weightik = TFik ∗
[

Log2(TOTFk) −
n∑

i=1

−TFik/TOTFkLog2(TFik/TOTFk)

]

SignalSAW = LOG2(50) − [5 ∗ {10/50LOG2(10/50)}]
= 5.64 − (5 ∗ (0.2 ∗ (2.32))) = 5.64 − 2.32 = 2.68

SignalDRILL = LOG2(50) −
[
2/50LOG2(2/50) + 2/50LOG2(2/50)

+18/50LOG2(18/50) + 10/50LOG2(10/50)

+ 18/50LOG2(18/50)
]

= 5.64 − (0.04 ∗ (4.64) + 0.04 ∗ (4.64) + 0.36(1.47) + (0.2 ∗ (2.32)

+ (0.36(1.47)))) = 5.64 − (0.186 + 0.186 + 0.053 + 0.464 + 0.053)

= 5.64 − 0.942 = 4.058

4.3 Automatic Indexing of Text

118

Discrimination Value

Another approach to creating a weighting algorithm is to base it upon the discrimi-
nation value of a term. To achieve the objective of finding relevant items, it is im-
portant that the index discriminates among items. The more all items appear the
same, the harder it is to identify those that are needed. To use this approach a “simi-
larity” function is needed that can compare two Items and determine how similar
they are. When the function is applied to the two Items the results should be a value
between zero and one, where zero would mean there is no similarity between the
Items and 1 suggests that the items are the same. Examples of these functions are
in Chap.Â€5. Salton and Yang (Salton-73) proposed a weighting algorithm that takes
into consideration the ability for a search term to discriminate among items. They
proposed use of a discrimination value for each term “i”:

where AVESIM is the average similarity between every item in the database and
AVESIMi is the same calculation except that term “i” is removed from all items.
AVESIM is calculated by summing the similarity between every Item and every
other Item in the database and then divide by a normalization number. There are
three possibilities with the DISCRIMi value being positive, close to zero or nega-
tive. A positive value indicates that removal of term “i” has increased the similarity
between items. In this case, leaving the term in the database assists in discriminat-
ing between items and is of value. A value close to zero implies that the term’s
removal or inclusion does not change the similarity between items. If the value of
DISCRIMi is negative, the term’s effect on the database is to make the items appear
more similar since their average similarity decreased with its removal. Once the
value of DISCRMi is normalized as a positive number, it can be used in the standard
weighting formula as:

Problems with Weighting Schemes

Often weighting schemes use information that is based upon processing token dis-
tributions across the database. The two weighting schemes, inverse document fre-
quency and signal, use total frequency and item frequency factors which makes
them dependent upon distributions of processing tokens within the database. In-
formation databases tend to be dynamic with new items always being added and to
a lesser degree old items being changed or deleted. Thus these factors are chang-
ing dynamically. There are a number of approaches to compensate for the constant
changing values.

1.	 Ignore the variances and calculate weights based upon current values, with the
factors changing over time. Periodically rebuild the complete search database.

DISCRIMi = AVESIMi − AVESIM

Weightik = TFik ∗ DISCRIMk

4 Indexing

119

2.	 Use a fixed value while monitoring changes in the factors. When the changes
reach a certain threshold, start using the new value and update all existing vec-
tors with the new value.

3.	 Store the invariant variables (e.g., term frequency within an item) and at search
time calculate the latest weights for processing tokens in items needed for search
terms.

In the first approach the assumption minimizes the system overhead of maintaining
currency on changing values, with the effect that term weights for the same term vary
from item to item as the aggregate variables used in calculating the weights based
upon changes in the database vary over time. Periodically the database and all term
weights are recalculated based upon the most recent updates to the database. For
large databases in the millions of items, the overhead of rebuilding the database can
be significant. In the second approach, there is recognition that for the most frequent-
ly occurring items, the aggregate values are large. As such, minor changes in the
values have negligible effect on the final weight calculation. Thus, on a term basis,
updates to the aggregate values are only made when sufficient changes not using the
current value will have an effect on the final weights and the search/ranking process.
This process also distributes the update process over time by only updating a subset
of terms at any instance in time. The third approach is the most accurate. The weight-
ed values in the database only matter when they are being used to determine items
to return from a query or the rank order to return the items. This has more overhead
in that database vector term weights must be calculated dynamically for every query
term. If the system is using an inverted file search structure, this overhead is minor.

An interesting side effect of maintaining currency in the database for term
weights is that the same query over time returns a different ordering of items. A
new word in the database undergoes significant changes in its weight structure from
initial introduction until its frequency in the database reaches a level where small
changes do not have significant impact on changes in weight values.

Another issue is the desire to partition an information database based upon time.
The value of many sources of information vary exponentially based upon the age of
an item (older items have less value). This leads to physically partitioning the data-
base by time (e.g., starting a new database each year), allowing the user to specify
the time period to search. There are issues then of how to address the aggregate
variables that are different for the same processing token in each database and how
to merge the results from the different databases into a single Hit file.

The best environment would allow a user to run a query against multiple dif-
ferent time periods and different databases that potentially use different weighting
algorithms, and have the system integrate the results into a single ranked Hit file.

Problems with the Vector Model

In addition to the general problem of dynamically changing databases and the ef-
fect on weighting factors, there are problems with the vector model on assignment
of a weight for a particular processing token to an item. Each processing token can

4.3 Automatic Indexing of Text

120

be viewed as a new semantic topic. A major problem comes in the vector model
when there are multiple topics being discussed in a particular item. For example,
assume that an item has an in-depth discussion of “oil” in “Mexico” and also “coal”
in “Pennsylvania.” The vector model does not have a mechanism to associate each
energy source with its particular geographic area. There is no way to associate cor-
relation factors between terms (i.e., precoordination discussed in Chap.Â€ 3) since
each dimension in a vector is independent of the other dimensions. Thus the item
results in a high value in a search for “coal in Mexico.”

Another major limitation of a vector space is in associating positional informa-
tion with a processing term. The concept of proximity searching (e.g., term “a”
within 10 words of term “b”) requires the logical structure to contain storage of
positional information of a processing term. The concept of a vector space allows
only one scalar value to be associated with each processing term for each item. Re-
stricting searches to subsets of an item has been shown to provide increased preci-
sion. In effect this capability overcomes the multi-topical item problem by looking
at subsets of an item and thus increasing the probability that the subset is discussing
a particular semantic topic.

4.3.2  �Natural Language

The goal of natural language processing is to use the semantic information in addi-
tion to the statistical information to enhance the indexing of the item. This improves
the precision of searches, reducing the number of false hits a user reviews. The
semantic information is extracted as a result of processing the language rather than
treating each word as an independent entity. The simplest output of this process
results in generation of phrases that become indexes to an item. More complex
analysis generates thematic representation of events rather than phrases. Statisti-
cal approaches use proximity as the basis behind determining the strength of word
relationships in generating phrases. For example, with a proximity constraint of
adjacency, the phrases “venetian blind” and “blind Venetian” may appear related
and map to the same phrase. But syntactically and semantically those phrases are
very different concepts. Word phrases generated by natural language processing
algorithms enhance indexing specification and provide another level of disambigu-
ation. Natural language processing can also combine the concepts into higher level
concepts sometimes referred to as thematic representations. One example repre-
sents them as concept-relationship-concept triples (Liddy-93).

4.3.2.1  �Index Phrase Generation

The goal of indexing is to represent the semantic concepts of an item in the informa-
tion system to support finding relevant information. Single words have conceptual
context, but frequently they are too general to help the user find the desired infor-

4 Indexing

121

mation. Term phrases allow additional specification and focusing of the concept to
provide better precision and reduce the user’s overhead of retrieving non-relevant
items. Having the modifier “grass” or “magnetic” associated with the term “field”
clearly disambiguates between very different concepts. One of the earliest statistical
approaches to determining term phrases proposed by Salton was use of a COHE-
SION factor between terms (Salton-83):

where SIZE-FACTOR is a normalization factor based upon the size of the vocabu-
lary and PAIR-FREQk,h is the total frequency of co-occurrence of the pair Termk,
Termh in the item collection. Co-occurrence may be defined in terms of adjacency,
word proximity, sentence proximity, etc. This initial algorithm has been modified in
the SMART system to be based on the following guidelines (Buckley-95):

•	 any pair of adjacent non-stop words is a potential phrase
•	 any pair must exist in 25 or more items
•	 phrase weighting uses a modified version of the SMART system single term

algorithm
•	 normalization is achieved by dividing by the length of the single-term subvector.

Natural language processing can reduce errors in determining phrases by determin-
ing inter-item dependencies and using that information to create the term phrases
used in the indexing process. Statistical approaches tend to focus on two term phras-
es. A major advantage of natural language approaches is their ability to produce
multiple-term phrases to denote a single concept. If a phrase such as “industrious
intelligent students” was used often, a statistical approach would create phrases
such as “industrious intelligent” and “intelligent student.” A natural language ap-
proach would create phrases such as “industrious student,” “intelligent student” and
“industrious intelligent student.”

The first step in a natural language determination of phrases is a lexical analy-
sis of the input. In its simplest form this is a part of speech tagger that, for ex-
ample, identifies noun phrases by recognizing adjectives and nouns. Precise part of
speech taggers exist that are accurate to the 99% range. Additionally, proper noun
identification tools exist that allow for accurate identification of names, locations
and organizations since these values should be indexed as phrases and not undergo
stemming. Greater gains come from identifying syntactic and semantic level depen-
dencies creating a hierarchy of semantic concepts. For example, “nuclear reactor
fusion” could produce term phrases of “nuclear reactor” and “nuclear fusion.” In
the ideal case all variations of a phrase would be reduced to a single canonical form
that represents the semantics for a phrase. Thus, where possible the phrase detec-
tion process should output a normalized form. For example, “blind Venetian” and
“Venetian who is blind” should map to the same phrase. This not only increases the
precision of searches, but also increases the frequency of occurrence of the common
phrase. This, in turn, improves the likelihood that the frequency of occurrence of the
common phrase is above the threshold required to index the phrase. Once the phrase
is indexed, it is available for search, thus participating in an item’s selection for a

COHESIONk,h = SIZE-FACTOR ∗ (PAIR-FREQk,h/(TOTFk ∗ TOTFH))

4.3 Automatic Indexing of Text

122

search and the rank associated with an item in the Hit file. One solution to finding
a common form is to transform the phrases into an operator-argument form or a
header-modifier form. There is always a category of semantic phrases that comes
from inferring concepts from an item that is non-determinable. This comes from the
natural ambiguity inherent in a language that is discussed in Chap.Â€1.

A good example of application of natural language to phrase creation is in the
natural language information retrieval system at New York University developed
in collaboration with GE Corporate Research and Development. The text of the
item is processed by a fast syntactical process and extracted phrases are added to
the index in addition to the single word terms. Statistical analysis is used to deter-
mine similarity links between phrases and identification of subphrases. Once the
phrases are statistically noted as similar, a filtering process categorizes the link
onto a semantic relationship (generality, specialization, antonymy, complementa-
tion, synonymy, etc.).

The Tagged Text Parser (TTP), based upon the Linguistic String Grammar, pro-
duces a regularized parse tree representation of each sentence reflecting the predi-
cate-argument structure. The tagged text parser contains over 400 grammar produc-
tion rules. Some examples of the part of speech tagger identification are given in
Fig.Â€4.8.

The TTP parse trees are header-modifier pairs where the header is the main con-
cept and the modifiers are the additional descriptors that form the concept and elim-
inate ambiguities. FigureÂ€4.9 gives an example of a regularized parse tree structure
generated for the independent clause.

This structure allows for identification of potential term phrases usually based
upon noun identification. To determine if a header-modifier pair warrants indexing,
Strzalkowski calculates a value for Informational Contribution (IC) for each ele-
ment in the pair. Higher values of IC indicate a potentially stronger semantic rela-
tionship between terms. The basis behind the IC formula is a conditional probability
between the terms. The formula for IC between two terms (x, y) is:

where fx,y is the frequency of (x, y) in the database, nx is the number of pairs in which
“x” occurs at the same position as in (x, y) and D(x) is the dispersion parameter

IC(x, [x, y]) =
fx,y

Nx + Dx − 1

Fig. 4.8â†œæ¸€ Part of speech tags

4 Indexing

123

which is the number of distinct words with which x is paired. When ICÂ€=Â€1, x occurs
only with y (fx,yÂ€=Â€nx and dxÂ€=Â€1).

Nominal compounds are the source of many inaccurate identifications in creat-
ing header-modifier pairs. Use of statistical information on frequency of occurrence
of phrases can eliminate some combinations that occur infrequently and are not
meaningful.

The next challenge is to assign weights to term phrases. The most popular term
weighting scheme uses term frequencies and inverse document frequencies with
normalization based upon item length to calculate weights assigned to terms. Term
phrases have lower frequency occurrences than the individual terms. Using natural
language processing, the focus is on semantic relationships versus frequency re-
lationships. Thus weighting schemes such as inverse document frequency require
adjustments so that the weights are not overly diminished by the potential lower
frequency of the phrases. For example, the weighting scheme used in the New York
University system uses the following formula for weighting phrases:

where (N,i) is 1 for iÂ€<Â€N and 0 otherwise and C1 and C2 are normalizing factors.
The N assumes the phrases are sorted by IDF value and allows the top “N” highest

weight(Phrasei) = (Ci ∗ log(termf) + C2 ∗ α(N, i)) ∗ IDF

4.3 Automatic Indexing of Text

Fig. 4.9â†œæ¸€ TTP parse tree

 assert
perf[HAVE]

verb[BE]
subject

np
noun[President]
t_pos[The]
adj[former]
adj[Soviet]

object
np
noun[hero]
t_pos[a]
adj[local]

adv[ever]
sub_ord

[since]
verb[invade]

subject
np

noun[tank]
t_pos[a]
adj[Russian]

object
np
noun[Wisconsin]

The former Soviet President has been a local hero
ever since a Russian tank invaded Wisconsin

124

IDF (inverse document frequency) scores to have a greater effect on the overall
weight than other terms.

4.3.2.2  �Natural Language Processing

SectionÂ€4.3.2.1 discussed generation of term phrases as indexes. Lexical analysis
determining verb tense, plurality and part of speech is assumed to have been com-
pleted prior to the following additional processing. Natural language processing not
only produces more accurate term phrases, but can provide higher level semantic
information identifying relationships between concepts.

The DR-LINK system (Liddy-93) and its commercial implementation via Tex-
twise System adds the functional processes Relationship Concept Detectors, Con-
ceptual Graph Generators and Conceptual Graph Matchers that generate higher
level linguistic relationships including semantic and discourse level relationships.
This system has evolved into the CINDOR system that expanded to natural lan-
guage (http://www.textwiselabs.com/government/index.html) and cross language
retrieval. This system is representative of natural language based processing sys-
tems. During the first phase of this approach, the processing tokens in the docu-
ment are mapped to Subject Codes as defined by the codes in the Longman’s Dic-
tionary of Common English (LDOCE). Disambiguation uses a priori statistical
term relationships and the ordering of the subject codes in the LDOCE, which indi-
cates most likely assignment of a term to a code. These codes equate to index term
assignment and have some similarities to the concept-based systems discussed in
Sect.Â€5.4.

The next phase is called the Text Structurer, which attempts to identify gener-
al discourse level areas within an item. Thus a news story may be subdivided into
areas associated with EVALUATION (opinions), Main event (basic facts), and
Expectations (Predictions). These have been updated to include Analytical Infor-
mation, Cause/Effect Dimension and Attributed Quotations in the more recent
versions of DR-LINK (see http://199.100.96.2 on the Internet). These areas can
then be assigned higher weighting if the user includes “Preference” in a search
statement. The system also attempts to determine TOPIC statement identifiers.
Natural language processing is not just determining the topic statement(s) but
also assigning semantic attributes to the topic such as time frame (past, present,
and future). To perform this type analysis, a general model of the predicted text
is needed. For example, news items likely follow a model proposed by van Dijk
(Dijk-88). Liddy reorganized this structure into a News Schema Components
consisting of Circumstance, Consequence, Credentials, Definition, Error, Evalu-
ation, Expectation, History, Lead, Main Event, No Comment, Previous Event,
References and Verbal reaction. Each sentence is evaluated and assigned weights
associated with its possible inclusion in the different components. Thus, if a
query is oriented toward a future activity, then, in addition to the subject code
vector mapping, it would weight higher terms associated with the Expectation
component.

4 Indexing

125

The next level of semantic processing is the assignment of terms to components,
classifying the intent of the terms in the text and identifying the topical statements.
The next level of natural language processing identifies inter-relationships between
the concepts. For example, there may be two topics within an item “national elec-
tions” and “guerrilla warfare.” The relationship “as a result of” is critical to link the
order of these two concepts. This process clarifies if the elections were caused by
the warfare or the warfare caused by the elections. Significant information is lost
by not including the connector relationships. These types of linkages are generated
by general linguistic cues (words in text) that are fairly general and domain inde-
pendent.

The final step is to assign final weights to the established relationships. The
relationships are typically envisioned as triples with two concepts and a relation-
ship between them. Although all relationships are possible, constructing a system
requires the selection of a subset of possible relationships and the rules to locate the
relationships. The weights are based upon a combination of statistical information
and values assigned to the actual words used in establishing the linkages. Passive
verbs would receive less weight than active verbs.

The additional information beyond the indexing is kept in additional data struc-
tures associated with each item. This information is used whenever it is implicitly
included in a search statement that is natural language based or explicitly requested
by the user.

4.3.3  �Concept Indexing

Natural language processing starts with a basis of the terms within an item and ex-
tends the information kept on an item to phrases and higher level concepts such as
the relationships between concepts. In the DR-LINK system, terms within an item
are replaced by an associated Subject Code. Use of subject codes or some other
controlled vocabulary is one way to map from specific terms to more general terms.
Often the controlled vocabulary is defined by an organization to be representative
of the concepts they consider important representations of their data. Concept in-
dexing takes the abstraction a level further. Its goal is to gain the implementation
advantages of an index term system but use concepts instead of terms as the basis
for the index, producing a reduced dimension vector space. By reducing the dimen-
sionality (think of it as the number of words in the “concept language”), different
synonyms for the same word/concept will be mapped to a single new word (concept
vector). This then helps solve the difference in vocabularies that is one of the core
problems in information retrieval.

Rather than a priori defining a set of concepts that the terms in an item are
mapped to, concept indexing can start with a number of unlabeled concept classes
and let the information in the items define the concepts classes created. The process
of automatic creation of concept classes is similar to the automatic generation of
thesaurus classes that will be described in Chap.Â€6. The process of mapping from

4.3 Automatic Indexing of Text

126

a specific term to a concept that the term represents is complex because a term
may represent multiple different concepts to different degrees. A term such as “au-
tomobile” could be associated with concepts such as “vehicle,” “transportation,”
“mechanical device,” “fuel,” and “environment.” The term “automobile” is strongly
related to “vehicle,” lesser to “transportation” and much lesser the other terms. Thus
a term in an item needs to be represented by many concept codes with different
weights for a particular item.

An early example of applying a concept approach is the Convectis System from
HNC Software Inc. (Caid-93) approaches for decision software. The basis behind
the generation of the concept approach is a neural network model (Waltz-85). If a
vector approach is envisioned, then there is a finite number of concepts that pro-
vide coverage over all of the significant concepts required to index a database of
items. The goal of the indexing is to allow the user to find required information,
minimizing the reviewing of items that are non-relevant. In an ideal environment
there would be enough vectors to account for all possible concepts and thus they
would be orthogonal in an “N” dimensional vector-space model. It is difficult to
find a set of concepts that are orthogonal with no aspects in common. Additionally,
implementation trade offs naturally limit the number of concept classes that are
practical. These limitations increase the number of classes to which a processing
token is mapped.

The Convectis system uses neural network algorithms and terms in a similar
context (proximity) of other terms as a basis for determining which terms are related
and defining a particular concept. A term can have different weights associated with
different concepts as described. The definition of a similar context is typically de-
fined by the number of non-stop words separating the terms. The farther apart terms
are, the less coupled the terms are associated within a particular concept class. Ex-
isting terms already have a mapping to concept classes. New terms can be mapped
to existing classes by applying the context rules to the classes that terms near the
new term are mapped. Special rules must be applied to create a new concept class.
Example Fig.Â€4.10 demonstrates how the process would work for the term “auto-
mobile.”

Using the concept representation of a particular term, phrases and complete
items can be represented as a weighted average of the concept vectors of the terms

Fig. 4.10â†œæ¸€ Concept vector for
automobile

TERM: automobile Weights for associated concepts

Vehicle .65

Transportation .60

Environment .35

Fuel .33

Mechanical Device .15

Vector Representation Automobile: (.65, ... , .60, ... , .35, .33, ... , .15)

4 Indexing

127

in them. The algorithms associated with vectors (e.g., inverse document frequency)
can be used to perform the merging of concepts.

Latent Semantic Indexing (LSI) is another approach to defining concept vectors
and it is the more common approach in commercial systems. GOOGLE, when it
acquired Applied Semantics, recognized that to better deliver what a user is looking
for, the limitation of only returning results based upon the users query terms is too
restrictive. Another major commercial company (Autonomy and their IDOL sys-
tem) also claim to be using concept indexing, but it is based upon an Naïve Baysean
approach. Latent Semantic Indexing’s assumption is that there is an underlying or
“latent” structure represented by interrelationships between words (Deerwester-90,
Dempster-77, Dumais-95, Gildea-99, Hofmann-99). The index contains represen-
tations of the “latent semantics” of the item. The large term-document matrix is
decomposed into a small set (e.g., 100–300) of orthogonal factors which use linear
combinations of the factors (concepts) to approximate the original matrix. Latent
Semantic Indexing uses singular-value decomposition to model the associative re-
lationships between terms similar to eigenvector decomposition and factor analysis
(see Cullum-85).

As described in Chap.Â€2, a rectangular matrix can be decomposed into the prod-
uct of three matrices. Let X be a mÂ€×Â€n matrix such that:

where T0 and D0 have orthogonal columns and are mÂ€×Â€r and rÂ€×Â€n matrices, S0 is
an rÂ€×Â€r diagonal matrix and r is the rank of matrix X. This is the singular value
decomposition of X. The k largest singular values of S0 are kept along with their
corresponding columns in T0 and D0 matrices, the resulting matrix:

is the unique matrix of rank k that is closest in least squares sense to X. The matrix
X̄, containing the first k independent linear components of the original X represents
the major associations with noise eliminated.

If you consider X to be the term-document matrix (e.g., all possible terms being
represented by columns and each item being represented by a row), then truncated
singular value decomposition can be applied to reduce the dimmensionality caused
by all terms to a significantly smaller dimensionality that is an approximation of
the original X:

where u1 … uk and v1 … vk are left and right singular vectors and sv1 … svk
are singualr values. A threshold is used against the full SV diagonal matrix to
determine the cutoff on values to be used for query and document representa-
tion (i.e., the dimensionality reduction). Hofmann has modified the standard LSI
approach using addional formalism via Probabilistic Latent Semantic Analysis
(Hofmann-99).

With so much reduction in the number of words, closeness is determined by pat-
terns of word usage versus specific co-locations of terms. This has the effect of a

X = T0 · S0 · D0
′

_
X = Tn · Sn · Dn

′

X = U · SV · V′

4.3 Automatic Indexing of Text

128

thesaurus in equating many terms to the same concept. Both terms and documents
(as collections of terms) can be represented as weighted vectors in the k dimensional
space. The selection of k is critical to the success of this procedure. If k is too small,
then there is not enough discrimination between vectors and too many false hits are
returned on a search. If k is too large, the value of Latent Semantic Indexing is lost
and the system equates to a standard vector model.

The details of how to create the vectors for Latent Semantic Indexing was de-
scribed in detail in Chap.Â€2. We will now use that derivation and relate it to creating
a textual index. We will redefine the original matrix A from Chap.Â€2 to be a matrix
representing a textual input and use an example shown in Grossman and Fieder
book on Information Retrieval (Grossman and Fieder 2004). In Chap.Â€5 we will
show how a query operates against the index.

D1: “Shipment of gold damaged in a fire”
D2: “Delivery of silver arrived in a silver truck”
D3: “Shipment of gold arrived in a truck”

That produces the matrix we used in the LSI example in Chap.Â€2:

The goal is to reduce the dimensionality of the information space and that is ac-
complished by dropping the lowest singular values of the S matrix. The S matrix
calculated in Chap.Â€2 was:

There are only three values so in this example the lowest value (1.2737) is dropped.
The U matrix can be thought of as a mapping of the original vocabulary (rows) to
the new concept vector vocabulary (columns). Instead of each column representing
a document each column represents a concept vector and the rows are mapping
how much each processing token in the original document space is represented in
each of the concept vectors. The column associated with the lowest singular value

S =




s1 0 0
0 s2 0
0 0 s3



 =




4.0989 0 0

0 2.3616 0
0 0 1.2736





D1 D2 D3

a 1 1 1
arrived 0 1 1
damaged 1 0 0
delivery 0 1 0
fire 1 0 0
gold 1 0 1
in 1 1 1
of 1 1 1
Shipment 1 0 1
silver 0 2 0
truck 0 1 1

4 Indexing

129

is dropped. In the Singular value diagonal matrix the row in this example (or rows)
with lowest values are dropped. The V matrix can be considered a mapping of the
documents to the concept vectors which are like the new vocabulary with the con-
cept vectors being the rows. Thus the bottom row in this case is dropped. This yields
the following index space starting with

The Singular Value diagonal matrix has reduced:



4.0989 0 0

0 2.3616 0
0 0 1.2736



 to




4.0989 0

0 2.3616





And the V new index has reduced to:



0.4945 0.6491 0.5780
0.6458 −0.7194 0.2556

−0.5817 −0.247 0.775



 to




0.4945 0.6491 0.5780
0.6458 −0.7194 0.2556





The new U matrix will be used to transform a user’s query into a query in the con-
cept vectors. That will then be searched against the reduced V matrix to get docu-
ment answers.

4.4  �Automatic Indexing of Multimedia

The study of Information Retrieval Systems is not complete unless a basic under-
standing of items that are multimedia are also considered. They are becoming too
common in the electronic communications and processes due to major advances
and simplifications in new technologies. The users will expect to be able to get
similar accuracy in searching for multimedia items that they get in textual items.
There is a growing commercial need for such tools to help users to organize and
find information in the large qualities of multimedia they are storing on their local
systems as well as finding it on the Internet. A good example is the new capability to

U:





0.4202
0.2995
0.1207
0.1576
0.1207
0.2626
0.4202
0.4202
0.2626
0.3152
0.2995

0.0748
−0.2
0.2748
−0.3046
0.2748
0.3794
0.0748
0.0748
0.3794
−0.6092
−0.2

−0.0461
0.4078
−0.4539
−0.2007
−0.4539
0.1546
−0.0461
−0.0461
0.1546
−0.4014
0.4078





to





0.4202
0.2995
0.1207
0.1576
0.1207
0.2626
0.4202
0.4202
0.2626
0.3152
0.2995

0.0748
−0.2
0.2748
−0.3046
0.2748
0.3794
0.0748
0.0748
0.3794
−0.6092
−0.2





4.4 Automatic Indexing of Multimedia

130

have your iPhone listen to a few seconds of music and the system will then tell you
the song and author (and of course how to purchase it). The demands for accurate
multimedia information retrieval will continue to grow as a new commercial area
with pressure in developing better search techniques.

4.4.1  �Introduction to Mutlimedia Indexing

Indexing associated with multimedia differs from the previous discussions of in-
dexing. The automated indexing takes place in multiple transitions of the informa-
tion versus just a direct conversion to the indexing structure. In some cases (e.g.,
analog video, audio) the input modality needs to be converted to a digital format
before the ingestion process can begin as the first transition. Once digital, algo-
rithms are applied to the digital structure to extract the unit of processing of the
different modalities that will be used to represent the item. In an abstract sense this
could be considered the location of a processing token in the modality. This unit
will then undergo the final processing that will extract the searchable features that
represent the item.

There are many different modalities other than text that could be discussed for
indexing. This book will focus on the three major modalities that are most com-
mon to all users; audio, video and images. Modalities such as maps and geographic
objects, although becoming more common because of GOOGLE Earth, are not as
prevalent as the three that will be discussed. Image search has been around for a
long time. The first sophisticated search techniques were funded by the Government
to focus on satellite imagery. When the Internet started to become popular attempts
were made to be able to search for images on the Internet (e.g., IBM, Virage and
Alta Vista). But it was quickly found that searching the text associated with images
was more accurate than in searching the images themselves. Now searching the im-
ages is starting to become more feasible and will provide better results that just the
text. When audio is discussed what is of interest is primarily when there is speech in
the audio or other sounds of interest. Although the earliest commercial information
retrieval for audio was focused on validating how often advertisements or songs
were played to be sure contract commitments were met. Searching for what is being
spoken, for example on news Internet broadcasts is now becoming important. When
video is discussed what is being considered is a modality that has time synchronized
video and audio subtracks. There also could be closed captioning and Teletext that
imbedded in the video that will be discussed. In current television news video there
are additional independent information streams of text on other topics running at
the bottom of many news sources imbedded in the video. Video is a super set of
audio and images because it is composed of an audio track and the video which uses
image search technologies. Search of audio and search of images will be discussed
first. The techniques discussed for them will be applicable to video with additional
constraints possible.

4 Indexing

131

4.4.2  �Audio Indexing

Indexing of audio may first have to start with conversion of an analog audio into
digital format to be processed. This first conversion is critical because any noise
introduced in the conversion process can affect the capability to process the digital
form and identify the spoken word or other sounds of interest. The voice range goes
up to 16Â€KHz and typically 16Â€bit sampling is required as a minimum. Thus the ana-
log audio is converted to a minimum 256Â€Kbits/s (16Â€KHz times 16Â€bits) as the mini-
mum encoding. It is very import that the audio levels are watched so that they do
not “overdrive” the encoding process. If the audio levels are too strong it will force
the audio signal to be outside the encoders range and the signal can be “clipped” or
cut off losing the shape and distinction between samples. The other issue is that the
digitization processors can introduce noise into the audio (e.g., think of it as a buzz
sound) that can make it harder to recognize the original sounds. Thus care is needed
in the initial first phase of converting the audio to digital format.

Audio indexing is based upon phonemes and uses Hidden Markov models when
speech to text (automatic speech recognition—ASR) is the search approach. When
search of a phonetic index is used then the Hidden Markov Model is not so impor-
tant. To be able to build an audio index the first step is to train a system on a par-
ticular audio source (i.e. language/dialect). The first step in the training process is to
define the phonemes for the language to the system. The phonemes for a language
are equivalent to the alphabet for a written language. There is an international stan-
dard (International Phonetic Alphabet—IPA) that is used to define the phonemes
for a language, but there is usually disagreement on the exact number of phonemes
for a language. Phonemes are the smallest sounds that are needed to differentiate
between words in a language. For English there are 42–46 phonemes (there is not
a consensus on the exact number). One of the languages with the most number of
phonemes is an African language spoken in Botswana that has over 112 phonemes.
One of the languages with the fewest number of phonemes is Rutukas spoken in
New Guinea that has only 11 phonemes. Ideally you would like for a system to
learn the phonemes from the training data. But typically the phonemes are defined
are manually defined before the training data is used to develop the Hidden Markov
Model. Statistical language models are used that look at the probabilities of the
juxtaposition of phonemes, which sounds are likely to follow which sounds, and the
probability of occurrence of words and their juxtaposition.

Once the audio arrives at the indexer, it will match the audio input to the lan-
guage the system has been trained on. The training data set is typically 60 to 100Â€h
of audio along with a transcription of the audio. There are training data sets avail-
able at the Linguistic Data Consortium (LDC) at the University of Pennsylvania.
But for new languages, they need to be developed (e.g., Appen from Australia will
do it). The transcription of the 60–100Â€h of audio is a marked up transcription of
the words spoken. Marked up in the sense it shows the start and stop time in the
audio track for each word (although modern systems can now automatically deter-
mine the stop time). When the process first started many years ago all sounds were

4.4 Automatic Indexing of Multimedia

132

included in the marked up transcription (e.g., breathing, “hems”, clear throat, ect.).
Over time models for all these other sounds have been developed that can be used
in processing new languages, so they are no longer needed. The training data serves
two major purposes. First, by having the words correlated to the audio locations
for the words and having the theoretical phonetic definitions that map phonemes to
characters (or glyphs) in the vernacular language, the system can improve the map-
ping (model) of the particular glyph to the actual audio sounds for that phoneme.
This will improve the accuracy as new unmarked data is processed. Second is that
it allows the system to automatically develop a statistical model of the frequency of
occurrence of phonemes in the language. In addition to the frequency of occurrence
of the phonemes it also develops the frequency of occurrence of the trinemes (three
phonemes together) and quinemes (four phonemes together) that are used in many
of the word detection algorithms used in Automatic Speech Recognition. When
ASR is the goal, in addition to the training to recognize phonemes by an audio
training set, it is also useful to get a large corpus of items in the vernacular. That
large corpus (preferable millions of words) is used to develop a model of when one
word follows another.

There are two major indexing approaches to searching the audio called text
based Continuous Speech Recognition (CSR) also called Automatic Speech Rec-
ognition (ASR) and Phonetic Search. In text based ASR, the audio is processed
and the words are recognized in the audio source and a textual transcription in the
vernacular of the audio source is made. Once the audio has been transformed into
text, it can be processed using all the algorithms discussed above for text. The train-
ing data will be used to create a Hidden Markov Model (HMM—see ChapÂ€2) that
represents the audio model of the language constructed from the training data. The
HMM is mapped to a dictionary of words so that the sounds which are considered
the observable output of the HMM are used with knowledge of probability of the
phonemes, trinemes and quinemes that define the state transitions and probability of
the set of states to estimate which word is in the audio. As each word is identified,
the physical location of the word is also output typically in an XML data stream to
be used in the results display interface (see Chap.Â€7).

The text will contain a significant number of word errors. Audio transcription
maps the phonemes that are in an audio item to the words most closely approximat-
ing those phonemes in a dictionary. Good audio transcription of broadcast news still
has 10% of the words in error and conversational speech has 40% or more of the
words in error. These will be valid words but the wrong word. One mechanism to
reduce the impact of the missing words in conversational speech is to use the exist-
ing database to expand the document. This is accomplished by using the transcribed
document as a query against the existing database, selecting a small number of the
highest ranked results, determining the most important (highest frequency) words
across those items and adding those words to the original document. The new docu-
ment will then be normalized and reweighted based upon the added words (Sing-
hal-99). This technique reduced the losses in retrieval effectiveness from 15–27% to
7–13% when the audio transcriptions had high errors (40% or more). It has marginal
benefit when the transcription has errors in the 15% range. Thus it is useful when

4 Indexing

133

working with conversational speech but marginally useful against broadcast news
and professional speakers.

The Phonetic Indexing approach works with sounds by identifying the phonemes
in the in the audio stream. It then creates an index based upon the phonetic sounds
of each word. The proprietary aspect of a phonetic search system is how the pho-
neme index is created, stored and searched. A Phonetic dictionary is required to take
the search input typically, in textual form from a user, and convert it to a phonetic
search string.

The comparison of the two approaches shows each has its major advantages and
disadvantages. Both approaches are sensitive to the training data provided. Since
the training data is used to adjust the acoustic model of the phonemes, the developed
system will work more accurately against similar audio (e.g., from that source or a
similar source) then from new sources. Thus in the training data diversity of speak-
ers and examples of the types of audio to be processed can make an improvement
in the overall accuracy of the operational system. In most systems using either ap-
proach accuracies of around 90% recognition can be achieved for broadcast news
and 65% for conversational speech. The accuracy is very sensitive to dialects and
individuals. Conversational speech is difficult for both methods because of the typi-
cal overlap of speakers (both people speaking at the same time) and dialects and
accents of the speakers. Also people have a tendency to speak faster when in con-
versation versus when doing formal speaking.

In terms of processing performance, the Phonetic Index approach can process 10
or more different sources on a single processor and the phonetic index is about 10%
the size of the audio input. ASR can now handle 6 or more different audio streams
on a single processor. The size of the index is based upon the text produced versus
the size of the audio input. The ASR approach converts the audio to text which then
uses standard text indexing methods. Since it is based upon the dictionary created
during the training process it has always suffered from a problem called “out of
vocabulary—OOV” words that were not part of the initial dictionary. This deficien-
cy of being limited to the vocabulary in the training set has the serious limitation
on new names of people and organizations that will be mapped to the wrong word.
More recently ASR systems are allowing the user to dynamically enter new vocabu-
lary terms which are not merged into the HMM model but made recognizable as an
adjunct data set. Phonetic search is based upon phonemes and not words. Thus new
words or names are indexed as well as those in the training data set. This is one of
strongest advantages of phonetic search over text based ASR. Since Phonetic search
is based upon phonemes, shorter words that have fewer phonemes suffer from false
hits where the acoustic model of the few phonemes of the search term is a subset
of a phonetic model of longer words. For example if you have a search term “ray”
you will possibly get hits on the word “tray”. ASR creates a text word based system
that avoids that issue. The other major issue of a phonetic search system is related
to how the output (hit list) is shown. For the text ASR system the hit list can contain
textual snippets of the text around the hit term which places each hit in context. For
a phonetic search system only the search term and the position in the audio can be
shown. Thus the user does not have the textual context of the hit to determine if the

4.4 Automatic Indexing of Multimedia

134

hit is in error or something they want to listen too. Thus the user has to open the item
and listen to the audio to determine if the audio meets their information need. This
will be discussed more in Chap.Â€7.

In addition to recognizing words in a language, audio models can be used to rec-
ognize other information. Audio models can recognize what language a particular
audio input is in. This is a precursor to feeding that audio to a particular indexer
that has that audio language model. With a little amount of training a system can
recognize who is speaking (speaker identification). The only issue comes with the
number of speakers that have been modeled. As the number gets into the hundreds
(e.g., over 300) the error rates begin to grow because of too many similar models.
Also other unique sounds can be modeled and identified. For example gunfire and
explosions have been identified that assist in alerting a user when those sounds are
discovered in news sources.

For audio the processing tokens are either the phonemes if you are using a pho-
netic search system or the transcribed words if you are using an ASR system.

4.4.3  �Image Indexing

Images are typically in digital form. Images are made up of pixels (picture ele-
ments—always wondered why they are not called picels). A pixel is the smallest
processing aspect of the image. A pixel has a location and has attributes such as
color and intensity (e.g., grey scale). The number of bits per pixel defines the dis-
play options. For example 2Â€bits allow for just black/white, 8Â€bits are used to define
gray scale or super VGA color scale, and 24Â€bit for true color (3 8-bit subpixels for
red, green and blue.) The processing tokens for indexing images can be accom-
plished at the raw data level (e.g., the aggregation of raw pixels), the feature level
distinguishing primitive attributes such as color and luminance, and at the semantic
level where meaningful objects are recognized (e.g., an airplane in the image/video
frame or recognizing text within the image). In the aggregation of pixel information
the image is partitioned into sub-areas and all of the pixel information in a sub-area
will be combined to create a single value for that sub-area. The heuristics is in the
way that the pixel information is used to create a value for the sub-area. It could
be combined using Fourier transforms or it could use averaging techniques such as
Shannon’s entropy law. The smaller the size of the sub-area the more detailed the
indexing locating more detailed features but the more complex the search. At the
primitive attribute level the processing tokens will define a vector that represents
the different features associated with that frame. Each dimension of the vector rep-
resents a different feature level aspect of the frame. The vector then becomes the
unit of processing in the search system. The three primary primitive aspects are the
color, the “texture” and shapes within the image. Colors are an attribute of each
pixel and the processing tokens can be created by defining a color histogram for dif-
ferent portions of the image. Texture is a more difficult aspect of the image. There is
no universal definition of texture and the actual value of texture is a relative value. It

4 Indexing

135

is sometimes described as the two dimensional grey level variations between adja-
cent pixels and can be discussed in terms of contrast, coarseness and directionality.
The texture can be defined in terms of “texels—texture elements” associated with a
3-dimension consideration of the image (i.e., texture overlay on the 3-dimensional
definition of the two dimensional image). Texture or texels are relative because the
nearness of the viewer (e.g., focal point) can redefine the visibility of the texture.
If you get up close to an image you can see a lot more detail of the adjacent pixels
and thus can see a lot more texture. As you move further away the textures start to
blend together as you lose the distinction. The texture can be defined statistically as
grey tone spatial distributions or its possible to set up a series of “production rules”
that define structural texels. Like the color the texels can be grouped as arrays and
defined as elements in a vector describing the image.

The final primitive feature of an image is basic shapes. They can be localized by
adjacent pixels that vary in color or grayness. It’s possible by looking at variations
to define the basic shapes that are found in the image. These also can be made part
of the vector. The resultant vector and its individual elements become the process-
ing tokens that define the image and can be used to search for other images that have
the same characteristics. Those that are similar could be copies or the same informa-
tion in the current image. This leads to a lot of errors in search.

The semantic level tries to get closer to indexing the actual content of the im-
age rather than just the characteristics of the image. The major semantic aspects of
an image are the actual objects in the image and the text within an image. Text is
far more important when inputs such as video and television news are considered
where text plays a major role in defining what is being shown or providing addi-
tional news. For example television usually places in text the name of an important
person that the news is showing. It also has streams of text on other subjects across
the bottom of the display. There are two approaches for indexing the text in an im-
age by segment. Both start with the initial process of identifying text in the image.
This is accomplished by recognizing the overall shape of text and segmenting that
portion of the image for additional processing. The first approach given the text
has been segmented is to segment it down to the character level and then applying
Optical Character Recognition (OCR) or (Optical Writing Recognition) algorithms
to translate the image to text that is then searchable. The text is extracted and
associated with that image. The second approach is to do more extensive shape
definition for that textual portion and store it as part of the processing tokens for
that image. Then when a user searches for Text in an image the users textual search
is treated similarity as an image and thus the matching is image of text against im-
age of text. This has achieved very high recognition rates (e.g., See the PixServe
system).

The other semantic level indexing comes from better recognition of semantic
items in the image. It is an extension of the shapes that have been recognized as
basic elements in defining semantic (thematic) objects. For example the image can
be broken into foreground and background. Specific objects can be defined by a
meta-language defining the shapes. A flower is an oval/circular colorful object con-
nected by a rectangular/long oval shape major object typically greenish in color.

4.4 Automatic Indexing of Multimedia

136

These semantic objects can then be used as part of the processing tokens associated
with an image and can be specified by the users query.

When working with the primitive elements that are extracted as processing to-
kens a vector—or specific fielded data architecture can be used as the index. When
the semantic information is being used as processing tokens the searchable index is
stored as an XML structure that can be loaded into memory and searched.

4.4.4  �Video Indexing

Video can be a simple construct that only contains the video and audio associated
with that video. But when looking at television broadcasting there are additional
data that can be imbedded in the television signal. In particular there is closed cap-
tioning and Teletext. Teletext is often an independent textual stream that has infor-
mation not related to the audio and video and as such it can be extracted and treated
as a new input textual stream. Teletext was developed based upon requirements of
the British Broadcasting Corporation (BBC) in 1970 as a mechanism to include
subtitles in television transmission. Teletext information is broadcast in the verti-
cal blanking interval (i.e., vbi is the time between frames in a raster scan TV signal
when the scan is being reset back to the top to start the next scan) between image
frames in a broadcast television signal.

Closed captioning is an attempt by a human transcriber to capture what is being
said in the audio portion of the video. It is encoded also in the vertical blanking
interval. It is similar to the automatic speech recognition described above for au-
dio except it is being done by a human. This makes it errorful in an unpredictable
fashion (i.e., whereas it is possible to predict many of the types of errors in ASR).
But it is closely correlated to the audio and the video, similar to ASR. The cor-
relation between the audio, the video and the closed captioning is the relative time
within the video. It is possible to have all three independent but correlated chan-
nels of information from a television broadcast. More recently television news
channels have been running within the image another independent banner of text
at the bottom of the screen that describes additional items of interest that have
nothing to do with what is currently being shown and discussed. Recognizing that
video stream and extracting it as an independent text channel of information is a
new technology currently being developed. Although there is occasionally text on
images, text also plays a major role in television where usually an important per-
son who is shown will have their name in text underneath them. Also text is used
in the images to describe what is going on (e.g., “terrorist Alert”). All of that text
provides a real rich information searchable area different than in just searching
the image itself. Another useful thing found in television is the display of logos
which indicate what organization is being discussed and what television station is
broadcasting.

Each of the channels has its own index as described in this chapter. The video
is really a series of images. Image indexing software described above can be set to

4 Indexing

137

periodically (e.g., once a second) capture a frame (which is equivalent to an image)
and index that image. The audio can be processed as described in audio indexing.
The closed captioning can be captured as a stream of text.

The audio indexing carries with the index an offset into where the text being
transcribed or indexed exists within the video. The same is true of the indexing of
the image. Both of these are done to help in the display of search results to allow
a user to jump to the location of a hit search term in the television stream. Closed
captioning can also come with offsets into the television stream. Where there has
been minimal research is how to do a multi-modality search across all three of these
channels (image, audio and closed captioning) and determine a hit from it. In this
case the user could create a query with search terms against all three of the chan-
nels. The system would correlate the hits in each channel to when they occurred in
relative time since the start of the video. Then if the hits were within a time window
(e.g., with 3Â€s of each other) the hit would be reported. Thus you could set up a
query that is looking for a Burning building (image search) where the closed cap-
tioning or audio transcription are discussing “terrorism”. Since it is typically a dif-
ferent company/product that creates the search index for each of the channels, there
has been minimal commercial effort and little research in the academic community
on this more complex integrated search capability.

Another example of a multimedia integrated search would be for textual items
that have multimedia links or images within them. There are two main mechanisms
that are used, positional and temporal. Positional is used when the modalities are
interspersed in a linear sequential composition. For example a document that has
images or audio inserted can be considered a linear structure and the only relation-
ship between the modalities will be the juxtaposition of each modality. This would
allow for a query that would specify location of an image of a boat within one
paragraph of “Cuba and refugees”. In this case position is used in lieu of time as the
mechanism that is used to synchronize the different modalities. To accomplish ei-
ther type of integrated search the index must include a time-offset parameter versus
a physical displacement. The above examples use proximity to increase precision
based upon time concurrency (or ranges) or physical proximity.

4.5  �Summary

Automatic indexing is the preprocessing stage allowing search of items in an In-
formation Retrieval System. Its role is critical to the success of searches in finding
relevant items. If the concepts within an item are not located and represented in
the index during this stage, the item is not found during search. Some techniques
allow for the combinations of data at search time to equate to particular concepts
(i.e. postcoordination). But if the words are not properly identified at indexing time
and placed in the searchable data structure, the system can not combine them to
determine the concept at search time. If an inefficient data structure is selected to
hold the index, the system does not scale to accommodate large numbers of items.

4.5 Summary

138

The steps in the identification of the processing tokens used in the index process
were generally discussed in Chap.Â€3. This chapter focused on the specific charac-
teristics of the processing tokens to support the different search techniques. There
are many ways of defining the techniques. All of the techniques have statistical
algorithmic properties. But looking at the techniques from a conceptual level, the
approaches are classified as statistical, natural language and concept indexing. Hy-
pertext linkages are placed in a separate class because an algorithm to search items
that include linkages has to address dependencies between items. Normally the in-
dexing of processing tokens is restricted to an item. The next item may use some
corpus statistics that changed by previous items, but does not consider a tight cou-
pling between items. Hypertext linkage could in effect indicate that one item may be
considered an extension of another, which should affect the concept identification
and representation process.

Of all the statistical techniques, an accurate probabilistic technique would have
the greatest benefit in the search process. Unfortunately, identification of consistent
statistical values used in the probabilistic formulas has proven to be a formidable
task. The assumptions that must be made significantly reduce the accuracy of the
search process. Vector techniques have very powerful representations and have been
shown to be successful. But they lack the flexibility to represent items that contain
many distinct but overlapping concepts. Bayesian techniques are a way to relax
some of the constraints inherent in a pure vector approach, allowing dependencies
between concepts within the same item to be represented. Most commercial systems
do not try to calculate weighted values at index time. It is easier and more flexible
to store the basic word data for each item and calculate the statistics at search time.
This allows tuning the algorithms without having to re-index the database. It also
allows the combination of statistical and traditional Boolean techniques within the
same system.

Natural language systems attempt to introduce a higher level of abstraction in-
dexing on top of the statistical processes. Making use of rules associated with lan-
guage assist in the disambiguation of terms and provides an additional layer of
concepts that are not found in purely statistical systems. Use of natural language
processing provides the additional data that could focus searches, reducing the re-
trieval of non-relevant items. The tendency of users to enter short queries may re-
duce the benefits of this approach.

Concept indexing is a statistical technique whose goal is to determine a canoni-
cal representation of the concepts. It has been shown to find relevant items that
other techniques miss. In its transformation process, some level of precision is lost.
The analysis of enhanced recall over potential reduced precision is still under in-
vestigation.

Indexing of multimedia introduces an initial first step that is needed to transform
the original multimedia into a format from which indexable data can be derived.

At the end of the indexing process the indexing terms and the weights assigned to
them are finalized. The weights used are very important because there are two pos-
sible reasons items are missed. The first is that the index term that represents seman-
tics is not associated with an item. The second issue is that the weight associated

4 Indexing

139

with a concept is not high enough that it will be ranked sufficiently to have the user
ever see the item. Users quite looking at hits after a couple of pages so if the weight
is not appropriate the item will still realistically never be seen by the user even if
it’s in the hit list.

4.6  �Exercises

1.	 What is the goal of the “index” that is created for documents. What is the impact
if it is not sufficient exhaustive. What is the impact of high specificity.

2.	 Discuss the advantages and disadvantages of using a statistical vector approach,
a natural language approach and a concept indexing approach to creating the
index. Where are the limits for each technique in finding query results.

3.	 a.	� Given the following Weighted term Document matrix, calculate the new doc-
ument vectors using Normalized TF (using maximum value per row), Inverse
Document Frequency, and Signal Show how you came up with the weights
for the different algorithms for each term (T1–T6).

b.	 Discuss the advantages of each approach and indicate where they are seen in
the new document vectors.

c.	 Can you combine multiple of these techniques into a combined weighting
scheme—which ones would you combine, what would the effect be—show it
by calculating new document vectors and discussing results.

4.	 Discuss the tradeoffs between Automatic Speech Recognition (ASR) and Pho-
netic search. Which is the most flexible and what are limits to each approach.

5.	 Is image search more difficult than audio search. Justify your answer.

T1 T2 T3 T4 T5 T6
D1 4 2 2 1 6 0
D2 3 2 1 12 0 0
D3 0 2 0 4 2 0
D4 2 2 0 5 2 0
D5 4 2 0 8 4 2

4.6 Exercises

141

5.1  �Introduction

The information retrieval processes of ingest and indexing lead up to the next pro-
cess which is executing a search against the index. To understand the search process,
it is first necessary to look at the different binding levels of the search statement
entered by the user to the database being searched. The selection and ranking of
items is accomplished via similarity measures that calculate the similarity between
the user’s search statement and the weighted stored representation of the semantics
in an item. Relevance feedback can help a user enhance search by making use of re-
sults from previous searches. This technique uses information from items judged as
relevant and non-relevant to determine an expanded search statement. Hyperlinked
items introduce new concepts in search originating from the dynamic nature of the
linkages between items.

Search statements are the statements of an information need generated by users
to specify the concepts they are trying to locate in items. As discussed in Chap.Â€1,
the search statement uses traditional Boolean logic and/or Natural Language. The
typical search statement is a few words that the user selected to represent the in-
formation they are looking for. In generation of the search statement, the user may
have the ability to weight (assign an importance) to different concepts in the state-
ment. At this point the binding of the search is to the vocabulary and past experi-
ences of the user. Binding in this sense is when a more abstract form is redefined
into a more specific form. The search statement is the user’s attempt to specify the
conditions needed to subset logically the total item space to that cluster of items that
contains the information needed by the user.

The next level of binding comes when the search statement is parsed for use by
a specific search system. The search system translates the query to its own meta-
language. This process is similar to the indexing of item processes described in
Chap.Â€4. For example, statistical systems determine the processing tokens of in-
terest and the weights assigned to each processing token based upon frequency
of occurrence from the search statement. Natural language systems determine the
syntactical and discourse semantics using algorithms similar to those used in in-

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_5, ©Â€Springer Science+Business Media, LLC 2011

Chapter 5
Search

142

dexing. Concept systems map the search statement to the set of concepts used to
index items. The final level of binding comes as the search is applied to a specific
database. This binding is based upon the statistics of the processing tokens in the
database and the semantics used in the database. This is especially true in statistical
and concept indexing systems. Some of the statistics used in weighting are based
upon the current contents of the database. Some examples are Document Frequency
and Total Frequency for a specific term. Frequently in a concept indexing system,
the concepts that are used as the basis for indexing are determined by applying a
statistical algorithm against a representative sample of the database versus being
generic across all databases. Natural Language indexing techniques tend to use the
most corpora-independent algorithms. FigureÂ€5.1 illustrates the three potential dif-
ferent levels of binding. Parenthesis is used in the second binding step to indicate
expansion by a thesaurus.

The length of search statements directly affects the ability of Information Re-
trieval Systems to find relevant items. The longer the search query, the easier it is
for the system to find items. Profiles used as search statements for Selective Dis-
semination of Information systems are usually very long, typically 75–100 terms.
In large systems used by research specialists and analysts, the typical ad hoc search
statement is approximately 7 terms. The typical search statement on the Internet is
one or two words.

5.2  �Similarity Measures and Ranking

Searching is concerned with calculating the similarity between a user’s search state-
ment and the items in the database. Thinking about a query and a document, as
was observed in Chap.Â€4, they both can be considered a vector where each element
(position) represents a different processing token. The most obvious measure of
how similar two items are would be a measure on how many processing tokens
they both have. With that thought in mind it is fairly obvious that the concept to
use in defining similarity measures between two vectors is the co-occurrence of the
same element (processing token) in each vector. It is generally a goal to have the

Fig. 5.1â†œæ¸€ Examples of query
binding

BindingINPUT

“Find me information on the impact
of the oil spills in Alaska on the
price of oil”

User search statement using voca-
bulary of user

impact, oil (petroleum), spills (acci-
dents), Alaska, price (cost, value)

Statistical system binding extracts
processing tokens

impact (.308), oil (.606), petroleum
(.65), spills (.12), accidents (.23),
Alaska (.45), price (.16), cost (.25),
value (.10)

Weights assigned to search terms
based upon inverse document fre-
quency algorithm and database

5 Search

143

similarity value be a number between 0 and 1 to facilitate the ranking of the results.
But as a minimum its best to have a zero value mean the two vectors are not similar
and then a monotonically increasing positive value to indicate how similar they
are. That data allows the ordering (sorting) of the results based upon the similarity
measure for each item. Although many of the older systems are unweighted, the
newer classes of Information Retrieval Systems have logically stored weighted val-
ues for the indexes to an item. The same arguments that went into how to derive the
“weighted” index in Chap.Â€4 apply to calculating similarity in this chapter. That is
to say there will be a main formula that drives the similarity measure and then other
factors that are used to normalize the similarity to make it easier to use. The other
difference from Chap.Â€4 is instead of looking at a single item and using other infor-
mation from the database to normalize, in this case there will be two vectors that
will drive the similarity process and the normalization comes from characteristics
of those two vectors. If you are working from weighted vectors then you want the
similarity to be sensitive to how strongly the shared processing tokens are weighted
in each item. Based upon this idea the basic formula for the similarity between two
items (vectors) is:

Use of the multiplication function has the desired effect in calculating similarity
values. If one of the items does not contain a processing token it will have zero as a
weight. When multiplied, that factor is zero and will not add to the final similarity.
When there are weighted values in both for the same processing token, the higher
the values the larger the result for that factor.

There are some intrinsic errors that come from this approach. First is if the author
and the user do not select the same processing token to search on (e.g., one uses car
and the other automobile) then there will be no hit even though there are discussing
the same concept. The other problem comes when a long item is considered where
there are different concepts being presented. The aggregate weight across the whole
item may assign a weight to a processing token that does not reflect how much it
contributes to each of the different concepts that are indexed. To resolve this issue
the similarity may be applied to the total item or constrained to logical passages
in the item. For example, every paragraph may be defined as a passage or every
100 words. Rather limiting the definition of a passage to a fixed length size, local-
ity based similarity allows variable length passages (neighborhoods) based upon
similarity of content (Kretser-99). This then leads to the ability to define locality
based searching and retrieval of the precise locations of information that satisfies
the query. The highest similarity for any of the passages is used as the similarity
measure for the item. Restricting the similarity measure to passages gains signifi-
cant precision with minimal impact on recall. In results presented at TREC-4, it was
discovered that passage retrieval makes a significant difference when search state-
ments are long (hundreds of terms) but does not make a major difference for short
queries. The lack of a large number of terms makes it harder to find shorter passages
that contain the search terms expanded from the shorter queries. More recently in

SIM(Itemi, Itemj) =
∑

(Termi,k)(Termj,k)

5.2 Similarity Measures and Ranking

144

the TREC experiments on GENOME search, passage level retrieval has proven to
significantly improve the accuracy of the retrieval (Frieder-09).

Once items are identified as possibly relevant to the user’s query, it is best to
present the most likely relevant items first. This process is called “ranking.” Usually
the output of the use of a similarity measure in the search process is a scalar number
that represents how similar an item is to the query.

5.2.1  �Similarity Measures

A variety of different similarity measures can be used to calculate the similarity
between the item and the search statement. A characteristic of a similarity formula
is that the results of the formula increase as the items become more similar. The
value is zero if the items are totally dissimilar. An example of a simple “sum of the
products” similarity measure is the basis behind many similarity measures and was
mentioned above:

This formula uses the summation of the product of the various terms of two items
when treating the index as a vector. If Itemj is replaced with Queryj then the same
formula generates the similarity between every Item and Queryj. The problem with
this simple measure is in the normalization needed to account for variances in the
length of items. Additional normalization is also used to have the final results come
between zero and +1 (some formulas use the range −1 to +1). The similarity mea-
sure will be used for both search in this chapter and as a basis for clustering items
in the Chap.Â€6. Many of the similarity measures discussed below are less useful in
the search process because the number of terms in the query can be very low (e.g.,
1–3 terms). But they do start to have more meaning if operations such as relevance
feedback are used which significantly expands the number of search terms.

Before we get into the complexities of similarity measures for weighted systems,
a discussion of similarity measures for binary system can help in understanding the
formulas. Most of the formulas were first developed for a binary environment and
then expanded for the weighted vector case. Since the vectors are binary containing
either a value of 0 or a value for 1 for each position, simpler interpretations of the
formulas can apply. The basis behind these formulas becomes the number of dimen-
sions (processing tokens) that are in common to both vectors since the values are
either 0 which means it does not exist or 1 meaning it is there. Mathematically this
is the cardinality of the set that is created using Boolean logic between vectors. The
formula sometimes called Matching Coefficient is:

This calculates the number of processing tokens in common between the two items,
X and Y. The formula is the basic similarity value and next additional normalization

SIM(Itemi, Itemj) =
∑

(Termi,k)(Termj,k)

Similarity (X, Y) = |X ∩ Y|

5 Search

145

factors can be added. The DICE Coefficient normalizes the length by dividing by
the total number of non-zero components (elements) in both items. Thus the number
of unique processing tokens in each item. To get a value between zero and 1 it is
multiplied by 2. Consider if every element in X is in Y and assuming “n” elements
then |X ∩Y| = n and |X|Â€+Â€|Y|Â€=Â€nÂ€+Â€nÂ€=Â€2n thus the need for the 2 in the numerator.

The DICE formula is useful when there are not a lot of elements in common be-
tween the two vectors. The next formula is useful when there are fewer processing
tokens in common.

The JACCARD coefficient penalizes when there is a small number of shared entries
as a proportion of all shared entries more than the DICE penalizes. Both measures
range from 0 to 1, but the Jaccard gives lower values to low overlap cases. For
example two vectors with 10 non-zero entries and one common entry get a DICE
score of 2Â€*Â€1/(10Â€+Â€10)Â€=Â€0.1 while a Jaccard score of 1/(10Â€+Â€10Â€−Â€1)Â€=Â€0.05.

The Overlap coefficient is used when the vectors are very large to reduce the
impact of the denominator on causing the value to be too small.

As can be observed the above techniques are primarily focusing on the denomi-
nator to get a normalization to account for different characteristics of the two
vectors.

5.2.1.1  �Weighted Vector Similarity Measures

Now let’s expand the discussion to include weighted vectors and we will add a
few more similarity measures for them. One of the originators of the theory be-
hind statistical indexing and similarity functions was Robertson and Spark Jones
(Robertson-76). Their model suggests that knowledge of terms in relevant items
retrieved from a query should adjust the weights of those terms in the weighting
process. They used the number of relevant documents versus the number of non-
relevant documents in the database and the number of relevant documents having a
specific query term versus the number of non-relevant documents having that term
to devise four formulas for weighting. This assumption of the availability of rel-
evance information in the weighting process was later relaxed by Croft and Harper
(Croft-79). Croft expanded this original concept, taking into account the frequency

Dice Coefficient =
2|X ∩ Y|
|X| + |Y|

Jaccard (Tanimoto) coefficient =
|X ∩ Y|
|X ∪ Y|

Overlap coefficient =
|X ∩ Y|

Min(|X|, |Y|)

5.2 Similarity Measures and Ranking

146

of occurrence of terms within an item producing the following similarity formula
(Croft-83):

where C is a constant used in tuning, IDFi is the inverse document frequency for
term “i” in the collection and

where K is a tuning constant, TFi,j is the frequency of termi “i” itemj and maxfreqj
is the maximum frequency of any term in item “j.” The best values for K seemed to
range between 0.3 and 0.5.

The most obvious starting point for a similarity measure between two vectors is
the distance between the vectors. If the two vectors are identical then the distance
is zero. A more general starting point for distance metrics is using the Minkowski
metric which is:

The sensitivity to the parameter k affects the distance metric exponentially in that
the distance quickly decreases towards zero as k increases. When k is equal to 1 it
is the classic Hamming distance and using absolute value for the difference ensures
the distance measure is equal to or greater than zero. When k equals 2 then the
formula is the Euclidian distance measure between two vectors used in Euclidean
based mathematics and the similarity measure most likely to be used for Informa-
tion retrieval.

A simpler version of the form called the Canberra measure is used in calculating
distances (similarity) such as between color vectors and is useful because it detects
small changes near zero:

Which is just the absolute value of the subtraction of each position divided by the
absolute value of each position added together. It is much easier to calculate than
the distance similarity formula. It is also a useful check to validate if one vector is
a multiple of another vector.

The binary similarity measures above that were based upon the cardinality can
now be adjusted to account for weighted vectors. The Matching coefficient be-

SIM(DOCi, QUERYj) =
Q∑

i=1

((C + IDFi) ∗ fi,j)

fi,j = K + (K − 1)TFi,j/maxfreqj

D(x, y) =
(

n∑

k=1

(xi − yi)
k

)1/k

D(x, y) =
(

n∑

k=1

(xi − yi)
2

)1/2

D(x, y) =
n∑

i=1

((|xi − yi|)/(|xi | + |yi|))

5 Search

147

comes the sum of products when looking at a Query vector and the Document
vectors:

As described above in the binary case, two commonly used measures discussed
above are the Jaccard and the Dice similarity measures (Rijsbergen-79). Both
change the normalizing factor in the denominator to account for different character-
istics of the data. In the Jaccard similarity measure, the denominator becomes de-
pendent upon the number of terms in common. As the common elements increase,
the similarity value quickly decreases but the final value is no longer restricted to be
between −1 and +1 but can be larger negative values:

The overlap similarity measure can be restated as:

The Dice measure simplifies the denominator from the Jaccard measure. The nor-
malization in the Dice formula is also invariant to the number of terms in common.
The results for weighted vectors is no longer restricted to a value between 0 and 1
but can have larger values.

Another early similarity formula was used by Salton in the SMART system
(Salton-83). Salton treated the index and the search query as n-dimensional vec-
tors (see Chap.Â€4). To determine the “weight” an item has with respect to the search
statement, the Cosine formula is used to calculate the distance between the vector
for the item and the vector for the query:

SIM(Doci, Queryj) =
∑

(Doci,k)(Queryj,k)

SIM(DOCi, QUERYj) =

n∑
k=1

(DOCi,k ∗ QTERMj ,k)

n∑
k=1

DOCi,k +
n∑

k=1
QTERMj ,k −

n∑
k=1

(DOCi,k ∗ QTERMj ,k)

SIM(DOCi, QUERYj) =

n∑
k=1

(DOCi,k ∗ QTERMj ,k)

MIN
(

n∑
k=1

DOCi,k ,
n∑

k=1
QTERMj ,k

)

SIM(DOCi, QUERYj) =
2 ∗

n∑
k=1

(DOCi,k ∗ QTERMj ,k)

n∑
k=1

DOCi,k +
n∑

k=1
QTERMj ,k

SIM(DOCi, QUERYj) =

n∑
k=1

(DOCi,k ∗ QTERMj ,k)

√
n∑

k=1
(DOCi,k)2 ∗

n∑
k=1

(QTERMj ,k)2

5.2 Similarity Measures and Ranking

148

where DOCi,k is the kth term in the weighted vector for Item “i” and QTERMj,k is the
kth term in query “j.” The Cosine formula calculates the Cosine of the angle between
the two vectors. As the Cosine approaches “1,” the two vectors become coincident
(i.e., the item and the query represent the same concept). If the two are totally un-
related, then they will be orthogonal and the value of the Cosine is “0.” What is not
taken into account is the length of the vectors. For example, if the following vectors
are in a three dimensional (three term) system:

ItemÂ€=Â€(4, 8, 0)
Query 1Â€=Â€(1, 2, 0)
Query 2Â€=Â€(3, 6, 0)

then the Cosine value is identical for both queries even though Query 2 has signifi-
cantly higher weights in the terms in common which if a distance function is used
would make them more similar. The denominator in the Cosine formula is invariant
to the number of terms in common and produces very small numbers when the vec-
tors are large and the number of common elements is small.

To improve the formula, Salton and Buckley (Salton-88) changed the term fac-
tors in the query to:

where TFi,k is the frequency of term “i” in query “k,” maxfreqk is the maximum
frequency of any term in query “k” and IDFi is the inverse document frequency for
term “i” (see Chap.Â€4 for the formula). In an evolution of the formula, the IDF factor
has been dropped (Buckley-96).

The final correlation to be introduced is the Pearson R correlation measure. It is
known also as the Pearson product-moment correlation coefficient and is obtained by
dividing the covariance by the standard deviation. It was developed by Francis Gal-
ton but named after Karl Pearson. It measures the relationship over an interval when
two vectors have a linear relationship which is looking for the case described above
under the Cosine measure. The measure between a document Di and query Qj is:

Where AVED is the average of the DOCi elements and AVEQ is the average of the
QTERMj elements that are not zero. If you included all elements of the vector then
the average would be close to zero since typically so few of the elements in the
vector are non-zero. Since the zero value implies the term is not in the item, zero
elements should be left with a zero value ensuring they will not have an effect on the
similarity value calculated (i.e., do not subtract the average from them). The Cosine
similarity is related to Pearson correlation which represents the angular separation
between two normalized data vectors measured from the mean while the Cosine
measures the separation of two data vectors measured from zero.

QTERMi,k = (0.5 + (0.5TFi,k/maxfreqk)) ∗ IDFi

SIM(Di, Qj) =

n∑
k=1

(Di,k − AVED) ∗ (QTERMj ,k − AVEQ)

√
n∑

k=1
(Di,k − AVED)2 ∗

√∑
(QTERMj ,k − AVEQ)2

5 Search

149

FigureÂ€5.2 is a table that shows how the similarity measure values vary for the dif-
ferent algorithms. Notice that as long as the vector values are same, independent of
their order, the Cosine, Pearson and Dice normalization factors do not change. Also no-
tice that when there are a number of terms in common between the query and the docu-
ment, that the Jaccard formula can produce a negative normalization factor. Also notice
that for the Canberra measure that the document that is closest to the query scores
better than one that is on the same vector but just a multiple so its further away from
the query. The results in Fig.Â€5.2 are based upon the following Query and Documents:

QÂ€=Â€(3, 0, 4, 2, 2)
D1Â€=Â€(3, 0, 4, 2, 2)
D2Â€=Â€(9, 0, 12, 6, 6)
D3Â€=Â€(0, 6, 0, 8, 7)
D4Â€=Â€(1, 1, 1, 1, 1)

DICE

Jaccard

Sim(D1, Q1) = 2 ∗
n∑

k=1

(D1,k ∗ Q1,k)/
n∑

k=1

D1,k +
n∑

k=1

Q1,k

Sim(D1, Q1) = 2 ∗ ((3 ∗ 3) + (4 ∗ 4) + (2 ∗ 2) + (2 ∗ 2))/3 + 0 + 4 + 2 + 2 + 3

+ 0 + 4 + 2 + 2

Sim(D1, Q1) = (2 ∗ 33)/22 = 3

Sim(D2, Q1) = (2 ∗ 99)/44 = 4.5

Sim(D3, Q1) = (2 ∗ 30)/32 = 1.875

Sim(D4, Q1) = (2 ∗ 11)/16 = 1.375

Sim(D1, Q1) =
n∑

k=1

(D1,k ∗ Q1,k)/
n∑

k=1

D1,k +
n∑

k=1

Q1,k −
n∑

k=1

(D1,k ∗ Q1,k)

Sim(D1, Q1) = (3 ∗ 3) + (4 ∗ 4) + (2 ∗ 2) + (2 ∗ 2)/(3 + 4 + 2 + 2 + 3 + 4

+ 2 + 2) − ((3 ∗ 3) + (4 ∗ 4) + (2 ∗ 2) + (2 ∗ 2))

Fig. 5.2â†œæ¸€ Similarity measure comparison table

5.2 Similarity Measures and Ranking

150

Cosine

Pearson

Sim(D1, Q1) = 33/(22 − 33) = −3

Sim(D2, Q1) = 99/(44 − 99) = −1.8

Sim(D3, Q1) = 30/(32 − 30) = 15

Sim(D4, Q1) = 11/(16 − 11) = 2.2

Sim(D1, Q1) =

n∑
k=1

(D1,k ∗ Q1,k)

√
n∑

k=1
D1,k

2 ∗
n∑

k=1
Q1,k

2

Sim(D1, Q1)

=
(3 ∗ 3) + (4 ∗ 4) + (2 ∗ 2) + (2 ∗ 2)

√
((3 ∗ 3) + (4 ∗ 4) + (2 ∗ 2) + (2 ∗ 2)) ∗ ((3 ∗ 3) + (4 ∗ 4) + (2 ∗ 2) + (2 ∗ 2))

Sim(D1, Q1) =
33

√
33 ∗ 33

= 1

Sim(D2, Q1) =
99

√
297 ∗ 33

= 1

Sim(D3, Q1) =
30

√
149 ∗ 33

= 0.43

Sim(D3, Q1) =
11

√
5 ∗ 33

= 0.86

Sim(D1, Q1) =

n∑
k=1

(D1,k − AveD) ∗ (Q1,k − AveQ)

√
n∑

k=1
(D1,k − AveD)2 ∗

√
n∑

k=1
(Q1,k − AveQ)2

Sim(D1, Q1) =

((3 − 2.75) ∗ (3 − 2.75)) + ((4 − 2.75) ∗ (4 − 2.75))
+ ((2 − 2.75) ∗ (2 − 2.75)) + ((2 − 2.75) ∗ (2 − 2.75))

√
(3 − 2.75)2 + (4 − 2.75)2 + (2 − 2.75)2 + (2 − 2.75)2

∗
√

(3 − 2.75)2 + (4 − 2.75)2 + (2 − 2.75)2 + (2 − 2.75)2

Sim(D1, Q1) =
2.75

√
2.75 ∗

√
2.75

= 1

5 Search

151

Canberra

Sim(D1, Q1)Â€=Â€0/22Â€=Â€0
Sim(D2, Q1)Â€=Â€22/44Â€=Â€1/2
Sim(D3, Q1)Â€=Â€24/33
Sim(D4, Q1)Â€=Â€8/16Â€=Â€1/2

Use of a similarity algorithm returns the complete data base as search results.
Many of the items have a similarity close or equal to zero (or minimum value the
similarity measure produces). For this reason, thresholds are usually associated
with the search process. The threshold defines the items in the resultant Hit file
from the query. Thresholds are either a value that the similarity measure must equal
or exceed or a number that limits the number of items in the Hit file. A default is
always the case where the similarity is greater than zero. FigureÂ€5.3 illustrates the
threshold process.

The simple “sum of the products” similarity formula is used to calculate simi-
larity between the query and each document. If no threshold is specified, all three
documents are considered hits. If a threshold of 4 is selected, then only DOC1 is
returned.

Sim(D2, Q1) =
8.25

√
24.75 ∗

√
2.75

= 1

Sim(D3, Q1) =
−0.75

√
1 ∗

√
2.75

= −0.45

Sim(D4, Q1) =
0

√
0 ∗

√
2.75

= 0

D(x, y) =
n∑

i=1

(
(|xi − yi|)/

n∑

i=1

(|xi| + |yi |)
)

Sim(D1, Q1) =
|3 − 3| + |0 − 0| + |4 − 4| + |2 − 2| + |2 − 2|

(|3| + |3|) + (|0| + |0|) + (|4| + |4|) + (|2| + |2|) + (|2| + |2|)

5.2 Similarity Measures and Ranking

Fig. 5.3â†œæ¸€ Query threshold
process

DOC1 = geography of Mexico suggests oil reserves are available
vector (0, 1, 0, 2, 0, 3, 1, 0)

DOC2 = American geography has lakes available everywhere
 vector (1, 3, 2, 0, 0, 0, 0, 0)

DOC3 = painters suggest Mexico lakes as subjects
vector (0, 0, 1, 3, 3, 0, 0, 2)

QUERY = oil reserves in Mexico
 vector (0, 0, 0, 1, 0, 1, 1, 0)

SIM(Q, DOC1) = 6, SIM(Q, DOC2) = 0, SIM(Q, DOC3) = 3

Vector: (American, geography, lake, Mexico, painter, oil, reserve, subject)

152

5.3  �Hidden Markov Models Techniques

Use of Hidden Markov Models (HMMs) for searching textual corpora has intro-
duced a new paradigm for search. In most of the previous search techniques, the
query is thought of as another “document” and the system tries to find other docu-
ments similar to it. In HMMs the documents are considered unknown statistical
processes that can generate output that is equivalent to the set of queries that would
consider the document relevant. Another way to look at it is by taking the general
definition that a HMM is defined by output that is produced by passing some un-
known key via state transitions through a noisy channel. The observed output is the
query, and the unknown keys are the relevant documents. The noisy channel is the
mismatch between the author’s way of expressing ideas and the user’s ability to
specify his query. Leek, Miller and Schwartz (Leek-99) computed for each docu-
ment the probability that D was the relevant document in the users mind given that
Q was the query produced, i.e., P(D is R/Q).

The development for a HMM approach begins with applying Bayes rule to the
conditional probability:

Since we are performing the analysis from the document’s perspective, the P(Q)
will be the same for every document and thus can be ignored. P(D is R) is also
almost an impossible task in a large diverse corpora. Relevant documents sets
seem to be so sensitive to the specific queries, that trying to estimate P(D is
R) does not return any noticeable improvements in query resolution. Thus the
probability that a document is relevant given a specific query can be estimated
by calculating the probability of the query given the document is Relevant, i.e.,
P(Q/D is R).

As described in Chap.Â€2, a Hidden Markov Model is defined by a set of states,
a transition matrix defining the probability of moving between states, a set of
output symbols and the probability of the output symbols given a particular state.
The set of all possible queries is the output symbol set and the Document file
defines the states. States could for example be any of the words or stems of the
words in the documents. Thus the HMM process traces itself through the states of
a document (e.g., the words in the document) and at each state transition has an
output of query terms associated with the new state. State transitions are associ-
ated with ways that words are combined to make documents. Given the query, it
is possible to calculate the probability that any particular document generated the
query.

The biggest problem in using this approach is to estimate the transition probabil-
ity matrix and the output (queries that could cause hits) for every document in the
corpus. If there was a large training database of queries and the relevant documents
they were associated with that included adequate coverage, then the problem could
be solved using Estimation-Maximization algorithms (Dempster-77, Bryne-93.)
But given the lack of data, Leek etÂ€ al. recommend making the transition matrix

P(D is R/Q) = P(Q/D is R) ∗ P(D is R)/P(Q)

5 Search

153

independent of specific document sets and applying simple unigram estimation for
output distributions (Leek-99).

5.4  �Ranking Algorithms

A by-product of use of similarity measures for selecting Hit items is a value that can
be used in ranking the output. Ranking the output implies ordering the output from
most likely items that satisfy the query to least likely items. This reduces the user
overhead by allowing the user to display the most likely relevant items first. The
original Boolean systems returned items ordered by date of entry into the system
versus by likelihood of relevance to the user’s search statement. With the inclusion
of statistical similarity techniques into commercial systems and the large number of
hits that originate from searching diverse corpora, such as the Internet, ranking has
become a common feature of modern systems. A summary of ranking algorithms
from the research community is found in an article written by Belkin and Croft
(Belkin-87).

In most of the commercial systems, heuristic rules are used to assist in the rank-
ing of items. Generally, systems do not want to use factors that require knowledge
across the corpus (e.g., inverse document frequency) as a basis for their similarity
or ranking functions because it is too difficult to maintain current values as the
database changes and the added complexity has not been shown to significantly
improve the overall weighting process.

In most commercial search systems the ranking is based upon location and fre-
quency. For example if some or all of the search terms are in the Title of an item,
then that would be ranked higher than an item where the terms occur only in the
text. Even within the text of an item location matters because if the search terms
are closer to the start of the item they are ranked more importantly than those terms
towards the end of the item. Of course how often terms occur in an item is also a
gage of how high it should be ranked on a list of hits. Those items with the terms
occurring more frequently will be ranked higher than those with fewer occurrences.
In addition to positive information that can be associated with an item, because of
spamming on the Internet, a negative weight can be associated with an item where
the computer detects the creator is trying to “fix the system”. For example if the user
repeats the same word hundreds of times.

When looking at a hyperlink environment such as the Internet a completely dif-
ferent approach can be used in determining the rank of an item. Instead of only
considering the specific search, it’s possible via link analysis to determine the “au-
thority” of the page (this is one of the concepts introduced by GOOGLE). This is
called the page ranking approach. Page ranking is discussed in Chap.Â€7 because it is
an example of collaborative filtering that is used in determining weights.

Although ranking creates a ranking score, most systems try to use other ways
of indicating the rank value to the user as Hit lists are displayed. The scores have a
tendency to be misleading and confusing to the user. The differences between the

5.4 Ranking Algorithms

154

values may be very close or very large. It has been found to be better to indicate the
general relevance of items than to be over specific (see Chap.Â€8).

5.5  �Relevance Feedback

As discussed in the early chapters in this text, one of the major problems in find-
ing relevant items lies in the difference in vocabulary between the authors and the
user. Thesauri and semantic networks provide utility in generally expanding a user’s
search statement to include potential related search terms. But this still does not cor-
relate to the vocabulary used by the authors that contributes to a particular database.
There is also a significant risk that the thesaurus does not include the latest jargon
being used, acronyms or proper nouns. In an interactive system, users can manu-
ally modify an inefficient query or have the system automatically expand the query
via a thesaurus. The user can also use relevant items that have been found by the
system (irrespective of their ranking) to improve future searches, which is the basis
behind relevance feedback. Relevant items (or portions of relevant items) are used
to reweight the existing query terms and possibly expand the user’s search state-
ment with new terms.

The first major work on relevance feedback was published in 1965 by Rocchio
(republished in 1971: Rocchio-71). Rocchio was documenting experiments on re-
weighting query terms and query expansion based upon a vector representation of
queries and items. The concepts are also found in the probabilistic model presented
by Robertson and Sparck Jones (Robertson-76). The relevance feedback concept
was that the new query should be based on the old query modified to increase the
weight of terms in relevant items and decrease the weight of terms that are in non-
relevant items. This technique not only modified the terms in the original query but
also allowed expansion of new terms from the relevant items. The formula used is:

where

QnÂ€=Â€the revised vector for the new query
QoÂ€=Â€the original query
rÂ€=Â€number of relevant items
DRiÂ€=Â€the vectors for the relevant items
nrÂ€=Â€number of non-relevant items
DNRjÂ€=Â€the vectors for the non-relevant items.

The factors r and nr were later modified to be constants that account for the number
of items along with the importance of that particular factor in the equation. Addi-
tionally a constant was added to Qo to allow adjustments to the importance of the
weight assigned to the original query. This led to the revised version of the formula:

Qn = Qo +
1
r

r∑

i=1

DRI −
1
nr

nr∑

j=1

DNRj

5 Search

155

where , , and  are the constants associated with each factor (usually 1/n or 1/nr

times a constant). The factor β
r∑

i=1
DRI is referred to as positive feedback because it

is using the user judgments on relevant items to increase the values of terms for the

next iteration of searching. The factor γ
nr∑

j=1
DNRj is referred to as negative feed-

back since it decreases the values of terms in the query vector. Positive feedback
is weighted significantly greater than negative feedback. Many times only positive
feedback is used in a relevance feedback environment. Positive feedback is more
likely to move a query closer to a user’s information needs. Negative feedback may
help, but in some cases it actually reduces the effectiveness of a query. FigureÂ€5.4
gives an example of the impacts of positive and negative feedback. The filled circles
represent non-relevant items; the other circles represent relevant items. The oval
represents the items that are returned from the query. The solid box is logically
where the query is initially. The hollow box is the query modified by relevance
feedback (positive only or negative only in the Fig.Â€5.4).

Positive feedback moves the query to retrieve items similar to the items retrieved
and thus in the direction of more relevant items. Negative feedback moves the query
away from the non-relevant items retrieved, but not necessarily closer to more rel-
evant items.

FigureÂ€5.5 shows how the formula is applied to three items (two relevant and one
non-relevant). If we use the factors Â€=Â€1, Â€=Â€¼ (½ times a constant ½), Â€=Â€¼ (1/1
times a constant ¼) in the foregoing formula we get the following revised query
(NOTE: negative values are changed to a zero value in the revised Query vector):

Qn = αQo + β

r∑

i=1

DRI − γ

nr∑

j=1

DNRj

Qn = (3, 0, 0, 2, 0) + 1/4(2 + 1, 4 + 3, 0 + 0, 0 + 0, 2 + 0) − 1/4(0, 0, 4, 3, 2)

= (33/4, 13/4, 0{−1}, 11/4, 0)

5.5 Relevance Feedback

Fig. 5.4â†œæ¸€ Impact of relevance feedback. a Positive feedback b Negative feedback

ba

156

Using the unnormalized similarity formula SIM(Qk, DOCl) =
5∑

i=1
TERMk,i ∗ TERMl,I

TERM1,I produces the results shown in Fig.Â€5.6.
In addition to showing the benefits of relevance feedback, this example illustrates

the problems of identifying information. Although DOC3 is not relevant to the user,
the initial query produced one of the highest similarity measures for it. This was
caused by a query term (Term 4) of interest to the user that has a significant weight
in DOC3. The fewer the number of terms in a user query, the more likely a specific
term to cause non-relevant items to be returned. The modification to the query by
the relevance feedback process significantly increased the similarity measure values
for the two relevant items (DOC1 and DOC2) while decreasing the value of the non-
relevant item. It is also of interest to note that the new query added a weight to Term
2 that was not in the original query. One reason that the user might not have initially
had a value to Term 2 is that it might not have been in the user’s vocabulary. For
example, the user may have been searching on “PC” and “word processor” and not
been aware that many authors use the specific term “Macintosh” rather than “PC.”

Relevance feedback, in particular positive feedback, has been proven to be of
significant value in producing better queries. Some of the early experiments on the
SMART system (Ide-69, Ide-71, Salton-83) indicated the possible improvements
that would be gained by the process. But the small collection sizes and evaluation
techniques put into question the actual gains by using relevance feedback. One of
the early problems addressed in relevance feedback is how to treat query terms that
are not found in any retrieved relevant items. Just applying the algorithm would
have the effect of reducing the relative weight of those terms with respect to other
query terms. From the user’s perspective, this may not be desired because the term
may still have significant value to the user if found in the future iterations of the
search process. Harper and van Rijisbergen addressed this issue in their proposed
EMIM weighting scheme (Harper-78, Harper-80). Relevance feedback has become
a common feature in most information systems. When the original query is mod-
ified based upon relevance feedback, the systems ensure that the original query

Fig. 5.5â†œæ¸€ Query modification via relevance feedback

Term 1 Term 2 Term 3 Term 4 Term 5
Qo 3 0 0 2 0
DOC1r 2 4 0 0 2
DOC2r 1 3 0 0 0
DOC3nr 0 0 4 3 3
Qn 3¾ 1¾ 0 1¼ 0

Fig. 5.6â†œæ¸€ Effect of relevance
feedback

5 Search

157

terms are in the modified query, even if negative feedback would have eliminated
them. In some systems the modified query is presented to the user to allow the user
to readjust the weights and review the new terms added.

Recent experiments with relevance feedback during the TREC sessions have
shown conclusively the advantages of relevance feedback. Queries using relevance
feedback produce significantly better results than those being manually enhanced.
When users enter queries with a few number of terms, automatic relevance feed-
back based upon just the rank values of items has been used. This concept in infor-
mation systems called pseudo-relevance feedback, blind feedback or local context
analysis (Xu-96) does not require human relevance judgments. The highest ranked
items from a query are automatically assumed to be relevant and applying relevance
feedback (positive only) used to create and execute an expanded query. The system
returns to the user a Hit file based upon the expanded query. This technique also
showed improved performance over not using the automatic relevance feedback
process. In the automatic query processing tests from TREC (see Chap.Â€10) most
systems use the highest ranked hits from the first pass to generate the relevance
feedback for the second pass.

5.6  �Selective Dissemination of Information Search

Selective Dissemination of Information, frequently called dissemination systems,
are becoming more prevalent with the growth of the Internet. A dissemination sys-
tem is sometimes labeled a “push” system while a search system is called a “pull”
system. The differences are that in a search system the user proactively makes a
decision that he needs information and directs the query to the information system
to search. In a dissemination system, the user defines a profile (similar to a stored
query) and as new information is added to the system it is automatically compared
to the user’s profile. If it is considered a match, it is asynchronously sent to the
user’s “mail” file (see Chap.Â€1).

One concept that ties together the two search statements (query and profile) is
the introduction of a time parameter associated with a search statement. As long
as the time is in the future, the search statement can be considered active and dis-
seminating as items arrive. Once the time parameter is past, the user’s need for the
information is no longer exists except upon demand (i.e., issuing the search state-
ment as an ad hoc query).

The differences between the two functions lie in the dynamic nature of the profil-
ing process, the size and diversity of the search statements and number of simulta-
neous searches per item. In the search system, an existing database exists. As such,
corpora statistics exist on term frequency within and between terms. These can be
used for weighting factors in the indexing process and the similarity comparison
(e.g., inverse document frequency algorithms). A dissemination system does not
necessarily have a retrospective database associated with it. Thus its algorithms
need to avoid dependency upon previous data or develop a technique to estimate
terms for their formula. This class of system is also discussed as a binary classifica-

5.6 Selective Dissemination of Information Search

158

tion system because there is no possibility for real time feedback from the user to
assist in search statement refinement. The system makes a binary decision to reject
or file the item (Lewis-95).

Profiles are relatively static search statements that cover a diversity of topics.
Rather than specifying a particular information need, they usually generalize all of
the potential information needs of a user. They are focused on current information
needs of the user. Thus profiles have a tendency to contain significantly more terms
than an ad hoc query (hundreds of terms versus a small number). The size tends
to make them more complex and discourages users from wanting to change them
without expert advice.

One of the first commercial search techniques for dissemination was the Logicon
Message Dissemination System (LMDS). The system originated from a system cre-
ated by Chase, Rosen and Wallace (CRW Inc.). It was designed for speed to support
the search of thousands of profiles with items arriving every 20Â€s. It demonstrated
one approach to the problem where the profiles were treated as the static database
and the new item acted like the query. It uses the terms in the item to search the
profile structure to identify those profiles whose logic could be satisfied by the item.
The system uses a least frequently occurring trigraph (three characters) algorithm
that quickly identifies which profiles are not satisfied by the item. The potential
profiles are analyzed in detail to confirm if the item is a hit.

Another example of a dissemination approach is the Personal Library Software
(PLS) system. It uses the approach of accumulating newly received items into the
database and periodically running user’s profiles against the database. This makes
maximum use of the retrospective search software but loses near real time delivery
of items. More recent examples of a similar approach are the Retrievalware and the
InRoute software systems. In these systems the item is processed into the searchable
form. Since the Profiles are relatively static, some use is made in identifying all the
terms used in all the profiles. Any words in the items that are members of this list
can not contribute to the similarity process and thus are eliminated from the search
structure. Every profile is then compared to the item. Retrievalware uses a statistical
algorithm but it does not include any corpora data. Thus not having a database does
not affect its similarity measure. InRoute, like the INQUERY system used against
retrospective database, uses inverse document frequency information. It creates this
information as it processes items, storing and modifying it for use as future items
arrive. This would suggest that the values would be continually changing as items
arrive until sufficient items have arrived to stabilize the inverse document frequency
weights. Relevance feedback has been proven to enhance the search capabilities of
ad hoc queries against retrospective databases. Relevance feedback can also be ap-
plied to dissemination systems. Unlike an ad hoc query situation, the dissemination
process is continuous, and the issue is the practicality of archiving all of the previous
relevance judgments to be used in the relevance feedback process. Allan performed
experiments on the number of items that have to arrive and be judged before the
effects of relevance feedback stabilize (Allan-96). Previous work has been done on
the number of documents needed to generate a new query and the amount of training
needed (Buckley-94, Aalbersberg-92, Lewis-94). The two major choices are to save

5 Search

159

relevant items or relevance statistics for words. By saving dissimilar items, Allan
demonstrated that the system sees a 2–3% loss in effectiveness by archiving 10% of
the relevance judgments. This still requires significant storage space. He was able to
achieve high effectiveness by storing information on as few as 250 terms.

Another approach to dissemination uses a statistical classification technique and
explicit error minimization to determine the decision criteria for selecting items for
a particular profile (Schutze-95). In this case, the classification process is related
to assignment for each item into one of two classes: relevant to a user’s profile or
non-relevant. Error minimization encounters problems in high dimension spaces.
The dimensionality of an information space is defined by the number of unique
terms where each term is another dimension. This is caused by there being too many
dimensions for a realistic training set to establish the error minimization parameters.
To reduce the dimensionality, a version of latent semantic indexing (LSI) can be
used. The process requires a training data set along with its associated profiles.
Relevance feedback is an example of a simple case of a learning algorithm that does
not use error minimization. Other examples of algorithms used in linear classifiers
that perform explicit error minimization are linear discriminant analysis, logistic
regression and linear neural networks.

Schutze etÂ€al. used two approaches to reduce the dimensionality: selecting a set
of existing features to use or creating a new much smaller set of features that the
original features are mapped into. A χ2 measure was used to determine the most
important features. The test was applied to a table that contained the number of
relevant (Nr) and non-relevant (Nnr) items in which a term occurs plus the num-
ber of relevant and non-relevant items in which the term does not occur (Nr−, Nnr−
respectively). The formula used was:

To focus the analysis, only items in the local region defined by a profile were ana-
lyzed. The chi-squared technique provides a more effective mechanism than fre-
quency of occurrence of terms. A high χ2 score indicates a feature whose frequency
has a significant dependence on occurrence in a relevant or non-relevant item.

An alternative technique to identify the reduced feature (vector) set is to use a
modified latent semantic index (LSI) technique to determine a new reduced set of
concept vectors. The technique varies from the LSI technique described in Chap.Â€5
by creating a separate representation of terms and items by each profile to create
the “local” space of items likely to be relevant (i.e., Local LSI). The results of the
analysis go into a learning algorithm associated with the classification technique
(Hull-94). The use of the profile to define a local region is essential when working
with large databases. Otherwise the number of LSI factors is in the hundreds and the
ability to process them is currently unrealistic. Rather than keeping the LSI factors
separate per profile, another approach is to merge the results from all of the queries
into a single LSI analysis (Dumais-93). This increases the number of factors with
associated increase in computational complexity.

χ2 =
N (NrNnr− − Nr−Nnr)2

(Nr + Nr−)(Nnr + Nnr−)(Nr + Nnr)(Nr− + Nnr−)

5.6 Selective Dissemination of Information Search

160

Once the reduced vector set has been identified, then learning algorithms can be
used for the classification process. Linear discriminate analysis, logistic regression
and neural networks are three possible techniques that were compared by Schu-
tze etÂ€al. Other possible techniques are classification trees (Tong-94, Lewis-94a),
Bayesian networks (Croft-94), Bayesian classifiers (Lewis-92), rules induction
(Apte-94), nearest neighbor techniques (Masand-92, Yang-94), and least square
methods (Fuhr-89). Linear discrimination analysis uses the covariance class for
each document class to detect feature dependence (Gnanadesikan-79). Assuming
a sample of data from two groups with n1 and n2 members, mean vectors x̄1 and
x̄2 and covariance matrices C1 and C2 respectively, the objective is to maximize
the separation between the two groups. This can be achieved by maximizing the
distance between the vector means, scaling to reflect the structure in the pooled
covariance matrix. Thus choose a such that:

is maximized where T is the transpose and (â†œn1Â€+Â€n2Â€−Â€2)CÂ€=Â€(â†œn1Â€−Â€1)C1Â€+Â€(â†œn2Â€−Â€1)C2.
Since C is positive, the Cholesky decomposition of CÂ€=Â€RT. Let bÂ€=Â€Ra; then the
formula becomes;

which is maximized by choosing b ∝ RT−1(
_
x1 − _

x2). This means:

The one dimensional space defined by yÂ€=Â€a*Tx should cause the group means to be
well separated. To produce a non-linear classifier, a pair of shrinkage parameters is
used to create a very general family of estimators for the group covariance matrix
(Friedman-89). This process called Regularized Discriminant Analysis looks at a
weighted combination of the pooled and unpooled covariance matrices. The opti-
mal values of the shrinkage parameters are selected based upon the cross validation
over the training set. The non-linear classifier produced by this technique has not
been shown to make major improvements in the classification process (Hull-95).

A second approach is to use logistic regression (Cooper-94a). It models a binary
response variable by a linear combination of one or more predictor variables, using
a logit link function:

and modeling variance with a binomial random variable. This is achieved by mod-
eling the dependent variable log(â†œ/(1Â€−Â€)) as a linear combination of independent
variables using a form g(â†œ)Â€=Â€xi. In this formula  is the estimated response prob-
ability (probability of relevance), xi is the feature vector (reduced vector) for docu-
ment I, and  is the weight vector which is estimated from the matrix of feature

a∗ = arga max
aT (

_
x1 − _

x2)
√

aT Ca

a∗ = argb max
bT RT −1(

_
x1 − _

x2)
√

bT b

a∗ = R−1b = C−1(
_
x1 − _

x2)

g(π) = log(π/(1 − π))

5 Search

161

vectors. The optimal value of  can be calculated using the maximum likelihood
and the Newton-Raphson method of numerical optimization (McCullagh-89). The
major difference from previous experiments using logistic regression is that Schu-
tze etÂ€al. do not use information from all the profiles but restrict the analysis for
each profile.

A third technique is to use neural networks for the learning function. A neural
network is a network of input and output cells (based upon neuron functions in the
brain) originating with the work of McCulloch and Pitts (McCulloch-43). Each in-
put pattern is propagated forward through the network. When an error is detected
it is propagated backward adjusting the cell parameters to reduce the error, thus
achieving learning. This technique is very flexible and can accommodate a wide
range of distributions. A major risk of neural networks is that they can overfit by
learning the characteristics of the training data set and not be generalized enough
for the normal input of items. In applying training to a neural network approach, a
validation set of items is used in addition to the training items to ensure that over-
fitting has not occurred. As each iteration of parameter adjustment occurs on the
training set, the validation set is retested. Whenever the errors on the validation
set increase, it indicates that overfitting is occurring and establishes the number
of iterations on training that improve the parameter values while not harming
generalization.

The linear and non-linear architectures for an implementation of neural nets is
shown in Fig.Â€5.7.

5.6 Selective Dissemination of Information Search

Fig. 5.7â†œæ¸€ Linear and non-linear networks

OUTPUT
UNIT

OUTPUT
UNIT

LSI
REPRESENTATION

TERM
REPRESENTATION

LSI
REPRESENTATION

TERM
REPRESENTATION

HIDDEN
UNIT

BLOCK
FOR LSI

HIDDEN
UNIT

BLOCK FOR
TERMS

Linear Neural network Non-linear Neural network

162

In the non-linear network, each of the hidden blocks consists of three hidden
units. A hidden unit can be interpreted as feature detectors that estimate the prob-
ability of a feature being present in the input. Propagating this to the output unit
can improve the overall estimation of relevance in the output unit. The networks
show input of both terms and the LSI representation (reduced feature set). In both
architectures, all input units are directly connected to the output units. Relevance is
computed by setting the activations of the input units to the document’s represen-
tation and propagating the activation through the network to the output unit, then
propagating the error back through the network using a gradient descent algorithm
(Rumelhart-95). A sigmoid was chosen as:

as the activation function for the units of the network (Schutze-95). In this case
backpropagation minimizes the same error as logistic regression (Rumelhart-95a).
The cross-entropy error is:

where ti is the relevance for document I and I is the estimated relevance (or activa-
tion of the output unit) for document i. The definition of the sigmoid is equivalent to:

which is the same as the logit link function.
Schutze etÂ€al. performed experiments with the Tipster test database to compare

the three algorithms. They show that the linear classification schemes perform 10–
15% better than the traditional relevance feedback. To use the learning algorithms
based upon error minimization and numerical computation one must use some tech-
nique of dimensionality reduction. Their experiments show that local latent seman-
tic indexing is best for linear discrimination analysis and logistic regression since
they have no mechanism for protecting against overfitting. When there are mecha-
nisms to avoid overfitting such as in neural networks, other less precise techniques
of dimension reduction can be used. This work suggests that there are alternatives
to the statistical classification scheme associated with profiles and dissemination.

An issue with Mail files is the logical reorganization associated with display of
items. In a retrospective query, the search is issued once and the hit list is a static file
that does not change in size or order of presentation. The dissemination function is
always adding items that satisfy a user’s profile to the user’s Mail file. If the items
are stored sorted by rank, then the relative order of items can always be changing as
new items are inserted in their position based upon the rank value. This constant re-
ordering can be confusing to the user who remembers items by spatial relationships
as well as naming. Thus the user may remember an item next to another item is of
significant interest. But in trying to retrieve it at a later time, the reordering process
can make it significantly harder to find.

f (x) =
ex

1 + ex

L = −
∑

(tilogσi + 1 − ti) log(1 − σi)

x = log
(

f (x)
1 − f (x)

)

5 Search

163

5.7  �Weighted Searches of Boolean Systems

The two major approaches to generating queries are Boolean and natural language.
Natural language queries are easily represented within statistical models and are
usable by the similarity measures discussed. Issues arise when Boolean queries are
associated with weighted index systems. Some of the issues are associated with
how the logic (AND, OR, NOT) operators function with weighted values and how
weights are associated with the query terms. If the operators are interpreted in their
normal interpretation, they act too restrictive or too general (i.e., AND and OR
operators respectively). Salton, Fox and Wu showed that using the strict definition
of the operators will suboptimize the retrieval expected by the user (Salton-83a).
Closely related to the strict definition problem is the lack of ranking that is miss-
ing from a pure Boolean process. Some of the early work addressing this problem
recognized the fuzziness associated with mixing Boolean and weighted systems
(Brookstein-78, Brookstein-80).

To integrate the Boolean and weighted systems model, Fox and Sharat proposed
a fuzzy set approach (Fox-86). Fuzzy sets introduce the concept of degree of mem-
bership to a set (Zadeh-65). The degree of membership for AND and OR operations
are defined as:

where A and B are terms in an item. DEG is the degree of membership. The Mixed
Min and Max (MMM) model considers the similarity between query and document
to be a linear combination of the minimum and maximum item weights. Fox pro-
posed the following similarity formula:

where COR1 and COR2 are weighting coefficients for the OR operation and CAND1 and
CAND2 are the weighting coefficients for the AND operation. Lee and Fox found in
their experiments that the best performance comes when CAND1 is between 0.5 to 0.8
and COR1 is greater than 0.2.

The MMM technique was expanded by Paice (Paice-84) considering all item
weights versus the maximum/minimum approach. The similarity measure is calcu-
lated as:

where the di’s are inspected in ascending order for AND queries and descending
order for OR queries. The r terms are weighting coefficients. Lee and Fox showed

DEGA∩B = min(DEGA, DEGB)

DEGA∪B = max(DEGA, DEGB)

SIM(QUERYOR, DOC) = COR1 ∗ max(DOC11, DOC2, . . . , DOCn)

+ COR2 ∗ min(DOC1, DOC2, . . . , DOCn)

SIM(QUERYAND, DOC) = CAND1 ∗ min(DOC1, DOC2, . . . , DOCn)

+ CAND2 ∗ max(DOC11, DOC2, . . . , DOCn)

SIM(QUERY DOC) =
n∑

i=1

ri−1di/

n∑

i=1

ri−1

5.7 Weighted Searches of Boolean Systems

164

that the best values for r are 1.0 for AND queries and 0.7 for OR queries (Lee-88).
This technique requires more computation since the values need to be stored in
ascending or descending order and thus must be sorted.

An alternative approach is using the P-norm model which allows terms within
the query to have weights in addition to the terms in the items. Similar to the Co-
sine similarity technique, it considers the membership values (dA1, … , dAn) to be
coordinates in an “n” dimensional space. For an OR query, the origin (all values
equal zero) is the worst possibility. For an AND query the ideal point is the unit
vector where all the Di values equal 1. Thus the best ranked documents will have
maximum distance from the origin in an OR query and minimal distance from the
unit vector point. The generalized queries are:

The operators (AND and OR) will have a strictness value assigned that varies from
1 to infinity where infinity is the strict definition of the Boolean operator. The ai
values are the query term weights. If we assign the strictness value to a parameter
labeled “S” then the similarity formulas between queries and items are:

Another approach suggested by Salton provides additional insight into the issues
of merging the Boolean queries and weighted query terms under the assumption
that there are no weights available in the indexes (Salton-83). The objective is to
perform the normal Boolean operations and then refine the results using weight-
ing techniques. The following procedure is a modification to his approach for
defining search results. The normal Boolean operations produce the following
results:

“A OR B” retrieves those items that contain the term A or the term B or both
“A AND B” retrieves those items that contain both terms A and B
“A NOT B” retrieves those items that contain term A and not contain term B.

If weights are then assigned to the terms between the values 0.0–1.0, they may
be interpreted as the significance that users are placing on each term. The value
1.0 is assumed to be the strict interpretation of a Boolean query. The value 0.0 is
interpreted to mean that the user places little value on the term. Under these as-
sumptions, a term assigned a value of 0.0 should have no effect on the retrieved
set. Thus

QOR = (A1, a1) OR (A2, a2) OR . . . OR(An, an)

QAND = (A1, a1) AND (A2, a2) AND . . . AND(An, an)

SIM(Q OR, DOC) = S

√
(aS

1 dS
A1 + · · · + aS

ndS
An)/(aS

1 + aS
2 + · · · + aS

n)

SIM(Q AND, DOC)

= 1 − S

√
(aS

1 (1 − dA1)S + · · · + aS
n (1 − dAn)S)/(aS

1 + aS
2 + · · · + aS

n)

SIM(Q not, DOC) = 1 − SIM(Q, DOC)

5 Search

165

“A1 OR B0” should return the set of items that contain A as a term
“A1 AND B0” will also return the set of items that contain term A
“A1 NOT B0” also return set A.

This suggests that as the weight for term B goes from 0.0 to 1.0 the resultant set
changes from the set of all items that contains term A to the set normally generated
from the Boolean operation. The process can be visualized by use of the VENN dia-
grams shown in Fig.Â€5.8. Under the strict interpretation “A1 OR B1” would include
all items that are in all the areas in the VENN diagram. “A1 OR B0” would be only
those items in A (i.e., the white and black dotted areas) which is everything except
items in “B NOT A” (the grey area.) Thus as the value of query term B goes from
0.0 to 1.0, items from “B NOT A” are proportionally added until at 1.0 all of the
items will be added.

Similarly, under the strict interpretation “A1 AND B1” would include all of the
items that are in the black dotted area. “A1 AND B0” will be all of the items in A as
described above. Thus, as the value of query term B goes from 1.0 to 0.0 items will
be proportionally added from “A NOT B” (white area) until at 0.0 all of the items
will be added.

Finally, the strict interpretation of “A1 NOT B1” is grey area while “A1 NOT B0”
is all of A. Thus as the value of B goes from 0.0 to 1.0, items are proportionally
added from “A â•›AND B” (black dotted area) until at 1.0 all of the items have been
added.

The final issue is the determination of which items are to be added or dropped in
interpreting the weighted values. Inspecting the items in the totally strict case (both
terms having weight 1.0) and the case where the value is 0.0 there is a set of items
that are in both solutions (invariant set). In adding items they should be the items
most similar to the set of items that does not change in either situation. In dropping
items, they should be the items least similar to those that are in both situations.

Thus the algorithm follows the following steps:

1.	 Determine the items that are satisfied by applying strict interpretation of the
Boolean functions

2.	 Determine the items that are part of the set that is invariant

5.7 Weighted Searches of Boolean Systems

Fig. 5.8â†œæ¸€ VENN diagram

166

3.	 Determine the Centroid of the invariant set
4.	 Determine the number of items to be added or deleted by multiplying the term

weight times the number of items outside of the invariant set and rounding up to
the nearest whole number

5.	 Determine the similarity between items outside of the invariant set and the
Centroid

6.	 Select the items to be included or removed from the final set

FigureÂ€5.9 gives an example of solving a weighted Boolean query.
QUERY1 ends up with a set containing all of the items that contain the term

“Computer” and two items from the set “computer” NOT “program.” The symbol
� � stands for rounding up to the next integer. In QUERY2 the final set contains all of
set “cost” AND “sale” plus 0.25 of the set of “sale” NOT “cost.” Using the simple
similarity measure:

leads to the following set of similarity values based upon the centroids:

CENTROID (Q1)Â€=Â€(D8)Â€=Â€(4, 2, 0, 2)
CENTROID (Q2)Â€=Â€(D3, D4, D5)Â€=Â€1/3(4Â€+Â€0Â€+Â€0, 0Â€+Â€6Â€+Â€4, 2Â€+Â€4Â€+Â€6, 4Â€+Â€6Â€+Â€4)
SIM(CENTROIDQ1, D1)Â€=Â€(0Â€+Â€8Â€+Â€0Â€+Â€16)Â€=Â€24
SIM(CENTROIDQ1, D2)Â€=Â€(0Â€+Â€4Â€+Â€0Â€+Â€0)Â€=Â€4
SIM(CENTROIDQ1, D3)Â€=Â€(16Â€+Â€0Â€+Â€0Â€+Â€8)Â€=Â€24
SIM(CENTROIDQ1, D4)Â€=Â€(0Â€+Â€12Â€+Â€0Â€+Â€12)Â€=Â€24
SIM(CENTROIDQ1, D5)Â€=Â€(0Â€+Â€8Â€+Â€0Â€+Â€8)Â€=Â€16
SIM(CENTROIDQ1, D6)Â€=Â€(24Â€+Â€0Â€+Â€0Â€+Â€0)Â€=Â€24

SIM(Itemi, Itemj) =
∑

(Termi,k)(Termj,k)

Fig. 5.9â†œæ¸€ Example of
weighted boolean query D1

D2
D3
D4
D5
D6
D7
D8

cost
0
0
2
4
6
4
0
0

sale
8
0
4
6
4
0
0
2

 Q1 = QUERY1 = Computer1.0 OR program.333

 Q2 = QUERY2 = cost.75 AND sale1.0

Q1strict interpretation = (D1, D2, D3, D4, D5, D6, D8)
Q2strict interpretation = (D3, D4, D5)

Q1invariant = (D8)
Q2invariant = (D3, D4, D5)

Q1optional = (D1, D2, D3, D4, D5, D6) thus .333 times 6 items = 2 items
Q2optional = (D1, D8) which means (1 – .75) times 2 items = 1 item

0
0
4
0
0
6
0
4

Computer
4
2
0
6
4
0
0
2

program

5 Search

167

SIM(CENTROIDQ2, D1)Â€=Â€1/3(0Â€+Â€40Â€+Â€0Â€+Â€112)Â€=Â€1/3(152)
SIM(CENTROIDQ2, D8)Â€=Â€1/3(16Â€+Â€20Â€+Â€0Â€+Â€28)Â€=Â€1/3(64)

For Q1, two additional items are added to the invariant set (D8) ∪ (D1, D3),
by choosing the lowest number items because of the tie at 24, giving the an-
swer of (D1, D3, D8). For Q2, one additional item is added to the invariant set
(D3, D4, D5) ∪ (D1) giving the answer (D1, D3, D4, D5).

5.8  �Multimedia Searching

As described in Chap.Â€4 there are many approaches to indexing multimedia items
that are based upon how the semantics from the multimedia is transformed into a
searchable index. Always associated with a multimedia item is some level of tex-
tual information that can be structured and unstructured. The structured metadata
could be the file name of the item that quite describes what it is about. When audio
and video is being index the source of audio or video also holds potential to help
in filtering what the user is looking for (e.g., CNN News versus Cartoon Network).
When the multimedia item is found as part of a textual item as a reference or attach-
ment, then most systems use the surrounding text and hypertext link anchor text as
additional descriptive unstructured metadata for what the multimedia item is about.
When the multimedia item is video there are the possibilities of closed captioning
that may add more information on the audio track of a video. All of the above meta-
data is useful in allowing a user to enter a textual query specifying what they are
interested in and determining which multimedia items to return.

The more complex challenge is to index the multimedia item via determining
semantically important information in it. Audio items are the easiest modality to
index because in most cases it’s the speech within the audio that is of interest to
the user. For the cases where it’s the actual audio it is typically to identify specific
songs in music and thus the indexing algorithms can be focused on that goal. Since
the speech is the most important aspect, once a mapping from the analog audio to
specific words is accomplished all of the techniques associated with text search are
now applicable.

The most difficult modality is images or video which is just a number of images
shown 24–30 times per second. The indexing of the image is very difficult to extract
the semantics and recognize the semantics that needs to be searchable. The easiest
approach is not to recognize specific objects in the image but focus on an aggregate
measure of the characteristics of the pixels (e.g. color) over a grouping of pixels.
That representation will be a set of values in a vector that represents that image or
a portion of the image. The next layer of extraction detects categories of images
and backgrounds. This is done by specific algorithms focused on detecting shapes
(e.g., lines, oval, and rectangles) along with their combinations into semantically
meaningful image definitions. Thus an image that is of a map could be estimated
by an image that has a lot of lines in it. An image of a crowd of people would be an

5.8 Multimedia Searching

168

image with a large number of small ovals in it (people’s faces). Pornography has
frequently been defined as image with a few number of ovals with specific colors
in the ovals. The most complex searching for images/video images is when the
user provides an example of what they are looking for and the system searches for
similar images. The users search image is decomposed into whatever the indexing
base is for a specific search system and then those components are used to search
the vectors representing the indexed items. There are no universal generic algo-
rithms that define how a similarity measure is created between the search vector
and the vectors representing the indexed items. The specific algorithms tend to be
heuristically optimized for the proprietary indexing scheme of the images. But the
end result is a ranked list of references to the items. Since the index representation
is typically a vector, a distance measure of some sort between the users query in
vector form and the items in vector form is the basis behind the search along with
the system specific heuristics.

5.9  �Summary

Creating the index to an Information Retrieval System defines the searchable con-
cepts that represent the items received by a system. The user search process is the
mechanism that correlates the user’s search statement with the index via a similarity
function. There are a number of techniques to define the indexes to an item. It is
typically more efficient to incur system overhead at index creation time than search
time. An item is processed once at index time, but there will be millions of searches
against the index. Also, the user is directly affected by the response time of a search
but, in general, is not aware of how long it takes from receipt of an item to its being
available in the index. The selection and implementation of similarity algorithms
for search must be optimized for performance and scaleable to accommodate very
large databases.

It is typical during search parsing that the user’s initial search statement is ex-
panded via a thesaurus or semantic net to account for vocabulary differences be-
tween the user and the authors. But excessive expansion takes significantly more
processing and increases the response time due to the number of terms that have to
be processed. Most systems have default limits on the number of new terms added
to a search statement. ChapterÂ€7 describes some of the basic algorithms that can be
used as similarity measures. These algorithms are still in a state of evolution and are
continually being modified to improve their performance. The search algorithms in
a probabilistic indexing and search system are much more complex than the simi-
larity measures described. For systems based upon natural language processing,
once the initial similarity comparisons are completed, there is an additional search
processing step to make use of discourse level information, adding additional preci-
sion to the final results.

Relevance feedback is an alternative to thesaurus expansion to assist the user in
creating a search statement that will return the needed information. Thesaurus and

5 Search

169

semantic net expansions are dependent upon the user’s ability to use the appropri-
ate vocabulary in the search statement that represents the required information. If
the user selects poor terms, they will be expanded with many more poor terms.
Thesaurus expansion does not introduce new concepts that are relevant to the users
information need, it just expands the description of existing concepts. Relevance
feedback starts with the text of an item that the user has identified as meeting his
information need; incorporating it into a revised search statement. The vocabulary
in the relevant item text has the potential for introducing new concepts that better
reflect the user’s information need along with adding additional terms related to
existing search terms and adjusting the weights (importance) of existing terms.

Selective Dissemination of Information search is different from searches against
the persistent information database in that it is assumed there is no information from
a large corpus available to determine parameters in determining a temporary index
for the item to use in the similarity comparison process (e.g., inverse document fre-
quency factors.) An aspect of dissemination systems that helps in the search process
is the tendency for the profiles to have significantly more terms than ad hoc queries.
The additional information helps to identify relevant items and increase the precision
of the search process. Relevance feedback can also be used with profiles with some
constraints. Relevance feedback used with ad hoc queries against an existing database
tends to move the terminology defining the search concepts towards the information
need of the user that is available in the current database. Concepts in the initial search
statement will eventually lose importance in the revised queries if they are not in the
database. The goal of profiles is to define the coverage of concepts that the user cares
about if they are ever found in new items. Relevance feedback applied to profiles
aides the user by enhancing the search profile with new terminology about areas of in-
terest. But, even though a concept has not been found in any items received, that area
may still be of critical importance to the user if it ever is found in any new items. Thus
weighting of original terms takes on added significance over the ad hoc situation.

Searching the Internet for information has brought into focus the deficiencies
in the search algorithms developed to date. The ad hoc queries are extremely short
(usually less than three terms) and most users do not know how to use the advanced
features associated with most search sites. Until recently research had focused on a
larger more sophisticated query. With the Internet being the largest most available
information system supporting information retrieval search, algorithms are in the
process of being modified to account for the lack of information provided by the us-
ers in their queries. Intelligent Agents are being proposed as a potential mechanism
to assist users in locating the information they require. The requirements for au-
tonomy and the need for reasoning in the agents will lead to the merging of informa-
tion retrieval algorithms and the learning processes associated with Artificial Intel-
ligence. The use of hyperlinks is adding another level of ambiguity in what should
be defined as an item. When similarity measures are being applied to identify the
relevance weight, how much of the hyperlinked information should be considered
part of the item? The impacts on the definition of information retrieval boundaries
are just starting to be analyzed while experimental products are being developed in
Web years and immediately being made available.

5.9 Summary

170

5.10  �Exercises

1.	 Discuss the sources of potential errors in the final set of search terms from when
a user first identifies a need for information to the creation of the final query.
(HINT: you may also want to use information from Chap.Â€1)

2.	 Why are there three levels of binding in the creation of a search?
3.	 Why does the numerator remain basically the same in all of the similarity mea-

sures.? Discuss other possible approaches and their impact on the formulas.
4.	 Given the following set of retrieved documents with relevance judgments

a.	 Calculate a new query using a factor of 1/2 for positive feedback and 1/4 for
negative feedback

b.	 Determine which documents would be retrieved by the original and by the
new query

c.	 Discuss the differences in documents retrieved by the original versus the new
query.

5.	 Is the use of positive feedback always better than using negative feedback to
improve a query?

6.	 Given the following documents, determine which documents will be returned by
the query (A1.0 and B0.5)

7.	 How would you define an item on the Internet with respect to a search statement
and similarity function?

TERM T1 T2 T3 T4 T5 T6

QUERY 0 0 4 2 6 0
REL D1 0 4 4 0 2 0
REL D2 0 2 6 0 1 0
NOT REL D3 6 0 0 6 1 0
NOT REL D4 4 0 1 2 0 10

TERM A B C D

D1 2 0 2 1
D2 0 2 0 3
D3 3 2 1 0
D4 2 1 2 0
D5 1 0 3 3
D6 3 0 1 2
D7 1 4 0 4
D8 4 0 0 3
D9 0 4 1 2
D10 0 2 0 0
D11 2 0 6 2
D12 4 0 0 3

5 Search

171

6.1  �Introduction to Clustering

ChapterÂ€5 introduced indexing whose goal is to represent the semantics of an item.
In all of the techniques discussed in Chap.Â€ 5, our information database can be
viewed as being composed of a number of independent items indexed by a series
of index terms. In addition there are relationships that can be found between the
items. These relationships can be detected by using clustering techniques. They fall
into two classes: clustering index terms to create a statistical thesaurus and cluster-
ing items to create document clusters. In the first case the results of the clustering
can be used to increase recall by expanding searches with related terms. Document
clustering can be used to determine similar documents. The clustering process is
not precise and care must be taken on use of clustering techniques to minimize the
negative impact misuse can have. These issues are discussed in Sect.Â€6.1 along with
some general guidelines of clustering.

SectionÂ€6.2 discusses a variety of specific techniques to create thesaurus clus-
ters. The techniques can be categorized as those that use the complete database to
perform the clustering and those that start with some initial structure. SectionÂ€6.3
looks at the same techniques as they apply to item (document) clustering. A class of
clustering algorithms creates a hierarchical output. The hierarchy of clusters usually
reflects more abstract concepts in the higher levels and more detailed specific items
in the lower levels. Hierarchical clustering and its associated performance improve-
ments are described in Sect.Â€6.4.

The concept of clustering has been around as long as there have been libraries.
One of the first uses of clustering was an attempt to cluster items discussing the
same subject. The goal of the clustering was to assist in the location of information.
This eventually led to indexing schemes used in organization of items in libraries
and standards associated with use of electronic indexes. One of the first uses for
clustering of words was with the generation of thesauri. Thesaurus, coming from
the Latin word meaning “treasure,” is similar to a dictionary in that it stores words.
Instead of definitions, it provides the synonyms and antonyms for the words. Its
primary purpose is to assist authors in selection of vocabulary. The goal of cluster-
ing is to provide a grouping of similar objects (e.g., terms or items) into a “class”

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_6, ©Â€Springer Science+Business Media, LLC 2011

Chapter 6
Document and Term Clustering

172

under a more general title. The term class is frequently used as a synonym for the
term cluster. They are used interchangeably in this chapter. The process of cluster-
ing follows the following steps:

1.	 Define the domain for the clustering effort. If a thesaurus is being created, this
equates to determining the scope of the thesaurus such as “medical terms.” If
document clustering is being performed, it is determination of the set of items
to be clustered. This can be a subset of the database or the complete database.
Defining the domain for the clustering identifies those objects to be used in the
clustering process and reduce the potential for erroneous data that could induce
errors in the clustering process.

2.	 Once the domain is determined, determine the attributes of the objects to be
clustered. If a thesaurus is being generated, determine the specific words in the
objects to be used in the clustering process. Similarly, if documents are being
clustered, the clustering process may focus on specific zones within the items
(e.g., Title and abstract only, main body of the item but not the references, etc.)
that are to be used to determine similarity. The objective, as with the first step
(1.) is to reduce erroneous associations.

3.	 Determine the strength of the relationships between the attributes whose co-
occurrence in objects suggest those objects should be in the same class. For
thesauri this is determining which words are synonyms and the strength of their
term relationships. For documents it may be defining a similarity function based
upon word co-occurrences that determine the similarity between two items.

4.	 At this point, the total set of objects and the strengths of the relationships between
the objects have been determined. The final step is applying some algorithm to
determine the class(s) to which each item will be assigned.

There are guidelines (not hard constraints) on the characteristics of the classes:

•	 A well-defined semantic definition should exist for each class. There is a risk that
the name assigned to the semantic definition of the class could also be mislead-
ing. In some systems numbers are assigned to classes to reduce the misinterpre-
tation that a name attached to each class could have. A clustering of items into a
class called “computer” could mislead a user into thinking that it includes items
on main memory that may actually reside in another class called “hardware.”

•	 The size of the classes should be within the same order of magnitude. One of
the primary uses of the classes is to expand queries or expand the resultant set of
retrieved items. If a particular class contains 90% of the objects, that class is not
useful for either purpose. It also places in question the utility of the other classes
that are distributed across 10% of the remaining objects.

•	 Within a class, one object should not dominate the class. For example, assume a
thesaurus class called “computer” exists and it contains the objects (words/word
phrases) “microprocessor,” “286-processor,” “386-processor” and “pentium.” If
the term “microprocessor” is found 85% of the time and the other terms are used
5% each, there is a strong possibility that using “microprocessor” as a synonym
for “286-processor” will introduce too many errors. It may be better to place
“microprocessor” into its own class.

6 Document and Term Clustering

173

•	 Whether an object can be assigned to multiple classes or just one must be decid-
ed at creation time. This is a tradeoff based upon the specificity and partitioning
capability of the semantics of the objects. Given the ambiguity of language in
general, it is better to allow an object to be in multiple classes rather than con-
strained to one. This added flexibility comes at a cost of additional complexity in
creating and maintaining the classes.

There are additional important decisions associated with the generation of thesauri
that are not part of item clustering (Aitchison-72):

•	 Word coordination approach: specifies if phrases as well as individual terms
are to be clustered (see discussion on precoordination and postcoordination in
Chap.Â€3).

•	 Word relationships: when the generation of a thesaurus includes a human inter-
face (versus being totally automated), a variety of relationships between words
are possible. Aitchison and Gilchrist (Aitchison-72) specified three types of rela-
tionships: equivalence, hierarchical and non-hierarchical. Equivalence relation-
ships are the most common and represent synonyms. The definition of a syn-
onym allows for some discretion in the thesaurus creation, allowing for terms
that have significant overlap but differences. Thus the terms photograph and
print may be defined as synonyms even though prints also include lithography.
The definition can even be expanded to include words that have the same “role”
but not necessarily the same meaning. Thus the words “genius” and “moron”
may be synonyms in a class called “intellectual capability.” A very common
technique is hierarchical relationships where the class name is a general term and
the entries are specific examples of the general term. The previous example of
“computer” class name and “microprocessor,” “pentium,” etc. is an example of
this case. Non-hierarchical relationships cover other types of relationships such
as “object”-“attribute” that would contain “employee” and “job title.”

â•fi– Another word relationship scheme (Wang-85) classified relationships as
Parts-Wholes, Collocation, Paradigmatic, Taxonomy and Synonymy, and
Antonymy. The only two of these classes that require further amplification are
collocation and paradigmatic. Collocation is a statistical measure that relates
words that co-occur in the same proximity (sentence, phrase, paragraph).
Paradigmatic relates words with the same semantic base such as “formula”
and “equation.”

â•fi– In the expansion to semantic networks other relationships are included such
as contrasted words, child-of (sphere is a child-of geometric volume), parent-
of, part-of (foundation is part of a building), and contains part-of (bicycle
contains parts-of wheel, handlebars) (RetrievalWare-95).

•	 Homograph resolution: a homograph is a word that has multiple, completely
different meanings. For example, the term “field” could mean an electronic
field, a field of grass, etc. It is difficult to eliminate homographs by supplying
a unique meaning for every homograph (limiting the thesaurus domain helps).
Typically the system allows for homographs and requires that the user interact

6.1 Introduction to Clustering

174

with the system to select the desired meaning. It is possible to determine the
correct meaning of the homograph when a user enters multiple search terms by
analyzing the other terms entered (hay, crops, and field suggest the agricultural
meaning for field).

•	 Vocabulary constraints: this includes guidelines on the normalization and speci-
ficity of the vocabulary. Normalization may constrain the thesaurus to stems
versus complete words. Specificity may eliminate specific words or use general
terms for class identifiers. The previous discussion in Chap.Â€3 on these topics
applies to their use in the thesauri.

As is evident in these guidelines, clustering is as much an arcane art as it is a sci-
ence. Good clustering of terms or items assists the user by improving recall. But
typically an increase in recall has an associated decrease in precision. Automatic
clustering has the imprecision of information retrieval algorithms, compounding
the natural ambiguities that come from language. Care must be taken to ensure
that the increases in recall are not associated with such decreases in precision as
to make the human processing (reading) of the retrieved items unmanageable. The
key to successful clustering lies in steps 3. and 4., selection of a good measure of
similarity and selection of a good algorithm for placing items in the same class.
When hierarchical item clustering is used, there is a possibility of a decrease in
recall discussed in Sect.Â€6.4. The only solution to this problem is to make minimal
use of the hierarchy.

6.2  �Thesaurus Generation

Manual generation of clusters usually focuses on generating a thesaurus (i.e., clus-
tering terms versus items) and has been used for hundreds of years. As items be-
came available in electronic form, automated term statistical clustering techniques
became available. Automatically generated thesauri contain classes that reflect the
use of words in the corpora. The classes do not naturally have a name, but are
just groups of statistically similar terms. The optimum technique for generating the
classes requires intensive computation. Other techniques starting with existing clus-
ters can reduce the computations required but may not produce optimum classes.

There are three basic methods for generation of a thesaurus; hand crafted, co-
occurrence, and header-modifier based. Using manually made thesauri only helps in
query expansion if the thesauri are domain specific for the domain being searched.
General thesaurus (e.g., WordNet) does not help as much because of the many dif-
ferent meanings for the same word (Voorhees-93, Voorhees-94). Techniques for co-
occurrence creation of thesauri are described in detail below. In header-modifier
based thesauri term relationships are found based upon linguistic relationships.
Words appearing in similar grammatical contexts are assumed to be similar (Hin-
dle-90, Greffenstette-94, Jing-94, Ruge-92). The linguistic parsing of the docu-
ment discovers the following syntactical structures: Subject-Verb, Verb-Object,

6 Document and Term Clustering

175

Adjective-Noun, and Noun-Noun. Each noun has a set of verbs, adjectives and
nouns that it co-occurs with, and a mutual information value is calculated for each
using typically a log function (see Mandala-99). Then a final similarity between
words is calculated using the mutual information to classify the terms.

6.2.1  �Manual Clustering

The manual clustering process follows the steps described in Sect.Â€6.1 in the gen-
eration of a thesaurus. The first step is to determine the domain for the clustering.
Defining the domain assists in reducing ambiguities caused by homographs and
helps focus the creator. Usually existing thesauri, concordances from items that
cover the domain and dictionaries are used as starting points for generating the
set of potential words to be included in the new thesaurus. A concordance is an
alphabetical listing of words from a set of items along with their frequency of oc-
currence and references of which items in which they are found. The art of manual
thesaurus construction resides in the selection of the set of words to be included.
Care is taken to not include words that are unrelated to the domain of the thesaurus
or those that have very high frequency of occurrence and thus hold no information
value (e.g., the term Computer in a thesaurus focused on data processing machines).
If a concordance is used, other tools such as KWOC, KWIC or KWAC may help in
determining useful words. A Key Word Out of Context (KWOC) is another name
for a concordance. Key Word In Context (KWIC) displays a possible term in its
phrase context. It is structured to identify easily the location of the term under con-
sideration in the sentence. Key Word And Context (KWAC) displays the keywords
followed by their context. FigureÂ€ 6.1 shows the various displays for “computer
design contains memory chips” (NOTE: the phrase is assumed to be from doc4;
the other frequency and document ids for KWOC were created for this example.)
In the Fig.Â€6.1 the character “/” is used in KWIC to indicate the end of the phrase.

6.2 Thesaurus Generation

Fig. 6.1â†œæ¸€ Example of KWOC,
KWIC and KWAC

KWOC
TERM FREQ
chips 2
computer 3
design 1
memory 3

KWIC
chips/ computer design contains memory
computer design contains memory chips/
design contains memory chips/ computer
memory chips/ computer design contains

KWAC
chips computer design contains memory chips
computer computer design contains memory chips
design computer design contains memory chips
memory computer design contains memory chips

doc3, doc4, doc8, doc12
doc4
doc1, doc4, doc10
doc2, doc4
ITEM Ids

176

The KWIC and KWAC are useful in determining the meaning of homographs. The
term “chips” could be wood chips or memory chips. In both the KWIC and KWAC
displays, the editor of the thesaurus can read the sentence fragment associated with
the term and determine its meaning. The KWOC does not present any information
that would help in resolving this ambiguity.

Once the terms are selected they are clustered based upon the word relationship
guidelines and the interpretation of the strength of the relationship. This is also part
of the art of manual creation of the thesaurus, using the judgment of the human
analyst. The resultant thesaurus undergoes many quality assurance reviews by ad-
ditional editors using some of the guidelines already suggested before it is finalized.

6.2.2  �Automatic Term Clustering

There are many techniques for the automatic generation of term clusters to create sta-
tistical thesauri. They all use as their basis the concept that the more frequently two
terms co-occur in the same items, the more likely they are about the same concept.
They differ by the completeness with which terms are correlated. The more complete
the correlation, the higher the time and computational overhead to create the clusters.
The most complete process computes the strength of the relationships between all
combinations of the “n” unique words with an overhead of O(n2). Other techniques
start with an arbitrary set of clusters and iterate on the assignment of terms to these
clusters. The simplest case employs one pass of the data in creation of the clusters.
When the number of clusters created is very large, the initial clusters may be used as
a starting point to generate more abstract clusters creating a hierarchy.

The steps described in Sect.Â€6.1 apply to the automatic generation of thesauri.
The basis for automatic generation of a thesaurus is a set of items that represents the
vocabulary to be included in the thesaurus. Selection of this set of items is the first
step of determining the domain for the thesaurus. The processing tokens (words) in
the set of items are the attributes to be used to create the clusters. Implementation
of the other steps differs based upon the algorithms being applied. In the following
sections a term is usually restricted to be included in only one class. It is also pos-
sible to use a threshold instead of choosing the highest value, allowing a term to be
assigned to all of the classes that it could be included in above the threshold. The
automated method of clustering documents is based upon the polythetic clustering
(Rijsbergen-79) where each cluster is defined by a set of words and phrases. Inclu-
sion of an item in a cluster is based upon the similarity of the item’s words and
phrases to those of other items in the cluster.

6.2.2.1  �Complete Term Relation Method

In the complete term relation method, the similarity between every term pair is
calculated as a basis for determining the clusters. The easiest way to understand

6 Document and Term Clustering

177

this approach is to consider the vector model. The vector model is represented by a
matrix where the rows are individual items and the columns are the unique words
(processing tokens) in the items. The values in the matrix represent how strongly
that particular word represents concepts in the item. FigureÂ€6.2 provides an example
of a database with 5 items and 8 terms.

To determine the relationship between terms, a similarity measure is required.
The measure calculates the similarity between two terms. In Chap.Â€7 a number of
similarity measures are presented. The similarity measure is not critical in under-
standing the methodology so the following simple measure is used:

where “k” is summed across the set of all items. In effect the formula takes the two
columns of the two terms being analyzed, multiplying and accumulating the values
in each row. The results can be placed in a resultant “m” by “m” matrix, called a
Term-Term Matrix (Salton-83), where “m” is the number of columns (terms) in the
original matrix. This simple formula is reflexive so that the matrix that is generated
is symmetric. Other similarity formulas could produce a non-symmetric matrix.
Using the data in Fig.Â€6.2, the Term-Term matrix produced is shown in Fig.Â€6.3.
There are no values on the diagonal since that represents the auto-correlation of a
word to itself. The next step is to select a threshold that determines if two terms are
considered similar enough to each other to be in the same class. In this example, the
threshold value of 10 is used. Thus two terms are considered similar if the similarity
value between them is 10 or greater. This produces a new binary matrix called the

SIM(Termi, Termj) =
∑ (

Termk,i
) (

Termk,j
)

Fig. 6.2â†œæ¸€ Vector example

Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8
Item 1 0 4 0 0 0 2 1 3
Item 2 3 1 4 3 1 2 0 1
Item 3 3 0 0 0 3 0 3 0
Item 4 0 1 0 3 0 0 2 0
Item 5 2 2 2 3 1 4 0 2

6.2 Thesaurus Generation

Fig. 6.3â†œæ¸€ Term-Term matrix

Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8
Term 1 7 16 15 14 14 9 7
Term 2 7 8 12 3 18 6 17
Term 3 16 8 18 6 16 0 8
Term 4 15 12 18 6 18 6 9
Term 5 14 3 6 6 6 9 3
Term 6 14 18 16 18 6 2 16
Term 7 9 6 0 6 9 2 3
Term 8 7 17 8 9 3 16 3

178

Term Relationship matrix (Fig.Â€6.4) that defines which terms are similar. A one in
the matrix indicates that the terms specified by the column and the row are similar
enough to be in the same class. Term 7 demonstrates that a term may exist on its
own with no other similar terms identified. In any of the clustering processes de-
scribed below this term will always migrate to a class by itself.

The final step in creating clusters is to determine when two objects (words) are in
the same cluster. There are many different algorithms available. The following algo-
rithms are the most common: cliques, single link, stars and connected components.

Cliques require all items in a cluster to be within the threshold of all other items.
The methodology to create the clusters using cliques is:

0.	 Let iÂ€=Â€1
1.	 Select termi and place it in a new class
2.	 Start with termk where rÂ€=Â€kÂ€=Â€iÂ€+Â€1
3.	 Validate if termk is within the threshold of all terms within the current class
4.	 If not, let kÂ€=Â€kÂ€+Â€1
5.	 If kÂ€>Â€m (number of words)

then rÂ€=Â€rÂ€+Â€1
if rÂ€=Â€m then go to 6 else

kÂ€=Â€r
create a new class with termi in it
go to 3

else go to 3

6.	 If current class only has termi in it and there are other classes
with termi in them

then delete current class
else iÂ€=Â€iÂ€+Â€1

7.	 If iÂ€=Â€mÂ€+Â€1 then go to 8
	 else go to 1

8.	 Eliminate any classes that duplicate or are subsets of other classes.

Applying the algorithm to Fig.Â€6.4, the following classes are created:

Class 1 (Term 1, Term 3, Term 4, Term 6)
Class 2 (Term 1, Term 5)

Fig. 6.4â†œæ¸€ Term relationship matrix

Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8
Term 1 0 1 1 1 1 0 0
Term 2 0 0 1 0 1 0 1
Term 3 1 0 1 0 1 0 0
Term 4 1 1 1 0 1 0 0
Term 5 1 0 0 0 0 0 0
Term 6 1 1 1 1 0 0 1
Term 7 0 0 0 0 0 0 0
Term 8 0 1 0 0 0 1 0

6 Document and Term Clustering

179

Class 3 (Term 2, Term 4, Term 6)
Class 4 (Term 2, Term 6, Term 8)
Class 5 (Term 7)

Notice that Term 1, Term 4 and Term 6 are in more than one class. A characteristic
of this approach is that terms can be found in multiple classes.

In single link clustering the strong constraint that every term in a class is similar
to every other term is relaxed. The rule to generate single link clusters is that any
term that is similar to any term in the cluster can be added to the cluster. It is im-
possible for a term to be in two different clusters. This in effect partitions the set of
terms into the clusters. The algorithm is:

1.	 Select a term that is not in a class and place it in a new class
2.	 Place in that class all other terms that are related to it
3.	 For each term entered into the class, perform step 2
4.	 When no new terms can be identified in step 2, go to step 1.

Applying the algorithm for creating clusters using single link to the Term Relation-
ship Matrix, Fig.Â€6.4, the following classes are created:

Class 1 (Term 1, Term 3, Term 4, Term 5, Term 6, Term 2, Term 8)
Class 2 (Term 7)

There are many other conditions that can be placed on the selection of terms to be
clustered. The Star technique selects a term and then places in the class all terms
that are related to that term (i.e., in effect a star with the selected term as the core).
Terms not yet in classes are selected as new seeds until all terms are assigned to a
class. There are many different classes that can be created using the Star technique.
If we always choose as the starting point for a class the lowest numbered term not
already in a class, using Fig.Â€6.4, the following classes are created:

Class 1 (Term 1, Term 3, Term 4, Term 5, Term 6)
Class 2 (Term 2, Term 4, Term 8, Term 6)
Class 3 (Term 7)

This technique allows terms to be in multiple clusters (e.g., Term 4). This could be
eliminated by expanding the constraints to exclude any term that has already been
selected for a previous cluster.

The String technique starts with a term and includes in the class one additional
term that is similar to the term selected and not already in a class. The new term is
then used as the new node and the process is repeated until no new terms can be
added because the term being analyzed does not have another term related to it or
the terms related to it are already in the class. A new class is started with any term
not currently in any existing class. Using the additional guidelines to select the low-
est number term similar to the current term and not to select any term already in an
existing class produces the following classes:

Class 1 (Term 1, Term 3, Term 4, Term 2, Term 6, Term 8)
Class 2 (Term 5)
Class 3 (Term 7)

6.2 Thesaurus Generation

180

A technique to understand these different algorithms for generating classes is based
upon a network diagram of the terms. Each term is considered a node and arcs be-
tween the nodes indicate terms that are similar. A network diagram for Fig.Â€6.4 is
given in Fig.Â€6.5. To determine cliques, sub-networks are identified where all of the
items are connected by arcs. From this diagram it is obvious that Term 7 (T7) is in a
class by itself and Term 5 (T5) is in a class with Term 1 (T1). Other common struc-
tures to look for are triangles and four sided polygons with diagonals. To find all
classes for an item, it is necessary to find all subnetworks, where each subnetwork
has the maximum number of nodes, that the term is contained. For Term 1 (T1), it is
the subnetwork T1, T3, T4, and T6. Term 2 (T2) has two subnetworks: T2, T4, T6
and the subnetwork T2, T6, T8. The network diagram provides a simple visual tool
when there are a small number of nodes to identify classes using any of the other
techniques.

The clique technique produces classes that have the strongest relationships be-
tween all of the words in the class. This suggests that the class is more likely to be
describing a particular concept. The clique algorithm produces more classes than
the other techniques because the requirement for all terms to be similar to all other
terms will reduce the number of terms in a class. This will require more classes to
include all the terms. The single link technique partitions the terms into classes. It
produces the fewest number of classes and the weakest relationship between terms
(Salton-72, Jones-71, Salton-75). It is possible using the single link algorithm that

Fig. 6.5â†œæ¸€ Network diagram of term similarities

T1

T4

T6 T7

T8

T5

T3

T2

6 Document and Term Clustering

181

two terms that have a similarity value of zero will be in the same class. Classes will
not be associated with a concept but cover a diversity of concepts. The other tech-
niques lie between these two extremes.

The selection of the technique is also governed by the density of the term rela-
tionship matrix and objectives of the thesaurus. When the Term Relationship Matrix
is sparse (i.e., contains a few number of ones), then the constraint dependencies be-
tween terms need to be relaxed such as in single link to create classes with a reason-
able number of items. If the matrix is dense (i.e., lots of ones implying relationships
between many terms), then the tighter constraints of the clique are needed so the
number of items in a class does not become too large.

Cliques provide the highest precision when the statistical thesaurus is used for
query term expansion. The single link algorithm maximizes recall but can cause
selection of many non-relevant items. The single link assignment process has the
least overhead in assignment of terms to classes, requiring O(n2) comparisons
(Croft-77)

6.2.2.2  �Clustering Using Existing Clusters

An alternative methodology for creating clusters is to start with a set of existing
clusters. This is called K-means algorithm. This methodology reduces the number
of similarity calculations required to determine the clusters. The initial assignment
of terms to the clusters is revised by revalidating every term assignment to a cluster.
The process stops when minimal movement between clusters is detected. To mini-
mize calculations, centroids are calculated for each cluster. A centroid is viewed in
Physics as the center of mass of a set of objects. In the context of vectors, it will
equate to the average of all of the vectors in a cluster.

One way to understand this process is to view the centroids of the clusters as
another point in the N-dimensional space where N is the number of items. The
first assignment of terms to clusters produces centroids that are not related to the
final clustering of terms. The similarity between all existing terms and the cen-
troids of the clusters can be calculated. The term is reallocated to the cluster(s)
that has the highest similarity. This process is iterated until it stabilizes. Calcula-
tions using this process are of the order O(n). The initial assignment of terms to
clusters is not critical in that the iterative process changes the assignment of terms
to clusters.

A graphical representation of terms and centroids illustrates how the classes
move after the initial assignment. The solid black box represents the centroid for
each of the classes. In Fig.Â€6.6b the centroids for the first three arbitrary classes are
shown. The ovals in Fig.Â€6.6b show the ideal cluster assignments for each term.
During the next iteration the similarity between every term and the clusters is per-
formed reassigning terms as needed. The resulting new centroid for the new clus-
ters are again shown as black squares in Fig.Â€6.6a. The new centroids are not yet
perfectly associated with the ideal clusters, but they are much closer. The process
continues until it stabilizes.

6.2 Thesaurus Generation

182

The following example of this technique uses Fig.Â€ 6.2 as our weighted envi-
ronment, and assumes we arbitrarily placed Class 1â•›=â•›(Term 1 and Term 2), Class
2â•›=â•›(Term 3 and Term 4) and Class 3â•›=â•›(Term 5 and Term 6). This would produce the
following centroids for each class:

Class 1â•›=â•› (0â•›+â•›4)/2, (3â•›+â•›1)/2, (3â•›+â•›0)/2, (0â•›+â•›1)/2, (2â•›+â•›2)/2
	 =â•›4/2, 4/2, 3/2, 1/2, 4/2
Class 2â•›=â•›0/2, 7/2, 0/2, 3/2, 5/2
Class 3â•›=â•›2/2, 3/2, 3/2, 0/2, 5/2

Each value in the centroid is the average of the weights of the terms in the cluster
for each item in the database. For example in Class 1 the first value is calculated
by averaging the weights of Term 1 and Term 2 in Item 1. For Class 2 and 3 the nu-
merator is already the sum of the weights of each term. For the next step, calculating
similarity values, it is often easier to leave the values in fraction form.

Applying the simple similarity measure defined in Sect.Â€6.2.2.1 between each of
the 8 terms and 3 centroids just calculated comes up with the following assignment
of similarity weights and new assignment of terms to classes in the row Assign
shown in Fig. Â€6.7.

Fig. 6.7â†œæ¸€ Iterated class assignments

Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8
Class 1 29/2 29/2 24/2 27/2 17/2 32/2 15/2 24/2
Class 2 31/2 20/2 38/2 45/2 12/2 34/2 6/2 17/2
Class 3 28/2 21/2 22/2 24/2 17/2 30/2 11/2 19/2

Assign Class 2 Class 1 Class 2 Class 2 Class 3 Class 2 Class 1 Class 1

6 Document and Term Clustering

Fig. 6.6â†œæ¸€ a Centroids after
reassigning terms. b Initial
centroids for clusters

b

a

183

In the case of Term 5, where there is tie for the highest similarity, either class
could be assigned. One technique for breaking ties is to look at the similarity
weights of the other items in the class and assign it to the class that has the most
similar weights. The majority of terms in Class 1 have weights in the high 20’s/2,
thus Term 5 was assigned to Class 3. Term 7 is assigned to Class 1 even though
its similarity weights are not in alignment with the other terms in that class.
FigureÂ€6.8 shows the new centroids and results of similarity comparisons for the
next iteration.

Class 1â•›=â•›8/3, 2/3, 3/3, 3/3, 4/3
Class 2â•›=â•›2/4, 12/4, 3/4, 3/4, 11/4
Class 3â•›=â•›0/1, 1/1, 3/1, 0/1, 1/1

In this iteration of the process, the only change is Term 7 moves from Class 1 to
Class 3. This is reasonable, given it was not that strongly related to the other terms
in Class 1.

Although the process requires fewer calculations than the complete term rela-
tionship method, it has inherent limitations. The primary problem is that the number
of classes is defined at the start of the process and cannot grow. It is possible for
there to be fewer classes at the end of the process. Since all terms must be assigned
to a class, it forces terms to be allocated to classes, even if their similarity to the
class is very weak compared to other terms assigned. It also does not guarantee to
get an optimal clustering solution. The example that shows the potential suboptimal
nature of this technique is to consider a two dimensional space with four items to
cluster. Consider each item located at a point on a rectangle where the height is
greater than the width. If the starting points are midpoint one the two lines connect-
ing the height then the clustering will end up with the two points on each line for
the height being clustered. This is independent of how much higher the rectangle
is versus wide. But the two points on the width would be better clusters minimiz-
ing the distance between clustered points (distance metric for evaluating how well
cluster works is discussed later in this chapter).

One technique for choosing the initial cluster points to try and keep their lo-
cations away from each other is to selects the first starting point. Then from the
remaining points select the next cluster point with probability proportional to the
square of the distance from the closest existing cluster point. This takes additional
processing initially but over the total clustering process is more likely to be faster
and yield better results than random selection.

Fig. 6.8â†œæ¸€ New centroids and cluster assignments

Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8
Class 1 23/3 45/3 16/3 27/3 15/3 36/3 23/3 34/3
Class 2 67/4 45/4 70/4 78/4 33/4 72/4 17/4 40/4
Class 3 12/1 3/1 6/1 6/1 11/1 6/1 9/1 3/1

Assign Class 2 Class 1 Class 2 Class 2 Class 3 Class 2 Class 3 Class 1

6.2 Thesaurus Generation

184

6.2.2.3  �One Pass Assignments

This technique has the minimum overhead in that only one pass of all of the terms
is used to assign terms to classes. The first term is assigned to the first class. Each
additional term is compared to the centroids of the existing classes. A threshold is
chosen. If the item is greater than the threshold, it is assigned to the class with the
highest similarity. A new centroid has to be calculated for the modified class. If
the similarity to all of the existing centroids is less than the threshold, the term is
the first item in a new class. This process continues until all items are assigned to
classes. Using the system defined in Fig.Â€6.3, with a threshold of 10 the following
classes would be generated:

Class 1â•›=â•›Term 1, Term 3, Term 4
Class 2â•›=â•›Term 2, Term 6, Term 8
Class 3â•›=â•›Term 5
Class 4â•›=â•›Term 7

NOTE: the centroid values used during the one-pass process:

Class 1 (Term 1, Term 3)â•›=â•›0, 7/2, 3/2, 0, 4/2
Class 1 (Term 1, Term 3, Term 4)â•›=â•›0, 10/3, 3/3, 3/3, 7/3
Class 2 (Term 2, Term 6)â•›=â•›6/2, 3/2, 0/2, 1/2, 6/2

Although this process has minimal computation on the order of O(n), it does not pro-
duce optimum clustered classes. The different classes can be produced if the order
in which the items are analyzed changes. Items that would have been in the same
cluster could appear in different clusters due to the averaging nature of centroids.

6.3  �Item Clustering

Clustering of items is very similar to term clustering for the generation of thesauri.
Manual item clustering is inherent in any library or filing system. In this case some-
one reads the item and determines the category or categories to which it belongs.
When physical clustering occurs, each item is usually assigned to one category. With
the advent of indexing, an item is physically stored in a primary category, but it can
be found in other categories as defined by the index terms assigned to the item.

With the advent of electronic holdings of items, it is possible to perform auto-
matic clustering of the items. The techniques described for the clustering of terms in
Sect.Â€6.2.2.1 through 6.2.2.3 also apply to item clustering. Similarity between docu-
ments is based upon two items that have terms in common versus terms with items
in common. Thus, the similarity function is performed between rows of the item
matrix. Using Fig.Â€6.2 as the set of items and their terms and similarity equation:

as k goes from 1 to 8 for the eight terms, an Item-Item matrix is created (Fig.Â€6.9).
Using a threshold of 10 produces the Item Relationship matrix shown in Fig.Â€6.10.

SIM(Itemi, Itemj) =
∑

(Termi,k)(Termj,k)

6 Document and Term Clustering

185

Using the Clique algorithm for assigning items to classes produces the following
classes based upon Fig.Â€6.10:

Class 1â•›=â•›Item 1, Item 2, Item 5
Class 2â•›=â•›Item 2, Item 3
Class 3â•›=â•›Item 2, Item 4, Item 5

Application of the single link technique produces:

Class 1â•›=â•›Item 1, Item 2, Item 5, Item 3, Item 4

All the items are in this one cluster, with Item 3 and Item 4 added because of their
similarity to Item 2. The Star technique (i.e., always selecting the lowest non-as-
signed item) produces:

Class 1â•›=â•›Item 1, Item 2, Item 5
Class 2â•›=â•›Item 3, Item 2
Class 3â•›=â•›Item 4, Item 2, Item 5

Using the String technique and stopping when all items are assigned to classes
produces the following:

Class 1â•›=â•›Item 1, Item 2, Item 3
Class 2â•›=â•›Item 4, Item 5

In the vocabulary domain homographs introduce ambiguities and erroneous hits.
In the item domain multiple topics in an item may cause similar problems. This is
especially true when the decision is made to partition the document space. Without
precoordination of semantic concepts, an item that discusses “Politics” in “Amer-
ica” and “Economics” in “Mexico” could get clustered with a class that is focused
around “Politics” in “Mexico.”

Clustering by starting with existing clusters can be performed in a manner simi-
lar to the term model. Let’s start with item 1 and item 3 in Class 1, and item 2 and
item 4 in Class 2. The centroids are:

Class 1â•›=â•›3/2, 4/2, 0/2, 0/2, 3/2, 2/2, 4/2, 3/2
Class 2â•›=â•›3/2, 2/2, 4/2, 6/2, 1/2, 2/2, 2/2, 1/2

Fig. 6.9â†œæ¸€ Item/Item matrix Item 1 Item 2 Item 3 Item 4 Item 5
Item 1 11 3 6 22
Item 2 11 12 10 36
Item 3 3 12 6 9
Item 4 6 10 6 11
Item 5 22 36 9 11

Fig. 6.10â†œæ¸€ Item relationship
matrix

Item 1 Item 2 Item 3 Item 4 Item 5
Item 1 1 0 0 1
Item 2 1 1 1 1
Item 3 0 1 0 0
Item 4 0 1 0 1
Item 5 1 1 0 1

6.3 Item Clustering

186

The results of recalculating the similarities of each item to each centroid and reas-
signing terms is shown in Fig.Â€6.11.

Finding the centroid for Class 2, which now contains four items, and recalculat-
ing the similarities does not result in reassignment for any of the items.

Instead of using words as a basis for clustering items, the Acquaintance sys-
tem uses n-grams (Damashek-95, Cohen-95). Not only does their algorithm cluster
items, but when items can be from more than one language, it will also recognize
the different languages.

6.4  �Hierarchy of Clusters

Hierarchical clustering in Information Retrieval focuses on the area of hierarchical
agglomerative clustering methods (HACM). The term agglomerative means collect-
ing in a mass. When applied to clustering, the goal is to create a hierarchy of clusters
where the higher level clusters represent the contents of the lower level clusters.
There are two approaches to create the hierarchy of clusters. In one approach you
start at the bottom level of items and continually combine them in clusters and com-
bine the clusters into higher level of clusters. This is usually referred to as bottom up
hierarchical clustering. Divisive is the term applied to starting with a single cluster
and breaking it down into smaller clusters. This is referred to as top down hierarchi-
cal clustering. The objectives of creating a hierarchy of clusters are to:

•	 Reduce the overhead of search
•	 Provide for a visual representation of the information space
•	 Expand the retrieval of relevant items.

Search overhead is reduced by performing top-down searches of the centroids of
the clusters in the hierarchy and trimming those branches that are not relevant. This
top down search approach can reduce recall and cause relevant items to be missed
(discussed in greater depth in Sect.Â€6.6).

It is difficult to create a visual display of the total item space. Use of dendograms
along with visual cues on the size of clusters (e.g., size of the ellipse) and strengths
of the linkages between clusters (e.g., dashed lines indicate reduced similarities)
allows a user to determine alternate paths of browsing the database (see Fig.Â€6.12).
The dendogram allows the user to determine which clusters to be reviewed are
likely to have items of interest. Even without the visual display of the hierarchy, a

Fig. 6.11â†œæ¸€ Item clustering
with initial clusters

Class 1 Class 2 Assign

Item 1
Item 2
Item 3
Item 4
IItem 5

33/2
23/2
30/2
8/2
31/2

17/2
51/2
18/2
24/2
47/2

Class 1
Class 2
Class 2
Class 2
Class 2

6 Document and Term Clustering

187

user can use the logical hierarchy to browse items of interest. The user can increase
the specificity of items by going to children clusters or by increasing the generality
of items being reviewed by going to a parent cluster.

A user, once having identified an item of interest via a search, can request to see
other items in a cluster that the item is in. This is analogous to going to a library and
looking at other books in the proximity of the book you are interested in.

Most of the existing HACM approaches can be defined in terms of the Lance-
Williams dissimilarity update formula (Lance-66). It defines a general formula for
calculating the dissimilarity D between any existing cluster Ck and a new cluster Ci,j
created by combining clusters Ci and Cj.

By proper selection of α, β, and γ, the current techniques for HACM can be rep-
resented (Frakes-92). In comparing the various methods of creating hierarchical
clusters Voorhees and later El-Hamdouchi and Willet determined that the group
average method produced the best results on document collections (Voorhees-86,
El-Hamdouchi-89).

The similarity between two clusters can be treated as the similarity between all
objects in one cluster and all objects in the other cluster. Voorhees showed that the
similarity between a cluster centroid and any item is equal to the mean similarity
between the item and all items in the cluster. Since the centroid is the average of all
items in the cluster, this means that similarities between centroids can be used to
calculate the similarities between clusters.

D(Ci, j, Ck) = αiD(Ci, Ck) + αjD(Cj, Ck) + βD(Ci, Cj)

+ γ |D(Ci, Ck) − D(Cj, Ck)|

Fig. 6.12â†œæ¸€ Dendogram

6.4 Hierarchy of Clusters

188

The techniques described in Sect.Â€6.2 created independent sets of classes. The
automatic clustering techniques can also be used to create a hierarchy of objects
(items or terms). The automatic approach has been applied to creating item hierar-
chies more than in hierarchical statistical thesaurus generation. In the manual cre-
ation of thesauri, network relationships are frequently allowed between terms and
classes creating an expanded thesaurus called semantic networks. Hierarchies have
also been created going from general categories to more specific classes of terms.
The human creator ensures that the generalization or specification as the hierarchy
is created makes semantic sense. Automatic creation of a hierarchy for a statistical
thesaurus introduces too many errors to be productive.

A cluster can be represented by a category label if the clusters were monolithic
(membership is based upon a specific attribute). If the cluster is polythetic, gener-
ated by allowing for multiple attributes (e.g., words/concepts), then it can best be
represented by using a list of the most significant words in the cluster. An alternative
is to show a two or three-dimensional space where the clusters are represented by
clusters of points. Monolithic clusters have two advantages over polythetic (Sander-
son-99): how easy it is for a user to understand the topic of the cluster and the con-
fidence that every item within the cluster will have a significant focus on the topic.
For example, YAHOO is a good example of a monolithic cluster environment.

Sanderson and Croft proposed the following methodology to building a concept
hierarchy. Rather than just focusing the construction of the hierarchy, they looked at
ways of extracting terms from the documents to represent the hierarchy. The terms
had the following characteristics:

•	 Terms had to best reflect the topics
•	 A parent term would refer to a more general concept then its child
•	 A child would cover a related subtopic of the parent
•	 A directed acyclic graph would represent relationships versus a pure hierarchy.
•	 Ambiguous terms would have separate entries in the hierarchy for each meaning.

As a concept hierarchy, it should be represented similar to WordNet (Miller-95)
which uses synonyms, antonyms, hyponym/hypernym (is-a/is-a-type-of), and mer-
onym/holonym (has-part/is-a-part-of). Some techniques for generating hierarchies
are Grefenstette’s use of the similarity of contexts for locating synonyms (Gref-
fenstette-94), use of key phrases (e.g., “such as”, “and other”) as an indicator of
hyponym/hypernym relationships (Hearst-98), use of head and modifier noun and
verb phrases to determine hierarchies (Woods-97) and use of a cohesion statistic
to measure the degree of association between terms (Forsyth-86). Sanderson and
Croft used a test based upon subsumption. It is defined given two terms X and Y, X
subsumes Y if:

X subsumes Y if the documents which Y occurs in are almost (0.8) a subset of the
documents that X occurs in. The factor of 0.8 was heuristically used because an
absolute condition was eliminating too many useful relationships. X is thus a parent
of Y.

P(X/Y) ≥ 0.8, P(Y/X) < 1.

6 Document and Term Clustering

189

The set of documents to be clustered was determined by a query and the query
terms were used as the initial set of terms for the monolithic cluster. This set was ex-
panded by adding more terms via query expansion using peudorelevance feedback
(Blind feedback, Local Context Analysis) which is described in Chap.Â€5. They then
used the terms and the formula above to create the hierarchies.

6.4.1  �Automatic Hierarchical Cluster Algorithms

The generation of hierarchical clusters starts after the techniques in Sect.Â€6.2 have
been applied and there is an initial set of clusters. The algorithms recursively focus
on the question of which two clusters to combine given the current set of clusters.
The combination process will generate an unbalanced tree that represents the final
set of items. In each iteration the number of clusters that need to be considered
will be reduced by one cluster. There are four techniques that will be presented
for combining clusters. As with the options presented in Sect.Â€6.2, the techniques
tradeoff complexity of computation versus creation of better clusters. The first two
techniques called single link and complete link graphically are similar to the single
link and clique techniques presented previously.

The first technique is call Single Link and it uses as its basis for determining
the similarity between two clusters comparing the similarity between one item
from each cluster. That item selected will be the item that has the most similarity
(least distance) from any of the items in the other cluster. Thus the two items se-
lected will generate the maximum similarity or minimum distance measure. Once
all of the values have been generated, then the maximum similarity (minimum
distance) between any two of the current set of clusters will determine the next
two clusters to combine. This is similar to Kruskal’s algorithm for minimum span-
ning trees except the order of combination is important in defining the hierarchy
generated.

The Complete Link technique is similar in doing the calculations from one item
from each cluster. In this case the items selected are the item from each cluster that
has the minimum similarity (maximum distance) to calculate the value used for
those two clusters. This defines an outer limit and all other item pairs will be more
similar.

Ward’s Method (Ward-63) chooses the minimum square Euclidean distance be-
tween points (e.g., centroids in this case) normalized by the number of objects in
each cluster. He uses the formula for the variance I, choosing the minimum variance:

where mi is the number of objects in Classi and di,j
2 is the squared Euclidean dis-

tance. The process of selection of centroids can be improved by using the reciprocal
nearest neighbor algorithm (Murtagh-83, Murtagh-85). A simpler algorithm can be

Ii,j =
((

mimj
)
/
(
mi + mj

))
di,j

2

di,j
2 =

∑
k=1

(
xi,k − xj,k

)2

6.4 Hierarchy of Clusters

190

used where just the centroids are used in determining the similarity between exist-
ing clusters. This is known as the Average Link process. In both approaches the
maximum similarity or minimum distance between two clusters is used as the value
to decide which clusters to combine. In the average link process using the centroids
is the same as calculating the similarity (or distance) from every item in one cluster
with every item in the other cluster.

The final technique is Group Average clustering. Group average extends the Av-
erage Link clustering to also considering items with each cluster. Thus group aver-
age clustering calculates the similarity between all items both between clusters and
within each cluster. This will assure that the two clusters that are combined will pro-
duce the tightest coupled new cluster where the distances between the centroid and
each item in the new cluster is less than any other cluster combination. FigureÂ€6.13
shows graphically all four techniques. The Average Link is shown versus Ward’s
minimum variance.

Comparing the four different hierarchical clustering techniques helps understand
how they are used. The Single Link process does not promise tightly couple clus-
ters but is far more likely than the other techniques to combine clusters producing
less tightly coupled clusters since the only metric used is the best case between
one item from each cluster. Rather than clusters that tend to be more circular you
are apt to get clusters that are ellipsoidal. There are efficient techniques that can be
implemented to use this technique and it does not require a cluster centroid to be
calculated and recalculated thus avoiding changing the similarity matrix. The Com-
plete Link method uses the items that are least similar and thus all of the items will
have a similarity less than that value. This will tend to create more tightly bounded

Fig. 6.13â†œæ¸€ Types of hierarchical clustering

6 Document and Term Clustering

191

clusters. Ward’s method that combines the clusters that minimizes the within cluster
sum of the squares distance should create more symmetric clusters that will have
a good representative centroid for the items in the cluster. The group average link
method will generate clusters whose tightness is between the single link and com-
plete link methods. It requires a lot of computation to calculate cluster similarities
during each iteration.

An example of applying the different hierarchical clustering techniques based
upon the following document—document similarity matrix:

And given the following four existing clusters the different techniques will be
applied to combine the existing clusters to new clusters. Two iterations will be dem-
onstrated:

CL1â•›=â•›D1, D3, D4
CL2â•›=â•›D2, D6, D8
CL3â•›=â•›D5, D7, D12
CL4â•›=â•›D9, D10, D11

Single Link—Join clusters with the highest similarity weights

D10 & D12 have similarity 19 thus in the first iteration join Cluster 3 and Cluster 4

CLNew1â•›=â•›D5, D7, D9, D10, D11, D12
CL1â•›=â•›D1, D3, D4
CL2â•›=â•›D2, D6, D8

D4 & D6 have similarity 18 Join thus in the second iteration join Cluster 1 and
Cluster 2 (note other 18 weights are within the same clusters (e.g., D3 and D4, D2
and D6))

CLNew1â•›=â•›D5, D7, D9, D10, D11, D12
CLNew2â•›=â•›D1, D2, D3, D4, D6, D8

Complete Link—Join Clusters with the Lowest Weights

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
D1 7 16 15 14 14 9 7 0 4 2 7
D2 7 8 12 3 18 6 17 1 4 1 1
D3 16 8 18 6 16 0 8 3 5 2 1
D4 15 12 18 6 18 6 9 9 5 6 7
D5 14 3 6 6 6 9 3 2 8 3 5
D6 14 18 16 18 6 2 16 9 3 6 7
D7 9 6 0 6 9 2 3 11 6 12 16
D8 7 17 8 9 3 16 3 0 0 5 9
D9 0 1 3 9 2 6 11 0 12 6 11
D10 4 4 5 5 8 3 6 0 12 6 19
D11 2 1 2 6 3 6 12 5 5 6 11
D12 7 1 1 7 5 7 16 9 11 19 11

6.4 Hierarchy of Clusters

192

D2 & D9 have similarity of 1 thus in the first iteration join Cluster 2 and Cluster
4 (Note: D2 also has similarity of 1 with D11 and D12 and D3 has similarity of 1
with D12, thus CL2 and CL3 or CL1 and CL3 could have been selected)

CLNew1â•›=â•›D2, D6, D8, D9, D10, D11
CL1â•›=â•›D1, D3, D4
CL3â•›=â•›D5, D7, D12

D3 & D12 have similarity of 1 thus in second iteration join Cluster 1 and Cluster 3
(NOTE: D2 and D12 have similarity of 1 thus CLNEW1 could have been combined
with CL3)

CLNew1â•›=â•›D2, D6, D8, D9, D10, D11
CLNew2â•›=â•›D1, D3, D4, D5, D7, D12

Average Link—Find average between Items in one cluster to items in another cluster

Average of C1 and C2â•›=â•›7â•›+â•›14â•›+â•›7â•›+â•›8â•›+â•›16â•›+â•›8â•›+â•›12â•›+â•›18â•›+â•›9â•›=â•›99/9
Average of C1 and C3â•›=â•›14â•›+â•›9â•›+â•›7â•›+â•›6â•›+â•›0â•›+â•›1â•›+â•›6â•›+â•›6â•›+â•›7â•›=â•›56/9
Average of C1 and C4â•›=â•›0â•›+â•›4â•›+â•›2â•›+â•›1â•›+â•›4â•›+â•›1â•›+â•›9â•›+â•›5â•›+â•›6â•›=â•›32/9
Average of C2 and C3â•›=â•›3â•›+â•›6â•›+â•›1â•›+â•›6â•›+â•›2â•›+â•›7â•›+â•›3â•›+â•›3â•›+â•›9â•›=â•›40/9
Average of C2 and C4â•›=â•›1â•›+â•›4â•›+â•›1â•›+â•›6â•›+â•›3â•›+â•›6â•›+â•›0â•›+â•›0â•›+â•›5â•›=â•›26/9
Average of C3 and C4â•›=â•›2â•›+â•›8â•›+â•›3â•›+â•›11â•›+â•›6â•›+â•›12â•›+â•›11â•›+â•›19â•›+â•›11â•›=â•›83/9
C1 and C2 have the highest average
CLNew1â•›=â•›D1, D2, D3, D4, D6, D8
CL3â•›=â•›D5, D7, D12
CL4â•›=â•›D9, D10, D11
Average of ClNew1 and Cl3â•›=â•›(56â•›+â•›40)/18â•›=â•›5.333
Average of ClNew1 and Cl4â•›=â•›(32â•›+â•›26)/18â•›=â•›3.2222
Average of C3 and C4â•›=â•›2â•›+â•›8â•›+â•›3â•›+â•›11â•›+â•›6â•›+â•›12â•›+â•›11â•›+â•›19â•›+â•›11â•›=â•›83/9â•›=â•›9.222
C3 and C4 have the highest average
CLNew1â•›=â•›D1, D2, D3, D4, D6, D8
CLNew2â•›=â•›D5, D7, D9, D10, D11, D12

Group Average Link—Find average between all items in 2 clusters

Average of C1 and C2 â•›=â•›7â•›+â•›14â•›+â•›7â•›+â•›8â•›+â•›16â•›+â•›8â•›+â•›12â•›+â•›18â•›+â•›9â•›+16â•›+â•›15â•›+â•›18â•›+â•›18â•›+â•›1
7â•›+â•›16â•›=â•›199/15
Average of C1 and C3â•›=â•›14â•›+â•›9â•›+â•›7â•›+â•›6â•›+â•›0â•›+â•›1â•›+â•›6â•›+â•›6â•›+â•›7â•›+â•›9â•›+â•›16â•›+â•›15â•›+â•›18â•›+â•›9â•›+â•›5â•›+â•›
16â•›=â•›144/15
Average of C1 and C4â•›=â•›0â•›+â•›4â•›+â•›2â•›+â•›1â•›+â•›4â•›+â•›1â•›+â•›9â•›+â•›5â•›+â•›6â•›+â•›16â•›+â•›15â•›+â•›18â•›+â•›12â•›+â•›5â•›+â•›6â•›=â•›
104/15
Average of C2 and C3â•›=â•›3â•›+â•›6â•›+â•›1â•›+â•›6â•›+â•›2â•›+â•›7â•›+â•›3â•›+â•›3â•›+â•›9â•›+â•›18â•›+â•›17â•›+â•›16â•›+â•›9â•›+â•›5â•›+â•›16â•›=â•›
121/15
Average of C2 and C4â•›=â•›1â•›+â•›4â•›+â•›1â•›+â•›6â•›+â•›3â•›+â•›6â•›+â•›0â•›+â•›0â•›+â•›5â•›+â•›18â•›+â•›17â•›+â•›16â•›+â•›12â•›+â•›5â•›+â•›6â•›=â•›
100/15
Average of C3 and C4â•›=â•›2â•›+â•›8â•›+â•›3â•›+â•›11â•›+â•›6â•›+â•›12â•›+â•›11â•›+â•›19â•›+â•›11â•›+â•›9â•›+â•›5â•›+â•›16â•›+â•›12â•›+â•›5â•›+â•›
6â•›=â•›136/15

6 Document and Term Clustering

193

C1 and C2 have the highest average
CLNew1â•›=â•›D1, D2, D3, D4, D6, D8
CL3â•›=â•›D5, D7, D12
CL4â•›=â•›D9, D10, D11

Average of ClNew1 and Cl3Â€=Â€(199â•›+â•›14â•›+â•›9â•›+â•›7â•›+â•›6â•›+â•›0â•›+â•›1â•›+â•›6â•›+â•›6â•›+â•›7â•›+â•›3â•›+â•›6â•›+â•›1â•›+â•›6â•›
+â•›2â•›+â•›7â•›+â•›3â•›+â•›3â•›+â•›9â•›+â•›9â•›+â•›5â•›+â•›16)/(36)Â€=Â€9.0277
Average of ClNew1 and Cl4Â€=Â€(199â•›+â•›0â•›+â•›4â•›+â•›2â•›+â•›1â•›+â•›4â•›+â•›1â•›+â•›9â•›+â•›5â•›+â•›6â•›+â•›1â•›+â•›4â•›+â•›1â•›+â•›6â•›+â•›
3â•›+â•›6â•›+â•›0â•›+â•›0â•›+â•›5â•›+â•›12â•›+â•›5â•›+â•›6)/36Â€=Â€7.777
Average of C3 and C4Â€=Â€2â•›+â•›8â•›+â•›3â•›+â•›11â•›+â•›6â•›+â•›12â•›+â•›11â•›+â•›19â•›+â•›11â•›+â•›9â•›+â•›5â•›+â•›16â•›+â•›12â•›+â•›5â•›+â•›
6/15Â€=Â€9.0666
C3 and C4 have the highest average (BARELY)
CLNew1â•›=â•›D1, D2, D3, D4, D6, D8
CLNew2â•›=â•›D5, D7, D9, D10, D11, D12

At any particular step in the merge process it’s possible that suboptimal results could
occur. Given four documents that you are starting to cluster shown in Fig.Â€6.14. There
would be a tendency with most algorithms to combine the two closest items B and
C into the next cluster created. But more optimal would be to combine D and C and
A and B. Thus binary decisions at each step do not ensure an optimal final solution.

6.5  �Measure of Tightness for Cluster

Given the different techniques to create clusters, a method is needed to determine
how good the cluster is. The objective of clustering is to place similar items or
words together. This allows a single representation for all the similar items reducing
the complexity of representing a number of items individually. It also allows for de-
termining new items to be retrieved when a user is looking at a particular item. Thus
the goal of clustering is to get similar item together. But that is not always possible
because many items discuss multiple topics and there may not be a best clustering
allocation for an item. In addition the errors in the information retrieval process
guarantee that there will be errors in clustering. Since the goal of a cluster is to place
like items together then a measure of how good a cluster is can be based upon the

Fig. 6.14â†œæ¸€ Clustering example

6.5 Measure of Tightness for Cluster

194

distance of every item in the cluster from every other item. When that distance is a
minimum then it will be a very tight cluster. When the distance is large then it will
be a cluster with multiple different topics within it.

The Euclidean distance formula can be used to measure the distance between
two vectors:

Where Xr and Xs are two item vectors. This is then calculated between all of the
items in the cluster and summed to get the total distance between items in the clus-
ter. This then needs to be normalized by dividing by the number of items in the
cluster to get a normalized average distance value that is not dependent upon the
number of items in the cluster and thus can be compared to other clusters. Thus the
average distance for a cluster is:

The smaller the distance the more focused the items will be within the cluster on a
topic.

6.6  �Issues with Use of Hierarchical Clusters for Search

One special area of concern arises from search of clusters of terms that are stored
in a hierarchical scheme. The items are stored in clusters that are represented by
the centroid for each cluster. In Fig.Â€6.15, each letter at the leaf (bottom nodes)

D(Xr, Xs) =
(∑

(xi,r − yi,s)
2
)1/2

AVED =
1

n

∑

r

∑

s

D(Xr , Xs)

Fig. 6.15â†œæ¸€ Item cluster hierarchy

6 Document and Term Clustering

195

represents an item (i.e., K, L, M, N, D, E, F, G, H, P, Q, R, J). The letters at the
higher nodes (A, C, B, I) represent the centroid of their immediate children nodes.
The hierarchy is used in search by performing a top-down process. The query is
compared to the centroids “A” and “B.” If the results of the similarity measure are
above the threshold, the query is then applied to the nodes’ children. If not, then
that part of the tree is pruned and not searched. This continues until the actual leaf
nodes that are not pruned are compared. The problem comes from the nature of
a centroid which is an average of a collection of items (in Physics, the center of
gravity). The risk is that the average may not be similar enough to the query for
continued search, but specific items used to calculate the centroid may be close
enough to satisfy the search. The risks of missing items and thus reducing recall
increases as the standard deviation increases. Use of centroids reduces the simi-
larity computations but could cause a decrease in recall. It should have no effect
on precision since that is based upon the similarity calculations at the leaf (item)
level.

6.7  �Summary

With clustering there are now three different techniques that may appear to be over-
lapping capabilities. They are Categorization discussed in Chap.Â€3, Searching dis-
cussed in Chap.Â€5 and clustering discussed in this chapter. Clustering and categori-
zation are very similar. The difference is that categorization is based upon training
data for each category defined. Clustering is an unsupervised learning process that
will logically organize a set of items into clusters based upon similarity. Some items
may never be assigned to any category but typically every item will be assigned to a
cluster, even if they are the only item in the cluster. Searching is like categorization
in that there is a definition of the information that is being looked for. The difference
is that categorization is based upon large free text examples and sometimes counter
examples of what is being looked for. Queries are typically much shorter definitions
and more poorly defined. In searching every item is assigned a similarity weight
even if it is zero. The categorization is a classification process where a decision is
made that an item is either assigned to the category or not.

Thesauri, semantic nets and item clusters are essential tools in Information Re-
trieval Systems, assisting the user in locating relevant items. They provide more
benefit to the recall process than in improving precision. Thesauri, either humanly
generated or statistical, and semantic nets are used to expand search statements,
providing a mapping between the user’s vocabulary and that of the authors. The
number of false hits on non-relevant items retrieved is determined by how tightly
coupled the terms are in the classes. When automatic techniques are used to create
a statistical thesaurus, techniques such as cliques produce classes where the items
are more likely to be related to the same concept than any of the other approaches.
When a manually created thesaurus is used, human intervention is required to elimi-
nate homonyms that produce false hits. A homonym is when a term has multiple,

6.7 Summary

196

different meanings (e.g., the term field meaning an area of grass or an electromag-
netic field). The longer (more terms) in the search statement, the less important the
human intervention to eliminate homonyms. This is because items identified by
the wrong interpretation of the homonym should have a low weight because the
other search terms are not likely to be found in the item. When search statements
are short, significant decreases in precision will occur if homonym pruning is not
applied.

Item clustering also assists the user in identifying relevant items. It is used in two
ways: to directly find additional items that may not have been found by the query
and to serve as a basis for visualization of the Hit file. Each item cluster has a com-
mon semantic basis containing similar terms and thus similar concepts. To assist the
user in understanding the major topics resulting from a search, the items retrieved
can be clustered and used to create a visual (e.g., graphical) representation of the
clusters and their topics (see Chap.Â€8 for examples). This allows a user to navigate
between topics, potentially showing topics the user had not considered. The topics
are not defined by the query but by the text of the items retrieved.

When items in the database have been clustered, it is possible to retrieve all of
the items in a cluster, even if they were not identified by the search statement. When
the user retrieves a strongly relevant item, the user can look at other items like it
without issuing another search. When relevant items are used to create a new query,
the retrieved hits are similar to what might be produced by a clustering algorithm.
As with the term clustering, item clustering assists in mapping between a user’s
vocabulary and the vocabulary of the authors.

From another perspective term clustering and item clustering achieve the same
objective even though they are the inverse of each other. The objective of both is
to determine additional relevant items by a co-occurrence process. A statistical
thesaurus creates a cluster of terms that co-occur in the same set of items. For all
of the terms within the same cluster (assuming they are tightly coupled) there will
be significant overlap of the set of items they are found in. Item clustering is based
upon the same terms being found in the other items in the cluster. Thus the set of
items that caused a term clustering has a strong possibility of being in the same
item cluster based upon the terms. For example, if a term cluster has 10 terms in
it (assuming they are tightly related), then there will be a set of items where each
item contains major subsets of the terms. From the item perspective, the set of
items that has the commonality of terms has a strong possibility to be placed in the
same item cluster.

Hierarchical clustering of items is of theoretical interest, but has minimal practi-
cal application. The major rationale for using hierarchical clustering is to improve
performance in search of clusters. The complexity of maintaining the clusters as
new items are added to the system and the possibility of reduced recall are ex-
amples of why this is not used in commercial systems. Hierarchical thesauri are
used in operational systems because there is additional knowledge in the human
generated hierarchy. They have been historically used as a means to select index
terms when indexing items. It provides a controlled vocabulary and standards be-
tween indexers.

6 Document and Term Clustering

197

6.8  �Exercises

1.	 If clustering has been completed on two different domains. Discuss the impact
of merging the domains into a single cluster for both term clustering and item
clustering. What factors will affect the amount of work that will be required to
merge the clusters together? (HINT: consider the steps in clustering)

2.	 Which of the guidelines and additional decisions can be incorporated in an auto-
matic statistical thesaurus construction program? Describe how they would be
implemented and the risks with their implementation. Describe your justification
for the guidelines and exercises selected that cannot be automated.

3.	 Prove that a term could not be found in multiple clusters when using the single
link technique.

4.	 Describe what effect increasing and decreasing the threshold value has on the
creation of classes and under what condition you would make the change.

5.	 Given the following Term-Term matrix:

a.	 Determine the Term Relationship matrix using a threshold of 10 or higher
b.	 Determine the clusters using the clique technique
c.	 Determine the clusters using the single link technique
d.	 Determine the clusters using the star technique where the term selected for the

new seed for the next star is the smallest number term nor already part of a class.
e.	 Discuss the differences between the single link, the clique and the star clus-

ters. What are the characteristics of the items that would suggest which tech-
nique to use?

6.	 a.	� Using the document/document relationship matrix for similarity values and
the starting point of the following 4 cluster, combine the clusters until you get
to 2 clusters using the four HACM techniques described in the book (Single
link, complete link, average link (not Wards method) and group average link)

CL1Â€=Â€D1, D3, D4
CL2Â€=Â€D2, D6, D8
CL3Â€=Â€D5, D7, D12
CL4Â€=Â€D9, D10, D11

T1 T2 T3 T4 T5 T6 T7 T8 T9
T1 14 9 0 3 0 12 0 16
T2 14 0 6 4 0 14 0 11
T3 9 0 12 7 4 1 0 14
T4 0 6 12 3 0 14 9 8
T5 3 4 7 3 12 6 16 0
T6 0 0 4 0 12 9 2 9
T7 12 14 1 14 6 9 0 12
T8 0 0 0 9 16 2 0 8
T9 16 11 14 8 0 9 12 8

6.8 Exercises

198

b.	 Trade off the use of Single link, complete link, Wards method and group aver-
age link techniques in creating a hierarchical cluster set. Which one gives the
best and which one gives the worst clusters and why

7.	 Will the clustering process always come to the same final set of clusters no mat-
ter what the starting clusters? Explain your answer.

8.	 Can statistical thesaurus generation be used to develop a hierarchical cluster rep-
resentation of a set of items? Discuss the value of creating the hierarchy and how
you would use it in a system.

9.	 What is the effect of clustering techniques on reducing the user overhead of find-
ing relevant items.

D1 D2 D3 D4 D5 D6 D7 D8 D9
D1 7 16 15 14 14 9 7 0
D2 7 8 12 3 18 6 17 1
D3 16 8 18 6 16 0 8 3
D4 15 12 18 6 18 6 9 9
D5 14 3 6 6 6 9 3 2
D6 14 18 16 18 6 2 16 9
D7 9 6 0 6 9 2 3 11
D8 7 17 8 9 3 16 3 0
D9 0 1 3 9 2 6 11 0
D10 4 4 5 5 8 3 6 0 12
D11 2 1 2 6 3 6 12 5 5
D12 7 1 1 7 5 7 16 9 11

6 Document and Term Clustering

199

7.1  �Information Presentation Introduction

Once a search has been completed the system has identified a “hit list” of items in
ranked order based upon the most likely to be relevant. The next step is to present
the information to the user. The presentation has a significant impact on the user’s
ability to find the information they are looking for. There are two stages for infor-
mation presentation. The first is how the hit list is presented so the user can deter-
mine if it may contain potential information to answer their information need. The
second is how individual items are presented to the user from which they will look
for specific information. There are a few scenarios where the hit list presentation
could answer the user’s question without the need to look at the individual items—
but this is the exception case.

There are multiple techniques applicable to each of the stages based upon what
information a user is looking for. But in all cases the goal is to leverage off the hu-
mans ability to visually process information to optimize the presentation to assist in
identifying the needed information. Historically the primary presentation has been
a linear list of potential information. For users in the 1980s and 1990s that was ad-
equate because their experience followed that paradigm. But in the 2000s with the
availability of sophisticated virtual games, the Internet and communications devices
the users are expecting more sophisticated presentation methods. In all cases the
goal is to organize the information’s presentation to allow the user to detect patterns
that help focus on the most likely location for the information of potential interest.

7.2  �Presentation of the Hits

The hit list contains the items of potential interest. What is less obvious is how long
the hit list is. Most systems display the hit list as a sequential list of hits and the user
at most reviews the first two pages of hits (20–30 hits). The system will display a
count of the total number of hits. In most systems they have not been uniquely iden-

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_7, ©Â€Springer Science+Business Media, LLC 2011

Chapter 7
Information Presentation

200

tified but instead the total hit count is an estimate is created based upon the subset
of hits identified for actual display.

Looking at textual items there are four major organizations that can be used
to display the hit list, each satisfying a different information need. The first is the
sequential list that is in ranked order based upon the users query and a confidence
level (weight). It is the most common hit display. The next is a cluster visualiza-
tion that quite often is hierarchical in nature (see HACM from Chap.Â€6). A network
display is used when entities are identifiable and the relationships are the goal. Less
often used is a time line display.

7.2.1  �Sequential Listing of Hits

The details on how the weights are calculated are discussed in Chap.Â€5. This display
is the most common display because it is the easiest to present. The display of each
hit can be broken down into three major subcomponents, each of which is designed
to help the user decide if they want to select and display that hit. The first line of
the hit is the “title”. This is usually extracted from the Title of the page that is be-
ing referenced or the title of the item. The next part is the “snippet” that is text that
comes from that hit item (e.g., web page) that is designed to provide the semantic
information to help the user understand what the item is about. The simplest snippet
is text taken the first few sentences of the item or if there is a metadata Description
tag to use that information. If there specific zones such as an “Abstract” zone that
also could be used. The advantage to this definition of a snippet is that it is static
and thus can be predefined allowing for faster display of the Hit list. The snippet
can come from anywhere in the document. A more focused solution will have the
snippet come from specific sentence fragments that the search term(s) was found.
This could lead to many different possible snippets that could be extracted. Using
the weights of the hit terms and proximity of the hit terms within text segments
(possible snippets) can help in determining which snippets to display. The length of
the snippet needs to be limited because the longer the snippet the fewer hits can be
displayed on a display screen. Ideally the snippet would include a summarization
focusing on the information need (query) of the item but that is unrealistic. Text
summarization is discussed in Sect.Â€7.3.2 where the difficulties are described. In
all cases if any of the user’s search terms are in the displayed text they are usually
highlighted to draw attention to them. The final most critical part of the hit listing
is a link to the item.

Once past the basic hit list display data there is optional data that may be dis-
played based upon how complex the search engine and system is? In general, it’s
specific data that is related to the nature of the particular item being displayed. For
example if the item being displayed is recognized with an entity type (one of the
advantages of doing entity identification) that suggests it has a physical location and
if the address is available—links are provided to a map showing where it is located.
If the item is a company links could be provided to show the stock value of the

7 Information Presentation

201

company. The goal of this process is to not only present the user with adequate in-
formation to understand what the link to the item will likely return but also provide
links to other information that frequently is of interest when looking for an item.
Thus, the rationale behind showing a link to the map for an address of a business is
that quite often the users real information need is for where a company is located but
their search query may only have the company name in it.

A sequential listing of hits is most useful when a user is looking for a specific
fact or gathering background on a very focused topic. Given the specificity of the
topic and that the user wants some very focused data, the sequential ranked presen-
tation presents the information in an optimum organized format. The user will either
find the one or two items it will take to answer their question in the first few pages
or find additional terms to try a new query and find the information. The nature of
this search is that the user does not need to have an overview of many items to help
in locating the information needed.

7.2.2  �Cluster View

In some cases the user is looking to understand a more broad topical area. It could
be an area that is new to the user or it could by its nature be a more general focus.
In this case a sequential list of items will never satisfy the real information need.
It is too focused on individual items when the user needs to understand a more
general view of the information to help in focusing on the specific information they
need. For example if the user wants to understand how to invest money, a query on
money investment brings up 27,000,000 hits and a number of articles on “investing
money”. The individual items may be useful in starting to get a background but they
may never present the scope of the information available in the system on this topic.

An alternative approach is to present a visualization of all of the hits or large
representative sample. To do this a clustering algorithm would be applied to the
hits (possibly a hierarchical clustering approach) and then the clusters would be
presented in a graphical interface to the user. The clusters would have labels that
would in effect be categorizing the different topics that are part of the more general
search. The key to this interface is the ability to provide a meaningful name to the
clusters. The user would then be able to focus on the individual clusters looking in
more depth on the clusters within the first set of clusters (if hierarchical clustering
is used) and eventually look at specific items of interest.

This type of an interface is typically not provided because of the significant
overhead in dynamically clustering the hits from a search. In many cases the cluster
software will be an additional application and the user can request that the hits be
exported to that package where the clustering takes place. This is quite often limited
to hundreds of thousand hits (e.g., In-Spire from PNNL see its Theme View). A two
or three dimensional display is quite often used with the heights or densities of the
display indicating topical areas. In a 2-dimension display (e.g., scattergram) the
density of points indicate topical areas where each point represents another item.

7.2 Presentation of the Hits

202

For example in Fig.Â€7.1 there are some examples of a scatter gram where you can
see by the densities the number of items that are discussing the different topics. In
addition for this example the size of the point for each item indicates the confidence
level that it is associated with cluster. The user can then focus on the overall set of
topical areas and then investigate which ones most closely map to the users infor-
mation need. The second example in Fig.Â€7.2 shows a 3-dimensional visualization.
In this case each topic is associated with each of the three dimensional “hills” in the
picture. In addition the height and size of each hill indicates how many items are
associated with that area.

Filtering and zooming are the most important parts for an interface such as this.
Zooming follows the general rule of visualization design where the more general
higher level information visualization is presented first and then the user can “zoom
in” or focus on particular parts of the display to expand the details for that segment.
The other important capability is filtering. This allows a user to specify some crite-
ria that they want to be removed from the current display. This allows filtering out

Fig. 7.1â†œæ¸€ Example of clustering scattergram. (Courtesy of Pacific Northwest National Laboratory
from their web site)

7 Information Presentation

203

items that may be confusing the display and not helping the user to find the desired
information. For example filtering out information of foreign currency exchange
could reduce the complexity of a scattergram on investments. Quite often a time
filter is also very useful where items older than a certain date can be filtered out.
This can change the display from an overall graphical view of a topical area to just
the most recent information on a topical area.

One of the challenges in creating a cluster view is how to name the clusters. The
simplest technique is to find the highest weighted terms that are found across the
cluster and then use the top few words as a label for the cluster. This can lead to
errors when the cluster is representing a large concept whose label is not frequently
found in the specific processing tokens of the items in the cluster. Another approach
is to try and abstract out the cluster name. For example one approach could take
clusters as the input and generates appropriate labels for the clusters using a refer-
ence database. The objective is to take the highest weighted terms and then look up
the different word senses for those words and also look for more abstract concepts
that the words are part of. Then based upon the set of words that come from the
look-up a weighting algorithm can be used to select the most important labels to be
associated with the clusters. This helps in consolidating synonyms or near synonym
words into a single word representation and allows the cluster names to come from
words that are not in the cluster. If the cluster is a hierarchical cluster structure then
the process works the same except the children labels can be inherited to the parent
clusters and merged into a higher cluster label. The advantage of working with a
Natural Language Processing indexing scheme is that it will provide additional in-

Fig. 7.2â†œæ¸€ Example of theme view 3-dimensional display. (Courtesy of Pacific Northwest National
Laboratory from their web site)

7.2 Presentation of the Hits

204

formation that could be used in determining the name to be associated with a cluster.
In this case the part of speech and usage of the words could be an additional weight-
ing factor in determining the weight of individual words in labeling the cluster. For
example a Subject would have a lot more weight that a word that is an adjective or
direct object in use.

In many cases clustering software starts with a reprocessing of the original
items to create an index more optimized for the performing the clustering and
manipulating the display of the cluster. That is why there are limits placed on the
number of items clustered (i.e., in the tens to hundreds of thousands). Clustering
is very different than indexing data for a query in that the final goal is a visual
presentation of all of the data to assist the user in better understanding the overall
information content of all of the data. In clustering the original concepts of ap-
plying Ziph’s Law to reduce the complexity of the index re-emerges as a viable
constraint. Ziph’s Law says the frequency of occurrence of words in a set of text
follows and exponential rule where a small percentage of terms are found very
frequently and a very large number of terms are only found a few times in the
text. When computer computation resources was limited many years ago that was
proposed as a way to limit what processing tokens were created and indexed (i.e.,
eliminating the high frequency and low frequency words). When the goal is to
create a visualization of a large number of items that rule currently applies. High
frequency words that are found in most of the items blur the differences between
items and do not help in clustering where the objective is to show the unique
general topics of the items. The low frequency words that are only found in a few
items does not help in clustering in that they only help define single items that will
be at the edges or standing alone in a cluster space. When indexing for clustering
it’s possible to reduce the dimensionality (i.e., number of processing tokens) that
are kept and used in the clustering from millions down to hundreds to a few thou-
sands without seriously degrading the information value of the cluster display. The
goal is to select those words that provide the best discrimination value to help in
defining the clusters. This is usually a few thousands terms that are primary needed
to represent the major concepts across a corpora. That does not mean that all terms
are not kept for “filtering” the current or new set of items that are used in creating
the cluster display. But when that subset of items is selected the reduced index can
then be used to create the new clusters. In creating the processing tokens for the
clustering quite often units other than individual words are used. Thus the system
may also treat multiple words or even sentences as a unit to index to help in the
clustering. In a sense this approach is driving more towards the idea of “concept
indexing” such as use of Latent Semantic Indexing as a way to reduce the dimen-
sionality of the original set of items to hundreds of processing tokens that represent
the concepts in the items.

Once the reduced set of processing tokens is defined then Luhn’s concept of
co-occurrence of processing tokens with the same items suggesting those items are
talking about the same concept applies. As discussed in Chap.Â€6 there are significant
performance issues when trying to do the clustering using the full set of termi and
termj co-occurrence. That is why the K-means algorithm (i.e., starting with an initial

7 Information Presentation

205

set of clusters and then reassigning items to that set in an iterative process) is often
applied to define the clusters.

Once the clusters have been determined then there is the issue of mapping the
clusters to a 2-dimensional or 3-dimensional representation that can be shown on
visualization. One of the common ways of doing that is using Principal Component
Analysis (PCA). It can reduce the n-dimensional processing token space into a few
dimensions for display. It dates back to 1901 when it was first introduced by Karl
Pearson. It uses orthogonal vector decomposition of the multivariate data. These
are called “principal components” and is accomplished by applying single value
decomposition of the data matrix (see Latent Semantic Indexing in Chap.Â€4). By
choosing the top 2 or 3 variables it provides a “shadow” of the higher n-dimension
space into a 2 or 3-dimension space which can then be used to create the display.
PCA is mathematically defined as an orthogonal linear transformation that trans-
forms the data to a new coordinate system such that the greatest variance by any
projection of the data comes to lie on the first coordinate (called the first principal
component), the second greatest variance on the second coordinate, and so on. PCA
is theoretically the optimum transform for given data in least squares terms (Jol-
liffe-2002). In PCA you are applying Singular Value Decomposition (SVD) on the
covariance matrix. The original matrix is changed into a new matrix by subtract-
ing the mean from the elements (new matrix has zero mean). Next the covariance
matrix is found by multiplying 1/(nâ•›−â•›1) times the original matrix and its transpose.
SVD is then applied to the new matrix. Then as described in Chap.Â€4 just the top “k”
rows are kept which then define the dimensions that are displayed.

7.2.3  �Network View

The network view of a hit list is the best display of search results where the user is
looking for relationships between entities. Notice in this case individual hits are not
the basic unit of representation but typically entities that are found in the hit items.
The number and specific hit items are just evidence to support the links (relation-
ships) between the entities. The existence of a relationship is identified within an
item. An example would be if a user wants to see what companies would be ef-
fected if the General Motors Corporation (GMC) car company goes bankrupt. The
system is trying to determine relationships between GMC and other companies.
The result would be a multinode network where each node represents a company
or subnetwork of companies and the links indicate a relationship between the com-
panies. There could be associative relationships where one company is dependent
upon GMC and another company is dependent upon that company. This is one of
the examples where part of the user’s information need could be answered by the
display which should be displayed in a network graph form. FigureÂ€7.3 shows what
a network graph might look like for this information need. The network graph rep-
resentation summarizes the specific examples the system has determined to suggest
relationships. The width of the connecting lines indicates the confidence level of

7.2 Presentation of the Hits

206

that connection. By clicking on any of the lines the system would display all of the
specific items that went into defining that line. In this example there are two nodes
that really represent additional lower level networks (e.g., dealers and Charities).
Clicking on either of those nodes would expand out the all of the sub-nodes in that
node (e.g., list of all dealers and their links to each other and GMC). The algorithms
to determine the relationships will likely contain errors in accuracy due to the chal-
lenges in Information retrieval that have been discussed throughout this book. The
network graph should be looked at another way of organizing the hits, but for the
user to make an accurate decision the user needs to review the items that led to the
parts of the graph the user feels is important. In this case the hit items are associated
with the lines between the nodes where a relationship was determined from the text
of the item. But the real information is between the entities and the network graph
that shows the relationships.

There are many different algorithms that can be used in determining that two
entities are related by an item. The simplest technique is to use the concept of co-
occurrence that has been used in many previous algorithms. The idea is that if two
entities co-occur in many items then those two entities may be related. A weighting
algorithm is:

where N is a normalization constant and WTEi is the term frequency weight of the
entity within the item. The term frequency is based upon the fully normalized oc-
currence count of the entity within the item versus just the specific name variation
of the entity as entered by the user. If entity normalization (see Chap.Â€3) is not avail-
able for that specific entity then just the entered term would be counted.

Link Weight
(
Entityi, Entityj

)
= N ∗

∑ (
WTEi ∗ WTEj

)

Fig.Â€7.3â†œæ¸€ Network diagram example

GMC

ABC
Brakes

DEF
Fluids

Dealers

Charities

GHJ
Muffler

7 Information Presentation

207

The formula above can be adjusted to have more semantic strength in the pos-
sibility of the two entities being related by adding a proximity constraint to when
the system counts an occurrence of the two entities being in the item that leads to
the WTEi value. Thus a proximity constraint that Term for Entityi and the term repre-
senting Entityj must be within “m” units of each other before it will count towards
a linkage can be applied. In this case “units” could be words, sentences, paragraphs
or any other meaningful measure.

The statistical approach introduces errors in that the co-occurrence does not
guarantee the semantic relationship between the entities just their existence. A more
sophisticated approach would use either the existence of “cue words” or natural
language processing to increase the recognition of the strength between the entities
when found in an item. “Cue words” are words that are chosen because they indi-
cate the likelihood of what something is about. One of the first uses for “cue words”
was in detecting sentiment analysis about products on the Internet. Sentiment analy-
sis is the ability for web crawlers to understand the tone, be it positive or negative,
of conversations on the Internet For example Coca Cola might want to see what the
“Buzz” is about their latest flavor. Rather than doing a telephone survey they hire a
company to crawl and detect when that product is being discussed in a chat room or
blogs and what is being said about it. To detect the sentiment a set of “cue” words
are used to determine if the discussion is positive or negative. This is easier than try-
ing to do full linguistic analysis. Selection of cue words can be tricky. For example
the word “worse” would usually imply a negative. Thus someone might have writ-
ten “New Coke is the worse drink I have had”. But in the sentence is “I want New
Coke in the worse way” it is indicating a positive. The selection of the right list of
“cue words” for a particular relationship and then looking for their presence can
help identify better linkages.

The best solution, but most complex, is to do full linguistic analysis on the sen-
tences where the entity words occur to be sure that the linkage is warranted and the
strength of it. This is the least likely to have errors but is most complex and difficult
to provide unless the system is already a natural language index system.

The final product once the link analysis has been performed is a network dia-
gram that has the entities of interest as the nodes and the links as lines between the
nodes. Ideally the strength of the link should be indicated in some way by different
representations of the line (e.g., width of the line). The user may have their informa-
tion need filled by just seeing the network graph. But the network graph is another
way of showing a hit list. The hits are the items that contributed to the creation of
the connecting lines. The user should have the capability to click on a line and see
the items that contributed towards creation of that link. The user can then display
the individual items to see exactly what information was in the item that suggested
the relationship. As with clusters a network graph can be very dense and difficult to
understand. Thus as with clusters the users need the capability to filter some of the
nodes out of the display and to zoom in and navigate around the network. Zooming
in will allow expansion of parts of the network that may be hidden when shown in
the context of the complete network.

7.2 Presentation of the Hits

208

7.2.4  �Timeline Presentation

Although not as common as the above three presentations, an additional way of
showing the hits from a search in some instances can be a time line (actually date/
time but it is generalized to just “timeline” even though most presentations are date
oriented rather than time within date). In the right circumstances this can signifi-
cantly reduce the users time in finding the information needed. The trouble with
ranked hit lists is that the hits are weighted by similarity to the search in ranked
order, but time is not typically a factor in that display. Thus if the highest weighted
information is years old it will be presented first. The most recent information may
be presented way down the list. GOOGLE accounts for this in their advanced search
where the user can constrain the results list to a date range and then the ranking oc-
curs for the hits within that range. That is equivalent to searching the “citation meta-
data” of an item (e.g., publish date) along with the normal text relevance weighted
search. When the user is looking for a specific question then time may not be as
important as similarity to the search. But in some cases the user is interested in
more recent information or how a topical area grew over time. There are two pos-
sible date/times of interest. The first is when a particular item was published. The
second is when information the item discusses (semantics of the item). Originally
when GOOGLE first experimented with this concept on their experimental web
site they had a more generalized view of the data. For example if you searched on
Automobile view: timeline example you will see a time line with the hits on the time
line (see Fig.Â€7.4). As with any visualization you can zoom in on a part of the time
line and have it expanded out in greater detail.

Eventually the business decision of what timeline aspect is most interesting by
GOOGLE led them to focus the time line on news rather than letting it be too gener-
ic. This then lead to GOOGLE News Timeline option made available on April 20,
2009 (http://newstimeline.googlelabs.com/) and search on a news story (example is
crash of Air France Plane). It presents news stories based upon that as a search. You
will notice there are false hits on other airline crashes since this is a ranked retrieval
system (see Fig.Â€7.5).

Central to display of a timeline presentation is the extraction of date and time
information in an item as additional metadata to be used in creating the display.
This may sound simple but the goal is to extract the date/time that is relevant to the
semantics of the item and not date/time relative to its publication (or at least keep
that as a different time data set). There are many different formats for date and time
along with textual definitions (e.g., last week, last month, a year ago) all of which
need during ingest to be mapped to a single entity class and process able format. As
with all of the other displays this is just a different way of organizing the hits to help
the user find the information they are interested in. The “drilling” down on the time
line will eventually lead to the links to specific items for the user to view. Some of
the aspects of the design of a timeline view to help the user are:

•	 Time (i.e., date/time) spans should be hierarchical in display in that larger time
windows are first displayed and then the user can “drill down” to more detailed
time periods

7 Information Presentation

209

Fig. 7.4â†œæ¸€ Original GOOGLE time line capability

Fig. 7.5â†œæ¸€ GOOGLE news timeline

7.2 Presentation of the Hits

210

•	 All of an items time references can be displayed by using different sizes for each
item to indicate how many time references are in each item (e.g., one time refer-
ence may be a single point, multiple may be a rectangle)

•	 The display needs simple navigation (e.g., arrows) along the axis for time to al-
low the user to navigate to new adjacent time periods.

7.3  �Display of the Item

Eventually the user has to look at the original item to find the specific information
they need along with the context around it. This requires the user to look at each
item. Techniques that help the user in finding the information they are potentially
interested in the item can also save the total time to find the information needed.

7.3.1  �Indicating Search Terms in Display

Display of the item can also influence how much time it takes a user to locate the
information he is interested in. In particular the user wants to be able to quickly
locate the text(s) in the item that was the basis behind its retrieval. This has his-
torically been accomplished via highlighting the search terms within the text of the
item. Highlighting has been experimented with using colors for the different search
terms but that can cause difficulties with users that have color recognition problems
and are thus not generally usable by all. The most common technique is to highlight/
bold the search terms in the text.

For short items that are only a couple of paragraphs long, highlighting is suf-
ficient and lets the user to quickly focus on the areas of potential interest. But when
an item is many pages long then other techniques can add significantly more insight
to the user than just highlighting. One technique that helps the user in quickly ori-
enting his focus is to display in a vertical display along either edge of the item what
search terms are found in which lines of text. Thus the user can quickly scroll down
through the item seeing which search term(s) are found together and helping in do-
ing a first level scan to decide where to read in more detail. This technique shows
how the information presentation can leverage off of the users visual ability to scan
to reduce the time it takes to locate potential information of value.

Also with long items where not all of the search terms are on the viewable
screen, the ability to jump from the current position to the next occurrence of a spe-
cific search term or any of the search terms also is very beneficial to the user. This
is made more powerful if the user can select (filter) in deciding which search terms
will be highlighted/jumped between.

But the real challenge is in knowing which search terms contributed most to
the retrieval of that item and being able to indicate that information to the user.
Quite often a user wants to refine their search to get better results. Knowing which

7 Information Presentation

211

search terms have been causing the current retrieval set lets them how best to mod-
ify their search. This becomes very difficult because the ranking algorithms do not
lend themselves to understanding the contribution of individual terms to an items
retrieval. Even given that information there is a complex human factors question on
how to display that information to the user so they can take an action to improve
their search based upon the presentation.

7.3.2  �Text Summarization

Indicating important terms in items help the user focus on the parts of the item that
are most likely to be of value to the users information need. The nature of most
items on a particular topic is that there will be significant redundancy in each item
describing the same basic facts before it expands upon those facts. A user in trying
to answer their information need spends a lot of time redundantly reading informa-
tion they are already aware of. In many cases they will not find any new information
in the items they review.

The solution to this problem is text summarization. Examples of summaries that
are often part of any item are titles, table of contents, and abstracts with the abstract
being the closest to a summarization of the important ideas in an item. The abstract
can be used to represent the item for search purposes or as a way for a user to deter-
mine the utility of an item without having to read the complete item. There are two
classes of text summarization with the first being to summarize the text within an
item eliminating redundancy and focusing on the most important information. The
second level is to summarize text between multiple items. Summarization of the
item could significantly save the user time in understanding the information in the
item. If the summaries were made short enough they could be used as the snippet in
the hit list, reducing further the need for a user to open a complete item to see if it
has information of value. Another factor that can be used in summarization is if the
goal is to summarize the complete item or if the summarization should be focused
around the topics indicated by the terms in the users query.

The summarization process is typically done in three steps. First potential mate-
rial within the item is identified that is important. Next the material is compressed to
eliminate redundancy. Finally it is paraphrased to make it continuous and readable.
The simplest summarization can be extracts of phrases, sentences or even para-
graphs of an item. The more complex summarizations are a compiled abstract that
eliminates redundancy and summarizes the item. There are two ways of approach-
ing the summarization process. The first is to create a summarization of the item
(or items) based upon the content in the item. An alternative is to focus the sum-
marization on the parts of the item that are related to the query. Summarizations can
be either “extract” based or “abstract” based. Extracts are identifying textual units
within an item (e.g., sentences) that have high information value and extracting and
concatenating them Abstract based requires text understanding because it merges
ideas into a new textual descriptor. Endres-Niggenger in their analysis discovered

7.3 Display of the Item

212

that users sometimes prefer extract based summaries which allow the user to merge
the specifics into an abstract over system generated abstracts that may tend to dif-
fuse the information in the summary.

Luhn was one of the first to propose automated methods for summarization. He
proposed that the frequency of a word in an item indicates the word may be about
a topic within an item. Clusters of frequent words within a sentence would indicate
that sentence would be a good summarizing sentence for the item. He also felt this
should be adjusted by the frequency of the word in the database (e.g., similar to the
concept of inverse document frequency but based upon term frequency in database
not document frequency). It is not feasible to automatically generate a coherent nar-
rative summary of an item with proper discourse, abstraction and language usage
(Sparck Jones-93). Restricting the domain of the item can significantly improve the
quality of the output (Paice-93, Reimer-88). The more restricted goals for much of
the research is in finding subsets of the item that can be extracted and concatenated
(usually extracting at the sentence level) and represents the most important concepts
in the item. There is no guarantee of readability as a narrative abstract and it is
seldom achieved. It has been shown that extracts of approximately 20% of the com-
plete item can represent the majority of significant concepts (Morris-92). Different
algorithms produce different summaries. Just as different humans create different
abstracts for the same item, automated techniques that generate different summaries
does not intrinsically imply major deficiencies between the summaries.

Another historical method for extraction is based upon the work of Edmundson
which uses position in the text. The idea is that important sentences occur in specific
locations. Thus the position of the sentence in a paragraph and the position of the
paragraph in the overall text can be used to determine what sentences to extract as
summary sentences. The position is not universal but is dependent upon the type of
an item it is. For example news items have the important sentences in the beginning.
Scientific items tend to have them at the end. In addition to using the position, the
Title of an item attempts to describe what the item’s core idea is. Thus any sentences
where major words from the title are found should be weighted heavier. Finally
there are “cue” words/phrases as discussed earlier that are indicative of a good
summary sentence. Some examples of them are: “In summary”, “we have shown
that” and “the goal of this”. Using the above factors and assigning weights to them
it’s possible to assign weights to sentences to determine which sentences to extract.

There is no overall theoretic basis for the approaches, leading to many heuristic
algorithms. Kupiec etÂ€al. are pursuing statistical classification approach based upon
a training set reducing the heuristics by focusing on a weighted combination of
criteria to produce “optimal” scoring scheme (Kupiec-95). They selected the fol-
lowing five feature sets as a basis for their algorithm:

•	 Sentence Length Feature that requires sentence to be over five words in length
•	 Fixed Phrase Feature that looks for the existence of phrase “cues” (e.g., “in conclusion”)
•	 Paragraph Feature that places emphasis on the first ten and last five paragraphs

in an item and also the location of the sentences within the paragraph
•	 Thematic Word Feature that uses word frequency
•	 Uppercase Word Feature that places emphasis on proper names and acronyms.

7 Information Presentation

213

As with previous experiments by Edmundson, Kupiec etÂ€al. discovered that location
based heuristics gives better results than the frequency based features (Edmundson-69).

Extraction is simple, but the problem is how to link extracted sentences and
make them one single and meaningful summary. Abstraction is another main meth-
od used for summarization, and it is the main method human using. The special
characteristic is of the abstraction method is that it will include the sentences the
original text does not have. In order to build abstraction, people or machines need
to understand the original text. Abstraction method has higher intelligence than ex-
traction method, and it is also more difficult and complicated. Several commonly
used abstraction methods are: the model method, the term rewrite method, the event
relation method, and the concept stage method.

Text summarization is the process of condensing a source text while preserving
its information content and maintaining readability. The main difference between
automatic and human-based text summarization is that humans can capture and
convey subtle themes that permeate documents, whereas automatic approaches
have a large difficulty to do the same. Nonetheless, as the amount of information
available in electronic format continues to grow, research into automatic text sum-
marization has taken on renewed interest.

One of the major new forums for presenting the latest techniques and comparing
how well a text summarization approach works is in the Text Summarization Track
of the Text Analysis Conference sponsored yearly by the National Institute of Stan-
dards and Technology (NIST) which provides problem definitions and a ground truth
test data set to apply techniques to and compare results (http://www.nist.gov/tac).

In most cases, passage and sentence similarity analysis is performed along with
computing a significance value for each. Similar passages can be condensed to one
extract. In particular a sentence or passage that is closest to the centroid of a cluster
of similar sentences/passages is a candidate to be selected for the summary. When
going across multiple documents and additional rule such as sentences that are most
similar to the item and most dissimilar to sentences already selected for the summa-
ry also help in selecting the correct sentence (Goldstein et al.-2000). The more com-
plex approaches will attempt to understand the text to a deeper level than statistical.
They will use syntactic parsers and semantic analysis. There are many dictionaries/
thesaurus that can help support this process by looking up words of interest. Some
examples are WordNet (started in 1985), which has parts of speech and limited
semantic network relationships. ConceptNet from MIT Media Labs tries to merge
more of a common sense understanding of ideas with a natural language processing
approach. FrameNet from Berkley contains more in depth linguistic knowledge that
can be used in understanding text.

7.4  �Collaborative Filtering

Collaborative filtering is another mechanism to help users in determining how to
find information. The technique is based upon other users who have similar needs
and what information path they followed to answer their question. It also includes

7.4 Collaborative Filtering

214

feedback from other users as well as what actions they took. This is sometimes
referred to as collective intelligence where enough samples can be used in determin-
ing a consensus decision.

In collaborative filtering the system predicts what a user is interested in based
upon historical data it has collected on other users. When enough different previ-
ous user reactions are used the prediction accuracy improves. Thus a comparison is
made of the current state and attributes of the current user with a similar state and
attributes of previous users to predict the most likely next information item will be
of interest. This often referred to as passive filtering.

An alternative approach looks at specific entities and looks for users interested in
those entities and other entities. In this case users share their evaluation on specific
entities that can be used in the estimation process. It then predicts if a user is inter-
ested in specific entities—what other entities they are likely also to be interested in.
For example if a user indicates a wine they are interested in, the system can predict
other wines they may be interested in based upon previous users interested in that
wine. This is referred to as active filtering. The active filtering can be on specific
web pages (e.g., user ranking of them) or of a specific item—such as the wine
example.

One approach is memory based reasoning where the system tries to recognize
examples from the past that equate to the current information need. The technical
approach is divided into two major steps. The first is a prediction of what might be
of value to the user who has the information need. The second is generation of a
recommendation list for the user. In the memory based approach the system looks at
all of the other previous users of the system to determine users similar to the current
user. Then based upon that set of users and the current state and attributes the sys-
tem predicts the top n likely items of interest. This is also called nearest neighbor or
user based collaborative filtering. User based correlation uses Pearson correlation
while item based collaborative filtering uses adjusted cosine similarity (http://delab.
csd.auth.gr/~apostol/pubs/webmine2006.pdf.).

This is not related to search but more an augmentation to search or just browsing.
A user once they start looking at an item could either go back to hit list to see next
item or the system could recommend where to go to next (navigation aide).

The concept is collecting usage patterns by users of the system can recommend
for new users what information is of value. An earlier example already discussed
was the page rank formula that suggested that the importance of a web page is based
upon how much other pages (i.e., other users) link to that page.

There are two approaches to collecting collaborative filtering data: user centric
and data centric. User centric asks users to tell the system what they like. The sys-
tem then looks across large number of users for data they entered and when new
user is interested in one thing the system can suggest additional answers based upon
the model it has built for similar users. Data centric takes each entity as a point and
then sees what else users are interested in that are at that entity or page. Thus the
system can keep track of where users go next given a page. Or the system can track
what else a user buys when they buy one item. Based upon another user reaching
that page/item the system can recommend where to go next. It is based upon either

7 Information Presentation

215

users wanting to share information or passive filtering where the users allow the
system to keep track of their clicks.

7.4.1  �Page Ranking as Collaborative Filtering

A special case of collaborative filtering that is the Page ranking algorithm this was
the original basis of the GOOGLE search system. The algorithm is named after
Larry Page who developed it as part of his doctorial program at Stanford University.
The concept was that any web page has an information value based upon how many
other pages reference it. This is a passive form of collaborative filtering in that
aggregate actions of other users accumulate to determine the value of a particular
item. Thus a page gets a value based upon its popularity or how much it’s an author-
ity based upon how many other pages reference it.

A simple view of the approach is to just count the number of “in-links” from
other pages to a page to determine its value. The next level of complexity is saying
that not only the in-links but the page rank value of the pages that link to it should
also be a factor. Thus if a page is pointed to by a number of other pages of high value
it should get a higher page rank than a page with the same number of in-links from
pages with lower weights. An additional refinement in determining the value of the
“out-links” from a page is the number of out-links from a page. Some pages are just
references to lots of other pages and thus they do not have substantive information.
Those links will be of less value than links from textual pages that are talking about
particular topics. This leads to the following formula for Page Rank (A):

where PR(Di) is the page rank for page Di and C(Di) is the number of outlinks for
page Di. Since each pages rank value can effect the rank values of other pages, the
analysis process is an iterative process until the values stabilize. The trouble with
this process is that pages that have no inlinks would have a page rank of zero. To ac-
count for this and have some flexibility in weighting the page ranks, another factor
called a dampening factor is added. The dampening factor is “d” and the formula
for page rank now becomes:

A typical value for d is 0.85.
Another similar approach is called HITS. HITS is a little more dynamic in that

it is used to rank a hit list. It divides pages into pages that are pointed to by a num-
ber of pages—called authorities—and pages that have a number of out-links called
“hubs” This leads to algorithms defining “strong authorities” that is pointed to by a

PR(A) =
∑

Di

PR(Di)

C(Di)

PR(A) = (1 − d) + d
∑

Di

PR(Di)

C(Di)

7.4 Collaborative Filtering

216

number of “hubs” and a hub that points to many “strong authorities” is a “popular
hub”. This more a social networking approach to a number of items.

7.5  �Multimedia Presentation

One of the challenges in working with multimedia is how to create an interface
to enter searches and how to display the results. The methodologies vary based
upon the modality of the multimedia as discussed in Chap.Â€1. The user expects to
have a combination of structured search and multimedia search in the basic search
capability. The structured search is against the citation metadata that describes the
multimedia item. For example, the user expects to be able to include in his searches
constraints on the hit list by date ranges, file names and source information when
its available (e.g., what TV source that video indexing is from). Given the complex-
ity of multimedia search earlier search systems did not provide direct search of the
multimedia. Instead they indexed the text around the link to the multimedia, the
file names associated with multimedia objects and when the user entered a textual
query that was the index that was searched. This section focuses on when the actual
multimedia is searched.

Following the format of Chap.Â€ 4 on indexing multimedia by addressing each
modality separately, the presentations will be addressed in a similar order.

7.5.1  �Audio Presentation

ChapterÂ€4 discussed the indexing techniques applied against audio sources. In most
cases what is of interest is what is being spoken in audio sources (i.e., transcrib-
ing the spoken words into text). But in addition there is other metadata that can be
found such as speaker identification and other special identified sounds can be rec-
ognized (e.g., music, explosions). But typically the special identified sounds need
to be strained before the audio is indexed to be included in the index of the audio
sources.

When the speech in the audio is being searched (the most common case) the
speech is being transcribed into text typically in Unicode. The text is then indexed
using the text indexing algorithms discussed for normal textual items. Since the
index is a textual index the user interface can also be textual. That is, the user enters
a textual search and it is run against the index. The interface for search creation is
a standard textual user interface. For the other identified sounds or for locating a
specific person leveraging off speaker identification, the interface is mainly textual.
The one exception is when a user is searching for music. In that case the interface
can allow the user to play some music and the system will take that audio input and
search on it. The user will inform the system they are ready to search for music and
then immediately play the music to be searched. The interactive interface is more

7 Information Presentation

217

typical than the user pointing to previously stored audio file to use as the query.
Although that approach would also be technically feasible if desired. One of the
first major uses for this type searches was to validate that commercials were played
the number of times their contract required on radio and television by monitoring a
broadcast source.

The place where the interfaces begin to take on special characteristics is on dis-
play of the search results. Since there is a direct correlation between the transcribed
text and the original audio, both are used in the results GUI. The results can be or-
dered by ranking and could even be displayed using clustering techniques because
the index is textual for the case of transcribed text from Automatic Speech Recog-
nition (ASR) indexing. If phonetic indexing is used then only ranking is available
because there are no semantic units (words) that could be clustered. The ranking is
modified to be based upon the phonetic search. In the case of ASR, when a linear
hit list is displayed, the system can create “snippets” of the transcribed text to be
included in the hit list. When phonetic search (or special sound search) is used,
the system can only provide the file name of the original source and an offset into
it. Thus the latter ASR approach allows contextual information of the transcribed
words around the hit term to be used by the user to understand the context of the
search hits especially useful when homonyms are the search term (e.g., blew versus
blue).

A major new capability in the GUI is when a user selects a specific item to be
opened for detailed review. In the case of phonetic search when a specific item
is opened the system knows the locations of all the found search terms. Thus the
system can allow a user to jump from one term to another and play the audio at that
point. Actually systems start playing the audio slightly before the hit point to let the
user get orientated on the audio. When the audio has been transcribed then there is
a complete textual item that can be displayed. But the textual item is mapped to the
original audio source (i.e., each word in the transcription has the offset of where it
occurred in the audio). In this case when the textual item is displayed there is also an
associated multimedia audio player that is synchronized with the textual item. All of
the search terms in the textual item can be highlighted to allow the user to quickly
focus on where in the transcription the hit words were found. The user then has the
option of looking at the context of each hit location and validating if that might be
the information they are looking for. For example the words “plane” and “plain”
are phonetically identical but the other words in the context will disambiguate if an
aeroplane, a woodworking tool or descriptive adjective is being spoken. Since the
speech to text process is errorful (at best in the 90% accuracy but often more in the
75–80% accuracy) the user will in many cases need to play the original source to
be sure they are getting the correct information. This is accomplished by using the
offset of every transcribed word to the location in the audio for that word. When the
user clicks on the highlighted search term in the transcribed text (or any word in the
transcribed text) the system can start to play the audio just before when that word
was spoken. At that point the user can use the playback controls of the multimedia
audio player to control the playback (e.g., pause, restart, speed up playback, slow
down playback, etc). Since there is a direct linkage between the transcribed text and

7.5 Multimedia Presentation

218

the audio, as the user is playing the audio the system can highlight each transcribed
word as it’s being played (highlighting the text is synchronized with the audio play-
back). For places where the textual word was not recognized or there is no text in
the audio, the highlighting freezes in the transcribed text until the next transcribed
word is played.

When speaker identification is also available the textual interface will partition
the words spoken into which speaker (or indicating an unknown speaker) is say-
ing the words. When you are processing an original textual item (not multime-
dia) there are many syntactical and formatting cues in the textual item on what
is being described and they are used by the user to find information of value. In
audio transcription those cues are not in the audio but have to be, where possible,
extrapolated from the audio—which means there will be errors in those cues. The
most significant ones are sentence boundaries and capitalization. Capitalization is
useful to help the user identify if a person is being discussed or just a noun or other
descriptive word (e.g., “Bush” versus “bush”). Sentence boundaries help in under-
standing breaks that separate the context from one idea to the next idea in the next
sentence. Systems attempt to identify sentence boundaries in audio by looking for
pauses that often come as a person switches from one sentence to another. Capi-
talization is much harder but for example when letters are spoken versus words it
is typically an acronym for an organization and thus should be capitalized. Also in
the original training of the speech to text system the training data is appropriately
capitalized and that capitalization carries over to the dictionary associated with the
ASR process. So for example even if “ASR” was not part of the training data the
system would capitalize it. In addition a proper name like Italy would be transcribed
with a capital letter.

Many systems are starting to cascade additional processing capabilities on the
transcribed text. In particular machine translation has been applied to the tran-
scribed text to change from a news program in a language a user does not under-
stand to a news program in the user’s native language. This process introduces a
third “associatively” linked item. There is the original audio along with the multi-
media player for it. There is the transcribed text along with links from each word
in the transcribed text to the original audio. There is now a machine translation of
the transcribed text that is produced (directly associated) with the transcribed text
but is also associatively linked to the original audio. Translation is typically not
done on a word by word basis but is applied to a sentence or a phrase. The trans-
lated text is not a positional word for word correlation to the original transcribed
text. Thus the relative time links in the translated text to the audio are not to the
word level but the start of each translated sentence/phrase. All of the words in a
translated segment will point to the same audio positioning start point in the au-
dio file at just before the beginning of the translated segment. If during playback
of the audio the translated text is synchronized and highlighted with the audio
playback, it will be more a step function on highlighting the text where a phrase
will be statically highlighted until the first word in the next phrase is reached. See
Sect.Â€7.5.3 on video to see an example of audio transcription applied to television
news audio.

7 Information Presentation

219

7.5.2  �Image Item Presentation

The presentation for search of audio demonstrated close parallel to textual presen-
tations because the audio was converted to text and systems can leverage off the
textual options. When considering image search those options do not exist to the
same degree. As noted in the introduction to this section historically the multimedia
image was not indexed. Instead the text associated with the image was indexed.
This allows for a simple user interface that is textual in nature. The user can type in
a search statement on what they want to see and the system will search the indexed
text associated with images and return in a ranked list the possible hits. Since the
user goal is to find an image, typically a thumbnail of the image is presented to the
user in the sequential ranked hit list. FigureÂ€7.6 is from a simple GOOGLE search
which also shows additional filtering options that can be used to get more precise
results.

Google search is primarily focused on text associated with the image. But
GOOGLE does allow filtering on specific characteristics of an image or categoriza-
tions that they have preprocessed the image to belong to. For example, you can filter
on image size, colors or if the image is of a face, clip art, photo or line drawing.

The goal in the information retrieval system is to index the semantics of the im-
age and not just the text associated with the image. The search interface must allow
a user to identify an image to be searched to find other images like it. In addition to
identifying an image another critical aspect of defining the search is to be able to se-
lect a subset of the displayed image as the search image versus the total image. That

7.5 Multimedia Presentation

Fig. 7.6â†œæ¸€ Google image search results page

220

can significantly increase the accuracy of the search and save the user significant
time. Without the capability to “rubber band” via a box in the image thereby defin-
ing a subset of an image, the user would need to use a multimedia edit tool to “crop”
the original image to define a new image of exactly what they want to search for.

In addition to the image to be used as the query, the user should also be able to
adjust parameters on how important characteristics of the image are to increase
the precision. For example the user should be able to specify how import color is
to the search. If I am searching for a car and the image I have is for a red car, it
would be useful to indicate to the system that I am more interested in the shape of
the object—a car—then finding images that have a lot of red in them. The specific
attributes that the user can tune will be specific to what the attributes from the image
are indexed. Since the search process of images will be significantly more likely to
return erroneous images, another option is to specify a threshold that defines the
minimum required relevancy of search hits—if they want any hit or those with a
high correlation to the search image. This is useful in reducing the size of the hit file
and the overhead of creating the display page (e.g., the time to create the hit display
page). FigureÂ€7.7 is from the PixLogic system and shows one approach to the search
user interface. It shows how to “rubber band” around just the burning car to make
the image search more focused on it. It has thresholds for color, the importance of
shape, foreground, background and color as well as a setting for confidence level.
On the left hand side it’s possible to specify multiple images and include Boolean
logic between them. When an “and” is specified between two images in a search it
means that the indexable attributes from both images are treated as if they were all

Fig. 7.7â†œæ¸€ Image search interface

7 Information Presentation

221

from a single image and those attributes are used in the search process against the
attributes associated with other images. Unless the confidence level is set to high
the system will return images that have subsets of the attributes. It is not a “strict”
AND in the Boolean sense where a returned hit must have all of the specifications
in it. The capability of adding logic to image searchable features can be seen clearer
in Fig.Â€7.8 where search for text within the image is also added to the query frame.

Imbedded within an image there are also additional artifacts that by them selves
can be segmented and made searchable. The segmentation (just identifying that por-
tion of the image with the artifact) will increase the accuracy and processing of the
artifact. The best example is text that is imbedded within the image. The text within
an image should not be searched using the same algorithms that objects within an
image are searched for. Instead the text within an image can easily be identified and
then it should be searchable where the user enters a textual query. The technologies
to make the text searchable are discussed in Chap.Â€4 (e.g., optical character reading,
text image segmentation). But the presentation interface should allow the user to en-
ter text to be found as text within the image. That should be part of an overall search
statement that should allow both text in images as well as objects to be part of the
query specification. An example of that more complex search statement is shown for
PixLogic in Fig.Â€7.8 the search is looking for a car accident as an image and where
there is text on the image with the word accident (e.g., subtitled news displays).

Another artifact that can be separately identified in an image with focused index-
ing is logos. They are very useful in identifying some aspects of the topic within an
image. In this case the user should be able to present a logo looking for images that
have that logo. In addition to artifacts such as they discussed there are other objects

Fig. 7.8â†œæ¸€ Image and text search

7.5 Multimedia Presentation

222

that might have an importance to a set of users that focused attempts of uniquely
identifying them within an image may significantly improve the accuracy of a users
search. For example identifying maps within an image or where they are the image or
wiring diagrams (these have a lot in common in terms of image characteristics) could
be useful allowing a user to specify they want to search to find that specific generic
object rather than presenting an image an finding other image of a map and finding
other images like it. This would again have a textual interface where the list of these
special objects would be available that a user could select from as part of their query.

The search results from an image search is a ranked list of images and as men-
tioned the standard presentation is by showing the title (e.g., file name) of the im-
age along with a thumbnail of the image. When a user selects a particular image to
display from the hit list the image should come up in its own display window. Some
non-critical but useful display operations associated with display of an image is to
be able to “zoom” in on a portion of the image to see it in more detail. But the one
function that is needed when displaying an image is to select that image (or a rubber
banded portion of the image) to be included on a follow-on search.

Although a sequential list of the images along with the name associated with the
image is one display approach. Since the user is interested in looking for images
a more dense display where only the thumbnails are displayed getting as many as
possible on the display page. This will allow the user to quickly scan the thumbnail
search results for the images they are looking for. The human visual system can
process a lot of image very quickly and is optimized to do that looking for the real
“information need” of the user. A characteristic of this display that is useful is the
ability to define the size of the thumbnails—making them all larger will make them
easier to recognize but have fewer per display page while smaller has the opposite
effect. FigureÂ€7.9 from PiXlogic shows how multiple search hits can be displayed
more effectively than a sequential display.

Fig. 7.9â†œæ¸€ Display of maximum number of thumbnails

7 Information Presentation

223

Another query interface is being tested by GOOGLE is their GOGGLE interface
for cell phones (http://www.google.com/mobile/goggles/#dc=gh0gg). The idea is
that everyone has cell phones. To define the query the user would use the video/
image capture capability of the cell phone to define what they are searching for.
GOOGLE would then provide them information about what the image defines. Ex-
amples would be if the image was a wine label or some other product label the
system could return all the information it knows about that product. If the image is
of a street or historic site then the system would show maps of where you are at or
explain what the historic site is back to the sender. Thus instead of a traditional cli-
ent the interactive interface is the smaller portable device the users have with them.

7.5.3  �Video Presentation

As mentioned in Chap.Â€4 on indexing, a video is really a combination of both an au-
dio track and an image track. When looking to the search entry and results displays
for a video, all of the discussions and the results presentations discussed in the last
two sections (audio and image) are applicable and both could be combined in the
same query. In addition to those there are additional tracks of information that are
correlated to relative time within the video. In particular there is closed captioning
and teletext that could also be available an indexed. They would add additional text
entry aspects for the search. The query generation display would have areas for
search entry for images to be searched as frames within the video as well as textual
entry to search the audio transcription, machine translation (if available), text on the
images and closed captioning/teletext.

The search results options would be similar to image search except the thumbnail
would be associated with the first frame in the video that satisfied the image search.
The thumbnail would also be point to a video that would be opened in a video
player when selected. If only an image search was entered, then the thumbnail only
display would be optimum displaying as many different hit videos as possible on
the display screen. It there was an associated text aspect to the search then snippets
could also be displayed to help indicate the context of some of the text that satisfied
the query.

When considering textual searches if the user opens the item, the full text can be
displayed with the hit terms highlighted. When an image is part of the search a dif-
ferent strategy is needed in generating the display of a particular video item. When
an item is opened up then what is displayed would be the thumbnails of all of the
scenes within that video that satisfied the query. Thus, for video there is a two tiered
display process. The thumbnail representing the hit of a video item would be the
thumbnail of the scene that has the highest weight for that item. But when the item
is opened the thumbnails for all of the hit scenes would be displayed along with an
indication of the confidence level of that scene matching the search image. The risk
associated with this display hierarchy is that the highest ranked scene that is used in
the hit list might be a non-relevant frame. A lower weighted frame could satisfy the

7.5 Multimedia Presentation

224

user’s information need but the user would never know and skip over that item. This
is similar to when a user looking at a textual snippet thinks the item is not relevant
when there could be lower weighted relevant information in an item. Clicking on
any of the thumbnails representing hits would start the video item from playing at
that offset within the item.

Since the multimedia item is now a video there is an additional search option
available where the search query is a video clip. The concept is that the user is try-
ing to find where a video clip or subsets of a search video clip are found within the
video item database. This is a more complex search because it is possible that part
of the search video is found in the video item as well as the entire search video clip.
When a specific video item is opened the video search clip needs to be mapped to
the locations within the video item that satisfy some or the entire video clip. One ap-
proach to displaying that information is to have a linear line representing the search
video clip and another line representing the video item and showing mapping to
segments within the video item that satisfy some or all of the video clip.

Since a lot of video (e.g., television) has an audio track the speech to text (ASR)
capabilities described for audio sources also apply to video items like television
news. The Broadcast Monitoring System (BMS) from BBN Technologies provides
an example how there is correlation between the transcribed text and audio (in this
case television video/audio combination). In addition to transcribing the audio track
of the news the BMS system also uses Language Weaver to translate the transcribed
text. The goal of the BMS is to provide a mechanism to monitor live TV and via a
“watch list” (think of it like an “alert profile”) of terms let the user know whenever
anything of importance is happening. FigureÂ€7.10 from the BMS system shows an
example of how a user interface displays all three; audio (or in their case video from
which audio is transcribed), the audio transcription (Arabic in this example) and the
machine translation.

The display not only displays the translation along with the original audio tran-
scribed text vernacular, it synchronizes the play of the video with the text being
displayed. By clicking on any word, in the transcribed text or machine translation,

Fig. 7.10â†œæ¸€ BMS results display

7 Information Presentation

225

the video will automatically start playing at that location. The BMS also does entity
identification on the transcribed text and machine translation. It identifies people,
places and organizations in different colors to make it easier for users to locate them
in the text. As the video plays the current word being spoken is also highlighted.

The translated text is also searchable but if the transcribed text is 85–95% accu-
rate the translated text will be significantly less than that based upon the impact of
the mis-recognized words in the transcription process. But errors in the transcription
process and the translation process may not have a direct correlation to inaccuracy
in the search process. Most of the words in text are not ever searched on. What are
typically searched on are names and other descriptive words that tend to be long in
nature. The speech to text process tends to be more accurate for longer words with
more of the errors being on shorter words. If the longer words are transcribed cor-
rectly they will have a stronger likelihood to be translated correctly. The initial goal
of the speech to text and machine translation process is to create the index to the
original multimedia object not as a replacement for it. Thus the cascading errors in
the process may not have as significant effect on overall user search performance as
indicated by the accuracy of each step. That being said the ultimate vision would be
if both processes could be accurate enough to be directly usable in addition to the
multimedia object.

7.6  �Human Perception and Presentation

The primary focus on Information Retrieval Systems has been in the areas of in-
dexing, searching and clustering versus information display. This has been due to
the inability of technology to provide the technical platforms needed for sophisti-
cated display, academic’s focusing on the more interesting algorithmic based search
aspects of information retrieval, and the multi-disciplinary nature of the human-
computer interface (HCI). The core technologies needed to address sophisticated
information visualization have matured, supporting productive research and imple-
mentation into commercial products. The commercial demand for these technolo-
gies is growing with availability of the “information highway.” System designers
need to treat the display of data as visual computing instead of treating the monitor
as a replica of paper. Functions that are available with electronic display and visual-
ization of data that were not previously provided are (Brown-96):

•	 modify representations of data and information or the display condition (e.g.,
changing color scales)

•	 use the same representation while showing changes in data (e.g., moving be-
tween clusters of items showing new linkages)

•	 animate the display to show changes in space and time
•	 enable interactive input from the user to allow dynamic movement between in-

formation spaces and allow the user to modify data presentation to optimize
personal preferences for understanding the data.

•	 Create hyperlinks under user control to establish relationships between data

7.6 Human Perception and Presentation

226

If information retrieval had achieved development of the perfect search algorithm
providing close to 100% precision and recall, the need for advances in informa-
tion visualization would not be so great. But reality has demonstrated in TREC
and other information forums that advancements are not even close to achieving
this goal. Thus, any technique that can reduce the user overhead of finding the
needed information will supplement algorithmic achievements in finding potential
relevant items. Information Visualization addresses how the results of a search
may be optimally displayed to the users to facilitate their understanding of what
the search has provided and their selection of most likely items of interest to read.
Visual displays can consolidate the search results into a form easily processed
by the user’s cognitive abilities, but in general they do not answer the specific
retrieval needs of the user other than suggesting database coverage of the concept
and related concepts.

The theoretical disciplines of cognitive engineering and perception provide a
theoretical base for information visualization. Cognitive engineering derives de-
sign principles for visualization techniques from what we know about the neural
processes involved with attention, memory, imagery and information processing
of the human visual system. By 1989 research had determined that mental depic-
tion plays a role in cognition that is different from mental description. Thus, the
visual representation of an item plays as important a role as its symbolic definition
in cognition.

Cognitive engineering results can be applied to methods of reviewing the con-
cepts contained in items selected by search of an information system. Visualization
can be divided into two broad classes: link visualization and attribute (concept)
visualization. Link visualization displays relationships among items. Attribute vi-
sualization reveals content relationships across large numbers of items. Related to
attribute visualization is the capability to provide visual cues on how search terms
affected the search results. This assists a user in determining changes required to
search statements that will return more relevant items.

7.6.1  �Introduction to Information Visualization

The beginnings of the theory of visualization began over 2,400 years ago. The
philosopher Plato discerned that we perceive objects through the senses, using the
mind. Our perception of the real world is a translation from physical energy from
our environment into encoded neural signals. The mind is continually interpreting
and categorizing our perception of our surroundings. Use of a computer is another
source of input to the mind’s processing functions. Text-only interfaces reduce the
complexity of the interface but also restrict use of the more powerful information
processing functions the mind has developed since birth.

Information visualization is a relatively new discipline growing out of the de-
bates in the 1970s on the way the brain processes and uses mental images. It re-
quired significant advancements in technology and information retrieval techniques

7 Information Presentation

227

to become a possibility. One of the earliest researchers in information visualization
was Doyle, who in 1962 discussed the concept of “semantic road maps” that could
provide a user a view of the whole database. The road maps show the items that
are related to a specific semantic theme. The user could use this view to focus his
query on a specific semantic portion of the database. The concept was extended
in the late 1960s, emphasizing a spatial organization that maps to the information
in the database. It implemented a non-linear mapping algorithm that could reveal
document associations providing the information required to create a road map or
spatial organization.

In the 1990s technical advancements along with exponential growth of avail-
able information moved the discipline into practical research and commercializa-
tion. Information visualization techniques have the potential to significantly en-
hance the user’s ability to minimize resources expended to locate needed informa-
tion. The way users interact with computers changed with the introduction of user
interfaces based upon Windows, Icons, Menus, and Pointing devices (WIMPs).
Although movement in the right direction to provide a more natural human in-
terface, the technologies still required humans to perform activities optimized for
the computer to understand. A better approach was stated by Donald A. Norman
(Rose-96):

… people are required to conform to technology. It is time to reverse this trend, time to
make technology conform to people

Norman stresses that to optimize the user’s ability to find information, the focus
should be on understanding the aspects of the user’s interface and processing of
information which then can be migrated to a computer interface (Norman-90).

Although using text to present an overview of a significant amount of informa-
tion makes it difficult for the user to understand the information, it is essential in
presenting the details. In information retrieval, the process of getting to the relevant
details starts with filtering many items via a search process. The result of this pro-
cess is still a large number of potentially relevant items. In most systems the results
of the search are presented as a textual list of each item perhaps ordered by rank.
The user has to read all of the pages of lists of the items to see what is in the Hit list.
Understanding the human cognitive process associated with visual data suggests
alternative ways of presenting and manipulating information to focus on the likely
relevant items. There are many areas that information visualization and presentation
can help the user:

1.	 reduce the amount of time to understand the results of a search and likely clusters
of relevant information

2.	 yield information that comes from the relationships between items versus treat-
ing each item as independent

3.	 perform simple actions that produce sophisticated information search functions.

A study was performed by Fox etÂ€ al. using interviews and user task analysis
on professionals in human factors engineering, library science, and computer
science to determine the requirements to optimize their work with documents

7.6 Human Perception and Presentation

228

(Fox-93b). Once past the initial requirement for easy access from their office, the
researchers’ primary objective was the capability to locate and explore patterns
in document databases. They wanted visual representations of the patterns and
items of interest. There was a consistent theme that the tools should allow the
users to view and search documents with the system sensitive to their view of
the information space. The users wanted to be able to focus on particular areas
of their interest (not generic system interest definitions) and then easily see new
topical areas of potential interest to investigate. They sought an interface that
permits easy identification of trends, interest in various topics and newly emerg-
ing topics. Representing information in a visual mode allows for cognitive paral-
lel processing of multiple facts and data relationships satisfying many of these
requirements.

The exponential growth in available information produces large Hit files from
most searches. To understand issues with the search statement and retrieved items,
the user has to review a significant number of status screens. Even with the review,
it is hard to generalize if the search can be improved. Information visualization
provides an intuitive interface to the user to aggregate the results of the search into
a display that provides a high-level summary and facilitates focusing on likely cen-
ters of relevant items. The query logically extracts a virtual workspace (information
space) of potential relevant items which can be viewed and manipulated by the user.
By representing the aggregate semantics of the workspace, relationships between
items become visible. It is impossible for the user to perceive these relationships
by viewing the items individually. The aggregate presentation allows the user to
manipulate the aggregates to refine the items in the workspace. For example, if
the workspace is represented by a set of named clusters (name based upon major
semantic content), the user may select a set of clusters that defines the next iteration
of the search.

An alternative use of aggregates is to correlate the search terms with items re-
trieved. Inspecting relevant and non-relevant items in a form that highlights the
effect of the expanded search terms provides insights on what terms were the major
causes for the results. A user may have thought a particular term was very impor-
tant. A visual display could show that the term in fact had a minimal effect on the
item selection process, suggesting a need to substitute other search terms.

Using a textual display on the results of a search provides no mechanism to
display inter-relationships between items. For example, if the user is interested in
the development of a polio vaccine, there is no way for a textual listing of found
items to show “date” and “researcher” relationships based upon published items.
The textual summary list of the Hit file can only be sorted via one attribute, typi-
cally relevance rank.

Aspects of human cognition are the technical basis for understanding the de-
tails of information visualization systems. Many techniques are being developed
heuristically with the correlation to human cognition and perception analyzed
after the techniques are in test. The commercial pressures to provide visualiza-
tion in delivered systems places the creativity under the intuitive concepts of the
developer.

7 Information Presentation

229

7.6.2  �Cognition and Perception

The user-machine interface has primarily focused on a paradigm of a typewriter. As
computers displays became ubiquitous, man-machine interfaces focused on treating
the display as an extension of paper with the focus on consistency of operations.
The advent of WIMP interfaces and simultaneous parallel tasks in the user work
environment expanded the complexity of the interface to manipulate the multiple
tasks. The evolution of the interface focused on how to represent to the user what
is taking place in the computer environment. The advancements in computer tech-
nology, information sciences and understanding human information processing are
providing the basis for extending the human computer interface to improve the in-
formation flow, thus reducing wasted user overhead in locating needed information.
Although the major focus is on enhanced visualization of information, other senses
are also being looked at for future interfaces. The audio sense has always been part
of simple alerts in computers. Illegal inputs are usually associated with a beep, and
more recently users have a spectrum of audio sounds to associate with everything
from start-up to shut down. The sounds are now being replaced by speech in both
input and output interfaces. Still in the research arena is the value of using audio
to encapsulate information (e.g., higher pitch as you move through an information
space plus increased relevance). The tactile (touch) sense is being addressed in the
experiments using Virtual Realty (VR). For example, VR is used as a training en-
vironment for areas such as medical procedures where tactile feedback plays an in-
creasing role. Olfactory and taste are two areas where practical use for information
processing or computer interfaces in general has yet to be identified. For Informa-
tion Retrieval Systems, the primary area of interest is in information visualization.

7.6.2.1  �Background

A significant portion of the brain is devoted to vision and supports the maximum
information transfer function from the environment to a human being. The center
of debates in the 1970s was whether vision should be considered data collection or
also has aspects of information processing. In 1969 Arnheim questioned the then
current psychological division of cognitive operations of perception and thinking as
separate processes (Arnheim-69). Until then perception was considered a data col-
lection task and thinking as a higher level function using the data. He contended that
visual perception includes the process of understanding the information, providing
an ongoing feedback mechanism between the perception and thinking. He further
expanded his views arguing that treating perception and thinking as separate func-
tions treats the mind as a serial automata (Arnheim-86). Under this paradigm, the
two mental functions exclude each other, with perception dealing with individual
instances versus generalizations. Visualization is the transformation of information
into a visual form which enables the user to observe and understand the informa-
tion. This concept can be extended where the visual images provide a fundamental-

7.6 Human Perception and Presentation

230

ly different way to understand information that treats the visual input not as discrete
facts but as an understanding process. The Gestalt psychologists postulate that the
mind follows a set of rules to combine the input stimuli to a mental representation
that differs from the sum of the individual inputs (Rock-90):

Proximity	� nearby figures are grouped together
Similarity	� similar figures are grouped together
Continuity	� figures are interpreted as smooth continuous patterns rather than

discontinuous concatenations of shapes (e.g., a circle with its
diameter drawn is perceived as two continuous shapes, a circle
and a line, versus two half circles concatenated together)

Closure		� gaps within a figure are filled in to create a whole (e.g., using
dashed lines to represent a square does not prevent understanding
it as a square)

Connectedness	� uniform and linked spots, lines or areas are perceived as a single
unit

Shifting the information processing load from slower cognitive processes to faster
perceptual systems significantly improves the information-carrying interfaces be-
tween humans and computers (Card-96). There are many ways to present informa-
tion in the visual space. An understanding of the way the cognitive processes work
provides insights for the decisions on which of the presentations will maximize the
information passing and understanding. There is not a single correct answer on the
best way to present information.

7.6.2.2  �Aspects of the Visualization Process

One of the first-level cognitive processes is preattention, that is, taking the signifi-
cant visual information from the photoreceptors and forming primitives. Primitives
are part of the preconscious processes that consist of involuntary lower order infor-
mation processing (Friedhoff-89). An example of this is the ease with which our
visual systems detect borders between changes in orientation of the same object. In
Fig.Â€7.11 the visual system detects the difference in orientations between the left and
middle portion of the figure and determines the logical border between them. An
example of using the conscious processing capabilities of the brain is the detection
of the different shaped objects and the border between them shown between the left
side and middle of the Fig.Â€7.11. The reader can likely detect the differences in the
time it takes to visualize the two different boundaries.

This suggests that if information semantics are placed in orientations, the mind’s
clustering aggregate function enables detection of groupings easier than using dif-
ferent objects (assuming the orientations are significant). This approach makes
maximum use of the feature detectors in the retina.

The preattentive process can detect the boundaries between orientation groups of
the same object. A harder process is to identify the equivalence of rotated objects.
For example, a rotated square requires more effort to recognize it as a square. As we

7 Information Presentation

231

migrate into characters, the problem of identification of the character is affected by
rotating the character in a direction not normally encountered. It is easier to detect
the symmetry when the axis is vertical. FigureÂ€7.12 demonstrates these effects.

Another visual factor is the optical illusion that makes a light object on a dark
background to appear larger than if the item is dark and the background is light.
Making use of this factor suggests that a visual display of small objects should use
bright colors. An even more complex area is the use of colors. Colors have many
attributes that can be modified such as hue, saturation and lightness. Hue is the
physiological attribute of color sensation. Saturation is the degree to which a hue
is different from a gray line with the same lightness, while lightness is the sensa-
tion of the amount of white or black. Complementary colors are two colors that
form white or gray when combined (red/green, yellow/blue). Color is one of the
most frequently used visualization techniques to organize, classify, and enhance
features (Thorelli-90). Humans have an innate attraction to the primary colors (red,
blue, green and yellow), and their retention of images associated with these colors
is longer. But colors also affect emotion, and some people have strong aversion to
certain colors. The negative side of use of colors is that some people are color blind
to some or many colors. Thus any display that uses colors should have other options
available.

Depth, like color, is frequently used for representing visual information. Clas-
sified as monocular cues, changes in shading, blurring (proportional to distance),
perspective, motion, stereoscopic vision, occlusion and texture depict depth. Most
of the cues are affected more by lightness than contrast. Thus, choice of colors that
maximizes brightness in contrast to the background can assist in presenting depth

Fig. 7.11â†œæ¸€ Preattentive detection mechanism

Fig. 7.12â†œæ¸€ Rotating a square
and reversing letters in
“REAL” R L R E A L

AE

7.6 Human Perception and Presentation

232

as a mechanism for representing information. Depth has the advantage that depth/
size recognition are learned early in life and used all of the time. Gibson and Walk
showed that six-month-old children already understand depth suggesting that depth
may be an innate concept (Gibson-60). The cognitive processes are well developed,
and the use of this information in classifying objects is ubiquitous to daily life. The
visual information processing system is attuned to processing information using
depth and correlating it to real world paradigms.

Another higher level processing technique is the use of configural aspects of a
display (Rose-95). A configural effect occurs when arrangements of objects are pre-
sented to the user allowing for easy recognition of a high-level abstract condition.
Configural clues substitute a lower level visual process for a higher level one that
requires more concentration (see preattentive above). These clues are frequently
used to detect changes from a normal operating environment such as in monitor-
ing an operational system. An example is shown in Fig.Â€7.13 where the sides of a
regular polygon (e.g., a square in this example) are modified. The visual processing
system quickly detects deviations from normally equally sized objects.

Another visual cue that can be used is spatial frequency. The human visual and
cognitive system tends towards order and builds a coherent visual image whenever
possible. The multiple spatial channel theory proposes that a complex image is con-
structed from the external inputs, not received as a single image. The final image is
constructed from multiple receptors that detect changes in spatial frequency, orien-
tation, contrast, and spatial phase. Spatial frequency is an acuity measure relative to
regular light-dark changes that are in the visual field or similar channels. A cycle is
one complete light-dark change. The spatial frequency is the number of cycles per
one degree of visual field. Our visual systems are less sensitive to spatial frequen-
cies of about 5–6 cycles per degree of visual field (NOTE: one degree of visual
field is approximately the viewing angle subtended by the width of a finger at arms
length). Other animals have significantly more sensitive systems that allow them
to detect outlines of camouflaged prey not detected by humans until we focus on
the area. Associated with not processing the higher spatial frequencies is a reduc-
tion in the cognitive processing time, allowing animals (e.g., cats) to react faster
to motion. When looking at a distinct, well defined image versus a blurred image,
our visual system will detect motion/changes in the distinct image easier than the
blurred image. If motion is being used as a way of aggregating and displaying in-
formation, certain spatial frequencies facilitate extraction of patterns of interest. Dr.
Mary Kaiser of NASA-AMES is experimenting with perceptually derived displays
for aircraft. She is interested in applying the human vision filters such as limits of

Fig. 7.13â†œæ¸€ Distortions of a
regular polygon

7 Information Presentation

233

spatial and temporal resolution, mechanisms of stereopsis, and attentional focus to
aircraft (Kaiser-96).

The human sensory systems learn from usage. In deciding upon visual informa-
tion techniques, parallels need to be made between what is being used to represent
information and encountering those techniques in the real world environment. The
human system is adept at working with horizontal and vertical references. They are
easily detected and processed. Using other orientations requires additional cogni-
tive processes to understand the changes from the expected inputs. The typical color
environment is subdued without large areas of bright colors. Thus using an analo-
gous situation, bright colors represent items to be focused on correlating to normal
processing (i.e., noticing brightly colored flowers in a garden). Another example of
taking advantage of sensory information that the brain is use to processing is terrain
and depth information. Using a graphical representation that uses depth of rectan-
gular objects to represent information is an image that the visual system is used to
processing. Movement in that space is more easily interpreted and understood by
the cognitive processes than if, for example, a three-dimensional image of a sphere
represented a visual information space.

In using cognitive engineering in designing information visualization techniques,
a hidden risk is that “understanding is in the eye of the beholder.” The integration
of the visual cues into an interpretation of what is being seen is also based upon the
user’s background and context of the information. The human mind uses the latest
information to assist in interpreting new information. If a particular shape has been
representing important information, the mind has a predisposition to interpret new
inputs as the same shape. For example, if users have been focusing on clusters of
items, they may see clusters in a new presentation that do not exist. This leads to the
question of changing visualization presentations to minimize legacy dispositions.
Another issue is that our past experiences can affect our interpretation of a graphic.
Users may interpret figures according to what is most common in their life experi-
ences rather than what the designer intended.

7.7  �Summary

Search algorithms are very important in information retrieval because they define
the subset of the database that will be displayed to the user and the ranked order
of what is most likely to be of interest. Just as important to the user finding what
they are looking for is how the information is presented. In some cases the standard
linear ranked list is sufficient for the user to locate a few items on a particular topic.
But when the user is looking for a more exhaustive set of information or trying
to understand the different subtopics of information on a particular problem other
presentation techniques such as clustering is the best methodology to help the user
to navigate to the needed information. Although the more sophisticated methods for
information visualization require significant more computer resources, advances
in hardware performance and software architecture are making their common use

7.7 Summary

234

possible over the next few years. The end result will be to marry the advances in
searching with sophisticated results presentation allowing the user to leverage off
their minds ability to absorb and assess patterns and specific information in more
complex displays resulting on detection of their needed information faster and more
comprehensive.

Text summarization techniques also hold significant promise in eliminating the
redundancy of information within and especially between hits allowing the user to
focus on the specific new facts rather than having to reread the same data over many
times to detect one new piece of information.

Information presentation for multimedia searching is still in its infancy as is gen-
erally providing search of multimedia items. But there is tremendous pressure on
developing information retrieval technologies in this area as cell phones and other
Personal Digital Assistants become common place.

7.8  �Exercises

1.	 What are the technical issues with providing clustering presentation with every
search? Is there some preprocessing approach that could make such a presenta-
tion more realistic?

2.	 In order to do timeline presentation what information is needed? How would that
information be determined?

3.	 Use the autosummarize capability in MS Word against a textual item you have.
How well did it work. Search the Internet for other sites that allow you to submit
text to be summarized and look at those results. What seems to work and what
are the inherent limits in text summarization.

4.	 Expand the discussion on text summarization to when you are summarizing
across multiple items. What functions and capabilities are essential in the dis-
play of the summarized information to assist the user in validating the results and
feeling confident about its completeness?

5.	 What are the basic limitations and difficulties in a user generating a search and
getting results back from an image or video image search? What unique func-
tions need to be provided to allow the user to validate the results of their search
(map their search to each result returned) and to enhance the search to make it
more precise?

7 Information Presentation

235

8.1  �Index Search Optimization

Search as described so far in Chap.Â€5 is based upon the concept that a user enters a
query and the system returns a ranked list of hits based upon a similarity measure
between the users search and weights of the processing tokens in the index. This
suggests the final result will be a sorted ranked list of hits where any item whose
relevance weight is above zero will be in the ranked list. This then creates Hit lists
of potentially hundreds of thousands to millions of hits. When the results of the
search are being used for viewing by the searcher we know that the user seldom
looks at hits one more than the first 2 or at most three pages of hits. Thus the user is
only really concerned with less than 1% of the top hits. Historically search systems
have taken advantage of that fact by having an internal threshold set and when the
number of hits that have been discovered reaches that threshold the system stops
the query and returns those hits (e.g., Retrievalware system). The designers felt that
the user would never really know that the very best hit may not be in the hit list and
thus there is likely sufficient information to make the user feel comfortable that
the system worked. There are many design solutions that can use that a user only
views a few hit pages and leverage off returning to the user the most likely top “n”
hits but not guarantee it and reduce the computation load on executing the search.
This does fall down a little when the goal of the search is to deliver the hit list to a
visualization system that will use most of the hits (at least in the hundreds of thou-
sands) to create a visualization of the search results. But this is the exception case
in current systems. A number of these techniques have been described in Manning
et. al. book on Information retrieval (Manning-2008). Even though the techniques
described below limit the calculations needed to crate the Hit list, the systems will
use an approximation estimate formula to estimate how many hits they would ex-
pect to be from searching the complete database. Thus the “total hit” count is really
an estimate with the system really only having a small subset of those hits actually
identified. But since the user can only go one linear list page of hits at a time there
is no mechanism for the user to get to hit 1,000,000 without paging through lots of
hit pages.

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_8, ©Â€Springer Science+Business Media, LLC 2011

Chapter 8
Search Architecture

236

8.1.1  �Pruning the Index

Most systems already make a simplification assumption and retrieve only the in-
version lists for the search terms in the query. This focuses the search on the user
supplied search terms but does mean that other terms in the documents that have the
users search terms can not be used to find additional relevant items. This will maxi-
mize precision at the expense of recall. The problem of mismatch of vocabulary
described as one of the major issues in getting complete search results is ignored
in this approach. If the goal is for even higher reduction in analysis the system can
limit the relevance calculations to only those items that have all of the search terms
in them.

An additional technique leverages off of the fact that we are only interested in
the most relevant hits which will come from a similarity measure. Thus items with
low relevance weights for a particular search term will not likely be in the final
top portion of a returned hit list. Thus when the inversion list is being merged in
the similarity calculations, values in the index list below a certain threshold can be
treated as if they were zero and skipped over. This significantly reduces the number
of similarity calculations that need to be performed.

The above assumes the inversion lists are sorted by Item ID. But since the goal is
to find the highest weighted items a better sort to early find the most similar items
would be by weight. Unfortunately this can then randomly place the item IDs in the
inversion lists. By having the order in this fashion a particular inversion list can stop
being processed after the top weighted items rather than going through the complete
list. But if the goal is to just get the top few items for the first few pages of hits this
technique will more quickly find those items with minimal processing.

8.1.2  �Champion Lists

The concept of champion lists is based upon the approach of only analyzing the
highest ranked items that the inversion lists that are typically sorted by unique item
ID. The system normally has to go through the complete inversion list to find the
items that have the highest weights to be used in the actual calculation. In this ap-
proach there is a “champion” inversion list created that is a subset of the original
inversion list that only has items in it where the weight of the processing token
exceeds a threshold. The threshold can vary by inversion list and be based upon the
weights in that inversion list (basically taking the top “n” percent of the items in the
list with highest weights).

The search is then executed against the champion lists rather than the full inver-
sion lists. The challenge is to find that percentage of high weighted items that you
want to keep in each inversion list to be sure that when the similarity calculations
are complete that there will be sufficient hits returned. Although by having the com-
plete inversion lists available, if there are too few hits found in the champion lists
because there are very few documents that all of the search terms, the system can

8 Search Architecture

237

then process that query against the full lists. This can be enhanced further because
the system getting to the full inversion lists would have first processed the search
against the champion list. Instead of keeping the full inversion list all of the entries
from the champion list could be deleted thus reducing the calculation to only items
not already addressed in the champion list analysis.

In the current search systems in addition to weights associated with specific pro-
cessing tokens (terms) in items, there is sometimes a weight assigned to each item
in terms of its potential value (e.g., the GOOGLE link analysis). This value is also
used in determining which items to be retrieved and the ranked order of the list. In a
sense this is another weighting factor on the weights of the processing tokens in an
item based upon the likely importance of that item. Thus instead of the inversion list
only containing the weight of a term in a document using the weighting formulas
previous discussed (e.g., inverse document frequency), the value in the inversion
list could also be biased by the potential importance weight for the item. This runs a
significant computation risk because the weights of the relative importance of each
item can initially vary based upon changes in the system until it stabilizes which
would mean that the inversion lists (even the champion lists) would be changing as
new data enters the system for existing values in the inversion lists. Ideally the goal
is to have the inversion lists for the already ingested items in the system not change
until the item is deleted. This then suggests that the weights for the items need to
be kept separate from the inversion lists for newer items and only added to the
inversion lists after they have stabilized. After that only when there is a significant
change to an item would it is necessary to update the inversion list or just keep a
smaller list of those modified items to be dynamically adjusted for.

8.2  �Text Search Optimization

The basic concept of a text scanning system is the ability for one or more users to
enter queries, and the text to be searched is accessed and compared to the query
terms. When all of the text has been accessed, the query is complete. One advantage
of this type architecture is that as soon as an item is identified as satisfying a query,
the results can be presented to the user for retrieval. FigureÂ€8.1 provides a diagram

8.2 Text Search Optimization

Fig. 8.1â†œæ¸€ Text streaming architecture

238

of a text streaming search system. The database contains the full text of the items.
The term detector is the special hardware/software that contains all of the terms be-
ing searched for and in some systems the logic between the items. It will input the
text and detect the existence of the search terms. It will output to the query resolver
the detected terms to allow for final logical processing of a query against an item.
The query resolver performs two functions. It will accept search statements from the
users, extract the logic and search terms and pass the search terms to the detector.
It also accepts results from the detector and determines which queries are satisfied
by the item and possibly the weight associated with hit. The Query Resolver will
pass information to the user interface that will be continually updating search status
to the user and on request retrieve any items that satisfy the user search statement.
The process is focused on finding at least one or all occurrences of a pattern of text
(query term) in a text stream. It is assumed that the same alphabet is used in both
situations (although in foreign language streamers different encodings may have to
be available for items from the same language such as in Cyrillic). The worst case
search for a pattern of m characters in a string of n characters is at least nÂ€−Â€mÂ€+Â€1
or a magnitude of O(â†œn) (Rivest-77). Some of the original brute force methods could
require O(â†œnÂ€∗Â€m) symbol comparisons (Sedgewick-88). More recent improvements
have reduced the time to O(â†œnÂ€+Â€m).

In the case of hardware search machines, multiple parallel search machines (term
detectors) may work against the same data stream allowing for more queries or
against different data streams reducing the time to access the complete database. In
software systems, multiple detectors may execute at the same time.

There are two approaches to the data stream. In the first approach the complete
database is being sent to the detector(s) functioning as a search of the database. In
the second approach random retrieved items are being passed to the detectors. In
this second case the idea is to perform an index search of the database and let the
text streamer perform additional search logic that is not satisfied by the index search
(Bird-78, Hollaar-79). Examples of limits of index searches are:

•	 search for stop words
•	 search for exact matches when stemming is performed
•	 search for terms that contain both leading and trailing “don’t cares”
•	 search for symbols that are on the interword symbol list (e.g., “ , ;)

The major disadvantage of basing the search on streaming the text is the dependency
of the search on the slowest module in the computer (the I/O module). Inversions/
indexes gain their speed by minimizing the amount of data to be retrieved and pro-
vide the best ratio between the total number of items delivered to the user versus the
total number of items retrieved in response to a query. But unlike inversion systems
that can require storage overheads of 50–300%, of the original databases (Bird-
78), the full text search function does not require any additional storage overhead.
There is also the advantage where hits may be returned to the user as soon as found.
Typically in an index system, the complete query must be processed before any
hits are determined or available. Streaming systems also provide a very accurate
estimate of current search status and time to complete the query. Inversions/indexes

8 Search Architecture

239

also encounter problems in fuzzy searches (â†œm of n characters) and imbedded string
query terms (i.e., leading and trailing “don’t care”, see Chap.Â€1). It is difficult to
locate all the possible index values short of searching the complete dictionary of
possible terms. Most streaming algorithms will locate imbedded query terms and
some algorithms and hardware search units will also perform fuzzy searches. Use
of special hardware text search units insures a scalable environment where perfor-
mance bottlenecks can be overcome by adding additional search units to work in
parallel of the data being streamed.

Many of the hardware and software text searchers use finite state automata as a
basis for their algorithms. A finite state automata is a logical machine that is com-
posed of five elements:

I	� a set of input symbols from the alphabet supported by the automata
S	� a set of possible states
P	� a set of productions that define the next state based upon the current state and

input symbol
S0	� a special state called the initial state
SF	� a set of one or more final states from the set S

A finite state automata is represented by a directed graph consisting of a series of
nodes (states) and edges between nodes represented as transitions defined by the
set of productions. The symbol(s) associated with each edge defines the inputs that
allow a transition from one node Si to another node Sj. FigureÂ€8.2a shows a finite
state automata that will identify the character string CPU in any input stream. The
automata is defined by the automata definition in Fig.Â€8.2b.

The automata remains in the initial state until it has an input symbol of “C”
which moves it to state S1. It will remain in that state as long as it receives “C”s as
input. If it receives a “P” it will move to S2. If it receives anything else it falls back
to the initial state. Once in state S2 it will either go to the final state if “U” is the
next symbol, go to S1 if a “C” is received or go back to the initial state S0 if anything
else is received.

It is possible to represent the productions by a table with the states as the rows
and the input symbols that cause state transitions as each column. The states are
representing the current state and the values in the table are the next state given the
particular input symbol.

8.2.1  �Software Text Search Algorithms

In software streaming techniques, the item to be searched is read into memory and
then the algorithm is applied. Although nothing in the architecture described above
prohibits software streaming from being applied to many simultaneous searches
against the same item, it is more frequently used to resolve a particular search
against a particular item. The best example is searching an item before display to
highlight the search query terms in the text. Four algorithms associated with soft-

8.2 Text Search Optimization

240

ware text search are discussed as examples on software text searching optimization:
the brute force approach, Knuth-Morris-Pratt, Boyer-Moore, and Rabin-Karp. Of
all of the algorithms, Boyer-Moore has been the fastest requiring at most O(â†œnâ•›+â•›m)
comparisons (Smit-82). Knuth-Pratt-Morris and Boyer-Moore both require O(â†œn)
preprocessing of search strings (Knuth-77, Boyer-77, Rytter-80).

The Brute force approach is the simplest string matching algorithm. The idea is
to try and match the search string against the input text. If as soon as a mismatch
is detected in the comparison process, shift the input text one position and start the
comparison process over. The expected number of comparisons when searching an
input text string of n characters for a pattern of m characters is (Baeza-Yates-89):

where Nc is the expected number of comparisons and c is the size of the alphabet
for the text.

The Knuth-Pratt-Morris algorithm made a major improvement in previous algo-
rithms in that even in the worst case it does not depend upon the length of the text

Nc =
c

c − 1

(
1 − 1/

cm

)
(n − m + 1) + O(1)

Fig. 8.2â†œæ¸€ a Finite state automata. b Automata definition

OUTPUT
"CPU"

≠ C

= C

= C = C

= P = U

≠ C, U

≠ P, C

S0 S1 S2 S3

a
I = set of all alphabetic characters
S = set {S0, S1, S2, S3)

P = set { S0 → S1 if I = C

S0 → S0 if I ≠ C

S1 → S2 if I = P

S1 → S0 if I ≠ {P, C}

S1 → S1 if I = C

S2 → S3 if I = U

S2 → S1 if I = C

S2 → S0 if I ≠ {C, U } }

S0 = { S0 }

SF = { S3 }b

8 Search Architecture

241

pattern being searched for. The basic concept behind the algorithm is that when-
ever a mismatch is detected, the previous matched characters define the number of
characters that can be skipped in the input stream prior to starting the comparison
process again. For example given:

When the mismatch occurs in position 4 with an “f” in the pattern and a “b” in
the input stream, a brute force approach may shift just one position in the input text
and restart the comparison. But since the first three positions of the pattern matched
(a b d), then shifting one position can not find an “a” because it has already been
identified as a “b”. The algorithm allows the comparison to jump at least the three
positions associated with the recognized “a b d”. Since the mismatch on the position
could be the beginning of the search string, four positions can not be skipped. To
know the number of positions to jump based upon a mismatch in the search pattern,
the search pattern is pre-processed to define a number of characters to be jumped
for each position. The Shift Table that specifies the number of places to jump given
a mismatch is shown in Fig.Â€8.3. In the table it should be noted that the alignment is
primarily based on aligning over the repeats of the letters “a” and “ab”. FigureÂ€8.4
provides an example application of the algorithm (Salton-89) where S is the search
pattern and I is the input text stream.

Boyer-Moore recognized that the string algorithm could be significantly en-
hanced if the comparison process started at the end of the search pattern processing
right to left versus the start of the search pattern. The advantage is that large jumps
are possible when the mismatched character in the input stream does not exist in
the search pattern which occurs frequently. This leads to two possible sources of
determining how many input characters to be jumped. As in the Knuth-Morris-Pratt
technique any characters that have been matched in the search pattern will require

Position 1 2 3 4 5 6 7 8

Input Stream = a b d a d e f g
Search Pattern = a b d f

Fig. 8.3â†œæ¸€ Shift characters table

Position in pattern

1
2
3
4
5
6
7
8
9
10

pattern character

a
b
c
a
b
c
a
c
a
b

length previous
repeating substring
0
0
0
0
1
2
3
4
0
1

number of input
characters to jump
1
1
2
4
5
6
3
3
8
8

8.2 Text Search Optimization

242

an alignment with that substring. Additionally the character in the input stream that
was mismatched also requires alignment with it’s next occurrence in the search pat-
tern or the complete pattern can be moved. This can be defined as:

•	 ALGO1—on a mismatch, the character in the input stream is compared to the
search pattern to determine the shifting of the search pattern (number of charac-
ters in input stream to be skipped) to align the input character to a character in
the search pattern. If the character does not exist in the search pattern then it is
possible to shift the length of the search pattern matched to that position.

•	 ALGO2—on a mismatch occurs with previous matching on a substring in the
input text, the matching process can jump to the repeating occurrence in the pat-
tern of the initially matched subpattern—thus aligning that portion of the search
pattern that is in the input text.

•	 Search Pattern = abcabcacab

Upon a mismatch, the comparison process can skip the MAXIMUM (ALGO1,
ALGO2). FigureÂ€8.5 gives an example of this process. In this example the search
pattern is (a b d a a b) and the alphabet is (a, b, c, d, e, f) with mÂ€=Â€6 and cÂ€=Â€6.

Fig. 8.4â†œæ¸€ Example of Knuth-Morris-Pratt algorithm

P

↑
mismatch in position 1 shift one position

P

↑
mismatch in position 5, no repeat pattern, skip 3 places

P

↑
mismatch in position 5, shift one position

P

↑

mismatch in position 13, longest repeating pattern is “a b c a” thus skip 3

alignment after last shift

P

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S a b c a b c a c a b
I b a b c b a b c a b c a a b c a

S a b c a b c a c a b
I b a b c b a b c a b c a a b c a

S a b c a b c a c a b
I b a b c b a b c a b c a a b c a

S a b c a b c a c a b
I b a b c b a b c a b c a a b c a

S a b c a b c a b
I b a b c b a b c a b c a a b c a

8 Search Architecture

243

The comparison starts at the right end of the search pattern and works towards
the start of the search pattern. In the first comparison (Fig.Â€8.5a) the mismatch oc-
curs in position 4 after matching on positions 7, 6, and 5. ALGO1 wants to align
the next occurrence of the input text stream mismatch character “f” which does not
exist in the search pattern thus allowing for a skip of three positions. ALGO2 rec-
ognizes that the mismatch occurred after 3 previous search pattern characters had
matched. Based upon the pattern stream it knows that the subpattern consisting of
the first three characters (a b) repeats in the first two positions of the search pattern.
Thus given a mismatch in position 4, the search pattern can be moved four places
to align the subpattern consisting of the first two characters (a b) over their known
occurrence in positions 6, and 7 in the input text. In the next comparison (Fig.Â€8.5b)
there is a mismatch in position 9. The input character that mismatched is a “d” and
the fewest positions to shift to align the next occurrence of a “d” in the search pat-
tern over it is one position. The analysis for ALGO2 is the same as before. With the
next jump of four positions, the two patterns will match.

The original Boyer-Moore algorithm has been the basis for additional text search
techniques. It was originally designed to support scanning for a single search string.
It was expanded to handle multiple search strings on a single pass (Kowalski-83).
Enhanced and simplified versions of the Boyer-Moore algorithm have been devel-
oped by many researchers (Moller-Nielsen-84, Iyengar-80, Commentz-Walter-79,
Baeza-Yates-90, Galil-79, Horspool-80).

A different approach that has similarity to n-grams and signature files defined in
Chap.Â€4 is to divide the text into m-character substrings, calculate a hash function
(signature) value for each of the strings (Harrison-71). A hash value is calculated
for the search pattern and compared to that of the text. Karp and Rabin discovered

Fig. 8.5â†œæ¸€ Boyer-Moore algorithm. a Mismatch in position 4: ALGO1 = 3, ALGO2 = 4, thus skip 4
places. b Mismatch in position 9: ALGO1 = 1, ALGO2 = 4 thus skip four places. c New aligned
search continues with a match

a

Position 1 2 3 4 5 6 7 8 9 10 11 12 13
f a b f a a b b d a b a b

a b b
↑
d a a

Input Stream
Search Pattern

1 2 3 4 5 6 7 8 9 10 11 12 13

b

f a b b bf a a d a b a b
a b d a a b

↑

Position
Input Stream
Search Pattern

1 2 3 4 5 6 7 8 9 10 11 12 13

c

14 15
f a b f a a b b d a b d a a b

a b d a a b

Position
Input Stream
Search Pattern

8.2 Text Search Optimization

244

an efficient signature function to calculate these values; h(k)Â€=Â€k mod q, where q is
a large prime number (Karp-87). The signature value for each location in the text
which is based upon the value calculated for the previous location. Hashing func-
tions do not guarantee uniqueness. Their algorithm will find those positions in the
text of an item that have the same hash value as the search pattern. But the actual
text must then be compared to ensure there is a match. Detailed implementation
of the Karp-Rabin algorithm is presented by Baeza-Yates (Baeza-Yates-92). In his
comparison of all of the algorithms on a search of 1000 random patterns in random
text, the Horspool simplification of the Boyer-Moore algorithm showed the best
execution time for patterns of any length. The major drawback of the Boyer-Moore
class of algorithms is the significant preprocessing time to set up the tables. Many
of these algorithms are also implemented with hardware.

8.2.2  �Hardware Text Search Systems

8.2.2.1  �History

Software text search is applicable to many circumstances but has encountered re-
strictions on the ability to handle many search terms simultaneously against the
same text and limits due to I/O speeds. One approach used in the 1980s and 1990s
that off loaded the resource intensive searching from the main processors was to
have a specialized hardware machine to perform the searches and pass the results
to the main computer which supported the user interface and retrieval of hits. Since
the searcher is hardware based, scalability is achieved by increasing the number of
hardware search devices. The only limit on speed is the time it takes to flow the text
off of secondary storage (i.e., disk drives) to the searchers. By having one search
machine per disk, the maximum time it takes to search a database of any size will be
the time to search one disk. In some systems, the disks were formatted to optimize
the data flow off of the drives. Another major advantage of using a hardware text
search unit is in the elimination of the index that represents the document database.
Typically the indexes are 70% the size of the actual items. Other advantages are that
new items can be searched as soon as received by the system rather than waiting for
the index to be created and the search speed is deterministic. Even though it may
be slower than using an index, the predictability of how long it will take to stream
the data provides the user with an exact search time. As hits as discovered they can
immediately be made available to the user versus waiting for the total search to
complete as in index searches.

FigureÂ€8.6 represents hardware as well as software text search solutions. The
algrithmetic part of the system is focused on the term detector. There have been
three approaches to implementing term detectors: parallel comparators or associa-
tive memory, a cellular structure, and a universal finite state automata (Hollaar-79).

Specialized hardware that interfaces with computers and is used to search sec-
ondary storage devices was developed from the early 1970s with the most recent

8 Search Architecture

245

product being the Parasel Searcher (previously the Fast Data Finder). The need for
this hardware was driven by the limits in computer resources. The typical hardware
configuration is shown in Fig.Â€8.6 in the dashed box. The speed of search is then
based on the speed of the I/O.

One of the earliest hardware text string search units was the Rapid Search Ma-
chine developed by General Electric (Roberts-78). The machine consisted of a
special purpose search unit where a single query was passed against a magnetic
tape containing the documents. A more sophisticated search unit was developed by
Operating Systems Inc. called the Associative File Processor (AFP) (Bird-77). It is
capable of searching against multiple queries at the same time. Following that ini-
tial development, OSI, using a different approach, developed the High Speed Text
Search (HSTS) machine. It uses an algorithm similar to the Aho-Corasick software
finite state machine algorithm except that it runs three parallel state machines. One
state machine is dedicated to contiguous word phrases (see Chap.Â€2), another for
imbedded term match and the final for exact word match. In parallel with that devel-
opment effort, GE redesigned their Rapid Search Machine into the GESCAN unit.
TRW, based upon analysis of the HSTS, decided to develop their own text search
unit. This became the Fast Data Finder which is now being marketed by Parasal.
All of these machines were based upon state machines that input the text string and
compared them to the query terms.

The GESCAN system uses a text array processor (TAP) that simultaneously
matches many terms and conditions against a given text stream the TAP receives
the query information from the users computer and directly access the textual data
from secondary storage. The TAP consists of a large cache memory and an array of
four to 128 query processors. The text is loaded into the cache and searched by the
query processors (Fig.Â€8.7). Each query processor is independent and can be loaded
at any time. A complete query is handled by each query processor. Queries support
exact term matches, fixed length don’t cares, variable length don’t cares, terms may
be restricted to specified zones, Boolean logic, and proximity.

A query processor works two operations in parallel; matching query terms to
input text and Boolean logic resolution. Term matching is performed by a series
of character cells each containing one character of the query. A string of char-
acter cells is implemented on the same LSI chip and the chips can be connected

Fig. 8.6â†œæ¸€ Hardware text search unit

8.2 Text Search Optimization

246

in series for longer strings. When a word or phrase of the query is matched, a signal
is sent to the resolution sub-process on the LSI chip. The resolution chip is respon-
sible for resolving the Boolean logic between terms and proximity requirements.
If the item satisfies the query, the information is transmitted to the users computer.
The text array processor uses these chips in a matrix arrangement. Each row of the
matrix is a query processor in which the first chip performs the query resolution
while the remaining chips match query terms. The maximum number of characters
in a query is restricted by the length of a row while the number of rows limit the
number of simultaneous queries that can be processed.

Another approach for hardware searchers is to augment disc storage. The aug-
mentation is a generalized associative search element placed between the read
and write heads on the disk. The content addressable segment sequential memory
(CASSM) system (Roberts-78) uses these search elements in parallel to obtain
structured data from a database. The CASSM system was developed at the Uni-
versity of Florida as a general purpose search device (Copeland-73). It can be used
to perform string searching across the database. Another special search machine is
the relational associative processor (RAP) developed at the University of Toronto
(Schuster-79). Like CASSM performs search across a secondary storage device us-
ing a series of cells comparing data in parallel.

The Fast Data Finder (FDF) is the most recent specialized hardware text search
unit still in use in many organizations. It was developed to search text and has been
used to search English and foreign languages. The early Fast Data Finders con-
sisted of an array of programmable text processing cells connected in series form-
ing a pipeline hardware search processor (Mettler-93). The cells are implemented
using a VSLI chip. In the TREC tests each chip contained 24 processor cells with

Fig. 8.7â†œæ¸€ GESCAN text array processor

Query
resolvers

Term matchers

Query
processors 1

2

3

N

8 Search Architecture

247

a typical system containing 3600 cells (the FDF-3 has a rack mount configuration
with 10,800 cells). Each cell will be a comparator for a single character limiting
the total number of characters in a query to the number of cells. The cells are in-
terconnected with an 8-bit data path and approximately 20-bit control path. The
text to be searched passes through each cell in a pipeline fashion until the complete
database has been searched. As data is analyzed at each cell, the 20 control lines
states are modified depending upon their current state and the results from the
comparator. An example of a Fast Data Finder system is shown in Fig. 8.8. A cell
is composed of both a register cell (Rs) and a comparator (Cs). The input from the
Document database is controlled and buffered by the microprocess/memory and
feed through the comparators. The search characters are stored in the registers.
The connection between the registers reflect the control lines that are also passing
state information.

8.2 Text Search Optimization

Fig. 8.8â†œæ¸€ Fast data finder architecture

Microprocessor/memory

C1 C2 C3 Cn

Rn

Host
Workstation

D
A

TB
A

SE

R3R2R1

248

Groups of cells are used to detect query terms, along with logic between the
terms, by appropriate programming of the control lines. When a pattern match is
detected, a hit is passed to the internal microprocessor that passes it back to the host
processor, allowing immediate access by the user to the Hit item. The functions sup-
ported by the Fast data Finder are:

•	 Boolean Logic including negation
•	 Proximity on an arbitrary pattern
•	 Variable length “don’t cares”
•	 Term counting and thresholds
•	 fuzzy matching
•	 term weights
•	 numeric ranges

The expense and requirement that the complete database be streamed to complete
a search has discouraged general use of hardware text search units. Paracel, who
now markets the Fast Data Finder, is modifying it’s application to the area of ge-
netic analysis. Comparing sequence homology (linear sequence of genes as another
chromosome) to known families of proteins can provide insights about functions
of newly sequenced genes. Parcel has combined the search capability of the FDF
with their Biology Tool Kit (BTK). The major function that is applied is the fuzzy
match capability that can be applied to chromosomes. Searches can be applied to
DNA against DNA, protein against protein, or DNA against protein searches. The
FDF is configured to implement linear Smith-Waterman (S-W) and sequence-pro-
file algorithms. The Smith-Waterman dynamic programming algorithm is optimal
for finding local sequence similarities. The General Profile algorithm allows search
for regions of nucleic acids or proteins that have been conserved during evolution
(Paracel-96). The Fast Data Finder is loaded with a sequence and will report back
those sequences in the database whose local similarity score exceed a threshold that
most closely resemble the query sequence. The BTK software then completes the
analysis process in software.

8.2.2.2  �Current Systems

The Parasel search system continues to be used as a specialized search system for
genetic information. In addition the other major hardware search capability is found
in the Netezza system that is used for search in “Data Warehouse” applications.
Although this is more oriented towards database structured data it can be used also
against free text.

Use of a search system imbedded in the hardware significantly reduces the
amount of time it takes to do a search across all of the data. The Netezza system
(www.netezza.com) uses a massively parallel architecture with the filtering at the
disk level using a Field Programmable Gate Array (FPGA). FPGAs are program-
mable by the user using a hardware description language and are relatively inex-
pensive because they can be mass produced. The FPGAs contain components called

8 Search Architecture

249

“logic blocks” whose connections can be defined using simple logic gates like AND
OR and XOR. These are used in lieu of the traditional disk controller chips and can
be programmed with the search logic. Thus each node in the parallel processing
architecture consists of the FPGA along with the storage on the disk (e.g., 400Â€GB).
These are also called snippet processing units (Sups). For example a rack of equip-
ment can hold 112 of these units all executing the query in parallel. The results of
the processing are then sent to a host server to aggregate the results of the parallel
processing. Thus the search process is running in parallel at the storage level rather
than at the server level.

8.3  �GOOGLE Scalable Multiprocessor Architecture

Although GOOGLE was founded on a research project that focused on using link
analysis between Internet web pages to influence the ranking of search results,
GOOGLES other major contribution to the evolution of search systems was in
the architecture they developed to allow GOOGLE to provide fast response time
against very large data sets and also allowed for their link analysis to occur inexpen-
sively. Until GOOGLE most systems used very large processors and in some cases
parallel processors (e.g., Alta Vista) to perform search and functions like link analy-
sis. The GOOGLE approach was to use inexpensive commodity type processors in
large numbers by developing a file system and software development methodology
that allowed easy distribution of functions across many processors. In addition the
system had to be made fault tolerant thereby allowing failures of a subset of the
processors without effecting the operation taking place. This approach is becoming
common place when information retrieval systems are being used against very large
databases of text and/or multimedia information.

GOOGLE developed many capabilities that are used in their overall architec-
ture. They knew they were going against massive data sets and those data sets
would have to be redundantly stored to allow for the parallel search of them and
the capability to recover from a failure. Thus they developed the GOOGLE File
System (GFS). The GOOGLE file system started with an earlier concept called
BigFiles that was part of the original research effort at Stanford University that
laid the groundwork for the GOOGLE system. The characteristic of an informa-
tion retrieval system is that most data is relatively static. That is the data seldom
is updated. Once written it may have a very long life before it is deleted. But the
data is very large and thus large chunks of storage need to be managed. This lead
to the concept of “chunks” where 64Â€MB fixed size chunks of data which can be
redundantly stored on multiple nodes, called chunk servers. The more often a chunk
is accessed the more it will be replicated thus allowing for parallel access by many
parallel processing nodes. There is a Master node that keeps the metadata on the
chunk servers keeping track of what are the current operational chunk servers and
what files are on them. Chunk servers can fail but then the MASTER Node can
route data requests to the other replicated servers. Rather than trying to synchronize

8.3 GOOGLE Scalable Multiprocessor Architecture

250

the metadata knowledge on the Master Node with what is on the Chink Servers, the
Master Node queries the Chunk servers which provide both a health check and an
update of what is currently on the server.

GOOGLE Web Servers (GWS) are the commodity search servers. A query is
first processed and via the Domain Name Server (DNS) an initial load balancing
take place to determine which GOOGLE Processing center the query should go
to. Once at a processing center the query is then distributed to multiple GWS to
process the search. That is because each GWS has a subset of the index to process
against a query (called an index shard) and those GWS can be replicated so there
is a possible pool of servers to process subsets of the index. Each GWS goes to the
Master Node to get a list of the chunk servers that contain the index to be searched.
The results of the search are an initial rank list of document IDs of potential hits
for the query.

The document IDs are then passed to Document Servers that manage access to
the documents. The final document may still be at the web site it was found at or
cached locally in the file system. But sufficient information is kept on the docu-
ment servers and file system to create the “snippet” that will be used in displaying
the list of hits. The Document servers will determine the Title, a query weighted
summary snippet and the URL that will be used by the user to retrieve the complete
document. The architecture of the document servers is similar to the web servers in
that there will be a large number of servers that will be randomly handling a subset
of the document set (shards) and they will use the file system to get where to go to
get the data to process. Like the index there are multiple copies of the documents
from the Web that GOOGLE caches locally. FigureÂ€8.9 shows the architecture.

Fig. 8.9â†œæ¸€ Google architecture

8 Search Architecture

251

Creating applications that can execute on a distributed architecture could also
be a difficult task. That is because the applications need to be easy to be repli-
cated to multiple servers for processing and then have a mechanism to collect the
results from the individual instances and consolidate them into a single answer.
Google developed a programming model that allows for simple creation and execu-
tion of applications in a distributed environment against large data sets. The model
is called MapReduce. The programmer first defines a “map” application that will
work against a key/value pair and will generate an intermediate key/value pairs as
output. Then there is a “reduce” function that takes all of the intermediate values
associated with the same intermediate key and merges them. This architecture was
based upon and an enhancement of the map and reduce primitives in the LISP lan-
guage and other functional languages. Programs written using this model can easily
and automatically be distributed across a large cluster of servers. This model also
allows for easy re-execution if a particular server fails.

The architecture concepts of General file System (BigTables) and MapReduce
were implemented in a Java software framework called Hadoop. It allows applica-
tions to be developed that can be executed as a distributed application on thousands
of nodes and pedabytes of data. It is an Apache project (hadoop.apache.org) that is
developed and being used by many contributors including Yahoo that uses it exten-
sively in their system. The framework was initially developed by Doug Cutting who
got the name from his child’s stuffed elephant.

8.4  �Summary

Text search techniques using text scanning have played an important role in the
initial development of Information Retrieval Systems. In the 1970s and 1980s they
were essential tools for compensating for the insufficient computer power and for
handling some of the more difficult search capabilities such as imbedded character
strings and fuzzy searches. They currently play an important role in word processor
systems (e.g., the Find function) and in Information Retrieval Systems for locating
offensive terms (e.g., imbedded character strings) in the dictionary. The need for
specialized hardware text search units to directly search the data on secondary stor-
age has diminished with the growth of processing power of computers.

With the significant decrease in costs of computers and the introduction of us-
ing large numbers (in the hundreds of thousands) of inexpensive appliance proces-
sors to execute searches against very large databases in the terabytes and pedabytes
ranges, the need for hardware solution has given way to scalable software solutions.
But even in the scalable domain when the system is exposed to the Internet with
thousands of searches per second, massive parallelism still has a high cost. Thus
optimization techniques to reduce the resources need to complete any query still is
needed. Leveraging off the fact that only a very small subset of hit items are ever
viewed and those are just the top hit items, redesign of inversion lists can signifi-
cantly reduce the resources to provide the user with the initial hit list.

8.4 Summary

252

8.5  �Exercises

1.	 Trade off the use of hardware versus software text search algorithms citing
advantages and disadvantages of each in comparison to the other.

2.	 Construct finite state automata for each of the following set of terms:

a.	 BIT, FIT, HIT, MIT, PIT, SIT
b.	 CAN, CAR, CARPET, CASE, CASK, CAKE
c.	 HE, SHE, HER, HERE, THERE, SHEAR

Be sure to define the three sets I, S, and P along with providing the state drawing
(e.g., see Fig.Â€8.2).

3.	 Use the Boyer-Moore text search algorithm to search for the term FANCY in the
text string FANCIFUL FANNY FRUIT FILLED MY FANCY.

a.	 Show all of the steps and explain each of the required character shifts.
b.	 How many character comparisons are required to obtain a match?
c.	 Compare this to what it would take using the Knuth-Pratt-Morris algorithm

(you do not have to show the work for the KMP algorithm).

8 Search Architecture

253

9.1  �Introduction to Information System Evaluation

Interest in the evaluation techniques for Information Retrieval Systems has signifi-
cantly increased with the commercial use of information retrieval technologies in
the everyday life of the millions of users of the Internet. Until 1993 the evaluations
were done primarily by academicians using a few small, well known corpora of test
documents or even smaller test databases created within academia. The Cranfield
model created at the Cranfield Institute for Information Retrieval Evaluation was
one of the earliest structured approaches to evaluating information retrieval and still
continues in TREC and other evaluation platforms. This model incorporates a test
collection of documents, a set of test queries and, for each query, a set of judgments
about whether each document in the collection is relevant or not relevant to that
query. The evaluations focused primarily on the effectiveness of search algorithms.
The Cranfield test collection (see below description of the data set) was one of the
primary evaluative data sets until TREC.

The next major improvement in information retrieval evaluation started with
the creation of the annual Text Retrieval Evaluation Conference (TREC) sponsored
by the Defense Advanced Research Projects Agency (DARPA) and the National
Institute of Standards and Technology (NIST) which changed the standard process
of evaluating information systems. TREC conferences have been held every year,
starting from 1992, usually in the Fall months. The conference provides multiple
ground truth databases consisting of gigabytes of test data, search statements and
the expected results from the searches to academic researchers and commercial
companies for testing of their systems. This has placed a standard baseline into
comparisons of algorithms. Although there is now a standard database, there is still
debate on the accuracy and utility of the results from use of the test corpus. In the
last few years new organizations in Europe and the Far East have been created le-
veraging off the techniques created by TREC to sponsor their own focused confer-
ences to evaluate the technologies they consider of prime importance. Many of the
test datasets are now commercially available so that anyone can acquire them and
use them in evaluating new algorithms and products they are creating.

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8_9, ©Â€Springer Science+Business Media, LLC 2011

Chapter 9
Information System Evaluation

254

In recent years the evaluation of Information Retrieval Systems and techniques
for indexing, sorting, searching and retrieving information have become increas-
ingly important. This growth in interest is due to two major reasons: the growing
number of retrieval systems being used and additional focus on evaluation methods
themselves. The Internet is an example of an information space (infospace) whose
text content is growing exponentially along with products to find information of
value. Information retrieval technologies are the basis behind the search of infor-
mation on the Internet. In parallel with the commercial interest, the introduction of
a large standardized test databases and a forum for yearly analysis via TREC and
other conferences has provided a methodology for evaluating the performance of
algorithms and systems. There are many reasons to evaluate the effectiveness of an
Information Retrieval System:

•	 To aid in the selection of a system to procure
•	 To monitor and evaluate system effectiveness
•	 To evaluate the system to determine improvements
•	 To provide inputs to cost-benefit analysis of an information system
•	 To determine the effects of changes made to an existing information system.

From an academic perspective, measurements are focused on the specific effective-
ness of a system and usually are applied to determining the effects of changing a
system’s algorithms or in comparing algorithms among systems. When evaluating
systems for commercial use measurements are also focused on availability and reli-
ability. In an operational system there is less concern over 55% versus 65% preci-
sion than 99% versus 89% availability. For academic purposes, controlled environ-
ments can be created that minimize errors in data. In operational systems, there is
no control over the users and care must be taken to ensure the data collected are
meaningful.

The most important evaluation metrics of information systems (i.e., precision
and recall) will always be biased by human subjectivity. This problem arises from
the specific data collected to measure the user resources in locating relevant in-
formation. Metrics to accurately measure user resources expended in information
retrieval are inherently inaccurate. A factor in most metrics in determining how well
a system is working is the relevancy of items. Relevancy of an item, however, is not
a binary evaluation, but a continuous function between an item’s being exactly what
is being looked for and it being totally unrelated. It is the middle area rather than the
two extremes where disagreement between users on an items relevancy occurs. To
discuss relevancy, it is necessary to define the context under which the concept is
used. From a human judgment standpoint, relevancy can be considered:

Subjective	� depends upon a specific user’s judgment
Situational	� relates to a user’s requirements
Cognitive	� depends on human perception and behavior
Temporal	� changes over time
Measurable	� observable at a points in time

The subjective nature of relevance judgments has been documented by Saracevic
and was shown in TREC-experiments (Harman-95, Saracevic-91). In TREC-2 and

9 Information System Evaluation

255

TREC-3, two or three different users were given the same search statement and
the same set of possible hits to judge as relevant or not. In general, there was a
unanimous agreement on 70–80% of the items judged by the human. Even in this
environment (i.e., where the judges are not the creators of the query and are mak-
ing every effort to be unbiased) there is still significant subjective disagreement on
the relevancy of some of the items. In an operational environment, each user has
his own understanding of the requirement and the threshold on what is acceptable.
Based upon his cognitive model of the information space and the problem, the user
judges a particular item. Some users consider information they already know to be
non-relevant to their information need. For example, a user being presented with an
article that the user wrote does not provide “new” relevant information to answer
the user’s query, although the article may be very relevant to the search statement.
Also the judgment of relevance can vary over time. Retrieving information on an
“XT” class of PCs is not of significant relevance to personal computers in 2010,
but would have been valuable in 1992. Thus, relevance judgment is measurable at
a point in time constrained by the particular users and their thresholds on accept-
ability of information.

Another way of specifying relevance is from information, system and situational
views. The information view is subjective in nature and pertains to human judgment
of the conceptual relatedness between an item and the search. It involves the user’s
personal judgment of the relevancy (aboutness) of the item to the user’s information
need. When reference experts (librarians, researchers, subject specialists, indexers)
assist the user, it is assumed they can reasonably predict whether certain informa-
tion will satisfy the user’s needs. Ingwersen categorizes the information view into
four types of “aboutness” (Ingwersen-92):

Author Aboutness	� determined by the author’s language as matched by the sys-
tem in natural language retrieval

Indexer Aboutness	� determined by the indexer’s transformation of the author’s
natural language into a controlled vocabulary they use to
index the document

Request Aboutness	� determined by the user’s or intermediary’s processing of a
search statement into a query

User Aboutness	� determined by the indexer’s attempt to represent the docu-
ment according to presupposition about what the user will
want to know

Thus the information view suggests how the relevancy of an item is determined can
be from the perspective of the creator (author) of an item and the vocabulary and
concepts they use in the original writing of an item, from an professional indexer (or
automated indexing process) and how it maps what the author wrote to the search-
able terms extracted from the items, from the specific information need specified at
retrieval time thus limited to how that information need is specified, or from what
the user really wants not constrained by how they expressed it in their information
need statement.

The system view is more technical in nature and ignores the subtle definition
of relevance and looks only at the match between query terms and words within

9.1 Introduction to Information System Evaluation

256

an item. It can be objectively observed, manipulated and tested without relying on
human judgment because it uses metrics associated with the matching of the query
to the item. The semantic relatedness between queries and items is assumed to be
inherited via the index terms that represent the semantic content of the item in a
consistent and accurate fashion. Other aspects of the system view are presented in
Sect.Â€9.2.

The situation view pertains to the relationship between information and the
user’s information problem situation. It assumes that only users can make val-
id judgments regarding the suitability of information to solve their information
need. The information and situation views are refered to as relevance and per-
tinence respectively. Pertinence can be defined as those items that satisfy the
user’s information need at the time of retrieval. The TREC-evaluation process
uses relevance versus pertinence as its criteria for judging items because perti-
nence is too variable to attempt to measure in meaningful items (i.e., it depends
on each situation).

Although relevancy is the central metric to evaluate a system upon, it is also the
least specific to determine. Relevancy can only be defined in the terms of human
judgment. That is why in the evaluation process an “information need” is specified
rather than a specific search statement. This allows the required human evaluators
to have a conceptual basis to do their relevancy judgments. No two users will read
the same information need statement and end up coming to the same decisions on
relevancy of the items they look at. And yet the goal of an information system is to
satisfy the user and thus needs to be judged on what the user considers is correct.
But even though there is no one correct answer to what items satisfy an information
need, most users will agree on 70–80% of the items that are relevant and most of the
items that are not relevant. Although not perfect this level agreement is sufficient for
the purpose of evaluating information systems. In general the evaluation is either to
compare how different systems work or the impact of an improvement to a specific
system. The relevancy judgments will in general not impact the final tradeoff com-
parison since they will affect all the systems equally.

It’s possible to measure the amount of agreement (or disagreement) between us-
ers on relevancy using a mathematical technique called Cohen’s Kappa coefficient.
It’s a statistical measure of inter-evaluator agreement. It takes into consideration the
probability there is agreement because of chance as well as agreement because the
raters came to the same conclusion. Some researchers believe that the assumptions
in the Kappa coefficient produce an overly conservative result. The measure is of
the agreement between two evaluators who each classify N items into C mutually
exclusive categories. In this case there will be N items placed in one of 2 categories
(relevant or non-relevant). The formula is:

In this formula Pr(a) is the observed agreement between evaluators and PR(e) is
the hypothetical probability of chance agreement. Kappa will take a value between

κ =
Pr(a) − Pr(e)

1 − Pr(e)

9 Information System Evaluation

257

0 and 1 where 1 means there is total agreement and zero means there is no agree-
ment. Pr(a) is known for any judging by comparing the results list. If you take the
position that the probability of chance agreement is purely random then Pr(e) will
be 0.5 (50%). But it really is not purely chance because the evaluators are working
from the same information need statement. Thus some form of a marginal statistic is
used to determine Pr(e). Typically a Kappa value between 0.4 and 0.6 is considered
moderate agreement and 0.6–0.8 is substantial agreement. Above 0.8 is almost per-
fect agreement. Typically evaluations from TREC type conferences with full time
evaluators is within the moderate range tending towards the 0.8 value.

The process of evaluating an information retrieval system starts with a collection
of items, the information retrieval capability(s) and a “ground truth” data set satisfy-
ing a number of information needs. The ground truth data set is the set of relevant
items that should be found based upon the information need. The expense and chal-
lenge is in determining this set. In some cases two sets of known relevant items are
needed. The second set is needed as a training set when a categorization system is
being evaluated. The training set must be representative and it is used to train the
categorization algorithm. Then the evaluation is run against the ground truth test
data set. Techniques are discussed in Sect.Â€9.2. An information need is used rather
than a query because a query is too constraining and there are many ways of de-
veloping a query based upon a particular information system characteristics to find
items on the information need. One thing that has been shown is that the evalua-
tion results are very query specific. Thus around 50 different information needs are
needed to ensure that the results are not biased by the search set. A lot of evaluation
is needed to develop the relevant items for each of the 50 information needs. There
are a number of existing data sets with queries and ground truth already defined for
them. The largest are the data sets from the TREC. The following is a list of some
of the more major test data sets available. There are always more being developed,
quite often focused on a particular information retrieval problem.

•	 Cranfield collection: Is one of the oldest collections that were manually gener-
ated in the late 1950s. It contains 1,398 abstracts of aerodynamics journal articles
and a set of 255 queries and relevance judgments across the complete database.

•	 Text Retrieval Conference (TREC) has many different data sets developed by
the National Institute of Standards and Technology (NIST) over the 17Â€years the
conference has been running. The most used data sets are for the ad hoc search
tracks of TREC 1 to TREC 8. The total of the data sets and evaluations is 1.9Â€mil-
lion items typically from news media and 450 information needs (the concept of
information needs) was formalized in the TREC conferences. Within this total
set the latest subset of 528,000 news items and 50 information needs is the most
highly used. TREC developed the technique of determining the set of relevant
items by reviewing the top 100 items from each system and evaluating them.
Thus the relevant ground truth is not against the entire database.

â•fi– TREC wanted to evaluate search against large data sets (e.g., trying to relate
closer to the Internet) and thus developed a collection of 25Â€million web pages
(GOV2 dataset). This is one of the largest datasets that is available for use.

9.1 Introduction to Information System Evaluation

258

•	 NII Test Collection for IR Systems (NTCIR)—is a set of test databases based
upon the TREC model but for the East Asian languages and focuses on cross
language information retrieval. Their web site summarizes data available and
conferences (http://research.nii.ac.jp/ntcir/data/data-en.html)

•	 FIRE—Forum for Information Retrieval Evaluation—is focused on the Indian
subcontinent (i.e., Pakistan, Bangladesh, Nepal, Sri Lanka, Bhutan and India).
It has the major languages such as Hindi and Bengali that are among the top ten
most-spoken languages of the world. A large volume of Indian language elec-
tronic documents are coming into existence. The Forum for Information Re-
trieval Evaluation (FIRE) is using a test corpus and evaluation forum for the
languages of this area.

•	 Cross Language Evaluation Forum (CLEF)—concentrates on European lan-
guages and information retrieval issues that they are interested in. To get to their
web site for the latest evaluations and data sets go to: http://clef-campaign.org/
One of the areas that CLEF is pursuing is XML search. The have a test collection
(consisting of 12,000 XML documents with about 500Â€MB of data).

•	 Reuters—developed the best test data sets for classification (categorization) in-
formation retrieval techniques. The data was originally collected and labeled by
Carnegie Group, Inc. and Reuters, Ltd. in the course of developing the CON-
STRUE text categorization system. In 2000, Reuters Ltd. made available a large
collection of Reuters News stories for use in research and development of natural
language processing, information retrieval, and machine learning systems. This
corpus, known as “Reuters Corpus, Volume 1” or RCV1, is significantly larger
than the older, well-known Reuters-21578 collection heavily used in the text
classification community. The newer data available is:

•	 Reuters Corpus, Volume 1, English language, 1996-08-20 to 1997-08-19. This is
distributed on two CDs and contains about 810,000 Reuters, English Language
News stories. It requires about 2.5Â€GB for storage of the uncompressed files.

•	 In addition because of interest in non-English Corpus and there is a database
(RCV-2) of non-English Language News stories covering the period 20 August
1996–19 August 1997. This is distributed on one CD and contains over 487,000
Reuters News stories in thirteen languages (Dutch, French, German, Chinese,
Japanese, Russian, Portuguese, Spanish, Latin American Spanish, Italian, Dan-
ish, Norwegian, and Swedish). These stories are contemporaneous with RCV1,
but some languages do not cover the entire time period.

•	 In Fall of 2004, NIST took over distribution of RCV1 and any future Reuters
Corpora. You can now get these datasets by sending a request to NIST.

•	 Newsgroup—The 20 Newsgroups data set is a collection of approximately
20,000 newsgroup documents, partitioned across 20 different newsgroups. Each
newsgroup corresponds to a different category.

•	 Linguistic Data Consortium (LDC)—(http://www.ldc.upenn.edu/). The Lin-
guistic Data Consortium is an open consortium of universities, companies and
government research laboratories. It creates, collects and distributes speech and
text databases, lexicons, and other resources for research and development pur-
poses. The University of Pennsylvania is the LDC’s host institution. The LDC

9 Information System Evaluation

259

was founded in 1992 with a grant from the Advanced Research Projects Agency
(ARPA), and is partly supported by grant IRI-9528587 from the Information and
Intelligent Systems division of the National Science Foundation. It has many
different documented data sets in speech to text and other areas that can be used
in testing new technologies.

9.2  �Measures Used in System Evaluations

To define the measures that can be used in evaluating Information Retrieval Sys-
tems, it is useful to define the major functions associated with identifying relevant
items in an information system (see Fig.Â€9.1). Items arrive in the system and are au-
tomatically or manually transformed by “indexing” into searchable data structures.
The user determines what his information need is and creates a search statement.
The system processes the search statement, returning potential hits. The user selects
those hits to review and retrieves the item. The item is reviewed to see if it has any
needed information.

Measurements can be made on each step in this process. Measurements can be
made from two perspectives: user perspective and system perspective. The user
perspective was described in Sect.Â€9.1. The Author’s Aboutness occurs as part of
the system executing the query against the index. The Indexer Aboutness and User

Fig. 9.1â†œæ¸€ Identifying relevant items

ITEMS ARE INDEXED
INTO SYSTEM

USER REVIEWS HITS
FROM QUERY

SYSTEM EXECUTES
QUERY AGAINST

INDEX

USER CREATES
SEARCH

STATEMENT

QUERY HITS RETURNED

Hit File

Search
Statement

9.2 Measures Used in System Evaluations

260

Aboutness occur when the items are indexed into items are indexed into the system.
The Request Aboutness occurs when the user creates the search statement. The am-
biguities in the definition of what is relevant occur when the user is reviewing the
hits from the query.

Typically, the system perspective is based upon aggregate functions, whereas the
user perspective takes a more localized personal view. If a user’s PC is not connect-
ing to the system, then, from that user’s view the system is not operational. From
the system operations perspective, one user not having access out of 1,000 users still
results in a 99.9% availability rate. Another example of how averaging distorts com-
munications between the system and user perspective is the case where there are 150
students taking six courses. Assume there are 5 students in three of the courses and 45
students in the other three courses. From the system perspective there is an average
of 25 students per instructor/course. For 10% of the students (15 students) there is a
really good ratio of 10 students per instructor. But, 90% of the users (215 students)
have a ratio of 45 students to one instructor. Thus most of the users may complain of
the poor ratio (45 to one instructor) to a system person who claims it is really good
(average of 25 to one instructor). Thus use of aggregate functions is useful but the
technical person needs to be sure to place them in context of the user’s perspective.

Techniques for collecting measurements can also be objective or subjective. An
objective measure is one that is well-defined and based upon numeric values de-
rived from the system operation. A subjective measure can produce a number, but is
based upon an individual user’s judgment.

Measurements with automatic indexing of items arriving at a system are derived
from standard performance monitoring associated with any program in a computer
(e.g., resources used such as memory and processing cycles) and time to process
an item from arrival to availability to a search process. When manual indexing is
required, the measures are then associated with the indexing process. The focus of
the metrics is on the resources required to perform the indexing function since this
is the major system overhead cost. The measure is usually defined in terms of time
to index an item. The value is normalized by the exhaustivity and specificity (see
Chap.Â€4) requirements. Another measure in both the automatic and manual indexing
process is the completeness and accuracy of the indexes created. These are evalu-
ated by random sampling of indexes by quality assurance personnel.

A more complex area of measurements is associated with the search creation
process. This is associated with a user creating a new search or modifying an ex-
isting query. In creating a search, an example of an objective measure is the time
required to create the query, measured from when the user enters into a function
allowing query input to when the query is complete. Completeness is defined as
when the query is executed. Although of value, the possibilities for erroneous data
(except in controlled environments) are so great that data of this nature is not col-
lected in this area in operational systems. The erroneous data comes from the user
performing other activities in the middle of creating the search such as going to get
a cup of coffee. Thus most system evaluation of the search creation process comes
from specialists in user interfaces and working group feedback with representatives
from the user population.

9 Information System Evaluation

261

Response time is a metric frequently collected to determine the efficiency of
the search execution. Response time is defined as the time it takes to execute the
search. The ambiguity in response time originates from the possible definitions of
the end time of a search. The beginning is always correlated to when the user tells
the system to begin searching. The end time is affected by the difference between
the user’s view and a system view. From a user’s perspective, a search could be
considered complete when the first result is available for the user to review, espe-
cially if the system continues to have new items available whenever a user needs to
see the next item. Thus from the user perspective the search is complete when the
first display page of hits is shown. From a system perspective, system resources are
being used until the search has determined all hits. To ensure consistency, response
time is usually associated with the completion of the search. This is one of the most
important measurements in a production system. Determining how well a system is
working answers the typical concern of a user: “the system is working slow today.”

It is difficult to define objective measures on the process of a user selecting hits
for review and reviewing them. The problems associated with search creation ap-
ply to reviewing the results of a search. Using time as a metric does not account for
reading and cognitive skills of the user along with the user performing other activi-
ties during the review process. Data are usually gathered on the search creation and
Hit file review process by subjective techniques, such as questionnaires to evaluate
system effectiveness.

In addition to efficiency of the search process discussed above, the most im-
portant evaluation factor is the quality of the search results which can be mea-
sured typically by precision and recall. Precision is a measure of the accuracy of
the search process. It directly evaluates the correlation of the query to the database
and indirectly is a measure of the completeness of the indexing algorithm. If the
indexing algorithm tends to generalize by having a high threshold on the index term
selection process or by using concept indexing, then precision is lower, no matter
how accurate the similarity algorithm between query and index. Recall is a measure
of the ability of the search to find all of the relevant items that are in the database.
The following are the formulas for precision and recall:

where Number_Possible_Relevant is the number of relevant items in the database,
Number_Retrieved_Relevant is the number of relevant items in the Hit file, and
Number_Total_Retrieved is the total number of items in the Hit File. In controlled
environments it is possible to get values for both of these measures and relate them
to each other. Two of the values in the formulas, Number_Retrieved_Relevant and
Number_Total_Retrieved, are always available. Number_Possible-Relevant poses a
problem in uncontrolled environments because it suggests that all relevant items in
the database are known. This was possible to manually determine with very small

Precision =
Number_Retrieved_Relevant

Number_Total_Retrieved

Recall =
Number_Retrieved_Relevant

Number_Possible_Relevant

9.2 Measures Used in System Evaluations

262

databases in some of the early experiments in information systems. To gain the
insights associated with testing a search against a large database with millions of
items makes collection of this data almost impossible. Two approaches have been
suggested to estimate the total number of relevant items in a test data set. The first
is to use a sampling technique across the database performing relevance judgments
on the returned items. This would form the basis for an estimate of the total relevant
items in the database (Gilbert-79). Using this approach a total number of relevant
documents estimate is determined that is associated with the complete database be-
ing searched. This technique calculates an estimate of the number of relevant items
but it does not determine what they are. Thus the denominator number is available
but a human has to evaluate the returned results to determine which ones are rel-
evant to figure out precision and recall.

The other technique is applicable when there are different search strategies to the
same database for the same query. This is the case where you are testing multiple tech-
nologies in a conference situation such as TREC. An assumption is then made that an
estimate of all the relevant items for evaluation purposes between the different search
technologies can be defined as the summation of all of the relevant items returned
by all of the search systems in the evaluation (Sparck Jones-75). In other words, the
search results from all of the different search systems are placed in an aggregate set
and the number of relevant items in that combined set of items is defined as the total
relevant items in the data set for that query. Since ranking is part of the search ap-
proach—the most likely location for relevant items should be nearer the top of the
ranked returned results. Thus the technique is to take the top “n” items from each
search system and merge them. The majority of the hits are found across the results.
This significantly reduces the number of items that need manual review for relevancy.
At first TREC started with 150 items from each search system but then they dropped
back to 100 not seeing that many more unique relevant items being found by using
the larger data set. Each item in the aggregate list is reviewed by a human against the
information need statement and is classified as either relevant or not relevant. Since
the process provides a detailed list of items that are relevant, it is possible to use that
list to evaluate the detailed performance of each search system. In this controlled en-
vironment it is possible to create Precision/Recall graphs by reviewing the Hit file in
ranked order and recording the changes in precision and recall as each item is judged.

In an operational system it is unrealistic to calculate recall because there is no
reasonable approach to determine Number_Possible_Relevant. It is possible, how-
ever to calculate precision values associated with queries, assuming the user pro-
vides relevance judgments. There is a pragmatic modification that is required to the
precision formula denominator factor of Number_Total_Retrieved. The user cannot
be forced to review all of the items in the Hit file. Thus, there is a likely possibility
that there will be items found by the query that are not retrieved for review because
the user stops review part way into the hit file. The adjustment to account for this
operational scenario is to redefine the denominator to Number_Total_Reviewed ver-
sus Number_Total_Retrieved. Under this condition the Precision factor becomes
the precision associated with satisfying the user’s information need versus the pre-
cision of the query. If reviewing three relevant items satisfies the user’s objective in

9 Information System Evaluation

263

the search, additional relevant items in a Hit file do not contribute to the objective of
the information system. Thus precision can be defined as the total number of items
the user looks at in order to find the number of relevant items the user needs. The
other factor that needs to be accounted for is the user not reviewing items in the Hit
file because the summary information in the status display is sufficient to judge the
item is not likely to be relevant. Under this definition, precision is a more accurate
measure of the use of the user’s time. Any item in the hit list the user does not open
for review has to be assumed to be non-relevant.

Precision recall graphs can be produced based upon the precision and recall val-
ues determined at specific hit file sizes (for example calculate precision and recall
based upon the top 10 items, top 20 items, up to the top 100 items). The result is a
very saw tooth looking graph. The graph can be made smoother by using interpo-
lated precision. Recall can only increase as you retrieve more items as each point is
determined in the graph (recall is only dependent upon the number of relevant items
and will be either the same or higher as you retrieve more items). But precision can
change in either direction being sensitive to the ratio of relevant and non-relevant
items. Interpolated precision is where at each recall point in generating the graph
the “highest” precision value at that point or any future point is selected for the
precision at that point. The rationale is that is the precision goes up at a future point
and the recall will also be going up that the user is interested in that point. Using
this strategy, the precision value can only be either staying the same or decreasing
as you look at future points in the graph. This eliminates the saw tooth nature and
makes a more continuous looking graph that will go from the top right part of the
graph to the bottom left in a decreasing plot.

In evaluating multiple systems it is difficult to compare how each does by trying
to compare their precision/recall graphs. It is desirable to calculate a single value
that can be used in comparing systems at recall levels. The value typically used is
the F-measure which trades off precision versus recall and is adjustable. It calcu-
lates the weighted harmonic mean of the precision and recall:

Where α is a value between 0 and 1. The standard F measure weights precision and
recall equally and thus αÂ€=Â€1/2 or βÂ€=Â€1. The typical formula for an F measure in
information retrieval is:

If it is desired to place more weight on precision then a value of βÂ€<Â€1 would be
used. If the emphasis is on recall then a value of βÂ€>Â€1 is used. The harmonic mean
is used instead of an arithmetic mean because recall is insensitive to the number of
non-relevant items retrieved. Thus if you retrieved all of the items in the database
the arithmetic mean would be 1/2 because you would have a value of 0 for preci-
sion and a value of 1 for recall. Let’s use an example of a database with 2 relevant

F =
1

α 1
p

+ (1 − α) 1
r

=
(β2 + 1)p ∗ r

C ∗ p + r
where β2 =

1 − α

α

F1 =
2 ∗ p ∗ r

p + r

9.2 Measures Used in System Evaluations

264

items and 100,000 total items. If all of the items were retrieved using the harmonic
formula above the F score (measure) would be:

The F-score is far more representative of the effect of large retrievals and how it
would be considered negative from a user’s perspective. The harmonic mean tends
to be closer to the smaller number when two numbers vary by a lot.

Although precision and recall formed the initial basis for measuring the effec-
tiveness of information systems, they encounter mathematical ambiguities and a
lack of parallelism between their properties (Salton-83). In particular, what is the
value of recall if there are no relevant items in the database or recall if no items are
retrieved (Fairthorne-64, Robertson-69)? In both cases the mathematical formula
becomes 0/0. The lack of parallelism comes from the intuitiveness that finding more
relevant items should increase retrieval effectiveness measures and decrease with
retrieval of non-relevant items. Recall is unaffected when non-relevant items are re-
trieved. Another measure that is directly related to retrieving non-relevant items can
be used in defining how effective an information system is operating. This measure
is called Fallout and defined as (Salton-83):

where Number_Total_Nonrelevant is the total number of non-relevant items in the
database. Fallout can be viewed as the inverse of recall and will never encounter
the situation of 0/0 unless all the items in the database are relevant to the search. It
can be viewed as the probability that a retrieved item is non-relevant. Recall can be
viewed as the probability that a retrieved item is relevant. From a system perspec-
tive, the ideal system demonstrates maximum recall and minimum fallout. This
combination implicitly has maximum precision. Of the three measures (precision,
recall and fallout), fallout is least sensitive to the accuracy of the search process.
The large value for the denominator requires significant changes in the number of
retrieved items to affect the current value. Examples of precision, fallout and recall
values for systems tested in TREC-4 are given in Sect.Â€9.3.

Another measure that seems to reflect how a particular search will perform across
different databases and can be used for comparisons is the Mean Average precision
(MAP). The MAP provides a single value estimate across all recall levels for a query
averaged across all queries. It basically is applied to the top “n” items from a retrieved
list. It only looks at the precision values for relevant items as they are found in the
hit list. The non-relevant items are assumed to have a value of zero. The formula is:

Where n is the number of queries in the Qn set of results. The mj is the number of
relevant items for query Qj in the top items being retrieved. P(Ij,k) is the precision

F1 =
2 ∗ (2/100000) ∗ (2/2)

2/100000 + (2/2)
≈ 0.00004 or 0.004%

Fallout =
Number_Retrieved_Nonrelevant

Number_Total_Nonrelevant

MAP(Qn) =
1

|Qn|

|Qn|∑

j=1

1
mj

mj∑

k=1

P (Ij ,k)

9 Information System Evaluation

265

at the point for query j when relevant item k is found (the value is zero when the
item is not relevant and does not effect the average). Since it is the average of all of
the queries each query is weighted the same (although some queries—information
needs are better than others). Different sets of queries produce significantly differ-
ent MAP scores against a database. But the same set of queries tends to produce the
same MAP scores no matter what database they run against.

There are other measures of search capabilities that have been proposed. A new
measure that provides additional insight in comparing systems or algorithms is the
“Unique Relevance Recall” (URR) metric. URR is used to compare more two or
more algorithms or systems. It measures the number of relevant items that are re-
trieved by one algorithm that are not retrieved by the others:

Number_unique_relevant is the number of relevant items retrieved that were not
retrieved by other algorithms. When many algorithms are being compared, the defi-
nition of uniquely found items for a particular system can be modified, allowing a
small number of other systems to also find the same item and still be considered
unique. This is accomplished by defining a percentage (Pu) of the total number of
systems that can find an item and still consider it unique. Number_relevant can take
on two different values based upon the objective of the evaluation.

Using TNRR as the denominator provides a measure for an algorithm of the
percent of the total items that were found that are unique and found by that algo-
rithm. It is a measure of the contribution of uniqueness to the total relevant items
that the algorithm provides. Using the second measure, TURR, as the denominator,
provides a measure of the percent of total unique items that could be found that are
actually found by the algorithm. FigureÂ€9.2a, b provide an example of the overlap
of relevant items assuming there are four different algorithms. FigureÂ€9.2a gives the
number of items in each area of the overlap diagram in Fig.Â€9.2b. If a relevant item
is found by only one or two techniques as a “unique item,” then from the diagram
the following values URR values can be produced:

Algorithm I	� 6 unique items (areas A, C, E)
Algorithm II	� 16 unique items (areas B, C, J)
Algorithm III	� 29 unique items (areas E, H, L)
Algorithm IV	� 31 unique items (areas J, L, M)

Unique_Relevance_Recall =
Number_unique_relevant

Number_relevant

TNRR = A + B + C + · · · + M = 985

TURR = A + B + C + E + H + J + L + M = 61

9.2 Measures Used in System Evaluations

Algorithm URRTURR URRTNRR

Algorithm I 6/985â•›=â•›0.0061 6/61â•›=â•›0.098
Algorithm II 16/985â•›=â•›0.0162 16/61â•›=â•›0.262
Algorithm III 29/985â•›=â•›0.0294 29/61â•›=â•›0.475
Algorithm IV 31/985â•›=â•›0.0315 31/61â•›=â•›0.508

266

The URR value is used in conjunction with Precision, Recall and Fallout to determine
the total effectiveness of an algorithm compared to other algorithms. The URRTNRR
value indicates what portion of all unique items retrieved by all of the algorithms was
retrieved by a specific algorithm. The URRTURR value indicates the portion of pos-
sible unique items that a particular algorithm found. In the example, Algorithm IV
found 50% of all unique items found across all the algorithms. The results indicate
that if a user wanted to increase my recall by running two algorithms, the user would
choose algorithm III or IV in addition to the algorithm with the highest recall value.
Like Precision, URR can be calculated since it is based upon the results of retrieval
versus results based upon the complete database. It assists in determining the utility
of using multiple search algorithms to improve overall system performance.

When evaluating technologies where the users are not interested in high recall
but are more interested in getting sufficient information to take action on (e.g.,

Fig. 9.2â†œæ¸€ a Number relevant items. b Four algorithms with overlap of relevant retrieved

INTERPRETATIONVALUE

Total Number Retrieved
Relevant (TNRR)

the total number of relevant items found by all
algorithms

Total Unique Relevant
Retrieved (TURR)

the total number of unique items found by all
the algorithms

A B C D E F G H I J K L M

3 4 2 22 1 100 200 22 100 10 500 156

A

Algorithm II

Algorithm III

 B C D
E

F G H
J

I

 K
L

M

Algorithm IV

Algorithm I

b

a

9 Information System Evaluation

267

searches on the Web) what matters is the precision and recall on the top of the re-
turned hit list. The average precision and other current evaluation measures are not
robust to incomplete relevance judgments. There is a measure that is better when
there is incomplete relevance information. The approach looks at evaluating a sys-
tem on only the judged items. The evaluations discussed so far assume an estimate
of the total number of relevant items is available to calculate the recall value. The
preference measure that they proposed is a function of the number of times judged
non-relevant items are retrieved before relevant items. It is called bpref because it
uses binary relevance judgments to define the preference relation. Binary relevance
judgments obtain a large set of preferences since the number of non-relevant judg-
ments plus the number (N) of relevant judgments (R) yield N*R preferences. Since
the bpref measure could be sensitive to the absolute number of nonrelevant items the
measure uses the number of non-relevant between relevant items as a basis. Bpref is
a function of how frequently relevant items are retrieved before non-relevant items:

Where R is the first R items judged as relevant so far and r is the number of relevant
items. The factor nr is the number of non-relevant items prior to the current relevant
item from the start of the hit file. Non-judged items are not counted. As an example
assume there are 12 items with 4 relevant its. The user has reviewed the first 9 items
of which 2 items were not judged and D2, D5 and D9 are relevant:

D1
D2 relevant
D3 unjudged
D4
D5 relevant
D6
D7 unjudged
D8
D9 relevant
D10

If the number of relevant items is very small there can be only one or two factors in
the formula. To compensate for this condition they proposed adding an additional
constant of 10 in the denominator and called the formula bpref-10.

Another approach to evaluating information retrieval systems eliminates the
need for evaluators to judge the results and thus can be automated. In this case a
number of known relevant items are introduced into the database. The measure that
can be used in this scenario is called R-precision. The number of relevant items
introduce is R and is known ahead of time. The top R items are reviewed. If there
are r relevant items in the top R items in the hit file then both the precision and
recall both equal r/R. In a perfect system both will equal 1. R-precision is a single

Bpref =
1
R

∑

r

1 −
|nr |
R

Bpref = 1/3 [(1 − 1/3) + (1 − 2/3) + (1 − 4/3)]

9.2 Measures Used in System Evaluations

268

number on the precision recall curve. It has been shown to correlate well with the
MAP measure.

Another measure that is oriented towards user satisfaction is the discounted cu-
mulative gain (DCG). The measure looks at the position in the hit list for relevant
items knowing the higher on the list the more valuable it is to the user. This is es-
pecially true for the internet where users only look at the first few pages of the hit
list. The gain starts with higher values if the item is near the top of the hit list and
decreases as you go down the hit list. The discounted cumulative gain is a modifica-
tion of the earlier cumulative gain (CG) measure:

Where l is a rank position in the list reli is the relevance at position i. But shifting
the ordering of the items does not effect their relevance and thus not the CG value as
long as they remain in the l items. Position does not matter. The discounted cumula-
tive gain where the position (i) is a factor is:

But this is affected by different length hit lists based upon different searches. To
normalize the value across queries a normalizing factor is calculated by sorting the
items by relevance which will produce the best DCG for an l. The DCG is divided
by this ideal DCG value. This is also referred to as the Normalized discounted cu-
mulative gain.

Other measures have been proposed for judging the results of searches (Keen-71,
Salton-83):

Novelty Ratio:	� ratio of relevant and not known to the user to total relevant
retrieved

Coverage Ratio:	� ratio of relevant items retrieved to total relevant by the user
before the search

Sought Recall:	� ratio of the total relevant reviewed by the user after the search to
the total relevant the user would have liked to examine

In some systems, programs filter text streams, software categorizes data or intel-
ligent agents alert users if important items are found. In these systems, the Informa-
tion Retrieval System makes decisions without any human input and their decisions
are binary in nature (an item is acted upon or ignored). These systems are called
binary classification systems for which effectiveness measurements are created to
determine how algorithms are working. One measure is the utility measure that can
be defined as:

CGl =
l∑

i=1

reli

DCGl =
l∑

i=1

2reli − 1
log2(1 + i)

U = α ∗ (Relevant_Retrieved) + β ∗ (Non-Relevant_Not Retrieved)

− δ ∗ (Non-Relevant_ Retrieved) − γ ∗ (Relevant_Not Retrieved)

9 Information System Evaluation

269

where  and  are positive weighting factors the user places on retrieving relevant
items and not retrieving non-relevant items while  and  are factors associated
with the negative weight of not retrieving relevant items or retrieving non-relevant
items. This formula can be simplified to account only for retrieved items with 
and  equal to zero (Lewis-96). Another family of effectiveness measures called the
E-measure that combines recall and precision into a single score was proposed by
Van Rijsbergen (Rijsbergen-79).

9.3  �Multimedia Information Retrieval Evaluation

There are some efforts at establishing ground truth and evaluation of multimedia
search systems. But the difficulties of establishing a ground truth evaluation set for
multimedia evaluations is significantly more difficult then establishing ground truth
for textual systems in that it requires a lot more manual review of the multimedia
to define the expected results where automated techniques were found to assist in
reducing the amount of data to be reviewed and its focus for text.

Some of the earliest efforts for multimedia were not focused on the search of the
multimedia as much as the conversion of the multimedia to a textual form (where
possible) that could then have the standard text search techniques apply to it. There
have been conferences and evaluations with ground truth examples for Optical
Character Reading (OCR) or Optical Character Writing (OCW) that converts im-
ages with typed or written text into computer text. In the area of conversion of audio
to Speech there was a series of conferences call HUB that focused on that technol-
ogy. The Hub conferences eventually encountered the same issue as the TREC Ad
Hoc search evaluations where the technologies had evolved using Hidden Markov
Models and there was no significant improvement between yearly evaluations. The
Hub program was replaced by the DARPA EARS (Effective, Affordable, Reus-
able Speech-to-Text) program that continues to develop robust speech recognition
technology to address a range of languages and speaking styles. The results from
the HUB conferences were used in TREC 6-8 on a Spoken Document Retrieval
track evaluating how search technologies worked against the errorful transcribed
audio. Most recently DARPA has focused on the GALE Program. The Global Au-
tonomous Language Exploitation (GALE) program is designed to translate and un-
derstand foreign language material (e.g., television shows and newspapers) in near
real time. The system automatically identifies important information and stores the
results in a searchable database. In addition to speech to text, GALE’s translation
of structured speech and text (e.g., broadcast news and newswire) has improved to
the point that it produces “edit-worthy” text (http://www.darpa.mil/ipto/programs/
gale/gale.asp).

A lot of multimedia evaluation is done by individual organizations as they in-
vestigate different search technologies. There is one European group looking at the
problem; CHORUS (Coordinated approach to the EurOpean effoRt on aUdio-visual
Search engines). CHORUS started in November 2007. CHORUS is a Coordination

9.3 Multimedia Information Retrieval Evaluation

270

Action whose goal is to create the conditions of mutual information and cross fertil-
ization between the projects that will run under Strategic objective 2.6.3 (Advanced
search technologies for digital audio-visual content). CHORUS is setting up confer-
ences and meetings to discuss how to approach evaluation and rating of multimedia
search systems for Europe.

The longest running effort at multimedia formal evaluation has been by TREC
that focuses on video. In 2001 TREC launched a track on information retrieval of
digital video. By 2003 this track had become a major evaluation area as digital
video became more prevalent and the track separated and became its own evalu-
ation forum (TRECVid—http://www-nlpir.nist.gov/projects/trecvid). The earliest
work focused on indexing the video which is one approach to defining a semantic
representation of it. The index is against the continuous video stream and is associ-
ated with key frames extracted from the video similar to indexing images. The tech-
nology challenge is to develop algorithms to automatically detect semantic features
in the video.

TRECVid 2006 had 160Â€h of ground truth TV news recording as a test data set.
TRECVid has subsetted their evaluation into a number of different areas:

•	 Shot boundary detection is the process of dividing the video up into specific
areas to be analyzed.

•	 Detection of important high level semantic concepts in the video—39 concepts
have been identified that act as the ground truth information needs.

•	 24 topics are identified typically for each yearly conference and the systems
identify and extract the shots that best represent the topics. To identify the shot
results the system can use only the topic definition, the can redefine the topic and
finally the tester can interact with the system trying to find the best results (these
options are similar to the original TREC evaluations).

•	 Redundancy and ad hoc retrieval is against raw footage that has not been pro-
cessed to develop techniques for filtering out redundancy and detecting impor-
tant scene data for product creation.

By the 2006 conference over 70 groups from 20 different countries and 380 re-
searchers were participating in the conference. The shot boundary detection has
significantly improved with current results showing over 90% precision and recall
for hard cuts and 70% precision and recall for gradual transitions to new topics.
Detecting semantic information in video is even more difficult than in text. The
systems are performing more in the 50% range.

Another location for ground truth data is at Carnegie Mellon University where
they have been creating the Large Analytics Library For Large Scale Concept On-
tology For Multimedia (LIBSCOM) data sets. They have defined an ontology list
of ideas and lower level terms describing the ideas which they are applying to col-
lected video from YouTube. The goal is not to just provide data sets but also the
tools that can be shared by users in creating additional datasets and expanding and
maintaining the ontology used to describe the semantics in a video (http://www.
lscom.org/index.html).

9 Information System Evaluation

271

9.4  �Measurement Example: TREC Evolution

Until the creation of the Text Retrieval Conferences (TREC) by the Defense Ad-
vance Research Projects Agency (DARPA) and the National Institute of Standards
and Technology (NIST), experimentation in the area of information retrieval was
constrained by the researcher’s ability to manually create a test database. One of the
first test databases was associated with the Cranfield I and II tests (Cleverdon-62,
Cleverdon-66). It contained 1,400 documents and 225 queries. It became one of the
standard test sets and has been used by a large number of researchers. Other test
collections have been created by Fox and Sparck Jones (Fox-83, Sparck Jones-79).
Although there has been some standard usage of the same test data, in those cases
the evaluation techniques varied sufficiently so that it has been almost impossible to
compare results and derive generalizations. This lack of a common base for experi-
mentation constrained the ability of researchers to explain relationships between
different experiments and thus did not provide a basis to determine system improve-
ments (Sparck Jones-81). Even if there had been a better attempt at uniformity in
use of the standard collections, all of the standard test sets suffered from a lack of
size that prevented realistic measurements for operational environments.

The goal of the Text Retrieval Conference was to overcome these problems by
making a very large, diverse test data set available to anyone interested in using it as
a basis for their testing and to provide a yearly conference to share the results. There
have been 17 TREC conferences since 1992, usually held in the Fall. During the
first 8 TREC conferences, two types of retrieval were examined: “adhoc” query, and
“routing” (dissemination). As experience has been gained from in the TREC confer-
ences, the details and focus of the experiments have evolved. TREC-provides a set
of training documents and a set of test documents, each over 1Â€GB in size. It also
provides a set of training search topics (along with relevance judgments from the
database) and a set of test topics. The researchers send to the TREC-sponsor the list
of the top 200 items in ranked order that satisfy the search statements. These lists
are used in determining the items to be manually reviewed for relevance and for cal-
culating the results from each system. The search topics are “user need” statements
rather than specific queries. This allows maximum flexibility for each researcher to
translate the search statement to a query appropriate for their system and assists in
the determination of whether an item is relevant.

FigureÂ€9.3 describes the initial sources and the number and size of items in the
test database (Harman-95). FigureÂ€ 9.3 also includes statistics on the number of
terms in an item and number of unique terms in the test databases. The database
was initially composed of disks 1 and 2. In later TRECs, disk 3 of data was added to
focus on the routing tests. FigureÂ€9.3b includes in the final column the statistics for
the Cranfield test collection. Comparing the Cranfield collection to the contents of
disk 1 shows that the initial TREC-test database is approximately 200 times larger
and the average length of the items is doubled. Also the dictionary size of unique
words is 20 times larger. All of the documents are formatted in Standard General-
ized Markup Language (SGML) with a Document Type Definition (DTD) included

9.4 Measurement Example: TREC Evolution

272

for each collection allowing easy parsing. SGML is a superset of HTML and is one
of the major standards used by the publishing industry.

It was impossible to perform relevance judgments on all of the items in the test
databases (over 700,000 items) to be used in recall and fallout formulas. The option
of performing a random sample that would find the estimated 200 or more relevant
items for each test search would require a very large sample size to be manually
analyzed. Instead, the pooling method proposed by Sparck Jones was used. The
top 200 documents based upon the relevance rank from each of the researchers
were pooled, redundant items were eliminated and the resultant set was manually
reviewed for relevance. In general one-third of the possible items retrieved were
unique (e.g., out of 3,300 items 1,278 were unique in TREC-1) (Harman-93). This
ratio also been shown to be true in other experiments (Katzer-82). In TREC, each

Fig. 9.3â†œæ¸€ a Routing test database. b TREC-training and adhoc test collection. (From TREC-5 con-
ference proceedings)

Subset of collection WSJ (disks
1&2) SJMN
(disk 3)

AP ZIFF FR (disks
1&2)
PAT (disk 3)

DOE Cranfield
test
database

Size of Collection
(Mbytes)
(disk 1)
(disk 2)
(disk 3)

270
247
290

259
241
242

245
178
349

262
211
245

186 1.5

Number of Records
(disk 1)
(disk 2)
(disk 3)

98,732
74,520
90,257

84,678
79,919
78,321

75,180
56,920
161,021

25,960
19,860
6,711

226,087 1400

Median Number
Terms per record
(disk 1)
(disk 2)
(disk 3)

182
218
279

353
346
358

181
167
119

313
315
2896

82 79

Average Number
of Terms per record
(disk 1)
(disk 2)
(disk 3)

329
377
337

375
370
379

412
394
263

1017
1073
3543

89 88

Total Number
of Unique Terms
(disk 1) 156,298 197,608 173,501 126,258 8226

Collection Source Size in MBytes Mean Terms per
record

Median Terms
per record

Total Records

ZIFF (disk 3) 249 263 119 161,021
FR (1994) 283 456 390 55,554
IR Digest 7 2,383 2,225 455
News Groups 237 340 235 102,598
Virtual Worlds 28 416 225 10,152

b

a

9 Information System Evaluation

273

test topic was judged by one person across all of the possible documents to ensure
consistency of relevance judgment.

The search Topics in the initial TREC-consisted of a Number, Domain (e.g.,
Science and Technology), Title, Description of what constituted a relevant item,
Narrative natural language text for the search, and Concepts which were specific
search terms.

The following describes the source contents of each of the disks shown in Fig.Â€9.3
available for TREC analysis:

Disk 1
�WSJ	 Wall street journal (1987, 1988, 1989)
AP	� AP Newswire (1989)
ZIFF	� Articles from Computer Select disks (ZIFF-Davis Publishing)
FR	� Federal Register (1989)
DOE	� Short Abstracts from DOE Publications

Disk 2
�WSJ	 Wall Street Journal (1990, 1991, 1992)
AP	� AP Newswire (1988)
ZIFF	� Articles from Computer Select disks (ZIFF-Davis Publishing)
FR	� Federal register (1988)

Disk 3
�SJMN	 San Jose Mercury News (1991)
AP	� AP Newswire (1990)
ZIFF	� Articles from Computer Select disks (ZIFF-Davis Publishing)
PAT	� U.S. Patents (1993)

Precision and recall were calculated in the initial TREC. To experiment with a mea-
sure called Relative Operating Characteristic (ROC) curves, calculation of Prob-
ability of Detection (same as recall formula) and calculation of Probability of False
Alarm (same as Fallout) was also tried. This use of a set of common evaluation
formulas between systems allows for consistent comparison between different exe-
cutions of the same algorithm and between different algorithms. The results are rep-
resented on Recall-Precision and Recall-Fallout graphs (ROC curves). FigureÂ€9.4
shows how the two graphs appear. The x-axis plots the recall from zero to 1.0 based
upon the assumption that the relevant items judged in the pooling technique ac-
count for all relevant items. The precision or fallout value at each of the discrete
recall values is calculated based upon reviewing the items, in relevance rank score
order, that it requires to reach that recall value. For example, assume there are 200
relevant items. A particular system, to achieve a recall of 40% (0.4) requiring re-
trieval of 80 of the relevant items, requires retrieving the top 160 items with the
highest relevance scores. Associated with the Precision/Recall graph, for the x-axis
value of 0.4, the y-axis value would be 80/160 or 0.5. There are sufficient sources
of potential errors in generating the graphs, that they should only be used as relative
comparisons between algorithms rather than absolute performance indicators. It has
been proven they do provide useful comparative information.

9.4 Measurement Example: TREC Evolution

274

In addition to the search measurements, other standard information on system
performance such as system timing, storage, and specific descriptions on the tests
are collected on each system. This data is useful because the TREC-objective is
to support the migration of techniques developed in a research environment into
operational systems.

The results from each conference have varied based upon understanding from
previous conferences and new objectives. A general trend has been followed to make
the tests in each TREC-closer to realistic operational uses of information systems.

TREC-1 (1992) was constrained by researchers trying to get their systems to work
with the very large test databases. TREC-2 in August 1993 was the first real test
of the algorithms which provided insights for the researchers into areas in which
their systems needed work. The search statements (user need statements) were very
large and complex. They reflect long-standing information needs versus adhoc re-
quests. By TREC-3, the participants were experimenting with techniques for query
expansion and the importance of constraining searches to passages within items ver-
sus the total item. There were tradeoffs available between manual and automatic
query expansion and the benefits from combining results from multiple retrieval
techniques. Some of the experiments were driven by the introduction of shorter and
less complex search statements. The “concept” field, which contained terms related
to the query that a user might be expected to be aware of, was eliminated from the
search statements. This change was a major source for the interest into query expan-
sion techniques. TREC-4 introduced significantly shorter queries (average reduction
from 119 terms in TREC-3 to 16 terms in TREC-4) and introduced five new areas
of testing called “tracks” (Harman-96). The queries were shortened by dropping the
title and a narrative field, which provided additional description of a relevant item.

The multilingual track expanded TREC-4 to test a search in a Spanish test set
of 200Â€MB of articles from the “El Norte” newspaper. The interactive track modi-

9 Information System Evaluation

Fig. 9.4â†œæ¸€ Examples of TREC-result charts

1.0

.8

.6

.4

.2

0

Pr
ec

is
io

n

Recall
0 .2 .4 .6 .8 1.0

1.0

.1

.01

.001

.00001

1e-05
Lo

g
Fa

llo
ut

Recall
0 .2 .4 .6 .8 1.0

275

fied the previous adhoc search testing from a batch to an interactive environment.
Since there are no standardized tools for evaluating this environment, the TREC-5
goals included development of evaluation methodologies as well as investigating
the search aspects. The database merging task investigated methods for merging
results from multiple subcollections into a single Hit file. The confusion track dealt
with corrupted data. Data of this type are found in Optical Character Reader (OCR)
conversion of hardcopy to characters or speech input. The database for TREC-had
random errors created in the text. Usually in real world situations, the errors in
these systems tend not to be totally random but bursty or oriented towards particular
characters. Finally, additional tests were performed on the routing (dissemination)
function that focused on three different objectives: high precision, high recall and
balanced precision and recall. Rather than ranking all items, a binary text classifica-
tion system approach was pursued where each item is either accepted or rejected
(Lewis-96, Lewis-95).

Insights into the advancements in information retrieval can be gained by looking
at changes in results between TRECs mitigated by the changes in the test search
statements. Adhoc query results from TREC-1 were calculated for automatic and
manual query construction. Automatic query construction is based upon automatic
generation of the query from the Topic fields. Manual construction is also gener-
ated from the Topic field manually with some machine assistance if desired. There
was very little difference in the results between manual construction of a query and
automatic construction.

By TREC-3 and TREC-4 the systems were focusing on how to accommodate the
shorter queries. It is clear that if the shorter queries had been executed for TREC-1,
the results would have been worse than those described. FiguresÂ€9.5 and 9.6 show

9.4 Measurement Example: TREC Evolution

Fig. 9.5â†œæ¸€ Automatic AdHoc
query results from TREC-3
and TREC-4. (From TREC-5
conference proceedings)

1.0

0.8

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Pr
ec

is
io

n 0.6

276

the precision recall results for Automatic and Manual adhoc searches for TREC-3
and TREC-4 (Harman-96). The significant reduction in query size caused even the
best algorithms shown in the figures to perform worse in TREC-4 than in TREC-3.

Even though all systems experienced significant problems when the size of the
queries was reduced, a comparison with TREC 1 results shows a significant im-
provement in the Precision/Recall capabilities of the systems. A significant portion
of this improvement occurred between TREC-1 and TREC-2.

By participating on a yearly basis, systems can determine the effects of changes
they make and compare them with how other approaches are doing. Many of the
systems change their weighting and similarity measures between TRECs. INQUE-
RY determined they needed better weighting formulas for long documents so they
used the City University algorithms for longer items and their own version of a
probabilistic weighting scheme for shorter items. Another example of the learning
from previous TRECs is the Cornell “SMART” system that made major modifica-
tions to their cosine weighting formula introducing a non-cosine length normaliza-
tion technique that performs well for all lengths of documents. They also changed
their expansion of a query by using the top 20 highest ranked items from a first pass
to generate additional query terms for a second pass. They used 50 terms in TREC-4
versus the 300 terms used in TREC-3. These changes produced significant improve-
ments and made their technique the best in the Automatic Adhoc for TREC-4 versus
being lower in TREC-3.

In the manual query method, most systems used the same search algorithms.
The difference was in how they manually generated the query. The major tech-
niques are the automatic generation of a query that is edited, total manual genera-
tion of the query using reference information (e.g., online dictionary or thesaurus)

Fig. 9.6â†œæ¸€ Manual AdHoc
query results from TREC3
and TREC4. (From TREC-5
conference proceedings)

1.0

0.8

0.6

Pr
ec

is
io

n
0.4

0.2

0.0
0.0 0.2 0.4 0.6

Recall
0.8 1.0

9 Information System Evaluation

277

and a more complex interaction using both automatic generation and manual ex-
pansion.

When TREC-introduced the more realistic short search statements, the value of
previously discovered techniques had to be reevaluated. Passage retrieval (limiting
the similarity measurement to a logical subsets of the item) had a major impact in
TREC-3 but minimal utility in TREC-4. Also more systems began making use of
multiple algorithms and selecting the best combination based upon characteristics
of the items being searched. A lot more effort was spent on testing better ways of
expanding queries (due to their short length) while limiting the expanded terms to
reduce impacts on precision. The automatic techniques showed a consistent degra-
dation from TREC-3 to TREC-4. For the Manual Adhoc results, starting at about a
level of 0.6, there was minimal difference between the TRECs.

The multilingual track expanded between TREC-4 and TREC-5 by the introduc-
tion of Chinese in addition to the previous Spanish tests. The concept in TREC-5
is that the algorithms being developed should be language independent (with the
exception of stemming and stopwords). In TREC-4, the researchers who spent extra
time in linguistic work in a foreign language showed better results (e.g., INQUERY
enhanced their noun-phrase identifier in their statistical thesaurus generator). The
best results came from the University of Central Florida, which built an extensive
synonym list. In TREC-5 significant improvements in precision were made in the
systems participating from TREC-4. In Spanish, the Precision-Recall charts are bet-
ter than those for the Adhoc tests, but the search statements were not as constrained
as in the ad hoc. In Chinese, the results varied significantly between the participants
with some results worse than the adhoc and some better. This being the first time
for Chinese, it is too early to judge the overall types of performance to be expected.
But for Spanish, the results indicate the applicability to the developed algorithms
to other languages. Experiments with Chinese demonstrates the applicability to a
language based upon pictographs that represent words versus an alphabet based
language.

The results in TREC 8, held in November 1999 did not show any significant
improvement over the best TREC 3 or TREC 4 results for automatic searching.
The manual searching did show some improvement because the user interaction
techniques are improving with experience. One participant, Readware, did perform
significantly better than the other participants. By TREC 8 highest Mean Average
Precision scores were the standard in creating the comparative diagrams and tables.

By TREC 8 many of the major participants that had been submitting systems to
TREC evaluations for many years and the NIST evaluators came to the conclusion
that there were not any additional major improvements in searching that was being
seen each year for the Ad Hoc search task. Most participants were just using the
same system as the previous year to satisfy the requirement for an ad hoc run. Cor-
nel showed this by looking at the results from their SMART system over the last 8
years of TRECs. They took their systems each year and ran the different query sets
from all of the TRECs against them to normalize the results between years. Keep
in mind retrieval effectiveness has always shown a dependency on the specific test
query sets used as discussed previously. There system is representative of other

9.4 Measurement Example: TREC Evolution

278

systems and they clearly showed that the system results had leveled off. Thus the
Ad Hoc search track ended with TREC 8 and Figs.Â€9.7 and 9.8 show what can be
expected for searching.

The major new change with TREC 8 was the introduction of the Question/An-
swer track. The goal of the track is to encourage research into systems that return
answers versus lists of documents. The user is looking for an answer to an infor-
mation need and does not want to have to browse through long items to locate the
specific information of interest.

The experiment was run based upon 200 fact based short answer questions. The
participants returned a ranked list of up to five document-id/string location pairs
for each query. The strings were limited to either 50 or 250 characters. The an-
swers were judged based upon the proposed string including units if asked for (e.g.,
world’s population) and for famous objects answers had to pertain to that specific
object.

Fig. 9.7â†œæ¸€ TREC 8 recall/
precision graph top eight
automatic short ad hoc runs.
(From TREC-8 conference
proceedings)

1.0

0.8

0.6

0.4Pr
ec

is
io

n

BEST AUTOMATIC SHORT ADHOC

0.2

0.0
0.0 0.2 0.4

Recall
0.6 0.8 1.0

pir9Attd

ok8amxc

att99atde

fub99td

ibms99a

MITSLStd

Flab8atd2

tno8d3

Fig. 9.8â†œæ¸€ TREC 8 recall/
precision graph top 5 manual
ad hoc runs. (From TREC-8
conference proceedings)

BEST MANUAL ADHOC
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

READWARE2
orc199man
iit99mal
CL99XTopt
SmanexT3D1N0

Pr
ec

is
io

n

9 Information System Evaluation

279

Most researchers processed the request using their normal search algorithms,
but included “blind feedback” to increase the precision of the higher ranked hits.
Then techniques were used to parse the returned document around the words that
caused the hit using natural language techniques to focus on the likely strings to
be returned. Most of the participants only tried to return the 250-character string
range.

The TREC-series of conferences have achieved their goal of defining a standard
test forum for evaluating information retrieval search techniques. It provides a re-
alistic environment with known results. It has been evolving to equate closer to a
real world operational environment that allows transition of the test results to inclu-
sion of commercial products with known benefits. By being an open forum, it has
encouraged participation by most of the major organizations developing algorithms
for information retrieval search.

9.5  �Summary

Evaluation of Information Retrieval Systems is essential to understand the source of
weaknesses in existing systems and trade offs between using different algorithms.
The standard measures of Precision, Recall, and Fallout have been used for the last
25Â€ years as the major measures of algorithmic effectiveness. Some of the more
recent evaluation formulas such as MAP and bpref are establishing new ways of
describing information retrieval system performance. With the insertion of informa-
tion retrieval technologies into the commercial market and ever growing use on the
Internet, other measures will be needed for real time monitoring the operations of
systems. One example was given in the modifications to the definition of Precision
when a user ends his retrieval activity as soon as sufficient information is found to
satisfy the reason for the search.

The measures to date are optimal from a system perspective, and very useful
in evaluating the effect of changes to search algorithms. What are missing are the
evaluation metrics that consider the total information retrieval system, attempting to
estimate the system’s support for satisfying a search versus how well an algorithm
performs. This would require additional estimates of the effectiveness of techniques
to generate queries and techniques to review the results of searches. Being able
to take a system perspective may change the evaluation for a particular aspect of
the system. For example, assume information visualization techniques are needed
to improve the user’s effectiveness in locating needed information. Two levels of
search algorithms, one optimized for concept clustering the other optimized for pre-
cision, may be more effective than a single algorithm optimized against a standard
Precision/Recall measure.

In all cases, evaluation of Information Retrieval Systems will suffer from
the subjective nature of information. There is no deterministic methodology for
understanding what is relevant to a user’s search. The problems with information
discussed in Chap.Â€ 1 directly affect system evaluation techniques in Chap.Â€9.

9.5 Summary

280

Users have trouble in translating their mental perception of information being
sought into the written language of a search statement. When facts are needed,
users are able to provide a specific relevance judgment on an item. But when
general information is needed, relevancy goes from a classification process to
a continuous function. The current evaluation metrics require a classification
of items into relevant or non-relevant. When forced to make this decision, us-
ers have a different threshold. These leads to the suggestion that the existing
evaluation formulas could benefit from extension to accommodate a spectrum
of values for relevancy of an item versus a binary classification. But the innate
issue of the subjective nature of relevant judgments will still exist, just at a dif-
ferent level.

Research on information retrieval suffered for many years from a lack of
large, meaningful test corpora. The Text REtrieval Conferences (TRECs), spon-
sored on a yearly basis, provides a source of a large “ground truth” database of
documents, search statements and expected results from searches essential to
evaluate algorithms. It also provides a yearly forum where developers of algo-
rithms can share their techniques with their peers. That model has been prolif-
erated to many other similar organizations around the world each developing
more sophisticated evaluation data sets focused on more specific information
retrieval problems. More recently, developers are starting to combine the best
parts of their algorithms with other developers’ algorithms to produce an im-
proved system.

The weakest area in information retrieval evaluation is in the area of mul-
timedia information retrieval. There are not any large ground truth databases
that have been made for evaluation purposes. Creating such databases against
multimedia is far more complex and manually intensive then creating similar
databases against textual items. The definition of relevancy is less well defined
in this area.

9.6  �Exercises

1.	 What are the problems associated with generalizing the results from controlled
tests on information systems to their applicability to operational systems? Does
this invalidate the utility of the controlled tests?

2.	 What are the main issues associated with the definition of relevance? How would
you overcome these issues in a controlled test environment?

3.	 What techniques could be applied to evaluate each step in Fig.Â€11.1?
4.	 Consider the following table of relevant items in ranked order from four algo-

rithms along with the actual relevance of each item. Assume all algorithms have
highest to lowest relevance is from left to right (Document 1 to last item). A
value of zero implies the document was non-relevant).

9 Information System Evaluation

281

a.	 Calculate and graph precision/recall for all the algorithms on one graph.
b.	 Calculate and graph fallout/recall for all the algorithms on one graph
c.	 Calculate the MAP value for each algorithm
d.	 Calculate the Bpref at 20 items.
e.	 Calculate the DCG at 10 items.
f.	 What is the F-measure at item 20.

5.	 What is the relationship between precision and TURR.

9.6 Exercises

283

Bibliography

Aalbersberg-92 – Aalbersberg, I., “Incremental Relevance Feedback”, In Proceedings of the Fif-
teenth Annual ACM SIGIR Conference on Research and Development in Information Retriev-
al, 1992, pagesÂ€11–22.

Adams-92 – Adams, E. S., “A Study of Trigrama and Their Feasibility as Index Terms in a Full
Text Information Retrieval System”, D.Sc. dissertation, The George Washington University,
1992.

Adamson-74 – Adamson, G. and J. Boreham, “The Use of an Association Measure Based on
Character Structure to Identify Semantically Related Pairs of Words and Document Titles”,
Information Storage and Retrieval, #10, 1974, pagesÂ€253–260.

Ahlberg-94 – Ahlberg, C. and B. Shneiderman, “Visual Information Seeking: Tightly Coupling
of Dynamic Query Filters with Starfield Displays”, In Proceedings of CHI’94, April 1994,
Boston, MA, pagesÂ€313–317 and 479–480.

Ahlberg-95 – Ahlberg, C. and E. Wistrand, “IVEE: An Information Visualization and Exploration
Environment”, In Proceedings of Information Visualization Symposium, in Gersho, N. and
G. Eick (eds.), IEEE CS Press, Los Alamitos, CA, 1995, pagesÂ€66–73. (also URL http://www.
cs.chalmers.se/SSKKII/software.html, current November 21, 1996).

Aho-75 – Aho, A. V. and M. Corasick, “Efficient String Matching: An Aid to Bibliographic
Search”, Communications of the ACM, Vol.Â€18, No.Â€6, June 1975, pagesÂ€333–340.

Aitchison-72 – Aitchison, J. and A. Gilchrist, “Thesaurus Construction—A Practical Manual”,
London, ASLIB, 1972.

Allan-95 – Allan, J., “Automatic Hypertext Construction”, Technical Report TR95-1414, Depart-
ment of Computer Science, Cornell University, New York, February 1995.

Allan-96 – Allan, J., “Incremental Relevance Feedback for Information Filtering”, In Proceedings
of the Nineteenth Annual ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, ACM, New York, 1996, pagesÂ€270–278.

Angell-83 – Angell, R., Freund, G. and P. Willett, “Automatic Spelling Correction Using a Tri-
gram Similarity Measure”, Information Processing and Management, Vol.Â€19, No.Â€4. 1983,
pagesÂ€255–261.

Apte-94 – Apte, C., Damerau, F. and S. Weiss, “Towards Language Independent Automated Learn-
ing of Text Categorization Models”, In Proceedings of the Seventeenth Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, New York, 1994,
pagesÂ€23–30.

Arnheim-69 – Arnheim, R., “Visual Thinking”, University of California Press, 1969.
Arnheim-86 – Arnheim, R., “New Essays on the Psychology of Art”, California Press, 1986.
Avram-75 – Avram, H. D., “MARC: Its History and Implications”, Washington, Library of Con-

gress, 1975.

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8, ©Â€Springer Science+Business Media, LLC 2011

284

Bach-96 – Bach, J., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, R. and R. Jain,
“The Virage Image Search Engine: An Open Framework for Image Management”, SPIE, Stor-
age and Retrieval for Still Images and Video Databases, Vol.Â€2670, 1996, pagesÂ€76–87.

Baeza-Yates-89 – Baeza-Yates, R., “String Searching Algorithms Revisited”, in Workshop in Algo-
rithms and Data Structures, in Dehne F., Sack J. and N. Santoro (eds.), Springer Verlag Lecture
Notes on Computer Science, Ottawa, Canada, 1989, pagesÂ€332–347.

Baeza-Yates-90 – Baeza-Yates, R. and M. Regnier, “Fast Algorithms for Two Dimensional and
Multiple Pattern Matching”, in Second Scandinavian Workshop in Algorithmic Theory,
SAT’90, in Karlsson R. and J. Gilbert (eds.), Lecture Notes in Computer Science, 447, 1990,
pagesÂ€332–347.

Baeza-Yates-92 – Baeza-Yates, R., “String Searching Algorithms”, in Information Retrieval Data
Structures & Algorithms, Prentice Hall, New Jersey, 1992, pagesÂ€219–237.

Baeza-Yates-92a – Baeza-Yates, R. and G. Gonnet, “A New Approach to Text Searching”, Com-
munications of the ACM, Vol.Â€35, No.Â€10, October 1992, pagesÂ€74–82.

Barry-94 – Barry, C., “User Defined Relevance Criteria: An Exploratory Study”, Journal of the
American Society for Information Science, Vol.Â€45, No.Â€3, April 1994, pagesÂ€149–159.

Bazzi-98 – Bazzi, I., LaPre, C., Makhoul, J. and R. Schwartz, “A Script-Independent Methodology
for Optical Character Recognition”, Pattern Recognition, Vol.Â€31, No.Â€9, 1998, pagesÂ€1285–
1294.

Belkin-87 – Belkin, N. J. and W. B. Croft, “Retrieval Techniques”, In Williams, M. (ed.), Annual
Review of Information Science and Technology, Elsevier Science Publishers, New York, 1987,
pagesÂ€109–145.

Belkin-89 – Belkin, N. and W. Croft, “Retrieval Techniques”, in Annual Review of Information
Science and Technology, Elsevier Science publishers, New York, 1989, pagesÂ€109–145.

Bernstein-84 – Bernstein T. M., “The Careful Writer by Theodore M. Bernstein”, NY, Atheneum,
1984, pagesÂ€366–367.

Bergman-2001 – Bergman, M., “The Deep Web: Surfacing Hidden Value”. The Journal of Elec-
tronic Publishing, 2001, 7(1), http://www.press.umich.edu/jep/07-01/bergman.html.

Berra-89 – Berra, P., Ghafoor, A., Mitkas, P., Marcinkowski, S. and Guizani, “Optical Searching”,
IEEE Transactions on Knowledge and Data Engineering, No.Â€1, 1989, pagesÂ€111–132.

Bikel-97 – Bikel, D., Miller, S., Schwartz, R. and R. Weischedel, “Nymble: A High-Performance
Learning Name Finder”, Fifth Conference on Applied Natural Language Processing, (pub-
lished by ACL), 1997, pagesÂ€194–201.

Bird-77 – Bird, R., Tu, J. and R. Worthy, “Associative Parallel Processors for Searching Very
Large Textual Databases”, In Proceedings of Third Non-Numeric Workshop, Syracuse, NY,
May 1977, pagesÂ€8–16.

Bird-78 – Bird, R., Newsbaum, J. and J. Trefftzs, “Text Files Inversion: An Evaluation”, In Pro-
ceedings of the Fourth Workshop on Computer Architecture for Non-Numeric Processing,
Syracuse, NY, August 1–4, 1978, pagesÂ€42–50.

Bird-79 – Bird, R. M. and J. Tu, “Associative Crosspoint Processor System”, U.S. Patent, 4, 152,
762, May 1, 1979.

Blum-97 – Blum, T., Keislaer, D., Wheaton, J. and E. Wold, “Audio Databases with Content-
Based Retrieval”. In Maybury M. T. (ed.), Intelligent Multimedia Information Retrieval, 1997,
pagesÂ€113–135.

Broder et al.-1997 – Broder, A., Glassman S., Manasse M. and G. Zweig, “Syntactic Clustering of
the Web”, In Proceedings of WWW6 ’97, pagesÂ€391–404. Elsevier Science, April 1997.

Boyer-77 – Boyer, R. S. and S. Moore, “A Fast String Matching: An Aid to Bibliographic Search”,
Communications of the ACM, Vol.Â€20, No.Â€10, October 1977, pagesÂ€762–772.

Brookstein-78 – Brookstein, A., “On the Perils of Merging Boolean and Weighted Retrieval Sys-
tems”, Journal of the ASIS, Vol.Â€29, No.Â€3., May 1978, pagesÂ€156–158.

Brookstein-80 – Brookstein, A., “Fuzzy Requests: An Approach to Weighted Boolean Searches”,
Journal of the ASIS, Vol.Â€31, No.Â€4, July 1980, pagesÂ€240–247.

Brookstein-95 – Brookstein, A., Klein, S. T. and T. Raita, “Detecting Content Bearing Words by
Serial Clustering—Extended Abstract”, SIGIR’95, In Proceedings of the Eighteenth Annual

Bibliography

285

International ACM SIGIR Conference on Research and Development in Information Retrieval,
Seattle Washington, July 1995, pagesÂ€319–327.

Brown-96 – Brown, J. R. and N. Gershon, “The Role of Computer Graphics and Visualization
in the GII”, Computer Graphics and Applications, Vol.Â€16, No.Â€2, March 1996, pagesÂ€61–63.

Buckley-94 – Buckley, C., Salton, G. and J. Allan, “The Effect of Adding Relevance Informa-
tion in a Relevance Feedback Environment”, In Proceedings of the Seventeenth Annual ACM
SIGIR Conference on Research and Development in Information Retrieval, ACM, New York,
NY, 1994, pagesÂ€293–300.

Buckley-95 – Buckley, C., Salton, G., Allan, J. and A. Singhal, “Automatic Query Expansion Us-
ing SMART: TREC 3”. In Harman D. K. (ed.), Overview of the Third Text Retrieval Confer-
ence (TREC-3), pagesÂ€69–79, NIST Special Publication 500-225, April 1995.

Buckley-96 – Buckley, C., Singhal, A., Mitra, M. and G. Salton, “New Retrieval Approaches Us-
ing SMART: TREC 4”, in publishing of the Fourth Text Retrieval Conference (TREC-4), NIST
Special Publication, 1996.

Bush-45 – Bush, V., “As We May Think”, Atlantic Monthly, 176, July 1945, pagesÂ€101–108.
Bush-67 – Bush, V. (ed.), “Science Is Not Enough”, William Morrow and Co. Reprinted in Nyce,

J. M. and P. Kahn (eds.), From Memex to Hypertex: Vannevar Bush and the Mind’s Machine,
Academic Press, 1991, pagesÂ€197–216.

Caid-93 – Caid, W., Gallant, S., Hecht-Nielsen, R., Carlton, J., Pu Qing, K. and D. Sudbeck,
“HNC’s MatchPlus System”, The First Text Retrieval Conference (TREC-1), NIST Special
Publication 500-207, NIST, Gaithersburg, MD, March 1993, pagesÂ€107–111.

Callan-94 – Callan, J. P., “Passage-Level Evidence in Document Retrieval”. In Proceedings of the
Seventeenth Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pagesÂ€302–310, Dublin, Ireland, 1994. ACM.

Callan and Yang-2005 – Callan J. and H. Yang, Near Duplicate Detection for eRule making, http://
www.cs.cmu.edu/~callan/Papers/dgo05-huiyang.pdf, February 2010.

Can-95 – Can, F., Fox, E., Snaverly, C. and R. France, “Incremental Clustering for Very Large
Document Databases: Initial MARIAN Experience”, Information Systems, 84, 1995, pag-
esÂ€101–114.

Card-96 – Card, K., “Visualizing Retrieved Information: A Survey”, IEEE Computer Graphics
and Applications, Vol.Â€16, No.Â€2, March 1996, pagesÂ€63–67.

Card-96a – Card, K., Robertson, G. G. and W. York, “The Web Book and the Web Forager: An
Information Workspace for the World Wide Web”, CHI 96, ACM Conference on Human Fac-
tors in Software, ACM Press, New York, 1996.

Catarci-96 – Catarci, T., “Interaction with Databases”, Computer Graphics and Applications,
Vol.Â€16, No.Â€2, March 1996, pagesÂ€67–69.

Chalmers-92 – Chalmers, M. and P. Chitson, “Bead: Explorations in Information Retrieval”, In
Proceedings of SIGIR 92, Copenhagen, Denmark, June 1992, pagesÂ€330–337.

Cho et. al-99 – Cho, J., N. Shivakumanar and H. Garcia-Molina, “Finding Replicated Web Col-
lections”, In Proceedings of the ACM SIGMOD Conference of Data Management, 1999,
pagesÂ€355–366.

Chowdhurry et. al.-2002 – Chowdhury, A., Frueder O., Grossman D. and M. McCabe, “Collec-
tion Statistics for Fast Duplicate Document Detection”, ACM Transcations on Information
Systems, 20(2), 2002, pagesÂ€171–191.

Chuah-97 – Chuah, M., Roth, S. and S. Kerpedjiev, “Sketching, Searching, and Customizing Visu-
alizations: A Content Based Approach to Design Retrieval”. In Maybury M. T. (ed.), Intelligent
Multimedia Information Retrieval, 1997. AAAI/MIT Press, pagesÂ€83–111.

Cleverdon-62 – Cleverdon, C. W., “Report on the Testing and Analysis of an Investigation into the
Comparative Efficiency of Indexing Systems”, College of Aeronautics, Cranfield, England,
1962.

Cleverdon-66 – Cleverdon, C. W., Mills, J. and E. Keen, “Factors Determining the Performance
of Indexing Systems”, Vol.Â€1: Design, Vol.Â€2: Test Results, slib Cranfield Research Project,
Cranfield, England, 1966.

CNRI-97 – http://www.andle.net/docs/overview.html (current Jan 7, 1997)

Bibliography

286

Cohen-95 – Cohen, J., “Highlights: Language and Domain Independent Automatic Indexing
Terms for Abstracting”, Journal of the American Society for Information Science, Vol.Â€ 46,
No.Â€3, 1995, pagesÂ€162–174.

Commentz-Walter-79 – Commentz-Walter, B., “A String Matching Algorithm Fast on the Aver-
age”, in ICALP, Lecture Notes in Computer Science, 71, 1979, pagesÂ€118–132.

Conrad and Schriber-2004 – Conrad, J. and C. Schriber, “Constructing a Text Corpus for Inexact
Duplicate Detection”, In Proceedings of ACM SIGIR’04, Sheffield, South Yorkshire, UK. July
25–29, 2004.

Cooper-73 – Cooper, W., “On Selecting a Measure of Retrieval Effectiveness”, Journal of the
American Society for Information Science, 24, 1973, pagesÂ€87–100.

Cooper-78 – Cooper, W. and M. Maron, “Foundations of Probabilistic and Utility-Theoretic Index-
ing”, Journal of the Association for Computing Machinery, No.Â€25, 1978, pagesÂ€67–80.

Cooper-94 – Cooper, W., “The Formalism of Probability Theory in IR: A Foundation or an Encum-
brance”, In Proceedings of the Seventeenth Annual ACM-SIGIR Conference, in Bruce Croft,
W. and C. J. van Rijsbergen (eds.), Springer-Verlag, London, 1994, pagesÂ€242–247.

Cooper-94a – Cooper, W., Chen, A. and F. Gey, “Full Text Retrieval Based on Probabilistic Equa-
tions with Coefficients Fitted by logistic Regression”, In Proceedings of the Second Text Re-
trieval Conference (TREC-2), NIST publication, 1994, pagesÂ€57–66.

Copeland-73 – Copeland, G., Lipovski, C. and S. Y. Su, “The Architecture of CASSM: A Cellu-
lar System for Non-Numeric Processing”, In Proceedings of the First Annual Symposium on
Computer Architecture, ACM, New York, December 1973, pagesÂ€121–125.

Crew-67 – Crew, B. and M. Gunzburg, “Information Storage and Retrieval”, U.S. Patent 3, 358,
270, December 12, 1967.

Croft-77 – Croft, W. B., “Clustering Large Files of Documents Using the Single Link Method”,
Journal of the ASIS, Vol.Â€28, No.Â€6, November 1977, pagesÂ€341–344.

Croft-79 – Croft, W. B. and D. J. Harper, “Using Probabilistic Models of Document Retrieval
without Relevance Information”, Documentation, Vol.Â€3, No.Â€4, 1979, pagesÂ€285–295.

Croft-83 – Croft, W. B., “Experiments with Representation in a Document Retrieval System”,
Information Technology: Research and Development, Vol.Â€2, No.Â€1, 1983, pagesÂ€1–21.

Croft-94 – Croft, W. B., Callan, J. and J. Broglio, “Trec-2 Routing and Ad Hoc Retrieval Evalua-
tion Using the INQUERY System”, in The Second Text Retrieval Conference (TREC-2) Pro-
ceedings, NIST publications, 1993.

Cullum-85 – Cullum, J. K. and R. Willoughby, “Lanczos, Algorithms for Large Symmetric Eigen-
value Computations”, Vol.Â€I Theory, (Chapter 5), Birkhauser, Boston, MA, 1985.

Cutting-90 – Cutting D. and J. Pedersen, “Optimization for Dynamic Inverted Index Mainte-
nance.” Paper presented at Thirteenth International Conference on Research and Development
in Information Retrieval, Brussels, Belgium.

Damashek-95 – Damashek, M., “Gauging Similarity with n-grams: Language Independent Cat-
egorization of Text”, Science, Vol.Â€267, February 10, 1995, pagesÂ€843–848.

Damerau-64 – Damerau, F. J., “A Technique for Computer Detection and Correction of Spelling
Errors”, Communications of the ACM, Vol.Â€7, No.Â€3, March 1964, pagesÂ€171–176.

Dawson-74 – Dawson J., “Suffix Removal and Word Conflation” ALLC Bulletin, Michelmas,
1974, pagesÂ€33–46.

Deerwester-90 – Deerwester, S., Dumais, S., Furnas, G., Landauer, T. and R. Harshman, “Index-
ing by Latent Semantic Analysis”, Journal for the American Society for Information Science,
Vol.Â€41, No.Â€6, 1990, pagesÂ€391–407.

Dempster-77 – Dempster, A., Laird, N. and D. Rubin, “Maximum Likelihood from Incomplete
Data via the EM Algorithm”, Journal of Royal Statistical Society, B 39, 1977, pagesÂ€1–38.

Dennis-68 – Dennis, S. F., “The Design and Testing of a Fully Automated Indexing-Searching
System for Documents Consisting of Expository Text”, Informational Retrieval: A Critical Re-
view. In Schecter, G. (ed.), Thompson Book Company, Washington D.C., 1967, pagesÂ€67–94.

Deppisch-86 – Deppisch, U., “S-Tree: A Dynamic Balanced Signature Index for Office Retrieval”,
In Proceedings of ACM Conference on Research and Development in Information Retrieval,
Pisa, Italy, September 1986, pagesÂ€77–87.

Bibliography

287

Dumais-93 – Dumais, S., “Latent Semantic Indexing and TREC-2”, in The Second Text Retrieval
Conference (TREC-2) Proceedings, NIST publications, 1993, pagesÂ€105–115.

Dumais-95 – Dumais, S., “Latent Semantic Indexing: TREC-3 Report”. In Harman, D. K. (ed.),
Overview of the Third Text Retrieval Conference (TREC-3), NIST Special Publication 500-
225, April 1995, pagesÂ€219–230.

Edmundson-69 – Edmundson, H., “New Methods in Automatic Abstracting”, Journal of the ACM,
Vol.Â€16, No.Â€2, April 1969, pagesÂ€264–285.

El-Hamdouchi-89 – El-Hamdouchi, A. and P. Willet, “Comparison of Hierarchic Agglomerative
Clustering Methods for Document Retrieval”, Computer Journal, 32, 1989, pagesÂ€220–227.

Fairthorne-64 – Fairthorne, R. A, “Basic Parameters of Retrieval Tests”, In Proceedings of 1964
Annual Meeting of the American Documentation Institute, Spartan Books, Washington, 1964,
pagesÂ€343–347.

Fairthorne-69 – Fairthorne, R. A., “Empirical Hyperbolic Distributions for Bibliometric Descrip-
tion and Prediction”, International ACM SIGIR Conference: Research and Development in
Information Retrieval, June 5–7, 1985.

Faloutsos-85 – Faloutsos, C., “Access Methods for Text”, ACM Computing Surveys, Vol.Â€ 17,
No.Â€1, March 1985, pagesÂ€49–74.

Faloutsos-87 – Faloutsos, C. and S. Christodoulakis, “Description and Performance Analysis of
Signature File Methods”, ACM TOOIS, Vol.Â€5, No.Â€3, 1987, pagesÂ€237–257.

Faloutsos-88 – Faloutsos, C. and R. Chan, “Fast Text Access Methods for Optical and Large Mag-
netic Disks: Designs and Performance Comparison”, In Proceedings of Fourteenth Interna-
tional Conference on VLDB, Long Beach, CA, August 1988, pagesÂ€280–293.

Faloutsos-92 – Faloutsos, C., “Signature Files”, in Frakes, W. B. and R. Baeza-Yates (eds.), Infor-
mation Retrieval Data Structures & Algorithms, Prentice Hall, New Jersey, 1992, pagesÂ€44–65.

Feiner-90 – Feiner, S. and C. Beshers, “World Within Worlds: Metaphors for Exploring N-dimen-
sional Virtual Worlds”, UIST 94, ACM Symposium on User Interface Software, ACM Press,
New York, 1990, pagesÂ€76–83.

Flickner-97 – Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani,
M., Hafner, J., Lee, D., Petkovic, D., Steele, D. and P. Yanker, “Query by Image and Video
Content: The QBIC System”. In Maybury M. T. (ed.), Intelligent Multimedia Information Re-
trieval, 1997, pagesÂ€7–22.

Forsyth-86 – Forsyth, R. and R. Rada, “Adding an Edge”. In Machine Learning: application in
expert systems and information retrieval, Ellis Horwood Ltd., 1986, pagesÂ€198–212.

Foster-80 – Foster, M. and H. Kung, “Design of Special Purpose VLSI Chips: Examples and
Opinions”, In Proceedings of the Seventh Annual Symposium on Computer Architecture, May
1980, published as SIGARCH Newsletter, Vol.Â€8, No.Â€3, pagesÂ€300–307.

Fox-83 – Fox, E. A., “Characteristics of Two New Experimental Collections in Computer and
Information Science Containing Textual and Bibliographic Concepts”, Technical Reports TR
83-561, Cornell University: Computing Science Department, 1983.

Fox-86 – Fox, E. A. and S. Sharat, “A Comparison of Two Models for Soft Boolean Interpretation
in Information Retrieval”, Technical Report TR-86-1, Virginia Tech, Department of Computer
Science, 1986.

Fox-93a – Fox, E. A., “Sourcebook on Digital Libraries: Report for the National Science Founda-
tion”, Technical Report TR-93-95, Computer Science Department, VPI&SU, Blacksburg, VA,
1993 (http://fox.cs.vt.edu/DLSB.html).

Fox-93b – Fox, E., Hix, D., Nowell, L., Brueni, D., Wake, W., Heath, L. and D. Rao, “Users, User
Interfaces and Objects: Envision, a Digital Library”, Journal of the American Society for Infor-
mation Science, Vol.Â€44, No.Â€5, 1993, pagesÂ€480–449.

Fox-96 – Fox, E. A. and G. Marchionini (eds.), In Proceedings of the First ACM International
Conference on Digital Libraries, ACM, New York, NY, 1996.

Frakes-92 – Frakes, W. B. and R. Baeza-Yates, Information Retrieval Data Structures & Algo-
rithms, Prentice Hall, New Jersey, 1992.

Frieder et al.-2009 – Frieder, O., Urbain J. and N. Goharian, “Passage Relevance Models for Genom-
ics Search”, BMC Bioinformatics, 10(suppl.Â€3):S3 doi: 10.1186/1471-2105-10-S#-S3, 2009.

Bibliography

288

Friedman-89 – Friedman, J., “Regularized Discriminant Analysis”, Journal of the American Sta-
tistical Association, Vol.Â€84, No.Â€405, 1989, pagesÂ€165–175.

Friedhoff-89 – Friedhoff, R. M. and W. Benzon, The Second Computer Revolution: Visualization,
Harry N. Adams, Inc., New York, 1989.

Fuhr-89 – Fuhr, N., “Optimum Polynomial Retrieval Functions Based on the Probability Ranking
Principle”, ACM Transactions on Information Systems, Vol.Â€7, No.Â€3, 1989, pagesÂ€183–204.

Fung-95 – Fung, R. and B. Del Favero, “Applying Baysian Networks to Information Retrieval”,
Communications of the ACM, Vol.Â€58, No.Â€3, March 1995.

Furui-2000 – Furui, S., Ohtsuki, K. and Z. P. Zhang, “Japanese Broadcast News Transcription and
Information Extraction”. In Maybury M. T. (ed.), News On Demand. Communications of the
ACM, Vol.Â€43, No.Â€2, pagesÂ€71–75, 2000.

Furuta-89 – Furuta, R., Plaisant, C. and B. Shneiderman, “Automatically Transforming Regu-
larly Structured Text Into Hypertext”, Electronic Publishing, Vol.Â€2, No.Â€4, December 1989,
pagesÂ€211–229.

Galil-79 – Galil, Z., “On Improving the Worst Case Running Time of the Boyer-Moore String
Matching Algorithm”, CACM, 22, 1979, pagesÂ€505–608.

Garcia et al.-2008 – Garcia-Molina, H., Menestrina, D., Su, Qi, Whang, S. and J. Widom,
“SWOOSH: A Generic Approach to Entity Resolution”, VLDB Journal, 2008.

Gauvain-2000 – Gauvain, J. L., Lamel, L. and G. Adda, “Transcribing Broadcast News for Audio
and Video Indexing”. In Maybury M. T. (ed.), News On Demand, 2000. Communications of
the ACM, Vol.Â€43, No.Â€2:64–70.

Gildea-99 – Gildea, D. and T. Hofmann, “Topic based language models using EM”, In Pro-
ceedings of the Sixth European Conference on Speech Communications and Technology
(EUROSPEECH), 1999.

Gnanadesikan-79 – Gnanadesikan, R., “Methods for Statistical Data Analysis of Multivariate Ob-
servations”, Wiley, New York, 1979.

Gershon-95 – Gershon, N. D., “Moving Happily Through the World Wide Web”, Computer
Graphics and Applications, Vol.Â€16, No.Â€2, March 1996, pagesÂ€72–75.

Gershon-95a – Gershon, N. D. and S. G. Eick, “Visualization’s New Tack: Making Sense of Infor-
mation”, IEEE Spectrum, Vol.Â€32, No.Â€11, November 1995, pagesÂ€38–56.

Gey-94 – Gey, F., “Inferring Probability of Relevance Using the Method of Logistic Regression”,
In Proceedings of the Seventeenth Annual ACM-SIGIR Conference. In Bruce Croft, W. and
C. J. van Rijsbergen. (ed.), Springer-Verlag, London, 1994, pagesÂ€222–241.

Gibson-60 – Gibson, E. and R. Walk, “The Visual Cliff”, Scientific American, April 1960, pag-
esÂ€140–148.

Gilbert-79 – Gilbert, H. and K. Sparck Jones, “Statistical Bases of Relevance Assessments for the
Ideal Information Retrieval Test Collection”, Computer Laboratory, University of Cambridge,
BL R and D Report 5481, Cambridge, England, March 1979.

Goldstein et al.-2000 – Goldstein, J., Mittal, V., Carbonell, J. and M. Kantrowitz, “Multidocument
Summarization by Sentence Extraction”, ANLP/NAACL 2000 Workshop on summarization,
Vol.Â€4, 2000.

Gonnet-92 – Gonnet, Gaston, Baeza-Yates, R. and T. Snider, “New Indices for Text: Pat Trees and
Pat Arrays”, in Frakes, W. B. and R. Baeza-Yates (eds.), Information Retrieval Data Structures
& Algorithms, Prentice Hall, New Jersey, 1992, pagesÂ€66–81.

Gordon-91 – Gordon, M. D. and P. Lenk, “A Utility Theoretic Examination of the Probability
Ranking Principle in Information Retrieval”, Journal of the American Society for Information
Science, No.Â€42, 1991, pagesÂ€703–714.

Gordon-92 – Gordon, M. D. and P. Lenk, “When is the Probability Ranking Principle Suboptimal”,
Journal of the American Society for Information Science, No.Â€43, 1992, pagesÂ€1–14.

Greffenstette-94 – Greffenstette, G., “Explorations in Automatic Thesaurus Discovery”, Kluwer
Academic Publishers, 1994.

Grossman and Frieder-2004 – Grossman, D. and O. Frieder, Information Retrieval Algorithms and
Heuristics, Springer, 2004, pageÂ€204.

Bibliography

289

Gustafson-71 – Gustafson, R. A., “Elements of the Randomized Combinatorial File Structure”,
ACM SIGIR, Proceedings of the Symposium on Information Storage and Retrieval, University
of Maryland, April 1971, pagesÂ€163–174.

Hagler-91 – Hagler, R., “The Bibliographic Record and Technology”, American Library Associa-
tion, Chicago, Illinois, 1991.

Hahn-94 – Hahn, Harley and R. Stout, “The INTERNET Complete Reference”, McGraw-Hill,
Berkley, CA., 1994, pagesÂ€476–477.

Hafer-74 – Hafer, M. and S. Weiss, “Word Segmentation by Letter Successor Varieties,” Informa-
tion Storage and Retrieval, Vol.Â€10, 1974, pagesÂ€371–385.

Halasz-87 – Halasz, F., Moran, T. P. and R. H. Trigg, “Notecards in a Nutshell”, In Proceedings
ACM CHI+GI’87, Toronto, Canada, 5–9 April 1987, pagesÂ€45–52.

Harrison-71 – Harrison, M., “Implementation of the Substring Test by Hashing”, CACM, Vol.Â€14,
1971, pagesÂ€777–779.

Harman-86 – Harman, D., “An Experimental Study of Factors Important in Document Ranking”,
ACM Conference on Research and Development in Information Retrieval, Pisa, Italy, 1986.

Harman-91 – Harman, D., “How Effective is Suffixing?”, Journal of the American Society for
Information Science, Vol.Â€42, No.Â€1, 1991, pagesÂ€7–15.

Harman-93 – Harman, D., “Overview of the First Text Retrieval Conference (TREC-1)”, The First
Text Retrieval Conference (TREC-1), NIST Special Publication 500-207, NIST, Gaithersburg,
MD, March 1993, pagesÂ€1–20.

Harman-95 – Harman, D., “Overview of the Third Text Retrieval Conference (TREC-3)”. In Har-
man, D. K. (ed.), Overview of the Third Text Retrieval Conference (TREC-3), pagesÂ€1–19,
NIST Special Publication 500-225, April 1995.

Harman-96 –Harman, D., “Overview of the Fourth Text Retrieval Conference (TREC-4)”, paper
to be included in the Overview of the Fifth Text Retrieval Conference (TREC-5), NIST Special
Publications.

Harper-78 – Harper, D. J. and C. J. van Rijsbergen, “An Evaluation of Feedback in Document
Retrieval Using Co-Occurrence Data”, Journal of Documentation, Vol.Â€34, No.Â€3, 1978, pag-
esÂ€189–216.

Harper-80 – Harper, D. J., “Relevance Feedback in Automatic Document Retrieval Systems: An
Evaluation of Probabilistic Strategies”, Doctoral Dissertation, Jesus College, Cambridge, Eng-
land.

Hasan-95 – Hasan, M. Z., Mendelzon, A. O. and D. Vista, “Visual Web Surfing with Hy+”, In
Proceedings of CASCON’95, Toronto, 1995, pagesÂ€218–227.

Haskin-83 – Haskin, R. and L. Hollaar, “Operational Characteristics of a Hardware-based Pattern
Matcher”, ACM Transactions Database, Vol.Â€8, No.Â€1, 1983.

Hearst-96 – Hearst, M. and J. Pedersen, “Reexamining the Cluster Hypothesis: Scatter/Gather on
Retrieval Results”, In Proceedings of the Nineteenth Annual ACM SIGIR Conference on Re-
search and Development in Information Retrieval, ACM, New York, NY, 1996, pagesÂ€76–83.

Hearst-98 – Hearst, M. A., “Automated Discovery of WordNet Relations”, in WordNet: An elec-
tronic lexical database. In Fellbaum, C. (ed.), MIT Press, 1998.

Heilmann-96 – Heilmann, K., Kihanya, D., Light, A. and P. Musembwa, “Intelligent Agents:
A Technology and Business Application Analysis”, http://www.mines.u-nancy.fr/~gueniffe/
CoursEMN/I31/heilmann/heilmann.html.

Hemmje-94 – Hemmje, M., Kunkel, C. and A. Willett, “CyberWorld—A Visualization User Inter-
face Supporting Full Text Retrieval”, In Proceedings of the Seventeenth Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, New York, NY,
1994, pagesÂ€249–259.

Hendley-95 – Hendley, R. J. et al., “Narcissus: Visualizing Information”, In Proceedings Informa-
tion Visualization Symposium 95, in Gershon, N. and S. G. Eick (eds.), IEEE CS Press, Los
Alamitos, CA, 1995, pagesÂ€90–96.

Herlocker-99 – Herlocker, J., Konstan, J., Borchers, A. and J. Riedi, “An Algorithmic Framework for
Performing Collaborative Filtering”, In Proceedings of the Twenty-second Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, 1999, pagesÂ€230–237.

Bibliography

290

Hindle-90 – Hindle, D., “Noun Classification From Predicate Argument Structures”, In Proceed-
ings of Twenty-eighth Annual Meeting of the ACL, 1990, pagesÂ€268–275.

Hinton-84 – Hinton, G. E., “Distributed Representations”, Technical Report CMU-CS-84-157,
Carnegie-Mellon University, Department of Computer Science.

Hofmann-99 – Hofmann, T., “Latent Class Models for Collaborative Filtering”, In Proceedings of
the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI), 1999.

Hollaar-79 – Hollaar, L., “Text Retrieval Computers”, IEEE Computer, Vol.Â€12, No.Â€ 3, March
1979, pagesÂ€40–50.

Holaar-84 – Hollaar, L. and R. Haskin, “Method and System for Matching Encoded Characters”,
U.S. Patent, 4, 450, 520, May 22, 1984.

Hollaar-92 – Hollaar, L., “Special Purpose Hardware for Information Retrieval”, Information Re-
trieval Data Structures & Algorithms, Prentice Hall, New Jersey, 1992, pagesÂ€443–458.

Horspool-80 – Horspool, R., “Practical Fast Searching in Strings”, Software-Practice and Experi-
ence, Vol.Â€10, 1980, pagesÂ€501–506.

Hosmer-89 – Hosmer, D. and S. Lemeshow, “Applied Logistic Regression”, Wiley, New York, 1989.
Howard-81 – Howard, R. A. and J. E. Matheson, “Influence Diagrams”, Readings on the Prin-

ciples and Applications of Decision Analysis, in Howard, R. A. and J. E. Matheson (eds.),
Strategic Decision Group, Menlo Park, CA, 1981, pagesÂ€721–762.

Hull-94 – Hull, D., “Improving Text Retrieval for the Routing Problem Using Latent Semantic In-
dexing”, In Proceedings of the Seventeenth Annual ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM, New York, NY, 1994, pagesÂ€282–289.

Hull-95 – Hull, D., “Information Retrieval Using Statistical Classification”, Ph.D. Thesis, Stan-
ford University, 1995.

Hull-96 – Hull, D., Pedersen, J. and H. Schutze, “Method Combination for Document Filtering”,
In Proceedings of the Nineteenth Annual ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, ACM, New York, NY, 1996, pagesÂ€279–287.

Huffman-95 – Huffman, S. and M. Damashek, “Acquaintance: A Novel Vector Space N-Gram Tech-
nique for Document Categorization”. In Harman, D. K. (ed.), Overview of the Third Text Re-
trieval Conference (TREC-3), NIST Special Publication 500-225, April 1995, pagesÂ€305–310.

Hyland-99 – Hyland, R., Clifton, C. and R. Holland, “Geonode: Visualizing News in Geospatial
Context”, 1999. AFCEA Federal Data Mining Symposium. Washington, DC.

Hyman-82 – Hyman, R., “Shelf Access in Libraries”, Chicago, ALA, 1982.
Hyman-89 – Hyman, R. J., “Information Access”, American Library Association, Chicago, 1989.
Ide-69 – Ide, E., “Relevance Feedback in an Automatic Document Retrieval System”, Report

No. ISR-15 to National Science Foundation from Department of Computer Science, Cornell
University.

Ide-71 – Ide, E., “New Experiments in Relevance Feedback”, The SART Retrieval System, in
Salton, G. and N. J. Englewod (eds.), Prentice-Hall, 1971, pagesÂ€337–354.

IETF-96 – “Uniform Resource Names, a Progress Report”, in the February 1996 issue of D-Lib
Magazine.

Ingwersen-92 – Ingwersen, P., Information Retrieval Interaction, ISBN:0-947568-54-9, London,
England, 1992.

Iyengar-80 – Iyengar, S. and V. Alia, “A String Search Algorithm”, Applied Mathematics and
Computation, Vol.Â€6, 1980, pagesÂ€123–131.

Jing-94 – Jing, Y. and B. Croft, “An Association Thesaurus for Information Retrieval”, In Proceed-
ings of RIAO, 1994, pagesÂ€146–160.

Jolliffe-2002 – Jolliffe, I. T., “Principal Component Analysis”, Series: Springer Series in Statistics,
2nd ed., Springer, NY, 2002, XXIX, 487 pageÂ€28 illus.

Johnson-91, Johnson, “Tree Maps, A Space Filling Approach to the Visualization of Hierarchi-
cal Information Structures”, IEEE Visualization ’91 Conference Proceedings, IEEE Computer
Society Press, Los Alamitos, CA, 1991, pagesÂ€284–291.

Jones-97 – Jones, G., Foote, J., Spärck Jones, K. and S. Young, “The Video Mail Retrieval Project:
Experiences in Retrieving Spoken Documents”. In Maybury M. T. (ed.), Intelligent Multimedia
Information Retrieval, 1997, pagesÂ€191–214.

Bibliography

291

Jones-71 – Jones, K. Sparck, Automatic Keyword Classification for Information Retrieval, But-
tersworths, London, 1971.

Kanuango et al.-2002 – Kanuango, T., D. Mount, N. Netanyahu, C. Piatko, R. Silverman and A.
Wu, Annual Symposium on Computational Geometry, Proceedings of the Eighteenth annual
symposium on Computation Geometry, Barcelona Spain, 2002, pagesÂ€10–18.

Kaiser-96 – Kaiser, M. K., http://vision.arc.nasa.gov/AFH/Brief/Vision.S.T./Perceptually.T.html,
as of November 2, 1996.

Karp-87 – Karp, R. and M. Rabin, “Efficient Randomized Pattern Matching Algorithms”, IBM
Journal of Research and Development, Vol.Â€31, 1987, pagesÂ€249–260.

Kaskiel-97 – Kaskiel, M. and J. Zobel, “Passage Retrieval Revisited”, In Proceedings of the Twen-
tieth Annual ACM SIGIR Conference on Research and Development in Information Retrieval,
1999, ACM Press, pagesÂ€178–185.

Katzer-82 – Katzer, J., McGill, M., Tessier, J., Frakes, W. and P. Gupta, “A Study of the Overlap
Among Document Representations”, Information Technology: Research and Development,
Vol.Â€1, No.Â€2, 1982, pagesÂ€261–274.

Keen-71 – Keen, E., “Evaluation Parameters”, The SMART Retrieval System—Experiments in
Automatic Document Processing. In Salton, G. (ed.), Prentice-Hall, Inc., Englewood, New
Jersey, 1971, ChapterÂ€5.

Kellog-96 – Kellog, R. and M. Subhas, “Text to Hypertext: Can Clustering Solve the Problem
in Digital Libraries”, In Proceedings of the First ACM International Conference on Digital
Libraries. In Fox, E. and G. Marchionini (eds.), March 1996, pagesÂ€144–148.

Knaus-95 – Knaus, D., Mittendorf, E., Schauble, P. and P. Sheridan, “Highlighting Relevant Pas-
sages for Users of the Interactive SPIDER Retrieval System”, The Fourth Text Retrieval Con-
ference (TREC-4), NIST Special Publication 500-236, NIST, Gaithersburg, MD, November
1995, pagesÂ€233–244.

Kowalski-83 – Kowalski, G., “High Speed Multi-Term String Matching Algorithms”, Dissertation
for Doctor of Science, The George Washington University, May 1983.

Kracsony-81 – Kracsony, P., Kowalski, G. and A. Meltzer, “Comparative Analysis of Hardware
versus Software Text Search”, Information Retrieval Research. In Oddy, R. N. (ed.), 1981,
pagesÂ€268–309.

Knuth-77 – Knuth, D. E., Morris, J. and V. Pratt, “Fast Pattern Matching in Strings”, SIAM Journal
of Computing, Vol.Â€6, No.Â€2, June 1977, pagesÂ€323–350.

Kretser-99 – Kretser, O. and A. Moffat, “Effective Document Presentation with a Locality Based
Similarity Heuristic”, In Proceedings of the Twenty-second Annual ACM SIGIR Conference
on Research and Development in Information Retrieval, 1999, pagesÂ€113–120.

Krohn-95 – Krohn, U., “Visualization of Navigational Retrieval in Virtual Information Spaces”, In
Proceedings of the Workshop on New Paradigms in Information Visualization and Manipula-
tion, Baltimore, MD, 1995, pagesÂ€26–32.

Krovetz-93 – Krovetz, R., “Viewing Morphology as an Inference Process”, In Proceeding of the
ACM-SIGIR Conference on Research and Development in Information Retrieval, 1993, pag-
esÂ€191–202.

Kstem-95 – Information from the Kstem.doc File Distributed with INQUERY Search System”,
Applied Computing Systems Institute of Massachusetts, Inc (ACSIOM), 1995.

Kubala-97 – Kubala, F., Imai, T., Makhoul, J., Nguyen, L. and R. Schwartz, “A Maximum Like-
lihood Model for Topic Classification of Broadcast News”, Proceedings Eurospeech’97,
Rhodes, Greece, 1997, pagesÂ€1455–1458.

Kubala-99 – Kubala, F., Colbath, S., Liu, D. and J. Makhoul, “Rough‘n’Ready: A Meeting Re-
corder and Browser”, June 1999. Article No.Â€7 in Mills, K. (ed.), ACM Computing Surveys,
Vol.Â€31, No.Â€2.

Kubala-2000 – Kubala, F., Colbath, S., Liu, D., Srivastava, A. and J. Makhoul, “Integrated Tech-
nologies for Indexing Spoken Language”. In Maybury, M. T. (ed.), Special Section on News On
Demand, Communications of the ACM, Vol.Â€43, No.Â€2, pagesÂ€48–56, 2000.

Bibliography

292

Kubala-98 – Kubala, F. et al., “The 1997 Byblos System Applied to Broadcast News Transcrip-
tion”, In Proceedings of the DARPA Broadcast News Transcription and Understanding Work-
shop, Lansdowne, VA, February 1998.

Kupiec-95 – Kupiec, J., Pedersen, J. and F. Chen, “A Trainable Document Summarizer”, In Pro-
ceeding of the eighteenth Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, 1995, pagesÂ€68–74.

Kunze-95 – Kunze, J. J. and R. P. C. Rodgers, “Z39.50 in a Nutshell”, Lister Hill National Center
for Biomedical Communications, National Library of Medicine, July 1995.

Kwok-95 – Kwok, K. and L. Grunfeld, “TREC-3 Ad-Hoc Routing Retrieval and Thresholding
Experiments using PIRCS”. In Harman, D. K. (ed.), Overview of the Third Text Retrieval
Conference (TREC-3), NIST Special Publication 500-225, April 1995, pagesÂ€247–255.

Kwok-96 – Kwok, K. and L. Grunfeld, “TREC-4 Ad-Hoc Routing Retrieval and Filtering Experi-
ments Using PIRCS”, in Harman, D. K. (ed.), Overview of the Fourth Text Retrieval Confer-
ence (TREC-4), NIST, 1996.

Lamping-95 – Lamping, J., Rao, R. and P. Pirolli, “A Focus + Context Technique Based on Hyper-
bolic Geometry for Visualizing Large Hierarchies”, in CHI 95, Proceedings of ACM Confer-
ence on Human Factors in Computing Systems, ACM Press, New York, 1995, pagesÂ€401–408.

Lance-66 – Lance, G. N. and W. Williams, “A General Theory of Classificatory Sorting Strategies.
1. Hierarchical Systems”, Computer Journal, Vol.Â€9, 1966, pagesÂ€373–380.

Lawrence-99 – Lawrence, S. and L. Giles, “Accessibility and Distribution of Information on the
Web”, Nature, 1999, pagesÂ€107–109.

Lawrence and Giles-2000 – Lawrence S. and L. Giles, “Accessibility of Information on the Web”,
Intelligence, 2000, 11(1): pagesÂ€32–39.

Lee-85 – Lee, D. L., “The Design and Evaluation of a Text Retrieval Machine for Large Data-
bases”, Ph.D. Thesis, University of Toronto, September 1985.

Lee-90 – Lee, D. L. and F. Lochovsky, “HYTREM—A Hybrid Text-Retrieval Machine for Large
Databases”, IEEE Transactions on Computers, Vol.Â€39, No.Â€1, 1990, pagesÂ€111–123.

Lee-88 – Lee, W. C. and E. A. Fox, “Experimental Comparison of Schemes for Interpreting Bool-
ean Queries”, Virginia Tech M.S. Thesis, Technical Report TR-88-27, Department of Com-
puter Science, 1988.

Lee-89 – Lee, D. L. and C. W. Leng, “Partitioned Signature Files: Design and Performance Evalu-
ation”, ACM Transactions on Information Systems, Vol.Â€7, No.Â€2, 1989, pagesÂ€158–180.

Leek-99 – Leek, T., Miller, D. and R Schwartz, “A Hidden Markov Model Information Retrieval
System”, In Proceedings of the Twenty-second Annual ACM SIGIR Conference on Research
and Development in Information Retrieval, 1999, pagesÂ€214–221.

Lehnert-91 – Lehnert, W. and B. Sundheim, “A Performance Evaluation of Text-Analysis Tech-
nologies”, AI Magazine, Vol.Â€12, No.Â€3, Fall 1991, pagesÂ€81–93.

Lewis-92 – Lewis, D., “An Evaluation of Phrasal and Clustered Representations on a Text Catego-
rization Task”, In Proceedings of the Fifteenth Annual ACM SIGIR Conference on Research
and Development in Information Retrieval, 1992, pagesÂ€37–50.

Lewis-94 – Lewis, D. and W. Gale, “A Sequential Algorithm for Training Text Classifiers”, In Pro-
ceedings of the Seventeenth Annual ACM SIGIR Conference on Research and Development in
Information Retrieval, ACM, New York, NY, 1994, pagesÂ€11–22.

Lewis-94a – Lewis, D. and M. Ringuette, “A Comparison of Two Learning Algorithms for Text
Categorization”, in Symposium on Document Analysis and Information Retrieval, University
of Las Vegas, 1994.

Lewis-95 – Lewis, D., “Evaluating and Optimizing Autonomous Text Classification Systems”, in
Fox, E., Ingwersen, P. and R. Fidel (eds.), SIGIR’95: Proceedings of the Eighteenth Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
ACM, New York, 1995, pagesÂ€246–254.

Lewis-96 – Lewis, D., “The TREC-4 Filtering Track”, paper to be included in the Overview of the
Fifth Text Retrieval Conference (TREC-5), NIST Special Publications.

Bibliography

293

Liddy-93 – Liddy, E. D. and S. H. Myaeng, “DR-LINK’s Linguistic-Conceptual Approach to Doc-
ument Detection”, The First Text Retrieval Conference (TREC-1), NIST Special Publication
500-207, NIST, Gaithersburg, MD, March 1993, pagesÂ€113–129.

Lin-88 – Lin, Z. and C. Faloutsos, “Frame Sliced Signature Files”, CS-TR-2146 and UMI-
ACS-TR-88-88, Department of Computer Science, University of Maryland, 1988.

Lin-91 – Lin, X., Liebscher and G. Marchionini, “Graphic Representation of Electronic Search
Patterns”, Journal of American Society for Information Science, Vol.Â€42, No.Â€7, 1991, pag-
esÂ€469–478.

Lin-92 – Lin, X., “Visualization for the Document Space”, In Proceedings of Visualization’92,
Boston, MA, October 1992, pagesÂ€274–281.

Lin-96 – Lin, Xia, “Graphical Table of Contents”, In Proceedings of the First ACM International
Conference on Digital Libraries, in Fox, E. and G. Marchionini (eds.), March 1996, pagesÂ€45–53.

Lochbaum-89 – Lochbaum, K. E. and L. A. Streeter, “Comparing and Combining the Effective-
ness of Latent Semantic Indexing and the Ordinary Vector Space Model for Information Re-
trieval”, Information Processing and Management, Vol.Â€25, No.Â€6, 1989, pagesÂ€665–676.

Lovins-68 – Lovins, J. B., “Development of a Stemming Algorithm”, Mechanical Translation and
Computational Linguistics, Vol.Â€11, No.Â€1–2, 1968, pagesÂ€22–31.

Lennon-81 – Lennon, M. D., Pierce, D., Tarry, B. and P. Willett, “An Evaluation of Some Con-
flation Algorithms for Information Retrieval”, Journal of Information Science, Vol.Â€3, 1981,
pagesÂ€177–183.

Levine-94 – Levine, J. R. and C. Baroudi, “The Internet for Dummies”, IDG Books, San Mateo,
CA, 1994, pagesÂ€261–262.

Luhn-58 – Luhn, H. P., “The Automatic Creation of Literature Abstracts”, IBM Journal of Re-
search and Development, Vol.Â€2, No.Â€2, April 1958, pagesÂ€159–165.

Mandala-99 – Mandala, R., Tokunaga, T. and H. Tanaka, “Combining Evidence from Different Types
of Thesaurus for Query Expansion”, In Proceedings of the Twenty-second Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, 1999, pagesÂ€191–197.

Mani-97 – Mani, I., House, D., Maybury, M. and M. Green, “Towards Content-Based Browsing of
Broadcast News Video”. In Maybury M. T. (ed.), Intelligent Multimedia Information Retrieval,
1997, pagesÂ€241–258.

Marchionini-88 – Marchionini, G. and B. Shneiderman, “Finding Facts vs. Browsing Knowledge
in Hypertext Systems”, Computer, January 1988, pagesÂ€70–80.

Maron-60 – Maron, M. E. and J. L. Kuhns, “On Relevance, Probabilistic Indexing, and Informa-
tion Retrieval”, Journal of ACM, 1960, pagesÂ€216–244.

Masand-92 – Masand, B., Linoff, G. and D. Waltz, “Classifying News Stories Using Memory
Based Reasoning”, In Proceedings of the Fifteenth Annual ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 1992, pagesÂ€59–65.

Maybury-97 – Maybury, M. T. (ed.), Intelligent Multimedia Information Retrieval, 1997. AAAI/
MIT Press. (http://www.aaai.org:80/Press/Books/Maybury2/)

Maybury-97 – Maybury, M., Merlino, A. and D. Morey, “Broadcast News Navigation Using Story
Segments”, 1997. ACM International Multimedia Conference, Seattle, WA, November 8–14,
pagesÂ€381–391.

Maybury-2000 – Maybury, M. T. (ed.), “News On Demand”. Communications of the ACM,
Vol.Â€43, No.Â€2, February 2000, pagesÂ€33–34.

Maybury-98 – Maybury, M. T. and W. Wahlster, (eds.) Readings in Intelligent User Interface,
1998. Morgan Kaufmann Press. (http://www.mkp.com/books_catalog/1-55860-444-8.asp)

Mayper-80 – Mayper, V., Nagy, A., Bird R., Tu J. and L. Michaels, “Finite State Automation with
Multiple State Types”, U.S. Patent 4, 241, 402, December 23, 1980.

McIllroy-82 – McIlroy, M. D., “Development of a Spelling List”, IEEE Transaction on Communi-
cations, Vol.Â€Com-30, 1982, pagesÂ€91–99.

McCullagh-89 – McCullagh, P. and J. Nelder, “Generalized Linear Models”, chapterÂ€4, pagesÂ€101–
123, Chapman and Hall, 2nd ed., 1989.

McCulloch-43 – McCulloch, W. and W. Pitts, “A Logical Calculus of the Ides Immanent in Ner-
vous Activity”, Bulletin of Mathematical Biophysics, No.Â€5, 1943, pagesÂ€115–137.

Bibliography

294

Merlino-99 – Merlino, A. and M. Maybury, “An Empirical Study of the Optimal Presentation of
Multimedia Summaries of Broadcast News”, In Mani, I. and M. Maybury (eds.), Automated
Text Summarization, MIT Press, pagesÂ€391–401.

Mettler-93 – Mettler, M., “Text Retrieval with the TRW Fast Data Finder”, The First Text Retrieval
Conference (TREC-1), NIST Special Publication 500-207, NIST, Gaithersburg, MD, March
1993, pagesÂ€309–317.

Miike-94 – Miike, S., Itoh, E., Ono, K. and K. Sumita, “A Full Text Retrieval System with a Dy-
namic Abstract Generation Function”, In Proceedings of the Seventeenth Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, New York, NY,
1994, pagesÂ€152–161.

Miller-95 – Miller, G. A., “WordNet: A Lexical Database for English”, in Communications of the
ACM, 38(11), 1995, pagesÂ€39–41.

Minker-77 – Minker, J., “Information Storage and Retrieval—A Survey and Functional Descrip-
tion”, SIGIR Forum, Association for Computer Machinery, Vol.Â€12, No.Â€2, Fall 1977, pag-
esÂ€1–108.

Minsky-69 – Minsky, M. and S. Papert, Perceptrons, “An Introduction to Computational Geom-
etry”, MIT Press, Cambridge, MA, 1969.

Mitkas-89 – Mitkas, P., Berra, P. and P. Guilfoyle, “An Optical System for Full Text Search”, In
Proceedings of SIGIR 89.

Mittendorf-99 – Mittendorf, E. and P. Schauble, “Document and Passage Retrieval Based on Hid-
den Markov Models”, Twenty-second International Conference on Research and Development
in Information Retrieval, 1994, pagesÂ€318–327.

Moller-Nielsen-84 – Mollier-Nielsen, P. and J. Staunstrup, “Experiments with a Fast String Search-
ing Algorithm”, Information Processing Letters, Vol.Â€18, 1984, pagesÂ€129–135.

Mooers-49 – Mooers, C., “Application of Random Codes to the Gathering of Statistical Informa-
tion”, Bulletin 31, Zator Co., Cambridge, MA, 1949.

Morris-75 – Morris, R. and L. Cherry, “Computer Detection of Typographical Errors”, IEEE
Transactions on Professional Communications, Vol.Â€18, No.Â€1, March 1975, pagesÂ€54–56.

Morris-92 – Morris, A., Kasper, G. and D. Adams, “The Effects and Limitations of Automated
Text Condensing on Reading Comprehension Performance”, Information Systems Research,
March 1992, pagesÂ€17–35.

Mukherjea -95 – Mukherjea, S. and J. D. Foley, “Visualizing the World Wide Web with Naviga-
tional View Builder”, Computer Networks and ISDN Systems, Vol.Â€27, 1995, pagesÂ€1075–1087.

Multimedia Manager: Professional Edition for OS/2 & DB2/2 Brochure, IBM.
Munzer-95 – Munzer, T. and P. Burchard, “Visualizing the Structure of the World Wide Web in 3D

Hyperbolic Space”, The Geometry Center, University of Minnesota, 1995. (see http://www.
geom.umn.edu/docs/research/webviz/ current November 1996).

Murtagh-83 – Murtagh, F., “A Survey of Recent Advances in Hierarchical Clustering Algorithms”,
Computer Journal, Vol.Â€26, 1983, pagesÂ€354–359.

Murtagh-85 – Murtagh, F., “Multidimensional Clustering Algorithms”, Vienna: Physica-Verlag
(COMP-STAT Lectures 4), 1985.

Nelson-65 – Nelson T., “A File Structure for the Complex, the Changing, the Indeterminate”, In
Proceedings of the ACM Twentieth National Conference, 1965, pages 84–100.

Nelson-74 – Nelson, T., “Computer Lib/Dream Machine”, 1st ed., Self-Published in 1974 (revised
edition published by Microsoft Press in 1987).

Niblack-93 – Niblack, W., Barber, R. et al., “The QBIC Project: Querying Images by Content
Using Color Texture and Shape”, SPIE, Vol.Â€1908, Storage and Retrieval for Image and Video
databases, 1993, pagesÂ€173–187.

Niblack-93-95 – Niblack, W. and R. Jain, (eds. 1993, 1994, 1995), In Proceedings of IS&T/SPIE.
Conference on Storage and Retrieval for Image and Video Databases I, II, and III, Vol.Â€1908,
2185, and 2420. Bellingham, WA: SPIE.

Nordlie-99 – Nordlie, R., “User Revealment—A Comparison of Initial Queries and Ensuing Ques-
tion Development in Online Searching and in Human Reference Interactions”, In Proceedings

Bibliography

295

of the Twenty-second Annual ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 1999, pagesÂ€11–18.

Norman-90 – Norman, D. A., “Why Interfaces Don’t Work”, The Art of Human Computer Inter-
face Design. In Laurel, B. (ed.), Addison Wesley, 1990, pagesÂ€209–219.

Norris-69 – Norris, D. M., “A History of Cataloguing and Cataloguing Methods 1100–1850”,
(1939; reprint ed., Detroit: Gale, 1969).

Nowell-96 – Nowell, L., France, R., Hix, D., Heath, L. and E. Fox, “Visualizing Search Results:
Some Alternatives to Query-Document Similarity”, In Proceedings of the Nineteenth Annual
ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New
York, NY, 1996, pagesÂ€66–75.

Olsen-93 – Olsen, K. A. et. al., “Visualization of a Document Collection: the VIBE System”, In-
formation Processing and Management, Vol.Â€29, No.Â€1, 1993, pagesÂ€69–81.

ORION-93 – ORION White Paper, Wide-Area Information Server (WAIS) Evaluation, Orion Sci-
entific, Inc., 1993.

Paice-84 – Paice, C., “Soft Evaluation of Boolean Search Queries in Information Retrieval Sys-
tems”, Information Technology, Research and Development Applications, Vol.Â€3, No.Â€1, 1983,
pagesÂ€33–42.

Paice-90 – Paice, C., “Another Stemmer”, ACM SIGIR Forum, Vol.Â€24, No.Â€3, 1990, pagesÂ€56–61.
Paice-93 – Paice, C. and P. Jones, “The Identification of Important Concepts in Highly Structured

Technical Papers”, in the Sixteenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, ACM Press, June 1993, pagesÂ€69–78.

Paice-94 – Paice, C., “An Evaluation Method for Stemming Algorithms”, In Proceedings of the
Seventeenth Annual International ACM-SIGIR Conference, Springer-Verlag, London, 1994,
pagesÂ€42–50.

Paracel-96 – “Biology Tool Kit Software Manual”, Revision 1, Paracel Inc., Pasadena, CA.
Pearl-88 – Pearl, J., “Probabilistic Reasoning in Intelligent Systems”, Morgan Kaufmann, San

Mateo, CA, 1988.
Pentlan-94 – Pentland, A., Picard, R. and S. Sclaroff, “Photobook: Tools for Content Based Ma-

nipulation of Image Databases”, SPIE, Vol.Â€2185, Storage and Retrieval for Image and Video
Databases, 1994, pagesÂ€34–47.

Pentland-97 – Pentland, A., “Machine Understanding of Human Behaviour”. In Maybury M. T.
(ed.), Intelligent Multimedia Information Retrieval, 1997, pagesÂ€175–188.

Picard-97 – Picard, J. Affective Computing. 1997, Cambridge: MIT Press.
Peterson-80 – Peterson, J. L., “Computer Programs for Detecting and Correcting Spelling Errors”,

Communications of the ACM, Vol.Â€23, No.Â€12, December 1980, pagesÂ€676–687.
Pirolli-96 – Pirolli, P., Schank, P., Hearst, M. and C. Diehl, “Scatter/Gather Browsing Communi-

cates the Topic Structure of a Very Large Text Collection”, In Proceedings of the ACM SGCHI
Conference on Human Factors in Computing Systems, Vancouver, WA, May 1996.

Porter-80 – Porter, M. F., “An Algorithm for Suffix Stripping”, Program, Vol.Â€14, No.Â€3, 1980,
pagesÂ€130–137.

Pratt-42 – Pratt, F., “Secret and Urgent”, Blue Ribbon Books, Garden City, NJ, 1942, pageÂ€50.
Rabiner-89 – Rabiner, L., “A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition”, In Proceedings of the IEEE, Vol.Â€77, No.Â€2., February 1989, pagesÂ€257–285.
Rather-77 – Rather, L., “Exchange of Bibliographic Information in Machine Readable Form”,

Library Trends, Vol.Â€25, January 1977, pagesÂ€625–643.
Rearick-91 – Rearick, T., “Automating the Conversion of Text into Hypertext”, in Berk E. and

J.Â€ Devlin (eds.), Hypertext/Hypermedia Handbook, MacGraw-Hill Inc., New York, 1991,
pagesÂ€113–140.

Reimer-88 – Reimer, U. and U. Hahn, “Text Condensation as Knowledge Base Abstraction”, in
IEEE Conference on AI Applications, 1988, pagesÂ€338–344.

RetrievalWare-95 – CONQUEST Software Manual, The ConQuest Semantic Network, 1995.
Ribeiro-96 – Ribeiro, B. and R. Muntz, “A Belief Network Model for IR”, In Proceedings of the

Nineteenth Annual ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, New York, NY, 1996, pagesÂ€253–260.

Bibliography

296

Rivest-77 – Rivest, R., “On the Worst-Case Behaviour of String Searching Algorithms”, SIAM
Journal on Computing, Vol.Â€6, 1977, pagesÂ€669–674.

Rivlin-2000 – Rivlin, Z. et al., “MAESTRO: Conductor of Multimedia Analysis Technologies”,
2000. In Maybury, M. T. (ed.), Communications of the ACM: Special Issue of News on De-
mand, Vol.Â€43, No.Â€2, pagesÂ€57–63, 2000.

Rijsbergen-79 – van Rijsbergen, C. J., Information Retrieval, 2nd ed., Buttersworths, London,
1979.

Roberts-78 – Roberts, D. C., “A Specialized Computer Architecture for Text Retrieval”, Fourth
Workshop on Computer Architecture for Non-Numeric Processing, Syracuse, NY (published
as SIGIR Vol.Â€13, No.Â€2: SIGARCH Vol.Â€7, No.Â€2; and SIGMOD Vol.Â€10, No.Â€1), pagesÂ€51–59.

Roberts-79 – Roberts, C. S., “Partial-Match Retrieval via the Method of Superimposed Codes”, In
Proceedings of IEEE, Vol.Â€67, No.Â€12, 1979, pagesÂ€1624–1642.

Robertson-69 – Robertson, S. E., “The Parametric Description of Retrieval Tests, Part I: The Basic
Parameters”, Journal of Documentation, Vol.Â€25, No.Â€1, March 1969, pagesÂ€1–27.

Robertson-76 – Robertson, S. E. and K. Spark Jones, “Relevance Weighting of Search Terms,”
Journal of American Society for Information Science, Vol.Â€27, No.Â€3, 1976, pagesÂ€129–146.

Robertson-77 – Robertson, S. E., “The Probability Ranking Principle in IR”, Journal of Documen-
tation, No.Â€33, 1977, pagesÂ€294–304.

Robertson-93 – Robertson, G. G., “Information Visualization Using 3-D Interactive Animation”,
Communications of the ACM, Vol.Â€36, No.Â€4, April 1993, pagesÂ€57–71.

Rocchio-71 – Rocchio, J. J., “Relevance Feedback in Information Retrieval”. In Salton, G. (ed.),
The SMART Retrieval Storage and Retrieval System, Prentice Hall, Inc., Englewood Cliffs, NJ,
Prentice Hall, Inc., 1971, pagesÂ€313–323.

Rock-90 – Rock, I and S. Palmer, “The Legacy of Gestalt Psychology”, Scientific American, De-
cember 1990, pagesÂ€84–90.

Rose-95 – Rose, R. (ed.), “P1000 Science and Technology Strategy for Information Visualization”,
Version 1.6, August 1995.

Rose-96 – Rose, R. (ed.), “P1000 Science and Technology Strategy for Information Visualization”,
Version 2, 1996.

Roseler-94 – Roseler, M. and D. Hawkins, “Gent Agents: Software Servants for an Electronic
Information World (and More!)”, ONLINE, July 1994, pagesÂ€19–32.

Ruge-92 – Ruge, G., “Experiments on Linguistically Based Term Associations”, Information Pro-
cessing and Management, Vol.Â€28, No.Â€3, 1992, pagesÂ€317–332.

Rumelhart-95 – Rumelhart, D., Durbin, R., Golden, R. and Y. Chauvin, “Learning Internal Repre-
sentation by Error Propagation”, in Back-propagation: Theory, Architectures and Applications,
Lawrence Erlbaum, Hillsdale, NJ, 1995.

Rumelhart-95a – Rumelhart, D., Durbin, R. Golden, R. and Y. Chauvin, “Backpropagation: The
Basic Theory”, in Back-propagation: Theory, Architectures and Applications, Lawrence Erl-
baum, Hillsdale, NJ, 1995.

Rush-71 – Rush, J., Salvador, R. and A. Zamora, “Automatic Abstracting and Indexing II, Produc-
tion of Indicative Abstracts by Application of Contextual Inference and Syntactic Coherence
Criteria”, Journal of the ASIS, Vol.Â€22, No.Â€4., 1971, pagesÂ€260–274.

Rytter-80 – Rytter, W., “A Correct Preprocessing Algorithm for Boyer-Moore String Searching”,
SIAM Journal on Computing, Vol.Â€9, No.Â€3, August 1980, pagesÂ€509–512.

Sacks-Davis-83 – Sacks-Davis, R. and K. Ramamohanarao, “A Two Level Superimposed Coding
Scheme for Partial Match Retrieval”, Information Systems, Vol.Â€8, No.Â€4, 1983, pagesÂ€273–280.

Sacks-Davis-87 – Sacks-Davis, R., Kent, A. and K. Ramamohanarao, “Multikey Access Meth-
ods Based on Superimposed Coding Techniques”, ACM Transactions on Database Systems,
Vol.Â€12, No.Â€4, pagesÂ€655–696.

Salton-68 – Salton, G., “Automatic Information Organization and Retrieval”. New York: McGraw-
Hill, 1968.

Salton-72 – Salton G., “Experiments in Automatic Thesaurus Construction for Information
Retrieval”, Information Processing 71, North Holland Publishing Co., Amsterdam, 1972,
pagesÂ€115–123.

Bibliography

297

Salton-73 – Salton, G. and C. S. Yang, “On the Specification of Term Values in Automatic Index-
ing”, Journal of Documentation, Vol.Â€29, No.Â€4, pagesÂ€351–372.

Salton-75 – Salton, G., “Dynamic Information and Library Processing”, Prentice-Hall, Inc., Engle-
wod, New Jersey, 1975.

Salton-83 – Salton, G. and M. McGill, “Introduction to Modern Information Retrieval”, McGraw-
Hill, 1983.

Salton-83a – Salton, G. E., Fox, E. A. and H. Wu, “Extended Boolean Information Retrieval”,
Communications of the ACM, Vol.Â€26, No.Â€12, 1983, pagesÂ€1022–1036.

Seybold-94 – Seybold, 1994. IBM Unleashes QBIC Image-Content Search, The Seybold Report
on Desktop Publishing, September 12, 1994, pagesÂ€34–35.

Salton-88 – Salton, G. and C. Buckley, “Term-Weighting Approaches in Automatic Text Retriev-
al,” Information Processing and Management, Vol.Â€24, No.Â€5, pagesÂ€513–523.

Salton-89 – Salton, G. E., Automatic Text Processing, Addison-Wesley, Reading, MA, 1989,
pagesÂ€260–265.

Sanderson-99 – Sanderson, M. and B. Croft, “Deriving Concept Hierarchies From Text”, In Pro-
ceedings of the Twenty-second Annual ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 1999, pagesÂ€206–213.

Saracevic-91 – Saracevic, T., “Individual Differences in Organizing, Searching and Retrieving
Information”, ASIS’91: Proceedings of the American Society for Information Science (ASIS)
Fifty-Fourth Annual Meeting, Vol.Â€28, 1991, pagesÂ€82–86.

Saracevic-95 – Saracevic, T., “Evaluation of Evaluation in Information Retrieval”, In Proceeding
of the Eighteenth Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, 1995, pagesÂ€138–145.

Schamber-90 – Schamber, L., Eisenberg, M. and M. Nilan, “A Re-examination of Relevance: To-
ward a Dynamic, Situational Definition”, Information Processing and Management, Vol.Â€26,
No.Â€6, 1990, pagesÂ€755–776.

Schek-78 – Schek, H. J., “The Reference String Indexing Method”, Research Report, IBM Scien-
tific Center, Heidelberg, Germany, 1978.

Schuegraf-76 – Schuegraf, E. J. and H. S. Heaps, “Query Processing in a Retrospective Document
Retrieval System That Uses Word Fragments as Language Elements”, Information Processing
and Management, Vol.Â€12, No.Â€4, 1976, pagesÂ€283–292.

Schuster-79 – Schuster, S., Nguyen, H., Ozkarahan, E. and K. Smith, “RAP2—An Associative
Processor for Databases and Its Application”, IEEE Transactions on Computers, Vol.Â€C-28,
No.Â€6., June 1979, pagesÂ€446–458.

Schutze-95 – Schutze, H., Hull, D and J. Pedersen, “A Comparison of Classifiers and Document
Representations for the Routing Problem”, Proceedings of the Eighteenth Annual Internation-
al ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle
Washington, July 1995, pagesÂ€229–237.

Sedgewick-88 – Sedgewick, R., Algorithms, 2nd ed., Addison-Wesley, 1988.
Shannon-51 – Shannon, C. E., “Predication and Entropy of Printed English”, Bell Technical Jour-

nal, Vol.Â€30, No.Â€1, January 1951, pagesÂ€50–65.
Singhal-95 – Singhal, A., Salton, G., Mitra, M. and C. Buckley, “Document Length Normaliza-

tion”, Technical Report TR95-1529, Cornell University, 1995.
Singhal-99 – Singhal, A. and F. Pereira, “Document Expansion for Speech Retrieval”, In Proceed-

ings of the Twenty-second Annual ACM SIGIR Conference on Research and Development in
Information Retrieval, 1999, pagesÂ€34–41.

Smit-82 – Smit, G., “A Comparison of Three String Matching Algorithms”, Software: Practice
and Experience, Vol.Â€12, 1982, pagesÂ€57–66.

Sparck Jones-71 – Sparck Jones, K., Automatic Keyword Classification for Information Retrieval,
Buttersworths, London, 1971.

Sparck Jones-75 – Sparck Jones, K. and C. van Rijisbergen, “Report on the Need for and Provision
of an ‘Ideal’ Information Retrieval Test Collection”, British Library Research and Develop-
ment Report 5266, Computer Laboratory, University of Cambridge, England, 1975.

Bibliography

298

Sparck Jones-79 – Sparck Jones, K. and C. A. Webster, “Research in Relevance Weighting”, Brit-
ish Library Research and Development Report 5553, Computer Laboratory, University of
Cambridge, 1979.

Sparck Jones-81 – Sparck Jones, K., “Information Retrieval Experiment”, Butterworths, London,
England, 1981.

Sparck Jones-93 – Sparck Jones, K., “Discourse Modelling for Automatic Summarizing”, Techni-
cal Report 29D, Computer Laboratory, University of Cambridge, 1993.

Spoerri-93 – Spoerri, A., “Visual Tools for Information Retrieval”, In Proceedings of IEEE Sym-
posium on Visual Languages, IEEE CS Press, Los Alamitos, CA, 1993, pagesÂ€160–168.

Stirling-77 – Stirling, K. H., “The Effect of Document Ranking on Retrieval System Performance:
A Search for an Optimal Ranking Rule”, Ph.D. Thesis, University of California, Berkley, 1977.

Sundheim-92 – Sundheim, B. M., “Overview of the Fourth Message Understanding Evaluation
and Conference”, In Proceedings Fourth Message Understanding Conference (MUC), Morgan
Kaufmann Publishers, Inc., 1992, pagesÂ€3–21.

Thesuarus-93 – “Microsoft Word Version 6.0a”, 1983–1994 Microsoft Corporation, Thesaurus,
Soft-Art Inc., 1984–1993.

Thorelli-62 – Thorelli, L. E., “Automatic Correction of Errors in Text”, BIT, Vol.Â€2, No.Â€1, 1962,
pagesÂ€45–62.

Thorelli-90 – Thorelli, L. G. and W. J. Smith, “Using Computer Color Effectively”, Prentice Hall,
1990.

Tong-94 – Tong, R. and L. Appelbaum, “Machine Learning for Knowledge Based Document
Routing”, in The Second Text Retrieval Conference (TREC-2) Proceedings, NIST publica-
tions, 1993, pagesÂ€253–264.

Turner-95 – Turner, F., “An Overview of the Z39.50 Information Retrieval Standard”, UDT Oc-
casional paper #3, National Library of Canada, July 1995.

Van Dam-88 – van Dam, A., “Hypertext’87 Keynote Address”, Communications of the ACM,
Vol.Â€31, No.Â€7, July 1988, pagesÂ€887–895.

Van Rijsbergen-79 – Van Rijsbergen, C. J., Information Retrieval, 2nd ed., Buttersworth, London,
1979, ChapterÂ€3.

Veerasamy-96 – Veerasamy, A. and N. Belkin, “Evaluation of a Tool for Information Visualiza-
tion of Information Retrieval Results”, In Proceedings of the Nineteenth Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, New York, NY,
1996, pagesÂ€85–93.

Vickery-70 – Vickery, B. C., “Techniques of Information Retrieval”, Archon Books, Hamden,
Conn., 1970.

Visionics Corporation. Face It, Face Detector and Face Recognizer SDK http://www.faceit.com.
Voorhees-86 – Voorhees, E. M., “The Effectiveness and Efficiency of Agglomerative Hierarchic

Clustering in Document Retrieval”, Ph.D. Thesis, 1986, Cornell University.
Voorhees-93 – Voohrees, E. M., “Using WordNet to Disambiguate Word Senses for Text Retriev-

al”, In Proceedings of the Sixteenth SIGIR, ACM, 1993, pagesÂ€171–180.
Voohrees-94 – Voohrees, E. M., “Query Expansion Using Lexical-Semantic Relations”, In Pro-

ceedings of the Seventeenth SIGIR, ACM, 1994, pagesÂ€61–69.
Voorhees-96 – Voorhees, E. and P. Kantor, “TREC-5 Confusion Track”, paper to be included in

the Overview of the Fifth Text Retrieval Conference (TREC-5), NIST Special Publications.
Wactlar-2000 – Wactlar, H., Hauptmann, A., Christel, M., Houghton, R. and A. Olligschlaeger,

“Complementary Video and Audio Analysis for Broadcast News Archives”, 2000. In Maybury,
M. T. (ed.), Communications of the ACM, Vol.Â€43, No.Â€2, pagesÂ€42–47.

Wade-89 – Wade, S. J., Willet, J. P. and D. Bawden, “SIBRIS: The Sandwich Interactive Browsing
and Ranking Information System”, Journal of Information Science, 15, 1989, pagesÂ€249–260.

Waibel-90 – Waibel, A. and K. Lee, (eds.), “Readings in Speech Recognition”, Morgan Kaufmann,
San Mateo, CA, 1990.

Waltz-85 – Waltz, D. L. and J. B. Pollack, “Massively Parallel Parsing: A Strongly Interactive
Model of Natural Language Interpretation”, Cognitive Science, Vol.Â€9, 1985, pagesÂ€51–74.

Bibliography

299

Wang-77 – Wang, C. H. C, Mitchell, P. C., Rugh, J. S. and B. W. Basheer, “A Statistical Method
for Detecting Spelling Errors in Large Databases”, IEEE Proceedings of the Fourteenth Inter-
national Computer Society Conference, 1977, pagesÂ€124–128.

Wang-85 – Wang, Y. -C., Vandenthorpe, J. and M. Evans, “Relationship Thesauri in Information
Retrieval”, Journal of American Society of Information Science, 1985, pagesÂ€15–27, 1985.

Ward-63 – Ward, J. H., “Hierarchical Grouping to Optimize an Objective Function”, Journal of
American Statistical Association, Vol.Â€58, No.Â€301, 1963, pagesÂ€235–244.

Wayne-98 – Wayne, C., “Topic Detection & Tracking (TDT) Overview & Perspective”, DARPA
Broadcast News Transcription and Understanding Workshop, February 8–11, 1998, Lansd-
owne Conference Resort, Lansdowne, Virginia, http://www.nist.gov/speech/tdt98/tdt98.htm.

Wiederhold-95 – Wiederhold, G., “Digital Libraries, Value, and Productivity”, Communications of
the ACM, Vol.Â€38, No.Â€4, April 1995, pagesÂ€85–96.

Weiner-95 – Weiner, M. L. and E. D. Liddy, “Intelligent Text Processing and Intelligence Tra-
decraft”, Journal of the AGSI, July 1995.

Whittaker-99 – Whittaker, S., Hirschberg, J., Choi, J., Hindle, D., Pereira, F. and A. Singhal,
“SCAN: Designing and Evaluating User Interfaces to Support Retrieval From Speech Ar-
chives”, In Proceedings of the Twenty-second Annual ACM SIGIR Conference on Research
and Development in Information Retrieval, 1999, pagesÂ€26–33.

Wilkinson-95 – Wilkinson, R., “Effective Retrieval of Structured Documents”, In Proceedings of
the Seventh Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Dublin, Ireland, July 1994.

Wilkenson-95 – Wilkenson, R. and J. Zobel, “Comparison of Fragment Schemes for Docu-
ment Retrieval”. In Harman, D. K. (ed.), Overview of the Third Text Retrieval Conference
(TREC-3), pagesÂ€81–84, NIST Special Publication 500-225, April 1995.

Willet-88 – Willet, P., “Recent Trends in Hierarchic Document Clustering: A Critical Review”,
Information Processing and Management, Vol.Â€24, No.Â€5, 1988, pagesÂ€577–597.

Wise-95 – Wise, J. A. et al., “Visualizing the Nonvisual: Spatial Analysis and Interaction with
Information from Text Documents”, In Proceeding of Information Visualization Symposium,
IEEE Computer Society Press, Los Alamitos, CA, 1995, pagesÂ€51–58.

Woods-97 – Woods, W. A. (ed.), “Conceptual Indexing: A Better Way to Organize Knowledge”,
Sun Labs technical report: TR-97-61, Technical Reports, 901 San Antonio Road, Palo Alto,
CA, 94303.

Wold-96 – Wold, E., Blum, T., Keislar, D. and J. Wheaton, “Content-Based Classification, Search,
and Retrieval of Audio,” IEEE Multimedia Magazine, Vol.Â€3, No.Â€3, 1996, pagesÂ€27–36. http://
www.musclefish.com/crc/index.html.

Wu-92 – Wu, S. and U. Manber, “Fast Text Searching Allowing Errors”, Communications of the
ACM, Vol.Â€35, No.Â€10, October 1992, pagesÂ€83–89.

Xu-96 – Xu, J. and B. Croft, “Query Expansion Using Local and Global Domain Analysis”, In
Proceedings of the Nineteenth International Conference on Research and Development in In-
formation Retrieval, Zurich, Switzerland, 1996, pagesÂ€4–11.

Yang-94 – Yang, Y., “Expert Network: Effective and Efficient Learning From Human Decisions
in Text Categorization and Retrieval”, In Proceedings of the Seventeenth Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM, New York, NY,
1994, pagesÂ€13–22.

Yochum-85 – Yochum, J., “A High-Speed Text Scanning Algorithm Utilizing Least Frequent Tri-
graphs”, IEEE Proceedings New Directions in Computing Symposium, Trondheim, Norway,
1985, pagesÂ€114–121.

Yochum-95 – Yochum, J., “Research in Automatic Profile Creation and Relevance Ranking with
LMDS”, In Harman, D. K. (ed.), Overview of the Third Text Retrieval Conference (TREC-3),
NIST Special Publication 500-225, April 1995, pagesÂ€289–298.

Yu-86 – Yu, K., Hsu, S., Heiss, R. and L. Hasiuk, “Pipelined for Speed: The Fast Data Finder Sys-
tem”, Quest, Technology at TRW, Vol.Â€9, No.Â€2, Winter 1986/1987, pagesÂ€4–19.

Zadeh-65 – Zadeh, L. A., “Fuzzy Sets”, Information and Control, Vol.Â€8, 1965, pagesÂ€338–353.

Bibliography

300

Zamora-81 – Zamora, E. M, Pollack, J. J. and A. Zamora, “Use of Trigram Analysis of Spelling Error
Detection”, Information Processing and Management, Vol.Â€17, No.Â€6, 1981, pagesÂ€305–316.

Zaremba-95 – Zaremba, D., http://www.europe.digital.com/.i/info/DTJ102 /DTJ102sc.TXT, cur-
rent as of November 21, 1996.

Ziph-49 – Ziph, G. K., Human Behaviour and the Principle of Least Effort, Adisson Wesley Pub-
lishing, Reading, MA, 1949.

Zizi-96 – Hascoet-Zizi, M. and N. Pediotakis, “Visual Relevance Analysis”, In Proceedings of the
First ACM International Conference on Digital Libraries, in Fox, E. and G. Marchionini (eds.),
March 1996, pagesÂ€54–62.

Zloof-75 – “Query By Example”, In Proceedings NCC 44, Anaheim, CA, AFIPS Press, Montvale,
New Jersey, 1975.

Zobel-95 – Zobel, J., Moffat, A., Wilkenson, R. and R. Sacks-Davis, “Efficient Retrieval of Partial
Documents”, Information Processing & Management, 31(3), May 1995, pagesÂ€361–377.

Bibliography

2-dimension display, 201

A
aggregator, 66
alert process, 10
Alerts, 12
anaphoric relation, 86
automatic hierarchical clustering,

Complete Link, 189
Group Average clustering, 190
Single Link, 189

automatic speech recognition, 131
Automatic Term Clustering, 176

Complete Term Relation Method, 176

B
Baye’s Theorem, 45
Bayesian network, 46
blind feedback, 157
Boyer-Moore algorithm, 241
bpref measure, 267
Broadcast Monitoring System (BMS), 224

C
Canberra measure, 146
Cataloging See Indexing, 96
catch, 67
centroid, 181
champion lists, 236
channel, 47
chunk servers, 249
Cliques, 178
Closed captioning, 136
cluster,

naming, 203
clustering,

guidelines, 172
Hierarchical clustering, 186
items, 184

K-means algorithm, 181
Measure of Tightness, 193
One Pass Assignments, 184
steps in clustering, 172
thesaurus Word relationships, 173

Cognition and Perception, 229
cognitive engineering, 233
Cognitive engineering, 226
Cohen’s Kappa coefficient, 256
COHESION factor, 121
Collaborative filtering, 213

Data centric, 214
User centric, 214

collective intelligence, 214
Complete Link, 189
concept hierarchy, 188
Concept Indexing, 125
concept vector, 125
configural effect, 232
Conflation, 77
Contiguous Word Phrase, 17
controlled vocabulary, 98
coreference, 85, 86
Cosine measure, 147
Coverage Ratio, 268
Cranfield collection, 257
Cranfield model, 253
crawling, 64

breath first, 64
depth first, 64
dynamic pages, 65

Cross Language Evaluation Forum (CLEF),
258

Cue words, 207
cumulative gain (CG), 268
cutoff method, 81

D
Data Base Management Systems, 20
Data Warehouse, 23

Index

G. Kowalski, Information Retrieval Architecture and Algorithms,
DOI 10.1007/978-1-4419-7716-8, ©Â€Springer Science+Business Media, LLC 2011

301

302

DBMS, 21
dendogram, 186
depth—monocular cues, 231
Dice, 147
DICE Coefficient, 145
Digital Libraries, 22
discounted cumulative gain (DCG), 268
display hit,

Filtering and zooming, 202
Display of item,

highlighting the search terms, 210
dissemination systems, 157
document manager, 27
Document Servers, 250
duplicate information, 67

defining near duplicate, 68
lowest “n” signatures method, 70
resemblance—Broder, 69
shingles, 69
signature unique key, 68

Dynamic HTML, 42

E
Entity Identification, 85
entity normalization, 86
entity resolution, 86
Error Rate Relative to Truncation (ERRT), 83
evaluation,

human subjectivity, 254
system view, 255

F
Fallout, 264
finite state automata, 239
F-measure, 263

G
General file System, 251
GESCAN system, 245
GOOGLE File System (GFS), 249
GOOGLE Web Servers (GWS), 250
ground truth, 257
Group Average clustering, 190

H
header-modifier, 122
Hidden Markov Model, 132
Hidden Markov Models, 53, 152

discrete Markov process, 54
hidden web, 65
hierarchical agglomerative clustering methods

(HACM), 186

Hierarchical Cluster Algorithms,
automatic, 189

Hit file, 9
hit list presentation,

Sequential Listing, 200
Hit list presentation,

Cluster View, 201
network view, 205

Hit list Presentation,
time line, 208

HITS, 215
Homograph resolution, 173
Human Perception and Presentation, 225
human-computer interface (HCI), 225
hypertext—data structure, 40
Hypertext Transfer Protocol—HTTP

definition, 41

I
Image Indexing, 134
Index Search Optimization, 235
indexing,

automatic, 102
Citational metadata, 13
goal, 95
objective, 97
Taggmultimedia, 129
Taxonomy, 14

Indexing,
bibliographic citation, 96
exhaustivity, 100
HIstory, 96
introduction of computers, 97
Linkages, 100
Manual indexing process, 99
specificity, 100
unweighted indexing system, 104

indexing automatic,
Concept, 105
Natural Language, 105

Indexing automatic,
Statistical, 104

information,
definition, 2

Information Presentation,
impact retrieval, 199

information retrieval,
challenge, 3
Ingest and Indexing processes, 27
mathematical concepts, 44
obstacles query generation, 3

Information Retrieval System, 1
architecture, 3
definition, 2

Index

303

goal, 2
objective, 6
Processing Subsystems, 24

Information System Evaluation, 253
Ingest, 63
interword symbols, 31
Inverse Document Frequency, 114
inversion list pruning, 236
inversion lists,

champion lists, 236
Inversion lists, 31
inverted file structure, 29
item—definition, 2
Item normalization, 71

J
Jaccard, 147
JACCARD coefficient, 145

K
K-means algorithm, 181
Knuth-Pratt-Morris algorithm, 240
KWAC, 175
KWIC, 175
KWOC, 175

L
Latent Semantic Indexing, 48

singular-value decomposition, 48
Latent Semantic Indexing (LSI), 127
Link Weight, 206
logistic regression, 160
logo search, 221

M
MapReduce, 251
MARC (MAchine Readable Cataloging), 96
Matching Coefficient, 144
Mean Average precision (MAP), 264
Memex, 43
Minkowski metric, 146
multimedia,

alerts, 12
search, 20

Multimedia,
indexing, 129
query generation problems, 4

multimedia indexing,
audio, 131

Multimedia indexing,
Image Indexing, 134

Multimedia Indexing,
Video Indexing, 136

Multimedia Information Retrieval, 269
multimedia presentation,

audio sources, 216
Multimedia presentation,

Image Item Presentation, 219
Video Presentation, 223

Multimedia Presentation, 216
Multimedia Searching, 167

N
natural language indexing, 120
Natural Language Indexing,

Index Phrase Generation, 120
Tagged Text Parser (TTP), 122

negative feedback, 155
Netezza system, 248
network diagram, 207
neural network algorithms, 126
neural networks, 161
N-Grams, 31
NII Test Collection for IR Systems (NTCIR),

258
Novelty Ratio, 268

O
One Pass Assignments, 184
Optical Character Recognition, 135
out of vocabulary, 133
Overlap coefficient, 145
overlap similarity measure, 147

P
Page rank,

in-links, 215
out-links, 215

Page ranking, 215
Parcel hardware text search, 248
part of speech taggers, 121
PATRICA Trees, 34
Pearson R correlation, 148
phonemes, 131
phonetic indexing, 217
Phonetic Search, 132
pivot point, 113
pixel, 134
PixLogic system, 220
Porter Algorithm, 79
positive feedback, 155
preattention, 230
precision, 261
Precision, 8
Precision recall graphs, 263
Precision/Recall graphs, 9

Index

304

preference measure, 267
Principal Component Analysis (PCA), 205
processing token, 73
Profiles, 158
pseudo-relevance feedback, 157

Q
Query Resolver, 238

R
rank-frequency law, 75
Ranking Algorithms, 153
Rapid Search Machine, 245
Recall, 8
recall, 261
Regularized Discriminant Analysis, 160
Relevance feedback,

Rocchio, 154
Relevance Feedback, 154
relevance judgments = subjective, 254
relevant, 7

documemt space, 7
Response time, 261
Reuters Corpus, 258
R-precision, 267
RSS feeds, 65
RSS reader, 66
rubber band, 220

S
Search functions,

Boolean logic, 15
Fuzzy Searches, 18

Search Functions,
Proximity, 16
Term masking, 18, 19

Search statement,
binding levels, 141

seed list, 64
Selective Dissemination of Information,

11, 157
semantic road maps, 227
Shannon’s Theory of Information, 47
Signal Weighting, 116
Signature file, 38
signature file structure, 38
Similarity measure,

Weighted Vector, 145
Similarity Measure,

sum of the products, 144
Similarity measures,

binary system, 144
intrinsic errors, 143

Similarity Measures, 142
Single Link, 189
single link clustering, 179
sistrings,

Patricia Trees, 35
snippet, 200
Sought Recall, 268
spatial frequency, 232
speaker identification, 134, 218
Statistical indexing,

Bayesian, 108
probabilistic See Indexing, 106
vector model Vector Model, 110

Statistical model,
Discrimination Value, 118

stemming, 76
Stop Algorithms, 75
Stop Lists, 75
String clustering, 179
Subject Codes, 124
subscribes, 66
superimposed coding, 38

T
Teletext, 136
texels, 135
Text Retrieval Evaluation Conference

(TREC),
history, 253

text search,
Boyer-Moore algorithm, 241
Hardware, 244
Knuth-Pratt-Morris algorithm, 240

Text Search Optimization, 237
text summarization,

multiple documents, 213
position in the text, 212

Text Summarization, 211
text within an image, 221
Texture, 134
thesaurus,

Automatic Term Clustering, 176
Thesaurus,

Manual generation, 174
thumbnail, 219
total hit count, 200
TRECVid, 270

U
UNICODE, 71
Unique Relevance Recall (URR) metric,

265
User Overhead, 2

Index

305

V
vector model, 111
Vector model,

Inverse Document Frequency, 114
Term Frequency algorithms, 112

Vector Model,
Signal Weighting, 116

Vector Model problems, 119
Video Indexing, 136

W
Weighted Searches of Boolean Systems, 163
weighting schemes problems, 118

Windows, Icons, Menus, and Pointing devices
(WIMPs), 227

word, 73
word signature, 38

X
XML—data structure, 40
XML—eXtensible Markup Language, 43

Z
Ziph, 75
Zoning, 72

Index

	Cover
	Information Retrieval
Architecture and Algorithms
	ISBN 9781441977151
	Preface
	Contents

	Chapter 1
Information Retrieval System Functions
	1.1 Introduction
	1.1.1 Primary Information Retrieval Problems
	1.1.2 Objectives of Information Retrieval System

	1.2 Functional Overview of Information Retrieval Systems
	1.2.1 Selective Dissemination of Information
	1.2.2 Alerts
	1.2.3 Items and Item Index
	1.2.4 Indexing and Mapping to a Taxonomy

	1.3 Understanding Search Functions
	1.3.1 Boolean Logic
	1.3.2 Proximity
	1.3.3 Contiguous Word Phrases
	1.3.4 Fuzzy Searches
	1.3.5 Term Masking
	1.3.6 Numeric and Date Ranges
	1.3.7 Vocabulary Browse
	1.3.8 Multimedia Search

	1.4 Relationship to Database Management Systems
	1.5 Digital Libraries and Data Warehouses
	1.6 Processing Subsystem Overview
	1.7 Summary
	1.8 Exercises

	Chapter 2
Data Structures and Mathematical Algorithms
	2.1 Data Structures
	2.1.1 Introduction to Data Structures
	2.1.2 Inverted File Structure
	2.1.3 N-Gram Data Structures
	2.1.3.1 History
	2.1.3.2 N-Gram Data Structure

	2.1.4 PAT Data Structure
	2.1.5 Signature File Structure
	2.1.6 Hypertext and XML Data Structures
	2.1.6.1 Definition of Hypertext Structure
	2.1.6.2 Hypertext History

	2.1.7 XML

	2.2 Mathematical Algorithms
	2.2.1 Introduction
	2.2.2 Bayesian Mathematics
	2.2.3 Shannon’s Theory of Information
	2.2.4 Latent Semantic Indexing
	2.2.5 Hidden Markov Models
	2.2.6 Neural Networks
	2.2.7 Support Vector Machines

	2.3 Summary
	2.4 Exercises

	Chapter 3
Ingest
	3.1 Introduction to Ingest
	3.2 Item Receipt
	3.3 Duplicate Detection
	3.4 Item Normalization
	3.5 Zoning and Creation of Processing Tokens
	3.6 Stemming
	3.6.1 Introduction to the Stemming Process
	3.6.2 Porter Stemming Algorithm
	3.6.3 Dictionary Look-Up Stemmers
	3.6.4 Successor Stemmers
	3.6.5 Conclusions on Stemming

	3.7 Entity Processing
	3.7.1 Entity Identification
	3.7.2 Entity Normalization
	3.7.3 Entity Resolution
	3.7.4 Information Extraction

	3.8 Categorization
	3.9 Citational Metadata
	3.10 Summary
	3.11 Exercises

	Chapter 4
Indexing
	4.1 What is Indexing
	4.1.1 History
	4.1.2 Objectives

	4.2 Manual Indexing Process
	4.2.1 Scope of Indexing
	4.2.2 Precoordination and Linkages

	4.3 Automatic Indexing of Text
	4.3.1 Statistical Indexing
	4.3.1.1 Probabilistic Weighting
	4.3.1.2 Baysean Indexing
	4.3.1.3 Vector Weighting

	4.3.2 Natural Language
	4.3.2.1 Index Phrase Generation
	4.3.2.2 Natural Language Processing

	4.3.3 Concept Indexing

	4.4 Automatic Indexing of Multimedia
	4.4.1 Introduction to Mutlimedia Indexing
	4.4.2 Audio Indexing
	4.4.3 Image Indexing
	4.4.4 Video Indexing

	4.5 Summary
	4.6 Exercises

	Chapter 5
Search
	5.1 Introduction
	5.2 Similarity Measures and Ranking
	5.2.1 Similarity Measures
	5.2.1.1 Weighted Vector Similarity Measures

	5.3 Hidden Markov Models Techniques
	5.4 Ranking Algorithms
	5.5 Relevance Feedback
	5.6 Selective Dissemination of Information Search
	5.7 Weighted Searches of Boolean Systems
	5.8 Multimedia Searching
	5.9 Summary
	5.10 Exercises

	Chapter 6
Document and Term Clustering
	6.1 Introduction to Clustering
	6.2 Thesaurus Generation
	6.2.1 Manual Clustering
	6.2.2 Automatic Term Clustering
	6.2.2.1 Complete Term Relation Method
	6.2.2.2 Clustering Using Existing Clusters
	6.2.2.3 One Pass Assignments

	6.3 Item Clustering
	6.4 Hierarchy of Clusters
	6.4.1 Automatic Hierarchical Cluster Algorithms

	6.5 Measure of Tightness for Cluster
	6.6 Issues with Use of Hierarchical Clusters for Search
	6.7 Summary
	6.8 Exercises

	Chapter 7
Information Presentation
	7.1 Information Presentation Introduction
	7.2 Presentation of the Hits
	7.2.1 Sequential Listing of Hits
	7.2.2 Cluster View
	7.2.3 Network View
	7.2.4 Timeline Presentation

	7.3 Display of the Item
	7.3.1 Indicating Search Terms in Display
	7.3.2 Text Summarization

	7.4 Collaborative Filtering
	7.4.1 Page Ranking as Collaborative Filtering

	7.5 Multimedia Presentation
	7.5.1 Audio Presentation
	7.5.2 Image Item Presentation
	7.5.3 Video Presentation

	7.6 Human Perception and Presentation
	7.6.1 Introduction to Information Visualization
	7.6.2 Cognition and Perception
	7.6.2.1 Background
	7.6.2.2 Aspects of the Visualization Process

	7.7 Summary
	7.8 Exercises

	Chapter 8
Search Architecture
	8.1 Index Search Optimization
	8.1.1 Pruning the Index
	8.1.2 Champion Lists

	8.2 Text Search Optimization
	8.2.1 Software Text Search Algorithms
	8.2.2 Hardware Text Search Systems
	8.2.2.1 History
	8.2.2.2 Current Systems

	8.3 GOOGLE Scalable Multiprocessor Architecture
	8.4 Summary
	8.5 Exercises

	Chapter 9
Information System Evaluation
	9.1 Introduction to Information System Evaluation
	9.2 Measures Used in System Evaluations
	9.3 Multimedia Information Retrieval Evaluation
	9.4 Measurement Example: TREC Evolution
	9.5 Summary
	9.6 Exercises

	Chapter 8
Search Architecture
	Search Architecture
	8.2 Text Search Optimization
	8.2.2 Hardware Text Search Systems
	Bibliography

	Bibliography
	Index

